
FORTRAN for NOS/VE
Topics for FORTRAN
Programmers

Usage

cs~
CONTR..OL

DATA

60485916

SCL Commands

Managing Files:

Operation

Create a file

Make a file available to a
terminal session

Delete a local file

Delete a permanent file

Copy one file to another

Create a catalog

Display a list of files in
a catalog

Delete a catalog

Change the working catalog

Command

CREATE_FILE (CREF)

ATTACH_FILE (ATTF)

DETACH_FILE (DETF)

DELETE_FILE (DELF)

COPY _FILE (COPF)

CREATE_CATALOG(CREC)

DISPLAY_ CATALOG (DISC)

DELETE_ CATALOG (DELC)

SET_WORKING_CATALOG
(SETWC)

Change the access permission of CREATE_FILE_PERMIT (CREFP)
a file

Interactive Input and Output:

Operation Command

Associate a file with the terminal CREATE_FILE CONNECTION
(CREFC)

Copying Files Between NOS and NOS/VE:

Operation Command

Copy a file from NOS to NOS/VE GET _FILE (GETF)

Copy a file from NOS/VE to NOS REPLACE_FILE (REPF)

(Continued on inside back cover)

FORTRAN for NOS/VE
9 Topics for FORTRAN Programmers

Usage

This manual describes a subset of the features and parameters documented in
the following manuals:

FORTRAN for NOS, VE Language Definition Usage Manual
SCL for NOS, VE Language Definition Usage Manual
SCL for NOS/VE System Interface Usage Manual
SCL for NOS/VE Object Code Management Usage Manual

Control Data cannot be responsible for the proper functioning of any features

or parameters not documented in these manuals.

Publication number 60485916

Related Manuals

Background (Access as Needed):

SCL SCL
Language System
Definition

l~I
Interface

Usage Usage

60464013 60464014

FORTRAN Manual Set:

FORTRAN
Tutorial

60485912
I
0

FORTRAN
Language
Definition
Usage

Additional References:

Diagnostic Migration
Messages from NOS
for NOS/VE

101

to NOS/VE
Usage Usage

60464613 60489503

~

,~

lg
~

SCL
Ouick
Reference

60464018

SCL
Object Code
Management
Usage

60464413

la
~

lb
~

L

FORTRAN
Quick
Reference

60485918

Sort/Merge
Usage

60486113

---.indicates the recommended reading sequence

a . means available online

Manual History

lb

FORTRAN
Summary

60485919

SCL
Source Code
Management
Usage

Revision A documents FORTRAN for NOS/VE Version 1 at release level
LL2, PSR level 630. It was printed in March, 1985.

@1985 by Control Data Corporation. All rights reserved.
Printed in the United States of America.

2 FORTRAN Topics Usage Revision A

e

9 Contents

About This Manual . 5

Introduction to NOS/VE ... 1-1

System Command Language .. 1-1
Files and Catalogs .. 1-2
Interactive Input and Output 1-20
Copying Files Between NOS and NOS/VE 1-24
Compiling and Executing a FORTRAN Program 1-25
Submitting Batch Jobs .. 1-29
Executing SCL Commands Inside a FORTRAN Program 1-33
Passing Parameters to a FORTRAN Program 1-34
Short Forms of SCL Commands 1-38
Summary of NOS/VE Capabilities 1-39

Debugging . .. 2-1

The Debugging Process ... 2-1
Debugging Aids ... 2-20

Introduction to FORTRAN Input/Output 3-1

Basic Concepts ... 3-1
Overview of Input/Output Methods 3-4
Selecting an Input/Output Method 3-26
Summary of FORTRAN Input/Output Statements 3-31

Optimizing a Program .. 4-1

Basic Concepts ... 4-1
Optimization Techniques ... 4-3
FORTRAN Command Parameters 4-15
Summary of Optimizing a Program 4-19

Using Virtual Memory .. 5-1

What is Virtual Memory? ... 5-1
How Does Virtual Memory Work? 5-4
Programming Guidelines ... 5-8
Summary of Using Virtual Memory 5-1 7

Revision A Contents 3

CONTENTS

Using Object Libraries ... 6-1

The Loading Process ... 6-1
What Are Object Libraries and Why Are They Useful? 6-7
How the Loader Uses Object Libraries 6-8
Creating and Modifying Object Libraries 6-14
Summary of Using Object Libraries 6-23

Index ... lndex-1

4 FORTRAN Topics Usage Revision A

9 About This Manual

This manual provides introductory information for users of the Control
Data® FORTRAN Version I language under the Network Operating
System/Virtual Environment (NOS/VE). This manual is a supplement to
the FORTRAN for NOS/VE Language Definition manual. It emphasizes the
use of FORTRAN within the NOS/VE environment.

Audience
This manual is written for FORTRAN programmers who are new to
NOS/VE but who have at least six months programming experience. The
manual provides this audience with knowledge for developing, debugging,
and executing programs under NOS/VE.

Organization
The FORTRAN manual set consists of the following manuals: A tutorial, a
language definition manual, a FORTRAN topics manual, and a summary.
The tutorial is written for beginning FORTRAN programmers. It presents a
simple introduction to basic FORTRAN topics. The language definition
manual presents detailed descriptions and definitions of all FORTRAN
statements and features. It is a complete reference to the NOS/VE
FORTRAN language. The summary is a pocket-size booklet that presents a
summary of the FORTRAN statements and features. The summary includes
statement formats and parameter descriptions.

The Topics for FORTRAN programmers manual presents information
intended to help FORTRAN programmers become familiar with NOS/VE
and with the CDC version of FORTRAN. This manual is organized into the
following chapters:

- Chapter 1, Introduction to NOS/VE, presents an introduction to
NOS/VE commands and concepts. Topics include managing files,
compiling and executing batch and interactive programs, and
interactive input and output.

- Chapter 2, Debugging, presents an introduction to the debugging
process. This chapter discusses common errors, what to do when those
errors occur, and suggestions for avoiding errors. The chapter also
describes debugging aids available to FORTRAN programmers,
including the interactive debugging utility.

Revision A About This Manual 5

CONVENTIONS

- Chapter 3, Introduction to FORTRAN Input/Output, summarizes and
compares the various ways of performing input/ output in a
FORTRAN program. A discussion of the advantages and
disadvantages of each method is included. This information is
intended to help you decide when to use the various methods.

- Chapter 4, Optimizing a Program, describes how you can alter a
program to make it execute faster. This chapter describes optimizations
performed by the compiler and emphasizes techniques you can use to
help the compiler perform those optimizations.

- Chapter 5, Using Virtual Memory, presents an introduction to the
virtual memory concept used by NOS/VE. This chapter also includes
guidelines for writing programs that use virtual memory more
efficiently.

- Chapter 6, Using Object Libraries, describes how the system uses
object libraries and how they can make a program more efficient. This
chapter also explains how to create and modify object libraries.

Conventions

Certain notations are used throughout this manual with consistent meaning.
The notations are:

UPPERCASE

lowercase

blue type

In language syntax, uppercase indicates a keyword,
parameter, or symbol that must be written exactly as
shown. (Although lowercase letters are interpreted the
same as uppercase letters when used in FORTRAN
keyword and symbols, uppercase is used in this manual
for consistency. In occasional examples, keywords and
symbols are shown in lowercase for illustrative
purposes.)

In language syntax, lowercase indicates a name,
number, symbol, or entity that you must supply.

In examples of terminal dialog, blue type indicates user
input.

In language syntax, a horizontal ellipsis indicates that
the preceding optional item can be repeated as
necessary.

6 FORTRAN Topics Usage Revision A

ORDERING MANUALS

In program examples, a vertical ellipsis indicates that
other statements or parts of the program have not been
shown because they are not relevant to the example.

Blank character. This symbol is used wherever there
might otherwise be doubt as to how many blanks are
intended.

In examples of formatted input and output, vertical bars
denote the input or output fields. When used to enclose a
numeric quantity, vertical bars indicate the magnitude
(absolute value) of the quantity.

All numbers used in this manual are decimal unless otherwise indicated.
Other number systems are indicated by a notation after the number. For
example, 177 octal, F A34 hex.

Ordering Manuals
Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete manual title and
publication number. For example, FORTRAN for NOS/VE Language
Definition Usage manual, publication number 60485913.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your
opinion of the manual's usability, to suggest specific improvements, and to
report technical or typographical errors. IT the comment sheet has already
been used, you can mail your comments to:

Control Data Corporation
Publications and Graphics Division
P. 0. Box 3492
Sunnyvale, CA 94088-3492

Please indicate whether you would like a written response.

Revision A About This Manual 7

9 Introduction to NOS/VE I

A basic understanding of the NOS/VE System Command Language enables
you to manage program and data file, compile and execute programs, and
perform other useful functions in the NOS/VE environment.

System Command Language

The System Command Language (SCL) is the language through which you
communicate with the NOS/VE operating system.

SCL provides commands and statements that enable you to compile and
execute your FORTRAN programs; to create, store, and retrieve the files
containing your programs and the data used by those programs; and to
perform a variety of other operations.

SCL is a language that is similar in many respects to FORTRAN. In
addition to the SCL commands, it contains elements such as variables,
constants, and operators, that can be combined into expressions and
statements.

This chapter presents an overview of some of the more useful SCL
commands and concepts. You should be familiar with these commands and
concepts in order to effectively write and run programs under NOS/VE. For
a complete description of all aspects of SCL, you should refer to the following
manuals:

- SCL Language Definition Manual. This manual defines the complete
SCL language specification. It assumes that you are unfamiliar with
SCL, but are familiar with programming language concepts in general.

- SCL System Interface Manual. This manual describes the system
interface to NOS/VE. It includes such topics as system access,
interactive processing, file management, and resource management.
This manual can be a useful resource for FORTRAN programmers
running programs in the NOS/VE environment.

- SCL Quick Reference. This manual provides a quick reference for the
commands described in the preceding two manuals. This manual
describes SCL commands and parameters in alphabetical order. The
SCL Quick Reference is also available as an online manual. You can
enter this online manual by leaving this manual and typing

EXPLAIN M=SCL

Revision A Introduction to NOS/VE 1-1

FILES AND CATALOGS

These manuals provide a complete set of documentation for SCL. The rest of e
this chapter provides an overview of some of the more useful commands and
concepts presented in those manuals.

Files and Catalogs 9
Under NOS/VE, data is stored in units called files. Catalogs provide a useful
way for you to organize your files. SCL provides commands that help you
maintain and manage your files. Using these commands, you can create,
store, delete, copy, and perform a variety of other operations on files.

Files

A file is simply a collection of data that begins at a boundary known as the
beginning-of-information (BOI) and ends at a boundary known as the
end-of-information (EOI).

Many of the operations you perform during the course of creating and
executing a FORTRAN program involve the manipulation of files. These
files include the data files read and written by your program; they also
include the file that contains your source program and the output files
produced by the FORTRAN compiler.

NOS/VE recognizes two basic types of files: local (or temporary) files and
permanent files. A local file exists only for the duration of a terminal session.
When the session ends, the file is lost. In addition, any local files you create
during a terminal session can be accessed only by you.

A permanent file exists after your terminal session ends, and continues to
exist until you explicitly remove it from the system. You can retrieve a
permanent file in subsequent terminal sessions. You can also authorize other
users to access your permanent files.

A permanent file can have both a permanent name and a local name. A
reference to the local name is equivalent to a reference to the permanent
name.

Catalogs

All files reside in catalogs. A catalog is simply a collection of files grouped
under a catalog name. Catalogs serve two purposes: They provide a way for
you to organize and keep track of your files, and they are used by NOS/VE
to establish the type (local or permanent) of a file.

1-2 FORTRAN Topics Usage Revision A

9 Introduction to NOS/VE I

A basic understanding of the NOS/VE System Command Language enables
you to manage program and data file, compile and execute programs, and
perform other useful functions in the NOS/VE environment.

System Command Language

The System Command Language (SCL) is the language through which you
communicate with the NOS/VE operating system.

SCL provides commands and statements that enable you to compile and
execute your FORTRAN programs; to create, store, and retrieve the files
containing your programs and the data used by those programs; and to
perform a variety of other operations.

SCL is a language that is similar in many respects to FORTRAN. In
addition to the SCL commands, it contains elements such as variables,
constants, and operators, that can be combined into expressions and
statements.

This chapter presents an overview of some of the more useful SCL
commands and concepts. You should be familiar with these commands and
concepts in order to effectively write and run programs under NOS/VE. For
a complete description of all aspects of SCL, you should refer to the following
manuals:

- SCL Language Definition Manual. This manual defines the complete
SCL language specification. It assumes that you are unfamiliar with
SCL, but are familiar with programming language concepts in general.

- SCL System Interface Manual. This manual describes the system
interface to NOS/VE. It includes such topics as system access,
interactive processing, file management, and resource management.
This manual can be a useful resource for FORTRAN programmers
running programs in the NOS/VE environment.

- SCL Quick Reference. This manual provides a quick reference for the
commands described in the preceding two manuals. This manual
describes SCL commands and parameters in alphabetical order. The
SCL Quick Reference is also available as an online manual. You can
enter this online manual by leaving this manual and typing

EXPLAIN M=SCL

Revision A Introduction to NOS/VE 1-1

FILES AND CATALOGS

These manuals provide a complete set of documentation for SCL. The rest of e
this chapter provides an overview of some of the more useful commands and
concepts presented in those manuals.

Files and Catalogs 9
Under NOS/VE, data is stored in units called files. Catalogs provide a useful
way for you to organize your files. SCL provides commands that help you
maintain and manage your files. Using these commands, you can create,
store, delete, copy, and perform a variety of other operations on files.

Files

A file is simply a collection of data that begins at a boundary known as the
beginning-of-information (BOI) and ends at a boundary known as the
end-of-information (EOI).

Many of the operations you perform during the course of creating and
executing a FORTRAN program involve the manipulation of files. These
files include the data files read and written by your program; they also
include the file that contains your source program and the output files
produced by the FORTRAN compiler.

NOS/VE recognizes two basic types of files: local (or temporary) files and
permanent files. A local file exists only for the duration of a terminal session.
When the session ends, the file is lost. In addition, any local files you create
during a terminal session can be accessed only by you.

A permanent file exists after your terminal session ends, and continues to
exist until you explicitly remove it from the system. You can retrieve a
permanent file in subsequent terminal sessions. You can also authorize other
users to access your permanent files.

A permanent file can have both a permanent name and a local name. A
reference to the local name is equivalent to a reference to the permanent
name.

Catalogs

All files reside in catalogs. A catalog is simply a collection of files grouped
under a catalog name. Catalogs serve two purposes: They provide a way for
you to organize and keep track of your files, and they are used by NOS/VE
to establish the type (local or permanent) of a file.

1-2 FORTRAN Topics Usage Revision A

COPYING FILES

Everyone who is validated to use the computer automatically has two
catalogs: one for local files and one for permanent files. (Initially, of course,
the local catalog contains no files. The permanent file catalog may contain
some default files, such as PROLOG and EPILOG.)

The local catalog is named $LOCAL. This catalog contains all your local
files. Any files that you create during a terminal session are assigned to the
local catalog unless you explicitly assign them to a permanent file catalog. A
file must be in the $LOCAL catalog before it can be referenced in a
FORTRAN program. The command to place a permanent file in the
$LOCAL catalog is described later in this chapter.

The permanent file catalog is known as the master catalog. (The master
catalog that you are automatically assigned is all that you will typically
need, although you can make special arrangements with your site
administrator to have more than one permanent file catalog.)

The name of your master catalog is the same as your user name. However,
you can also reference this catalog by the name $USER. ($USER is actually
an SCL function that returns your user name.)

Any files that you place in your master catalog become permanent files. The
command to place a file in the master catalog is described later in this
chapter.

Copying Files

The first command we will introduce is the COPY FILE command. This
command copies the contents of a file to another file. COPY _FILE is a
commonly used command, and is used in examples throughout this chapter.
The general form of the COPY _FILE command is

COPY _FILE FROM=file-1 TO=file-2

Files file-1 and file-2 can be either local files or permanent files. If the
destination file file-2 does not already exist, a new file is automatically
created.

For example, the command

COPY_FILE FROM=OLDFILE TO=NEWFILE

copies local file OLDFILE to local file NEWFILE.

Revision A Introduction to NOS/VE 1-3

REFERENCING FILES

Referencing Files

All files under NOS/VE are identified by a name that consists of 1 through
31 letters, digits, and the characters$,_,@, and#. You reference a file
simply by specifying its name and the catalog in which it resides. The
general form of a file reference is

catalog-name.file-name

The catalog name and the file name are separated by a period.

For example, the following command copies the contents of a local file
named OLDFILE to a local file named NEWFILE:

COPY_FILE FROM=SLOCAL.OLDFILE TO=SLOCAL.NEWFILE

You can also reference a permanent file in this way. For example, the file
reference

$USER.BIRD

references a file named BIRD in the master catalog.

Specifying a catalog name and file name makes it possible for you to
reference permanent files without the need for entering a system command
to make the files available to the terminal session.

The following example shows a file reference used in a COPY _FILE
command:

COPY_FILE FROM=SLOCAL.OLDFILE TO=SUSER.NEWFILE

This command copies the contents of the local file OLD FILE into the
permanent file NEWFILE, which resides in the master catalog. (If
NEWFILE does not already exist, it is created.)

If you specify only a file name, without prefixing that name with a catalog
name, the file is assumed to be in a catalog known as the working catalog.

More on the working catalog later. For now, we'll assume that the working
catalog is the $LOCAL catalog. (The system assumes this unless you
explicitly request otherwise.) For example, simply specifying the file name
BIRD is the same as specifying

$LOCAL.BIRD

In the following example, local file OLDFILE is copied to permanent file
NEWFILE:

COPY_FILE FROM=OLDFILE TO=SUSER.NEWFILE

1-4 FORTRAN Topics Usage Revision A

CREATING FILES

An important restriction on this method of file referencing is that it can be
used only in system commands. In FORTRAN input/output statements, you
can specify only the file name; you cannot prefix that name with a catalog
name. For example, in an OPEN statement, you can specify

OPEN (UNIT=2, FILE='BIRD')

but not

OPEN (UNIT=2, FILE='SUSER .BIRD I) <---- WRONG!

Since you can't specify catalog names in a program, it follows that files
referenced in a program must be local files (in the $LOCAL catalog). The
commands for making permanent files available to a program as local files
are discussed later in this chapter.

Creating Files

You can create files during a terminal session in two ways. The first way is
simply to reference a nonexistent file. The system will automatically create
the file. This is known as creating a file implicitly. For example, in the
command

COPY_FILE FROM=OLD_FILE TO=NEW_FILE

the system creates NEW _FILE (if it does not already exist) and copies the
contents of OLD _FILE to NEW _FILE. In this case, NEW _FILE is a local
file.

You can implicitly create permanent files by specifying the catalog name in
the file reference. For example, the command

COPY_FILE FROM=OLD_FILE TO=SUSER.NEW_FILE

creates a file named NEW _FILE in the master catalog.

You can also implicitly create files in a FORTRAN program. If you specify a
nonexistent file in an input/output statement, that file is automatically
created as a local file. Note, however, you cannot create permanent files in
this way. The reason is that FORTRAN does not allow you to specify catalog
names along with the file name. For example, the sequence

OPEN (UNIT=2, FILE='FORT_FILE')
WRITE (UNIT=2) X, Y, Z

implicitly creates a local file named FORT _FILE (assuming it does not
already exist) and writes the values of variables X, Y, and Z to that file.

Revision A Introduction to NOS/VE 1-5

CREATING FILES

If you want to save a local file for use in a subsequent terminal session, you e
must make a permanent copy of the file. To do this, you can use the following
method.

The second way of creating a permanent file is to use the CREATE_FILE
command. This command creates an empty permanent file. You can then A
save a local file by copying the contents of that file to the permanent file. W
The simplest form of the CREATE_FILE command is

CREATE _FILE FILE=file-reference

where file-reference specifies the name of the file and the catalog in which
the file is to reside. For example, the command

CREATE_FILE FILE=SUSER.NEW_FILE

creates an empty permanent file named NEW _FILE in the master catalog.

The next step in saving a local file is to copy the contents of the local file to
the permanent file. To do this, you can use the COPY _FILE command to
copy the contents of the local file into the empty permanent file. The COPY_
FILE command has the form

COPY _FILE FROM=filel TO=file2

where file! is the file to be copied and file2 is the file to receive the data. e
For example, the command to copy the data from the local file LOC _FILE to
the permanent file NEW _FILE created by the CREATE_FILE command is

COPY_FILE FROM=LOC_FILE TO=SUSER.NEW_FILE

Making Permanent Files Available to a Program

To reference a permanent file in a system command, you can simply prefix
the file name with the catalog name. For example, the command

COPY_FILE TO=SUSER.NEWFILE FROM=SUSER.OLDFILE

copies file OLDFILE to file NEWFILE. Both permanent files are in the
master catalog.

1-6 FORTRAN Topics Usage Revision A

PERMANENT FILES

e However, you cannot use this method of file referencing in a FORTRAN
program. All files referenced in a FORTRAN program must be in the
$LOCAL catalog. There are two ways in which you can make a permanent
file available in the $LOCAL catalog. The first way is to attach the file by

A using an ATTACH_FILE command. This command has the form

W ATTACH_FILE FILE=file

where file specifies the name and catalog of the file to be attached. The
ATTACH_FILE command makes the specified file available in the $LOCAL
catalog and, therefore, available to a FORTRAN program.

For example, the command

ATTACH_FILE FILE=SUSER.NEWFILE

makes permanent file NEWFILE available in the $LOCAL catalog.

It is important to note that the ATTACH_FILE command makes a
permanent file available in the $LOCAL catalog, but does not create a new
copy of the file. There is still only one copy of the file. Thus, any changes you
make to the file in the $LOCAL catalog are also made to the file in the
master catalog, because they both refer to the same file. Therefore, you do not
need to take any further action to ensure that the changes you make to the
local file are permanent.

If you want to write to a file, you must attach the file with WRITE
permission. The ACCESS_MODE parameter on the ATTACH_ FILE
command specifies the permissions with a permanent file is attached. For
example, following command makes file AFILE available through the
$LOCAL catalog:

ATTACH_FILE FILE=SUSER.AFILE ACCESS_MODE=(READ,EXECUTE,WRITE)

File AFILE is now available in both the $LOCAL and master catalogs. The
file is attached with read, execute, and write permissions. The following two
commands are equivalent:

COPY _FILE FROM=SUSER.AFILE TO=BFILE <-Accesses AFILE through
master catalog

COPY _FILE FROM=AFILE TO=BFILE <-------Accesses AFILE through the
$LOCAL catalog

The following command accesses AFILE through the $LOCAL catalog, but
changes the only existing copy of AFILE. Thus, the changes to AFILE are
permanent.

COPY_FILE FROM=CFILE TO=AFILE

Revision A Introduction to NOS/VE 1·7

PERMANENT FILES

The following example shows how a permanent file in the master catalog is e
made available to a FORTRAN program:

PROGRAM READFL
OPEN CUNIT=1, FILE=' NEW FIL') <--------Program looks for a local file
READ CUNIT=1, FMT=100> VALS named NEWFIL. e

The following command, entered before the program is executed, makes
NEWFIL available in the $LOCAL catalog:

ATTACH_FILE FILE=SUSER.NEWFIL

NEWFIL is now available to the FORTRAN program.

The preceding paragraphs described how to use the ATTACH_FILE
command to make permanent files available to FORTRAN programs. The
alternate way of making permanent files available is to use the COPY _FILE
command to create a temporary copy of a permanent file in the $LOCAL
catalog.

For example, assume you have a permanent file named WHICH_FILE in
your master catalog. You can create a temporary copy of WHICH_FILE by
entering the command

COPY TO=WHICH_FILE FROM=SUSER.WHICH_FILE

This command creates a new and separate copy of WHICH_ FILE in the
$LOCAL catalog. Note that there are now two separate copies of WHICH_
FILE. Any changes you make to the local copy do not affect the permanent
copy. To make those changes permanent, you must copy the temporary file to
a permanent file. For example, the command

COPY_FILE TO=SUSER.WHICH_FILE FROM=WHICH_FILE

copies the local copy of WHICH_FILE over the permanent copy of
WHICH_FILE.

The following discussion may clear up some confusion about local and
permanent files.

A given file can exist in more than one catalog. The file can have the same
name in each catalog, or it can have different names. But regardless of
whether the names are the same or different, they all refer to the same file.
For example, the following commands make an existing permanent file
available through the $LOCAL catalog under two names:

ATTACH_FILE FILE=THIS_FILE
ATTACH_FILE FILE=THIS_FILE LOCAL_FILE_NAME=NEW_NAME

1-8 FORTRAN Topics Usage Revision A

DELETING FILES

Permanent file THIS_FILE can now be referenced by either of the local file
names THIS_FILE or NEW _NAME.

Different files in different catalogs can have the same name. For example,
the commands

CREATE_FILE FILE=SUSER.NEWFILE
COPY_FILE FROM=OLDFILE TO=NEWFILE

create a new (empty) file in the master catalog and copy an existing file to a
new file in the $LOCAL catalog. Now, two different file exist, both named
NEWFILE.

The following diagrams illustrate the ATTACH_FILE and COPY _FILE
commands:

$LOCAL catalog $USER catalog

file

The ATT ACH_FILE command makes the same copy of a permanent file
available through the $LOCAL catalog.

$USER catalog $LOCAL catalog

J l
file t--C OPY_FIL E__.. file

The COPY _FILE command can create a local copy of a permanent file.

Deleting Files

After you are through with a file, you can delete it from the system. Once you
have deleted a file, that file can no longer be accessed and it cannot be
recovered. The storage space occupied by the file becomes available for other
uses. There are two commands for deleting files: one for local files and one
for permanent files.

Revision A Introduction to NOS, VE 1-9

DELETING FILES

The command to delete a local file is

DETACH_FILE FILE=local-file

This command removes the specified local file from the system. If the
specified file is an attached permanent file, the permanent file is not affected.

For example,

DETACH_FILE FILE=SLOCAL.RFILE

removes (detaches) local file RFILE from the system.

The command to delete a permanent file is

DELETE _FILE FILE=perm-file

For example, the command

DELETE_FILE FILE=SUSER.OFL

deletes permanent file OFL.

Deleting an attached permanent file (that was specified in an ATTACH_
FILE command) also deletes it from the $LOCAL catalog, because there is
really only one copy of the file. Note, however, that if you have created a
separate copy of the permanent file in the $LOCAL catalog, the local copy
continues to exist after the DELETE_FILE command.

Creating Subcatalogs

You can create subcatalogs within your master catalog. A subcatalog is
simply a catalog within a catalog. Subcatalogs provide a way of organizing
your files into meaningful groups. You can't create subcatalogs in the
$LOCAL catalog.

1-10 FORTRAN Topics Usage Revision A

CREATING SUBCATALOGS

The following diagram shows a master catalog that contains two files and
two subcatalogs. The first subcatalog contains two files, and the second
subcatalog contains one file.

$USER
catalog

l
l I l

file I file2
sub- sub-

catalogl catalog2

l l l l

file3 file4 file5

The command to create a subcatalog has the form

CREATE_ CATALOG CATALOG=master-catalog.subcatalog

where master-catalog is the existing master catalog and subcatalog is the
new subcatalog to be created. You can create a subcatalog within a
subcatalog by specifying

CREATE_ CATALOG
CAT ALOG=master-catalog.subcatalog-1.subcatalog-2

Each time you create a new subcatalog, you must specify the complete
sequence of catalogs leading up to the new subcatalog.

For example, the following command creates a subcatalog named ANIMALS
in the master catalog:

CREATE_CATALOG CATALOG=$USER.ANIMALS

The following commands create two subcatalogs, named FISH and BIRDS,
in subcatalog ANIMALS:

CREATE_CATALOG CATALOG=SUSER.ANIMALS.FISH

CREATE_CATALOG CATALOG=$USER.ANIMALS.BIRDS

Revision A Introduction to NOS/VE 1-11

CREATINGSUBCATALOGS

We now have a master catalog that contains two levels of catalogs. The
following commands create some files in subcatalogs FISH and BIRDS.

CREATE_FILE FILE=SUSER.ANIMALS.FISH.CARP

CREATE_FILE FILE=SUSER.ANIMALS.FISH.GUPPY

CREATE_FILE FILE=SUSER.ANIMALS.BIRDS.ROBIN

CREATE_FILE FILE=SUSER.ANIMALS.BIRDS.PARROT

Subcatalog FISH contains files CARP and GUPPY, and subcatalog BIRDS
contains files ROBIN and PARROT.

To reference a permanent file, you must specify the entire chain of catalogs
leading to that file. For example, the following LIST _FILE command
references file PARROT:

LIST_FILE $USER.ANIMALS.BIRDS.PARROT

Note that the following reference to file PARROT is not valid, because it does
not specify the entire chain of catalogs leading to PARROT:

LIST_FILE $USER.PARROT

Displaying a List of Files in a Catalog

You can list the names of the files belong to a catalog by using the
DISPLAY_ CATALOG command. This command has the form

DISPLAY_ CATALOG CATALOG=catalog-name

The name you specify must be in the form
$USER.subcatalog-1.subcatalog-2 ... where subcatalog-n is the lowest level
of subcatalog you want to list.

If you enter DISPLAY _CATALOG without any parameters, the files in the
$LOCAL catalog are listed. (Any files created by a FORTRAN program
which have not been referenced by an SCL command will not appear in the
list.)

1-12 FORTRANTopicsUsage Revision A

CREATING SUBCATALOGS

e Our next example assumes the existence of the following catalogs:

catalog

catalog
FISH

I
files
GUPPY
CARP

$USER

catalog
ANIMALS

catalog
BIRDS

I
files
PARROT
ROBIN

Some DISPLAY _CATALOG commands for this catalog are as follows:

Command

DISPLAY_CATALOG CATALOG=$USER

DISPLAY_CATALOG CATALOG=SUSER.ANIMALS

Displayed at the
Terminal

CATALOG :ANIMALS

CATALOG :FISH
CATALOG: BIRDS

DISPLAY_CATALOG CATALOG=SUSER.ANIMALS.FISH CATALOG :FISH
FILE :CARP
FILE :GUPPY

DISPLAY _CATALOG CATALOG=SUSER.ANIMALS.BIRDS CATALOG :BIRDS
FILE :ROBIN
FILE : PARROT

Revision A Introduction to NOS/VE l~l:l

DELETING CATALOGS

Deleting Catalogs

If you no longer need a particular permanent file catalog, you can delete the
catalog by entering the command

DELETE_ CATALOG CATALOG=$USER.subcatalog-1.
subcatalog-2 ..••

You can delete only an empty catalog (that is, a catalog that contains no files
or subcatalogs). If you try to delete a catalog that contains files or
subcatalogs, the DELETE_CATALOG command returns an error message
and takes no action. For example, assuming the existence of the catalogs
listed in the preceding example, the command

DELETE_CATALOG CATALOG=SUSER.ANIMALS

will not affect the ANIMALS catalog as long as it contains files ROBIN and
PARROT. However, if you first enter the commands

DELETE_FILE FILE=ROBIN
DELETE_FILE FILE=PARROT

and then enter

DELETE_CATALOG CATALOG=SUSER.ANIMALS.BIRDS

the BIRDS catalog will be deleted.

You cannot delete the $USER and $LOCAL catalogs.

Changing the Working Catalog

As you may have noticed, referencing files under NOS/VE can be unwieldy,
especially if the files reside within several levels of catalogs. For instance, in
our preceding example, the command to copy the contents of file GUPPY to
file PARROT is

COPY_FILE TO=SUSER.ANIMALS.BIRDS.PARROT FROM=SUSER.ANIMALS.
FISH.GUPPY

To avoid specifying a chain of catalogs, you could use COPY _FILE to create
local copies of the files, or use ATTACH_FILE to make the files available in
the $LOCAL catalog. It would then be unnecessary to specify catalog names.
(Recall that if you omit the catalog name from a file reference, the system A
searches for the file in the $LOCAL catalog.) However, a quicker way of •
referencing permanent files is available through the SET_ WORKING_
CATALOG command.

1-14 FORTRAN Topics Usage Revision A

WORKING CATALOG

The working catalog is the catalog the system searches whenever you specify
a file name with no catalog names. The default working catalog is the
$LOCAL catalog. For example, in the command

DISPLAY_FILE FILE=THIS_FILE e the system looks for THIS_FILE in the $LOCAL catalog.

You can change the working catalog to one of your permanent file catalogs
by specifying a SET_ WORKING_ CATALOG command. Then, whenever
you specify a file name with no catalog names, the system searches for the
file in the permanent file catalog. This capability provides a shorthand way
of referencing permanent files.

The SET_ WORKING_ CATALOG command has the form

SET_ WORKING_CATALOG CATALOG=catalog-name

For example, assume the catalog $USER.ANIMALS.BIRDS contains a file
named PARROT. The command

SET_WORKING_CATALOG CATALOG=SUSER.ANIMALS.BIRDS

sets the working catalog to $USER.ANIMALS.BIRDS. Now, whenever you
specify a file name with no catalog names, the system automatically
appends the string $USER.ANIMALS.BIRDS to the file name. Thus,
specifying the file name PARROT is equivalent to specifying
$USER.ANIMALS.BIRDS.PARROT.

Note that after you have changed the working catalog to one of your
permanent file catalogs, you must prefix all references to local files by
$LOCAL.

An important limitation on the SET_ WORKING_ CATALOG command is
that it applies only to file names specified in SCL commands. Files
referenced in FORTRAN programs MUST be in the $LOCAL catalog,
regardless of the current working catalog.

Revision A Introduction to NOS/VE l·lG

POSITIONING FILES

Positioning Files

Whenever you reference a file in a system command, that file will, in most
cases, be automatically positioned at the beginning-of-information before
the command is executed. (You can change this default file positioning as
explained later in this chapter.) However, you can override the default A
positioning for a particular reference to a file by referencing the file in the W
following way:

file.position

where file is a file name (which can be prefixed by catalog names) and
position is one of the following:

$BOI

$ASIS

$EOI

The file is positioned at beginning-of-information.

The file is left at its current position.

The file is positioned at end-of-information.

For example, in the following FORTRAN command, file PROG_FILE is
positioned at the beginning-of-information, file ERR positioned at
end-of-information, and file LGO is left at its current position. The
positioning occurs before the FORTRAN command is executed.

FORTRAN l=PROG_FILE E=ERR.$EOI B=LGO.$ASIS

Files referenced in a FORTRAN program during execution are not
repositioned before the reference. (They remain at $ASIS.) Therefore, if you
want to read or write a file starting at the beginning-of-information, you
should specify a REWIND _FILE command before executing the program, or
include a REWIND statement in the program before the READ or WRITE
statement.

The file you specify to execute the program (for example, LGO) is positioned
according to the system default (usually $BOI).

1-16 FORTRAN Topics Usage Revision A

PERMANENT FILE CYCLES

Permanent File Cycles

Each permanent file can have up to 999 different versions, or cycles. Each
cycle is indicated by an integer that you append to the file name. (If you also
specify a file position indicator, the cycle number goes between the file name
and the position indicator.) For example, the specification

AFILE.1

references cycle 1 of file AFILE. The specification

$USER.INDAT.12.$BOI

references cycle 12 of file INDAT.

If you omit the cycle number, the system assumes the highest cycle that you
have defined for the file.

Permanent file cycles provide a convenient way of storing and referencing
different versions of a file. For example, suppose you are developing a
program and you want to keep permanent copies of successive versions of
the program. Assuming the program is on local file TEMP, you could create
a permanent file named PGRAM as follows:

CREATE_ FILE $USER .PGRAM <----Create permanent file PGRAM
(initially empty).

COPY _FILE TEMP $USER.PGRAM <-Copy contents oflocal file TEMP into
permanent file PGRAM.

You now have cycle 1 of permanent file PGRAM. The following commands
create cycle 2 of file PG RAM and copy information into it (assuming local
file TEMP now contains a new version of the program):

CREATE_FILE FILE=$USER.PGRAM
COPY_FILE FROM=TEMP TO=$USER.PGRAM

Omitting the cycle number from the file reference in the CREATE_FILE
command causes the system to create the next cycle, in this case cycle 2.
Omitting the cycle number from the file reference in the COPY _FILE
command causes the system to use the highest cycle defined for the file.

Revision A Introduction to NOS/VE 1-17

ACCESSING OTHER USERS' FILES

Now, you have two cycles of file PGRAM. The following commands are
equivalent; they both attach the most current cycle (cycle 2):

ATTACH_FILE $USER.PGRAM.2

ATTACH_FILE $USER.PGRAM

To reference the original version (cycle 1), you must specify the cycle
number:

ATTACH_FILE $USER.PGRAM.1

Accessing Other Users' Files

Normally, your permanent files can be accessed only by you. However, you
can make your files available to other users by using the CREATE_FILE_
PERMIT command to change the access permission of the file. Two useful
forms of this command are:

CREATE_FILE_PERMIT FILE=file-name USER=user-name

This command makes the specified file available to the specified user.

CREATE _FILE_PERMIT FILE=file-name GROUP=PUBLIC

This command makes the specified file public; that is, it is available to all
users.

For example, the command

CREATE_FILE_PERMIT FILE=$USER.PGRAM USER=URNAME

makes permanent file PGRAM available to the user whose user name is
URN AME.

By default, the designated user or users may read or execute the file, but may
not alter it. Other parameters on the CREATE_FILE_PERMIT command
allow you to change the access mode to permit the file to be altered.

After you have been given access permission to a file, you can reference that
file by prefixing the file name by the user name of the user who owns the file.
For example, assume your user name is MYNAME and you have entered the
preceding CREATE_FILE_PERMIT command. User URN AME can now
reference file PGRAM by specifying e

.MYNAME.PGRAM

The period preceding MYNAME is required.

1-18 FORTRAN Topics Usage Revision A

FILE ATTRIBUTES

If a file is in a subcatalog within the master catalog, a user who accesses the
file must specify the chain of subcatalogs leading to the file. For example,
assume that file AAA is in subcatalog SUBCAT of your master catalog and
that your user name is MYNAME. A user who has access permission to the
file can reference that file by specifying

.MYNAME.SUBCAT.AAA

For example, if user URN AME enters the command

ATTACH_FILE FILE=.MYNAME.SUBCAT.AAA

that user will have access to file AAA through his or her $LOCAL catalog.

File Attributes

Each NOS/VE file has an associated set of attributes. These attributes
define the structure of the file and establish various processing options for
the file. Each attribute is identified by a unique name that you can use to
reference the attribute in system commands. There are about 40 attributes
altogether (although not all attributes apply to all files). Some examples of
file attributes are:

FILE_ORGANIZATION Specifies the organization of the file
(sequential, indexed sequential, or byte
addressable).

RECORD_TYPE

ACCESS_MODE

OPEN _POSITION

Specifies the record structure of the file.

Specifies how the file can be used by
subsequent commands. For example, whether
the file can be read, executed, or modified.

Specifies where the file is to be positioned
before it is opened.

The attributes of a file are initially established when the file is created. Some
of the attributes can later be changed, while others are permanent for the life
of the file.

For most types of FORTRAN input/ output, you do not need to be concerned
with file attributes. The reason is that the files you'll be reading and writing
are assigned default attributes that are appropriate for the file. The exception
is the FORTRAN file interface capability, a highly flexible type of
input/ output that requires you to know many of the file attributes. For other
types of input/ output, you will generally use the default attributes. You can,
however, change certain attributes.

Revision A Introduction to NOS/VE 1-19

INTERACTIVE INPUT AND OUTPUT

The following commands are useful for working with file attributes:

SET _FILE_ATTRIBUTES

CHANGE_FILE_ATTRIBUTES

Sets one or more attributes for a file.

Changes one or more attributes for a
file. e

DISPLAY _FILE_ATTRIBUTES Displays one or more attributes of a
file.

More information about file attributes and the preceding commands is
available in the FORTRAN Language Definition manual and the SCL
System Interface manual.

Interactive Input and Output

Under NOS/VE, you can write a program that performs interactive input
and output; that is, one that reads data input from the terminal and displays
output at the terminal.

You can perform interactive input and output in two ways. The first way is
to use the standard system files $INPUT and $OUTPUT. These files are
automatically associated with the terminal; that is, all data written to file A
$OUTPUT is displayed at the terminal, and all data read from file $INPUT 9'
is read from the terminal.

The second way is to use the REQUEST_ TERMINAL command to associate
a file name with the terminal. Then, any data written to that file is displayed
at the terminal, and any data read from that file must be entered through the
terminal.

Files $INPUT and $OUTPUT are standard system files that are available to
all users. You do not need to enter any special commands to make these files
available to your program. You can reference $INPUT and $OUTPUT in
system commands as well as within a FORTRAN program. For example,
assuming file DISFILE contains printable data, the following command
displays the contents of DISFILE at the terminal:

COPY_FILE FROM=DISFILE TO=SOUTPUT

Referencing files $INPUT and $OUTPUT in a FORTRAN program causes
the program to perform input and output through the terminal.

1-20 FORTRAN Topics Usage Revision A

INTERACTIVE INPUT AND OUTPUT

The easiest way to cause a program to write data to the terminal is to specify
an asterisk (*) for the unit specifier in a WRITE or PRINT statement. This
causes the output file to default to $OUTPUT. For example, the following
statement displays the string TYPE INPUT VALUES at the terminal:

PRINT *, 'TYPE INPUT VALUES'

An alternate way of writing data to the terminal is to associate a unit
number with file $OUTPUT in an OPEN statement. Then, when you
reference the unit number in an output statement, data is written to file
$OUTPUT. For example, the following statements use this method to display
two values at the terminal:

OPEN CUNIT=5, FILE='SOUTPUT')
WRITE CUNIT=5, FMT=12) R, ANS <-- Displays the values ofR and ANS

The easiest way of reading data from the terminal is to specify an asterisk
for the unit specifier in a READ statement. This causes the input file to
default to file $INPUT. For example, the following statements read two
values from the terminal:

READ (UNIT=*, FMT=100) X, Y
100 FORMAT C2F6.2)

When the READ statement is executed, the system displays a question mark
and the program pauses until you enter values for X and Y.

An alternate way of reading data from the terminal is to associate a unit
number with file $OUTPUT in an OPEN statment. Then, when you
reference the unit number in a READ statement, data is read from file
$INPUT. For example, the following statements perform the same operation
as the preceding example:

OPEN CUNIT=2, FILE=SINPUT)
READ CUNIT=2, FMT=100) X, Y

100 FORMAT C2F6.2)

When the READ statement is executed, execution pauses until you enter
values for X and Y.

In each of the preceding examples, when the READ statement is executed,
the system displays a question mark and waits for you to enter the input
values. If you press RETURN before entering enough input values to satisfy
the input/output list of the read statement, the system issues another?
prompt, and will continue to do so until the input/ output list is satisfied.

Revision A Introduction to NOS/VE 1-21

INTERACTIVE INPUT AND OUTPUT

For example, when the following READ statement is executed:

READ (UNIT=*, FMT=12) X, Y
12 FORMAT C2f6.2)

the system displays a? and waits for your input. If you type a single number, e
such as

? 123.45

the system will issue another? prompt and wait for you to type another
number. When the input/output list is satisfied, execution continues with the
next statement.

If you do not know the exact number of input records your program will read,
you will need to include a test for the end of the input data.

When reading data from a noninteractive file, you can use the END=
specifier in the READ statement to test for end of data. However, the END=
specifier can't be used for interactive input. Therefore, you must devise your
own test for end of data. For example, the following sequence reads input
records until the value 999.99 is read for both X and Y. The loop is then
exited.

READ (UNIT=*, FMT=12) X, Y
12 FORMAT (2F6.2)

IF (X .EQ. 999.99 .AND. Y .EQ. 999.9) GO TO 15

GO TO 10
15 CONTINUE

Whenever you write a program that reads data from the terminal, you can
improve the usability of the program by including a statement to display an
informative prompt immediately before the READ statement.

For example, when the following statements are executed:

PRINT *, ' ENTER YOUR NAME'
READ (UNIT=*, FMT=20) NAME

22 FORMAT CA20)

the following display appears at the terminal:

ENTER YOUR NAME
?

You then type a sequence of characters and press RETURN; the program
then reads the characters and continues executing.

1-22 FORTRAN Topics Usage Revision A

INTERACTIVE INPUT AND OUTPUT

e The second way of causing a program to receive input and display output at
the terminal is to explicitly associate a file with the terminal. Then, any data
written to that file is displayed at the terminal, and any data read from the
file must be entered through the terminal. e You can associate a file with the terminal by specifying a REQUEST_
TERMINAL command. This command has the form

REQUEST_ TERMINAL FILE=file

You can associate a file with the terminal from inside a FORTRAN program
with the statement

CALL CONNEC (u)

where u is the unit number of the file to be associated with the terminal.

Any data written to the file specified in a REQUEST_ TERMINAL
command or CALL CONNEC statement is displayed at the terminal, and
any data read from the file must be entered through the terminal.

The file remains associated with the terminal until a CALL DISCON (u)
statement is executed, or until you either enter a DETACH_FILE command
or end the terminal session. e For example, suppose a program contains the following statements:

OPEN CUNIT=3, FILE='WHAT_FILE')
READ CUNIT=3, FMT=100) CA(I),1=1,100)

These statements open a file named WHAT _FILE and read values into an
array from that file. Normally, the system would look for WHAT _FILE in
the $LOCAL catalog. But suppose you want the program to accept input
directly from the terminal. Before executing the program, enter the command

REQUEST_TERMINAL FILE=WHAT_FILE

This command associates the file name WHAT FILE with the terminal.
When the READ statement is executed, the system will issue a ? prompt and
wait for you to enter values for array A

Revision A Introduction to NOS/VE 1-23

COPYING FILES BETWEEN NOS AND NOS/VE

Copying Files Between NOS and
NOS/VE
You can transfer files directly between the NOS and NOS/VE systems on A
the dual-state computer. W'
This discussion deals only with the transfer of files consisting of display code
data. This includes files such as FORTRAN source programs and files used
for formatted, list directed, and namelist input/ output. The transfer of files
containing other types of data (for example, files used for unformatted,
indexed sequential, or direct access input/output) must be done using other
tools. (Refer to the Migration from NOS to NOS/VE manual for additional
migration information.)

You can copy either an indirect access or a direct access file from the NOS
system to the NOS/VE system by using the GET _FILE command. This
command has the form

GET _FILE FROM=nos-file TO=nosve-file DC=64

This command copies the specified direct or indirect access NOS file to the
specified NOS/VE file. The NOS/VE file can be either a local file or a
permanent file with the file name prefixed by the catalog names.

The NOS file is assumed to contain character data in 6/12 bit display code
format. (You can use the GET _FILE command to convert data in other
formats. However, most NOS text files use the 6/12 display code format.
Refer to the Migration from NOS to NOS/VE manual for more information
about migrating files.)

For example, suppose you have a source program stored on a NOS
permanent file named NOSPROG. You can copy that file to a NOS/VE
permanent file named VEPROG as follows:

GET_FILE FROM=NOSPROG TO=SUSER.VEPROG

This command copies the contents of the NOS file NOSPROG to the
NOS/VE file VEPROG that resides in the master catalog. If VEPROG does
not already exist, it is created.

Note that when you bring a FORTRAN source program from NOS to
NOS/VE, you may have to change the program before you can execute it.
For more information on how to migrate programs from NOS to NOS/VE,
refer to the Migration from NOS to NOS/VE manual.

1-24 FORTRAN Topics Usage Revision A

COPYING FILES BETWEEN NOS AND NOS/VE

You can copy a NOS/VE file to a NOS file by using the command

REPLACE_FILE TO=nos-file FROM=nosve-file

Each ASCII character in the NOS/VE file is converted to a 6/12 bit display e code representation.

If the NOS file you specify already exists on the NOS system (as a direct or
indirect access permanent file), it is replaced by the specified NOS/VE file. If
the NOS file does not already exist, a new direct access permanent file is
created and the NOS/VE file is copied to it.

For example, assume you have a local NOS/VE file named VEFILE. You
can copy that file to the NOS side of the computer by entering

REPLACE_FILE TO=NOSFIL FROM=VEFILE

File NOSFIL now exists as a permanent file under NOS.

Additional parameters on the REPLACE_FILE command provide other
capabilities. For example, a parameter is provided that enables you to copy
NOS files belonging to another user, and another parameter enables you to
copy NOS files having formats other than 6/12 display code. These
parameters are described in the SCL Language Definition manual.

Compiling and Executing a FORTRAN
Program

NOS/VE provides commands for compiling and executing FORTRAN
programs. The following paragraphs describe the most frequently used
parameters and options.

Compiling

The FORTRAN compiler reads a source program and generates an
executable object program. The compiler provides a number of options,
including names of the input and output files, level of optimization, and
output listing options.

The compiler is called by the FORTRAN command. The FORTRAN
command parameters are described in detail in the FORTRAN Language
Definition manual. This discussion presents a brief overview of the
FORTRAN command and some suggestions for selecting various options.

Revision A Introduction to NOS/VE 1-25

COMPILING AND EXECUTING

For most compilations, you will need to specify no more than two or three
parameters on the FORTRAN command. These parameters specify the name
of the file containing the source program, the file to receive the executable
object program, and the file to receive the compiler output listing (along with
error messages).

FORTRAN also provides a parameter that allows you to specify a file to
receive compile-time error messages. If you omit this parameter, the compiler
writes error messages to the terminal and to the output listing file.

For example, the command

FORTRAN I=SRCE B=BIN L=FLIST

reads source input from file SRCE, writes object code to file BIN, and writes
the output source listing to file FLIST. These files are all local files.

To specify permanent files, you can prefix the file names with catalog names.
For example, in the command

FORTRAN I=SUSER.SRCE B=SUSER.BIN L=SUSER.FLIST

files SRCE, BIN, and FLIST are permanent files in the master catalog.

If you omit any of these parameters, a default value is provided. For the I
parameter, the default is $INPUT, which cannot be used for compiling at the A
terminal. For the B parameter, the default is $LOCAL.LGO. If you omit the W
L parameter, no source listing is produced at the terminal, but a printed
listing is produced in batch mode.

During debugging, you may want to generate a reference map, a useful
debugging tool. The parameter to generate a complete reference map is
LO=(R,A,M). An explanation of how to use the reference map is presented in
chapter 2, Debugging.

The preceding parameters are the most commonly used of the FORTRAN
parameters. Refer to the FORTRAN Language Definition manual for
complete descriptions of all the FORTRAN command parameters.

Executing

You can begin execution of a FORTRAN object program in two ways. The
simplest and most common way is use a name call command. To use this
command, you simply specify the name of the file containing the object
program. (This is the file specified by the BINARY _OBJECT parameter on
the FORTRAN command.) For example, the following commands compile
and execute a FORTRAN program:

FORTRAN I=SRCE B=BIN L=LISTFIL
BIN

1-26 FORTRAN Topics Usage Revision A

COMPILING AND EXECUTING

The FORTRAN command compiles the source program on file SRCE and
writes object code to file BIN. The BIN command begins execution of the
object program.

The following example is equivalent to the preceding one, except the common
practice of writing the object program to the default file LGO is used:

FORTRAN I;SRCE L;LISTFIL
LGO

You can specify an optional list of parameters on the name call command.
These parameters fall into the following three classes:

- The $PRINT _LIMIT and STATUS parameters. The $PRINT _LIMIT
parameter specifies the maximum number of lines that an executing
program can write to file $OUTPUT. The STATUS parameter returns
an SCL error code when the program terminates.

- The file name substitution parameters. These parameters enable you to
specify file names on the execution command that are substituted for
file names in the program.

- The user-defined SCL parameters. These parameters enable you to
pass values to a program by specifying them on the execution
command.

Refer to the FORTRAN Language Definition manual for detailed
descriptions of these parameters.

The second way of beginning execution of a compiled FORTRAN program is
through the EXECUTE_ TASK command. This command has the same
effect as the name call command, but it allows you to specify a number of
additional options. The EXECUTE_ TASK command has the form

EXECUTE_ TASK parameter-list

The parameter list enables you to select options that affect execution of your
program. The simplest form of this command is the same as a name call
command. For example, the following commands are equivalent:

EXECUTE_TASK FILE;LGO

LGO e Both commands begin execution of the object program on file LGO.

Following are discussions of some commonly-used EXECUTE_ TASK
options.

Revision A Introduction to NOS/VE 1·27

LOADING

Loading Modules From Different Files e
When you execute a program using the name call command, the system
assumes that all program units required for execution are contained in the
object file you specify (or in libraries available to the program). For example, A
if you have a main program PROGA and a subroutine SUBA, both PROGA W
and SUBA must reside on the file you specify in the name call command. In
general, if you write a main program and subroutines all at once, you place
them on the same file.

However, suppose your program calls a subroutine that resides on a different
file. If you try to use the name call command, the system will issue a runtime
error when the program calls the subroutine. But you can use the
EXECUTE_ TASK command to cause the desired subroutine to be included
in the executable program.

There are two EXECUTE_ TASK parameters that you can use to include
program units from other files in your program. The parameter

FILE=(file-list)

causes the system to include all the program units on all the specified files in
your program. For example, suppose a program on file LGO calls subroutines
on files SUBFILE! and SUBFILE2. The command

EXECUTE_TASK FILE:(LGO, SUBFILE1, SUBFILE2)

causes program units on files LGO, SUBFILE!, and SUBFILE2 to be
included in the executable program. Execution begins with the first file in the
list, in this case, LGO.

Loading Modules From Libraries

A library is a file that contains object programs in a special format that
allows rapid searching and loading. If you have program units on libraries,
such as those created by the CREATE_ OBJECT _LIBRARY utility, you can
direct the system to search those libraries by using the EXECUTE_ TASK
command. The parameter that specifies libraries to be searched has the form

LIBRARY=(lib, ... ,lib)

where lib is a library file to be included in the search. The system searches
the specified libraries, in the order listed, for any program units required by
the program, and includes those program units in the executable program.

More information about creating and using object libraries is presented in
chapter 6, Using Object Libraries.

1-28 FORTRAN Topics Usage Revision A

LOADING

Requesting a Load Map

The EXECUTE_ TASK command allows you to request a load map and to
write it to a separate file. The load map contains storage allocation
information about your program. It can be a useful debugging tool although,
in most cases, you need thorough knowledge of how NOS/VE allocates
storage is required in order to interpret a load map.

You request a load map by specifying the LOAD _MAP_ OPTION parameter
on the EXECUTE_ TASK command. The load map consists of several
different parts, each of which is controlled by an option on the LOAD_
MAP_ OPTION parameter. The following EXECUTE_ TASK command
begins execution of the program on file LGO and generates a complete load
map:

EXECUTE_TASK FILE=LGO LOAD_MAP_OPTION=CS,B,EP,R)

For a detailed description of the information that is included in the map,
refer to the SCL Object Code Management manual.

Presetting Memory

The EXECUTE_ TASK command provides an option that enables you to
select a memory preset value. This is a value to which all unused locations in
your program's area are set before execution begins. Presetting memory to a
particular value can help you debug a program.

The memory preset value is controlled by the PRESET_ VALUE parameter
on the EXECUTE_ TASK command. You can select several different values.
The following example presets memory to floating-point infinite before
beginning execution of the program on file LGO:

EXECUTE_TASK FILE=LGO PRESET_VALUE=INFINITY

More information on how this option can help you debug a program is
presented in chapter 6, Debugging.

Submitting Batch Jobs

NOS/VE allows you to easily submit batch jobs from a terminal.

The difference between a batch job and an interactive terminal session is
that in the terminal session, each command you enter is executed
immediately after you enter it. An interactive terminal session consists of a
sequence of interactions between you and the computer; you enter system
commands and the computer responds to each command as it is entered.

Revision A Introduction to NOS/VE 1-29

SUBMITTING BATCH JOBS

In batch execution, you submit a complete sequence of commands (usually
contained in a file) to the computer and the computer executes those
commands without any communication or intervention from the terminal.

The advantage of submitting a batch job from the terminal is that while the
job is executing, the terminal is free for other uses. Thus, batch execution is
especially useful for time-consuming operations that would otherwise occupy
a terminal for long periods of time.

For example, suppose you want to compile a long FORTRAN program. If
you initiate the compilation interactively, the terminal may be tied up for a
long period of time. However, if you submit the compilation as a batch job,
the terminal remains free while the program is being compiled.

A second advantage of submitting batch jobs is that it is sometimes easier to
submit long sequences of commands that will be executed repeatedly as a
batch job, rather than repeatedly entering the sequence interactively each
time you want to execute it.

To submit a batch job from the terminal, you must first create a file that
contains the commands to be in the job. You then submit the job by
specifying a SUBMIT _JOB command.

The first step in preparing a batch job at the terminal is to create a file that
contains the job. This file is simply a text file containing the commands to be A
executed. The first line of this file must be a LOGIN command. The LOGIN W
command has the form

LOGIN USER=user-name PASSWORD=word FAMILY=
family-name

NOS/VE requires this command in order to validate the batch job.
Typically, you will use the same information you used to log in at the
terminal.

Following the LOGIN command are the commands to be executed in the
batch job. A LOGOUT command at the end of the job is optional; when the
last command is executed, the job simply terminates.

You can create the file containing the batch job using a text editor such as
the SCU editor. However, the simplest way to create the file is to use the
COLLECT_ TEXT command.

The COLLECT_ TEXT command provides an easy way for you create a text A
file at the terminal. This command has the form W

COLLECT_ TEXT FILE=file-name

1-30 FORTRAN Topics Usage Revision A

SUBMITTING BATCH JOBS

When you enter a COLLECT_ TEXT command, the system responds with
the prompt

ct?

and waits for you to enter a line of text. After you enter a line of text and
press RETURN, the system issues another ct? prompt. The system continues
to issue ct? prompts in response to your entries until you enter the string**.
This signals the end of the sequence of text lines and terminates the
COLLECT_ TEXT command. The text lines you entered are then written to
the file you specified in the COLLECT_ TEXT command.

For example, suppose you have a FORTRAN source program on file FORT_
PROG, and you want to compile that program in a batch job. The following
COLLECT_ TEXT command creates a file named BATCH_ COMP that
contains commands to create a permanent file for the object program and to
compile the source program:

/collect_text output=batch_comp
ct? Login user=urname password=urpass family_name=urfam
ct? create_file Suser.fort_bin
ct? fortran i=fort_src b=Suser.fort_bin
ct? ** e File BATCH_ COMP, containing the batch job, now exists as a local file.

To submit the batch job to NOS/VE, you use the SUBMIT _JOB command.
This command has the form:

SUBMIT _JOB FILE=file JOB NAME=name

where file is the file containing the batch job, and name is an arbitrary name
that you assign to the job. For example, the command to submit the
preceding job is

SUBMIT_JOB FILE=BATCH_COMP JOB_NAME=MYJOB

BATCH_ COMP is the file containg the batch job and MY JOB is a name we
assign to the job.

Revision A Introduction to NOS/VE 1-31

SUBMITTING BATCH JOBS

After you have submitted a batch job, you will probably want to check
periodically to find out if the job has completed. You can check the progress
of a batch job by entering a DISPLAY _JOB_STATUS command. This
command has the form

DISPLAY _JOB_STATUS JOB NAME=name

where name is the name you assigned to the job in the SUBMIT _JOB
command. This command displays a short paragraph of information about
the specified job. Included in this information is the line:

JOB_STATE: string

where string indicates the current status of the job. The displayed string tells
you whether the job has been initiated and, if so, whether it is executing or
waiting for a system resource, such as memory space or a permanent file, to
become available.

If the system responds to a DISPLAY _JOB_STATUS command with the
message

NAME NOT FOUND: job-name

the job has probably completed.

To display the status of our sample job, the command is

DISPLAY_JOB_STATUS JOB_NAME=MYJOB

If, in the paragraph of information displayed by the system, the following
appears:

JOB_STATE: EXECUTE

we know that the job is executing. If the following appears:

NAME NOT FOUND: MYJOB

we know that the job has completed.

1-32 FORTRAN Topics Usage Revision A

SC LC MD

9 Executing SCL Commands Inside a
FORTRAN Program

NOS/VE FORTRAN allows you to execute SCL commands within a
program. This is accomplished through the SCLCMD call. The SCLCMD call
has the form

CALL SCLCMD ('scl-command')

where sci-command is any valid SCL command. When the SCLCMD call is
executed, the specified SCL command is passed to SCL and executed.

The SCLCMD call is especially useful for creating and retrieving permanent
files. A FORTRAN application program that has permanent file commands
embedded within the program is easier to use than one that requires a user to
enter the commands outside of the program.

As an example, the following program attaches and reads an existing file,
and creates and writes a new file. The input file is named INFILE and the
output file is named OUTFILE. The program uses the SCLCMD call to
execute the necessary SCL commands.

PROGRAM RDWRT
DIMENSION A{100), 8(100)
CALL SCLCMD C'ATTACH_FILE SUSER.INFILE') <--- Makeinputfile
OPEN CUNIT=2, FILE=' IN FILE') available to job.
READ CUNIT=2) A
CALL SCLCMD {' DETACH_FILE IN FILE') <--------- Detach input file

from job.

CALL SCLCMD {'CREATE_FILE SUSER.OUTFILE')

CALL SCLCMD {'ATTACH_FILE SUSER.OUTFILE')
OPEN CUNIT=3, FILE='OUTFILE')
WRITE {UNIT=3) B

<-- Create permanent
file to receive
output.

<-- Make output file
available to job.

CALL SCLCMD {'DETACH_ FILE OUT FILE') <-------- Detach output file
END from job.

Revision A Introduction to NOS/VE 1-:3:1

PASSING PARAMETERS

Passing Parameters to a FORTRAN
Program

NOS/VE FORTRAN enables you to pass parameters between the system
and a FORTRAN program. You specify the parameters on the execution
command that begins execution of the program.

This parameter interface capability is useful in the design of applications
that require users to select certain options or to specify values used by the
program. For example, using the SCL parameter passing capability, you
could design a FORTRAN program that would allow a user to specify the
names of the input and output files.

Consider the following simple example of a program that reads data from a
file and writes the same data to another file:

PROGRAM SRCE
DIMENSION AC100}
OPEN CUNIT=2, FILE='INDAT')
OPEN CUNIT=3, FILE='OUTDAT')
READ CUNIT=2) A
WRITE (UNIT=3) A
END

This program reads from a file named INDAT and writes to a file named e
OUTDAT. Now, suppose we want to write a more general program that will
allow a user to pass the file names as parameters to the program.

In other words, we want to design a program whose execution command
looks something like this (assuming that APPL is the name of the file
containing the object program):

APPL INPUT _FILE=file-1 OUTPUT FILE=file-2

where file-I and file-2 are file names supplied by the user of the program.
(The names INPUT _FILE and OUTPUT _FILE are names of our own
choosing.) Then, a user of program APPL could supply his own file names.
For example, the user might specify

APPL INPUT_FILE=AAA OUTPUT_FILE=BBB

where AAA and BBB are file names.

We now show how you can use the SCL parameter interface capability to
design a program that accepts parameters specified on the execution
command.

1-34 FORTRAN Topics Usage Revision A

PASSING PARAMETERS

e Consider the command from the preceding example:

APPL INPUT _FILE=file-1 OUTPUT _FILE=file-2

This command assumes that we have compiled a FORTRAN program and
written the object program to a file named APPL. But before we can specify
parameters on the execution command, we must make certain changes to the
source program. First, we examine at the components of an SCL parameter.

An SCL parameter consists of two parts: a name and a value.

JNP\FJLF.ofi\._ pa,amclcr value

'-· -----parameter name

The first step is to define the parameter name and value in the source
program, so that the program has all the necessary information about the
parameters.

You define SCL parameters by including a C$ PARAM directive in the
program. This directive has the form

C$ PARAM ('pdef, ... , pdef')

where pdefis a parameter definition. The parameter definitions include such
information as the parameter name, the type (or SCL kind) of the parameter
value, and the parameter default value (if any). The parameter definitions
follow a strict set of rules defined by SCL; these definitions can get
somewhat involved. For a complete description of how to define SCL
parameters, refer to the SCL Language Definition manual. For purposes of
the following example, some simple parameter definitions will suffice.

We want to design a program that will accept parameters specified on the
execution command as follows:

APPL INPUT _FILE=filel OUTPUT FILE=file2

The first step is to define the parameters by including the following C$
PARAM directive in the program:

C$ PARAM ('INPUT_FILE:FILE; OUTPUT_FILE:FILE')

Revision A Introduction to NOS/VE 1-35

PASSING PARAMETERS

This directive tells the FORTRAN compiler that the execution command will e
contain two parameters. The parameter names are INPUT _FILE and
OUTPUT _FILE. The string :FILE after the parmeter name specifies that
the parameter is of type FILE; that is, values specified for the parameters on
the execution command will be file names.

After defining the parameters with a C$ P ARAM directive, the next step is to
provide for retrieving the parameters in the program. This is accomplished
through the parameter int<>rface subprograms.

The parameter interface subprograms provide the mechanism through which
you retrieve parameter values during execution of your program. A separate
call is provided for each of the different parameter types. The call we must
use in our example to retrieve the FILE parameters is the GETCV AL call. In
this discussion, we do not give the format of the GETCVAL call, because it is
rather long. Instead, we just show the call used in the example.

Since our example has two parameters, the program must have two
GETCV AL calls. The first one is:

CALL GETCVAL ('INPUT_FILE', 1, 1, 'LOW', LEN1, FNAME1)

The first argument, 'INPUT _FILE', specifies the parameter name. The fifth
argument, LENl, is a variable in which the length (in characters) of the
parameter value will be returned. The sixth argument, FNAMEl, is a A
character variable in which the actual value of the parameter will be W
returned. (The variable names, of course, are of our own choosing.) The
remaining arguments are not used in this example, but they must be
assigned values anyway.

Similarly, the call to retrieve the second parameter is:

CALL GETCVAL C'OUTPUT_FILE', 1, 1, 'LOW', LEN2, FNAME2)

1-36 FORTRAN Topics Usage Revision A

PASSING PARAMETERS

We have now defined our parameters in a C$ directive and written
GETCV AL calls to retrieve the parameter values during execution. We can
put all this together in the following example program:

PROGRAM SRCE
c
C Define parameters INPUT_FILE and OUTPUT_FILE.
CS PARAM C'INPUT_FILE:FILE; OUTPUT_FILE:FILE')
c

c

DIMENSION AC100)
CHARACTER*31 FNAME1, FNAME2

C Retrieve parameter values.
CALL GETCVAL C'INPUT_FILE', 1, 1, 'LOW', LEN1, FNAME1)
CALL GETCVAL C'OUTPUT_FILE', 1, 1, 'LOW', LEN2, FNAME2)

c

c

F1 = 'ATTACH_FILE SUSER.'//FNAME1)
F2 = 'ATTACH_FILE SUSER,'//FNAME2)

C Attach permanent files.

c

CALL SCLCMD CF1)
CALL SCLCMD CF2)

C Use parameter values in OPEN statements.

c

OPEN CUNIT=2, FILE=FNAME1)
OPEN CUNIT=3, FILE=FNAME2)

READ CUNIT=2) A
WRITE CUNIT=3) A
END

Note that in the CHARACTER statement, we have allowed 31 characters for
the file name, because that is the maximum length of a NOS/VE file name.

We now have a generalized FORTRAN program for which a user can specify
the names of the input and output files Cln the execution command.
Assuming the source program is on file SPROG, we can compile the program
with the following command:

FORTRAN I=SPROG B=APPL

An example of a command to execute the program is:

~ APPL INPUT_FILE=MYFILE OUTPUT_FILE=URFILE

The program reads input from MYFILE and writes output to file URFILE.

Revision A Introduction to NOS/VE 1-37

SHORT FORMS OF COMMANDS

Short Forms of SCL Commands 9
Every SCL command has both a long form and a short form. The long form
can be useful for beginners because the command name and parameter
names consist of words that are descriptive of what the command does.
However, the short forms are much easier to type, and you are encouraged to e
use them as you become more familiar with the system.

The short forms are derived from the long forms according to specific rules.
Thus, if you know the long form of any SCL command, you can apply the
rules to determine the short form.

Most SCL commands consist of either two or three words. To see how the
short forms are derived, we'll consider an example of a two-word command
and of a three-word command.

An example of a two-word command is the COPY _FILE command. To
derive the short form, join the first three letters of the first word and the first
letter of the second word. For example, the short form of COPY _FILE is
COPF. Following are some additional examples of two-word commands,
showing the long and short forms:

CREATE_FILE CREF

A'ITACH_FILE A'ITF

GET_FILE GETF

To derive the short form of a three-word command, join the first three letters
of the first word with the first letter of the second word and the first letter of
the third word. For example, the short form ofSET _FILE_ATTRIBUTE is
SETF A. Following are additional examples of three-word commands:

CREATE _FILE_ CONNECTION CREFC

SET _pROGRAM_ATTRIBUTE SETPA

DISPLAY _FILE_ATTRIBUTE DISPA

The parameters for most SCL commands can be abbreviated by joining the
first letter of each word of the parameter name. For example, in the
command

FORTRAN INPUT=S LIST_OPTIONS=(S,A)

the parameters can be shortened to

FORTRAN I=S LO=CS,A)

1-38 FORTRAN Topics Usage Revision A

NOS/VE SUMMARY

e Note that there are a few commands and parameters that do not conform to
the rules for abbreviating commands. For example, the FORTRAN
command is abbreviated FTN, and the BINARY_ OBJECT parameter is
abbreviated B. For these commands, you must simply memorize the short e form.

Summary of NOS/VE Capabilities
This chapter introduced you to some of the commands and capabilities of
NOS/VE. The following summary highlights the key topics discussed in this
chapter.

Files

Under NOS/VE, all of your programs and data are stored in files. A file is a
collection of information that begins at a boundary called the
beginning-of-information and ends at a boundary called the
end-of-information.

All files are either local files or permanent files. Local files do not exist
beyond the end of a terminal session. Permanent files continue to exist after e the end of a session and can be accessed in susequent sessions.

All files reside in catalogs. A catalog is a collection of files identified by a
catalog name. All users have two catalogs: the $LOCAL catalog, which
contains all of your local files, and the $USER catalog, which contains all of
your permanent files.

You can create subcatalogs within the $USER catalog. A subcatalog is
simply a catalog within a catalog. Subcatalogs provide a way for you to
organize and keep track of your permanent files.

You reference a file by specifying the file name and the catalog in which it
resides. Examples of file references are:

$LOCAL.NEW FILE References file NEW FILE in the $LOCAL
catalog.

$USER.CATI.DATA FIL References file DATA_FIL in subcatalog
CATI of the $USER catalog.

If you omit the catalog name, the system looks for the file in the current
working catalog. The default working catalog is $LOCAL; however, you can
change the working catalog to one of your permanent file catalogs.
Remember, though, that files referenced in a FORTRAN program must
reside in the $LOCAL catalog, even if you change the working catalog.

Revision A Introduction to NOS/VE 1-39

NOS/VE SUMMARY

Normally, other users cannot access your permanent files. However, the e
CREFP command enables you to give other users permission to access your
files.

NOS/VE provides commands that enable you to manage your local and
permanent files. Following is a summary of these commands. e

Operation

Create a file

Make a file available to a terminal
session.

Delete a local file

Delete a permanent file

Copy one file to another

Create a catalog

Display a list of files in a catalog

Delete a catalog

Change the working catalog

Command

CREATE_FILE

ATTACH_FILE

DETACH_FILE

DELETE_FILE

COPY_FILE

CREATE_ CATALOG

DISPLAY_ CATALOG

DELETE_ CATALOG

SET_WORKING_CATALOG

Change the access permission of a file CREATE_FILE_PERMIT

Terminal Input and Output

FORTRAN provides the capability of writing programs that display output
at the terminal and read input from the terminal.

The most common way of performing interactive input and output is to
substitute an asterisk(*) for the unit specifier in a READ or WRITE
statement. This causes the program to read from the standard system file
$INPUT and write to the standard system file $OUTPUT.

Files $INPUT and $OUTPUT are automatically associated with the
terminal. Thus, a program that reads from file $INPUT expects data to be
input from the terminal, and a program that writes to file $OUTPUT
displays output at the terminal.

You can also use the REQUEST_ TERMINAL command to associate a file
with the terminal. Then, all reading and writing to that file is performed
through the terminal.

1-40 FORTRAN Topics Usage Revision A

NOS/VE SUMMARY

e NOS to NOS/VE File Transfer

NOS/VE provides commands that enable you to copy text files from
NOS/VE to NOS and from NOS to NOS/VE.

The command to copy a file from NOS to NOS/VE is

GET _FILE FROM=nos-file TO=nosve-file

The command to copy a file from NOS/VE to NOS is

REPLACE_FILE FROM=nosve-file TO=nos-file

Compiling and Executing

NOS/VE provides commands for compiling and executing FORTRAN
source programs.

The command to compile a FORTRAN program is:

FORTRAN parameter-list

where parameter-list selects compiler options. The following FORTRAN
command is typical: e FORTRAN !=source-input B=object-output L=list-file

The I parameter specifies the file containing the source program, the B
parameter specifies the file to receive the object code, and the L parameter
specifies the file to receive the source listing.

You can begin execution of a compiled program in two ways. The simplest
way is to specify a name call command. This command consists of the name
of the file containing the object code. For example,

LGO

begins execution of the program on file LGO.

The second way of begininning execution is through the EXECUTE_ TASK
command. This command has the same effect as the name call command,
but it provides more options. These options include generating a load map,
loading programs from separate files, and specifying libraries to be searched
before the program is executed. An example of an EXECUTE_ TASK
command is

EXECUTE_TASK (LGO, FILE1, FILE2)

The system first loads programs from files LGO, FILEI, and FILE2 into a
single executable module, and begins execution of the program on LGO.

Revision A Introduction to NOS/VE 1-41

NOS/VE SUMMARY

You can create and submit batch jobs while executing at the terminal. The
first command of the batch job must be a LOGIN command. The commands
to be included in the job follow the LOGIN command.

The job must be contained in a text file. You can create the file using an
editor such as the SCU editor, or through the COLLECT_ TEXT command.
The COLLECT_ TEXT command provides an easy way of entering lines into
a text file.

You submit the batch job to the system by specifying a SUBMIT _JOB
command.

After you have submitted a batch job, you can check the progress of the job
by specifying a DISPLAY _JOB_STATUS command. This command tells
you, among other things, whether the job has completed.

Passing Parameters

NOS/VE allows you to pass parameters to a FORTRAN program by
specifying the parameters on the execution command. This capability is
useful for designing applications where the user can specify values or request
options.

The first step in designing a program that can receive parameters on the A
execution command is to define the parameters. This is accomplished W
through the C$ PARAM directive. This directive is placed anywhere in the
source program. The C$ PARAM directive specifies a complete description of
each parameter, including the parameter name and type.

The next step is to include one or more calls to the parameter interface
subprograms in the program. These calls retrieve the values of the
parameters specified on the execution command. You need one call for each
parameter. A different call is provided for each of the parameter types. The
parameter interface subprograms are described in the FORTRAN Language
Definition manual.

1-42 FORTRAN Topics Usage Revision A

9 Debugging

An important step in the development of any program is the process of
detecting and correcting all the errors in the program. Several tools are e provided to assist you in debugging a program.

The Debugging Process

2

The debugging process actually begins when you write a program. If you
write error-free code to begin with, you do not need to spend time debugging.
Of course, few people write error-free code. But there are some programming
techniques you can apply that will minimize the errors in a program. And
when your program does have errors, there are some options and utilities
that can help you locate those errors.

How Errors Affect a Program

No matter how careful you are when you write a program, the program is
likely to contain at least a few errors. Program errors fall into three classes,
according to how they affect your program. The three classes of errors are:

Errors that prevent the program from compiling. These errors result in a
compiler-generated error message. Since those messages are considered to
be self-explanatory, compile-time debugging is not discussed here.

Errors that cause the program to terminate prematurely. These errors
result in an error message that may or may not pinpoint the error for you.

Errors that allow the program to run to completion, but result in incorrect
output. These errors are often the most difficult to find because there is
generally no indication as to where the error occurred or what caused the
error.

Before Executing Your Program

Since computer time is an expensive resource, you should try to correct as
many errors as possible before you execute your program. Before compiling,
carefully review the program for the more obvious mistakes. But no matter
how careful you are, you may still have to compile several times before the
program is ready to execute.

Revision A Debugging 2-1

BEFORE EXECUTING

When you compile your program for debugging, there are some options you
should select (or, in some cases, not select) on the FORTRAN command:

- Specify OPTIMIZATION=DEBUG (or omit this parameter altogether,
since DEBUG is the default option). This ensures the fastest possible
compilation time. During the debugging stages, fast compilation is
generally more important than fast execution.

If you do intend to run optimized object code, however, you should do a
final test run under OPTIMIZATION=HIGH after your program has
been completely debugged under OPTIMIZATION=LOW. This is
advisable because, in rare cases, the optimization process can alter the
program's results.

- Specify LIST_ OPTIONS=(S,A,R,M). This generates a complete
reference map. The reference map is an extremely useful debugging
tool that provides concise descriptions of all the symbolic names used
in the program. When you compile your program during the debugging
phase, you should always request a reference map and examine it
carefully. This step can detect many errors that would be much more
difficult to find otherwise. More on the reference map later.

- Specify LIST=file-name. The LIST parameter specifies the file to
receive the compiler output listing (including the reference map). This
is especially important for interactive jobs, because if you omit this
parameter, output is written to file $NULL (in which case the output is
lost).

The following FORTRAN parameters can be useful in certain situations:

- ERROR=file-name. This parameter specifies a file to receive all
compiler-generated error messages. Writing error messages to a
separate file can be useful for longer programs that might produce a
large number of messages.

- BINARY_ OBJECT=$NULL. Writing the object code to file $NULL
has the effect of discarding the code. While you're in the process of
correcting compile-time errors, you can save storage space by selecting
this option.

After you have compiled your program successfully and examined the
reference map, you are ready to begin executing the program. But first, there
are a couple of system commands that can make execution-time debugging
easier.

Before executing your program, you should set message mode to FULL. The
command is

SET _MESSAGE MODE FULL

2-2 FORTRAN Topics Usage Revision A

WHEN AN ERROR OCCURS

Setting message mode to FULL causes the system to display additional
information whenever an execution error occurs. The exact nature of this
information will be discussed later.

Before executing your program, you should ensure that the preset value (the
value to which all uninitialized memory locations are set) is either
floating-point infinite or floating-point indefinite. Either of these values will
cause an error message and abort when the value is used in a floating-point
calculation. This makes it easier to detect the common error of using
undefined variables in expressions. You can find out what the current
memory preset is by entering the command

DISPLAY _PROGRAM_ATTRIBUTES

If memory is preset to zero (a common default), errors caused by use of
undefined variables can be much more difficult to detect. You can set the
memory preset value through the following commands:

SET _PROGRAM_ATTRIBUTE PRESET_ V ALUE=INDEFINITE

Sets all uninitialized locations to floating-point indefinite.

SET _PROGRAM_ATTRIBUTE PRESET_ V ALUE=INFINITY

Sets all uninitialized locations to floating-point infinite.

What Should You Do When an Error Occurs?

Some programming errors will cause your program to terminate prematurely
and produce an execution-time error message. Other errors allow the
program to run to completion but cause incorrect results.

After you receive an error message, the first step is usually to examine the
job log. The job log is a chronological history of events leading up to the
execution of your program. The job log shows all the commands you entered
and any error messages generated by the commands. This information can
sometimes be helpful in detecting errors. The command to display the job log
lS

DISPLAY _LOG

Sometimes the error message and job log will give you enough information to
find the error. If not, the next step is to search for more information about
the message. The best source of information is the online manual
MESSAGES, which provides explanations of all runtime error messages
issued under NOS/VE. To find the description of a particular message, you
can use one of the commands HELP or EXPLAIN_ MESSAGE. These
commands are discussed later in this chapter.

Revision A Debugging 2-3

COMMON ERROR CONDITIONS

After you have investigated the error message and read the explanations,
you may still need to determine exactly where in your program the error
occurred and what caused the error. You can proceed in several ways.

First, a visual check of your program might reveal some errors. Some
common errors to look for are discussed later in this chapter.

If a visual check does not reveal the errors, you can use one of the debugging
aids available under NOS/VE to help locate errors in your program. The
Debug facility, described later in this chapter, enables you to debug your
program while it is executing. You can use Debug to stop execution at
specified points, or on the occurrence of an error, and to display the contents
of variables and arrays while execution is stopped.

Common Runtime Error Conditions

Many runtime errors occur either when an arithmetic operation generates an
invalid value or when an invalid value is used in an arithmetic operation.
The causes of these errors can be difficult to locate because the error message
is often not closely related to the actual programming error that caused the
message to be issued.

When these errors occur, the best course of action usually is to first examine
the program closely for logic errors, and then to use the Debug utility to A
determine how the invalid values were generated. •

Errors Caused by Indefinite Values

An indefinite value usually results when a floating-point calculation cannot
be resolved, such as a division where the div~dend and divisor are both zero.

You can also set the memory preset value to indefinite so that any undefined
variables in the program will have an indefinite value. In this case, using an
undefined variable in an expression will cause a runtime error.

An indefinite value has a specific internal representation that does not
correspond to a number, and that causes an error when used in a calculation.
Errors involving indefinite values are diagnosed during execution as follows:

The message "PM F. P. indefinite at {hex-address)" is issued. (F. P.
stands for floating-point). This happens when an indefinite value is used
in a calculation.

A message of the form "function-name (argument). Argument indefinite."
is issued. This occurs when an indefinite value is passed to an intrinsic
function. For example, ALOG(argument). Argument indefinite.

2-4 FORTRAN Topics Usage Revision A

COMMON ERROR CONDITIONS

A WRITE or PRINT statement prints the string I or INDEFINITE. This
happens when one of the variables in the input/output list contains an
indefinite value.

If your program contains errors involving indefinite values, check for logic e errors such as dividing zero by zero or use of undefined variables.

Errors Caused by Infinite Values

An infinite value represents a floating-point number that exceeds the largest
number that can be represented in floating-point format. An infinite value is
generated when a calculation produces a mathematically infinite result. An
infinite result often occurs when the operands of an expression contain
values that are either very large or very small (approaching the limits of the
computer), or are themselves infinite. For example, in the expression

1.0E+50 * 1.0E+50

both operands are legal values, but the result is an infinite value.

If the memory preset value is INFINITE (either by job default or previous
SET _PROGRAM_ATTRIBUTE command), any undefined variables in the
program will contain a floating-point infinite value. Use of these variables in
an expression will generate an exponent overflow condition.

Infinite values in a program are diagnosed during execution in the following
ways:

The message "PM exponent overflow at {hex-address)." is issued. This
means that a calculation produced an infinite value.

A message of the form "function-name (argument). Argument infinite." is
issued. This means that an infinite value was passed to an intrinsic
function.

A message of the form "function-name (argument). Result infinite." is
issued. This means that the indicated intrinsic function produced an
infinite value.

A WRITE or PRINT statement prints the symbol R or INFINITE. The
variable being printed contains an infinite value.

Revision A Debugging 2·5

COMMON ERROR CONDITIONS

If your program contains errors involving infinite values, do the following: e
Check the value of the memory preset. If it is INFINITE, check the
program for undefined variables.

Check for operands that contain very large or very small values. Such A
values are often the result of bad input data, incorrect calculations (for -
example, a * operation that was mistakenly typed as **), or variables that
contain the incorrect data type (make sure all your real variables contain
floating-point values).

Errors Involving Integer Arithmetic

Arithmetic overflow is the integer equivalent of an exponent overflow. It is
caused when the result of an integer operation exceeds the largest value that
can be represented in integer format. Arithmetic overflow is indicated by one
of the following messages:

PM arithmetic overflow at {hex-address).

This means that an expression generated an arithmetic overflow.

function-name (argument). Arithmetic overflow.

This means that the indicated intrinsic function (a type integer function)
produced an arithmetic overflow.

Another common error involving integer arithmetic is indicated by the
message

PM Arithmetic loss of significance at {hex-address).

This message indicates that an operation on extremely large integer values
caused truncation of the low-order digits of the integer result.

If an arithmetic overflow or loss of significance condition occurs, it generally
means that the operands involved in the calculation, or passed to the
function, contain incorrect values. Those values, when printed, contain as
many as 19 digits. Check all previous uses of the operands to determine how
the bad values were generated.

Arithmetic overflow can also be caused by referencing undefined integer
variables. If the memory preset value is either indefinite or infinite,
undefined integer variables will contain values that, while not themselves
illegal, cause an arithmetic overflow condition when used in a calculation. e

2-6 FORTRAN Topics Usage Revision A

COMMON PROGRAMMING ERROl{S

e Access Violation Error

Another message whose cause may not be obvious is

PM Access violation at (hexadecimal-address)

This message is issued when a program attempts to access a location outside
of its assigned area. Common causes include

- A DO loop that causes a subscript to exceed its declared dimension
bounds. In this case, the access violation message is usually preceded
by a FORTRAN informative message of the form

Subscript {nl} of array {array-name} is {n2}. Declared lower bound is
{n3}; upper bound is {n4J

- A function or subroutine call that contains more arguments than the
function or subroutine dummy argument list.

Divide Fault Error

The following error frequently occurs in arithmetic computations:

PM divide fault at (hexadecimal-address)

This message is issued when a program attempts to divide by zero, usually
an indication of invalid data or incorrect logic. A good practice is to precede
all statements in which zero division is a possibility by a test for a zero
divisor.

Common Programming Errors

Following are some common programming errors you can check for when
debugging a program. Some of these errors cause the program to abort with
a message such as those described above. Others allow the program to run to
completion but cause incorrect results.

When a program runs to completion but produces incorrect results, the best
course of action is to start at the beginning of the program and step your
way through it to find out what went wrong. You can do this by using the
Debug utility, described later in this chapter.

Revision A Debugging 2-7

COMMON PROGRAMMING ERRORS

Following are some common programming errors to look for when
debugging a program.

- Check for undefined or improperly initialized variables. An undefined
variable is one that has not been stored into before being used in a
computation. Using undefined variables gives unpredictable results. e

- Check for misspelled or mistyped variable names. The reference map is
extremely helpful in locating this type of error.

- Check for improper use of subscripts. In particular, check for DO loops
that cause subscripts to exceed the declared dimension bounds. (A
runtime check for dimension bounds violations is automatically
performed.)

- Check for improper use of mixed mode arithmetic. For example, the
calculation I = 3/2 gives a different result than A = 3/2.

- Check for incorrect or invalid input data. Certain input values may
cause errors in a logically correct program. In particular, check for very
large or very small values and for values that would cause a division
by zero.

- Check for accumulated roundoff error. This error will not usually
produce an error message, but can affect the results. Roundoff error
can occur when values used in calculations depend on previous
calculations, or when very large and very small numbers are used in
the same expression. A possible solution is to use double precision
arithmetic.

- Check subroutine and function references to ensure that the actual
arguments in the CALL statement or function reference agree in
number and data type with the dummy arguments in the
SUBROUTINE or FUNCTION statement.

- Check for incorrect logic. If the program contains no other errors, it
could be that the program was simply designed wrong. Make sure that
the algorithm is correct and that all the computations are correct.

If an execution error occurs during an input or output operation, there are
some common causes you can check for.

- Do not mix I/O types on the same file. For example, you cannot
perform direct access I/O on a file that was created as a sequential
access file.

- When reading a file, always include the END= specifier in the READ
statement to test for the end-of-information. An attempt to read
beyond end-of-information causes an error.

2-8 FORTRAN Topics Usage Revision A

PROGRAMMING FOR EASIER DEBUGGING

- When reading formatted data, be sure that the data fields are
consistent with the fields described in the FORMAT statement.
Remember that a decimal point in an input field takes precedence over
the position of the decimal point implied by a floating-point edit
descriptor.

- In direct access input/output, be sure that you have specified the record
length correctly in the OPEN statement. Record length is in words for
unformatted data, and in characters for formatted data.

- In formatted output, be sure that the fields described by the format
specifications are large enough to accommodate the output values. A
number that is too large for its format specification produces a field of
asterisks. For example, an attempt to print the number 1500.0 with the
specification F5.2 would produce *****.

Programming for Easier Debugging

Programming techniques play an important role in the debugging process.
Not only is a well-written program clearer and therefore easier to debug, but
it is also less likely to contain errors in the first place. Following are some
suggestions for making a program easier to debug. e Use a Modular Structure

A void "Tricks"

Avoid Nonstandard Usages

Use comments to document your program

Use a Modular Structure

A modular program is one that is organized into blocks of statements, each
of which performs a single logical function. A modular program is generally
easier to understand and easier to debug, since you can debug each module
separately. A modular program is structured so that execution flows from the
top to the bottom, with a minimum of branching.

You can modularize a program by organizing it so that logically distinct
tasks are performed by separate program units. Not only does this make the
program clearer, but it can also reduce the size of the program. A
subprogram is included only once in the program's area, regardless of the
number of times it is called. Also, a subprogram that is sufficiently general
can be shared by other programs that require the same task.

Revision A Debugging 2-9

PROGRAMMING FOR EASIER DEBUGGING

A disadvantage of subprograms is that the additional instructions that must
be executed to link to the subprogram and to return to the calling program
can increase a program's execution time. And too many subprograms can
defeat the original purpose of making the program clearer and easier to
debug.

The following guidelines can help you decide when to use subprograms:

- If a subprogram is already available for a particular task, use it. It's
probably not worth the time it would take you to write it yourself. The
FORTRAN library, for example, provides functions that perform such
commonly-required operations as square roots, trig functions, random
number generation, and so forth.

- If a task is done more than once in your program, write a subprogram
to do the task.

- If a task is likely to be needed by other subprograms, write a
subprogram to do the task.

You can modularize the statements within a program unit by using block IF
structures. These structures can simplify a program by eliminating branches.

Normally, to execute a sequence of statements based on the outcome of an IF
statement, you must branch to those statements using a GO TO statement.
However, block IF structures enable you to conditionally execute groups of
statements (called if blocks) without the need for GO TO statements.

A program written using block IF structures is easier to read because

- The flow of execution is from the top of the program to the bottom.

- The sequences of conditionally-executed statements are close to the IF
statements.

Block IF structures generate the same object code as GO TO statements, and
therefore do not affect the efficiency of a program.

The block IF statements are

IF (relational-expression) THEN

ELSE IF (relational-expression) THEN

ELSE

ENDIF

Every block IF structure begins with an IF statement and ends with an END
IF statement. A structure can optionally contain one or more ELSE IF
statements and one ELSE statement.

2~10 FORTRAN Topics Usage Revision A

PROGRAMMING FOR EASIER DEBUGGING

The simplest block IF structure begins with with an IF statement, ends with
an ENDIF statement, and contains no ELSE or ELSE IF statements:

IF (J • EQ. 1) THEN
A = B + C

END IF

If J is equal to 1, the statement A= B + C is executed. Otherwise, execution
continues with the statement following END IF.

You can form more complicated structures using ELSE and ELSE IF
statements:

IF (NUM .GT. LIMIT) THEN
NUM = 0

ELSE IF (NUM .GT. MANY) THEN
NUM NUM - 1

ELSE
NUM NUM +

END IF

The following example shows a program written in two ways. The first way
uses relational IF statements, and the second way uses block IF statements.

Program with relational IF statements:

IF CI .GT. J) GO TO 30
IF (l .LT. J) GO TO 20
GO TO 40

20 A= A - 1.0
B = B - 1.0
GO TO 40

30 A= A+ 1.0
B = B + 1.0

40 CONTINUE

Program with block IF statements:

IF (I .LT. J) GO TO 20
A= A - 1.0
B = B - 1.0

ELSE IF (I .GT. J) THEN
A= A+ 1.0
B = B + 1.0

END IF

The block if structure requires no branching, eliminates the need for
statement labels, and requires fewer statements.

Revision A I lehugging 2-11

PROGRAMMING FOR EASIER DEBUGGING

Example of a Modular Program

The following example illustrates a modular program. The program is
written so that each distinct operation is performed by a separate subroutine
or function. Don't worry about the processing details. The purpose of this
example is to show how a program can be organized into modules.

The example program (program SALES) reads monthly or weekly sales data
and tabulates the data in chronological order and in order of decreasing
sales. All input and output is interactive (through the terminal). The program
assumes that the data is input in chronological order.

Program SALES performs the following distinct functions:

- Reads input data

- Sorts the data

- Prints a report

The sort portion of the program can be further subdivided into the following
functions:

- Search the array to be sorted

- Switch the positions of two values in the array

The program is modularized into the following tasks:

- The main program reads input data and calls subroutine REPORT.

- Subroutine REPORT calls subroutine SORT and prints monthly or
weekly figures in chronological order and decreasing order.

- Subroutine SORT locates the largest value in an unsorted array and
calls subroutine SWITCH to interchange the largest value with the
first value in the array.

- Subroutine SWITCH interchanges the values of the two input
variables.

Although this program is too small to gain much efficiency as a result of
modularization, it is much more readable than if it were written as a single
program unit. Furthermore, subroutines SORT and SWITCH are generalized.
That is, they could be used by any program requiring a sort.

2-12 FORTRAN Topics Usage Revision A

PROGRAMMING FOR EASIER DEBUGGING

The following main program reads the year and the interval (weekly or
monthly).

PROGRAM SALES
CHARACTER IPER•7, YEAR*4

C Prompt user for input.
5 PRINT•, I YEAR?'

READ 'CA4)', YEAR
IF (YEAR .EQ. 'END') STOP

C Prompt user for input.
PRINT *, ' WEEKLY OR MONTHLY?'
READ 'CA7>', IPER

C N is the number of sales periods. N=52 for weekly reports;
C N=12 for monthly reports.

IF CIPER .EQ. 'WEEKLY') THEN
N = 52

ELSE
N = 12

END IF

C Subroutine REPORT generates the reports.
CALL REPORT CYEAR,N>

C Branch to the beginning to generate another report or
C terminate.

Revision A

GO TO 5
END

Debugging 2-13

PROGRAMMING FOR EASIER DEBUGGING

Subroutine REPORT reads sales figures and prints the requested report. The
input values in array ISALES are copied to array NSORT. Array ISORT
contains the number of each month or week of the year.

SUBROUTINE REPORT CY, N)
CHARACTER TYPEC2)*7, Y*4
INTEGER ISALESC52), ISORTC52), NSORTC52), T
DATA TYPE/' WEEKLY', 'MONTHLY'/

C Determine if weekly or monthly sales period, then set index.
C T=1 means weekly reports, T=2 means monthly reports.

IF CN .EQ. 52) THEN
T = 1

ELSE
T = 2

END IF

C Prompt user for input.
PRINT *, ' ENTER SALES FIGURES'

c Read sales figures.
READ *, CISALES(I),1=1,N)

c Print table heads.
PRINT 1000, TYPE(T), Y, TYPECT)(1:5), TYPECT)C1:5)

100 FOR~;,\T Cl/A?,' SALES FIGURES FOR ',A4,//3X,'CHRONOLOGICAL',
+ 12X,' BEST TO WORST',/2CA5,9X,' SALES',6X))

C Initialize arrays for SORT routine.
DO 10 !=1,N

ISORTCI) = I
NSORTCI) = ISALES(!)

10 CONTINUE

C Sort arrays !SORT and NSORT into decreasing order.
CALL SORT CN, !SORT, NSORT)

C Print sales figures.
DO 20 I-1,N

PRINT 101 I,SALES(l),ISORT(l),NSORT(I)
20 CONTINUE
101 FORMAT C1X,2CI1,8X,I6,11X))

RETURN
END

2-14 FORTRAN Topics Usage Revision A

PROGRAMMING FOR EASIER DEBUGGING

Subroutine SORT sorts the two input arrays IA and IB into descending
order. N is the number of values to be sorted. The sort is performed by
finding the largest value and placing it in the first word of the array, finding
the next largest value and placing it in the second word, and so forth.

SUBROUTINE SORT CN, IA, IB}
DIMENSION IA(N), IB(N)

DO 55 !=1,N-1
LARGE = I

DO 50 J=I+1,N
IF CIB(J) .GT. IBCLARGE}) LARGE= J

50 CONTINUE

CALL SWITCH CIA(!), IACLARGE))
CALL SWITCH CIBCI), IBCLARGE))

55 CONTINUE
RETURN
END

Subroutine SWITCH interchanges the values of I and J.

SUBROUTINE SWITCH CI, J)
!TEMP = I
I = J
J = !TEMP
RETURN
END

Remember that modularity is achieved at a certain expense. The increased
number of function and subroutine calls result in increased execution time.
And if you are not careful, the numerous subprograms can result in less
efficient use of virtual memory. (Efficient use of virtual memory is discussed
in chapter 5, Using Virtual Memory.)

Avoid ''Tricks"

Avoid techniques that are obscure, especially when there is an easier way.
For example, the following sequences show two ways of creating an identity
matrix (a matrix with ones on the main diagonal and zeros elsewhere):

Method 1:

DO 10 I=1,N
DO 10 J=1,N

ACI,J) = CI/J) * CJ/I)
10 CONTINUE

Revision A Debugging 2-15

PROGRAMMING FOR EASIER DEBUGGING

Method 2:

DO 10 !=1,N
DO 8 J=1,N

ACI,J) = 0.0
8 CONTINUE

ACI,J) = 1.0
10 CONTINUE

The first method is a little shorter, but it's somewhat more confusing. The
"trick" is that the term (I/J)*(J/I) is one only when I=J; the term is zero for
all other values of I and J. The second sequence is longer, but more
straightforward. (It zeros each row and sets the diagonal element to one.)

Avoid Nonstandard Usages

Nonstandard usages make a program harder to understand for people who
aren't familiar with the usage. They also may require rewriting if the
program is to be run on another system. There is also the possibility that a
particular nonstandard feature will be deleted in a future version of the
language.

The FORTRAN Language Definition manual clearly indicates those features
that are nonstandard. The manual also contains a summary of all the
nonstandard features. In most cases, you can replace a nonstandard feature
with a standard one.

You can request the FORTRAN compiler to diagnose all non-ANSI usages
in a program by specifying the STANDARDS_DIAGNOSTICS parameter
on the FORTRAN command. This command allows you to specify the level
of severity at which you want the usages to be diagnosed. For example, the
command

FORTRAN INPUT=PROGA STANDARDS_DIAGNOSTICS=WARNING

causes the compiler to issue warning messages for all nonstandard usages.

Following are some of the more commonly-used nonstandard features and
the standard features by which they can be replaced. Refer to the FORTRAN
Language Definition for a more comprehensive list.

Nonstandard Feature

boolean forms L" ... ",
R" ... ",and" ... "

ENCODE and DECODE

2-16 FORTRAN Topics Usage

Equivalent Standard
Feature

CHARACTER data type

Internal READ and WRITE

Revision A

Nonstandard Feature

File declarations on the
PROGRAM statement

READMS and WRITMS

BUFFER IN and BUFFER OUT

Intrinsic functions AND, OR,
XOR, NEQV, EQV and COMPL

PROGRAMMING FOR EASIER DEBUGGING

Equivalent Standard
Feature

OPEN statement

direct access READ and WRITE

unformatted READ and WRITE

logical operators .AND., .OR.,
.NOT., .EQV., and .NEQV.

Following are some additional suggestions for improving the readability of a
program.

- Use comments to document your program. Comments are especially
desirable before each major step of a program (such as DO loops and
IF blocks) and wherever the program does something that is not
obvious.

- Indent IF blocks and the ranges of DO loops by at least two spaces.

- Use blanks to set off the components of a statement. For example,

IF(A.EQ.B.OR.A.EQ.C)GOT025

should be written as

IF (A .EQ. B .OR. A .EQ. C) GO TO 25

- Use meaningful names for variables and arrays. For example, the
statement

A = B*C

is not as meaningful as

SALARY = RATE*HOURS

- Arrange statement labels in numerical order, and use labels of
different sizes for FORMAT statements and executable statements. For
example, use 3-digit labels for executable statements and 5-digit labels
for FORMAT statements.

Revision A Debugging 2· 1 7

PROGRAMMING FOR EASIER DEBUGGING

Summary of the Debugging Process

An important step in the development of a program is the detection and
correction of errors in that program.

Before you attempt to execute your program, you should be sure all
compilation errors have been corrected. When you compile the program,
some suggested options are:

Omit the OPI'IMIZATION parameter for fast compilation and slow
execution.

Specify LIST_ OPI'IONS=(S,A,R,M) to generate a reference map.

If executing at a terminal, specify LIST=file-name to designate a file to
receive compiler output.

Specify BINARY_ OBJECT=$NULL so that an object program is not
produced.

Before you begin execution of your program, enter the following commands:

SET_MESSAGE_MODE FULL

This command causes error messages to be issued in their complete form.

SET_PROGRAM_ATTRIBUTE PRESET=INDEFINITE

or

SET_PROGRAM_ATTRIBUTE_PRESET=INFINITY

This command initializes all variables and arrays to an indefinite or infinite
value.

Some of the more common types of execution errors occur during arithmetic
operations. The errors generally occur either when a computation generates
an infinite value (exponent or arithmetic overflow) or when an infinite or
indefinite value is used in a computation.

Error conditions involving exponent overflow, arithmetic overflow, and
infinite or indefinite operands are usually caused by programming errors
such as use of undefined variables, incorrect input data, or division by zero.
These kinds of errors can be difficult to locate because, in many cases, the
statements that generate the incorrect values are widely separated from the A
statements that actually generate the error condition. -

2-18 FORTRAN Topics Usage Revision A

PROGRAMMING FOR EASIER DEBUGGING

Following are some common mistakes that can lead to runtime errors:

- Undefined or improperly initialized variables

- Misspelled or mistyped variable names

- Subscripts that exceed declared dimension bounds

- Improper use of mixed mode arithmetic

- Incorrect or invalid input data

- Mismatch between dummy arguments in subprogram argument list
and actual arguments in subprogram reference

- Accumulated roundoff error

- Incorrect logic.

The following guidelines can help eliminate input/output errors:

- Avoid mixing 1/0 types on the same file.

- Always specify the END= specifier on READ statements.

- In formatted 110, be sure that the list items are consistent with the
associated format specifications.

- In direct access 110, be sure you specify the correct record length.

By using clear and careful programming techniques, you can minimize the
number of errors that occur in a program and produce a program that is
easier to debug. Some programming guidelines are as follows:

- Use block IF structures instead oflogical or arithmetic IF statements.

- Organize your program into functions and subroutines that perform
logically distinct tasks.

- Avoid programming "tricks".

- A void nonstandard usages.

- Use meaningful variable names.

- Indent DO loops and block IF structures.

- Use spaces to improve readability in FORTRAN statements.

- Use comments liberally.

Revision A Debugging 2·19

REFERENCE MAP

Debugging Aids
NOS/VE and NOS/VE FORTRAN provide tools to help you debug your
programs. These tools include:

The FORTRAN reference map

The FORTRAN C$ Directives

The HELP utility

The Debug utility

Using the Reference Map

The reference map is a listing produced by the compiler, which provides
information about all the symbolic names used in a program. This
information can be very useful in helping you detect errors in the program.
When you are debugging a program, you should always request a reference
for each compilation.

A separate map is produced for each program unit in the program. The map
is divided into the following sections:

Symbolic constants map

Namelist map

Variables map

Common and equivalence map

Statement labels map

DO loops map

Entry points map

Procedures map

Input/Output units map

Unclassified names map

Each section lists information about a particular type of program entity.
Although each of these sections can be useful, probably the most useful
sections in terms detecting common errors are the Variables section and the
Statement Labels section.

2·20 FORTRAN Topics Usage Revision A

REFERENCE MAP

Generating a Reference Map

Generation of the reference map is controlled by the LIST_ OPTIONS
parameter on the FORTRAN command. This parameter has several options,
each of which controls a different aspect of the compiler output listing. You
can request a complete reference map by specifying the LIST_ OPTIONS
options shown in the following FORTRAN command example:

FORTRAN INPUT=SRCE LIST_OPTIONS=CS,A,R,M) LIST=MAPFIL

In this example, the source program is on file SRCE. The source listing and
reference map are written to file MAPFIL.

If you are executing interactively, do not forget to specify the LIST
parameter on the FORTRAN command. This is the file that receives all
compiler output. If you omit this parameter, the source listing and reference
map will be discarded.

What the Variables Map Tells You

The variables map contains six columns of information, identified by the
following titles:

NAME SECTION+OFFSET SIZE PROPERTIES TYPE REFERENCES

Under NAME, the variables defined and referenced in the program unit are
listed in alphabetical order.

The SECTION+OFFSET column gives the relative hexadecimal address of
each variable. This information is useful mainly for locating variables in a
memory dump (a practice that is recommended only as a last resort).

The SIZE column gives the number of elements in each array. For variables,
the corresponding entry in this column is blank.

The PROPERTIES column contains symbols that give useful debugging
information. In particular, look for the following symbols in this column:

UND If this symbol appears, the variable or array was not defined
anywhere in the program unit. An undefined variable is one that
is referenced but has not been stored into. Using undefined
variables is a common source of error. This generally means either
that you misspelled a variable name or that you forgot to initialize
the variable.

S This is the "stray name" flag. A stray name is a name that
appears only once in the entire program unit. It generally means
either that the variable name is misspelled or that the variable is
unneeded and can be eliminated.

Revision A Debugging 2-21

REFERENCE MAP

The TYPE column gives the data type (REAL, INTEGER, CHARACTER,
COMPLEX, BOOLEAN, DOUBLE PRECISION) of each variable.

The REFERENCES column gives the number of each source line where the
variable is used (either defined or referenced). The line numbers may be
suffixed by a symbol that describes how the variable was used. For example,
the symbol /M means that the variable was used in a statement that
modified its contents; the symbol /S means that the variable appeared in a
subscript expression. (A legend at the bottom of each page of the reference
map explains all of the symbols that can appear in this column.)

What the Statement Labels Map Tells You

The statement labels map lists information about all statement labels used
in the program. The map contains five columns of information, identified by
the following titles:

LABEL SECTION+OFFSET PROPERTIES DEF REFERENCES

Under the LABEL title the labels are listed in numerical order.

The SECTION +OFFSET column gives the relative hexadecimal address of
the labels. (Useful mainly for debugging the object listing). If the label is not
defined anywhere in the program unit, the symbol *UNDEFINED* appears. A
If the label is defined but not referenced, the symbol *NO REFERENCES* W
appears.

The PROPERTIES column contains a symbol that indicates how each label
was used:

blank Used as the label of an executable statement.

FORMAT Used as the label of a FORMAT statement.

DO-TERM Used in a DO statement.

NON-EX Used in a nonexecutable statement.

The DEF column contains the number of the source line where the label is
defined. If the label is not defined (that is, ifit does not appear in the label
field of a statement), the symbol UNDEF appears. An undefined label is an
error. For example, if the statement

GO TO 25

appears in a program, but the label 25 does not appears in the label field of
an executable statement in the same program unit, the label is flagged as
undefined.

2-22 FORTRAN Topics Usage Revision A

REFERENCE MAP

The REFERENCES column gives the line numbers of all source statements
that reference the label. If a label is not referenced anywhere in the program
unit, it can be safely removed.

Example of a Variables Map

To illustrate a reference map, the following program is compiled with the
parameter LIST_ OPTIONS=(S,A,R,M) specified on the FORTRAN
command.

PROGRAM TRIANGL
OPEN CUNIT=1, file='SIDES')
DO 10 1=1,100

READ (UNIT=1, FMT=*, END=999, IOSTAT=IOS) S1, S2, S3
S = (SL+ S2 + S3)/2.0
ASQ = S*(S - S1)*(S - S2)*(S - S3)
A = SQRTCASQ)
PRINT 100, S1, S2, S3, AREA

100 FORMAT(' SIDES=', 3F6.2, /' AREA=', F6.2, /)
10 CONTINUE

END

The following variables map is produced for this program:

~ --VARIABLES--

-NAME---SECTION+OF FSET---SIZE-PROPERTIES---TYPE-----REFERENCES

A SSTATIC+72 REAL 8/M
AREA $STATIC+80 REAL 9
ASQ $STATIC+64 REAL 7/M 8/P
s $STATIC+56 REAL 6/M 7 7 7 7
S1 SSTATIC+24 REAL 4/M 7 9
S2 $STATIC+32 REAL 4/M 6 7 9
S3 $STATIC+40 REAL 4/M 6 7 9
SL SSTATIC+48 UND/*S* REAL 6

By examining this map, we can see that the variables A, AREA, and SL
have some unusual properties associated with them.

A has the property *S*. This means that A is a stray name (it is used only
once in the source program).

AREA and SL have the property UND/*S*. This means that AREA and SL
are stray names and are undefined (they are not stored into anywhere in the
program).

Revision A Debugging 2-23

HELP COMMAND

We can use the REFERENCES part of the map to help us find the
questionable variables in the source listing. The REFERENCES column
gives the number of each source line where the variables appear.

Variables SL, A, and AREA are referenced in lines 6, 8, and 9, respectively:

line 6: S : (SL + S2 + S3) /2.0 <--------- variable SL is referenced e
line 8: A SQRT(ASQ) <------------------variable A is referenced

line 9: PRINT 100, S1, S2, S3, AREA <----variable AREA is
referenced

Examining these lines reveals two errors: In line 6, SL should be changed to
SI, and in line 9, AREA should be changed to A.

Using the HELP Command to Obtain Error
Descriptions

The HELP command provides online descriptions of execution-time errors.
These descriptions are contained in the online manual named MESSAGES.
The descriptions include an explanation of the error, some possible causes,
and where to go for further information.

If you are using the system interactively and a runtime error occurs, your
program terminates and the system displays a message such as:

--ERROR--Initial '(' missing from format spec.

If you want more information about the error message, simply type:

HELP

The system then takes you to the description of the error message in the
MESSAGES online manual. (In the case where several error messages are
issued, you are taken to the description of the most recent one.) (You can also
use the command EXPLAIN MESSAGE, abbreviated EXPM. The HELP
and EXPLAIN MESSAGE commands are equivalent.)

For example, if your program terminates with the message

--ERROR--Initial '('missing from format spec.

and you then type

HELP

you are taken to the following description:

2-24 FORTRAN Topics Usage Revision A

HELP COMMAND

--ERROR--Initial '<' missing from format spec.

Condition: 585069 Product Identifier: FL
Condition Identifier: fle$open_paren_missing

Description:

A format specification must be bound by parentheses.

User Action:

Ensure that the number of Left parentheses in the
specification matches the number of right parentheses.

Further Information:

A selection from the following menu takes you to another
online manual for further information. You can return to
this screen by typing REVERT from the other online manual.

a. Description of the FORMAT statement.

Choose a topic, press RETURN for next message, or type QUIT to
Leave manual.

The Further Information portion of the description gives you the option of
requesting further information about the error message. This option provides
a direct link to the relevant online manual. Thus, in the preceding example, if
you type the letter a (and then press RETURN), you are taken to the
description of the FORMAT statement in the online FORTRAN Language
Definition manual.

The preceding method of looking up an error message is useful if you are
executing interactively and your program terminates with an error message.
You can go directly to the description of the error message simply by typing
HELP (or EXPLAIN _MESSAGE or EXPM). But this method works only if
the error you want to read about is the most recent one to occur in the same
terminal session.

If the error of interest occurred in another terminal session, or if other errors
have intervened in the same terminal session, you must use the EXPLAIN
command to enter the online MESSAGES manual and go to the description
of the error. But in order to look up a particular error in the online
MESSAGES manual, you must know the condition code associated with that
error.

Revision A Debugging 2-25

C$ DIRECTIVES

Every error message is identified by a unique six-digit number called a
condition code. You can direct the system to display the associated condition
code whenever it issues an error message by setting message mode to FULL.
The command to set message mode to FULL is:

SET _MESSAGE_MODE FULL

In the absence of this command, message mode is automatically set to
BRIEF, and condition codes are not displayed with error messages.

After you enter a SET _MESSAGE_MODE FULL command, FULL mode
remains in effect either until the end of the terminal session or until you
enter a SET _MESSAGE_MODE BRIEF command.

An example of an error message issued in FULL mode is:

585069--ERROR--Initial '(' missing from format spec.

You can enter the MESSAGES online manual and go directly to the
description of the error by typing

EXPLAIN M=MESSAGES S='585069'

Using the Compiler Control (C$) Directives

Compiler control directives are statements that you can insert in your source
program to control various aspects of compilation. Two types of directives
can help you debug your program. These are the conditional compilation
directives and the listing control directives. Refer to the FORTRAN
Language Definition manual for detailed descriptions of these and other C$
directives.

Conditional Compilation Directives

The conditional compilation directives enable you to selectively compile
portions of a program, while causing the compiler to disregard other parts.

Using these directives, you can insert debugging statements in a program,
and then tell the compiler either to compile or to not compile those
statements, depending on the result of a conditional test. Thus, you do not
need to physically remove the statements from the program and then insert
them again when you want the debug printout.

The conditional compilation directives are:

C$ IF (logical-expression)

C$ ENDIF

2-26 FORTRAN Topics Usage Revision A

C$ DIRECTIVES

e If the logical-expression is true, the statements between C$ IF and C$
END IF are compiled as usual. If the logical-expression is false, the
statements are not compiled. An optional C$ ELSE directive allows you to
specify an alternate block of statements. e The following example illustrates the C$ IF and C$ ENDIF directives:

PARAMETER CN=Q)

CS IF CN .EQ. 1)
PRINT 99 CX(l),I=1,100)

CS ENDIF

In this example, the PRINT statement is disregarded because the value of
the expression in the C$ IF directive is false. If the programmer wanted to
compile and execute the PRINT statement, he or she would simply change
the PARAMETER statement to set N to 1, so that the expression in the C$
IF statement would have the value true.

Listing Control Directives

The FORTRAN compiler, through the LIST_ OPTIONS (LO) parameter,
allows you select various output listing options. These options include a
complete listing of the source program and a reference map that provides
detailed information about all the symbolic names used in the program.
However, this output listing can become quite lengthy. The listing control
directives enable you to reduce the volume of output by suppressing any or
all of the LO options for selected parts of a program.

The listing control directive has the form

C$ LIST (p=c)

where pis one of the symbols S, 0, R, A, M, or ALL (indicating which listing
options is to be suppressed), and c is a constant (or symbolic constant defined
by a PARAMETER statement) having the value 0 or 1.

When the compiler encounters a C$ LIST directive of the form C$ LIST(p=l)
the list options specified by p are turned off. Those options remain off until
either the end of the program unit is encountered or the directive C$
LIST(p=O) is encountered. The list options are then turned back on.

Revision A Debugging 2-27

C$ DIRECTIVES

C$ LIST directives can be useful for debugging modular programs, because
you can use the directives to suppress source listing options for modules that
you are not currently debugging. (Although you can insert the C$ LIST
directives anywhere in your source program, you will typically insert them at
the beginning of program units.)

The following simple example illustrates the C$ LIST directive.

PROGRAM MAIN
CS LIST CALL=O)

END

SUBROUTINE SUB1

RETURN
END

Assume that this program resides on file PROGA and is compiled with the
command

FORTRAN INPUT=PROGA LIST_OPTIONS=CS,R) LIST=LFILE

Both the main program and subroutine are compiled as usual. But only
subroutine SUBl appears in the source listing (S option) and reference map
(R option). Note that because the C$ LIST directive affects only the program
unit in which it appears, no C$LIST directive is needed at the beginning of
the subroutine to turn the list options option back on.

Using Debug

Debug is a utility program that helps you debug a program during execution.
Through Debug, you can stop execution at selected points, display the values
of selected variables and arrays, and resume execution. The displayed values
are formatted according to a default format that is consistent with the
formats of FORTRAN values. You specify the symbolic names of the
locations you want to display; no knowledge of machine addresses is
required.

A primary advantage of Debug is that it is easy to use. It requires no
modification of the source code, and no knowledge of assembly language.
Further, it eliminates the need for such conventional debugging techniques
as interpreting memory dumps, inserting PRINT statements within a
program, and using a load map.

2-28 FORTRAN Topics Usage Revision A

USING DEBUG

e Other Debug features enable you to

- Change the values of program variables while execution is suspended.

- Display a subprogram traceback list, beginning with the current
subprogram and proceeding back through the sequence of called
subprograms until the main program is reached.

- Create a file of Debug commands that Debug will execute only if an
execution error occurs in your program. If an execution error does not
occur, the program runs as though Debug were not being used.

Using Debug involves the following sequence of steps:

1. Compile your program for use with Debug.

2. Turn on debug mode.

3. Begin the Debug session.

4. Enter Debug commands to debug your program.

5. End the Debug session.

6. Make corrections to your source program, recompile, and, if necessary,
conduct additional Debug sessions. e Later, we will take a closer look at these steps. First, we find out exactly what

a Debug session is.

A Debug session is the sequence of interactions that takes place between you
and Debug after you begin execution of a program in debug mode. Each time
you enter a command, debug processes that command, displays any output
or informative messages produced by the command, and waits for you to
enter another command.

The Debug session begins when you enter a name call or EXECUTE_ TASK
command to begin execution of a program while in debug mode. Normally,
this begins execution of your program. However, in debug mode, control
immediately transfers to Debug, which displays the following prompt:

DB/

and waits for you to enter a Debug command. After you enter a command,
Debug processes that command and issues another DB/ prompt. This e sequence of interactions continues until you end the Debug session.

Revision A Debugging 2<!9

USING DEBUG

A typical Debug session proceeds according to the following sequence of
events:

1. You turn on debug mode. You can do this with either a SET_
PROGRAM_ATTRIBUTE command or an EXECUTE_ TASK command.

2. You specify a name call or EXECUTE_ TASK command. This begins the
Debug session. Debug immediately gets control and waits for you to enter
a command.

3. You make provisions for getting control during execution of your
program. This involves using the SET _BREAK command to set breaks at
the source lines where you want execution to stop.

4. You begin execution of your program by entering a RUN command. The
program executes until either a break is encountered or an execution error
occurs. Then Debug gets control and prompts you for a command.

5. While execution is suspended, you enter commands to display or change
the values of program variables and arrays.

6. When you are ready to resume execution, enter a RUN command. The
program continues executing until it encounters another break or
execution error. You can repeat steps 5 and 6 until the program terminates
or you are ready to end the Debug session.

7. To end the Debug session, type QUIT. This returns control to the
operating system.

2-30 FORTRAN Topics Usage Revision A

USING DEBUG

Following is a simple example of a Debug session:

/execute_ task (fi Le=Lgo, debug_mode=on) <--Begin the Debug session.

DB/ set_break name=b1 Li ne=25 <------------Set a break at line 25 of
the program.

DB/ run <----------------------------------Begin execution of the
program.

DEBUG: BREAK B1 at L=25 <------------------The program runs until
the break is encountered.

DB/ di splay _program_ va Lue name=ava L <------Display the value of
variable AV AL.

AVAL 3.14159 <---------------------------Debug displays the value
of AVAL.

DB/ run <----------------------------------Resume execution.

DEBUG: program terminated <----------------The program terminates.

DB/ quit <---------------------------------End the Debug session.

Preparing for a Debug Session

As previously noted, using Debug requires no changes to your source
program. However, there are two FORTRAN command parameters you
should know about if you intend to use Debug. These are the DEBUG and
OPTIMIZATION parameters.

The important fact to remember about these parameters is that they default
to produce the information needed to use Debug.

The DEBUG parameter on the FORTRAN command controls the generation
of symbol and line number tables during compilation. The presence of these
tables in the compiled program enables you to reference locations (variables,
arrays, and source lines) by their symbolic name rather than by machine
address. If these tables are not present, you can still use Debug, but you must
specify all program locations by machine addresses. For instance, in order to
display the variable X, you would have to specify the machine address of X.

Obviously, using machine addresses is much more difficult that using
symbolic names. The only reason you might want to debug a program
without the use of symbolic names is in the case of an existing object
program that would be too costly to recompile. However, in most cases, it
would probably be worthwhile to recompile the program and request the
compiler to generate the symbol and line number tables.

Revision A Debugging 2-31

USING DEBUG

The DEBUG parameter has the following options:

DEBUG= NT Requests the compiler to omit the tables.

DEBUG=NONE Requests the compiler to generate the tables.

To cause the compiler to generate the symbol and line number tables, you
can either OMIT the DEBUG parameter (symbol and line number table
generation is the default option) or specify DEBUG=NONE. This is the
reverse of the way you might think it would work. Specifying DEBUG= NT
causes the compiler to omit the tables.

After your program is debugged and you are through with Debug, you can
recompile with DEBUG=NT specified on the FORTRAN command, so that
tables are not generated and the program has the smallest possible size.

The OPTIMIZATION parameter controls the level of optimization performed
by the compiler. Optimized object code executes faster than unoptimized
code, but requires more compilation time. The OPTIMIZATION=DEBUG
option selects minimum optimization (same as OPTIMIZATION=LOW) and
also generates object code that is modified for more efficient use with Debug.

You can still use Debug with OPTIMIZATION=HIGH, but some lines may
be removed from the program during optimization and some variables may
not be available.

Since DEBUG is the default option for the OPTIMIZATION parameter, you
can omit the OPTIMIZATION parameter when compiling for use with
Debug. Then, when the program is completely debugged, you can recompile
with OPTIMIZATION= HIGH for a more efficient object program.

In order to execute a program under Debug control, you must first request a
mode of execution called debug mode. You can turn on debug mode in two
ways.

The first way is to specify the DEBUG _MODE=ON option on a SET_
PROGRAM_ATTRIBUTES command. All subsequent program executions
will take place under Debug control, until you turn debug mode off with the
DEBUG _MODE=OFF option. For example, the following sequence turns on
debug mode, executes the programs on files LGOl and LG02, and then turns
debug mode off. Both executions take place under Debug control (assuming
no intervening DEBUG _MODE=OFF specification.)

SET_PROGRAM_ATTRIBUTES DEBUG_MODE=ON
LG01

LG02
SET_PROGRAM_ATTRIBUTES DEBUG_MODE=OFF

2-32 FORTRAN Topics Usage Revision A

USING DEBUG

e The second way to turn on debug mode is to use an EXECUTE_ TASK
command to begin execution. EXECUTE_ TASK is a NOS/VE command
that begins execution of a program while enabling you to select various
execution-time options. You can use EXECUTE_ TASK to turn on debug

A mode by specifying the DEBUG_MODE=ON parameter. This turns on
W debug mode only for a particular execution of a program. For example,

EXECUTE_TASK (FILE=LGO, DEBUG_MODE=ON)

turns on debug mode and begins execution of file LGO.

Using the SET_PROGRAM_ATTRIBUTES command to turn on debug
mode is useful if you will be conducting several Debug sessions within a
single terminal session. If you want to use Debug only for a single execution
of a program, you can use the EXECUTE_ TASK command.

If you have turned on debug mode through a SET _PROGRAM_
ATTRIBUTES command, you can subsequently turn debug mode off for a
particular execution of a program by specifying DEBUG _MODE=OFF on
the EXECUTE_ TASK command for that program.

To begin a Debug session, you must be sure that you have compiled for use
with debug and turned on debug mode. You then begin the Debug session

A simply by beginning execution of your program in a normal manner; that is,
W by specifying a name call command (such as LGO) or an EXECUTE_ TASK

command.

When you specify a name call or EXECUTE_ TASK command, and debug
mode is on, your program does not begin executing. Instead, control transfers
immediately to Debug. Debug then displays a message indicating that it has
control, followed by a prompt, and waits for you to enter a Debug command.
For example, the following sequence turns on debug mode and begins a
Debug session.

set_program_attributes debug_mode=on
Lgo
DEBUG
DB/

The string DB/ is the Debug prompt for user input.

Having begun the Debug session you are now ready to enter some Debug
commands.

Revision A Debugging 2-3a

USING DEBUG

Entering Debug Commands

During a Debug session, you enter Debug commands in response to prompts.
Debug processes each command, displays any output and informative
messages produced by the command, and issues another prompt. The Debug
commands enable you to provide for receiving control during program
execution, to display or change the values of variables and arrays within the
program, to resume execution, to end the Debug session, and to perform a
variety of other tasks.

Although Debug offers a large number of commands, only the most useful
are discussed here. These commands enable you to:

Suspend Program Execution (SET _BREAK and SET _STEP _MODE
commands)

Begin or Resume Program Execution (RUN command)

Display Program Values (DISPLAY _PROGRAM_ VALUE command)

Change Program Values (CHANGE_PROGRAM_ VALUE command)

End the Debug Session (QUIT command)

You can also create a file of Debug commands that are executed
automatically if an error occurs while your program is executing. Other
commands described in this chapter enable you to display a traceback list
and to display status information about the Debug session.

Suspending Program Execution

At the beginning of a Debug session you will typically provide for receiving
control at various points in the program, so that you can display and alter
program values. You can cause Debug to suspend execution and give control
to you in the following ways:

- When a specific line or statement is reached during execution. This
requires you to set one or more breaks in your program. When the
executing program encounters a break, execution suspends and you get
control.

- When an error occurs during execution. This requires no action on your
part. If you simply turn on debug mode and begin execution of your
program, you will get control if a runtime error occurs.

- Immediately before execution of each source line in the program. This
is known as executing in step mode. Step mode enables you to step
through your program one line at a time.

2-34 FORTRAN Topics Usage Revision A

USING DEBUG

e We discuss breaks first. A break is a device that enables you to suspend
execution of your program and receive control. Debug provides several
different types of breaks. Each type of break gives control to you when a
specific condition occurs during execution of your program. e When a break is encountered during program execution, the following
sequence of events occurs:

1. Execution of the program immediately suspends.

2. Control passes to Debug.

3. Debug displays a message indicating the type of break that occurred and
the location (module and line number) of the break. An example of such a
message is:

-- DEBUG: break 81, execution at M=PROGA L=4

If the break was caused by an execution error, Debug displays a message
describing the error.

4. Debug displays a DB/ prompt and gives control to you. You can then
enter Debug commands.

The most useful break is the LINE break. This break gives control to you
when a specific line is reached during execution. You set a break by entering
a SET _BREAK command. The command to set a LINE break has the form:

SET _BREAK BREAK=name LINE=line-number

This command sets a break at the line having the specified line number.
(Line numbers are listed on the program source listing. The first line of each
program unit is numbered 1, the second is numbered 2, and so forth.)

The BREAK parameter specifies a name of your choosing that you assign to
the break. You can use this name to reference the break in other Debug
commands, as described later in this chapter.

Following is an example of the SET _BREAK command:

SET_BREAK BREAK=B1 LINE=SO

This command sets a break at line 50 of the source program. The name Bl is
assigned to the break. When line 50 is reached during execution, execution
will temporarily stop and you can enter Debug commands.

Revision A Debugging 2-35

USING DEBUG

Suppose you are debugging a program that contains several subprograms. In
this case, the SET _BREAK command described above applies to the
program unit that was executing when Debug gained control. (At the
beginning of a Debug session, Debug commands apply to the main program.)
But suppose you want to set a break in a different program unit. For
example, at the beginning of a Debug session, you might want to set a break
in a subroutine or function within the program.

The optional MODULE parameter is designed for programs with multiple
program units. If the line where you want to set the break is in a program
unit other than the one where execution is currently suspended, the
MODULE parameter enables you to specify the desired program unit. For
example, the command

SET_BREAK BREAK=B1 LINE=50 MODULE=SUBA

sets a break at line 50 of program unit SUBA, regardless of where execution
is currently suspended.

In addition to setting LINE breaks in your program, you can also get control
during a Debug session simply by beginning execution of the program and
allowing it to execute until an error occurs. Debug then gets control, displays
a message describing the error, and gives control to you. This method of
getting control during a Debug session is a result of the default error A
termination breaks provided by Debug. Examples of error termination W
breaks are the DIVIDE_FAULT break and the EXPONENT _OVERFLOW
break. You do not need to explicitly set these breaks because they are default
breaks that are automatically set for every Debug session.

In addition to the LINE break and error termination breaks, there are
several other breaks you can set during a Debug session. Many of these
breaks involve suspending execution at certain machine-level instructions,
and are generally not useful to FORTRAN programmers.

A suggested procedure for debugging a program is to execute the program in
debug mode without setting any LINE breaks, and to allow the program to
terminate. If the program terminates with errors, you can run additional
Debug sessions using knowledge gained from the first session to help you
decide where to set LINE breaks.

A third method of getting control during a Debug session is to set step mode.
Step mode is a mode of execution in which execution is suspended
immediately before the execution of each program statement. Step mode A
allows you to step through your executing program one line at a time, W
displaying or changing program values at each step.

The command to set step mode in a program unit has the form:

SET_STEP_MODE MODE=ON

2-36 FORTRAN Topics Usage Revision A

USING DEBUG

e This command causes execution to suspend immediately before execution of
each executable statement in the program. Execution remains suspended
until you enter the command to resume execution.

The SET _STEP _MODE command applies only to the program unit where e execution is suspended when you enter the command. To set step mode in a
subprogram, you must set a line break at the first line of the subprogram,
then set step mode when execution is suspended at that break.

Suppose you are running a Debug session for a program named MYPROG.
The following command, entered at the beginning of a Debug session, sets
step mode:

SET_STEP_MODE MODE=ON

After you begin execution of the program, you will get control as shown:

PROGRAM MYPROG
DIMENSION AC100)
OPEN CUNIT=2, FILE=' XXX') <-- Execution stops here.
READ C2, 100) A <------------ Execution stops here.

100 FORMAT C50E12.4)
CALL SUB CA) <--------------- Execution stops here.
END <------------------------ Execution stops here.

Nonexecutable statements are not affected by the SET _STEP _MODE
command, nor will execution suspend on any statements in subroutine SUB.

Suppose you have set step mode for a particular program unit, execution is
suspended part way through the program unit, and you want to execute the
rest of the program unit without any more suspensions of execution. You can
turn step mode off by specifying the following command:

SET_STEP_MODE MODE=OFF

Beginning or Resuming Program Execution

You use the RUN command to begin execution of your program after
beginning a Debug session, and to resume execution while in step mode or
after the occurrence of a break. This command has the form

RUN

When you enter a RUN command, execution begins at the point where it was
suspended. Execution continues until either another break occurs or the
program runs to completion.

Revision A Debugging 2-37

USING DEBUG

If you enter a RUN command after your program has run to completion
(remember that you automatically get control when the program terminates)
the Debug session automatically ends and control returns to the operating
system.

The following Debug session shows how the RUN command works.

execute_ task fi Le=Lgo debug_mode=on <--Begin the Debug session.

DB/set_step_mode mode=on <-------------Turn on step mode.

DB/run <-------------------------------Begin execution of the
program.

--DEBUG: step at M=SAMPLE L=2 <--------Execution stops before
execution of line 2
(first executable line).

DB/run <-------------------------------Resume execution of the
program.

--DEBUG step at M=SAMPLE L=3 <--------- Execution stops before
execution of line 3.

DB/run <-------------------------------Resume execution of the
program.

Displaying Program Values

After Debug has suspended execution of your program, you can display the
values of variables and arrays with the DISPLAY _PROGRAM_ VALUE
command. This command has the form:

DISPLAY _PROGRAM_ VALUE NAME=var

where var is the name of the variable or array element whose value is to be
displayed. For example, the following commands display the values of the
variable YV AL and element 99 of array ARR, respectively:

DISPLAY_PROGRAM_VALUE NAME=YVAL

DISPLAY_PROGRAM_VALUE NAME=ARRC99)

If you specify an array name without subscripts, the ENTIRE ARRAY is
displayed.

2-38 FORTRAN Topics Usage Revision A

USING DEBUG

The formats of values displayed by a DISPLAY_PROGRAM_ VALUE
command are consistent with the forms of FORTRAN constants. For
example, if two variables A and B have the following values:

A: 'HELLO' (A is declared type character)

B: .001385

Then A and B are displayed as follows:

DISPLAY_PROGRAM_VALUE NAME=A

A = HELLO

DISPLAY_PROGRAM_VALUE NAME=B

B = .001385

Now suppose you are debugging a program that contains several program
units. If you use the form of the DISPLAY _PROGRAM_ VALUE command
shown in the preceding examples, the values displayed are the ones in the
program unit that was executing when Debug gained control.

To display values in a program unit other than the one where execution is
currently suspended, use the following command:

DISPLAY _PROGRAM_ VALUE NAME=var MODULE=prog

where prog is the name of the program unit containing the specified variable
or array. By using this form of the DISPLAY _PROGRAM_ VALUE
command, you can display values in any program unit. For example:

PROGRAM MYPROG
A = 1 • 2 <---------------If you want to display the value of the

variable A ...

CALL SUB

SUBROUTINE SUB
x =

END

Revision A

<--------------- ... and execution is suspended here, enter the
command

DISPLAY_PROGRAM_VALUE NAME=A ..
•• MODULE=MYPROG

Debugging 2-39

USING DEBUG

Changing Program Values

We have seen how you can use Debug to suspend execution of your program
and to display the values of variables and arrays within the program. Now,
suppose execution of your program is suspended, and you have displayed the
value of a variable, and that value is incorrect. Debug provides a command
that enables you to replace that value with a new value. Then, when you
resume execution (using the RUN command), the new value is used in
subsequent computations.

The command to change the value of a variable or array element is
CHANGE_PROGRAM_ VALUE. This command has the form:

CHANGE_PROGRAM_ VALUE NAME=var V ALUE=val

where var is the variable or array element to be changed, and val is the new
value to be assigned to var.

For example, suppose execution is suspended at line 4 of the following
program:

PROGRAM SAMPLE
A = 5.0
B = 3.0

1
2
3
4
5
6

C = A*B <--------- Execution is suspended here.
PRINT*, A, B, C
END

You can supply a new value for the variable A by entering the command

CHANGE_PROGRAM_VALUE NAME=A VALUE=10.0

This command places the value 10.0 in the variable A.

When you resume execution, the new value is used in the expression A *B and
the PRINT statement prints

10.0 3.0 30.0

Ending the Debug Session

You can end a Debug session at any time by typing the command

QUIT

When you enter a QUIT command, Debug displays the message

-- DEBUG QUIT terminated task

and returns control to the operating system.

2-40 FORTRAN Topics Usage Revision A

USING DEBUG

Note that changes made during a Debug session are lost when the session is
ended. All variables assume their original values, breaks are removed, and
the program is the same as when you compiled it. You can run additional
sessions if you want to continue debugging your program.

Displaying a List of Breaks

You can display a list of all the breaks currently set in a program by
specifying a SETBREAK command. This command has the form

DISPLAY _BREAK

The list includes the name of the break (as specified in the SET _BREAK
command that defined the break) and the location of the break (program unit
name and source line number).

This command is particularly useful in longer Debug sessions where you are
setting and removing numerous breaks, because it provides a way for you to
keep track of which breaks are in effect at any given time.

Following is a typical example of output generated by a DISPLAY _BREAK
command:

--Break BRK1
event(s)= execution
Location: M=MYPROG L=3

--BREAK BRK2
event(s)= execution
Location: M=SUBC L=6

This output indicates that two breaks are set: A break named BRKl is set at
line 3 of program MYPROG, and a break named BRK2 is set at line 6 of
subroutine SUBC.

Removing Breaks from a Program

You can remove breaks during a Debug session by entering a DELETE
BREAK command. This command has the forms

DELETE_BREAK BREAK=(namel, ... , namen)

DELETE_BREAK ALL

The first form deletes the breaks having the specified names. (namei is the
name you assigned to the break in the SET _BREAK command.) The second
form deletes of the breaks currently set in the program.

Revision A Debugging 2-41

USING DEBUG

For example, the following command deletes breaks BRl, BR2, and BR4:

DELETE_BREAK BREAK=(BRl, BR2, BR4)

The DELETE_BREAK command is especially useful in longer Debug
sessions. By removing breaks that are no longer needed, you can speed up
the session. A simple example is as follows:

line 10 DO 5 1=1,1000

line 20 5 CONTINUE

The following command sets a break at line 20 of the preceding DO loop:

SET_BREAK BREAK=LOOPS LINE=20

Execution would suspend on each pass through the loop, a total of 1000
times. But suppose you wanted to check the status of the loop only on the
first few passes through the loop. You could then use the command

DELETE_BREAK NAME=LOOPS

to remove the break at statement 5 after you were through checking the loop.
Then, when you resumed execution, the loop would complete with no
suspension.

Displaying a Subprogram Traceback List

You can display a subprogram traceback list by using the DISPLAY_ CALL
command. This command has the form

DISPLAY_ CALL

The traceback begins with the routine that was executing when Debug
gained control, and proceeds through the sequence of called routines until the
main program is reached. For each routine in the traceback, the DISPLAY_
CALL command displays the routine name and the source line number from
which the routine was called.

2-42 FORTRAN Topics Usage Revision A

USING DEBUG

e For example, consider the following sequence of subroutines:

line 1 PROGRAM MAIN

line 8 CALL SUB1

line 1 SUBROUTINE SUB1

line 4 Z :: FCR,S)

line 1 FUNCTION F(X,Y)

Assume that the program is run under Debug control and that execution is
suspended in function F. The command DISPLAY_ CALL would produce the
following traceback:

--Traceback from procedure F module Fat line 3

--Called from procedure SUBl module SUBl at line 4 byte offset 12

--Called from procedure MAIN module MAIN at line 12 byte offset 12

The most pertinent items of information are the module names (in Debug
terminology, a program unit is called a module) and the line numbers.

Displaying Information About the Debug Session

Debug provides a command that displays information about the current
debug session. This command has the form

DISPLAY _DEBUGGING _ENVIRONMENT

This command displays a paragraph of information about the status of the
Debug session. For most programmers, the most useful entry in this
paragraph tells you where execution is currently suspended. A typical
example is as follows:

Revision A Debugging 2-4:l

USING DEBUG

Execution is currently stopped at B 030 0000006C which,
in higher symbolic terms, is M=MYPROG L=S.

This output indicates that execution has stopped at line 5 of program
MYPROG. Generally, you can ignore the hexadecimal form of the address.

Automatic Execution of Debug Commands

Debug provides a feature through which you can create a special file, called
an ABORT _FILE, that contains Debug commands. If your program
terminates because of an execution error, Debug gets control and
automatically executes the commands in the file.

The ABORT _FILE feature is especially useful for maintaining programs
that are in the working stage. It allows you to specify a set of commands that
is executed automatically when an error occurs. This ability to perform a
specific set of debugging operations at the time of an error can eliminate the
need to reproduce the error in order to debug the program.

In order to use the ABORT _FILE feature, debug mode must be off. The first A
step is to create a text file containing the commands you want to be executed. W
Simply use a text editor to enter the commands into a file in the same form
as you would enter them in a Debug session.

The next step is to specify the name of the file of commands in the ABORT_
FILE parameter of a SET _PROGRAM_ATTRIBUTE or EXECUTE_ TASK
command. Use the former command if you want to specify an ABORT _FILE
to be used for all subsequent executions in the terminal session. Use the
latter command to specify an ABORT _FILE to be used only for a particular
execution.

Before executing your program, be sure that debug mode is off. (Include the
DEBUG _MODE=OFF parameter on the SET _PROGRAM_ATTRIBUTE or
EXECUTE_ TASK command.) Then begin execution of your program in the
usual way. Execution will proceed normally unless an execution error occurs.
If an execution error occurs, Debug gets control, executes the commands in
the ABORT _FILE, and returns control to the system, which issues an error
message.

y OU can include SCL commands in the ABORT_ FILE as well as Debug e
commands. This capability makes it possible for you to write sophisticated
error handling procedures. SCL procedure writing is covered in the SCL
Language Definition manual.

2-44 FORTRAN Topics Usage Revision A

e

USING DEBUG

We now consider an example of the use of an ABORT _FILE. In the example,
an ABORT _FILE is created for a program that contains an error. The
ABORT _FILE contains Debug commands to display the values of all the
variables in the program. Before the program is executed, a SET_
PROGRAM_ATTRIBUTE command is entered to turn off debug mode and
to specify the name of the ABORT _FILE. The PRESET_
V ALUE=INFINITY parameter is also specified. Specifying a memory preset
other than zero is recommended so that uninitialized variables are readily
apparent when displayed by Debug commands. In the terminal dialog, note
that the uninitialized variables are displayed as fields of asterisks. (Integer
variables are displayed as values so large (19 digits) as to suggest an error.)

The program listing is as follows:

1 PROGRAM BUG
2 A = 15.2
3 B = a.a
4 CALL DIVIDE CA, B, C)
5 PRINT *, A, B, C
6 END

1 SUBROUTINE DIVIDE CR, S, T)
2 T = R/S
3 RETURN
4 END

A DIVIDE FAULT error occurs when line 2 of subroutine DIVIDE is
executed, because the dummy argument S has a value of zero. The ABORT_
FILE for this example, named DBGFILE, is as follows:

DISPLAY_PROGRAM_VALUE NAME=A MODULE=BUG
DISPLAY_PROGRAM_VALUE NAME=B MODULE=BUG
DISPLAY_PROGRAM_VALUE NAME=C MODULE=BUG
DISPLAY_PROGRAM_VALUE NAME=R MODULE=DIVIDE
DISPLAY_PROGRAM_VALUE NAME=S MODULE=DIVIDE
DISPLAY_PROGRAM_VALUE NAME=T MODULE=DIVIDE

Revision A Debugging 2-45

USING DEBUG

we now execute the program as shown in the following terminal dialog. e
When the error occurs, the Debug commands are executed and the program
terminates.

setpa debug_mode=off abort_file=dbgfile preset_value=infinity
lgo A
DEBUG W
--DEBUG: program terminated by calling abort at M=DIVIDE L=3
a = 15.2
b = 0.
c = ************************
r = 15.2
s = o.
t = ************************
--FATAL-- divide fault at P=OB 30 OA4.

The SETPA command turns off debug mode, specifies the ABORT _FILE,
and specifies a memory preset value. The LGO command begins execution.
When the error occurs, Debug gets control and executes the commands in
DBGFILE. Note that because of the memory preset value, the uninitialized
variables C and T are displayed as fields of asterisks. Control then passes to
the system, which prints the normal error message.

Example of a Debug Session

To illustrate a typical Debug session, the following program is executed in
debug mode.

PROGRAM BUG
A = 15.2
B = 0.0
CALL DIVIDE CA, B, C)
PRINT *, A, B, C
END

SUBROUTINE DIVIDE CR, S, T)
T = R/S
RETURN
END

2-46 FORTRAN Topics Usage Revision A

USING DEBUG

The main program, BUG, initializes two variables and passes them to
subroutine DIVIDE. Subroutine DIVIDE divides the first value by the
second and returns the result to the main program. The program contains
the following error: Variable Bis set to zero, which results in a divide by
zero.

In the following Debug session, the program is allowed to execute until it
terminates with an error.

exet fi Le=Lgo debug_mode=on <-----------Begin the Debug session.

DEBUG <---------------------------------Execution suspends at
beginning of program.

DB/run <--------------------------------Begin execution.

-- DEBUG: divide_fauLt at M=DIVIDE L=3 B0=20 <--Debug gets control
when error occurs.

DB/di spLay _program_ va Lue name=r <------- Display the value of R.
r = 15.2

DB/di spLay _program_va Lue name=s <-------Display the value of S.
s = o. e DB/quit <-------------------------------End the Debug session.

-- DEBUG: QUIT terminated task

Revision A Debugging 2-47

USING DEBUG

In the following Debug session, a break is set in subroutine DIVIDE. When
execution is suspended there, a new value is supplied for the variable S. The
program is then allowed to run to completion.

exet fi Le=Lgo debug_mode=on <--------- Begin the Debug session.
DEBUG
DB/ set_break break=b1 L ine=2 module=di vi de <--Set a break at line 2

of subroutine DIVIDE.

DB/ run <----------------------------- Begin execution.

-- DEBUG: break B1, execution at M=DIVIDE L=3 B0=20 <--Debug
gets control.

DB/change_program_value name=s value=+2.0 <---Change value of
S to +2.0.

DB/ run <----------------------------- Resume execution.

A=15.2 B=2.0 C=7 .6 <----------------- Program prints values and
runs to completion.

-- DEBUG: program terminated •••

DB/quit <----------------------------- End the Debug session.

Summary of Debugging Aids

FORTRAN and the NOS/VE operating system provide the following
debugging aids:

FORTRAN reference map

HELP command

C$ Directives

Debug utility

2-48 FORTRAN Topics Usage Revision A

DEBUGGING SUMMARY

e FORTRAN Reference Map

The FORTRAN reference map provides debugging information about all the
symbolic names used in a program. Generation of the reference map is

A controlled by the LIST_ OPTIONS parameter on the FORTRAN command.
W To generate a complete map, specify

LIST_ OPTIONS=(S,A,R,M)

When running a program interactively, you should also specify the LIST
parameter to designate a file to receive the map.

The two most useful sections of the map are the variables section and the
statement labels section. The variables map gives the line numbers where
each variable is used, and identifies undefined variables and stray names.

The statement labels map gives, for each label, the numbers of the source
lines where the label is defined and referenced. You can use this map to
identify missing or unneeded labels.

HELP Command

The HELP (or EXPLAIN _MESSAGE or EXPM) command provides online
descriptions of runtime error messages.

If your program terminates with an error message, simply type HELP. You
are then taken directly to the description of that message in the online
MESSAGES manual. The description in the MESSAGES manual provides
three types of information: a brief explanation of the error, some suggestions
for correcting the error, and where to go for further information.

If, after reading the description, you would like even more information, you
can go directly to the relevant online manual by entering the command
described in the Further Information part of the message description.

HELP provides descriptions only of the most recent error in a job. If you
want to look up other error messages, such as those that occurred in a
previous job, you can use the following EXPLAIN command to enter the
MESSAGES manual and go directly to information about the error:

EXPLAIN M=MESSAGES S='condition-code'

where condition-code is the 6-digit condition code associated with the error.

Revision A Debugging 2-49

DEBUGGING SUMMARY

C$ Directives

The compiler control directives can help you debug a program. The most
useful directives are the conditional compilation directives and the listing
control directives.

The conditional compilation directives enable you to specify blocks of
statements within a program that are to be ignored by the compiler. You can
use these directives in conjunction with debug PRINT statements that you
have inserted in your program. If you surround the PRINT statements by
conditional compilation directives, you can direct the compiler either to
compile or to disregard the statements by simply changing the value of a
single parameter.

The listing control directives enable you to turn off compiler output listing
options for portions of a program. These directives are especially useful for
modular programs where you are debugging one module at a time. By
surrounding each module by listing control directives, you prevent the
compiler from producing a source listing and reference map for the modules
you are not currently debugging.

DEBUG Utility

The Debug utility helps you debug a program during execution. It is easy to
use and requires no changes to your program. The following list summarizes
the steps you can follow to debug a program under control of Debug.

1. When you compile your program, either specify DEBUG=NONE and
OPTIMIZATION=DEBUG, or omit those parameters since NONE and
DEBUG are the default options.

2. Turn on debug mode by specifying DEBUG _MODE=ON on either a
SET _PROGRAM_ATTRIBUTE command or an EXECUTE_ TASK
command.

3. Begin execution by entering a name call or EXECUTE_ TASK command
that specifies the name of your program. This gives control to Debug and
begins the Debug session. Debug then prompts you for a command.

4. Enter one or more SET _BREAK commands to provide for getting control
during execution of the program. The command

SET _BREAK NAME=name LINE=line MODULE=module

sets a break that will suspend execution when the specified line is
reached. Alternatively, you can enter the command

SET _STEP _MODE

to suspend execution at the beginning of each line of the program.

2-50 FORTRAN Topics Usage Revision A

DEBUGGING SUMMARY

e 5. Enter a RUN command to begin execution of the program. The program
executes until a break is encountered. Then execution suspends and
Debug gives control to you.

6. Enter commands to debug the program as desired. Some useful
commands are:

DISPLAY _PROGRAM VALUE V ARIABLE=var
MODULE=module

Displays the value of a variable or array element.

CHANGE_PROGRAM_ VALUE VARIABLE=var
MODULE=module

Assigns a new value to a variable or array element.

DISPLAY_ BREAK ALL

Lists the breaks currently set in the program.

DELETE ... BREAK NAME=namel, ... , namen

Deletes breaks from a program.

DISPLAY_ CALL

Displays a subroutine traceback list.

DISPLAY _DEBUGGING __ ENVIRONMENT

Displays status information about the Debug session.

7. Resume program execution by entering a RUN command. The program
will execute until either another break is encountered or the program
terminates.

8. Repeat steps 6 and 7 until you are ready to end the Debug session. Then
type QUIT to end the session and return to system command mode.

Revision A Debugging 2-;")J

9 Introduction to FORTRAN
Input/Output 3

e NOS/VE FORTRAN provides a wide variety of input/output methods. Each
method is designed for a specific purpose. You can use the information
presented in this chapter to gain an understanding of the types of
input/output and to help you decide which method is best suited to your
needs.

Keep in mind that the purpose of this discussion is to provide an overview of
FORTRAN input/output and to help you compare the available methods.
The discussion does not provide the detailed specifications you need to
effectively use the methods. Before using a particular method, you should
read the detailed description of the method in the FORTRAN Language
Definition manual.

Basic Concepts

Input/output is the process of transferring data between the computer's
memory and a file. A file is a collection of related data that is identified by a
unique name. Every file begins at a boundary known as the
beginning-of-information (abbreviated BOI) and ends at a boundary known
as the end-of-information (abbreviated EOI).

Data exists on a file in units called records. Generally, a record is the amount
of data read or written by a single input or output statement.

Disk files are generally used for data that is to be stored over a period of
time. You can also read data from, or write data to, a terminal (interactive
jobs), and you can write data to a printer (batch jobs). From the standpoint of
a FORTRAN program, terminals and printers are considered to be files,
although those devices do not store data as a disk file does.

The type of output discussed in this chapter is called external input/output
because data is transferred between memory and an external device (disk,
terminal, or printer).

FORTRAN also provides a type of input/output called internal input/output.
Internal input/output is not really input/output in the usual sense, because
no external devices are used. This type of input/ output uses READ and
WRITE statements to transfer and reformat data from one area of memory
to another. Internal input/output is not discussed in this chapter, but is
described in detail in the FORTRAN Language Definition manual.

Revision A Introduction to FORTRAN Input/Output 3-1

OPENING FILES

Opening Files

Before you reference a file, the file must be opened. The open process
prepares the file for input or output and establishes various properties of the
file. If you open a file that does not already exist, the file is created.

For some types of input/ output, you can either open the file yourself (using
an OPEN statement) or you can allow FORTRAN to open the file for you.
The OPEN statement enables you to specify various properties of the file. If
you don't specify an OPEN statement, the file is automatically opened the
first time you reference it in an input/output statement, and FORTRAN
provides default values for the file properties.

For other types of input/output, you must explicitly open the file before
reading or writing it.

File properties that you can declare on an OPEN statement include the file
name, an input/output unit to be associated with the file, and the record
length. The OPEN statement is described in detail in the FORTRAN
Language Definition manual.

You can also declare file properties on a SET_FILE_ATTRIBUTE
command. This command allows you to declare many file attributes that
cannot be declared in an OPEN statement. You can specify a SET_FILE_
ATTRIBUTE command before you begin execution of your program, or you e
can execute the command inside your program through an SCLCMD call.
(Both of these commands are described in the FORTRAN Language
Definition manual.) However, the OPEN statement is sufficient more most
FORTRAN input/output operations.

Input/Output Units and Unit/File Association

All input/ output operations involve the transfer of data between memory
and a file. Thus, in every input or output statement, you must indicate the
file to be involved in the data transfer. This is done by means of a unit
number.

As part of the opening process, all files referenced in a FORTRAN program
become associated with a unit number. In an input or output statement, you
generally don't specify a file name directly. Instead, you specify a unit
number. The operation is then peformed on the associated file.

3-2 FORTRAN Topics Usage Revision A

FILE ATTRIBUTES

If you open a file yourself (by specifying an OPEN statement) you can
establish the association between a file and a unit number. For example, the
statement

OPEN CUNIT=S, FILE='DOG')

associates unit 5 with a file named DOG. Thus, when unit number 5 is
referenced in a subsequent input or output statement, file DOG is read or
written. For example, the statement

READ CUNIT=S, FMT=99) A, B

reads two values from file DOG.

If you omit the OPEN statement, thus allowing the open to be done
automatically, the unit number is associated with a file having a default
name provided by FORTRAN. The default name is formed by prefixing the
unit number with the characters TAPE. Thus, in the previous READ
statement, assuming no OPEN statement was specified, a file named TAPE5
would be used.

The close process performs certain operations that are required before the file
can be referenced in another program. As with the open process, you can
either close a file yourself (using a CLOSE statement) or you can allow the
file to be closed automatically when the program terminates. Specifying a
CLOSE statement provides you with some additional options, although in
most cases you can allow the close to be done automatically.

File Attributes

Every file used under NOS/VE has an associated set of file attributes. These
attributes define the file structure and certain processing options associated
with the file. A file's attributes are established when the file is created. Some
of these attributes are permanent for the life of the file, while others can be
changed.

For most types of input/output performed in a FORTRAN program, you
don't need to worry about file attributes, because FORTRAN provides an
appropriate set of default attributes. The notable exception is the set of file
interface subprograms, which require you to know a great deal about file
attributes.

Revision A Introduction to FORTRAN Input/Output 3-3

TYPES OF INPUT/OUTPUT

Types of FORTRAN Input/Output

FORTRAN input/output can be classified in the following three ways:

According to whether or not the data is formatted (and if so, according to
whether the format is user-specified or provided by FORTRAN).

According to how records on the input or output file are accessed.

According to whether or not the method is a standard ANSI feature.

The formatted methods are used for data that is to be viewed in some way
(printed or displayed at a terminal). You can use FORTRAN-supplied default
formatting, or you can specify your own detailed format specifications.

The unformatted methods are used for data that will not be viewed.
Generally, unformatted input/output is used for files that are to be stored
and used as input to other programs.

The two methods of access are sequential access and random access. In
sequential access files, records must be read in the order in which they were
written. Random access files allow you to read particular records directly,
without sequentially searching for the records.

NOS/VE FORTRAN provides all of the input/ output methods defined in the
1978 ANSI standard document. Several CDC-unique methods are also A
provided but should be used only in special circumstances. W
A word of caution: Do not try to mix different types of input/ output on the
same file. Doing so usually results in a runtime error and may destroy the
contents of the file.

Overview of Input/Output Methods

The categories of FORTRAN input/ output are as follows:

- Formatted Input/Output Methods. These include READ and WRITE
statements with format specifications, list directed READ and WRITE
statements, and namelist READ and WRITE statements.

- Unformatted Input/Output Methods. These inlcude the unformatted
READ and WRITE statements and the BUFFER IN and BUFFER
OUT statements.

- Random Access Methods. These include the direct access READ and
WRITE statements, the mass storage input/output subroutines, and
the file interface subprograms.

3-4 FORTRAN Topics Usage Revision A

LIST DIRECTED INPUT /OUTPUT

e Formatted Input/Output Methods

Formatted input/ output is used for data that is to be printed or viewed in
some way. On input, data in the form of a string of characters is read,
converted to an internal representation, and stored in memory. On output,
values in memory are converted to strings of characters and printed (or
written to a file or displayed at the terminal).

NOS/VE FORTRAN provides three ways of doing formatted input/output:

- List Directed Input/Output. This is the easiest method. It uses default
formatting.

- Namelist Input/Output. This method also uses default formatting, but
you specify a group name instead of an input/output list. This method
is non-ANSI.

- Formatted Input/Output with Format Specification. With this method,
you specify the formatting to be done. (This method is often referred to
simply as formatted input/output.)

List Directed Input/Output

List directed input/output is the easiest to use of the formatted input/output
methods. With list directed input/output, you do not need to specify the
formatting to be performed. Instead, a FORTRAN-defined default format is
used. List directed input/output is recommended for applications where the
actual format of the data is not important.

The list directed output statements are READ, WRITE, and PRINT, with a *
substituted for the format specification. (A PUNCH statement is also
provided, but it is seldom used.) The simplest forms of these statements are:

READ (UNIT=u,FMT=*) list

WRITE (UNIT=u, FMT=*) list

PRINT *, list

where u specifies the file to be read or written, * selects list directed
formatting, and list specifies the items to be read or written.

Revision A Introduction to FORTRAN Input/Output 3.5

LIST DIRECTED INPUT/OUTPUT

List directed input data has a much freer form than formatted input data.
You simply specify a string of values using any of the valid FORTRAN
forms for constants, and separate the values by commas or blanks. The
following examples show typical list directed input records:

3.5, 753.141, 100 Two real numbers and an integer
number, separated by commas.

6.78 (4.1,10.0) 'ABC' A real number, a complex number, and a
character string. The values are
separated by blanks.

List directed output values have the same forms as FORTRAN constants.
However, a long string of list directed output values can sometimes be
difficult to read.

For example, the following READ statement reads character data from unit
3, converts it to internal format, and stores it in memory:

CHARACTER*5 STR
READ CUNIT=3,FMT=*) AVAL, BVAL, IFG, STR

An example of an input record for this READ statement is:

100.0, 25.0, 50, 'FIRST'

The READ statement reads, converts, and stores the following values:

100.0 is stored in the real variable AV AL

25.0 is stored in the real variable BV AL

50 is stored in the integer variable IFG

FIRST is stored in the character variable STR

The following statements define some variables of varying types and print
the values using a list directed PRINT statement. The variable values are
converted from internal representation to characters according to a default
format, and printed.

LOGICAL L
CHARACTER B*3
COMPLEX C
L . TRUE. <---------a logical value (will be printed as T)
C = (-14,3.55) <-----a complex number
B ' DOG ' <----------a character string
X = 3.14159 <--------a real number
PRINT *, L, C, B, X

3·6 FORTRAN Topics Usage Revision A

NAMELIST INPUT/OUTPUT

e The output record is:

TC-14.,3.55)DOG3.14159

Note that the output values are not separated by commas or blanks.

e Namelist Input/Output

N amelist input/ output is similar to list directed input/ output in that you do
not supply a format specification. Namelist input/output uses a default
format that is consistent with the formats of the FORTRAN constants.

The main difference between namelist and list directed input/output is that
with namelist, you do not specify a list of variables to be read or written.
Instead. you specify the name of a namelist group that contains all the
variables and arrays you want to read or write. The namelist input/ output
statement then transfers all the items in the specified group.

In order to use namelist input/output, you must first define a namelist group.
This group should contain all the variables and arrays that you want to read
or write using a single READ or WRITE statement. You define a namelist
group by specifying a NAMELIST statement, which has the general form:

NAMELIST /name/list e where name is a name you assign to the group, and list is a list of variables
and arrays to be in the group.

e

Data to be read by a namelist READ statement must have the form of a
namelist input group. The input group specifies the name of each variable (or
array) and the value to be assigned to the variable or array. The general
form of a namelist input group is:

$group-name variable=value, ... , variable=value $END

The dollar sign preceding group-name must appear in character position 2.
You can continue a namelist group over successive lines.

The following example shows a simple namelist group:

$AGRP VALC1)=0.456, VALC2)=7.89, IVAL=100 $END

The group is named AGRP, and specifies values for array elements V AL(l)
and V AL(2), and the variable IV AL.

Revision A Introduction to FORTRAN Input/Output 3-7

NAMELIST INPUT/OUTPUT

To read or write the items in a namelist group, you simply use a READ,
WRITE, or PRINT statement that specifies the group name. The general
forms of the namelist READ and WRITE statements are:

READ (UNIT=u, FMT=name)

WRITE (UNIT=u, FMT=name)

where u is the unit to be read or written and name is a namelist group name.

Namelist input/output is especially useful for programs that repeatedly read
or write the same items. With namelist, you don't need to list all the items
for each input/output operation.

The main disadvantage of namelist input/ output is that it is not a standard
ANSI feature. Therefore, if you want your program to be portable to other
systems, you shouldn't use namelist. Also, the namelist input data format is
less convenient than the list directed format, since you must specify each
variable and array name and include $group-name and $END.

The following program illustrates a namelist READ and WRITE.

PROGRAM NMLST

C Define two namelist groups.
NAMELIST /INGRP/ R,T
NAMELIST /OUTGRP/ R,T,D

C Read the group named INGRP.
READ CUNIT=S, FMT=INGRP)
D = R*T

C Write the group named OUTGRP.
WRITE CUNIT=6, FMT=OUTGRP)
END

An example of an input group for this program is:

$INGRP R=SS.O, T=2.5 $END

The output written to unit 6 is:

$0UTGRP
R .55E+02
T = .25E+01
D = .1375E+03
$END

Output values are stacked vertically and are in a format that can be read by
a subsequent namelist READ. Note that E format is used for real values.

3-8 FORTRAN Topics Usage Revision A

FORMA'ITEDINPUT/OUTPUT

-Formatted Input/Output With Format Specification

This is the most powerful and flexible type of formatted input/output, but
also the most difficult to use. With this type of input/output, you explicitly
specify the formatting to be done during the input or output operation. e The simplest forms of the formatted input/ output statements are:

READ (UNIT=u, FMT=label) list

WRITE (UNIT=u, FMT=label) list

where u identifies the unit to be read or written, label is the label of a format
statement, and list is a list of variables, arrays, or array elements to be read
or written.

A PRINT statement is also provided. The PRINT statement can be used
instead of the WRITE statement to print data (batch jobs) or display data at
the terminal (interactive jobs).

The FORMAT statement (identified by the FMT= parameter) specifies the
formatting to be done.

Some examples of formatted READ and WRITE statements with format
specifications are as follows: e READ CUNIT=2,FMT=100) AC1), J, ANSWER

This statement reads values from unit 2 into the variables A(l), J, and
ANSWER. The values are converted from character format to an internal
representation. The type of each conversion is specified by the FORMAT
statement labeled 100.

WRITE CUNIT=99,FMT=1) TIME, RATE, WAGES

This statement writes the values in the variables TIME, RATE, and WAGES
to unit 99. The values are converted from internal representation to character
format. The type of each conversion is specified by the FORMAT statement
labeled 1.

The most common way of specifying a format is by using a FORMAT
statement, although there are other ways. The FORMAT statement specifies
the conversions to be performed on input or output. The FORMAT statement
can also specify editing to be done, such as table headings, tabulation, blank
control, printer control, and so forth. e The general form of the FORMAT statement is:

label FORMAT (descriptor-list)

Revision A Introduction to FORTRAN Input/Output 3-9

FORMATTED INPUT/OUTPUT

The FORMAT statement contains a list of edit descriptors that correspond to e
the list items in the READ, WRITE, or PRINT statement. These descriptors
specify how each value is to be converted.

Edit descriptors enable you to select the type of formatting to occur during a
formatted input/output operation. In general, you specify one descriptor for a
each item to be read or written. The particular descriptor you should use W
depends on the type and format of the item.

To see how edit descriptors work, consider the F descriptor. The F descriptor
is used to read or write real (floating-point) numbers. This descriptor
specifies the width (number of characters) of the input or output field and the
number of characters to the right of the decimal point. For example,

F8.3 I J L The field has 3 characters to right of decimal point. L The field is 8 characters long.
Specifies floating-point conversion.

This example specifies a formatted field 8 characters long, with three
characters to the right of the decimal point, one character reserved for the
decimal point, and four characters (including+ or - sign) to the left of the
decimal point.

The following example of a formatted READ statement reads values into the
variables I and X according to the FORMAT statement labeled 50.

READ CUNIT=2, FMT=SQ) I, X
50 FORMAT (!3, F10.4)

The FORMAT statement specifies the following two input fields:

I3 specifies an integer field three characters long.

Fl0.4 specifies a floating-point field 10 characters long, with 4 characters
to the right of the decimal point and 5 characters to the left. (The decimal
point counts as a character.)

A typical input record for this READ statement is as follows:

bb8bb456.1760 (b indicates a blank character.)

The number 8 is read into I, and the number 456.1760 is read into X.

3-10 FORTRAN Topics Usage Revision A

FORMATTED INPUT/OUTPUT

The following sequence writes two numbers to unit 2. The numbers are
converted from internal format to characters as specified in the FORMAT
statement.

J = 24
VALUE= 3.14159

WRITE CUNIT=2,FMT=99) J, VALUE
99 FORMAT C1X,'INDEX IS ', I1, ' RESULT IS ', F8.3)

These statements produce the following output:

INDEX IS 24 RESULT IS 3.14159

The variable J is converted and written according to the descriptor Il, and
the variable VALUE is converted and written according to the descriptor
F8.3.

Examples Comparing the Formatted Input/Output Methods

Following are three versions of a short program that reads several input
values and writes those same values. The first version uses list directed
input/output, the second uses namelist input/output, and the third uses
formatted input/ output with format specifications. The purpose of these
examples is to help you compare the three methods of formatted
input/output.

The examples are written to perform interactive input and output (that is,
data is read and written at the terminal). Each example is accompanied by a
sample terminal dialog, showing input and output.

Revision A Introduction to FORTRAN Input/Output 3-11

LIST DIRECTED INPUT/OUTPUT EXAMPLE

List Directed Input/Output Example

Source Listing:

PROGRAM LSTDIR
CHARACTER NAME•10

C List directed PRINT statement.
PRINT•, 'ENTER NAME, ACCOUNT, AND AMOUNT'

C List directed READ statement.
READ CUNIT=*, FMT=*) NAME, IACCNT, AMT

C List directed PRINT statement.
PRINT *, NAME, IACCNT, AMT
END

Terminal Dialog:

lgo <------------------- Begin execution.

ENTER NAME, ACCOUNT, AND AMOUNT
? 'smith' 00324 1050.00 <------ User input. Spaces are used as

separators. Note that character

SMITH

strings are enclosed in A
apostrophes. W

324 1050. <------- Program output, showing list
directed output format. Note that
leading zeros were dropped from
account number, and zeros to
right of decimal point were
dropped from amount.

3-12 FORTRAN Topics Usage Revision A

NAMELIST INPUT/OUTPUT EXAMPLE

Namelist Input/Output Example

Source Listing:

PROGRAM NMLST
CHARACTER NAME •10

C Define namelist group.
NAMELIST /GRFV NAME, IACCNT, AMT

C Use list directed PRINT statement to print prompt.
PRINT*, 'ENTER NAME, ACCOUNT, AND AMOUNT'

C Namelist READ and WRITE statements.
READ CUNIT=•, FMT=GRP)
WRITE (UNIT=*, FMT=GRP)
END

Terminal Dialog:

lgo <--------------------------- Begin execution.

ENTER NAME, ACCOUNT, AND AMOUNT <---- Program prints
prompt.

? Sgrp name=' smith', iaccnt;=00325, amt=1050.00 Send <-- Enter

SGRP

NAME = 'SMITH

IACCNT = 325,

AMT = .1050E+04,

SEND

I ,

input.

<------- Namelist output.

In namelist input, data is free form, but you must specify the name of each
variable or array. The input record must begin with $group-name and end
with $END. Output values are stacked vertically, and include the variable or
array name. Note that exponential (E) format is used for real values. Note
also that the output is in a format that can be read by a namelist READ.

Revision A Introduction to FORTRAN Input/Output 3-13

FORMA TIED INPUT /OUTPUT EXAMPLE

Example of Formatted Input/Output With Format Specification

Source Listing:

PROGRAM FMTSPEC
CHARACTER NAME*10

C Print prompt for user input.
PRINT 100

100 FORMAT (' ENTER NAME, ACCOUNT, AND AMOUNT')

C Read input values according to FORMAT statement 101.
READ (UNIT=*, FMT=101) NAME, IACCNT, AMT

101 FORMAT (A10, IS, F8.2)

C Print table headings according to FORMAT statement 102.
PRINT 102

102 FORMAT(' NAME', 6X, 'ACCOUNT', 3X, 'AMOUNT',/)

C Print output values according to FORMAT statement 103.
PRINT 103, NAME, IACCNT, AMT

103 FORMAT (1X, A10, 1X, IS.5, 3X, '$', F8.2)
END

Terminal Dialog:

L go <------------------------------ Begin execution.

ENTER NAME, ACCOUNT, AND AMOUNT <-- Prompt for user input.

? smith 00324 1050.00 <-------- User input.

NAME ACCOUNT AMOlJ<T }
<-- Program output.

SMITH 00324 $ 1050.00

Note that the user input must be within the fields specified by the FORMAT
statement. Note also that by using appropriate edit descriptors, you can
"dress up" the output so that it is more meaningful. In this example, edit
descriptors were used to print table headings, place leading zeros in the
account number, print a dollar sign, and print trailing zeros in the amount.

3-14 FORTRAN Topics Usage Revision A

UNFORMATTED READ AND WRITE

Unformatted Input/Output Methods

In unformatted input/output, data is transferred directly between memory
and a file without any conversions or editing. The data is in its internal
representation, and generally cannot be printed or viewed at a terminal.

Unformatted input/output is faster than formatted input/output because the
time required for formatting and editing is eliminated. Unformatted
input/output is generally used for data that will not be printed or displayed
at a terminal. For example, if you want to write data to a file, and
subsequently read that file in another program, you should consider using
unformatted input/ output.

The methods of unformatted input/output are:

- Unformatted READ and WRITE Statements. This is the preferred
method.

- BUFFER IN and BUFFER OUT Statements. This method is not
recommended and is discussed only briefly.

Unformatted READ and WRITE Statements

Unformatted READ and WRITE statements provide a way of transferring
data between memory and a file without converting or editing the data.

The unformatted READ and WRITE statements are similar to formatted
READ and WRITE statements, except that they do not specify a FORMAT
label. The simplest forms of the unformatted READ and WRITE statements
are:

READ (UNIT=u) list

WRITE (UNIT=u) list

where u identifies the input/output unit, and list is a list of variables or
arrays to be read or written.

For example, the following unformatted READ statement reads data from
unit 9 into arrays ARR and BRR. The data is stored exactly as it appears on
the file.

DIMENSION ARRC100), BRRC250)

READ {UNIT=9) ARR, BRR

Revision A Introduction to FORTRAN Input/Output 3-15

BUFFER IN AND BUFFER OUT

The following unformatted WRITE statement writes data from array XDAT
and variables T and V to the file associated with unit 9. The data is written
in exactly the same form as it appears in memory.

DIMENSION XDAT(125)

WRITE CUNIT=9) XDAT, T, V

BUFFER IN and BUFFER OUT Statements

The BUFFER IN and BUFFER OUT statements provide an alternate
method of unformatted input/output. BUFFER IN and BUFFER OUT exist
mainly for compatibility with other versions FORTRAN, and their use is not
recommended. For unformatted input/ output, you should use unformatted
READ and WRITE wherever possible.

There are three major differences between BUFFER statements and
unformatted READ and WRITE:

- Unformatted READ and WRITE statements specify a list of items to
be read or written. BUFFER statements specify the first and last
words of a block of memory.

- Unformatted READ and WRITE statements can transmit character
data, whereas BUFFER statements cannot.

- Unformatted READ and WRITE statements are standard ANSI
statements, whereas BUFFER statements are not. Therefore, any
program that contains BUFFER statements is not portable to other
systems.

Random Access Methods

Up to now, we have assumed that the files you are reading and writing are
sequential access files. On a sequential access file, all records are physically
stored in the same order in which they were written. The records can be read
only in that order. A sequential file has the following general form:

first second third
f

record record record

3-16 FORTRAN Topics Usage Revision A

RANDOM ACCESS METHODS

On a sequential file, you can access a particular record only by reading all
physically preceding records, until you reach the desired record. For instance,
in order to read the third record, you must read the first and second records
(or bypass them using the SKIP statement). Of course, the additional READ
or SKIP operations require additional time.

Sequential files are easy to use, and are fine for most purposes. But in
programs where you want to read or write specific records without reading or
writing all the preceding records, sequential files can be slow and
inconvenient because they require you to sequentially search for the desired
record.

A much faster method of retrieving specific records on a file is provided by
random access files. On a random access file, each record has a record key
associated with it. To read or write a particular record, you simply specify the
key for that record. You are then taken directly to the desired record. Thus,
the need for sequentially searching for a particular record is eliminated.

A random access file has an index associated with it. The index contains the
key and disk address of each record on the file. To access a particular record,
you specify the record key in a random access input/output statement. The
software looks up the address of the record in the index, and then goes
directly to that record. e The following diagram illustrates a random access file:

Index

---------------t key 1 address 1

r----------f key 2 address 2

key 3 address 3

record 1 record2 record3

You should consider a random access method whenever you want to create a
file in which records will be accessed in an order different from the order they
were created in.

Revision A Introduction to FORTRAN Input/Output 3-1 7

DIRECT ACCESS FILES

NOS/VE FORTRAN provides the following ways of doing random access
input/ output:

- FORTRAN Direct Access Files. This is the recommended method. It is
the easiest to use and it is a standard ANSI method.

- File Interface Subprograms. This method provides the most options
and flexibility, but it is the most difficult to use. It is a CDC extension.

- Mass Storage Input/Output Subroutines. The difficulty and flexibility
of this method is somewhere between the preceding methods. This
method is a CDC extension.

FORTRAN Direct Access Files

FORTRAN direct access files provide an easy way of doing random access
input/output. These files are read and written using standard FORTRAN
READ and WRITE statements.

To create a direct access file, you must specify an OPEN statement that
contains the ACCESS='DIRECT' specifier. You must also specify the record
length of the file using the RECL specifier in the OPEN statement. (The
record length is the number of words (unformatted data) or characters
(formatted data) to be read or written. (Refer to the FORTRAN Language
Definition manual for an explaination of how to calculate the record length
of a direct access file.)

For example, the statement

OPEN CUNIT=2, FILE='DFILE', ACCESS='DIRECT', RECL=120)

creates an unformatted direct access file named DFILE with a record length
of 120 words.

If you omit the ACCESS='DIRECT' specifier from the OPEN statement, the
file is automatically created as a formatted sequential access file.

Each record in a direct access file is identified by a record number. You
assign the record number the first time you write the record. The record
number you assign is permanently associated with the record. Then, when
you want to read or rewrite the record, you simply specify the record number
in the input/ output statement. In general, you assign the number 1 to the
first record written, 2 to the second record, and so forth.

You read and write direct access files using standard FORTRAN READ and
WRITE statements. But you must include the REC parameter in these
statements. REC specifies the record number of the record you want to read
or write.

3-18 FORTRAN Topics Usage Revision A

DIRECT ACCESS FILES

You can use direct access files for either formatted or unformatted
input/ output. If you want to use a direct access file for formatted
input/output, you must specify FORM='FORMAITED' in the OPEN
statement that creates the file. Otherwise, the file is automatically created for
unformatted input/output.

The following sequence opens an (unformatted) direct access file and writes a
single record:

OPEN CUNIT=2, FILE='NEWFL', ACCESS='DIRECT', RECL=120)

WRITE CUNIT=2,REC=8) A, B

The file is named NEWFL and has a record length of 120 words. The WRITE
statement writes the variables A and B to record number 8 of the file.

The following sequence opens and reads a formatted direct access file:

OPEN CUNIT=6, FILE='AAA', ACCESS='DIRECT', FORM='FORMATTED',
+ RECL=100)

~ DO 5 !=2,10,2
READ CUNIT=6, FMT=SO, REC=!) XARR

50 FORMAT C10F12.4)
5 CONTINUE

The DO loop reads records 2, 4, 6, 8, and 10.

The following example illustrates a simple, but typical, direct access
application.

Program UPDATE is an application that might be found at a bank. The
purpose of this program is to process customer withdrawals and deposits.
The program assumes the existence of an unformatted direct access master
file named ACCNTS, containing each customer's name, account number,
and account balance. The contents of this file are as follows:

wordl
(Name)

SMITH
JONES
CLARK
STEVENS
WILSON

Revision A

word2
(Account No.)

00324
70516
15922
03304
21090

word3
(Balance)

1000.00
2500.00
10000.00
650.00
125.00

Introduction to FORTRAN Input/Output 3-19

DIRECT ACCESS FILES

The program interactively updates the master file ACCNTS for each
withdrawal or deposit.

The program first requests a customer's account number, the type of
transaction (W for withdrawal, D for deposit), and the amount of the
transaction. This is done using a list directed PRINT statement.

The program then waits for the customer to type in the requested values. The
values are read using a formatted read statement. Note that the customer's
input must conform to the FORMAT statement labeled 11.

After the customer enters the requested values, the program searches array
NARRAY to locate the customer's account number. When the account
number is located, the value of the DO index I is the value of the customer's
record number on the master file. (Remember that each record on a direct
access file is identified by a record number.) If the account number cannot be
found, an informative message is displayed and the program terminates.

The program then uses the record number in a direct access READ statement
to read the customer's name, account number, and balance from the master
file. If the customer requested a withdrawal, the transaction amount is
subtracted from the balance. If the customer requested a deposit, the amount
is added to the balance. In either case, the new balance is displayed and the
updated record, containing the new balance, is written to the master file.

3-20 FORTRAN Topics Usage Revision A

DIRECT ACCESS FILES

e The source for program UPDATE is as follows:

PROGRAM UPDATE
CHARACTER NAME•10, NARRAY(5)•5, NACCT•S, T*1
DATA NARRAY /'00324', '70516', '15922', '03304', '21090'/

OPEN CUNIT=2, FILE='ACCNTS', ACCESS='DIRECT', RECL=3)

C Prompt the customer for account number, transaction type,
C and transaction amount. Then read the input values.

PRINT*, 'ENTER ACCOUNT NUMBER, WORD, AND AMOUNT.'
READ (UNIT=*, FMT=11) NACCT, T, AMOUNT

11 FORMAT CAS, 1X, A1, F10.2)

C Find customer's account in master file. Determine whether
C transaction withdrawal or deposit, then update account.

DO 15 I=1,5
IF CNACCT .EQ. NARRAYCI)) THEN

READ CUNIT=2, REC=!) NAME, N, BAL
IF (T .EQ. 'W') THEN

BAL = BAL - AMOUNT
ELSE

BAL = BAL + AMOUNT
END IF

C Print customer's name, account number, and new balance.
PRINT 22, N, BAL

22 FORMAT ('ACCOUNT NO. IS ',AS,'. NEW BALANCE IS S',F10.2)
WRITE CUNIT=2, REC=!) NAME, N, BAL
STOP

END IF
15 CONTINUE

c
PRINT *, 'INVALID ACCOUNT NUMBER.'
END

Revision A Introduction to FORTRAN Input/Output 3-21

FILE INTERFACE SUBPROGRAMS

Following is an example of t.erminal dialog for program UPDATE:

Lgo <------------------------------------Begin first
execution.

ENTER ACCOUNT NUMBER, W OR D, AND AMOUNT. <---------Promptfor
user input.

? 00324 w 100.00 <----------------------Userinput.

ACCOUNT NO. IS 00324. NEW BALANCE IS $ 900.00 <--Program
output.

Lgo <--Begin second

ENTER ACCOUNT NUMBER, W OR D, AND AMOUNT.
? 15922 d 550.

ACCOUNT NO. IS 15922. NEW BALANCE IS S 10550.00

File Interface Subprograms

execution.

The file interface subprograms provide a powerful and flexible method of
random access input/ output. Some of the advantages of file int.erface
input/ output are:

- You can define, access, and change the attributes of a file.

- You can process files having a variety of different attributes.

- You can process all three of the NOS/VE record types (variable, fixed,
and undefined). The FORTRAN direct access method allows only
fixed-length records.

- You can read or write sequentially as well as randomly.

- You can write routines that are executed when certain errors occur
during an input or output operation.

The file interface subprograms are somewhat more difficult to use than the
other FORTRAN input/output statements, mainly because you must have a
basic understanding of the concepts and structure of the files processed by
the subprograms. (These files are known as indexed sequential files.)

A second disadvantage of the file interface subprograms is that they are
non-ANSI. Thus, any program that uses them is not portable to other
systems.

3-22 FORTRAN Topics Usage Revision A

FILE INTERFACE SUBPROGRAMS

e Because using the file interface subprograms requires extensive background
information, they are not explained here. Instead, brief summaries of the
subprogram calls and of the file attributes of indexed sequential files are
presented in this chapter. Refer to the FORTRAN Language Definition

A manual for a detailed description of file interface input/ output.

W Operation CALL Statement

e

Define file attributes CALL FILEIS, CALL STOREF

Retrieve file attributes !FETCH function reference

Open a file CALLOPENM

Position a file to a CALL SKIP, CALL STARTM
specific record

Rewind a file CALLREWND

Read a record CALL GET for random read, CALL
GETN for sequential read

Write a record CALL PUT, CALL PUTREP

Replace a record CALL REPLC, CALL PUTREP

Delete a record CALLDLTE

Close a file CALLCLOSEM

The files processed by the file interface routines are known as indexed
sequential files. Like all other files under NOS/VE, each indexed sequential
file is described by a set of file attributes. A major advantage of the file
interface calls is that you have complete control over the file attributes. (The
obvious disadvantage is that you must understand what all these attributes
mean, and when and how they must be defined.) The other FORTRAN
input/output methods provide much less control over these attributes.

Revision A Introduction to FORTRAN Input/Output 3-23

FILE INTERFACE SUBPROGRAMS

Indexed sequential files have about 40 different attributes. The following e
table describes a few of these attributes, in order to give you an idea of the
file characteristics over which you have control.

Attribute

COLLATE TABLE_NAME

ERROR_EXIT _NAME

FILE_POSITION

KEY_ADDRESS

KEY_TYPE

OPEN_POSITION

RECORD_LENGTH

RECORD_ TYPE

Description

Specifies the name of a collation table e
to be used for comparing character
record keys.

Specifies the name of a routine to be
executed if an input/ output error
occurs.

Returns a value indicating the
position of the file after the last file
operation.

Defines the record key.

Specifies the type of the record key.

Specifies where the file is to be
positioned when it is opened.

Specifies the length of the record
being read or written.

Specifies the type of records in the file
(types are variable length, fixed
length, and undefined length).

Mass Storage Input/Output Subroutines

The mass storage input/output (MSIO) subroutines provide a third
alternative for performing random access input/output. The MSIO
subroutines were widely used before the advent of the standard ANSI
FORTRAN direct access files. Now, however, the latter method is preferred
for most applications. MSIO exists mainly for compatibility with earlier
versions of FORTRAN, and in most cases, you should first consider either
direct access files or the file interface subprograms.

3-24 FORTRAN Topics Usage Revision A

MASS STORAGE SUBROUTINES

e The MSIO subroutines do provide some advantages over FORTRAN direct
access files:

e

- You can use both fixed-length and variable-length records (direct
access allows only fixed-length records).

- You can define a record key, which in many cases is more meaningful
than the record number used by the FORTRAN direct access method
(more on this later).

- You can define more than one key for a given record.

The file interface routines also offer these advantages, but they are more
difficult to use than the MSIO routines.

The following table summarizes the mass storage subroutines:

Operation Subroutine Call

Open a file. CALLOPENMS

Write or replace a record. CALLWRITMS

Read a record. CALLREADMS

Close a file. CALLCLOSMS

Define an alternate index CALLSTINDX
array. (Enables you to identify
a record by more than one key).

A major advantage of the MSIO routines over FORTRAN direct access files
is that the MSIO routines provide more flexibility in defining a record key.

Remember that a record key is a value, which you select, that is used to
identify the records in a file. To reference a particular record, you simply
specify the record's key in the appropriate input or output statement, and the
associated record is read or written.

Because of the way the MSIO routines associate record keys with the actual
locations of the records on disk, you can assign record keys that are more
meaningful than the record numbers used with FORTRAN direct access
files. For example, you can use a value such as a person's name or a social
security number to identify a record. You can also define alternate record
keys, which allow a record to be identified by more than one key. With

A FORTRAN direct access files, you are limited to using the record number as
W the record key (the first record written is numbered 1, the second record is

numbered 2, and so forth).

Revision A Introduction to FORTRAN Input/Output 3-25

MASS STORAGE SUBROUTINES

An example of mass storage input/ output is as follows. Program MSIO reads e
a record from an existing mass storage file, modifies the record, and rewrites
the record.

PROGRAM MSIO
DIMENSION INDEXC10), XC100) e

C Open a mass storage file named TAPE3. INDEX is the index
C array, and the record Length is 10 words.

CALL OPENMS (3, INDEX, 10, 1)

C Read the record having the key APPLE into array X.
CALL READMS (3, X, 100, 'APPLE')

C Modify the record.
XC10) = X(1) + 1.0

C Rewrite the record.
CALL WRITMS C3, X, 100, 'APPLE')

C Close file TAPE3.
CALL CLOSMS (3)
END

Selecting an Input/Output Method

By now you should have a basic understanding of the available input/ output
methods and what their differences and similarities are. We now compare
the methods and discuss their advantages and limitations in order to help
you decide which method to use.

Before you select an input/output method, you should have some idea of
what your needs are. As a starting point, you might consider the following
questions:

Does the output need to be formatted? (If so, what kind of formatting?)

Which access method should I use? (You have two choices: sequential
access and random access)

Should I use a standard ANSI method? (In most cases, you can and
should use a standard ANSI method)

These questions are addressed below.

3-26 FORTRAN Topics Usage Revision A

SELECTING AN INPUT/OUTPUT METHOD

Does the Output Need to be Formatted?

FORTRAN input/output can be divided into two basic types: that which
formats data on input or output, and that which does no formatting of data.
The formatted methods are used mainly for data that is going to be viewed in
some way. If you intend to print the data or read it at a terminal, you must
use one of the formatted methods.

If, however, you do not intend to view the data (for example, if you just want
to store the data or possibly use it for input to another program), then you
can use unformatted input/output. The unformatted methods are a little
faster than the formatted methods because no converting of data is done
during the transfer. But remember that unformatted data can't be printed or
displayed at a terminal.

The formatted operations perform conversions and editing during the data
transfer. On a formatted output operation, data is converted from its internal
form (the way it is represented in memory) to a string of characters. On a
formatted input operation, data in the form of a string of characters is read
and converted to an internal representation and stored in memory.

The formatted methods are:

Formatted with format specification

List directed

Namelist

Format specifications are the most flexible, but are the most difficult to use.
This type of input/output requires you to write detailed specifications that
define the format of the input data and of the output data. Format
specifications are ANSI-defined, so your programs will be portable to other
systems. If you want complete control over the appearance of the input and
output data, use this method.

List directed input/ output is the easiest to use of the formatted methods. It is
recommended for novice programmers, and for programs where the format of
data is not important. List directed input/output uses a default format that is
provided by FORTRAN. This default format is somewhat limited, especially
on output, where the format may be difficult to read. List directed
input/output is a standard ANSI method, and is therefore portable to other
systems.

Revision A Introduction to FORTRAN Input/Output 3-27

SELECTING AN INPUT/OUTPUT METHOD

Namelist input/output, like list directed input/output, uses a default format.
The format is somewhat more restricted than that used by list directed
input/ output, but is more legible. A second advantage of namelist is that you
do not specify lists of variables and arrays on the READ and WRITE
statements. Instead, you specify the name of a namelist group which you
have defined earlier in the program. The READ or WRITE statement then
transfers all the items that you have assigned to the group.

The main disadvantage ofnamelist input/output is that it is not a standard
ANSI method. Thus, programs using namelist must be modified before being
moved to other systems.

If you decide to use an unformatted method, you can choose either
unformatted READ and WRITE or BUFFER IN and BUFFER OUT. Both of
these methods transfer data between memory and a file without any
conversion whatsoever.

There is little no difference in the efficiency and usability of the two methods.
A minor difference is that with unformatted READ and WRITE statements,
as with other READ and WRITE statements, you specify a list of items to be
read or written. With BUFFER statements, you specify the starting location
and ending location of a block of memory to or from which data is to be
transferred.

Usually, unformatted READ and WRITE are preferred over BUFFER e
statements. The unformatted READ and WRITE statements are
syntactically similar to other READ and WRITE statements, and they are
ANSI-defined. The BUFFER statements are nonstandard, and are provided
mainly for compatibility with previous versions of FORTRAN. In general,
you are discouraged from using them.

Which Access Method Should I Use?

FORTRAN input/ output can be classified according to the way data on a file
is accessed. The two ways of accessing data on a file are sequential access
and random access.

In a sequential access file, records are stored in the order in which they were
written and can be retrieved only in the same order.

In a random access file, you can retrieve records in any order, without the
need for a sequential search.

Sequential access input/ output is the most common method of access and
should always be used in programs where you want to read and write records
sequentially. (Note that all files created in a FORTRAN program are created
as sequential access files, unless you explicity request otherwise.)

3-28 FORTRAN Topics Usage Revision A

SELECTING AN INPUT /OUTPUT METHOD

If you want to create a file where records will be accessed in an order
different from the order in which they were created, you should use one of the
random access methods. The random access methods provide much quicker
access to individual records than the sequential access methods. The
sequential methods require you to search sequentially for a desired record.
The random access methods enable you to go directly to a desired record by
specifying a key (or number) associated with the record.

The methods of random access are:

FORTRAN direct access files

File interface subprograms

Mass storage input/output subroutines

FORTRAN direct access is the easiest method to use. It requires no
knowledge of internal file structure or file attributes (FORTRAN-supplied
defaults are used). It uses standard FORTRAN READ and WRITE
statements, and you can perform either formatted or unformatted
input/output on direct access files. In addition, it is an ANSI-defined method
and can therefore be transported to other systems.

The major disadvantage of FORTRAN direct access is in the use of record
keys. Remember that a record key is a value that you assign to a record, and
which is used to identify that record. With FORTRAN direct access files, you
are limited to using an integer value for the record key. And because of the
way the direct access method computes the disk addresses of records, the
first record should be numbered 1, the second record numbered 2, and so
forth.

If you require a more flexible method, the file interface subprograms provide
complete control over the attributes of files. You can define, retrieve, and
modify the attributes of a file, and you can process files having many
different kinds of attributes.

The file interface routines are much more difficult to use than the FORTRAN
direct access method, because you must have a complete understanding of
the attributes of your files and of the many processing restrictions and
requirements involved with file interface input/ output.

The file interface calls should be used only if your application requires you to
have nearly complete control over file attributes and processing options. In
addition, the file interface subprograms are non-ANSI, thus requiring
program modification before moving to another system.

Revision A Introduction to FORTRAN Input/Output 3-29

SELECTING AN INPUT/OUTPUT METHOD

The mass storage subroutines provide a third method of random access. This
method ranges in difficulty and flexibily somewhere between FORTRAN
direct access and the file interface subprograms.

The mass storage subroutines provide more flexibility and more options than
direct access in the selection and use of a record key. In particular, you can
define more meaningful record keys, and you can also define alternate record
keys. But the mass storage subroutines don't provide as much control as the
file interface subprograms.

In general, FORTRAN direct access is preferred over the mass storage
subroutines, despite its limitations. The mass storage subroutines exist
mainly for compatibility with earlier versions of FORTRAN. In addition,
they are non-ANSI and thus reduce a program's portability.

Should I Use a Standard ANSI Method?

If it is important that your program be portable to other systems, you should
use a standard ANSI method. You can select an ANSI method for almost
any input/ output situation. The standard methods all use variations of the
FORTRAN READ and WRITE statements and thus are easy to learn
because of their similarity to one another.

The standard ANSI methods are as follows:

Formatted with format specification (direct or sequential access files)

List directed (direct or sequential access files)

Unformatted (direct or sequential access files)

The following methods are nonstandard and should not be used if portability
is a concern:

Namelist

Buffer

Mass Storage Subroutines

File Interface Subprograms

3-30 FORTRAN Topics Usage Revision A

INPUT/OUTPUT SUMMARY

9 Summary of FORTRAN Input/Output
Statements

e The following table summarizes the FORTRAN input/output methods:

Statements Formatting Access Method ANSI?

READ, WRITE with FORMAT Programmer Sequential or Yes
specification specifies random

List directed READ, WRITE Default Sequential or Yes
random

Namelist READ, WRITE Default Sequential No

Unformatted READ, WRITE None Sequential or Yes
random

BUFFER IN, BUFFER OUT None Sequential No

Mass Storage Subroutines None Random No

File Interface None Random No
Subprograms

Revision A Introduction to FORTRAN Input/Output 3-31

9 Optimizing a Program 4

Optimization is the process of altering a source program to make it execute
faster. The purpose of optimizing a program is to reduce the cost of executing
that program. Always keep in mind that other factors influence the cost of a
program besides the amount of computer time required to execute the
program. In particular, you should consider the time required to write, debug,
and maintain the program. If an optimization technique requires an
extensive amount of your time to implement, or if it would make the program
more difficult to maintain, the technique may not be worthwhile even though
it increases the speed of your program.

Basic Concepts

You can direct the FORTRAN compiler to produce an optimized object
program by specifying (or in some cases, not specifying) certain parameters
on the FORTRAN command. (These parameters are discussed later.) In most
cases, that's all you need to do. Sometimes, however, you may find it
necessary to make your program execute even faster. In those cases, there
are usually some simple changes you can make to your source code to make
it more efficient.

The FORTRAN compiler is capable of performing a number of useful
optimizations. This capability is controlled by the OPTIMIZATION
parameter. By simply specifying OPTIMIZATION=HIGH on the FORTRAN
command, you can significantly increase the speed of a program. Thus, in
most cases, you don't need to alter your program in order to increase its
execution speed. But there are some simple guidelines you can follow that
will actually make it easier for the compiler to optimize a program:

Keep program units small (less than about 100 lines).

Use a structured style of programming that avoids branching and other
complicated logic.

Check the program for careless errors such as variables that are defined
but never used. (The compiler will detect most of these errors.)

Thus, the optimization process actually begins during the writing of a
program. By following these guidelines, you can help the compiler produce
more efficient object code, and avoid having to rewrite your completed
program later.

Revision A Optimizing a Program 4-1

BASIC CONCEPI'S

A not.e about the OPTIMIZATION paramet.er: Always do your debugging
runs with OPTIMIZATION= DEBUG (or LOW) specified on the FORTRAN
command (or omit the OPTIMIZATION paramet.er, since DEBUG is the
default option). This results in faster compilation, which is more important
than fast execution during the debugging process.

Once you have debugged your program, you are ready to consider ways to
make it run fast.er. At this point, you should stop and consider whether it's
really important to speed up the program. Optimizing a program can take a
significant amount of your time. A slight increase in execution speed may
not be worth the time required to produce that increase.

Before you begin, a few words of caution:

- Avoid optimizations that make your program more obscure and harder
to understand. Such optimizations ultimat.ely make the program more
difficult (and thus, more expensive) to maintain or change. (Remember
that the purpose of optimizing a program is to reduce the total cost of
that program.)

- If you must do optimizations that make a program less clear, be sure
you document those optimizations by inserting appropriat.e comments
in the source program. Please be considerat.e of the programmer who,
at some future time, may have to modify the program.

- Avoid spending too much time optimizing a program. Writing,
debugging, and maintaining an optimized program often contribut.e
more to the overall cost of that program than the time required to
execut.e it.

Finally, you should be aware that some optimizations may slightly change
the results of the program, although the change is usually not significant.
You can control these optimizations by specifying certain options on the
FORTRAN command, as described lat.er in this chapt.er under FORTRAN
Command Paramet.ers. The optimizations described in this cha pt.er involve
very simple manipulations of the source code. They are not fancy "tricks",
and they do not require a knowledge of machine instructions.

4-2 FORTRAN Topics Usage Revision A

ELlMINATING UNNECESSARY OPERATIONS

9 Optimization Techniques

The FORTRAN compiler performs the following general types of
optimizations: e Optimizations that eliminate operations from the code.

Optimizations that move operations out of loops so that the operations are
executed less frequently.

Optimizations that replace slower operations with faster operations.

The most beneficial changes you can make to your program are those that
help the compiler perform these optimizations. The rest of this discussion
describes how the compiler performs the above optimizations and explains
how you can help the compiler perform them.

Eliminating Unnecessary Operations

An operation can be eliminated from a program:

- If the result of the operation is not used anywhere in the program.

or

- If the result of the operation is available even if that operation is not
executed.

The following paragraphs discuss the types of unnecessary operations that
the compiler will eliminate.

Eliminating Identity Instructions

An identity instruction is one whose result is the same as one of its operands.
The compiler can recognize certain identity instructions and remove the
unnecessary operations from them.

For example, the compiler will change the expression

z + ex - v> + v

to the equivalent form

z + x

The change eliminates the unnecessary addition and subtraction of Y.

Revision A Optimizing a Program 4-3

ELIMINATING UNNECESSARY OPERATIONS

Eliminating Dead Instructions

An instruction is dead if it produces a result that is never used. Dead
instructions can be safely removed from the program.

An example of a dead instruction is a store into a local variable immediately
before a RETURN or END statement. Since the value of the variable can
never be used, the compiler can eliminate the instructions that calculate and
store the value.

For example, the following subroutine contains dead instructions:

SUBROUTINE SUB CX,Y,Z)

v = x - y
RETURN
END

The instructions generated by the statement V = X + Y are never used and are
therefore dead instructions. The compiler will eliminate the entire statement
V=X+Y.

Note that the variable being stored into must be a local variable. That is, it
must not appear in a COMMON statement or an argument list. e
Evaluating Constant Subexpressions

A constant subexpression is a subexpression that consists only of constants.
At both HIGH and LOW optimization levels, the compiler attempts to
evaluate as many constant subexpressions as possible, so that these
subexpressions need not be evaluated during execution.

(Remember that because programs are usually executed many more times
than they are compiled, it is beneficial to decrease execution time at the
expense of increased compilation time.)

For example, when the compiler processes the statement

x = 3.5 + 4.0*2

the compiler evaluates the expression. The optimized statement is equivalent
to

x = 11.5

4-4 FORTRAN Topics Usage Revision A

ELIMINATING UNNECESSARY OPERATIONS

e You can help the compiler evaluate constant subexpressions by arranging
expressions so that constant subexpressions are recognizable. For example,
the compiler will not recognize the constant subexpression 3.14159/2.0 in the
st~tement e W = X*3.14159*Y*Zl2.0

But the compiler will recognize the constant subexpression in the statement

W = X*Y*Z*3.14159/2.0

Eliminating Unnecessary Stores and Fetches

If a variable is used several times within an instruction sequence, the
compiler can sometimes eliminate repeated stores and fetches of the variable
by placing the variable value in a register. For example, in the statements

x = y + z
A = X + B
X X/R

Xis defined
X is referenced
X is redefined

the compiler does not need to store X after the first assignment statement
because X is immediately redefined. The compiler eliminates this
unnecessary operation by placing X in a temporary register after the first e assignment.

Eliminating Common Subexpressions

A common subexpression is an expression that occurs more than once in a
program unit. In unoptimized code, the expression is evaluated each time it
occurs. When optimizing a program, however, the compiler tries to save the
result of the expression in a register and to use that result instead of
reevaluating the expression.

For example, in the sequence

X = A*B*C
S(A*B) = CA*B)/C

the compiler recognizes A *B as a common subexpression occurring three
times. In the optimized code, A *B is evaluated once and the result is used
three times.

Revision A Optimizing a Program 4.5

ELIMINATING UNNECESSARY OPERATIONS

When a subexpression contains more than one operator of equal precedence, e
the compiler may reorder the operations to form common subexpressions.
For example, the expression

A+ 8 + C

would normally be evaluated from left to right (add C to the result of A+ B). e
However, the compiler may evaluate B + C first in order to form a common
subexpression.

The reordered form is guaranteed to be mathematically equivalent to the
original form, but not necessarily computationally equivalent.

In order to eliminate common subexpressions, the compiler must be able to
recognize the subexpressions as the same expression.

For example, in the expression

A + 8 + C + D

the following are recognized as subexpressions:

A + 8 A + 8 + C C + D

and so forth. But A + D is not recognized as a subexpression.

Code that might change the value of a subexpression must not appear
between occurrences of that subexpression.

For example, in the sequence

X = AC2)/BC2) + Q

ACU = 4.5
Z = AC2>1BC2> + 13.4

A(2)/B(2) cannot be treated as a common subexpression because of the
possibility that I might be equal to 2, which would change the value of
A(2)/B(2).

You can help the compiler recognize and eliminate unnecessary instructions
in several ways:

- The most important way is to keep program units short (less than 100
lines) and simple. Avoid complicated logic, and avoid branching.

- Program carefully. Unnecessary instructions are often the result of
programming errors.

4-6 FORTRAN Topics Usage Revision A

ELIMINATING UNNECESSARY OPERATIONS

- Rewrite expressions so that the compiler is more likely to recognize
certain subexpressions. For example,

A + D + B + C

ensures that A + D will be recognized as a subexpression.

- Use parentheses to ensure a desired grouping of subexpressions. For
example,

X = C*CA•B)/D
Y = CA•B)/C

ensures that A *B will be recognized as a common subexpression.

- Arrange your program so that expressions containing subexpressions
are as close together as possible. In particular, be sure that code that
might change the value of a subexpression does not appear between
occurrences of that subexpression.

Removing Operations From Loops

The techniques of eliminating unnecessary instructions yield the greatest
benefit when applied to loops. For example, removing a common e subexpression within a loop that is repeated 10,000 times results in a greater
time savings than removing the subexpression from straight-line code.

Another optimization technique that the compiler applies to loops is the
removing of invariant code.

Invariant code is a sequence of instructions, within a loop, whose operands
and result do not change throughout execution of the loop. The compiler
removes invariant code from loops whenever possible. For example, in the
statements

DO 100, 1=1, 10
K(l) = J/L + 1**2

100 CONTINUE

neither J nor L changes during execution of the loop. Therefore, J /L is
invariant. During compilation, the compiler removes the invariant
instructions from the loop. The optimized loop is equivalent to the following:

R = J/L
DO 100, 1=1, 100

K(I) = R + 1**2
100 CONTINUE

Revision A Optimizing a Program 4-7

ELIMINATING UNNECESSARY OPERATIONS

The following example illustrates a form of invariant code that is a little less e
obvious.

DIMENSION 8(10,10,10)
DO 10 I=1,N

10 BCI,7,K) = I

In this sequence, the relative locations of the elements of array B are
calculated by the formula

I - 1 + 10 * ((6 + 10 * (K-1))

The value of I is the only value in this expression that changes during
execution of the loop. Thus, the following subexpression is invariant:

-1+10 * ((6 + 10 * (K - 1))

The compiler recognizes the invariant expression and moves it out of the
loop.

In order to remove invariant code from a loop, the compiler must be certain
the code is actually invariant. If the compiler cannot make this
determination, it does not remove the code. The following examples show
some common situations where the compiler cannot determine whether or
not a given sequence is invariant.

COl't'llON X
DO 100 I=1,N

ACI> = X**2
ecn = vn
CALL MYSUB CQ,R,Z)

100 CONTINUE

The expressions X**2 and Y IZ might be invariant. But Xis in common and
Z is in an argument list within the loop. Thus, the call to MYSUB might
change the value of either X or Z. Therefore, neither X**2 nor Y IZ can be
removed from the loop.

LOGICAL L
DO 100 I=1,N

IF CU GO TO 10
J = K + M <------------- Possible invariant code

110 A(I) = B(I) + CCI)
100 CONTINUE

The statement J = K + M might be invariant. But because of the conditional
branch, that statement might never be executed. The compiler will remove
the calculation K + M from the loop, but the store into J must remain inside
the loop.

4-8 FORTRAN Topics Usage Revision A

ELIMINATING UNNECESSARY OPERATIONS

e You can help the compiler recognize invariant code in several ways:

- Write expressions within loops so that invariant subexpressions are
easier to recognize. For example in the loop

DO 10 1=1,N
A(l) = 1.0 + 8(1) + X

10 CONTINUE

the compiler might not recognize LO + X as invariant. But if you
rewrite the assignment statement as follows:

A(l) = 1.0 + X + 8(1)

the compiler recognizes 1.0 + X as invariant and moves it out of the
loop.

- Recognize cases where the compiler can't determine whether a code
sequence is invariant, and make that determination yourself. For
example, in the sequence

DO 100 1=1,N
8(1) = Y/Z
CALL MYSU8 CG,R,Z)

100 CONTINUE

the compiler can't move Y /Z out of the loop because MYSUB might
change the value of Z. But if you know that MYSUB will not change
the value of Z, you can rewrite the loop yourself.

- Avoid using zero trip loops in your program. A zero trip loop is a loop
that is executed zero times. The compiler cannot remove instructions
from such a loop, because to do so might change the results of the
program. Zero trip loops are discussed later in this chapter under
ONE_ TRIP _DO Parameter.

Replacing Slower Operations With Faster Ones

During the optimization process, the compiler replaces certain slower
arithmetic operations by faster ones. In particular, multiplications (which
are relatively slow) are replaced by additions (which are relatively fast).

For example, multiplication by 2 can be replaced by a single addition. Thus, e the compiler replaces

J = 2*1

with

J = I + I

Revision A Optimizing a Program 4-9

REPLACING SLOWER OPERATIONS

Another example of replacing a multiplication by an addition is illustrated
by the following loop:

DO 50 I=1,100
B(4*I+3) = 2.5

50 CONTINUE

Since the variable I varies linearly (it is incremented by 1 on each pass
through the loop), the multiplication 4*I can be replaced by an addition.
Thus, the compiler generates code equivalent to

J = 3
DO 50 I=1,100

J = J + 4
B(J) = 2.5

50 CONTINUE

so that an addition replaces the multiplication.

In many situations, you can do the replacement yourself. For example, in the
loop

DO 6 I=1,1000
J = I*5
A(J) = 0.0

6 CONTINUE

you can eliminate a multiply and a store by rewriting the loop as:

DO 6 J=1,5000,5
A(J) = 0.0

6 CONTINUE

The following example illustrates another way you can simplify the structure
of loops:

PRINT*, (8*(11-I>,I=1,10)

The subscript expression (11-I) in the implied DO list results in a rather
complicated subscript calculation. You can simplify this calculation by using
a negative indexing parameter as follows:

PRINT*, (8(I),I=10,1,-1)

The rewritten statement will execute much faster than the original
statement.

4-10 FORTRAN Topics Usage Revision A

ADDITIONAL TECHNIQUES

e Additional Optimization Techniques

Following are some additional ways you can change your source program to
make it more efficient.

Loop Unrolling

You can reduce the amount of time required to execute a DO loop through a
technique called loop unrolling. Loop unrolling reduces the overhead
resulting from incrementing and testing the DO variable by reducing the
number of times the loop is executed.

In loop unrolling, you replace the loop with an equivalent straight-line
sequence of statements. For example:

DO Loop Before Unrolling:

DO 100, !=1,4
X(I) = A(!) + 8(1)

100 CONTINUE

After unrolling:

X(1) AC1) + 8(1)
X(2) = A(2) + 8(2)
X(3) = AC3) + 8(3)
X(4) = A(4) + 8(4)

In this example, the loop is completely replaced by a sequence of assignment
statements, and the time required to increment and test the DO variable I
and branch to the top of the loop is eliminated.

Loop unrolling makes a program longer and more complicated, and is clearly
not practical if the number of loop iterations is large. Sometimes, however,
you can partially unroll the loop. The following example shows how to
partially unroll a loop:

Before unrolling:

DO 100 I= 1,1000
X(l) = Z(l)**2

100 CONTINUE

After partial unrolling:

DO 100 I-1,1000,2
X(l) = ZCI)**2
XCI+1) = Z(l+1)**2

100 CONTINUE

Revision A Optimizing a Program 4-11

ADDITIONAL TECHNIQUES

In the partially unrolled loop, only half as many increment, branch, and test
instructions are executed.

Note that unrolling each assignment statement into two assignment
statements only works if the loop is executed an even number of times.

Combining Loops

Another method for reducing the time required for incrementing, testing, and
branching in a loop is to combine loops. The following example illustrates
this technique:

Before combining:

DO 100 1=1,K
A(l) = 8(1) + C(l)

100 CONTINUE
DO 100 1=1,K
E(J) = F(J) + G(J)

110 CONTINUE

After combining:

DO 100 1=1,K
A(l) = B(l) + C(l)
E(l) = F(l) + G(l)

100 CONTINUE

The combined loop reduces by half the amount of overhead associated with
the original loops.

Note that loops to be combined must be iterated the same number of times.

Using Common Blocks and Equivalence Statements

You can help the compiler optimize by avoiding the unnecessary use of
common blocks and equivalence statements.

If a variable is not in common, the value of the variable remains in a register
when a function or subroutine is called.

But if a variable is in common, the compiler must store the variable before
every function or subroutine reference, because the compiler can't determine A
whether that variable is used in the referenced subprogram. 9

4-12 FORTRAN Topics Usage Revision A

ADDITIONAL TECHNIQUES

The following example shows how placing a variable in common can
increase execution time:

CO ... ON I, AC1000), BC1000)
DO 111 I=1, 1000

ACI> = 4.0*BCI>
CALL SUB CC,D)

111 CONTINUE

Because I is in common, its value must be stored before each call to SUB in
case I is referenced within SUB. If you knew that I was not referenced in
SUB, you could remove I from common, thereby eliminating the unnecessary
stores.

Careless use of EQUIV ALEN CE statements can prevent the compiler from
performing certain optimizations. Following is a typical example:

DIMENSION XC100>
EQUIVALENCE CXC1),W)

w = y
PRINT*, xcn
END

Without the EQUIVALENCE statement, the compiler would remove the
statement W = Y because the value ofW is not referenced in the program. But
because Wis equivalence to X(l), and the PRINT statement might reference
X(l), the assignment statement can't be eliminated.

Avoiding Mixed Mode Arithmetic

You should avoid mixed mode arithmetic wherever possible, because each
conversion from one data type to another requires additional instructions.

Exponentiation is an exception. You should use integer values for exponents
regardless of the data type of the base.

If you have a choice among modes, choose according to the following
hierarchy:

Integer (fastest)
Real
Double Precision (slowest)

You should avoid double precision arithmetic because it is particularly slow.
Real (single precision) arithmetic provides enough precision for most e programs.

Revision A Optimizing a Program 4-13

ADDITIONAL TECHNIQUES

Replacing Assignment Statement With DAT A Statements

You should use DATA statements, instead of assignment statements, to
initialize variables, especially if a program is to be compiled and loaded only
once but executed many times. Unlike assignment statements, DATA
statements are processed when the program is loaded, and require no
execution time.

As with most of the other optimizations, this one can significantly reduce
execution time when used with DO loops. For example, the loop

DO 5 1=1,1000
A(I) = 0.0

100 CONTINUE

can be replaced by the statement

DATA A/0.0*1000/

for a sizable reduction in execution time.

Efficient Branching Techniques

Following are some suggestions for improving branching efficiency within a
program:

- If one branch of an arithmetic IF statement immediately follows that
statement, the compiler generates more efficient code, because a
branch to the immediately-following statement is not required.

- Block IF statements generate the same code as arithmetic IF
statements. You should use them wherever possible, though, because
they greatly improve the readability of a program.

- For more than four or five branches, a computed GO TO statement is
faster than IF statements. But a computed GO TO with only two or
three branches should be replaced by an IF statement. Use the
computed GO TO sparingly, though, because it makes a program
harder to read.

4-14 FORTRAN Topics Usage Revision A

ADDITIONAL TECHNIQUES

Minimizing Subroutine and Function References

Try to minimize the number of subroutine and function references. By
placing the referenced code inline, you can reduce the overhead associated
with passing parameters, saving registers, and branching to and from the
subprogram.

But be careful! This technique makes the program less modular (and less
readable) and can sometimes prevent other optimizations by making the
program excessively large.

In some cases, you can substitute a statement function for an external
function. Because statement functions are expanded inline, no return jump
code is required.

Another way of reducing the number of external references is by
consolidating references to external functions. For example, the statement

A = ALOG(C) + ALOG(O)

can be rewritten as

A =ALOG(C + 0)

e Factoring Expressions

You can sometimes decrease the number of operations required to evaluate
an expression by factoring the expression. For example,

X = A*C + B*C + A*O + B*O

can be rewritten as

X = CA + B)*(C + 0)

The first form performs four multiplications and three additions. The second
form performs one multiplication and two additions.

FORTRAN Command Parameters

Three parameters on the FORTRAN command influence the optimizations
performed by the compiler. These parameters are e The OPTIMIZATION Parameter

The EXPRESSION_EVALUATION Parameter

The ONE_ TRIP _DO Parameter

Revision A Optimizing a Program 4-15

OPTIMIZATION PARAMETER

OPTIMIZATION Parameter

The OPTIMIZATION parameter controls the level of optimization performed
by the compiler. Options for this parameter are

DEBUG Produces same optimization as LOW, but adds special code for e
use by the Debug facility.

LOW

HIGH

Results in very little optimization (but faster compilation),

Results in a highly optimized program (but slower compilation).

Thus, for a fully optimized program, you should specify
OPTIMIZATION=HIGH. But remember that while you're debugging the
program, you should specify OPTIMIZATION= DEBUG for faster
compilation (or omit the OPTIMIZATION parameter since DEBUG is the
default option).

EXPRESSION_EVALUA TION Parameter

The EXPRESSION _EVALUATION parameter affects the optimization of
expressions. If you omit this parameter, the compiler will perform
optimizations that may alter the results of the program. If you want to
prevent these kinds of optimizations, you can specify any or all of the e
following options for the EXPRESSION_ EVALUATION parameter:

EXPRESSION_EVALUATION=MAINTAIN_EXCEPTIONS

EXPRESSION _EVALUATION=CANONICAL

EXPRESSION _EV ALUATION=MAINTAIN _PRECISION

MAINTAIN_EXCEPTIONS Option

During the normal course of optimizing expressions, the compiler may
replace "unsafe" operations by "safe" ones. (A "safe" operation is one that
cannot cause an execution error. An "unsafe" operation is one that might.)
The MAINTAIN_ EXCEPTIONS option prevents the compiler from
performing those kinds of optimizations.

For example, if the compiler encounters the expression

O.OIX

it might optimize that expression by changing it to simply

0.0

4-16 FORTRAN Topics Usage Revision A

EXPRESSION _EVALUATION PARAMETER

This saves the time required to do the divide. But suppose that X had a value
of zero. In the first expression, an execution error would result, while in the
second expression, a value of zero for X would have no effect. The
MAINTAIN _EXCEPTIONS option would prevent the compiler from
replacing the first expression with the second one.

The decision of whether to preserve any unsafe operations in a program is up
to you. Such operations can provide a useful check for incorrect data. It is
sometimes better for the program to abort rather than to continue executing
with incorrect values. But allowing the compiler to replace unsafe operations
with safe ones generally results in a faster program.

CANONICAL Option

When the compiler optimizes expressions, it may regroup operations within
the expression in order to eliminate operations or form common
subexpressions. Although the regrouping is guaranteed to be mathematically
equivalent, it may not always be computationally equivalent. Thus, the
result of an optimized expression may differ slightly from the result of the
original expression. For example, the results of the expression

I + J - I e may be regrouped to form the expression

J

But suppose that I had an incorrect value, such as an indefinite value. In
that case, the first expression would cause a runtime error whereas the
second expression would execute correctly.

The CANONICAL option of the EXPRESSION _EVALUATION parameter
causes expressions to be evaluated strictly according to the precedence rules
for arithmetic expressions. The precedence rules are:

** operations are evaluated first

* and I operations are evaluated next (in the order they are encountered)

+ and - operations are evaluated last (in the order they are encountered)

For example, the CANONICAL option would prevent the compiler from
changing

I + J - I

to

J

Revision A Optimizing a Program 4-1 7

EXPRESSION_EVALUATION PARAMETER

Although the program would execute more slowly, this would ensure that the
program would terminate if I had an indefinite value.

Subexpressions enclosed in parentheses are always evaluated before being
combined with other subexpressions, regardless of whether you specify the
CANONICAL option. Thus if you wrote

CI + J) - I

I would be subtracted from the result of I + J.

MAINT AIN_PRECISION Option

The MAINTAIN_PRECISION option of the EXPRESSION_
EVALUATION parameter prevents the compiler from performing
optimizations that change the form of an expression, unless the result of the
changed form is exactly the same as the result of the original form.

For example, consider the expressions

A/3.0 A*0.33333

These two forms are mathematically equivalent, but not computationally
equivalent. That is, the result of the first form will have greater precision A
than the result of the second form. W
Thus, for full optimization, you should omit the MAINTAIN _PRECISION
option. But remember that the results of the optimized program may differ
slightly from the results of the original program.

ONE_ TRIP _DO Parameter

The ONE_ TRIP _DO parameter affects the optimization of DO loops. This
parameter tells the compiler that the program contains no zero trip loops (all
loops are executed at least once). Zero trip loops influence optimization in the
following way.

A zero trip loop results when the terminating conditions of a loop are
satisfied before the loop is executed. For example, the following is a zero trip
loop:

N = 11
DO 10 I=N,10

A(!) =A(!) + 1.0
10 CONTINUE

The index variable N has a value of 11 when the DO statement is executed.
Thus, the loop will not be executed.

4-18 FORTRAN Topics Usage Revision A

ONE_ TRIP _DO PARAMETER

One of the ways the compiler optimizes a loop is to remove certain
instructions from the loop and place them outside the loop so that they are
not repeated each time the loop is executed. For example, in the loop

DO 10 1=1,100
A = 0.0
IF CBCI) .EQ. A) GO TO 20

10 CONTINUE

the statement A = 0.0 can be moved outside the loop. This makes the loop
faster. (A = 0.0 is executed only once instead of 100 times.)

But if the loop is a zero trip loop, moving A = 0.0 outside the loop could
change the results of the program. Therefore, the compiler will move
statements outside a loop only if the loop will be executed at least once.

The compiler has no way of "knowing" whether or not a given loop is a zero
trip loop. But you can provide this information when you call the compiler by
specifying ONE_ TRIP _DO=ON on the FORTRAN command. The compiler
is then free to optimize all DO loops. If you omit this parameter, the compiler
assumes that the program contains zero trip loops, and does not optimize DO
loops.

For full optimization, then, you should specify ONE_ TRIP _DO=ON on the
FORTRAN command. But be sure that your program does not contain any
zero trip loops. Otherwise, the results of the program could be changed (or
execution errors could result).

Summary of Optimizing a Program

Optimizing is the process of altering a program to make it execute faster. The
purpose of optimizing a program is to reduce the total cost of that program.
Optimizing reduces the cost of a program by reducing the amount of
computer time required by the program. However, the time required to write,
debug, modify, and maintain a program is also an expensive resource.
Therefore, you should avoid optimizations that require much of your time, or
that make a program more difficult to maintain.

The FORTRAN compiler is capable of performing many optimizations. The
most important optimizations you can perform are those that help the
compiler perform its own optimizations.

Revision A Optimizing a Program 4-19

SUMMARY OF OPTIMIZATION

The compiler has the ability to recognize certain unnecessary operations and e
to eliminate them from the code. Some of the operations that can be
eliminated are:

Identity instructions

Constant subexpressions

Dead instructions

Common subexpressions

Some of the ways you can help the compiler recognize unnecessary
operations are:

Keep program units short (less than 100 lines).

Avoid careless programming that results in extra operations.

Write expressions so that the compiler can recognize common
subexpressions.

The most beneficial optimizations are those that remove operations from
loops. When the compiler optimizes a program, it tries to remove certain
instructions from loops so that the instructions are not repeated. Eliminating
unnecessary instructions from loops often significantly decreases execution A
time. W
Another type of instruction that the compiler can remove from a loop is the
invariant instruction. An invariant instruction is one that can be removed
from a loop without changing the results of the program.

In order for the compiler to remove instructions from a loop, it must be
certain that those instructions are actually invariant. Sometimes that
determination cannot be made during compilation.

You can help the compiler recognize invariant code in the following ways:

- Write expressions so that invariant subexpressions are easier to
recognize.

- Recognize cases where the compiler can't determine whether or not a
sequence is invariant, and remove the sequence yourself.

4-20 FORTRAN Topics Usage Revision A

SUMMARY OF OPTIMIZATION

Another important optimization technique is the replacement of slower
operations by faster ones. Because addition is faster than multiplication, the
compiler attempts to replace multiplications by additions. For example,

J*2 e is replaced by

J + J

In some cases, you can do the replacement yourself. For example, you can
rewrite the loop

DO 6 !=1,1000
J = I*5
A(J) = 0.0

6 CONTINUE

as follows:

DO 6 J=1,5000,5
A(J) = 0.0

6 CONTINUE

Following are some additional techniques for optimizing a program: e -Expand short loops into straight-line code.

- Combine loops wherever possible.

- Avoid unnecessary use of common blocks and EQUIVALENCE
statements.

- A void mixed mode arithmetic.

- Use DATA statements, instead of assignment statements, to initialize
variables and arrays.

- Use computed GO TO statements when more than four or five
branches can be taken. Use IF statements otherwise.

- Replace subroutine and function references by inline code.

- Factor expressions to reduce the number of operations needed to
evaluate the expressions.

Revision A Optimizing a Program 4-21

SUMMARY OF OPI'IMIZATION

Three parameters on the FORTRAN command influence the optimi2:ations
performed by the compiler:

The OPTIMIZATION parameter controls the level of optimization. For
full optimization, specify OPTIMIZATION=HIGH. But remember that
this option results in slower compilation. Thus, during your debugging
runs, you should omit the OPTIMIZATION parameter (default option is
DEBUG).

The EXPRESSION_EV ALUATION parameter prevents the compiler
from performing optimizations that could change the results of
expressions. For full optimization of expressions, omit the
EXPRESSION _EVALUATION parameter.

The ONE_ TRIP _DO parameter informs the compiler that all DO loops
are executed at least once. This knowledge enables the compiler to
perform certain optimizations on the loops. A loop that is executed zero
times cannot be optimized to the fullest extent. For maximum
optimization, specify ONE_ TRIP _DO on the FORTRAN command, but
be sure that your program contains no zero trip loops.

4-22 FORTRAN Topics Usage Revision A

9 Using Virtual Memory 5

Virtual memory is a concept that enables you to address the computer's main
physical memory as though it were unlimited. In a virtual memory system,

A you can write programs that are larger than the amount of physical memory
W available. In a multiprogramming environment, such as NOS/VE, several

programs can run in an area that is smaller that the total area required by
all the programs. The main advantage of a virtual memory system is that it
requires no knowledge or intervention on the part of the programmer. In fact,
most programmers who use it are completely unaware of its existence.

A virtual memory system frees you from the necessity of using such
techniques as overlays and segmentation for larger programs. With virtual
memory, you can assume that you have an unlimited amount of main
memory, although, as we will see later, you do have limited control over how
efficiently virtual memory operates.

What Is Virtual Memory?

The guiding principle behind virtual memory is that for a program to
execute, the entire program does not need to be in main memory at one time.

A In a virtual memory system, only that portion of a program required for
W execution at a particular time is in main memory. The portion of the program

not needed for execution is kept on external (disk) storage. The following
example shows a program divided into two parts. Initially, only the first part
is loaded into memory. Other areas of memory are free for other uses.

Revision A

part 1

part2

User program
on disk

free space

part 1

free space

Main memory

Using Virtual Memory 5-1

WHAT IS VIRTUAL MEMORY?

When a portion of the program on external storage is needed for execution, it e
is automatically loaded into main memory:

part 1

part2

User program
on disk

free space

part 1

part2

Main memory

If a vacant area of memory cannot be found, the system finds an area that is
not being used, unloads (copies to disk) its contents, and loads the required
information in its place. Thus, two or more programs whose combined size
exceeds the amount of available main memory can execute successfully by
sharing the same area of memory. The following illustration shows two
programs sharing a limited amount of physical memory:

Al

Program A A2

A3 or Bl

B2

Bl
ProgramB

B2

User Programs

Combined, programs A and B exceed the available amount of main memory.
However, by sharing a portion of main memory both programs can run
together.

5-2 FORTRAN Topics Usage Revision A

WHAT IS VIRTUAL MEMORY?

e The management of memory and the loading and unloading of parts of
programs during execution occurs without the knowledge of the programmer.
Although you don't need to know anything about virtual memory in order to
take advantage of its benefits, a basic understanding of the principles
involved can help you write programs that use virtual memory more e efficiently.

In a virtual memory system, the collection of all the addresses occupied by a
program is known as the program's address space. A program's address
space is divided into units of equal length called pages. The computer's main
memory is divided into page-size units called page frames.

Not all of a program's address space needs to be in memory at the same time
for the program to execute. Only pages required for execution are loaded at a
given time. Pages not required are kept on external storage (disk). During
execution, pages are loaded as needed into available page frames. When
pages are no longer needed, they can be unloaded to make room for other
pages.

The pages of a program's address space that are in memory at a given time
need not be contiguous; that is, they can be scattered throughout memory.
They are logically contiguous as far as the programmer is concerned. This
freedom enables the program to make efficient use of available free space
within the system. The following diagram shows a program consisting of e two pages. The pages are loaded into available page frames in main memory.

pagel

page2

Program address
space

pagel

page2

----Occupied by another
program.

Main Memory

Although the program's address space is not physically contiguous in
memory, it appears to the programmer to be contiguous.

Because the pages of a program's address space need not be contiguous in
memory, the system has a high degree of flexibility in loading and unloading
pages. A page can be loaded wherever the system can find a vacant page e frame.

Revision A Using Virtual Memory 5.3

HOW DOES VIRTUAL MEMORY WORK?

How Does Virtual Memory Work?

When you begin execution of a program, the system loads the first page (the
page containing the main program) into memory. When the program
references an address in virtual memory (that is, an address in a page that is A
not currently loaded), a system interrupt known as a page fault occurs: The W
system detects that a virtual address has been referenced, locates the
referenced page, and loads it into an unused page frame in main memory.

But what happens if a page fault occurs and no vacant page frames are
available? In this case, the system copies an existing page onto external
storage and loads the required page in its place. This is known as a page
swap. But how does the system know what page to swap out?

The system determines which page in memory to swap according to a
process known as a page replacement algorithm. The page replacement
algorithm is based on the theory that if a page has not been referenced for a
long time, it probably will not be referenced in the near future; that page can
therefore be safely removed. Therefore, the page that is swapped out is the
page that has not been referenced for the longest period of time. Because
numerous page swaps can be time-consuming, an effective page replacement
algorithm should attempt to minimize the number of page swaps that occur.

When an executing program references an address outside of the current
page, the system must first determine whether the referenced page is in
memory.

If the referenced page is in memory, the system uses internally-maintained
tables to locate the referenced address.

If the referenced page is not in memory, a page fault occurs and the system
loads the new page into memory. If the system cannot find a vacant page
frame, a page swap occurs. Using the page replacement algorithm, the
system determines which page currently in memory can be replaced, copies
that page to disk, and loads the new page in its place.

5-4 FORTRAN Topics Usage Revision A

HOW DOES VIRTUAL MEMORY WORK?

The following diagrams show an example of three programs sharing a
limited amount of main memory. The diagrams show the memory layout at
four different times during the programs' execution. The first diagram shows
the memory layout at time tl. Program C is executing in main memory.
Program C occupies two page frames, leaving two empty page frames.

pagel

Program A page2

page3 free space

free space

Program C
ProgramB

Program C

ProgramC

Address Spaces

Revision A Using Virtual Memory 5-5

HOW DOES VIRTUAL MEMORY WORK'!

At time t2, program A begins executing. Its first page is loaded into an
empty page frame in main memory. The following diagram shows the
memory layout at time t2:

page 1

Program A page2

page3 page 1 Program A

free space

page I page I ProgramC
ProgramB

page2 page2 ProgramC

page I
ProgramC

page2

Address Spaces

5-6 FORTRAN Topics Usage Revision A

HOW DOES VIRTUAL MEMORY WORK?

At time t3, program B begins executing. Its first page is loaded into the last
available page frame in main memory. The following diagram shows the
memory layout at time t3:

page 1

Program A page2

page3 page 1 Program A

page 1 ProgramB

page 1 page 1 Program C
ProgramB

page2 page2 ProgramC

page 1
ProgramC

page2

Address Spaces

Revision A Using Virtual Memory 5-7

PROGRAMMING GUIDELINES

At time t4, program A references an address in page two. A page swap
occurs: Page 2 of program C is copied to disk and page 2 of program A is
loaded in its place. The following diagram shows the memory layout at time
t4:

pagel

Program A page2 pagel Program A

page3 page 1 ProgramB

page 1 ProgramC

pagel page2 Program A
ProgramB

page2
Main Memory

pagel
ProgramC

page2

Address Spaces

Programming Guidelines

Virtual memory allows you to write programs as though you had an
unlimited amount of main memory available. However, the overhead
required to load and unload pages as a program executes can be time
consuming. Under certain conditions, the amount of page swapping can
become excessive, and a phenomenon known as page thrashing results. Page
thrashing is a condition where pages are unloaded and immediately loaded
again. Page thrashing is extremely wasteful of system resources. Your goal
should be to reduce the amount of paging that occurs.

You, the programmer, have little direct control over the paging operations of
the operating system. The allocation of data and code to pages and the
determination of which pages to load and unload are all under control of the
system. The page replacement algorithm, which determines what pages are
to be replaced, is designed to minimize page thrashing. However, program
design also plays an important role in efficient paging operations.

5-8 FORTRAN Topics Usage Revision A

PROGRAMMING GUIDELINES

Although virtual memory provides the appearance of an unlimited amount
of main memory, the actual amount is limited. A smaller program requires
fewer pages and, therefore, is likely to require fewer paging operations. You
should therefore continue to apply the same programming techniques for
conserving memory that you applied in a nonvirtual system. Some general
guidelines for efficient use of virtual memory are as follows:

Concentrate your efforts on the larger, slower program units.

Avoid techniques that are system-dependent.

Compile under OPTIMIZATION=HIGH, since that generates less code.

Use a structured style of programming that reduces branching.
(Structured programming is discussed in chapter 2, Debugging.)

The Locality of Reference Concept

Before beginning a discussion of efficient use of virtual memory, you should
understand a concept known as "locality of reference". Locality of reference
is a measure of how close together the memory references within a program
are. Basically, locality of reference means keeping address space references
within a program as close together as possible for as long as possible.
Programs with a high degree of locality of reference tend be more efficient in
a virtual memory system.

Locality of reference has both a time-related aspect and a distance-related
aspect. That is, a program whose references to the same, or nearby, locations
are separated by a relatively long span of time is said to have poor locality of
reference. And a program that references widely separated memory locations
within a relatively short span of time is said to have poor locality of
reference.

Revision A Using Virtual Memory 5.9

PROGRAMMING GUIDELINES

The following diagram shows an example of a program with poor locality of
reference:

location A

location B

(page 1)

location C

location D

(page 2)

D=
B=
C=
A=
(page 3)

In this program, pages 1 and 2 contain data and page 3 contains A
instructions. Page 3 references page 2, then page 1, then page 2 again. These W
widely scattered address space references may cause unnecessary paging.

5-10 FORTRAN Topics Usage Revision A

PROGRAMMING GUIDELINES

The following diagram shows the same program reorganized for better
locality of reference. Now, two references to page 1 are followed by two
references to page two.

location A

location B

(page 1)

location C

(page 2)

A=
B=
C=
D=
(page 3)

Why do programs with a high degree of locality of reference tend to be more
efficient than programs without this quality?

Earlier in this chapter we discussed the page replacement algorithm that the
system uses to decide which pages in memory to replace when a page fault
occurs and there are no vacant page frames in memory. This algorithm is
based on the following generalizations:

Once a location is referenced, it will probably be referenced again soon.
For example, DO loops often reference the same location numerous times.

Once a location is referenced, a nearby location will probably be
referenced shortly thereafter. For example, operations on arrays reference
locations that are close to one another.

When it becomes necessary for the system to replace a page in memory, the
system determines which pages contain addresses that have not been
referenced for the longest period of time. Those pages are candidates for
replacement.

Revision A Using Virtual Memory 5·11

PROGRAMMING GUIDELINES

If the memory references within a program are widely scattered throughout a
program's address space, there is an increased chance that the referenced
locations will be in pages that are not currently loaded. And ifreferences to
the same, or nearby, locations are separated by a long period of time, there is
an increased likelihood that the pages containing the referenced locations
will be unloaded between references.

Although you have no way of knowing exactly how your program is
allocated among pages, and what pages are loaded at a given time, you can
improve paging efficiency by maximizing the locality ofreference in your
program.

The following example shows how program structure can affect locality of
reference.

Suppose we have a fairly long program that consists of three pages. The
program contains two calls to the SQRT function that are widely separated
(the first call occurs in the first page, and the second call occurs in the second
page). The program has poor locality of reference. Assume that the SQRT
function is located in the third page. When we begin execution of the
program, the first page is loaded into memory. When SQRT is called, page
three is also loaded. The following diagram shows the memory layout at the
time SQRT is loaded:

page 1 X==SQRT(A) ~ page 1

page2 Y==SQRT(B)

page3 SQRT -- page3

Address Space

Main Memory

5-12 FORTRAN Topics Usage Revision A

PROGRAMMING GUIDELINES

Page 1 (the page containing the main program) will remain in memory
throughout execution. But page 3 is a candidate for removal. The longer page
3 remains in memory without being referenced, the greater the likelihood
that it will be swapped out to make room for another page. Chances are good
that by the time page 2 is loaded, page 3 will no longer be in memory, as
shown in the following diagram:

page 1 X=SQRT(A) page 1

page2 Y=SQRT(B) -- page2

page3 SQRT

Address Space

Main Memory

When Y=SQRT(B) is executed, a page fault occurs and page 3 is reloaded:

page 1 X=SQRT(A) ~ page 1

page2 Y=SQRT(B) page2

page3 SQRT page3

Address Space

Main Memory

If we could improve the locality of reference by rearranging the program so
that the two calls to SQRT were closer together, there would be a much
greater probability that page 3 would need to be loaded only once.

Related to the idea of locality of reference is the concept of the working set. A
program's working set is the minimum number of pages that must be in
memory for the program to run efficiently. Pages that are referenced
frequently tend to remain in memory as part of the working set, whereas
pages that are not referenced frequently tend to remain on external storage.

A program with good locality of reference will tend to have a more stable
working set, that is, the working set can be maintained with fewer paging
operations. A program with poor locality will have a working set that is
constantly changing as required pages are swapped.

Revision A Using Virtual Memory 5-13

PROGRAMMING GUIDELINES

Suggestions for Improving Locality of Reference e
Most of the guidelines for programming in virtual memory are aimed at
improving the degree of locality of reference in a program. A general rule for
improving locality of reference is: "Keep memory references as close together
as possible for as long as possible", because the closer together (both in time A
and in space) those references are, the less the chance of causing page faults. W
Following are some suggestions for improving locality of reference:

1. Wherever possible, organize your program so that all references to a
particular data area are close together. For example, you should initialize
variables and arrays immediately before using them, rather than at the
beginning of the program. This helps keep the references to the variables
and arrays closer together, thus improving locality.

2. Reference data in the order it is stored, or store data in the order it is
referenced. By referencing locations that are close together in memory you
can reduce the possibility of page faults. For example, recall that in
FORTRAN, arrays are stored in columnwise order. You should complete
the references to a single column before referencing elements in the next
column.

The following example shows how an array A(512,10) would be stored in
memory, assuming a page length of 512 words. The example shows two
DO loops that initialize array A.

page! A(l,1) ... A(512,1)

page2 A(l,2) ... A(512,2)

page 10 A(l,10) ... A(512,10)

Loop to initialize array A in rowwise order:

DO 5 1=1,512
DO 5 J=1, 10

5 ACI,J) = 0.0

5-14 FORTRAN Topics Usage Revision A

PROGRAMMING GUIDELINES

e Loop to initialize array A in columnwise order:

DO 5 J=1, 10
DO 5 I=1,512

5 ACI,J) = 0.0

The first loop initializes array A in rowwise order, beginning with A(l,1),
followed by A(l,2), followed by A(l,3), and so forth. Notice that each
execution of statement 5 references a different page. By changing the loop
to reference array A in columnwise order, the references within a page are
completed before the next page is referenced.

3. Try to reduce the number of external calls in your program, because they
often cause references to distant locations. (Note that this guideline
conflicts with structured programming rules, which encourage multiple
modules.) Ways of reducing external calls include:

- Place shorter subroutines and functions inline.

- Wherever possible, use statement functions instead of external
functions.

- Avoid implied DO lists in input/output statements, because (in certain
cases) each iteration of the list generates an external reference. For
reading to or writing from an array, you can substitute the array name
for an implied DO list. For example, if A, B, and C are 100-element
arrays, you can replace

READ C2, 100> CACI>, BCI), CCI) I=1,100)

with

READ (2, 100) A, B, C

4. If a program has nested calls, store the subroutines in the same order they
are called. For example, if subroutine A calls subroutine B, and subroutine
B calls subroutine C, the pages containing those subroutines must all be
in memory concurrently. If A, B, and C are stored in sequence, fewer
pages may be required.

5. If your program makes repeated calls to routines such as SQRT, try to
group those calls together whenever possible. If the calls are close
together, the page containing the routine will probably remain in memory.
If the calls are widely separated, the page may have to be reloaded.

Revision A Using Virtual Memory 5-15

PROGRAMMING GUIDELINES

6. Store data used only by specific routines along with the routine, if
possible. Avoid using COMMON for data that is local to a particular
subroutine. Putting data in COMMON can separate it from the routine,
resulting in poor locality.

7. Group high-use data areas and subroutines together if possible. This
can result in a more stable working set. The pages containing the
frequently used code will tend to remain in memory, whereas the pages
containing seldom-used areas will tend to remain on external storage.
Mixing high-use and low-use areas can result in frequent paging
operations.

8. Try to use COMMON as efficiently as possible. For example, if possible,
use the same area for different data in different phases of a program.
(But be careful, as this can lead to programming errors.)

9. Store data as close as possible to other data used concurrently. For
example, if a program operates on two arrays in the same DO loop, store
the arrays next to each other in a common block for better locality of
reference.

10. Replace arithmetic and logical IF statements with block IF structures. A
program that flows from top to bottom will tend to have better locality
than one that branches extensively.

11. Use methods for reducing the storage required by sparse arrays. A e
sparse array is one in which most of the elements are zero. You can
develop methods for storing such arrays that eliminate the storage
needed for the zero-valued elements.

For example, consider the following elements in an array A(6,6):

0 0 2 0 0 0
5 0 0 3 0 0
0 0 0 0 0 4
0 6 0 0 0 0
0 0 0 2 0 0
0 0 1 0 0 5

A total of 36 words is required for this array, although only eight words
contain nonzero values.

An alternate method of storing a sparse array is to first define three
one-dimensional arrays. YOU then store the nonzero elements in one of the a
arrays, and the row and column positions of those elements in the W
corresponding positions of the other two arrays. Any element whose value is
not in the first array has the value 0. Thus, the preceding array could be
stored as follows:

5-16 FORTRAN Topics Usage Revision A

PROGRAMMING GUIDELINES

e Contents of array containing nonzero values:

2 5 3 4 6 2 1 5

Contents of array containing row position of nonzero values: e 12234566

Contents of array containing column position of nonzero values:

3 1 4 6 2 4 3 6

The value of A(l,3) is 2, the value of A(2,1) is 5, and so forth. Only 24 words
are required for the array instead of the original 36.

The following program shows a method for accessing an element of an array
stored as described above. The nonzero elements are in array A The arrays
ROW and COLUMN contain the row position and column position,
respectively, of the nonzero elements. The program puts the value of element
l,J in the variable VALUE.

VALUE = 0
INTEGER A(8), COLUMN(8), ROW(8), VALUE
DO 12 K=1,8
IF (ROWCK) .EQ. I .AND. COLUMN(K) .EQ. J) THEN

VALUE = ACK)
GO TO 15

END IF
12 CONTINUE
15 CONTINUE

Summary of Using Virtual Memory

A virtual memory system enables you to address the computer's main
memory as though it were unlimited. Under virtual memory, you can run
programs that exceed the amount of main memory available. Virtual
memory eliminates the need for such methods as overlays and segmentation
for larger programs.

The principle behind virtual memory is that an entire program need not be in
memory at one time in order for that program to run. Portions of the
program that are not being used can remain on disk, while the required
portions are in memory.

Revision A Using Virtual Memory 5-17

SUMMARY OF USING VIRTUAL MEMORY

In a virtual memory system, every program is divided into equal-length e
units called pages. When a program executes, the required pages are loaded
into memory while the unneeded pages remain on disk. As execution
continues, pages are loaded into memory as they are required. If necessary,
pages in memory that are not being used can be unloaded ("swapped out") to
make room for required pages. e
Although virtual memory operates without any knowledge or intervention on
your part, the design of your program can influence how efficiently virtual
memory works. In a poorly designed program, page thrashing can degrade
the efficiency of the program. Page thrashing is a condition where pages are
unloaded and then immediately loaded again. You can apply programming
techniques that help ensure efficient paging operations.

Probably the most important aspect of program design is a quality known as
locality of reference. Locality of reference is a measure of how close together
the memory references within a program are. Programs with a high degree of
locality of reference are likely to require fewer paging operations than
programs whose memory references are widely scattered throughout the
program's area of memory.

Some suggestions for improving the locality of reference of your program
are:

- Continue to apply techniques for reducing the size of your program.
Programs that require fewer pages may require fewer paging
operations.

- Organize the program so that all references to a particular area are
close together.

- Reference data in the order it is stored, or store data in the order it is
referenced.

- Reduce the number of external calls in the program.

- Store subroutines in the same order they are called.

- If the program makes repeated calls to a routine, try to group those
calls together.

- Avoid using COMMON for data that is local to a particular routine.

- Store data as close as possible to other data used concurrently.

- Replace arithmetic and logical IF statements with block IF structures e
to reduce branching.

5-18 FORTRAN Topics Usage Revision A

9 Using Object Libraries 6

An object library is a specially-formatt.ed file of modules. This discussion
concentrates on modules that are compiled programs, although object e libraries can contain other types of modules.

To understand object libraries, it is helpful understand the loading process.
Therefore, this chapter begins with a discussion of the loading process and
some of the most useful features of the loader. The discussion presents only
the most commonly used commands and parameters used to load programs
and manage object libraries. For more information on these topics, refer to
the SCL Object Code Management Usage manual.

The Loading Process

Before a compiled object program can be executed, it must be processed by a
system utility called the loader. The sequence of steps leading to program
execution can be diagrammed as follows:

Source e Program

FORTRAN
Compiler

Object _ II _ Program
Program ~Execution

e

What the Loader Does

The loader reads the object code produced by the compiler, performs the
necessary processing, and begins execution of the program.

In preparing the object program for execution, the loader performs the
following sequence of steps:

1. Assigns the program to an area of memory and loads the program into
that area.

2. Loads all of the routines called by the program into the assigned area.

3. Provides the program with the addresses of the called routines.

4. Begins execution of the loaded program.

Revision A Using Object Libraries 6-1

THE LOADING PROCESS

You are probably familiar with the command LGO, commonly used to
execute a compiled program. Actually, LGO is a form of the name call
command, which calls the loader and begins the loading process. We now
take a closer look at how the loader performs the above steps.

We begin by considering the following simple main program and
subroutines:

PROGRAM SIMPLE
READ C•, *) X
CALL SUBA CX,Y)
CALL SUBB CY,Z)
PRINT *, Z
END

SUBROUTINE SUBA ex, Y>
y = x + 1.0
RETURN
END

SUBROUTINE SUBB CY, Z)
Z = Y*10.0
RETURN
END

This program does the following:

Reads a number.

Calls a subroutine that adds 1.0 to the number and returns the result.

Calls another subroutine that multiplies the result by 10.

Prints the final result.

Assume that program SIMPLE and subroutines SUBA and SUBB all reside
on a file named PROG_FILE. We can compile the preceding program with
the command

FORTRAN I=PROG_FILE

The compiler writes the compiled object code to the default file LGO. To
execute the program, we simply specify the command LGO. However, as we
will show, this command does much more than begin execution of the
program.

6-2 FORTRAN Topics Usage Revision A

NAME CALL LOADING

e Name Call Loading

The LGO command is a fonn of the name call command. A name call
command consists of the name of the file containing the compiled object
code. This command calls the loader and begins loader processing. The
loader has various processing options that you can request through other
system commands. These options are discussed later in this chapter.

The first step the loader perfonns is to load the program into memory. When
you request a name call load by specifying an object file name such as LGO,
the loader loads all the program units on that file into memory. (In loader
tenninology, a program unit is called a module. We use that tenn from
throughout the rest of this chapter.)

Thus, in our sample program, we specify the command LGO. The main
program SIMPLE and subroutines (or modules) SUBA and SUBB are loaded
into memory.

The next step the loader must perfonn is to supply the program with the
machine addresses of all the routines called by the program. (The compiler
cannot do this because machine addresses are not known at compile time.)

Our sample program makes explicit calls to two subroutines: SUBA and
SUBB. Since these subroutines have been loaded into memory, the loader
can readily provide the calling program with their machine addresses.

A reference in a program unit to an entry point in another program unit is
called an external reference. The process of supplying a calling program with
the addresses of the called entry points is known as satisfying external
references.

When the loader encounters an external reference, it attempts to satisfy that
reference by searching for the entry point in modules already loaded. In our
example, the calls to SUBA and SUBB are satisfied in this way. However, if
the required entry points are not contained in modules already loaded, the
loader must search elsewhere for those entry points. The process of searching
for entry points is discussed later in this chapter.

After all the external references in the program are satisfied, the loader can
then perfonn the last step of the loading process, which is to begin execution
of the program.

Before we find out where the loader searches for entry points to satisfy
external references, let's examine some additional loader capabilities.

Revision A Using Object Libraries 6-3

LOADING MODULES FROM SEPARATE FILES

Loading Modules From Separate Files

We now take another look at the program discussed earlier:

PROGRAM SIMPLE
READ (*, *) X
CALL SUBA ex, Y)
CALL SUBB (Y, Z)
PRINT *, Z
END

SUBROUTINE SUBA ex, Y)
y = x + 1.0
RETURN
END

SUBROUTINE SUBB CY, Z)
Z = Y*10.0
RETURN
END

In the original example, the main program and subroutines were compiled
together and written to file LGO. Now, however, assume that subroutine
SUBB was written by a different programmer and stored on a separate file.
The main program and SUBA are still stored on file LGO, but subroutine
SUBB is now on file SUB_FILE.

In this case, if we try to load and execute the program with the LGO
command, the loader will not know where to fine SUBB. This causes a loader
error. However, NOS/VE provides a method of loading modules from
separate files.

You can load modules from separate files by substituting an EXECUTE_
TASK command for the name call command. The EXECUTE_ TASK
command performs the same operation as the name call command, but it
provides you with some additional options. (These options are discussed later
in this chapter.) We can request the loader to load subroutine SUBB from file
SUB_FILE as follows:

EXECUTE_TASK FILE=(LGO, SUB_FILE)

This command loads all of the program units on files LGO and SUB_FILE
into memory, satisfies all external references in the loaded program, and
begins execution.

6-4 FORTRAN Topics Usage Revision A

GENERATING A LOAD MAP

You can specify any number of files in an EXECUTE_TASK command.
Execution always begins with the main program regardless of which file
contains the main program. For example, the command

EXECUTE_TASK FILE=CBIN, AFILE, DATA1)

loads program units from files BIN, AFILE, AND DATAl and begins
execution of the main program.

Note that when you specify a file in an EXECUTE_ TASK command, all of
the modules on that file are loaded regardless of whether or not they are
actually called anywhere in the program.

Generating a Load Map

A load map is a printable output listing, produced by the loader, that shows
how the loader allocated memory during the load.

The load map lists the names of all modules that were loaded and, for each
module, lists

The location.in memory where the module was loaded

The file or library from which the module was loaded

The length (number of words) of the module

The map also lists additional information about the internal storage
attributes of the modules.

Although the load map contains little information that is useful to most
programmers, it can be useful as a debugging tool if other debugging
methods have failed to locate the error. To use a load map, you should have a
memory dump and an object listing of your program. You should also know
how to interpret those listings.

You control the generation of a load map through parameters on the
EXECUTE_ TASK and SET _PROGRAM_ATTRIBUTE commands. But
whether or not you need to specify one of these commands depends on which
default load map options are in effect at your site. (You can quickly find out
the default load map setting by entering the command DISPLAY_
PROGRAM_ATTRIBUTES. This will tell you, among other things, which
load map options are effective and the name of the file to which the map is
written.)

You can use the EXECUTE TASK or SET _PROGRAM_ATTRIBUTE
command to alter any of the default load map options.

Revision A Using Object Libraries 6-5

GENERATING A LOAD MAP

The EXECUTE_ TASK command requests a map for a single load operation.
For example, in the sequence

EXECUTE_TASK FILE=BINA LOAD_MAP=MAPFIL LOAD_MAP_OPTIONS=CB,EP,CR)
BINB

the EXECUTE_ TASK command does the following:

Loads and executes modules on file BINA

Generates a load map with the B (block), EP (entry points), and CR (entry
points cross reference) options

Writes the load map to a file named MAPFIL

The name call command BINB loads and executes the program on file
BINB, but does not generate a load map (assuming the default condition is
not to produce a load map).

The SET _PROGRAM_ATTRIBUTE command requests a map for all
subsequent loads, until you either end the terminal session or turn the load
map option off. For example, in the following sequence, a load map is
generated for two name call loads:

SET_PROGRAM_ATTRIBUTE LOAD_MAP=MAPFIL LOAD_MAP_OPTIONS=CB,EP,CR)
BINA
BINB

In addition to specifying files that contain modules to be loaded and
generating a load map, the EXECUTE_ TASK and SET _PROGRAM_
ATTRIBUTE commands provide numerous other options. These commands
are described in detail in the SCL System Interface manual and the SCL
Object Code Management Usage manual.

When you specify a file in an EXECUTE_ TASK command, the loader loads
all program units from that file regardless of whether or not they are
required for execution. This can waste memory space. In our earlier example,
we saw how we could load a subprogram ifit resided on a different file from
the calling program. The command to load and execute the program was:

EXECUTE_TASK (LGO, SUB_FILE)

where file LGO contained the main program and a subroutine named SUBA,
and file SUB_FILE contained a subroutine named SUBB.

6-6 FORTRAN Topics Usage Revision A

OBJECT LIBRARIES

Now, suppose that file SUB_FILE contained not only SUBB but several
other subroutines as well. The preceding EXECUTE_ TASK command would
load not only SUBB but all of the other subroutines even though they are not
called in the program.

The following discussion explains how object libraries can provide a way of
avoiding the loading of unneeded modules.

What Are Object Libraries and Why Are
They Useful?
An object library is a file containing object programs in a special format that
allows rapid searching and loading by the loader. The library contains a
directory, so that when a particular program unit is required, the loader can
go directly to that program unit without sequentially searching the library.

The advantages of loading modules from a library instead of the sequential
file produced by the compiler include:

- The loader automatically searches the libraries that are available to a
program and loads the required modules. With files, you must explicitly
specify which files are to be used in the loading process.

- With libraries, the loader loads only those modules that are required by
the program, regardless of how many modules are stored in the library.
When you specify a file to be loaded, the loader loads all modules on
the file.

Later, we show how you can create and modify object libraries. First, we
examine how the loader uses libraries.

Revision A Using Object Libraries 6-7

OBJECT LIBRARIES

How the Loader Uses Object Libraries

Consider following program:

PROGRAM SIMPLE
READ (*, *) X
CALL SUBA CX,Y)
CALL SUBB CY,Z)
PRINT *, Z
END

SUBROUTINE SUBA ex, Y)
y = z + 1.0
RETURN
END

SUBROUTINE SUBB CY, Z)
Z = Y*10.0
RETURN
END

We have seen how we can load and execute this program when the main
program and subroutines are on a single file and when they are on separate
files. Now, suppose that subroutine SUBB is on a library named SUB_LIB. A
We can load and execute the program with the following EXECUTE_ TASK W
command:

EXECUTE_TASK FILE=LGO LIBRARY=SUB_LIB

The LIBRARY parameter makes library SUB_LIB available to the loader.
The loader first loads SIMPLE and SUBA from file LGO. Since the loader
cannot find SUBB among any of the loaded modules, it then searches library
SUB_LIB for SUBB. Upon finding SUBB, the loader loads it into memory,
satisfies the external reference, and begins execution.

Note that regardless of how many modules reside on library SUB_LIB, only
SUBB is loaded because that is the only one required by the program.

6-8 FORTRAN Topics Usage Revision A

OBJECT LIBRARIES

Making Libraries Available to the Loader

We now show how you specify which libraries the loader is to search, in what
order the loader searches the libraries, and how you create your own
libraries. Before discussing how you make libraries available to the loader,
we present a quick review of the loading process. When loading any
program, the loader performs the following sequence of steps:

1. Loads all modules from the file or files specified in the name call or
EXECUTE_ TASK command.

2. Satisfies all external references. The loader first searches modules already
loaded for the required entry points. It then searches the available
libraries. If programs loaded from libraries contain additional external
references, the loader satisfies them in the same way.

3. Begins execution of the loaded program.

Before the loader will search a library, that library must be available to the
loader. When the loader satisfies external references, it searches the
available libraries for modules containing referenced entry points.

You can make libraries available to the loader in three ways. The first way is
to declare the library in the LIBRARY parameter of an EXECUTE_ TASK e command. The general form of this parameter is

EXECUTE_ TASK FILE=file-list LIBRARY=library-list

where library-list is a list of one or more libraries. This command adds the
specified libraries to a list called the local library list.

The libraries in the local library list are available only for the EXECUTE_
TASK command in which the list appears. For example, in the sequence

EXECUTE_TASK FILE=ABIN LIBRARY=(LIBA, LIBB)
ABIN

both commands load and begin execution of the program on file ABIN.
However, in the first load operation, libraries LIBA and LIBB are searched
to satisfy external references. In the second load operation, LIBA and LIBB
are not searched.

The second way of declaring libraries to be available for loader searching is
to declare them in the ADD _LIBRARY parameter of a SET _PROGRAM_
ATTRIBUTE command. The general form of this parameter is

SET _PROGRAM_ATTRIBUTE ADD _LIBRARY=library-list

Revision A Using Object Libraries 6-9

OBJECT LIBRARIES

This command adds the specified libraries to a list called the job library list.
Libraries in the job library list are available to all subsequent load
operations, until you either end the terminal session or remove the libraries
from the list. For example, in the sequence

SET_PROGRAM_ATTRIBUTE LIBRARY=(ALIB, BLIB)
BIN1
BIN2

the SET PROGRAM_ATTRIBUTE command makes libraries ALIB and
BLIB available to the loader. Those libraries are then searched to satisfy
external references in the name call loads initiated by the commands BINl
andBIN2.

You can remove one or more libraries from the job library list through the
DELETE_LIBRARY parameter on the SET _PROGRAM_ATTRIBUTE
command. The form of this parameter is

SET _PROGRAM_ LIBRARY DELETE_LIBRARY=library-list

You can use the DELETE_LIBRARY parameter to remove from the local
library list any libraries which you added earlier in the terminal session.

The third way of making libraries available to the loader is to create a
program description module that specifies a list of libraries to be searched.
You can execute a program by specifying its program description module in
a name call or EXECUTE_ TASK command. Refer to the SCL Object Code
Management manual for more information about program description
modules.

The following example adds two libraries to the job library list, executes two
programs, then removes the libraries:

SET_PROGRAM_ATTRIBUTES ADD_LIBRARY=CALIB, BLIB)
LG01
EXECUTE_TASK FILE=LG02 LIBRARY=CLIB
SET_PROGRAM_ATTRIBUTE DELETE_LIBRARY=CALIB, BLIB)
LG03

When the program on file LGOl is loaded, the loader searches libraries ALIB
and BLIB to satisfy external references. When the program on LG02 is
loaded, the loader searches libraries ALIB, BLIB, and CLIB. (Later, we'll
discuss the order in which libraries are searched.) When the program on
LG03 is loaded, the loader does not search any of the libraries ALIB, BLIB,
or CLIB.

6-10 FORTRAN Topics Usage Revision A

OBJECT LIBRARIES

In addition to libraries you specify in EXECUTE_ TASK and SET_
PROGRAM_ATTRIBUTE commands, various other libraries are available
for loader searching. These default libraries are available to all programs,
and need not be declared in an EXECUTE_ TASK or SET _PROGRAM
ATTRIBUTE command.

The default libraries are used to satisfy many of the implicit external
references in a program. An implicit external reference is one that is
generated by an executable statement other than a CALL statement or
function reference. For example, input/output statements such as READ and
PRINT generate external references to internal FORTRAN input/output
routines.

One type of default library is provided in the job library list. These libraries
are available in addition to the ones you add to the list via a SET_
PROGRAM_ATTRIBUTE command. These default job libraries generally
contain system-related routines that are used by most programs. An
example of a default program library is the math library, which contains
routines such as SIN and SQRT. (Any libraries you add to the job library list
are added BEFORE the default libraries. Thus, when the loader satisfies
external references, the libraries you have added will be searched first.)

A second type of default library is specified in the generated object code by
the FORTRAN compiler itself. These are libraries that are required by most
FORTRAN programs. An example of a compiler-specified library is the
FORTRAN runtime library, which contains routines required for
input/output and other operations. Compiler-specified libraries are always
available when the loader loads programs written in the particular language.

A third type of library is called the NOS/VE task services library. This
library contains system routines required by most programs, and is always
available to the loader.

A fourth type oflibrary resides on the job debug library list. These libraries
are used by the Debug facility, and are available only if you have turned on
debug mode.

We have discussed two ways of making libraries available for loader
searching: by declaring them in an EXECUTE_ TASK command and by
declaring them in a SET _PROGRAM_ATTRIBUTE command. (A third
way, specifying the libraries in a program description module, is a more
advanced technique and is not discussed in this manual.)

Revision A Using Object Libraries 6·11

OBJECT LIBRARIES

Library Search Order e
The loader always searches the available libraries in a predefined order. In
most cases, the library search order will probably not be of concern to you.
However, in cases where two or more libraries contain duplicate entry point
names, you can determine which entry point will be loaded if you know the A
library search order. W'
When the loader satisfies external references, it first searches modules
already loaded for referenced entry points. If unsatisfied external references
remain after this search, the loader then searches the available libraries.
Any additional external references that result from the loading of modules
from libraries are satisfied in the same way.

Before the loader begins the library search, it constructs a list of libraries
called the program library list. The loader then searches the libraries in order
of their occurrence in this list.

The order of libraries in the program library list is as follows:

1. Local library list (as specified by the EXECUTE_ TASK command).

2. Object libraries specified by the compiler.

3. Job library list (as specified by the SET _PROGRAM_ATTRIBUTE
command).

4. Job debug library list.

5. NOS/VE task services library.

Within each of the above lists, the loader searches the libraries in the order of
their occurrence in the list.

6-12 FORTRAN Topics Usage Revision A

OBJECT LIBRARIES

Following are some examples of library search order. These examples
assume that debug mode is off and that the job library list is initially empty.

Commands

LGO

Order of
Library
Search

FORTRAN­
supplied
libraries
task services
library

EXECUTE_ TASK FILE=LGO LIBRARY=(ALIB, BLIB) ALIB
BLIB
FORTRAN­
supplied
libraries
task services
library

SET _PROGRAM_ATTRIBUTE ADD _LIBRARY=(CLIB) ALIB
EXECUTE_ TASK FILE=LGO LIBRARY=(ALIB, BLIB) BLIB

FORTRAN­
supplied
libraries
CLIB
task services
library

In the following example, a program library list is established and two
programs are loaded and executed. The first program is loaded and executed
by an EXECUTE_ TASK command that specifies two libraries in the local
library list. The second program does not have a local library list.

SET_PROGRAM_ATTRIBUTE ADD_LIBRARY=CLIB
EXECUTE_TASK FILE=LG01 LIBRARY=CALIB, BLIB)
LG02

When LGOl is loaded, the following libraries are searched: ALIB, BLIB,
FORTRAN-supplied libraries, CLIB, and the task services library. When
LG02 is loaded, the following libraries are searched: FORTRAN-supplied
libraries, CLIB, and the task services library.

Revision A Using Object Libraries 6-13

CREATING OBJECT LIBRARIES

Creating and Modifying Object Libraries 9
We now discuss commands, parameters, and techniques for creating and
modifying object libraries.

The CREATE_ OBJECT _LIBRARY Utility

You create a new library, or alter an existing one, by using a system utility
program called CREATE_ OBJECT _LIBRARY. The CREATE_ OBJECT_
LIBRARY utility enables you to create new libraries, and to add, delete, or
replace modules in existing libraries. The modules you place in an object
library can be object modules produced by a compiler, modules from other
libraries, SCL procedures, and program description modules.

To use CREATE_ OBJECT _LIBRARY, you conduct a CREATE_ OBJECT_
LIBRARY session. A CREATE_ OBJECT _LIBRARY session consists of the
following sequence of steps:

1. Begin the CREATE_OBJECT_LIBRARY session.

2. Enter commands to add, delete, or replace modules in the library.

3. Generate the library.

4. End the CREATE_ OBJECT LIBRARY session.

To begin a CREATE_ OBJECT _LIBRARY session, enter the command

CREATE_OBJECT_LIBRARY

The system responds with the prompt

COL/

This prompt signifies that CREATE_ OBJECT _LIBRARY is waiting for you
to input a command. After you enter a command and press the RETURN
key, CREATE_ OBJECT _LIBRARY issues another COU prompt and waits
for you to enter another command. The session continues in this way until
you enter QUIT. This ends the CREATE_ OBJECT _LIBRARY session and
returns control to the system. While you are in a CREATE_ OBJECT_
LIBRARY session, you can enter as many commands as you like. These
commands tell CREATE_OBJECT_LIBRARY which modules are to be
included in the library, which modules are to be replaced, and which modules
are to be removed. e

6-14 FORTRAN Topics Usage Revision A

CREATING OBJECT LIBRARIES

The commands you enter to add, replace, or delete modules do not actually
alter the contents of a library. Instead, CREATE_ OBJECT _LIBRARY
maintains an internal list called the module list. The commands you enter
add, replace, and delete libraries from this list. In order to actually create a
new library, or modify an existing one, you must enter the command

GENERATE_LIBRARY LIBRARY=file-name

This command creates an object library that contains the modules in the
module list and writes it to the specified file. Typically, the GENERATE_
LIBRARY command is the last command you enter before ending the
CREATE_ OBJECT _LIBRARY session.

After you have generated the library, you end the CREATE_ OBJECT_
LIBRARY session by typing

QUIT

The following terminal dialog shows a simple CREATE_ OBJECT_
LIBRARY session in which a library containing the modules from a single
object file is created.

/create_object_L ibrary <-------------- Begin the session.

COL/add_modules Li brary=Lgo <--------- Add the modules on file
LGO to the library list.

COL/generate_Library Library=mylib <-- Generatethenewlibraryon
file MYLIB.

COL/quit <---------------------------- End the session.

Creating Object Libraries

Creating a new object library involves the following sequence of steps:

1. Begin the CREATE_ OBJECT _LIBRARY session by entering a
CREATE_ OBJECT _LIBRARY command.

2. Specify the modules to be included in the library by entering an ADD_
MODULES command.

Revision A Using Object Libraries 6-15

CREATING OBJECT LIBRARIES

3. Generare the library by enrering a GENERATE_ LIBRARY command. e
4. End the session by typing QUIT.

To specify modules to be included in a new or existing library while in a
CREATE_ OBJECT _LIBRARY session, you use the ADD_MODULES
command. This command has the form

ADD _MODULES LIBRARY=file-list

where file-list specifies one or more files containing modules to be added to
the library.

The files you specify can be object files produced by the loader or they can bt
SCL procedures or other libraries. CREATE_ OBJECT _LIBRARY adds all
the modules from the specified files to the object library.

If you want to add selected modules from a file to a library, you can specify
the MODULES paramerer as follows:

ADD_MODULES LIBRARY=file-list MODULES=mod-list

This command causes the CREATE_ OBJECT _LIBRARY to add only the
modules specified in mod-list from the specified files to the module list.

For example, the following command, enrered during an object library A
session, adds three modules to an object library: 'W

/COL add_modules Library=bin_file module=(bin1, bin2, bin3)

The modules BINl, BIN2, and BIN3 on file BIN_FILE are added to the
module list.

Remember that after you add the modules to CREATE_ OBJECT_
LIBRARY's module list, you must enrer a GENERATE_ LIBRARY
command to actually create the library.

Modifying Object Libraries

CREATE_ OBJECT _LIBRARY enables you to modify existing object
libraries. These modifications include adding, replacing, and deleting
modules in existing object libraries. The following list summarizes the
commands you need to perform these modifications:

ADD _MODULES Adds one or more modules to a library.

REPLACE_MODULES Replaces one or more modules in a library.

DELETE_MODULES Deleres one or modules from a library.

6-16 FORTRAN Topics Usage Revision A

MODIFYING OBJECT LIBRARIES

Remember that these commands alter the contents of the module list, rather
than an actual object library. When you begin a CREATE_ OBJECT_
LIBRARY session to modify an existing library, the first step is to add all
the modules in that library to the module list. You can do this with the
command

ADD _MODULES LIBRARY=library

where the specified library is the one you want to modify. You can then use
the ADD _MODULES, REPLACE_MODULES, and DELETE_MODULES
commands to alter the library list. Then, after you make all the desired
changes to the module list, you use the GENERATE_LIBRARY command to
replace the existing library.

Adding Modules

You use theADD_MODULES command to add modules to an existing
library. For example, the following commands add two modules from file
LGO to a library named ALIB:

/COL add_modules L ibrary=al ib <---- Add modules from library
ALIB to module list.

/COL add_modules L ibrary=Lgo <----- Add modules from file LGO to
module list.

/COL generate_ Library fi Le=a Lib <-- Rewrite existing library.

/COL quit <------------------------ End session.

Replacing Modules

To replace modules in the module list, you use the REPLACE_MODULES
command. This command has the form

REPLACE_MODULES FILE=file-list MODULES=mod-list

where file-list specifies one or more files containing replacement modules,
and mod-list specifies one or more modules to be replaced. You can omit the
MODULES parameter, in which case all of the modules in the specified files
are used as replacement modules.

When CREATE OBJECT LIBRARY executes a REPLACE MODULES
A command, it begins by sea;ching the module list for a module-having the
W same name as the first module in the first file in the file-list (or in the

mod-list, if you specified the MODULES parameter). If a match is found, the
replacement module replaces the existing module.

Revision A UsingObjectLibraries 6-17

MODIFYING OBJECT LIBRARIES

If no match is found after searching the entire module list, the replacement
module is disregarded (it is NOT added to the library), and processing
continues with the next module in the file (or in the mod-list, if you specified
the MODULES parameter).

The following REPLACE_MODULES command, entered in a CREATE_
OBJECT _LIBRARY session, specifies three modules to be replaced:

/COL replace_modules file=bin_file modules=Cmoda, modb, mode)

CREATE_ OBJECT _LIBRARY first searches the module list for a module
named MODA. If MODA is found, it is replaced by MODA from file BIN_
FILE. If MODA is not found, no replacement occurs. In either case,
CREATE_ OBJECT _LIBRARY then searches the module list for modules
MODB and MODC, and replaces them if they are found.

Deleting Modules

You delete modules from the module list by specifying a DELETE_
MODULES command in a CREATE_ OBJECT _LIBRARY session. This
command has the form

DELETE_ MODULES MODULES=mod-list

where mod-list specifies one or more modules to be deleted from the module A
list. CREATE_ OBJECT _LIBRARY searches the module list for the W'
specified modules and deletes the ones it finds.

For example, the command

/COL delete_modules modules=Cmod1, mod4, mod6)

deletes modules modl, mod4, and mod6 from the library list.

After you have specified all the modules to be added, deleted, or replaced in
the module list, you create a library that contains the modules currently in
the module list by entering the command

GENERATE_LIBRARY LIBRARY=library

The library you specify can be either an existing library or a new one. If you
specify an existing library, it is replaced.

6-18 FORTRAN Topics Usage Revision A

DISPLAYING INFORMATION ABOUT OBJECT LIBRARIES

Displaying Information About Object Libraries

You can display a list of the modules in any library or object file by entering
a DISPLAY_ OBJECT _LIBRARY command. This command has the form: e DISPLAY_ OBJECT _LIBRARY LIBRARY=file-name

where file-name specifies an object file or a library file. The DISPLAY_
OBJECT _LIBRARY command lists all the modules in the specified library
or object file, as well as the date and time each module was placed in the
library. (You can request more information through additional parameters,
as described in the Object Code Management manual.)

The DISPLAY_ OBJECT _LIBRARY command is an SCL command, rather
than a library generator command. That means that you can enter it either
within or outside of a CREATE_ OBJECT _LIBRARY session. Thus, you can
use this command to list the modules in a library you are currently updating,
in any of the object files you are using to update the library, or in any other
object file or library.

For this example, assume the following:

Object file BIN_ FILE_ 1 contains modules A, B, and C

Object file BIN_FILE_2 contains modules D, E, and F

The command

DISPLAY_OBJECT LIBRARY LIBRARY=BIN_FILE_1

displays a list similar to the following:

A
B
c

OBJECT MODULE
OBJECT MODULE
OBJECT MODULE

08:15:29
08:15:27
15:33:04

1983-06-04
1983-06-04
1983-06-03

The list shows the module name, module type, and the time and date the
module was placed in the library.

Now suppose we execute the following CREATE_ OBJECT _LIBRARY
session:

/create_object_library
/COL add_modules files=Cbin_file_1,bin_file_2> modules=Ca,b,e,f)
/COL generate_library library=mylib
/COL display_object_library library=mylib
/COL quit
/display_object_library library=mylib

Revision A Using Object Libraries 6-19

EXAMPLE OF OBJECT LIBRARY

This session creates an object library that contains four modules. Two
DISPLAY_ OBJECT _LIBRARY commands are entered: one inside the
CREATE_ OBJECT _LIBRARY session and one after the session is ended.
Both commands display the same list:

A LOAD MODULE 08:53:04 1983-06-04
B LOAD MODULE 08:53:30 1983-06-04
E LOAD MODULE 08:54:10 1983-06-04
F LOAD MODULE 08:54:26 1983-06-04

Example of Creating and Modifying an Object
Library

The following is a simple example of creating and modifying a library. We
begin with the following main program subroutines:

PROGRAM MAIN
PRINT *, ' IN MAIN PROGRAM'
CALL SUBA
CALL SUBB
END

SUBROUTINE SUBA
PRINT *, ' IN SUBA'
RETURN
END

SUBROUTINE SUBB
PRINT*, I IN SUBB'
RETURN
END

The main program is stored on file MAIN_SOURCE and both subroutines
are stored on file SUB_SOURCE. We wish to create a library containing
modules SUBA and SUBB.

First, we compile the main program and subroutines with the following
commands:

/fortran i=main_source b=main_bin

/fortran i=sub_source b=sub_bin

File MAIN_ BIN contains the object code for the main program, and file
SUB_BIN contains the object code for subroutines SUBA and SUBB.

6-20 FORTRAN Topics Usage Revision A

e

EXAMPLE OF OBJECT LIBRARY

We now use CREATE_ OBJECT _LIBRARY to create the library:

/create_object_Library
COL/add_modules Library=sub_bin modules=Csuba,subb) <-- Add

modules SUBA and
SUBB from file
SUB_BIN.

COL/generate_L ibrary L ibrary=sub_L ib <-- Generate the library on
file SUB_LIB.

COL/quit

We can display a list of modules in the library by entering the following
command:

/display_object_Library Library=sub_Lib

This command displays the following list:

SUBA
SUBB

OBJECT MODULE
OBJECT MODULE

09:58:04 1983-10-18
09:58:14 1983-10-18

The following command loads the program, searches library SUB_LIB to
satisfy external references, and begins execution.

~ /execute_task file=main_bin Library=sub_Lib

This command does the following:

Loads the program on file MAIN _BIN into memory. (This file contains
the object code for the main program.)

Satisfies the external references to SUBA and SUBB. Since SUBA and
SUBB were not loaded from file MAIN _BIN, the loader searches for them
in the library SUB_LIB.

Begins execution of the loaded program. The program prints the
following:

IN MAIN PROGRAM
IN SUBA
IN SUBB

Revision A Using Object Libraries 6-21

EXAMPLE OF OBJECT LIBRARY

We now wish to update library SUB_LIB. We will replace module SUBA
with a new version and add a new module named NEWSUB. The new
version of SUBA contains a call to NEWSUB:

SUBROUTINE SUBA
PRINT *, ' IN NEW SUBA'
CALL NEWSUB
RETURN
END

SUBROUTINE NEWSUB
PRINT *, ' IN NEWSUB'
RETURN
END

Assume that the object code for SUBA is on file NEW _BIN and the object
code for NEWSUB is on file NEW _SUBS.

The CREATE_ OBJECT _LIBRARY session is as follows:

/create_object_Library
COL/add_modules L ibrary=sub_l ib <--Add the modules from the

existing library to the module
list.

COL/replace_modules library=new_bin module=suba <--Replace
module SUBA on the library
with the module of the same
name from file NEW _BIN.

COL/add_modules L ibrary=new_subs module=newsub <-- Add module
NEWSUB from file
NEW_SUBS.

COL/generate_L ibrary L ibrary=new_l ib <-- Generate a new library
named NEW _LIB.

COL/quit

6-22 FORTRAN Topics Usage Revision A

SUMMARY OF USING OBJECT LIBRARIES

We can list the modules in the new library with the command

/display_object_Library Library=new_Lib

SUBA
SUBB
NEWSUB

OBJECT MODULE
LOAD MODULE
OBJECT MODULE

10:15:22
10:15:30
10:16:06

1983-10-18
1983-10-18
1983-10-18

The following command executes the program using modules from the new
library:

/execute_task file=main_bin Library=new_Lib

Output from the program is as follows:

IN MAIN PROGRAM
IN NEW SUBA
IN NEWSUB
IN SUBB

Summary of Using Object Libraries

Before a compiled program can be executed, it must be processed by a system
utility called the loader. The loader uses object libraries during the loading
process. Before you learn about object libraries, you should understand the
loading process.

The simplest type of load is performed by the name call command. The
familiar command LGO is a form of the name call command. A name call
command consists of the name of the file containing the compiled object
code. When you specify a name call command, the loader performs the
following sequence of steps:

1. Loads the compiled program units from the specified file into memory.

2. Supplies the loaded program with the addresses of all routines called by
the program. This process is known as satisfying external references.

3. Begins execution of the loaded program.

The name call command loads program units from a single file. If a program
calls routines that reside on different files, you can use the EXECUTE_
TASK command to load the required routines. Like the name call command,
the EXECUTE_ TASK command loads and executes a program, but it
provides additional options. The FILES parameter on this command
specifies files from which routines are to be loaded.

Revision A Using Object Libraries 6-23

SUMMARY OF USING OBJECT LIBRARIES

After the loader has completed a load operation, it produces a load map that
consists of a summary of the load operation. The load map contains such
information as the length and location in memory of each loaded program
unit. When used with a memory dump and object listing, the load map can be
a useful debugging tool for the experienced programmer.

In the process of locating entry points to satisfy external references, the
loader searches a special type of file known as an object library.

An object library is a specially-formatted file containing object programs.
When the loader satisfies external references, it quickly searches the
available libraries for any referenced modules and loads them into memory
with the referencing module.

Object libraries provide the following advantages:

- The loader automatically searches the libraries that are available to a
program, and loads the required modules.

- With libraries, the loader loads ONLY those modules that are required
by the program, regardless of how many modules are stored in the
library.

- Modules on a library can be shared by other programs.

When the loader satisfies external references, it first searches for the e
referenced entry points in modules already loaded. If unsatisfied external
references remain after this search, the loader searches the available object
libraries for the referenced entry points. Upon finding a referenced entry
point in a library, the loader loads the routine containing that entry point
and provides the calling modules with the addresses of the entry points.

You can make a library available for loader searching in two ways. The first
way is to declare the library in the LIBRARY parameter of an EXECUTE_
TASK command. This adds the library to the local library list. The local
library list is available only for the current EXECUTE_ TASK command.

The second way of making a library available for loader searching is to
declare it in the ADD _LIBRARY parameter of a SET _PROGRAM_
ATTRIBUTE command. This adds the library to the program library list.
The program library list is available to the loader until you either delete the
libraries or end the terminal session.

In addition to the libraries you have declared in an EXECUTE_ TASK or A
SET _PROGRAM_ATTRIBUTE command, the FORTRAN compiler and W
NOS/VE system provide other libraries that contain routines required by
most programs.

6-24 FORTRAN Topics Usage Revision A

SUMMARY OF USING OBJECT LIBRARIES

When the loader satisfies external references, it searches the available
libraries in the following predefined order:

1. Local library list (as specified by the EXECUTE_ TASK command). e 2. Object libraries specified by the compiler.

3. Job library list (as specified by the SET _PROGRAM_ATTRIBUTE
command).

4. Job debug library list (searched only if you have turned on debug mode).

5. NOS/VE task services library.

Within each of the above lists, the loader searches the libraries in the order of
their occurrence in the list.

You use the CREATE_ OBJECT _LIBRARY utility to create and modify
object libraries. To create a new library, or to modify an existing one, conduct
a CREATE_ OBJECT _LIBRARY session as follows:

1. Begin the session by entering the command
CREATE_ OBJECT _LIBRARY.

2. Enter commands to add, replace, or delete modules in the library.
Commands are:

ADD _MODULES to add modules to a new or existing library

REPLACE_MODULES to replace modules in an existing library

DELETE_MODULES to remove modules from an existing library

3. Generate the new library, or replace the existing one, by entering the
command GENERATE_LIBRARY.

4. End the CREATE_ OBJECT _LIBRARY session by typing the command
QUIT.

Revision A Using Object Libraries 6-25

.Index

A
ABORT _FILE Debug feature 2-44
Access violation error 2-7
Address space 5-3
ADD_MODULE

subcommand 6-16, 17
ANSI input/output methods 3-30
Array initialization 4-14; 5-15
Assignment statement,

replacement with DATA
statement 4-14

Attaching files 1-7
ATTACH_FILE SCL

command 1-7
Automatic execution of

Debug commands 2-44

B

Batch job submission 1-29
BINARY_ OBJECT FORTRAN

command parameter 1-26; 2-2
Block IF structures 2-10
Branching, efficient

techniques 4-14
BUFFER IN statement 3-16
BUFFER OUT statement 3-16

c
Catalog

Creating 1-11
Definition of 1-2
Displaying contents of 1-12
Working 1-14
$LOCAL 1-3
$USER 1-3

CHANGE_FILE _ATTRIBUTES
SCL command 1-20

Revision A

CHANGE_PROGRAM_VALUE
Debug command 2-28

COLLECT_ TEXT SCL
command 1-30

Common blocks
Effect on optimization 4-12
In virtual memory 5-16

Common programming errors 2-7
Common subexpressions 4-5
Compiler control directives 2-26
Compiling 1-25
Conditional compilation

directives 2-26
CONNEC subroutine call 1-23
Constant subexpressions 4-4
COPY_FILE SCLcommand 1-3
CREATE_CATALOGSCL

command 1-11
CREATE_FILE_pERMIT SCL

command 1-18
CREATE_FILE SCL

command 1-6
CREATE_OBJECT_LIBRARY

utility
ADD_MODULE

subcommand 6-16, 17
DELETE_MODULE

subcommand 6-18
General description 6-14
GENERATE_LIBRARY

subcommand 6-15, 18
REPLACE_MODULE

subcommand 6-17
C$ Directives 2-26
C$ PARAM directive 1-35

D
DATA statement, use in

optimization 4-14
Dead instructions 4-4

FORTRAN Topics Usage lndex-1

INDEX

Debug
Command summary 2-51
Example 2-46
Facility 2-28
Mode 2-32
Session 2-31

Debug commands
Automatic execution of 2-44
CHANGE_PROGRAM

VALUE 2-40
DISPLAY _BREAK 2-41
DISPLAY_ CALL 2-42
DISPLAY _DEBUG

ENVIRONMENT 2-43
DISPLAY_ VALUE 2-38
QUIT 2-40
RUN 2-37
SET_ BREAK 2-35
SET _STEP _MODE 2-36
Summary 2-51

DEBUG FORTRAN command
parameter 2-31

Debugging 2-1
Debugging aids

Debug facility 2-28
Reference map 2-20

DELETE_BREAK Debug
command 2-41

DELETE_FILE SCL
command 1-10

DELETE_MODULE
subcommand 6-18

DETACH_FILE SCL
command 1-10

Direct access files 3-18
DISPLAY _BREAK Debug

command 2-41
DISPLAY _CALL Debug

command 2-42
DISPLAY_ CATALOG SCL

command 1-12
DISPLAY _DEBUG

ENVIRONMENT Debug
command 2-43

DISPLAY _FILE_ATTRIBUTES
SCL command 1-20

Index-2 FORTRAN Topics Usage

DISPLAY _JOB_STATUS
SCL command 1-31

DISPLAY _LOG SCL
command 2-3

DISPLAY_ OBJECT _LIBRARY
SCL command 6-19

DISPLAY _PROGRAM
ATTRIBUTES SCL
command 2-3

DISPLAY _PROGRAM_ VALUE
Debug command 2-38

Divide fault error 2-7
DO loops, optimization of

4-7, 11, 12

E

EQUIVALENCE statement; effect
on optimization 4-12

ERROR FORTRAN command
parameter 2-2

EXECUTE_ TASK SCL command
General description 1-27
Used to generate a load

map 6-5
Used to load modules from

files 6-4
Used to load modules from

libraries 6-8, 9
Used to set debug mode 2-33

Executing a FORTRAN
program 1-26

Execution time parameters 1-34
EXPRESSION _EVALUATION

FORTRAN parameter 4-16
CANONICAL option 4-16
General description 4-16
MAINTAIN _EXPRESSION

option 4-16
MAINTAIN _PRECISION

option 4-18
Expressions, factoring 4-15

Revision A

•

.F
Factoring expressions 4-15
File access permission 1-18
File interface subprograms 3-22
File reference 1-4
Files

Access permission 1-18
Attaching 1-7
Attributes 1-19; 3-3, 24
Copying 1-3
Creating 1-5
Cycles 1-17
Definition of 1-1
Deleting 1-9
FORTRAN direct access 3-18
Local 1-2
Names 1-4
NOS-NOS/VE file

transfer 1-24
Permanent 1-2
Positioning 1-16
Random 3-16
Referencing 1-4
Sequential access 3-16
$INPUT 1-21
$OUTPUT 1-21

Format specification 3-9
FORMAT statement 3-9
Formatted input/output 3-5
FORTRAN command 1-20
FORTRAN command parameters

BINARY_OBJECT 1-26
DEBUG 2-31
EXPRESSION_EV ALUATION

4-16
INPUT 1-26
LIST 1-26; 2-21
LIST_ OPTIONS 2-21
ONE TRIP _DO 4-18
OPTIMIZATION 4-18

Free space in virtual memory 5-1

G
GETCV AL subroutine call 1-36
GET _FILE SCL command 1-24

Revision A

H

HELP SCL command 2-24

I

Identity instructions 4-3
Indefinite value 2-4
Infinite value 2-5

INDEX

INPUT FORTRAN command
parameter 1-26

Input/output methods
Buffer 3-16
Comparison of 3-11
Examples of 3-11
File interface 3-22
Formatted 3-9
List directed 3-5
Mass storage 3-24
N amelist 3-7
Selecting a method 3-26
Unformatted 3-15

Input/ output units 3-2
Integer arithmetic 2-6
Interactive

L

Debugging 2-28
Input/output 1-20

LGO command 1-27; 6-3
Library search order 6-12
Libraries (see Object Libraries)
List directed input/ output 3-5
LIST FORTRAN command

parameter 1-26; 2-21
LIST OPTIONS FORTRAN
com~and parameter 2-21

Listing control directives 2-27
Load map 1-29; 6-5
Loader 6-1, 8

FORTRAN Topics Usage Index-3

INDEX

Loading
From files 1-28; 6-4
From libraries 1-28; 6-4
Name call 6-3

Local files 1-3
Locality of reference

General description 5-9
Suggestions for improving 5-14

LOGIN command 1-30
Loops

Combining 4-12
Removing operations from 4-7
Unrolling 4-11

M

Mass storage input/ output 3-24
Memory preset value 1-29; 2-3
Message mode 2-26
MESSAGES online manual 2-26
Mixed mode arithmetic 4-13
Modular programming

structure 2-9

N

Name call loading 6-3
Namelist input/output 3-7
Nonstandard usages 2-16

0

Object libraries
Creating 6-15
Displaying information

about 6-19
Example of 6-20
General description 6-7
Modifying 6-16
Search order 6-12
Summary 6-23

ONE_ TRIP _DO FORTRAN
command parameter 4-18

OPEN statement 3-2, 18

Index-4 FORTRAN Topics Usage

Opening files 3-2
OPTIMIZATION FORTRAN

command parameter 2-32
Optimizing

General description 4-1
Summary 4-21

p

Page
In virtual memory 5-3
Replacement algorithm 5-4
Swap 5-4
Thrashing 5-8

Parameters
FORTRAN 1-26
On execution command 1-34

Permanent file cycles 1-17
Permanent files 1-3
Presetting memory 1-29; 2-3
PRINT statement 3-5

Q
QUIT Debug command 2-40

R

Random access 3-16
READ statement

Formatted 3-9
List directed 3-5
N amelist 3-8
Unformatted 3-15

Record key 3-17
Reference map

Generating 2-21
Statement labels map

section 2-22
Variables map section 2-21

REPLACE_FILE SCL
command 1-25

Revision A

8 REPLACE_MODULE
wP subcommand 6-17

REQUEST_ TERMINAL SCL
command 1-23

REWIND _FILE SCL
A command 1-16
- RUN Debug command 2-37

Runtime error conditions 2-4

s
SCLCMD subroutine call 1-33
Sequential access files 3-16
SET _BREAK Debug

command 2-35
SET _FILE_ATTRIBUTES SCL

command 1-20
SET _MESSAGE_MODE SCL

command 2-2, 26
SET _PROGRAM_ATTRIBUTES

SCLcommand
General description 2-32
Used to set debug mode 2-32
Used to declare libraries

6-10, 12
Used to specify

ABORT _FILE 2-44
SET _STEP _MODE Debug

command 2-36
SET_ WORKING_CATALOG SCL

command 1-15
Short forms of SCL

commands 1-38
Statement labels map 2-22
Subcatalogs 1-10
SUBMIT _JOB SCL

command 1-31

Revision A

lNUJ<;X

Subprogram traceback list 2-42
System Command Language

(SCL) 1-1

T
Traceback list 2-42

u
Unformatted input/output 3-15

v
Variables map 2-21
Virtual memory

General description 5-1
Programming guidelines 5-8

w
Working catalog 1-15
WRITE statement

Formatted 3-9
List directed 3-5
Namelist 3-8
Unformatted 3-15

$ASIS file position 1-16
$BOI file position 1-16
$EOI file position 1-16
$INPUT file 1-21
$LOCAL catalog 1-3
$0UTPUTfile 1-21
$USER catalog 1-3

FORTRAN Topics Usage Index-5

•

FORTRAN for NOS/VE, Topics for FORTRAN Programmers Usage 60485916 A

We would like your comments on this manual. While writing 1t, we made some assumptions ahout who would use it
and how it would be used. Your comments will help us improw this manual. Please take a few minutN;;; to reply.

Who Are You?

C Manager
C Systems Analyst or Programmer
D Applications Programmer
0 Operator
D Other _________ _

How Do You Use This Manual?

D As an Overview
D To Learn the Product System
D For Comprehl:'nsive Reference
D For (~uick Look·up

What other programming languages do you use? _____________ _

How Do You Like This Manual? Check those that apply.

Yes Somf'what Nu

Do You Also Have?

D FORTRAN Tutorial
D FORTRAN Language Definition Usage

D D Is th<> manual easy to read !print size, page layout, and so onJ?
D [] I.sit easy to understand'?
D D Is the order of topics logical'!
::J D Arc there enough example;.;'_>
D u D Are the examples helpful'_> (~~ Too simple ::J Too complex!
D Is the technical information accurate?
D Can you (-'asily find what you want?
D [l Do the illustrations help you?
D ::J D Doe.s th(' manual tell you what :">''OU nef'd to know about the topic'.1

Comments? If applicahle, note page number and paragraph

Would you like a reply? ::::: Yes =1 No Continue on other side

From:

Name __ Company

Address Datt>

Phone N()

____ " ____ _

Please send program listing and output if applicable to your commPnt

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 814 1 MINNEAPOLIS MINN

POST AGE Will BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

P.O. BOX 3492
Sunnyvale, California 94088-3492

NO POSTAGE
NECESSARY

IF MAILED

IN TME

UNITED STATES

