
FORTRAN Version I for NOS/VE
Language Definition

Usage

(52)
CONT"OL

DATA

60485913

FORTRAN Version 1

for NOSNE

Language Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60485913

Man11Jlal Historry

PSR
Revision System Version Product Level Level Date

A 1.0.2 1.0 598 October, 1983
B 1.1.1 1.0 613 June, 1984
c 1.1.2 1.0 630 March, 1985
D 1.1.3 1.1 644 October, 1985
E 1.1.4 1.2 649 January, 1986
F 1.2.1 1.2 664 July, 1986
G 1.2.2 1.2 678 April, 1987
H 1.2.3 1.2 688 September 1987

Revision H documents the FORTRAN Version 1 language for NOSNE at release 1.2.3,
PSR level 688. This revision reflects technical and editorial changes as well as the
following new features: Variable length (*n) integer, real, and complex constants,
variables, arrays, and functions; four NOSNE status processing routines; a user
condition flag handling routine (CHGUCF); C$ EXTERNAL interface with FORTRAN
Version 2; and the TARGET_MAINFRAME parameter on the FORTRAN command.
The $LOG_RESIDENCE and $LOGGING_OPTIONS recovery attributes have been
added to the keyed-file interface.

©1983, 1984, 1985, 1986, 1987 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 FORTRAN Version 1 Language Definition Usage Revision H

C onitenits

About This Manual

Audience ...

5

5
Organization 5
Conventions 6
Control Data (CDC) Extensions . 6
Ordering Printed Manuals.
Submitting Comments
In Case of Trouble . . .

Introduction to NOS/VE
FORTRAN

7
7
8

1-1

Standard Features . . . 1-1
CDC Extensions 1-1
The FORTRAN Compiler 1-2
The NOSNE Environment 1-3

Language Elements 2-1

Writing FORTRAN Statements . 2-1
Symbolic Names 2-7
Constants 2-8
Variables 2-18
Arrays 2-21
Character Substrings . 2-27
Statement Order . . . 2-28

Specification Statements . 3-1

Type Statements
IMPLICIT Statement . .
DIMENSION Statement
PARAMETER Statement .
COMMON Statement . . .
EQUIVALENCE Statement
SAVE Statement
EXTERNAL Statement
INTRINSIC Statement .

. . 3-2
3-10
3-13
3-14
3-15
3-19
3-22
3-23
3-25

DATA Statement 3-26

Expressions and Assignment
Statements

Expressions
Assignment Statements

Revision H

. 4-1

. 4-1
4-18

Flow Control Statements .

GO TO Statements . .
IF Statements
DO Statement
CONTINUE Statement . .
PAUSE Statement
STOP Statement
END Statement . .

Input/Output

5-1

5-1
5-4

5-11
5-18
5-19
5-19
5-20

6-1

Introduction to Input/Output 6-1
Formatted Input/Output . . 6-11
Unformatted Input/Output . . 6-51
List Directed Input/Output 6-55
Namelist Input/Output (CDC

Extension). 6-62
Buffer Input/Output (CDC

Extension). 6-69
Mass Storage Input/Output (CDC

Extension). 6-71
Direct Access Files 6-81
Internal Input/Output 6-83
Segment Access Files (CDC

Extension). 6-88
Input/Output-Related Statements

and Routines 6-90

Program Units . 7-1

Main Programs
Subprograms .
Statement Functions
Procedure Communication ..
Calling Other. Language

Subprograms (CDC FORTRAN
Only)

Intrinsic Functions

7-3
7-5

7-11
7-12

7-24

8-1

Generic and Specific Names. 8-2
Function Descriptions

FORTRAN-Callable
Subprograms. . . .

NOSNE Status Subprograms
System Command Language

Subprograms

8-10

9-1

9-2

9-6

Contents 3

Utility Subprograms

Compilation and Execution

FORTRAN Command . .
Compiler Output Listing .
Execution Command

l{eyed-File Interface

Keyed-File Concepts
FORTRAN Keyed-File Interface

Concepts.
Keyed-File Interface Calls .
FIT Values

Sort/Merge .

9-23

10-1

10-1
10-17
10-30

11-1

11-1

11-27
11-52

11-135

12-1

What Sort/Merge Does . 12-1
Sort Keys 12-2
Defining Sort Keys . . . 12-3
Specifying the Record Length . . 12-10
Performance Considerations . 12-15
Sort/Merge Procedure Calls . 12-17
Owncode Routines 12-52
Using FORTRAN Procedure

Calls
Creating an Object Library .
Summing Records
Defining Your Own Collating

Sequence

Examples .

Program PASCAL
Program CORR . .

12-62
12-65
12-67

12-68

13-1

13-1
13-2

4 FORTRAN Version 1 Language Definition Usage

Program COMPSAL . .
Subroutine COUNTC . .
Program SCLCALL .

Glossary

Related Mnnuolo .

13-5
13-7
13-8

A-1

B-1

Differences Behveen NOS/VE
FORTRAN nnd NOS FORTRAN
5 C-1

C$ Directives

110 Implementation

Language Summary .

CDC Extensions to Standard
FORTRAN

Selecting Collation Tables for
Keyed Files

Programming Environment

ASCII Character Set and
Collating Weight Tables .

Introduction to Debug

Index

D-1

E-1

F-1

.. G-1

H-1

1-1

J-1

1{-1

Index-1

Revision H

About This Manual

This manual describes the CONTROL DATA® FORTRAN Version 1 language.
FORTRAN Version 1 complies with the American National Standards Institute
FORTRAN language described in document X3.9-1978 and known as FORTRAN 77;
The FORTRAN Version 1 compiler is available under the NOS/VE Version 1 operating
system.

This manual is intended to be used as a reference. It is not intended to teach the
inexperienced programmer how to write FORTRAN programs.

Audience

You should be familiar with an existing FORTRAN language. In addition, you should
know how to create and run jobs under the NOS/VE operating system.

Organization

The FORTRAN manual set consists of the following manuals:

FORTRAN Tutorial

This manual is intended for the programmer who has no previous FORTRAN
experience. It presents a tutorial introduction to the FORTRAN language, beginning
with the basic elements of the language and proceeding through more complex
features.

Topics for FORTRAN Programmers

This manual is intended for experienced FORTRAN programmers who are new to
NOS/VE. It presents introductory topics intended to help FORTRAN programmers
use the NOS/VE operating system and NOS/VE FORTRAN effectively. Topics
covered include System Command Language, debugging, input/output, optimization,
virtual memory, and object libraries.

Summary

This manual presents a concise pocket-size summary of the FORTRAN language. It
presents a complete list of FORTRAN statements in alphabetical order, and shows
the parameters for each statement. It does not include detailed parameter
descriptions.

FORTRAN Quick Reference (Online)

This manual provides an online quick reference for the FORTRAN commands,
statements, functions, and subprograms. Parameter descriptions and examples are
included.

Language Definition Manual

This· manual presents detailed descriptions and definitions of all the statements and
features of the NOS/VE FORTRAN language, including the Sort/Merge and
Keyed-File interfaces. Examples of statements and programs are in~luded.

Revision H About This Manual 5

Conventions

All numbers used in this manual are decimal unless otherwise indicated. Other number
systems are indicated by a notation after the number. For example, 177 octal, FA34
hex.

Certain notations are used throughout the manual with consistent meaning. The
notations are:

UPPERCASE

lowercase

Boldface

Italics

In language syntax, uppercase indicates a statement keyword or
character that is to be written as shown. Although lowercase letters
are interpreted the same as uppercase characters when used in
FORTRAN keywords and symbols, uppercase is used for consistency.
In occasional examples, keywords and symbols are shown in
lowercase for illustrative purposes.

In language syntax, lowercase indicates a name, number, symbol, or
entity that you must supply.

In language syntax, boldface type indicates a required keyword,
parameter, or symbol.

In language syntax, optional keywords, parameters, and symbols are
shown in italics.

In language syntax, a horizontal ellipsis indicates that the preceding
optional item can be repeated as necessary.

In program examples, a vertical ellipsis indicates that other
FORTRAN statements or parts of the program have not been shown
because they are not relevant to the example.

Space character. This symbol is used wherever there might
otherwise be doubt as to how many spaces are intended.

In examples of formatted input and output, vertical bars denote the
input or output fields. When used to enclose a numeric quantity,
vertical bars indicate the magnitude (absolute value) of the quantity .

.
:

!.:!i.= Vertical bars in the margin indicate changes or additions to the text from the previous
revision. An example of a change bar is shown in the margin next to this paragraph.

Control Data Extension

Control Data (CDC) Extensions

Major descriptions of Control Data Extensions to standard ANSI FORTRAN (CDC
Extensions) are marked as this section is marked. :R.if.~fih®.~tt.Q.1QP.G.Ji~te~l.9P.$.l(fj,tb.et.
:thi.bHt.h.ilffljij(#SJ;lij~cdpt.fQ.h.Nir@dijf.Jh.itihblD!itij:firidic.ijtitFltt/$b~dID.g/Q!.'Jth~Ht.~t.itd$.f~ttmg
:t&::::the/bP.h.J.tah.dijjfd}f~ijjt#tif}ij'.ij/tb.1$:\$.eh.ti.h®.\1$)$.bided~ A complete list of CDC
extensions is presented in appendix G.

End of Control Data Extension

6 FORTRAN Version 1 Lnngunge Definition Usage Revision H

Ordering Printed Manuals

Control Data manuals are available. through your local Control Data sales offices. Sites
within the U.S. can also order manuals directly from Control Data Literature
Distribution Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete title, publication number, and
revision level.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion
of the manual's usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your
comments to:

Control Data Corporation
Technology and Publications Division
P. 0. Box 3492
Sunnyvale, California 94088-3492

Please indicate whether you would like a written reply.

Be sure to include the following information with your comment:

FORTRAN for NOSNE Language Definition Usage Manual
Publication number 60485913
Revision G

Also, if you have access to SOLVER, the CDC online facility for reporting problems,
you can use it to submit comments about this manual. When it prompts you for a
product identifier for your report, please specify FN8.

Revision H About This Manual 7

:n:n Case of Trouble

Control Data's Central Software Support maintains a hotline to assist you if you have
trouble using our products. If you need help beyond that provided in the documentation
or find that the product does not perform as described, call us at one of the following
numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the
physical packaging and/or distribution of printed manuals to Literature and Distribution
Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

8 FORTRAN Version 1 Language Definition Usage Revision H

Introduction to NOSNE FORTRAN

This chapter present a brief introduction to NOSNE FORTRAN Version 1.

Standard Features

Control Data (CDC) Extensions

The FORTRAN Compiler

The NOSNE Environment . . .

1

1-1

1-1

. 1-2

. 1-3

lintrroduction to NO§NE FOJRTJRAN

NOSNE FORTRAN Version 1 provides the features and capabilities set forth in the
ANSI FORTRAN Standard as well as several Control Data unique features.

Standard Features

]_

NOSNE FORTRAN Version 1 (hereafter referred to simply as FORTRAN) offers the
full complement of standard FORTRAN capabilities. These capabilities include integer,
single precision, double precision, and complex arithmetic; block control structures;
character string processing; and a wide range of input/output capabilities. Most
FORTRAN programs that strictly comply with the ANSI standard can be compiled
using the FORTRAN compiler and executed under NOSNE with no changes, regardless
of the computer system for which the program was originally written.

Control Data (CDC) Extensions

In addition to the standard features, NOSNE FORTRAN provides unique features
which greatly enhance the power of the FORTRAN language. Most of these features
consist of subprogram calls that allow you to take advantage of other CDC products.
Although a program that uses these features cannot be transported directly to another
computer system, these extensions allow greater flexibility and choice of options in the
writing of FORTRAN programs. To facilitate the migration of programs from one
system to another, a compiler option is available that detects most non-ANSI usages
within a program. The major extensions include:

Boolean data type

Allows you to manipulate octal, hexadecimal, and boolean string data items.
Boolean constants and variables are described in chapters 2 and 3; boolean
expressions are described in chapter 4.

N amelist input/output

Allows you to perform formatted input/output without specifying a format or an
input/output list. You simply specify a group name, and all items in the group are
read or written according to a compiler-defined format. N amelist input/output is
described in chapter 6.

Mass storage input/output

Allows you to create and access random files. Records on random files are accessed
directly by record key. This provides a quicker method of access to individual
records than conventional sequential input/output. Mass storage input/output is
described in chapter 6.

Segment access files

Allows you to map a file to a named common block and reference entities in the
file. as normal variables in a named common block. Segment access files are
described in chapter 6 and appendix D.

C$ Directives

Allow you to control various aspects of compilation, such as whether or not certain
source lines are to be compiled or ignored by the compiler. C$ directives are
described in appendix D.

Revision H Introduction to NOS/VE FORTRAN 1-1

The FORTRAN Compiler

A complete list of all the CDC extensions to ANSI FORTRAN is presented in·
appendix G. Descriptions of CDC extensions in this manual are indicated by shaded
text.

The FORTRAN Compiler

The FORTRAN compiler reads a file containing the FORTRAN source program,
translates that program into an object program consisting of machine instructions, and
(optionally) writes the object program to a file. The object program can then he loaded
into memory and executed by system commands.

A FORTRAN source program consists of text lines formatted according to the rules of
FORTRAN syntax. If the compiler detects a syntax error in the source program, it
issues a descriptive message describing the nature of the error. The compiler detects
errors at different levels of severity. If the errors are severe enough (fatal), the
resulting object program cannot be executed; you must correct the errors and recompile.
Generally, the diagnostic messages provide enough information to enable you to easily
determine the cause of the errors.

The FORTRAN compiler produces object code at two levels of optimization. The lower
level results in faster compilation, but produces an object program that executes more
slowly. At the higher level of optimization, the compiler manipulates the generated
object code to produce an object program that executes much faster. The level of
optimization is selected by a parameter on the FORTRAN command.

In addition to the object program, the FORTRAN compiler produces two other output
files: an output listing file and an error listing file. These files are optional and are
selected by parameters on the FORTRAN command. The error listing file contains
error messages that were issued during compilation. The output listing file contains a
complete listing of the source program and, optionally, an object listing and a reference
map. The reference map provides detailed information about symbolic names and other
items u~ed in the FORTRAN program and is a useful debugging tool.

The FORTRAN compiler provides a number of other options in addition to those
described above. The available compiler options, the formats of the input and output
files, and the commands for compiling and executing a FORTRAN program, are
described in chapter 10.

1-2 FORTRAN Version 1 Language Definition Usage Revision H

The NOS/VE Environment

The NOS/VE Environment

The NOSNE operating system provides several software facilities that can make
creation and maintenance of FORTRAN programs easier and more efficient. The
following facilities can be used outside your program:

Source Code Utility (SCU)

Allows you to create and maintain source programs. SCU is especially useful for
creating and updating large collections of source programs called source libraries.
SCU is described in the SCL Source Code Management manual.

Object Code Utilities (OCM)

Allows you to create and maintain libraries of compiled object programs (called
object libraries). Object libraries are especially useful for programs that are to be
shared by other programs. They can be used to measure and analyze program
performance. These utilities are described in the SCL Object Code Management
manual.

File Migration Aid (FMA)

Allows you to read, write, and edit ANSI standard FORTRAN files on the NOS or
NOS/BE side of a dual state system from your FORTRAN program running on
NOSNE.

File Management Utility (FMU)

Allows you to convert data files from one format to another. FMU can be used to
convert files from other Control Data systems for use on NOSNE. FMU is
described in the SCL Advanced File Management manual.

Debug Utility

Enables you to debug a program during its execution. You can stop the program at
selected points or on the occurrence of an error, and request formatted displays of
variables and arrays. The Debug utility is described in the Debug for NOSNE
manual. A brief introduction is presented in appendix K.

Programming Environment (PE)

Allows you to create, debug, and run FORTRAN programs in an integrated
environment with a full-screen interface. Access is available to the editor, Debug,
and the online manuals. The Programming Environment is described in the
Programming Environment manual. A brief introduction is presented in appendix I.

Professional Programming Environment (PPE)

Coordinates complex programming projects using an integrated, full-screen
environment. Provides access to NOSNE development tools including the Full
Screen Editor, the Source Code utility, the Debug utility, and the object library
generator. The Professional Programming Environment is described in the
Professional Programming Environment manual. A brief introduction is presented in
appendix I.

The following facilities can be used inside your FORTRAN program.

Sort/Merge Calls

These calls enable you to sort the records of one of more files into a specific order,
and to merge the sorted records of two or more files into a single file. These calls
are described in chapter 12.

Revision H Introduction to NOS/VE FORTRAN 1-3

l

!!!

I

The NOSNE Environment

System Command Language Calls

These calls provide a method of communicating with the operating system using the
System Command Language (SCL). The parameter interface calls enable you to
reference the parameters specified on the command that began execution of the
FORTRAN program. The variable interface calls enable you to retrieve or alter the
values of existing SCL variables, as well as to define new SCL variables. The
SCLCMD call allows you to execute any SCL command from within your program.
These calls are described in chapter 9.

General Utility Calls

These calls enable you to perform a variety of tasks, such as generating program
dumps, generating random number sequences, and obtaining time and date
information from the system. These calls are described in chapter 9.

Keyed File Calls

These calls enable you to create and use the keyed file organizations
(indexed-sequential and direct-access) in your FORTRAN program. These calls are
described in chapter 11.

Screen Design Facility (SDF)

The Screen Design Facility (SDF) is an interactive screen designing tool that runs
in the NOSNE environment. SDF enables the designers of a system or application
to create, modify, and maintain the display and data entry screens that are
presented to the end user of a system or application. The Screen Design Facility is
described in the Screen Design Facility manual.

Screen Formatting

A tool that enables the application designer to provide a full-screen environment for
the end user. Screen formatting provides a comprehensive set of object routines that
control the flow of displaying SDF screens and manipulating data associated with
the screens. Screen Formatting is described in ~he Screen Formatting manual.

1-4 FORTRAN Version 1 Language Definition Usage Revision H

The NOSNE Environment

Figure 1-1 shows the relationship of a FORTRAN program to the NOSNE operating
system.

c.
I
1~

Input
Data

l:::"Fi~sj

SorVMerge

System
Command
Language

FORTRAN
Compiler

Executable Object Program

System
Command
Language

Keyed-File
Interface

Output
Data
Files

Figure 1-1. FORTRAN in the NOS/VE Environment

Revision H Introduction to NOSNE FORTRAN 1-5

Language 1Elemell1lts

FORTRAN statements are composed of elements that are combined according to the
rules of FORTRAN syntax. These elements include constants, variables, substrings,
arrays, and operators.

Writing FORTRAN Statements

FORTRAN statements are written using the FORTRAN character set shown in the
following table:l

Type Characters

2

Alphabetic A through Z (Lowercase letters are equivalent to uppercase letters when
used in symbolic names and FORTRAN reserved words.)

Numeric

Special
Characters

0 through 9

= equal

+plus

- minus

* asterisk

I slash

(left parenthesis

) right parenthesis

, comma

. decimal point

$ currency symbol

' apostrophe

: colon

l!Mi~bw

i::::i.i~Jijffii.tl.Q.ri:::::J?bil.U

space

Lowercase letters are equivalent to uppercase letters when used in symbolic names and
FORTRAN keywords. For example, the following FORTRAN statements are equivalent:

READ (UNIT=1,FMT=99) AVAL, Z

read (unit=1,fmt=99) aval, z

1. The ASCII representations of the characters are shown in appendix J.

Revision H Language Elements 2-1

Writing FORTRAN Statements

However, in character strings, boolean string constants, and extended Hollerith
constants, uppercase and lowercase characters are treated as distinct values. For
example, the following character· constants are not equivalent:

'ABCDE'

'abcde'

NOTE

For consistency and readability, the FORTRAN syntax descriptions in this manual use
uppercase letters to indicate keywords and lowercase letters to indicate user-supplied
values. However, in all FORTRAN statements, lowercase letters are valid and are
treated the same as uppercase letters.

ASCII characters that are not included in the FORTRAN character set can be used in:

Character string, boolean string, and extended Hollerith constants

Apostrophe, H, and quote edit descriptors in format specifications

Comments (i.hlib~ and line)

FORTRAN statements can be written in either nonsequenced (normal) mode :ti.r
:~~ijijijh®.:d.JID.tm:~. Each program must be written entirely in one mode. Normal mode is
principally used for batch jobs. ~se.Qti.~bC.ij4tm6de:d:~kAH'JPGY~it.e.n~i6.h.fijhdflKJht~nae.anr.6t
jJ!e:::::Mfitb:::Jh.tijta¢:tiv~::::):\pplj~ij#JQ.h,~;:::::Wh.~:::::s.:mQUENOE:OillilNES:::::p~jfflijte.t::::ij'.(::::th~
:EO.BlrRAttVJilim~ffllt(dii~ttb.edtihtch.aP:te.tru1lt~e.1ijct~:::::~~mta.~bcijdfm&a.e:l

A FORTRAN statement is written on one or more lines. The first (and possibly only)
line of each statement is an initial line. Each additional line is a continuation line.
Each statement has one initial line and may have zero through 19 continuation lines.

Lines can also be comment or compiler directive lines.

2-2 FORTRAN Version 1 Language Definition Usage Revision H

Writing FORTRAN Statements

Nonsequenced Lines

A nonsequenced mode line consists of characters in positions 1 through 80. However,
only positions 1 through 72 are scanned by the compiler. You can use positions 73
through 80 for an identification field. The following example shows a program written
in nonsequenced mode.

PROGRAM PASCAL
c
C THIS PROGRAM PRODUCES A PASCAL TRIANGLE
c

INTEGER LROW(15)
DO 10 I= 1,15

LROW(I) = 1
10 CONTINUE

THIS INITIALIZES THE
ARRAY LROW

PRINT '(17H1 PASCAL TRIANGLE, //1X,I5,/1X,2I5)',
+LROW(15), LROW(14), LROW(15)

DO 50 J = 14,2,-1
DO 40 K = J, 14

LROW(K) = LROW(K) + LROW(K+l)
40 CONTINUE

PRINT '(1X,15I5)', (LROW(M), M = J-1,15)
50 CONTINUE

END

Initial Lines

Each statement begins with an initial line. The statement characters are written in
positions 7 through 72 of the initial line. You can use spaces to improve readability.
The initial line of a statement can contain a statement label in positions 1 through 5.
Position 6 contains a space.

Continuation Lines

If a statement is longer than 66 characters (positions 7 through 72 of the initial line),
it can be continued on as many as 19 continuation lines. A character other than blank
or zero in position 6 indicates a continuation line. Positions 1 through 5 must contain
spaces.

The length of a nonsequenced statement cannot exceed 1320 characters (one initial line
and 19 continuation lines, at 66 characters per line).

Statement Labels

A statement label (any one- through five-digit positive nonzero integer) can be written
in positions 1 through 5 of the initial line of a statement. A statement label uniquely
identifies a statement so that it can be referenced by other statements. Statements that
will not be referenced do not need labels. Spaces and leading zeros are not significant.
Labels need not occur in numerical order, but a given label must not be declared more
than once in the same program unit. A label is known only in the program unit
containing it and cannot be referenced from a different program unit. Any statement
can be labeled, but only FORMAT and executable statement labels can be referenced by
other statements.

Revision H Language Elements 2-3

I

Writing FORTRAN Statements

Comments

Comments provide a method of placing program documentation in the source program.
Comments in nonsequenced mode can appear as lri.JiijeJC.dm@~htt.:n.it. as entire comment
lines.

:AP.ttnU.ni.nmmme.#tttcootE*ti.hititilti.MWv&itt~n:::::anttb.etijime.tu.n~nmn:1:au>s.wnaN
:$tiW.me#.tXIrhijtiiclata.i.tttm:::::P.dthttm::rne.dnihl.t~$Jtb.e.t111as.WlliAl~1>:itit1.me.dtnib.df~#atk$
:th.i.<tmmnmng::::~rauv:m.im.~H®.mme.h.tHWhetifitml.tfin~e.tijtFintmune.tc.aw.:m~n1na.®.$Hi~n
:*Uf.~~ttthitP.te.~e.am1m:FOa.TBANt~tit.~mintt(iY.eh.tu:mittJM::tm.rENllti.ti.~meritMtAh
:iicl~i.tiQnf P.otnt::::m::::ltPP.ijarmJ!tiri:tc.a1(durit$.:hhitl{$faHiintu.i#ittihtllhij~

A comment line is indicated by a C, an asterisk (*), :&tfihfiiclimitiQijfP.dlhtf(!) in
position 1. Comment lines do not affect the program and can be placed anywhere
within the program. Comment lines can appear between an initial line and a
continuation line, or between two continuation lines. A comment line following an END
statement is treated as the first line of the next program unit. (Program units are
described in Chapter 7.) Any line with spaces in positions 1 through 72 is also a
comment line.

Additional characters that are not in the FORTRAN character set can be included in
comment lines. Comment lines can include any (printable graphic) characters listed in
appendix J for the character set being used.

Control Data Extension

Compiler Directive Lines

The characters C and $ in positions 1 and 2 indicate a compiler directive line. A
compiler directive must appear on a single line and any compiler directive terminates
statement continuation.

Compiler directives are effective unless the COMPILATION_DIRECTIVES parameter of
the FORTRAN command is used to suppress interpretation of compiler directives. If
directive suppression is specified, compiler directives are interpreted as comment lines.

Each directive, including keyword and parameters, is written in positions 7 through 72.
Compiler directives are described in appendix D.

End of Control Data Extension

Positions 73 and Beyond

Positions 73 and beyond can be used for identification information. Characters in the
identification field are ignored by the compiler but are copied to the source program
listing. If source program input comes from cards, positions 73 through 80 can be used
for identification information.

2-4 FORTRAN Version 1 Language Definition Usage Revision H

Writing FORTRAN Statements

Control Data Extension

Sequenced Lines

You can write a FORTRAN program with sequenced lines. Each line represents a
source line and usually begins with a sequence number of one through five digits. The
sequence numbers for source lines are usually in ascending order, although this is not
a requirement. Source lines are interpreted as sequenced lines if you specify the
SEQUENCED_LINES parameter on the FORTRAN command.

Example of a sequenced program:

00100
00110C
00120C
00130C
00140
00150
00160
00170 10
00180
00190+
00200
00210
00220
00230 40
00250
00260 50
00270

PROGRAM PASCAL

THIS PROGRAM PRODUCES A PASCAL TRIANGLE

INTEGER LROW(15)
DO 10 I = 1, 15

LROW(I) =

CONTINUE

THIS INITIALIZES THE
ARRAY LROW

PRINT '(17H1 PASCAL TRIANGLE, //1X,I5,/1X,2I5)',
LROW(15), LROW(14), LROW(15)
DO 50 J = 14,2,-1

DO 40 K = J, 14

LROW(K) = LROW(K) + LROW{K+1)
CONTINUE
PRINT '(1X,15I5)', (LROW(M), M = J-1,15)

CONTINUE
END

Like nonsequenced lines, sequenced lines can be initial lines, continuation lines,
comment lines, and compiler directive lines.

A line consists of characters in positions 1 through 80. The sequence number of a
sequenced line must appear to the left of all other non-space characters in the line.
The sequence number consists of one through five digits, usually at the beginning of a
line. Spaces can precede the sequence number.

The statement can begin immediately after one or more spaces following the sequence
number. You can insert blanks within the statement to improve readability.

Initial Lines

Every sequenced statement begins with an initial line. The initial line has at least one
space after the sequence number. The initial line can contain a statement label.

Statement Labels

Statement labels can have the same form as for nonsequenced lines. If you include a
statement label, it must follow the sequence number and must he separated from the
number by one or more spaces. Leading spaces and leading zeros within a label are
disregarded. A label must not contain embedded spaces.

Revision H Language Elements 2-5

Writing FORTRAN Statements

Continuation Lines

If a sequenced statement extends beyond position 80 of an initial line it can be
continued on as many as 19 continuation lines. A continuation line in sequenced mode
is indicated by the character + immediately following the sequence number. Spaces are
optional between the + and the continuation of the statement.

Comments

Comments in sequenced mode can appear as inline comments or as entire comment
lines.

An inline comment appears on the same line as a FORTRAN statement. The
exclamation point (!) terminates the FORTRAN statement and marks the beginning of
an inline comment. The appearance of an inline comment does not affect the preceding
FORTRAN statement. An exclamation point (!) appearing in column 6 marks a
continuation line.

A comment line in sequenced mode is indicated by any character except blank or +
immediately following the sequence number. Any line without a sequence number is
treated as a comment line. Note that in sequenced mode, comment lines can begin with
characters other than C or asterisk (*).

Compiler Directive Lines

The characters C$ immediately following the sequence number indicate a compiler
directive line. You can include one or more spaces between C$ and the beginning of
the directive. The directive cannot be continued on subsequent lines.

End of Control Data Extension

2-6 FORTRAN Version 1 Language Definition Usage Revision H

Symbolic Names

Symbolic Names

A symbolic name is assigned by the user and consists of one through '~e:V~hOetters and
digits (ANSI only allows six), beginning with a letter. Lowercase letters are equivalent
to uppercase letters and spaces within a symbolic name are suppressed. Symbolic
names are used for the following:

• Main program names

• Common block names

• Element names

Variable name
Array name
Symbolic constant name

• Subprogram names

Subroutine name
Block data subprogram name
Dummy subprogram name

• Function names

Statement function name
Intrinsic function name
External function name

• N amelist group names

You can use ·names that are FORTRAN keywords as user-assigned symbolic names
without conflict. For example:

PROGRAM TEST
PRINT= 1.0
PRINT*, PRINT

The name PRINT is legally used as both a variable name and a FORTRAN keyword.

However, certain naming conflicts are illegal and are diagnosed. For example, the
sequence

PROGRAM ALPHA
ALPHA = 1.0

illegally uses the name ALPHA as a program unit name and a variable name.

The following example illegally uses the name RAY as both an array name and a
subroutine name:

PROGRAM X
DIMENSION RAY(3)

CALL RAY

In general, you should avoid naming conflicts by assigning unique names to all
program entities.

Revision H Language Elements 2-7

Constants

Constants

A constant is a quantity that remains fixed throughout program execution. The types of
constants are integer, real, double precision, complex, boolean, logical, extended
Hollerith, and character. You can reference a constant by its actual value or, with the
exception of extended Hollerith constants, by a symbolic name associated with the
constant. You can use the PARAMETER statement described in chapter 3 to assign a
symbolic name to a constant. Integer, real, double precision, complex, and boolean
constants are considered arithmetic constants.

Blanks in a constant, except a character, boolean string, or extended Hollerith constant,
have no effect on the value of the constant.

Integer

An integer constant is a string of 1 through 19 decimal digits written without a
decimal point. An integer constant has the form:

± d ••• d

d

Decimal digit

An integer can be positive, negative, or zero. If the integer is positive, the plus sign
can be omitted; if it is negative, the minus sign must be present. An integer constant
must not contain a comma. Integer constants are one of three sizes: :t.WP:Jb.Y:ti$.f(Q.h~
:f()tlttJr:::~m:::a=:::~mP.U.tijf:\Wdtdl~'::::r.4U.t:::::P.Yt.i$:':i:fijh.i.::::h.alf::iit:::i::::~~#bP.4.t.it::::w9.ttJ:; and eight bytes (a
full computer word). The value of the constant determines the integer size as follows:

AS.2768./W.lS.2767

A~A4748.3.G.4:8:::::tb.#fijjghtfa27S.$
:arid
:3.2.76S.:::::th.f9.tttthm:2:ut14s.aw.n

AC2!t~:ai:::t.hfifjJ.gQ:::::~gt.474.8S.84a
:arid
:2x414s.as.4s.1ththtlih><2i:re.arwa

NOTE

(2**63)-1 is equal to 9,223,372,036,775,807.

:2lh!W.

WH$.!W

When a value is converted from real to integer, the above ranges are still valid.

Examples of valid integer constants:

237
-74
+136772
-0024

2·8 FORTRAN Version 1 Language Definition Usage Revision H

Examples of invalid integer constants:

46.

23A

7,200

NOTE

Decimal point not allowed

Letter not allowed

Comma not allowed

Constants

Throughout this manual, whenever an integer constant or variable is allowed, it can be
of any length unless otherwise noted.

For Better Performance

Four-byte, and especially two-byte integer constants, variables, and functions can
increase the execution time of your program. This is because such integers are byte
aligned rather than word aligned and therefore slower to load and store.

Real

A real constant consists of a string of decimal digits written with a decimal point or
an exponent, or both. A real constant has one of these forms:

± coeff

± coeff E ± exp

±nE±exp

coeff

Coefficient in the form:

n

n.
n.n
.n

Unsigned integer constant

exp

Unsigned integer exponent (base 10)

A plus sign preceding the coefficient is optional if the constant is positive; a minus
sign is required to denote a negative constant.

Revision H Language Elements 2·9

Constants

A real constant can be one of two sizes: eight bytes (one computer word)HJdWJ?m6:lb.ytijt
1twt>.:n&m$eeijttt~H~iim.wu.t~t1wo.ra$RJ:m.1ti1v.~utie$itlWJ;tti.ti.:>l:atb.&t~ij/JH>~ite.>ijtij.Jwf:ltt~h
With.tij)JOti~ne.nt::J~~<aij~i.~arnr.ottaJ~ijblijJP.f:eijitiP.t-tmijd#ijt~~Jit.$ftnm:~m.i.tr~Mteb.h.$Wntt
:~bfijJtf.i.ij;W,~:VJ=i$\do4.blijJpt@iij##M:&~hie$~ The range of real constants is as follows:

Range

-10. **(-1232) through -10. **(1234)
0.
10. **(-1234) through 10. **(1232)

Hlm1:M4232X:ttl#&tiklfHtUl~'~"(l.23.4)
Jt
tt:nm~rni:2a4!1tth.rf;ugn.:tumt!et2a2)

Examples of valid real constants:

7.5
-3.22
+4000 .
. 5

Examples of invalid real constants:

33,500. Comma not allowed

2.5A Letter not allowed

Constant Size

8 byte

Optionally, you can write a real constant with a decimal exponent. An exponent is
written as the letter E (or e) followed by an integer constant indicating the power of
ten by which the number is to be multiplied. If the E is present, the integer constant
following the letter E must be present. The plus sign can be omitted if the exponent is
positive, but the minus sign must be present if the exponent is negative.

Examples of valid real constants with exponents:

42E1 Value is 42. x 10**1 = 420.

. 000285E+5 Value is .000285 x 10**5 = 28.5 .

6.205E6 Value is 6.205 x 10**6 = 6 205 000.

700.e-2 Value is 700. x 10**(-2) = 7. (Symbol e is equivalent to E.)

Example of invalid real constant with exponent:

7.2E-3.4 Exponent is not an integer

2-10 FORTRAN Version 1 Language Definition Usage Revision H

Constants

Double Precision

A double precision constant is written in the same way as a real constant with
exponent, except that the exponent is prefixed by the letter D (or d) instead of E. A
double precision constant has the form:

± coeff D ± exp

±nD±exp

coeff

Coefficient in the form:

n

n.
n.n
.n

Unsigned integer constant

exp

Unsigned integer exponent (base 10)

Double precision values are represented internally by two consecutive computer words
(16 bytes), giving additional precision. A double precision constant is accurate to
approximately 29 decimal digits. A plus sign preceding the coefficient is optional for a
positive constant; the minus sign is required for a negative constant. The plus sign
preceding the exponent can be omitted if the exponent is positive, but the minus sign
must be present to denote a negative exponent.

Examples of valid double precision constants:

5.83402 Value is 5.834 x 10**2 = 583.4

14.0-5 Value is 14. x 10**(-5) = .00014

9.2d03

312004

Value is 9.2 x 10**3 = 9200 (The symbol d is equivalent to D.)

Value is 3120. x 10**4 = 31 200 000

Example of invalid double precision constants:

7.20

05

2,001.302

3.14159265

Exponent is missing

Exponent alone is not allowed

Comma is not . allowed

D and exponent are missing

For Better Performance

Double precision constants, variables, arrays, and functions require more execution time
because of the extra precision they support (two words).

Revision H Language Elements 2-11

I

Constants

Complex

Complex constants are written as a pair of real or integer constants or symbolic
constants separated by a comma and enclosed in parentheses, as follows:

(real,imag)

real

Real or integer constant or symbolic constant that represents the real part

imag

Real or integer constant or symbolic constant that represents the imaginary part

NOTE

The term real as applied to the first component of a complex value should not be
confused with the FORTRAN real data type.

The first constant represents the real part of the complex number and the second
constant represents the imaginary part. The parentheses are a required part of the
constant. Either constant can be preceded by a plus or minus sign. Complex values are

l~~ represented internally by two consecutive computer words (16 bytes) containing real
(floating-point) values.

Type real constants that form the complex constant must be within the valid range for
real constants.

Examples of valid complex constants (i = square root of -1):

(1, 7.54)

(-2.1E1, 3.24)

(4, 5)

(0., -1.)

Value is 1. + 7.54i

Value is -21. + 3.24i

Value is 4.0 + 5.0i

Value is 0.0 - 1.0i

Examples of invalid complex constants:

(12.70-4 16.1) Comma is missing and double precision is not allowed

4.7E+2, 1.942 Parentheses are missing

Logical

A logical constant has one of the following values:

.TRUE. Represents the logical value true

.FALSE. Represents the logical value false

2-12 FORTRAN Version 1 Language Definition Usage Revision H

Constants

The periods are a required part of the constant.

Examples of valid logical constants:

. TRUE. . true. . True .

. FALSE. .false. .False.

Examples of invalid logical constants:

.TRUE No terminating period

.F. Abbreviation not recognized

The logical values true and false are represented internally as a word with a leftmost
bit of 1 and a word with a leftmost bit of 0, respectively.

Control Data Extension

Boolean

A boolean constant is a boolean string constant, octal constant, or hexadecimal
constant. A boolean constant is represented in one computer word.

Boolean String

A boolean string constant has one of the following forms:

nHs

L"s"

R"s"

"s"

n

An unsigned nonzero integer constant in the range 1 through 8

s

A string of 1 through 8 characters

A boolean string constant can contain no more than eight characters. A boolean string
constant that is used as an actual argument and exceeds eight characters is an
extended Hollerith constant. (The extra characters are retained.) For all other uses of a
boolean string constant, extra characters are truncated on the right, and the compiler
issues a trivial diagnostic. (Boolean string constants in format specifications are not
limited to eight characters.)

The nHs and "s" forms indicate left-justified with blank fill. The value n in nHs
specifies the number of characters in the string s. Blank fill means that any
unassigned character positions in the computer word are set to the space character
(ASCII code 20 hex).

Example:

2HAB Value is 414220 ... 20 hex

Revision H Language Elements 2-13

I

Constants

The L"s" form indicates left-justified with binary zero fill. Binary zero fill means that
any unassigned character positions are set to binary zero (ASCII code 00 hex).

Example:

L"AB" Value is 414200 ... 00 hex

The R"s" form indicates right-justified with binary zero fill.

Example:

R"AB" Value is 00 ... 004142 hex

The "s" form is equivalent to the nHs form except that the characters need not be
counted. Blanks are significant and characters that are not in the FORTRAN character
set can be used.

In the L''s", R"s", and "s" forms, a quote within the string is represented by two
consecutive quote characters; the consecutive quotes count as one character. In all
forms, blanks are significant and characters that are not in the FORTRAN character
set can be used.

Examples:

"AB" Value is 414220 ... 20 hex

11 C1111 D11 Value is 43234420 ... 20 hex

Octal

An octal constant has the form:

O"o"

0

A string of 1 through 22 octal digits. (If all 22 digits are used, the leftmost digit
must be 0 or 1.)

An octal digit is one of the digits: 0, 1, 2, 3, 4, 5, 6, or 7. The string of octal digits is
interpreted as an octal number. As many as 22 octal digits can be represented in a
64-bit computer word. The octal number is right-justified with binary zero fill.

Example:

0 11 77 11 Value is 00 ... 003F hex

2-14 FORTRAN Version 1 Language Definition Usage Revision H

Constants

Hexadecimal

A hexadecimal constant has the form:

Z"z"

z

A string of 1 through 16 hexadecimal digits

A hexadecimal digit is one of the characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
or F. (Lowercase letters are permissible.) The string of hexadecimal (hex) digits is
interpreted as a base 16 number. As many as 16 hexadecimal digits can be represented
in a 64-bit computer word. The hexadecimal number is right-justified with binary zero
fill.

Example:

Z 11 1A 11 Value is 00 ... 00lA hex

Z11 ace 11 Value is 00 ... ACE hex

Extended Hollerith

Extended Hollerith constants are used only as actual arguments to external procedures.
An extended Hollerith constant has one of the following forms:

nHs

L"s"

R"s"

"s"

n

An unsigned nonzero integer constant greater than 8.

s
A string of n characters for the nHs form, or a string of greater than 8 characters
for any of the other forms.

An extended Hollerith constant is stored in two or more consecutive computer words.
The length in words of an extended Hollerith constant is given by the expression

INT((N + 8 - 1)/8)

where N is the number of characters in the constant. (INT means that the fractional
part of the result of the division is truncated.)

An extended Hollerith constant is stored beginning in the leftmost character position of
the first word. If there are any unassigned character positions in the last word
occupied by the constant, those positions are filled with either spaces or zeros,
depending on the form of the constant. The characters in the last word occupied by the
constant are either left-justified or right-justified within the word, depending on the
form of the constant.

Revision H Language Elements 2-15

Constants

For the nHs form, n specifies the number of characters in the string s. Spaces are
significant and characters not in the FORTRAN character set can be used.

For the nHs and "s" forms, characters in the last word occupied by the constant are
left-justified with blank fill. Blank fill means that any unassigned character positions
in the last word occupied by the constant are set to the space character (ASCII code 20
hex).

Example:

10HABCDEFGHIJ Value is 4142434445464748l494A20 ... 0020 hex

For the L''s", R"s", and "s" forms, a " character within the string is represented by
two consecutive " characters; the consecutive quotes count as one character.

For the L''s" form, characters in the last word occupied by the constant are
left-justified with binary zero fill. Binary zero fill means that any unassigned character
positions in the last word occupied by the constant are set to binary zero (ASCII code
00).

Example:

L11 ABCDEFGHIJ 11 Value is 4142434445464748l494AOO ... OO hex

For the R"s" form, characters in the last word occupied by the constant are
right-justified with binary zero fill.

Example:

R11 ABCDEFGHIJ 11 Value is 4142434445464748I00 ... 00494A hex

The "s" form is equivalent to the nH form except that you need not count characters.
Spaces are significant and characters not in the FORTRAN character set can be used.

Examples:

11 ABCDEFGHIJ 11

"QRSTU 1111 VWXYZ 11

Value is 4142434445464748l494A20 ... 20 hex

Value is 5152535455235657l58595A20 ... 20 hex (represents the string
QRSTU"VWXYZ)

End of Control Data Extension

2-16 FORTRAN Version 1 Language Definition Usage Revision H

Constants

Character

A character constant has the form:

's'

s

A string of characters

Apostrophes are used to enclose the character string. Within the character string, an
apostrophe is represented by two consecutive apostrophes. The two consecutive
apostrophes count as one character in the length of the string.

The minimum number of characters in a character constant is one; the maximum
number of characters in a character constant is (2**16)-1 or 65535. The length is the
number of characters in the string. Spaces are significant in a character constant. The
string can contain any character in the ASCII set. An uppercase character is not
equivalent to its lowercase counterpart.

Character positions in a character constant are numbered consecutively as 1, 2, 3, and
so forth, up to the length of the constant. The length of the character constant is
significant in all operations in which the constant is used. The length must be greater
than zero.

Examples of valid character constants:

'ABC'

'123'

'Year''s' Represents the string Year's

Examples of invalid character constants:

'ABC Terminating apostrophe is missing

·Ase· Boolean constant not a valid character constant

'Year's' Apostrophes within string must be doubled

Revision H Language Elements 2-17

Variables

Variables

A variable represents a value that can be changed repeatedly during program
execution. Variables are identified by a symbolic name of one through seven letters or
digits (ANSI allows only six), beginning with a letter. A variable generally represents
a location in memory (although compiler optimizations may preclude the assignment of
certain variables to memory locations). A variable must be defined before being
referenced for its value. The types of variables are:

Integer

Real

Double precision

Complex

Boolean

Logical

Character

Variables are typed by default according to the first letter of the variable name. A
variable is of type integer if the first letter is I, J, K, L, M, or N and is of type real
if the first letter is any other letter. Implicit and explicit typing of variables is
described in chapter 3, Specification Statements.

Integer Variables

An integer variable is a variable that is typed explicitly, implicitly, or by default as
integer. An integer variable is one of three sizes: :t.W~#b.y~~ijJ(~fri~}f(jijfth.t&f:Jjf®:mpfitijt,
?w&.hi)f(f.Q.il.ftbYt.~M:l6h~?hMfdjfJi(@Q.:m}fut~tJW.&rd), and eight bytes (a full computer word).
You can specify the size of a variable when it is explicitly or implicitly typed. Default
integer variables are within the ranges specified below:

H2!M~a1::::t.htQU.gh.:::J2.'=!:6.aRl

H2!'=S.M:::::t.hmtigh:::::C2.M3.1l.Rl.

H2!'=:lS.l::::t.hrnU.gh'::::(2.MlaRt

NOTE

(2**63)-1 is equal to 9,223,372,036,775,807.

(2**31)-1 is equal to 2,147,483,647.

(2**15)-1 is equal to 32767.

2-18 FORTRAN Version 1 Language Definition Usage

:S.fhY:W

:lfhy:W.

2 byte

Revision H

Variables

See chapter 3 for restrictions on integer variables and constants in DO statements.

Examples:

ITEM1 jsum J

Nsum N72 K2S04

For Better Performance

Four-byte, and especially, two-byte integer constants, variables, and functions can
increase the execution time of your program. This is because such integers are byte
aligned rather than word aligned and therefore slower to load and store.

Real Variables

I
A real variable is a variable that is typed explicitly, implicitly, or by default as real.
A real variable can occupy one computer word (8 bytes) or :t.W~.t@ijih.t®.Ut.ivel¢.bb.;tp'·':':U.W.t ~i~

.~:~.~ W&.td~f(Ulth&oo.~l. The valid values for a real variable are:

-10**1232 through -10**(-1234)

0

10**(-1234) through 10**1232

One word real variables support approximately 14 significant digits of precision. Two
word real variables support approximately 29 digits of precision.

Examples:

AVAR RESULT BETA

Sum3 tota12 XXXX

Double Precision Variables

A double precision variable is a variable that is typed explicitly or implicitly as double
precision. The valid values for a double precision variable are

-10**1232 through -10**(-1234)

0

10**(-1234) through 10**1232

with approximately 29 significant digits of precision. Double precision variables occupy
two consecutive computer words. The first word contains the more significant part of
the number and the second word contains the less significant part.

Example:

DOUBLE PRECISION OMEGA, X, IOTA

The variables OMEGA, X, and IOTA are declared double precision.

Revision H Language Elements 2-19

I
Variables

For Better Performance

Double precision and 16 byte real constants, variables, arrays, and functions require
more execution time because of the extra precision they support (two words).

Complex Variables

~~~ A complex variable is a variable that is typed explicitly or implicitly as complex. A 

.:

!'..=:.=! complex variable occupies two computer words (16 bytes); each word contains a real 
number. The first word contains the real part of the number and the second word 
contains the imaginary part. 

Example: 

COMPLEX ZETA, MU, LAMBDA 

The variables ZETA, MU, and LAMBDA are declared complex. 

Logical Variables 

A logical variable is a variable that is typed explicitly or implicitly as logical. A 
logical variable occupies one computer word. Logical variables contain one of the 
symbols T or F, representing the logical values true and false. 

Example: 

LOGICAL L33, PRAVDA, VALUE 

The variables L33, PRAVDA, and VALUE are declared logical. 

Control Data Extension 

Boolean Variables 

A boolean variable is a variable that is typed explicitly or implicitly as boolean. A 
boolean variable occupies one computer word. Boolean string, octal, or hexadecimal 
values are generally assigned to boolean variables. 

Example: 

BOOLEAN HVAL, zzz, r34 

The variables HVAL, zzz, and r34 are declared boolean. 

End of Control Data Extension tfttttttttllftfl!tlttttll!l! 

Character Variables 

A character variable is a variable that is typed explicitly or implicitly as character. 
You can specify the length of a character variable when the variable is typed as 
character. Refer to the description of the CHARACTER statement in chapter 3 for 
more information on specifying the length of character variables. The maximum length 
of a character variable is 65,535 characters. · 

2-20 FORTRAN Version 1 Language Definition Usage Revision H 



Arrays 

Example: 

CHARACTER NAM*15, C3*3 

The variable NAM is 15 characters long and the variable C3 is three characters long. 

Arrays 

A FORTRAN array is a set of elements identified by a single name. The name is 
composed of one through seven letters and digits and begins with a letter. Each array 
element is referenced by the array name and a subscript. The type of the array 
elements is determined by the array name in the same manner as the type of a 
variable is determined by the variable name. The array name can be typed explicitly 
with a type statement, implicitly with an IMPLICIT statement, or by default typing 
(the first letter of the variable name determines its type). The array name and its 
dimensions must be declared in a DIMENSION, COMMON, or type statement. 

When an array is declared, the declaration of array dimensions has the following form: 

array (d, ... ,d) 

array 

Array name. 

d 

Specifies the bounds of an array dimension in the form 

lower:upper 

where lower and upper are as follows: 

lower 

Optionally specifies the lower bound of the dimension. The lower bound can be 
an integer {@.jy/jl¢.~l:Hit?lfo&liih. expression with a positive, zero, or negative 
value. If lower: is omitted, the lower bound defaults to 1. 

upper 

Specifies the upper bound of the dimension. The upper bound can be an integer 
{@.jy))~~l#itfb.Q.&liih. expression with a positive, zero, or negative value. The 
upper bound must be greater than or equal to the lower bound. In the case of 
an assumed-size array, the upper bound of the last dimension can be specified 
as*. 

Arrays can have one through seven dimensions. 

The dimension bounds can be positive, zero, or negative. If the lower bound is omitted, 
it defaults to 1. In this case, the upper bound must be positive. The general rule is 
that the upper bound must always be greater than or equal to the lower bound. The 
size of each dimension is the distance between the lower bound and upper bound. 

A dimension bound expression can contain symbolic constants defined in previous :~.·:!:! 
PARAMETER statements; integer constants can be of any size. A dimension bound 
expression in a function or subroutine can contain dummy arguments. 

Revision H Language Elements 2-21 



Arrays 

A dimension bound expression must not include nonintrinsic function references or 
array element references. lliliitl~i~J~lillitititiittiiidt~l~itl~tftif0~11&~d 
:~mu:rJum1u~10.tirttb.iWvijJU.i<b.f:t th~H~*P.tijijlititf JM::c.o.tivijtw.a:::=:w.r1n.w.i~fi>trnt.tti.~I<th.iJvijlU.ij/M~ 
:l.Nr:tKe'WP.lilMon.wm1u'.iiHe~P.ti$IW.trn:mi$.~tritiM#)htamt10mij~P.>::vijfia.bl1~:rn.?ttb.tii>lia.P.titi.ttiffiUe 
:fd.P.C.titih:'::=t~r.~tih.ci~~ 

Arguments to intrinsic function references may contain other intrinsic function 
references, constants, or symbolic constants of any type acceptable to the intrinsic 
function. Arguments to intrinsic function references may also contain integer variables. 

The presence of a variable in a dimension bound expression makes the size of the 
array adjustable. The presence of an asterisk as the upper bound of the last dimension 

~~: specifies that the array is an assumed-size array.An adjustable or an assumed-size 

.:

!_,,_=! array can be used only in a subroutine or function, as described under Procedure 
Communication in chapter 7. 

The following examples show storage uatterns for a one-dimensional, two-dimensional, 
and three-dimensional array respectively. Arithmetic values are shown for the array 

1~1 elements, but an array can be any data typ¢\Q'tlliZe. Array elements are stored in 
ascending locations by positions. The first subscript value increases most rapidly; the 
last subscript value increases least rapidly. 

Example of a one-dimensional array: 

DIMENSION RX(O:S) 

element 0 10.0 
element 1 55.0 
element 2 11.2 
element 3 72.6 
element 4 91.9 
element 5 7 .1 

Example of a two-dimensional array: 

Column 1 Column2 Column3 

Rowl 44 10 105 

72 20 200 -. - Value of (2,3) is 200 Row2 

Row3 3 11 30 
-'ii. 

Row4 91 76~ 714 

'\ Value of (3,2) is 11 

The array has four rows and three columns, for a total of 12 elements. 

For Better Performance 

Adjustable (variable-dimensioned) arrays increase execution time; replace with constant 
arrays whenever possible. 

2-22 FORTRAN Version 1 Language Definition Usage Revision H 



Arrays 

Example of a three-dimensional array: 

Plane 1 

Column 1 Column 2 Column 3 

Row 1 :J 7 __.. 4 -~ 

Row2 7 8 9 

Row3 o-
L 

33- 2 

Value of (3,2,1) is ~3:3 

Plane 2 
Value of ( 1,3,2) is 7 

Column 1 Column 2 Column3/ 

'22 
.JI" 

ow 1 _... 51 __.. 7 - .. ~ R 

R ow2 0 98 6 

R ow3 :3 - 207 - 99 

l 
Plane 3 

~olumnl Column2 Column 3 

Row 1 ,2 __.. 
l ....... 552 -

Row2 177 60 :3 

Row3 v 85 - 100 -- 8 

Value of ( 2,1,3) is 77 

The array has three rows, three columns, and three planes, for a total of 27 elements. 

For Better Performance 

The number of different variable names in subscript expressions should be minimized. 
For example, the following statements use two variables in each subscript expression: 

IPl=I+ 1 
IMl=I-1 
X=A(IPl, IMl) + B(IMl,IPl) 

The following statement produc.es the same result but executes faster: 

X=A(I + 1,I-1) + B(l-1, I+ 1) 

Revision H Language Elements 2-23 



Arrays 

Array Storage 

The elements of an array have a specific storage order, with elements of any array 
stored as a linear sequence of computer words. The first element of the array begins 
with the first storage position and the last element ends with the last computer word 
or character storage position. 

The span (number of elements} of an array dimension is given by (U - L + 1) where 
U is the upper dimension bound and L is the lower dimension bound. The number of 
computer words reserved for an array is determined by the type and size of the array 
and the spans of its dimensions. An array of type eight-byte integer, :b.ciP.l.iih., 
eight-byte real, or logical occupies n computer words, where n is the product of the 
spans of all dimensions. :A#.I~riitP.l.Wt&iiWf.6UhbYt.~lih.t.~~tVQ®.il.P.i~ttmW2.\iifuP.utirtWdbts 
jgijµ;;::Jtn::ma.ttiyiii:t$ijijjtifpijii:::tw®:bft~iiiiiht~~t::::Q.fa~il.P.l.~~::::bl4::::®.fuP.utiti:::\V:drdil An array of type 
complex or double precision occupies 2*n words. An array of type character occupies 
n*len bytes, where len is the length in characters of an array element. 

::: A noncharacter array must not exceed (2**28)-1 words in length . 

. 

:

1:.=1.=1 ((2**28)-1 = 268,435,455.) A character array must not exceed (2**31)-1 bytes. 
((2**31)-1 = 2,147,483,647.} 

NOTE 

For a program compiled with OPTIMIZATION_LEVEL = HIGH on the FORTRAN 
command, storage is not allocated at load time for arrays unless they are in a common 
block, saved (by a SAVE statement or FORCED_SAVE =ON compiler option}, 
initialized in a DATA statement, or used as actual arguments. Instead, storage is 
allocated for them on the runtime stack during execution, only when the containing 
program unit becomes active. This storage is then given up on execution of a RETURN 
or END statement in the program unit. The default runtime stack size is about 2 
million bytes. If this limit is exceeded, a runtime error results, usually of the form 
"Tried to read/write beyond maximum segment length" or "A stack segment contains 
invalid frames". For programs where the number of active items allocated on the 
runtime stack exceeds the default limit, you can increase the runtime stack size by 
specifying the STACK_SIZE parameter on the EXECUTE_ TASK command (as 
described in the SCL Object Code Management Usage manual}. 

Array References 

Array references can be references to complete arrays or to specific array elements. A 
reference to a complete array is simply the array name. A reference to a specific 
element involves the array name followed by a subscript specification. An array 
element reference is also called a subscripted array name. 

A reference to the complete array references all elements of the array in the order in 
which they are stored. For example, 

DIMENSION XT(3) 
DATA XT/1.,2.,3./ 
PRINT*, XT 

references the entire array XT in the DATA statement and the PRINT statement. 

2-24 FORTRAN Version 1 Language Definition Usage Revision H 



Arrays 

A reference to an array element references a specific element and has the following 
form: 

array(e, ... ,e) 

array 

Array name. 

e 

Subscript expression that is an integer Iihy{$.it.ik?fii.lfl:dijij;plilP.t.i¢.j$i&i.#t®.mP.l~i:f)jt 
:b.odliihtl~*P.t~i$id.nm:tAK&.Sitijll.Q.Wi:mtmiY:::::atr/thte.iet:te~P.ti$Mbtra 

When referencing an array element, you must specify a subscript value for each 
dimension in the array. Array element references are not legal unless a value is 
supplied for each dimension. There can be up to seven dimensions in an array element. 

An array element reference specifies the name of the array followed by a list of 
subscript expressions enclosed in parentheses. Each subscript expression can be an 
integer, real, double precision, complex, or boolean expression. Each subscript 
expression is evaluated and :~btif~fW.dli$/hifa~$.$ijfy/:to?ID.tigefiXh&ttb.ijll.NTJfijij¢tlli.tm A 
subscript expression can contain function references and array element references; 
however, evaluation of a function reference must not alter the value of any other 
subscript expression in the array element reference. (The compiler does not diagnose 
this condition, however.) The function evaluation also must not alter the value of any 
other entity in the same subscript expression. For example, in the statement 

ARY(2,IFUNC(J)+K) 

IFUNC must not alter the value of K. 

Each value after conversion to integer must not be less than the lower bound or 
greater than the upper bound of the dimension. If the array is an assumed-size array, 
where the upper bound of the last dimension is specified as an asterisk, the value of 
the subscript expression must not exceed the actual size of the dimension. For example, 
in the statements 

DIMENSION AR(100) 

CALL SUB (AR) 

SUBROUTINE SUB (BB) 
DIMENSION BB(•) 

BB(I + J - K) 

the value of I + J - K must not exceed 100. 

If a subscript expression value in an array element reference falls outside the 
dimension bounds, the results are undefined. (A runtime check for range violations is 
provided. The check is optional and can be selected by the RUNTIME_CHECKS 
parameter on the FORTRAN command.) For each array element reference, evaluation 
of the subscript expressions yields a value for each dimension and a position relative to 
the beginning of the array. 

Revision H Language Elements 2-25 

I 



Arrays 

The position of an array element is calculated as shown in the following table: 

Table 2-1. Array Element Positions 

Dimensions Position of Array Element 

1 1 + (sl - jl) 

2 1 + (sl - jl) 
+ (s2 - j2) * nl 

3 1 + (sl - jl) 
+ (s2 - j2) * nl 
+ (s3 - j3) * n2 * nl 

7 1 + (sl - jl) 
+ (s2 - j2) * nl 
+ (s3 - j3) * n2 * nl 
+ (s4 - j4) * n3 * n2 * nl 
+ (s5 - j5) * n4 * n3 * n2 * nl 
+ (s6 - j6) * n5 * n4 * n3 * n2 * nl 
+ (s7 - j7) * n6 * n5 * n4 * n3 * n2 * nl 

ji Lower bound of dimension i. 

ki Upper bound of dimension i. 

ni Size of dimension i; ni = ki - ji + 1. If the lower bound is one, ni = ki. 

si Value of the subscript expression specified for dimension i. 

The position indicates the relative position of an array element. 

Example: 

INTEGER DZ(12) 

DZ(6) = 79 

The array element reference DZ(6) refers to the element at position 6 in the array, 
that is, position (1 + (6 - 1)). 

Example: 

COMMON /CHAR/ CQ 
CHARACTER*3 CQ(6,4) 

CQ(6,3) = 'RUN' 

The array element reference CQ(6,3) refers to the element at position 18, that is, 
position (1 + (6 - 1) + (3 - 1) * 6). The character storage position is 52 relative to 
the first position of the array, that is, 1 + (element position - 1) * character length. 

2-26 FORTRAN Version 1 Language Definition Usage Revision H 



Character Substrings 

Character Substrings 

When a character variable or character array is declared, you can subsequently define 
and reference the entire string or specific parts of the string. You reference a part of a 
character string by using a substring reference. Character variables and arrays are 
declared with the CHARACTER statement described in chapter 3. 

Substring References 

If the name of a character entity is used in a reference, the value is the current value 
of the entire entity. 

Example: 

CHARACTER•6 S1, 52 
DATA 51/'PEARL5'/ 
52 = 51 

Sl is a reference to the full string 'PEARLS'. 

A reference to part of the string is written as a character substring reference. A 
character substring reference has the form: 

char (first : last) 

char 

Character variable, character array name, or character array element reference. 

first 

Optional integer, :teijl}#lWCihl~lP.fi.qj$i(m#&.Qmplet.tJitlb.®leab expression specifying 
the position of the first character of the substring. If omitted, default value is 1. 
ANSI allows an integer expression only. 

last 

Optional integer, ~f:ijijJ]tdQ.dhl~kP.t.idl.$t&h#&.Qmpleihiir#b.®le~Jexpression specifying 
the position of the last character in the substring. If omitted, value defaults to the 
length of the string. ANSI allows an integer expression only. 

The expression specifying the first character position in the substring is evaluated and 
converted as necessary to integer. The expression can contain array element references 
and function references, but evaluation of a function reference must not alter the value 
of other entities in the substring reference. If the specification of first is omitted, the 
value is one; all characters from one to the value of the specification of last are 
included in the substring. 

The specification of the last character position in the substring is an expression subject 
to the same rules as the specification of first. If last is omitted, the value is the length 
of the string; all characters from the specified first position to the end of the string are 
included in the substring. For a string length len, the values of first and last are 
restricted as follows: 

1 < first < last < len 

Revision H Language Elements 2-27 



Statement Order 

For example, substring references to the string Sl with the value 'PEARLS' could be 
any of the following: 

51( 1 :3) Value 'PEA' 

51(3:4) Value 'AR' 

51 (4:) Value 'RLS' 

51( :4) Value 'PEAR' 

51 ( : ) Value 'PEARLS' 

Note that the substring reference Sl(:) has the same effect as the reference Sl because 
all characters in the string are referenced. The colon is required in substring 
references; S1(3) is not a valid substring reference. 

If a substring expression exceeds the bounds declared in the CHARACTER statement, 
the results are undefined. The RUNTIME_CHECKS parameter on the FORTRAN 
command provides a runtime check on substring bounds violations. 

Substrings and Arrays 

If a substring reference is used to select a substring from an array element of a 
character array, the combined reference includes specification of the array element 
followed by specification of the substring. For example: 

CHARACTER•S Z5(5) 
CHARACTER*4 RSEN 

Z5(4)(5:6) = 'FG' 
R5EN = Z5(1)(:4) 

The first reference refers to characters 5 and 6 in element 4 of array ZS. The second 
reference refers to the first 4 characters of the first element of array ZS. 

Statement Order 

The order of various statements within the program unit is shown in figure 2-1. 

2-28 FORTRAN Version 1 Language Definition Usage Revision H 



Statement Order 

Statement 

PROGRAM, SUBROUTINE, FUNCTION, or Comments 
BLOCK DATA and 

compiler 

IMPLICIT PARAMETER FORMATl ENTRY2 directives 
(must (except 

BOO~ } 
precede within 

CHARACTER first range 
COMPLEX Type specification reference) of block 
DOUBLE PRECISION statements IF or DO 
INTEGER loop) 
LOGICAL 
REAL 

roMMON } DIMENSION Specification EQUNALENCE 
EXTERNAL statements 

INTRINSIC 
SAVE 

Statement function definition NAMELISTl 
Assignment ' (must 
ASSIGN precede 
CAU. first 
CONTINUE reference) 
00 
ELSE 

Executable 1 ELSEIF 
END IF statements DATA 
GOTO 
IF 
PAUSE 
RETURN 
STOP 
BACKSPACE ' BUFFER IN 
BUFFER OUT 
CLOSE 
DECODE 

I 
Executable 1 

ENCODE J/O 
END FILE statements 
INQUIRE 
OPEN 
PRINT 
PUNCH 
READ 
REWIND 
WRITE ) 

END 

l Cannot be used in a BLOCK DATA subprogram. 
2 Cannot be used in a main program or BLOCK DATA subprogram. 

Figure 2-1. Statement Order 

Revision H Language Elements 2-29 



I 

Statement Order 

Within each group, you can order statements as necessary, but you must order the 
groups as shown. Statements that can appear anywhere within more than one group 
are shown on the right in boxes that extend vertically across more than one group. 

A PROGRAM statement can appear only as the first statement in a main program. 
The first statement of a subroutine, function, or block data subprogram is respectively 
in a SUBROUTINE statement, FUNCTION statement, or BLOCK DATA statement. 
The END statement is the last statement of any program unit. 

Comments can appear anywhere within a program unit. Note that a comment following 
the END statement is considered part of the next program unit. 

FORMAT statements can appear anywhere in a program unit. 

ENTRY statements can appear anywhere in a program unit except: 

• Within the range of a DO loop (between the DO statement and the final statement 
of the DO loop) 

• Within a block IF structure (between the IF statement and the ENDIF statement). 

The ENTRY statement cannot be used in the main program unit because an alternate 
entry point would have no meaning. 

Specification statements in general precede the executable statements in a program 
unit. The nonexecutable specification statements describe characteristics ·of quantities 
known in the program unit; executable statements describe the actions to be taken. 

All specification statements must precede all DATA statements, ~NAM.EnlS'l\j;tjl:tijfu.ehtS., 
statement function definitions, and executable statements. Within the specification 
statements, all IMPLICIT :mwl.Ud~/l.M.PlUG.11.'WNONEl?statements must precede all 
other specification statements except PARAMETER statements. PARAMETER 
statements can appear anywhere among the specification statements, but each 
PARAMETER statement must precede any references to symbolic constants defined by 
that PARAMETER statement. 

All statement function definitions must precede all executable statements in a program 
unit. Statement function definitions must not appear in block data subprograms. 

DATA statements can appear anywhere among statement function definitions and 
executable statements. 

:NAM.E.LlST:rntit~mehti?C.ibiNtP.IWi.f:/ru.iYWhijdHi.mijijgj~t.lt.~ffi.~ht./fij#.ijU.~nfHleftmtt9.h~H~d 
:eid~~ijJ$.bl~H$.~W.:mi.nt~fatN.i~t~tth.i.~?~iijbJNAME.LlS1Wijtit~mehtla.ifiribigd~t#&tiliU~t?gt~µp 
:ta.t&tt~P.1Wij:iffhe.tot~:::::intmn.t$t/t:ef.~tiric~>wtth.ij:t::Jii.miu~ttgtP.µp/tA1$.Qtriaw.rtnit 
:NAM.ELISTU~utt~meht$.::::m~JijQ.fa#~ppiji.t(J!ritb.l®.k#iijutJ~UtlP.tQgtlm$.~ 

Executable statements must follow all specification statements and any statement 
function definitions. Executable statements such as assignment, flow control, or 1/0 
statements can appear in whatever order required in the program unit. Executable 
statements cannot appear in block data subprograms. 

The END statement must be the last statement of each program unit. 

2-30 FORTRAN Version 1 Language Definition Usage Revision H 



Specification Statements 

This chapter describes the statements used to specify the characteristics of entities 
within a FORTRAN program. 

Type Statements . . . . . . . . . . . . 
INTEGER Statement . . . . . . . . 
REAL Statement . . . . . . . . . . 
DOUBLE PRECISION Statement . 
COMPLEX Statement . . . . . . . 
BOOLEAN Statement (CDC Extension) 
LOGICAL Statement ... 
CHARACTER Statement . 

IMPLICIT Statement . . 

DIMENSION Statement 

PARAMETER Statement 

COMMON Statement . . 

EQUIVALENCE Statement . 

SAVE Statement .... 

EXTERNAL Statement 

INTRINSIC Statement 

DATA Statement . . . 
Implied DO List in DATA Statement 
Character Data Initialization . . . . . 

3 

3-2 
3-3 
3-4 
3-5 
3-5 
3-6 
3-6 
3-7 

3-10 

3-13 

3-14 

3-15 

3-19 

3-22 

3-23 

3-25 

3-26 
3-29 
3-30 





Specification Statements 3 

Specification statements are nonexecutable statements that specify the characteristics of 
symbolic names used in a FORTRAN program. Specification statements must appear 
before all DATA statements, !NAiME.DlS.'J!/ijtitijft.i~htM statement function statements, and 
executable statements in the program unit. 

DATA statements are not specification statements but are described in this chapter. 

The specification statements are as follows: 

IMPLICIT 

DIMENSION 

PARAMETER 

EQUIVALENCE 

COMMON 

SAVE 

EXTERNAL 

INTRINSIC 

Type (INTEGER, REAL, DOUBLE PRECISION, COMPLEX, !BQQD.E.A.fif(Ql)Q 
!Ei.teb.i.i&b.J, LOGICAL, CHARACTER) 

The IMPLICIT and type statements specify the data type of symbolic names. Default 
typing of names takes place unless the type statements are used to change the data 
type of specific names. The IMPLICIT statement changes the default typing of names. 
Any IMPLICIT statements must precede all other specification statements, except 
PARAMETER statements. 

The DIMENSION statement specifies the number of dimensions in an array and the 
bounds for each dimension. 

The PARAMETER statement gives a symbolic name to a constant. PARAMETER 
statements can appear anywhere among the specification statements, but each symbolic 
constant must be defined in a PARAMETER statement before the first reference to the 
symbolic constant. 

The EQUIVALENCE and COMMON statements provide for the sharing of storage. 
EQUIVALENCE allows variables within a program unit to share storage locations; 
COMMON defines blocks of storage to be shared by multiple program units. 

The SAVE statement preserves the values of variables after execution of a RETURN or 
END statement in a subprogram. Variables that would otherwise become undefined 
remain defined and can be used in any subsequent executions of the same subprogram. 

The EXTERNAL and INTRINSIC statements control the recognition of function names. 
The EXTERNAL statement specifies that a function name refers to a user-written 
function rather than an intrinsic function or a variable (in an actual argument list). 
The INTRINSIC statement specifies that a function name refers to an intrinsic function 
(supplied by the compiler or a runtime library) rather than a user-written function. 

Revision H Specification Statements 3-1 



Type Statements 

If any specification statement appears after the first executable statement, DATA 
statement, :N~MEh.lS.11Jd;ijt~Mi.nt~ or statement function statement, the compiler issues 
a fatal diagnostic. 

DATA statements give initial values to variables. DATA statements must appear after 
all specification statements in the program unit. DATA statements can appear 
anywhere among the statement function definitions and executable statements. Usually, 
DATA statements are placed after the specification statements but before the statement 
function definitions and executable statements. A variable is considered undefined until 
a value is assigned with a DATA statement, input statement, or assignment statement. 
You should always define a variable before the first reference to the variable. Use of 
undefined variables in expressions can cause run time errors or unpredictable results. 

Type Statements 

Each variable, array, symbolic constant, statement function, or external function name 
has a type. Those entities can be typed as integer, real, double precision, complex, 
:b.6.&le~m logical, or character. The name of a main program, subroutine, or block data 
subprogram has no type property, and cannot be typed. 

If you do not specify explicit typing, then default typing occurs. The type of each 
symbolic name is implied by the first letter of the name. The letter I, J, K, L, M, or 
N implies type integer, and any other letter implies type real. 

Implicit typing is controlled by the IMPLICIT statement. The IMPLICIT statement 
allows you to alter the default typing of names. The default type of a name is 
determined by the first letter of the name. The IMPLICIT statement specifies a 
different typing according to the first letter of each name. One or more IMPLICIT 
statements can be included in each program unit. 

Explicit typing defines the types of individual names. The INTEGER, REAL, DOUBLE 
PRECISION, COMPLEX, :S;QQ:OE.AN., LOGICAL, and CHARACTER statements are 
explicit type statements. An explicit type statement can also be used to supply 
dimension information for an array. 

Intrinsic functions are typed by default and need not appear in any explicit type 
statement in the program. Explicitly typing a generic intrinsic function name does not 
remove the generic properties of the name. IMPLICIT statements do not change the 
type of any intrinsic function. Intrinsic functions are described in chapter 8. 

3-2 FORTRAN Version 1 Language Definition Usage Revision H 



Type Statements 

INTEGER Statement 

The INTEGER statement declares a variable, array, symbolic constant, function name, 
or dummy procedure name to be type integer :~fHUz~t::~;::AU or 8 bytes. Eight bytes is 
one computer word. This statement has the form: 

INTEGER?fftii name ::tum,, ... , nam~if:&.i 
name 

A name that is explicitly typed as integer. Each name has one of the forms: 

var 

A variable, symbolic constant, function, or function entry name. 

array( d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, then the enclosing parentheses are omitted. (See 
DIMENSION statement.) 

::ie.n. 
:~h.W.l.fHm\hYt.i~lTd.t\hi.me>:JlP.twri$.:nwe.n2rA;wJtriata:m:uvomJ.tte.m>the<1e.ttttthti$.tSrn:h&te.~ 
:wmt.1u::m.n:e.4µi.1tw.toa.~H&jfuP.U.t~ttwd.ta~ 

:A.;tlenf#.W\::~¢.UlfatU6.h/bfd.m~diiteWJfdllti:Wihg}th.~ll.NWEGERUd~ywijf:dtapplie$JtQ.tei.~b 
:ihtttsf::::n.at::::h.ij&iff.g:rn1t$:::::aW:ff::::i.e.rnttht::$P.ecW*-~tmri;:uA::uijngtH:::::~w.re.m.~mo.#::::tro~itelY. 
:fQ.lloWtngtjh.m:~n.titY+i~:m~h.ijtl~h.MhH!JW~mca.t.i(ih.ttinlitf.ottth.i.tte.a.ttMttFijf:NUWithttJ+t.h.~ 
J~hgthJ$.M~me.a.t1J.::::£ottei.qh.Jitti&A~le.me#faturij/len@tH::::i$tnat::J;P.e.cm.ea\£dttijnte.n.ttt&~ 
jjfthef)ijipll.¢.ttlMHif:?h&tth.ijf J.MPLlQlT:::::itiW.fu.ent~ltli~fflijh@.$.tSJS.~ 

Examples: 

INTEGER ITEMl, NSUM, JSUM 

integer a72, h2so4 

INTEGER M5(2) 

Revision H Specification Statements 3.3 

I 



I 

Type Statements 

REAL Statement 

The REAL statement declares a variable, array, symbolic constant, function name, or 
dummy procedure name to be type real of size 8 :&.t:::?U~ bytes. Eight bytes is one 
computer word. The REAL statement has the form: 

name 

A name that is explicitly typed as real. Each name has one of the forms: 

var 

A variable, symbolic constant, function, or function entry name. 

array(d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, the enclosing parentheses can be omitted . 

:J~ij 

:n.e.n.gtli:HttitbYt.esr::dnn.~me.)rn:OP.tmtii.Jii$etata.n.a.:::::1:entAJMiametaec.JijhRltwttn.m:1e.#.tth.tt6 
:iM:ttijttte.a>ai.>ij/ji~ittb.l~:::::P.rict~l9htv&m~#a£Homttt~aw=the<leh.gth.:aita:mb&te.~~ 

J\)UeP.gth.>~amcijtJ&.ii>tmmec.uitelM/f.'oU&.Wirigttmr::;REA.LtR~Y:wotantpplie.s.n:w.re.ijch>~ht.lt& 
.. :

11.: .. :1 

·:· :nQ.t/hijflP.gJtt.$t&.Wh<Jijb.tth\t@eqm&.utm;>A<l~rigth<~Mctn¢at.19n.:mttn.m.~ata.t~lY:>f0.1.lij:Wl.P.i>ijP. 
i:i :~htttY>~>tli.et1en.gtli>~P.~ijm~u.mn#nlY:tmr;+thAt:::~htimMau~ttijriJart.idUtthe<leh.gt1lP~P.~~mi.a 
.:i:~.:i :t.~:::JO.tf~ach./ijJ$ijyH~l~m~h.tLJf:bWJehID.IDJt~UP.dt./$pe¢Ui.®Pf.6.f :JiJiHedtitMbiith.ef:H$.tP.lic.it1&16.t 

:r~M>the<lMELlOI.m::::$tate.m.etiW?the<leh.gth.:'Jita; 

Examples: 

REAL IVAR, NSUM3, RESULT 

real total2, BETA, XXXX 

3-4 FORTRAN Version 1 Language Definition Usage Revision H 



Type Statements 

DOUBLE PRECISION Statement 

The DOUBLE PRECISION statement declares a variable, array, symbolic constant, 
function name, or dummy procedure name to be type double precision. The DOUBLE 
PRECISION statement has the form: 

DOUBLE PRECISION name, ... , name 

name 

A name that is explicitly typed as double precision. Each name has one of the 
forms: 

var 

A variable, symbolic constant, function, or function entry name. 

array(d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, the enclosing parentheses can be omitted. 

Examples: 

DOUBLE PRECISION DPROD, DEIGV 

double precision rmat(10,10) 

COMPLEX Statement 

The COMPLEX statement declares a variable, array, symbolic constant, function name, 
or dummy procedure name to be type complex. The COMPLEX statement has the form: 

COMPLEXJf~@i nam~\~k.h, ... , nam~k.h 

name 

A name that is explicitly typed as complex. Each name has one of the forms: 

var 

A variable, symbolic constant, function, or function entry name. 

array( d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, the enclosing parentheses can be omitted. 

J~#. 

:n.e.hf:tb.JtffitliYt.i$lU~t\hime;J1:6.tl.idth~t:®.JMJ6P:tlO.W.tlf:)jijiltW.dHth.~fJlif.iu.lttliim1&Uitl6 
:l.tYt.ii~ 

:ATtliilt1hl~~eiU&.hf:'b\itti.i.dmtelytf.'ll&Wtbgtth~tJJ.QMEL.EX:::::kijYWQ.f.dliP.P.U~ttdtiiai 
:ih.titYln&tfhiiihgtlt~Eih0.iil.~~f$P,eqtf.ijitiidHA:::::JJ.ff!Wliiireilimifl9h:JJ~it.ilY. 
:f.Q.ll.ci\Wh.gtahXi.ntiw.n:t.~tm~tlin1tw:::imml.n.i.am&i.f::ijm&tf.dt::::thittetitnM~tF.ijfMmtitriYiMtii 
:li.ngtn:::::$Imemia.t11.::::rot::::i.ieblitf:i&nn~me.hfafff.t:i:ae.h.!:tn.::::iijtn&M:ijp~cmijd.IfQ.ttMNibittt&~ 
:~itbett~P.U~l.tlM#ftU~Y:lth~HR4.PL.lC.\liWi.titi.mi.btltth.~Wlii§Ul.$ll6:~ 

Revision H Specification Statements 3-5 



Type Statements 

Examples: 

COMPLEX CPVAR 

COMPLEX RES(S,5) 

Control Data Extension 

BOOLEAN Statement 

The BOOLEAN statement declares a variable, array, symbolic constant, function name, 
or dummy procedure name to be type boolean. The BOOLEAN statement has the form: 

BOOLEAN name, ... , name 

name 

A name that is explicitly typed as boolean. Each name has one of the forms: 

var 

A variable, symbolic constant, function, or function entry name. 

array(d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, the enclosing parentheses can be omitted. 

Examples: 

BOOLEAN ALABEL, QMASK 

boolean label(14) 

End of Control Data Extension 

LOGICAL Statement 

The LOGICAL statement declares a variable, array, symbolic constant, function name, 
or dummy procedure name to be type logical. The LOGICAL statement has the form: 

LOGICAL name, ... , name 

name 

A name that is explicitly typed as logical. Each name has one of the forms: 

var 

A variable, symbolic constant, function, or function entry name. 

3-6 FORTRAN Version 1 Language Definition Usage Revision H 



Type Statements 

array( d, ... ,d) 

An array name with optional dimension bounds specification. If no dimension 
bounds are specified, the enclosing parentheses can be omitted. 

Logical variables contain one of the logical values true or false. 

Example: 

LOGICAL SWITCH, TEST 

CHARACTER Statement 

The CHARACTER statement declares a variable, array, symbolic constant, function 
name, or dummy subprogram name to be type character. The CHARACTER statement 
has the form: 

CHARACTER*len name, ... , name 

name 

A name that is explicitly typed as character. Each name has one of the forms: 

var 
var* I en 
array(d, ... ,d) 
array( d, ... ,d)*len 

where var, array, d, and len are as follows: 

var 

A variable, function, symbolic constant, or function entry name. 

array 

An array name. 

d 

Optional dimension bounds specification. If no dimension bounds are specified, 
the enclosing parentheses can be omitted. (See DIMENSION statement.) 

*len 

Specifies the length (number of characters) of the item, and can be an unsigned 
nonzero integer constant; an extended integer constant expression, enclosed in 
parentheses, with a positive nonzero value; or an asterisk enclosed in 
parentheses. The default length is one character (one byte of memory). 

A length specification immediately following the keyword CHARACTER applies to each 
entity not having its own length specification. A length specification immediately 
following an entity is the length specification only for that entity. Note that for an 
array, the length specified is for each array element. If a length is not specified for an 
entity, either explicitly or by an IMPLICIT statement, the length is one. 

Example: 

CHARACTER A*3, 8(10)*(12+3*2) 

The example defines a character variable A that is 3 characters long and a character 
array B that has 10 elements, each of which is 18 characters long. 

Revision H Specification Statements 3-7 



Type Statements 

You can specify the length of a character dummy argument in a function or subroutine 
as (*). A character string with length (*) is called an assumed-length character string, 
and is described in chapter 7. 

The length of a type character external function name in a FUNCTION or ENTRY 
statement can be specified as (*). When a reference to such a function is executed, the 
function has the length specified in the referencing program unit. 

The length specified for a character function, in the program unit that references the 
function, must be an extended integer constant expression and must agree with the 
length specified in the function. Note that there is always agreement of length if the 
length (*) is specified in the function. 

:

!.:!:! If you specify a length of (*) for a symbolic constant of type character, :ih~~gefi/f:~ijjk#ir 
:C.Q.mpliji.~ the constant has the length of its corresponding extended character constant 
expression in a PARAMETER statement. If the length specification is a symbolic 
constant, it must be enclosed in parentheses. 

Example: 

PARAMETER (N=5) 
CHARACTER*(N) AB, CD*(N+3) 

The variable AB is 5 characters long while the variable CD is 8 characters long. If 
you omit the parentheses in the CHARACTER statement, the compiler cannot detect 
where the length specification ends and the variable name begins (blanks do not 
function as delimiters), and an error message is issued. For example, the statements 

PARAMETER (N=5, NA=6, NAB=7) 
CHARACTER*N AB } Incorrect 

could be interpreted in several ways, including: 

Length specification N, variable name AB 

Length specification NA, variable name B 

Length specification NAB, no variable name 

Example: 

CHARACTER*10 ASTR, ABC(5), XR*20 

The variable ASTR and each element of the array ABC are 10 characters long. The 
variable XR is 20 characters long. 

3-8 FORTRAN Version 1 Language Definition Usage Revision H 



Example: 

CHARACTER AR*S, BR*S 

CALL ZC(BR) 

END 
SUBROUTINE ZC(STR) 
CHARACTER STR•(•) 

Type Statements 

In the example, the variable STR has length 8 when subroutine ZC is called (BR is 
passed). If subroutine ZC is called with variable AR passed, the variable STR has 
length 5. See Procedure Communication in chapter 7. 

Character substrings are described in chapter 2. 

Revision H Specification Statements 3.9 



IMPLICIT Statement 

IMPLICIT Statement 

The IMPLICIT statement changes or confirms the default typing of symbolic names 
according to the first letter of the names. The IMPLICIT statement has the form: 

IMPLICIT type(ac, ... ,ac), ... , type(ac, ... ,ac) 

:JM.PL.l.PJ.ll/NQN~ 

type 

One of the keyword values INTEGER~U,ij,, REAI.mU.ii, DOUBLE PRECISION, 
COMPLEX:~k.i#tBQQD.~A.N, LOGICAL, or CHARACTER*clen. 

ac 

A single letter, or a range of letters represented by the first and last letter 
separated by a hyphen, indicating which variables are implicitly typed. 

clen 

Specifies the length of character entities, and can be an unsigned nonzero integer 
constant, or a positive extended integer constant expression enclosed in parentheses. 

J~a. 

:tE&.ttintij@ijtfeh.ttti~s:~>leij/J'.h#~trtm.r:ii.t:t~iiwri.9.ijdfih.tigijf t&#~$tijfitHifa~P.te.~~i&n>Wi.tbHi 
:P.&$it.iv~H&ttli.e<9.f:m2n:4.W~rts.r\Edttfi~il.\ijhtifle~raijri.tta.uit.Yb.&ti#n~iiwhaijtJJiht~~t 
:~P.lUtirit.te*ph~$.~i.ott>#ith.<ijf P.Q.~ifivetvil.tiijt&.r :ms.:rn9t<t~rn:E6.t>C.otaP.l.ij~iferiU.Ue~Ja~ri<mU.~t 
:b.ijtl.rite*-~hd®.WJ:ritei&#@idil.~m.rit.te.*-P.ri$~iP.#t:With?~t:'Pb.$tti.¥i?&Mt1etbf:nut 

3-10 FORTRAN Version 1 Language Definition Usage Revision H 



IMPLICIT Statement 

The IMPLICIT statement establishes the type of variables, arrays, symbolic constants, 
statement functions and external functions (but not intrinsic functions) that begin with 
the specified letter or range of letters. Note that since uppercase and lowercase letters 
are equivalent, implicitly typing a letter of one case has the same effect for the letter 
of the other case. 

The IMPLICIT :d#iJMPMCl.U.MNQNE statements in a program unit must precede all 
other specification statements except PARAMETER statements. An IMPLICIT statement 
in a function or subroutine subprogram affects the type associated with dummy 
arguments and the function name, as well as other variables in the subprogram. 
Explicit typing of a variable name or array element in a type statement or 
FUNCTION statement overrides an IMPLICIT specification. 

The specified single letters or ranges of letters specify the entities to be typed. A range 
of letters has the same effect as writing a list of the single letters within the range. 
The same letter can appear as a single letter, or be within a range of letters, only 
once in all IMPLICIT statements in a program unit. For entities of type character, 
:l.h.t~ge'.fiHitldti@t.l, you can also specify an implicit length. If you do not specify the 
length of character entities, it defaults to one. The length must have a positive nonzero 
value. The specified length applies to all entities implicitly typed as character. :C.h~tW.:6$ 
:f.dtfat.h.W.g~t<eh.titieS.<~t~f\2M\4l::iiih.4.WS@::QP.tl0rn;tr.4t/tw.i.ll~hti.UeMJPf:~<S.>irid:fl~#Jt16.#J~h.Utl.~s 
:&f\t#Iii.?ih.t.~gef{~ffl.U:tMllJm¥al~f.thUtllijh.gtfCl~l~ight{tlw.~l>ijh.tjtiij~fcypijdfwUh.fi~Nlijijgth. 
:&f':W6.':J~tettJf:~ite.atat.tthi#~g1trth.~Y::ww.~Nnm.e.arao.u.bl~t#&k.l.~t&.h+Zrhe>P.hlY:>P.P.tmhnr.at 
:~o.mr.>l~K':eP.tl.t.ieS.<i.s::rut 

:l.MPE.l.OlrfEN:ONEt~P.~¢Ule~Ythat.Lth.ijte.>~hou.tatmHh.ofdijf.tl.filtHmP.liijd.ttYP.lifgff.6.tt~Mmli&U~ 
#im~s?UiHiPpffigrgfufil.iittrn:N~i/6.'.thijf:/f.ijftttHil.Nth.i.m:l.MPL.lC.tTtijt.i.t~mijh.fa:'.dUttt:mn:il.$edJWtth. 
:th~HIMP:P.l.Ol.TlN.XlNE:=:::~ta:U.~meh.tN:l.f?ih.othet::m#mlb.f?tbeflMPLlQIU.Eist.ate.:m~ntidcie$. 
:®.¢.ijtr:mii::::r.~tiil::::aiiID.lo~U.#::::wiu:::::~:::::~$.m~a~ 

:~#/lMPlllG.£I.WMQJN\Sfl$tate:m.~nt.::::4.6e~?h.&t.tijff~C.t.tth.ettY:mWb.llilP.Y\6.f{tM\intJf:ih~i¢ 
:fti.ijcti&h.$./H'.f.hijlil.$eldl.NlMPU.UJ.l.U.MNPNEtl.P.ti/fP.ffi@;iimlli.6JtDcaU.~$.::::t.h.W#J.ete~tiQ.ti.t6.f 
:lii.hd®lWife.dtfiij;m~~fJth.d.Nilfi.t.M.MerrPfdJij{l~~Ued~ 

:l.f/ijf pj;Qgr~ffi}}l$ti.l#&:Utih~?httt.Xm~moh./ij&hTt~nt.tih.:::::IM.RL.lO.l':lFNONEJt.tat~mijht.#th.e#.Uill.l 
:nim~s:m:m;:::&~l.abte.~~>irrijM~N:$&mhoUGt®.P.$.tijjh.t~oH~~w.th.iltf.t#~c.tm:h~<&.1a.t~ta.~ijmeht 
:ruP.cntmMA¥itmh<thit::::l)thgf.~:ta.n.itum.uit:am.::::e~plWit.l&tdi.ciit~arnmm:ilm::tYM.t~~t.em.~h.tt 

Revision H Specification Statements 3-11 



IMPLICIT Statement 

Example: 

IMPLICIT CHARACTER*20 (M, X-Z) 

The default typing is changed for names beginning with the letters M, X, Y, or Z. 
Names beginning with M are typed as character rather than integer, and names 
beginning with X, Y, or Z are character rather than real. 

:E~mP.li; 

:t.MPkttt.t:ttNt;~;f{!:~:t:H:tk> 

:OOh¥:Ji.e.r.~mt.ttYP.ihgJt~:::::¢.b.ijh.gidU~6$}#~:ffiijMJSe:gihh.ihgtWl.tl#fft.hi?le.tw.tM::l.tWrn:K#:ijtfl.WYJJb.i~e 
:µijm.~:~titettY:Pe.atij~:Hhtijget~t4®.UP.nh.g&tw1$:::::hYt.e.M=ijfbh~mo.r&::::ij~foH;ttheitttijh.gijti.M:;~~~:u~ 
:thfijU.glf H2~':l5J.f:l:~ 

Note that any explicit typing with a type statement is effective in overriding both the 
default typing and any implicit typing. · 

Example: 

IMPLICIT LOGICAL (L) 
INTEGER L, LX, TT 

The names L and LX are explicitly typed as integer. All other names beginning with L 
are implicitly typed as logical. The name TT is explicitly typed as integer and does not 
take the default type real. 

:Ei01ffiP.li; 

rB.~MlMM:~ 
't.MPi4¢#ttNP.M; 
B.:¢.Aw.t:::::wan:c 
lNt~G.~1.n::ti::rn+x 
t.B.A.M¢t;f:Mit::it~ 

mn.~::::J.M1nua1aw:NoNE.tte.q-a.W:e.~:::::th.ijt/ijlltvif.ttijb.li~t1ttrnmiUP.ffi@fijffitb.ijti*rmemtm:iYP.ijdtbY. 
jij/t&ii@lStitemirit:HINTEGE.l.UfREAl#:tOOUB.l.JEt:PREClSlQl\H?OQMPP.EXl/I.Ul.Qn.EAN~ 
JJQGlCAl#4t?CHAltMl$ERt 

3-12 FORTRAN Version 1 Language Definition Usage Revision H 



DIMENSION Statement 

DIMENSION Statement 
The DIMENSION statement declares symbolic names as array names and specifies the 
bounds of each array. The DIMENSION statement has the form: 

DIMENSION array(d, ... ,d), ... , array(d, ... ,d) 

array 

Array name. 

d 

Specifies the bounds of a dimension in one of the forms: 
upper 
lower:upper 

where upper and lower are as follows: 

lower 

Lower bound of the dimension; a dimension bound expression in which all 
variables and intrinsic function references are type integer, and all constants, 
and symbolic names of constants, are type integer or boolean. If only the upper 
bound is specified, the lower bound defaults to 1. (See Arrays, chapter 2.) 

upper 

Upper bound of the dimension; a dimension bound expression in which all 
variables and intrinsic function references are type integer, and all constants, 
and symbolic names of constants, are type integer or boolean. (See Arrays, 
chapter 2.) 

A DIMENSION statement can declare more than one array. Dummy argument arrays 
specified within a subprogram can have adjustable dimension specifications. A further 
explanation of adjustable dimension specifications appears under Procedure 
Communication in chapter 7. 

An array can be declared only once within a program unit. Note that dimension 
information can be specified in COMMON statements or type statements. The 
dimension information defines the array dimensions and the bounds for each dimension. 

The description of arrays in chapter 2 covers the properties of arrays, the storage of 
arrays, and array references. 

Example: 

REAL NIL 
DIMENSION NIL(6,2,2) 

NIL is an array containing 24 real elements. The following statement is equivalent: 

REAL NIL(6,2,2) 

Example: 

COMPLEX BETA 
DIMENSION BETA(2,3) 

Revision H Specification Statements 3-13 



PARAMETER Statement 

BETA is an array containing six complex elements. 

Example: 

CHARACTER*8 XR 
DIMENSION XR(0:4) 

XR is an array containing five character elements, and each element has a length of 
eight characters. A reference to the third and fourth characters of the second element 
would be XR(1)(3:4). 

PARAMETER Statement 
The PARAMETER statement gives a symbolic name to a constant. This statement has 
the form: 

PARAMETER (p = e, ... , p=e) 

p 

A symbolic name 

e 

An extended constant expression 

If the symbolic name of a constant is of type integer, real, double precision, complex, 
or boolean, the corresponding expression must be an extended arithmetic or boolean 
constant expression. If the symbolic name is of type character or logical, the 
corresponding expression must be an extended character constant expression or logical 
constant expression. (Expressions are described in chapter 4.) Each symbolic name 
becomes defined with the value of the expression that appears to the right of the 
equals, according to the rules for assignment. Any symbolic constant that appears in an 
expression e must have been previously defined in the same or a different 
PARAMETER statement in the program unit. 

A symbolic constant can be defined only once in a program unit, and can identify only 
the corresponding constant. The type of a symbolic constant can be specified by an 
IMPLICIT statement or type statement before the first appearance of the symbolic 

~~~ constant in a PARAMETER statement. If the length of a symbolic constant is not the 
~\ default length for that type, the length must be specified in an IMPLICIT statement or

... :
! .. =:.· ··=j.····=1=· type statement before the first appearance of the symbolic constant. The easiest way to

do this for symbolic character constants is to explicitly type the symbolic constant as
character with length (*). The actual length of the constant is then determined by the
length of the string defining it in the PARAMETER statement. The length must not be
changed by another IMPLICIT statement or by subsequent statements.

Once defined, a symbolic constant can appear in the program unit in the following
ways:

• In an expression in any subsequent statement

• In a DATA statement as an initial value or a repeat count

• In a complex constant as the real or imaginary part

3-14 FORTRAN Version 1 Language Definition Usage Revision H

COMMON Statement

o In a dimension bound expression in an array declaration

A symbolic constant cannot appear in a format specification. A character symbolic
constant cannot be used in a substring reference.

Example:

PARAMETER (ITER = 20, START = 5)
CHARACTER CC*(*)
PARAMETER (CC = '(!4, F10.5)')

DATA COUNT/START/

DO 410 J = 1, ITER

READ CC, IX, RX

The symbolic constant START is use_d to assign an initial value to variable COUNT,
the symbolic constant ITER is used to control the DO loop, and the symbolic constant
CC is used to specify a character constant format specification.

COMMON Statement
The COMMON statement defines areas of storage to be available to the program unit
in which the statement appears and associates variables and arrays with the defined
area of storage. The areas of storage declared in a COMMON statement are called
common blocks. The COMMON statement has the form:

COMMON /name/ nlist, ... , /name/ nlist

name

Name identifying a named common block; name can be omitted, in which case the
common block is called blank (unlabeled) common. If the first specification is for
blank common, the slashes can also be omitted. The comma separating /name/ from
the preceding nlist is optional.

nlist

List of entities to be included in the common block. The entities are separated by
commas and have one of the forms:

var

Variable name

arr

Array name

arr(d, ... ,d)

Array name with declared dimensions

COMMON blocks provide a means of associating entities in different program units.
The use of common blocks enables different program units to define and reference the
same data without using arguments, and to share storage locations. Within a program
unit, an entity in a common block is known by a specific name. Within another
program unit, the same data can be known by a different symbolic name.

Revision H Specification Statements 3-15

COMMON Statement

A particular variable name or array name can appear only once in any COMMON
statement within the program unit. Function or entry names cannot be included in
COMMON statements. In a subprogram, names of dummy arguments cannot be
included in COMMON statements.

Within a program unit, declarations of common blocks are cumulative. The nlist
following each successive appearance of a particular common block name (or no name
for blank .common) adds more entities to that common block and is treated as a
continuation of the specification. Variables and arrays are stored in the order in which

~~~ they appear in the common specifications. You should ensure that every entity in a 

:

i==··.=i common block _definition is word aligned if you intend to equivalence. A word contains 
8 bytes or characters. For example: 

INTEGER J, K, L 
CHARACTER CDAY*S, CFILL*3 
CFILL=' ' 
COMMON /BLK1/J, CDAY, CFILL, K, L 

EQUIVALENCE K, M 

The character variable CFILL is placed in the common block after CDAY to fill a 
word. (A word contains eight characters.) The integer values K and L will begin on a 
word boundary. 

¥gf:iijJjlij$}Jb#.i):ijjqi{y~}iij/)(/¢.hml±@.rithl6.~k>c~tl>b.~>of/diff.et~htHUimttYJWM\ y OU can use a 
common block name within a program unit as a variable or array name without 
conflict. 

The maximum number of common blocks in an executable program, including blank 
common and all named common, is 500. The maximum size of each common block is 
536,870,912 computer words (for character data, 4,294,967,296 characters). 

The actual size of any common block is the number of computer words required for the 
entities in the common block, plus any extensions associated with the common block by 
EQUIVALENCE statements. :E*-t.iriM&h~t~ijij)(jb.Jyf~tffiijd~f'(ijyJjd.Jll.ijg/comP.il.$.rLWQ.fd~::@tt 
:'.thij/~r#l/P.£/tl:iijJC.oiam9jf:JH®.lM:~#tih&til.$thg:fth.et0$JEX.TE.ND:#lif~C.ti.¥i. (See the 
descriptions of the EQUIVALENCE statement in this chapter and the ~0$?EX.TEND. 
:dif~:C.ti.¥~ in appendix D.) A blank common block can be treated as having a different 
size in separate program units. The length of a common block, other than blank 
common, must not be increased by a subprogram using the block unles~Jthij 
;$.tibP.#igf:jijfiJ~?lo~m~dPl.i~t. If a program unit does not use all locations reserved in a 
common block, unused variables can be inserted in the COMMON declaration to ensure 
proper correspondence of common areas. 

Variables and arrays in named common blocks can be initially defined by a DATA 
statement in a block data subprogram, :&ttib&:ar::D.A.T~l~tat.imeht.HiP.\ihykpiQgfiffitiu.ijt. 
Entities in blank common cannot be initially defined. After an entity in a named 
common block has been initially defined, the value is available to any subprogram in 
which the named common block appears. If the entity is reinitialized in a later 
subprogram, a loader diagnostic is issued. 

Variables and arrays in blank or unlabeled common remain defined at all times, and 
do not become undefined on returning from a subprogram. 

3-16 FORTRAN Version 1 Language Definition Usage Revision H 



Example: 

COMMON A, B 
COMMON /XT/ C, D, E 

SUBROUTINE P(Q, R) 
COMMON /XT/ F, G, H 

FUNCTION T(U) 
COMMON Y, Z 

COMMON Statement 

The entities C, D, and E in the main program are in the common block named XT. 
The same computer words are known by the names F, G, and H in subroutine P. The 
entities A and B in the main program are in blank common. The same computer words 
are known by the names Y and Z in function T. 

::&*imP.1~; 

00.~RWJOO.Qfft 

:ru.NctJPN::::AQ:on: 
®.MMON.:::::1r;z:::::$.tXl~:l 
P.AtAt$.txtmm::1z:nr::i1wun:z 

For Better Performance 

You can access large blocks of data more efficiently using segment access files mapped 
to common blocks. See the description of C$ SEGFILE in appendix D. 

Since an entity in blank common cannot be initially defined with a DATA statement, 
an assigment statement must be used to define the value of JCOUNT. In function AB, 
a DATA statement can be used to define initial values for the elements of array STX 
in the common block named C. Note that JCOUNT is not common to function AB. 

Example: 

CHARACTER*15 D, E 
INTEGER J COMMON /CVAL/ D, E, J 
DATA D, E, J/'TEST', 'PROD', 10/ 

The common block named CVAL contains two character variables and one integer 
variable. The variables are initially defined in a DATA statement. 

Revision H Specification Statements 3-17 



I 

COMMON Statement 

Example: 

COMMON /SUM/ A, B(20) 

SUBROUTINE GR 
COMPLEX FR(10) 
COMMON /SUM/ X, FR 

The common block SUM in the main program is declared to contain the variable A 
and the array B. In the subroutine GR, the same computer words are associated with 
X and the array FR. Even if X is not used in the subroutine, X holds a place so that 
array FR matches the placement of array B. Note also that array FR is complex. The 
elements B(l) and B(2) are known in GR as FR(l); B(3) and B(4) are FR(2); and so 
forth. The specification of common block SUM accounts for 21 computer words. 

For Better Performance 

Common blocks should not contain unnecessary items; common blocks can be used to 
store items that would otherwise be passed as parameters to the subroutines. 

3-18 FORTRAN Version 1 Language Definition Usage Revision H 



EQUIVALENCE Statement 

EQUIVALENCE Statement 

The EQUIVALENCE statement specifies the sharing of storage by two or more entities 
in a program unit. The EQUIVALENCE statement has the form: 

EQUIVALENCE (nlist), ... , (nlist) 

nlist 

A list of variable names, array names, array element names, or character substring 
references. The names are separated by commas. Each nlist establishes an 
equivalence class. Each subscript or substring expression in the list must be an 
extended integer constant expression. 

Equivalencing causes association of the entities that share the storage. Equivalencing 
associates entities within a program unit, while common blocks associate entities across 
program units. You cannot equivalence entities in common blocks to one another; 
however, you can equivalence an entity not explicitly declared to be in common to an 
entity in common without conflict. 

:l.f::::th.e.re.4mv.~1eh.ijed>eflttti.~~tijfifWifJltff~h~tittaa.wd:typijMN~qJUt~mri~iijg:Jjcie~w:P.&t::::mt.®~ 
:tYP.~fjQ:#fvijiM&.h~ (Note that ANSI does not allow equivalencing of character and 
noncharacter data.) If a variable and an array are equivalenced, the variable does not 
acquire array properties and the array does not lose the properties of an array. The 
lengths of equivalenced character entities can be different. 

Each nlist specification must contain at least two names of entities to be equivalenced. 
In a subprogram, names of dummy arguments cannot appear in the list. Function and 
entry names cannot be included in the list. Equivalencing specifies that all entities in 
the list share the same first computer word. For character entities, equivalencing 
specifies that all entities in the list share the same first character storage position. 
Equivalencing can indirectly cause the association of other entities, for instance when 
an EQUIVALENCE statement interacts with a COMMON statement. When ::: 
equivalencing non full-word (byte aligned) character entities in a common block to =.=!.!=:1.='. 

other full-word aligned entities, you must ensure that each entity in the common block 
begins on a word boundary (see COMMON Statement). 

If an array element is included in nlist, the number of subscript expressions must 
match the number of dimensions declared for the array name. If an array name 
(without a subscript) appears in the list, the effect is as if the first element of the 
array had been included in the list. Any subscript expression must be an extended 
integer constant expression. For character entities, any substring expression must be an 
extended integer constant expression. 

Revision H Specification Statements 3-19 



EQUIVALENCE Statement 

Example: 

DIMENSION Y(4), B(3,2) 
EQUIVALENCE (Y(1), B(3,1)) 
EQUIVALENCE (X, Y(2)) 

Storage is shared so that six computer words are needed for Y, B, and X. The 
associations are: 

B(l,l) 
B(2,1) 

Y(l) B(3,1) 
Y(2) B(l ,2) X 
Y(3) B(2,2) 
Y(4) B(3,2) 

Example: 

CHARACTER A*S, C*3, 0(2)*2 
EQUIVALENCE (A,0(1)), (C,0(2)) 

Storage is shared so that five character storage positions are needed for A, C, and D. 
The associations are: 

A(l:l) 
A(2:2) 
A(3:3) 
A(4:4) 
A(5:5) 

D(l)(l:l) 
D(1)(2:2) 
D(2)(1:1) 
D(2)(2:2) 

C(l:l) 
C(2:2) 
C(3:3) 

You can equivalence variables of different data types. The equivalencing associates the 
first computer word of each entity. For example, 

REAL TR(4) 
COMPLEX TS(2) 
EQUIVALENCE (TR,TS) 

causes the following associations: 

TR(l) 
TR(2) 
TR(3) 
TR(4) 

TS(l)-real part 
TS(l)-imaginary part 
TS(2)-real part 
TS(2)-imaginary part 

3-20 FORTRAN Version 1 Language Definition Usage Revision H 



EQUIVALENCE Statement 

Equivalencing must not reference array elements in a way that conflicts with the 
storage sequence of the array. You cannot specify the same storage unit as occurring 
more than once in the storage sequence. For example, 

REAL FA(3) 
EQUIVALENCE (FA(1),B), (FA(3),B) } Not legal 

is illegal. Also, the normal storage sequence of array elements cannot be interrupted to 
make consecutive computer words no longer consecutive. For example, 

REAL BZ(7),CZ(5) 
EQUIVALENCE (BZ,CZ),(BZ(3),CZ(4)) } Not legal 

is also illegal. 

The interaction of COMMON and EQUIVALENCE statements is restricted in two ways: 

1. An EQUIVALENCE statement must not attempt to associate two different common 
blocks in the same program unit. For example, 

COMMON /LT/ A, T 
COMMON /LX/ S, R 
EQUIVALENCE (T,S) 

is not legal. 

} Not legal 

2. An EQUIVALENCE statement must not cause a common block to be extended by 
adding computer words before the first computer word of the common block. On the 
other hand, a common block can be extended through equivalencing if computer 
words are added at the end of the common block. For example, 

COMMON /X/ A 
REAL B(S) 
EQUIVALENCE (A, B(4)) 

is not legal, whereas 

COMMON /XI A 
REAL B(S) 
EQUIVALENCE (A, B(1)) 

} 

} 
can be used to extend the common block. 

Revision H 

Not legal 

Legal 

Specification Statements 3-21 



SAVE Statement 

SAVE Statement 

The SAVE statement causes the definition status of entities to be retained after the 
execution of a RETURN or END statement in a subprogram. The SAVE statement has 
the form: 

SAVE a, ... , a 

a 

Optional variable name or array name enclosed in slashes. The same name must 
not appear more than once. If no names are specified all variables and arrays are 
saved. 

A SAVE statement is optional and has no effect in a main program or in any 
subprogram compiled with OL=DEBUG or OL=LOW specified on the FORTRAN 
command. 

You can also use the FORCED_SAVE parameter on the FORTRAN command to save 
program entities. Selecting the FORCED_SAVE parameter is equivalent to specifying a 
SAVE statement in every subprogram compiled. 

Dummy argument names, procedure names, and names of entities in a common block 
must not appear in the SAVE statement. You do not have to specify a named or blank 
common block or an entity within a named or blank common block; storage given to a 
common block will not be reused during execution of your program. A SAVE statement 
with no list is treated as though it contained the names of all allowable items in the 
program unit. 

Execution of a RETURN statement or ·an END statement within a subprogram causes 
the entities within the subprogram to become undefined, except in the following cases: 

• Entities specified by SAVE statements do not become undefined. 

• Entities in blank or named common do not become undefined. 

• Entities that have been defined in a DATA statement do not become undefined. 

• Entities in a subprogram compiled with OL =DEBUG or OL =LOW specified on the 
FORTRAN command. 

• Entities that are associated with saved entities by EQUIVALENCE statements do 
not become undefined. 

If a local variable or array that is specified in a SAVE statement, and is not in a 
common block, is defined in a subprogram at the time a RETURN or END statement 
is executed, that variable or array remains defined with the same value at the next 
reference to the subprogram. 

Within a subprogram, an entity ,in a common block can be defined or undefined, 
depending on the definition status of the asso.ciated storage. If you specify a named 
common block in a SAVE statement in a subprogram and the entities in the common 
block are defined, the common block storage remains defined at the time a RETURN 
or END statement is executed and is available to the next program unit that specifies 
the named common block. 

3-22 FORTRAN Version 1 Language Definition Usage Revision H 



The following example illustrates the SAVE statement: 

PROGRAM MAIN 
COMMON /C1/ G, H 
CALL XYZ 

END 

SUBROUTINE XYZ 
COMMON A, D, F 
COMMON /C1/ GVAL, HVAL 
SAVE 
DATA JCOUNT /5/ 
x = 6.5 

RETURN 
END 

EXTERNAL Statement 

The SAVE stateme~t in subroutine XYZ has the effect of saving the value of X as 6.5 
for any later invocations of the subroutine. Saving of certain other values does not 
depend on the presence of the SAVE statement. The three entities in blank common 
and the two entities in common block Cl remain defined. Since JCOUNT is initially 
defined and not redefined in the subroutine, JCOUNT remains defined for any later 
invocations of the subroutine. 

EXTERNAL Statement 

The EXTERNAL statement identifies a name as representing an external function or 
subroutine and permits such a name to be used as an actual argument. The 
EXTERNAL statement has the form: 

EXTERNAL name, ... , name 

name 

Name of an external function or subroutine, dummy function or subroutine, or block 
data subprogram 

A symbolic name can appear only once in all of the EXTERNAL statements of a 
program unit. If an external subprogram name is an actual argument in a program 
unit, it must appear in an EXTERNAL statement in the program unit. A statement 
function name must not appear in an EXTERNAL statement. 

If an intrinsic function name appears in an EXTERNAL statement in a program unit, 
the name becomes the name of some external function or subroutine. The intrinsic 
function with the same name cannot be referenced in the program unit. 

Specifying the name of a block data subprogram in an EXTERNAL statement causes 
the loader to search the object libraries for the block data subprogram. 

Revision H Specification Statements 3-23 



EXTERNAL Statement 

In the following example, the name SQRT is declared as external. The function 
reference SQRT(X) is therefore taken to reference the user-written function SQRT 
rather than the intrinsic function SQRT. 

SUBROUTINE ARGR 
EXTERNAL SQRT 

Y = SQRT(X) 

END 

FUNCTION SQRT(XVAL) 

END 

In the following example, the names LOW and HIGH are declared as external. In one 
call to subroutine AR, LOW is passed as an actual argument and the function reference 
FUNC(VAL) is equivalent to LOW(VAL). In the second call to subroutine AR, the 
function reference FUNC(VAL) is equivalent to HIGH(VAL). 

SUBROUTINE CHECK 
EXTERNAL LOW, HIGH 

CALL AR(LOW, VAL) 

CALL AR(HIGH, VAL) 

RETURN 
END 

SUBROUTINE AR(FUNC, VAL) 
VAL = FUNC(VAL) 

RETURN 
END 

REAL FUNCTION LOW(X) 

END 

REAL FUNCTION HIGH(X) 

END 

3-24 FORTRAN Version 1 Language Definition Usage Revision H 



INTRINSIC Statement 

INTRINSIC Statement 

The INTRINSIC statement identifies a name as representing an intrinsic function, and 
enables use of an intrinsic function name as an actual argument. The INTRINSIC 
statement has the form: 

INTRINSIC fun, ... ,fun 

fun 

An intrinsic function name 

Appearance of a name in an INTRINSIC statement declares the name as an intrinsic 
function name. If you use an intrinsic function name as an actual argument in a 
program unit, it must appear in an INTRINSIC statement in the program unit. You 
must not use the following intrinsic function names as actual arguments: 

• Type conversion functions :BOOM CHAR, CMPLX, DBLE, FLOAT, !CHAR, IDINT, 
IFIX, INT, REAL, and SNGL 

• Lexical relationship functions LGE, LGT, LLE, and LLT 

• Largest/smallest value functions AMAXO, AMAX!, AMINO, AMINI, DMAXl, 
DMINl, MAX, MAXO, MAXI, MIN, MINO, MINI 

• :n.Qmeu::::®.a.::::mi$.lUhg:}fd.h¢.t.i6h$.::::AND}::::o.R~::::x.o.m:::::NEQVl:!:iEQ¥~:::::ooMPll:i:Ube$e 
:ttmc.n&.h~::::~~if:::cncr:::m.~aii4ai1 

The appearance of a generic intrinsic function name in an INTRINSIC statement does 
not remove the generic properties of the name. 

An intrinsic name can appear only once in all INTRINSIC statements in a program 
unit. Note that a symbolic name must not appear in both an EXTERNAL and an 
INTRINSIC statement in the program unit. 

In the following example, the name SQRT is declared intrinsic in subroutine DC and 
passed as an argument to subroutine SUBA. Within SUBA, the reference FNC(A) 
references the intrinsic function SQRT. 

SUBROUTINE DC 
INTRINSIC SQRT 

CALL SUBA(X, Y, SQRT) 

END 

SUBROUTINE SUBA(A, B, FNC) 
B = FNC(A) 

Revision H Specification Statement.a 3-25 



. 
:

.· .... :.=·1_ .. : .... =;.:~ 

DATA Statement 

In the following example, the names SIN and COS are declared as intrinsic and can 
therefore be passed as actual arguments. In the first call to subroutine AR, the 
reference FUNC(VAL) is equivalent to SIN(VAL); in the second call, FUNC(VAL) is 
equivalent to COS(VAL). In each case, the intrinsic function is referenced. 

SUBROUTINE CHECK 
INTRINSIC SIN, COS 

CALL AR(SIN,VAL) 

CALL AR(COS,VAL) 

END 

SUBROUTINE AR(FUNC,VAL) 
VAL = FUNC(VAL) 

DATA Statement 

The DATA statement provides initial values for variables, arrays, array elements, and 
substrings. The DATA statement has the form: 

DATA nlistJclistJ, ... , nlistlclist/ 

nlist 

A list of names to be initially defined. Each name is one of the following: 

A variable name 
An array name 
An array element name 
A character substring name 
An implied DO list 

clist 

A list of constants or symbolic constants, separated by commas, specifying the 
initial values. Each item in the list has one of the forms: 

c 
r*c 
iitrnn;d.1rnm00::f:iJMtti.h.iJ.diJ 

where 

c 

is a constant or symbolic constant. 

r 

is a repeat count that is an unsigned nonzero integer constant or symbolic 
constant. The repeat count repeats the constant or list of constants enclosed in 
parentheses . 

!~tcb.ita.aw.tt~P.h.$t4ht.U~i:s®.iiwa.rwitbNID.ihittth.mittt·t:4.tn;#m1eid.Hiat~v:lte.tP.Al.$ttr.i.it~a.:m~:n~ 
:b.ddliabf$.t6.~1~Q.h.$tibt. The DATA statement is nonexecutable and can appear anywhere 
after the specification statements in a program unit. 

3-26 FORTRAN Version 1 Language Definition Usage Revision H 



DATA Statement 

Entities that are initially defined by DATA statements are defined when the program 
begins execution. Entities that are not initially defined, and not associated with an 
initially defined entity, are undefined at the beginning of execution of the program. 

You must not initialize a variable, array element, or substring more than once in 
separate program units. (An attempt to do so results in a loader error.) If two entities 
are associated, only one can be initially defined by a DATA statement. 

If an entity is initially defined more than once in a DATA statement, the last 
definition overrides any previous ones. 

Names of dummy arguments, functions, and entities in blank, extensible, or 
C$ SEGFILE common (including any entities associated with an entity in the common 
block) cannot be initially defined. Entities in a named common block can be initially 
defined within a block data subprograni#i&tlObXNQstVEJFQRma.AN'rndti.ly)}witb.ihN#iy 
:P.t.Q.~mUU.hit?~tVWlUC.lV:th.ijfijijJh~dJC.4mrn&hHP.loC.kt~P.~~. 

For each list nlist, you must specify the same number of items in the corresponding 
list clist. A one-to-one correspondence exists between the items specified by nlist and 
the constants specified by clist. The first item of nlist corresponds to the first constant 
of clist, the second item to the second constant, and so forth. If an unsubscripted array 
name appears as an item in nlist, you must specify a constant in clist for each element 
of the array. The values of the constants are assigned according to the storage order of 
the array. 

For arithmetic data types, the constant is converted to the type of the associated nlist 
item if the types differ. For all other types, the data type of each constant in clist 
must be compatible with the data type of the nlist item. The correspondence is shown 
in the following table: 

Data Type of nlist Item 

Integer, real, double 
precision, complex, or 
boolean. 

Logical 

Character 

Data Type of Corresponding clist Constant 

Integer, real, double precision, complex, character, or 
boolean. The value of the nlist item is the same as would 
result from an assignment statement of the form: 
nlist-item = clist-constant. Only the first word of double 
precision or complex nlist data is defined by boolean or 
character clist data. When assigning character data to 
noncharacter nlist items, you must ensure word alignment 
if equivalencing of the data is to occur. 

Logical 

Character 

If the length of the nlist item is not the same as the corresonding clist Hollerith 
constant, the Hollerith constant is blank filled if too small, or truncated from the right 
if too large. Constants in clist that are octal or hexadecimal are zero-filled if too small, 
or truncated from the left if too large. 

Each subscript expression used in an array element name in nlist must be an extended 
integer constant expression, except that implied DO variables can be used if the array 
element name is in dlist. A reference to an implied DO variable must be within the 
range of the implied DO. Each substring expression used for an item in nlist must be 
an extended integer constant expression. 

Revision H Specification Statements 3-27 



I 

DATA Statement 

Example: 

INTEGER K(6) 
DATA JR/4/ 
DATA AT/5.0/, AQ/7.5/ 
DATA NRX, SRX/17.0, 5.2/ 
DATA K/1, 2, 3, 3, 2, 1/ 

The variables JR, AT, AQ, and SRX are initially defined with the values 4, 5.0, 7.5, 
and 5.2, respectively. The variable NRX is initially defined with the value 17, after 
type conversion of the real 17 .0 to the integer 17. The array K with six elements is 
initially defined with a value for each array element. 

Example: 

REAL R( 10, 10) 
DATA R/50*5.0, 50*75.0/ 

The array R is initially defined with the first 50 elements set to the value 5.0 and the 
remaining 50 elements set to the value 75.0. 

Example: 

DIMENSION TQ(2) 
EQUIVALENCE (RX, TQ(2)) 
DATA TQ(1)/32.0/ 
DATA RX/47.5/ 

The first element of array TQ is initially defined with the value 32.0. The variable RX 
and the second element of array TQ are initially defined as 47.5, since TQ(2) is 
equivalenced to variable RX. 

Example: 

BOOLEAN MASK 
DATA MASK/Z"FFFF"/ 

The variable MASK is initially defined with the hexadecimal value 00 ... 00FFFF hex. 

For Better Performance 

Use DATA statements, instead of assignment statements, to initialize arrays. Since 
DATA statements are evaluated at load time, they require no execution time. 

3-28 FORTRAN Version 1 Language Definition Usage Revision H 



DATA Statement 

Implied DO List in DATA Statement 

You can use an implied DO list as an item in nlist. The implied DO list has the form: 

(dlist, i=init, term, incr) 

dlist 

A list of .array element names and implied DO lists. Subscript expressions must 
consist of extended integer constant expressions and active DO variables from dlist, 
except that the expression may contain implied DO variables of implied DO lists 
that have the subscript expression within their ranges. 

i 

An integer variable called the implied DO variable. 

init 

An extended integer constant expression specifying the initial value of i; may 
contain implied DO variables of other implied DO lists that have this DO list 
within their ranges. 

term 

An extended integer constant expression specifying the terminal value for i; may 
contain implied DO variables of other implied DO lists that have this DO list 
within their ranges. 

incr 

An optional extended integer constant expression specifying the increment for i; 
may contain implied DO variables of other implied DO lists that have this DO list 
within their ranges. Default value is 1. 

An iteration count and the values of the implied DO variable are established from init, 
term, and incr just as for DO loops, except that the iteration count must be positive. 
When the implied DO list appears in a DATA statement, the list items in dlist are 
specified once for each iteration of the implied DO list, with appropriate substitution of 
values for any occurrence of the implied DO variable i. 

The appearance of a name as an implied DO variable in a DATA statement does not 
affect the value or definition status of a variable with the same name in the program 
unit. 

Example: 

REAL X(5,5) 
DATA ((X(J,I), 1=1,J), J=1,5) /15 • 1.0/ 

Elements of array X are initially defined with the DATA statement. Elements in the 
lower diagonal part of the matrix are set to the value 1.0. The elements initialized are: 

(1,1) 
(2,1) 
(3,1) 
(4,1) 
(5,1) 

Revision H 

(2,2) 
(3,2) 
(4,2) 
(5,2) 

(3,3) 
(4,3) 
(5,3) 

(4,4) 
(5,4) (5,5) 

Specification Statements 3.29 



DATA Statement 

Example: 

PARAMETER (PI=3.14159) 
REAL Y(S,5) 
DATA ((Y(J+1,I), J=I+1,4), 1=1,3) /6 * Pl/ 

The following array elements are initially defined with the value 3.14159: 

(3,1) 
(4,1) 
(5,1) 

(4,2) 
(5,2) (5,3) 

Elements of an array which are not explicitly defined in a DATA statement remain 
undefined. For example: 

DIMENSION RAY(3) 
DATA RAY(2)/0 ./ 

RAY(l) and RAY(3) are undefined. 

Character Data Initialization 

For initialization by a DATA statement, a character item in nlist must correspond to a 
character consta:vt in clist. The character item becomes initially defined according to 
the following rules: 

• If the length of the character item in nlist is greater than the length of the 
corresponding character constant, the additional character positions in the item are 
initially defined as spaces. 

• If the length of the character item in nlist is less than the length of the 
corresponding character constant, the additional characters in the constant are 
ignored. 

Note that initial definition of a character item causes definition of all character 
positions of the item. Each character constant initially defines exactly one character 
variable, array element, or substring. 

Example: 

CHARACTER STR1*6, STR2*3 
DATA STR1/'ABCDE'/ 
DATA STR2/'FGHJK'/ 

The character variables STRl and STR2 are initially defined. Variable STRl is set to 
'ABCDE ', with the sixth character position defined as a space. Variable STR2 is set to 
'FGH', with the fourth and fifth characters of the constant ignored. Example: 

CHARACTER STRING*6 
DATA STRING(2:5)/'BCDEF'/ 

The second through fifth positions of STRING are set to BCDE. The first and sixth 
positions of STRING are undefined, and the last character of the constant is ignored. 

3-30 FORTRAN Version 1 Language Definition Usage Revision H 



Expressions and Assignment Statements 4 

This chapter describes the ways in which expressions are written and evaluated. This 
chapter also describes assignment statements. Assignment statements are executable 
statements that use expressions to define or redefine the values of variables. 

Expressions . . . . . . . . . 
Arithmetic Expressions 
Character Expressions . 
Relational Expressions . 
Logical Expressions . . 
Boolean Expressions (CDC Extension) 
General Rules for Expressions 

Assignment Statements ..... . 
Arithmetic Assignment Statement 
Character Assignment Statement . 
Logical Assignment Statement .. 
Boolean Assignment Statement (CDC Extension) 
Multiple Assignment Statement (CDC Extension) 

4-1 
4-1 
4-9 

4-10 
4-12 
4-14 
4-16 

4-18 
4-19 
4-20 
4-21 
4-21 
4-22 





Expressions and Assignment Statements 4 

Expressions are composed of operands and operators that define an operation to be 
performed. Expressions are evaluated to a specific value. They are used in assignment 
statements to assign values to variables and array elements. 

Expressions 

Expressions are formed from a combination of operators, operands, and parentheses. 
Expressions can be arithmetic, character, relational, logical, or J~6bl~~ij expressions. 
Arithmetic, jij~fol~~ri~ character, relational, and logical expressions are described 
separately. The relational expressions are not fully independent and are used as parts 
of logical expressions. 

Expressions are composed of variable or constant operands, or function references and 
operators that define an operation to be performed on the operands. An expression that 
contains only constant operands is a constant expression. A constant expression in 
which each operand is a constant or any of the intrinsic functions listed in this chapter 
with constant arguments is an extended constant expression. Function references are 
described in chapter 7. 

Arithmetic Expressions 

An arithmetic expression is used to perform an arithmetic computation. It consists of a 
sequence of unsigned constants, symbolic constants, variables, array elements, and 
function references separated by operators and parentheses. An arithmetic expression 
has the form: 

a exp 

where aexp is an arithmetic expression in one of the forms: 

term 
+term 
-term 
aexp + term 
aexp - term 
HffitJ;~P.dfu 
Hhi#tm 
:i]~ijp,::::+e::J:iP.nm 
:aeijP.IBtb.P.nm 
:biWi.m:::::±:::::tirm 
:bP.fi.m::::::at::::::P.P.tim 
:bP.tim:t±:ttirm 
:bP.Mm::::+rn:::hP.tim 

Revision H Expressions and Assignment Statements 4-1 



Expressions 

where term is an arithmetic term in one of the forms: 

fact 
term * fact 
term I fact 
:~)f#.C:~Wl.P.tb.h 
1w.rmtr::i;~?tn.b 
Ji#di#::::!:::::r.a.~t 
:b.PtU#:t!tJ~pdm. 
:t4ttt.m:::::t:atP.rJro 

where fact is an arithmetic factor in one of the forms: 

prim 
prim ** fact 
:tf P.f:im:t'1:tf.aet 
:J#Jm.::::it::::P:P.dm 
:b.Ptl.m:::::!t:::::J:f P.fiJm 

:wn~flt:l.P.tim\l.~M:~t:h®.l~tP.tbn$\f&~tij~8i~$ijttb.ijdJfdtTbooleiht:ilmtijijii6.h~ 

where prim is an arithmetic primary; one of the following entities: 

Unsigned arithmetic constant 
Arithmetic symbolic constant 
Arithmetic variable 
Arithmetic array element reference 
Arithmetic function reference 
Arithmetic expression enclosed in parentheses 

An arithmetic expression can be an unsigned arithmetic constant, symbolic arithmetic 
constant, arithmetic variable reference, arithmetic array arithmetic expressions can be 
formed by using one or more arithmetic :&t/bQ(ifijijj operands together with arithmetic 

:

!.:1:1 operators and parentheses. Arithmetic operands identify values of type eight-, lfdU~Hlih.a 
:t.wdf byte integer, eight- and :1:6-byte real, double precision, or complex. 

The arithmetic operators are: 

** 
* 
I 
+ 

Exponentiation 
Multiplication 
Division 
Addition or identity 
Subtraction or negation 

4-2 FORTRAN Version 1 Language Definition Usage Revision H 



Expressions 

For two operands A and B, the arithmetic operators have the following meaning: 

A ** B Exponentiate A to the power B. B is called the exponent of A. 

A * B Multiply A and B. 

A I B Divide A by B. 

A+B AddAandB 

+ B Same as B. 

A - B Subtract B from A. 

- B Negate B. 

Each of the operators **, I, and * operates on a pair of operands and is written 
between the two operands. Each of the operators + and - either operates on a pair of 
operands and is written between the two operands, or operates on a single operand and 
is written preceding that operand. 

ma~n1e.hgtlfd)fJU.t:aijum.etti~P.tii~i6h.t~Q;PJttdijihgfJW.m~t&t::mau.r.~j@fft>li.hfit.h.~m:1ijttbe.>1eu.tw.b 
:P.f db.ij\Jijfflte~t.\it.ihUtEQ.ttijid~mtmntMvih.tth.e.atij¢.l.iffitibh.ij 

#Jt~G.~lt\\Afg\'?Jtti:tlP.t!:~:tP.!:~&i~:t~::~t':f:fMi. 
IQQ.M~At{l]~ 

lth.itf.4ll4.~:;]~jfitii$.l.on::m~ffl#~:::::e.*-iit; 

:A.lHFtB 

:ll:td&Ml

Jlf!lD. 

:2./$.y:W.$ 

:an Ji.YOO$ 

:4./$.yjtij$ :A.ttthm~tiij/ijy~ffl&WI6.®.U~?U.:tth.~frnti~Ult1&tVC.:t:NJY:n 
jmfg~t:;:;:tbih.:::::fQ.at::::ljytiji; 

mh.~Hle#.gthA).f Jih.tei~ttcQbi~ijt.$.fi)tfutte.gittqtm$.tjijjt\ii.P.t~$19.h~t:JijJae.tijtffltriijaJli&rth.e. 
&attOO.Hijl.Fth.iH:&m$tiijttdttchh.ijtihtte*Pffi~$i9.ijf:::~rijjt.iit~t:m'®.h$mh.tijtl.#ttm~tJ~lil.~P.t~t~ 

Examples of valid arithmetic expressions: 

3.78542 

+AVAL 

Examples of invalid arithmetic expressions: 

B*-A Adjacent operators not permitted 

Right parenthesis missing 

Revision H Expressions and Assignment Statements 4-3 

I 



Expressions 

An arithmetic constant expression contains only the following operands: 

Arithmetic constants 

Symbolic arithmetic constants 

Arithmetic constant expressions enclosed in parentheses 

imm~ijjn::::®n$tlntt 

:S.tmb9lw:::JSQ.&Wirii:':i~6h.s.tiri.U 

:BhQ.l~ih<&.Jri$tlnt:::::~*Ph~$S.iPh.~te.h.#lQ.~a)l.#.:mP.it~ntni$i$:l 

:I.f/the.te'.iffoh.intr~:::::btJ,tn>art.th.meUcte&n~tlnt>e*presijfoh.ti.s>0t>t&1>e:th&6U~atWuthe:t#iln.~ 
#$ed.?i~1l.Nrl..Xi.1\ Note that variable, array element, and function references are not 
allowed. 

An arithmetic constant expression is an arithmetic expression in which each primary is 
an arithmetic :&.ttho&lei:n constant, symbolic arithmetic :9.ttbo6lein constant, or 
arithmetic :P.t:::J).Q.d}ijij;p constant expression enclosed in parentheses. Note that arithmetic 
constant expressions do not contain variable, array element, or function references. 

Any arithmetic operation whose result is not mathematically defined will cause an 
error in the evaluation of an arithmetic expression. Examples are: 

• Dividing by zero 

• Raising a zero-valued primary to a zero-valued or negative-valued power 

• Raising a negative-valued power to a real or double precision power 

An extended arithmetic constant expression contains only arithmetic :9.t::J>Q.&lein 
constants, symbolic arithmetic ~&.#Wb~fo:lein constants, references to any of the intrinsic 
functions in the following list with extended constant expressions as actual arguments, 
or extended arithmetic constant expressions enclosed in parentheses. The allowable 
intrinsic functions are as follows: 

4-4 FORTRAN Version 1 Language Definition Usage Revision H 



ABS 
ACOS 
AIMAG 
AINT 
ALOG 
ALOGlO 
AMAXO 
AMAX! 
AMINO 
AMINI 
AMOD 
:~P. 
AN INT 
ASIN 
ATAN 
ATAN2 
:AT.ANH 
:B:OQL 
CABS 

ccos 
CEXP 
CLOG 
CMPLX 
JJQMPL 
CON JG 
cos 
:cosn 
COSH 
CSIN 
CSQRT 
DABS 
DA COS 
DA SIN 
DATAN 
DATAN2 
DBLE 
DCOS 
DCOSH 

DDIM 
DEXP 
DIM 
DINT 
DLOG 
DLOGlO 
DMAXl 
DMINl 
DMOD 
DNINT 
DPROD 
DSIGN 
DSIN 
DSINH 
DSQRT 
DTAN 
DTANH 
J~QY 
::&Rf 

:El.WO 
EXP 
FLOAT 
JABS 
ICHAR1 

IDIM 
ID INT 
IDNINT 
IFIX 
INDEX 
INT 
ISIGN 
LEN 
LOG 
LOG IO 
:MA.SK 
MAX 
MAXO 
MAXI 

MIN 
MINO 
MINI 
MOD 
:NE.QV 
NINT 
UR 
REAL 
:SU.lET. 
SIGN 
SIN 
:SJ.ND 
SINH 
SNGL 
SQRT 
TAN 
mAND. 
TANH 
:x.o;a; 

Expressions 

1 Valid only if the fixed collation weight table is in effect. (Collation sequences are 
described in chapter 9.) 

:arinn1te.g~i<co~mn.trnij*P.te.ij$iijb/iij\ijh.:t~lt.hme:ti~?:®h$t~nrnn~*P.tM~wri<ot<&rnb.6.&l.iih. 
:~ijlj~tjlijtJijtpfiij~loh in which each constant or symbolic constant is of type integer :dt 

r:~;:~!!~~;!:;;~:~~~;~i::;:?:~!!!:~;:~!~::n~;ts in I 
allowed in an integer constant expression. 

Examples of integer constant expressions: 

3 -3+4 R"A" 

-3 R"AB".AND. 48 

:ailJn~~~hd.~dtin.t~ge.t::::J~titt~t$.#.ta~~P.te.$~ioh/iijt&trai~~te.h.a.~atijfithm~n~m:&itb.Q.&ie.ijriJ~dtm~rit 
:i*P.tiM~id~Hl.ff?W.lUd.f{ijij~b.ldpijfjijij/j~}jij/iht.ige.tn~r<m.@l~@H®.h$.t.$t.Nihijyfub.dli~Jlht.ige.t 
:&t>b.otiteijrifcotm.~ritfNt<tir~fim®>to.t&nitotVtb.etiritmtm.i~tf.4®m#~ijfJ$.JXth.itfQll.oWMiHlit.t 
:Wit.h'J.~~d~hdi4.t#dMtijij(#~~P.f.i$.ijjQ.ij$fij~dlret4il.\ijfgijt#i.htiiW>fMimAi*-i6aedtu.tWgit 
:~oP.itarit.\itP.ti~~iM?J~h.ql®.~tia::mP.ijiih.the$e$f Jf:b.ijtiuawijb.Jitmttin~dctnm.euan.~nat~nij$. 
fQll.Q.Wi~ 

:aasw 
:A.NP 
:B:QQL. 

i:~:.ifL 
:E:QY 

:l.A.BS 
:J.QlU\!Rf:: 
:l.l1UM 
JOINT 
:l.DNlNW 
:l.FlX 

lNPEX. 
:JNT 
:l.SlGN 
:LEN 
:MASK 
~iMA~h 

+:::v.aimran.1&<Wit.liiifl5k:~tn&t\h®liij~tit:ID.lments\ 

:MA,X,Q 
MAX.1 
:Ml.Nfm 
:Ml.NO 
:Ml.Nl 
:MOOM 

:NE.QM 
:NlNW 
iO.R 
:SHIFT 
isl.aii:tm 
:XOR 

:f: tV.ilWl6hlyfUYtb.ij):f.iti4.\C.6UitiPhlWijiglWft.a.blefi$liif(ijWe~tttP.Qll&UtihJW.iijt.h.t.:Wti.b.lii.)ite 
:aw.~µijiijd::::1~::::cn.ijP.t~t:::::9~ 

Revision H Expressions and Assignment Statements 4-5 



Expressions 

A set of rules establishes the interpretation of an arithmetic expression that contains 
two or more operators. A precedence among the arithmetic operators determines the 
order in which the operands are combined: 

** Highest 

*and I Intermediate 

+and - Lowest 

For example, in the expression 

- A •• 2 

the exponentiation operator (**) has precedence over the negation operator (-). The 
operands of the exponentiation operator are combined to form an expression used as 
the operand of the negation operator. The above expression is the same as the 
expression: 

- (A •• 2) 

You can alter the default order of evaluation of subexpressions within an expression by 
enclosing the subexpression in parentheses. The subexpressions within the parentheses 
are always evaluated before being combined with other operands in the expression. For 
example, in the expression 

A + B/C 

B is divided by C and the result is added to A. However, in the expression 

(A + B) I C 

A is added to B and the result is divided by C. 

Parenthetical subexpressions can be nested within an expression. For example 

(A + (C/D)) • B 

is a valid expression. 

In an expression containing nested subexpressions, the subexpression within the 
innermost pair of parentheses is evaluated first. Note that each left parenthesis must 
have a corresponding right parenthesis. 

Successive exponentiations are combined from right to left. For example, 

2••3••2 

has the same interpretation as 

2**(3**2) 

Two or more multiplication or division operators are combined from left to right. 

Two or more addition or subtraction operators are combined from left to right. Note 
that arithmetic expressions containing two consecutive arithmetic operators, such as 
A**-B or A+-B, are not permitted. However, expressions such as A**(-B) and 
A+ (-B) are permitted. 

4-6 FORTRAN Version 1 Language Definition Usage Revision H 



Expressions 

Subexpressions containing operators of equal precedence are evaluated from left to 
right. 

NOTE 

The compiler may reorder individual operations in expressions to perform optimizations 
such as removal of repeated subexpressions. The reordering can cause unexpected 
results for real, double precision, and complex type data due to truncation errors. Only ~~~ 
expressions that are mathematically associative or commutative are candidates for .=i.:i.=i 

reordering. For example: 

Source Expression 

AIB*C 

Compiler options 

(AIB)*C 

(A*C)/B 

You can inhibit reordering of operations of equal precedence by using parentheses or 
specifying EXPRESSION_EVALUATION=CANONICAL on the FORTRAN command. 

The data type of an arithmetic expression containing one or more arithmetic operators 
is determined from the data types of the operands. Integer expressions, real 
expressions, double precision expressions, and complex expressions are arithmetic 
expressions whose values are of type integer, real, double precision, and complex, 
respectively. When the operator + or - operates on a single operand, the data type of 
the resulting expression is the same as the data type of the operand [@.}ijijM~tM 
:&pijdtt#itn.rntt>t&mrrb.tmlm.td.MmtWhi~bt~~j~tth.ijtinmror:::th.~tte.~mittP,!te*-P.t.~~itijPJttij 
:~t~get. 

When an arithmetic operator operates on a pair of arithmetic operands of the same 
type, the result has the same type as the operands. If the operands are of different 
types, the expression is known as a mixed mode expression. The data types of the 
results of mixed mode expressions are given in the following tables: 

Table 4-1. Resulting Data Type for Xl **X2 

Resulting 
Type of xl Type of x2 xl Value Used x2 Value Used Data Type 

Integer Integer xl x2 Integer 
Integer Real REAL(xl) x2 Real 
Integer Double DBLE(xl) x2 Double 
Integer Complex CMPLX(REAL(xl),O.) x2 Complex 
Real Integer xl x2 Real 
Real Real xl x2 Real 
Real Double DBLE(xl) x2 Double 
Real Complex CMPLX(xl,O.) x2 Complex 
Double Integer xl x2 Double 
Double Real xl DBLE(x2) Double 
Double Double xl x2 Double 
Double Complex CMPLX(SNGL(xl),O.) x2 Complex 
Complex Integer xl x2 Complex 
Complex Real xl CMPLX(x2,0.) Complex 
Complex Double xl CMPLX(SNGL(x2),0.) Complex 
ComElex ComElex xl x2 ComElex 

Revision H Expressions and Assignment Statements 4-7 



Expressions 

Table 4-2. Resulting Data Type for Xl + X2, Xl-X2, Xl *X2, or Xl/X2 

Resulting 
Type of xl Type of x2 xl Value Used x2 Value Used Data Type 

Integer Integer xl x2 Integer 
Integer Real REAL(xl) x2 Real 
Integer Double DBLE(xl) x2 Double 
Integer Complex CMPLX(REAL(xl),O.) x2 Complex 
Real Integer xl REAL(x2) Real 
Real Real xl x2 Real 
Real Double DBLE(xl) x2 Double 
Real Complex CMPLX(xl,O.) x2 Complex 
Double Integer xl DBLE(x2) Double 
Double Real xl DBLE(x2) Double 
Double Double xl x2 Double 
Double Complex CMPLX(SNGL(xl),O.) x2 Complex 
Complex Integer xl CMPLX(REAL(x2),0.) Complex 
Complex Real xl CMPLX(x2,0.) Complex 
Complex Double xl CMPLX(SNGL(x2),0.) Complex 
Complex Complex xl x2 Complex 

If two arithmetic operands are of different types, the operand that differs in type from 
the result of the operation is converted to the type of the result. The operator then 
operates on a pair of operands of the same type. The exception to this is an operand of 
type real, double precision, or complex raised to an integer power; the integer operand 
is not converted. If the value of J is negative, the interpretation of I**J is the same as 
the interpretation of 1/(1** ABS(J)), which is subject to the rules for integer division. 
For example, 2**(-3) has the value of 1/(2**3), which is zero. 

:AJh0.6lijijij}ijpijd~l~d:?UfNij~jij~rie.h.tllt.i6.h.:}ijpijftitloh.Tl~?®:hv~tt~a?t.rh'mt.~gijf@:Fhrtth.~CHSlH 
:~tihdtt?Q.P.ijtijtwriiNifn~w&:n:@~tiria~tt#eJ6.£Hn:oce.te.tttttY.Pe.<IDiA<P.hijJtY.Jm.:a~mJ#m1ia.tw:mtn.~ 
:t:e$liltMjijij\thijtt~rt)tft.hijtoth~tm:a.Pi.Nll.mrnJr:JAf.tJ:tfoP.etina~1ite<6.£ttYP.e.<b.®.l~Ht.h.~ 
:te$.lllt/h.ij~d&:Pef ittte.g~t>:whe.ttijijijJt<9f ttbij/P.P.ijhit6t::':H+<a.tm:taijY~1letiw.rusttiP.ijt~tP.ig/4htij, 
:$mgl~u1;om~ah>ij~f:ijJidfilfm6.£tt&mHl.nW.k~N:<Atboolij~U~AP.Pi.tID.1.a::::t$.tt.&hV~tt~a.::::w::::th.~lt~tof 
&a.e.:::::te.s.uut:¥ha.ttb.ij:::::&Pi.t.aU9P::'J$JP.~tfdrme.aro.ifmtaijt®.b.v~tt~aro1letirianic&mhmiijg 
:h.6&l.~ari>&~tina.i>Witb/J!#.Jm.rnhd$7tb.~t<ihHh~ttbijt:fl@olijititb.ijtJmte.g~t<~mijad<t6 
:®.ii.P®.t®.:::J~~ult~~) 

One operand of type integer can be divided by another operand of type integer to yield 
an integer result. The result is the signed nonfractional part of the mathematical 
quotient. For example, (-10)/4 yields -2; the result is formed by discarding the 
fractional part of the mathematical quotient -2.5. 

NOTE 

The following condition must be met in order to ensure the correct evaluation of a 
real, double precision, complex, :&.fjijijplijijij expression: the operand must be a standard 

i!i normalized floating point number or zero (represented as all zero bits) FORTRAN 
~!~ automatically normalizes all real non-zero constants, and the results of all floating 

....... 

:

i····:::; __ :·_ .. :i point operations with standard normalized or zero operands are normalized or zero. 
However, it is possible to generate unnormalized or nonstandard operands by means of 
boolean expressions, equivalencing, or various input operations. 

4-8 FORTRAN Version 1 Language Definition Usage Revision H 



Character Expressions 

A character expression consists of a sequence of character operands joined by 
concatenation operators. A character expression has the form: 

cexp 

where cexp is a character expression in one of the forms: 

cprim 
cexp II cprim 

where cprim is a character primary; one of the following: 

Character constant 
Character symbolic constant 
Character variable 
Character array element 
Character substring reference 
Character function reference 
A character expression 

where II is the concatenation operator 

Expressions 

The value of a character expression is a character string. Evaluation of a character 
expression produces a result of type character. The simplest form of a character 
expression is a single operand of type character. You can form more complicated 
character expressions by using two or more character operands together with character 
operators and parentheses. 

The result of a concatenation operation is a character string concatenated on the right 
with another string and whose length is the sum of the lengths of the strings. For 
example, the value of 'AB' II 'CDE' is the string 'ABCDE'. 

The operands of a character expression must identify values of type character. Except 
in a character assignment ·statement, a character expression must not involve 
concatenation of an operand whose length specification is an asterisk in parentheses, 
unless the operand is a symbolic constant. 

In a character expression containing two or more operands, the operands are combined 
from left to right to interpret the expression. For example, the interpretation of the 
character expression 

'AB' II 'CD' II 'EF' 

is the same as the interpretation of the character expression 

('AB' II 'CD') II 'EF' 

The value of the preceding expression is the same as that of the constant 'ABCDEF'. 
Note that parentheses have no effect on the value of a character expression. Thus, the 
expression 

'AB' II ('CD' II 'EF') 

has the same value as the preceding expressions. 

Revision H Expressions and Assignment Statements 4-9 



Expressions 

A character constant expression is a character expression in which each operand is a 
character constant, a symbolic character constant, or a character constant expression 
enclosed in parentheses. Note that variable, array element, substring, and function 
references are not allowed. 

An extended character constant expression is a character expression in which each 
operand is a character constant, a reference to the CHAR intrinsic function with an 
extended integer constant expressioµ as the actual argument, or an extended character 
constant expression enclosed in parentheses. 

Relational Expressions 

Relational expressions can appear only within logical expressions. Evaluation of a 
relational expression produces a logical result with a true or false value. A relational 
expression has the form: 

rexp 

where rexp is a relational expression in one of the forms: 

aexp rop aexp 
:i~*ti::::$4P:::::b.P.rim 
J#if:i.mm::t&P.:nti*P 
:bP.tt.m::::it:Q.P,:::ihP.dM 
cexp rop cexp 

where rop is one of the following relational operators: 

.LT. less than 
.LE. less than or equal to 
.EQ. equal to 
.NE. not equal to 
.GE. greater than or equal to 
.GT. greater than 

where aexp is an arithmetic expression 

where cexp is a character expression 

A relational expression is used to compare the values of two arithmetic :&r:/bQ.dlei.n 
expressions, or of two character expressions. You cannot use a relational expression to 
compare the value of an arithmetic expression with the value of a character expression. 
For two operands A and B, the relational operators have the following meaning: 

A .LT. B Is A less than B? 

A .LE. B Is A less than or equal to B? 

A .EQ. B Is A equal to B? 

A .NE. B Is A not equal to B? 

A .GT. B Is A greater than B? 

A .GE. B Is A greater than or equal to B? 

You can use a complex operand only when the relational operator is .EQ. or .NE. 

4-10 FORTRAN Version 1 Language Definition Usage Revision H 



Expressions 

An arithmetic relational expression has the logical value true only if the values of the 
operands satisfy the relation specified by the operator. If the two arithmetic expressions 
are of different types, :~tfbQ.th#gifb.dbl~aijflthe value of the relational expression 

Xl relop X2 

is the value of the expression 

((XI) - (X2)) relop 0 

where 0 (zero) is of the same type as the expression. Note that the comparison of a 
double precision value and a complex value is not permitted. 

Examples of valid relational expressions (assume that J and ITEM are type integer, 
and VAR, B, and C are type real): 

J .LT. ITEM Is J less than ITEM? 

580.2 .gt. var Is 580.2 greater than VAR? 

B .EQ. (2.7, 59E3) Real part of complex operand is used. 

C .LT. 1.504 Is DBLE(C) less than 1.5D4? 

Example of invalid relational expression: 

A .GT. 720 .LT. 900 Two relational operands are not permitted. 

A character relational expression has the logical value true only if the values of the 
operands satisfy the relation specified by the operator. The character expression Xl is 
considered to be less than X2 if the value of Xl precedes the value of X2 in the 
collating sequence; Xl is greater than X2 if the value of Xl follows the value of X2 in 
the collating sequence. Note that the collating sequence in use determines the result of 
the comparison. The default collating sequence is the ASCII collating sequence as 
shown in appendix J. Also refer to Collation Control in chapter 9. 

Character relational expressions in PARAMETER and conditional compilation (C$ IF) 
statements are always evaluated using the ASCII sequence. 

If the operands are of unequal length, the shorter operand is treated as if it had been 
extended on the right with spaces to the length of the longer operand. 

NOTE 

You should ensure that real operands in relational expressions involving the .EQ. or 
.NE. operators contain normalized standard floating point numbers or zero (represented 
as all zero bits), if a floating point comparison is desired. A bit-by-bit comparison is 
performed for these operators, in order to allow comparisons of Hollerith data in real 
variables. This means that two different unnormalized representations of the same 
floating point value will compare as unequal unless the EXPRESSION _EVALUATION 
parameter specifies MP on the FORTRAN command. FORTRAN automatically 
normalizes all real non-zero constants, and the results of all floating point operations 
with standard normalized or zero operands are normalized or zero. However, it is 
possible to generate unnormalized or nonstandard operands by means of ib.6Q.leab 
ii.iP.ti~~l.d~Wequivalencing, or various input operations. 

Revision H Expressions and Assignment Statements 4-11 



Expressions 

Logical Expressions 

Evaluation of a logical expression produces a result of type logical, with a value of 
true or false. A logical expression has the form: 

lexp 

where lexp is a logical expression in one of the forms: 

ldis 
lexp .EQV. ldis 
lexp .NEQV. ldis 
lexp .XOR. ldis 

where ldis is a logical disjunction in either of the forms: 

lterm 
ldis .OR. lterm 

where lterm is a logical term in either of the forms: 

lfact 
lterm .AND. lfact 

where lfact is a logical factor in either of the forms: 

lprim 
.NOT. lprim 

where lprim is a logical primary; one of the following: 

Logical constant 
Logical symbolic constant 
Logical variable 
Logical array element reference 
Logical function reference 
Logical expression enclosed in parentheses 
Relational expression 

The logical operators are shown in the following table: 

Use of 
Operator Representing Operator Meaning 

.NOT. logical negation .NOT. A Complement A 

.AND. Logical conjunction A .AND. B 

.OR. Logical inclusive A .OR. B 
disjunction 

Logical product of A and B 

Logical sum of A and B 

.EQV. Logical equivalence A .EQV. B 

.NEQV. Logical A .NEQV. B 
nonequivalence 

}XQR~ ~'.OQ.ii.®.Uiji.¢lU$if:~ iAttX.Jll.UWS 
liil,;ltlhttfoh. 

4-12 FORTRAN Version 1 Language Definition Usage 

Test for A logically equivalent to B 

Test for A not logically equivalent 
to B 

Revision H 



Expressions 

A logical constant expression contains only logical constants, symbolic logical constants, 
relational expressions that contain only constant expressions, or logical constant 
expressions enclosed in parentheses. Note that logical constant expressions do not 
contain variable, array element, or function references. 

An extended logical constant expression contains only logical constants, symbolic logical 
constants, relational expressions that contain only extended constant expressions, and 
references to any of the intrinsic functions in the following list with extended character 
constant expressions as actual arguments, or extended logical constant expressions 
enclosed in parentheses. The allowable intrinsic functions are as follows: 

LGE 

LGT 

LLE 

LLT 

The simplest form of a logical expression is a single logical operand with no operators. 
More complicated logical expressions can be formed by using one or more logical 
operands together with logical operators and parentheses. 

Examples (L, M, and Z are logical variables): 

.NOT. L 

. NOT • ( X • GT. Y) 

x .gt. y .and .. not. z 

Examples of invalid relational expressions: 

. AND. M .AND. must be preceded by a logical expression . 

L .AND .. OR. M .AND. must be separated from .OR. by a logical expression. 

A set of rules establishes the interpretation of a logical expression that contains two or 
more logical operators. A precedence among the logical operators determines the order 
in which the operands are to be combined, unless the order is changed by the use of 
parentheses. The precedence of the logical operators is: 

1. .NOT. (Highest) 

2 .. AND. 

3 .. OR. 

4. .EQV. or .NEQV. or .XOR. (Lowest) 

For example, in the expression 

A .OR. B .AND. C 

the .AND. operator has higher precedence than the .OR. operator; therefore, the 
interpretation is the same as 

A .OR. (B .AND. C) 

Revision H Expressions and Assignment Statements 4-13 



Expressions 

When a logical expression contains two or more .AND. operators; two or more .OR. 
operators; or two or more .EQV., NEQV., or .XOR. operators, the logical quantities are 
combined from left to right. 

The value of a logical operation involving any logical operator is shown in the 
following table: 

xl x2 .NOT.x2 x1.AND.x2 x1 .OR. x2 xl .EQV .x2 x1.NEQV.x2 x1 .XOR.x2 

. TRUE. .TRUE. . FALSE. .TRUE . . TRUE. .TRUE . . FALSE . .FALSE . 

. TRUE. . FALSE . . TRUE . . FALSE . . TRUE . .FALSE . . TRUE . .TRUE . 

. FALSE. . TRUE. . FALSE. .FALSE . . TRUE. .FALSE . . TRUE . .TRUE . 

. FALSE. . FALSE. .TRUE. . FALSE . .FALSE . . TRUE . . FALSE . .FALSE . 

Control Data Extension 

Boolean Expressions 

A boolean expression is formed with logical operators and boolean or arithmetic 
operands. Evaluation of a boolean expression produces a result of type boolean. A 
boolean expression has the form: 

bexp 

where bexp is a boolean expression in one of the forms: 

bdis 
bexp .EQV. bdis 
bexp .EQV. aexp 
aexp .EQV. bdis 
aexp .EQV. aexp 
bexp .NEQV. bdis 
bexp .NEQV. aexp 
aexp .NEQV. bdis 
aexp .NEQV. aexp 
bexp .XOR. bdis 
bexp .XOR. aexp 
aexp .XOR. bdis 
aexp .XOR. aexp 

where bdis is a boolean disjunct in one of the forms: 

bterm 
bdis . OR. bterm 
bdis . OR. aexp 
aexp .OR. bterm 
aexp .OR. aexp 

where bterm is a boolean term in one of the forms: 

bf act 
bterm .AND. bfact 
bterm .AND. aexp 
aexp .OR. bterm 
aexp .OR. aexp 

4-14 FORTRAN Version 1 Language Definition Usage Revision H 



where bfact is a boolean factor in one of the forms: 

bprim 
.NOT. bprim 
.NOT. aexp 

where aexp is an arithmetic expression 

where bprim is a boolean primary; one of the following: 

Unsigned boolean constant 
Boolean symbolic constant 
Boolean variable 
Boolean array element reference 
Boolean function reference 

Expressions 

Examples (P, Q, R, S, X, Y and Z can be any type except character or logical): 

X .AND. Z"FFFP 

(X + Y) .OR. R 

P .AND. Q .OR. S 

A boolean constant expression is a boolean expression that contains only boolean 
constants, symbolic boolean constants, boolean constant expressions enclosed in 
parentheses, arithmetic constants, symbolic arithmetic constants, or arithmetic constant 
expressions enclosed in parentheses. Boolean expressions containing two- or four-byte ·:l.::f:j 

integers are considered eight bytes long. An extended boolean constant expression is a 
boolean constant expression that contains only boolean or arithmetic constants, symbolic 
boolean or arithmetic constants, references to any of the intrinsic functions listed for 
arithmetic constant expressions with extended constant expressions as actual 
arguments, or extended boolean constant expressions enclosed in parentheses. 

Boolean quantities are combined from left to right when a boolean expression contains 
two or more AND. operators, two or more .OR. operators, or two or more .EQV., 
.NEQV., or .XOR. operators. 

If an operand is of type integer, real, double precision, or complex, it is converted to 
boolean and the operation is performed on the converted operand. 

Revision H Expressions and Assignment Statements 4-15 



Expressions 

A boolean operator determines each bit value of the result it yields independently of 
other bits of the result. Each bit value of the result is determined from the 
corresponding bit values of the operands. At each bit position, the bit in the result is 
determined as shown in the following table: 

Corresponding Bit in Result of: 

Corre-
Each spond-
Bit in ing Bit 
xl in x2 .NOT.x2 x1 .AND. x2 X1 .OR. x2 x1. EQV. x2 X1.NEQV.x2 x1.XOR.x2 

0 0 1 0 0 1 0 0 
0 1 0 0 1 0 1 1 
1 0 1 0 1 0 1 1 
1 1 0 1 1 1 0 0 

End of Control Data Extension 

General Rules for Expressions 

The order in which operands are combined using operators is determined by: 

1. Use of parentheses 

2. Precedence of the operators 

3. Right-to-left interpretation of exponentiations 

4. Left-to-right interpretation of multiplications and divisions 

5. Left-to-right interpretation of additions and subtractions in an arithmetic expression 

6. Left-to-right interpretation of concatenations in a character expression 

7. Left-to-right interpretation of .AND. operators 

8. Left-to-right interpretation of .OR. and .NOT. operators 

9. Left-to-right interpretation of .EQV., NEQV., and .XOR. operators in a logical 
expression or lfoofo~ij\~~pfe~~i.Ob 

Precedences have been established among the arithmetic and logical operators. There is 
only one character operator. No precedence is established among the relational 
operators. The precedences among the operators are: 

1. Arithmetic (Highest) 

2. Character 

3. Relational 

4. Logical (Lowest) 

4-16 FORTRAN Version 1 Language Definition Usage Revision H 

( 



Expressions 

An expression can contain more than one kind of operator. For example, the logical 
expression 

L .OR. A+ B .GE. C 

where A, B, and C are of type real, and L is of type logical, contains an arithmetic 
operator, a relational operator, and a logical operator. This expression would be 
interpreted as: 

L .OR. ((A + B) .GE. C) 

Any variable, array element, function, or character substring referenced in an 
expression must be defined at the time the reference is made. An integer operand must 
be defined with an integer value rather than an assigned statement label value. Note 
that if a character string or substring is referenced, all of the referenced character 
positions must be defined at the time the reference is executed. 

You must not specify any arithmetic operation whose result is not mathematically 
defined; for example, dividing by zero, or raising a zero value to a zero-valued or 
negative-valued power. 

A function reference in a statement must not alter the value of any other entity within 
the statement in which the function reference appears. The execution of a function 
reference in a statement must not alter the value of any entity in common that affects 
the value of any other function reference in that statement. However, execution of a 
function reference in the expression of a logical IF statement can affect entities in the 
statement that is executed when the value of the expression is true. If a function 
reference causes definition of an actual argument of the function, that argument or any 
associated entities must not appear elsewhere in the same statement. For example, the 
statements 

A(I) = F(I) 

Y = G(X) + X 

are prohibited if the reference to F defines I, or the reference to G defines X. 

All of the operands of an expression are not necessarily evaluated if the value of the 
expression can be determined otherwise. For example, in the logical expression 

X .GT. Y .OR. L(Z) 

where X, Y, and Z are real, and L is a logical function, the function reference L(Z) 
need not be evaluated if X is greater than Y. If a statement contains a function 
reference in a part of an expression that need not be evaluated, all entities that would 
have become defined in the execution of that reference become undefined at the 
completion of evaluation of the expression containing the function reference. In the 
example above, evaluation of the expression causes Z to become undefined if L defines 
its argument. 

Revision H Expressions and Assignment Statements 4-17 



Assignment Statements 

If a statement contains more than one function reference, the functions can be 
evaluated in any order, except for a logical IF statement and a function argument list 
containing function references. For example, the statement 

Y = F(G(X)) 

where F and G are functions, requires G to be evaluated before F is evaluated. 

Any expression contained in parentheses is always treated as an entity. For example, 
in the expression A*(B*C), the product of B and C is evaluated and then multiplied by 
A; the mathematically equivalent expression (A *B)*C is not used. 

Assignment Statements 

An assignment statement consists of a variable followed by an equal sign followed by 
an expression. (In the case of multiple assignment statements, multiple equal signs and 
multiple variables are allowed.) When the assignment statement is executed, the 

( 

( 

expression is evaluated and the result is stored in the variable. If the variable has ( 
been previously defined, the new value replaces the current value. There are five types 
of assignment statements: 

Arithmetic 

Logical 

Statement label (with the ASSIGN statement as described in chapter 5) 

Character 

4-18 FORTRAN Version 1 Language ·Definition Usage Revision H 



Assignment Statements 

Arithmetic Assignment Statement 

An arithmetic assignment statement has the form: 

v = exp 

v 

A variable or array element of type integer, real, double precision, or complex 

exp 

An arithmetic ~6tJb.o&lijijij{i*-P.fe$$ioh 

After evaulation of the arithmetic expression exp, the result is converted to the type of 
v in the following way: 

Integer 

Real 

Double 
precision 

Complex 

INT (exp) 

REAL (exp) 

DBLE (exp) 

CMPLX (exp) 

The result is then assigned to v, and v is defined or redefined with that value. If the i~i 
type of v is integer, and the size of v is less than the size of exp, then exp is .=i.:i:i.: 

truncated on the left to match the size of v. The truncation can change the sign of exp. 

Examples: 

A= A+ 1.0 

WAGE = PAY - TAX 

VAR = VALUE + (7/4) * 32 

In the following example, a value is assigned to the complex variable C: 

COMPLEX C 
PARAMETER (PAR1=1., PAR2=2.) 

C = (PAR1,PAR2) 

Example of invalid arithmetic assignment statement: 

B + C = X - 5. 1 An expression must not appear to the left of the equal sign. 

For Better Performance 

Use DATA statements, instead of assignment statements, to initialize arrays. Since lli 
DATA statements are evaluated at load time, they require no execution time. 

Revision H Expressions and Assignment Statements 4-19 



Assignment Statements 

Character Assignment Statement 

A character assignment statement has the form: 

v =exp 

v 

A character variable, array element, or substring 

exp 

A character expression 

The character expression exp is evaluated, and the result is then assigned to v. If the 
character positions being defined in v are referenced in exp, results can be incorrect 
unless you specify EXPRESSION_EVALUATION=OVERLAPPING_STRING_MOVES 
on the FORTRAN command. 

The variable v and expression exp can have different lengths. If the length of v is 
greater than the length of exp, the effect is as though exp were extended to the right 
with spaces until it is the same length as v. If the length of v is less than the length 
of exp, the effect is as though exp were truncated from the right until it is the same 
length as v. 

Example: 

CHARACTER MQ•3, DAY*3, DATE*10 

DATE = MO//DAY//'1981' 

The character variables MO and DAY and the string 1981 are concatenated into a 
single 10-character string and stored into the variable DATE. 

Only as much of the value of exp must be defined as is needed to define v. In the 
example 

CHARACTER A•2, B*4 
A = B 

the assignment A= B requires that the substring B(1:2) be defined. It does not require 
that the substring B(3:4) be defined. If v is a substring, exp is assigned only to the 
substring. The definition status of substrings not specified by v is unchanged. 

4-20 FORTRAN Version 1 Language Definition Usage Revision H 



Assignment Statements 

Logical Assignment Statement 

A logical assignment statement has the form: 

v = exp 

v 

A logical variable or array element 

exp 

A logical expression 

The logical expression is evaluated and the result is then assigned to v. Note that exp m 

must have a value of either true or false. 

Example: 

LOGICAL LOG2 
I = 1 

LOG2 = I .EQ. 0 

LOG2 is assigned the value false because I is not equal to zero. 

Control Data Extension 

Boolean Assignment Statement 

A boolean assignment statement has the form: 

v = exp 

v 

A boolean variable or array element 

exp 

A boolean or arithmetic expression 

The boolean or arithmetic expression exp is evaluated. If exp is an arithmetic 
expression, the result used is BOOL(exp). The result is then assigned to v. 

Example: 

A = B .AND. Z"FF" 

The lower 8 bits of B are stored in A; the upper 56 bits of A contain zeros. 

End of Control Data Extension 

Revision H Expressions and Assignment Statements 4-21 



Assignment Statements 

Control Data Extension 

Multiple Assignment Statement 

A multiple assignment statement has the form: 

v = ... =v= exp 

v 

A variable, array element, or character substring. 

exp 

An arithmetic, :b.P:bl~iffi character, relational, or logical expression. The type of exp 
must ensure that v = exp is valid for each v specified. 

Execution of a multiple assignment statement causes the evaluation of the expression 
exp. After any necessary conversion, the assignment and definition of the rightmost v 
with the value of exp occurs. Assignment and definition of each additional v occurs in 
right-to-left order. The value assigned to each v is the value of the v immediately to 

~~~ its right, after any necessary conversion. If the type of v is integer, and the size of v 

:

i.:·.:i.=i is less than the size of exp, then exp is truncated on the left to match the size of v.
The truncation can change the sign of exp.

Example:

X = Y = Z = 10.0 • SUM(I)

This statement is equivalent to:

X = 10.0 • SUM(I)
Y = 10.0 • SUM(I)
Z = 10.0 • SUM(I)

Example:

X=M=1.5

M is assigned the value 1 and X is assigned the value 1.0.

End of Control Data Extension t\ttlt?ttttkJ1tltitt?tttft}

4-22 FORTRAN Version 1 Language Definition Usage Revision H

(

Flow Control Statements

Flow control statements provide a means of altering, interrupting, terminating, or
otherwise modifying the normal sequential flow of execution.

GO TO Statements
Unconditional GO TO Statement
Computed GO TO Statement
ASSIGN Statement
Assigned GO TO Statement .

IF Statements
Arithmetic IF Statement.
Logical IF Statement .
Block IF Statement
ELSE Statement ..
ELSE IF Statement
END IF Statement .
Block IF Structures
Nested Block IF Structures

DO Statement
DO Loops
Nested DO Loops .
Extended Range DO Loops (CDC Extension)

CONTINUE Statement

PAUSE Statement .

STOP Statement .

END Statement .

5

5-1
5-1
5-2
5-3
5-3

5-4
5-4
5-5
5-6
5-6
5-6
5-7
5-7

5-10

5-11
5-11
5-14
5-17

5-18

5-19

5-19

5-20

Filow Contrcoil Statements

The flow control statements change the order in which statements are executed. The
flow control statements are:

GO TO

IF

DO

CONTINUE

PAUSE

STOP

END

The CALL and RETURN statements, while sometimes considered to be flow control
statements, are described in chapter 7 along with program units.

GO TO Statements

5

The three types of GO TO statements are unconditional GO TO, computed GO TO, and
assigned GO TO. The ASSIGN statement is used in conjunction with the assigned GO
TO and is therefore described in this chapter.

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the executable statement
identified by the specified label. The unconditional GO TO statement has the form:

GO TO label

label

Label of an executable statement

The labeled statement must appear in the same program unit as the GO TO statement.

Example:

GO TO 2a
10 A = a.a
20 A = A + 1.0

When the statement GO TO 20 is reached, control transfers to statement 20. Note that
the statement following the GO TO can be reached only as a result of another flow
control statement (or the END or ERR specifiers on the input/output statements).

Revision H Flow Control Statements 5-1

GO TO Statements

Computed GO TO Statement

The computed GO TO statement transfers control to the executable statement identified
by one of the specified labels. The computed ·Go TO statement has the form:

GO TO (label, ... ,label), exp

label

Label of an executable statement that appears in the same program unit as the GO
TO statement.

exp

:A#MU'it.bifflij'ti~itif{b.@.lijj;ij:f~*Pte~M6it (ANSI allows an integer expression only.) The
comma preceding exp is optional.

The label selected is determined by the value of the expression. If exp has a value of
one, control transfers to the statement identified by the first label in the list; if exp
has a value of i, control transfers to the statement identified by the ith label in the
list. The value of exp is truncated and converted to integer, if necessary.

If the value of exp is less than one or greater than the number of labels in the list,
execution continues with the statement following the computed GO TO.

Example:

GO TO (10,20,30,20) L

The next statement executed is:

10 if L = 1

20 if L = 2

30 if L = 3

20 if L = 4

Example:

M = 4

GO TO (100,200,300) M
A = B + C

Execution continues with the statement A = B + C because the value of M is greater
than the number of labels enclosed in parentheses.

5-2 FORTRAN Version 1 Language Definition Usage Revision H

GO TO Statements

ASSIGN Statement

The ASSIGN statement assigns a statement label to an integer variable. The ASSIGN
statement has the form:

ASSIGN label TO iv

label

Label of an executable or FORMAT statement

iv

Integer variable of 8 bytes in length.

The value assigned to iv represents the label of an executable or a FORMAT
statement. The labeled statement must appear in the same program unit as the
ASSIGN statement. When defined by an ASSIGN statement, iv can be referenced only
in an assigned GO TO statement or input/output format specifier.

The assignment must be made prior to execution of the assigned GO TO statement or
the input/output statement that references assigned label sl.

Example:

ASSIGN 10 TO LSWIT
GO TO LSWIT(S, 10, 15, 20)

Control transfers to the statement labeled 10.

Example:

ASSIGN 24 TO IFMT
WRITE (2, IFMT) A,B

The variables A and B are formatted according to the FORMAT statement labeled 24.

Assigned GO TO Statement

The assigned GO TO statement transfers control to the executable statement whose
label was last assigned to iv by the execution of a prior ASSIGN statement. The
assigned GO TO statement has the form:

GO TO iv, (label, ... , label)

iv

Integer variable of 8 bytes in length. The comma following iv is optional.

label

Label of an executable statement that appears in the same program unit as the
assigned GO TO statement. The list of labels, including parentheses, can be entirely
omitted.

At the time of execution of an assigned GO TO statement, the value of variable iv
must be a statement label of an executable statement that appears in the same
program unit. The list of statement labels is optional. All labels in a statement label
list must be in the same program unit as both the ASSIGN and assigned GO TO
statements. Also, if the optional list is present, iv must be defined with one of the
labels in the list.

Revision H Flow Control Statements 5-3

l

IF Statements

Example:

ASSIGN 50 TO JUMP
10 GO TO JUMP(20,30,40,50)
20 CONTINUE

30 CAT = ZERO + HAT

40 CAT = ZERO + RAT

50 CAT = ZERO + BAT

Statement 50 is executed immediately after statement 10.

IF Statements

The IF statement evaluates an expression and conditionally transfers control or
executes another statement, depending on the outcome of the test. The types of IF
statements are as follows:

Arithmetic IF

Logical IF

Block IF

The ELSE, ELSE IF~ and END IF statements are used in conjunction with a block IF
statement, and are described in this chapter after the block IF statement.

Arithmetic IF Statement

The arithmetic IF statement evaluates an arithmetic expression and conditionally
transfers control to another statement. The arithmetic IF statement has the form:

IF (exp) labell, label2, label3

exp

Integer, real, double precision, or boolean expression

labell, label2, label3

Labels of executable statements that appear in the same program unit as the
arithmetic IF statement

The arithmetic IF statement transfers control to the statement labeled labell if the
value of exp is less than zero, to the .statement labeled label2 if it is equal to zero, or
to the statement labeled label3 if it is greater than zero. If exp is type boolean,
INT(exp) is used.

5-4 FORTRAN Version 1 Language Definition Usage Revision H

Example:

IF (I - N) 3, 4, 5
3 !SUM = J + K

GO TO 4
5 CALL ERRORl
4 PRINT*, !SUM

STOP

IF Statements

If I is less than N, control transfers to statement 3; if I is equal to N, control
transfers to statement 4; if I is greater than N, control transfers to statement 5.

Logical IF Statement

The logical IF statement allows for conditional execution of a statement. The logical IF
statement has the form:

IF (exp) stat

exp

Logical expression

stat

Any executable statement except a DO, block IF, ELSE, ELSE IF, END, END IF,
or another logical IF statement

If the value of exp is true, statement stat is executed. If the value of exp is false, stat
is not executed; execution continues with the next statement.

Example:

IF (P .AND. Q) RES 7.2
50 TEMP = ANS*Z

If P and Q both have the logical value true, RES is set to 7.2; otherwise, RES is
unchanged. In either case, statement 50 is executed.

Example:

IF (A .LT. B) GO TO 50
20 Z = T + R

50 z = z + 1.0

If A is less than B, control transfers to statement 50; otherwise, execution continues
with statement 20.

Revision H Flow Control Statements 5.5

IF Statements

Block IF Statement

The block IF statement provides for conditional execution of a block of executable
statements. The block IF statement has the form:

IF (exp) THEN

exp

Logical expression

The block IF statement is used with the END IF and, optionally, the ELSE and ELSE
IF statements to form block IF structures.

If the logical expression exp has the value true, execution continues with the next
executabie statement. If exp has the value false, control transfers to an ELSE or ELSE
IF statement or, if no ELSE or ELSE IF statements are present, to the statement
following an END IF statement.

ELSE Statement

The ELSE statement provides for alternate execution of a block of statements within a
block IF structure. The ELSE statement has the form:

ELSE

An ELSE statement allows you to construct a block IF structure with one alternate
if-block.

An ELSE statement can have a statement label; however, the label cannot be
referenced in any other statement.

ELSE IF Statement

The ELSE IF statement provides for alternate execution of a block of statements within
a block IF structure, depending on the result of a conditional test. The ELSE IF
statement has the form:

ELSE IF (exp) THEN

exp

Logical expression

The ELSE IF statement enables you to form a block IF structure with more than one
alternate if-block.

An ELSE IF statement can have a statement label; however, the label cannot be
referenced by any other statement.

The effect of executing an ELSE IF statement is the same as for a block IF statement.

5-6 FORTRAN Version 1 Language Definition Usage Revision H

(

IF Statements

END IF Statement

The END IF statement terminates a block IF structure. The END IF statement has the
form:

END IF

For each block IF statement there must be a corresponding END IF statement. An
END IF statement can have a statement label.

Block IF Structures

Block IF structures provide for alternative execution of blocks of statements. A block
IF structure begins with a block IF statement, ends with an END IF statement and,
optionally, includes one ELSE or one or more ELSE IF statements. Each block IF,
ELSE, and ELSE IF statement is followed by an associated block of executable
statements called an if-block.

The simplest form of a block IF structure is as follows:

IF (exp) THEN

if-block

END IF

In this structure, if exp has the value true, execution continues with the first
statement in the if-block. If exp has the value false, control transfers to the statement
following the END IF statement. The if-block can contain any number of statements,
including block IF statements.

Control can be transferred out of an if-block from inside the if-block. However, control
cannot be transferred into an if-block from outside the if-block. An if-block can be
entered only through its associated block IF, ELSE IF, or ELSE statement. You cannot
transfer control directly to an ELSE, ELSE IF, or END IF statement. However, you
can transfer control directly to a block IF statement.

When execution of the statements in an if-block has completed, and if control has not
been transferred outside the if-block, execution continues with the statement following
END IF.

An example of a simple block IF structure is as follows:

IF (I .EQ. 0) THEN
X = X + DX
Y = Y + DY

END IF
PRINT 10,X,Y

If I is zero, the two succeeding statements are executed; otherwise, the statements are
not executed. In either case, execution continues with the statement following END IF.

Revision H Flow Control Statements 5-7

IF Statements

Note that in the preceding example, and in all succeeding examples, statements within
block IF structures are indented. Although this is not a requirement, it is
recommended to improve clarity.

A block IF structure can contain one ELSE statement to provide an alternate path of
execution within the structure. The general form of a block IF structure containing an
ELSE statement is as follows:

IF (exp) THEN

if-block-1

ELSE

if-block-2

END IF

In this structure, if exp has the value true, execution continues with the first
statement in if-block-1. When execution of the statements in if-block-1 has completed,
and if control has not been transferred out of if-block-1, execution continues with the
statement following END IF.

If exp has the value false, control transfers to the first statement in if-block-2. If the
last statement in if-block-2 does not transfer control, execution continues with the
statement following END IF.

A block IF statement can have at most one associated ELSE statement.

Example:

IF (A .LT. B) THEN
X = A + B
XSUM = XSUM + X

ELSE
Y = A•B
YSUM = YSUM + Y

END IF
PRINT 15, X, Y

If A is less than B, new values for X and XSUM are calculated; otherwise, new values
for Y and YSUM are calculated. In either case, the values of X and Y are printed.

5·8 FORTRAN Version 1 Language Definition Usage Revision H

IF Statements

A block IF structure can contain one or more ELSE IF statements to provide for
alternate execution of additional if-blocks. This capability allows you to form block IF
structures containing a number of possible execution paths depending on the outcome of
the associated IF tests. The general form of a block IF structure with two ELSE IF
statements is as follows:

IF (expl) THEN

if-block-I

ELSE IF (exp2) THEN

if-block-2

ELSE IF (exp3) THEN

if-block-3

END IF

In a block IF structure with ELSE IF statements, the initial block IF statement and
each ELSE IF or ELSE statement has an associated if-block. At most one of these
if-blocks is executed. Each logical expression is evaluated in order of the source
statements until one is found that has the value true. Control then transfers to the
first statement of the associated if-block. When execution of the if-block has completed,
and if control has not been transferred outside the if-block, execution continues with
the statement following END IF. If none of the logical expressions has the value true
and no ELSE statement appears, no if-blocks are executed; execution continues with the
statement following END IF. Note that in a block IF structure containing ELSE or
ELSE IF statements (and no nested levels), at most one if-block is executed, even if
more than one of the specified conditions is satisfied.

If an ELSE statement appears, it must follow the if-block of the last ELSE IF
statement. If no logical expression in the block IF statement or ELSE IF statements
has the value true, control transfers to the statement following ELSE.

Control can transfer out of a block IF structure from inside any if-block; however,
control cannot transfer from one if-block to another if they are at the same nesting
level.

The following example illustrates a block IF structure with two ELSE IF statements
and an ELSE statement:

IF (N .EQ. 2) THEN
x = 1.0
y = 2.0

ELSE IF (N .EQ. 3) THEN
x = x + 10.0
y = y + 10.0

ELSE IF (N .LT. 0) THEN
x = 0.0
y = 0.0

ELSE
CALL ERRSUB

END IF

Revision H Flow Control Statements 5-9

IF Statements

Nested Block IF Structures

Block IF structures can be nested; that is, any if-block within a structure can itself
contain block IF structures. Within a nesting hierarchy, control can transfer from an
inner level structure into an outer level structure; however, control cannot transfer
from an outer level structure into an inner level structure. The general form of a
nested block-IF structure with two levels of nesting is as follows:

IF (expl) THEN

IF (exp2) THEN

END IF

END IF

Note that nested block IF statements cannot share END IF statements; each block IF
statement requires its own associated END IF statement.

Example:

IF (X .GT. Y) THEN
Y = Y + YINCR

ELSE

IF (K .EQ. J) THEN
XT X
YT = y

ELSE
K = K +

END IF

X = X + XINCR
END IF

The preceding structure contains two levels of nesting. Each level contains a block IF
and an ELSE statement. The inner structure is executed only if X is greater than Y.

5-10 FORTRAN Version 1 Language Definition Usage Revision H

(

(

(

DO Statement

DO Statement

The DO statement is used to specify repeated execution of a group of statements. The
DO statement has the form: ·

DO label, var=expl,exp2,exp3

label

Label of an executable statement that is to be the final statement of the DO loop.
The comma between label and var is optional.

var

Integer, real, or double precision variable, called the DO variable.

expl

Initial parameter.

exp2

Terminal parameter.

exp3

Optional increment parameter that cannot equal zero; default is 1. If exp3 is
omitted, the preceding comma must also be omitted.

The parameters expl, exp2, and exp3 are called indexing parameters; they can be
integer, real, double precision, or boolean expressions.

The DO statement and the group of statements to be repeated are referred to as a DO
loop. The DO statement determines the range of the DO loop (that is, the statements
to be included in the loop) and the number of times the DO loop is to be repeated.

DO Loops

The final statement of a DO loop is an executable statement that must physically
follow and reside in the same program unit as its associated DO statement. The final
statement must not be an unconditional GO TO, assigned GO TO, arithmetic IF, block
IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO statement. If the final
statement is a logical IF statement, it can contain any statement except a DO, block
IF, ELSE IF, ELSE, END IF, END, or another logical IF. You should not alter the
value of the DO varable during execution of a DO loop.

The range of a DO loop consists of all the executable statements following the DO
statement up to and including the final statement. Execution of a DO statement causes
the following sequence of operations to occur:

1. The expressions expl, exp2, and exp3 are evaluated and, if necessary, converted to
the type of the DO variable var.

2. DO variable var is assigned the value of expl.

Revision H Flow Control Statements 5-11 ·

j

DO Statement

3. The iteration count is established; this value is determined by the following
expression:

MAX(INT((m2-ml + m3)/m3),mtc)

ml, m2, m3 Values of the expressions expl, exp2, and exp3 respectively,
after conversion to the type of var. The incrementation
parameter, m3, must not equal zero.

mtc Minimum trip count; :ihHNQSIMl~JlEO.ROORANfi:ijit#Jb.~MJt.ii~lU.~t&f
:iitbit?&hiJ~t>~•tQ.b1ahd.fl~fe$.tijb.l.~hm.llb.&ftbeJQNEETRtP&UP.
:P.i.tiimW.rfa5.h.f~hi.\EQRTl.iA.NJ~&iWmi.hd.fi)f:/ft.h~>C$.JUQHUf.®t.i&~~
i;A.Wi~t~ttdff4H).fUfWHh./QNEti:TRU?ZUQ;::::m@1ihex•~U.tijj{/th.e\J9.ilP.t&.hi.
:ti.m~t In ANSI FORTRAN, mtc has a value of zero.

4. If the iteration count is not zero, the range of the DO loop is executed. If the
iteration count is zero, execution continues with the statement following the final
statement of the DO loop; the DO variable retains its most recent value.

5. DO variable var is incremented by the value of exp3.

6. The iteration count is decremented by one.

Steps 4 through 6 are repeated until the iteration count attains a value of zero.
Execution then continues with the statement following the final statement of the loop.

The iteration count of a DO loop must not exceed (2**29)-1, and the following
conditions must be satisfied:

I ml + m3 I < (2**63)-1

I m2 + m3 I < (2**63)-1

I m2 - ml I < (2**63)-1

NOTE

When type real or double precision indexing parameters are used, accumulated roundoff
error in the indexing calculations can cause a loop to execute more times than
expected.

If a DO loop appears within an if-block, the DO loop must be entirely contained within
that if-block. If a block IF statement appears within the range of a DO loop, the
corresponding END IF statement must also appear within the range of that DO loop.

If a DO loop executes zero times, the DO variable value is equal to ml following the
DO loop. Otherwise, the value is the -most recent value of the DO variable plus the
increment parameter value. When control transfers out of a DO loop, the DO variable
retains its most recent value.

You can enter a DO loop only through its DO statement~Jijhlij$ij(yQ.ijfij;f~tf~~h.tiftbg{$
Jbd.P.Lft&i.iftbetiW®.b.dMlltl.rigijfijf?thitll®t#l($$.fExwh.&m.ll8i.h.g•;tQQ:;:::lm&.P.$.H

5-12 FORTRAN Version 1 Language Definition Usage Revision H

Example:

DO 10 J= 1 , 11 , 3
IF (A(J} . LE. A(J+1)) !TEMP = A(J)

10 A(J) = A(J+1)
PRINT 100, A

DO Statement

The statements following DO, up to and including statement 10, are executed four
times (J will equal 1, 4, 7, and 10). The PRINT statement is then executed. When the
loop is complete, J will equal 13.

Example:

DO 10 I=S, 1,-1
10 IF (X .GT. B(I)) B(I) = 0.0

PRINT 500, B

This example illustrates the use of a negative increment parameter. The loop compares
X with elements 5, 4, 3, 2, and 1 respectively, of array B. After the DO loop has
completed, array B is printed. The DO variable I has a value of zero when the DO
loop has completed.

Example:

DO 20 I= 1 , 200
IF (I .GE. IVAR) GO TO 10

20 A(I) = 0.0
10 PRINT 100, A

A legal exit from the DO loop is made when the value of the DO variable I is equal to
IVAR. For instance, if IVAR= 30 and I= 30, the branch to the statement labeled 10 is
executed and I retains the value 30. However, if IVAR is greater than 200, the
statements following the IF statement are executed sequentially and I contains the
value 201.

Revision H Flow Control Statements 5-13

DO Statement

For Better Performance

Multidimensional arrays in DO loops should be used with care. Whenever possible, the
innermost loop should iterate over the first subscript, the next innermost loop should
iterate over the second subscript, and so forth. This is because each reference to the
array is made to the next closest array element (arrays are stored in column major
order). For example, the following statements do not reference elements in the order
they are stored:

DIMENSION A(20,30,40),B(20,30,40)

DO 10 I=1,20
DO 10 J=1,30
DO 10 K=1,40

10 A(I, J, K) = B(I, J, K)

The following example ensures that elements are referenced in the order they are
stored and therefore executes faster:

DIMENSION A(20,30,40), 6(20,30,40)

DO 10 K=1,40
DO 10 J=1,30
DO 10 I=1,20

10 A(I, J, K) = B(I, J, K)

Nested DO Loops

When a DO loop entirely contains another DO loop, the inner loop is called a nested
DO loop. The range of a DO statement can include other DO statements providing each
inner DO statement and its final statement are within the containing DO loop.

The final statement of an inner DO loop must be either the same as the final
statement of any containing DO loop or must occur before it. If more than one DO loop
has the same final statement, a transfer to that statement can be made only from
within the range :(Q.f:jij~~ijijfailti#gi) of the innermost DO.

The following examples show some possible DO loop nests. Note that loops can be
completely nested or can share a final statement.

5-14 FORTRAN Version 1 Language Definition Usage Revision H

DO Statement

Example 1

--------------DO 100 L 2,LIMIT

------------DO 10 J 1, 10

"------------ 10 CONTINUE

-----------DO 20 K = K1,K2

20 CONTINUE

~-----------100 CONTINUE

Example 2

-------------- DO 1 I 1, 10, 2

----------- DO 2 J 1,5

--------- DO 3 K 2, 8

-------- 3 CONTINUE

---------- 2 CONTINUE

-------DO 4 L 1,3

------ 4 CONTINUE

CONTINUE

Revision H Flow Control Statements 5-15

DO Statement

Example 3

---------- DO 5 I 1,5
DO 5 J I, 10

t----------- DO 5 K J, 15

--------- 5 A = B * C

The following example illustrates a nested DO loop:

DO 200 I=1, 10
A(I) = A(I) + 1.0

DO 100 J = 1 , 20
100 IF (A(I) .GE. B(J)) A(I) 0.0

200 CONTINUE

The outer loop is executed 10 times. On each pass through the outer loop, the inner
loop is executed 20 times, Thus, the inner loop is executed a total of 200 times. Note
that the inner loop is indented. Although this is not a requirement, it can improve
program clarity.

In the following example, all elements of array A are set to zero:

DIMENSION A(3,4,5)

DO 10 I= 1 ,5

DO 10 J= 1,4

DO 10 K= 1,3
10 A(K,J,I) = 0.0

A DO loop can be initially entered only through the DO statement. 'l.10.w~&e.fi<~M(:)P:p
:Gij;ri./:b~>r~~IiteN~:a::Jfom::ats<~Xt.e.6ae.a:::'diiMie<<ePO>~h~tij~iC>IiPi~~e.>Exte.naea ::RJihge/JJ.:o
:J.J(Jifp~).

When you use an IF or GO TO statement to bypass one or more inner loops, the
bypassed loops require a different final statement. For example,

DO 10 1=1,100

IF (I .GT. IVAR) GO TO 10

DO 20 J= 1, 10

20 CONTINUE

10 CONTINUE

In this example, the inner and outer loops cannot share a final statement.

A transfer from an outer DO loop into an inner DO loop is not allowed, :\:i.ri.lesi,\the
:tfaihS.fe.i:fi.~?ffofu/the.Jfait~Iid~d:::fa:P..g~f):iffth€¥ ::lll.rier:HldP:p. However, a transfer from an
inner DO into an outer DO is allowed because such a transfer is still within the range
of the outer DO loop. 'lA.:/tfi\ri.~fet/ba.~KH#t<FJiP..d.hhefJ)Q\l6()pff.r9m/tli~d~X.t~Iided:Uraii.ge
J:lf2thgfJ4.&rNiM::~uli#ve.a<<CDG>~xte.6S.foh;>s~e.<E*:t~Jide.a.nla.ti.gl¥/P.O.:Jioo-P~); Subprograms
can be called from within a DO loop. Legal and illegal transfers within a nest of DO
loops are shown in the following illustration:

5-16 FORTRAN Version 1 Language Definition Usage Revision H

DO Statement

Illegal; you cannot transfer from
an outer loop to an inner loop
unless the transfer is from the
extended range of the inner loop.

•Legal)fof :N.OSrvE•/EORTRAN
•ori..Iy;f:Yo1.i\caI1·• :tf.1.l:nsf~r/bB:ckdP.fo
·~h':il"frief :C>i#Jtite#Joop::f.i.&m?the
·~ict~I.lae.a: :rB.rig~/of ::the •:rnn.~tHo@;

•L~gaI•U£.ot••NOSIYE.":::piQRTRA.N
•ontY.;.·•::Yo1i:: ca:h/tt:ansret:ba.cK:±rito
•B:ri.Jririef :'.or:• ()utef Nooii/ffom<the
e~tended\t8.P.ge8>f:th~firiti~r-Jo()P..

Legal; you can transfer from an
inner loop to an outer loop.

Illegal; you cannot transfer back
into an inner loop from the
extended range of an outer loop.

Control Data Extension

Extended Range DO Loops

Under certain conditions, control can be transferred out of a loop and can subsequently
be transferred back into the loop. The statements executed outside the loop constitute
the extended range of the loop. Control can transfer from the extended range back into
a loop only if the following conditions are satisfied:

1. The DO variable is not redefined outside the loop.

2. The program unit containing the loop has not been exited by a RETURN, STOP, or
END statement.

Revision H Flow Control Statements. 5-17

CONTINUE Statement

3. The iteration count of the loop is nonzero.

If any of these conditions are not satisfied, the loop cannot be reentered except through
its DO statement.

When DO loops are nested, an inner loop can be exited and subsequently reentered
subject to the preceding restrictions.

End of Control Data Extension

CONTINUE Statement

The CONTINUE statement performs no operation. This statement has the form:

CONTINUE

CONTINUE is an executable statement that can be placed anywhere in the executable
statement portion of a source program without affecting the sequence of execution. The
CONTINUE statement is often used as the last statement of a DO loop. It can end a
DO loop when a GO TO or arithmetic IF would normally be the last statement of the
loop. For example, the following DO loop is illegal because it ends with an arithmetic
IF statement:

4 DO 5 I=l,100
A(I) = A(I) + DELT

5 IF (I-J) 4, 6, 4

This loop executes correctly if it is changed to the following:

DO 5 I=l,100
A(I) = A(I) + DELT
IF (I-J) 5, 6, 5

5 CONTINUE

If a CONTINUE statement does not have a label, an informative diagnostic is issued.

5-18 FORTRAN Version 1 Language Definition Usage Revision H

PAUSE Statement

PAUSE Statement

The PAUSE statement causes program execution to temporarily stop. This statement
has the form:

PAUSE n

n

A character constant of 1 through 70 characters, or a string of 1 through 5 decimal
digits.

When a PAUSE statement is executed in a batch program, execution stops and PAUSE
n is displayed on the operator console. The operator can continue or terminate the
program with an entry from the console.

In an interactive program, execution stops and PAUSE n is displayed at your terminal.
You can terminate the program by entering the break sequence defined for the
terminal. Any other entry causes execution to continue.

Examples:

PAUSE 'EXAMPLE TWO'

PAUSE 45321

STOP Statement

The STOP statement ends program execution. This ... stat~ment_ has the form:

STOP n

n

A character constant of 1 through 70 characters, or a string of 1 through 5 decimal
digits.

When a STOP statement is encountered during execution, STOP n is displayed in the
job log file, the program terminates, and control returns to the operating system. If you
omit n, no message is displayed. A program unit can contain more than one STOP
statement.

Examples:

STOP

STOP 'PROGRAM HAS ENDED'

Revision H Flow Control Statements 5-19

I

l

END Statement

END Statement

The END statement indicates the end of the program unit to the FORTRAN compiler.
This statement has the form:

END

Every program unit must have an END statement as the last statement.

The END statement can be labeled. If control flows into or branches to an END
statement in a main program, execution stops. If control flows into or branches to an
END statement in a function or subroutine, action is the same as if a RETURN
statement were encountered.

An END statement cannot be continued; it must be completely contained on an initial
line. A line following an END statement is considered to be the first line of the next
program unit, even if it has a continuation character in position 6.

Example:

GO TO 15

15 END

5-20 FORTRAN Version 1 Language Definition Usage Revision H

Input/Output 6

This chapter describes the various categories of input and output operations that can be
performed in a FORTRAN program, and the statements used to perform those
operations.

Introduction to Input/Output
Using Files . . .

File Names
File Attributes
File Access Methods.
Segment Access Files
Opening Files
Input/Output Units .
Input/Output Restrictions

Input/Output Statement Specifiers
Input/Output Lists

Implied DO in 1/0 List

Formatted Input/Output .
Formatted READ .
Formatted WRITE ..
Formatted PRINT . .
Formatted PUNCH (CDC Extension) .
Format Specification
FORMAT Statement
Character Format Specification
Noncharacter Format Specification (CDC Extension) .
Execution-Time Format Specification .
Edit Descriptors
Repeatable Edit Descriptors

A Descriptor
A Descriptor for Noncharacter List Items
D Descriptor
E Descriptor
F Descriptor
G Descriptor
I Descriptor
L Descriptor
0 Descriptor (CDC Extension)
R Descriptor (CDC Extension)
Z Descriptor (CDC Extension)

Nonrepeatable Edit Descriptors .
P Descriptor
BN and BZ Descriptors .
S, SP, SS Descriptors . .
H Descriptor
Quote (CDC Extension) and Apostrophe Descriptors.
X Descriptor
T, TL, TR Descriptors
Slash (End-of-Record) Descriptor .
Colon (:) Descriptor . .

Printer Control Character

6-1
6-1
6-1
6-1
6-2
6-3
6-3
6-3
6-5
6-6
6-8
6-9

6-11
6-11
6-14
6-17
6-19
6-20
6-21
6-22
6-23
6-23
6-24
6-27
6-28
6-29
6-30
6-31
6-34
6-36
6-37
6-38
6-39
6-41
6-41
6-42
6-43
6-44
6-45
6-46
6-46
6-47
6-48
6-49
6-50
6-50

Unformatted Input/Output
Unformatted WRITE
Unformatted READ ..

List Directed Input/Output
List Directed INPUT ..
List Directed OUTPUT .

N amelist Input/Output (CDC Extension)
NAME LIST Statement .
NAME LIST Input .
NAME LIST Output . . .
Arrays in N amelist . .

Buffer Input/Output (CDC Extension) .
BUFFER IN ..
BUFFER OUT

Mass Storage Input/Output (CDC Extension) .
Random Files
OPENMS
WRITMS.
READ MS
CLOSMS.
STINDX .
Mass Storage Input/Output Examples

Direct Access Files
Direct Access File Creation .
Direct Access File Examples
Direct Access Record Length Calculation

Internal Input/Output
Standard Internal Files
Extended Internal Files (CDC Extension)

Segment Access Files (CDC Extension) ...

Input/Output-Related Statements and Routines
File Status Statements
File Positioning Statements
Input/Output Status Checking Routines (CDC Extension)
Internal Data Transfer Routines (CDC Extension)
File Connection Routines (CDC Extension)

6-51
6-51
6-53

6-55
6-55
6-59

6-62
6-62
6-62
6-66
6-68

6-69
6-69
6-70

6-71
6-71
6-74
6-74
6-75
6-76
6-76
6-77

6-81
6-81
6-82
6-82

6-83
6-83
6-85

6-88

6-90
6-90
6-99

6-101
6-106
6-107

Kn put/01lJltput

The FORTRAN input/output operations involve reading records from files and writing
records to files. External files reside on an external storage device, such as a disk.
Internal files reside in memory. The term file, as used in this manual, refers to an
external file. Internal files are described later in this chapter under Internal
Input/Output.

Introduction to Input/Output

This section presents some terms and concepts you should know before using the
FORTRAN input/output statements.

Using Files

An external file is a collection of data that begins at the beginning-of-information (BOI)
and ends at the end-of-information (EOI). A file with V type records can contain one or
more partition boundaries. (Partition boundaries are not allowed on files with F type
records.) A partition boundary and the end-of-information are recognized as the
end-of-file by the FORTRAN input/output statements. The ENDFILE statement writes a
partition boundary.

Throughout the remainder of this chapter, the term end-of-file means either
end-of-partition or end-of-information.

A record is generally considered to be the amount of data transferred by a single input
or output operation. Execution of any input or output statement transfers at least one
record. (Formatted input/output statements can transfer more than one record.)

File Names

Every file referenced in a FORTRAN program must have a valid NOS/VE file name. A
NOS/VE file name consists of 1 through 31 characters chosen from among A through Z
(lowercase letters are equivalent), 0 through 9, @, _, #, and $; the first character
must not be a digit. The names are local file names (that is, existing files must reside
in the $LOCAL catalog, and new files are created in the $LOCAL catalog).

File Attributes

Every NOS/VE file has associated with it a set of file attributes. These attributes
completely describe the structure and processing limitations of the file. The file
attributes are stored in an internal table that is created and maintained by NOS/VE.
These attributes include file organization, record type, record length, and many others.
Files read and written by the FORTRAN input/output statements are provided with
default values for the file attributes, and in most cases, with the exception of the
FORTRAN file interface subprograms, FORTRAN programmers need not be concerned
with the file attributes or with the internal operations of NOS/VE. Certain file
attributes can be overridden by a SET_FILE_ATTRIBUTE (SETFA) command executed
before the first time the file is opened. If your application requires you to specify the
attributes of a file, you should refer to the discussion of 1/0 implementation in
appendix E. This appendix describes the attributes of FORTRAN files and indicates
which ones can be overridden by a SETFA command.

Revision H Input/Output 6-1

Using Files

File Access Methods

FORTRAN provides two methods of accessing records in a file. The access methods are
sequential access and random access.

Sequential Acess

In a sequential access file, records are written in sequential order and must be read in
the same order in which they were written. You can access a sequential record only by
reading sequentially until the desired record is found.

Sequential files are read and written by FORTRAN READ and WRITE statements,
BUFFER IN and BUFFER OUT statements, and PRINT and PUNCH statements. You
can perform formatted, unformatted, list directed, buffer, and namelist inputloutput on
sequential files.

To create a sequential access file, or to reference an existing one, you can specify the
ACCESS= 'SEQUENTIAL' specifier on the OPEN statement for the file. However, if
you omit this specifier, the file is assumed to be a sequential access file.

Random Access

Random access files provide a quicker method of access to a specific record than
sequential access files. Records on a random access file can be read or written in any
order by specifying a record key or a record number. Random access files eliminate the
need for sequentially searching a file for a particular record.

FORTRAN provides three ways of performing random access inputloutput. The first
way is to use the direct access file capability. Direct access files are processed by
standard FORTRAN READ and WRITE statements. To create a direct access file, or to
reference an existing one, you must specify ACCESS= 'DIRECT' on the OPEN
statement for the file. You can use direct access files for formatted or unformatted
inputloutput. You cannot use direct access files for namelist, buffer, or internal
inputloutput. Direct access files are described in this chapter under Direct Access Files.

A second method of random access is provided by the mass storage subroutines. These
files, often referred to as mass storage files, must be processed by the mass storage
subroutines; they cannot be processed by READ and WRITE statements.

lll A third method of random access is provided by the FORTRAN-callable keyed-file
interface subprograms. These subprograms enable you to perform operations on files
having indexed sequential organization. Records on indexed sequential files can be
accessed directly by record key, without the need for a more time-consuming sequential
search. Indexed sequential files provide an efficient and flexible method of inputloutput
for applications requiring a random access capability. The keyed-file interface
subprograms, along with the background information required to use those

lll subprograms, are described in chapter 11.

If you decide to use one of the random access methods, note that the FORTRAN direct
access capability is an ANSI standard feature, whereas the mass storage and file
interface capabilities are CDC extensions, and will inhibit program portability. Also,
direct access files have fixed length records, while both mass storage and file interface
allow variable length records. The file interface capability offers the most flexibility.

6-2 FORTRAN Version 1 Language Definition Usage Revision H

Using Files

Control Data Extension

Segment Access Files

Segment access files allow fast and efficient access to large blocks of data. These files
are associated, or mapped, with a named common block. Values are accessed and
modified through FORTRAN assignment statements rather than input/output
statements. This association is accomplished by using the C$ SEGFILE directive and by
using the common block name as the UNIT specifier in the OPEN, CLOSE, and
INQUIRE statements.

End of Control Data Extension

Opening Files

Before you reference a new or existing file in a FORTRAN program, the file must he
opened. The opening process prepares the file for input/output and establishes certain
file properties, such as unit/file association, record length, access method, and so forth.

You can open a file explicitly by declaring it in an OPEN statement. (Mass storage
files require an OPENMS call. Indexed sequential files requre an OPENM call.)
Alternatively, for sequential files only, you can simply reference a unit in an
input/output statement, in which case the file associated with that unit is automatically
opened and default values are provided for the various file properties.

After you have finished reading or writing a file, you can close the file by specifying a
CLOSE statement (CLOSMS for mass storage files; CLOSEM for indexed sequential
files). The CLOSE statement performs various file completion operations. If you do not
explicitly close a file, it is automatically closed either when the program terminates or
when the job terminates.

lnputJOutput Units

All files are referenced in FORTRAN input/output statements by means of an
associated unit. For example, the statement

READ (2, 100) A, B

specifies unit number 2. The read operation is performed on the file associated with
unit 2.

You can associate a file with a unit through parameters on the OPEN statement or
with a CREATE_FILE_ CONNECTION command prior to execution. If you reference a
unit number that has not been associated with a file through an OPEN statement or
system command, the file name defaults to TAPEn, where n is the unit number you
specified. For example, if a program contains the statement

READ (UNIT=9, FMT=150), X, Y

and unit 9 is not associated with a file name on an OPEN statement, then a file
named TAPE9 is read.

Revision H Input/Output 6-3

Using Files

:t:t::::t:ttPMMONtl¢11$.t¥ltfWHH~Pl
¢.$.iJlJ$~Gr:~#~tlZ¢H~4Kll
:::t:t::::::::::::Q.e~tl\(QN1il#Zt.H"-t¥.MWJ~f:t.~:#:ti$.~QJ:M

You can also specify unit names in inputJoutput statements using boolean L format.
(This capability is provided mainly for compatibility with previous systems.) In this
case, the file name is the same as the unit name. File names specified in this inanner
are limited to seven characters. For example,

READ (L"AFILE", 100) A, B

reads from a file named AFILE.

A unit specification of the form L"TAPEn" is the same as specifying unit number n.
That is, the file associated with unit n is used or, if no file is associated with unit n,
the file name defaults to TAPEn. For example, the following statements are equivalent:

READ (UNIT=L"TAPE1", FMT=S) AV, BV

READ (UNIT=1, FMT=S) AV, BV

Both statements read from file TAPEl (assuming unit 1 has not been associated with a
file name in an OPEN statement).

FORTRAN provides several standard units for use in inputJoutput statements. If you
specify an asterisk for the unit identifier in an inputJoutput statement, or if you omit
the list of specifiers entire1y, the unit defaults to one of the standard units. The
standard units have a default association with a standard system file. The system files
do not contain data, but are connected to physical files that contain data. The standard
units, and the default files associated with those units, are as follows:

Standard
Unit

INPUT

OUTPUT

PUNCH

Standard
System
File

$INPUT

$OUTPUT

PUNCH

$NULL

Physical
File

INPUT

OUTPUT

PUNCH

NULL

Description

In an interactive job, data is read from the
terminal. To terminate data entry, enter *EOI
(must be uppercase) immediately after the promt.
In a batch job, INPUT is a null file.

In an interactive job, data is written to the
terminal. In a batch job, data is printed at job
termination.

Data is written to file PUNCH.

Data written to file $NULL is discarded.

6-4 FORTRAN Version 1 Language Definition Usage Revision H

Using Files

Standard system files cannot be redefined (that is, opened with STATUS= 'NEW' on the
OPEN statement), but they can be reconnected to different physical files using the
CREATE_FILE_CONNECTION command. For example:

PROGRAM S
READ (*,100)

100 FORMAT (213)

The READ statement reads from $INPUT, which has the effect shown in the above
table. You can change the connection to read from another file as follows:

CREFC $INPUT MYFILE

The above program will now read from file MYFILE.

Input/Output Restrictions

Mixing types of operations on the same file can destroy file integrity. In particular,
files processed by mass storage or indexed sequential subroutines should be processed
only by those subroutines.

For every formatted, list directed, namelist, or unformatted READ, you can check for
end-of-file by using the END= or IOSTAT= specifier in the READ statement. If an
end-of-file (end-of-partition) is encountered and a test is not included, the program
terminates with a fatal error.

Record length on print files should not exceed the length of a printer line (usually 133
or 137 characters). The default maximum record length is 150 characters. The first
character is always used for printer control and is not printed. The second character
appears in the first print position. Printer control characters are listed in this chapter
under Format Specification.

When fixed-length records (RT= F) are being written to a sequential file, and attempt
is made to write more characters to a record that the record length allows, the record
is truncated and no warning message is issued.

The only indication that truncation occurred is given when the truncated record is
subsequently read. For sequential unformatted input/output, an error message is issued
when an attempt is made to read more characters than the record contains. For
sequential formatted input/output, the truncated portion of the record is read as blanks.
In this case, no message explicitly indicating this specific data item is issued.

An attempt to exceed the record length of a direct access file results in an error
message.

For Better Performance

Input/output operations now execute faster due to improved internal processing. The
benefits are most noticed with buffered, direct-access, and sequential input/output.
However, the improved execution can cause different behavior during input/output
processing. See Input/Output in Appendix E for more information. ~l

Revision H Input/Output 6-5

lnpuUOutput Statement Specifiers

Input/Output Statement Specifiers

Specifiers are used in inputJoutput statements to select various processing options. The
input/output specifiers have the following keyword~ value forms:

UNIT=u

Specifies the FORTRAN unit or internal file to be used. The unit name is derived from
the unit identifier u, which can be one of the following:

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a
WRITE statement. The default file for unit INPUT is $INPUT; the default file for
unit OUTPUT is $OUTPUT.

• The name of a character variable, array, array element, or substring identifying an
internal file.

• The name of a common block (including slashes) when used to associate the
common block with a segment access file.

• An integer or boolean expression having one of the following characteristics:

- INT(u) has a value in the range 0 through 999. The compiler associates these
numbers with unit names of the form TAPEu.

- BOOL(u) is an ASCII coded name in boolean L format (left-justified with binary
zero fill). This is the unit name. If this name is of the form TAPEk, where k is
an integer in the range 0 through 999 with no leading zero, it is equivalent to
the integer k for the purpose of identifying external units. A valid unit name
consists of one through seven letters or digits beginning with a letter.
(Uppercase and lowercase letters are equivalent.)

The characters UNIT=. can be omitted, in which case u must be the first item in the
list of specifiers.

File names default to the unit name unless a different file name has been specified
using execution command file name substitution, PROGRAM statement equivalencing,
or an OPEN statement.

f:~ When unit is an integer expression and it is passd to an inputJoutput related

:

i:i.:i subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a full-word
. (8 byte) integer.

FMT=fn

Specifies a format to be used for formatted input/output; fn can be one of the following:

• A statement label identifying a FORMAT statement in the program unit containing
the inputJoutput statement.

• A character array, array element, or variable containing the format specification.

• A noncharacter array containing the format specification.

• A character expression. (Note that a character constant is permitted.)

• An integer variable that has been assigned the statement number of a FORMAT
statement by an ASSIGN statement.

6-6 FORTRAN Version 1 Language Definition Usage Revision H

Input/Output Statement Specifiers

• An asterisk, indicating list directed 1/0.

• A namelist group name.

The characters FMT = can be omitted, in which case the format specifier must be the
second item in the list of specifiers, and the first item must be the unit specifier
without the characters UNIT=.

REC=rn

Specifies the number of the record to be read or written in the file; rn must be a
positive nonzero integer. Valid only if the unit is open for direct access.

END=sl

Specifies the label of an executable statement to which control transfers when an
end-of-file is encountered during an input operation.

ERR=sl

Specifies the label of an executable statement to which control transfers if an error
condition is encountered during input/output processing.

IOSTAT=ios

Specifies an integer variable or array element into which one of the following values is
returned after the input/output operation is complete:

< 0 End-of-file encountered

= 0 Operation completed normally

> 0 Either a FORTRAN error number in the range 1 through 9999 or another
product's status condition code in integer form that includes the product's
identifier encoded with its condition number.

All runtime errors under NOSNE are identified by a unique status condition code that
is an integer formed by combining the ASCII equivalent of the two-character product
identifier with a condition number. Condition numbers within the range 1 through 9999
are reserved for Control Data defined errors.

A FORTRAN error number is a FORTRAN condition code without the encoded product
identifier 'FL'. Errors are listed by error number and condition name in the Diagnostic
Messages for NOSNE mariual, which provides descriptions and suggested action for the
errors.

To determine the condition name of another product's condition code, use the SCL
function $CONDITION_NAME with the returned condition code. See the SCL
Language Definition Usage and SCL System Interface manuals for more information.

iolist

Input/output list specifying items to be transmitted (described in the next section under ~~~

Revision H Input/Output 6-7

Input/Output Lists

Input/Output Lists

The list portion of an input/output statement specifies the items to be read or written
and the order of transmission. The input/output list can contain any number of items.
List items are read or written sequentially from left to right.

If no list appears on input, one or ·more records are skipped. If no list appears on
formatted output, only information completely contained within the FORMAT statement,
such as character strings, is transmitted. If no list appears on unformatted output, a
null (empty) record is transmitted.

A list item can be a variable name, an array name, an array element name, a
character substring name, or an implied DO list. On output, a list item can also be a
character, boolean, logical, or arithmetic expression. No expression in an input/output
list can reference a function if such reference would cause any input/output operations
to be executed or would cause the value of any element of the input/output statement
to be changed. List items are separated by commas.

An array name without subscripts in an input/output list specifies the entire array in
the order in which it is stored. The entire array (not just the first word of the array)
is read or written. You cannot use assumed-size array names in input/output lists.
(Assumed-size array element names are permitted.)

Subscripts in an input/output list can be any valid subscript (as described in chapter
2).

The following input/output statements illustrate typical input/output lists:

READ (2, 100) A, B, C, D

READ (3, 200) A, B, C(I), D(3,4), E(I,J,7), H

READ (4, 101) J, A(J), I, B(l,J)

WRITE (2, 202) DELTA

WRITE (4, 102) DELTA (5*J+2, 5*I-3, 5*K), C, D(I+7}

On formatted input or output, the input/output list is scanned and each item in the list
is paired with the edit descriptor provided by the FORMAT statement. After one item
has been input or output, the next edit descriptor is taken together with the next
element of the list, and so on until the end of the list. For example, the statements

READ (5, 20) L, M, N
20 FORMAT (I3, I2, I7)

read the input record

100223456712

as follows:

100 is read into the variable L under the specification 13.

22 is read into the variable M under the specification 12.

6-8 FORTRAN Version 1 Language Definition Usage Revision H

Input/Output Lists

3456712 is read into N under the specification 17.

On unformatted input or output, the list items are transmitted between memory and
the storage device with no formatting.

Implied DO List in 1/0 List

An implied DO list in an input/output list has the following form:

(dlist, i= expl, exp2, exp3)

dlist

A list of input/output items.

i

Established the same way as for DO variables.

expl,exp2 ,exp3

Established the same way as for DO loop indexing parameters.

The range of an implied DO list is the list of elements in dlist.

When an implied DO list appears in an input/output list, the items in dlist are
specified once for each iteration of the implied DO, with appropriate substitution of
values for any occurrence of the DO variable. For example, the following statements
have the same effect:

READ (5, 100) (A(I), I=1,3)

READ (5, 100) A(1), A(2), A(3)

Example:

READ 100, (A(I), I=1,2)
100 FORMAT (Fl0.3)

These statements read two records, each containing a value for A. This example is
equivalent to the following:

READ 100, A(1), A(2)
100 FORMAT (Fl0.3)

The value of the DO variable i must not be redefined within the range of the implied
DO list by a READ statement. For example, the following statement is illegal:

READ*, (I,A(I), 1=1, 10)

Changes to the values of expl, exp2, and exp3 have no effect upon the execution of the
implied DO. However, their values can be changed in a READ statement if they are
outside the range of the implied DO, and the change does have effect. For example, the
statement

READ 100, K, (A(I), I=l, K)

Revision H Input/Output 6-9

Input/Output Lists

transmits a value to K. That value is then used as the terminal parameter of the
implied DO.

You can use an implied DO list to transmit a list item more than one time. For
example, the list (B, K = 1, 5) causes the list item B to be transmitted five times.

Example:

WRITE (3, 20) (CAT, DOG, RAT, I=1,10)

This statement writes the sequence CAT, DOG, RAT 10 times each.

A variable cannot be used as a DO variable more than once in the same implied DO
nest, but iolist items can appear more than once. The value of a DO variable within
an implied DO list is defined within that DO list. When the implied DO has completed,
the DO variable retains the first value to exceed the upper limit.

Implied DO lists can be nested; that is, the iolist in an implied DO list can itself
contain implied DO lists. The first (innermost) DO variable varies most rapidly, and
the last (outermost) DO variable varies least rapidly. For example, a nested implied
DO with two levels has the form:

((list, vl = exp 1, exp2, exp3), v2 = exp4, exp5, exp6)

Nested implied DO lists are executed in the same manner as nested DO statements.

Example:

DIMENSION VECT(3, 4, 7)
READ (3, 100) VECT

100 FORMAT (16)

This sequence is equivalent to the following:

DIMENSION VECT(3,4,7)
READ (3, 100) (((VECT(I, J, K), I=1,3), J=1,4), K=1,7)

Example:

READ (1, 100) ((E(l,J), J=1,3), 1=1,3)

This statement transmits nine elements into the array E in the order: E(l,1), E(l,2),
E(l,3), E(2,1), E(2,2), E(2,3), E(3,1), E(3,2), E(3,3):

Example:

WRITE(2,200)((I,E(I,J),J=1,3),1=1,3)
200 FORMAT (1X,11,9F7.2)

This sequence writes the variable I and nine elements from array E in the order
E(l,1), E(l,2), E(l,3), E(2,1), E(2,2), E(2,3), E(3,1), E(3,2), E(3,3).

6-10 FORTRAN Version 1 Language Definition Usage Revision H

Example:

READ (5, 100) (VECTOR (I), !=1, 10)
100 FORMAT (F7.2)

Formatted Input/Output

These statements read data (consisting of one data item per record) into the elements 1
through 10 of the array VECTOR. The following statements have the same effect (but
are less efficient):

DO 40 I= 1,10
40 READ (5, 100) VECTOR (I)
100 FORMAT (F7.2)

In this example, numbers are read, one from each record, into the elements
VECTOR(l) through VECTOR(lO) of the array VECTOR. The READ statement is
encountered each time the implied DO list is executed; and a new record is read for
each element of the array.

If the format specification F7.2 is changed to 4F7.2, only three records are read by the
first example; the second example still reads 10 records. Both examples read 10 values.

Formatted Input/Output

For formatted inputJoutput, a format specifier must be present in the inputJoutput
statement. The inputJoutput list is optional. Each formatted inputJoutput statement
transfers one or more records. Each record is zero or more characters in length. The
formatted inputJoutput statements are READ, WRITE, PRINT/JUid?PUNCH.

Formatted READ

The formatted READ statement transmits data from a storage device to internal
storage, and converts the data according to a format specification. This statement has
the forms:

READ (UNIT=u, FMT=fn, IOSTAT=ios, ERR=sl, END=sl) iolist

READ fn, iolist

UNIT=u

Specifies the FORTRAN unit or internal file to be used. The unit name is derived
from the unit identifier u, which can be one of the following:

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a
WRITE statement. The default file for unit INPUT is $INPUT; the default file
for unit OUTPUT is $OUTPUT.

• The name of a character variable, array, array element, or substring identifying
an internal file.

Revision H Input/Output 6-11

Formatted READ

• An integer or boolean expression having one of the following characteristics:

INT(u) has a value in the range 0 through 999. The compiler associates
these numbers with unit names of the form TAPEu.

BOOL(u) is an ASCII coded name in boolean L format (left-justified with
binary zero fill). This is the unit name. If this name is of the form TAPEk,
where k is an integer in the range 0 through 999 with no leading zero, it is
equivalent to the integer k for the purpose of identifying external units. A
valid unit name consists of one through seven letters or digits beginning
with a letter. (Uppercase and lowercase letters are equivalent.)

The characters UNIT= can be omitted, in which case u must be the first item in
the list of specifiers.

File names default to the unit name unless a different file name has been specified
using execution command file name substitution, PROGRAM statement
equivalencing, or an OPEN statement.

When unit is an integer expression and it is passd to an inpuUoutput related
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a
full-word (8 byte) integer.

FMT=fn

Specifies a format to be used for formatted inpuUoutput; fn can be one of the
following:

• A statement label identifying a FORMAT statement in the program unit
containing the inpuUoutput statement.

• A character array, array element, or variable containing the format
specification.

• A noncharacter array containing the format specification.

• A character expression. (Note that a character constant is permitted.)

• An integer variable that has been assigned the statement number of a FORMAT
statement by an ASSIGN statement.

The characters FMT = can be omitted, in which case the format specifier must be
the second item in the list of specifiers, and the first item must be the unit
specifier without the characters UNIT= .

IOSTAT=ios

Specifies an integer variable or array element into which one of the following
values is returned after the inpuUoutput operation is complete:

< 0 End-of-file encountered

= 0 Operation completed normally

> 0 Either a FORTRAN error number in the range 1 through 9999 or another
product's status condition code in integer form that includes the product's
identifier encoded with its condition number.

All runtime errors under NOSNE are identified by a unique status condition code
that is an integer formed by combining the ASCII equivalent of the two-character
product identifier with a condition number. Condition numbers within the range 1
through 9999 are reserved for Control Data defined errors.

6-12 FORTRAN Version 1 Language Definition Usage Revision H

Formatted READ

A FORTRAN error number is a FORTRAN condition code without the encoded
product identifier 'FL'. Errors are listed by error number and condition name in the
Diagnostic Messages for NOSNE manual, which provides descriptions and suggested
action for the errors.

To determine the condition name of another product's condition code, use the SCL
function $CONDITION_NAME with the returned condition code. See the SCL
Language Definition Usage and SCL System Interface manuals for more
information.

ERR=sl

Specifies the label of an executable statement to which control transfers if an error
condition is encountered during input/output processing.

END=sl

Specifies the label of an executable statement to which control transfers when an
end-of-file is encountered during an input operation.

iolist

The list portion of an input/output statement specifies the items to be read or
written and the order of transmission. The input/output list can contain any number
of items. List items are read or written sequentially from left to right.

If no list appears on input, one or more records are skipped.

A list item can be a variable name, an array name, an array element name, a
character substring name, or an implied DO list. On output, a list item can also be
a character, boolean, logical, or arithmetic expression. No expression in an
input/output list can reference a function if such reference would cause any
input/output operations to be executed or would cause the value of any element of
the input/output statement to be changed. List items are separated by commas.

An array name without subscripts in an input/output list specifies the entire array
in the order in which it is stored. The entire array (not just the first word of the
array) is read or written. You cannot use assumed-size array names in input/output
lists. (Assumed-size array element names are permitted.)

Subscripts in an input/output list can be any valid subscript (as described in
chapter 2).

The first form of the READ statement transmits data from the file associated with unit
u to storage locations named in iolist according to FORMAT specification fn. The
second form performs the same operation for unit INPUT. The number of items in the
list and the FORMAT specifications must conform to the record structure on the input
unit. If the list is omitted, a record will be bypassed. (Slash descriptors in the format
specification will cause additional records to be bypassed.)

Each execution of a READ statement transmits at least one record. The FORMAT
statement determines when a new record will be read. For example, the statement

TEAD (5. 100) (VEC(I), 1=1,10)
100 FORMAT (5F7.2)

reads data (consisting of five data items per record) into the first 10 elements of array
VEC.

You should specify the END= or IOSTAT= specifier to test for an end-of-file
(end-of-partition or end-of-information). If neither is specified, and an an end-of-file is
encountered, the program terminates with a fatal error. A fatal error also occurs if you

Revision H Input/Output 8-13

Formatted WRITE

attempt to read a unit after an END= or IOSTAT = specifier has returned an
end-of-file condition for that unit. Records following an end-of-partition can be read by
issuing a CLOSE followed by an OPEN on the file or by calling the EOF function.

Example:

READ (4, 200) A, B, C

This statement reads data from unit 4 into the ·variables A, B, and C according to the
specifications in the format statement labeled 200.

Example:

READ 5, X, Y, Z

This statement reads data from unit INPUT (unit specifier omitted) to the variables X,
Y, and Z according to the specifications in the format statement labeled 5.

Example:

READ (2, 100, ERR=16, END=18)

This statement reads data from the file associated with unit 2 into variables A and B
according to format 100. If an error occurs during the read, control transfers to the
statement labeled 16; if an end-of-file is encountered, control transfers to the statement
labeled 18.

Example:

READ (2, '(2f10.4)') a, b

This statement reads data into a and b from the file associated with unit 2 according
to the format specification 2fl0.4.

Formatted WRITE

The formatted WRITE statement transfers data from the storage locations named in
the input/output list to the file associated with the unit specified by u. This statement
has the form:

WRITE (UNIT=u, FMT=fn, ERR=sl, IOSTAT=ios) iolist

UNIT=u

Specifies the FORTRAN unit or internal file to be used. The unit name is derived
from the unit identifier u, which can be one of the following:

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a
WRITE statement. The default file for unit INPUT is $INPUT; the default file
for unit OUTPUT is $OUTPUT.

• The name of a character variable, array, array element, or substring identifying
an internal file.

6-14 FORTRAN Version 1 Language Definition Usage Revision H

Formatted WRITE

• An integer or boolean expression having one of the following characteristics:

INT(u) has a value in the range 0 through 999. The compiler associates
these numbers with unit names of the form TAPEu.

BOOL(u) is an ASCII coded name in boolean L format (left-justified with
binary zero fill). This is the unit name. If this name is of the form TAPEk,
where k is an integer in the range 0 through 999 with no leading zero, it is
equivalent to the integer k for the purpose of identifying external units. A
valid unit name consists of one through seven letters or digits beginning
with a letter. (Uppercase and lowercase letters are equivalent.)

The characters UNIT= can be omitted, in which case u must be the first item in
the list of specifiers.

File names default to the unit name unless a different file name has been specified
using execution command file name substitution, PROGRAM statement
equivalencing, or an OPEN statement.

When unit is an integer expression and it is passd to an input/output related
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a
full-word (8 byte) integer.

FMT=fn

Specifies a format to be used for formatted input/output; fn can be one of the
following:

• A statement label identifying a FORMAT statement in the program unit
containing the input/output statement.

• A character array, array element, or variable containing the format
specification.

• A noncharacter array containing the format specification.

• A character expression. (Note that a character constant is permitted.)

• An integer variable that has been assigned the statement number of a FORMAT
statement by an ASSIGN statement.

The characters FMT = can be omitted, in which case the format specifier must be
the second item in the list of specifiers, and the first item must be the unit
specifier without the characters UNIT=.

ERR=sl

Specifies the label of an executable statement to which control transfers if an error
condition is encountered during input/output processing.

IOSTAT=ios

Specifies an integer variable or array element into which one of the following
values is returned after the input/output operation is complete:

< 0 End-of-file encountered

= 0 Operation completed normally

> 0 Either a FORTRAN error number in the range 1 through 9999 or another
product's status condition code in integer form that includes the product's
identifier encoded with its condition number.

Revision H Input/Output 6-15

Formatted WRITE

All runtime errors under NOS/VE are identified by a unique status condition code
that is an integer formed by combining the ASCII equivalent of the two-character
product identifier with a condition number. Condition numbers within the range 1
through 9999 are reserved for Control Data defined errors.

A FORTRAN error number is a FORTRAN condition code without the encoded
product identifier 'FL'. Errors are listed by error number and condition name in the
Diagnostic Messages for NOS/VE manual, which provides descriptions and suggested
action for the errors.

To determine the condition name of another product's condition code, use the SCL
function $CONDITION _NAME with the returned condition code. See the SCL
Language Definition Usage and SCL System Interface manuals for more
information.

iolist

Specifies the items to be read or written and the order of transmission. The
input/output list can contain any number of items. List items are read or written
sequentially from left to right.

If no list appears on formatted output, only information completely contained within
the FORMAT stateme.nt, such as character strings, is transmitted.

A list item can be a variable name, an array name, an array element name, a
character substring name, or an implied DO list. On output, a list item can also be
a character, boolean, logical, or arithmetic expression. No expression in an
input/output list can reference a function if such reference would cause any
input/output operations to be executed or would cause the value of any element of
the input/output statement to be changed. List items are separated by commas.

An array name without subscripts in an input/output list specifies the entire array
in the order in which it is stored. The entire array (not just the first word of the
array) is read or written. You cannot use assumed-size array names in input/output
lists. (Assumed-size array element names are permitted.)

Subscripts in an input/output list can be any valid subscript (as described in
chapter 2).

The data is converted from internal format to coded format according to the format
specification fn.

Each execution of a WRITE statement transmits at least one record. The FORMAT
statement determines when a new record will be transmitted. If the iolist is omitted
(and no H, quote, or apostrophe edit descriptors are specified), a null record is written.

Example:

WRITE (UNIT=4, FMT=SO) A, B

This statement writes data from variables A and B to unit 4 according to the FORMAT
statement labeled 50. The keywords UNIT= and FMT= in the unit and format
specifiers are optional.

Example:

WRITE(•, 12) 1, m, s(3)

6-16 FORTRAN Version 1 Language Definition Usage Revision H

Formatted PRINT

This statement writes data from variables L, M, and S(3) to unit OUTPUT (as
indicated by an asterisk in place of the unit specifier) according to the format
statement labeled 12.

Example:

WRITE (4, 50, ERR=200) A, B

This statement is identical to the first example except that if an error occurs during
the write, control transfers to statement 200.

Example:

WRITE (2, '(3E12.4)') XVAR, YVAR

This statement writes variables XVAR and YVAR to the file associated with unit 2
according to the specification 3E12.4. This example illustrates the inclusion of a format
specification in the WRITE statement.

Formatted PRINT

The PRINT statement transfers information from the storage locations named in the
input/output list to unit OUTPUT according to the specified format. The default
association of unit OUTPUT is with file $OUTPUT. This statement has the form:

PRINT fn, iolist

f n

Specifies a format to be used for formatted input/output; fn can be one of the
following:

• A statement label identifying a FORMAT statement in the program unit
containing the input/output statement.

• A character array, array element, or variable containing the format
specification.

• A noncharacter array containing the format specification.

• A character expression. (Note that a character constant is permitted.)

• An integer variable that has been assigned the statement number of a FORMAT
statement by an ASSIGN statement.

The characters FMT = can be omitted, in which case the format specifier must he
the second item in the list of specifiers, and the first item must be the unit
specifier without the characters UNIT= .

iolist

Specifies the items to be read or written and the order of transmission. The
input/output list can contain any number of items. List items are read or written
sequentially from left to right.

If no list appears on formatted output, only information completely contained within
the FORMAT statement, such as character strings, is transmitted.

Revision H Input/Output 6-17

Formatted PRINT

A list item can be a variable name, an array name, an array element name, a
character substring name, or an implied DO list. On output, a list item can also be
a character, boolean, logical, or arithmetic expression. No expression in an
input/output list can reference a function if such reference would cause any
input/output operations to be executed or would cause the value of any element of
the input/output statement to be changed. List items are separated by commas.

An array name without subscripts in an input/output list specifies the entire array
in the order in which it is stored. The entire array (not just the first word of the
array) is read or written. You cannot use assumed-size array names in input/output
lists. (Assumed-size array element names are permitted.)

Subscripts in an input/output list can be any valid subscript (as described in
chapter 2).

Example:

PRINT 4, A, B, N

This statement transfers data from A, B, and N to unit OUTPUT according to the
format statement labeled 4.

Example:

PRINT '(3E14.4)', X1, X2, XS

This statement transfers data from Xl, X2, and X3 to unit OUTPUT according to the
format specification 3E14.4.

6-18 FORTRAN Version 1 Language Definition Usage Revision H

Formatted PUNCH

Control Data Extension

Formatted PUNCH

The PUNCH statement transfers data from the specified storage locations to the unit
PUNCH. The default association of unit PUNCH is with file PUNCH. This statement
has the form:

PUNCH fn, iolist

f n

Specifies a format to be used for formatted input/output; fn can be one of the
following:

• A statement label identifying a FORMAT statement in the program unit
containing the input/output statement.

• A character array, array element, or variable containing the format
specification.

• A noncharacter array containing the format specification.

• A character expression. (Note that a character constant is permitted.)

• An integer variable that has been assigned the . statement number of a FORMAT
statement by an ASSIGN statement.

The characters FMT = can be omitted, in which case the format specifier must be
the second item in the list of specifiers, and the first item must be the unit
specifier without the characters UNIT= .

iolist

The list portion of an input/output statement specifies the items to be read or
written and the order of transmission. The input/output list can contain any number
of items. List items are read or written sequentially from left to right.

If no list appears on formatted output, only information completely contained within
the FORMAT statement, such as character strings, is transmitted.

A list item can be a variable name, an array name, an array element name, a
character substring name, or an implied DO list. On output, a list item can also be
a character, boolean, logical, or arithmetic expression. No expression in an
input/output list can reference a function if such reference would cause any
input/output operations to be executed or would cause the value of any element of
the input/output statement to be changed. List items are separated by commas.

An array name without subscripts in an input/output list specifies the entire array
in the order in which it is stored. The entire array (not just the first word of the
array) is read or written. You cannot use assumed-size array names in input/output
lists. (Assumed-size array element names are permitted.)

Subscripts in an input/output list can be any valid subscript (as described in
chapter 2).

Revision H lnpuUOutput 6-19

Format Specification

Example:

PUNCH 5, A, B, C, ANSWER

This statement writes data from variables A, B, C, and ANSWER according to the
FORMAT statement labeled 5.

Example:

PUNCH 30
30 FORMAT (' GOOD MORNING')

This statement writes according to the FORMAT statement labeled 30. Since no iolist
is specified, no data is transferred and converted from variables.

End of Control Data Extension

Format Specification

Format specifications are used in conjunction with formatted input/output statements to
produce output or read input that consists of strings of ASCII characters. On input,
data is converted from a specified format to an internal representation. On output, data
is converted from an internal representation to the specified format and written as
records of ASCII characters. Format specifications are identified by the FMT = specifier
on an input/output statement. This specifier can identify one of the following:

• The statement label of a FORMAT statement.

• An integer variable which has been assigned the statement label of a FORMAT
statement (see ASSIGN Statement, chapter 5).

• A character array name or any character expression, except one involving
assumed-length character entities. The value of the expression must be a valid
format specification.

• The name of a noncharacter array that contains a format specification.

• The name of a namelist group.

6-20 FORTRAN Version 1 Language Definition Usage Revision H

FORMAT Statement

FORMAT Statement

FORMAT is a nonexecutable statement which specifies the formatting of data to be
read or written with formatted input/output. This statement has the form:

sl FORMAT (item, ... , item)

sl

Statement label

item

One of the following:

• A nonrepeatable edit descriptor

• A repeatable edit descriptor optionally preceded by a repeat count

• A list of repeatable or nonrepeatable edit descriptors, enclosed in parentheses,
and optionally preceded by a repeat count

The FORMAT statement is used with formatted input and output statements, and it
can appear anywhere in a program unit after the PROGRAM, FUNCTION, or
SUBROUTINE statement. An example of a READ statement and its associated
FORMAT statement is as follows:

READ (5. 100) INK. NAME. AREA
100 FORMAT (10X, I4 1 I2. F7.2)

The format specification consists of a sequence of edit descriptors enclosed in
parentheses. Spaces are not significant except in H, quote, and apostrophe edit
descriptors.

Generally, each item in an input/output list is associated with a corresponding edit
descriptor in a FORMAT statement. The FORMAT statement specifies the external
format of the data and the type of conversion to be used. Editing complex variables
always requires two single precision, floating-point (E, F, or G) edit descriptors; the
two descriptors can be different. Double precision variables correspond to one
floating-point edit descriptor. The D edit descriptor corresponds to exactly one list item.
A D descriptor is permitted for a complex input item, but the transferred value is
truncated to single precision.

The type of conversion should correspond· to the type of the variable in the input/output
list. The FORMAT statement specifies the type of conversion for the input data, with
no regard to the type of the variable which receives the value when reading is
complete. For example, the statements

INTEGER N
READ (5. 100) N

100 FORMAT (F10.2)

read a floating-point number into the variable N, which could cause unpredictable
results if N is referenced later as an integer.

Revision H Input/Output 6-21

Character Format Specification

Character Format Specification

A format specification can also be a character expression, or a character array that
contains a format specification. (The character expression must not involve
concatenation of an operand whose length specification is an asterisk in parentheses
unless the operand is a symbolic constant.) The character expression is substituted for
the FORMAT statement number in the FMT = specifier of the READ or WRITE
statement. The form of these format specifications is the same as for FORMAT
statements without the keyword FORMAT. Any character information beyond the
terminating parenthesis is ignored. The initial left parenthesis can be preceded by
spaces. For example, the sequence

CHARACTER FORM*11
DATA FORM/'(I3,2E14.4)'/
READ (2, FMT=FORM, END=SO) Ni, A, B

is equivalent to

READ (2,FMT=100,END=50) N, A, B
100 FORMAT (I3,2E14.4)

The preceding examples can also be expressed as

or

READ (2,FMT='(I3, 2E14.4)',END=50) N, A, B

CHARACTER FORM•(•)
PARAMETER (FORM='(I3,2E14.4)')
READ (2,FMT=FORM,END=SO) N, A, B

If a format specification is contained in a character array, the specification may occupy
two or more contiguous array elements. Only the array name need be specified in the
input/output statement; all information up to the closing parenthesis is considered to be
part of the format specification. For example, the statements

CHARACTER AR(2)*10
DATA AR/'(10X,2I2,1','0X,F6.2)'/
READ (5, AR) I, J, X

read data into I, J, and X according to the format specification contained in the
character array elements AR(l) and AR(2). These statements are equivalent to

READ (5, 100) I, J, X
100 FORMAT (10X, 212, 10X, F6.2)

6-22 FORTRAN Version 1 Language Definition Usage Revision H

Noncharacter Format Specification

Control Data Extension

Noncharacter Format Specification

You can place format specifications in a noncharacter array. If the array is of type _:!:l::·j

integer, each element must be a full-word (8 byte) integer. The rules for noncharacter
format specifications are the same as facter format specifications.

End of Control Data Extension

Execution-Time Format Specification

Format specifications can be read dynamically at execution time. The format can be
read under the A specification and stored in a character array, variable, or array
element; or it can be included in a DATA statement. Formats can also be generated by
the program at execution time. (Note, however, that execution-time format
specifications cannot be interpreted by the compiler, and are therefore less efficient.)

If you use an array to store a format specification, its type can be other than
character. In either case, the format must consist of a list of descriptors and editing
characters enclosed in parentheses, but without the keyword FORMAT and the
statement label.

The name of the entity containing the specification is used in place of the FORMAT
statement number in the associated input/output statement. The name specifies the
location of the format information. For example, the input string

(E7.2,G20.5,F7.4,I3)

can be read and subsequently referenced as follows:

CHARACTER F*30
READ (2, '(A)') F
WRITE (3, F) A, B, C, N

The preceding example produces the same output as the following statements:

WRITE (3, 10) A, B, C, N
10 FORMAT (E7.2, G20.5, F7.4, I3)

A program can create a format specification at execution time. For example, the
following statements define a format specification containing a printer control character;
if the variable PRTFLG is zero, the printer control character is removed:

CHARACTER FMT*9
DATA FMT/'(1X, 3I10)'/
IF (PRTFLG .EQ. 0) FMT (2:4)=
WRITE (2, FMT) I, J, K

If PRTFLG is zero, the program produces the same result as WRITE (2, '(3110)') I, J,
K.

Revision H InpuUOutput 6-23

Edit Descriptors

Edit Descriptors

Format specifications are composed of edit descriptors, which specify the data
conversions to be performed. Tables 6-1 and 6-2 list the edit descriptors and give a
brief description of each. The descriptors listed in table 6-1 can be preceded by an
unsigned nonzero decimal integer indicating the number of times the descriptor is to be
repeated (as described later in this chapter under Repeatable Edit Descriptors).

Table 6-1. Repeatable Edit Descriptors

Descriptor Descriptor Type

Ew.d Numeric

Ew.dEe Numeric

Fw.d Numeric

Dw.d Numeric

Gw.d Numeric

Gw.dEe Numeric

lw Numeric

Iw.m Numeric

Lw Logical

A Character

Aw Character or
Boolean

Rw Boolean

Ow Boolean

Ow.m Boolean

Zw Boolean

Zw.m Boolean

Description

Floating-point with exponent.

Floating-poi~t with explicitly specified exponent
length.

Floating-point without exponent.

Floating-point with exponent.

Floating-point with or without exponent.

Floating-point with or without exponent (if exponent
is present, exponent length is explicitly specified).

Decimal integer.

Decimal integer with minimum number of digits.

Logical.

Character with data-dependent length.

Character or boolean with specified length.

Boolean conversion.

Octal integer.

Octal integer with leading zeros and minimum
number of digits.

Hexadecimal integer.

Hexadecimal with leadings zeros and minimum
number of digits.

6-24 FORTRAN Version 1 Language Definition Usage Revision H

Edit Descriptors

Table 6-2. N onrepeatable Edit Descriptors

Descriptor Descriptor Type Description

SP Numeric output Plus signs (+) produced.
control

SS Plus signs (+) suppressed.
s Plus signs (+) suppressed.

nX Tabulation Position forward.
control

Tn Position to column n.
TRn Position forward n columns.
TLn Position backward n columns.

nH Character output Output character string.
" Output character string.

Output character string.

Format control Terminates format control if no more items in iolist.

I

kP

BN

End of record Indicates end of current input or output record.

BZ

Scale factor

Nu~eric input
.control

Scaling for numeric editing.

Spaces ignored.

Spaces treated as zeros.

The following symbols, representing information that you must supply, are used in
discussion of the edit descriptors:

w Nonzero unsigned integer constant specifying the field width in number of character
positions in the external record. This width includes any leading spaces, + or -
signs, decimal point, and exponent.

d Unsigned integer constant specifying the number of digits to the right of the
decimal point within the field. On output all numbers are rounded to d digits.

e Nonzero unsigned integer constant specifying the number of digits in the exponent;
the value of e cannot exceed six.

m Unsigned integer constant specifying the minimum number of digits to be output.

k Integer constant scale factor (used with P descriptor).

n Positive nonzero decimal integer. The meaning of this value depends on the
particular edit descriptor.

You must specify the field width w for all edit descriptors except A.

Field separators are used to separate descriptors and groups of descriptors. The format
field separators are the slash, the comma, and the colon. (The slash is also used to
specify demarcation of formatted records; the colon terminates format control if no
more items are in the iolist.)

Revision H lnpuUOutput 6-25

Edit Descriptors

Leading spaces are not significant in numeric input conversions; other spaces in
numeric conversions are ignored unless BLANK= 'ZERO' was specified for the file on
an OPEN statement or a BZ edit descriptor is in effect. You can omit plus signs. An
all-spaces field is considered to be zero, except for logical input, where an all-spaces
field is considered to have the logical value false, or for character input.

For the E, F, G, and D input conversions, a decimal point in the input field overrides
the decimal point specification of the edit descriptor.

The output field is right-justified for all output conversions. If the number of characters
produced by the conversion is less than the field width, leading spaces are inserted in
the output field unless w.m is specified, in which case leading zeros are produced as
necessary. If the number of characters produced by a numeric output conversion
exceeds the field width, asterisks are inserted throughout the field.

Complex data items are converted on input or output as two independent floating-point
quantities. The format specification for a complex data item uses two edit descriptors.
For example, the statements

COMPLEX A
WRITE (6, 10) A

10 FORMAT (F7.2, E8.2)

write the real part of A according .to F7.2 format and the imaginary part according to
ES.2 format.

Different types of data can be read by the same FORMAT specification. For example,
the statement

10 FORMAT (15, F15.2)

specifies two conversions: the first of type integer, and the second of type real.

The statements

CHARACTER R*4
READ (5,15) NO, NONE, INK, A, B, R

15 FORMAT (315, 2F7.2, A4)

read three integer values, two real values, and one character string.

6-26 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

Repeatable Edit Descriptors

Certain edit descriptors can be repeated by prefixing the descriptor with a nonzero
unsigned integer constant specifying the number of repetitions required. The repeatable
edit descriptors are A, D, E, F, G, I, L, 0, R, and Z. The other edit descriptors cannot
be repeated. The repeatable edit descriptors correspond to iolist items, and cause
conversion of data between internal representation and coded format. For example, the
following statements are equivalent:

100 FORMAT (314,2E7.3)

100 FORMAT (14, 14, 14, E7.3, E7.3)

A group of descriptors can be repeated by enclosing the group in parentheses and
prefixing it with the repetition factor. If no integer precedes the left parenthesis, the
repetition factor is 1. For example, the statement

FORMAT (13, 2(E15.3, F6.1, 214))

is equivalent to the following specification (provided that the number of items in the
inputJoutput list does not exceed the number of repeatable edit descriptors):

FORMAT (I3, E15.3, F6.1, 14, 14, E15.3, F6.1, 14, 14)

A maximum of nine levels of parentheses is allowed in addition to the parentheses
required by the FORMAT statement.

If there are fewer items in the inputJoutput list than indicated by the format
conversions in the format specification, the excess conversions are ignored.

If the total number of items in the inputJoutput list exceeds the number of format
conversions encountered when the final right parenthesis in the FORMAT specification
is reached, the converted items are transmitted and a new record is read or written.
The format specification is then scanned to the left for a right parenthesis. If none is
found, the scan stops when the beginning of the format specification is reached. If a
right parenthesis is found, however, the scan continues to the left until the field
separator (slash, comma, or colon) which precedes the left parenthesis pairing the right
parenthesis is reached. Transmission resumes with formatting proceeding to the right
until either the output list is exhausted or the final right parenthesis of the FORMAT
statement is encountered. For example, in the sequence

READ (5, 100) l, A, J, B, K, C, L
100 FORMAT (17, (F12.7, 13))

I is input with format 17, A is input with F12.7, and J is input with 13. The format
specification is exhausted (the right parenthesis has been reached); a new record is
read, and the specification (F12.7,13) is rescanned. B is input with format F12.7, K
with 13, and from a third record, C with F12.7, and L with 13.

A repetition factor can be used to indicate multiple end-of-record slashes; the
specification n(/) causes n-1 lines to be skipped on output. For example, the statement

2 FORMAT(' VALUES',4(/),' X Y')

causes the following record to be output:

Revision H Input/Output 6-27

Repeatable Edit Descriptors

VALUES
(blank line)
(blank line)
(blank line)
x y

Following are descriptions of the repeatable edit descriptors.

A Descriptor

The A descriptor can be used with an input/output list item of type character or
noncharacter. This descriptor has the forms:

A (Character data only)

Aw

Input

If w is less than the length of the list item, the input quantity is stored left-justified
in the item; the remainder of the item is filled with spaces. If w is greater than the
length of the item, the rightmost characters are stored and the remaining characters
are ignored.

If w is omitted, the length of the field is equal to the length of the list item; in this
case you cannot use A with a noncharacter list item. If w is omitted and the list item
is a character array name, then the entire array is read; the length of the field is the
length of an array element.

Following are some examples of A input.

Example:

CHARACTER A*9
READ (5, 100) A

100 FORMAT (A7)

Input Record:

EXAMPLE

In Location A:

EXAMPLEM

Example:

CHARACTER B*10
READ (5, 200) B

200 FORMAT (A13)

Input Record:

SPECIFICATION

6-28 FORTRAN Version 1 Language Definition Usage Revision H

In Location B:

CIFICATION

Example:

CHARACTER Q•S, P*12, R*9
READ (5, 10) Q, P, R

10 FORMAT (AS, A12, AS)

Input Record:

Repeatable Edit Descriptors

THISLHSl11 ANl1EXAMPLEl1I ll1KNOW (Bars mark input fields as specified by the FORMAT
statement.)

In Storage:

P: THISAISA
Q: ANA.EXAMPLEAI
R: A.KNOWAAAA

Output

If w is less than the length of the list item, the leftmost characters in the item are
output. For example, the statements

CHARACTER A*6
A = 'SAMPLE'
PRINT '(1X, A4)', A

print the following:

SAMP

If w is greater than the length of the list item, the characters are output right-justified
in the field, with spaces on the left. For example, if the format specification in the
preceding example is changed to (1X,A12), output is as follows:

lll!.MlMSAMPLE

If w is omitted, the length of the output field is the same as the length of the
character list item.

A Descriptor for N oncharacter List Items

The A descriptor, when used for noncharacter list items, has the form:

Aw

When the A descriptor is used with a noncharacter list item, the field width specifier,
w, must appear; w characters are converted.

On input, if w is less than or equal to 8 (for real, integer, logical, or boolean list
items) or 16 (for double precision or complex list items), the w characters of the input
value are converted to character code and stored left-justified in the item with blank
fill on the right. If w is greater than 8 (for real, integer, logical, or boolean list items)
or 16 (for double precision or complex list items), the rightmost 8 or 16 characters of
the input value are converted and stored.

Revision H Input/Output 6-29

Repeatable Edit Descriptors

Example:

READ (1,99) X, Y, Z
99 FORMAT (3A6)

Input record:

123.4bl586.25lb1.E04 (Bars mark input fields as specified by the FORMAT
statement.)

In storage:

X: 123.4Mb
Y: 586.25M
Z: b1 .E04M

A left-justified character string is stored in each of the variables X, Y, and Z.

On output, if w is less than or equal to 8 (for real, integer, logical, or boolean list
items) or 16 (for double precision or complex list items), the internal value is treated
as a string of character coded data, and the leftmost w characters are written to the
output record. If w is greater than 8 (for real, integer, logical, or boolean list items) or
16 (for double precision or complex list items), the output value is right-justified in the
field and preceded by spaces.

D Descriptor

The D descriptor specifies conversion between an internal double precision real number
and an external floating".'.point .. number written with_ an exponent. This descriptor has
the form:

Dw.d

Input

D editing corresponds to E editing and can be used to input the same forms as E.

The subfields of a D input field are the same as for E input except that you can
specify either D or E for the exponent.

Output

Type D conversion is used to output double precision values. D conversion corresponds
to E conversion except that D replaces E at the beginning of the exponent subfield. If
the value being converted is indefinite, an I is printed in the field; if it is infinite
(out-of-range), an R is printed.

The specification Dw.d produces output in the following format:

s.aD±ee

s.a±eee

s

Minus sign if the number is negative, or omitted if the number is positive (subject
to control by S, SS, and SP descriptors)

6-30 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

a

One or more most significant digits

ee

Two digit exponent

eee

Three digit exponent

The first form is used for values where the magnitude of the exponent is less than
100; the second form is used for numbers where the magnitude of the exponent is in
the range 100 through 999. If the exponent exceeds 999 in magnitude, a field of
asterisks is written.

E Descriptor

The E descriptor specifies conversion between an internal real or double precision value
and an external number written with an exponent. This descriptor has the forms:

Ew.d

Ew.dEe

Input

An E input field consists of an integer subfield, a fraction subfield, and an exponent
subfield.

The integer subfield begins with a + or - sign, a digit, or a space; and it can contain
a string of digits. The integer subfield is terminated by a decimal point, E, +, - or
the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, - or
the end of the input field. It can contain a string of digits.

The exponent subfield can begin with E (or e), +, or -. When it begins with E, the +
is optional between E and the string of digits in the subfield. For example, the
following are valid equivalent forms for the exponent 3:

E+ 03

e 03

e03

E3

+3

A nonblank input field must contain an integer subfield or a fraction subfield, or both,
and may contain an exponent subfield. An input field containing only an exponent
subfield is diagnosed as a fatal error. An input field consisting entirely of spaces is
interpreted as zero.

The range, in absolute value, of permissible values is approximately 10**(-1234)
through 10**1232. Numbers below the range are treated as zero; numbers above the
range cause a fatal error message.

Revision H InpuUOutput 6-31

Repeatable Edit Descriptors

Examples of valid subfield combinations are as follows:

+ 1.6327E-04 Integer-fraction-exponent

-32.7216 Integer-fraction

+328+5 Integer-exponent

.629E-1 Fraction-exponent

+136 Integer only

136 Integer only

.07628431 Fraction only

An exponent subfield alone is not permitted. The width w of an E descriptor includes
plus or minus signs, digits, decimal point, E, and exponent. If an external decimal
point is not provided, d acts as a negative power-of-10 scaling factor. The internal
representation of the input quantity is given by

i * 10**(-d) * lO**p

where i is the integer subfield and p is the exponent subfield.

For example, if the specification is El0.8, the input number 3267E + 05 is converted
and stored as:

3267 * 10**5 * 10**(-8) = 3.267.

If an external decimal point is provided, it overrides d; e, if specified, has no effect on
input.

If the field length specified by w in Ew.d is not the same as the length of the field
containing the input number, incorrect numbers might be read, converted, and stored.
The following example illustrates a situation where numbers are read incorrectly,
converted, and stored; yet there is no immediate indication that an error has occurred:

OPEN (3, BLANK='ZERO')
READ (3, 20) A, 8, C

20 FORMAT (E9.3, E7.2, E10.3)

Input Record (three adjacent fields in positions 1 through 24):

+6.47E-01l-2.361+5.321E+02 (Bars mark programmer's intended values.)

Numbers actually read:

+6.47E-01l-2.36+51 .321E+02

First, + 647E-01 is read, converted and placed in location A. The second specification
E7 .2 exceeds the width of the second field by two characters. The number -2.36 + 5 is
read instead of -2.36. The specification error (E7 .2 instead of E5.2) caused the two
extra characters to be read. The number read (-2.36+5) is a legitimate input number.
Since the second specification incorrectly took two digits from the third number, the
specification for the third number is now incorrect. The field .321E + 02 is read. The

6-32 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

OPEN statement specifies that trailing spaces are to be treated as zeros; therefore the
number .321E+0200 is read converted and placed in location C. Here again, this is a
legitimate input number which is converted and stored, even though it is not the
number desired.

Following are some additional examples of Ew .d input:

Input Field Specification

+ 143.26E-03 Ell.2

327.625 E7.2

- .0003627 + 5 Ell.7

- .0003627E5 Ell.7

spaces E4.1

Output

Converted
Value

0.14326

327.625

-36.27

-36.27

0.

Remarks

All subfields present.

No exponent subfield.

Integer subfield only a minus sign and
a plus sign appears instead of E.

Integer subfield left of decimal contains
minus sign only.

All subfields empty.

The width w must be sufficient to contain digits, plus or minus signs, decimal point, E,
the exponent, and spaces. Generally, the following values for w are sufficient:

w ~ d + 6 or w ~ d+ e + 4 for negative numbers or positive numbers under SP
control.

w ~ d + 5 or w ~ d + e + 3 for positive numbers not under SP control.

Positive numbers need not reserve a space for the sign of the number unless an SP
specification is in effect. If the field is not wide enough to contain the output value,
asterisks are inserted throughout the field. If the field is longer than the output value,
the quantity is right-justified with spaces on the left. If the value being converted is
indefinite, an I is printed in the field; if it is infinite (out-of-range), an R is printed.

Revision H Input/Output 6-33

Repeatable Edit Descriptors

The Ew.d specification produces output in the following formats:

s.aE±ee

s.a±eee

s

Minus sign if the number is negative; omitted if the number is positive

a

One or more most significant digits of the value correctly rounded

ee

Two-digit exponent

eee

Three-digit exponent

The first form is used for values where the magnitude of the exponent is less than
100; the second form is used for values where the magnitude of the exponent is in the
range 100 through 999. For values where the magnitude of the exponent exceeds 999,
you must explicitly specify the exponent length (at least four digits) using the form
Ew.dEe.

When the specification Ew.dEe is used, the exponent is preceded by E, and the number
of digits used for the exponent field not counting the letter and sign is determined by
e. If value specified for e is too small for the value being output, the entire field width
as specified by w will be filled with asterisks.

If a real variable containing an integer value is output under the Ew.d specification,
results are unpredictable since the internal formats of real and integer values differ.
An integer value normally does not have an exponent and will be printed, therefore, as
a very small value or 0.0.

Following are some examples of Ew.d output.

Format
Internal Value Specification Output Field

67.32 E9.3 A.673E+02

-67.32 E9.3 -.673E+02

67.32 El2.3 AAAA.673E + 02

-67.32 E12.3 AAA-.673E+02

F Descriptor

The F descriptor specifies conversion between an internal real or double precision
number and an external floating-point number. This descriptor has the form:

Fw.d

6-34 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

Input

On input, the F specification is treated identically to the E specification. Note that an
exponent can appear in the input field.

Following are some examples of Fw.d input.

Converted
Input Field Specification Value

367.2593 F8.4 367.2593

.62543 F6.5 . 62543

.62543 F6.2 .62543

+ 144.15E-03 Fll.2 .14415

50000 F5.2 500.00

spaces F5.2 0

Output

Remarks

Integer and fraction field.

No integer subfield .

Decimal point overrides d of Fw.d
specification.

Exponents are allowed in F input.

No fraction subfield; input number
converted as 50,000xl0**-2.

Spaces in input field interpreted as 0.

The F descriptor outputs a real number without a decimal exponent.

The plus sign is suppressed for positive numbers. If the field is too short, a field of
asterisks is output. If the field is longer than required, the number is right-justified
with spaces on the left. If the value being converted is indefinite, an I is printed in the
field; if it is infinite (out-of-range), an R is printed.

The specification Fw.d outputs a number in the following format:

sn.n

n

Field of decimal digits

s

Minus sign if the number is negative, or omitted if the number is positive

Following are some examples of F output.

Format
Internal Value Specification Output Field

+32.694 F6.3 32.694

+32.694 Fl0.3 AAAA32,694

-32.694 F6.3 ******

.32694 F4.3 .327

32.694 F6.0 AAA33.

Revision H Input/Output 6-35

Repeatable Edit Descriptors

G Descriptor

The G descriptor specifies conversion between an internal real or double precision
number and an external floating-point number written either with or without an
exponent. This descriptor has the forms:

Gw.d

Gw.dEe

Input

Input under control of the G specification is the same as for the E specification. The
rules that apply to the E specification also apply to the G specification.

Output

Output under control of the G descriptor depends on the size of the floating-point

:

1.=i=I number being edited. For values greater than or equal to .1 and less than lO**d in
magnitude, the number is output under modified F format as shown below. For values
outside this range, Gw.d output is identical to Ew.d, and Gw.dEe is identical to
Ew.dEe.

Size of N

O.l~N<l

l~N<lO

lO**(d-2) ~N < lO**(d-1)
lO**(d-1) ~N < IO**d

F format conversion if
Gw.d is used

F(w-4).d '11111111'
F(w-4).(d-1) '11111111'
F(w-4).1 '11111111'
F(w-4).0 '11111111'

F format con version if Gw .dEe
is used

F(w-e-2).d, e + 2('11')
F(w-e-2).(d + l) .e + 2('11')
F(w-e-2).1 e + 2('11')
F(w-e-2).0 e + 2('11')

If the value being converted is indefinite, an I is printed in the field; if it is infinite
(out-of-range), an R is printed.

If a number is output under the Gw.d specification without an exponent, four spaces
are inserted to the right of the field (these spaces are reserved for the exponent field
E±ee). Therefore, for output under G conversion, w must be greater than or equal to d
+ 6. The six extra spaces are required for sign, decimal point, and four-space exponent
field. If the Gw.dEe form is used for a number output without an exponent, then e +
2 spaces are inserted to the right of the field.

Following are some examples of G output.

Internal G 14.8 Output
Value Field Format Option

.001415926535 .14159265E-02 E conversion

.8979323846 .89793238 F conversion

2643383279. .26433833E + 10 E conversion

-693.9937510 -693.99375 F conversion

6-36 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors ·

I Descriptor

The I descriptor specifies integer conversion. This descriptor has the forms:

Iw

Iw.m

Input

You can omit the plus sign for positive integers. When a sign appears, it must prec~de
the first digit in the field. An Iw.m specification has no effect on input. The
interpretation of spaces within a field depends on the BLANK= specifier in the OPEN
statement (described later in this chapter). If this specifier is omitted, spaces are
ignored. An all-blank field is always considered to be zero. Decimal points are not
permitted. Any character other than a decimal digit, space, or the leading plus or
minus sign in an integer field on input will cause an error.

are ignored (BLANK= specifier omitted from OPEN statement, or BLANK= 'NULL'
specified). If BLANK= 'ZERO' were specified, spaces would be interpreted as zeros. In
this case, J would contain -1500 and N would contain 104. The other values would not
be affected.

OPEN (2, BLANK='NULL')
READ (2, 10) l, J, K, L, M, N

10 FORMAT (13, 17, 12, 13, 12, 14)

Input Record:

1391~-15~1181~71~11~4

In Storage:

I: 139
J: -15
K: 18
L: 7
M: 0
N: 14

Output

(Bars mark input fields.)

If the integer is positive, the plus sign is suppressed unless an SP specification
(described later in this chapter) is in effect. Leading zeros are suppressed.

If Iw.m is used and the output value occupies fewer than m positions, leading zeros are
generated to fill up to m digits. If m=O, a zero value will produce all spaces. If m=w,
no spaces will occur in the field when the value is positive, and the field will be too
short for any negative value. If the field is too short, asterisks occupy the field.

Following are some examples of I output. Note that the first character of a printer
output record is used for printer control and is not printed. More information on
printer control appears later in this chapter.

Revision H Input/Output 6-3'1

Repeatable Edit Descriptors

Example:

PRINT 10, I, J, K
10 FORMAT ('19, I 10, I5. 3)

In Storage:

I: -3762
J: 4762937
K: 13

Printed Output:

AAA-3762 I MM 762937IMO13 (Bars mark output fields.)

The first character in a printed output line is always interpreted as a printer control
character and does not appear in the output.

Example:

WRITE (6, 100) N, M, J
100 FORMAT (I5, 16, I9)

In Storage:

N: 20
M: -731450
J: 205

Printed Output:

AA20 I • • • • • • I Mtil1M205 (Bars mark output fields.)

Asterisks were printed in the second output field because the specification 16 was too
small.

L Descriptor

The L descriptor is used to input or output logical data items. This descriptor has the
form:

Lw

Input

If the first nonblank characters in the field are T or .T, the logical value true is stored
in the corresponding list item, which should be of type logical. If the first nonblank
characters are F or .F, the value false is stored. If the first nonblank characters are
not T, .T, F, or .F, a diagnostic is printed. :l.titO.P.CJEQRTR.AbUt~h?MU:hlijijkJfi.~ldfbij~
:thi:::&ijlui:/£al$.~~

6-38 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

Output

Variables output under· the L specification should be of type logical. A value of true or
false in memory is output as a right-justified T or F with spaces on the left.

Example:

LOGICAL I, J, K
I . TRUE.
J = .FALSE.
K = .TRUE.
PRINT 5, I, J, K

5 FORMAT (1X, 3L3)

These statements print the following:

fl.fl. T MF MT

Control Data Extension

0 Descriptor

The 0 descriptor is used to input or output items in octal format. This descriptor has
the forms:

Ow

Ow.m

The form Ow.m has the same meaning as Ow on input. The octal digits include the
numbers 0 through 7.

Input

An input field corresponding to an integer, real, logical, or boolean list item can
contain a maximum of 22 digits. An input field corresponding to a complex or double
precision list item can contain a maximum of 43 digits. Spaces are allowed and a plus
or minus sign can precede the first octal digit. Spaces are interpreted as zeros and an
all spaces field is interpreted as zero. A decimal point is not allowed. The digits are
stored right-justified within the list item, with zero fill on the left.

If an input field corresponding to an integer, real, logical, or boolean list item contains
22 digits, the leftmost two bit positions of the input field must be zero. If an input
field corresponding to a complex or double precision list item contains 43 digits, the
leftmost bit position of the input field must be zero.

Example:

BOOLEAN P, Q, R
READ 10, P, Q, R

10 FORMAT (010, 012, 02)

Input Record:

37373737371666A6644A444l-O

Revision H

(Bars mark input fields as specified by the FORMAT
statement.)

Input/Output 6-39

Repeatable Edit Descriptors

In Storage (Octal representation):

P: 0000000000003737373737
Q: 0000000000666066440444
R: 0000000000000000000000

Output

If w is less than or equal to 22 (for integer, real, logical, or boolean list items) or 43
(for complex or double precision list items), the rightmost digits are output. The output
field includes leading zeros. For example, if location P contains a value with the octal
representation

0000000000003737373737

and the output statements are

WRITE (6, 100) P
100 FORMAT (1X, 04)

then the digits 3737 are output.

If w is greater than 22 (for integer, real, logical, or boolean list items), 22 digits are
output right-justified with spaces on the left. For example, if the preceding format
specification is changed to (lX, 024), output is as follows:

l1f10000000000003737373737

If w is greater than 43 for complex or double precision list items, 43 digits are output
right-justified with spaces on the left.

A negative number is output in two's complement internal form. For example, the
statements

I = -11
PRINT 200, I

200 FORMAT (1X, 022)

produce the following output:

1777777777777777777765

The value of m is used to cause leading zeros to be written as spaces. If m is
specified, up to w-m leading zeros are written as spaces. If the number cannot be
output in w octal digits, the rightmost w*3 are converted to octal and written.

End of Control Data Extension

6-40 FORTRAN Version 1 Language Definition Usage Revision H

Repeatable Edit Descriptors

Control Data Extension

R Descriptor

The R descriptor is used with noncharacter list items. This descriptor is used to
transmit the rightmost characters of a word. The R descriptor has the form:

Rw

On both input and output, the R specification is identical to the A specification unless
w is less than 8 (for integer, real, logical, or boolean list items) or 16 (for complex or
double precision list items).

On input, if w is less than 8 (for integer, real, logical, or boolean list items) or 16 (for
complex or double precision list items), the rightmost w characters are read and stored
right-justified with upper binary zero fill.

On output, if w is less than 8 (for integer, real, logical or boolean list items) or 16 (for
complex or double precision list items), the rightmost w characters of the output item
are written to the output record.

Example of R input:

BOOLEAN HOO, RAY
READ (5, 600) HOO, RAY

600 FORMAT (RS, R7)

Input Record:

RESULTS6IOF6TEST

In Storage:

HOO: RESULTS6
RAY: OOF6TEST (Leftmost character is ASCII null, not ASCII zero)

End of Control Data Extension tttfttttttttttttfttfftftttt

Control Data Extension }Ifittif:ttttttt:tttttttf}tt:t:ttt

Z Descriptor

The Z descriptor is used for hexadecimal conversion. This descriptor has the forms:

Zw

Zw.m

The form Zw.m is meaningful for output only. Hexadecimal digits include the digits 0
through 9 and the letters A through F. A hexadecimal digit is represented by four bits.

Revision H InpuUOutput 6-41

Nonrepeatable Edit Descriptors

Input

The input string can contain up to 16 hexadecimal digits (for an integer, real, logical,
or boolean list item, or 32 hexadecimal digits for a complex or double precision list
item). Embedded spaces are interpreted as zero and an all blank field is equivalent to
zero. A plus or minus sign can precede the first digit. The string is stored
right-justified within the list item, with zeros on the left.

Example of Z input:

INTEGER R, S
READ (10, ' (Z 10, Z4)') R, S

Input Record:

A309FFFFCC4l101

In Storage (hexadecimal representation):

R: OOOOOOA309FFFFCC
S: 00000000000040Dl

Output

If w is less than 16 (for integer, real, logical, or boolean list items) or 32 (for complex
or double precision list items), the rightmost w*4 bits are converted to hexadecimal and
written. The output field includes leading zeros. For example, if location I contains

OOOOOOOOOOOFB26C

then the output statement

WRITE(6, '(1X,Z3)') I

writes the digits 26C.

If w is greater than 16 for integer, real, logical, or boolean list items, the 16
hexadecimal digits are right-justified with spaces on the left.

If w is greater than 32 for complex or double precision list items, the 32 hexadecimal
digits are right-justified with spaces on the left.

The value of m is used to cause leading zeros to be written as spaces. If m is
specified, up to w-m leading zeros are written as spaces. If the number cannot be
written in w hexadecimal digits, a field of asterisks is written.

End of Control Data Extension

Nonrepeatable Edit Descriptors

The nonrepeatable edit descriptors control aspects of formatting, but do not cause data
conversions and are not associated with items in the iolist. The nonrepeatable edit
descriptors are P, BN, BZ, S, SS, SP, H, .', ", X, T, TL TR, I, and :.

6-42 FORTRAN Version 1 Language Definition Usage Revision H

Nonrepeatable Edit Descriptors

P Descriptor

The P descriptor has the form:

kP

k

Signed or unsigned integer constant called the scale factor.

The P descriptor is used to change the position of a decimal point of a real number
when it is input or output. The descriptor kP causes subsequent format specifications to
be scaled by lO**k. Scale factors can precede D, E, F, and G format specifications or
appear independently, as follows:

kPDw.d

kPEw.d

kPGw.d

kPEw.dEe

kPFw.d

kP

A scale factor of zero is established when each format specification is first referenced;
it holds for all D, E, F, and G edit descriptors until another scale factor is
encountered.

Once a scale factor is specified, it holds for all D, E, F, and G descriptors in that
FORMAT specification until another scale factor is encountered. To nullify the effect of
a scale factor for subsequent D, E, F, and G descriptors, you must specify a zero scale
factor (OP). For example, in the format specification

15 FORMAT (2P,E14.3,F10.2,G16.2,0P,4F13.2)

the 2P scale factor applies to the E14.3 descriptor and also to the Fl0.2 and G16.2
descriptors. The OP scale factor restores normal scaling (10**0 = 1) for the subsequent
specification 4F13.2. ·

Input

For D, E, F, and G editing, provided that the number in the input field does not have
an exponent, the number is divided by lO**k and stored. For example, if the input
quantity 314.1592 is read under the specification 2PF8.4, the internal number is
314.1592 * 10**(-2) = 3.141592. However, if the input number contains an exponent,
the scale factor is ignored.

Output

For F editing, the number in the output field is the internal number multiplied by
lO**k. In the output representation, the decimal point is fixed; the number is either
left-justfied or right-justified, depending on whether the scale factor is plus or minus.
For example, the internal number -3.1415926536 can be represented on output under
various scaled F specifications as follows:

Revision H InpuUOutput 6-43

Nonrepeatable Edit Descriptors

Specification

-1PF13.6
Fl3.6
1PF13.6
3PF13.6

Number
Output

-.314159
-3.141593
-31.415927
-3141.592654

For E and D editing, the effect of the scale factor kP is to shift the decimal point
right k places and reduce the exponent by k. In addition, the scale factor controls the
decimal normalization between the coefficient and the exponent as follows:

If k is less than or equal to zero, there will be exactly - k leading zeros and d + k
significant digits after the decimal point.

If k is greater than zero, there will be exactly k significant digits to the left of the
decimal point and d - k + 1 significant digits to the right of the decimal point.

For example, the number -3.1415926536 is represented on output under various Ew.d
scaling as follows:

Specification

-3P E20.4
-lP E20.4
E20.4
P E20.4
3P E20.4

Number
Output

-.0003E+04
-.0314E+02
-.3142E+Ol
-3.1416E+OO
-314.16E-02

For G editing, the effect of the scale factor is nullified unless the magnitude of the
number to be output is outside the range that permits effective use of F conversion
(namely, unless the number is less than 10**(-1) or equal to or greater than lO**d). In
these cases, the scale factor has the same effect as described for Ew.d and Dw.d
scaling. For example, the number -.00031415926536 is represented on output under the
indicated Gw.d scaling as follows:

Specification

-3PG20.6
-1PG20.6
020.6
1PG20.6
3PG20.6
5PG20.6
7PG20.6

Number
Output

-.000314E+OO
-.031416E-02
-.314159E-03
-3.141593E-04
-314.1593E-06
-31415.93E-08
-3141593.E-10

The number -3.1415926536 would be output as -3.14159 under any of the preceding
specifications, because that number is within the required range.

BN and BZ Descriptors

The BN and BZ descriptors can be used on input with the D, E, F, G, and I edit
descriptors to specify the interpretation of spaces (other than leading spaces). In the
absence of a BN or BZ descriptor, spaces in input fields are interpreted as zeros or are
ignored, depending on the value of the BLANK= specifier currently in effect for the

1!~ input/output unit. BLANK= 'NULL' is the default for input. If a BN descriptor is

6-44 FORTRAN Version 1 Language Definition Usage Revision H

Nonrepeatable Edit Descriptors

encountered in a format specification, all spaces in succeeding numeric input fields are ~il
ignored; that is, the field is treated as if spaces had been removed, the remaining .:t:i.:i

portion of the field right-justified, and the field padded with leading spaces. A field of
all spaces has a value of zero.

If a BZ descriptor is encountered in a format specification, all spacesin succeeding ~i
numeric input fields are interpreted as zeros.

For example, assuming BLANK = 'NULL', if the statement

READ (6, '(!3, BZ, I3, BN, I3)') I, J, K

reads the input record

1M2M3M

then I, J, and K have the following values:

I =1

J = 200

K = 3

S, SP, SS Descriptors

The S, SP, and SS descriptors can be used on output with the D, E, F, G, and I
descriptors to control the printing of plus (+) characters. S, SP and SS have no effect
on input.

Normally, FORTRAN does not precede positive numbers by a plus sign on output. If an
SP descriptor is encountered in a format specification, all succeeding positive numeric
fields will contain the plus sign (w must be of sufficient length to include the sign). If
an SS or S descriptor is encountered, the optional plus signs will not appear.

S, SP, and SS have no effect on plus signs preceding exponents, since those signs are
always provided. For example, the statements

A = 10.5
B = 7.3
c = 26.0
WRITE (2, '(1X, F6.2, SP, F6.2, SS, F6.2)') A, B, C

print the following:

d10.50d+7.30d26.00

Revision H Input/Output 6-45

Nonrepeatable Edit Descriptors

H Descriptor

The H descriptor is used to output strings of characters. This descriptor is not
associated with a variable in the output list. The H descriptor has the form:

nHstring

n

Number of characters in the string, including spaces.

string

String of characters.

The H descriptor cannot be used on input.

Note that although using apostrophes to designate a character string precludes the
need to count characters, the H descriptor may be more convenient if 'the string
contains apostrophes. For example, the sequence

A = 1.5

WRITE (2, 30) A
30 FORMAT (6HALMAX=, F5.2)

writes the following output:

ALMAX=A 1 . 50

Replacing the H descriptor in the preceding example with ' LMAX =' would produce the
same output.

:Qft.4~l((1tQQjfi.~ij$.~ijij) and Apostrophe Descriptors

Character strings delimited by a pair of apostrophe (') or :~IU&t.~HCD symbols can be used
as alternate forms of the H specification for output. The paired symbols delimit the
string. If the string is empty or invalidly delimited, a fatal compilation error occurs
and an error message is printed. You cannot use the apostrophe and :qijd;tjj! descriptors
on input.

NOTE

Because the apostrophe descriptor is ANSI standard, it is preferred over the ~qij&t.i
descriptor.

The following example shows how to write a character string that is continued on a
second line:

WRITE (6, 20)
20 FORMAT (' RESULT OF CALCULATIONS IS

•'AS FOLLOWS')

These statements produce the following output:

RESULT OF CALCULATIONS IS AS FOLLOWS

6-46 FORTRAN Version 1 Language Definition Usage Revision H

Nonrepeatable Edit Descriptors

An apostrophe or quote within a string delimited by the same symbol can be
represented by two consecutive occurrences of the symbol. Alternatively, if a quote or
apostrophe appears within a string, the other symbol can be used as the delimiter. The
following example shows two ways of writing a character string that contains an
apostrophe:

PRINT 1
PRINT 2

m:tttf.QijMAtt:(m;~~:rm:na
2 FORMAT ('~DON''T')

These statements produce the following output:

ABC'DE
DON'T

X Descriptor

The X descriptor is used to skip character positions in an input line or output line. X
is not associated with an item in the inputJoutput list. The X descriptor has the form:

nX

n

Number of character positions to be skipped from the current character position; n
is a nonzero unsigned integer.

The specification nX indicates that transmission of the next character to or from a
record is to occur at the position n characters forward from the current position. When
an X specification causes control to pass over character positions on output, positions
not previously filled during record generation are set to spaces; those already filled are
left unchanged.

Example:

A= -342.743
B = 1.53190
J = 22
WRITE (6, '(lX, F9.4, 4X, F7.5, 4X, I3)') A, B, J

Output:

~-342.7430~1.53190~22

Example:

READ (3, '(F5.2, 3X, F5.2, 6X, F5.2)') R, S, T

Input record:

14.62~$13.78~COST~15.97

In R, S, and T:

R: 14.62

S: 13.78

Revision H Input/Output 6-47

Nonrepeatable Edit Descriptors

T: 15.97

T, TL, TR Descriptors

The T, TL, and TR descriptors provide for tabulation control. These descriptors have
the forms:

Tn

TLn

TRn

n

Nonzero unsigned decimal integer

When a Tn descriptor is encountered in a format specification, input or output control
skips right or left to character position n; the next edit descriptor is then processed.

When a TLn descriptor is encountered, control skips backward (left) n character
positions. If n is greater than or equal to the current position, control skips to the first
position.

When a TRn descriptor is encountered, control skips forward (right) n positions.

Example:

READ 40, A, B, C
40 FORMAT (T2, FS.2, TRS, F6.1, TR3, FS.2)

Input record:

6684.73~2436.2~89.1~

Stored in A, B, and C:

A: 684.7 B: 2436.0 C: 89.0

Example:

WRITE (31, 10)
10 FORMAT (T20, 'LABELS')

The preceding statements position to character position 20 of the output record and
write the characters LABELS.

With a T, TR, or TL specification, the order of a list need not be the same as that of
the input or output record, and the same information can be read more than once. For
example, if the statement

READ (2, '(FS.2, TLS, FS.2)') A, B

reads the record

76.05

6-48 FORTRAN Version 1 Language Definition Usage Revision H

Nonrepeatable Edit Descriptors

then both A and B contain 76.05.

When a T, TR, or TL specification causes control to pass over character positions on
output, positions not previously filled during record generation are set to spaces; those
already filled are left unchanged.

It is possible to destroy a previously formed field. For example, the statements

PRINT 8
8 FORMAT(' DISASTERS', TS, 3H123)

print the following string:

DIS123ERS

Slash (End-of-Record) Descriptor

A slash in a format specification indicates the end of a record. When a slash is used to
separate edit descriptors, a comma separator is allowed but not required. Consecutive
slashes can be used and need not be separated from other elements by commas. One or
more slashes can precede the first edit descriptor in a format specification, can follow
the last edit descriptor, or can appear between edit descriptors.

On input, a slash specifies that further data comes from the next record. If a slash is
the last descriptor, it causes an input record to be skipped.

On output, a slash causes subsequent data to be written to the next record. When a
slash is the last descriptor, it causes a space record to be written.

Example:

DIMENSION B(3)
READ (5, 100) IA, B

100 FORMAT (I5/3E7.2)

These statements read two records; the first contains an integer number, and the
second contains three real numbers.

Example:

A = 46.3272
WRITE (3, 11) A

11 FORMAT (lX, 'NEW VALUE', //lX, F7.3)

Printed output:

NEW VALUE
(blank line)
A46.327

Each line corresponds to a formatted record. The second record is blank and produces
the line spacing shown.

Revision H Input/Output 6-49

Printer Control Character

Colon (:) Descriptor

A colon (:) in a format specification terminates format control if there are no more
items in the input/output list. The colon has no effect if there are more items in the
input/output list. This descriptor is useful in forms where nonlist item edit descriptors
follow list item edit descriptors; when the iolist is exhausted, the subsequent edit
descriptors are not processed. For example, the statements

A = 1.0
B = 2.2
c = 3.1
D = 5.7
PRINT 10, A, B, c, D

10 FORMAT (4(F4. 1, . , , , ,))

print the following record:

1.0, 2.2, 3.1, 5. 7

In this example, format control terminates after the value of D is printed, and the last
comma is not printed.

Printer Control Character

The first character of a printer output record is used for printer control and is not
~~~ printed. It appears in other forms of output as data. For lines listed at a terminal, the 

.: 

... 

:

!_······=! ... ·=:! FILE_CONTENTS parameter on the SET_FILE_ATTRIBUTE command allows you to 
., specify whether printer control characters are to be recognized or disregarded. The 

SET_FILE_ATTRIBUTE command is described in appendix E. 

The printer control characters are shown the following table. 

Table 6-3. Printer Control Characters 

Character Action 

Space Space vertically one line, then print. 

0 Space vertically two lines, then print. 

1 Eject to the first line of the next page before printing. 

+ No advance before printing; allows overprinting. 

Space vertically three lines, then print. 

Any other Refer to the SCL System Interface manual. 
character 

Printer control characters are required at the beginning of every record to be printed, 
including new records introduced by means of a slash. Null records, such as those 
produced by successive slashes, do not require printer control characters. Printer 
control characters can be generated by any means. 

For output directed to any device other than the line printer or terminal, printer 
control characters are not required. 

6-50 FORTRAN Version 1 Language Definition Usage Revision H 



Unformatted lnpuUOutput 

Following are some examples of FORMAT statements in which the first character of 
each record is a printer control character: 

10 FORMAT (1HO, F7.3, 12, G12.6) 

20 FORMAT(' ', IS, 'RESULT=', F8.4) 

30 FORMAT ('1', 14, 2 (F7.3)) 

40 FORMAT (1X, 14, G16.8) 

Unformatted Input/Output 

Unformatted READ and WRITE statements do not use format specifications and do not 
convert data in any way on input or output. Instead, data is transferred as is between 
memory and the external device. (Since the data is in an internal form, it is generally 
not suitable for printing or terminal display.) 

Each unformatted input/output statement transfers exactly one record. When a null 
record is written to a file with the RECORD_ TYPE= FIXED attribute, such as an 
unformatted direct access file, the record is filled with the padding character before 
being written. If the record is less than MAXIMUM_RECORD_LENGTH, then the 
unused portions are also filled with the padding character. 

Unformatted WRITE 

The unformatted WRITE statement is used to output records in their internal form. 
This statement has the form: 

WRITE (UNIT=u, IOSTAT=ios, ERR=s[) iolist 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

• An integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

Revision H InpuUOutput 6-51 



Unformatted WRITE 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the inputJoutput operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOSNE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOSNE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION _NAME with the returned condition code. See the SCL 
Language Definition Usage and SCL System Interface manuals for more 
information. 

ERR=sl 

Specifies the label of an executable statement to which control transfers if an error 
condition is encountered during inputJoutput processing. 

iolist 

The list portion of an input/output statement specifies the items to be read or 
written and the order of transmission. The inputJoutput list can contain any number 
of items. List items are read or written sequentially from left to right. 

If no list appears on unformatted output, a null (empty) record is transmitted. 

A list item can be a variable name, an array name, an array element name, a 
character substring name, or an implied DO list. On output, a list item can also be 
a character, boolean, logical,· or arithmetic expression. No expression in an 
input/output list can reference a function if such reference would cause any 
input/output operations to be executed or would cause the value of any element of 
the inputJoutput statement to be changed. List items are separated by commas. 

An array name without subscripts in an inputJoutput list specifies the entire array 
in the order in which it is stored. The entire array (not just the first word of the 
array) is read or written. You cannot use assumed-size array names in inputJoutput 
lists. (Assumed-size array element names are permitted.) 

Subscripts in an input/output list can be any valid subscript (as described in 
chapter 2). 

6-52 FORTRAN Version 1 Language Definition Usage Revision H 



Unformatted READ 

Information is transferred from the items in iolist to the specified output unit with no 
format conversion. One record is created by an unformatted WRITE statement. If the 
list is omitted, the statement writes a null record on the output device. A null record 
contains no data but has all other properties of a legitimate record. 

Example: 

DIMENSION A(260), 6(4000) 

WRITE (10, ERR=16) A, B 

The 4260 words of arrays A and B are written as one record in internal binary format 
on unit 10. 

Unformatted READ 

The unformatted READ statement transmits one record from the specified unit to the 
storage locations named in iolist. This statement has the form: 

READ (UNIT=u, IOSTAT=ios, ERR=sl, END=sl) iolist 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

• An integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

Revision H Input/Output 6-53 



Unformatted READ 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the input/output operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOS/VE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOS/VE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION _NAME with the returned condition code. See the SCL 
Language Definition Usage and SCL System Interface manuals for more 
information. 

END=sl 

Specifies the label of an executable statement to which control transfers when an 
end-of-file is encountered during an input operation. 

ERR=sl 
Specifies the label of an executable statement to which control transfers if an error 
condition is encountered· during input/output processing. 

iolist 

Specifies the items to be read or written and the order of transmission. The 
input/output list can contain any number of items. List items are read or written 
sequentially from left to right. 

If no list appears on input, one or more records are skipped. 

A list item can be a variable name, an array name, an array element name, a 
character substring name, or an implied DO list. On output, a list item can also be 
a character, boolean, logical, or arithmetic expression. No expression in an 
input/output list can reference a function if such reference would cause any 
input/output operations to be executed or would cause the value of any element of 
the input/output statement to be changed. List items are separated by commas. 

An array name without subscripts in an input/output list specifies the entire array 
in the order in which it is stored. The entire array (not just the first word of the 
array) is read or written. You cannot use assumed-size array names in input/output 
lists. (Assumed-size array element names are permitted.) 

Subscripts in an input/output list can be any valid subscript (as described in 
chapter 2). 

6-54 FORTRAN Version 1 Language Definition Usage Revision H 



List Directed Input/Output 

No format specification is used, and the transmitted data is not converted. The 
information is transmitted from the designated file in the form in which it exists on 
the file without any conversion. If the number of words in the list exceeds the number 
of words in the record, an execution diagnostic results. If the number of locations 
specified in iolist is less than the number of words in the record, the excess data is 
ignored. If iolist is omitted, the unformatted READ skips one record. 

You should specify the END= or IOSTAT= parameter to test for an end-of-file 
(end-of-partition or end-of-information). If neither is specified, and an end-of-file is 
encountered, the program terminates with a fatal error. A fatal error also occurs if you 
attempt to read a unit after an END= or IOSTAT= specifier has returned an 
end-of-file condition for that unit. Records following an end-of-file can be read by 
issuing a CLOSE followed by an OPEN on the file or by calling the EOF function . 

. Example: 

READ (2, END=30, ERR=40) X, Y, Z 

reads numbers directly into X, Y, and Z with no conversions. 

List Directed Input/Output 

List directed input/output involves the conversion of records according to 
compiler-defined formatting rules (without an explicit format specification). Each record 
consists of a list of values in a less restricted format than is used for formatted 
input/output. This type of input/output is particularly convenient when the exact form 
of data is not important. 

List Directed Input 

The list directed READ statement transmits data from the specified unit or the unit 
INPUT (if u is omitted or UNIT= * is specified) to the storage locations named in 
iolist. The list directed READ statement has the forms: 

READ (UNIT=u, FMT=*, IOSTAT=ios, ERR=sl, END=sl) iolist 

READ *, iolist 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

Revision H Input/Output 6-55 



List Directed Input 

• An integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

FMT=* 

Specifies a list-directed format. The asterisk (*) is required. 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the input/output operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through· 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOSNE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOSNE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION _NAME with the returned condition code. See the SCL 
Language Definition Usage and SCL System Interface manuals for more 
information. 

END=sl 

Specifies the label of an executable statement to which control transfers when an 
end-of-file is encountered during an input operation. 

6-56 FORTRAN Version 1 Language Definition Usage Revision H 



List Directed Input 

ERR=sl 

Specifies the label of an executable statement to which control transfers if an error 
condition is encountered during input/output processing. 

iolist 

Specifies the items to be read or written and the order of transmission. The 
input/output list can contain any number of items. List items are read or written 
sequentially from left to right. 

If no list appears on input, one or more records are skipped. 

A list item can be a variable name, an array name, an array element name, a 
character substring name, or an implied DO list. On output, a list item can also be 
a character, boolean, logical, or arithmetic expression. No expression in an 
input/output list can reference a function if such reference would cause any 
input/output operations to be executed or would cause the value of any element of 
the input/output statement to be changed. List items are separated by commas. 

An array name without subscripts in an input/output list specifies the entire array 
in the order in which it is stored. The entire array (not just the first word of the 
array) is read or written. You cannot use assumed-size array names in input/output 
lists. (Assumed-size array element names are permitted.) 

Subscripts in an input/output list can be any valid subscript (as described in 
chapter 2). 

Unlike formatted input, in which list items are in fixed-length fields, input items for 
list directed input are free-form with separators. 

A list directed READ following a list directed READ that terminated in the middle of 
a record starts with the next data record. 

You should specify the END= or IOSTAT= parameter to test for an end-of-file 
(end-of-partition or end-of-information). If neither is specified, and an end-of-file is 
encountered, the program terminates with a fatal error. A fatal error also occurs if you 
attempt to read a unit after an END= or IOSTAT= specifier has returned an 
end-of-file condition for that unit. Records following an end-of-file can be read by 
issuing a CLOSE followed by an OPEN on the file or by calling the EOF function. 

Input data consists of a string of values separated by one or more spaces, or by a 
comma or slash, either of which can be preceded or followed by any number of spaces. 
Also, a line boundary, such as the end of a terminal line or the end of a card, serves 
as a value separator; however, a separator adjacent to a line boundary does not 
indicate a null value. 

Embedded spaces are not allowed in input values, except in character values and 
between the components of complex numbers, as described below. The format of values 
in the input record is as follows: 

Integers 

Same format as for integer constants. Two-byte and four-byte integers are allowed; 
values that are too large for an associated specification cause a runtime error. 

Revision H Input/Output 6-57 

I 

::: 



List Directed Input 

Real numbers 

Any valid FORTRAN format for real or double pecision numbers. Real*16 values 
are allowed. In addition, the decimal point can be omitted; it is assumed to be to 
the right of the number if no exponent is specified, or between the number and the 
exponent. 

Complex numbers 

Two real values, separated by a comma, and enclosed by parentheses. The 
parentheses are not considered to be a separator. The decimal point can be omitted 
from either of the real values. Each of the real values can be preceded or followed 
by spaces. 

Character values 

A string of characters (which can include spaces) enclosed by apostrophes. An 
apostrophe can be represented within a string by two successive apostrophes with 
no intervening characters. Character values can only be read into character arrays, 
array elements, variables and substrings. If the string length exceeds the length of 
the list item, the string is truncated. If the string is shorter than the list item, the 
string is left-justified and remaining character positions are blank filled. 

Logical values 

An optional period, followed by a T or F, followed by optional characters that do 
not include slashes, spaces, or commas. (Note that the logical constants .TRUE. and 
.FALSE. are valid.) 

You can input a boolean constant only if the corresponding list item is of type boolean. 
Boolean constants include: 

• Octal constants of the form O" . . . ". 

• Hexadecimal constants of the form Z" . " 

• Hollerith constants containing one through eight characters and delimited by quotes. 
Constants of less than eight characters are left-justified with blank fill on the right. 
Strings of greater than eight characters cause an execution error. 

In addition, real and integer values can be read into boolean variables. 

An input item can be repeated by preceding the item by an integer repeat count and 
asterisk. For example, the input record 

3*567 .123 

is equivalent to: 

567.123,567.123,567.123 

Spaces cannot immediately precede or follow the asterisk. 

You can input a null in place of a constant when the current value of the 
corresponding list item is not to be changed. A null is indicated by a comma as the 
first character in the input string or by two commas separated by an arbitrary number 
of spaces. Nulls can be repeated by specifying an integer repeat count followed by an 
asterisk and any value separator. The next value begins immediately after a repeated 
null. You cannot use a null for either the real or imaginary part of a complex 
constant; however, a null can represent an entire complex constant. 

6-58 FORTRAN Version 1 Language Definition Usage Revision H 



List Directed Output 

When the value separator is a slash, the effect is the same as reading null values for 
the remaining input list items. The remainder of the current record is discarded. 

Input values must correspond in type to variables in the input/output list. Integer input ~~~ 

values must not be too large for an associated iolist item. For example, if iolist .... =·:1 ....... =1 ....... =1 

specifies a variable typed as INTEGER*2, then the associated item in the input record 
must be within the range -32, 768 to 32, 767. Note that the form of a real value can be 
the same as that of an integer value. 

List Directed Output 

The list directed output statements consist of a WRITE, a PRINT, and a :lUJNC.Hl(QP.C 
:&*-ti=tw~iQ:h.) statement. These statements have the forms: 

WRITE (UNIT=u, FMT=*, IOSTAT=ios, ERR=s[) iolist 

PRINT *, iolist 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

• An integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

Revision H Input/Output 6-59 



I 

List Directed Output 

FMT=* 

Specifies a list-directed format. The asterisk (*) is required. 

The characters FMT = can be omitted, in which case the format specifier must be 
the second item in the list of specifiers, and the first item must be the unit 
specifier without the characters UNIT= . 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the input/output operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOSNE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOSNE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION_NAME with the returned condition code. See the SCL 
Language Definition Usage and SCL System Interface manuals for more 
information. 

ERR=sl 

Specifies the label of an executable statement to which control transfers if an error 
condition is encountered during input/output processing. 

iolist 

Specifies the items to be read or written and the order of transmission. The 
input/output list can contain any number of items. List items are read or written 
sequentially from left to right. 

If no list appears on unformatted output, a null (empty) record is transmitted. 

A list item can be a variable name, an array name, an array element name, a 
character substring name, or an implied DO list. On output, a list item can also be 
a character, boolean, logical, or arithmetic expression. No expression in an 
input/output list can reference a function if such reference would cause any 
input/output operations to be executed or would cause the value of any element of 
the input/output statement to be changed. List items are separated by commas. 

An array name without subscripts in an input/output list specifies the entire array 
in the order in which it is stored. The entire array (not just the first word of the 
array) is read or written. You cannot use assumed-size array names in input/output 
lists. (Assumed-size array element names are permitted.) 

Subscripts in an input/output list can be any valid subscript (as described in 
chapter 2). 

6-60 FORTRAN Version 1 Language Definition Usage Revision H 



List Directed Output 

PRINT outputs data to the unit OUTPUT. iPUNC.HioU.tifd.~lW.lt.h~)ijijjt\PO'NC.ff. 

Data in the locations specified by iolist is converted from internal format to coded 
format and transferred to the designated unit. 

List directed output is consistent with the input; however, comma separators, null 
values, slashes, repeated constants, and the apostrophes used to indicate character 
values are not produced. For real or double precision variables with absolute values in 
the range of 10**(-6) through 10**9, an F format conversion is used; otherwise, output 
has lPE format. For real values, up to 13 digits are output. For double precision 
values, up to 27 digits are output. Trailing zeros in the fractional part and leading 
zeros in the exponent are suppressed. 

List directed output statements always produce a space for printer control as the first 
character of the output record. The maximum length of an Qutput line is the smaller of ~~ 

the PAGE_ WIDTH and MAXIMUM_RECORD_LENGTH attribute values of the file. . ...... =: __ ..... :!·=····=! (These attributes can be set by the SET_FILE_ATTRIBUTE command, which is 
described in appendix E.) 

Logical values are output as T or F. Complex values are enclosed in parentheses with 
a comma separating the real and imaginary parts. 

Boolean values are output in the form Z"n n . . . ", where n is a hexadecimal digit. 
Leading zeros are suppressed. 

Example: 

COMPLEX A 
CHARACTER 8*3 
A= (7.,-1) 
B='DOG' 
C=123.45 
PRINT*, A, B, C 

These statements print the following record: 

(7.,-1.)DOG123.45 

Revision H InpuUOutput 6-61 



N amelist Input/Output 

Control Data Extension 

Namelist Input/Output 

Namelist input/output permits formatted input and output of groups of variables and 
arrays by using an identifying group name instead of a format specification. The values 
are converted according to compiler-defined formatting rules. The name is established 
by the NAMELIST statement. 

This statement has the form: 

NAMELIST /name/a, ... , a ... lnamela, ... , a 

name 

Name to be given to the namelist group; must be unique within the program unit. 

a 

Variable or array name. 

The NAMELIST statement is a nonexecutable statement that appears in the declarative 
portion of the program following any specification statements. The namelist group name 

.:

l.:l.:l identifies the succeeding list of variable or array names. For integer variables or 
arrays, only full-word (eight-byte) values are allowed in the list. 

You must declare a namelist group name in a NAMELIST statement before using the 
name in an input/output statement. The group name can be declared only once, and it 
cannot be used for any purpose other than a namelist name in the program unit. It 
can appear in READ, WRITE, PRINT, and PUNCH statements in place of the format 
specifier. When a namelist group name is used, the iolist must be omitted from the 
input/output statement. 

A variable or array name can belong to one or more namelist groups. 

End of Control Data Extension 

Namelist Input 

N amelist input is performed by the namelist READ statement. This statement has the 
form: 

READ name 

READ (UNIT=u, FMT=name, IOSTAT=ios, ERR=sl, END=s[) 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

6-62 FORTRAN Version 1 Language Definition Usage Revision H 



Namelist Input 

• An integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

FMT=name 

A namelist group name. 

The characters FMT = can be omitted, in which case the format specifier must be 
the second item in the list of specifiers, and the first item must be the unit 
specifier without the characters UNIT= . 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the input/output operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOSNE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOSNE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION_NAME with the returned condition code. See the SCL 
Language Definition Usage and SCL System Interface manuals for more 
information. 

ERR=sl 

Specifies the label of an executable statement to which control transfers if an error 
condition is encountered during input/output processing. 

Revision H Input/Output 6-63 



l 
Namelist Input 

END=sl 

Specifies the label of an executable statement to which control transfers when an 
end-of-file is encountered during an input operation. 

When a READ statement references a namelist group name, input data in namelist 
format is read from the designated file. If the specified group name is not found before 
an end-of-file, a fatal error occurs. If the file is empty an end-of-file condition results. 
This must be detected by an END= or IOSTAT = specifier or a fatal error will result. 
A subsequent read on the same file without an intervening positioning statement, 
CLOSE/OPEN, or EOF function test results in a fatal error. 

Data read by a namelist READ statement must have the following namelist input 
group format: 

$name item= value, ... , item= value, $END 

name 

N amelist group name. 

item=value 

One of the following: 

v=c 

vc(il :i2)= c 

array(s)=r*c, ... , r*c 

carray(s)(il :i2)= r*c, ... , r*c 

The symbols v, vc, il, i2, c, array, carray, s and r are as follows: 

v 

Variable name. 

vc 

Character variable name. 

il, i2 

Integer constants representing the upper and lower bounds of a character 
substring. 

c 

Constant. 

array 

Array name. 

carray 

Character array name. 

s 

Array subscript in which each subscript expression is an integer constant; (s) is 
optional in the array(s) form, and required in the carray(s)(il:i2) form. The 
number of subscript expressions must be equal to the number of dimensions in 
the array. 

6-64 FORTRAN Version 1 Language Definition Usage Revision H 



Namelist Input 

r 

Unsigned nonzero integer repetition factor; if omitted, * must also be omitted. 

The form r*c is equivalent to r successive appearences of the constant c. 

An & can be substituted for either of the $ characters in the group. Since the input 
operation terminates when the second $ or & is encountered, the characters END can 
be omitted. 

In each record of a namelist group, position one is reserved for printer control and 
must be left blank. Data items following $name (or &name) are read until another $ 
(or &) is encountered. 

Data read by a single namelist READ statement must contain only names listed in the 
referenced namelist group. All items in the namelist group, or any subset of the group, 
can be input. Values are unchanged for items not input. Variables need not be in the 
order in which they appear in the defining NAMELIST statement. 

Spaces must not appear: 

Between $ (or &) and the group D;ame 

Within array names and variable names 

Spaces can be used freely elsewhere. 

You can use more than one record as input data in a namelist group. The first position 
of each input record is ignored. All input records containing data should end with a 
constant followed by a comma; however, the last record can be terminated by a $ (or 
&) without the final comma. Each namelist group must begin in a new record. 
Constants can be preceded by a repetition factor followed by an asterisk. 

Constants can be integer, real, double precision, complex, logical, boolean, or character. 
Each constant must agree with the type of the corresponding input list item as follows: 

• A logical, character, or complex constant must be of the same type as the 
corresponding input list item. A character constant is truncated from the right, or 
extended on the right with blanks, if necessary, to yield a constant of the same 
length as the variable, array element, or substring. 

• An integer, real, or double precision constant can be used for an integer, real, 
double precision, or boolean input list item. The constant is converted to the type of 
the list item. A boolean constant cannot be used for a non-boolean list item. 

Logical constants have the following forms (the lowercase forms are equivalent): 

.TRUE . 

. FALSE. 

A character constant must have delimiting apostrophes. If a character constant occupies 
more than one record, each continuation of the constant must begin in column two; a 
complex constant has the form (cl,c2) where cl and c2 are real constants. A character 
constant must extend to the end of a record preceding a continuation record. A boolean 
constant must be an octal constant, a hexadecimal constant, or a Hollerith constant 
delimited by quotes. 

Revision H Input/Output 6-65 



Namelist Output 

Spaces appearing within noncharacter constants are ignored. The BLANK= specifier in 
an OPEN statement has no effect on namelist. If a constant other than a character 
constant contains no characters other than spaces, a fatal error results. 

The following example illustrates a namelist input group: 

$AGRP Group name 

XVAL=S.O, Real number 

ARR=5*(1.7, 2.4), Five complex numbers 

CHAR='HI THERE', Character string 

$END Group terminator 

Note that although the preceding example uses a separate input line for each variable 
or array definition, multiple definitions can be included on a single line. 

Namelist Output 

The namelist output statements consist of a WRITE statement, a PRINT statement, 
and a PUNCH statement. These statements have the following forms: 

WRITE (UNIT=u, FMT=name , IOSTAT=ios, ERR=sl) 

PRINT name 

PUNCH name 

UNIT=u 

Specifies the FORTRAN unit or internal file to be used. The unit name is derived 
from the unit identifier u, which can be one of the following: 

• An asterisk implying unit INPUT in a READ statement and unit OUTPUT in a 
WRITE statement. The default file for unit INPUT is $INPUT; the default file 
for unit OUTPUT is $OUTPUT. 

• The name of a character variable, array, array element, or substring identifying 
an internal file. 

• b integer or boolean expression having one of the following characteristics: 

INT(u) has a value in the range 0 through 999. The compiler associates 
these numbers with unit names of the form TAPEu. 

BOOL(u) is an ASCII coded name in boolean L format (left-justified with 
binary zero fill). This is the unit name. If this name is of the form TAPEk, 
where k is an integer in the range 0 through 999 with no leading zero, it is 
equivalent to the integer k for the purpose of identifying external units. A 
valid unit name consists of one through seven letters or digits beginning 
with a letter. (Uppercase and lowercase letters are equivalent.) 

The characters UNIT= can be omitted, in which case u must be the first item in 
the list of specifiers. 

6-66 FORTRAN Version 1 Language Definition Usage Revision H 



Namelist Output 

File names default to the unit name unless a different file name has been specified 
using execution command file name substitution, PROGRAM statement 
equivalencing, or an OPEN statement. 

When unit is an integer expression and it is passd to an input/output related 
subroutine or function (such as UNIT, LENGTH, or CONNEC), it must be a 
full-word (8 byte) integer. 

FMT=name 

Specifies a namelist group name. 

IOSTAT=ios 

Specifies an integer variable or array element into which one of the following 
values is returned after the input/output operation is complete: 

< 0 End-of-file encountered 

= 0 Operation completed normally 

> 0 Either a FORTRAN error number in the range 1 through 9999 or another 
product's status condition code in integer form that includes the product's 
identifier encoded with its condition number. 

All runtime errors under NOS/VE are identified by a unique status condition code 
that is an integer formed by combining the ASCII equivalent of the two-character 
product identifier with a condition number. Condition numbers within the range 1 
through 9999 are reserved for Control Data defined errors. 

A FORTRAN error number is a FORTRAN condition code without the encoded 
product identifier 'FL'. Errors are listed by error number and condition name in the 
Diagnostic Messages for NOS/VE manual, which provides descriptions and suggested 
action for the errors. 

To determine the condition name of another product's condition code, use the SCL 
function $CONDITION _NAME with the returned condition code. See the SCL 

ERR=sl 

Specifies the label of an executable statement to which control transfers if an error 
condition is encountered during input/output processing. Language Definition Usage 
and SCL System Interface manuals for more information. 

All variables and arrays and their values in the list associated with the namelist group 
name are output on the file associated with unit u, OUTPUT, or PUNCH. They are 
output in the order of specification in the NAMELIST statement. Output consists of at 
least three records. The first record is a $ in position 2 followed by the group name; 
the last record is a $ in position 2 followed by the characters END. Each group begins 
with triple spacing (a hyphen (-) inserted in the printer control position of each record). 

No data appears in position 1 of any record of a namelist group. The maximum length 

of any output line is the smaller of the PAGE_ WIDTH and MAXIMUM_RECORD_ ='·='=' 

LENGTH attribute values of the file. (These attributes are described in appendix E.) 
Logical constants appear as T or F. Elements of an array are output in the order in 
which they were stored. 

Character constants are written with delimiting apostrophes. Boolean constants are 
written in the form Z"n .. . n", where n is a hexadecimal digit; leading zeros are 
suppressed. 

Revision H lnpuUOutput 6-67 



Arrays in N amelist 

Records output by a namelist WRITE statement can be read later in the same program 
by a namelist READ statement specifying the same group name. 

Following is an example of namelist input and output: 

NAMELIST /INVAL/QUANT, COST 
NAMELIST /OUTVAL/TOTAL, QUANT, COST 
READ ( •, INVAL) 
TOTAL= QUANT• COST• 1.3 
PRINT OUTVAL 

Input Record: 

6$inval quant=1.5, cost=3.02 $ 

Printed Output: 

$0UTVAL 
TOTAL = .58889999999999E+01, 
QUANT = . 15E+01, 
COST = .302E+01, 
$END 

The statement sequence defines two namelist groups, reads the first group, performs a 
simple calculation, and prints the second group. 

Arrays in Namelist 

Values can be read into an array by specifying, in the namelist input record, an array 
element followed by the values to be read, as follows: 

array-element= constant, ... , constant 

When data is input in this form, the constants are stored consecutively beginning with 
the location given by the array element. The number of constants can be less than or 
equal to, but must not exceed, the remaining number of elements in the array. For 
example: 

INTEGER BAT(5) 
NAMELIST /HAT/BAT, DOT 
READ ( •, HAT) 

If the preceding statements read the following input record: 

6$HAT BAT=2,3,3*4,DOT=1.05 $END 

the value of DOT becomes 1.05 and the array BAT is as follows: 

BAT (1) 2 
BAT (2) 3 
BAT (3) 4 
BAT (4) 4 
BAT (5) 4 

6-68 FORTRAN Version 1 Language Definition Usage Revision H 



Buffer Input/Output 

Control Data Extension 

Buffer Input/Output 

NOTE 

This feature is included for compatibility with other versions of FORTRAN, and its use 
is not recommended. For guidelines, see appendix C. 

Buffer input/output transmits data between memory and an external storage device 
without conversion. Buffer input/output differs from unformatted reading and writing in 
that READ and WRITE are associated with an input/output list. Buffer statements are 
not associated with a· list; data is transmitted to or from a block of storage. Also, 
unlike unformatted READ operations, an attempt to buffer in more data than the 
record contains is not an error. 

ENDFILE, REWIND, and BACKSPACE are valid for files processed by buffer 
statements. However, a file processed by buffer statements cannot be processed in the 
same program by direct access input/output statements, or by the mass storage 
subroutines. 

Each buffer statement defines the location of the first and last words of the block of 
memory to or from which data is to be transmitted. The address of the last word must 
be greater than or equal to the address of the first word. The relative locations of the 
first and last word are defined only if they are the same variable or are in the same 
array, common block, or equivalence class. If the first and last words do not satisfy one 
of these relationships, their relative position is undefined and a fatal error might result 
at execution time. 

If the first word and the last word are· in the same common block but not in the same 
array or equivalence class, the operation will be successful but optimization might be 
degraded. 

After execution of a buffer statement has been initiated, and before referencing the 
same file or any of the contents of the block of memory to. or from which data is 
transferred, the status of the buffer operation must be checked by a reference to the 
UNIT function. This status check ensures that the data has actually been transferred 
and the buffer parameters for the file have been restored. If a second input/output 
operation is attempted on the same file without an intervening reference to UNIT, an 
error results. 

BUFFER IN 

The BUFFER IN statement has the form: 

BUFFER IN (u, p) (a, b) 

u 

Unit identifier. See the description of the unit identifier under Input/Output 
Statement Specifiers. 

p 

Ii 

I This parameter is provided for compatibility with previous versions of FORTRAN; it ·' 
must be present and type INTEGER, but it is disregarded. I 

Revision H Input/Output 8-89 



BUFFER OUT 

a 

First variable or array element of the block of memory to which data is to be 
transmitted; cannot be type character. Integer values must be of size integer*8. 

b 

Last variable or array element of the block of memory to which data is to be 
transmitted;. cannot be type character. Integer values must be of size integer*8. 

BUFFER IN transfers one record from the file indicated by u to the block of memory 
beginning at a and ending at b. If the record is shorter than the block of memory, 
excess locations are not changed. If the record is longer than the block of memory, 
excess words in the record are ignored, except when the record type is fixed 
(RECORD_ TYPE= FIXED on the SET_FILE_ATTRIBUTE command), in which case an 
error occurs. 

The UNIT function can be used to test for an end-of-file condition after a BUFFER IN 
operation. After UNIT has been referenced, the number of words transferred to memory 
can be obtained by a call to the function LENGTH. If records do not terminate on a 
word boundary (in a file not written by BUFFER OUT), the exact length of the record I ~ ~~ed by LENGTHX in terms of words and excess bits or by LENGTHB in terms 

Example: 

DIMENSION CALC(51) 
BUFFER IN (1,P) (CALC(1), CALC(51)) 
IF (UNIT(1) .GE. 0) GO TO 20 

Data is transferred from logical unit 1 into storage beginning at the first word of the 
array, CALC(l), and extending through CALC(51). An error or endfile condition will 
transfer control to statement 20. 

BUFFER OUT 

The BUFFER OUT statement has the form: 

BUFFER OUT (u, p) (a, b) 

u 

Unit identifier. See the description of the unit identifier under Input/Output 
Statement Specifiers. 

p 

This parameter is provided for coµipatibility with previous versions of FORTRAN; it 
must be present and type integer, but it is disregarded. 

a 

First variable or array element of the block of memory from which data is to be 
transmitted; cannot be type character. Integer values must be full-word (8 byte) 
integers. 

6-70 FORTRAN Version 1 Language Definition Usage Revision H 



Mass Storage Input/Output 

b 

Last variable or array element of the block of memory from which data is to be 
transmitted; cannot be type character. Integer values must be full-word (8 byte) 
integers. 

BUFFER OUT writes one record by transferring the contents of the block of memory 
beginning at a and ending at b to the file indicated by u. The length of the record is 
given by: 

lwa - fwa + 1 

where lwa is the last word address of the block of memory and fwa is the first word 
address. For fixed-length records (RECORD_ TYPE=FIXED attribute), the record length 
is the length (number of bytes) specified by the MAXIMUM_RECORD_LENGTH 
parameter on the SET_FILE_ATTRIBUTE command. If the specified length is greater 
than (lwa - fwa + 1) * 8, an error occurs. 

Following a BUFFER OUT, the UNIT function must be referenced before another 
reference is made to the file or to the contents of the block of memory. 

End of Control Data Extension 

Control Data Extension 

Mass Storage Input/Output 

Mass storage input/output (MSIO) subroutines allow you to create, access, and modify 
files on a random basis without regard for their physical positioning. Each record in 
the file can be read or written at random without logically affecting the remaining file 
contents. The length and content of each record are determined by you. A random file 
can reside on any mass storage device. 

A file processed by mass storage subroutines should not be processed by any other 
form of input/output. 

I 

All integer arguments to the mass storage routines must be full-word (8 byte) integers. ~~~ 

Random Files 

A randomly accessible file capability is provided by the mass storage input/output 
subroutines. Random files offer similar advantages to direct access files. In a random 
file, as in a direct access file, any record can be read, written, or rewritten directly, 
because the file resides on a random access mass storage device that can be positioned 
to any record of a file. 

NOTE 

Direct access READ and WRITE, mass storage 1/0 routines, and the keyed-file 
interface subprograms both offer the advantages of random access. The direct access 
capability is ANSI standard, but allows only fixed length records; indexed sequential 
and mass storage input/output allow both fixed and variable length records. 

Revision H Input/Output 6-71 



Random Files 

To permit random accessing, each record in a random file is uniquely and permanently 
identified by a record key. A key is a value that you specify as a parameter on the 
call to read or write a record. When a record is first written, the key in the call 
becomes the permanent identifier for that record. The record can be retrieved later by 
a read call that specifies the same key, and it can be updated by a write call with the 
same key. 

When a random file is in active use, the record key information is kept in an array. 
You are responsible for allocating the array space by a DIMENSION, type, or similar 
array declaration statement, but you must not attempt to manipulate the array 

:

1.=1:1 contents. The array should be noncharacter. lntegerarrays must be full-word integer 
arrays, that is, typed as INTEGER*8. The array becomes the directory, or index, to the 
file contents. In addition to the record key information, it contains the word address 
and length of each record in the file. The index is the logical link that enables the 
mass storage subroutines to associate a user call key with the location of the required 
record. 

The index is maintained automatically by the mass storage subroutines. You must not 
alter the contents of the array containing the index in any manner, because to do so 
might result in destruction of the file contents. Before using the array as a subindex, 
you must set the array elements to zero and, if an existing file is being reopened and 
manipulated, read the subindex into the array. However, individual index entries 
should not be altered.) 

In response to a call to open the file, the assigned index array is automatically cleared. 
The index array should be noncharacter. If an existing file is being reopened, the mass 
storage subroutines locate the master index in mass storage and read it into this 
array. Subsequent file manipulations make new index entries or update current entries. 
When the file is closed, the master index is written from the array to mass storage. 
When the file is reopened by the same job or another job, the index is again read into 
the index array provided, so that file manipulation can continue. 

Index Key Types 

There are two types of index keys: name and number. A name key can be specified as 
any nonzero boolean or full-word (8 byte) integer expression. A number key must be 
expressed as a full-word (8 byte) integer expression with a value greater than 0 and 
less than or equal to the length of the index in words, minus 1 word. You select the 
type of key by the t parameter of the OPENMS call. The key type selection is 
permanent. There is no way to change the key type, because of differences in the 
internal index structure. If you attempt to reopen an existing file with an incorrect 
index type parameter, a fatal error occurs. (This does not apply to subindexes chosen 
by STINDX calls; it is your responsibility to ensure correct index type specification in 
a STINDX call.) In addition, key types cannot be mixed within an index. Violation of 
this restriction might result in destruction of a file. 

The choice between name and number keys is left entirely to you. The nature of the 
application may clearly dictate one type or the other. However, where possible, the 
number key type is preferable, because the program will execute faster and require 
less storage. Faster execution occurs because it is not necessary for· the 1/0 routines to 
search the index for a matching key entry (as is necessary when a name key is used). 
Space is saved because of the smaller index array length requirement. 

6-72 FORTRAN Version 1 Language Definition Usage Revision H 



Random Files 

Master Index 

The master index type for a given file is selected by the t parameter in the OPENMS 
call when the index is created. The type cannot be changed after the file is created; 
attempts to do so by reopening the file with the opposite type index are treated as 
fatal errors. 

Subindex 

The subindex type can be specified independently for each subindex. A different 
subindex name/number type can be specified by including the t parameter in the 
STINDX call. If t is omitted, the index type remains the same as the current index. 
Intervening calls which omit the t parameter do not change the most recent explicit 
type specification. The type remains in effect until changed by another STINDX call. 

STINDX cannot change the type of an index that already exists on a file. You must 
ensure that the t parameter in a call to an existing index agrees with the type of the 
index in the file. Correct subindex type specification is your responsibility; no error 
message is issued for an incorrect index type specification. 

Multilevel File Indexing 

When a file is opened by an OPENMS call, the array selected as the index area is 
cleared. If the call references an existing file, the file index is located and read into 
the array. This initializes the master index. 

You can create additional indexes (subindexes) by allocating additional index array 
areas, preparing the areas for use as described below, and calling the STINDX 
subroutine to indicate to the internal routines the location, length and type of the 
subindex array. This process can be chained as many times as required. (Each active 
subindex requires a separate index array area.) The mass storage routines use the 
subindex just as they use the master index; no distinction is made. 

A separate array space must be declared for each subindex that will be in active use. 
Inactive subindexes can be stored in the random file as additional data records. 

The subindex is read from and written to the file by the standard READMS and 
WRITMS calls, in the same manner as any other data record. Although the master 
index array area is cleared by OPENMS when the file is opened, STINDX does not 
clear the subindex array area; therefore, you should clear the array to zeroes before 
calling STINDX. If an existing file is being manipulated and the subindex already 
exists on the file, you must read the subindex from the file into the subindex array by 
a call to READMS before STINDX is called. The STINDX call then directs the mass 
storage routines to use this subindex as the current index. The first WRITMS to an 
existing file using a subindex must be preceded by a call to STINDX to inform the 
mass storage routine where to place the index control word entry before the write 
takes place. 

If you wish to retain the subindex, you must write it to the file after the current index 
designation has been changed back to the master index, or to a higher level subindex, 
by a call to STINDX. 

Revision H Input/Output 6-73 



OPENMS 

OPENMS 

The OPENMS call opens a mass storage file and informs the system that it is a 
random file. This call has the form: 

CALL OPENMS (u, ix, len, t) 

u 

Unit identifier. 

ix 

Array to contain the master index. 

len 

Integer expression specifying the length (in words) of the master index. 

For a number index: 

len ::i:: (number of entries) + 1 

For a name index: 

len ::i:: 2*(number of entries) + 1 

t 

Integer expression specifying index type; can have one of the following values: 

0 File has a number master index. 

1 File has a name master index. 

If a file having the name derived from u does not already exist, a new file is created. 

The array ix specified in the call is automatically clearerl to zeros. If an existing file is 
being reopened, the master index is read from mass storage into the index array. 

Example: 

DIMENSION A(11) 
CALL OPENMS (5, A, 11, 0) 

These statements open a random file named TAPE5 using an 11-word (10-entry) master 
index of the number type. If the file already exists, the master index is read into 
memory starting at location A. 

WRITMS 

The WRITMS call transmits data from memory to a random file. This call has the 
form: 

CALL WRITMS (u, arr, n, k, r, s) 

u 

Unit identifier. 

arr 

Name of array from which data is to be written. 

6-74 FORTRAN Version 1 Language Definition Usage Revision H 



READ MS 

n 

Integer expression specifying the number of consecutive words to be written. 

k 

Record key. For number index, k can be any arithmetic expression whose value is: 

1 ~ k ~ len-1 

where len is the length of the master index. (See OPENMS call.) 

For name index, k can be any character, boolean or integer expression. If k is an 
integer expression, the value BOOL(k) is used. 

r 

Rewrite specifier; integer expression having one of the following values: 

-1 Rewrite in place if new record length does not exceed old record length; 
otherwise, write at end-of-data. 

0 No rewrite; write at end-of-data (default value). 

1 Unconditional rewrite in place. A fatal error occurs if new record length 
exceeds .old record length. 

s 

Subindex flag specifier; integer expression having one of the following values: 

0 Do not write subindex marker flag in index control word (default value). 

1 Write subindex marker flag in index control word for this record. 

The end-of-data (for r = -1 and r = O) is defined to be immediately after the end of 
the data record which is closest to end-of-information. A random file record can be 
written in place, in which case it replaces an existing record, or it can be written at 
end-of-data. 

The r parameter can be omitted if the s parameter is also omitted. The s parameter 
marks a subindex record so that it can be distinguished from a data record. 

Example: 

CALL WRITMS (3, DATA, 25, 6, 1) 

This statement unconditionally rewrites in place a 25-word record, having an index 
number key of 6, from array DATA to file TAPE3. The default value is taken for the s 
parameter. 

READ MS 

The READMS call transmits data from the specified random file to memory. This 
statement has the form: 

CALL READMS (u, arr, n, k) 

u 

Unit identifier. 

Revision H Input/Output 6-75 



CLOSMS 

arr 

Name of array into which record is to be read. 

n 

Integer expression specifying the number of words to be read. If n is less than the 
record length, n words are read and no message is issued. 

k 

Record key specifying the record to be read. Specified key must match one of the 
keys defined in a WRITMS call. 

Example: 

CALL READMS (3, MORDAT, 25, 2) 

This statement reads the first 25 words of record 2 from unit 3 (TAPES) into memory 
starting at the first word of the array MORDAT. 

CLOSMS 

The CLOSMS call writes the master index from memory to the file and closes the file. 
This call has the form: 

CALL CLOSMS (u) 

u 

Unit identifier 

If CLOSMS is not explicitly called, an automatic CLOSMS occurs upon program 
termination for each random file opened by the program. However, CLOSMS enables 
you to close a file before the end of a run in order to associate a different file with the 
same unit. 
'• 
Since new data records can overwrite the old master index, a file that has had new 
data records added is invalid unless the file is closed. 

Example: 

CALL CLOSMS (L 11 AFILE 11
) 

This statement closes the file AFILE. 

STINDX 

STINDX selects an array, other than the one specified in the OPENMS call, to be used 
as the current index to the file. This call has the form: 

CALL STINDX (u, ixarr, len, t) 

u 

Unit identifier. 

ix arr 

N oncharacter array to contain the subindex. 

6-76 FORTRAN Version 1 Language Definition Usage Revision H 



Mass Storage Input/Output Examples 

len 

Integer expression specifying the length, in words, of the subindex. 

For a number index: 

len > number of entries + 1 

For a name index: 

len > 2*(number of entries) + 1 

t 

Integer expression specifying the type of index. Must have one of the following 
values: 

0 Number index. 

1 Name index. 

This argument can be omitted, in which case the index has the same type as the 
previously-specified index. 

The call permits a file to be manipulated with more than one index. For example, 
when you wish to use a subindex instead of the master index, STINDX is called to 
select the subindex as the current index. The STINDX call does not cause the subindex 
to be read or written; that task must be performed by explicit READMS or WRITMS 
calls. STINDX merely updates the internal description of the current index to the file. 

Example: 

DIMENSION SUBIX (10) 
CALL STINDX (3, SUBIX, 10, 0) 

These statements select a new index, SUBIX, for file TAPE3 with an index length of 
10 (up to nine entries). The records referenced via this subindex use number keys. 

Example: 

DIMENSION MASTER (5) 
CALL STINDX (2, MASTER, 5) 

These statements select a new index, MASTER, for file TAPE2 with an index length of 
5 and index type unchanged from the last index used. 

Mass Storage Input/Output Examples 

Following are two programs that illustrate random file operations. Program MSl 
creates a random file with number index and writes 10 records to the file. Program 
MS2 performs the following modifications to the file created by program MSl: 

• Modifies record 8 and rewrites it at end-of-data 

• Modifies record 6 and rewrites it in place 

• Replaces record 2 with a longer record 

• Adds two new records to the end of the file 

Revision H Input/Output 6-77 



Mass Storage Input/Output Examples 

PROGRAM MS1 
c 

c 

DIMENSION INDEX(11), DATA(25) 
CALL OPENMS (3, INDEX, 11, 0) 
DO 50 NKEY=1, 10 

(Generate record 1n array DATA) 

CALL WRITMS (3, DATA, 25, NKEY) 
50 CONTINUE 

END 

PROGRAM MS2 

C NOTE LARGER INDEX ARRAY TO ACCOMMODATE TWO NEW RECORDS. 
c 

c 

DIMENSION INDEX(13), DATA(25), MORDAT(40) 
CALL OPENMS (3, INDEX, 13, 0) 

C READ RECORD 8 FROM FILE TAPE3. 
CALL READMS (3, DATA, 25, 8) 

(Modify array DATA) 

C WRITE'MODIFIED ARRAY AS RECORD 8 AT END-OF-INFORMATION. 
CALL WRITMS (3, DATA, 25, 8) 

c 
C READ RECORD 6 

CALL READMS (3, DATA, 25, 6) 

(Modify array DATA) 

C REWRITE MODIFIED ARRAY IN PLACE AS RECORD 6 
CALL WRITMS (3, DATA, 25, 6,-1) 

c 
C READ RECORD 2 INTO LONGER ARRAY MORDAT 

CALL READMS (3, MORDAT, 25, 2) 

(Add 15 new words to array MORDAT) 

C SPECIFY IN-PLACE REWRITE OF RECORD 2. 
C HOWEVER, BECAUSE NEW RECORD IS LONGER THAN 
C OLD RECORD, THE NEW RECORD IS WRITTEN AT 
C END-OF-DATA. 

CALL WRITMS (3, MORDAT, 40, 2,-1) 
END 

Figure 6-1. Program MSl 

6-78 FORTRAN Version 1 Language Definition Usage Revision H 



Mass Storage Input/Output Examples 

The following program creates a random file with a name index. The key names are 
RECORD!, RECORD2,. RECORDS, and RECORD4. 

c 

PROGRAM MS3 
DIMENSION INDEX(9), A(15, 4) 
CHARACTER*? REC1, REC2 
DATA REC1/'RECORD1'/, REC2/'RECORD2'/ 

CALL OPENMS (7, INDEX, 9, 1) 

(Generate data in array A) 

C WRITE 4 RECORDS TO FILE TAPE7. THE KEY 
C NAMES ARE RECORD1, RECORD2, RECORD3, AND RECORD4. 

c 

CALL WRITMS (7, A(1,1), 15, REC1) 
CALL WRITMS (7, A(1,2), 15, REC2) 
CALL WRITMS (7, A(1,3), 15, 'RECORD3') 
CALL WRITMS (7, A(1,4), 15, 'RECORD4') 

C CLOSE THE FILE 
CALL CLOSMS (7) 
END 

Figure 6-2. Program MS3 

Finally, the following example creates a subindexed file with a number index. Program 
MS4 creates four subindexes and writes nine data records for each subindex, for a total 
of 36 records. After each set of nine records has been written, the program writes the 
associated subindex to the file. Then, one record indexed under the second subindex is 
read. 

Revision H Input/Output 6-79 



Mass Storage InpuUOutput Examples 

c 

c 

PROGRAM MS4 
DIMENSION MASTER(5), SUBIX(10), REC(50) 

CALL OPENMS (2, MASTER, 5, 0) 
DO 10 MAJOR=1, 4 

C CLEAR SUBINDEX AREA 
DO 20 I=1, 10 
SUBIX(I) = 0 

20 CONTINUE 
c 
C MAKE SUBIX THE CURRENT INDEX 

CALL STINDX (2, SUBIX, 10) 
c 
C GENERATE AND WRITE 9 RECORDS 

DO 30 MINOR=1, 9 

c 

CALL WRITMS (2, REC, 50, MINOR) 
30 CONTINUE 

C CHANGE CURRENT INDEX BACK TO MASTER INDEX 
CALL STINDX (2, MASTER, 5) 

c 
C WRITE THE SUBINDEX TO THE FILE. 

c 

CALL WRITMS (2, SUBIX, 10, MAJ, 0, 1) 
10 CONTINUE 

C READ RECORD 5 INDEXED UNDER THE 2ND SUBINDEX. 
CALL READMS (2, SUBIX, 10, 2) 
CALL STINDX (2, SUBIX, 10) 
CALL READMS (2, REC, 50, 5) 

(Manipulate the selected record as desired) 

END 

Figure 6-3. Program MS4 

End of Control Data Extension 

6-80 FORTRAN Version 1 Language Definition Usage Revision H 



Direct Access Files 

Direct Access Files 

Direct access file manipulations differ from conventional sequential file manipulations. 
In a sequential file, records are stored in the order in which they are written and can 
normally be read back only in the same order. A record can be retrieved from a 
sequential file only by sequentially reading records until the desired record is read. 
Sequential operations can be slow and inconvenient in applications where the logical 
order of writing and of retrieving records differs. In addition, a sequential read 
requires a continuous awareness of the current file position and the position of the 
required record. To circumvent these limitations, the FORTRAN READ and WRITE 
statements have a direct access file capability. 

In a direct access file, any record can be read, written, or rewritten directly, without 
concern for the position or structure of the file. This is possible because the file resides 
on a tandom access mass storage device that can be positioned to any portion of a file 
without the need for a sequential search. Thus, the concept of file position does not 
apply to a direct access file. The notion of rewinding a direct access file is, for 
instance, without meaning. 

You can use a direct access file for formatted or unformatted input/output. However, 
you cannot use list directed or name!ist input/output with direct access files. 

You cannot use internal files for direct access input/output. 

Records in a direct access file are identified by a record number. The record number is 
a nonzero positive decimal integer that is assigned when the record is written. Once a 
record is written with a record number, the record can always be accessed by 
referencing the same number. The order of records on a direct access file is the order 
of their record numbers. Records can be written, rewritten, or read by specifying the 
record number in a READ or WRITE statement. Records can be read or written in any 
order; they need not be referenced in the order of their record numbers. The number of 
the record is specified with the REC= specifier in a READ or WRITE statement. 

Unlike other methods of random access, direct access files do not use a record key 
index. The disk address of the records in a direct access file are based on the product 
of the record number and record length. Thus, an arbitrarily large record number could 
cause a file to be excessively large. In general, the record ordinal should be used as 
the record number (first record numbered 1, second record numbered 2, and so forth.) 

If the length of the iolist in a direct access formatted WRITE statement is less than 
the record length of the direct access file, the unused portion of the record is space 
filled. (You can select a different padding character through system commands.) A 
direct access WRITE statement must not attempt to write a record longer than the 
record length. 

Direct Access File Creation 

To create a direct access, file you must specify an OPEN statement with the 
ACCESS= 'DIRECT' option. You must also specify the record length with the RECL = 
specifier in the OPEN statement. For example, the following statement opens an 
unformatted file named DAFL for direct access: 

OPEN (2. FILE='DAFL', ACCESS='DIRECT', RECL=120) 

The file is associated with unit 2 and has a record length of 120 words. 

Revision H Input/Output 6-81 



I 

Direct Accec:i File Examples 

Direct Access File Examples 

The following example writes variables A, B, and C to record number 6, and variables 
I, J, and X to record number 1 of the direct access file associated with unit 2: 

WRITE (2, '(3E10.4)', REC=6) A, B, C 
WRITE (2, '(2I4, G20.10)', REC=1) I, J, X 

The following example reads records 10, 8, 6, 4, and 2 from direct access file DARG: 

OPEN (UNIT=2, FILE='DARG', ACCESS='DIRECT', FORM='FORMATTED', RECL=72) 
DO 14 I = 10, 2, -2 

99 
READ (2, 99, REC=I, ERR=20) (A(J), J=1, 6) 
FORMAT (6E12.6) 

14 CONTINUE 

Records 10, 8, 6, 4, and 2 are read from the direct access file DARG. 

Direct Access Record Length Calculation 

The record length for a formatted direct access file is specified in characters. The 
record length for an unformatted direct access file is specified in words. If the iolist for 
an unformatted WRITE contains character data, you still specify the record length to 
be written in words. You can determine the record length by the following rules: 

1. Count each noncharacter item as eight characters except for double precision and 
complex items, which count as 16 characters. 

2. Calculate the total number of characters in all the character items. 

3. Add the lengths calculated in steps 1 and 2 to determine the record length in 
characters; add 7, divide the result by 8, and truncate the fractional part to 
determine the number of words in the record. 

Example: 

CHARACTER A*7, B•9, C*10, D*20, E*15, F*12 
INTEGER IA, IB, IC, ID(5) 
OPEN (5, ACCESS='DIRECT', FORM='UNFORMATTED', RECL=17) 
WRITE (5, REC=1) A, B, IA, C, IB, E, D, ID, F 

The length of the output record is calculated as follows: 

Length of noncharacter items: 

length of IA = 8 characters 
length of IB = 8 characters 
length of ID = 40 characters 

Total length of noncharacter items = 56 characters. 

Length of character items: 

length of A = 7 characters 
length of B = 9 characters 
length of C = 10 characters 
length of D = 20 characters 
length of E = 15 characters 

6-82 FORTRAN Version 1 Language Definition Usage Revision H 



Internal Input/Output 

length of F = 12 characters 

Total length of character items is 73 characters. 

Record length in words = (56 + 73 + 7)/8 = 17 words. 

Internal In~ut/Output 
Internal input/output is performed on internal files. Internal files provide a means of 
reformatting and transferring data from one area of memory to another. Input and 
output on internal files are performed by formatted READ and WRITE statements and 
the ENCODE and DECODE statements. However, no input/output devices are involved. 
Internal files allow data to be reformatted without the necessity of physically writing it 
and rereading it under a different format specification. Internal files also allow numeric 
conversion to or from character data type. The two types of internal files are standard 
internal files and extended internal files. Standard internal files are preferred over 
extended internal files because the former are ANSI standard and are not dependent on 
the length of a computer word. 

Standard Internal Files 

A standard internal file can be any character variable, array, or substring. The 
variable, array, or substring is considered an internal file when it is referenced as an 
internal file in a READ or WRITE statement. If the file is a variable or substring, it 
consists of a single record whose length is the length of the variable or substring. If 
the file is an array, each array element constitutes a single record. For example, the 
declarative statement 

CHARACTER*20 A(100) 

defines a character array containing 100 20-character elements. This array can be 
referenced as an internal file named A, containing 100 records of 20 characters each. 

Records of an internal file are defined by storing data into the records, either with an 
output statement or an assignment statement. 

The following restrictions apply to internal files: 

• You cannot declare internal files in PROGRAM or OPEN statements. 

• You can use only formatted input/output; unformatted, list directed, namelist, mass 
storage, and buffer input/output are not valid for internal files. 

• You cannot use file positioning and file status statements cannot be used with 
internal files. 

Internal WRITE 

Data is written to standard internal files using a formatted WRITE statement in which 
the internal unit specifier u is a character variable, array, array element or substring 
name. The WRITE statement transmits data from the variables specified in iolist to 
consecutive locations starting with the leftmost character of the location specified by u; 
data is converted from internal to character format according to the format 
specification. The number of characters transmitted is determined by the record length. 

The following examples illustrate internal files used for output. 

Revision H Input/Output 6·83 



Standard Internal Files 

Example: 

INTEGER A, B, C, D 
CHARACTER*4 AR(4) 

A = 123 
B -27 
c = 104 
D = 1234 
WRITE (AR, '(I4)') A, B, C, D 

In Array AR after the WRITE: 

AR(l): '123' 
AR(2): '-27' 
AR(3): '104' 
AR(4): '1234' 

The WRITE statement defines an internal file, AR, and writes four records to the file. 
(The format specification I3 is repeated for each variable.) 

Example: 

CHARACTER*8 FMT 
DATA FMT /'(f1!1F8.2)'/ 

WRITE (FMT(2:3), '(I2)') N 
READ ( 1, FMT) (A(I), I=1, N) 

This example builds a format specification at execution time. The programmer wishes 
to read an N-element array according to format FS.2, and to specify the repeat count 
at execution time. The internal WRITE statement writes the variable N to the second 
and third positions of the string (.6..6.FS.2). Thus, when READ is executed, the format 
specification will have the appropriate repeat count. 

Internal READ 

Data is read from a standard internal file using a formatted READ statement in which 
the internal unit identifier is a character variable, array, array element or substring. 
Data is transferred from consecutive locations starting at the first character position of 
u, converted under format specification, and stored in the variables specified in iolist. 

Example: 

CHARACTER*3 ZT(4), A, B, C 

READ (ZT, '(A3)') A, B, C 

Contents of ZT: 

CAT IDOG IRUN ICAR 

Read Into A, B, and C: 

A: CAT 
B: DOG 

6-84 FORTRAN Version 1 Language Definition Usage Revision H 



Extended Internal Files 

C: RUN 

The READ statement reads three records from internal file ZT and stores data into 
variables A, B, and C. (The format specification A3 is repeated for each variable.) 

Example: 

CHARACTER CN*12 

READ (CN, '(413)') I, J, K, L 

Contents of CN: 

Read Into I, J, K, and L (internal integer format): 

I: 2 
J: 56 
K: 4 
L: 8 

The READ statement reads the single record of internal file CN, converts the data to 
internal integer format, and stores the converted data into variables ·I, J, K, and L. 

Control Data Extension :tttttt:tttJttJttttilttttttlltll 

Extended Internal Files 

NOTE 

This feature is included for compatibility with other versions of FORTRAN; its use is 
not recommended. For guidelines, see appendix C. 

An extended internal file can be any noncharacter variable, array, or array element. A 
record of an extended internal file is defined by writing the record. The record length 
is measured in characters. Since one word contains eight characters, the record length 
of an extended internal file is given by: 

S*a 

where a is the number of words in the record. 

ENCODE 

The ENCODE statement is the extended internal file output statement. This statement 
has the form: 

ENCODE (c, fn, u) iolist 

c 

An unsigned integer constantor variable having a value greater than zero; c 
specifies the number of characters to be transferred per record. The record length is 
calculated from c. 

Revision H Input/Output 6-85 



Extended Internal Files 

f n 

The label of a FORMAT statement, or a character expression whose value is a 
format specification; fn must not specify namelist or list directed formatting. 

u 

Identifies the extended internal file in which the record is to be encoded; u is a 
noncharacter variable, array element, or array name. 

iolist 

A list of noncharacter variables, arrays, or array elements to be transmitted to the 
extended internal file identified by u. 

ENCODE is similar to an internal file formatted WRITE. Values are transferred to the 
receiving storage area from the variables specified in iolist under the specified format. 

~ll For integer type data, only full-word (8 byte) integers are allowed. The first record 
starts with the leftmost character of the location specified by u. The length in 
characters of each record is given by: 

INT((c + 7)/8)*8 

where INT(a) is the largest integer less than or equal to a. If c is less than the record 
length, the remainder of the word is blank filled. 

The internal file must be large enough to contain the total number of characters 
transmitted by the ENCODE statement. For example, if 56 characters are generated by 
the ENCODE statement, the array starting at location v must be at least 56 characters 
(seven words) in length. If A is the receiving array the declaration BOOLEAN A(7) is 
sufficient. If 27 characters are generated, the declaration BOOLEAN A(4) is sufficient. 

If the list and the format specification transmit more than the number of characters 
specified per record, an execution error message is printed. If the number of characters 
transmitted is less than the record length, remaining characters in the record are 
blank filled. 

You should not encode or decode an area in memory upon itself, as the results are 
unpredictable. 

DECODE 

The DECODE statement is the extended internal file input statement. This statement 
has the form: 

DECODE (c, fn, u) iolist 

c 

An unsigned integer constant or variable having a value greater than zero; c 
specifies the number of characters to be transferred per record. The record length is 
calculated from c. 

f n 

The label of a FORMAT statement, or a character expression whose value is a 
format specification; fn must not specify namelist or list directed formatting. 

u 

Identifies the extended internal file in which the record is to be encoded; u is a 
noncharacter variable, array element, or array name. 

6-86 FORTRAN Version 1 Language Definition Usage Revision H 



Extended Internal Files 

iolist 

A list of noncharacter variables, arrays, or array elements to receive data from the 
extended internal file identified by u. 

DECODE performs a memory-to-memory transfer. of data similar to an internal file 
formatted READ. Starting at location u, ASCII characters in memory are converted 
according to the specified format and stored in the variables specified in iolist. For =l:··!=I 

integer type data, only full-word (8 byte) integers are allowed. 

DECODE processing of an illegal character for a given conversion specification 
produces a fatal error. 

DECODE can be used to pack the partial contents of two words into one. Assume that 
two variables, LOCl and LOC2, contain the following character values: 

LOCl 

LOC2 

SSSSAAAA 

AAAADDDD 

The following statements store the string 'SSSSDDDD' into the variable NAME: 

BOOLEAN LOC 1 , LOC2, TEMP, NAME 

DECODE (8, 1, LOC2) TEMP 
FORMAT (4X, A4) 
ENCODE (8, 2, NAME) LOC1, TEMP 

2 FORMAT (2A4) 

The DECODE statement places the last four display code characters of LOC2 into the 
first four characters of TEMP. The ENCODE statement packs the first four characters 
of LOCl and TEMP into NAME. 

End of Control Data Extension 

Revision H InpuUOutput 6-87 



Segment Access Files (CDC Extension) 

Control Data Extension 

Segment Access Files (CDC Extension) 

The segment access file capability provides an efficient means of sharing large, 
randomly accessed blocks of data among applications. A named common block is 
associated (mapped) to a segment access file. You access the file directly through the 
common block's variables and arrays using assignment statements. The variables and 
arrays in the common block represent locations within the file. 

You associate a common block with a segment access file by first specifying the 
common block name in a C$ SEGFILE directive (see appendix D) and then using the 
OPEN statement specifying the common block name as the UNIT specifier. When using 
the OPEN statement to associate a file with a common block, the UNIT and FILE 
specifiers are both required. 

The UNIT specifier must specify the name of the common block, including slashes. The 
FILE specifier must specify the name of the segment access file you wish to associate 
with the common block. The IOSTAT, ERR and STATUS specifiers are optional. All 
other specifiers for the OPEN statement are not valid with segment access files. 

You may not reference a segment access file until after the OPEN statement has 
opened and associated the file with a common block. Therefore, you should initialize 
values in segment access files after the OPEN statement, rather than in a DATA 
statement, since the OPEN statement will change the values when it is executed. 

Segment access files that are associated with a common block are closed using the 
CLOSE statement. The SIZE parameter is an optional specifier on the CLOSE 
statement that can be used to specify the length of the segment access file in bytes. 

If a· segment access file is specified on an INQUIRE statement, then only the IOSTAT, 
ERR, EXIST, OPENED, NAMED and NAME specifiers may be used. The NAME 
specifier will return the common block name and the NAMED specifier will always be 
true. 

To create and open a segment access file, specify the common block name as the UNIT 
specifier and the segment access file name as the FILE specifier (the FILE specifier is 
required for segment access files). For example: 

CHARACTER CH*SOOO 
COMMON /CHBLK/ CH 

C$ SEGFILE (/CHBLK/) 
OPEN (UNIT=/CHBLK/, FILE='SEG_FILE_1', ERR=10, IOSTAT=IVAR) 
CH(1:1)='A' 

This creates and opens file SEG_FILE_ l and associates the file with common block 
CHBLK. The assignment statement will set the first byte of the file to the value of the 
character A. 

6-88 FORTRAN Version 1 Language Definition Usage Revision H 



Segment Access Files (CDC Extension) 

For Better Performance 

Segment access input/output is faster than other types of input/output. Your program f:i 

may automatically use segment access files on a file that is not shared and is ~~~ 
~:~:~~o~~ed or attached with default values. See Fast 1/0 in appendix E for more I 

End of Control Data Extension 

Revision H Input/Output 6-89 



I 

Input/Output-Related Statements and Routines 

Input/Output-Related Statements and Routines 

This section describes the statements used to position files, to retl;lrn status information 
about files and input/output operations, and to perform other tasks related to 
input/output. These statements are not intended for use with files processed by the file 
interface subprograms. 

File Status Statements 

FORTRAN provides three statements that can be used to establish, examine, or alter 
certain attributes of files used for input or output. These are the OPEN, INQUIRE, 
and CLOSE statements. 

OPEN 

You can use the OPEN statement to associate an existing file with a unit number, to 
create a new file and associate it with a unit number, or to change certain attributes 
of an existing file. The OPEN statement has the form: 

OPEN (UNIT=u, IOSTAT=ios, ERR=sl, FILE=fin, STATUS=sta, ACCESS=acc, 
FORM=fm, RECL=rl, BLANK=blnk, BUFL=bl) 

u 

Unit identifier specifying the unit to be opened. If FILE= is also specified, the unit 
becomes associated with that file. For a segment access file, the unit identifier 
specifies the named common block (including slashes) to be associated with the 
FILE specifier. 

ios 
Full-word (8 byte) variable or array element that receives an error number if an 
error occurs during the open; zero indicates that no error occurred. More 
information about ios is given under Input/Output statement specifiers. 

sl 

Label of an executable statement to which control transfers if an error occurs 
during the open. 

fin 

Character expression (31 or fewer characters) whose value is the local file name of 
the file to be opened; must be a valid NOSNE file name. (Other elements of a 
NOSNE file reference are not permitted.) Trailing blanks are removed. This file 
becomes associated with unit u. Default is the name derived from the unit 
identifier. The file is assumed to reside in the $LOCAL catalog. You can use the 
C$ PARAM command to access files that do not reside in the $LOCAL catalog. 

sta 

Character expression specifying file status. Valid values are: 

'OLD' 

File currently exists. 

'NEW' 

File does not currently exist. 

6-90 FORTRAN Version 1 Language Definition Usage Revision H 



File Status Statements 

'SCRATCH' 

Delete the file associated with unit u upon program termination or execution of 
CLOSE that specifies unit u; must not appear if FILE parameter is specified. 

'UNKNOWN' 

~ile status is unknown. 

Default is STATUS='UNKNOWN' 

ace 

Character expression specifying the access method for the file: 

'SEQUENTIAL' 

Open the file for sequential access. 

'DIRECT' 

Open the file for direct access. 

Default is ACCESS='SEQUENTIAL' 

If the file exists when the OPEN is issued, the access method must be valid for 
that file. (The file must have been created with the specified access method.) 

This specifier is not valid for segment access files. 

f m 

Character expression specifying formatting option: 

'FORMATTED' 

Open the file for formatted input/output. 

'UNFORMATTED' 

Open the file for unformatted input/output. 

UUJF.FER.ED.r 
:o.P.~ti'mthi.\n.l~Hf.it:::::b.mtijrea.rmP.att~tatP.u.t.m:rcnmrn:~n~tj}h$tonl 

Default is FORM= 'FORMATTED' for sequential access files, 
FORM= 'UNFORMATTED' for direct access files. 

For an existing file, the specified form must be valid for that file. 

This specifier is not valid for segment access files. 

rl 

Positive full-word (8 byte) variable or constant specifying the maximum record 
length for a direct or sequential access file. RECL is required for a direct access 
file; if omitted for a sequential access file, it defaults to 150 characters. 

This specifier is not valid for segment access files. 

The record length for a formatted direct access file is specified in characters. The 
record length for an unformatted direct access file is specified in words. 

blnk 

Character expression specifying blank interpretation for formatted input/output: 

'NULL' 

Blank values in numeric formatted input fields are ignored, except that a field 
of all blanks is treated as zero. 

Revision H InpuUOutput 6-91 

I 



File Status Statements 

'ZERO' 

Blanks, other than leading blanks are treated as zeros. 

Default is BLANK= 'NULL' 

This specifier is not valid for segment access files. 

bl 

This parameter is provided only for compatibility with previous versions of 
FORTRAN, and is disregarded. 

Example: 

OPEN (UNIT=2, FILE='AAA', ACCESS='DIRECT', RECL=120) 

This statement opens file AAA for direct access input/output and associates AAA with 
unit 2. 

A file specified in an OPEN statement is said to be opened with the attributes 
specified in the OPEN statement. A file must be opened before any 1/0 operations can 
be performed on it. However, it is not always necessary to specify the file in an OPEN 
statement. If a unit is referenced in an input/output operation, and the file associated 
with that unit was not previously declared in an OPEN statement, an implicit OPEN 
of the file associated with the referenced unit occurs. 

Files opened implicitly are assigned default attributes when the file is first referenced 
in an 1/0 statement. 

The UNIT= specifier is required in an OPEN statement; all other specifiers are 
optional except that you must specify the RECL specifier if a file is being opened for 
direct access and you must specify the FILE specifier to open a segment access file. If 
a STATUS of OLD or NEW is specified, you must specify a FILE= specifier. 

If you omit the FILE= specifier, the file is assumed to be the one associated with the 
specified unit in the PROGRAM statement (described in chapter 7). If you do not 
specify the unit on the PROGRAM statement, the file name is derived from the unit 
number. For unit numbers in the range 0 through 999, the file name is TAPEn where 
n is the unit number; for unit numbers having the form of a one- through 
seven-character name, the file name will be the same as the unit number. 

A declaration in an OPEN statement overrides a declaration in a preceding PROGRAM 
statement, providing that no input/output operations have been performed on the file. 
For example, in the sequence 

PROGRAM XX (TAPE2=/500) 

OPEN (2, RECL=1300, FILE='FILEY') 
READ (2, 100) A, B, C 

the PROGRAM statement declares a 500 character record length for unit 2; however, 
the OPEN statement takes precedence over the PROGRAM statement, and the 1300 
character record length is used. The READ statement reads data from FILEY. 

Declarations of file properties on a SETFA command override any conflicting OPEN 
statement parameters for a unit associated with that file; this applies to all OPEN 
statements for that file. For example, a MAXIMUM_RECORD_LENGTH parameter on 
a SETFA command overrides the RECL parameter value specified in an OPEN 
statement. 

6-92 FORTRAN Version 1 Language Definition Usage Revision H 



File Status Statements 

When a file is created (opened for the first time), the attributes established by the 
OPEN statement are permanent. A subsequent open of the file uses the original 
attributes. The only specifiers that can be changed are the BLANK= and UNIT= 
specifiers. In order to define file attributes, you must specify all of the desired 
attributes in the first OPEN statement (or in a SETFA command prior to execution). 

Once a file has been associated with a particular unit, the file can be associated with 
another unit in a subsequent OPEN statement. The file is then associated with more 
than one unit. In this case the unit numbers refer to the same file. Actions taken on 
one unit also affect the other unit. For example, closing a unit closes all other units 
associated with the same file. 

Example: 

OPEN (2, FILE='INFIL') 

OPEN (3, FILE='INFIL') 
READ (2, 100) A, B 
READ (3, 100) X, Y 

Both READ statements read from file INFIL. 

Example: 

OPEN (3, FILE='XXX', STATUS='OLD', BLANK='ZERO') 

When data is read from the existing file XXX, blanks will be interpreted as zeros. 

Example: 

OPEN (2, STATUS='NEW', ERR=12, FILE='NEWFL', ACCESS='SEQUENTIAL') 

A new file, NEWFL, is associated with unit 2 and is to be a sequential access file. 

If a file is associated with a unit and a succeeding OPEN statement associates a 
different file with the same unit, the effect is the same as performing a CLOSE 
without a STATUS= specifier on the currently associated file before associating the 
new file with the unit. For example, in the sequence 

OPEN (2, FILE='MYFILE') 
WRITE (2, '(A)') A, B, C 
OPEN (2, FILE='PART2') 

the second OPEN statement implicitly closes MYFILE before opening PART2. 

When opening a standard system file, .such as $INPUT or $OUTPUT, you must specify 
STATUS='UNKNOWN' (or omit the STATUS= specifier because the default is 
'UNKNOWN') to avoid a runtime error. 

To create and open a segment access file, specify the common block name as the UNIT 
specifier and the segment access file name as the FILE specifier (the FILE specifier is 
required for segment access files). For example: 

CHARACTER CH•sooo 
COMMON /CHBLK/ CH 

C$ SEGFILE (/CHBLK/) 

Revision H 

OPEN (UNIT=/CHBLK/, FILE='SEG_FILE_1', ERR=10, IOSTAT=IVAR) 
CH(1:1)='A' 

Input/Output 6-93 



I 

I 

File Status Statements 

This creates and opens file SEG_FILE_ l and associates the file with the COMMON 
block CHBLK. The assignment statement will set the first byte of the file to the value 
of character A. 

CLOSE 

The CLOSE statement disassociates a file from a specified unit and specifies whether 
the file associated with that unit is to be kept or released. The CLOSE statement has 
the form: 

CLOSE (UNIT=u, IOSTAT=ios, ERR=sl, STATUS=sta, SIZE=n) 

u 

Unit identifier of the file to be closed. For a segment access file, the unit identifier 
specifies the named common block (including slashes). 

ios 
Full-word (8 byte) integer variable or array element in which, upon completion of 
the close, contains an error number if an error occurrs; zero indicates no error 
occurred. More information about ios is given under Input/Output Statement 
Specifiers. 

sl 
Label of an executable statement to which control transfers if an error occurs 
during the close. 

sta 

Character expression that specifies the disposition of the file after the close: 

'KEEP' 

The file is kept after the close. 

'DELETE' 

The file is detached after the close. 

Default is STATUS= 'DELETE' if file status is 'SCRATCH'; otherwise, the default is 
STATUS= 'KEEP' 
'KEEP' is not valid for a file whose status is 'SCRATCH'. 

J#H 
:EW.PWd.td/(fUhttilfihtijgefit~iiP.ti~~l.Q.hY~P.e~U"jijjgtlt:hijtJih!tt.bTtffi:J~t$.ijgmihtlij~C.~$.~?fil~ 
:mt».&:w.~walM.iW.M~tunv:ijmt:tffirnh~fJt~igm~htti~~i~:mm~:a~ijf.O.t~t~df)ltij,$®.tijjtl.oh.Ywi.$ 
:$.aa~w:::thijHiif.iWtn~l.ZijtWtu?b.~Hilt~naijatuJtm:t~f.e.te.n.~wa~tm~a~ww1ijh.dttne.rc.µttiht 
:$.lZettthiitwt.m:::il.$biUMlb.ijttb.etc~iuiwurn1e.tmitn.m:bemgt~iAte.a.n:urhun:$tm.eme.t1i$ 
:&P:ftQ.ri.Mlindt®.itU:Q.ijlYlWit.lF:~ID.niht.fij®.~tfUii~ 

A CLOSE statement can appear in any program unit in the program; it need not 
appear in the same program unit as the OPEN statement specifying the same unit. 

A CLOSE statement that references a unit having no file associated with it has no 
effect. 

6-94 FORTRAN Version 1 Language Definition Usage Revision H 



File Status Statements 

After disassociating a unit by a CLOSE statement, you can associate it again within 
the same program to the same file or to a different file. A file associated with a unit 
specified in a CLOSE statement can be subsequently associated with the same unit or 
with another unit, provided the file still exists. 

Unit equivalence established on the PROGRAM statement and file association 
established on the execution command are no longer in effect after the CLOSE 
statement is executed. 

When a program terminates normally, an implicit CLOSE (u, STATUS='KEEP') occurs 
for each opened unit unless the status of the file was SCRATCH; in this case, a 
CLOSE (u, STATUS= 'DELETE') occurs. 

When closing a standard system file, such as $INPUT or $OUTPUT, specifying 
STATUS= 'DELETE' causes a run-time error, because a standard system file cannot be 
detached from the job. 

Example: 

CLOSE (2, ERR=25, STATUS='DELETE') 

INQUIRE 

The INQUIRE statement returns information about a specified file or unit. This 
statement has the form: 

INQUIRE (unfl , IOSTAT=ios, ERR=sl, EXIST=ex, OPENED=od, 
NUMBER=num, NAMED=nmd, NAME=fn, ACCESS=acc, SEQUENTIAL=seq, 
DIRECT=dir, FORM=fm, FORMATTED=fmt, UNFORMATTED=unf, RECL=rcl, 
NEXTREC=nr, BLANK=blnk) 

unfl 

Specifies the file or unit for which information is to be returned; unfl has one of 
the following forms: 

ios 

UNIT=u 

Inquire by unit; u is a unit identifier. For a segment access file, the unit 
identifier specifies the named common block (including slashes). 

FILE=fin 

Inquire by file; fin is a character expression whose value is a valid NOSNE file 
name (other elements of a file reference are not permitted). 

Full-word (8 byte) integer variable or array element which, upon completion of the 
INQUIRE, contains an error number; contains zero if no error occurred. More 
information about ios is given under Input/Output Statement Specifiers. 

sl 

Label of an executable statement to which control passes if an error occurs during 
an inquire. 

Revision H InpuUOutput 6-95 

I 



I 

File Status Statements 

ex 

Logical variable or array element that receives a value indicating whether the file 
or unit is valid: 

.TRUE. 

For inquire-by-unit, the unit is a valid unit. For inquire-by-file, the file is local 
to the job and contains data . 

. FALSE. 

The file or unit is not valid. 

od 

Logical variable or array element that receives one of the following values: 

.TRUE. 

The file (unit) is associated with a unit (file) . 

. FALSE. 

The file (unit) is not associated with a unit (file). 

num 

Full-word (8 byte) integer variable or array element that receives the unit number 
of the unit currently associated with the file; undefined if the file is not associated 
with a unit. 

nmd 

Logical variable that receives one of the following va,lues: 

.TRUE. 

The file has a name . 

. FALSE. 

The file does not have a name. 

f n 

A character variable or array element that receives the name of the file associated 
with unit u. 

ace 

A character variable that receives a value indicating the access method of the file: 

'SEQUENTIAL' 

The file is open for sequential access input/output. 

'DIRECT' 

The file is open for direct access input/output. 

If the file is not open, ace is undefined. 

6-96 FORTRAN Version 1 Language Definition Usage Revision H 



File Status Statements 

seq 

A character variable or array element indicating whether the file can be opened for 
sequential access input/output: 

dir 

'YES' 

The file can be opened for sequential access input/output. 

'NO' 

The file cannot be opened for sequential access input/output. 

'UNKNOWN' 

It cannot be determined if the file can be opened for sequential access 
input/output. 

A character variable or array element indicating whether the file can be opened for 
direct access input/output: 

'YES' 

The file can be opened for direct access input/output. 

'NO' 

The file cannot be opened for direct access input/output. 

'UNKNOWN' 

It cannot be determined if the file can be opened for direct access input/output. 

f m 
A character variable or array element indicating whether the file is opened for 
formatted or unformatted input/output: 

'FORMATTED' 

The file is open for formatted input/output. 

'UNFORMATTED' 

The file is open for unformatted input/output. 

tBUF.EER.EDr 
iTh.i.idUifiMJ'i.Piilf.<ir/hu.ff.{¥fid.Hl.h.P.dtltidtP.b.t.trcc.uo.nE~hiW.iO 

If the file has not been opened, fm is undefined. 

fmt 

A character variable or array element indicating whether the file can be opened for 
formatted input/output: 

'YES' 

The file can be opened for formatted input/output. 

'NO' 

The file cannot be opened for formatted input/output. 

'UNKNOWN' 

It cannot be determined if the file can be opened for formatted input/output. 

Revision H Input/Output 6-97 



I 

I 

File Status Statements 

unf 

A character variable or array element indicating whether the file can be opened for 
unformatted input/output: 

'YES' 

The file can be opened for unformatted input/output. 

'NO' 

The file cannot be opened for unformatted input/output. 

'UNKNOWN' 

It cannot be determined if the file can be opened for unformatted input/output. 

rel 

An integer*8 variable or array element that receives the record length of a file 
opened for direct access. If the file is 'FORMATTED', rel contains the record length 
in characters; if 'UNFORMATTED', the record length is in words; rel is undefined if 
the file is not open for direct access. 

nr 

A full-word (8 byte) integer variable or array element; for a direct access file, nr 
receives the record number of the next record to be read or written. If no records 
have been read or written, 1 is returned. Undefined for sequential access files. 

blnk 

A character variable or array element indicating blank interpretation currently in 
effect for a file open for formatted input/output: 

'NULL' 

Null blank control is in effect. 

'ZERO' 

Zero blank control is in effect. 

Undefined if the file is not opened for formatted input/output. 

There are two forms of the INQUIRE statement: inquire by unit is used to obtain 
information about the current status of a specified unit; inquire by file is used to 
obtain information about the current status of a file. 

If a common block name is used for an inquire by unit, or if a segment access file is 
specified on an inquire by file, then only the IOSTAT, ERR, EXIST, OPENED, NAMED 
and NAME specifiers are valid. 

You must specify either a file name (inquire by file) or a unit specifier (inquire by 
unit), but not both, in an INQUIRE statement. The file or unit need not exist when 
INQUIRE is executed. Following execution of an INQUIRE statement, the specified 
parameters contain values that are current at the time the statement is executed. If a 
unit number is specified and the unit is opened, the following specifiers will contain 
information about the file associated with the unit (provided that any conditions stated 
in the specifier descriptions hold): 

NAMED 

SEQUENTIAL 

NAME 

DIRECT 

ACCESS 

FORM 

6-98 FORTRAN Version 1 Language Definition Usage Revision H 



FORMATTED 

OPENED 

NUMBER 

UNFORMATTED RECL 

NEXTREC EXIST 

ACCESS BLANK 

File Positioning Statements 

If a file name is specified, following parameters will contain information about the file 
and the unit with which it is associated (provided that any conditions stated in the 
specifier descriptions hold): 

NAMED 

DIRECT 

OPENED 

ACCESS 

NEXTREC 

NAME 

FORMATTED 

EXIST 

FORM 

BLANK 

SEQUENTIAL 

UNFORMATTED 

NUMBER 

RECL 

On an inquire by unit for a common block name, EXIST will always be true and 
NAMED will be the same as OPENED. On an inquire by file for a segment access file, 
NAME will return the common block name incuding slashes and NAMED will always 
be true. 

If a file is specified that is associated with more than one unit, the NUMBER 
parameter will contain one of the unit numbers or names. 

The RECL value returned is zero for an inquire by unit on an unopened but existing 
file. 

If you specify an invalid file or unit, no error results but certain parameters are not 
assigned values. Note that if you specify a unit that is not associated with a file, only 
the OPENED, IOSTAT and EXIST specifiers receive values. 

If an error occurs during an INQUIRE, only IOSTAT contains a value. 

Example: 

LOGICAL EX 
CHARACTER*10 AC 

INQUIRE (FILE='AFILE', ERR=100, EXIST=EX, ACCESS=AC) 

Status information for file AFILE is returned in the variables EX and AC. If an error 
occurs during the INQUIRE, control transfers to statement 100. 

File Positioning Statements 

Three statements are provided to position files opened for sequential access: REWIND, 
BACKSPACE, and ENDFILE. You cannot use these statements on files open for direct 
access. 

Revision H Input/Output 6-99 

I 



I 

I 

File Positioning Statements 

REWIND 

The REWIND statement positions a file at beginning-of-information. This statement has 
the form: 

REWIND (UNIT=u, IOSTAT=ios, ERR=sl) 

REWIND u 

u 

External unit identifier. The characters UNIT= are optional. 

ios 

A full-word (8 byte) integer variable which returns an error number; a value of 0 
indicates no errors occurred. 

sl 

Label of an executable statement to which control transfers if an error occurs 
during the rewind. 

The next input/output operation after a rewind references the first record in the file. If 
the file is already at beginning-of-information, no action is taken. 

Example: 

REWIND 3 

The file associated with unit 3 is positioned at beginning-of-information. 

BACKSPACE 

The BACKSPACE statement positions the file associated with the specified unit one 
record in a backward direction (toward beginning-of-information). This statement hds 
the form: 

BACKSPACE (UNIT=u, IOSTAT=ios, ERR=sl) 

BACKSPACE u 

u 

External unit identifier. The characters UNIT= are optional. 

ios 

A full-word (8 byte) integer variable which returns an error number; a value of 0 
indicates no errors occurred. 

sl 

Label of an executable statement to which control transfers if an error occurs 
during the rewind. 

If the file is already positioned at beginning-of-information, no action is taken. You 
cannot not use backspace operations on direct access files or on records created by list 
directed or namelist output. 

Example: 

6-100 FORTRAN Version 1 Language Definition Usage Revision H 



.Input/Output Status Checking Routines (CDC Extension) 

DO 1 LUN = 1, 4 
BACKSPACE LUN 

The files associated with units 1 through 4 are backspaced one record. 

END FILE 

The ENDFILE statement writes an end-of-partition on the file associated with the 
specified unit. This statement has the form: 

ENDFILE (UNIT=u, IOSTAT=ios, ERR =s[) 

ENDFILE u 

u 

External unit identifier. The characters UNIT= are optional. 

ios 

A full-word (8 byte) integer variable which returns an error number; a value of 0 
indicates no errors occurred. 

sl 

Label of an executable statement to which control transfers if an error occurs 
during the rewind. 

ENDFILE should not be the first operation on a file. The end-of-partition can be 
detected by the END= and IOSTAT = specifiers. END FILE can be used to 
unconditionally flush terminal output. If the unit specified is associated with a file that 
is connected to a terminal, the output buffer for the file is flushed to display messages 
immediately. 

The following restrictions apply to ENDFILE: 

• ENDFILE is not permitted on units opened for direct access. 

• ENDFILE cannot not be used on a file processed by mass storage subroutines. 

• ENDFILE can only be used on files with V (variable) type records; use of 
ENDFILE on other record types causes an error. 

Example: 

!OUT = 7 
ENDFILE (UNIT=IOUT, ERR=100) 

An end-of-partition boundary is written on the file associated with unit 7. 

Control Data Extension tttttttttttt/ftttttttttltttttt 

Input/Output Status Checking Routines (CDC Extension) 

Status checking for input/output statements such as READ and WRITE should be done 
with the optional specifiers IOSTAT= or END= , but can also be done with the 
functions UNIT, EOF, and IOCHEC. UNIT and EOF return an end-of-file status if an 
end-of-partition or end-of-information was read by the previous read operation. 

Revision H Input/Output 6-101 

I 



Input/Output Status Checking Routines (CDC Extension) 

The functions UNIT and IOCHEC return a parity error indication for every record 
within or spanning a block containing a parity error; such an indication, however, does 
not necessarily refer to the immediately preceding operation because of the record 
blocking/deblocking performed by the internal input/output routines. 

UNIT 

The UNIT function is used to check the status of a BUFFER IN or BUFFER OUT 
operation for an end-of-file or parity error condition on logical unit u. The UNIT 
function reference has the form: 

UNIT (u, a, b) 

u 

Unit identifier. 

a 

First variable or array element of the block of memory specified in the preceding 
BUFFER IN or BUFFER OUT statement. 

b 

Last variable or array element of the block of memory specified in the preceding 
BUFFER IN or BUFFER OUT statement. 

The function returns one of the following type real values: 

-1. Unit ready, no end-of-file or parity error encountered on the previous operation. 

0. Unit ready, end-of-file encountered on the previous operation. 

+ 1. Unit ready, parity error encountered on the previous operation. 

Although the arguments a and b are optional, you should always include them if you 
have selected OL=HIGH on the FORTRAN command. Specifying a and b enables the 
FORTRAN compiler to associate the call to UNIT with possible changes to the values 
in the locations between a and b. If you call UNIT with only the argument u (as in 
most older programs), the compiler might not detect that values between a and b are 
being referenced while instructions between the BUFFER IN or BUFFER OUT 
statement and the UNIT call are executing. This could lead to execution errors. 

Example: 

BUFFER IN (5,1) (8(1), 8(100)) 
IF (UNIT(S, 8(1), 8(100)) 12, 14, 16 

Control transfers to the statement labeled 12, 14, or 16 if the value returned was -1., 
0., or + 1., respectively. 

If 0. or + 1. is returned, the condition indicator is cleared before control is returned to 
the program. UNIT should be called only for a file processed by BUFFER statements. 

6-102 FORTRAN Version 1 Language Definition Usage Revision H 



Input/Output Status Checking Routines (CDC Extension) 

EOF 

The EOF function is used to test for an end-of-file on a unit following a formatted, list 
directed, namelist, or unformatted sequential read. The EOF function reference has the 
form: 

EOF (u) 

u 

Unit identifier 

Zero is returned if no end-of-file is encountered; a nonzero value is returned if an 
end-of-file is encountered. If an end-of-file is encountered, EOF clears the condition 
indicator before returning control. 

Example: 

IF (EOF(S) .NE. 0) GO TO 20 

Control transfers to statement 20 if an end-of-file is encountered on unit 5. 

The EOF function is provided for compatibility with previous systems, and is not 
intended to replace the END= or IOSTAT = specifiers in a READ statement. If the 
IOSTAT = or END= specifier is not used in the READ statement that reads the 
end-of-file, the program will be terminated by a fatal error before the subsequent EOF 
call is executed. 

The EOF function should not be used to test for an endfile condition following read or 
write operations on random access files (files accessed by READMS/WRITMS) or 
following write operations on all types of files, because a zero value is always returned 
regardless of whether an end-of-file is detected. 

The EOF function is of type real. 

IOCHEC 

The IOCHEC function tests for a parity error on a unit following a formatted, list 
directed, namelist, or unformatted read. The IOCHEC function reference has the form: 

IOCHEC (u) 

u 

Unit identifier 

Zero is returned if no error was detected. If a parity error occurs, IOCHEC clears the 
parity indicator before returning control. 

The IOCHEC function is of type integer. 

Example: 

READ (UNIT=6, END=99, ERR=88) A 
88 J=IOCHEC(6) 

IF (J .NE. 0) GO TO 25 

If no parity error occurs during the READ (IOCHEC returns zero) execution continues 
with the statement following the IF. If a parity error is detected, control transfers to 
statement 25. 

Revision H Input/Output 6-103 



Input/Output Status Checking Routines (CDC Extension) 

LENGTH 

The LENGTH function or LENGTHX subroutine returns the number of words in the 
~[~ last record read by the previous formatted READ, list directed READ, BUFFER IN or 

READMS of the specified unit. The LENGTH reference and LENGTHX call have the 
forms: 

LENGTH (u) 

CALL LENGTHX (u, nw, ubc) 

u 

Unit identifier. 

nw 

Integer variable or array element to receive the number of words read. 

ubc 

Integer variable or array element to receive the number of unused bits in the last 
word of the transfer. 

The values returned by LENGTHX and the value of LENGTH are all of type 
INTEGER. 

For a file accessed by buffer statements, LENGTH or LENGTHX should be called only 
after a call to UNIT ensures that input/output activity is complete; otherwise, file 
integrity might be endangered. 

A length of zero is returned if the previous READ was NAMELIST. 

Example: 

DIMENSION CALC(Sl) 
BUFFER IN (1,K) (CALC(1), CALC(51)) 
J = LENGTH(1) 
IF (UNIT(1) .GE. 0) GO TO 20 

The variable J contains the number of words read on unit number 1. 

LENGTHB 

The LENGTHB function returns the number of bytes in the last record read by the 
~ll previous formatted READ, list directed READ, BUFFER IN, or READMS of the 

specified unit. The LENGTHB function has the form: 

LENGTHB (u) 

u 

Unit identifier. 

The value returned by LENGTHB is of type INTEGER. 

A length of zero is returned if the unit is not open, or if the unit is open but no input 
activity has been previously completed on that unit. 

A length of zero is also returned if the previous READ was NAMELIST. 

6-104 FORTRAN Version 1 Language Definition Usage Revision H 



Input/Output Status Checking Routines (CDC Extension) 

Example: 

DIMENSION CALC(51) 
BUFFER IN (1,K) (CALC(1), CALC(51)) 
J = LENGTHB(1) 
IF (UNIT(1) .GE. 0) GO TO 20 

The variable J contains the number of bytes read on unit number 1. 

End of Control Data Extension 

Revision H Input/Output 6-105 



Internal Data Transfer Routines 

Control Data Extension 

Internal Data Transfer Routines 

Two routines are provided for moving blocks of data from one area of memory to 
another. 

MOVLEV 

The MOVLEV call transfers blocks of noncharacter data from one area of memory to 
jll another.The data must be full-word data. This call has the form: 

CALL MOVLEV (a, b, n) 

a 

Variable or array element indicating the starting location of the data to be moved. 

b 

Variable or array element indicating the starting location of the area to receive the 
data. 

n 

Integer expression specifying the number of words to be moved. 

No conversion is done by MOVLEV. For instance, if data from a real variable is moved 
to a type integer receiving field, the result is undefined. 

The block of data to be moved should be contained in one variable, array, equivalence 
class, or common block, and the receiving area should be contained in one variable, 
array, equivalence class, or common block. Otherwise, the result of the move is 
undefined. Also, the blocks should not overlap. 

The arguments a and b must not be type character; for character data, subroutine 
MOVLCH should be used. 

Example: 

CALL MOVLEV (A, I, 1000) 

1000 words are moved from locations starting with A to locations starting with I. No 
conversion is performed. 

Example: 

DOUBLE PRECISION 01(500), 02(500) 
CALL MOVLEV (01, 02, 1000) 

Because array Dl is defined as double precision, the word count is set to twice the size 
of Dl so that the entire array is moved. 

6-106 FORTRAN Version 1 Language Definition Usage Revision H 



File Connection Routines 

MOVLCH 

The MOVLCH call transfers character data from one area of memory to another. This 
call has the form: 

CALL MOVLCH (a, b, n) 

a 

Variable, array element, or substring name indicating the starting location of the 
character string to be moved. 

b 

Variable, array element, or substring name indicating the starting location of the 
receiving area. 

n 

Integer expression specifying the number of characters to be moved. 

The block of data to be moved should be contained in one variable, array, equivalence 
class, or common block, and the receiving area should be contained in one variable, 
array, equivalence class, or common block. Otherwise, the result of the move is 
undefined. Also, the blocks should not overlap. 

Both arguments a and b must be of type character; a diagnostic is issued if one, or 
both, is of any other type. Note that moving a single character variable or array 
element to another single character variable or array element is easier to do with a 
character assignment statement. 

Example: 

CHARACTER*123, CH1(10), CH2(5) 
CALL MOVLCH (CH1(8), CH2(3), 369) 

The last three elements of character array CHl are moved to the last three elements 
of character array CH2. Because each element is 123 characters long, the character 
count is set to 3 * 123 = 369. 

End of Control Data Extension 

Control Data Extension 

File Connection Routines 

Two routines are provided for connecting and disconnecting a file from the terminal. 

CONNEC 

The CONNEC call connects a file to the terminal with terminal attributes appropriate 
for the character set designated by the cs parameter. This call has the form: 

CALL CONNEC (u, cs) 

u 

Unit identifier. 

Revision H InpuUOutput 6-107 



I 

File Connection Routines 

cs 

Character set designator; a full-word (8 byte) integer expression having one of the 
following values: 

0 Selects the ASCII-128 character set. The terminal attributes currently in effect 
are used. 

1 Same as 0, except that if transparent mode is on, it will be turned off and 
associated transparent mode attributes are reset to their default values. 

2 Selects the ASCII-256 character set. Transparent mode is turned on so that all 
bits of each byte (including control characters) can be transmitted as data 
provided your terminal uses 8 bits with no parity. Also allows multi-message 
behavior so type-ahead can retain transparent mode. 

If cs is omitted, the character set defaults to ASCII-128. 

If a program to be run interactively calls for input/output operations through a remote 
terminal, all files to be accessed through the terminal must be formally associated with 
the terminal when the files are referenced. 

Files $INPUT and $OUTPUT are automatically connected to the terminal. (However, 
you can override this connection.) Thus, whenever data is read from file $INPUT, the 
data must be entered through the terminal. Whenever data is written to file 
$OUTPUT, the data is displayed at the terminal. 

You can connect any file from within the program by using the CALL CONNEC 
statement. You can also connect a file by specifying a REQUEST_ TERMINAL 
command (described in the SCL System Interface manual). 

If a unit specified in a CONNEC call is associated with a file that is open but is not 
connected to a terminal, the file is first closed (and its buffer flushed) and then 

:=i·.:1·=1 connected to the terminal under the specified character set option. This procedure is also 
followed for files connected using the REQUEST_ TERMINAL command. 

If a unit specified in a CONNEC call is already connected to the terminal and is also 
open, the terminal attributes are set according to the specified option; the associated 
file is not closed. 

The ASCII 128-character set is shown in appendix J. 

DISCON 

The DISCON call disconnects a file from the terminal. This call has the form: 

CALL DISCON (u) 

u 

Unit identifier 

The file associated with the specified unit is detached, and data written to the file is 
lost unless the file is permanent. A DISCON call is ignored if the file is not connected. 

End of Control Data Extension 

6-108 FORTRAN Version 1 Language Definition Usage Revision H 



Program Units 

This chapter describes the basic units that are used to form FORTRAN programs. 

Main Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PROGRAM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PROGRAM Statement Usage (Does Not Apply to ANSI FORTRAN) . 

Subprograms . . . . . . . . 
Subroutine Subprogram 
Function Subprogram 

External Functions . 
Intrinsic Functions . 

Block Data Subprogram 

Statement Functions . . . 

Procedure Communication 
CALL Statement . . . . 
External Function Reference 
Statement Function Reference 
Arguments ......... . 
Argument Association .. . 

Variables as Arguments 
Arrays as Arguments . . 
Character Arguments . . 
Procedure Names as Arguments . 
Asterisks as Arguments 

Common Blocks . . . . . . . . . . . . 
Adjustable Dimensions ....... . 
Assumed-Length Character Strings . 
Multiple Entry .... 
RETURN Statement 
Alternate Return . . 

Calling Other Language Subprograms (CDC FORTRAN Only) 
Calling CYBIL Procedures . 
Calling COBOL Subprograms . . . . . . . . 
Calling C Routines . . . . . . . . . . . . . . 
Calling FORTRAN Version 2 Subprograms 

7 

7-3 
7-4 
7-5 

7-5 
7-6 
7-8 
7-8 

7-10 
7-10 

7-11 

7-12 
7-12 
7-13 
7-13 
7-14 
7-16 
7-17 
7-17 
7-17 
7-18 
7-19 
7-19 
7-20 
7-21 
7-21 
7-22 
7-23 

7-24 
7-24 
7-27 
7-29 
7-31 





An executable FORTRAN program consists of one or more program units with the 
restriction that exactly one must be a main program unit (usually called simply a main 
program). 

A program unit is a group of FORTRAN statements, with optional comments, 
terminated by an END statement. The types of program units are main programs and 
subprograms. Subprograms can be subroutine subprograms, function subprograms, or 
block data subprograms. 

Figure 7-1 illustrates a FORTRAN program consisting of three program units: a main 
program named AVG, a subroutine subprogram named DIVIDE, and a function 
subprogram named NADD. 

PROGRAM AVG 
INTEGER NUMBER(10), NSUM 
REAL RESULT 
OPEN (1, FILE='DATA') 
READ (1, 100) (NUMBER(!), 1=1,10) 
NSUM = NADD(NUMBER) 
CALL DIVIDE(NSUM,10,RESULT) 
PRINT 200, (NUMBER(!), 1=1,10), RESULT 
STOP 

100 FORMAT (1012) 
200 FORMAT ('1THE AVERAGE OF ',/10(' ',12),/,' IS ',F7.3) 

END 

FUNCTION NADD(IARRAY) 
INTEGER IARRAY(10) 
N = 0 

DO 10 I = 1,10 
N = IARRAY(I) + N 

10 CONTINUE 
NADD = N 
RETURN 
END 

SUBROUTINE DIVIDE (N,I,Q) 
INTEGER N, I 
REAL Q 
Q = REAL(N) I REAL(!) 
RETURN 
END 

Figure 7-1. Main Program, Function, and Subroutine Example 

Subroutine subprograms, function subprograms, intrinsic functions, and statement 
functions are referred to as procedures. The only subprogram that is not a procedure is 
a block data subprogram, which is not executable. 

Statement functions are the only procedures that cannot be compiled independently of 
other procedures. Statement functions are defined within program units and are 
compiled inline. 

Revision H Program Units 7-1 



Program Units 

Subroutine subprograms can be w:ritten by the programmer. In addition, the FORTRAN 
library provides function and subroutine subprograms that are of general utility and 
which can be referenced in any FORTRAN program. The FORTRAN-supplied 
subprograms are described in chapter 9. 

A function subprogram can be an external function or an intrinsic function. Intrinsic 
functions are supplied by the FORTRAN library and can be referenced by any 
FORTRAN program. The intrinsic functions are described in chapter 8. External 
functions are provided by the programmer. 

The following table summarizes the characteristics of program units: 

Program Unit 

Main program 

Subroutine 

External 
function 

Statement 
function (not a 
program unit) 

Block data 
subprogram 

Characteristics 

Defines a main entry 
point for a FORTRAN 
program. Every program 
must have a main 
program unit. 

Can be called from other 
program units in a 
program. Returns values 
through argument list or 
common. 

Can be called from other 
program units. Returns 
single value through 
function name. Can also 
communicate through 
argument list and 
common. 

Calculates a single result 
for a program unit; 
cannot be referenced 
outside the defining 
program unit. 

Provides initial values for 
named common blocks. 

7·2 FORTRAN Version 1 Language Definition Usage 

How Identified 

Usually begins with PROGRAM 
statement. 

Begins with SUBROUTINE statement. 

Begins with FUNCTION statement. 

Defined within a program unit; single 
statement definition. 

Begins with BLOCK DATA statement. 

Revision H 



Main Programs 

Main Programs 

A main program is a program unit that does not begin with a SUBROUTINE, 
FUNCTION, or BLOCK DATA statement. Usually, a main program begins with a 
PROGRAM statement, but this statement is optional. Execution of any FORTRAN 
program begins with the main program unit. 

A main program can contain any FORTRAN statements except FUNCTION, 
SUBROUTINE, BLOCK DATA, or ENTRY. The main program should have at least one 
executable statement, and it must have an END statement as the last statement. An 
executable program should not have more than one main program unit. (If more than 
one main program exists, the last one loaded is used.) 

The main program can be compiled independently of any subprograms. However, when 
a main program is loaded into memory for execution, all the required subprograms 
must also be loaded and ready for execution. 

Figure 7-1 shows an example of a main program. The program, named AVG, reads 
numbers from file DATA and calls function NADD and subroutine DIVIDE to perform 
calculations. 

Revision H Program Units 7-3 



PROGRAM Statement 

PROGRAM Statement 

The PROGRAM statement defines the name that is used as the entry point name and 
as the object program name for the loader. The PROGRAM statement also declares 
certain properties of input/output units to be used by the program. (Unit declaration on 
the PROGRAM statement is provided for compatibility with previous versions of 
FORTRAN. The OPEN statement (which conforms to the ANSI standard) can also be 
used to declare input/output units. The PROGRAM statement has the forms: 

PROGRAM name 

:P:BQQR&MttiAmijt(i/P.3jfatWWbti!.#.d 

name 

upar 

Declares an input/output unit in one of the following forms: 

unit 

Name of a unit to be used by the main program or its subprograms; one 
through seven characters. Maximum number of units is 49. 

unit=n 

This form is provided for compatibility with previous versions of FORTRAN, and 
is interpreted as if = n had been omitted. 

unit=/r 

Specifies the maximum record length in characters for list directed, formatted, 
and namelist lines; default length is 150 characters. Maximum value is 65535 
characters. 

unit=n/r 

This form is provided for compatibility with previous versions of FORTRAN; n 
is disregarded and r is as described above. 

altunit= unit 

Altunit and unit are unit names; altunit is usually in the form TAPEu, where u 
is an integer in the range 0 through 999. This form specifies that the unit 
names are equivalent. The record length is as previously specified (or defaulted) 
for the unit. 

Example: 

PROGRAM PROGA (AFILE,TAPE2=AFILE) 

This statement assigns the name PROGA to the program, and equivalences the name 
TAPE2 to AFILE. When any input/output statement in the program references unit 2, 
the reference applies to unit AFILE. 

Example: 

PROGRAM FIRST 

This statement assigns the name FIRST to the program. The parameter list is legally 
omitted. 

7-4 FORTRAN Version 1 Language Definition Usage Revision H 



PROGRAM Statement Usage 

Control Data Extension 

PROGRAM Statement Usage 

The PROGRAM statement can declare units that are used in the program and in any 
subprograms that are called. If you omit this statement from the main program, the 
program is assumed to have the name START#. 

Units referenced in inputJoutput statements need not be declared in a PROGRAM 
statement. Alternatively, units can be declared in an OPEN statement. If a unit is not 
declared on the PROGRAM statement or in an OPEN statement, an implicit open 
occurs on the first reference to the unit. 

In most cases, the OPEN statement is preferred over PROGRAM statement unit 
declarations because OPEN provides more options, more flexibility, and is consistent 
with ANSI FORTRAN. 

In the absence of any other specification of the file name, FORTRAN adds the 
characters TAPE as a prefix to the unit number to form the file name. For instance, 
TAPE3 is the file name assigned to unit number 3 and TAPE5 is the file name 
assigned to unit number 5. TAPE5 and TAPE05 do not specify the same file name. 

When unit names are made equivalent, the record length specified for the unit to the 
right of the equal sign also applies to the specified alternate unit. Therefore, any 
attempt to specify record length for the alternate unit results in an error. 

End of Control Data Extension 

Subprograms 

A subprogram is a program unit that is physically included only once in a FORTRAN 
program but can be executed many times. It can be called from the main program or 
from another subprogram. 

A subprogram is subordinate to a main program; that is, a subprogram cannot be 
executed independently of a main program. It is defined separately and can be compiled 
independently of a main program. However, a subprogram can be executed only after 
the main program begins execution. You generally write subprograms to perform 
calculations that are required repeatedly by a program or different programs. 

The types of subprograms are subroutines, functions (external and intrinsic), and block 
data subprograms. 

Revision H Program Units 7-5 



Subroutine Subprogram 

Subroutine Subprogram 

A subroutine subprogram begins with a SUBROUTINE statement and ends with an 
END statement. The SUBROUTINE statement has the form: 

SUBROUTINE name (d, ... , d) 

name 

Name of the subroutine subprogram 

d 

Dummy argument that can be a variable name, array name, dummy procedure 
name, or asterisk 

If there are no dummy arguments, you can specify either SUBROUTINE name ( ) or 
SUBROUTINE name. 

The SUBROUTINE statement must appear as the first statement of the subroutine 
subprogram and contains the symbolic name that is the main entry point of the 
subprogram. The name must not be the same as any other program unit or entry 
name. Also, the name cannot be the same as any other symbolic name in the 
subroutine. 

Examples: 

SUBROUTINE GETVAL(VAR,RVAL,N,Z) 

SUBROUTINE ARC 

In the last example, the argument list is legally omitted. 

Subroutines can contain any statements except a PROGRAM, BLOCK DATA, 
FUNCTION, or another SUBROUTINE statement. Control is returned to the calling 
program unit when a RETURN or END statement is encountered. 

Subroutines can communicate with other program units through the argument list. The 
arguments specified in the subroutine argument list are called dummy arguments, and 
are associated with actual arguments specified in the CALL statement that calls the 
subroutine. Subroutines can also communicate with other program units through 
common blocks. (See Procedure Communication.) 

Figure 7-1 shows an example of a subroutine subprogram. The subprogram, named 
DIVIDE, receives values through the argument list. The dummy arguments are N, I, 
and Q. When the subroutine is called in the main program by the CALL DIVIDE 
statement, the actual arguments NSUM, 10, and RESULT are associated with the 
dummy arguments. The result of the subroutine is stored in the dummy argument Q 
which is associated with the actual argument RESULT in the main program. 

7-6 FORTRAN Version 1 Language Definition Usage Revision H 



Subroutine Subprogram 

For Better Performance 

Subroutine calls and returns within a loop involve longer execution time. If possible, 
put the loop inside of the function or subroutine itself and call it only once. This way, 
the subroutine is only called once, rather than on each pass through the loop. For 
example: 

DIMENSION DATA(100) 
DO 20 J=1, 100 
CALL SUBA(DATA(J)) 

20 ANSWER(J) = DATA(J) 

SUBROUTINE SUBA(VALUE) 
VALUE=VALUE*"2 
RETURN 
END 

can be changed to execute faster: 

DIMENSION DATA(100) 
CALL SUBA(DATA) 

SUBROUTINE SUBA(VALUE) 
INTEGER VALUE(100) 
DO 20 J=1, 100 
VALUE(J)=VALUE(J)**2 

20 CONTINUE 
RETURN 

Also, if the subprogram contains a RETURN statement that causes frequent immediate 
returns, more the source of the rturn from the subprogram. For example, if the value 
of N is frequently 0, 

CALL X(A, B, N) 

SUBROUTINE X(A, B, N) 
IF (N .EQ. 0) RETURN 

RETURN 
END 

can he changed to execute faster: 

IF (N .NE. 0) THEN 
CALL X(A, B, N) 

END IF 

SUBROUTINE X(A, B, N) 

RETURN 
END 

Revision H Program Units 7-7 



Function Subprogram 

Function Subprogram 

Function subprograms can be external functions or intrinsic functions. Both external 
and intrinsic functions are external to the program unit that references them. External 
functions are written by the user, but intrinsic functions are supplied by the 
FORTRAN library. 

External Functions 

An external function begins with a FUNCTION statement. This statement has the 
form: 

type FUNCTION name*len (d, ... , d) 

type 

Type indicator. Can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX, 
LOGICAL, :B.:QQ:OEAN, or CHARACTER. If omitted, the function name determines 
the type according to the rules described in chapter 3. 

name 

Name of the function subprogram. 

Zen 

Length of the result of the function. JlP.tNhM:f~dtllij#Htt~12.b4/Jijjjj{$.lf.4#J;f:pijJlijtijgijf 
:fd~foti&hMt8t~htlfUEf.dtJt&P.ijJt~M>f.U.ri¢.tW.hijJijh.d:fl~tfQf lt#P.ijt:~Q.~tP.lij*-f fli44ti!Q.#$~ 

d 

Dummy argument that can be a variable name, array name, or dummy procedure 
name. 

A function name must not be the same as any other name, except a variable name or 
common block name 

l1l The length declared for a function name must be the same in the referencing program 
l~l ~ unit and in the referenced function. 

The function statement specifies the symbolic name that is used as the main entry 
point of the function. You can specify additional entry points using ENTRY statements 
(see Multiple Entry Points). 

Examples of FUNCTION statements: 

FUNCTION FN(X) 

INTEGER FUNCTION DZ(V1,V2,V3) 

CHARACTER*3 FUNCTION VCHARS (CH) 

CHARACTER*(*) FUNCTION APPLE (TXT) 

7-8 FORTRAN Version 1 Language Definition Usage Revision H 



Function Subprogram 

The last statement declares a character function to have the length specified by the 
calling program unit. The length of the value returned is determined by the length 
declared for function APPLE in the referencing program unit. 

Control transfers to a function subprogram when an expression containing the function 
name is executed in a program unit. Control returns to the calling program unit when 
a RETURN or END statement is executed in the function. 

A function subprogram returns a single value to the calling program unit through the 
function name. At some point within the function, an assignment statement must be 
executed that defines the function name (or an entry name of the same type as the 
function name). The function name can be referenced as a variable or redefined later 
in the function. However, a recursive call to the function is not permitted. When 
control returns to the calling program unit, the value of the function reference is the 
value defined for the function name. 

A function subprogram can also communicate with the referencing program unit 
through a list of arguments or through common blocks. 

The name specified in a FUNCTION or ENTRY statement must not appear in any 
other nonexecutable statement, except a type statement. If the type of a function is 
specified in a FUNCTION statement, then the function name cannot appear in a type 
statement. 

The type of the function name must be the same in the referencing program unit and 
the referenced function subprogram. In the absence of explicit typing, the type of the 
function is determined by the first character of the function name. Implicit typing by 
the IMPLICIT statement takes effect only when the function name is not explicitly 
typed. The name cannot have its type explicitly specified more than once. 

If the function name is of type character, then each entry name must be type character 
and vice versa. The function name and entry names must have the same length. For 
example, if the function name has a length of(*), all entry names must have a length 
of (*). 

Function subprograms can contain any statements except PROGRAM, BLOCK DATA, 
SUBROUTINE, or another FUNCTION statement. They begin with a FUNCTION 
statement and end with an END statement. Control is returned to the referencing 
program unit when a RETURN or END is encountered; a RETURN statement of the 
form RETURN exp (described under the RETURN statement) in a function subprogram 
is not allowed. 

An example of a function subprogram is shown in figure 7-1. The function, named 
NADD, receives an array IARRAY through the argument list. Function NADD sums 
the values in the array and assigns the result to the function name. In the main 
program the function is referenced by the statement: 

NSUM = NADD(NUMBER) 

The actual argument NUMBER is associated with the dummy argument IARRAY. 
When execution of the function is complete, the result is stored in the variable NSUM 
and execution continues with the next statement. 

For Better Performance 

Double precision and :f:eija:l.6 constants, variables, arrays, and functions require more 
execution time because of the extra precision they support (two words). 

Revision H Program Units 7-9 

I 



Block Data Subprogram 

Intrinsic Functions 

Intrinsic functions are supplied by the FORTRAN library. The rules for using intrinsic 
functions are the same as for user-written external functions. An IMPLICIT statement 
does not change the type of an intrinsic function. Chapter 8 describes the intrinsic 
functions, including generic and specific names, function definitions, type of arguments, 
and type of results. 

Block Data Subprogram 

A block data subprogram is a nonexecutahle specification subprogram that can he used 
to specify initial values for variables and array elements in named common blocks. A 
program can have more than one block data subprogram. 

A block data subprogram is identified by a BLOCK m.\TA statement. This statement 
has the form: 

BLOCK DATA name 

name 

Name of the block data subprogram. :Jfiijffl1JtW.dflh.~me?aeS.U.ltjjJto?l.U~~K.:JJ.A'l:Wf::t(QllC 
iFQRT.!U\NJQ.#l#J~ 

The BLOCK DATA statement must appear as the first statement of the block data 
subprogram. The name used for the block data subprogram must not he the same as 
any variables or symbolic constants in the subprogram. The name must not he the 
same as any other program unit or entry name in the program. Only one block data 
subprogram can he unnamed. 

Block data subprograms can contain IMPLICIT, PARAMETER, DIMENSION, type, 
COMMON, SAVE, EQUIVALENCE, or DATA statements. A block data subprogram ends 
with an END statement. Data can he entered into more than one common block in a 
block data program. All variables having storage in the named common must be 
specified even if they are not all assigned initial values. 

Example: 

BLOCK DATA ANAME 
COMMON /CAT/X,Y,Z /DOG/R,S,T 
COMPLEX X,Y 
DATA X,Y /2*(1.0,2.7)/, R/7.6543/ 
END 

The block data subprogram ANAME enters data into common blocks CAT and DOG. 
Initial values are defined for variables X and Y in block CAT and variable R in block 
DOG. No initial values are defined for variables Z, S, or T. 

7-10 FORTRAN Version 1 Language Definition Usage Revision H 



Statement Functions 

Statement Functions 

A statement function consists of a single statement and calculates a single result. It is 
defined by the programmer, and applies only to the program unit containing the 
statement. The general form of a statement function is: 

name (d, ... , d) = exp 

name 

Function name 

d 

Dummy argument 

exp 

Expression 

A statement function is a nonexecutable statement. It must appear after the 
specification statements and before the first executable statement in the program unit. 

Examples: 

ADD(A,B,C,D) = A + C + B + D 

AVRG(SUM,N) = SUM/N 

ADD is a statement function with dummy arguments A, B, C, and D. AVRG is a 
statement function with dummy arguments SUM and N. 

A statement function name is defined with the value of the expression after execution. 
During execution, the actual argument expressions are evaluated, :~Q.ijyijfum:@lfdi~~itY 
:m>th.jJt&M.MdfWth~t:®:tte~ffitbi4.ihliHtamm&:::::~fltijJn~6t~f/i~ijdfil.mk<W>thijJdU~i/t.<it 
:iiMID.lm~h.t.UfANSltFQRTRA.Nttmrf.t'#fi.tilf#fut®hv~t~fobm<ij;ijq/p~iijdJW.Jtbe.tf.i®.tiQ.b. 
Thus, an actual argument cannot be an array name or a function name. In addition, if 
a character variable or array element is used as an actual argument, a substring 
reference to the corresponding dummy argument must not be specified in the statement 
function expression. The expression of the function is evaluated, and the resulting value 
is converted as necessary to the data type of the function. 

A statement function name must not be the same· as an array, variable, symbolic 
constant, intrinsic function, or dummy procedure name in the same program unit. The 
function name cannot be an actual argument and must not appear in an INTRINSIC or 
EXTERNAL statement. If you use the statement function in a function subprogram, 
then the statement function can contain a reference to the name of the function 
subprogram or any of its entry names as a variable, but not as a function. 

Each variable reference in the expression can be either a reference to a variable within 
the same program unit or to a dummy argument of the statement function. Statement 
functions can reference dummy arguments that appear in a SUBROUTINE, 
FUNCTION, or ENTRY statement. Statement function dummy arguments can have the 
same names as variables defined elsewhere in the same program unit without conflict. 
Any reference to the name inside the function refers to the dummy argument, and any 
reference to the name outside the function definition refers to the variable. 

Revision H Program Units 7-11 



Procedure Communication 

Procedure Communication 

Communication between the referencing program unit and the referenced procedure can 
be through common blocks or by passing actual arguments to the procedure. (You 
cannot use common blocks to pass data to intrinsic functions or statement functions; 
data is passed to these functions through an argument list.) You can use common 
blocks and argument lists to pass data to external (user-written) procedures, but 
procedure names can be passed to external procedures only through an argument list. 

CALL Statement 

A subroutine subprogram is executed when a CALL statement naming the subroutine 
is encountered in a program unit. The CALL statement has the form: 

CALL name (a, ... , a) 

name 

Subroutine name; cannot be the same as a variable name in the calling program 
unit. 

a 

Actual argument that can be one of the following: 

A constant (including a symbolic constant or extended Hollerith constant) 

A variable, array, or array element name 

An expression with operators (except for a character expression involving 
concatenation of a dummy argument with length (*)) 

An intrinsic function name 

An external subroutine or function name 

A dummy subroutine or function name 

An alternate return specifier of the form *sl, where sl is the label of an 
executable statement that appears in the same program unit as the CALL 
statement 

If the subroutine has no argument list, the form CALL name ( ) or CALL name can be 
used. 

Note that a CALL statement can be used to call subprograms written in languages 
other than FORTRAN. 

An actual argument in a subroutine call can be a dummy argument name that appears 
in the dummy argument list of the subprogram containing the subroutine call. An 
asterisk dummy argument cannot be used as an actual argument. 

A subroutine must not directly or indirectly call itself. 

7-12 FORTRAN Version 1 Language Definition Usage Revision H 



External Function Reference 

External Function Reference 

An external function is executed when the function name is referenced in an 
expression. The general form of a function reference is: 

name (a, ... , a) 

name 

Function name 

a 

Actual argument that can be one of the following: 

A constant (including a symbolic constant or an extended Hollerith constant.) 

A variable, array, or array element name 

An expression with operators (except a character expression involving 
concatenation of a dummy argument with length (*)) 

An intrinsic function name 

An external subroutine or function name 

A dummy procedure name 

A function must not directly or indirectly reference itself. The function reference can 
appear anywhere in an expression where an operand of the same type can be used. 

The type of the function result is the type of the function name. The arguments must 
agree in order, number, )~jj~, and type with the corresponding dummy arguments. An m 

actual argument of type boolean can have a corresponding dummy argument of type 
integer or real. :Ah.W~C.tui.lfi.tMdhijb.t.tMYtYP.~?:iht~getfattfiijltcij:b.Jbivelit®:fd~$P.Qhdihg 
:a.u.m.m&::::w.tgµm!h.t::::(it:::m~f:::bQ.nliji.ti. 

Statement Function Reference 

A statement function is evaluated when the name is referenced in an expression. The 
general form of a statement function reference is: 

name (a, ... , a) 

name 

Statement function name 

a 

Actual argument that can be any expression except a character expression involving 
concatenation of an operand whose length specification is an asterisk unless the 
operand is a symbolic constant 

The actual arguments are evaluated and i(fiHQDC.tFORl\(Q\Nt&h.ly)fijijh,f:ijftiikW:tth.e 
itB?bf::it.h,ij{~ijf:fiiP.ih.W.b.!tdmimY:ti.fiiimiht.$; the resulting values are used in place of 
the corresponding dummy arguments in evaluation of the statement function expression. 

A statement function must not directly or indirectly call itself. The statement function 
reference can appear anywhere in an expression where an operand of the same type 
can be used. 

Revision H Program Units 7-13 



Arguments 

The type of the statement function result is the type of the statement function name. 
The arguments must agree in order and number with the corresponding dummy 
arguments. 

A statement function can be referenced only in the program unit where the statement 
function appears. 

Example: 

F(X,Y) = SQRT(X**2 + Y**2) 

Z = F(C(1), C(2)) 

These statements define and reference a statement function. When the function 
reference is executed, the actual arguments C(l) and C(2) are substituted for the 
dummy arguments X and Y, and the function is evaluated. The effect is the same as 
the following assignment statement: 

Z = SQRT(C(1)**2 + C(2)**2) 

Example: 

AVRG(S,N) = S/N 

X = A+ B + AVRG(TOT, NSUM) 

AVRG is a statement function with dummy arguments S and N. When AVRG is 
referenced, actual arguments TOT and NSUM are substituted for the dummy 
arguments, the function is evaluated, and the result is used in the expression to 
calculate a value for X. 

Arguments 

Arguments in the argument list of a SUBROUTINE or FUNCTION statement are 
called dummy arguments. Arguments in the argument list of a CALL statement or 
function reference are called actual arguments. 

The referencing program unit passes actual arguments to the referenced procedure. The 
procedure receives values from the actual arguments and returns values to the 
referencing program unit. An actual argument can be a variable name, array name, or 
array element reference. In addition, an actual argument can be one of the following 
provided that the ·associated dummy argument is a variable that is not defined during 
execution of the referenced procedure: 

• A constant (including an extended Hollerith constant) 

• A symbolic constant 

• A function reference 

• An expression involving operators 

7-14 FORTRAN Version 1 Language Definition Usage Revision H 



Arguments 

• An expression enclosed in parentheses 

:AW\@t.U.aJ:\ij)fgijfu~ntitb.Jjt/iijfiji.f@~~fa~h.d~dJH&Uijf:ithd~4h~tmit./iijJtfiii.ijtecUJj$f if\th.e.\n.t$t 
~~1e.m.~nt>of#(?~f6.~mJ.mejisiijna.lXb.ool~<ijfhtWJi~MJ/beeh<@etm~a~:tffijW.ijv~tNt.h.ijtliij®.tam.a 
:aum.m&>iifiume.h.t.tmij$.t>hijt.J;>.e.>~mtear ihtci:::::au.fi#.gf:~~®.at.i6.hd~f>the>t~r.~ffih®.inP.t®.e.a.iii.f~t 

:Ald\iiiC.tullHJ:tgQ!m~n.t>thatti$.tan<mt~gettath~t.ijh.tt~~P.te.~$.wn<il.t::pa~ijdta~t~hTiiit.h.t.4tY:W 
~iht~ge.t>regM"dl~s~>\if:t:tbe.ti:c.tu.i.u:$lzin~r:>th.~>m.t~gijffWn.µ~~tihtt.hetei.P.teisitild~ 

Subprograms use dummy arguments to indicate the types of actual arguments, the 
number of arguments, and whether each argument is a variable, array, subprogram, or 
statement label. Dummy arguments must conform to the following rules: 

• Dummy arguments for statement functions must be variables. 

• A dummy argument appearing in a SUBROUTINE, FUNCTION, or ENTRY 
statement must not appear in EQUIVALENCE, DATA, PARAMETER, SAVE, or 
INTRINSIC statements except as a common block name. 

• Dummy arguments used in array declarations for adjustable dimensions must be 
type integer. Dummy arguments representing array names must be dimensioned (by 
a DIMENSION, type, or COMMON statement). 

I 

• Dummy arguments of type integer must be equal in length to the associated actual ='.:'=' 

argument. 

A dummy argument that is used as if it were a function or subroutine name is called 
a dummy procedure name. The actual argument associated with a dummy procedure 
name must be an intrinsic function, external function, subroutine name, or another 
dummy procedure. 

For Better Performance 

Whenever possible, replace each actual argument that is an array element with two 
actual arguments; one that is the entire array and one that is the subscript. For 
example: 

CALL SUBA(NUMA(I)) 

should be replaced with: 

CALL SUBA(NUMA,I) 

where NUMA is the array name and I is the subscript variable. This is faster because 
the address of NUMA(!) is not known at compile time but the addresses of NUMA and 
I are known. 

Revision H Program Units 7-15 



Argument Association 

Argument Association 

When a procedure is referenced, the actual arguments and dummy arguments are 
matched and each actual argument replaces a corresponding dummy argument. The 
first (leftmost) actual argument is matched with the first dummy argument, the second 
actual argument is matched with the second dummy argument, and so forth. The 
number of actual arguments and dummy arguments must be the same, and each actual 

lll argument must have the same type and size as its corresponding dummy argument, 
:ijiicijP.M:tu.a.t+~cJ;m.m~m.vJij~tu.iwtijtgumijht>~t®.~ij$.P.~na<matn1umta.itJjfgij@.!.h~th.ij)fl.h.g 
jgijyfQ.f:Htb.eJiti.thmi.tW.JtYP.eM If the actual argument is an expression, substring 
reference, or array element, it is evaluated before the arguments are associated. If the 
actual argument is a subprogram name, the subprogram must be available for 
execution at the time of the reference to the subprogram. 

A dummy argument is undefined unless it is associated with an actual argument. This 
can happen if the number of actual arguments in a subprogram reference is less than 
the number of dummy arguments, which is incorrect. It can also happen in procedures 
with multiple entry points which do not have the same dummy arguments. There is no 
error in this case unless an undefined dummy argument is referenced. Argument 
association can exist at more than one level of subprogram reference and terminates 
within a program unit at the execution of a RETURN or END statement. 

Example: 

CALL BSUB (I+J, VAR, X(3)) 

SUBROUTINE BSUB (N, A, B) 

The actual arguments are l+J, VAR, and X(3). When the CALL is executed, they 
become associated with the dummy arguments N, A, and B, respectively. 

A subprogram reference can cause a dummy argument to be associated with another 
dummy argument in the referenced subprogram. Any dummy arguments that become 
associated with each other can be referenced but must not be stored into during the 
execution of the subprogram. For example, if a subroutine is defined as 

SUBROUTINE ALPHA(X, Y) 

and referenced with 

CALL ALPHA {A, A) 

then the dummy arguments X and Y would each be associated with the actual 
argument A. X and Y would be associated with each other and therefore must not be 
stored into. 

A subroutine reference can cause a dummy argument to become associated with an 
entity in a common block. For example, if a subroutine contains the statements 

SUBROUTINE ALPHA {X) 
COMMON Y 

and the referencing program unit contains 

COMMON A 
CALL ALPHA {A) 

7-16 FORTRAN Version 1 Language Definition Usage Revision H 



Argument Association 

then the actual argument A causes the dummy argument X to become associated with 
Y, which is in blank common. In this case, X and Y cannot be stored into during 
execution of the subroutine. 

Variables as Arguments 

A variable in a dummy argument list can be associated -with a variable, array element, 
substring, or expression in the actual argument list. A subprogram can define or 
redefine a dummy argument if the associated actual argument is a variable name, 
array element name, or substring reference. A subprogram cannot redefine a dummy 
argument if the associated actual argument is a constant, a symbolic constant, a 
function reference,. an expression using operators, or an expression enclosed in 
parentheses. (An attempt to do so is not diagnosed, but causes an error during 
execution.) 

Arrays as Arguments 

Dummy arguments that represent array names must be dimensioned by a DIMENSION 
or type statement. The actual argument array and the dummy argument array can 
differ in the number and size of the dimensions. A dummy argument array can be 
associated with an actual argument that is an array, array element, or array element 
substring. 

If the actual argument is a noncharacter array name, the size of the dummy argument 
array must not exceed the size of the actual argument array. Each actual argument 
array element is associated with the dummy argument array element that has the 
same subscript value as the actual argument array element. 

If the actual argument is a noncharacter array element name, the size of the dummy 
argument cannot exceed (s+ 1-v), where s is the size of the actual argument array and 
v . is the subscript value of the array element. For example, if the program unit has the 
following statements: 

DIMENSION ARRAY(20) 

CALL CHECK (ARRAY(3)) 

·then the value of s is 20, and v is 3. The maximum dummy array size is 18 for the 
following subroutine: 

SUBROUTINE CHECK(DUMMY) 
DIMENSION DUMMY(18) 

The actual argument array elements are associated wih dummy argument array 
elements, starting with the first element passed. In the example, DUMMY(2) is 
associated with ARRAY(4), and DUMMY(18) is associated with ARRAY(20). 

Character Arguments 

When character data is passed to a subprogram, both the dummy and actual arguments 
must be of type character, and the length of the actual argument must be greater than 
or equal to the length of the dummy argument. If the length of the actual argument of 
type character is greater than the length of the dummy argument, only the leftmost 
characters of the actual argument, up to the length of the dummy argument, are 
associated with the dummy argument. 

Revision H Program Units 7-17 



Argument Association 

If a dummy argument is an array name, the length restriction applies to the entire 
array and not to each array element. The length of array elements in the dummy 
argument can be different from the length of array elements in the actual argument. 
The total length of the actual argument array must be greater than or equal to the 
total length of the dummy argument array. 

When an actual argument is a character substring, the length of the actual argument 
is the length of the substring. If the actual argument expression involves concatenation, 
the sum of the lengths of the operands is the length of the actual argument. 

The association for character array elements is basically the same as for noncharacter 
array elements. The actual argument for a character array element can be an array 
name, array element name, or character substring name. If the actual argument begins 
at :~haracter position n of an array, then the first character position of the dummy 
argument array becomes associated with character position n of the actual argument 
array, the second character position of the dummy argument array becomes associated 
with character position n+ 1 of the actual argument array, and so forth to the end of 
the actual argument array. For example, if a program unit has the following 
statements: 

DIMENSION A(2) 
CHARACTER A*2 

CALL SUB (A) 

and subroutine SUB has the following statements: 

SUBROUTINE SUB(B) 
DIMENSION 8(2) 
CHARACTER B*l 

then the first character of A(l) corresponds to B(l) and the second character of A(l) 
corresponds to B(2). 

Procedure Names as Arguments 

You can pass subroutine names and intrinsic or external function names through the 
argument list. A dummy argument that corresponds to an actual argument that is a 
procedure name must be used as a procedure name. 

If the dummy argument is used as if it were an external function, the corresponding 
actual argument must be an intrinsic or external function, or dummy procedure name. 
In this case, the type of the dummy argument must agree with the type of the result 
of all actual arguments that become associated with the dummy argument. 

If the dummy argument has the same name as an intrinsic function hut is associated 
with an actual argument that is an external function, the dummy argument refers to 
the external function, and not the intrinsic function. 

If the dummy argument is referenced as a subroutine, the actual argument must be a 
subroutine name. 

Subprogram names can be passed through more than one level of subprogram 
reference. At each level, the dummy argument must conform to the preceding rules. 

7-18 FORTRAN Version 1 Language Definition Usage Revision H 



Common Blocks 

Asterisks as Arguments 

A dummy argument that is an asterisk can only appear in the argument list of a 
SUBROUTINE or ENTRY statement in a subroutine subprogram. The actual argument 
is an alternate return specifier in the CALL statement. 

Common Blocks 

Common blocks can be used to communicate values among program units. The 
variables and arrays in a common block can be defined and referenced in all program 
units that contain a declaration of that common block. Common blocks are described in 
chapter 3. 

Example: 

PROGRAM AVR 
COMMON ANUM(10), STORE 

SUBROUTINE SUM 
COMMON A( 10), B 

The array ANUM in program AVR and the array A in subroutine SUM share the same 
locations in blank common. The variables STORE and B share the same location. 
Values stored into ANUM in the main program are available to SUM. 

Example: 

PROGRAM COM 
COMMON /CB/ARR(3) 

SUBROUTINE SUB 
COMMON /CB/A, B, C 

Variable A in SUB shares the same location as ARR(l) in the main program, B shares 
the same location as ARR(2), and C shares the same location as ARR(3). 

A reference to data in a common block is valid if the data is defined and is the same 
type as the type of the name used in the main program or subprogram. The exceptions 
to agreement between the type in common and the type of the reference are as follows: 

Either part of a complex entity can be referenced as real. 

A boolean entity can be referenced as integer. 

In a subprogram, entities declared in a named common block can either remain defined 
or become undefined at execution of an END or RETURN statement. If a named 
common block with the same name has been declared in a program unit that is 
directly or indirectly referencing the subprogram, the entities remain defined. Entities 
specified in a SAVE statement remain defined. Entities that are initially defined by 
DATA statements, and have neither been redefined nor become undefined, remain 
defined. Execution of a RETURN or END statement does not cause entities in blank 
common, or entities in any named common block that appears in the main program, to 
become undefined. 

Revision H Program Units 7-19 



I 

Adjustable Dimensions 

Adjustable Dimensions 

Adjustable dimensions allow you to create a more general subprogram that can accept 
varying sizes of array arguments. For example, a subroutine with a fixed array can be 
declared as: 

SUBROUTINE SUM(A) 
DIMENSION A(10) 

The maximum array size subroutine SUM can accept is 10 elements. If the same 
subroutine is to accept an array of any size, it can be written as: 

SUBROUTINE SUM(A,N) 
DIMENSION A(N) 

In this case, the value N is passed as an actual argument. 

Character strings and arrays can also be adjustable, as in the following subroutine: 

SUBROUTINE MESSAG (X) 
CHARACTER X*(*) 
PRINT *, X 

The subroutine declares X with a length of(*) to accept strings of varying size. Note 
that the length of the string is passed implicitly (rather than explicitly as an actual 
argument). 

Another form of adjustable dimension is the assumed-size array. In this case, the upper 
bound of the last dimension of the array is specified by an asterisk. The value of the 
dimension is not passed as an argument. You are responsible for ensuring that the 
array in the calling program is large enough to contain all the elements stored into it 
in the subroutine. 

Example: 

SUBROUTINE CAT (A,M,N,B,C) 
REAL A(M), B(N), C(*) 
D0101=1,M 

10 C(I) = A(I) 

DO 20 I = 1,N 
20 C{I+M) = B(I) 

RETURN 
END 

Subroutine CAT places the contents of array A, followed by the contents of array B, 
into array C. The dimension of C in the calling program must be greater than or equal 
to M+N. 

Use of the asterisk form of the adjustable dimension prevents subscript checking for 
the array, so you should be careful not to reference outside the array bounds. 

For Better Performance 

Assumed-length character strings require more execution time; replace with constant 
size strings whenever possible. 

7-20 FORTRAN Version 1 Language Definition Usage Revision H 



Assumed-Length Character Strings 

Assumed-Length Character Strings 

If you specify the length of a type character dummy argument as (*), the dummy 
argument assumes the length of the associated actual argument for each reference to 
the subroutine or function. A character dummy argument with length (*) is called an 
assumed-length character string. If the associated actual argument is an array name, 
the length assumed by the dummy argument is the length of each array element in the 
associated actual argument. 

Example: 

PROGRAM MN 
CHARACTER*3 CC, A(4) 

CALL TSUB (CC, A(1)(2:3)) 

END 
SUBROUTINE TSUB(CHAR, Z) 
CHARACTER*(*) CHAR, Z(4) 

The dummy argument CHAR in subroutine TSUB will have length 3 and each element 
of the array Z will have length 2. 

Multiple Entry 

The ENTRY statement defines an entry point for a subroutine or function subprogram. 
This statement has the form: 

' ENTRY epname (d, ... , d) 

epname 

Entry point name 

d 

Dummy argument that can be one of the following: 

A variable name 

An array name 

A dummy procedure name 

An asterisk, in a subroutine only 

If the entry point has no arguments, either the form ENTRY epname or ENTRY 
epname ( ) can be used. 

Each aubprogram has a primary entry point established by the SUBROUTINE or 
FUNCTION statement that begins the program unit. A subroutine call or function 
reference usually invokes the subprogram at the primary entry point, and the first 
statement executed is the first executable statement in the program unit. You can use 
ENTRY statements to define other entry points. 

An ENTRY statement can appear anywhere in a subprogram after the SUBROUTINE 
or FUNCTION statement except between a block IF statement and its corresponding 
END IF statement, or between a DO statement and the termi~ating statement of the 
DO loop. 

Revision H Program Units 7-21 



RETURN Statement 

When an entry name is used to reference a subprogram, execution begins with the first 
executable statement that follows the referenced entry point. An entry name is 
available for reference in any program unit, except in the subprogram that contains the 
entry name. The entry name can appear in an EXTERNAL statement and (for a 
function entry name) in a type statement. 

Each reference to a subprogram must use an actual argument list that corresponds in 
number of arguments and type of arguments to the dummy argument list in the 
corresponding SUBROUTINE, FUNCTION, or ENTRY statement. The dummy 
arguments for an entry point can therefore be different from the dummy arguments for 
the primary entry point or another entry point. Type agreement is not required for 

:

'.i .. !,:_=I ~~=l~~.;;;i~~~~~Q$~~~i;~~&ER~4W:U~®h~i~~;~;;;;:=:~;1fue 
:$ijjm~tfti.d.~UQ.riJQ.tlijubP.fdgfijj(faihi~td:~~tint~g~tid:fftthij/$.lmij/ii~~:; A dummy argument 
cannot be used in an ixecutable statement of a subprogram unless the argument has 
appeared in a physically preceding FUNCTION, SUBROUTINE, or ENTRY statement. 

Example: 

SUBROUTINE ALPHA (ARR,N) 
DIMENSION ARR (N) 
DO 20 I = 1,N 

ENTRY BETA (ARR,N,K) 
DO 40 I = 1,N,K 

Subroutine ALPHA can be entered either through entry point ALPHA, in which case 
the first statement executed is DO 20 I = 1,N, or through entry point BETA, in which 
case the first statement executed is DO 40 I = l,N,K. Note that the SUBROUTINE 
and ENTRY argument lists legally contain different numbers of arguments. Dummy 
argument K cannot be referenced by any statement before the ENTRY statement 
except a declarative statement (such as a type statement). 

RETURN Statement 

The RETURN statement transfers control from a referenced subprogram back to the 
referencing program unit. This statement has the form: 

RETURN exp 

exp 

Arithmetic or :b.6&.l!ih. expression. If exp is not of type integer, the value INT(exp) 
is used. The expression can be used only in a subroutine. If exp is omitted, the 
RETURN statement is known as a simple return. If exp is specified, the RETURN 
statement is known as an alternate return. 

When a RETURN statement without the optional expression is executed, control 
transfers to the statement immediately following the statement that called the 
referenced subprogram. If the referenced subprogram is a function subprogram, the 
function value is returned through the function name, the expression containing the 
function reference is evaluated, the result is stored, and execution continues. 

7-22 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Return 

RETURN statements are valid in main programs and in subroutine and function 
subprograms. Execution of a RETURN statement in a main program has the same 
effect as a STOP or END statement: the program terminates and control returns to the 
operating system. 

A subprogram can contain more than one RETURN statement. You can place them 
anywhere in the subprogram where a return operation is desired. Note that if a 
RETURN statement is not the last executable statement of a subprogram, the 
statement following the RETURN can be executed only as a result of a flow control 
statement, such as IF or GO TO, which transfers control to that statement. You can 
omit the RETURN statement entirely, in which case control returns to the calling 
program unit when an END statement is encountered in the flow of execution (chapter 
5). 

Alternate Return 

Execution of a RETURN or END statement in a subroutine returns control to the 
executable statement following the CALL statement in the referencing program unit. 
Control can be returned to a different statement in the referencing program unit if the 
RETURN exp form of the RETURN statement is used. Alternate returns can be used 
only in subroutine subprograms. 

An alternate return returns control to a specified point other than the next executable 
statement following the subprogram reference. The specified point is a statement label 
in the referencing program unit. The statement labels eligible for alternate return must 
be included in the actual argument list, with each label preceded by an asterisk. In the 
SUBROUTINE statement, the dummy argument corresponding to each statement label 
actual argument must be an asterisk. Other arguments can be included in the actual 
and dummy argument lists, but the asterisks in the dummy argument list must 
correspond in number and position to the statement labels in the actual argument list. 
For example, the statement 

SUBROUTINE SUB (A, •, •) 

contains two asterisk dummy arguments to be used with an alternate return. This 
subroutine could be called with the statement 

CALL SUB (XVAL, •10, •20) 

where 10 and 20 are the labels of executable statements appearing within the calling 
program. 

The value of exp in the statement RETURN exp determines the statement to which 
control returns. If the value of exp is 1, control returns to the first statement label 
specified in the actual argument list; if the value of exp is 2, control returns to the 
second label, and so forth. If exp is less than 1 or greater than the number of labels in 
the actual argument list, a simple return is performed; that is, control returns to the 
statement following the CALL. In the preceding example, the statement RETURN 1 in 
subroutine SUB returns control to the statement labeled 10, and RETURN 2 returns 
control to the statement labeled 20. 

Revision H Program Units 7-23 



Calling Other-Language Subprograms 

Example: 

PROGRAM MAIN 
CALL COMP (A, B, •20, •30, •40) 

END 

SUBROUTINE COMP (81, B2, • • •) 

RETURN I + J - 3 

If the value of I + J - 3 is 1, control returns to statement 20; if the value is 2, 
control returns to statement 30; if the value is 3, control returns to statement 40. For 
any other value, control returns to the statement following the CALL statement. 

Control Data Extension 

Calling Other-Language Subprograms 

FORTRAN allows you to call subprograms written in languages other than FORTRAN. 
lil These languages include CYBIL, COBOL, C, and FORTRAN Version 2. All languages 

under NOS/VE generate a standard subprogram calling sequence. Therefore, the only 
restrictions are to ensure that the subprogram names and dummy arguments (if any) 
conform to FORTRAN requirements. The rules described earlier in this chapter for 
calling FORTRAN subprograms also apply to calling subprograms written in other 
languages. 

You should be careful when accessing the same file both in a FORTRAN program in a 
subprogram written in another language, because of the language dependency of certain 
operations. The following operations always produce the expected results when 
performed on shared files: 

• All terminal input and output. 

• All usages where output is the only operation being performed on the shared file. 

• All usages where the file is written by one or more languages and then read by 
another language, provided that you close and then reopen the file before reading 
it. 

Other usages may cause unexpected results and should be avoided. 

Calling CYBIL Procedures 

You can call a CYBIL procedure from a FORTRAN program using a standard CALL 
statement or function reference. Values can be passed between the CYBIL procedure 
and FORTRAN program through the argument list and function return value. If the 
CYBIL procedure name is a valid FORTRAN name (1 through 7 letters, digits, or 
underscores, beginning with a letter), the FORTRAN procedure must be declared with 
the XDCL attribute in the CYBIL procedure. If the CYBIL procedure name is not a 
valid FORTRAN name, you must use the C$ EXTERNAL statement to rename the 
procedure. The C$ E.XTERNAL statement is described in appendix D. The dummy 
(formal) parameters must be declared in VAR of the CYBIL routine and must 
correspond in number and data type to the FORTRAN actual arguments. 

7-24 FORTRAN Version 1 Language Definition Usage Revision H 



Calling CYBIL Procedures 

The arguments passed to the CYBIL subprogram can be variables,. constants, symbolic 
constants, arrays, or expressions with operators. When passing arrays to a CYBIL 
subprogram, you should not pass assumed-size or adjustable arrays. 

The correspondence of data types between FORTRAN and CYBIL is as follows: 

FORTRAN 

INTEGER 

LOGICAL 

CHARACTER 

COMPLEX 

BOOLEAN 

REAL 

DOUBLE 
PRECISION 

CHARACTER*264 

CYBIL 

INTEGER 

STRING(*) or 
CHARACTER 

REAL 

OST$STATUS 

The OST$STATUS variable of system-resident CYBIL procedures can be processed as a 
FORTRAN character variable by using the NOSNE status subprograms described in 
chapter 9. 

The dummy arguments can be subranges of any of the above types. 

The storage sequence for CYBIL arrays having dimension greater than one differs from 
that of FORTRAN. In FOR'.I;'RAN, arrays are stored in columnwise order, whereas in 
CYBIL, arrays are stored in rowwise order. Thus, for example, the elements of a 
FORTRAN array dimensioned (3,2) are stored in ascending locations as follows: 

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) 

A CYBIL array dimensioned (3,2) is stored in ascending locations as follows: 

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) 

Arithmetic variables, constants, symbolic constants, and expressions that are passed to 
a CYBIL routine are normally passed by value, that is, the value of the parameter is 
passed rather than its address. You can pass variables, constants, symbolic constants, 
and expressions by address ·using the PTR function and the C$ EXTERNAL directive. 
You can also use the C$ EXTERNAL directive to call a CYBIL routine name that does 
not conform to FORTRAN naming conventions. Character data is always passed by 
reference. 

The following example shows a FORTRAN main program that calls a CYBIL procedure 
named CT. The main program reads a character string and a single character from the 
terminal and passes them to the CYBIL procedure. The CYBIL procedure counts the 
number of occurrences of the character within the string and returns the result to the 
main program. The main program prints the result and terminates. 

Revision H Program Units 7-25 



Calling CYBIL Procedures 

PROGRAM STRING 
CHARACTER STR*60, C 

C Request and read input values. 
PRINT *, ' Type input string' 
READ (*,*) STR 
PRINT *, ' Type character to be counted' 
READ'(*,*) C 

C Call CYBIL procedure. 
CALL CT (C, STR, N) 

C Print results. 
PRINT 99, STR, C, N 

99 FORMAT (' Input string= ' A60, /' Character= ' A1, 
+ /'Count=', 12) 

END 

CYBIL Procedure: 

MODULE char_count; 
PROCEDURE [XDCL] ct (VAR C: char; 

VAR j: integer; 
1 := O; 

VAR s: string(*); 
VAR 1: integer); 

FOR j := 1 TO STRLENGTH(s) DO; 
IF s(j) = c THEN; 

1 := 1 + 1; 
IFEND; 

FOREND; 
PROCEND ct; 

MODEND; 

Example of terminal dialog: 

/fortran input=cytest binary_object=ftnbin <---

/cybil input=cyproc binary_object=cybin <------

/execute task (ftnbin,cybin) <-----------------

Type input string <--------------------------
? 'Hi there, somebody' <-----------------------
Type character to be counted <----------------

? 'e' <----------------------------------------
Input string= Hi there, somebody 
Character= e <--------------------------------
Count= 3 

7-26 FORTRAN Version 1 Language Definition Usage 

Compile FORTRAN main 
program. 

Compile CYBIL procedure. 

Execute program. 

Prompt for input. 
User input. 

Prompt for input. 
User input. 

Program output. 

Revision H 



Calling COBOL Subprograms 

Calling COBOL Subprograms 

You can call COBOL subprograms from a FORTRAN program using a standard CALL 
statement. The name of the COBOL subprogram must be a valid FORTRAN name (1 
through 7 letters or digits beginning with a letter). You can pass values between the 
calling program and the called subprogram through an argument list or through 
common storage. 

If you use an argument list, the actual arguments in the CALL statement are 
associated with dummy arguments specified in the USING clause of the PROCEDURE 
DIVISION statement. The actual arguments must correspond in number and data type 
to the dummy arguments. The rules for argument association described earlier in this 
chapter apply to COBOL subprograms as well. 

The correspondence of data types between FORTRAN and COBOL is as follows: 

FORTRAN 

REAL 

DOUBLE 
PRECISION 

INTEGER (signed) 

CHARACTER 

COMPLEX 

BOOLEAN 

LOGICAL 

COBOL 

COMP-1 

COMP-2 

S9(18) COMP SYNC 
LEFT 

X(n) or 9(n) 

Communication through common storage is achieved through the named common block 
CCOMMON. In the COBOL subprogram, all data assigned to the COMMON-STORAGE 
section is automatically placed in CCOMMON. You can share the common storage area 
by declaring CCOMMON in the FORTRAN calling program. 

The following example shows how a FORTRAN program can call a simple COBOL 
subprogram. The FORTRAN program COBTST calls the COBOL subprogram COBSUB, 
and passes values through the argument list and through CCOMMON. An integer 
value and a real value ·are passed to CBSUB through CCOMMON, and a character 
string STRl is passed through the argument list. CBSUB displays the two numbers 
and the string, and returns a string to COBTST through the argument list. 

Revision H Program Units 7-27 



Calling COBOL Subprograms 

Program COBTST: 

c 

PROGRAM COBTST 
CHARACTER STR1*21, STR2*9 
COMMON /CCOMMON/I, X <-------------------

STR1 = 'Here are some numbers' 
I = 4 
x = 2.414 

C Call COBOL subprogram. 
c 

CALL CBSUB (STR1, STR2) <----------------

PRINT *, STR2 
END 

Subprogram CBSUB: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CBSUB. 
DATA DIVISION. 

Items in CCOMMON share storage 
with items in the 
COMMON-STORAGE section. 

Actual arguments are associated 
with items declared in LINKAGE 
section. 

COMMON-STORAGE SECTION. <------------------------ Define items to be in common. 
01 INTEGER-1 PIC 9(18) COMP SYNC LEFT. 
01 REAL-1 COMP-1. 
LINKAGE SECTION. 
77 STRING-1 PIC X(21). <------------------------

77 STRING-2 PIC X(9). 
PROCEDURE DIVISION USING STRING-1, STRING-2. 
PASSING-DATA. 

DISPLAY STRING-1. 
DISPLAY "First number= " INTEGER-1. 
DISPLAY "Second number =" REAL-1. 
MOVE "Thank you" TO STRING-2. 
EXIT PROGRAM. 

Define items to be passed as 
arguments. 

Terminal Dialog (assumes FORTRAN source is on file FPROG, and COBOL source is 
on file CSUB): 

/fortran 1nput=fprog b1nary_object=fb1n <-------- Compile FORTRAN program. 

/cobol input=csub binary_object=cb1n sp=true <--- Compile COBOL subprogram. 

/execute_task (fb1n, cb1n) <--------------------- Execute program. 

Here are some numbers 
First number = 4 <------------ Program output. 
Second number +.24140000000000E+001 
Thank you 

7-28 FORTRAN Version 1 Language Definition Usage Revision H 



Calling C Routines 

Calling C Routines 

You can call a C routine from a FORTRAN program using a standard CALL statement 
or function reference. Because of different calling sequences and naming conventions, 
you must first declare the name of the C routine in a C$ EXTERNAL compiler 
directive (described in appendix D). The C$ EXTERNAL compiler directive allows your 
program to reference the external routine by a valid FORTRAN program unit name. 
Values can be passed between the FORTRAN program and C routine through the 
argument list. 

The arguments passed to the C routine can be constants, symbolic constants, variables, 
expressions with operators, or arrays. Arguments can be of type integer, real, or 
character. In C, character data are considered to be arrays of single characters. For 
example, if a character variable of length 3 is passed to a C routine, it will be treated 
as a character array of size 3, with each array element representing a character value: 

FORTRAN Character 
Data 

CHARACTER COLOR*3 
COLOR='RED' 

The variable COLOR 
contains the character 
string 'RED' 

C Character Data 

char color [3]; 

The array COLOR has the following 
values: 

color[O] ='R' 
color[l] = 'E' 
color[2] ='D' 

The correspondence of data types between FORTRAN and C is as follows: 

FORTRAN Data Type 

REAL 

INTEGER(full word) 

CHARACTER*N 

DOUBLE PRECISION 

COMPLEX 

BOOLEAN 

LOGICAL 

C Data Types 

float or double 

int 

char array[n] 

Variables, constants, symbolic constants, and expressions that are passed to a C routine 
are normally passed by value, that is, the value of the parameter is passed rather than 
its address. You can pass variables, constants, symbolic constants, and expressions by 
address using the PTR function. Arrays are passed to a C routine by address; the 
address of the first data element is passed rather than its value. 

Only integer and real function values are supported by C. 

Revision H Program Units 7-29 



Calling C Routines 

If a routine written in C expects an address of a data value, rather than the value 
itself, use the PTR intrinsic function with the data value name as an argument in the 
CALL statement or function reference. PTR(a) is a generic function that returns the 
address of a. The result of the PTR function can not be used within a FORTRAN 
program unit. 

Before using the C compiler or executing a routine written in C, you must execute 
these two SCL commands: 

$SYSTEM.C.SETUP 
SET_WORKING_CATALOG,$USER 

The following example shows a FORTRAN main program that calls a C routine named 
SEE_ME: 

FORTRAN program: 

PROGRAM MEETING 
INTEGER !HOUR 
CHARACTER WEEKDAY*7 

C$ EXTERNAL (ALIAS='see_me', LANG=C) CPROC 
IHOUR=S 
CALL CPROC (WEEKDAY) 
PRINT *, WEEKDAY, 'AT', !HOUR 
END 

C Routine: 

see_me (week.day) 
char week.day[7]; 

{ weekday[O]='T'; 

} 

weekday[1]='U'; 
weekday[2]='E'; 
weekday[3]='S'; 
weekday[4]='D'; 
weekday[S]='A'; 
weekday[6]='Y'; 

The argument IHOUR and WEEKDAY are passed by value to the C routine. The 
character variable WEEKDAY of size 7 is treated as an array of size 7 in the C 
routine. The value of the first character of WEEKDAY is the same as the value of the 
first element of WEEKDAY and so forth. 

Example: 

PROGRAM P 
C$ EXTERNAL (ALIAS='c_routine', LANG=C) CSUB 

CALL CSUB(PTR(J)) 
END 

c_routine (pj) 

int •pj; 

7-30 FORTRAN Version 1 Language Definition Usage Revision H 



Calling FORTRAN Version 2 Subprograms 

{ 

} 

int a=10; 
pj=&a; 

The main program calls the C routine and passes the argument J by address rather 
than by value. The address of J was needed in the C routine. 

Calling FORTRAN Version 2 Subprograms 

Normally, you reference FORTRAN routines by CALL statements or function 
references. However, if a FORTRAN routine name does not confrom to FORTRAN 
Version 1 naming conventions (1 through 7 letters or digits, beginning with a letter), 
you can use the C$ EXTERNAL directive to access the routine. The C$ EXTERNAL 
directive allows your program to reference the routine with a valid FORTRAN Version 
1 name. 

The arguments passed to the FORTRAN routine follow the same rules as .arguments to 
a FORTRAN subroutine or function. 

Example . (FORTRAN Version 1 calling program): 

PROGRAM MAIN 
REAL ARAY(S) 

C$ EXTERNAL (ALIAS='FTN_SUBROUTINE', LANG=FTN) FTNSUB 

END 

FORTRAN Version 2 subroutine: 

SUBROUTINE FTN_SUBROUTINE(ARAY) 
REAL ARAY(S) 
ARAY(1) = LOG (ARAY(1)) 
RETURN 
END 

The subroutine is wrtten in FORTRAN Version 2 which allows 31 character program 
unit names. The C$ EXTERNAL statement causes the calling program to recognize the 
subroutine by the name FTNSUB, which is a valid FORTRAN Version 1 name. 

To execute the program (FMAIN contains the main program's binary object file; FSUB 
contains the subroutine's binary object file): 

/execute_task (fma1n, fsub) 

End of Control Data Extension 

Revision H Program Units 7-31 





Intrinsic Functions 

This chapter describes the FORTRAN and Math Library supplied functions that 
perform various mathematical operations. 

Generic and Specific Names 

8 

8-2 

Function Descriptions . . . . . . . . . . . . . . . . . . . . . 8-10 
ABS . . . . . . . . . . . . . . . . . . . .......... 8-10 
ACOS . . . . . . . . . . . . . . . . . . . . . . 8-10 
AIMAG . . . . . . . . . . . . . . . . . . . . . . . . . ..... 8-10 
AINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
ALOG . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
ALOGlO . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
AMAXO . . . . . . . . . . . . . . . . . . . . . 8-10 
AMAXl . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
AMINO. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
AMINI. . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 8-11 
AMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 8-11 . 
AND (CDC Extension) .................................. 8-11 
ANINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
ASIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
ATAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-11 
ATANH (CDC Extension) . . . . . . . . . . . . . . . . . . . .... 8-12 
ATAN2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-12 
BOOL (CDC Extension) . . . . . . . . . . . . . ................ 8-12 
CABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-12 
ccos ......................................... 8-13 
CEXP ........................................... 8-13 
CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . ................ 8-13 
CLOG . . . . . . . . . . . . . . . . . . . . . ................ 8-13 
CMPLX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-13 
COMPL (CDC Extension) . . . . . . . . . . . . . . . . . . . . . .... 8-14 
CON JG . . . . . . . . . . . . . . . . . . . . ................ 8-14 
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-14 
COSD (CDC Extension) . . . . . . . . . . . . . . . . . . . . ..... 8-14 
COSH ........................................... 8-14 
COTAN (CDC Extension) . . . . . . . . . . . . . . . . . . . . . . ..... 8-14 
CSIN . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-15 
CSQRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 8-15 
DABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 8-15 
DA COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 8-15 
DASIN ........................................... 8-15 
DATAN .......................................... 8-15 
DATAN2 .......................................... 8-15 
DBLE . . . . . . . . . . . . . . . . . 8-16 
DCOS ........................................... 8-16 



DCOSH .......................................... 8-16 
DDIM ........................................... 8-16 
DEXP ........................................... 8-16 
DIM ............................................ 8-16 
DINT ............................................ 8-16 
DLOG ........................................... 8-17 
DLOGlO .......................................... 8-17 
DMAXl .......................................... 8-17 
DMINl ........................................... 8-17 
DMOD ........................................... 8-17 
DNINT ........................................... 8-17 
DPROD .......................................... 8-17 
DSIGN ........................................... 8-17 
DSIN ............................................ 8-18 
DSINH ........................................... 8-18 
DSQRT ........................................... 8-18 
DTAN ........................................... 8-18 
DTANH .......................................... 8-18 
EQV (CDC Extension) .................................. 8-18 
ERF (CDC Extension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18 
ERFC (CDC Extension) ................................. 8-19 
EXP ............................................ 8-19 
EXTB (CDC Extension) ................................. 8-19 
FLOAT ........................................... 8-19 
IABS ............................................ 8-19 
I CHAR ........................................... 8-20 
IDIM ............................................ 8-20 
ID INT ........................................... 8-20 
IDNINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
IFIX ............................................ 8-20 
INDEX ........................................... 8-20 
INSB (CDC Extension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 
INT ............................................ 8-21 
ISIGN ........................................... 8-21 
LEN ............................................ 8-21 
LGE ............................................ 8-21 
LGT ............................................ 8-21 
LLE ............................................ 8-22 
LLT ............................................. 8-22 
LOG ............................................ 8-22 
LOGlO ........................................... 8-22 



MASK (CDC Extension) 8-22 
MAX. 8-22 
MAXO 8-22 

MAXl 8-23 
MIN 8-23 
MINO 8-23 

MINl 8-23 
MOD 8-23 
NEQV (CDC Extension) 8-23 

NINT 8-23 
OR (CDC Extension) 8-24 
PTR (CDC Extension) 8-24 
RANF (CDC Extension) 8-24 
REAL 8-24 
SHIFT (CDC Extension) 8-25 

SIGN. 8-25 
SIN. 8-25 
SIND (CDC Extension). 8-25 
SINH. 8-25 
SNGL 8-25 
SQRT 8-26 
SUMlS (CDC Extension) 8-26 
TAN 8-26 
TAND (CDC Extension) 8-26 

TANH 8-26 
XOR (CDC Extension) 8-26 





Intrinsic Functions 8 

An intrinsic function is a compiler-defined procedure that returns a single value. 
Intrinsic functions are referenced in the same way as user-written (external) function 
subprograms. If, in a particular program unit, a variable, array, or statement function 
is declared with the same name as an intrinsic function, the name cannot refer to the 
intrinsic function within that program unit. If a function. subprogram is written with 
the same name as an intrinsic function, use of the name references the intrinsic 
function, unless the name is declared as the name of an external function with the 
EXTERNAL statement described in chapter 3. 

Intrinsic functions are typed by default and need not appear in any explicit type 
statement in the program. Explicitly typing a generic intrinsic function name does not 
remove the generic properties of the name. If you attempt to type an intrinsic function 
as something other than its default type, a warning message is displayed and the type 
statement is disregarded. For intrinsic functions that have multiple arguments, all 
arguments must be of the same type (boolean type will be converted). An IMPLICIT 
NONE statement does not affect the type of the results of any intrinsic functions. 

Intrinsic routines are in the Math Library and normally accessed through the 
call-by-value calling procedure. To access an intrinsic function through the 
call-by-reference calling procedure, specify EE= R on the FORTRAN command. 

NOTE 

You should ensure that real, double precision, and complex arguments to intrinsic 
functions are in normalized standard floating point form, as unnormalized or 
non-standard arguments can cause undefined results. FORTRAN automatically 
normalizes all real, double precision, and complex constants, and results of all floating 
point operations with standard normalized or zero operands are normalized or zero. 
However, it is possible to generate unnormalized or nonstandard operands by means of 
boolean expressions, equivalencing, or various input operations. 

Revision H Intrinsic Functions 8-1 

l 



Generic and Specific Nam es 

Generic and Specific Names 

Certain intrinsic functions have ageneric name and one or more specific names. For 
these functions, either the generic name or one of the specific names can be used. The 
generic name provides more flexibility because it can be used with any of the valid 
data types; except for functions performing type conversion, nearest integer, and 
absolute value with a complex argument, the type of the argument determines the type 

lll of the result. An integer*2 or integer*4 value used as an argument to a function is 

.:!:~.:.:! converted to a full word (8 byte) integer before being used as an argument. The 
conversion does not change the sign of the argument. A function accepting integer, 
real, complex or double precision type arguments will also accept boolean arguments. A 
boolean argument is converted to integer, if it's an allowable argument type; otherwise, 
it is converted to real, before computation. However, only a specific name can be used 
as an actual argument when passing the function name to a user-defined subprogram. 
Using a specific name requires a specific argument type. For example, the generic 
function name LOG computes the natural logarith~ of an argument. Its argument can 
be real, double precision, complex or boolean (converted to real). The type of the result 
is the same as the type of the argument. 

Specific function names ALOG, DLOG, and CLOG also compute the natural logarithm. 
The specific function name ALOG computes the 'log of a real or boolean argument and 
returns the result. Likewise, the specific name DLOG is for double precision (or 
boolean) arguments and double precision results and the specific name CLOG is for 
complex (or boolean) arguments and complex results. 

The intrinsic functions are summarized in table 8-1. The functions are listed in 
alphabetical order of generic name or, where no generic name exists, of specific name. 
An asterisk in the Generic Name column indicates that the function is a CDC 
extension. For specific names, the types of the arguments and results are shown. 
Boolean arguments are not listed in the table, but follow the conversion rules described 
above. Table 8-2 shows the domain and range for a subset of the mathematical 
intrinsic functions. 

8-2 FORTRAN Version 1 Language Definition Usage Revision H 



Generic and Specific Names 

Table 8-1. Intrinsic Functions 

Generic Specific Type of Type of 
Name Names Argument Function Description 

ABS IABS Integer*2 Integer Absolute value 
Integer*4 ·:: 

Integer 
ABS Real Real 
DABS Double Double 
CABS Complex Real 

ACOS ACOS Real Real Arccosine 
!!! DA COS Double Double 

None AIMAG Complex Real Imaginary part of complex I argument 

AINT AINT Real Real Truncation 
~:~ 
l!! DINT Double Double 
m 

None AMAXO Integer Real Maximum value lll 

None AMINO Integer Real Minimum value 

None* AND Any type but Boolean Boolean product 
character 

:·: 

AN INT AN INT Real Real Nearest whole number ::: 
::: 
::: 

DNINT Double Double ~l~ 
ASIN ASIN Real Real Arcsine 

Ill 
DASIN Double Double ::: 

::: 
::: 
::: 

ATAN ATAN Real Real Arctangent ::: 
::: 
::: 

DATAN Double Double m 

ATAN2 ATAN2 Real Real 
l!l 
::: 

DATAN2 Double Double m 
m 
::: 

None* ATANH Real Real Hyperbolic arctangent 
111 

BOOL* Any type but Boolean Conversion to boolean iii 

logical ~~~ 
::: 

None CHAR Integer*2 Character Integer conversion to ;~~ 
~~~ Integer*4 Character character ::: 
:::

Integer Character
!l!

None* COMPL Any type but Boolean Complement
:::
:::
:::

character ~~~
:::

None* COTAN Real Real Cotangent (argument in
:;:

I radians)

Integer denotes full word (eight-byte) integers.
lll

(Continued) ~;~

!l!

Revision H Intrinsic Functions 8-3

Generic and Specific Names

Table 8-1. Intrinsic Functions (Continued)

Generic
Name

CMPLX

cos

None*

COSH

None

DBLE

DIM

None

None*

None*

None*

EXP

EXTB

None

Specific
Names

cos
DCOS
ccos
COSD

COSH
DCOSH

CON JG

IDIM

DIM
DDIM

DPROD

EQV

ERF

ERFC

EXP
DEXP
CEXP

None

I CHAR

Type of
Argument

Integer*2
lnteger*4
Integer
Real
Double
Complex

Real
Double
Complex

Real

Real
Double

Complex

Integer*2
Integer*4
Integer
Real
Double
Complex

Integer*2
lnteger*4
Integer
Real
Double

Real

Any type but
character

Real

Real

Real
Double
Complex

al: Any type but
character a2,a3:
Integer

Character

Type of
Function

Complex
Complex
Complex
Complex
Complex
Complex

Real
Double
Complex

Real

Real
Double

Complex

Double
Double
.Double
Double
Double
Double

Integer

Real
Double

Double

Boolean

Real

Real

Real
Double
Complex

Boolean

Integer

Integer denotes full word (eight-byte) integers.

8-4 FORTRAN Version 1 Language Definition Usage

Description

Conversion to complex

Cosine, argument
in radians

Cosine, argument in degrees

Hyperbolic cosine

Negation of imaginary part.

Conversion to double

precision

Positive difference

Double precision product

Equivalence

Error function

Complementary error
function.

Exponential function

Extract a string of bits

Character conversion to
integer

(Continued)

Revision H

Table 8-1. Intrinsic Functions (Continued)

Generic
Name

None

INSB

INT

None

None

None

None

None

LOG

LOGlO

None*

MAX

None

MIN

None

Specific
Names

INDEX

None

INT

INT
IFIX
I DINT

LEN

LGE

LGT

LLE

LLT

ALOG
DLOG
CLOG

ALOGlO
DLOGlO

MASK

MAXO

AMAXl
DMAXl

MAXl

MINO

AMINl
DMINl

MINl

Type of
Argument

Character

al ,a4: Any type
but character
a2,a3: Integer

lnteger*2
lnteger*4
Integer
Real
Real
Double
Complex

Character

Character

Character

Character

Character

Real
Double
Complex

Real
Double

Integer or Boolean

Integer*2
Integer*4
Integer
Real
Double

Real

lnteger*2
lnteger*4
Integer
Real
Double

Real

Type of
Function

Integer

Boolean

Integer
Integer
Integer
Integer
Integer
Integer
Integer

Integer

Logical

Logical

Logical

Logical

Real
Double
Complex

Real
Double

Boolean

Integer

Real
Double

Integer

Integer

Real
Double

Integer

Integer denotes full word (eight-byte) integers.

Revision H

Generic and Specific Names

Description

Index of a substring

Insert a string of bits

Conversion to integer

Length of character string

Lexically greater than or
equal

Lexically greater than

Lexically less than or equal

Lexically less than

Natural logarithm

Common logarithm

Mask

Largest value

Smallest value

(Continued)

Intrinsic Functions 8-5

Generic and Specific Nam es

Table 8-1. Intrinsic Functions (Continued)

Generic
Name

MOD

None*

NINT

None*

PTR*

None*

REAL

REAL

None*

SIGN

Specific
Names

MOD

AMOD
DMOD

NEQV

NINT
IDNINT

OR

None

RANF

FLOAT

FLOAT

REAL

SNGL

SHIFT

!SIGN

SIGN
DSIGN

Type of
Argument

lnteger*2
lnteger*4
Integer
Real
Double

Any type but
character

Real
Double

Any type but
character

Any type

None

Integer*2

lnteger*4

Integer

lnteger*2

Integer*4

Integer
Integer
Real
Complex
Double

Any type but
character for al;
integer or Boolean
for a2

lnteger*2
Integer*4
Integer
Real
Double

Type of
Function

Integer
Integer
Integer
Real
Double

Boolean

Integer
Integer

Boolean

Boolean

Real

Real

Real

Real

Real

Real

Real
Real
Real
Real
Real

Boolean

Integer

Real
Double

Integer denotes full word (eight-byte) integers.

8-6 FORTRAN Version 1 Language Definition Usage

Description

Remaindering

Nonequivalence

Nearest integer

Boolean sum

Parameter address; used
only when passing
parameters to C or CYBIL
routines

Random number generator

Conversion to real

Conversion to real

Shift

Transfer of sign

(Continued)

Revision H

Table 8-1. Intrinsic Functions (Continued)

Generic
Name

SIN

None*

SINH

SQRT

SUMlS

TAN

None*

TANH

None*

Specific
Names

SIN
DSIN
CSIN

SIND

SINH
DSINH

SQRT
DSQRT
CSQRT

None

TAN
DTAN

TAND

TANH
DTANH

XOR

Type of
Argument

Real
Double
Complex

Real

Real
Double

Real
Double
Complex

Integer
Real
Double
Complex

Real
Double

Real

Real
Double

Any type but
character

Type of
Function

Real
Double
Complex

Real

Real
Double

Real
Double
Complex

Integer

Real
Double

Real

Real
Double

Boolean

Integer denotes full word (eight-byte) integers.

Revision H

Generic and Specific Names

Description

Sine (argument in radians)

Sine (argument in (degrees)

Hyperbolic sine

Square root

Number of bits that are set
in a word

Tangent (argument in
radians)

Tangent (argument in
degrees)

Hyperbolic tangent

Exclusive OR

Intrinsic Functions 8-7

Generic and Specific Names

Table 8-2. Mathematical Intrinsic Functions

Function Domain

ACOS(a) lal ~ 1
DACOS(a)

ASIN(a) lal ~ 1
DASIN(a)

ATAN(a) -infinity ~ a ~ infinity
DATAN(a)

ATAN2(al,a2) a2<0, al <O

DATAN2(al,a2) a2 < 0, al~ 0
a2=0, al<O
a2=0, al>O
a2>0, al<O
a2>0, al~O

ATANH(a)

COS(a)
DCOS(a)

COTAN(a)

CCOS(ar ,ai)

COSD(a)

COSH(a)
DCOSH(a)

ERF(a)

ERFC(a)

EXP(x)
DEXP(x)

CEXP(ar ,ai)

LOG(a)
ALOG(a)
DLOG(a)

CLOG(ar ,ai)

a2=0, al=O (error)

lal ~ 1

lal < 2**47

lal < 2**47

larl < 2**47
lail < 4095*log(2)

lal < 2**47

lal < 4095*log(2)

infinity ~ a ~ infinity

infinity ~ a ~ 25.923

x < 4095*log(2)
x ~ -4097*log(2)

larl < 4095*log(2)
larl < -4097*log(2)
!ail < 2**47

a > 0

(ar, ai) =/:. (O,O) (ar**2 + ai**2) **
1/2 in machine range

8-8 FORTRAN Version 1 Language Definition Usage

Range

0 ~ ACOS(a) ~ pi

-pi/2 ~ ASIN(a) ~ pi/2

-pi/2 ~ ATAN(a) ~ pi/2

-pi < ATAN2(al,a2) < -
pi/2
pi/2 ~ ATAN2(al ,a2) ~ pi
ATAN2(al ,a2) = -pi/2
ATAN2(al,a2) = pi/2
-pi/2 < ATAN2(al,a2) < 0
0 ~ ATAN2(al,a2) < pi/2

-1 ~ COS(a) ~ 1

-1~ CCOS(x)~ 1
x=ar+(ai)i

-1 ~ COSD(a) ~ 1

COSH(a) ~ 1
DCOSH(a) ~ 1

-1 ~ ERF(a) ~ 1

~ ERFC(a) ~ 2

ILOG(a)I < 4095*log(2)

-pi < CLOG(ai) < pi

(Continued)

Revision H

Generic and Specific Names

Table 8-2. Mathematical Intrinsic Functions (Continued)

Function

LOGlO(a)
ALOGlO(a)
DLOGlO(a)

SIN(a)
DSIN(a)

CSIN(ar,ai)

SIND(a)

SINH(a)
DSINH(a)

SQRT(a)
DSQRT(a)

CSQRT(ar ,ai)

TAN(a)
DTAN(a)

TAND(a)

TANH(a)

Revision H

Domain

a > 0

lal < 2**47

larl < 2**47
lail < 4095*log(2)

lal < 2**47

lal < 4095*log(2)

a ~ 0

(ar**2 + ai**2) **1/2 + larl in
machine range

lal < 2**47

lal < 2**47
a cannot be exact odd multiple of 90

Range

ILOGlO(a)I < 4095*log(2)
base 10

-1 ~ SIN(a) ~ 1

-1 ~ SIND(a) ~ 1

SQRT(a) ~ 0

value in right half ofplane
(ar ~ 0)

-1 ~ TANH(a) ~ 1

Intrinsic Functions 8-9

Function Descriptions

Function Descriptions

Following are descriptions of the intrinsic functions. The generic and specific names are
listed in alphabetical order.

ABS

ABS(a) is a generic function that returns the absolute value(magnitude) of a boolean,
integer (any size), real, complex, or double precision argument. The result is integer,
real, or double precision, depending on the argument type. For a complex argument,
the result is the square root of (ar**2 + ai**2), where ar is the real part of the
argument and ai is the imaginary part. The specific names are IABS, ABS, DABS, and
CABS.

ACOS

ACOS(a) is a generic function that returns the arccosine of a boolean, real or double
precision argument. The result is in radians. The result is real or double precision,
depending on the argument type. The specific names are ACOS and DACOS.

AIMAG

AIMAG(a) is a specific function that returns the imaginary part of a boolean or
complex argument. The real result is ai, where the complex argument is (ar,ai).
AIMAG does not have a generic name.

AINT

AINT(a) is a generic function that returns a whole number after truncation. The result
is real. For a boolean, real or double precision argument, the result is 0 if lal < 1. If
lal ~ 1, the result is the largest whole number with the same sign as argument. a that
does not exceed lal. The specific names are AINT and DINT.

ALOG

ALOG(a) is a specific function that returns the natural logarithm (logarithm base e) of
a boolean or real argument. The result is real. The argument must be greater than
zero. The generic name is LOG.

ALOGIO

ALOG lO(a) is a specific function that returns the common logarithm (logarithm base
10) of a real or boolean argument. The result is real. The argument must be greater
than zero. The generic name is LOGIO.

AMAXO

AMAXO(a, .. ., a) is a specific function that returns the largest value from the 2
through 500 arguments. The arguments are boolean or integer; the result is real. There
is no generic name.

8-10 FORTRAN Version 1 Language Definition Usage Revision H

AMAXl

AMAXl

AMAXl(a, ... , a) is a specific function that returns the largest value from the 2
through 500 arguments. The arguments are boolean or real; the result is real. The
generic name is MAX.

AMINO

AMINO(a, ... , a) is a specific function that returns the smallest value from the 2
through 500 arguments. The arguments are boolean or integer; the result, is real. There
is no generic name.

AMINI

AMINl(a, ... , a) is a specific function that returns the smallest value from the 2
through 500 arguments. The arguments are boolean or real; the result is real. The
generic name is MIN.

AMOD

AMOD(al, a2) is a specific function that returns the remainder of al divided by a2 (al
modulus a2). The result is al - INT(al/a2) * a2. The arguments are boolean or real;
the result is real. If a2 is zero, results are undefined. The generic name is MOD.

Control Data Extension

AND

AND(a, ... , a) is a specific function that returns the boolean product of the 2 through
500 arguments. The arguments can be any type but character; the result is boolean.
The result is the same as for the boolean .AND. operator.

End of Control Data Extension

ANINT

ANINT(a) is a generic function that returns the nearest whole number. The result is
defmed as INT(a + .5) if a is positive or zero, and INT(a- .5) if a is negative. The
argument is real, boolean or double precision; the result has the same type as the
argument. The specific names are ANINT and DNINT.

ASIN

ASIN(a) is a generic function that returns the arcsine of a boolean, real or double
precision argument. The result is in radians. The result is real or double precision,
depending on the argument type. The specific names are ASIN and DASIN.

ATAN

ATAN(a) is a generic function that returns the arctangent of a boolean, real or double
precision argument. The result is in radians. The result is real or double precision,
depending on the argument type. The specific names are ATAN and DATAN.

Revision H Intrinsic Functions 8-11

ATANH

Control Data Extension

ATANH

ATANH(a) is a specific function that returns the hyperbolic arctangent of a boolean or
real argument. The result is real.

End of Control Data Extension

ATAN2

ATAN2(al, a2) is a generic function that returns the arctangent of al/a2. The result is
as follows:

Arguments Result

a2<0, al<O -pi + arctan(al/a2)

a2=0, al<O -pi/2

a2=0, al>O pi/2

a2=0, al=O error

a2<0, al>O pi + arctan(al/a2)

a2>0 arctan(al/a2)

The result is expressed in radians. The result is real or double precision, depending on
the type of the arguments (a boolean argument is converted to real). The arguments
must not both be zero. The specific names are ATAN2 and DATAN2.

Control Data Extension

BOOL

BOOL(a) is a generic function that performs type conversion and returns a boolean
value. The argument can be integer, real, double precision, complex, character, or

l~l boolean. For an integer (any size), real, or boolean argument, the result is the bit
string constituting the data. For a double precision or complex argument, the result is
the bit string after conversion of the argument to real with REAL(a). For a character
argument, the result is the value of the boolean string constant nHf, where n is the
length and f is the character value; if n is greater than 8, the rightmost characters are
truncated. There are no specific names.

End of Control Data Extension

CABS

CABS(a) is a specific function that returns the absolute value of a boolean or complex
argument. The result is real. The result is the square root of (ar**2 + ai**2), where
ar is the real part of the argument and ai is the imaginary part. The generic name is
ABS.

8-12 FORTRAN Version 1 Language Definition Usage Revision H

ccos
CCOS(a) is a specific function that returns the cosine of a boolean or complex
argument. The result is complex. The generic name is COS.

CEXP

ccos

CEXP(a) is a specific function that returns the value of e raised to a complex power.
The argument is boolean or complex. The result is complex. The generic name is EXP.

CHAR

CHAR(i) returns the character value in the ith position of a collating sequence. Tbe
argument is type integer (any size); the result is type character with length one. The
value returned depends on the collating sequence in use. If the ASCII collating
sequence is used, the argument must be in the range 0 through 255; the first character
in the collating sequence corresponds to value 0, the second character to value 1, the
third to value 2, and so forth. The result is the selection of a single character from the
collating sequence. (If you specify an argument greater than 255 and compile with
DC=FIXED, mod(i, 256) is used. If you specify an argument greater than 255 and
compile with DC= USER, a runtime error is issued.) If, in a user-specified collating
sequence, more than one character has weight i, any of the characters can be returned.
User-specified collating sequences are explained in Appendix H of this manual.

CLOG

CLOG(a) is a specific function that returns the natural logarithm (logarithm base e) of
the argument. The argument is boolean or complex. The result is complex. The generic
name is LOG.

CMPLX

CMPLX(a) or CMPLX(al, a2) is a generic function that performs type conversion and
returns a complex value. CMPLX can have one or two arguments. A single argument
can be boolean, integer (any size), real, double precision, or complex. A boolean jlj

argument is treated as a bit string and is not changed.

For two arguments al and a2, the arguments must be of the same type (one or both
can be of type boolean which is converted to real) and must both be integer, real, or
double precision. The result is complex, with REAL(al) used as the real part and
REAL(a2) used as the imaginary part.

For a single integer, real, or double precision argument, the result is complex, with
REAL(a) used as the real part and the imaginary part set to zero. For a single
complex argument, the result is the same as the argument.

There are no specific names.

Revision H Intrinsic Functions 8-13

COMPL

Control Data Extension

COMPL

COMPL(a) returns a complemented value. The argument can be any type except
character; the result is boolean. If the argument is not boolean, the argument is
converted with BOOL(a). The result is the value of the logical operator .NOT. on a
boolean value.

End of Control Data Extension

CONJG

CONJG(a) is a specific function that returns the conjugate of a boolean or complex
argument. The result is complex. For a complex argument (ar,ai), the result is (ar,-ai),
with the imaginary part negated. CONJG does not have a generic name.

cos
COS(a) is a generic function that returns the cosine of a boolean, real, double
precision, or complex argument. The argument is in radians. The result has the same
type as the argument (boolean converted to real). The specific names are COS, CCOS,
and DCOS.

Control Data Extension

COSD

COSD(a) is a specific function that returns the cosine of a boolean or real argument.
The argument is in degrees. The result is real. COSD does not have a generic name.

End of Control Data Extension

COSH

COSH(a) is a generic function that returns the hyperbolic cosine of a boolean, real or
double precision argument. The result is real or double precision, depending on the
argument type. The specific names are COSH and DCOSH.

Control Data Extension

COTAN

COTAN(a) is a specific function that returns the cotangent of a boolean or real
argument. COTAN first reduces a by modulo 2*pi. The argument is expressed in
radians and the result is real. COTAN does not have a generic name.

End of Control Data Extension

8-14 FORTRAN Version 1 Language Definition Usage Revision H

CSIN

CSIN

CSIN(a) is a specific function that returns the sine of a boolean or complex argument.
The result is complex. The generic name is SIN. See the SIN description.

CSQRT

CSQRT(a) is a specific function that returns the square root of a boolean or complex
argument. The result is complex. The generic name is SQRT. See the SQRT
description.

DABS

DABS(a) is a specific function that returns the absolute value (magnitude) of a boolean
or double precision argument. The result is double precision. The generic name is ABS.
See the ABS description.

DA COS

DACOS(a) is a specific function that returns the arccosine ·of a boolean or double
precision argument. The result is double precision. The generic name is ACOS. See the
ACOS description.

DAS IN

DASIN(a) is a specific function that returns the arcsine of a boolean or double
precision argument. The result is double precision. The generic name is ASIN. See the
ASIN description.

DATAN

DATAN(a) is a specific function that returns the arctangent of a boolean or double
precision argument. The result is double precision. The generic name is ATAN. See the
ATAN description.

DATAN2

DATAN2(al, a2) is a specific function that returns the arctangent of al/a2. The
argument can be boolean or double precision. The result is double precision. The result
is in radians, and has the following values:

Arguments Result

a2<0, al<O -pi+ arctan(al/a2)

a2=0, al<O -pi/2

a2=0, al>O pi/2

a2=0, al=O error

a2<0, al>O pi + arctan(al/a2)

a2>0 arctan(al/a2)

Revision H Intrinsic Functions 8-15

DBLE

The generic name is ATAN2. See . the ATAN2 description.

DBLE

DBLE(a) is a generic function that converts the argument to double precision. The
jlj argument can be boolean, integer (any size), real, double precision, or complex. A

boolean argument is treated as a bit string and is not changed. For an integer or real
argument, the result has as much precision of the significant part of the argument as
the double precision field can contain. For a double precision argument, the result is
the argument. For a complex argument, the real part is used, and the result has as
much precision of the significant part of the real part of the argument as the double
precision field can contain. There are no specific names.

DCOS

DCOS(a) is a specific function that returns the cosine of a boolean or double precision
argument. The result is double precision. The generic name is COS. See the COS
description.

DCOSH

DCOSH(a) is a specific function that returns the hyperbolic cosine of a boolean or
double precision argument. The result is double precision. The generic name is COSH.
See the COSH description.

DDIM

DDIM(al, a2) is a specific function that returns a positive difference. The result is the
value of al - a2 if al is greater than or equal to a2; if al is less than a2, it returns
zero. The argument can be boolean or double precision. The result is double precision.
The generic name is DIM. See the DIM description.

DEXP

DEXP(a) is a specific function that returns an exponential result. The argument can be
boolean or double precision. The result is double precision. The generic name is EXP.
See the EXP description.

DIM

DIM(al, a2) is a generic function that returns a positive difference. The result is
integer, real, or double precision, depending on the argument type. Both arguments
must be the same type unless one is of type boolean (converted to real). The result is
al - a2 if al is greater than or equal to a2, and the result is zero if al is less than
a2. The specific names are DIM, IDIM, DDIM.

DINT

DINT(a) is a specific function that returns a whole number after truncation. The
argument can be boolean or double precision. The result is double precision. The
generic name is AINT. See the AINT description.

8-16 FORTRAN Version 1 Language Definition Usage Revision H

DLOG

DLOG

DLOG(a) is a specific function that returns the natural logarithm (logarithm base e) of
a boolean or double precision argument. The result is double precision. The generic
name is LOG. See the LOG descriptiQn.

DLOGIO

DLOGlO(a) is a specific function that returns the common logarithm (logarithm base
10) of a boolean or double precision argument. The result is double precision. The
generic name is LOGlO. See the LOGlO description.

DMAXl

· DMAXl(a, ... , a) is a specific function that returns the largest value from the 2
through 500 arguments. The arguments can be boolean or double precision. The result
is double precision. The generic name is MAX. See the MAX description.

DMINl

DMINl(a, ... , a) is a specific function that returns the smallest value of the 2 through
500 arguments. The arguments are boolean or double precision; the result is double
precision. The generic name is MIN. See the MIN description.

DMOD

DMOD(al, a2) is a specific function that returns al modulus a2 (the remainder of al
divided by a2). The result is al - (INT(al/a2) * a2). The arguments can be boolean or
double precision; the result is double precision. If a2 is zero, results are undefined. The
generic name is MOD. See the MOD description.

DNINT

DNINT(a) is a specific function that returns the nearest whole number. The argument
can be boolean or double precision; the result is double precision. The result is defined
as INT(a+ .5) if a is positive or zero, and INT(a- .5) if a is negative. The generic name
is ANINT. See the ANINT description.

DPROD

DPROD(al, a2) returns the double precision product of two boolean or real arguments.
The result is defined as al *a2. The result is double precision.

DSIGN

DSIGN(al, a2) is a specific function that performs a transfer of sign. The result is
defined as lall if a2 is positive or zero, and - lall if a2 is negative. The arguments can
be boolean or double precision; the result is double precision. The generic name is
SIGN. See the SIGN description.

Revision H Intrinsic Functions 8-17

DSIN

DSIN

DSIN(a) is a specific function that returns the sine of a boolean or double precision
argument. The argument is in radians. The result is double precision. The generic
name is SIN. See the SIN description.

DSINH

DSINH(a) is a specific function that returns the hyperbolic sine of a boolean or double
precision argument. The result is double precision. The generic name is SINH. See the
SINH description.

DSQRT

DSQRT(a) is a specific function that returns the square root of a boolean or double
precision argument. The result is double precision. The argument must not be negative.
The generic name is SQRT. See the SQRT description.

DTAN

DTAN(a) is a specific function that returns the tangent of a boolean or double precision
argument. The argument is in radians. The result is double precision. The generic
name is TAN. See the TAN description.

DTANH

DTANH(a) is a specific function that returns the hyperbolic tangent of a boolean or
double precision argument. The result is double precision. The generic name is TANH.
See the TANH description.

Control Data Extension

EQV

EQV(a, ... , a) returns the equivalence of the 2 through 500 arguments. The arguments
can be any type except character; the result is boolean. The result is the same as for
the boolean .EQV. operator.

End of Control Data Extension

Control Data Extension

ERF

ERF(a) returns an error function result. The argument can be boolean or real; the
result is real. The argument must be positive. The mathematical definition is as
follows:

x

ERF(x) • 2 t'-1Pi~ e-t2 dt
0

End of Control Data Extension

8-18 FORTRAN Version 1 Language Definition Usage Revision H

ERFC

Control Data Extension

ERFC

ERFC(a) returns a complementary error function result. The argument can be boolean
or real; the result is real. The result is 1-ERF(a). The mathematical definition of
ERFC is as follows:

00

ERFC(x) • 2 !../Pi/ e-t2 dt
x

End of Control Data Extension

EXP

EXP(a) is a generic function that returns an exponential result (e**a). The result is
real, double precision, or complex, depending on the argument type (a boolean
argument is converted to real). The specific names are EXP, DEXP, and CEXP.

Control Data Extension

EXTB

EXTB(al, a2, a3) is a generic function that returns extracted bits from al; a2 specifies.
the ordinal of the first bit to be extracted and a3 specifies the number of bits to be
extracted. Bits are numbered from the left starting with zero.

Argument al can be of any type except character; however, if the argument is of type
double precision or complex, only the first word is used. Arguments a2 and a3 must be
of type integer and greater than or equal to zero. There is no specific name.

Argument a2 must also be less than or equal to 63, and the sum of a2 and a3 must be
less than or equal to 64.

End of Control Data Extension

FLOAT

FLOAT(a) is a specific function that returns the value of the boolean or integer
argument after conversion to real. The generic name is REAL. See the REAL
description.

IABS

IABS(a) is a specific function that returns the absolute value (magnitude) of a boolean
or integer (any size) argument. The result is integer. The generic name is ABS. See
the ABS description.

Revision H Intrinsic Functions 8-19

IC HAR

I CHAR

ICHAR(a) returns the value of a character argument after conversion to integer. The
value returned depends on the collating weight of the argument in the collating
sequence in use. For the ASCII collating sequence, the first character in the collating
sequence is at position 0, the second character at position 1, the third at position 2,
and so forth. For a user-specified collating sequence, two or more characters can have
the same value. The argument is a character value with a length of one character, and
the value returned is the integer position of that character in the collating sequence.

IDIM

IDIM(al, a2) is a specific function that returns the positive difference of two boolean or
integer arguments. The result is al - a2 if al is greater than a2, and zero if al is not
greater than a2. The restilt is integer. The generic name is DIM. See the DIM
description.

ID INT

IDINT(a) is a specific function that returns the value of a boolean or double precision
argument after conversion to integer. The generic name is INT. See the INT
description.

IDNINT

IDNINT(a) is a specific function that returns the nearest integer. The result is
INT(a + .5) if a is positive or zero, and INT(a- .5) if a is negative. The argument is
boolean or double precision. The generic name is NINT. See the NINT description.

IFIX

IFIX(a) is a specific function that returns the value of the boolean or real argument
after conversion to integer. The result is INT(a). The generic name is INT. See the
INT description.

INDEX

INDEX(al, a2) returns the location of substring a2 within string al. Both arguments
must be type character. If string a2 occurs as a substring within string al, the result
is an integer indicating the starting position of the substring a2 within al. If a2 does
not occur as a substring within al, the result is 0. If a2 occurs as a substring more
than once within al, only the starting position of the first occurrence is returned.

8-20 FORTRAN Version 1 Language Definition Usage Revision H

INSB

Control Data Extension

INSB

INSB(al, a2, a3, a4) is a generic function that returns a copy of a4 with the bits from
al inserted. The rightmost a3 bits of al are inserted at bit position a2 of a4.
Argument a4 itself is not altered. Bits are numbered from the left starting with zero.

Arguments al and a4 can be of any data type except character; however, if either al
or a4 is double precision or complex, only· the first word is used. Arguments a2 and a3
must be of type integer and greater than or equal to zero. There is no specific name.

Argument a2 must also be less than or equal to 63, and the sum of a2 and a3 must be
less than or equal to 64.

End of Control Data Extension

INT

INT(a) is a generic function that performs type conversion to integer. The result is
integer, and the argument can be boolean, integer (any size), real, double precision, or !!!

complex. For an integer argument, the result is the argument. For a real or double
precision argument where the lal < 1, the result is 0. Where the lal ~ 1, the result is
the largest integer with the same sign as argument a that does not exceed lal. For a
complex argument, the real part is used, and the result is the same as for a real
argument. The specific names are INT, IFIX, and IDINT.

I SIGN

ISIGN(al, a2) is a specific function that performs a transfer of sign. The result is lall
if a2 is positive or zero, and -lall if a2 is negative. The arguments can be boolean or
integer; the result is integer. The generic name is SIGN. See the SIGN description.

LEN

LEN(a) returns the length of a character string. The argument is type character, the
result is an integer indicating the length of the argument.

LGE

LGE(al, a2) returns a logical result indicating lexically greater than or equal to. The
arguments are character strings. The result is true if al follows a2 or al is equal to
a2 in the ASCII collating sequence (shown in appendix B); the result is false otherwise.
If the arguments are of unequal length, the shorter argument is treated is if it were
extended on the right with blanks to the length of the longer argument.

LGT

LGT(al, a2) returns a logical result indicating lexically greater than. The arguments
are character strings. The result is true if al follows a2 in the ASCII collating
sequence (shown in appendix B); the result is false otherwise. If the arguments are of
unequal length, the shorter argument is treated as if it were extended on the right
with blanks to the length of the longer argument.

Revision H Intrinsic Functions 8-21

LLE

LLE

LLE(al, a2) returns a logical result indicating lexically less than or equal to. The
arguments are character strings. The result is true if al precedes a2 or al is equal to
a2 in the ASCII collating sequence (shown in appendix B); the result is false otherwise.
If the arguments are of unequal length, the shorter argument is treated as if it were
extended on the right with blanks to the length of the longer argument.

LLT

LLT(al, a2) returns a logical result indicating lexically less than. The arguments are
character strings. The result is true if al precedes a2 in the ASCII collating sequence
(shown in appendix B); the result is false otherwise. If the arguments are of unequal
length, the shorter argument is treated as if it were extended on the right with blanks
to the length of the longer argument.

LOG

LOG(a) is a generic function that returns the natural logarithm (logarithm base e). The
result is real, double precision, or complex, depending on the argument type (a boolean
argument is converted to real). The specific names are ALOG, DLOG, and CLOG.

LOGlO

LOGlO(a) is a generic function that returns a common logarithm (logarithm base 10).
The result is real or double precision, depending on the argument type (a boolean
argument is converted to real). The argument must be greater than zero. The specific
names are ALOGlO and DLOGlO.

Control Data Extension

MASK

MASK(a) returns a boolean result. The argument is integer or boolean in the range 0
through 64. The result is a word of a left-justified one bits followed by (64 - a) zero
bits. If argument a is less than zero or greater than 64, the result is undefined.

End of Control Data Extension

MAX

MAX(a, ... , a) is a generic function that returns the largest value from the 2 through
500 arguments. The result is integer, real, or double precision, depending on the type
of the arguments (a boolean argument is converted to integer). The specific names are
MAXO, AMAXl, and DMAXl. All of the arguments that are not boolean must be of
the same type. The result is the same type as the nonboolean arguments, unless all
the arguments are boolean when the result is integer.

MAXO

MAXO(a, ... , a) is a specific function that returns the largest value from the 2 through
500 boolean or integer arguments. The result is integer. The generic name is MAX.
See the MAX description.

8-22 FORTRAN Version 1 Language Definition Usage Revision H

MAXl

MAXI

MAXl(a, ... , a) is a specific function that returns the largest value from the 2 through
500 boolean or real arguments. The result is integer. There is no generic name for
MAXl. See the MAX description.

MIN

MIN(a, ... , a) is a generic function that returns the smallest value from the 2 through
500 arguments. The result is integer, real, or double precision, depending on the type
of arguments (a boolean argument is converted to integer). The specific names are
MINO, AMINI, and DMINl.

MINO

MINO(a, ... , a) is a specific function that returns the smallest value from the 2 through
500 boolean or integer arguments. The result is integer. The generic name is MIN. See
the MIN description.

MINI

MINI(a, ... , a) is a specific function that returns the smallest value from the 2 through
500 boolean or real arguments. The result is integer.

MOD

MOD(al, a2) is a generic function that returns al modulus a2 (the remainder of al
divided by a2). rhe result is integer, real, or double precision, depending on the
argument type (a boolean argument is converted to integer). If only one argument is
boolean, the result is the type of the other argument. If both arguments are boolean,
the result is integer. The result is al - (INT(al/a2) * a2). If a2 is zero, results are
undefined. The specific names are MOD, AMOD, and DMOD.

Control Data Extension

NEQV

NEQV(a, ... , a) returns the nonequivalence of the arguments. The result is boolean, and
the 2 through 500 arguments are any type but character. The result is the same as for
the boolean exclusive or (.NEQV.) operator.

End of Control Data Extension

NINT

NINT(a) is a generic function that returns the nearest integer. The result is integer,
and the argument can be boolean, real, or double precision. If the argument is zero or
positive, the result is (INT(a + .5)). If the argliment is negative, the result is
(INT(a-.5)). The specific names are NINT and IDNINT.

Revision H Intrinsic Functions 8-23

OR

Control Data Extension .

OR

OR(a, ... , a) returns the boolean sum of the arguments. The result is boolean, and the
2 through 500 arguments are any type but character. The result is the same as for the
boolean .OR. operator.

End of Control Data Extension

Control Data Extension

PTR

PTR (a) is a generic function that returns the address of a. This function can only be
used in a statement that is calling or referencing a C or CYBIL routine. The argument
can be of any type and the result is boolean. The result can not he used within a
FORTRAN program unit.

End of Control Data Extension

Control Data Extension

RANF

RANF returns a random number. Successive calls to RANF yield a random sequence of
numbers. Since there is no argument, RANF is referenced as RANF(). The result is
real and is in the range 0 < result < 1. You can reinitialize the seed by calling the
RANSET function described in chapter 9.

End of Control Data Extension

REAL

REAL(a) is a generic function that performs type conversion and returns a real result.
!l! The argument can be boolean, integer (any size), real, double precision, or complex. A

boolean argument is treated as a bit string and is not changed. For an integer or
double precision argument, REAL(a) is as much precision of the significant part of the
argument as a real item can contain. For a complex argument (ar,ai), the result is ar.
The specific names are REAL, FLOAT, and SNGL.

8-24 FORTRAN Version 1 Language Definition Usage Revision H

SHIFT

Control Data Extension

SHIFT

SHIFT(al, a2) returns a shifted result. The argument al is any type but character, and
argument a2 is integer or . boolean. The boolean result is al shifted a2 bit positions.
The shift is left circular if a2 is positive, or right with sign extension and end off if a2
is negative. Argument a2 is in the range -64 through + 64. If a2 is outside this range,
the result is undefined.

End of Control Data Extension

SIGN

SIGN(al, a2) is a generic function that returns a value after a transfer of sign. The
result is integer, real, or double precision, depending on the argument type (a boolean
argument is converted to integer). The result is jall if a2 is zero or positive. The result
is -lall if a2 is negative. The specific names are SIGN, !SIGN, and DSIGN.

SIN

SIN(a) is a generic function that returns the sine of the argument. The argument is in
radians. The result is real, double precision, or complex, depending on the argument
type (a boolean argument is converted to real). The generic name is SIN. See the SIN
description. The specific names are SIN, DSIN, and CSIN.

Control Data Extension

SIND

SIND(a) returns the sine of a boolean or real argument. The result is real. The
argument is in degrees.

End of Control Data Extension

SINH

SINH(a) is a generic function that returns a hyperbolic sine of a boolean, real, or
double precision argument. The result is real or double precision, depending on the
argument type. The specific names are SINH and DSINH.

SNGL

SNGL(a) is a specific function that returns the value of a boolean or double precision
argument after conversion to single precision real. The generic name is REAL. See the
REAL description.

Revision H Intrinsic Functions 8-25

SQRT

SQRT

SQRT(a) is a generic function that returns a principal square root of a real, double
precision, or complex argument. The result is real, double precision, or complex,
depending on the argument type (a boolean argument is converted to real). The
argument must not be negative. The specific names are SQRT, DSQRT, and CSQRT.

Control Data Extension

SUMlS

SUMlS(a) is a generic function that returns the number of bits that are set. A set bit
is one with the binary value '1'. The argument can be any type but character or
logical; however, if the argument is of type double precision or complex, only the first
word is used.

End of Control Data Extension

TAN

TAN(a) is a generic function that returns the tangent of a boolean, real or double
precision argument. The argument is in radians. The result is real or double precision,
depending on the argument type. The specific names are TAN and DTAN.

Control Data Extension

TAND

TAND(a) is a specific function that returns the tangent of a boolean or real argument.
The result is real. The argument is in degrees. TAND does not have a generic name.

End of Control Data Extension

TANH

TANH(a) is a generic function that returns the hyperbolic tangent of a boolean, real, or
double precision argument. The result is real or double precision, depending on the .
argument type. The specific names are TANH and DTANH.

Control Data Extension

XOR

XOR(a, ... , a) is a specific function that returns the exclusive OR of the 2 through 500
arguments. The arguments can be any type but character, and the result is boolean.
The result is the same as for the boolean exclusive or (.XOR.) operator. There are no
generic names.

End of Control Data Extension

8-26 FORTRAN Version 1 Language Definition Usage Revision H

FORTRAN-Callable Subprograms 9

FORTRAN provides a number of subroutine and function calls that enable you to
access other Control Data products as well as perform a variety of other operations.
(The subprograms are all non-ANSI.)

NOSNE Status Subprograms
CO ND NAM
CONDSYM
INTCOND.
UPKSTAT.

System Command Language Subprograms
Program Execution Command Parameters .
C$ PARAM Directive
Parameter Interface Subprograms

GETBVAL ..
GETCVAL ..
GETIVAL ...
GETSCNT
GETSVAL.
GETVCNT
GETVREF
SCLKIND.
TSTPARM
TSTRANG

Variable Interface Subprograms .
ABORT
CREV
DELV
REDBVAR
REDCVAR
REDIVAR.
REDSVAR
WRTBVAR
WRTCVAR
WRTIVAR
WRTSVAR

Command Interface Subprogram (SCLCMD) .

Utility Subprograms
Random Number Generation

RANSET
RANGET

Debugging Subprograms
DUMP and PDUMP .
STRACE

Error Handling Subprograms
LEGVAR .. .
SYSTEM
SYSTEMC
LIMERR and NUMERR

Collating Sequence Control Subprograms
COLSEQ
WTSET

9-2
9-3
9-4
9-4
9-5

9-6
9-6
9-7
9-8
9-9

9-10
9-10
9-11
9-11
9-12
9-13
9-14
9-14
9-14
9-15
9-15
9-16
9-17
9-17
9-18
9-18
9-19
9-20
9-20
9-21
9-21
9-22

9-23
9-24
9-24
9-24
9-25
9-25
9-25
9-26
9-26
9-26
9-27
9-29
9-30
9-31
9-32

CSOWN
Miscellaneous Utility Subprograms ..

DATE
JDATE
TIME or CLOCK . .
SECOND .
DISPLA ..
REMARK.
SSWTCH .
CHGUCF.
EXIT ...

Input/Output-Related Subprograms

9-32
9-33
9-33
9~33

. 9-33
9-33
9-34
9-34
9-34
9-35
9-36
9-37

FORTRAN-Callable Subprograms

FORTRAN provides a set of subprograms that enable you to take advantage of various
NOSNE Operating System features. The subprograms allow you to:

• Access program execution command parameters

• Access SCL variables used before or after program execution

• Execute any NOSNE SCL command within a FORTRAN program

• Handle the NOSNE status variable

FORTRAN also provides a library of utility routines to perform various tasks,
including: •

error handling

random number generation

collating sequence control

The following information provides only an introduction from a FORTRAN program
perspective. For complete information on the associated NOSNE features, refer to the
SCL Language Definition manual or the SCL System Interface manual.

Revision H FORTRAN-Callable Subprograms 9-1

NOSNE Status Subprograms

NOSNE Status Subprograms
The NOSNE status subprograms allow you to manipulate the NOSNE status variable
and parameter from within your FORTRAN program. The NOSNE status parameter
and variable (of type OST$STATUS) have a record structure that is incompatible with
FORTRAN data types and forms. The status variable and parameter contain three
fields of information:

NORMAL field

Contains a boolean flag (one bit) indicating if an error occured.

CONDITION field

Contains the condition code which is the binary combined value of the product
indentifier and the condition number.

TEXT field

Contains information .for the message template; usually not in a printable format.

Because of the different data types contained in the NOSNE status variable, you
should not try to print or access it without using the status subprograms described in
this section. The NOSNE status variable information is returned to a FORTRAN
program in the form of a character string or array. If a FORTRAN character string is
used, it is declared as CHARACTER*264; if an array is used, it is declared with 264
elements of CHARACTER*!. The subprograms process the FORTRAN string or array
and allow you to manipulate the status variable fields through the FORTRAN string or
array (called fstat in the subprogram descriptions). The subprograms and their brief
descriptions are:

INTCOND

Returns the integer value of the condition code.

CONDNAM

Returns the condition name from an integer condition code or FORTRAN condition
number.

UPKSTAT

Returns the value of the NORMAL field, the product identifier and condition
number from the condition code, the length of the TEXT field, and the string in the
TEXT field in fstat.

CONDSYM

Returns the string representation for a condition code in the form of product
identifier and condition number.

NOTE

The routines GETSVAL and REDSVAR, also described in this chapter, return the status
variable information from an existing SCL status variable; the NOSNE status
processing subprograms described in this section process status parameters that are
returned directly to a FORTRAN program. For example, from the CREV, DELV, or
SCLCMD subroutines or from a system-resident CYBIL routine.

The subprograms are described below in alphabetical order.

9-2 FORTRAN Version 1 Language Definition Usage Revision H

CO ND NAM

CONDNAM

The CONDNAM function returns the condition name from an integer representation of
the CONDITION field of a NOSNE status variable. The function has the form:

CONDNAM(condition)

condition

Integer expression specifying the value of the condition code whose condition name
is to be returned as a string.

The value returned by the CONDNAM function is a character string with a length of
31. CONDNAM must be declared type CHARACTER*31 in the calling program. If the
specified condition number does not exist, the string 'UNKNOWN_CONDITION' is
returned. If the specified condition number does exist, the returned condition name is
in the standard NOSNE condition identifier format. Some examples of existing
condition names are:

FLE$INT_FILE_SIZE_ TOO_BIG

CLE$UNKNOWN_ VARIABLE

MLE$CEXP_REAL_RANGE

DBE$LINE_EXTENT_ZERO

You can use the INTCOND function to first return an integer representation of the
condition code. For example:

CHARACTER CONDTN*31, CONDNAM*31, S1*264

CALL CREV {'BALANCE', 'INTEGER', LEN, 1, 1, 'JOB', S1)
CONDTN = CONDNAM(INTCOND(SI))

The call to the CREV subroutine specifies the creation of an SCL integer variable
name BALANCE, with a scope of JOB. After execution, the variable CONDTN contains
the condition name and Sl contains the NOSNE status information. If the variable
BALANCE does not already exist, it is created and the value of CONDTN is
FLE$NO_ERROR. If the variable BALANCE does already exist, the value of CONDTN
is CLE$VAR_ALREADY_CREATED. Condition names and their associated condition
codes are listed in the Diagnostic Messages for NOSNE manual.

To read a description of a condition name online, specify the condition name on the
SCL EXPLAIN command. For example, to read about the condition CLE$UNKNOWN _
VARIABLE in the online messages manual, enter

/explain m=messages s='cle$unknown_var1able'

The online messages manual provides a brief description of the condition, the
associated product identifier and condition number, and a recommended user action.

Revision H FORTRAN-Callable Subprograms 9-3

CONDSYM

CONDSYM

The CONDSYM call returns the string representation of an integer condition code. The
string representation is in the form of product identifier and condition number. This
call has the form:

CALL CONDSYM (condition, string, len)

condition

Integer expression specifying either the condition code or FORTRAN condition
number whose value is to be returned as a string.

string

Character variable to receive the string representation. A value shorter than the
argument is left justified and blank filled; a value longer is truncated on the right.

len

Integer variable to receive the length of the returned string.

The value returned in string is normally of the form xxnumber, where xx is the
product identifier portion of the condition code and number is the condition number
portion of the condition code. If the identifier portion of the condition code is not two
displayable characters, the string represents the condition code as a number of up to
12 digits.

If a FORTRAN condition number is supplied for the condition parameter, the returned
product identifer is the string FL. The INTCOND function can be used first to return
an integer representation of the condition code contained in the fstat or iostat
parameter or the CYBIL OST$STATUS variable. The fstat parameter is described under
the CREV, DELV, and SCLCMD commands. The iostat parameter is an input/output
specifier and described in chapter 7.

INTCOND

The INTCOND function returns the condition code field from a NOSNE status variable
contained in a FORTRAN character variable. This function has the form:

INTCOND(fstat)

fstat

Character variable, array, or substring specifying the name of the FORTRAN
variable containing the NOSNE status information for which the condition code is
to be returned.

The value returned is of type integer. If the NORMAL field of the status variable was
TRUE, (indicating no error or exception), the value returned is zero. Otherwise, the
value returned is the condition code specifying the exception.

You can use the CONDNAM function to return the associated condition name of a
value returned by the INTCOND function. For example:

CHARACTER CONDTN*31, CONDNAM*31, S1*264

CALL CREV ('BALANCE', 'INTEGER', LEN, 1, 1, 'JOB', S1)
CONDTN = CONDNAM(INTCOND(SI))

9-4 FORTRAN Version 1 Language Definition Usage Revision H

UP KS TAT

The call to the CREV subroutine specifies the creation of an SCL integer variable
name BALANCE, with a scope of JOB. After execution, the variable CONDTN contains
the condition name and Sl contains the NOS/VE status information. If the variable
BALANCE does not already exist, it is created and the value of CONDTN is
FLE$NO_ERROR. If the variable BALANCE does already exist, the value of CONDTN
is CLE$VAR_ALREADY_CREATED. Condition names and their associated condition
codes are listed in the Diagnostic Messages for NOS/VE manual.

UPKSTAT

The UPKSTAT call returns the information contained in a NOS/VE status variable in
separate parts. This call has the form:

CALL UPKSTAT (fstat, norm, id, cond, len, text)

fstat

Character variable, array, or substring name containing the NOS/VE status
information from which to retrieve information.

norm

Logical variable to receive the value of the normal field of the NOS/VE status
variable. The normal field contains one of the values TRUE or FALSE.

id

Character variable to receive the value of the identification portion of the condition
field. Should be declared with at least a length of 2.

cond

Integer variable to receive the condition code of the NOS/VE status variable.

len

Integer variable to receive the length (number of characters) of the data in the text
field.

text

Character variable to receive the value of the TEXT field of the status variable.
Should be 256 characters in length. A value shorter than the argument is left
justified and blank filled; a value longer is truncated on the right.

If the value returned in the norm parameter is true, the id, cond, len, and text
parameters are undefined.

The fstat parameter receives status information in one of the following ways:

• Returned in the fstat parameter on the CREV, DELV, or SCLCMD call statements

• Returned in the OST$STATUS variable from a system-resident CYBIL routine

Revision H FORTRAN-Callable Subprograms 9-5

System Command Language Subprograms

System Command Language Subprograms

FORTRAN provides a set of subprograms that enable you to communicate with the
NOSNE System Command Language (SCL). The SCL subprograms allow a FORTRAN
program to pass values to and receive values from SCL. The values are specified as
parameters on the execution command that begins execution of the program. In
·addition, the SCLCMD call enables you to execute any SCL command from within a
FORTRAN program. The following information provides only a brief introduction to the
use of SCL parameters. For complete information, refer to the System Command
Language Definition manual.

Program Execution Command Parameters

An execution command can contain a list of parameters to be used for communicating
with SCL. The parameters can be specified positionally or by parameter name, and
must be separated by a space or a comma.

Parameters specified by name have the following form:

name=value

where name is the parameter name and value is the parameter value. The parameter
value can be specified as:

• A single value element

• A value set, consisting of a series of value elements separated by commas or spaces
and enclosed in parentheses

• A value list, consisting of a series of value sets separated by commas or spaces and
enclosed in parentheses

A value element is a single value, or a value range represented by a lower bound and
an upper bound separated by two periods:

lower-bound .. upper-bound

The most common way of specifying a parameter value is by a single value element.

Each SCL parameter value is defined to have a specific kind. The valid value kinds
are FILE, NAME, STRING, INTEGER, BOOLEAN, STATUS, and ANY. The kind of a
parameter value must match the kind of value defined for that parameter in the C$
PARAM directive.

With the exception of the predefined $PRINT_LIMIT and STATUS parameters and
parameters to be used for file name substitution, each SCL parameter that appears on
the execution command must be defined in the source program by the C$ PARAM
directive. The $PRINT_LIMIT and STATUS parameters, and the method of file name
substitution, are described in chapter 10.

Examples:

LGO PAR=3

The value 3 is specified for the parameter PAR.

LGO P1=((1,2,3), (4,5,6))

9-6 FORTRAN Version 1 Language Definition Usage Revision H

C$ PARAM Directive

A value list is specified for parameter Pl. The list contains two value sets, and each
value set contains three value elements.

CREATE_VARIABLE V KIND=STRING VALUE='AFILE'

LGO FP=V

The string variable V is specified for the parameter FP.

FORTRAN provides two classes of SCL subprograms: parameter interface subprograms
and variable interface subprograms. The parameter interface subprograms enable you to
obtain information about SCL parameters specified on the execution command,
including whether or not a particular parameter is present, the type of the parameter,
and the parameter values.

The variable interface subprograms are used to retrieve the values of SCL variables
and to store values into SCL variables.

An example of a FORTRAN program that uses the SCL subprograms is presented in
chapter 13.

C$ PARAM Directive

The C$ PARAM directive defines parameters that are to be specified on the execution
command. The general form of the C$ PARAM directive is

C$ PARAM (pdefs)

where pdefs is a character constant expression, whose value is of the form 'pdef; ... ;pdef',
where pdef is a valid SCL parameter definition. The format for parameter definitions is
described in the SCL Language Definition manual.

The characters C$ must appear in positions 1 and 2, and the string PARAM must
begin in or after position 7. The C$ PARAM directive cannot be continued on a
subsequent line. Long parameter definitions can be made by specifying the required
character constant in a PARAMETER statement, which may be continued over 19 lines,
and then referencing the symbolic name of the constant in the C$ PARAM directive.

Any parameter that appears on the execution command must have been defined by a
C$ PARAM directive in the program to be executed. The C$ PARAM directive defines
such parameter properties as:

• Parameter name

• Whether or not the parameter is required on the execution command

• Parameter default values

• Parameter kind

• Allowable number of value sets

Revision H FORTRAN-Callable Subprograms 9-7

Parameter Interface Subprograms

• Allowable number of value elements in a value set

A parameter specified on the execution command must conform to its definition in the
C$ PARAM directive.

Only one C$ PARAM directive can be specified in a program, and it must appear in
the main program. It can be placed anywhere after the PROGRAM statement, and can
define one or more parameters. A C$ PARAM directive in a subprogram has no effect.

If a program contains a C$ PARAM directive, the PROGRAM statement should contain
only the program name; no file equivalencing can be done.

Example:

C$ PARAM ('A:INTEGER; B:VAR OF STRING')

This directive defines two parameters. Values specified for parameter A will be of kind
integer; values specified for parameter B will be SCL variables of kind string.

The following example shows how to represent five parameters with a single C$
PARAM directive:

CHARACTER * (*) P1, P2, P3, P4, PS
PARAMETER (P1 = 'P1: BOOLEAN;')
PARAMETER (P2 = 'P2: LIST 1 .. 7, 2 .. 2 RANGE OF INTEGER -3 .. 10;')
PARAMETER (P3 = 'P3: RANGE OF VAR OF STATUS;')
PARAMETER (P4 = '.P4: LIST 2 .. 4 of FILE;')
PARAMETER (PS= 'PS: RANGE OF INTEGER;')

C$ PARAM (P1//P2//P3//P4//PS)

Parameter Interface Subprograms

The parameter interface subprograms retrieve parameter names, parameter values, and
other information.

A separate subprogram is provided for retrieving each of the different parameter kinds.
You must use the call that corresponds to the kind of parameter you wish to access.
Each subprogram call returns a single value element of a parameter value.

You communicate with SCL through arguments specified in the subprogram calls.
~~~ Arguments of type integer must be full word integers, that is, typed as INTEGER*8. 

Each call requires you to specify certain information about the parameter. Information 
you need to specify depends on how the parameter was defined in the C$ PARAM 
directive. This information includes: 

• Parameter name 

• Value set number of the desired value (1 if parameter is defined with a single 
element) 

• Value number of the desired value (1 if parameter is defined with a single element) 

9-8 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Interface Subprograms 

• For range parameters, whether the value is the upper or lower range bound. 

For subprogram arguments in which character values are returned, values shorter than 
the argument length are left-justified and blank-filled; longer values are truncated on 
the right. 

The parameter interface subprogram calls are described on the following pages in 
alphabetical order. 

GETBVAL 

The GETBVAL call returns the value of an SCL boolean parameter. (SCL boolean 
corresponds to FORTRAN type logical.) This call has the form: 

CALL GETBVAL (param, setnum, valnum, lhi, val, log) 

par am 

Character expression specifying the name of the SCL boolean parameter whose 
value is to be returned. If the length exceeds 31 characters, the excess characters 
are truncated on the right. 

setnum 

Integer expression specifying the value set number of the requested value. Specify 1 
if value sets are not defined for the parameter. 

valnum 

Integer expression specifying the value number within the value set of the 
requested value. Specify l .. if multiple values are not defined for the parameter. 

lhi 

For range parameters, a character expression specifying whether the requested 
value is the lower or upper range bound. Allowable values are: one of the strings 
'LOW' or 'HIGH'. You must specify either 'LOW' or 'HIGH' regardless of whether or 
not the parameter is defined as a range. 

val 

Variable to receive the value of the specified boolean parameter. Must ·be declared 
type logical. 

log 

Integer variable to receive a number indicating how the boolean value was 
specified. Returns one of the following values: 

0 Value specified as TRUE or FALSE 

1 Value specified as YES or NO 

2 Value specified as ON or OFF 

You can use this value to determine the appropriate form to use for responses to 
the boolean parameter. 

Revision H FORTRAN-Callable Subprograms 9-9 



Parameter Interface Subprograms 

GETCVAL 

lil The GETCVAL call returns the value of a STRING, KEY, NAME, or FILE parameter. 

j 

This call has the form: 

CALL GETCVAL (param, setnum, valnum, lhi, len, val) 

par am 

Character expression specifying the name of the STRING, FILE, or NAME, 
parameter whose value is to be returned. If the length exceeds 31 characters, the 
excess characters are truncated on the right. 

setnum 

Integer expression specifying the value set number of the requested value. Specify 1 
if value sets are not defined for the parameter. 

vain um 

Integer expression specifying the value number within the value set of the 
requested value. Specify 1 if multiple values are not defined for the parameter. 

lhi 

For range parameters, character expression specifying whether the requested value 
is the lower or upper range bound. Allowable values are: one of the strings 'LOW' 
or 'HIGH'. You must specify either 'LOW' or 'HIGH', regardless of whether or not a 
parameter is defined as a range. 

len 

Integer yariable to receive the length of the requested value. 

val 

Character variable to receive the value of the specified parameter. Up to 256 
characters are returned. Values shorter than the argument are left justified and 
blank-filled; values longer are truncated on the right. The variable must be at least 
256 characters long to receive FILE parameter values. 

GETIVAL 

The GETIVAL call returns the value of an SCL integer parameter. This call has the 
form: 

CALL GETIVAL (param, setnum, valnum, lhi, val, rad) 

param 

Character expression specifying the name of the SCL integer parameter whose value 
is to be returned. If the length exceeds 31 characters, the excess characters are 
truncated on the right. 

setnum 

Integer expression specifying the value set number of the value to be returned. 
Specify 1 if value sets are not defined for the parameter. 

vain um 

Integer expression specifying the value number within the value set of the value to 
be returned. Specify 1 if multiple values are not defined for the parameter. 

9-10 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Interface Subprograms 

lhi 

For range parameters, a character expression specifying whether the requested 
value is the lower or upper range bound. Options are: one of the strings 'LOW' or 
'HIGH'. You must specify either 'LOW' or 'HIGH', regardless of whether or not the 
parameter is defined as a range. 

val 

Integer variable to receive the value of the INTEGER parameter. 

rad 

Integer variable to receive the base (radix) of the integer value. One of the values 
2, 8, 10, or 16 is returned. The radix returned is the one specified in the last 
assignment to the variable; if none was specified, 10 is returned. You can use this 
value to determine the appropriate radix to use for responses to the integer 
parameter. 

GETSCNT 

The GETSCNT function returns an integer indicating the number of value sets 
specified for the parameter. The function reference has the form: 

GETSCNT (param) 

par am 

Character expression specifying the name of the parameter for which the number of 
value sets is to be returned. If the length exceeds 31 characters, the excess 
characters are truncated on the right. 

GETSCNT must be declared type integer in the calling program. 

GETS VAL 

The GETSVAL call returns the values of an SCL STATUS parameter. This call has the 
form: 

CALL GETSVAL (param, setnum, valnum, lhi, nml, id, cond, len, text) 

par am 

Character expression specifying the name of the STATUS parameter for which 
status values are to be returned. If the length exceeds 31 characters, the excess 
characters are truncated on the right. 

setnum 

Integer expression specifying the value set number of the value to be returned. 
Specify 1 if value sets are not defined for the parameter. 

vain um 

Integer expression specifying the value number within the value set of the value to 
be returned. Specify 1 if multiple values are not defined for the parameter. 

Revision H FORTRAN-Callable Subprograms 9-11 



Parameter Interface Subprograms 

lhi 

Character expression specifying whether the requested value is the lower or upper 
range bound. Options are: one of the strings 'LOW' or 'HIGH'. You must specify 
either 'LOW' or 'HIGH' regardless of whether or not a range is defined for the 
parameter. 

nml 

Logical variable to receive the value (TRUE or FALSE) of the NORMAL field. If 
nml is TRUE, the remaining fields are undefined. 

id 

Character variable to receive the value of the ID field of the STATUS variable. 
Should be at least two characters long. 

cond 

Integer variable to receive the value of the CONDITION field of the STATUS 
variable. 

len 

Integer variable to receive the length (characters) of the value returned in the text 
argument. 

text 

Character variable to receive the value of the text field of the STATUS variable. 
Up to 256 characters are returned. Value shorter than the argument is left justified 
and blank-filled; value longer is truncated on the right. 

GETVCNT 

The GETVCNT function returns the number of values in the specified value set of the 
specified parameter. The function reference has the form: 

GETVCNT (param, setnum) 

par am 

Character expression specifying the name of the parameter for which the number of 
values in the specified value set is to be returned. If the length exceeds 31 
characters, the excess characters are truncated on the right. 

setnum 

Integer expression specifying the value set number for which the number of values 
is to be returned. 

GETVCNT must be declared type integer in the calling program. 

9-12 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Interface Subprograms 

GETVREF 

The GETVREF call returns a variable reference specified for a parameter. This call 
has the form: 

CALL GETVREF (param, setnum, valnum, lhi, ref, knd, lbnd, ubnd, len) 

par am 

Character expression specifying the name of the parameter for which the variable 
reference is to be returned. If the length exceeds 31 characters, the excess 
characters are truncated on the right. 

setnum 

Integer expression specifying the value set number of the requested variable 
reference. Specify 1 if value sets are not defined for the parameter. 

valnum 

Integer expression specifying the value number within the value set of the 
requested variable. Specify 1 if multiple values are not defined for the parameter. 

lhi 

Character expression specifying whether the requested value is the lower or upper 
range value. Options are: one of the strings 'LOW' or 'HIGH'. You must specify 
either 'LOW' or 'HIGH' regardless of whether or not a range is defined for the 
parameter. 

ref 

Character variable to receive the variable reference as it appears on the execution 
command. Value shorter than the argument is left justified and blank-filled; value 
longer is truncated on the right. 

knd 

Character variable to receive a string indicating the kind (type) of variable. 
Contains one of the strings 'STRING', 'INTEGER', 'BOOLEAN', or 'STATUS'. 

lbnd 

Integer variable to receive the lower bound of a variable for which a range is 
defined. 

ubnd 

Integer variable to receive the upper bound of a variable for which a range is 
defined. 

len 

Integer variable to receive the length of a string variable. 

The argument ref contains the variable name in character format. This variable name 
can be passed to the variable interface routines, which can retrieve or alter the value 
of the variable. 

Revision H FORTRAN-Callable Subprograms 9-13 



Parameter Interface Subprograms 

SCLKIND 

The SCLKIND call returns a string indicating the SCL kind (type) of a parameter. 
This call has the form: 

CALL SCLKIND (param, setnum, valnum, kind) 

par am 

Character expression specifying the name of the parameter for which the kind 
(type) is to be returned. If the length exceeds 31 characters, the excess characters 
are truncated on the right. 

setnum 

Integer expression specifying the value set number of the parameter value. 

valnum 

Integer expression specifying the value number within the value set of the 
parameter value. 

kind 

Character variable to receive a string indicating the parameter kind. One of the 
following values is returned: 

'FILE' 
'NAME' 
'INTEGER' 
'ANY' 

TSTPARM 

'STATUS' 
'STRING' 
'BOOLEAN' 

The TSTPARM function returns the logical value .TRUE. if the specified parameter 
appeared on the execution command. Otherwise, TSTPARM returns the value .FALSE. 
The TSTPARM function reference has the form: 

TSTPARM (param) 

par am 

Character expression specifying the name of the parameter to be tested. If the 
length exceeds 31 characters, the excess characters are truncated on the right. 

The TSTPARM function must be declared type logical in the calling program. 

TSTRANG 

The TSTRANG function determines whether a parameter value was specified as a 
range. The function returns the logical value .TRUE. if the named value was specified 
on the execution command as a range. Otherwise, TSTRANG returns the logical value 
.FALSE. The TSTRANG function reference has the form: 

TSTRANG (param, setnum, valnum) 

par am 

Character expression specifying the name of the parameter to be tested. If the 
length exceeds 31 characters, the excess characters are truncated on the right. 

9-14 FORTRAN Version 1 Language Definition Usage Revision H 



Variable Interface Subprograms 

setnum 

Integer expression specifying the value set number of the value to be tested. Specify 
1 if value sets are not defined for the parameter. 

valnum 

Integer expression specifying the value number within the value set of the value to 
be tested. Specify 1 if multiple values are not defined for the parameter. 

TSTRANG must be declared type logical. 

Variable Interface Subprograms 

The variable interface subprogram calls are used to retrieve or alter._the values of 
existing SCL variables and to define new variables to be passed to SCL. (SCL variables 
referenced by the variable interface calls need not be specified on the execution 
command.) For SCL variables specified as parameter values on the execution command, 
the GETVREF parameter interface call retrieves variable names, which you specify in 
subsequent variable interface calls to identify the variable you wish to access. 

There are two types of variable interface calls: calls that retrieve the value of a 
variable (routine names that begin with letters RED) and calls that store a value into 
a variable (routine names that begin with letters WRT). In addition, the CREV routine 
is used to define a new variable, and the DELV routine deletes the definition of a 
variable. 

A separate subroutine is provided for each variable kind. When using the variable 
interface calls to access an SCL variable, you must use the call that corresponds to the 
kind of that variable. 

New variables must be defined by a call to the CREV subroutine before they can be 
referenced by the variable interface calls. 

SCL variables can be defined as scalar variables or arrays. In the following 
subprograms, the arguments val, bool, len, rad, dig, exponen, norm, id, cond, and text 
can be variables or arrays, but must be declared with enough locations to receive a 
value corresponding to each element of the requested SCL variable. When a variable 
interface subprogram specifies an SCL array, the entire array is referenced; you cannot 
reference individual elements within an SCL array. Variables or arrays of type integer =!.=!.~_; 
must be full word integers, that is, typed as INTEGER*8. 

The variable interface subprograms are described below in alphabetical order. 

ABORT 

The ABORT call sets the fields of the variable specified by the STATUS parameter on 
the execution command and terminates execution. This call has the form: 

CALL ABORT (id, cond, text) 

id 

Character expression whose value is to be placed in the id field of the STATUS 
parameter. If more than two characters are specified, excess characters are 
truncated on the right. 

Revision H FORTRAN-Callable Subprograms 9-15 



j 

Variable Interface Subprograms 

cond 

Integer expression whose value is to be placed in the condition field of the STATUS 
parameter. Must be in the range 0 through 999999. 

text 

Character expression whose value is to be stored in the text field of the STATUS 
parameter. If more than 256 characters are specified, excess characters are 
truncated on the right. · 

CREV 

The CREV call defines a new SCL variable. This call has the form: 

CALL CREV (var, knd, len, lb, uh, scope, {stat) 

var 

Character expression specifying the name of the SCL variable being defined. Must 
be a valid SCL variable name. 

knd 

Character expression specifying the SCL kind (type) of the variable. One of the 
strings 'STRING', 'INTEGER', 'BOOLEAN', or 'STATUS'. 

len 

For a type STRING variable, an integer expression specifying the length of the 
variable elements. Maximum value is 256. Not used for non-STRING variable. 

lb 

Integer expression defining the lower bound of the array being defined. Specify 1 if 
a scalar variable is being defined. 

uh 

Integer expression defining the upper bound of the array being defined. Specify 1 if 
a scalar variable is being defined. 

scope 

Character expression defining the scope of the variable. One of the following values: 

'LOCAL' 

Variable is created local to the block. 

'XDCL' 

Variable is created with the externally declared (XDCL) attribute. 

'XREF' 

Variable is created with the externally referenced (XREF) attribute. 

'JOB' 

Variable is created in the job block with the XDCL attribute. 

'name' 

Variable is created in the utility block specified by name, with the XDCL 
attribute. 

9-16 FORTRAN Version 1 Language Definition Usage Revision H 



Variable Interface Subprograms 

{stat 

Character variable to receive the status resulting from the execution of the CALL 
CREV command; fstat must be declared with a length of 264 in the calling 
program. Use the NOS/VE status processing subprograms to retrieve data from the 
variable. 

DELV 

The DELV call removes the definition of an SCL variable defined by a previous CREV 
call. This call has the form: 

CALL DELV (var, {stat) 

var 

Character expression specifying an SCL variable name. Maximum length of an SCL 
variable name is CHARACTER*256. 

{stat 

Character variable to receive the status resulting from the execution of the CALL 
DELV command; fstat must be declared with a length of 264 in the calling 
program. Use the NOS/VE status processing subprograms to retrieve data from the 
variable. 

If a program unit contains a DELV call, the CREV call that creates the variable must 
be in the same program unit. 

REDBVAR 

The REDBVAR call returns the values of an SCL boolean variable. This call has the 
form: 

CALL REDBVAR (ref, dim, val, bool) 

ref 

Character expression specifying a valid SCL boolean variable reference, with the 
variable name and subscript if appropriate. Maximum length of an SCL variable 
reference is 256 characters. 

dim 

Integer expression specifying the dimension of val. Specify 1 if val is a variable. 

val 

Logical variable or array to receive the values of the boolean variable. If ref 
specifies an SCL array, val should contain enough elements to receive a value for 
each array element. 

bool 

Integer variable or array indicating how the boolean variable was specified; each 
word receives one of the following numbers: 

0 Variable value was specified as TRUE or FALSE 

1 Variable value was specified as YES or NO 

2 Variable value was specified as ON or OFF 

Revision H FORTRAN-Callable Subprograms 9-17 

I 

I 



Variable Interface Subprograms 

One value is returned for each value of the requested variable. 

REDCVAR 

The REDCVAR call returns the values of an SCL string variable. This call has the 
form; 

CALL REDCVAR (ref, dim, len, val) 

ref 

Character expression specifying the name of the SCL string variable whose value is 
to be returned. Must be a valid SCL variable reference, with variable name and 
subscript if appropriate. Maximum length of an SCL variable reference is 256 
characters. 

dim 

Integer expression specifying the dimension of val. Specify 1 if val is a variable. 

len 

Integer variable or array to receive the length of the SCL string variable. If ref 
specifies an SCL array, len must contain enough elements to receive a value for 
each array element. 

val 

Character variable or array to receive the value of the SCL variable. If ref specifies 
an SCL array, val should contain enough elements to receive a value for each 
element of ref. Each value can be up to 256 characters long. Values shorter than 
the length of val are left-justified and blank-filled. Longer values are truncated on 
the right. 

RED IVAR 

The REDIVAR call returns the values of an SCL integer variable. This call has the 
form: 

CALL REDIVAR (ref, dim, vals, rad) 

ref 

Character expression specifying the name of the SCL integer variable for which 
values are to be returned. 'Must be a valid SCL variable reference, with variable 
name and subscript if appropriate. Maximum length of an SCL variable reference is 
256 characters. 

dim 

Integer expression specifying the dimension of val. Specify 1 if val is a variable. 

val 

Integer variable or array to receive the value of the SCL variable; if ref specifies 
an SCL array, val must contain enough elements to receive all of the array values. 

9-18 FORTRAN Version 1 Language Definition Usage Revision H 



Variable Interface Subprograms 

rad 

Integer variable or array to receive the base (radix) of the SCL integer variable. If 
ref specifies an SCL array, rad must contain enough elements to receive a value for 
each value of the array. Each base is one of 2, 8, 10, or 16. The radix returned is 
the one specified in the last assignment to the SCL variable; if none was specified, 
10 is returned. 

REDS VAR 

The REDSVAR call returns the values of an SCL STATUS variable. This call has the 
form: 

CALL REDSVAR (ref, dim, norm, id, cond, text) 

ref 

Character expression specifying the name of the STATUS variable for which a value 
is to be returned. Maximum length of a STATUS variable reference is 256 
characters. 

dim 

Integer expression specifying the dimension of the norm, id, cond, and text arrays; 
specify 1 if norm, id, cond, and text are variables. 

norm 

Logical variable or array to receive the value of the NORMAL field of the STATUS 
variable. If ref specifies an SCL array, norm must contain enough elements to 
receive a value for each element of ref. If norm is TRUE for a particular value, the 
corresponding ID, CONDITION, and TEXT fields are undefined. 

id 

Character variable or array to receive the value of the ID field of the STATUS 
variable. If ref specifies an SCL array, id must contain enough elements to receive 
a value for each element of ref. Each element of id should be at least two 
characters long. 

cond 

Integer variable or array to receive the value of the CONDITION field of the 
STATUS variable. If ref specifies an SCL array, cond must contain enough elements 
to receive a value for each element of ref. 

text 

Character variable or array to receive the value of the text field of the STATUS 
variable. If ref specifies an SCL array, text must contain enough elements to 
receive a value for each element of ref. Up to 256 characters can be returned for 
each element of ref. Values shorter than the length of the text argument are 
left-justified and blank-filled. Longer values are truncated on the right. 

If norm receives a value of true for a particular status value, the corresponding values 
of cond, id, and text are undefined. 

Revision H FORTRAN-Callable Subprograms 9-19 



Variable Interface Subprograms 

WRTBVAR 

The WRTBVAR call stores values into the specified SCL boolean variable or array. 
This call has the form: 

CALL WRTBVAR (ref, dim, val, bool) 

ref 

Character expression specifying the SCL boolean variable or array for which values 
are to be stored. Maximum length of a variable or array name is 
CHARACTER*256. 

dim 

Integer expression specifying the dimension of val; specify 1 if val specifies a single 
value. 

val 

Logical expression specifying the value or values to be stored. If ref is an array, 
val must be an array containing one value for each element or ref. 

bool 

Integer expression indicating how the boolean values are specified. The indicators 
are: 

0 Values specified as TRUE or FALSE 

1 Values specified as YES or NO 

2 Values specified as ON or OFF 

If val is an array, bool must be an array containing one value for each element of 
val. 

SCL type boolean corresponds to FORTRAN type logical. 

WR TC VAR 

The WRTCVAR call stores values into the specified SCL string variable or array. This 
call has the form: 

CALL WRTCVAR (ref, dim, len, str) 

ref 

Character expression specifying the name of the SCL string variable or array into 
which values are to be stored. Maximum length of an SCL variable or array name 
is 256 characters. 

dim 

Integer expression specifying the dimension of str; specify 1 if str specifies a single 
value. 

len 

Integer expression specifying the lengths of the elements of str. If str is an array, 
len must be an array containing one value for each element of str. 

9-20 FORTRAN Version 1 Language Definition Usage Revision H 



Variable Interface Subprograms 

str 

Character expression whose value is a string to be stored. If ref specifies an SCL 
array, str must be an array containing one element for each value to be stored in 
ref. SCL strings can be up to 256 characters long. 

WR TIVAR 

The WRTIVAR call stores values into the specified SCL integer variable or array. This 
call has the form: 

CALL WRTIVAR (ref, dim, val, rad) 

ref 

Character expression specifying the SCL integer variable or array into which values 
are to be stored. Must be a valid SCL variable reference, with variable name and 
subscript if appropriate. Maximum length of an SCL variable or array element 
reference is 256 characters. 

dim 

Integer expression specifying the dimension of val; specify 1 if val specifies a single 
value. 

val 

Integer expression specifying the values to be stored in the SCL variable or array. 
If ref specifies an array, val must be an array containing one value for each 
element of ref. 

rad 

Integer expression specifying the base (radix) of the values to be stored. If val is an 
array, rad must be an array containing a value for each value being stored. 

WR TS VAR 

The WRTSVAR call stores values into the specified SCL STATUS variable or array. 
This call has the form: 

CALL WRTSVAR (ref, dim, norm, id, cond, text) 

ref 

Character expression specifying the name of the STATUS variable or array into 
which values are to be stored. Must be a valid SCL variable or array reference, 
with variable name and subscript or field name if appropriate. Maximum length of 
an SCL STATUS variable or array element reference is 256 characters. 

dim 

Integer expression specifying the dimension of norm, id, cond, and text; specify 1 if 
norm, id, cond, and text specify single values. 

norm 

Logical expression specifying the value to be stored in the NORMAL field. If ref is 
an SCL array, norm must be an array containing one value for each element of ref. 
Each value must be specified as TRUE or FALSE. 

Revision H FORTRAN-Callable Subprograms 9-21 



Command Interface Subprogram (SCLCMD) 

If TRUE is specified for a particular value, the corresponding CONDITION, ID, and 
TEXT fields are undefined and no values need to be specified for the id, cond, and 
text arguments. 

id 

Character expression specifying the value to be stored in the ID field. If ref is an 
SCL array, id must be an array containing one value for each element of ref. 

cond 

Integer expression specifying the value to be stored in the CONDITION field. If ref 
specifies an array, cond must be an array containing one value for each element of 
ref · 

text 

Character expression specifying the value to be stored in the TEXT field. If ref 
specifies an array, text must be an array containing one value for each element of 
ref. Up to 256 characters can be stored in a text field. 

Command Interface Subprogram (SCLCMD) 

The SCLCMD call specifies a command string that is passed to SCL and executed. This 

I call c:~~h:~:;~D (te~ {stat) 

I 

text 

Character expression specifying a valid SCL . command line. Maximum length of a 
command line is 256 characters. A command line ·can contain multiple commands 
separated by semicolons. 

{stat 

Character variable to receive the status resulting from the execution of the SCL 
command; fstat must be declared with a length of 264 in the calling program. Use 
the NOS/VE status processing subprograms to retrieve data from the variable. 

Example: 

CALL SCLCMD ('SETFA FILE=ABC MAXIMUM_RECORD_LENGTH=500') 

This call executes a SETFA command. 

This examples uses a character variable to read an SCL command from the terminal. 

Example: 

CALL SCLCMD ('DISPLAY_VALUE $FILE (AFILE,FILE_ORGANIZATION)') 

9-22 FORTRAN Version 1 Language Definition Usage Revision H 



Utility Subprograms 

This example shows how to execute an SCL function from a FORTRAN program. The 
SCLCMD call executes a DISPLAY_ VALUE command which references the $FILE 
function. The $FILE function displays the value of the FILE_ORGANIZATION 
attribute of a file named AFILE. 

Utility Subprograms 

The utility subprograms described in the following paragraphs are supplied by the 
FORTRAN library. A user-supplied subprogram with the same name as a library 
subprogram overrides the library subprogram. Arguments that are of type integer must =l.=l=I 

be full word integers, that is, typed as INTEGER*8. The following table presents a 
summary of the FORTRAN utility subprograms: 

Table 9-1. FORTRAN Utility Subprograms 

Category of 
Subprogram 

Random 
Number 
Generation 

Debugging 

Error 
Handling 

Collating 
Sequence 
Control 

Input/Output 
Status 

Mass Storage 
Input/Output 

Revision H 

Subprogram 
Name 

RAN SET 
RAN GET 

DUMP 
PD UMP 

STRACE 

LEG VAR 

SYSTEM 
SYSTEMC 
LIME RR 

NU ME RR 

COLSEQ 
WT SET 
CS OWN 

UNIT 
EOF 
LENGTH 
and 
LENGTHX 
LENGTHB 
IOCHEC 

OPENMS 
WRITMS 
READ MS 
CLOSMS 
STINDX 

Description 

Initializes RANF function. 
Returns current seed of RANF function. 

Produces a memory dump and terminates program. 
Produces a memory dump and returns control to 
program. 
Produces a subprogram traceback. 

Tests a variable for an infinite or indefinite value. 

Issues a runtime error message. 
Alters internal error processing specifications. 
Inhibits program termination for errors caused by 
invalid input data. 
Returns number of errors that have occurred since 
last LIMERR call. 

Selects a collating weight table. 
Modifies a collating weight table. 
Defines a collating sequence. 

Checks status of BUFFER IN or BUFFER OUT. 
Tests for end-of-file. 
Returns number of words in the last record read. 

Returns number of bytes in the last record read. 
Tests for parity error. 

Opens a random access file. 
Writes a record to a random access file. 
Reads a record from a random access file. 
Closes a random access file. 
Specifies a subindex for a random file. 

(Continued) 

FORTRAN-Callable Subprograms 9-23 



Random Number Genera ti on 

Table 9-1. FORTRAN Utility Subprograms (Continued) 

Miscellaneous 
Input/Output 

Miscellaneous 
Utility 
Subprograms 

MOVLEV 

MOVLCH 

CONNEC 
DISCON 

DATE 
JDATE 
TIME 
SECOND 

CLOCK 
DISPLA 
REMARK 
SSWTCH 
CH GU CF 
EXIT 

Moves a block of noncharacter data from one area of 
memory to another. 
Moves a block of character data from one area of 
memory to another. 
Connects a file to the terminal. 
Disconnects a file from the terminal. 

Returns the current date. 
Returns the current Julian date. 
Returns the current clock time. 
Returns elapsed time (CPU seconds) since beginning 
of job. 
Returns the current clock time. 
Places a message in the job log. 
Places a message in the job log. 
Tests the system sense switches. 
Enables and disables system conditions. 
Terminates program execution. 

Random Number Generation 

The following subprograms are used in conjunction with the RANF intrinsic function to 
control the generation of random numbers. 

RANS ET 

The RANSET call specifies the starting value (seed) for the RANF function. This call 
has the form: 

CALL RANSET (n) 

n 

Initial (seed) value; an integer, real, or boolean expression 

A subsequent call to RANF uses the value to calculate a random number. 

RANSET may alter the seed value you supply; thus, the value returned by a 
subsequent call to RANGET may differ from the value you specified in a RANSET call. 

RANG ET 

The RANGET obtains the current seed of RANF between 0 and 1. This call has the 
form: 

CALL RANGET (n) 

n 

Real, integer, or boolean variable or array element to receive the current seed 
value. 

The value returned can be passed to RANSET at a later time to regenerate the same 
sequence of random numbers. 

9-24 FORTRAN Version 1 Language Definition Usage Revision H 



Debugging Subprograms 

Debugging Subprograms 

FORTRAN provides several subprograms to aid in the debugging process. The Debug 
utility is described in appendix K. 

DUMP and PDUMP 

The DUMP call and the PDUMP call produce a memory dump on file $OUTPUT in 
the requested format. These calls have the forms: 

CALL DUMP (a, b, f, ••• , a, b, f) 

CALL PDUMP (a, b, f, ••• , a, b, f) 

a 

Variable or array element that is the first word of the area to be dumped. 

b 

Variable or array element that is the last word of the area to be dumped. 

f 

Decimal integer specifying the format of the dump: 

0 Hexadecimal dump 

1 Real dump 

2 Integer dump 

3 Octal dump 

DUMP and PDUMP are identical, except that PDUMP returns control to the calling 
program and DUMP terminates program execution. The maximum number of 
occurrences of the triplet a, b, f is 20. (The number of occurences of the triplet a, b, f 
may vary throughout a program, but a warning message will be issued.) 

The first and last word specified in a PDUMP call must be in the same segment. 

STRACE 

The STRACE call provides traceback information. This call has the form: 

CALL STRACE 

The traceback begins with the subroutine calling STRACE and continues through the 
chain of calling subroutines, until the main program is reached. Traceback information 
is written to the file OUTPUT. 

Revision H FORTRAN-Callable Subprograms 9-25 



Error Handling Subprograms 

Error Handling Subprograms 

The following subprograms provide error handling capabilities. 

LEG VAR 

The LEGVAR function checks the value of a type real variable to determine whether 
the variable contains an indefinite or infinite (out-of-range) value. The LEGVAR 
function reference has the form: 

LEGVAR (a) 

a 

Real variable 

LEGVAR returns one of the following values: 

-1 Variable contains an indefinite value. 

0 Variable contains a valid value. 

1 Variable contains an infinite value. 

LEG VAR is of type integer. 

SYSTEM 

The SYSTEM call enables you to issue a FORTRAN runtime error message at any 
time during program execution. This call has the form: 

CALL SYSTEM (ernum, msg) 

ernum 

Error code. An integer expression whose value is in the range 0 through 9999 
decimal. 

msg 

Error message in the form of a character constant. 

The error message is issued immediately when SYSTEM is called. If the specified error 
number corresponds to one of the FORTRAN runtime error numbers, then the error is 
forced to occur and the normal FORTRAN error message header, including the error 
number, is written along with the specified message to file $ERRORS. 

Error numbers used by FORTRAN retain the severity associated with them. Error 
numbers 51 (nonfatal) and 52 (fatal) are reserved for your use. If an error number 
specified is greater than the highest number defined for FORTRAN, 52 is substituted. 
If error number zero is specified, the message is ignored and control is returned to the 
calling program. Each line is printed unless the sum of lines written to $OUTPUT and 
$ERRORS exceeds the print limit, in which case the job is terminated. 

FORTRAN runtime error messages, and associated error condition numbers, are listed 
in the Diagnostic Messages for NOSNE manual. Example: 

CALL SYSTEM (3, 'CHECK DATA') 

9-26 FORTRAN Version 1 Language Definition Usage Revision H 

( 

( 



Error Handling Subprograms 

The FORTRAN error 3 header, the message CHECK DATA, and a· traceback are 
printed immediately upon execution of the CALL SYSTEM statement. 

SYSTEMC 

The SYSTEMC call enables you to alter the internal specifications that regulate error 
processing. This call has the form: 

CALL SYSTEMC (ernum, slist, recov) 

ernum 

Integer expression whose value determines the FORTRAN error number for which 
nonstandard recovery is to be implemented. The value must be in the range 0 
through 9999. Only FORTRAN runtime library error numbers are supported. Some 
expressions in the source program generate a reference to an external library of 
mathematical routines on the system called the Math Library. For math library 
errors, .the equivalent FORTRAN error number for the error must be used. 

slist 

Six-element integer array containing the following error processing specifications: 

element 1 1 = fatal, 0 = nonfatal. 

element 2 Print frequency. 

element 3 Frequency increment. 

element 4 Print limit. 

element 5 Recovery routine selector: 

0 = Recovery routine not provided. 

1 = Recovery routine provided. 

element 6 Maximum traceback limit applicable to all 
errors. Default is 20. 

recov 

Optional name of user-written recovery routine. (Routine name must be declared in 
EXTERNAL statement.) 

These specifications are ignored for erroneous data input from a connected (terminal) 
file. 

The following error processing operations can be controlled by SYSTEMC: 

• Print frequency. The default print frequency value is zero. If the value is changed 
to n by a call to SYSTEMC, diagnostic and traceback information is listed every 
nth time until the print limit is reached. 

• Frequency increment. The default frequency increment is 1. This specification can 
be changed by a call to SYSTEMC if the call specifies the print frequency as zero. 
If the frequency increment is zero, diagnostic and traceback information is not 
listed; if it is 1, such information is listed until the print limit is reached; if it is 
set to n, information is listed only the first n times unless the print limit is 
reached first. 

Revision H FORTRAN-Callable Subprograms 9-27 



Error Handling Subprograms 

• Print limit. The default print limit is 10. 

• Severity level. The severity levels for an error are fatal and nonfatal. All errors 
that you define using the listed numbers in a SYSTEM call retain the indicated 
severity. However, the severity of any FORTRAN error can be changed by a call to 
SYSTEMC. 

• Recovery selector. Specifies whether or not a recovery routine is provided. A 
user-specified error recovery routine activated by a call to SYSTEMC can be 
canceled by a subsequent call with element 5 of slist set to zero. 

• Maximum traceback limit. The default value is 20. If this value is changed to n by 
a call to SYSTEMC, then when a traceback is issued only the first n routines in 
the traceback chain are printed. 

A negative value for any element in the slist array indicates that the current value of 
that specification is not to be changed. 

If SYSTEMC has been called, an error summary is issued at job termination indicating 
the number of times each error occurred since the first call to SYSTEMC. If elements 
2, 3, and 4 of slist are all specified as zero in the last SYSTEMC call executed for an 
error number, then the error summary for that error number will not be issued at job 
termination. 

A user-supplied error recovery routine should not reference a variable or array of a 
common block. 

For an error detected by a FORTRAN-supplied math function, a user-supplied error 
recovery routine should be a function subprogram of the same type as the function 
detecting the error; the arguments of the functions must agree in number and type. 
For any other error, a user-supplied error recovery routine should be a subroutine 
subprogram. If a user-supplied error recovery routine is used for input/output error 
processing, it should not perform input/output operations. 

When an error previously referenced by a SYSTEMC call is detected, the following 
sequence of operations is initiated: 

1. Diagnostic and traceback information is printed in accordance with the internal 
error processing specifications as modified by the SYSTEMC call. The traceback 
information is terminated for any of the following conditions: 

a. Calling routine is a main program. 

b. Maximum traceback limit is reached. 

2. If a nonfatal error occurs for which a SYSTEMC call has provided a recovery 
routine, control returns to the routine that called the routine detecting the error. 

3. If the error is fatal, the job is terminated. 

9-28 FORTRAN Version 1 Language Definition Usage Revision H 



Error Handling Subprograms 

4. An error summary is printed at job termination, except for errors whose last 
SYSTEMC call had words 2, 3, and 4 of slist set to zero. 

Example: 

EXTERNAL ERRFN 
DIMENSION IRAY(6) 
DATA IRAY/6*-1/ 
IRAY(4) = 0 
IRAY(S) = 1 
CALL SYSTEMC (62, IRAY, ERRFN) 

These statements suppress printing of error message 62 and transfer control to a user 
defined recovery routine named ERRFN. 

LIMERR and NUMERR 

The LIMERR call and NUMERR function reference enable you to input data to a 
program without the risk of termination when improper data is input. These calls have 
the forms: 

CALL LIMERR (lim) 

NUMERR () 

lim 

Integer expression whose value is the limit for the number of errors. 

When LIMERR is called, the program does not terminate when data errors are 
encountered until the number of errors occurring after the call exceeds the value of the 
argument lim. 

LIMERR can be used to inhibit job termination when data is input with a formatted, 
NAMELIST, internal file, or list directed read or with DECODE statements. LIMERR 
has no effect on the processing of errors in data input from a terminal file since you 
can correct those interactively. 

LIMERR initializes an error count and specifies a maximum limit on the number of 
data errors allowed before termination. The specified limit continues in effect for all 
subsequent READ statements until the limit is reached. LIMERR can be reactivated 
with another call, which will reinitialize the error count and reset the limit. A 
LIMERR call with lim specified as zero nullifies a previous call; improper data will 
then result in job termination as usual. 

When improper data is encountered in a formatted or namelist READ (or in a 
DECODE statement) with LIMERR in effect, the bad data field is bypassed, and 
processing continues at the next field. When improper data is encountered in a list 
directed READ, control transfers to the statement immediately following the READ 
statement. 

The NUMERR function returns the number of data errors that have occurred since the 
last LIMERR call. The previous error count is lost when LIMERR is called, and the 
count is reinitialized to zero. NUMERR is of type integer. 

Revision H FORTRAN-Callable Subprograms 9-29 



Collating Sequence Control Subprograms 

The following example illustrates the use of LIMERR and NUMERR: 

CALL LIMERR (200) 
READ ( 1, 125) (A(I), I=1, 1500) 
IF (NUMERR() .GT. 0) THEN 

CALL LIMERR (200) 

END IF 
READ ( 1, 125) (B(I), I=1, 1500) 

When LIMERR is called, a limit of 200 errors is established and the error count is set 
to zero. After A is read, NUMERR() is checked. If no errors occurred during the read, 
control transfers to the statement following ENDIF. If errors occurred, LIMERR 
reinitializes the error count and the rest of the block IF is executed. 

Had LIMERR not been called, any invalid data encountered during the read operation 
would have caused a fatal error. 

Collating Sequence Control Subprograms 

Character relational expressions are evaluated dccording to a collating sequence 
determined by a collation weight table. A collation weight table is a one-dimensional 
integer array 256 words long with a lower bound of zero. Each element of the weight 
table has a value between zero and 255 inclusive. The 256 words correspond to the 256 
characters of the ASCII character set. Th.e collating weight for the character with the 
hexadecimal character code of i is the value of the element i of the weight table. The 
ASCII characters, the corresponding character codes, and the available weight tables 
are given in appendix J. 

The value of a weight table element need not be unique within the table; that is, 
several characters can have the same collating weight. 

You can use a default collating sequence, you can select one of the predefined collating 
sequences, or you can define your own collating sequence. The default collating 
sequence is the ASCII (fixed) collating sequence. 

To select one of the predefined collating sequences, or to define your own collating 
sequence, you must specify the DEFAULT_ COLLATION= USER parameter on the 
FORTRAN command, or precede the first character comparison in the program by a C$ 
COLLATE (USER) directive. Either of these specifications automatically selects the 
OSV$DISPLAY64_FOLDED collating sequence. You can subsequently select one of the 
other predefined tables by calling the COLSEQ routine, modify any of the predefined 
tables by calling the WTSET routine, or define your own table by calling the CSOWN 
routine. · 

The relational operations .EQ., .LT., .LE., .GT., and .GE., and the intrinsic functions 
CHAR and !CHAR use the collating sequence currently in effect as established by the 
DEFAULT_COLLATION parameter or C$ COLLATE directive, and the routines 
COLSEQ, WTSET, and CSOWN. The collating sequence used by the intrinsic functions 
LGE, LGT, LLE, and LLT, always use the ASCII collating sequence regardless of the 
collating sequence you specify. 

9-30 FORTRAN Version 1 Language Definition Usage Revision H 



Collating Sequence Control Subprograms 

COLSEQ 

The COLSEQ call selects a processor-defined weight table. This call has the form: 

CALL COLSEQ (cexp) 

cexp 

Character expression whose value when any trailing blanks are removed is one of 
the following (lowercase characters are equivalent): 

ASCII selects the full 256-character standard ASCII collating sequence 
(default) 

ASCII6 selects the OSV$ASCil6_FOLDED collating sequence 

ASCII6S selects the OSV$ASCil6_STRICT collating sequence 

COBOL6 selects the OSV$COBOL6_FOLDED collating sequence 

COBOL6S selects the OSV$COBOL6_STRICT collating sequence 

DISPLAY selects the OSV$DISPLAY64_FOLDED collating sequence 

DISPLAYS selects the OSV$DISPLAY64_STRICT collating sequence 

DISPLAY63 selects the OSV$DISPLAY63_FOLDED collating sequence 

DISPLAY63S selects the OSV$DISPLAY63_STRICT collating sequence 

EBCDIC selects the OSV$EBCDIC collating sequence 

EBCDIC6 selects the OSV$EBCDIC6_FOLDED collating sequence 

EBCDIC6S selects the OSV$EBCDIC6_STRICT collating sequence 

INSTALL selects the OSV$COBOL6_FOLDED collating sequence 

The INSTALL option selects the same collating sequence as COBOL6. The weight 
tables for the above collating sequences are given in appendix J. 

The following example selects a collating sequence identical to COBOL6, with the 
exception that characters $ and sort equally ('$' .EQ. '!): 

CALL COLSEQ ('COBOL6') 
CALL WTSET ('$', ICHAR('.')) 

The COBOL standard collating sequence is selected, and the entry for the character 
code $ (24 hex) is reset to 12 (the value of the weight table indexed by 2E hex ('.')). 
(ICHAR is an intrinsic function that returns the collating weight of the specified 
character for the collating sequence currently in effect.) 

Revision H FORTRAN-Callable Subprograms 9-31 



Collating Sequence Control Subprograms 

WTSET 

The WTSET call modifies the weight table specified in the COLSEQ call. The WTSET 
call has the form: 

CALL WTSET (ind, wt) 

ind 

Character expression of length 1 

wt 

Integer expression with a value in the range 0 through 255 

If ind is a character expression with value c, the element of the weight table indexed 
by the character code of c is replaced with wt. 

CS OWN 

The CSOWN call defines a partial collating sequence. This call has the form: 

CALL CSOWN (str) 

str 

Character expression whose value is a sequence of 1 through 256 characters for 
which a weight table is to be defined. For a string 

c(l)c(2) ... c(n) 

no c(i) can equal c(j) unless i equals j. 

CSOWN explicitly defines the weight table elements for the specified characters and 
then sets all other elements to zero. For i from 1 through n, the weight of c(i) is set to 
i-1. 

The following example illustrates the creation of a user-defined collating sequence: 

CHARACTER CTAB*4 
CTAB(1:1) = 'Z' 
CTAB(2:2) = CHAR(9) 
CTAB(3:3) = '$' 
CTAB(4:4) = '#' 

C$ COLLATE (USER) 
CALL CSOWN (CTAB) 

The characters to be in the collating sequence are stored in the character variable 
CTAB. Note that the CHAR function is used to convert the element 9 to an ASCII 
character. (The character corresponding to the value 9 is the horizontal tab character, 
which does not have a graphic representation.) 

The C$ COLLATE (USER) directive must be specified before the CSOWN call; 
otherwise, the CSOWN call will be ignored. The CSOWN call establishes the new 
collating sequence, in which Z has weight 0, the horizontal tab has weight 1, $ has 
weight 2, and # has weight 3. All other characters have weight 0. 

9-32 FORTRAN Version 1 Language Definition Usage Revision H 



Miscellaneous Utility Subprograms 

Miscellaneous Utility Subprograms 

The following subprograms provide for passing information between a user program and 
the operating system. 

DATE 

The DATE function returns the current date as the value of the function. The DATE 
function reference has the form: 

DATE () 

The value returned is in the form yyyy-mm-dd, where yyyy is the year, mm is the 
number of the month, and dd is the day within the month. The value returned is type 
character with a length of 10. DATE must be declared type CHARACTER*lO in the 
calling program. 

JDATE 

The JDATE function returns the current Julian date as the value of the function. The 
JDATE function reference has the form: 

JDATE () 

The value returned has the form yyddd, where yy is the year and ddd is the number 
of the day within the year. The value returned is type character with a length of 5. 
JDATE must be declared type CHARACTER*5 in the calling program. 

TIME or CLOCK 

The TIME function or CLOCK function returns the current reading of the system clock 
as the value of the function. These functions have the forms: 

TIME () 

CLOCK () 

The value returned is in the form hh:mm:ss, where hh is hours from 0 through 23, 
mm is minutes, and ss is seconds. The value returned is type character with a length 
of 8. TIME and CLOCK must be declared type CHARACTER*8 in the calling program. 

SECOND 

The SECOND function returns the central processor time in seconds that has elapsed 
since the beginning of the job. The SECOND function reference has the form: 

SECOND () 

There is no argument, and the result is real. 

Revision H FORTRAN-Callable Subprograms 9-33 



Miscellaneous Utility Subprograms 

DISPLA 

The DISPLA call places a name and a value in the job log file. This call has the form: 

CALL DISPLA (h, k) 

h 

Character expression to be displayed. Must not exceed 256 characters. 

k 

Real or integer expression whose value is to be displayed. 

The character constant displayed cannot be more than 256 characters; k is a real or 
integer variable or expression and is displayed as an integer or real value. 

REMARK 

The REMARK call places a message in the job log file. This call has the form: 

CALL REMARK (h) 

h 

Character expression to be placed in the job log file 

The maximum message length is 256 characters. 

SSWTCH 

The SSWTCH call tests the system sense switches. This call has the form: 

CALL SSWTCH (i, j) 

i 

Integer expression whose value is a sense switch number. The value must be 1 
through 6. 

j 

Integer variable or array element to receive a value indicating the setting of the 
sense switch: 

1 Sense switch i is on. 

2 Sense switch i is off. 

If i is out of range, an informative diagnostic is printed, and j is set to 2. The sense 
switches are set or reset by operations personnel or by the SET_SENSE_SWITCH 
command. 

9-34 FORTRAN Version 1 Language Definition Usage Revision H 



Miscellaneous Utility Subprograms 

CHGUCF 

The CHGUCF allows you to disable or enable certain system conditions that terminate 
program execution. You can also use the SET_PROGRAM_ATTRIBUTE command to 
disable or enable these system conditions from outside your program. This call has the 
form: 

CALL CHGUCF (flag, mode, scope, rtncode) 

flag 

The name of the NOSNE User Mask Register condition flag to be changed. Options 
are: 

'DIVIDE.,....FAULT' or 'DF' 

'ARITHMETIC_OVERFLOW' or 'AO' 

'EXPONENT_OVERFLOW' or 'EO' 

'EXPONENT_ UNDERFLOW' or 'EU' 

'FP_LOSS_OF_SIGNIFICANCE' or 'FPLOS' or 'FLOS' or 'FP_SIGNIFICANCE' 

'FP _INDEFINITE' or 'FPI' or 'Fl' 

'ARITHMETIC_LOSS_OF_SIGNIFICANCE' or 'ALOS' or 

'ARITHMETIC_SIGNIFICANCE' 

mode 

Logical expression specifying the desired mode for the specified condition flag. 
Options are: 

.TRUE. 

The condition is enabled (masked ON) for traps . 

. FALSE. 

The condition is disabled (masked OFF) for traps. 

scope 

The scope of reference to be covered by the user mask register setting. Options are: 

'LOCAL' ('L') 

The specified flag is changed for the procedure (program or subprogram) that 
called CHGUCF, and· all subprograms called by that program or subprogram. 

'GLOBAL' ('G') 

The specified flag is changed for all procedures on the stack at the time of the 
call to CHGUCF. All subprograms referenced by the main program, and the 
main program, are included. 

'PREVIOUS'('P') 

The specified flag is changed for both the caller of CHGUCF and any otner 
subprograms it calls, and the previous caller (the caller of the caller of 
CHGUCF) and any other subprograms it calls. 

Revision H FORTRAN-Callable Subprograms 9-35 



I 
Miscellaneous Utility Subprograms 

rtncode 

Integer variable to receive the resulting return code from the call. The returned 
integer is one of the following values: on, no previous traps for that condition were 
outstanding. 0> 

Call completed normally. If the flag was to be turned on, this indicates that a 
previous trap for that condition was outstanding and was cleared before the flag 
was turned on: (This will be the condition code for PME$SYSTEM_ 
CONDITION.) 

Both upper case letters and lower case letters are allowed in any string value used for 
flag or scope. 

The CHGUCF subprogram changes the specified mask flag (condition bit) to the 
specified mode in the user mask register(s) for all stack frames within the specified 
scope. The scope applies both for the setting of the user mask register(s) and for the 
clearing of any associated outstanding trap conditions in the corresponding user 
condition register(s) before a condition is to be enabled (turned on). The scope 
parameter applies to the current and previous calling routines. The setting of the user 
mask register for a routine holds for that routine and also for any other routines that 
it calls with subsequent calls or nested calls unless one of those other procedures calls 
CHGUCF. 

Mask and condition register bits not specified are left unchanged. For details on the 
functioning of traps, the user mask register and user condition register, refer to the 
Virtual State Hardware Reference Manual. 

You must clear the mask and condition register before referencing a 
FORTRAN-supplied intrinsic function .. 

EXIT 

The EXIT call terminates program execution and returns control to the operating 
system. This call has the form: 

CALL EXIT 

NOTE 

Use of the STOP statement is preferable to CALL EXIT. 

9-36 FORTRAN Version 1 Language Definition Usage Revision H 



lnpuUOutput-Related Subprograms 

Input/Output-Related Subprograms 

These subprograms perform operations closely related to input/output, and are described 
in detail in chapter 6. The inputJoutput-related subprograms are: 

• 1/0 status routines: 

- UNIT 

- EOF 

- LENGTH 

- LENGTHX 

- IOCHEC 

• Mass storage 1/0 routines: 

- OPENMS 

- WRITMS 

- READMS 

- CLOSMS 

- STINDX 

• Miscellaneous routines: 

- MOVLEV 

- MOVLCH 

- CONNEC 

- DISCON 

Revision H FORTRAN-Callable Subprograms 9.37 





Compilation and Execution 10 

This chapter describes the FORTRAN command options, the FORTRAN output listings, 
and the command to execute a FORTRAN program. 

FORTRAN Command . 
Parameters . . . . . 
Parameter Formats . 
Parameter Names 
File Positioning . . . 
Parameter Options . 

BINARY_OBJECT (B) 
COMPILATION _DIRECTIVES (CD) . 
DEBUG_AIDS (DA) ..... . 
DEFAULT_COLLATION (DC) .. . 
ERROR (E) ............. . 
ERROR_LEVEL (EL) ....... . 
EXPRESSION _EVALUATION (EE) 
FORCED_SAVE (FS) . . . . . . . 
INPUT (I) ............ : 
INPUT_SOURCE_MAP (ISM) .. 
LIST (L) ............. . 
LIST_ OPTIONS (LO) . . . . . . . 
MACHINE_DEPENDENT (MD) . 
ONE_ TRIP _DO (OTD) . . . . . . 
OPTIMIZATION_LEVEL (OL, OPTIMIZATION, OPT) . 
RUNTIME_CHECKS (RC) .... . 
SEQUENCED_LINES (SL) .... . 
STANDARDS_DIAGNOSTICS (SD) 
STATUS ............... . 
TARGET_MAINFRAME (TM) . . . 
TERMINATION _ERROR_LEVEL (TEL) 

FORTRAN Command Examples 

Compiler Output Listing 
Source Listing . . . . 
Compilation Statistics 
Reference Map .... 

General Format of Maps 
Variables Map . . . . . . . . . 
Symbolic Constants Map . . . 
N amelist Map . . . . . . . . . 
Common and Equivalence Map 
Statement Labels Map 
DO Loops Map ..... . 
Entry Points Map . . . . 
Procedures Map ..... 
Input/Output Units Map 
Unclassified Names Map 

Execution Command . . . . . . 
$PRINT_LIMIT Parameter 
STATUS Parameter . . . . 
User-Defined System Command Language Parameters 
File Name Substitution . . . . . . . . . . . . . . . . . . 

10-1 
10-1 
10-4 
10-5 
10-5 
10-6 
10-6 
10-6 
10-7 
10-7 
10-7 
10-8 
10-8 
10-9 

10-10 
10-10 
10-10 
10-11 
10-12 
10-12 
10-13 
10-13 
10-14 
10-14 
10-15 
10-15 
10-16 
10-16 

10-17 
10-17 
10-18 
10-19 
10-20 
10-21 
10-23 
10-23 
10-24 
10-25 
10-26 
10-27 
10-27 
10-28 
10-29 

10-30 
10-31 
10-31 
10-32 
10-32 





Compilation and Execution 

NOSNE provides commands for compiling and executing FORTRAN programs. The 
FORTRAN compiler reads the input source program and produces an output object 
program. The object program can be loaded into memory and executed by an execution 
command. 

FORTRAN Command 

The FORTRAN compiler is called and executed by the FORTRAN command. This 
command selects a variety of compiler options, including files to be used for input and 
output and type of output to be produced. The FORTRAN command has the form: 

FORTRAN or 
FTN 

INPUT= list of file 
BINARY_OBJECT=file 
LIST=file 
COMPILATION _DIRECTIVES= boolean 
DEBUG _AIDS= keyword 
DEFAULT_ COLLATION= keyword 
ERROR=file 
ERROR _LEVEL= keyword 
EXPRESSION_EVALUATION=list of keyword 
INPUT_SOURCE_MAP=list of file 
FORCED_SAVE=boolean 
LIST_ OPTIONS= list of keyword 
MACHINE_DEPENDENT =keyword 
ONE_ TRIP _DO= boolean 
OPTIMIZATION _LEVEL= keyword 
RUNTIME_CHECKS=list of keyword 
SEQUENCED _LINES= boolean 
STANDARDS_DIAGNOSTICS =keyword 
TARGET _MAINFRAME =keyword 
TERMINATION _ERROR_LEVEL =keyword 
STATUS=status variable 

Parameters 

Parameters on the FORTRAN command select the desired options. The parameters can 
be specified either by name or positionally (parameter name omitted), and must be 
separated by a comma or one or more blanks. If a comma is used, it can be followed 
by one or more blanks. Parameters specified by name can appear in any order. The 
required order for parameters specified positionally is shown in the preceding format 
description. 

When you specify a parameter positionally, you must indicate the position of any 
omitted parameters that precede the specified parameter by commas; the first omitted 
parameter is indicated by two successive commas, and each additional omitted 
parameter is indicated by an additional comma. Thus, if n parameters are omitted, 
n+ 1 commas are required. For example, the following commands are equivalent: 

Revision H Compilation and Execution 10-1 



Parameters 

FORTRAN INPUT=SFILE OPTIMIZATION_LEVEL=HIGH 

FORTRAN SFILE,,,,,,,,,,,,,HIGH 

The second command specifies the INPUT and OPTIMIZATION_LEVEL parameters 
positionally; the positions of the omitted parameters are indicated by thirteen 
successive commas. 

If you omit any parameter from the FORTRAN command a default is automatically 
provided. Since this default corresponds to the most commonly used option for the 
parameter, in most cases you need specify only a few parameters or none at all. The 
parameter names, the processor-supplied defaults, and brief descriptions are presented 
in table 10-1. 

Unrecognizable parameters prevent compilation from beginning. Conflicting options are 
either resolved by the compiler or prevent compilation from beginning, depending on 
the severity of the conflict. Any resolution performed by the compiler is indicated by a 
job log entry. 

You must not specify any parameter more than once. If you do so, the operating 
system issues an error message and the compilation does not begin. 

Table 10-1. FORTRAN Command Parameters 

Short 
Parameter Name Form 

BINARY_ OBJECT B 

COMPILATION _DIRECTIVES CD 

DEBUG_AIDS DA 

DEFAULT_COLLATION DC 

ERROR E 

ERROR_ LEVEL EL 

EXPRESSION _EVALUATION EE 

FORCED_SAVE FS 

INPUT I 

10-2 FORTRAN Version 1 Language Definition Usage 

Description Default 

Binary output file B=$LOCAL.LGO 

C$ Directive Directives recognized 
suppression 

Debugging 
options 

Collating 
sequence control 

File to receive 
error information 

DEBUG_ 
AIDS=NONE 

DC=FIXED 

E=$ERRORS 

Severity level of EL= W 
error messages to 
be printed 

Order of 
evaluation of 
expressions 

Save variables 
and arrays in 
subprograms 

Source input 
file(s) 

EE=NONE 

Variables and arrays 
not saved 

!=$INPUT 

(Continued) 

Revision H 



Parameters 

Table 10-1. FORTRAN Command Parameters (Continued) 

Parameter Name 

INPUT_ SOURCE_ MAP 

LIST 

LIST_ OPTIONS 

MACHINE_DEPENDENT 

ONE_TRIP_DO 

OPTIMIZATION _LEVEL 
or OPTIMIZATION 

RUNTIME_ CHECKS 

SEQUENCED_LINES 

STANDARDS_ DIAGNOSTICS 

STATUS 

TARGET_MAINFRAME 

TERMINATION _ERROR_LEVEL 

Revision H 

Short 
Form 

ISM 

L 

LO 

MD 

OTD 

OL 
OPT 

RC 

SL 

SD 

TM 

TEL 

Description 

PPE source input 
file 

Output listing file 

Output listing 
options 

Machine 
dependencies 

Minimum trip 
count for DO 
loops 

Compiler 
optimization level 

Runtime range 
checking of 
subscript and 
substring 
expressions 

Sequencing 
format of source 
program 

Diagnose 
non-ANSI usages 

SCL variable to 
receive error 
status 
information 

Mainframe on 
which the object 
code is to be 
executed 

Severity level of 
errors for which 
STATUS returned 

Default 

ISM=$NULL 

L =$LIST (batch) 
L=$NULL 
(interactive) 

LO=S 

Machine 
dependencies not 
flagged 

Zero trip loops 

OL=LOW 

No range checking 
performed 

N onsequenced 
format 

SD=NONE 

None 

TM= C180V on a 
model 990; 
TM=C180MI on any 
other model 

TEL=F 

Compilation and Execution 10-3 



Parameter Formats 

Parameter Formats 

The following paragraphs briefly describe the formats of parameters used on the 
FORTRAN command. For more information on SCL p·arameter formats in general, refer 
to the SCL Language Definition manual. 

FORTRAN command parameters have the following general format: 

parameter name= value list 

There are five general types of parameters used in the FORTRAN command. Four of 
these types are described below. The fifth type, of which there is only a single 
parameter (the STATUS parameter), is described under Parameter Options. 

The first type of parameter requires you to specify a file. These parameters have one 
of the forms: 

parameter name= file 

parameter name = list of file 

A file specification identifies a local or permanent file. A file specification consists of a 
file path (which includes the file name), a cycle reference (for permanent files), and a 
file position. If a list of files is allowed, separate each file name with a comma or 
space and enclose the list in parentheses. The general form of a file reference is: 

path. cycle. reference.file position 

The cycle reference and file position are optional. The simplest form of a file reference 
is a file name. Refer to the SCL Language Definition manual for more information on 
file specifications. 

Example: 

FORTRAN INPUT=INFILE BINARY_OBJECT=:FAM.USE.BIN 

This command specifies the file name INFILE for the INPUT parameter; the binary 
object file BIN is retrieved from family FAM with user name USE. 

The second type of parameter requires you to specify a keyword corresponding to the 
desired option. These parameters have the form: 

parameter name= keyword 

For example, the command 

FORTRAN ERROR_LEVEL=W 

specifies the keyword W for the ERROR_LEVEL parameter. 

The third type of parameter has two possible settings: on or off. These parameters have 
the form: 

10-4 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Na mes 

parameter name= boolean 

To turn the option on, specify parameter name= ON. To turn the option off specify 
parameter name=OFF. An example of this type of parameter is the COMPILATION_ 
DIRECTIVES parameter. The command 

FORTRAN COMPILATION_DIRECTIVES=ON 

selects the option to process compilation directives. 

The fourth type of parameter allows you to select a list of options. These parameters 
have the form: 

parameter name= list of keyword 

A particular option is selected by specifying the keyword associated with that option; if 
the keyword is omitted, the option is not selected. If you select more than one option, 
each keyword must be separated by a comma and the list of keywords must be 
enclosed in parentheses. If you select a single option, the parentheses can be omitted. 
All options for a particular parameter, including the default options, can be deselected 
by specifying parameter name= NONE. For example, the statement 

FORTRAN LIST_OPTIONS=(A,0,SA) RUNTIME_CHECKS=NONE 

selects the A, 0, and SA options for the LIST_OPTIONS parameter, and selects no 
options for the RUNTIME_CHECKS parameter. 

Parameter Names 

Each parameter name (except the STATUS parameter) has a long form and an 
abbreviated form. In addition, some of the parameter keywords have both a long and 
an abbreviated form. Both forms have the same meaning and either can be specified. 
For example, the following commands are equivalent: 

FORTRAN B=BIN TEL=F 

FORTRAN BINARY_OBJECT=BIN TERMINATION_ERROR_LEVEL=FATAL 

The parameter names and associated abbreviations are shown in table 10-1. 

File Positioning 

The input and output files specified on the FORTRAN command have a default position 
that can be altered by use of a file position indicator. The file position indicator allows 
you to specify how a particular file is to be positioned before it is used. The file 
position indicators are: 

$BOI 

Positions the file at the beginning-of-information (BOI) 

$EOI 

Positions the file at the end-of-information (EOI). 

Revision H Compilation and Execution 10-5 



Parameter Options 

$ASIS 

Does not position the file (the file is read or written beginning at its current 
position). 

If you omit the file position indicator, the file remains at its current position (or is 
repositioned according to the OPEN _POSITION file attribute), with the exception that 
the system file $OUTPUT is positioned at EOI. (Although $OUTPUT is normally 
positioned at BOI, it is connected to the physical file OUTPUT which is positioned at 
EOI. As long as this connection remains intact, the effect is to position $OUTPUT at 
EOI.) 

Example: 

FORTRAN INPUT=SPROG.$ASIS BINARY_OBJECT=:FAM.USE.BIN.$EOI 

The source input file SPROG is read beginning at the current position. The binary 
output file BIN is retrieved from family FAM with user name USE, and is positioned 
at the end-of-information. 

Parameter Options 

Following are descriptions of the options for each of the FORTRAN command 
parameters. The parameters are listed in alphabetical order. The heading that precedes 
each parameter description consists of the parameter name followed by the abbreviation 
enclosed in parentheses. 

BINARY_OBJECT (B) 

The BINARY_OBJECT parameter specifies the local file to receive the binary object 
code produced by the compiler. The binary object code will be generated into a single 
file even if you specified a list of files for the INPUT parameter. Options are: 

Omitted 

Same as BINARY_OBJECT=$LOCAL.LGO. 

BINARY_ OBJECT= file 

Binary object code is written to the specified file. 

BINARY_OBJECT=$NULL 

Binary object code is written to file $NULL. (The object code is discarded.) 

COMPILATION _DIRECTIVES (CD) 

The COMPILATION_DIRECTIVES parameter controls the recognition of C$ directives 
within the source program. Options are: 

Omitted 

Same as COMPILATION_DIRECTIVES=ON. 

COMPILATION_ DIRECTIVES= ON 

C$ directives are processed. 

COMPILATION _DIRECTIVES= OFF 

C$ directives are not processed. (They are treated as comments.) 

10-6 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Options 

DEBUG _AIDS (DA) 

The DEBUG_AIDS parameter selects debugging options. Options are: 

Omitted 

Same as DEBUG_AIDS=NONE. 

DEBUG_AIDS=DT 

Generates line number and symbol tables for use by Debug. 

DEBUG_AIDS=PC 

Generates code to allow for load-time argument checking. Argument mismatch 
information is written to the loadmap file, regardless of the LOAD_MAP _OPTION 
on the EXET or SETPA commands . . 
DEBUG_AIDS=ALL 

Selects both DEBUG_AIDS=PC and DEBUG_AIDS=DT options. 

DEBUG_AIDS =NONE 

No options are selected. 

DEFAULT_COLLATION (DC) 

The DEFAULT_ COLLATION parameter specifies the weight table to be used for the 
evaluation of character relational expressions and by· the CHAR and I CHAR functions. 
(See Collating Sequence Control in chapter 9.) Options are: 

Omitted 

Same as DEFAULT_COLLATION=FIXED. 

DEFAULT_COLLATION=USER (DC=U) 

A user-specified weight table is used. 

DEFAULT_COLLATION=FIXED (DC=F) 

The fixed weight table is used. 

ERROR (E) 

The ERROR parameter specifies the name of the file to receive compiler-generated 
error information. In the event of an error of ERROR_LEVEL-specified severity or 
higher, a diagnostic is written to the file specified by the ERROR parameter. If a 
listing file (LIST parameter) is also specified, the diagnostic is written to both files. 
Options are: · 

Omitted 

Error information is written to the file $ERRORS. 

ERROR=file 

Error information is written to the specified file. 

Revision H Compilation and Execution 10-7 



Parameter Options 

ERROR_LEVEL (EL) 

The ERROR_LEVEL parameter determines the severity level of errors to be printed on 
the output listing. Selection of a particular option specifies that level and all higher 
(more severe) levels. Options are (in order of increasing severity): 

Omitted 

Same as ERROR_LEVEL=WARNING. 

ERROR_LEVEL=TRIVIAL (EL=T) or ERROR_LEVEL=INFORMATIONAL 
(EL=I) 

Lists trivial (informational) errors. The syntax of these errors is correct but the 
usage is questionable. 

ERROR_LEVEL=WARNING (EL=W) 

Lists warning errors. These are errors where the syntax is incorrect but the 
compiler has made an assumption (such as adding a comma) and continued 
processing. 

ERROR_LEVEL=FATAL (EL=F) 

Lists fatal errors. These errors prevent the compiler from processing the statement 
containing the errors. The compiler continues processing after a fatal error. 

ERROR_LEVEL=CATASTROPHIC (EL=C) 

Lists catastrophic errors. These errors terminate compilation of the current program 
unit. Compilation continues with the next program unit. 

EXPRESSION _EVALUATION (EE) 

The EXPRESSION_EVALUATION parameter controls the way the compiler evaluates 
expressions. 

When evaluating expressions, the compiler normally performs certain optimizations in 
order to produce more efficient object code. In most cases, these optimizations have no 
affect on program execution. However, under certain numerically unstable conditions, 
these optimizations can alter the results of execution. Such conditions usually arise 
when a program uses values that approach the limits of the computer, or when an 
operation such as a multiplication or division combines a very large operand with a 
very small one. , 

The EXPRESSION _EVALUATION parameter prevents the compiler from performing 
optimizations which might affect the results of execution. 

The EXPRESSION_EVALUATION parameter should be used only when necessary. 
Options are: 

Omitted 

Same as EXPRESSION_EVALUATION=NONE. 

EXPRESSION _EVALUATION= NONE 

Causes no options to be selected. 

10-8 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Options 

EXPRESSION _EVALUATION= (op, ... , op), where op is one of the following: 

CANONICAL (C) 

Directs the compiler to evaluate expressions strictly according to the precedence 
rules described in chapter 4. If you select this option, the compiler interprets 
each expression as if parentheses had been used to completely specify the order 
in which operations are performed. If you do not select this option, the compiler 
may reorder operations that are mathematically associative or commutative. 

MAINTAIN _EXCEPTIONS (ME) 

Prevents the compiler from performing optimizations that eliminate instructions 
that might cause run-time errors. Also causes relational operand expressions 
involving the .EQ. or .NE. operators to be evaluated using using floating-point 
comparisons. If not specified, integer (bit-by-bit) comparison used. 

MAINTAIN_PRECISION (MP) 

Prevents the compiler from performing optimizations that change a floating-point 
operation to a form that is mathematically equivalent but not computationally 
equivalent. 

REFERENCE (R) 

Causes intrinsic functions to be called by reference rather than by value. Also 
results in the generation of descriptive error messages by internal FORTRAN 
routines if execution errors occur. If this option is not selected, the operating 
system produces error messages which generally provide less information. 

OVERLAPPING_STRING_MOVES (OSM) 

Guarantees valid character assignment in character assignment statements of 
the form v =exp where the character positions being defined in v are referenced 
in exp. 

You can use the EXPRESSION _EVALUATION parameter to detect numerically 
unstable conditions such as those described above. If the results obtained with a 
particular EXPRESSION _EVALUATION option differ significantly from the results 
obtained without the option, numerical instability exists. 

FORCED_SAVE (FS) 

The FORCED_SAVE parameter specifies whether or not the values of variables and 
arrays in subprograms are to be retained after execution of a RETURN or END 
statement. Note that for subprograms compiled under OL=DEBUG or OL=LOW, 
values are always retained regardless of the FORCED_SAVE option selected. Options 
are: 

Omitted 

Same as FORCED_SAVE=OFF. 

FORCED_SAVE=ON (FS=ON) 

Variable and array values are saved after execution of a RETURN or END 
statement. This option is equivalent to specifying a SAVE statement in every 
subprogram compiled. 

Revision H Compilation and Execution 10-9 



Parameter Options 

FORCED_SAVE=OFF (FS=OFF) 

Variable and array values are not saved after execution of a RETURN or END 
statement. 

INPUT (I) 

The INPUT parameter specifies the name of the file containing the input source code. 
Options are: 

Omitted 

Same as INPUT= $INPUT. 

INPUT= file or list of file 

Source code to be compiled is contained in the specified file or files. Each file must 
contain a full program unit and not parts of a program unit. If more than one file 
is specified, the list of files is enclosed in parentheses. 

INPUT_SOURCE_MAP (ISM) 

The INPUT_SOURCE_MAP parameter is used when the FORTRAN source program is 
contained in SCU decks. The ISM parameter specifies the file containing the source 
map that was generated by the OUTPUT_SOURCE_MAP option on the SCU_EXPD 
command. 

Omitted 

Same as ISM= $NULL. 

ISM=file 

The specified file or files contains the source map. If more than one file is specified, 
the list of files is enclosed in parentheses. 

A program compiled with an ISM file, and DA= DT or ALL, can be used in the full 
screen Debug utility. For more information about SCU decks, see the Source Code 
Utility manual. 

LIST (L) 

The LIST parameter specifies the file to receive the compiler output listing. This 
includes the source listing, diagnostics, compile-time statistics, and information 
requested by the LIST_ OPTIONS parameter. The compiler output listing is described 
later in this chapter under Compiler Output Listing. The format of the compiler output 
listing will be a single file even if you specified a list of file references for the INPUT 
parameter. Options are: 

Omitted 

Same as LIST=$LIST (batch jobs) or LIST=$NULL (interactive jobs). (Data written 
to file $NULL is discarded). 

LIST=file 

The output listing is written to the specified file. 

10·10 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Options 

LIST_ OPTIONS (LO) 

The LIST_ OPTIONS parameter specifies the information that is to appear on the 
compiler output listing. (This information is described later in this chapter under 
Compiler Output Listing.) The information is written to the file specified by the LIST 
parameter. The LIST parameter is not specified, you must connect the default file by 
using the SCL command: 

CREATE_FILE_CONNECTION $LIST $OUTPUT 

The LIST_ OPTIONS parameter allows you to select multiple options. Options are: 

Omitted 

Same as LO= S. 

LIST_OPTIONS=NONE 

No output listing is produced. 

LIST_OPTIONS=(op, ... , op) 

where op is one of the following: 

A 

A listing of the attributes of each symbolic name used or defined within the 
program is produced. These attributes include data type, class, and so forth. 

R 

A cross reference listing is produced. This listing shows the locations of the 
definition and use of each symbolic name in the program. Names that are 
defined but not referenced are not listed. 

M 

A symbol attribute list (same as A option), DO loop map, and common block 
map are produced. The DO loop portion lists all DO loops in the program, 
including implied DO lists, and their properties. The common block portion 
describes the storage layout for common blocks, and the equivalence-induced 
storage overlap for all variables and arrays. 

s 
A listing of the program source statements is written to the output file. Lines 
turned off by C$ LIST directives are not listed. 

SA 
Same as S, except that lines turned off by C$ LIST directives are listed. 

0 

A listing of the generated object code is provided. 

Revision H Compilation and Execution 10·11 



Parameter Options 

MACHINE_DEPENDENT (MD) 

The MACHINE_DEPENDENT parameter specifies whether the use of machine 
dependent capabilities within the program are to be diagnosed and if so, how severely. 
These capabilities include coding that depends on the number of characters in a word, 
such as the boolean data type, ENCODE and DECODE statements, and certain uses of 
BUFFER IN and BUFFER OUT. Options are: 

Omitted 

Same as MACHINE_DEPENDENT=NONE. 

MACHINE_DEPENDENT =NONE 

Machine dependent usages are not diagnosed. 

MACHINE_DEPENDENT=TRIVIAL (MD=T) or 
MACHINE DEPENDENT= INFORMATIONAL(MD =I) 

Machine dependent usages are diagnosed as trivial (informational) errors. 

MACHINE_DEPENDENT=WARNING (MD=W) 

Warning messages are printed for machine dependent usages. 

MACHINE_DEPENDENT=FATAL (MD=F) 

Machine dependent usages are treated as fatal errors, which result in a 
nonexecutable object program. 

ONE_TRIP_DO (OTD) 

The ONE_ TRIP _DO parameter establishes the minimum trip count for DO loops. 
Options are: 

Omitted 

Same as ONE_TRIP_DO=OFF. 

ONE_TRIP_DO=ON (OTD=ON) 

Minimum trip count for DO loops is one. 

ONE_TRIP_DO=OFF (OTD=OFF) 

Minimum trip count for DO loops is zero. 

The trip count is the number of times a DO loop is executed. Specifying ONE_ TRIP_ 
DO sets the minimum trip count to one. This means that all DO loops will executed at 
least once, even if the terminating conditions are satisfied before the loop is initially 
entered. This information enables the compiler to generate more efficient object code. 
Specifying ONE_TRIP_DO=OFF sets the minimum trip count to zero; this means that 
DO loops whose terminating conditions are satisfied before the loop is initially entered 
will not be executed. You can override the ONE_ TRIP_ DO parameter with the C$ DO 
directive. Refer to the discussion of DO loops in chapter 5. 

For Better Performance 

For full optimization of DO loops you should specify ONE_TRIP_DO=ON. You should 
check all DO loops in your program to ensure that the results will not be affected by 
executing all DO loop~ at least once. 

10-12 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Options 

OPTIMIZATION_LEVEL (OL, OPTIMIZATION, OPT) 

The OPTIMIZATION_LEVEL parameter selects the level of optimization performed by 
the compiler. Options are: 

Omitted 

Same as OPTIMIZATION_LEVEL=LOW. 

OPTIMIZATION _LEVEL= DEBUG 

Object code is similar to that produced with OPTIMIZATION_LEVEL=LOW, except 
that it is modified for debugging use. Also automatically selects FORCED_SAVE = 
ON. 

OPTIMIZATION _LEVEL= LOW 

Minimum optimization is performed, resulting in faster compilation time but slower 
execution time. 

OPTIMIZATION_LEVEL=HIGH 

Maximum optimization is performed, resulting in slower compilation time but faster 
execution time. 

At OPTIMIZATION _LEVEL = HIGH, storage is not allocated at load time for 
variables and arrays unless they are in a common block, or are saved (by a SAVE 
statement or FORCED_SAVE = ON compiler option), initialized in a DATA statement, 
or used as actual arguments. Instead, storage is allocated for them on the runtime 
stack during execution, only when the program unit to which they belong becomes 
active. This storage is then given up on execution of a RETURN or END statement in 
the program unit. The default runtime stack size is about 2 million bytes. If this limit 
is exceeded, a runtime error results, usually of the form "Tried to read/write beyond 
maximum segment length" and "A stack segment contains invalid frames". For 
programs where the number of active items allocated on the runtime stack exceeds the 
default limit, you can increase the runtime stack size by specifying the STACK_SIZE 
parameter on the EXECUTE_TASK command (as described in the SCL Object Code 
Management Usage Manual). 

For Better Performance 

For full optimization (fastest execution), specify OPTIMIZATION_LEVEL=HIGH. But 
remember that this option results in slower compilation. 

RUNTIME_CHECKS (RC) 

The RUNTIME_ CHECKS parameter selects runtime range checking of subscripts and 
substrings. This parameter allows you to select multiple options. Options are: 

Omitted 

Same as RUNTIME_CHECKS=NONE. 

RUNTIME_CHECKS=NONE 

Causes no options to be selected. 

Revision H Compilation and Execution 10-13 



Parameter Options 

RUNTIME_CHECKS=R 

Selects runtime range checking for character substring expressions. If a character 
substring expression would cause the substring to exceed the bounds declared by the 
CHARACTER statement, an informative diagnostic is issued and execution 
continues. 

RUNTIME_ CHECKS= S 

Selects runtime range checking for subscript expressions. If a subscript expression 
would cause the subscript to exceed its declared dimension bounds, an informative 
diagnostic is issued and execution continues. 

RUNTIME_ CHECKS= ALL 

Selects both the R and S options. 

SEQUENCED_LINES (SL) 

The SEQUENCED_LINES parameter specifies the sequencing format of the input 
source program. Sequenced and nonsequenced formats are described in chapter 2. (Note 
that the FORTRAN sequenced format is not the same as the line-numbered format 
produced by NOSNE. Line numbered source programs must not be written in 
sequenced format.) Options are: 

Omitted 

Same as SEQUENCED_LINES=OFF. 

SEQUENCED_LINES=ON (SL=ON) 

Source program is in sequenced format. 

SEQUENCED_LINES=OFF (SL=OFF) 

Source program is in nonsequenced format. 

STANDARDS_DIAGNOSTICS (SD) 

The STANDARDS_DIAGNOSTICS parameter specifies whether the use of non-ANSI 
source statements are to be diagnosed and if so, how severely. Options are: 

Omitted 

Same as STANDARDS_DIAGNOSTICS=NONE. 

STANDARDS_ DIAGNOSTICS= NONE 

Nonstandard usages are not diagnosed. 

STANDARDS_ DIAGNOSTICS= TRIVIAL (SD= T)or STANDARDS_ DIAGNOSTICS 
=INFORMATIONAL (SD=I) 

Nonstandard usages are treated as trivial (informational) errors. 

STANDARDS_ DIAGNOSTICS= WARNING (SD= W) 

Nonstandard usages are treated as warning errors. 

STANDARDS_DIAGNOSTICS=FATAL (SD=F) 

Nonstandard usages are treated as fatal errors. 

Refer to the ERROR_LEVEL parameter for descriptions of trivial (informational), 
warning, and fatal errors. 

10-14 FORTRAN Version 1 Language Definition Usage Revision H 



Parameter Options 

STATUS 

The STATUS parameter defines an SCL status variable to be set by the compiler to 
contain information about errors that occurred during compilation. The status variable 
must have been created by the command: 

CREATE_VARIABLE variable KIND=STATUS 

The severity level of errors for which information is to be returned is determined by 
the TERMINATION_ERROR_LEVEL parameter. The status variable consists of three 
fields in which the following information is available to SCL after compilation is 
complete: 

Normal field 

Contains the boolean value false if compile-time errors occurred, and true if no 
errors occurred. If the value returned is true (no errors occurred), the remaining 
fields are undefined. 

Condition field 

A unique integer value indicating the specific error that occurred. The condition 
field consists of a unique one to four digit error code prefixed by an identifier. 
Error codes and corresponding error messages are listed in the Diagnostic Messages 
for NOS/VE manual. 

Text field 

A string of length 256 in which SCL places information to be substituted into the 
error message template for the particular error. 

Options for the STATUS parameter are: 

Omitted 

No error status information is returned. 

STATUS=var 

Status information is placed in the SCL variable var. 

TARGET_MAINFRAME (TM) 

The TARGET_MAINFRAME(TM) parameter specifies the kind of mainframe that the 
object code is generated for. This parameter is only significant when the 
OPTIMIZATION _LEVEL parameter specifies HIGH. Options are: 

Omitted 

Same as C180_ VECTOR if compilation occurs on a CYBER 180 Model 990. Same 
as C180_MODEL_INDEPENDENT if compilation occurs on another model of the 
CYBER 180. 

TARGET_MAINFRAME=C180_ VECTOR or C180V 

The object code is generated for use on the model 990 of the CYBER 180. The 
model 990 has vector-processing capabilities; object code produced by this option will 
also execute on any CYBER 180 model, however, it would perform optimally on a 
model 990. 

TARGET_MAINFRAME = C180_MODEL_INDEPENDENT or C180MI 

The object code is generated for use on any model of the CYBER 180. 

Revision H Compilation and Execution 10-15 



FORTRAN Command Examples 

.

:_ .... =';=····::_·1_ .... = ::rs::tt:r ~:r::::::ET_MAINFRAME=ClSO_ VECTOR option for code that is 
going to be executed on a model 990 of the CYBER 180. 

TERMINATION _ERROR_LEVEL (TEL) 

The TERMINATION _ERROR_ LEVEL parameter specifies the minimum error severity 
level for which the compiler is to return abnormal status. The status code is returned 
in the SCL variable specified by the STATUS parameter after compilation completes. 
Information about errors having the specified severity or higher severity is returned. 
Refer to the ERROR_LEVEL parameter for an explanation of the error severity levels. 
Options are: 

Omitted 

Same as TERMINATION_ERROR_LEVEL=FATAL. 

TERMINATION_ERROR_LEVEL=TRIVIAL (TEL=T) or 

TERMINATION_ERROR_LEVEL=INFORMATIONAL (TEL=I) 
Abnormal status is returned for trivial (informational), warning, fatal, and 
catastrophic errors. 

TERMINATION_ERROR_LEVEL=WARNING (TEL=W) 

Abnormal status is returned for warning, fatal, and catastrophic errors. 

TERMINATION _ERROR_LEVEL= FATAL (TEL= F) 

Abnormal status is returned for fatal and catastrophic errors. 

TERMINATION _ERROR_LEVEL= CATASTROPHIC (TEL= C) 

Abnormal status is returned for catastrophic errors only. 

FORTRAN Command Examples 

Following are some examples of FORTRAN commands. 

Example: 

FORTRAN INPUT=AFILE BINARY_OBJECT=BFILE ERROR_LEVEL=FATAL 

This statement selects the following options: 

INPUT=AFILE Source statements are read from file AFILE. 

BINARY _OBJECT=BFILE Object code is written to file BFILE. 

ERROR_LEVEL=FATAL Fatal and catastrophic diagnostics are written to the output 
listing file. 

All other parameters assume default options. (See table 10-1.) 

Example: 

FORTRAN INPUT=MYPROG OPTIMIZATION_LEVEL=HIGH 

10-16 FORTRAN Version 1 Language Definition Usage Revision H 



Compiler Output Listing 

This statement selects the highest level of optimization. All other parameters assume 
default values. (See table 10-1.) 

Example: 

FORTRAN 

This statement selects default values for all parameters. (See table 10-1.) 

Example: 

FORTRAN I=(AFILE, BFILE, CFILE) B=BINF DA=ALL 

This statement selects the following options: 

I=(AFILE, BFILE, CFILE) 

B=BINF 

DA=ALL 

Example: 

/fort ran 
? PROGRAM TEST 
? READ *, J 
? PRINT *, J/2 
? END 
?*EOI 
I 

Source statements are read from files AFILE, BFILE and 
CFILE. 

The binary object code is written to file BINF. The binary 
object code is generated from all three input files into one 
file. 

Allows you to use the Debug utility with your program. 

This example reads the source input from the terminal (assuming $INPUT is connected 
to the terminal) and then compiles it. To terminate terminal input, and begin program 
compilation, enter *EOI (in uppercase) after the prompt. 

Compiler Output Listing 

The listing produced by the FORTRAN compiler is controlled by the LIST_ OPTIONS 
parameter on the FORTRAN command. You can select a complete listing or particular 
portions of the listing, or you can completely suppress the listing by specifying LIST_ 
OPTIONS= NONE. If you supplied a list of files for the INPUT parameter, the format 
of the compiler output listing is the same as if you had combined the files into a 
single file. The following paragraphs describe the output listing options. 

Revision H Compilation and Execution 10-17 



Source Listing 

Source Listing 

The source listing includes all source lines submitted for compilation as part of the 
source input file. Listed lines are preceded by a sequence number, unless you specify 
otherwise through the LINE_NUMBER attribute for the source input file. 

You can use the C$ LIST directives (described in appendix D) to suppress the listing of 
selected source lines. If you select the LIST_ OPTIONS= SA option, C$ LIST directives 
are disregarded and all source lines are listed. 

If errors are detected during compilation, a descriptive message is printed in the source 
listing immediately after the statement containing the error. 

Compilation Statistics 

The compilation statistics follow the source listing. These statistics always appear in 
the compiler listing and are not affected by the LIST_OPTIONS parameter unless 
LIST_OPTIONS=NONE is specified. The compilation statistics consist of the error 
summary and the total compilation time. 

The error summary has two parts: a diagnostic summary, which lists the number of 
errors that occurred on each page of the output listing, and the level summary, which 
lists the total number of each level of error that occurred. The error levels are: 

Nonstandard diagnostics 

Machine-dependent diagnostics 

Trivial diagnostics (Informational diagnostics) 

W aming diagnostics 

Fatal diagnostics 

Catastrophic diagnostics 

The error summary always appears in the output listing, regardless of which LIST_ 
OPTIONS specification you select. 

If the LIST and ERROR parameters both specify the same file (or use the default file, 
which is the file connected to OUTPUT) each error message, along with the line 
containing the error, is written twice. 

The level summary is followed by the message 

TOTAL CP SECONDS IN FORTRAN_COMPILATION = n 

where n is the decimal number of central processor seconds required to compile the 
program. 

If the LIST and ERROR parameters both specify the same file (or the file connected to 
OUTPUT) each error message (along with the line containing the error) is written 
twice. 

10-18 FORTRAN Version 1 Language Definition Usage Revision H 



Reference Map 

Reference Map 

The reference map is a dictionary of all symbolic names appearing in a program unit. 
The names are grouped by class and listed alphabetically within the groups. The 
reference map follows the source listing and the diagnostic summary (if present). The 
map is divided into the following sections: 

• Symbolic constants map 

• N amelist map 

• Variables map 

• Common and equivalence map 

• Statement labels map 

• DO loops map 

• Entry points map 

• Procedures map 

• 1/0 units map 

• Unclassified names map 

The content of the reference map is controlled by the LIST_ OPTIONS (LO) parameter 
on the FORTRAN command. The options are: 

LO=A 

Lists all symbolic names in the source program and their attributes (such as size, 
data type, relative address, and so forth). 

LO=R 

Lists each symbolic name in the program unit and all references to the name. 

LO=(A,R) 

Combines the A and R options (lists the attributes and references for each symbolic 
name). 

LO=M 

Produces a DO loop map and common/equivalence map. This option automatically 
selects the A option; that is, LIST_OPTIONS=M is the same as LIST_ 
OPTIONS=(M,A), and LIST_OPTIONS=(M,R) is the same as LIST_ 
OPTIONS= (M,A,R). 

Revision H Compilation and Execution 10-19 



General Format of Maps 

General Format of Maps 

Each class of symbolic name is preceded by a subtitle line that specifies the class and 
the properties listed. Formats for each symbol class are different, but most contain the 
following information: 

• Properties of the symbolic name. 

• References to the symbol (LIST_OPTIONS=R). All line numbers refer to the source 
line containing the statement in which the reference occurs. A line number may be 
suffixed by one of the following usage symbols, which describes how the symbolic 
name was referenced: 

IA 

Attribute: The reference defines a particular attribute, such as type or 
dimension. 

ID 

Declare: The reference declares the name as a dummy argument, an entry point 
name, an entity in common, a namelist group name, or label of a DO loop 
terminator. 

II 

Input: Name appears as an iolist item whose value will be read but not written. 

/M 

Modify: Name appears in a statement that alters its contents (assignment 
statement, DO statement, and so forth). 

IP 

Pa:::-ameter: Name appears as an actual argument. 

/R 

Read: Name is an iolist item in an input statement, a namelist group name in a 
READ statement, or an 1/0 unit which is read. 

IS 

Subscript: Name appears in a subscript expression. 

/W 

Write: Name is an iolist item in an output statement, a namelist group name in 
a WRITE, PRINT, or PUNCH statement, or an 1/0 unit which is written. 

10-20 FORTRAN Version 1 Language Definition Usage Revision H 



General Format of Maps 

• Relative address within the program unit of the symbol. This address is given in 
the form 

section + offset 

where section is the name of the section containing the symbol and offset is the 
offset (decimal words) of the symbol within the section, relative to the first word of 
the section. In most cases, the section name will be a program, subprogram, or 
common block name, or one of the following symbols: 

$LITERAL 

Section of the compiled program containing constant data. 

$STACK 

Section containing variables that are allocated on the stack when the containing 
program unit is called. 

$PARAMETER 

A subset of the $STACK section containing parameter list variables allocated on 
the stack by the calling program. 

$STATIC 

Section containing variables that are statically allocated, are not in common, 
and are not in an explicitly named section. 

$REGISTER 

Variables not belonging to any memory section but existing only in a hardware 
register. 

The following paragraphs describe the various sections of the reference map as they 
would appear for the full map, selected by LIST_OPTIONS=(M,A,R). 

Variables Map 

Variable names include local and COMMON variables and arrays, and dummy 
arguments. The variables map has the following form: 

--VARIABLES--
-NAME---SECTION+QFFSET-----SIZE-PROPERTIES-----TYPE----REFERENCES 

name sec+of f size prop1/prop2 type refs 

name 

Variable name. Variables are listed in alphabetical order. 

sec+off 

Relative address of the variable. 

If name is a dummy argument, it is listed as DUMMY ARGUMENT #n, where n 
is the position of the argument in the dummy argument list. If name is used only 
as a statement function dummy argument, it is listed as a STF DUMMY 
ARGUMENT. 

Revision H Compilation and Execution 10-21 



General Format of Maps 

size 

For array names, this entry gives the total number of elements in the array. For 
nonarray names this entry is blank. 

prop 

Properties of the name, listed in the form propl/prop2 .... Each prop is one of the 
keywords: 

UND 

Variable has not been defined. A variable is defined if any of the following 
conditions hold: 

• Appears as an entity in common. 

• Is initialized in a DATA statement. 

• Appears on the left side of an assignment statement at the outermost 
parenthesis level. 

• Is the DO variable in a DO loop or 1/0 implied DO list. 

• Appears as a parameter in a subroutine or function call. 

• Appears in an input list. 

• Appears as the IOSTAT variable in an 1/0 statement. 

• Appears as a status variable in an INQUIRE statement. 

• Appears as an extended internal file in an ENCODE statement. 

• Appears as a standard internal file in a WRITE statement. 

• Appears as the destination name in a BUFFER IN statement. 

Otherwise the variable is considered undefined. However, variables that are 
referenced before they are defined are not flagged. 

EQV 

Variable name is equivalenced. 

SAV 

Variable name has the SAVE property. 

UNUSED 

Name is not referenced in an executable statement, is not a statement function 
dummy argument, is not an entity in common, and does not appear as a DO 
variable in a DATA implied DO list. 

*S* 

Name appears only once in the entire program unit. (Check carefully for other 
names with similar spellings.) 

10-22 FORTRAN Version 1 Language Definition Usage Revision H 



General Format of Maps 

type 

Gives the type of the variable name. One of the values LOGICAL, INTEGER, 
REAL, COMPLEX, DOUBLE, CHARACTER, or BOOLEAN. 

For character names, the form is: 

CHAR*n 

For variables with specified length 

CHAR*(*) 

For variables with adjustable length 

refs 

References and definitions associated with the variable name;. listed by line number. 
Appears only when R option is selected. May be suffixed by a usage symbol. 

Symbolic Constants Map 

The symbolic constants map lists information about constants assigned symbolic names 
by PARAMETER statements. This map has the following form: 

--SYMBOLIC CONSTANTS--
-NAME----TYPE--------------------------VALUE---REFERENCES 

name type value refs 

name 

Symbolic name as declared in the PARAMETER statement. 

type 

Data type of the name (same as type field in VARIABLES section). 

value 

Value assigned to the name in the PARAMETER statement. 

refs 

Source line number of statements referencing the constant; appears only if R option 
selected. Suffixed by a usage symbol (same as refs field in VARIABLES map). 

N amelist Map 

The namelist map lists information about namelist groups defined in the program unit. 
This map has the following form: 

--NAMELIST--
-NAME----SECTION+QFFSET--------REFERENCES 

name sec+of f refs 

name 

Namelist group name. 

Revision H Compilation and Execution 10-23 



General Format of Maps 

sec+off 

Relative address of the first word of the namelist group. 

The symbol *NONE* indicates that the namelist group was not referenced in the 
program unit. 

refs 

Source line numbers of statements referencing the namelist group. (Appears only if 
R option selected.) Suffixed by a usage symbol: 

ID 

N amelist group is defined. 

/R 

N amelist is referenced in a READ statement. 

/W 

N amelist is referenced in a WRITE statement. 

Common and Equivalence Map 

The common and equivalence map lists information about common blocks and 
equivalence declarations within the program unit. This map is selected by the M option 
on the LIST_OPTIONS parameter. The common and equivalence map has the following 
form: 

--COMMON+EQUIVALENCE--

/block/ SIZE = size units save 

1tem1 . . . i temn 

--LOCAL EQUIVALENCES--

1tem1 . . . 1temn 

name 

Common block name. 

size 

Total number of words or characters occupied by the common block. 

units 

WORDS for a block containing only noncharacter items. CHARACTERS if the block 
contains only character items. BYTES for a block containing character and 
noncharacter items. 

save 

SAVE if the block is saved; blank otherwise. 

10-24 FORTRAN Version 1 Language Definition Usage Revision H 

( 



General Format of Maps 

item 

Describes the storage position of a variable or array. Each item has three fields: 

name< first- last> 

or 

name <first:last > 

name 

Name of the variable or array. 

first 

Storage position within the block of the first element of name. 

last 

Storage position within the block of the last element of name. 

First and last are given in decimal. The first position of a common block is numbered 
1. If name is a noncharacter variable (occupies a single word), -last does not appear. If 
name is type character, first and last indicate character positions, and are separated by 
a colon. Otherwise, they indicate words and are separated by a hyphen. 

Items that share storage positions because of equivalencing are enclosed in parentheses~ 

Statement Labels Map 

The statement labels map lists information about all statement labels used in the 
program unit. This map has the following form: 

--STATEMENT LABELS--
-LABEL-SECTION+QFFSET-----PROPERTIES-----DEF--REFERENCES-

label sec+off prop def refs 

label 

Statement label; labels are listed in numerical order. 

sec+off 

Relative address of the label. If an address cannot be assigned, one of the following 
symbols appears: 

*UNDEFINED* 

Statement label is not defined. 

*NO REFERENCES* 

Label is not referenced anywhere in the program unit. (This label can be 
removed from the source program.) 

*INACTIVE* 

Label has been deleted by optimization. 

Revision H Compilation and Execution 10-25 



General Format of Maps 

prop 

One of the following: 

FORMAT 

Label appears in a FORMAT statement. 

DO-TERM 

Label appears in a DO statement. 

NON-EX 

Label appears on a nonexecutable statement. (If the label is referenced, a 
diagnostic is issued.) 

blank 

Label appears in the label field of an executable statement. 

def 

Source line number where label is defined. *UNDEF* if not defined. 

refs 

Source line numbers where the label is referenced. (Appears only when R option 
selected.) May be suffixed by a usage symbol. 

DO Loops Map 

The DO loops map lists information about all DO loops in the program unit, including 
implied DO lists in 1/0 statements. (Implied DO lists in DATA statements are not 
listed.) The loops are listed in order of their appearence in the program unit. The map 
appears only if you sele~ted the M option. The DO loop map has the following form: 

--DO LOOPS--
-LABEL--SECTION+QF FSET-----PROPERTI ES-----I NDEX---FROM---TO 

label sec+off prop index first last 

label 

Label of final statement; 1/0 for implied DO lists in input/output statements. 

sec+off 

Relative address of the first statement of the loop. 

prop 

One of the following symbols, describing properties of the loop: 

OPEN 

Loop can be reentered from outside its range. 

EXIT 

Loop contains references to statement labels outside its range. 

10-26 FORTRAN Version 1 Language Definition Usage Revision H 



General Format of Maps 

XREF 

Loop contains references to an external subprogram, including 
compiler-generated references to all library subprograms except those used to do 
character moves or compares. 

OUTER 

Loop contains nested loops. 

index 

Name of the DO variable. 

from 

Line number of the first statement of the loop. 

to 

Line number of the last statement of the loop. 

Entry Points Map 

The entry points map lists information about subprogram names appearing on ENTRY 
statements. This map has the following form: 

--ENTRY POINTS--
-NAME----SECTION+QFFSET----------ARGS-REFERENCES-

name sec+of f args refs 

name 

Entry point name as defined in the source program. 

sec+off 

Relative address assigned to the entry point. 

args 

Number of dummy arguments in the ENTRY statement; blank if no arguments. 

refs 

Source line numbers of ENTRY or RETURN statements. (Produced only of the R 
option is selected.) May be suffixed by a usage symbol. 

Procedures Map 

The procedures map lists names of all functions and subroutines called from the 
program unit, names declared in an EXTERNAL statement, and names of intrinsic and 
statement functions appearing in the program unit. Implicit external references 
generated by certain FORTRAN statements, such as input/output statements, are not 
listed. The procedures map has the following form: 

--PROCEDURES--
-NAME----TYPE----------ARGS-CLASS-----RE FERE NCES 

name type args class refs 

Revision H Compilation and Execution 10-27 



General Format of Maps 

name 

Subroutine or function name. 

type 

Data type of function result; blank if class is SUBROUTINE or UNKNOWN; 
GENERIC for generic intrinsic functions. 

args 

Number of arguments; VAR if number is variable (intrinsic functions such as MAX 
and MIN). UNKNOWN if class is UNKNOWN. 

class 

One of the following: 

DUMMY FUNC 

Name is a dummy argument used as a function name 

DUMMY SUBR 

Name is a dummy argument used as a subroutine name 

SUBROUTINE 

Name is used as a subroutine name 

FUNCTION 

Name is used as an external function name 

FUNC+SUBR 

Name used as both a function name and subroutine name (gives a warning 
message) 

INTRINSIC 

Name is an intrinsic function name 

STAT FUNC 

Name is used as a statement function name 

UNKNOWN 

Class cannot be determined. (Appears if name is used in an EXTERNAL 
statement.) 

refs 

Line number where name is referenced. May be suffixed by a usage symbol. 

Input/Output Units Map 

The input/output units map lists all constant unit designators referenced in the 
program unit. This map has the following format: 

--PROCEDURES UNITS--
-NAME----AL IAS----PROPERTI ES------RE FERE NCES-

name alias prop refs 

10-28 FORTRAN Version 1 Language Definition Usage Revision H 



General Format of Maps 

name 

Value of the unit designator. If the value is an integer in the range 0 through 999, 
then name has the form TAPEn. 

alias 

The name of the alternate unit specified by an alternate unit specification on the 
PROGRAM statement or by default (in the case of an implied unit for which no 
alternate unit was specified on the PROGRAM statement). This field is blank if the 
unit does not have an alias. 

prop 

Type of I/O operation for which the unit is used: 

FMT 

Formatted operation 

SEQ 

Sequential operation 

DIR 

Direct access operation 

BUF 

Buffer I/O operation 

AUX 

Auxiliary I/O statement 

Multiple symbols are separated by slashes. 

refs 

Source line number of statements referencing the unit; appears only if R option 
selected. May be suffixed by a usage symbol. 

Unclassified Names Map 

The unclassified names map lists all names appearing in the program unit that could 
not be classified. In many cases, these names are the result of programming errors 
such as misspellings, and should be checked carefully. The unclassified names map has 
the following form: 

--UNCLASSIFIED NAMES--
-NAME-----PROPERTIES-----REFERENCES 

name prop refs 

name 

Name as it appeared in the source program. 

Revision H Compilation and Execution 10-29 



Execution Command 

prop 

One of the following: 

UNUSED 

Same as Variable Map property having the same name 

*S* 

Same as the Variable Map property having the same name 

refs 

Source line number where the name is referenced. (Produced only if the R option is 
selected.) May be suffixed by a usage symbol. 

Execution Command 
A compiled program is loaded and called into execution by an execution command. The 
execution command has the form: 

file p ... p 

file 

Specifies the file containing the object program to be executed. 

p 

Optional parameter to be passed to the executing program. 

You can also use the EXECUTE_ TASK command to begin execution of a program. 
This command has the form 

EXECUTE_ TASK file params 

where file specifies the name of the object file to be executed, and params is a list of 
;~~ parameters. Refer to the SCL Object Code Management manual for a detailed I f::~~~tion of the EXECUTE_ TASK command and for information on the system 

The name of the object file is established by the BINARY_OBJECT parameter on the 
FORTRAN command. If you omit this parameter, the file name defaults to 
$LOCAL.LOO. 

The execution command causes the system loader to load the compiled program into 
memory, perform the required linking and address relocation, and initiate execution of 
the loaded program. If any parameters are specified on the execution command, they 
are passed to the program. 

The optional parameters on the execution command provide a method of passing values 
to the program. The parameter list must conform to the format for parameter lists 
described in the SCL Language Definition manual. Three classes of parameters can 
appear on the execution call command: predefined parameters (STATUS and $PRINT_ 
LIMIT), file names to be used for file name substitution, and user-defined SCL 
parameters. You can specify either file names for file name substitution or SCL 
parameters, but not both, on an execution command. 

10-30 FORTRAN Version 1 Language Definition Usage Revision H 



$PRINT LIMIT Parameter 

Parameters on an execution command can be specified by name (in the form parameter 
name= value) or positionally (parameter name= omitted). When you specify a 
parameter positionally, you must indicate the position of any omitted parameters that 
precede the specified parameter by commas; the first omitted parameter is indicated by 
two successive commas, and each additional omitted parameter is indicated by an 
additional comma. Thus, if n parameters are omitted, n + 1 commas are required. 

$PRINT _LIMIT Parameter 

The $PRINT_LIMIT parameter appears on the execution command as follows: 

file $PRINT_ LIMIT= lim or 

file $PL=lim 

where file specifies the file containing the compiled object code and lim is the desired 
print limit. This parameter specifies the maximum decimal number of print lines that 
the executing program can write to files $OUTPUT and $ERRORS. If the $PRINT_ 
LIMIT parameter is specified positionally, it is the next to last parameter on the 
execution command. 

Example: 

LGO $PRINT_LIMIT=10000 

This commmand sets the runtime print limit to 10000 lines. 

STATUS Parameter 

The STATUS parameter specifies a System Command Language variable to be used for 
the error status code returned by the system when runtime errors occur. The STATUS 
parameter appears on the execution command as follows: 

file STATUS= var 

where file specifies the object file name and var is a variable to receive the error 
status code. The STATUS variable consists of the following fields: 

Normal field 

Returns the logical value true if errors occurred, or false if no errors occurred. 
Information is returned in the identifier, condition, and text fields only if the 
normal field contains the value true. 

Condition field 

Returns the error code. The error code is an integer value representing the 
combined ASCII values of a two digit condition identifier and a one through four 
digit condition code. 

Revision H Compilation and Execution 10-31 



User-Defined System Command Language Parameters 

Text field 

A field of length 256 characters in which SCL places a string containing delimited 
substrings to be substituted into the message template for the particular error. 

The STATUS parameter positionally is the last parameter on the execution command. 

Example: 

CREATE_VARIABLE IERR KIND=STATUS 
LGO STATUS=IERR 

These statements define variable IERR to be the error status variable. 

User-Defined System Command Language Parameters 

You can specify parameters on the execution command that are accessable within the 
executing program. These parameters provide a method of passing information between 
an executing program and the System Command Language (SCL). The parameter 
names and values are accessed by using the System Command Language (SCL) 
interface calls described in chapter 9. If any us~r-defined SCL parameters are to appear 
on an execution command, those parameters must be defined by the C$ PARAM 
directive within the program to be executed. A given execution command cannot 
contain both SCL parameters and parameters for file name substitution. 

File Name Substitution 

FORTRAN provides a method of substituting file names at execution time. File names 
specified on the execution command are substituted for file names associated with unit 
names declared on the PROGRAM statement. 

Unit names declared on the PROGRAM statement are associated with a default file of 
the same name unless you substitute a different name. For units INPUT and OUTPUT, 
the default files are $INPUT and $OUTPUT, respectively. For other units, the default 
files have the same name as the unit. For example, with the PROGRAM statement 

PROGRAM TEST(INPUT, OUTPUT, TAPE1, TAPE2) 

The default runtime file names are: 

$INPUT 

$OUTPUT 

TAPEl 

TAPE2 

Specifying unit names on the PROGRAM statement is optional; the same unit names 
would exist if the statement PROGRAM TEST were used. However, default file names 
associated with the unit names on the PROGRAM statement can be changed for a 
particular run by using the method of file name substitution. 

Parameters to be used for file name substition have the same format as SCL 
parameters; however, a C$ PARAM directive in the program is not permitted. Each 
unit declaration on the PROGRAM statement defines a valid parameter that can 
appear on the execution command. If you specify a parameter and value on the 
execution command in the form 

10-32 FORTRAN Version 1 Language Definition Usage Revision H 

( 



File Name Substitution 

parameter= value 

the file name indicated by value is substituted for the file name associated with the 
unit name indicated by parameter. If only value is specified, the file name specified by 
value is substituted for the file associated with the unit name having the corresponding 
position on the PROGRAM statement. For example, if a program begins with the 
statement 

PROGRAM TEST(INPUT, OUTPUT, TAPE1, TAPE2) 

then the following execution commands have the same effect: 

LGO,,,MYFILE URFILE 

LGO TAPE1=MYFILE TAPE2=URFILE 

Each command causes the following default associations: 

Unit 
name 

INPUT 

OUTPUT 

TAPEl 

TAPE2 

File name 
used 

$INPUT 

$OUTPUT 

MYFILE 

URFILE 

The commas on the first LGO command are required to indicate the omitted INPUT 
and OUTPUT parameters. 

If an alternate unit name is specified in the PROGRAM statement, that name can be 
used in place of the parameter name on the execution command. For example, if a 
program uses the statement 

PROGRAM TEST (INPUT, TAPES=INPUT, OUTPUT) 

then the following execution commands are equivalent: 

LGO MYFILE URFILE,,CHECK 

LGO TAPES=MYFILE OUTPUT=URFILE STATUS=CHECK 

The file substitutions are: 

Unit 
name 

INPUT 

TAPE5 

OUTPUT 

File name 
used 

MYFILE 

MYFILE 

URFILE 

In the first command, the status variable CHECK is specified positionally (it is last 
parameter on the command); the omitted $PRINT_LIMIT parameter is indicated by two 
successive commas. In the second command, the status variable is specified parameter 
name. 

Revision H Compilation and Execution 10-33 



File Name Substitution 

The default unit/file associations can be overridden by file name specifications in OPEN 
statements. 

10-34 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed-File Interface 

Keyed-File Concepts ........... . 
Keyed-File Organizations ...... . 

Indexed-Sequential File Organization 
Direct Access File Organization 

Alternate Keys ......... . 
Alternate-Key Characteristics 
The Alternate Index ... 
Alternate-Key Definition 

Nested Files . . . . . . . . . 

FORTRAN Keyed-File Interface Concepts 
File Information Table . . . . . . . . . 
Keyed-File Interface Error Processing 
Creating a Keyed File . . . . . 

Keyed-File Attributes .... 
Using an Existing Keyed File 
Alternate Key Creation ... . 
Alternate-Key Use ...... . 

Selecting a Key ...... . 
Specifying an Alternate-Key Value 
Key Values Returned ....... . 
Fetching Information From the Alternate Index . 

Keyed File Sharing 
Locks ...... . 
Reasons for Locks 
Lock Intents .. . 
File Locks ... . 
Waiting for a Lock 
Lock Expiration and Clearing 
Lock Deadlock . . . . 
Lock Conflict Tables 

Result Sets . . . . . . 
Result Set Validity . 
Result Set Files . . . 
Combining Result Sets 
Adding Or Deleting Key· Values . 

Keyed-File Interface Calls ...... . 
Keyed-File Interface Calls Introduction 
CLOSEM Call . 
DLTE Call .. 
FILEDA Call . 
FILEIS Call . . 
FLUSHM Call 
GET Call .. 
GETN Call .. 
!FETCH Call . 
KEYLIST Call 
KLCOUNT Call 
KLSPACE Call 
LOCKF Call 
LOCKK Call 
OPENM Call 

11 

11-1 
11-1 
11-2 
11-9 

11-13 
11-13 
11-14 
11-14 
11-25 

11-27 
11-27 
11-28 
11-30 
11-30 
11-31 
11-32 
11-33 
11-33 
11-34 
11-35 
11-36 
11-36 
11-37 
11-38 
11-39 
11-40 
11-41 
11-42 
11-44 
11-44 
11-47 
11-48 
11-49 
11-49 
11-51 

11-52 
11-53 
11-54 
11-55 
11-57 
11-58 
11-60 
11-61 
11-66 
11-69 
11-71 
11-75 
11-79 
11-83 
11-85 
11-88 



PUT Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-92 
PUTREP Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-95 
REP LC Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-97 
REWND Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-99 
RMKDEF Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-100 
RSBUILD Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-105 
RSCLEAR Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-109 
RSCLOSE Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-110 
RSCOMB Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-111 
RSDLTE Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-113 
RSGETN Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-114 
RSINFO Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-117 
RSOPEN Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-119 
RSPUT Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-121 
RSREWND Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-122 
RSSKIP Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-123 
RSSTART Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-124 
SKIP Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-125 
STARTM Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-128 
STOREF Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-130 
UNLOCKF Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-132 
UNLOCKK Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-133 

FIT Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-135 
FIT Value Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-136 

FIT Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-137 
FIT Value Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-137 

$ACCESS_MODE ($AM or PD) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-138 
$AUTOMATIC_UNLOCK ($AU or AU) . . . . . . . . . . . . . . . . . . . . . . 11-140 
$AVERAGE_RECORD_LENGTH ($ARL or ARL) . . . . . . . . . . . . . . . . 11-141 
$COLLATE_ TABLE ($CT or DCT). . . . . . . . . . . . . . . . . . . . . . . . . 11-142 
$COLLATE_ TABLE_NAME ($CTN or CTN) . . . . . . . . . . . . . . . . . . . 11-143 
$COMPRESSION_PROCEDURE_NAME ($CPN or CPN) . . . . . . . . . . . 11-144 
$DATA_PADDING ($DP or DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-146 
Data Exit Procedure (DX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-147 
$EMBEDDED_KEY ($EK or EMK) . . . . . . . . . . . . . . . . . . . . . . . . 11-148 
$ERROR_COUNT ($EC or ECT). . . . . . . . . . . . . . . . . . . . . . . . . . 11-149 
$ERROR_EXIT_PROCEDURE_NAME or $ERROR_EXIT_NAME ($EEPN, 

$EEN or EXN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-150 
$ERROR_EXIT_PROCEDURE ($EEP or EX) . . . . . . . . . . . . . . . . . . 11-151 
$ERROR_LIMIT ($EL or ERL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-152 
$ERROR_STATUS ($ES or ES) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-153 
ESTIMATED_RECORD_COUNT ($ERC or ERC) . . . . . . . . . . . . . . . . 11-154 
Fatal/Nonfatal Flag (FNF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-155 
$FILE_IDENTIFIER ($FI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-156 
$FILE_ORGANIZATION ($FO or FO). . . . . . . . . . . . . . . . . . . . . . . 11-157 
$FILE_POSITION ($FP or FP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-158 
$FORCED_ WRITE ($FW or FWI) . . . . . . . . . . . . . . . . . . . . . . . . . 11-159 
$GET_AND_LOCK ($GAL or GAL) . . . . . . . . . . . . . . . . . . . . . . . . 11-161 
$HASHING_PROCEDURE_NAME ($HPN or HPN) . . . . . . . . . . . . . . 11-162 
$INDEX_LEVELS ($1NDEX_LEVEL, $11, or NL) . . . . . . . . . . . . . . . 11-163 
$INDEX_PADDING ($IP or IP) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-164 
$1NITIAL_HOME_BLOCK_COUNT ($1HBC or HMB) . . . . . . . . . . . . . 11-165 
$KEY_ADDRESS ($KA or KA) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-166 
$KEY_LENGTH ($KL or KL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-167 
$KEY_NAME ($KN or KN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-168 
$KEY_POSITION ($KP or RKP) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-169 



$KEY_RELATION ($KR or REL) . . . . . . . . . . . . . . . . . . . . . . . . . 11-170 
$KEY_TYPE ($KT or KT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-171 
$LAST_OPERATION (LOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-172 
$LOCAL_FILE_NAME ($LFN or LFN) . . . . . . . . . . . . . . . . . . . . . 11-173 
$LOCK_EXPIRATION_TIME ($LET or LET) . . .. . . . . . . . . . . . . . . . 11-174 
$LOCK_INTENT ($LI or LI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-175 
$LOG_RESIDENCE ($LR or LR) . . . . . . . . . . . . . . . . . . . . . . . . . 11-176 
$LOGGING_OPTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-177 
$MAJOR_KEY_LENGTH ($MKL or MKL) . . . . . . . . . . . . . . . . . . . 11-178 
$MAXIMUM_BLOCK_LENGTH ($MAXBL or MBL) . . . . . . . . . . . . . . 11-179 
$MAXIMUM_RECORD_LENGTH ($MAXRL or MRL) . . . . . . . . . . . . . 11-180 
$MESSAGE_CONTROL ($MC or DFC) . . . . . . . . . . . . . . . . . . . . . . 11-181 
$MINIMUM_RECORD_LENGTH ($MINRL or MNR) . . . . . . . . . . . . . . 11-182 
$NESTED_FILE_NAME ($NFN OR NFN) . . . . . . . . . . . . . . . . . . . . 11-183 
Old/New Flag (ON). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-184 
Open/Close Flag (OC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-185 
$OPEN _POSITION ($OP or OF) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-186 
$PRIMARY_KEY_ADDRESS ($PKA or PKA) . . . . . . . . . . . . . . . . . . 11-187 
Record Length ($RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-188 
$RECORD_LIMIT ($RL or FLM) . . . . . . . . . . . . . . . . . . . . . . . . . 11-189 
$RECORD_ TYPE ($RT or RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-190 
$RECORDS_PER_BLOCK ($RPB or RB) . . . . . . . . . . . . . . . . . . . . . 11-191 
Relative Key Word (RKW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-192 
$SKIP_COUNT ($SC or SKP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-193 
$WAIT_FOR_LOCK ($WFL or WFL) . . . . . . . . . . . . . . . . . . . . . . . 11-194 
$WORKING_STORAGE_ADDRESS ($WSA or WSA) . . . . . . . . . . . . . . 11-195 
$WORKING_STORAGE_LENGTH ($WSL or WSL) . . . . . . . . . . . . . . . 11-196 





Keyed-File J[nte:rface ]J. 

The keyed-file interface is a group of subprogram calls that use the NOSNE keyed-file 
interface to perform input/output operations on keyed files. A keyed file is a file whose 
organization allows you to access records by their key values. 

The following subsection, Keyed-File Concepts, describes keyed-file structure and 
alternate keys in general. This information applies when using keyed files within or 
outside of programs. The next subsection, FORTRAN Keyed-File Concepts, describes 
concepts unique to the FORTRAN keyed-file interface. It is followed by individual 
descriptions of the keyed-file interface calls and the file information table (FIT) values. 

NOTE 

Type integer data in files to be processed by the keyed-file interface must be full-word 
integers, that }s, typed explicitly or implicitly as integer*S. 

Keyed-File Concepts 

Keyed files are like sequential files and byte-addressable files in that the data in the 
files is contained in records. 

A record is a collection of data that is read and written as a unit. The record could 
contain several fields of data, some of which have a fixed length while others vary in 
length. Thus, the records as a whole could have a fixed length or be variable in 
length. 

For example, a record could contain three data items of different types: an integer, a 
floating point number, and a string of characters. To write a record, a program writes 
all three data items together as a record; when the record is later read, all three data 
items are delivered to the program. 

The records in a sequential or byte-addressable file are stored as a simple sequence. 
The records in a keyed file are stored within a file structure. 

Keyed-File Organizations 

A file is a keyed file if its file_organization attribute is either indexed-sequential or 
direct access. A keyed-file organization allows you to read any record in the file 
directly by specifying its key value. The key value for a record is determined when the 
record is written to the file. 

To allow you to access each record by a key value, the file organization must relate 
each key value to the location of the record in the file. The keyed-file interface 
performs all processing required to relate a key value to a record location; beyond 
choosing the file organization, the user does not specify how this is done. The method 
of relating a key value to a record location differs for each keyed-file organization as 
described in the following sections. 

Revision H Keyed-File Interface 11-1 

I 



Keyed-File Organizations 

Indexed-Sequential File Organization 

The indexed-sequential file organization allows content addressing of records; that is, 
you can directly access a record by the contents of one or more fields of data in the 
record. The fields of data by which a record i~ addressed are its key fields, and the 
contents of those fields are its key values. 

An indexed-sequential file always has a primary key. (It can also have one or more 
alternate keys as described in the Alternate Keys section of this chapter.) 

Each primary-key value is unique within the file; there can be no duplicate 
primary-key values in a file. 

The indexed-sequential file organization is used only when you can assign a unique 
value to each record stored in the file. This unique value is usually a field of data 
within the record (an embedded key), although it can be a value assigned to the record 
and not included in the record data (a nonembedded key). 

For example, the primary key for an employee file could be the employee's name. 
However, because two employees could have the same name, it is better to assign a 
unique identification number to each employee and use that number as the primary 
key for the file. 

The indexed-sequential file organization should be used if a requirement exists to read 
file records both sequentially and randomly. For example, the records in an employee 
file could be read sequentially to produce a listing of all employees or read randomly 
to update individual records. 

When an indexed-sequential file is read sequentially, its records are accessed in 
ascending order by key value. The order is kept even when new records are added to 
the file. For example, if an employee file is read sequentially using its primary key 
(the employee identification number) the records are read in ascending order by their 
identification number. 

Indexed-Sequential File Structure 

This subsection gives a general description of the indexed-sequential structure. You can 
use indexed-sequential files without knowing their structure. However, if you 
understand the indexed-sequential structure and how it grows, you can create more 
efficient indexed-sequential files by specifying appropriate values for structural 
parameters. 

The internal structure of an indexed-sequential file is designed to provide both random 
and sequential access to the data records in the file. File space is divided into blocks, 
all the same size. 

A block contains a block header and one of the following: 

• Internal tables 

• Data records (a data block) 

11-2 FORTRAN Version 1 Language Definition Usage. Revision H 

( 



Keyed-File Organizations 

• Index records (an index block) 

Each index record points to a data block. The index record contains the location of the 
data block and the range of key values of the data records stored in that block. 

You can display the contents of all components of an indexed-sequential file, the 
internal tables and index blocks as well as the data blocks, using the DISPLAY_ 
KEYED_FILE command described in the SCL Advanced File Management Usage 
manual. 

As you might expect, the actual internal index mechanism is complex. The simplified 
examples in this part, however, provide the level of detail you need to know in order 
to use indexed-sequential files. 

To see how an index works, let's look at a very small file that contains one index 
block and two data blocks. As shown in figure 11-1, the index block contains two index 
records. Each index record points to a data block in the file. 

Index Block 

5 

Data Block 

2 

4 

Data Block 

5 

6 

Figure 11-1. Minimal Indexed-Sequential Structure 

Let's suppose you request to read randomly the record with key value 6. When the 
record is read, these steps are performed: 

1. The index records are searched to find the index record whose range of key values 
includes the key value 6. 

2. After the correct index record (the second one) is found, the search. for the record 
continues with the data block pointed to by the second index record. 

3. The second data block is searched for the record with key value 6. When the record 
is found, its data is returned to the requestor. 

Next, suppose you request that all records in the file be read sequentially. These steps 
are performed. 

1. The first index record is read to find the first data block. 

2. The records from the first data block are read in order. 

Revision H Keyed-File Interface 11-3 



Keyed-File Organizations 

3. The second index record is read to find the second data block. 

4. The records from the second data block are read in order. 

5. The sequential read ends because there are no more index records and, so, no more 
data blocks to read. 

This process reads the records in key-value order because both the index records and 
the data records are kept in key-value order. 

11-4 FORTRAN Version 1 Languarre Definition Usage Revision H 

( 
\ 



Keyed-File Organizations 

Data-Block Split 

Us~ally, a block has some empty space, called padding, that was left empty so that 
additional records could be written later to the block. Suppose, as shown in figure 11-2, 
that a data block has been filled, a new record is to be written, and its key value is 
within the range of key values of the records in the full data block. For the file 
structure to be maintained, the data block must be split. 

Revision H 

Before the Data-Block Split: 

Keyed File 

New Record Index Block 

2 

After the Data-Block Split: 

Keyed File 

Index Block 

3 

Data Block 

3 

4 

5 

6 

Data Block 

2 

Data Block 

3 

4 

5 

6 

Figure 11-2. Data Block Split 

Keyed-File Interface 11-5 



Keyed-File Organizations 

When a data-block split occurs, records in the data block whose key values are less 
than the key value of the new record remain in the existing block. All records in the 
existing block that come after the new record are moved to the newly created block. 

The new record is put into either the new block or the existing block, depending on 
the relative amount of empty space in the blocks and the size of the new record. If the 
new record does not fit in either block, a second new block is created and the new 
record is put into that block. 

Index Levels 

As with data blocks, index blocks may be initially created with some empty space 
(index-block padding). However, for each new data block created due to a data-block 
split, another index record must be created. With the addition of many data records, 
the initial index block becomes full. When the index block is full, the next data-block 
split causes an index-block split. 

11-6 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed-File Organizations 

As shown in figure 11-3, when the initial index block splits, it causes the creation of 
another index level. 

Revision H 

Before the Index-Block Split: 

New Record 

After the Index-Block Split: 

Keyed File 

Index Block 

Keyed File 

Index Block 

8 

9 

10 

Data Block 

Data Block 

Data Block 

6 

Data Block 

Figure 11-3. Index Block Split 

Data Block 

3 

4 

6 

Data Block 

Data Block 

10 

Data Block 

rn 
Data Block 

Data Block 

Keyed-File Interface 11-7 



Keyed-File Organizations 

The index levels are numbered from the top down as index level 0, index level 1, and 
so forth. Index level 0 always has only one index block; it is always the starting point 
for an index search. 

The index block at an upper level contains an index record for each index block at the 
next lower level. For example, the index block at level 0 contains an index recorfl for 
each index block at level 1. ' 

A search for a data record requires an index-block search at each index level. For 
example, the level-0 search finds the index record that points to the appropriate level-1 
index block. If the file has only two index levels, the level 1 search finds the index 
record that points to the appropriate data block. 

As you can see, the addition of another index level increases the time required to find 
an individual data record. 

Index levels can be added up to the index-level limit of 15 levels. This sets a limit on 
the number of records in the file. 

The index-level limit is reached when addition of another record to the file would 
require creation of another index level, but 15 index levels already exist in the file. 
When this happens, the index-level-overflow flag is set and no more records can be 
added to the file. 

Indexed-Sequential Primary Keys 

The primary key for an indexed-sequential file is defined when the file is created. The 
primary-key value must be unique for each record in the file. 

A primary-key definition requires specification of these attributes: 

• Embedded or nonembedded key (the default is embedded) 

• Key position (if the key is embedded) 

• Key length 

• Key type (the default is uncollated) 

• Collate-table name (if the key type is collated) 

A key is embedded if the key value is part of the data in the record. An embedded key 
value is returned as part of the record data when the record is read; a nonembedded 
key value is not. 

The key position in the record must be specified if the key is embedded. The first byte 
position in a record is byte 0. If the key is nonembedded, you do not specify a key 
position. 

You must specify the key length whether the key is embedded or nonembedded. It 
indicates the number of bytes in the key. 

The key type describes the data in the key. These are the possible key types: 

Integer key 

The key value is a signed integer; it is sorted in numerical order. 

11-8 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed-File Organizations 

Uncollated key 

The key value is a ·string of characters; it is sorted byte-by-byte according to the 
ASCII collating sequence. 

Collated key 

The key value is a string of characters; it is sorted byte-by-byte according to a 
collating sequence that you specify. 

If the key is a collated key, you must specify the collating sequence to be used to sort 
the key values. The collating sequence is specified by its name. NOSNE provides 
several predefined collating sequences (listed in appendix J). You can also create your 
own collating sequence as described in appendix H. 

Direct Access File Organization 

The direct access file organization is like the indexed-sequential file organization in its 
use of a primary key. You define the primary key for the file when you create the file. 
It can be a field embedded in the record or a nonembedded value. Each primary-key 
value in the file must be unique; the file can contain no duplicate primary-key values. 

Like an indexed-sequential file, a direct access file can have alternate keys. An 
alternate key for a direct access file is the same as an alternate key for an 
indexed-sequential file. Alternate keys are described later in this chapter. 

Like indexed-sequential file records, you must specify the primary-key value when 
writing or deleting a direct access file :r;-ecord. Similarly, you must specify either a 
primary-key value or an alternate-key value to read a direct access file record. 

Direct access and indexed-sequential files differ in the ordering of records in the file: 

• When records are read sequentially from an indexed-sequential file, the records are 
returned in order, sorted by primary-key value. 

• When records are read sequentially from a direct access file, the records are 
returned unordered. 

In general, random record access is faster for the direct access file organization than 
for the indexed-sequential file organization. This is because the direct access file 
organization determines the location of a record directly from its primary-key value. (In 
indexed-sequential files, a record can be found only after a search at each index level.) 

Direct Access File Structure 

The direct access file structure is designed to locate each record directly by its 
primary-key value. The primary-key value directly specifies the file block containing 
the record. 

File space in a direct access file is divided into equal-size blocks. Initially, all blocks in 
the file are home blocks (as opposed to overflow blocks). 

When a record is written to a direct access file, its primary-key value is hashed to 
produce the number of the home block in which the record is written. If the home 
block does not contain enough empty space for the new record, the record is written to 
an overflow block. 

Revision H Keyed-File Interface 11-9 



Keyed-File Organizations 

Assuming the hashing procedure produces a uniform distribution of numbers from the 
prima'ry-key values in the file, the records are uniformly distributed among the home 
blocks of the file. Thus, each record can be found by a single search of its home block 
without additional searches of overflow blocks. 

You specify the initial number of home blocks when you create the file. By default, a 
system hashing procedure is used to distribute the records among the home blocks, 
although you can provide another hashing procedure for the file if you like. 

As an illustration of a small direct access file, suppose you define a direct access file 
as having five home blocks. 

Home 
Blocks 

0 2 3 4 

DDDDD 
The first record written to the file has primary-key value XYZ. Assume that hashing of 
this primary-key value produces the block number 2. The record is then written in 
home block 2. 

Home 
Blocks 

0 2 3 4 

DDLJDD 
Assume you want to read the record with primary-key value XYZ. The value XYZ is 
hashed and, as before, produces the block number 2. The keyed-file interface searches 
for the record with primary-key value XYZ in home block 2. (The records in a block 
are ordered by primary-key value so each record can be found quickly.) 

Suppose that many records have been written to the file and home block 2 has been 
filled. 

Home 
Blocks 

0 2 3 4 

llLJll~ll 

11-10 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed-File Organizations 

At this point, a record is to be written with primary-key value ABC. Hashing of the 
value ABC produces block number 2, but there is insufficient space for the record in 
home block 2 so it is written in an overflow block. 

0 2 3 4 

Home 
Blocks 
mm~ 
E::3 LJ 1111111111111111111 ~~ 

Overflow 
Block 

Later, to read the record with primary-key value ABC, the primary-key value is 
hashed to produce block number 2. Home block 2 is searched for primary-key value 
ABC. When it is not found in the home block, the search continues in the overflow 
block until the record is found. 

An ideal direct access file structure has these characteristics: 

• Sufficient home blocks are allocated and records are uniformly distributed among 
the home blocks so as to avoid overflow. 

• Each block contains a limited number of records so as to minimize the search time 
in each block. 

• The number of home blocks is not so large that the file contains excessive unused 
space. 

These characteristics are determined by the file attribute values. specified when the file 
is created. 

You must specify the initial_home_block_count and can optionally specify the max_ 
block_length and the hashing_procedure_name attributes. (These attributes are 
described in CYBIL Keyed-File and Sort/Merge Interfaces, publication number 
60464117.) 

One other characteristic to be considered when selecting the number of home blocks is 
the loading factor. The loading factor is the percentage of block space used. To allow 
for less-than-uniform distribution of records in the home blocks, the loading factor 
should be no greater than 90%. 

You can use the following equations to determine the minimum home_ block count for 
a given loading factor if the number of bytes of data in the file and the block size are 
known. 

If the file has fixed-length records, reduce the block size by 39 bytes, as follows: 

home_ block_ count= 

Revision H 

record_ count x fixed_record_length 
loading_factor x (block_size- 39) 

Keyed-File Interface 11-11 



Keyed-File Organizations 

If the file has variable-length records, reduce the block size by 36 bytes and use the 
average record length plus 3 as the record length, as follows: 

home_ block_ count= 
record_ count x (average_record_length + 3) 

loading_factor x (block_ size- 36) 

To illustrate, suppose the direct access file is to contain 10,000 80-byte records (80,000 
bytes of record data). Using a block size of 4096 bytes and a loading factor of 90%, the 
equation appears as follows: 

10000 x80 
home_ block_ count= .90 x (4096-39) 

The equation gives 22 blocks as the minimum home block count for the file. However, 
it is recommended that the home block count be a prime number so 23 would be a 
better home block count for the file in this example. 

Hashing Procedure 

The system provides a default hashing procedure named AMP$SYSTEM_HASHING_ 
PROCEDURE. However, if desired, you may specify your own hashing procedure that 
produces a uniform distribution of numbers from the primary-key values in your file. 

The system executes the hashing procedure each time a record is requested by key 
value from the direct access file. The hashing procedure is not stored with the file so 
the system must be able to load the procedure each time the direct access file is 
opened. 

NOTE 

Although any ring_attributes value is valid for the object library containing the 
hashing procedure, in a production environment, you should store the hashing 
procedure in a ring 4 object library. This improves performance because otherwise 
hashing procedures is loaded by an asynchronous tasks. (Ring 4 object libraries are 
maintained usually by site personnel.) 

A hashing procedure receives a primary-key value as its input and produces an integer 
as its output. It must always produce the same output from a given input. 

A hashing procedure is written in the CYBIL language. For information on how to 
write a hashing procedure, see the CYBIL Keyed-File and Sort/Merge Interfaces 
manual. 

The system divides the value it receives from the hashing procedure by the number of 
home blocks and uses the remainder as the home block number. For example, if the 
number of blocks is 97, it divides the hashed value by 97 and uses the remainder (an 
integer from 0 through 96) as the home block number. A more uniform distribution of 
records can be expected if the number of home blocks is a prime number. 

11-12 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Keys 

Direct Access Primary Keys 

In general, the primary key of a direct access file has the same characteristics as the 
primary key of an indexed-sequential file. You specify whether the primary key is 
embedded or nonembedded, its position (if the key is embedded), and the key length. 
However, a key_ type attribute value specified for a direct access file is ignored; the 
key_ type attribute for a direct access file is always uncollated. 

Unlike an indexed-sequential file, sequential access calls to a direct access file while 
the primary-key is selected do not return the file records sorted by primary-key value. 
The calls return records according to their physical location in the direct access file. 
Records within each block are ordered according to the default ASCII collating 
sequence, but the blocks are not ordered by primary-key values. 

Direct access file records can be accessed in order if one or more alternate keys are 
defined for the file. The alternate index keeps the alternate-key values in sorted order. 
Sequential access calls while an alternate key is selected return records in the order 
provided by the alternate index. 

If appropriate, you could define an alternate key for the same field as an embedded 
primary key. In this way, you could access direct access file records in primary-key 
value order. 

Alternate Keys 

A record within a keyed file can always be accessed by its primary-key value. An 
alternate key provides an additional way to access records. 

An alternate key defines a value in the data record by which the record can be 
accessed. An alternate key is defined as a field or group of fields in the record. 

Although a program can use alternate keys to read records or to position a file, 
alternate keys cannot be used to write, replace, or delete records. The primary-key 
value must be used to identify a record to be written, replaced, or deleted. 

Alternate-Key Characteristics 

Alternate-key fields can overlap each other and the primary key. For example, the 
primary-key field could be bytes 0 through 9 and two alternate-key fields bytes 0 
through 19 and bytes 4 through 14. 

Unlike a primary-key value, one alternate-key value can be associated with several 
records in a file. This is because an alternate-key value need not be unique. The same 
alternate-key value can occur in several records. For example, the same job title can 
be associated with many names as follows: 

Data Records: 

Alternate Index: 

Revision H 

Hanson 
Jones 
Smith 

Computer Programmer 
Computer Programmer 
Computer Programmer 

Alternate-Key Value Primary-Key Values 

Computer Programmer Hanson 
Jones 
Smith 

Keyed-File Interface 11-13 



Alternate Keys 

A record can contain more than one alternate-key value if the alternate key is defined 
as a field that repeats in the record; thus, a single record could contain several 
alternate-key values. For example, the license numbers of several cars owned by one 
person as follows: 

Data Record: 

. Alternate Index: 

R. Petty 1 LB AU 2ASM451 ELK 592 

Alternate-Key Value Primary-Key Values 

1 LB AU 
2ASM451 
ELK 592 

R. Petty 
R. Petty 
R. Petty 

The Alternate Index 

The index for the primary key was described earlier in this chapter. Each alternate 
key defined for a file has its own index. 

An alternate index contains index records, each of which associates an alternate-key 
value with the primary-key values of the records containing that alternate-key value. 
The list of primary-key values associated with an alternate-key value is the key list for 
that alternate-key value. 

When you select an alternate key and then specify an alternate-key value, the system 
searches for the value in the alternate index. If it finds the alternate-key value, it uses 
the primary-key values in the key list for the alternate-key value to access the data 
records. 

When one or more alternate keys are defined for a file, file updates require more time 
because the alternate indexes must also be updated. Alternate keys should be used only 
when the additional record access capability offsets the cost of increased time spent for 
file updates. 

Alternate-Key Definition 

The attributes of an alternate key are specified by its alternate-key definition. 

These attributes are required to define an alternate key: 

• Key name 

• Key position 

• Key length 

An alternate key has a name so that it can be selected for use. The alternate-key 
position and length define the alternate-key field within the record. 

These optional attributes define how the alternate key is processed: 

• Key type 

• Collate table name (if the key type is collated) 

• Duplicate key values 

• Null suppression 

11-14 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Keys 

• Sparse-k~y control 

• Repeating groups 

• Concatenated key 

• Variable-length key 

The key type of an alternate key determines the order of the alternate-key values in 
the alternate index, and therefore, the order in which records are accessed sequentially 
when you use the alternate key. The key types for an alternate key are the same as 
the key types for the primary key as described earlier in this chapter. 

If the key type is collated, you can explicitly specify a collation table for the alternate 
key or use, as the default, the collation table for the primary key (if one has been 
specified). 

Duplicate Key Values 

By default, duplicate values for an alternate key are not allowed. However, if you want 
to allow duplicate key values, you can specify whether the records having the same 
alternate-key value are accessed in primary-key-value order or in first-in-first-out order. 

In a key list ordered by primary key, the primary-key values are stored in sorted order 
according to the primary-key type. New values are added to the key list so that the 
primary-key-value order is kept. 

In a key list ordered first-in, first-out, the primary-key values are stored in the key 
list in the order the values are added to the key list, instead of in primary-key-value 
order. New values are always added to the end of the key list. 

For Better Performance 

When alternate-key values are frequently duplicated in a file, the key lists should be 
ordered by primary-key value. First-in, first-out ordering of key lists requires that 
delete and replace operations sequentially search the key list to find the primary-key 
value of the updated record; a sorted key list provides faster access to a primary-key 
value. 

For example, suppose you write three records to the file in this order: 

McDarrels 
Burger Duke 
Wi 1 lys 

Hamburgers 
Hamburgers 
Hamburgers 

The following shows the resulting key list in primary-key order and in first-in-first-out 
order: 

Alternate 
Key Value 

Hamburgers 

Revision H 

Key Lists 

Ordered by Primary 
Key 

Burger Duke 
McDarrels 
Wi 1 lys 

First In First Out 

McDarrels 
Burger Duke 
Wi 1 lys 

Keyed-File Interface 11-15 



Alternate Keys 

Duplicate-Key Value Error Processing 

If duplicate values are not allowed and a duplicate is found in a record about to be 
written to the file, the record is not written to the file and a nonfatal error (status 
AA2100) is returned. 

A nonfatal error (status AA2865) also occurs if a duplicate value is found while a new 
alternate index is being created. However, the record containing the duplicate value 
cannot be discarded, as it is already in the file. Subsequent processing depends on 
whether incrementing the nonfatal-error count causes the count to exceed the 
nonfatal-error limit as set by the user. 

• If the nonfatal-error limit is not exceeded, the apply operation redefines the 
alternate key to allow duplicates, ordered by primary-key value, discards the 
partially built index, and builds the redefined index. 

• If the nonfatal-error limit is reached, the apply operation returns AA2870 and 
removes all alternate indexes it has created. (Deleted indexes are not restored.) 

In either case, a message describing the action taken is written to the $ERRORS file. 

Null Suppression 

By default, if an alternate-key field contains a null value, the null value is stored as 
the alternate-key value for the record. The null_suppression attribute allows you to 
exclude null values from an alternate index. 

Null suppression excludes any record with a null alternate-key value from the alternate 
index. Null suppression can save space, access time, and update time because the index 
is smaller when null alternate-key values are excluded. (Null suppression does not 
remove the null value from the data record.) 

The null value depends on the key type as follows: 

Key Type 

Integer 
Uncollated 
Collated 

Null Value 

Zero 
Spaces 
Spaces (before collation) 

If null suppression is not specified, records containing a null value in the alternate-key 
field are indexed by the null value. The records can later be accessed by specifying the 
null value as the alternate-key value. 

For example, suppose the spouse's name is defined as an alternate key to a 
membership file. Unmarried members would have a null value for the alternate-key 
field. Therefore, the key list for the null value lists all unmarried members. The 
following shows the alternate index with and without null suppression: 

Without Null Suppression 

Spouse's Name 

Diana Sinvnons 
Mark Ramsey 
Shelly Gable 

Member's ID 

1626736 8273648 
4872672 
7726184 
2673651 

11-16 FORTRAN Version 1 Language Definition Usage 

With Null Suppression 

Spouse's Name 

biana Sinvnons 
Mark Ramsey 
Shelly Gable 

Member's ID 

4872672 
2673651 
7726184 

Revision H 



Alternate Keys 

Sparse-Key Control 

You can use sparse-key control to create an alternate index that includes or excludes 
records depending on the character in a specific position in the record. 

For example, suppose a student file has a one-character code indicating the student's 
class. To get a mailing list for juniors and seniors only, you could define an alternate 
index controlled by the class code. 

Revision H Keyed-File Interface 11-17 



Alternate Keys 

To specify sparse-key control, you specify three values: 

Value 

Sparse-key control position 

Sparse-key control characters 

Sparse-key control effect 
(Indicates whether the 
alternate-key value should be 
included or excluded if the 
sparse-key character matches) 

Example 

Position of the class code in the record 

Junior and senior class code characters 

Included if the class code indicates a junior or 
senior record 

Assume that the sparse-key control position is the first character after the name field 
and that the junior and senior class codes are 3 and 4. If the following records are 
copied to the file, the first three records are included in the alternate index, but not 
the last record. 

Louis Skolnik 4 
Gilbert Sullivan 4 
Elliot Wermzer 3 
Judy Manhasset 2 

The sparse-key control position must be within the minimum record length. If you 
specify sparse-key control for an alternate key, the alternate-key field or fields need 
not be within the minimum record length. 

A nonfatal (trivial) error (status AA2875) is returned if both of these conditions are 
true for a record: 

• The character at the sparse_key _control_position indicates that the record should 
be included in the alternate index. 

• The record has no alternate-key value because the record is too short to contain the 
entire alternate-key value. 

When an apply or write operation detects this error, it does not include the record in 
the alternate index. (A write operation does write the record to the file.) 

Concatenated Keys 

A concatenated key is an alternate key formed from several fields, or pieces, in the 
record. A concatenated key can comprise up to 64 pieces. 

The concatenated pieces can be noncontiguous and can be concatenated in any order. 
Each piece can be a different key type. All collated-key pieces use the same collation 
table. 

The RMKDEF call cannot create a concatenated key; to create a concatenated key in a 
FORTRAN program, you must use the SCLCMD call to execute the CREATE_ 
ALTERNATE_INDEXES utility. (The CREATE_ALTERNATE_INDEXES utility is 
described in the SCL Advanced File Management Usage manual.) 

The first piece you specify is the leftmost piece of the key. You specify it the same as 
you specify a nonconcatenated key. The pieces to be concatenated to the leftmost field 
are defined by individual ADD_PIECE subcommands. The subcommand order specifies 
the order of the concatenated pieces. 

11-18 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Keys 

A concatenated key can use sparse-key control and/or null suppression. A concatenated 
key is considered to have a null value if the values in all fields of the key are null 
(before collation for collated keys). 

For example, suppose you decide to define an alternate key consisting of the initials of 
the member's name. The first piece of the key value would be the first letter of the 
member's first name, the second piece would be the first letter of the member's middle 
name, and the third piece would be the first letter of the member's last name. 
Consider this data record: 

0 20 40 

I Kennedy I John I Fitzgerald 

The alternate-key value is JFK, assuming the concatenated-key pieces are defined as: 

First piece: Key_Position=20, Key_Length=1 

Second piece: Key_Position=40, Key~Length=1 

Third piece: Key_Position=O, Key_Length=1 

Repeating Groups 

The repeating-groups attribute allows a data record to contain more than one value for 
the same alternate key. This allows a primary-key value to be associated with more 
than one alternate-key value. 

To specify an alternate-key field within a repeating gro~p: 

1. Specify the first alternate-key field by its key position, key length, and key type. 
All subsequent alternate-key fields have the same length and type as the first. 

2. Specify repeating groups for the alternate key by specifying the repeating group 
length, that is, the distance from the beginning of the first instance of the alternate 
key to the beginning of the second instance of the alternate key in the record. 

3. Specify the repeating-group count, that is, how many times the alternate-key field 
repeats in the record. 

You can specify that the repeating group repeats a fixed number of times or that it 
repeats until the end of the record. 

• If the alternate-key field repeats a fixed number of times, all alternate-key fields 
must be within the minimum record length. 

• If the alternate-key field repeats to the end of the record, the minimum record 
length imposes no restriction. The system stores as many alternate-key values as 
the record length allows. 

Repeating groups cannot be used with concatenated keys or when duplicate-key values 
are allowed and ordered first-in, first-out. 

Revision H Keyed-File Interface 11-19 



Alternate Keys 

For example, suppose each record in a membership file lists the sports the member 
enjoys and his years of experience as follows (columns are counted from zero): 

Field: Sports and Sports Experience 

Columns: Variable number of 2-field pairs beginning at column 75 

The Sports field is 10 characters followed by a 2-digit Sports Experience 
field 

Type: ASCII characters 

You could define an alternate key for the Sports values (without the Sports-Experience 
values) as follows: 

CREATE_KEY_ DEFINITION parameters: 

Key_Position=75, Key_Length=10, Key_Type=uncollated, Repeating_Group_Length=12, 
Repeating_Group_Count=repeat_to_end_record, 
Duplicate_Key_Values=ordered_by_primary_key 

RMKDEF call: 

CALL RMKDEF(fit, 0, 75, 10, 0, 'UNCOLLATED', 'ORDERED_BY_PRIMARY_KEY', 12, 0) 

The key list for an alternate-key value would list the identification numbers of all 
members that enjoy that sport. 

The following shows the primary keys for three records and their contents from column 
7 5 to the end of the record: 

Primary Key 

1662876 
6166287 
0027840 

Record Contents Beginning at Column 75 

Volleyball02Running 03Basketball02 
Bicycling 10Volleyba1101 
Running· 15Running 15Running 15 

If these were the only records in the file, the alternate index would appear as follows: 

Alternate Key Value 

Basketball 
Bicycling 
Running 
Vol leyba 11 

Primary Key Values 

1662876 
6166287 
0027840 1662876 
1662876 6166287 

Notice that the key type is the default (uncollated) and the duplicate-key values 
specification is ordered_by_primary_key. Thus, each key list is sorted according to the 
default ASCII collating sequence. 

Notice also, as shown by the Running key list, each primary-key value is listed only 
once in a key list, regardless of the number of times the alternate-key value occurs in 
the record. 

11-20 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Keys 

Variable-Length Key 

A variable-length alternate key is an alternate key whose values vary in length. Its 
alternate-key definition specifies its starting position, its maximum length, and its set 
of delimiter characters. 

The end of a variable-length key value is marked by a delimiter character, the end of 
the key field, or the end of the record, whichever is found first starting at the key_ 
position. 

By defining the key as a variable-length key, you can use the following values as 
alternate keys: 

• The first value beginning at a certain position of each record. 

• The last field in a variable-length record. 

• All data in a variable-length record. 

By defining the key as a variable-length key with the repeating groups attribute, you 
can use the following values as alternate keys: 

• A value found anywhere in a fixed-length field (if all other characters in the field 
are in the set of delimiter characters for the alternate key). 

• Each value in a sequence of values, separated by one or more consecutive delimiter 
characters. The sequence of values can be within: 

A fixed-length field 

A variable-length field at the end of the record 

The entire record 

For Better Performance 

Define a key as a variable-length key only when necessary. The requirement to scan 
the key field for delimiter characters adds processing time when the alternate index is 
built and when the file is updated. 

The following examples each specify a variable-length alternate key. 

Example 1: 

The alternate key is to be the first sequence of up to 80 non-blank characters in each 
record. 

0 EOR 

First token in each record. 
'-...,..-' 

Key Value 

Revision H Keyed-File Interface 11-21 



Alternate Keys 

To define the alternate key, specify the key position as 0, the key length as 80, and 
the variable-length key attribute with the blank character as the delimiter, as follows: 

CREATE_KEY_DEFINITION parameters: 

Key_Position=O, Key_Length=80, Variable_Length_Key=' ' 

RMKDEF Call: 

CALL RMKDEF(fit,0,0,80,0,0,0,0,0,0,0,0,0,' ') 

Example 2: 

Assume that each record consists of a required 20-byte portion followed by an optional 
variable-length portion of up to 120 bytes. 

0 20 EOR 
,~F-~-e-d_p_o_r-ti_o_n __________ !_v_a_ri-ab_l_e_p_o-rt-io_n __ I 

'-...,. __ ....,v,,,,. __ ,,~ 

Key Value 

To define the variable-length portion as the alternate key, specify the key position as 
20, the key length as 120, and the variable-length key attribute with an empty 
delimiter set. 

The statements to define the key are the same as for example 1 except for the 
following: 

CREATE_KEY_DEFINITION parameters: 

Key_Position=20, Key_Length=120, Variable_Length_Key='' 

RMKDEF Call: 

CALL RMKDEF(fit,0,20,120,0,0,0,0,0,0,0,0,0,") 

Example 3: 

Assume a 100-byte field at byte 5 contains one value that is to be used as the 
alternate key. The value is from 0 through 100 bytes long, right-justified and 
blank-filled within the field. 

0 5 99 

I I right-justified i 
~ 

Key Value 

To define the alternate key, specify the key position as 5, the key length as 100, the 
variable-length key attribute with the blank character as the delimiter, and the 
repeating_ groups attribute. 

11-22 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate Keys 

The repeating_groups attribute is required because the value is right-justified in the 
field; thus, the search for the value must not end at the first delimiter; it should 
continue to the end of the field. For a repeating variable-length key, the repeating_ 
group_length value can be any integer greater than zero; the repeating_group_count 
is the length of the alternate-key field. 

CREATE_KEY_DEFINITION parameters: 

Key_Position=5, Key_Length=lOO, Variable_Length_Key=' ' 
Repeating_Group_Length=l, Repeating_Group_Count=lOO 

RMKDEF Call: 

CALL RMKDEF(fit,0,5,100,0,0,0,1,100,0,0,0,0,' ') 

Example 4: 

Each string of letters in the data is to be defined as a value for the alternate key. 

0 EOR 

Each word, in this record, is a key value 

LC~Y~0=~~yy 
Key Values 

To define the alternate key, specify the key position as 0, the key length as the 
maximum record length (80), the variable-length key attribute, and the repeating_ 
groups attribute. Notice that the delimiter set is defined as all characters except the 
letters. 

CREATE_KEY_DEFINITION commands: 

Revision H 

create_variable, key delimiters, kind=(string,76), .. 
value=' 1234567890-=!@#$%-&*()_+[]'{}";''\:"!, ./<>?' .. 

//$CHAR(OOO)//$CHAR(001)//$CHAR(002)//$CHAR(003) .. 
//$CHAR(004)//$CHAR(005)//$CHAR(006)//$CHAR(007) .. 
//$CHAR(008)//$CHAR(009)//$CHAR(010)//$CHAR(011) .. 
//$CHAR(012)//$CHAR(013)//$CHAR(014)//$CHAR(015) .. 
//$CHAR(016)//$CHAR(017)//$CHAR(018)//$CHAR(019) .. 
//$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023) .. 
//$CHAR(024)//$CHAR(025)//$CHAR(026)//$CHAR(027) .. 
//$CHAR(028)//$CHAR(029)//$CHAR(030)//$CHAR(031) .. 
//$CHAR(127) 

create_key_definition, key_name=words, .. 
key_position=O, key_length=80, .. 
variable_length_key=key_delimiters, .. 
repeating_group_length=1, .. 
repeating_group_count=repeat_to_end_of _record 

Keyed-File Interface 11-23 



Alternate Keys 

RMKDEF Call: 

value=' 1234567890-= 1@#$"A&• ()_ +[] '{} 11
; "\: 

11 1, ./<>?, 
+ //$CHAR(OOO)//$CHAR(001)//$CHAR(002)//$CHAR(003) 
+ //$CHAR(004)//$CHAR(005)//$CHAR(006)//$CHAR(007) 
+ //$CHAR(008)//$CHAR(009)//$CHAR(010)//$CHAR(011) 
+ //$CHAR(012)//$CHAR(013)//$CHAR(014)//$CHAR(015) 
+ //$CHAR(016)//$CHAR(017)//$CHAR(018)//$CHAR(019) 
+ //$CHAR(020)//$CHAR(021)//$CHAR(022)//$CHAR(023) 
+ //$CHAR(024)//$CHAR(025)//$CHAR(026)//$CHAR(027) 
+ //$CHAR(028)//$CHAR(029)//$CHAR(030)//$CHAR(031) 
+ //$CHAR(127) 

CALL RMKDEF(f1t,0,0,80,0,0,0,1,0,0,0,0,0,value) 

Attributes Incompatible With Variable-Length Keys 

The following alternate-key attributes are not supported for variable-length keys: 

• Integer key type 

• Ordering duplicate-key values chronologically (First_ln_First_ Out) 

• Concatenation 

• Null suppression 

• Sparse-key control 

Using a Variable-Length Key 

Using a variable-length alternate key differs from using a fixed-length key in the 
following ways: 

• On a call using a variable-length key, you must specify the length of the key value 
as well as its location. The length of the key value is specified using the 
appropriate major-key length parameter. 

• When a call returns a variable-length key value, it returns the value padded with 
delimiter characters to the full key length. (It pads using the lowest character in 
the delimiter set.) 

• The key value specified on the call is compared with the full key value stored in 
the index, not only the leftmost bytes. 

11-24 FORTRAN Version 1 Language Definition Usage Revision H 



Nested Files 

Key value comparison is illustrated by the following example that contrasts the use of 
a variable-length key value with the use of an equivalent major-key value for a 
fixed-length key. The key value used is the leftmost two bytes ('ab'): 

Parameter Specifications 

Key Value: 'abb' 
Key _Relation: 'Equal' 
Major_ Key_ Length: 2 

File Position in the Alternate Index 

Fixed-Length 

aab 
-+ ab 

aba 
abd 
ac 

Variable-Length 

As shown, when the Key_Relation is 'Equal', the positioning is the same. 

However, the positioning can differ if the Key _Relation is 'Greater_ Than': 

Parameter Specifications 

Key_ Value: 'abb' 
Key _Relation: 'Greater_ Than' 
Major_ Key_ Length: 2 

File Position in the Alternate Index 

Fixed-Length 

aab 
ab 
aha 
abd 

--. ac 

Variable-Length 

The file positioning differs because: 

o The two-byte major-key value is compared with the leftmost two bytes of the 
fixed-length alternate-key values. So, the file is positioned at the first key value 
whose leftmost two bytes are greater than 'ab', that is, 'ac'. 

• The two-byte variable-length key value is compared with the full variable-length 
alternate-key value, not just the leftmost two bytes. So, the file is positioned at the 
first key value greater than 'ab', that is, 'aha'. 

Nested Files 

A nested file is a file structure defined within a NOS/VE file cycle. It is recognized 
and used by the keyed-file interface; it is not recognized or used by the NOS/VE file 
system. 

The keyed-file interface provides nested files so as to extend the NOS/VE limit on the 
number of files a task can use. All nested files defined in a file share the same 
memory segment. This provides effective memory use when the nested files are much 
smaller than the segment size limit (232 bytes). 

All Nested files in a file share the same NOS/VE catalog entry. Thus, if one nested 
file is damaged, the entire file is damaged and requires recovery. 

The keyed-file interface creates the initial nested file (named $MAIN _FILE) when it 
creates the keyed file. It uses $MAIN _FILE as the default nested file; other nested 
files are used only when explicitly selected. 

Revision H Keyed-File Interface 11-25 



Nested Files 

No FORTRAN keyed-file interface call exists to create a nested file. However, a 
FORTRAN program can create a nested file (other than $MAIN _FILE) by calling the 
CYBIL subprogram AMP$CREATE_NESTED_FILE or by calling the SCL command 
COPY_KEYED_FILE to copy an existing nested file or by calling the CREATE_ 
KEYED_FILE utility. (The AMP$CREATE_NESTED_FILE call is described in the 
CYBIL Keyed-File and Sort/Merge Interfaces manual. The COPY_KEYED_FILE 
command and the CREATE_KEYED_FILE utility are described in the SCL Advanced 
File Management manual.) 

A FORTRAN program selects a nested file by storing its name in the FIT using the 
keyword $NESTED_FILE_NAME (or $NFN). To re-select the default nested file, it 
stores the name $MAIN _FILE. 

Each alternate-key definition applies to only one nested file. To define an alternate key 
for a nested file other than the default nested file ($MAIN _FILE), you first select the 
nested file and then define the alternate key. Similarly, to select an alternate key for a 
nested file other than the default nested file ($MAIN _FILE), you first select the nested 
file and then select the alternate key. 

A task can perform operations only on the currently selected nested file. However, the 
file position, key selection, and locks for a nested file are not lost when another nested 
file is selected. For example, consider this sequence of events: 

1. A task is issuing GETN calls while NESTED_FILE_l and ALTERNATE_KEY_l 
are selected. 

2. The task selects and uses NESTED_FILE_2. 

3. The task selects NESTED_FILE_l again. It can continue reading records 
sequentially from the file position at which it stopped reading when it selected 
NESTED_FILE_2. The same key, ALTERNATE_KEY_l, remains selected. 

11-26 FORTRAN Version 1 Language Definition Usage Revision H 



FORTRAN Keyed-File Interface Concepts 

FORTRAN Keyed-File Interface Concepts 

This subsection describes how the keyed-file interface described in this manual differs 
from the other NOSNE keyed-file interfaces (such as the SCL keyed-file utilities 
described in the SCL Advanced File Management Usage manual). 

If you have used CYBER 170 Advanced Access Methods Version 2 (AAM 2), you may 
want to read about the differences between NOSNE AAM 2 and the NOSNE keyed-file 
interface. These differences are described in appendix C. 

Although it is called the FORTRAN keyed-file interface in this manual, the interface 
can be used by other languages (such as COBOL) that use the standard calling 
sequence. 

NOTE 

Do not use more than one 1/0 method to process the same file. In particular, do not 
process the same file using both language statements and keyed-file interface calls. 

NOTE 

When a program written in a language other than FORTRAN or COBOL uses 
FORTRAN keyed-file interface calls, you must add the following object library to the 
program library list before executing the program: 

$LOCAL.AAF$4DD_LIBRARY 

For example, the following SET_PROGRAM_ATTRIBUTES command adds the object 
library to the program library list. 

set_program_attributes, add_libraries=$1oca1.aaf$4dd_library 

For more information about the program library list, see the SCL Object Code 
Management manual. 

File Information Table 

The FORTRAN keyed-file interface references values in a file information table (FIT) 
to determine how to process a keyed file. 

To use a keyed file in your FORTRAN program, you first call the FILEIS or FILEDA 
subprogram to create a FIT for the file. (FILEIS for an indexed-sequential file; FILEDA 
for a direct-access file.) (NOSNE allocates system space for the table; your program 
does not reserve space for it.) 

The FILEIS or FILEDA call stores a pointer to the FIT in a variable you specify on 
the call. Each subsequent keyed-file interface call for the file specifies the FIT pointer 
variable as its first parameter. 

You can set FIT values using STOREF calls and fetch FIT values using !FETCH calls. 
FIT values are described in detail under FIT Values later in this section. 

Revision H Keyed-File Interface 11-27 



Keyed-File Interface Error Processing 

This figure illustrates how your program can access keyed-file data. 

FORTRAN internally CYBIL reads 
Your calls Keyed calls Keyed or Keyed FORTRAN .... _ ..... -- File - File - File Program writes 

Interface Interface 

references W 

I FIT ] 
Keyed-File Interface Error Processing 

When a keyed-file interface call (other than the FILEIS or FILEDA call) detects an 
error, it performs these steps: 

1. Sets the $ERROR_STATUS value in the FIT to the status condition code of the 
error. 

2. Sets the fatal/nonfatal (FNF) flag in the FIT to indicate whether the severity of the 
error is fatal or nonfatal. 

3. Writes the error message to the $ERRORS file (if indicated by the $MESSAGE_ 
CONTROL value). 

(If the status severity is warning or informational, the keyed-file interface performs 
only step 3, writing the message.) 

4. For a nonfatal error, it increments the $ERROR_ COUNT value in the FIT and 
compares the $ERROR_COUNT value and the $ERROR_LIMIT value. 

If it finds that the $ERROR_COUNT value is equal to the $ERROR_LIMIT value, 
it changes the $ERROR_STATUS value to the fatal error code AA3255 (error limit 
reached) and processes the new error (starting at step 2). 

5. If an error-exit procedure is specified in the FIT, it calls the procedure. 

The error-exit procedure should fetch the FNF flag to determine if the error is 
fatal. If the error is fatal, it should close the file because further file processing is 
not allowed after a fatal error. (Any calls [except CLOSEM or FLUSHM] issued 
after a fatal error cause a catastrophic error.) 

11-28 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed-File Interface Error Processing 

A FORTRAN program can specify an error-exit procedure by these methods: 

• By specifying the error-exit procedure as the $ERROR_EXIT_NAME value before 
the file is opened. 

• By specifying the error-exit procedure as the $ERROR_EXIT_PROCEDURE value 
(before or after the file is opened). 

• By specifying the error-exit procedure as a parameter on a keyed-file interface call. 

If the error-exit procedure is specified by the $ERROR_EXIT_NAME value, it becomes 
effective only when the file is opened. Otherwise, the error-exit procedure becomes 
effective when it is specified. 

If no error-exit procedure has been specified, the keyed-file interface does not call an 
error-exit procedure when it detects an error. It stores the $ERROR_STATUS value in 
the FIT, but the program must check the $ERROR_STATUS value after each call. 

To check for an error, the program calls !FETCH to check the $ERROR_STATUS 
value. If !FETCH returns a nonzero value, it indicates that the call did not complete 
successfully, and the program should take the appropriate action. 

The error-exit procedure or the program can fetch the FNF value from the FIT to 
determine if the error severity was fatal or nonfatal. It can also use the $ERROR_ 
STATUS value to determine the exact status condition returned. 

In one instance, the keyed-file interface clears the $ERROR_STATUS value when it 
returns from an error-exit procedure. 

If a call specifies a working storage area, key area, or primary-key area that is not in 
a common block, the keyed-file interface detects the error and begins the error 
processing steps described earlier. 

It writes an error message to the $ERRORS file (if requested by the $MESSAGE_ 
CONTROL value) and calls the error-exit procedure (if one is specified in the FIT). If 
the error-exit procedure fetches the $ERROR_STATUS value, !FETCH returns the 
value AA2535. 

However, unlike other errors, when it finishes processing this error, the keyed-file 
interface clears the $ERROR_STATUS value so that the get or put operation can 
complete. 

Revision H Keyed-File Interface 11-29 



Creating a Keyed File 

Creating a Keyed File 

A FORTRAN program to create a keyed file must perform these steps (using the 
indicated subprogram call): 

1. Create a FIT containing appropriate file attribute values (FILEIS or FILEDA and 
STOREF) 

2. Open the file (OPENM) 

3. Optionally, write records to the file (PUT) 

4. Close the file (CLOSEM) 

The calls listed in parentheses are described individually under Keyed-File Interface 
Calls. 

You specify the keyed-file attribute values before opening the new keyed file. The file 
attributes can be specified by one or more of the following: 

• The FILEIS or FILEDA call that creates the FIT for the file 

• One or more STOREF calls after the FILEIS or FILEDA call 

• One or more SET_FILE_ATTRIBUTE commands executed before the program 
creating the file is executed. (Values specified by a SET_FILE_ATTRIBUTE 
command override values specified by FILEIS, FILEDA, and STOREF calls.) 

If you do not specify a keyed-file attribute by one of these means, a default value is 
used when the file is opened. 

Keyed-File Attributes 

You can specify keyed-file attributes as FIT values. The individual FIT value 
descriptions are at the end of the keyed-file interface section. The keyed-file attributes 
are as follows: 

• File organization attribute: 

$FILE_ ORGANIZATION (required) 

• Record attributes: 

$RECORD_ TYPE (default, undefined [U]) 
$MAXIMUM_RECORD_LENGTH (required) 
$MINIMUM_RECORD_LENGTH (recommended if the record length is variable) 

• Primary-key attributes: 

$EMBEDDED_KEY (default, embedded) 
$KEY_LENGTH (required) 
$KEY_POSITION (default, 0, the leftmost byte) 
$KEY_ TYPE (default, uncollated) 
$COLLATE_ TABLE_NAME (required if the key type is collated) 

• File structure attributes: 

$RECORD_LIMIT 
$MAXIMUM_ BLOCK_ LENGTH 

11-30 FORTRAN Version 1 Language Definition Usage Revision H 



• Indexed-sequential structure attributes: 
$DATA_PADDING (default, 0%) 
$INDEX_PADDING (default, 0%) 

• Direct access structure attributes: 

$INITIAL_HOME_BLOCK_COUNT 
$HASHING_PROCEDURE_NAME 

Using an Existing Keyed File 

• Block-length guideline attributes (specify instead of $MAXIMUM_BLOCK_ 
LENGTH) 

$AVERAGE_RECORD_LENGTH 
$ESTIMATED_RECORD_COUNT 
$INDEX_ LEVELS 
$RECORDS_ PER_ BLOCK 

• Processing attributes: 

$COMPRESSION _PROCEDURE_NAME 
$ERROR_LIMIT (default 0, no limit) 
$LOCK_EXPIRATION _TIME (default, 60,000 milliseconds) 
$MESSAGE_CONTROL (default, only fatal and catastrophic error messages) 

• Recovery attributes: 
$FORCED_ WRITE (default, unforced) 
$LOG_RESIDENCE (default, none) 
$LOGGING_OPTIONS (default, none) 

The keyed-file attributes are described in the SCL Advanced File Management Usage 
manual. The complete SET_FILE_ATTRIBUTES command description is in the SCL 
Quick Reference manual. 

NOTE 

Besides the required keyed-file attributes, a FORTRAN program must also set the 
$LOCAL_FILE_NAME value in the FIT. If the $LOCAL_FILE_NAME value has not 
been specified, the OPENM call returns a fatal error. 

Using an Existing Keyed File 

A FORTRAN program to process an existing keyed file must perform these steps (using 
the indicated subprogram call): 

1. Create a FIT containing appropriate values (FILEIS or FILEDA and STOREF) 

2. Open the file (OPENM) 

3. Perform the intended operations on the file (described next) 

4. Close the file (CLOSEM) 

Only temporary file attributes can be specified for an existing keyed file. Preserved file 
attributes are stored with the file and copied to the FIT by the OPENM call. 

The calls listed in parentheses are described individually under Keyed-File Interface 
Calls. 

Revision H Keyed-File Interface 11-31 

! 

I 



Alternate Key Creation 

These operations can be performed on an open keyed file: 

• Fetch and store FIT values (!FETCH, STOREF) 

• Position the file ,CREWND, SKIP, STARTM) 

• Read records (GET, GETN) 

• Write records (PUT, PUTREP) 

• Replace records (REPLC, PUTREP) 

• Delete records (DLTE) 

• Flush modified file blocks to disk (FLUSHM) 

• Request locks (LOCKF, LOCKK) 

• Clear locks (UNLOCKF, UNLOCKK) 

• Create alternate keys (RMKDEF) 

• Select keys and nested files (STOREF) 

• Fetch alternate key information (KLCOUNT, KEYLIST, KLSPACE) 

• Build and. use result sets to read records (RSBUILD, RSCLEAR, RSCLOSE, 
RSCOMB, RSDLTE, RSGETN, RSINFO, RSOPEN, RSPUT, RSREWND, RSSKIP, 
and RSSTART) 

Alternate Key Creation 

The recommended method for creating alternate keys is to use the SCL utility 
CREATE_ALTERNATE_INDEXES. In general, using the utility is easier and more 
efficient than writing a program especially when creating more than one alternate key. 

I 

You can execute the SCL utility from a FORTRAN program using the SCLCMD call. 
The SCLCMD call is described in chapter 9. CREATE_ALTERNATE_INDEXES is 
described in the SCL Advanced File Management Usage manual. 

For compatibility with FORTRAN 5, NOSNE FORTRAN also supports the RMKDEF 
call to create an alternate key in your program. Its processing is compatible with the 
CYBER 170 AAM RMKDEF call. 

The RMKDEF call both defines the alternate key and applies the definition to the 
keyed file to build the alternate index. 

The RMKDEF call can be issued for a keyed file that has been created before or 
during program execution. Both a FILEIS (or FILEDA) call and an OPENM call must 
be executed before the RMKDEF call. The RMKDEF call uses the FIT pointer returned 
by the FILEIS (or FILEDA) call. 

If the file contains data at the time of the RMKDEF call, the RMKDEF call builds the 
alternate index. If the file contains no data, the RMKDEF call does not build the 
alternate index; the index is built as data is later written to the file. 

11-32 FORTRAN Version 1 Language Definition Usage Revision H 

( 



Alternate-Key Use 

The alternate key created by the RMKDEF call remains as part of the keyed file for 
the life of the file or until the alternate key is explicitly deleted. You can delete an 
alternate key using the SCL utility CREATE_ALTERNATE_INDEXES. 

Alternate-Key Use 

You can use an alternate key to position or read a keyed file. (Calls to write to a 
keyed file must specify primary-key values, not alternate-key values.) 

While an alternate key is selected, the file is positioned and records are read in the 
logical record order defined by the alternate index. For example, each GETN call reads 
the next record in alternate-key order, instead of in primary-key order. 

Selecting a Key 

To indicate that the key values on subsequent STARTM, GET, and GETN calls are 
alternate-key values, you must call STOREF to select the alternate key. The key 
selection takes effect when the next START, REWND, OR GET (but not GETN) call is 
issued. 

The STOREF call can specify a key by its name or by its position and length in the 
record. (Selection by name is recommended; selection by position and length is provided 
for CYBER 170 AAM 2 compatibility.) 

Key Selection by Name 

The STOREF call can select a key by storing the key name in the FIT. 

For example, the following STOREF call selects alternate key ALTERNATE_567 _9_ 
250. 

CALL STOREF(fit,'$KEY_NAME' ,'ALTERNATE_567_9_250') 

To change the key selection, you call STOREF again, specifying another alternate key 
or the primary key. The primary key name is $PRIMARY_KEY. For example, the 
following call selects the primary key: 

CALL STOREF(fit,'$KEY_NAME','$PRIMARY_KEY') 

Selection by key name is the only way to select a nonembedded primary key. 

Key Selection by Position and Length 

A NOSNE FORTRAN program can also select an alternate key using the same 
keywords used by a CYBER 170 program: STOREF calls can select a key by storing 
its position (using the RKW and RKP keywords) and its length (using the KL 
keyword). To determine the key position, the RKW value (default, O) is multiplied by 
10 and then added to the RKP value. 

For example, selecting alternate key ALTERNATE_567 _9_250 by position and length 
requires either the three calls on the left or the two calls on the right: 

CALL STOREF(fit,'RKW',567) 
CALL STOREF(fit,'RKP',9) 
CALL STOREF(fit,'KL' ,250) 

Revision H 

CALL STOREF(fit,'RKP',567*10+9) 
CALL STOREF(fit,'KL' ,250) 

Keyed-File Interface 11-33 



Alternate-Key Use 

Besides alternate keys, STOREF calls can also specify an embedded primary key by its 
position and length. The keywords used are the same as for alternate-key selection. 

Specifying an Alternate-Key Value 

You can specify an alternate-key value either at the location specified by the $KEY_ 
ADDRESS (ka) value or in the working storage area. 

If you specify the value in the working storage area, you must store the value in the 
alternate-key· position in the working storage area. If the alternate key is a 
concatenated key, each piece must be stored in its field in the record. 

For example, suppose you define your working storage area as an 80-integer array 
named WSA. If the alternate-key field is the fifth integer (that is, the alternate-key 
field begins at byte 40 [counting from zero] and is 8 bytes long), you could store the • 
integer alternate-key value 1374 as follows: 

WSA(5)=1374 

The file-position values returned, and their meanings, differ when using an alternate 
key, instead of the primary key, as follows: 

FP 
Value Meaning 

1 The file is positioned at the beginning of the alternate index. (It is positioned 
to read the record with the lowest alternate-key value.) 

8 The file is positioned at the end of the key list for the current alternate-key 
value. (It is positioned to read the first record having the next alternate-key 
value.) 

16 The file is positioned at the end of a record, but not at the end of the key 
list. (It is positioned to read the next record having the current alternate-key 
value.) 

64 The file is positioned at the end of the alternate index. (It cannot read a 
record at this position.) 

When reading a file sequentially, the program should call !FETCH to fetch the file 
position and then check the returned value after each get call. 

To get all records having the same alternate-key value, the program issues GETN calls 
until a file position of 8 (end-of-key-list) is returned. 

When a GET or GETN call returns a file position of 64, it has positioned the file at 
its end-of-information and no GETN calls should be issued until the file is repositioned. 

A GETN call issued after a call that positions the file at the end-of-information is an 
attempt to read beyond the end-of-information. It returns a trivial error ($ERROR_ 
STATUS value AA2635). 

11-34 FORTRAN Version 1 Language Definition Usage Revision H 



Alternate-Key Use 

Key Values Returned 

You can fetch both the alternate-key value and the primary-key value from the FIT 
while an alternate key is selected. 

• A GETN call issued while an alternate key is selected returns the alternate-key 
value of the record read in the key area, instead of the primary-key value. 

• A GETN (or GET or STARTM) call issued while an alternate key is selected can 
return the primary-key value of the record read in a primary-key area. 

Before a call can return a value in a primary-key area, the program must store in the 
FIT the location of the primary-key area. 

For example, this call specifies the variable PRIKEY as the primary-key area: 

CALL STOREF(fit,'$PRIMARY_KEY_ADDRESS' ,prikey) 

NOTE 

Like the key area and the working-storage area, the primary-key area should be in a 
common block. 

The primary-key area is used only while an alternate key is selected; no value is 
returned in the primary-key area while the primary key is selected. 

Collated Key Values 

If the key type of the key is COLLATED, the key value returned may no longer be the 
key value input with the record. This can occur if the collation table assigns the same 
collation weight to more than one character code. 

The process is as follows: 

1. Each character of a collated key value is stored in the index as the lowest 
character code having the same collating weight. 

2. When the key value is returned, the key value is decollated to its original form. 
However, if more than one character code is collated as the same value, the value 
returned is the lowest character code with the same collation weight. 

Because of this process, your program may not be able to fetch a nonembedded 
primary-key value in its original form. (It can always fetch an alternate-key or 
embedded primary-key value in its original form from the record data.) 

For example, if lowercase letters are collated as equal to the corresponding uppercase 
letters (each lowercase letter is given the same collating weight as the corresponding 
uppercase letter), the alternate-key value is returned using only uppercase letters. 

As another example, consider the OSV$xxxx collation tables predefined by NOS/VE. 
These collation tables assign collation weight 0 to all unprintable characters and to the 
space character. Thus, all unprintable characters and all space characters are returned 
as the lowest character code value with collation weight 0, that is, the unprintable 
NUL character (00 hexadecimal). 

Revision H Keyed-File Interface 11-35 



Keyed File Sharing 

Fetching Information From the Alternate Index 

Your program can fetch information from the alternate index using the KLCOUNT, 
KEYLIST, and KLSPACE calls. 

• The KLCOUNT call returns the number of primary-key values for a range of 
alternate-key values in the alternate index. 

• The KEYLIST call returns the actual primary-key values for a range of 
alternate-key values. 

• The KLSPACE call returns the alternate-index block count for a range of 
alternate-key values. 

These calls differ from the other keyed-file-interface calls in these ways: 

• Values must be specified for all parameters. (The valid values are listed in the 
parameter descriptions.) 

• The only values that these calls update in the FIT are the file position, the last 
operation, and the error status. The calls do not use FIT values as default 
parameter values. 

Keyed File Sharing 

A permanent keyed file can be shared; a temporary keyed file cannot be shared. A 
keyed file is shared when multiple concurrent instances of open of the file exist and 
more than one instance of open could be changing the file. 

The possibility of sharing determines whether NOSNE must safeguard the keyed-file 
structure for multiple users: 

o While more than one instance of open could be changing the file, NOSNE performs 
internal locking· operations to maintain the integrity of the file structure. 

• While only one instance of open can be changing the file, NOSNE does not perform 
internal locking; the overhead required to maintain file integrity is not needed, 
resulting in better file access performance. 

File sharing is controlled by the set of share modes in effect for the file. A keyed file 
cannot be shared when the global share mode set for the file is empty, that is, when 
the job has attached the file for exclusive access. 

The default share mode set depends on the access mode set for the open. If the access 
mode set includes append, modify, or shorten access, the default share mode set is 
empty (exclusive access); otherwise, the default share mode set is read and execute. 

For Better Performance 

For better performance when using a keyed file, check that the share modes allowed 
are no more than those required. If possible, allow no sharing of the file. 

In general, when the file can be shared (the Global_Share_Modes value is not none) 
and either the Access_Modes or the Global_Share_Modes include shorten or append 
access, locking is needed. The following examples show two situations in which locking 
is not needed and a third situation in which it is needed. 

11-36 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed File Sharing 

1. When reading a keyed file, it is recommended that you request modify access so 
that read statistics can be recorded in the file. Because modify is one of the write 
access modes, no other instances of open can access the file while you read it (if 
you do not explicitly specify Share_Modes). 

In this case, because no sharing is allowed, no locking is performed and 
performance is at its best. 

2. Next, to allow other users to read the keyed file and maintain accurate read 
statistics, you explicitly specify the Share_Modes as read and modify. 

In this case, sharing is allowed, but the file data cannot be changed. So again, no 
locking is performed and performance is at its best. 

3. Suppose that the permit applicable to the attach allows all access modes to the file, 
but requires that shorten and append share modes be allowed. You choose to 
request all access modes and allow all share modes. 

In this situation, other instances of attach, as well as this one, can write, replace, 
and delete records. Because of the potential for file sharing, NOSNE uses internal 
locks as needed to maintain the integrity of the file structure. A program using the 
file in a shared situation such as this may choose to use locks to disallow changes 
to data it is currently using. Record deletions and replacements require locking of 
the primary-key value of the record. 

The reasons for using locks and the means of doing so are described in detail in the 
following pages. 

Locks 

Keyed-file sharing is coordinated through the use of locks. A lock is a mechanism by 
which a task can restrict use of a keyed file or individual primary-key values in keyed 
files. The lock is owned by a particular instance of open for the file. 

The part of the NOSNE system software that manages locks is called the lock 
manager. In general, lock processing follows this pattern: 

1. The lock manager receives a request for a lock on a nested file or record. 

2. The lock manager determines whether the lock can be granted. 

a. If no conflicting lock exists, the lock manager grants the lock and notifies the 
requesting task. 

b. If a conflicting lock exists, the lock manager checks if the request specified 
waiting. 

1) If the request specified no waiting, the lock manager notifies the task 
requesting the lock that the record or file is currently locked. 

2) If the request specified waiting, the task is suspended until either: 

a) The lock is available (assuming no potential deadlock as described later 
under Lock Deadlock), or 

b) The timeout period elapses (default value, 60 seconds). 

The lock manager also processes requests to clear locks and keeps track of locks that 
have expired (as described under Lock Expiration and Clearing). 

Revision H Keyed-File Interface 11-37 



Keyed File Sharing 

NOTE 

In general, when the Locks discussion describes two or more tasks requesting locks, the 
two or more tasks could actually be the same task with two or more instances of open 
of the same file. This is because a lock belongs to a particular instance of open and 
one task could be requesting locks for more than one instance of open. 

Reasons for Locks 

Locks are recommended for effective sharing of a keyed file. In fact, when more than 
one instance of open exists for a keyed file, NOS/VE requires that a task lock the 
record before it can replace or delete the record. 

Lock use ensures that: 

• Requests are processed in the sequence in which requests are issued. 

• The operation is performed on the most up-to-date version. 

To illustrate the need for locks, the following sequence of events describes two tasks 
using the same nested file without locks. 

1. Two tasks both read the same record containing the value 1. 

File Task A Task B 

D D CJ 
2. One task adds 2 to the value and replaces the record, containing the value 3, in 

the file. 

File Task A TaskB 

Q Q GJ 
3. The other task adds 1 to the value and replaces the record, containing the value 2, 

in the file. 

File Task A TaskB 

The work of one of the tasks has been overwritten. 

Next, consider the alternative in which locks are used. 

1. A task locks and reads a record. 

File Task A 

LJ 
2. A second task attempts to lock and read the record but cannot because the record 

is already locked. It waits until the record is unlocked. 

File Task A TaskB 

[] [] 

11-38 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed File Sharing 

3. The first task adds 2 to the value, and replaces the record containing the value 3, 
in the file. It then unlocks the record. 

File Task A TaskB 

0 0 
4. The second task can now lock and read the record. It adds 1 to the value, and 

replaces the record, containing the value 4, in the file. 

File Task A TaskB 

0 
Lock In ten ts 

Each lock has a lock intent. The lock intent indicates why the task is requesting the 
lock. 

When more than one instance of open exists for a keyed file, only the owner of an 
Exclusive_Access or Preserve_Access_and_Content lock on the record (or the file) can 
replace or delete the record. However, the replace or delete operation does not take 
place until no unexpired Preserve_ Content locks exist for the record. 

Lock intents for file locks are described later under File Locks. The following lists 
describe the lock intents for record locks. 

Exel usi ve_Access 

• Used when the task intends to issue write or delete requests for the locked 
primary-key value. The instance of open must have shorten or append access to the 
file. 

• Denies all requests by other tasks to read, write, update, or delete the record or 
lock its primary-key value. 

Preserve_Access_and_ Content 

• Used when the task might issue write or delete requests for the locked primary-key 
value. Only one Preserve_Access_and_Content lock is allowed at a time for a key 
value. 

• Allows positioning and read requests by other tasks, but denies their attempts to 
write, replace, or delete using the locked key value. 

• Allows Preserve_ Content lock requests by other tasks, but denies their requests for 
an Exclusive_Access or Preserve_Access_and_ Content lock on the primary-key 
value. 

• The owner of the Preserve_Access_and_Content lock can request a write, replace, 
or delete operation, but: 

The write, replace, or delete operation does not begin until the conditions for an 
Exclusive_Access lock are met: 

All read operations in progress for the record have completed. 

All Preserve_Content locks for the record have expired or been cleared. 

Revision H Keyed-File Interface 11-39 



Keyed File Sharing 

- No read operations for the record can begin until the write, replace, or delete 
operation completes. 

Preserve_ Content 

• Used when the task does not intend to issue write, replace, or delete requests for 
the locked primary-key value. 

• If more than one instance of open exists, a Preseve_Content lock prevents all 
update attempts, including those of the lock owner. However, if the Preserve_ 
Content lock owner is the only existing instance of open, the lock does not prevent 
updates. 

• Allows positioning and read requests by other tasks, but denies their write, replace, 
and delete requests. 

• Allows Preserve_Content and Preserve_Access_and_Content locks by other tasks, 
but denies their Exclusive_Access lock requests. 

Multiple Preserve_ Content locks are allowed at a time, but only one Preserve_ 
Access_and_Content lock. Thus, multiple tasks can be reading the record, but only 
one task can be waiting to write, replace, or delete the record. 

Lock Renewal and Lock_Intent Changing 

The owner of a lock can renew the lock by issuing a lock request without an 
intervening unlock request. The lock renewal restarts the expiration time for the lock. 

The lock renewal can also change the lock_intent from Preserve_Access_and_Content 
to Exclusive_Access and vice versa. 

An instance-of-open owning a Preserve_ Content key lock or file lock cannot be granted 
an Exclusive_Access or Preserve_Access_and_Content file lock until it unlocks its 
Preserve_Content lock. 

Depending on the lock_intents, a request for a lock that you already hold may result 
in an error. To see the possible outcomes, see Lock Conflict Tables at the end of this 
locking discussion. 

File Locks 

Your program should request a file lock when it needs locks on many key values at 
the same time. A file lock is a lock on all primary-key values for a nested file. 

In general, the rules for using file locks are the same as those for locks on individual 
primary-key values. 

The effect of the lock intent of a file lock is as follows: 

• Exclusive_Access 

Used when the nested file is to be updated. 

Allows access to records in the nested file only by the instance of open holding the 
file lock; all requests by other instances of open are· denied including all lock 
requests. 

11-40 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed File Sharing 

• Preserve_Access_and_ Content 

Used when the instance of open intends to read records in the nested file and may 
update records later. It allows the holder to do updates, but prevents all other 
instances of open from updating. 

Allows all instances of open to read the file and allows Preserve_ Content locks for 
records in the file or the file as a whole, but denies all Exclusive_Access and 
Preserve_Access_and_Content locks (except a file lock for the nested file by the 
same instance of open). 

• Preserve_ Content 

Used to prevent file updates if the file is shared. (The lock owner can update the 
file if no other instance of open exists.) 

Allows any number of Preserve_ Content locks and one Preserve_Access_and_ 
Content lock for each primary-key value and for the file as a whole, but denies all 
Exclusive_Access lock requests. 

For further details on the file and key-value locks that can co-exist, see Lock Conflict 
Tables. 

A file lock is required when your program needs more than 1024 locks at a time 
because 1024 is the maximum number of locks allowed for an instance of open. An 
attempt to exceed this limit returns the nonfatal $ERROR_STATUS value AA2115. 

The number of locks allowed also depends on the FILE_LIMIT attribute value. The 
lock manager tracks all locks for a file in another file called the lock file (named 
$SYSTEM.AAM.AAF$LOCK_FILE). The lock file size cannot exceed 90% of the FILE_ 
LIMIT value and, if an operation would cause the lock file to be more than 50% full, 
the operation is not allowed to begin and the fatal $ERROR_STATUS value AA6010 is 
returned. (A second system file, $SYSTEM.AAM.DEPENDENCY_FILE, is also required 
for locking.) 

Waiting for a Lock 

When a conflicting lock exists, but no deadlock, a call requesting a lock waits for the 
lock if the $WAIT_FOR_LOCK value in the FIT is TRUE. 

A lock request waits until the lock is available or the lock timeout period has passed. 
If the lock request times out, the call returns the $ERROR_STATUS value AA2055. 

The default timeout period is 60 seconds. However, each task can specify how long it 
waits for a lock by creating and initializing an SCL integer variable named 
AAV$RESOLVE_ TIME_LIMIT. The value assigned to the variable is the new lock 
timeout period in seconds (any integer greater than 1). Do not set the lock timeout 
period so that it is longer than the LOCK_EXPIRATION _TIME attribute value 
(default, 60 seconds). 

For example, the following call executes the SCL command CREATE_ VARIABLE to 
change the timeout period to 45 seconds: 

call sclcmd ('create_variable, name=AA$RESOLVE_TIME_LIMIT, kind=integer, 
value=45') 

Revision H Keyed-File Interface 11-41 



Keyed File Sharing 

Lock Expiration and Clearing 

An expired lock and a cleared lock are not the same: 

• A cleared lock no longer exists; the lock manager has discarded it. 

• An expired lock is no longer effective in preventing access by other tasks. However, 
an expired lock prevents file access by its owner (except IFETCH and STOREF 
calls and an UNLOCKF or UNLOCKK call that clears the expired lock). This is 
done so that the owner of the lock is notified of its expiration. 

A lock is cleared when one of these events occurs: 

• The task with the lock issues an unlock request for the lock. 

• The task closes the instance of open to which the lock applies. 

• The request for the record lock specified automatic unlock, and the task issues any 
request for the instance of open (other than an IFETCH or STOREF call). 

In general, the automatic unlock occurs when the request is issued. The exception 
is for an update request for the locked record for which the lock is kept until the 
update operation completes. 

For example, if a task issues a lock on record 1 and then issues a request to 
replace record 1, the lock manager automatically clears the lock on record 1 after 
the replace operation. Similarly, if a task issues a lock on record 1 and then issues 
a request to position the file at record 2, the lock manager automatically clears the 
lock on record 1, before positioning the file at record 2. 

How a Lock Expires 

A lock expires when the following sequence of events occurs: 

1. Its expiration time has passed since the lock was granted. 

2. Another task issues a request specifying waiting that would be denied if the lock 
was effective. (The request is granted.) 

The number of milliseconds in the lock expiration time is specified by the file 
attribute, LOCK_EXPIRATION_ TIME. The default value is 60,000 milliseconds (60 
seconds). To set an unlimited expiration time so that locks do not expire, set the 
attribute value to 0. 

An expired lock is no longer effective in preventing access to the file or record by 
other tasks. However, it does prevent the task holding the expired lock from accessing 
records in the file. 

The task holding the expired lock is prevented from accessing any record in the file 
until it clears the expired lock. This notifies the task that a lock has expired. 

For example, consider the following sequence of events: 

1. Task 1 requests a Preserve_Access_and_Content lock on record 1 in nested file 1 
without automatic unlock. The lock is granted. 

2. The expiration time passes. 

11-42 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed File Sharing 

3. Task 1 reads record 1 from nested file 1. The read request restarts the expiration 
time count. 

(The lock has not yet expired because no other task has issued a .request for the 
record that a Preserve_Access_and_ Content lock should prevent. The lock is not 
unlocked because automatic unlock was not requested for the lock.) 

4. The expiration time passes again. 

5. Task 2 requests a Preserve_Content lock on record 1 in nested file 1. (The Task 1 
lock does not expire because a Preserve_Access_and_Content lock does not prevent 
Preserve_ Content locks.) 

6. Task 3 requests, with waiting, a Preserve_Access_and_Content lock on record 1 in 
nested file 1. (The Task 1 lock expires because a Preserve_Access_and_Content 
lock should prevent additional Preserve_Access_and_ Content locks.) 

7. Task 1 attempts to read record 2 in nested file 1, but instead the request 
terminates with a nonfatal error, notifying Task 1 that it has an expired lock. Task 
1 must clear the expired lock before it can successfully request any record in nested 
file 1. 

A task is notified of lock expiration for the currently selected nested file only. The 
expiration of locks in a previously selected nested file does not affect the task unless it 
re-selects the nested file and attempts a file operation. 

Expired Lock Conditions 

These are the nonfatal $ERROR_STATUS values returned for an expired lock: 

AA2820 
The operation failed due to a leftover expired lock in the nested file. 

AA2790 
A key value could not be automatically unlocked due to an expired lock. 

AA2805 
The key value could not be locked due to an expired lock. 

AA2810 
A lock with a time limit could not be changed to a lock with no time limit due to 
an expired lock. 

AA2815 
The first primary-key value in the key list for an alternate-key value could not be 
locked due to an expired lock. This status can be returned only if the alternate key 
allows duplicate values, ordered by primary key, and while the task is waiting for 
the lock, another task inserts a primary-key value at the beginning of the key list. 

Revision H Keyed-File Interface 11-43 



Keyed File Sharing 

Lock Deadlock 

A deadlock is a situation in which two or more tasks need a lock already held by 
another task in the group of tasks. For example, the following situation is a deadlock: 

• Task 1 has a lock on record 1 and needs a lock on record 2. 

• Task 2 has a lock on record 2 and needs a lock on record 3. 

• Task 3 has a lock on record 3 and needs a lock on record 1. 

If none of the tasks releases the lock it holds, none of the tasks can complete. 

A deadlock can occur either when tasks are waiting for a lock or when tasks are each 
repeatedly requesting a lock. The lock manager can detect the deadlock when the tasks 
are actually waiting for a lock; it cannot detect a deadlock when tasks are repeatedly 
requesting locks. 

When the lock manager receives a lock request indicating that the task wants to wait 
until the lock is available, it checks for a possible deadlock. To do so, it checks 
whether other tasks are waiting for locks held by the requesting task. If it detects a 
potential deadlock, it terminates the request with a nonfatal error. 

If the deadlock is with another task, it returns error AA2040. If the deadlock is a 
self-deadlock (the requesting task already has the requested lock), it returns error 
AA2045. 

To prevent a deadlock that the lock manager cannot detect, a task should limit the 
number of times it repeatedly requests a lock without waiting. After a fixed number of 
attempts, it should do one of the following: 

• Issue a lock request with waiting in which case the lock manager can notify it that 
a potential deadlock exists. 

• Assume that a potential deadlock exists and clear the locks it holds. 

Lock Conflict Tables 

The outcome of a request for a lock that has already been granted depends on: 

• The lock intents of the existing and requested locks. 

• Whether the request is from the same instance of open holding the lock. 

• Whether the conflicting locks are key-value locks or file locks. 

11-44 FORTRAN Version 1 Language Definition Usage Revision H 



Keyed File Sharing 

This table gives the outcomes when the requested and existing locks are either both 
key-value locks or both file locks. 

When the requested and existing locks are either both key-value locks or both 
file locks: 

If this lock exists: 
And a lock with this intent is requested for the 
same key or file: 

Lock 
Intent 

Preserve_ 
Content 

Preserve_ 
Access_ 
and_ 
Content 

Exclusive_ 
Access 

Legend: 

Instance of 
Open 

Same Open 
Another Open 

Same Open 
Another Open 

Same Open 
Another Open 

Grants the lock. 

Preserve 
Content 

Renews 
Grants 

Rejects 
Grants 

Rejects 
Depends 

Preserve 
Access -
Content 

Rejects 
Grants 

Renews 
Depends 

Renews 
Depends 

and 
Exclusive 

Rejects 
Depends 

Renews 
Depends 

Renews 
Depends 

Access 

Renews the lock, restarting its lock expiration time and changing the lock intent if 
requested. 
Rejects the request (nonfatal status AA2080) 
Self-Deadlock returns the nonfatal status AA2045. 
Depends as follows: 
• No waiting requested: Returns nonfatal status AA2075 
• Waiting requested: Grants the lock unless: 

Opens belong to the same task: Returns nonfatal status AA2045 
Opens belong to different tasks: Grants the lock unless: 

Revision H 

Deadlock detected (nonfatal status AA2040) 
Timeout period elapses (nonfatal status AA2055) 

Keyed-File Interface 11-45 



Keyed File Sharing 

This table gives the outcomes when the existing and requested locks are not the same 
kind of lock (file locks or key-value locks). 

When the existing and requested locks are not the same kind of lock (file locks 
or key-value locks). 

If this lock exists: 
And a lock with this intent is requested for the 
same key or file: 

Lock 
Intent 

Preserve_ 
Content 

Preserve_ 
Access_ 
and_ 
Content 

Exclusive_ 
Access 

Legend: 

Instance of 
Open 

Same Open 
Another Open 

Same Open 
Another Open 

Same Open 
Another Open 

Grants the lock. 

Preserve 
Content 

Grants 
Grants 

Grants 
Grants 

Self-Deadlock 
Depends 

Preserve_ 
Access_ and 
Content 

Grants 
Grants 

Self-Deadlock 
Depends 

Self-Deadlock 
Depends 

Exclusive_Access 

Self-Deadlock 
Depends 

Self-Deadlock 
Depends 

Self-Deadlock 
Depends 

Renews the lock, restarting its lock expiration time and changing the lock intent if 
requested. 
Rejects the request (nonfatal status AA2080) 
Self-Deadlock returns the nonfatal status AA2045. 
Depends as follows: 
• No waiting requested: Returns nonfatal status AA2075 
• Waiting requested: Grants the lock unless: 

Opens belong to the same task: Returns nonfatal status AA2045 
Opens belong to different tasks: Grants the lock unless: 

Deadlock detected (nonfatal status AA2040) 
Timeout period elapses (nonfatal status AA2055) 

11-46 FORTRAN Version 1 Language Definition Usage Revision H 



Result Sets 

Result Sets 

A result set is a set of primary-key values. It provides a means of reading a logical set 
of records from a keyed file. 

A result set begins as a list of primary-key values, retrieved using a key-value range 
for the currently selected key. (The range is specified in the same way as the range on 
an KLCOUNT call.) However, unlike a simple key list, a result set can be combined 
and modified. 

A result set can be combined with other result sets (using the logical operations AND, 
OR, and XOR). It can be modified by adding key values to and deleting key values 
from the result set. Also, the result set can be used to read either the set of records in 
the result set or (for indexed-sequential files) all records not in the result set. 

The following is a general outline of the steps by which a program creates and uses a 
result set to read a set of records: 

1. Open the keyed file. If the result set is to be for a nested file other than the 
default nested file ($MAIN _FILE), select the nested file (that is, store the FIT 
value for $NESTED_FILE_NAME). 

2. Open the result set file by calling RSOPEN. The result_ set_ ID returned by the 
call is used by subsequent calls to reference the open result set. 

3. Clear the result set using the call RSCLEAR if the existing result set in the file is 
to be discarded. 

4. Add records to and remove records from the set by calling: 

RSBUILD 

Gets the set of records from the keyed file within the range of key values 
specified on the call and combines the new set with an ~xisting result set. 

(If an alternate key is to be used, it must be stored as the $KEY_NAME FIT 
value before the RSBUILD call. This is required for a direct-access file because 
a key-value range cannot be specified for a direct-access primary key because 
the primary-key values are not ordered in a direct-access file.) 

RSCOMB 

Combines two existing result sets. 

RS PUT 

Adds a single primary-key value to a result set. 

RSDLTE 

Deletes a single primary-key value from a result set. 

5. Select the primary key by storing the value $PRIMARY_KEY as the $KEY_NAME 
FIT value if an alternate key is currently selected. 

6. Read records from the keyed file by calling RSGETN to either: 

• Read the records that are in the result set. 

• Read the records that are not in the result set (indexed-sequential files only). 

Revision H Keyed-File Interface 11-47 



Result Sets 

7. Fetch information about the result set at any time while the result set is open by 
calling RSINFO. 

8. Reposition the result set (if appropriate) using the following calls: 

RSREWND 

Position the result set at its beginning. 

RS START 

Position the result set at the specified record. 

RSSKIP 

Position the result set forward or backward a specified number of key values. 
This can be done only after the result set position has been established by a 
get, rewind, or start result set call. 

9. Close the result set by calling RSCLOSE. 

10. Close the keyed file. 

Result Set Validity 

A result set can only be used to read the file for which it was built. The global file 
name and the currently selected nested file are stored in the result set when it is first 
opened. 

A result set cannot be used with a copy of the original data file or another cycle of the 
file or another nested file in the data file. For example, if a result set is built for a 
teinporary file, the result set cannot be used to read a permanent copy of the file. This 
is becuase the permanent copy has a different global file name. 

Result sets to be combined must apply to the same nested file and file cycle. However, 
more than one key for the nested file can be used to build a result set. For example, 
the result set could be started while the primary key is selected and then added to 
after selection of an alternate key. 

The correctness of a result set is ensured only until the nested file is updated. At that 
time, key values of records referenced by the result set could be changed. When 
writing a program that uses result sets, you must determine whether the result set 
must be correct when it is used to read records. If correctness is not required, updates 
to the data file can continue while result sets are built and used. 

Keeping the Result Set Correct 

If the program using a result set requires that the result set be correct, it must ensure 
that the data file is not updated from the time the result set is begun through the 
time that its use has been completed. How this is done depends on whether the result 
set is created and used within a single instance of open, within a single job, or across 
jobs. 

When the result set is created and used within a single instance of open, updates can 
be prevented by calling LOCKF before beginning to create the result set. The LOCKF 
call should request a Preserve_Content file lock to allow the nested file to be read, but 
not updated. The lock should be held until all use of the result set has been completed. 

11-48 FORTRAN Version 1 Language Definition Usage Revision H 



Result Sets 

When the result set is created and used within a single job, data file updates can be 
prevented by attaching. the data file so that the specified access modes and share 
modes do not include append or shorten access modes. This prevents updating of the 
file while it is attached to the job. 

When the result set is to be created and used across jobs, data file updates can be 
prevented by creating a permit for the data file that applies to all users (a public 
permit) that omits the append and shorten permissions. Also, to be used across jobs, 
the result set file must be a file in a permanent file catalog. 

Recovering from Result Set Read Errors 

If the file could be updated between the time the result set is built and the time it is 
used, the program should check for possible errors returned by RSGETN calls. Calls to 
read a record could fail because a primary-key value is locked or because the record 
for the primary-key value has been deleted. Because the errors are nonfatal, they do 
not terminate the program so the sequence of reads can continue. 

To recover from a lock conflict while the file is shared, the program could re-try 
reading the record. The retry method used depends on the result_set_not parameter 
value. 

To retry a get call (result_set_not is 'NO'), call RSSKIP to move the result set back 
one value and then re-try the read. Or, the program could call RSINFO to get the 
previous_key value. The program could then call GET using the previous_key value. 
With $GET_AND_LOCK and $WAIT_FOR_LOCK set, the GET call waits for the 
record until it can read it. 

To retry a get_not call (result_set_not is 'YES'), no repositioning is necessary. The 
program can re-try the read by calling RSGETN again. 

Result Set Files 

Result sets reside in sequential files, called result set files. The RSOPEN call specifies 
the result set file. If the specified file does not exist, RSOPEN creates the file. 

The first RSOPEN call for a result set stores file attribute values that identify the file 
as a result set file. RSOPEN calls for an existing result set check that the specified 
file is a result set file. 

NOTE 

To preserve the integrity of the result set, do not perform any operations except result 
set operations on result set files. 

Combining Result Sets 

The RSBUILD and RSCOMB calls can combine result sets. 

• An RSCOMB call combines two existing result sets. 

• An RSBUILD call combines an existing result set (called its source result set) with 
a range of key values from the data file. 

Revision H Keyed-File Interface 11-49 



Result Sets 

Combination Operations 

Result sets can be combined by one of these three operations (as specified by the 
logical_operation parameter on the call): 

Logical AND (0) 

The combined result set is the intersection of the result sets. It contains only those 
key values that belong to both of the sets. 

Logical OR (1) 

The combined result set is the union of the result sets. It contains all key values 
from both result sets. 

Logical XOR (2) 

The combined result set is the union of the result sets without the intersection of 
the result sets. It contains all key values from each of the result sets that do not 
belong also to the other result set. 

Placement of the Combined Result Set 

On the RSBUILD and RSCOMB calls, an existing result set to be combined is specified 
as a source result set. The combined result set can overwrite the source result set or 
be written to another result set file called the target result set. 

The placement of the combined result set is determined by the value of the new_ 
result_placement parameter on the call. The parameter can specify one of these values: 

Result in Source (O) 

The combined result set overwrites the source result set. For RSCOMB, the result 
set overwritten is always the second of the source result sets specified. Use this 
value only when the source result set is no longer needed. It can also be used by 
an RSBUILD call when the source and target result sets are the same. (The source 
and target result sets cannot be the same for an RSCOMB call.) 

Result in Target (1) 

The combined result set is written to the target result set. Use this value when the 
source_result_set is to be saved for later use. It is also used on the initial 
RSBUILD call for a new result set. 

Result in Fastest Place (2) 

The placement of the combined result set is chosen to provide the fastest 
performance. The location chosen is returned in the variable specified by the 
actuaLresult_set_ placement parameter on the call. Use this value when the 
source result set is no longer needed and the source and target result sets differ. 

11•50 FORTRAN Version 1 Language Definition Usage Revision H 



Result Sets 

Adding Or Deleting Key Values 

The RSPUT and RSDLTE calls add or delete one primary-key value in the result set. 
These calls are for specifying isolated primary-key values, instead of the range of key 
values specified by an RSBUILD call. 

For Better Performance 

In cases where several scattered primary-key values are to be added or deleted in a 
result set and the result set is large, calls to directly add or delete individual key 
values are not the most efficient method of producing the target result set. 

It is more efficient to form a temporary result set containing the individual 
primary-key values and combine the temporary result set with the source result set to 
form the target result set. 

If possible, put the primary-key values into the result set in ascending order. This 
builds the result set more efficiently. 

To add several individual primary-key values to a large result set: 

1. Call RSPUT to put each primary-key value to be added into a temporary result set. 

2. Combine the result sets using an logical OR (1) operation. 

To delete several individual primary-key values from ~ large result set: 

1. Call RSPUT to put each primary-key value to be deleted into a temporary result 
set. 

2. Call RSCOMB specifying the original result set as the first_source_result_set and 
the temporary result set as the second_source_result_set. Combine the result sets 
using an logical XOR (2) operation; specify result in source (0) to overwrite the 
temporary result set. 

3. Combine the temporary result set created by step 2 with the original result set 
using an logical AND (0) operation. (This step is required only when one or more of 
the records to be deleted may not have been in the original result set.) 

Revision H Keyed-File Interface 11-51 



Keyed-File Interface Calls 

Keyed-File Interface Calls 

These are the keyed-file interface calls. 

Call 

CLOSEM 
DLTE 

FILED A 
FI LEIS 

FLUSHM 

GET 
GETN 

IFETCH 

KEYLIST 
KLCOUNT 

KLSPACE 

LOCKF 
LOCKK 

OPE NM 

PUT 
PUTREP 
REP LC 

REWND 

RMKDEF 

RSOPEN 
RSC LOSE 
RSC LEAR 

RSBUILD 
RSCOMB 
RSDLTE 
RSPUT 

RSGETN 
RSINFO 

RSREWND 
RS SKIP 
RSSTART 

Purpose 

Closes an open file 
Deletes a record 

Creates a FIT for a direct access file 
Creates a FIT for an indexed-sequential file 

Copies the file in memory to disk 

Reads a record by its key value 
Reads the next record in sequential order 

Fetches a FIT value 

Fetches primary-key values from an alternate index 
Fetches the number of primary-key values within a range in the 
alternate index 
Fetches the number of alternate-index blocks that contain the specified 
alternate-key value range 

Locks a file 
Locks a primary-key value 

Opens a keyed file 

Writes a record 
Writes or replaces a record 
Replaces a record 

Positions the file at the lowest key value 

Creates an alternate key 

Opens a result set 
Closes an open result set 
Clears a result set 

Builds a result set 
Combines two result sets 
Deletes a key value from a result set 
Adds a key value to a result set 

Uses the result set to get a record from the data file 
Returns information about the result set 

Positions the result set at its beginning 
Positions the result set forward or backward 
Positions the result set at a key value 

11-52 FORTRAN Version 1 Language Definition Usage Revision H 



Call 

SKIP 
STAR TM 

STOREF 

UNLOCKF 
UNLOCKK 

Keyed-File Interface Calls Introduction 

Purpose 

Repositions the file forward or backward a number of records 
Positions the file by a key value 

Stores a value in the FIT 

Clears a file lock 
Clears either a single primary-key value lock or all locks for the 
instance of open 

If you are migrating a CYBER 170 FORTRAN program that uses GETNR or SEEKF 
calls, see appendix C for more information. 

Keyed-File Interface Calls Introduction 

Each keyed-file interface call description lists the parameters for the call (with the 
parameter position in parentheses). The parameters must be specified in the indicated 
order. 

Standard FORTRAN requires that all parameters be explicitly specified on a call. 
However, the keyed-file interface allows you to omit parameters whose values have 
been specified on previous calls. (The FIT pointer must always be specified.) 

NOTE 

You cannot omit any parameter values on KEYLIST, KLCOUNT, KLSPACE, and 
STOREF calls. 

To omit a parameter between two specified parameters, specify a zero (O) in the 
parameter position. (Thus, to actually specify zero as a parameter value, you must 
store zero in a variable and specify the variable name on the call.) 

Except for KEYLIST, KLCOUNT, KLSPACE, and STOREF calls, a zero value on a call 
causes the corresponding FIT value to be used. If the corresponding value in the FIT is 
also zero, the default parameter value is used. 

Unless indicated otherwise in the call description, a parameter value specified on a call 
is stored in the FIT so that it becomes the default value for subsequent calls. 

No type checking is performed on the values passed by a call. Passing an improper 
value could result in an internal routine detecting a computational fault such as 
arithmetic overflow. To find the line that caused the error, use Debug to trace back 
the call chain. 

Each call description includes a list of values that could be returned to the $ERROR_ 
STATUS FIT value by the call. For information on decyphering the $ERROR_STATUS 
value, see the $ERROR_STATUS description later in this chapter. 

Revision H Keyed-File Interface 11-53 



CLOSEM Call 

CLOSEM Call 

Purpose Closes an open keyed file. 

Format CALL CLOSEM (fit, cf) 

Parameters (1) fit 

Remarks 

Examples 

Variable containing the FIT pointer returned by the call that created the 
FIT. 

(2) cf 

Close flag handling: 

'R' 

Rewind the file (default). 

'N' 

Do not rewind or detach the file. 

'U' or 'RET' 

Detach the file. (The file is no longer accessible from the $LOCAL 
catalog.) 

(No default value is stored in the FIT for this parameter.) 

• When a program finishes processing a keyed file, it should immediately 
call CLOSEM to close the file. Close processing copies any data or 
index blocks in memory to the mass storage file, updates internal 
tables, and writes statistics to the $ERRORS file (if requested by the 
$MESSAGE_CONTROL value). It also clears all locks for the instance 
of open. 

• An attempt to close a file that is not open returns a nonfatal error 
($ERROR_STATUS value AA2500). 

• All files are closed at task termination. This is true whether the task 
terminates normally or abnormally. 

• A CLOSEM call does not discard the FIT. The same FIT pointer 
variable can be specified on a subsequent OPENM call to open the 
same file again. 

This call closes and detaches a keyed file, preventing its further use in the 
program. The !FETCH call checks that the CLOSEM call completed 
successfully. 

CALL CLOSEM (fit, 'U') 
CALL !FETCH ('$ERROR_STATUS'. status) 
IF (status .NE. 0) CALL errept 

11-54 FORTRAN Version 1 Language Definition Usage Revision H 



DLTE Call 

DLTE Call 

Purpose Removes a record from a keyed file. 

Format CALL DLTE (fit, ka, kp, 0, ex) 

Parameters (1) fit 

Remarks 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) ka 

Location of the primary-key value of the record to be deleted. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

(3) kp 

For FORTRAN 5 compatibility. New programs should set this parameter to 
zero. 

(4) 0 

Reserved position for unused parameter. 

(5) ex 

Name of the error-exit procedure. 

$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 

Fatal: 

AA2085 -- key _not_already _locked 
AA2605 -- key_ required 
AA2615 -- non_embedded_key _not_given 
AA2650 -- not_enough_permission 

AA3250 -- file_is_ruined 
AA3430 -- file_at_file_limit 

• A DLTE call requires append, shorten, and modify access to the file. 
Otherwise, DLTE returns a nonfatal error ($ERROR_STATUS value 
AA2650). 

• If the file could be shared (more than one instance of open could be 
changing the file at the same time), a record can be deleted only if the 
instance of open has a Preserve_Access_and_ Content or Exclusive_ 
Access lock on the primary-key value. An invalid attempt returns error 
status AA2085. 

A task can lock a primary-key value by calling LOCKK, GET, or 
GETN. To read about locks, see the earlier subsection Keyed-File 
Sharing. 

• You cannot delete a record by specifying its alternate-key value. You 
must specify its primary-key value. The key value specified on a DLTE 
call is processed as a primary-key value even if an alternate key is 
currently selected. A DLTE call deletes the primary-key value from all 
alternate indexes that reference it. 

Keyed-File Interface 11-55 



DLTE Call 

Examples 

• DLTE searches for the primary-key value only in the nested file 
currently selected. 

• If DLTE cannot find a record with the specified primary-key value, it 
returns a nonfatal error ($ERROR_STATUS value AA2000). 

• A DLTE call does not change the file position or change the currently 
selected key or nested file. 

For Better Performance 

When deleting a sequence of records, it is most efficient to delete the 
records in order from the highest primary-key value to the lowest 
primary-key value. By working backwards, you can avoid relocation of 
records to be subsequently dele~ed. 

• If a data block or index block contains no records as a result of the 
delete request, it is linked into a chain of empty blocks. These blocks 
are reused when new blocks are required for file expansion. 

The DLTE call deletes the record with primary-key value ABCD. The 
!FETCH call checks that the DLTE call completed succesfully. 

key = 'ABCD' 
CALL DLTE (fit, key) 
CALL !FETCH (fit,'$ERROR_STATUS' ,status) 
IF (status .NE. 0) CALL erreprt 

11-56 FORTRAN Version 1 Language Definition Usage Revision H 



FILEDA Call 

FILEDA Call 

Purpose Creates a file information table (FIT) for a direct access file and, 
optionally, initializes FIT values. 

Format CALL FILEDA (fit, keyword, value, .•• , keyword, value) 

Parameters (1) fit 

Remarks 

Examples 

Integer variable in which the FIT pointer is returned. 

(2) keyword 

Character expression specifying a FIT keyword (must be followed by an 
allowable value for the attribute). The keyword must be a character 
expression (for example, '$KEY_LENGTH'). 

(3) value 

FIT value to be stored for the preceding keyword. The applicable values 
are listed in the individual keyword description. 

• The FILEDA call must be the first call for a direct access file because 
it creates the FIT for the file and sets the $FILE_ORGANIZATION 
value to DIRECT_ACCESS. 

All other calls for the file must specify the FIT pointer variable 
returned by the FILEDA call. 

• Except for the $FILE_ORGANIZATION value, FILEDA call processing 
is the same as FILEIS call processing. 

This call creates a FIT for an existing direct access file named MY_DA_ 
FILE. It stores two FIT values: the local file name and the access modes. 

CALL FILEDA( fitptr, '$LFN', 'my_da_file', 
+ '$ACCESS_MOOE', 'READ,MODIFY') 

This call creates a FIT for a new direct access file, specifying the 
minimum required attributes: 

CALL FILEDA( fitptr, '$LFN', 'my_da_file', 
+ '$INITIAL_HOME_BLOCK_COUNT', 23, 
+ '$KEY _LENGTH' , 15, 
+ '$MAXIMUM_RECORD_LENGTH', 80, 
+ '$MINIMUM_RECORO_LENGTH', 15) 

Revision H Keyed-File Interface 11-57 



FILEIS Call 

FILEIS Call 

Purpose Creates a file information table (FIT) for an indexed-sequential file and, 
optionally, initializes FIT values. 

Format CALL FILE IS (fit,keyword, value, ••• ,keyword, value) 

Parameters (1) fit 

Remarks 

Examples 

Integer variable in which the FIT pointer is returned. 

(2) keyword 

Character expression specifying a FIT keyword (must be followed by an 
allowable value for the attribute). The keyword must be a character 
expression (for example, '$KEY_LENGTH'). 

(3) value 

FIT value to be stored for the preceding keyword. The applicable values 
are listed in the individual keyword description. 

• The FILEIS call must be the first call for an indexed-sequential file 
because it creates the FIT for the file and initializes the $FILE_ 
ORGANIZATION value to INDEXED_SEQUENTIAL. All subsequent 
keyed-file interface calls must specify the variable containing the FIT 
pointer returned by the FILEIS call. 

• The FILEIS call can specify any number of keyword,value pairs in any 
order. You can change FIT values specified by the FILE IS call using 
STOREF calls. 

• FILEIS returns a nonfatal error ($ERROR_STATUS value AA2510) 
when it does not recognize a specified keyword. It also returns a 
nonfatal error ($ERROR_STATUS value AA2505) if a specified value is 
outside of the range applicable for the parameter. 

• The FILEIS call associates the FIT with a local file name using the 
$LOCAL_FILE_NAME keyword. The old/new (ON) value indicates 
whether the file is a new or existing file. 

• File attribute values specified by SET_FILE_ATTRIBUTE commands 
before program execution override corresponding attribute values 
specified by FILEIS calls. 

• Attribute values in the FIT are checked for validity and consistency 
when the file is opened. 

This call creates a FIT for an existing indexed-sequential file named MY_ 
IS_FILE. It stores two FIT values: the local file name and the access 
modes. 

CALL FILEIS(fitptr, '$LFN', 'my_is_file' ,'$ACCESS_MODE','READ,MODIFY') 

This call creates a FIT for a new indexed-sequential file, specifying the 
minimum required attributes: 

11-58 FORTRAN Version 1 Language Definition Usage Revision H 



FILEIS Call 

CALL FILEIS( fitptr, '$LFN', 'my_new_is_file', 
+ '$KEY_LENGTH', 15, 
+ '$MAXIMUM_RECORD_LENGTH', 80, 
+ '$MINIMUM_RECORD_LENGTH', 15) 

Revision H Keyed-File Interface 11-59 



FLUSHM Call 

FLUSHM Call 

Purpose Writes all modified blocks to mass storage. 

Format CALL FLUSHM (fit) 

Parameters (1) fit 

Remarks 

Examples 

Variable containing the FIT pointer returned by the call FILEIS or 
FILEDA that created the FIT. 

• A FLUSHM call requires append, shorten, or modify access to the file. 
Otherwise, it returns a nonfatal error ($ERROR_STATUS value 
AA2650). 

• A FLUSHM call ensures that the disk copy of the file contains the 
latest changes to the file. FLUSHM does not reposition or close the file. 
Blocks in memory are not disturbed. 

• If the $FORCED_ WRITE value in the FIT is TRUE, a data or index 
block is copied to disk immediately after the block is changed. 
However, a FLUSHM call also copies all internal file tables to disk, 
providing a complete backup copy. 

The STOREF call specifies the error-exit procedure to be called if the 
FLUSHM call detects an error. (The program has previously declared the 
ERREXIT subprogram as EXTERN AL.) 

CALL STOREF (fit,'$EEP' ,errexit) 
CALL FLUSHM (fit) 

11-60 FORTRAN Version 1 Language Definition Usage Revision H 



GET Call 

GET Call 

Purpose Reads a record by its key value from an open keyed file. 

Format CALL GET (fit, wsa, ka, kp, mkl, O, ex) 

Parameters (1) fit 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) wsa 

Working storage area (location to which the record data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. If 
they are not, your program could execute incorrectly after being compiled 
with high optimization. 

(3) ka 

Location of the key value of the record to be read. 

(4) kp 

For CYBER 170 compatibility. New programs should set this parameter to 
zero. 

(5) mkl 

Major key length (in bytes); defaults to zero. It is reset to zero after the 
call. 

When using a variable_length alternate key, a nonzero mkl value is 
required because it specifies the key-value length. 

The parameter is ignored if the file is a direct access file and its primary 
key is currently selected. 

(6) 0 

Reserved position for unused parameter. 

Keyed-File Interface 11-61 



GET Call 

Remarks 

(7) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 

Fatal: 

AA2010 -- record_ longer_ than_ wsa 
AA2035 -- primary_key_locked 
AA2040 -- key _deadlock 
AA2045 -- key_ self_ deadlock 
AA2055 -- key_ timeout 
AA2075 -- key _found_lock_no_ wait 
AA2080 -- key_ already_ locked 
AA2115 -- too_many_keylocks 
AA2120 -- no_exclusive_if_read_only 
AA2615 -- non_ embedded_ key _not_ given 
AA2620 -- wsa_not_found 
AA2640 -- major _key_ too_ long 
AA2650 -- not_enough_permission 
AA2715 -- no_auto_unloc_pc 
AA2805 -- key _expired_lock_exists 

AA3250 -- file_is_ruined 
AA3430 -- file_at_file_limit 
AA3435 -- lock_file_crowded 

• A GET call requires at least read access to the file. Otherwise, it 
returns a nonfatal error ($ERROR_STATUS value AA2650.) To update 
file statistics, it also requires modify access. 

• A GET call requires that a working· storage area be specified on the 
call or in the FIT. If no working storage area is specified, it returns a 
nonfatal error ($ERROR_STATUS value AA2620). 

• GET searches for the specified key value in the currently selected 
nested file only. 

• GET uses the primary or alternate key specified by the $KEY_NAME 
value in the FIT. The $KEY_NAME value is initially set to the 
primary key ($PRIMARY_KEY). 

• When the primary key is selected, a ka value must be specified on the 
call or in the FIT. 

• When an alternate key is selected and the ka values on the call and in 
the FIT are both zero, GET assumes that the alternate key value is in 
the working storage area at the position of the alternate key in the 
record. 

For example, if the alternate key is bytes 5 through 10 of the record, 
GET uses the contents of bytes 5 through 10 of the working storage 
area as the alternate-key value. 

• The meaning of the mkl value depends on whether the selected key is 
fixed-length or variable-length. 

- For a fixed-length key, a nonzero mkl value specifies that GET is to 
search for the key using a major key. This means that, starting 
from the left of the key value, only mkl bytes of the key values are 
compared. 

11-62 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

GET Call 

- For a variable-length key, the mkl value specifies the key-value 
length. The key value is compared with the full key values stored 
in the index. 

A major key length value specified on a call is not stored in the FlT. 
A $MAJOR_KEY_LENGTH value specified in the FIT is cleared after 
it is used, so the program must specify a major key length value for 
each call that is to use a major key or a variable-length key value. 
(Major-key use is valid only while either the primary key of a direct 
access file or any alternate key is selected.) For more information, see 
the $MAJOR_KEY_LENGTH FIT value description. 

• If an alternate key has been selected and the key is a concatenated 
key, the values for the pieces of the key must be assembled in the key 
area or the working storage area. 

In the key area, the pieces must be concatenated in the order defined 
for the alternate key. 

In the working storage area, the pieces must be stored in their fields in 
the record. 

For example, suppose the first piece of the alternate key is the third 
byte of the record and the second piece of the alternate key is the first 
byte of the record. To get the record whose first byte is an A and 
whose third byte is an *, either: 

- store A in the first byte of the working storage area and * in the 
third byte, or 

- store *A in the key area. 

• GET searches for the first key value that satisfies the relation specified 
by the $KEY_RELATION value in the FIT. 

- If the relation is EQUAL_KEY and an equal key value does not 
exist in the file, GET returns a nonfatal error ($ERROR_STATUS 
value AA2000). The file is left positioned to read the next record 
(the record that would follow the specified record if it existed). 

- If the $KEY_RELATION value is GREATER_OR_EQUAL_KEY or 
GREATER_KEY and no key value in the file satisfies the relation, 
the data-exit (DX) procedure is called, if one is specified in the FIT. 
The file is left positioned at the end of information. 

• If the $GET_AND_LOCK value in the FIT is -1 (YES), the GET call 
requests a lock on the primary-key value of the record to be read. The 
lock request uses the $AUTOMATIC_ UNLOCK, $LOCK_INTENT, and 
$WAIT_FOR_LOCK values in the FIT. To read about locks, see 
Keyed-File Sharing earlier in this section. 

When an alternate key is selected, the GET call requests a lock on the 
first primary-key value in the key list only. 

If the GET call fails for any reason, it terminates without a lock on 
the primary-key value. 

• The GET call reads data from the record until it reaches the end of the 
record or it has read the number of bytes specified as the working 
storage length in the FIT. (GET does not overwrite space following the 
working storage area with excess data.) 

Keyed-File Interface 11-63 



GET Call 

If the record being read is longer than the working storage length, GET 
returns a nonfatal error ($ERROR_STATUS value AA2010). 

• A successful GET call sets the record length value in the FIT to the 
actual length of the record. The record length value is not defined for 
an unsuccessful GET call. 

• File positioning by a GET call differs depending on the file organization 
and the selected key: 

For a direct access file with its primary key selected, the following 
statements are true: 

- GET does not change the file position used by GETN calls. 

- The only file position GET returns is end-of-record (16). 

- The only calls that can reposition the file are REWND and GETN. 
(STARTM is not valid.) 

- The major_key_length (mlk) and $KEY_RELATION values are not 
used. 

A GET call for a direct access file with an alternate key selected is 
processed the same as a call to an indexed-sequential file with an 
alternate key selected. 

• For an alternate key or an indexed-sequential file, the following 
statements are true: 

- At completion of a successful GET call, the file is positioned to read 
the record with the next highest key value. (The file position 
returned can be end-of-record [16] or, for an alternate key, 
end-of-key-list [8]). 

- An unsuccessful GET call returns a file position of 64 
(end-of-information) in these cases: 

The specified $KEY_RELATION was GREATER_THAN_OR_ 
EQUAL and the key value was greater than all key values in 
the file. 

The specified $KEY_RELATION was GREATER_ THAN and the 
key value is the greatest in the file. 

• A GET call that requests an unavailable lock leaves the file positioned 
to read the requested record. 

• The program should call !FETCH to return the file position after a 
successful GET call. 

When the file position value returned is 64 (end-of-information), the file 
is positioned at the end of the file and no GETN calls should be issued 
before file repositioning. 

• GET can return the primary-key value of a record it found using an 
alternate-key value. If the $PRIMARY_KEY_ADDRESS value in the 
FIT is nonzero, GET returns the primary-key value in the $PRIMARY_ 
KEY_ADDRESS location. 

11-64 FORTRAN Version 1 Language Definition Usage Revision H 



Examples 

Revision H 

This sequence of calls reads a record by major key value. 

C Gets the first record whose key value begins with AB. 
key1 = 'ABCD' 
CALL GET (fit, record1, key1, 0, 2, 0, errexit) 

C Gets the current file position and calls subroutine NOREC 
C if no key value in the file begins with AB. (The file 
C would be left positioned at its end-of-information.) 

IF (!FETCH (fit, '$FILE_POSITION') .EQ. 64) THEN 
CALL norec 

ELSE 

C Fetches the record length of record read and passes the 
C record and its length to subroutine PROCDTA. 

CALL !FETCH (fit, 'RL'. recleng) 
CALL procdta (record1, recleng) 

ENDIF 

GET Call 

Keyed-File Interface 11-65 



GETN Call 

GETN Call 

Purpose Reads the next record at the current file position. 

Format CALL GETN (fit, wsa,ka,ex) 

Parameters (1) fit 

Variable containing the FIT pointer returned by the call that created the 
FIT. 

(2) wsa 

Working storage area (location to which the record data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. If 
they are not, your program could execute incorrectly after being compiled 
with high optimization. 

(3) ka 

Variable in which GETN returns the key value of the record. 

For a variable-length alternate key, the key value is written to the 
variable followed by padding characters up to the maximum key length. 
The padding character used is the lowest character in the key-delimiter 
set. 

For example, if the variable is 80 bytes long, the key value is 12 bytes, 
and the maximum key length is 31 bytes, the call first writes the 12-byte 
key value and then 19 padding characters. The GETN call does not write 
to the last 49 bytes. 

(4) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal: AA2010 -- record_longer _than_ wsa 
AA2035 -- primary _key_ locked 
AA2040 -- key _deadlock 
AA2045 -- key_self_deadlock 
AA2055 -- key_ timeout 
AA2075 -- key_found_lock_no_wait 
AA2080 -- key _already _locked 
AA2115 -- too_many_keylocks 
AA2120 -- no_exclusive_if_read_only 
AA2615 -- non_ embedded_ key_ not_ given 
AA2620 -- wsa_not_found 
AA2635 -- cant_position_beyond_bound 
AA2640 -- major _key_ too_ long 
AA2650 -- not_enough_permission 
AA2665 -- cant_da_getn_after _put 
AA2715 -- no_ auto_ unloc_pc 
AA2790 -- da_getn_lost_file_lock 
AA2805 -- key_ expired_ lock_ exists 
AA2880 -- cant_da_getn_if_shared 

11-66 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

GETN Call 

• A GETN call requires at least read access to the file. (Otherwise, it 
returns a nonfatal error, $ERROR_STATUS value AA2650). To update 
file statistics, it also requires modify access. 

• A GETN call requires that a working storage area be specified on the 
call or in the FIT. If no working storage area is specified, it returns a 
nonfatal error ($ERROR_STATUS value AA2620). 

• If the $GET_AND_LOCK value in the FIT is -1 (YES), GETN requests 
a lock on the primary-key value of the record to be read. The lock 
request uses the $AUTOMATIC_UNLOCK, $LOCK_INTENT, and 
$WAIT_FOR_LOCK values in the FIT. To read about locks, see 
Keyed-File Sharing earlier in this section. 

If the GETN call fails for any reason, it terminates without a lock on 
the primary-key value. 

• The GETN call reads data from the record until it reaches the end of 
the record or it has read the number of bytes specified as the 
working-storage length in the FIT. (GETN cannot copy more data than 
the working storage area length.) 

If the record being read is longer than the working-storage length, 
GETN returns a nonfatal error ($ERROR_STATUS value AA2010). 

• A successful GETN call sets the record-length value in the FIT to the 
actual length of the record. The record-length value is not defined for 
an unsuccessful GETN call. 

• When an alternate key is selected, GETN calls return records in the 
key-value order provided by the alternate index. 

When the primary key of an indexed-sequential file is selected, GETN 
returns records in the key-value order provided by the primary index. 

However, no index exists for the primary key of a direct access file so 
GETN does not return records in key-value order. It returns records in 
physical order by their location in the file. 

A GETN call that requests an unavailable lock leaves the file 
positioned to read the requested record. 

• When a GETN call reads a record from the file, it returns a $FILE_ 
POSITION value of 16 (or 8 if an alternate key is selected). 

After the GETN call that reads the last record in the file, the next 
GETN call returns a $FILE_POSITION of 64 (end-of-information). It 
returns an $ERROR_STATUS of 0 (no error), but no data or key 
values. 

A GETN call issued after a $FILE_POSITION value of 64 is returned, 
and before the file is repositioned, is an attempt to read beyond the 
end-of-information. The call returns a nonfatal error ($ERROR_STATUS 
value AA2635). 

Keyed-File Interface 11-67 



GETN Call 

Examples 

• The key value returned to the ka location is the value of the currently 
selected key. If the selected key is an alternate key, the value returned 
is the alternate-key value. 

The length of the value returned is the key _length specified when the 
key was created. A variable-length alternate-key value is padded to its 
right with delimiter characters up to the maximum length for the key. 
(The padding character is the lowest character in the key-delimiter set.) 

• GETN can also return the primary-key value when an alternate key is 
selected. If the $PRIMARY_ KEY_ADDRESS value in the FIT is 
nonzero, GETN returns the primary-key value in the $PRIMARY_ 
KEY_ADDRESS location. 

This sequence of calls reads all records whose alternate key value is ABC 
into a very long character variable named WSA. 

CALL STOREF (fit, '$KEY_NAME', 'ALT1') 
key = 'ABC' 
n = 1 
CALL GET (fit, wsa(n), key, 0, 0, errexit) 
IF (IFETCH(fit, '$FILE_POSITION') .EQ. 8) THEN 

CONTINUE 
ELSEIF (IFETCH(fit, '$FILE_POSITION') .EQ. 16) THEN 

10 n = n + IFETCH(f1t,'$RECORD_LENGTH') 
CALL GETN (fit, wsa(n), 0, 0) 
IF (IFETCH(f1t, '$FILE_POSITION') .EQ. 16) GO TO 10 

ELSE 
CALL nodata 

ENDIF 
n = n + IFETCH(f1t, 'RL') 
CALL procdta (wsa, n) 

11-68 FORTRAN Version 1 Language Definition Usage Revision H 



!FETCH Call 

IFETCH Call 

Purpose Retrieves a FIT field value. 

NOTE 

IFETCH can be called as a function or as a subroutine. 

Format !FETCH (fit, keyword) 

CALL !FETCH (fit, keyword, variable) 

Parameters (1) fit 

Remarks 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) keyword 

Character expression specifying the FIT value to be fetched (such as, 
'$FILE_POSITION'). 

The keyword can be specified using uppercase and/or lowercase letters. 
(The keywords are listed in the FIT value descriptions later in this 
section.) 

(3) variable 

Variable to receive the FIT value. 

• Before a FIT is used to open a file, the only values that !FETCH can 
fetch from the FIT are those that have been stored in the FIT by the 
FILEIS or FILEDA call that created the FIT or by a STOREF call. 

• While the file is open, IFETCH can fetch any value from the FIT. 
However, after the file is closed, !FETCH can only fetch certain values. 
The following is a list of the values that it can fetch. 

$AUTOMATIC_ UNLOCK 
DX (data exit routine) 
$ERROR_ STATUS 
$ERROR_ EXIT_ PROCEDURE 
FNF (fatal/nonfatal flag) 
$FILE_ ORGANIZATION 
$FILE_POSITION 
$GET_AND_LOCK 
$KEY_ADDRESS 
$KEY_POSITION 
$KEY_ RELATION 
$LAST_ OPERATION 

$LOCAL_FILE_NAME 
$LOCK_INTENT 
$MAJOR_ KEY_ LENGTH 
OC (opened/closed flag) 
ON (old/new flag) 
$PRIMARY_KEY_ADDRESS 
RKW (relative key word) 
RL (record length) 
$WAIT_ FOR_ LOCK 
$WORKING_STORAGE_ADDRESS 
$WORKING_STORAGE_LENGTH 

• IFETCH always returns an 8-byte value. In most cases, the value is an 
integer number, although it may be a boolean value or the first 8 
characters of a name. The value returned for each keyword is described 
later in the individual description of the FIT value. 

• IFETCH returns a boolean FALSE (or NO) value as the integer O; it 
returns a boolean TRUE (or YES) value as the integer -1. 

Keyed-File Interface 11-69 



!FETCH Call 

Examples 

• IFETCH returns a name value as the first 8 characters of the name, 
left-justified, with blank padding. (It does not return the full 31 
characters of the SCL name.) The name is returned using uppercase 
letters, even if the program specified the name using lowercase letters. 

• Fetching an address, that is, fetching the $KEY_ADDRESS, 
$WORKING_STORAGE_ADDRESS, or $PRIMARY_KEY_ADDRESS 
value, is not recommended because the program cannot use the value 
returned. 

This call fetches the error status value. If no error-exit procedure has been 
specified, the program should check for a nonzero error status value after 
each keyed-file interface call. 

IF (!FETCH (fit,'$ERROR_STATUS') .NE. 0) CALL errprog 

11-70 FORTRAN Version 1 Language Definition Usage Revision H 



KEYLIST Call 

KEYLIST Call 

Purpose Fetches primary-key values from the alternate index, beginning at the 
current position. 

NOTE 

You must specify values for all KEYLIST parameters. KEYLIST does not 
use FIT values as default values. 

Format CALL KEYLIST (fit, high_key, major _high_key, high_key _relation, 
working_storage_area, working_storage_length, end_of_primary _ 
key _list, transferred_byte_count, transferred_key _count, filpos, 
condition_ code) 

Parameters (1) fit 

Revision H 

Name of the variable containing the file information table (FIT) pointer. 

(2) high_key 

Alternate-key value at which the range ends. The value must be valid for 
the key type (integer for an integer key, character for a collated or 
uncollated key). 

(3) major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the key value. 

(4) high_key _relation 

Indicates when KEYLIST is to stop fetching key values. 

'GREATER_KEY' or 'GK' or 'GT' 

Stop at the lowest alternate-key value greater than the high_key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Stop at the lowest alternate-key value greater than or equal to the 
high_key value. 

'HIGHEST_KEY' or 'HK' 

Stop at the end of the alternate index. (The high_key and major_ 
high_key values are ignored when 'HIGHEST_KEY' is specified.) 

(5) working_ storage_ area 

Variable in which the primary-key values are returned. 

(6) working_ storage _length 

Number of bytes in the working storage area. 

Keyed-File Interface 11-71 



I 

KEYLIST Call 

(7) end_of_primary _key _list 

Integer variable in which KEYLIST returns a value indicating whether the 
working storage area was long enough to contain all values in the 
requested range. 

0 KEYLIST could not return all values in the requested range. 

1 KEYLIST returned all values in the requested range. 

(8) transferred_ byte_ count 

Integer variable which receives the total length, in bytes, of the 
primary-key values KEYLIST returned in the working storage area. 

(9) transferred_key _count 

Integer variable which receives the number of primary-key values 
KEYLIST fetched. 

(10) filpos 

Integer variable in which the file position at completion of the KEYLIST 
call is returned. 

Value Meaning 

8 The file is positioned at the end of a key list (positioned to fetch 
the first value in the next list). 

16 The file is positioned at the end of a record, but not at the end 
of a key list (positioned to fetch the next value in the same key 
list). 

64 The file is positioned at the end of the alternate index. (It cannot 
fetch any more values at this position.) 

(11) condition_code 

Integer variable in which the error status value is returned. A zero value 
returned indicates successful completion. 

Some nonfatal-error values that could be returned are: 

AA2650 
You must have at least read permission to the file. 

AA2755 
The high end of the range must be above the current position of the 
file. 

AA2760 
The KEYLIST call is valid only if an alternate key is currently 
selected. 

For information on decyphering the condition code, see the ERROR_ 
STATUS description later in this section. 

11-72 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

KEYLIST Call 

• The program must select an alternate key before issuing a KEYLIST 
call. 

• The high_key parameter value specifies the upper bound of the range 
of keys to be returned. The high_key _relation parameter indicates 
whether the primary-key values for the high_key value itself are 
returned. 

For example, suppose the high_key value is SMITH. 

If you specify 'GREATER_KEY' as the high_key_relation value, 
KEYLIST returns the primary-key values for SMITH. 

If you specify 'EQUAL_KEY' as the high_key_relation, KEYLIST 
does not return the primary-key values for SMITH. (It stops fetching 
values at the SMITH alternate-key value.) 

• A major key consists of the leftmost bytes of a key. For a fixed-length 
key, a nonzero major _high_key parameter specifies the number of 
bytes of the high_key value KEYLIST to use as a major key. A major 
key search compares only the leftmost bytes of the key values on the 
call and in the index. 

For example, suppose the high_ key value is ABCDEF and the major_ 
high_key parameter value is 2. The major key used is AB. KEYLIST 
returns primary-key values until it finds an alternate-key value 
beginning with the characters AB or higher. (Whether it returns the 
primary-key values for the AB value depends on the high_key_relation 
parameter value.) 

(Major _key use is invalid when the primary key of a direct access file 
is selected.) 

• The KEYLIST call could return the same primary-key value more than 
once if the primary-key value is associated with more than one 
alternate-key value. This is possible if the repeating-groups attribute is 
defined for the alternate key. 

• KEYLIST returns primary-key values until it reaches the end of the 
specified range or until it cannot fit another value into the working 
storage area. By checking the end_of_primary_key_list value, the 
program can determine if all requested values were returned and, if 
not, call KEYLIST again to fetch the rest of the values. 

• KEYLIST repositions the file as it fetches key values. At completion of 
the call, the file is positioned at the end of the last key value returned 
and positioned to continue fetching values at that point if KEYLIST is 
called again. 

Revision H Keyed-File Interface 11-73 



KEYLIST Call 

Examples These calls fetch all primary-key values in the alternate index. The 
STOREF call selects alternate key ALT_KEY_l and positions the file at 
the beginning of the alternate index. The subroutine KEYPROC processes 
the key values fetched. The KEYLIST call is repeated until all 
primary-key values are fetched. 

CALL STOREF (f1t, '$KEY_NAME', 'ALT_KEY_1') 

10 CALL KEYLIST(f1t, 0, 0, 'HIGHEST_KEY', wsa, LEN(wsa), 
+ keyend, length, keycnt, filpos, ccode) 

IF (ccode .NE. 0) THEN 
CALL errprog 

ELSE 
CALL keyproc(wsa, LEN(wsa), length, keycnt) 

END IF 

IF (keyend .EQ. 0) GO TO 10 

The STARTM call positions the alternate index at alternate-key value 
ABCD. The KEYLIST call then fetches the primary-key values for that 
alternate-key value. 

keyval='ABCD' 
CALL STARTM(fit, keyval) 
CALL KEYLIST(fit, keyval, 0, 'GT', bigaray, LEN(b1garay), 

+ keyend, length, keycnt, filpos, ccode) 
IF (ccode .NE. 0) CALL errprog 

11-74 FORTRAN Version 1 Language Definition Usage Revision H 



KLCOUNT Call 

KLCOUNT Call 

Purpose Counts the number of primary-key values associated with the specified 
range of alternate-key values in the alternate index. 

NOTE 

You must specify values for all KLCOUNT parameters. KLCOUNT does 
not use FIT values. 

Format CALL KLCOUNT (fit, low _key, major _low _key, low _key _relation, 
high_key, major _high_key, high_key _relation, list_count_limit, 
list_count, condition_code) 

Parameters (1) fit 

Revision H 

Name of the variable containing the file information table (FIT) pointer. 

(2) low _key 

Alternate-key value at which the range begins. The value must be valid 
for the key type (integer •for an integer key, characters for a collated or 
uncollated key). 

(3) major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major _key search. The specified value is the 
number of leftmost bytes of the low_key value to be used as the major 
key. A zero value indicates that the full low_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the key value. 

(4) low _key _relation 

Indicates where KLCOUNT is to start counting primary-key values. 

'GREATER_KEY' or 'GK' or 'GT' 

Start at the lowest alternate-key value greater than the low _key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Start at the lowest alternate-key greater than or equal to the low-key 
value. 

'LOWEST_KEY' or 'LK' 

Start counting at the beginning of the alternate index. (The low_key 
and major_low_key values are ignored when 'LOWEST_KEY' is 
specified.) 

(5) high_key 

Alternate-key value at which the range ends. The value must be valid for 
the key type (integer for an integer key, character for a collated or 
uncollated key). 

Keyed-File Interface 11-75 



KLCOUNT Call 

(6) major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the key value. 

(7) high_key _relation 

Indicates when KLCOUNT is to stop counting primary-key values. 

'GREATER_KEY' or 'GK' or 'GT' 

Stop at the lowest alternate-key value greater than the high-key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Stop at the lowest alternate-key value greater than or equal to the 
high-key value. 

'HIGHEST_KEY' or 'HK' 

Stop at the end of the alternate index. (The high_ key and major_ 
high_key values are ignored when 'HIGHEST_KEY' is specified.) 

(8) list_count_limit 

Maximum number of primary-key values counted. If you specify zero for 
the parameter, no limit is set. 

(9) list_count 

Integer variable in which the primary-key value count is returned. 
(10) condition_code 

Integer variable in which the error status value is returned. A zero value 
returned indicates successful completion. 

To determine the meaning of a nonzero condition code, see the Diagnostics 
Messages for NOSNE manual. 

Some of the nonfatal-error condition codes that could be returned are: 

AA2650 
You must have at least read permission to the file. 

AA2750 
The high end of the range must be above the low end. 

AA2760 
The KLCOUNT call is valid only if an alternate key is currently 
selected. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this section. 

11-76 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

KLCOUNT Call 

• The program must select an alternate key before issuing a KLCOUNT 
call. 

• The low _key and high_key parameter values specify the lower and 
upper bounds, respectively, of the range to be counted. 

• The low _key _relation and high_key _relation parameters indicate 
whether the primary-key values for the low _key and high_key values, 
respectively, are included in the count. 

For example, suppose the low_key value is JONES and the high_key 
value is SMITH. 

If you specify 'GREATER_KEY' as the low_key_relation value, 
KLCOUNT does not count the primary-key values for JONES. 

- If you specify 'EQUAL_KEY' as the low _key _relation value, 
KLCOUNT counts the primary-key values for JONES. 

If you specify 'GREATER_KEY' as the high_key_relation value, 
KLCOUNT counts the primary-key values for SMITH. 

- If you specify 'EQUAL_KEY' as the low_key_relation value, 
KLCOUNT does not count the primary-key values for SMITH. 

• A major key consists of the leftmost bytes of a key. For a fixed-length 
key, a nonzero major _high_key or the major _low_key parameter 
specifies the number of bytes of the high_key or low_key value, 
respectively, that KLCOUNT is to use as a major key. A major key 
serach compares only the leftmost bytes of the key values on the call 
and in the index. 

For example, suppose the low_key value is ABCDEF. If the major_ 
low _key parameter value is 2, the major key used is AB. KLCOUNT 
would then search for the lowest alternate-key value whose first two 
characters are greater than or equal to AB. 

• The KLCOUNT call could count the same primary-key value more than 
once if the primary-key value is associated with more than one 
alternate-key value. This is possible if the repeating-groups attribute is 
defined for the alternate key. 

• KLCOUNT returns the value 0 as the list count if it cannot find either 
the low_key or high_key values in the alternate index. 

For example, if the low _key and high_key values are both A and A is 
not an alternate-key value in the index, KLCOUNT returns 0 as the 
list count. 

• The list_count_limit parameter can minimize the processing required 
for the call. 

For example, if you call KLCOUNT to determine whether the number 
of primary-key values is 0, 1, or more than 1, you should set the list_ 
count_limit to 2. 

Keyed-File Interface 11-77 



KLCOUNT Call 

Examples These calls return the number of primary-key values for alternate key 
ALT_KEY_l in the integer variable KEYCNT. The completion code is 
returned in the integer variable CCODE. 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 
CALL KLCOUNT(fit, 0, 0, 'LOWEST_KEY', 

+ 0, 0, 'HIGHEST_KEY', 0, keycnt, ccode) 
IF (ccode .NE. 0) CALL errprog 

These calls return the number of primary-key values associated with 
alternate-key values that begin with 'C' (the major-key value). 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 
CALL KLCOUNT(fit, 'C', 1, 'EQ', 'C', 1, 'GT', 0, 

+ keycnt, ccode) 
IF ccode .NE. 0 CALL errprog 

11-78 FORTRAN Version 1 Language Definition Usage Revision H 



KLSPACE Call 

KLSPACE Call 

Purpose Returns the number of alternate-index blocks that contain the specified 
range of alternate-key values. 

NOTE 

You must specify values for all KLSPACE parameters. KLSPACE does not 
use FIT values as default values. 

Format CALL KLSPACE (fit, low _key, major _low _key, low _key _relation, 
high_key, major _high_key, high_key _relation, block_ count, block_ 
space, condition_ code) 

Parameters (1) fit 

Revision H 

Name of the variable containing the file information table (FIT) pointer. 

(2) low _key 

Alternate-key value at which the range begins. The value must be valid 
for the key type (integer for an integer key, characters for a collated or 
uncollated key). 

(3) major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the low_key value to be used as the major 
key. A zero value indicates that the full low _key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the key value. 

(4) low _key _relation 

Indicates whether the low_key value is included in the range. 

'GREATER_KEY' or 'GK' or 'GT' 

Exclude the low_key value from the range. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Include the low_key value in the range. 

'LOWEST_KEY' or 'LK' 

The range starts at the beginning of the alternate index. (The low _key 
and major_low_key values are ignored when 'LOWEST_KEY' is 
specified.) 

(5) high_key 

Alternate-key value at which the range ends. The value must be valid for 
the key type (integer for an integer key, character for a collated or 
uncollated key). 

Keyed-File Interface 11-79 



KLSPACE Call 

(6) major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the key value. 

(7) high_key _relation 

Indicates where the range ends in relation to the highest value in the 
range. 

'GREATER_KEY' or 'GK' or 'GT' 

Include the high_key value in the range.• 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Exclude the high_key value from the range. 

'HIGHEST_KEY' or 'HK' or 'HIGHEST_KEY' 

The range ends at the end of the alternate index. (The high_key and 
major_high_key values are ignored when 'HIGHEST_KEY' is 
specified.) 

(8) block_count 

Integer variable in which the block count is returned. 

(9) block_ space 

Integer var~able in which the combined length of the blocks (in bytes) is 
returned (the block count multiplied by the block size). 

(10) condition_ code 

Integer variable in which the error status value is returned. A zero value 
returned indicates successful completion. 

You can look up the meaning of any nonzero condition code in the 
Diagnostic Messages manual. 

Some of the nonfatal-error codes that could be returned are: 

AA2650 
You must have at least read permission to the file. 

AA2750 
The high end of the range must be above the low end. 

AA2760 
The KLSPACE call is valid only if an alternate key is currently 
selected. 

For information on decyphering the $ERROR_STATUS value, see the 
$ERROR_STATUS description later in this section. 

11-80 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Examples 

Revision H 

KLSPACE Call 

• An alternate key must be the currently selected key when KLSPACE is 
called .. If the primary key is currently selected, KLSPACE returns the 
condition code AA2760. 

• The low _key, major _low _key, low _key _relation, high_ key, major_ 
high_key, and high_key_relation parameters specify the range of 
alternate-key values. Their use on a KLSPACE call is the same as on a 
KLCOUNT call. For details, see the Remarks in the KLCOUNT call 
description. 

• A KLSPACE call does not actually find the specified alternate-key 
values in the alternate index. Rather, it searches the index to 
determine the number of blocks at the lowest level that would contain 
the specified range of alternate-key values. 

(An alternate index is an indexed-sequential structure with one or more 
index levels. The lowest level of blocks actually contain the 
alternate-key values and their corresponding primary-key values.) 

• KLSPACE returns a value even if the specified low _key and high_key 
values are not in the alternate index. It returns the number of blocks 
that would contain the range if the values existed in the index. 

• An accurate primary-key value count (such as that returned by 
KLCOUNT) cannot be derived from the block count that KLSPACE 
returns. The block counts for ranges containing the same number of 
primary-key values could differ because the ranges can span blocks. 

For example, suppose a range contains only one alternate-key value. If 
the record for the alternate-key value spans two blocks, the block count 
returned is 2, not 1. 

• Because a KLSPACE call is faster than a KLCOUNT call, it can be 
used for a quick comparison of the relative lengths of primary-key lists 
(see the KLSPACE Example). 

• The block_length value that KLSPACE returns can be used when 
comparing primary-key lists for files with different block sizes. (Larger 
blocks require longer searches.) 

Assume that a program is to find a set of records in response to this 
query: 

Find the Jones on Madison Avenue with more than two dependents. 

Assume that Jones is a value for alternate key ALT_KEY_l and Madison 
Avenue is a value for alternate key ALT_KEY_2. The number of 
dependents is not an alternate key so the program must read the data 
records to find that information. 

The program could read the set of records for either Jones or Madison 
Avenue. To minimize the number of records read, the program first issues 
KLSPACE calls to compare the two primary-key value lists. 

The following call sequence gets the block count values,. compares them, 
and then stores the alternate-key name and value to be used. 

Keyed-File Interface 11-81 



KLSPACE Call 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_1') 

CALL KLSPACE(fit, 'Jones', 0, 'EQ', 'Jones', 
+ 0, 'GT', blkcnt1, blklen, ccode) 

IF ccode .NE. O CALL errprog 

CALL STOREF(fit, '$KEY_NAME', 'ALT_KEY_2') 

CALL KLSPACE(f1t, 'Madison Avenue'. 0, 'EQ'' 
+ 'Madison Avenue', 0, 'GT', blkcnt2, blklen, ccode) 

IF ccode .NE. O CALL errprog 

IF (blkcnt1 .GE. blkcnt2) THEN 
keyval='Mad1son Avenue' 

ELSE 
keyval='Jones' 
CALL STOREF(f1t, '$KEY_NAME', 'ALT_KEY_1') 

END IF 

11-82 FORTRAN Version 1 Language Definition Usage Revision H 



LOCKF Call 

LOCKF Call 

Purpose Requests a file lock. 

Format CALL LOCKF (fit, wfl, li) 

Parameters (1) fit 

Revision H 

Variable containing the FIT pointer. It specifies the instance of open to be 
locked. 

(2) wfl 

Specifies whether the task waits if the lock is not immediately available. 

'YES' 

Task waits until either the lock is available or a time period (default 
value, 60 seconds) has passed. When the time period has passed, 
LOCKF returns the nonfatal $ERROR_STATUS value AA2055. 

'NO' 

LOCKF terminates, returning nonfatal $ERROR_STATUS value 
AA2075, indicating that the lock is unavailable. 

If 0 is specified as the wfl value on the call, the FIT value $WAIT_FOR_ 
LOCK is used. The default $WAIT_FOR_LOCK value is YES. 

(The task does not wait if a deadlock exists; a deadlock with another task 
returns status AA2040; a deadlock within the same task returns status 
AA2045.) 

(3) li 

Lock intent. The string can be specified using uppercase and/or lowercase 
letters. For more information, see Lock Intents earlier in this section. 

'Exclusive_Access' or 'EA' 

Exclusive_Access 

'Preserve_Access_and_ Content' or 'PAC' 

Preserve_Access_and_ Content 

'Preserve_ Content' or 'PC' 

Preserve_ Content 

If the Ii value on the call is 0, the FIT value $LOCK_INTENT is used. 
Its default value is Preserve_Access_and_Content. 

$ERROR_STATUS Nonfatal: AA2055 -- key_timeout 

Fatal: AA3435 -- lock_file_crowded 
AA6001 -- bad_resolve_time_limit 

Keyed-File Interface 11-83 



LOCKF Call 

Remarks 

Examples 

• The lock applies to the current nested file only (as specified by the 
$NESTED_FILE_NAME value). 

• You can change the maximum waiting period for the lock (used if wfl 
is YES). The default value is 60 seconds. 

To change the waiting period, create an SCL integer variable named 
AAV$RESOLVE_ TIME_LIMIT and assign it the waiting period value in 
seconds (any integer greater than 1). (The timeout period should not 
exceed the LOCK_EXPIRATION _TIME attribute value.) 

For example, this call executes an SCL command that sets the waiting 
period at 45 seconds. 

CALL SCLCMD ('create_variable, name=AAV$RESOLVE_TIME_LIMIT, 
+ kind=integer, value=45') 

Be aware of the scope of the AAV$RESOLVE_ TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks in the job, specify SCOPE=JOB on the CREATE_ VARIABLE 
command. 

• Assuming the LOCK_EXPIRATION _TIME file attribute is nonzero, the 
lock could expire. LOCKF returns the nonfatal $ERROR_STATUS value 
AA2805 if the expired lock prevents granting of the requested lock. To 
read about lock expiration, see Lock Expiration and Clearing earlier in 
this section. 

• File locks cannot be automatically unlocked. To clear a single file lock, 
call UNLOCKF. To clear all file locks for an instance of open, call 
CLOSEM or UNLOCKK with the 'ALL' option. 

This call requests a file lock. Its wfl and Ii values are supplied by the 
$WAIT_FOR_LOCK and $LOCK_INTENT FIT values (default values YES 
and Preserve_Access_ Content, respectively). 

CALL LOCKF (fit) 

11-84 FORTRAN Version 1 Language Definition Usage Revision H 



LOCKK Call 

LOCKK Call 

Purpose Requests a lock on a primary-key value. 

Format CALL LOCKK (fit, ka, wfl, au, Ii) 

Parameters (1) fit 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) ka 

Key area (location containing the primary-key value to be locked). 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

(3) wfl 

Indicates whether the task waits if another task has a conflicting lock on 
the primary-key value and no deadlock exists. 

'YES' 

Task waits until either the lock is available or the wait time period 
(default value, 60 seconds) has passed. When the time period has 
passed, LOCKK returns nonfatal $ERROR_STATUS value AA2055. 

'NO' 

LOCKK terminates, returning nonfatal $ERROR_STATUS value 
AA2075, indicating that the lock is unavailable. 

If 0 is specified as the wfl value on the call, the FIT value $WAIT_FOR_ 
LOCK is used. The default $WAIT_FOR_LOCK value is YES. 

(4) au 

Indicates whether automatic unlock is used for this lock. 

'YES' 

Automatic unlock is used. (The lock is cleared when the task issues a 
request for another record or at completion of a write or delete request 
specifying the locked key value.) 

'NO' 

Automatic unlock is not used. 

If the au value on the call is 0, the FIT value $AUTOMATIC_ UNLOCK is 
used. Its default value is YES. 

NOTE 

Automatic unlock cannot be used with Preserve_ Content lock intent. 

Keyed-File Interface 11-85 



LOCKK Call 

Remarks 

(5) li 

Lock intent. The string can be specified using uppercase and/or lowercase 
letters. For more information, see Lock Intents earlier in this section. 

'Exclusive_Access' or 'EA' 

Exclusi ve_Access 

'Preserve_Access_and_Content' or 'PAC' 

Preserve_Access_and_ Content 

'Preserve_ Content' or 'PC' 

Preserve_ Content 

If the Ii value on the call is 0, the FIT value $LOCK_INTENT is used. 
Its default value is Preserve_Access_and_Content. 

$ERROR_STATUS Nonfatal: AA2035 -- primary_key_locked 
AA2040 -- key _deadlock 
AA2045 -- key_self_deadlock 
AA2055 -- key_ timeout 

Fatal: 

AA2075 -- key _found_ lock_ no_ wait 
AA2080 -- key_already_locked 
AA2115 -- too_many_keylocks 
AA2120 -- no_exclusive_if_read_only 
AA2715 -- no_auto_ unloc_pc 
AA2805 -- key _expired_lock_exists 

AA3435 -- lock_file_crowded 
AA6001 -- bad_resolve_ time_limit 

• LOCKK only locks primary-key values. Even if an alternate key is 
currently selected, the key value in the specified key area is assumed 
to be a primary-key value. 

• A LOCKK call can reserve a presently unused primary-key value for 
subsequent use by the task. 

• A LOCKK call does not verify that the key value is valid, nor does it 
check whether the key value is already in the file. The key value is 
verified by a subsequent call that uses the key value. 

• Assuming the LOCK_ EXPIRATION_ TIME file attribute is nonzero, the 
lock could expire. LOCKK returns nonfatal $ERROR_STATUS value 
AA2805 if the expired lock prevents granting of the requested lock. To 
read about lock expiration, see Lock Expiration and Clearing earlier in 
this section. 

• You can change the maximum waiting period for the lock (used if wfl 
is YES). (The default value is 60 seconds.) 

To change the waiting period, create an SCL integer variable named 
AAV$RESOLVE_ TIME_LIMIT and assign it the waiting period value in 
seconds (any positive integer). 

For example, this call executes an SCL command that sets the waiting 
period at 45 seconds. 

11-86 FORTRAN Version 1 Language Definition Usage Revision H 



Examples 

Revision H 

LOCKK Call 

CALL SCLCMD ('create_variable, name=AAV$RESOLVE_TIME_LIMIT, 
+ kind=integer value=45') 

Be aware of the scope of the AAV$RESOLVE_ TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks in the job, specify SCOPE =JOB on the CREATE_ VARIABLE 
command. 

• LOCKK returns a nonfatal error if the requested lock could cause a 
deadlock. A potential deadlock can be detected only if the wfl value for 
the call is YES. 

If the deadlock is with another task, it returns error AA2040. If the 
deadlock is a self-deadlock (the requesting task already has the 
requested lock), it returns error AA2045. 

To clear the deadlock situation, the task should clear its locks. It can 
then request the locks again. 

• Besides the automatic unlock, a task can unlock a key value by calling 
UNLOCKK or by closing the instance of open. 

This call requests a lock on a key value. Its ka, wfl, au, and Ii values are 
supplied by these FIT values, respectively: $KEY_ADDRESS (no default), 
$WAIT_FOR_LOCK (default YES), $AUTOMATIC_ UNLOCK (default 
YES), and $LOCK_INTENT (default Preserve_Access_and_Content). 

CALL LOCKK(fit) 

This call requests a lock on the key value in variable KEYL The next call 
writes the record. The lock is automatically unlocked at completion of the 
write request. 

CALL LOCKK(fit, key1, 'YES', 'YES', 'Exclusive_Access') 
CALL PUTREP(fit, array1, 15, key1) 

Keyed-File Interface 11·87 



OPENM Call 

OPENM Call 

Purpose Opens a keyed file. 

Format CALL OPENM (fit,pd,of) 

Parameters (1) fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS call. 

(2) pd 

Type of processing: 

'INPUT' 

Open file for reading only (file statistics are not kept). 

'OUTPUT' 

Open file for writing only. 

'I-0' or 'IO' 

Open file for reading and writing. 

'NEW' 

A new file is being created; sets the $ACCESS_MODE (PD) FIT value 
to 'OUTPUT' and the old/new (ON) FIT value to 'NEW'. 

If the call specifies 0 as the pd parameter value, the $ACCESS_MODE 
value in the FIT is used. 

(3) of 

File positioning when the file is opened: 

'R' 

Rewind the file (position the file to read the record with the lowest key 
value). This is the default if the $OPEN _POSITION value in the FIT 
is zero. 

'E' 

Position the file after the record with the highest key value. (A GETN 
call at this position would return end-of-information (EOI) status.) 

If the call specifies 0 as the of parameter value, the $0PEN_POSITION 
value in the FIT is used. 

• The OPENM call to open a keyed file must precede all other keyed-file 
interface calls except FILEDA, FILEIS, IFETCH, and STOREF calls. 

• When opening an existing file, the old/new (ON) value in the FIT or on 
the call must be 'OLD'. If the ON value is 'NEW', OPENM returns a 
fatal error ($ERROR_STATUS value AA3030). 

Similarly, when opening a new file, the old/new (ON) value in the FIT 
or on the call must be 'NEW'. If the ON value is 'OLD', OPENM 
returns a fatal error ($ERROR_STATUS value AA3040). 

• The access modes requested when the file is opened determine the 
processing allowed on the file. For example, if you specify 'INPUT' on 
the OPENM call, you cannot call PUT to write· a record to the file. 

11-88 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

OPENM Call 

• An existing file must be attached with the appropriate usage mode set 
for the type of processing (read permission for 'INPUT', write 
permissions for 'OUTPUT', or read and write permissions for 'I-0'). 

• If zero is specified as the pd parameter on the call, the $ACCESS_ 
MODE value in the FIT is used. If the program has not stored an 
$ACCESS_MODE value in the FIT, the file is opened for read access 
only ('INPUT'). 

• Multiple instances of open are allowed for a file. Each instance of open 
must have its own FIT. So before the program attempts to open an 
already open file, it must call FILEIS or FILEDA to create another 
FIT. 

• An OPENM call performs these steps: 

1. OPENM checks the old/new (ON) flag in the FIT to determine if the 
file is a new file or an existing file. 

a. If the file is a new file, OPENM creates the file in the $LOCAL 
catalog using the file name specified by the $LOCAL_FILE_ 
NAME value in the FIT. 

b. If the file is an existing file, OPENM searches for the file in the 
$LOCAL catalog using the file name specified by the $LOCAL_ 
FILE_N AME in the FIT. 

2. OPENM initializes file attribute values in the FIT as follows: 

a. If the file is an existing file, OPENM verifies attribute values 
stored in the FIT against the corresponding attribute values 
preserved with the file. If the program has not stored a FIT 
value for a preserved attribute, OPENM copies the attribute 
value preserved with the file to the FIT. 

b. If SET_FILE_ATTRIBUTES commands specified one or more 
attribute values for the file before the program began, OPENM 
overwrites the corresponding values in the FIT. (Only temporary 
attribute values can be specified for an existing file.) 

3. OPENM checks that the FIT contains appropriate values for the 
keyed-file organization. It also checks that the values are consistent. 

4. OPENM positions the file according to the $0PEN_POSITION 
value. 

5. OPENM loads the collation-table module if the $KEY_ TYPE value 
is COLLATED. (The entry point name used is the $COLLATE_ 
TABLE_NAME FIT value.) 

6. It also loads the error-exit procedure if a value has been stored for 
$ERROR_EXIT_NAME. 

7. OPE NM sets the open/closed (QC) flag in the FIT to open. 

The following is a list of some $ERROR_STATUS values that 
OPENM can return. For information on decyphering the value, see 
the $ERROR_STATUS description later in this chapter. 

Keyed-File Interface 11-89 



OPENM Call 

- Fatal errors: 

AA3245 
To open the file, you must have access to the file. 

AA3030 

An existing file cannot be opened as a new file. 

AA3310 

The hashing procedure for the direct-access file cannot be 
loaded. 

AA3370 
The compression procedure for the file cannot be loaded. 

- Fatal errors when opening a new file: 

AA3210 
The maximum record length is 0 or undefined. 

AA3215 
The primary-key type is integer, but the key length is 
greater than 8. 

AA3220 

The key length cannot be greater than the maximum record 
length. 

AA3230 
The primary key must be within the minimum record length. 

AA3240 

The index padding attribute value is too large. 

AA3265 
The primary-key type is collated, but no collation table was 
specified. 

AA3275 
A nonzero key-length value must be specified. 

- Nonfatal errors: 

160155 
When a file is opened with append access only, its open 
position must be at its EOI. 

160225 

To open the file, at least one access mode must be granted. 

11-90 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

OPENM Call 

Nonfatal errors when opening a new file only: 

160100 

The file cannot be created because the job has reached its 
local file limit already. 

160115 

When the record type is F (fixed-length records), the 
maximum record length cannot exceed the maximum block 
length. 

160150 

Opening a new file requires append access. 

160200 

The specified collation table could not be loaded. 

160205 

The specifi~d error-exit procedure could not be loaded. 

- Nonfatal errors when opening an existing file only: 

160095 

Preserved attribute values stored in the FIT do not match 
the corresponding preserved attribute values stored with the 
file. 

160120 

One or more of the requested access modes are not in the set 
of access modes granted when the file was attached. 

161016 

The local file name specified in the FIT is not known to the 
job. 

Keyed-File Interface 11-91 



PUT Call 

PUT Call 

Purpose Writes a record to a keyed file. 

Format CALL PUT (fit, wsa, rl, ka, kp, O, ex) 

Parameters (1) fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) wsa 

Working-storage area (location from which data is copied to the file). 

NOTE 

The working storage area and the key area should be in common blocks. If 
they are not, your program could execute incorrectly after being compiled 
with high optimization. 

(3) rl 

Record length in bytes (used only if the record type is variable length; 
ignored if the record type is fixed-length). 

(4) ka 

Key area (location containing the primary key value of the new record). 
This parameter is ignored for files with embedded keys. 

(5) kp 

For CYBER 170 compatibility. New programs should set this parameter to 
zero. 

(6) 0 

Reserved position for an unused parameter. 

(7) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal:· AA2005 -- key_already_exists 

Fatal: 

AA2015 -- file_at_user_record_limit 
AA2020 -- file_fulLno_puts_or_wraps 
AA2075 -- key _found_lock_no_ wait 
AA2100 -- duplicate_alternate_key 
AA2605 -- key _required 
AA2615 -- non_embedded_key_not_given 
AA2650 -- not_enough_permission 
AA2865 -- sparse_key_beyond_eor 
AA2975 -- missing_key _delimiter 

AA3250 -- file_is_ruined 
AA3430 -- file_at_file_limit 

11-92 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

PUT Call 

• A PUT call requires at least append access as indicated by the 
$ACCESS_MODE value in the FIT. If alternate keys are defined in the 
file, a PUT call requires append, shorten, and modify access in order to 
update the alternate indexes. If the file was opened without the 
required access, the PUT call returns the nonfatal $ERROR_STATUS 
value AA2650. 

• Before the program calls PUT, it must store the record data in the 
working-storage area. If the primary key is nonembedded, it must also 
store the key value in the key area. 

• The specified primary-key value must not already exist in the file. If it 
does, the PUT call returns a nonfatal error ($ERROR_STATUS value 
AA2000). 

• You always specify a primary-key value on a PUT call, not an 
alternate-key value, even if an alternate key is currently selected. 

• The PUT call updates each alternate index that is to include the new 
record. If the new record contains an alternate-key value that duplicates 
a value already in the alternate index and the alternate key does not 
allow duplicates, the PUT call returns a nonfatal error ($ERROR_ 
STATUS value AA2100). 

• If the file has fixed-length records, the record length (rl) value on the 
call (and in the FIT) is ignored. The length of the record written is 
always the fixed record length for the file. 

A warning message is issued for the first PUT, PUTREP, or REPLCE 
call whose rl value differs from the fixed record length for the file. The 
warning is given because, although excess data is truncated, insufficient 
data is not padded so garbage could be written as the last part of the 
record. 

For Better Performance 

When writing to an indexed-sequential file, the program should write 
records in order by ascending key values. This results in faster 
execution and a more efficient file structure. Your program could write 
the records to a sequential file and then call Sort/Merge to sort and 
write the records to an indexed-sequential file. 

• A PUT call returns an error when it cannot write the record because 
the file has reached a limit. The $ERROR_STATUS value indicates the 
limit reached as follows: 

- Nonfatal errors: 

AA2015 

The number of records in the file has reached the $RECORD_ 
LIMIT value. 

AA2020 

The record cannot be written because it would require addition 
of another index level to the indexed-sequential file and the file 
already has 15 index levels. 

Keyed-File Interface 11-93 



PUT Call 

- Fatal error: 

AA2655 

The number of bytes of file space has reached the FILE_LIMIT 
value. (The file structure is ruined.) It may be possible to 
re-create the file using the COPY_KEYED_FILE command. 

• A PUT call does not reposition the file. 

• When the file could be shared (more than one instance of open could be 
changing the file at the same time), the task should either: 

- Call LOCKK to lock the key value before it calls PUT. 

- Be prepared to process the $ERROR_STATUS value AA2075 
returned if the key value is locked by another task. 

11-94 FORTRAN Version 1 Language Definition Usage Revision H 



PUTREP Call 

PUTREP Call 

Purpose Replaces an existing record or writes a new record to a keyed file. 

Format CALL PUTREP (fit, wsa, rl, ka, kp, 0, ex) 

Parameters (1) fit 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) wsa 

Working storage area (location from which data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. If 
they are not, your program could execute incorrectly after being compiled 
with high optimization. 

(3) rl 

Record length in bytes (used only if the record type is variable length; 
ignored if the record type is fixed-length). 

(4) ka 

Key area (variable containing the key value of the record to be written or 
replaced). 

(5) ki> 

For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

(6) 0 

Reserved position for an unused parameter. 

(7) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal: AA2015 -- file_at_user_record_limit 
AA2020 -- file_fulLno_puts_or _reps 
AA2075 -- key_found_lock_no_wait 
AA2100 -- duplicate_alternate_key 
AA2605 -- key _required 

Fatal: 

AA2615 -- non_embedded_key _not_given 
AA2650 -- not_enough_permission 
AA2865 -- sparse_key_beyond_eor 
AA2975 -- missing_key _delimiter 

AA3250 -- fi.le_is_ruined 
AA3430 -- fi.le_at_fi.le_limit 

Keyed-File Interface 11-95 



PUTREP Call 

Remarks • A PUTREP call requires at least append and shorten access as 
indicated by the $ACCESS_MODE value in the FIT. If alternate keys 
are defined in the file, a PUTREP call requires append, shorten, and 
modify access in order to update the alternate indexes. If the file was 
opened without the required access, the call returns $ERROR_STATUS 
value AA2650. 

• You always specify a primary-key value on a PUTREP call, not an 
alternate-key value, even if an alternate key is currently selected. 

• The PUTREP call updates each alternate index that is to include the 
new record. If the new record contains an alternate-key value that 
duplicates a value already in the alternate index and the alternate key 
does not allow duplicates, the PUTREP call returns a trivial error 
($ERROR_STATUS value AA2100). 

• PUTREP executes a put request if the specified primary key does not 
match any existing primary key. It executes a replace request if a 
matching primary key is found in the file. 

• If the file has variable-length (U or V) records, the length of the record 
written is the record length (rl) value specified on the call (or, if 
omitted, the $WORKING_STORAGE_LENGTH value in the FIT). 

For a file with variable-length (U or V) records, the new record need 
not be the same length as the existing record; however, the new record 
length must be within the minimum and maximum record lengths for 
the file. 

• If the file has fixed-length (F) records, the record length (rl) value on 
the call is ignored. The fixed record length is always the length of each 
record written to the file. 

A warning message is issued for the first PUT, PUTREP, or REPLCE 
call whose rl value differs from the fixed record length for the file. The 
warning is given because, although excess data is truncated, insufficient 
data is not padded so garbage could be written at the end of the 
record. 

• A PUTREP call does not reposition the file. 

• Unlike a REPLC call, a PUTREP call does not require the task to own 
a Preserve_Access_and_Content or Exclusive_Access lock on the 
record. 

However, when the file is shared (more than one instance of open could 
exist), the task should either: 

Call LOCKK to lock the key value before it calls PUTREP, or 

- Be prepared to process the abnormal status code AA2075 returned if 
the key value is locked by another task. 

11-96 FORTRAN Version 1 Language Definition Usage Revision H 



REPLC Call 

REPLC Call 

Purpose 

Format 

Parameters 

Revision H 

Replaces an existing record in a keyed file. 

CALL REPLC (fit, wsa, rl, ka, kp, 0, ex) 

(1) fit 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) wsa 

Working storage area (variable from which data is copied). 

NOTE 

The working storage area and the key area should be in common blocks. If 
they are not, your program could execute incorrectly after being compiled 
with high optimization. 

(3) rl 

Record length in bytes (used only if the record type is U or V; ignored if 
the record type is F). 

(4) ka 

Key area (variable containing the primary key value of the record to be 
replaced). 

(5) kp 

For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

(6) 0 

Reserved position for an unused parameter. 

(7) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 

Fatal: 

AA2020 -- file_full_no_puts_or _reps 
AA2085 -- key_not_already_locked 
AA2100 -- duplicate_alternate_key 
AA2605 -- key _required 
AA2615 -- non_embedded_key _not_given 
AA2650 -- not_enough_permission 
AA2865 -- sparse_key _beyond_eor 
AA2975 -- missing_key _delimiter 

AA3250 -- file_is_ruined 
AA3430 -- file_at_file_limit 

Keyed-File Interface 11-97 



REPLC Call 

Remarks • A REPLC call requires at least append and shorten access as indicated 
by the $ACCESS_MODE value in the FIT. If alternate keys are 
defined in the file, a REPLC call requires append, shorten, and modify 
access in order to update the alternate indexes. If the file was opened 
without the required access, the call returns nonfatal $ERROR_ 
STATUS value AA2650. 

• If the file could be shared (more than one instance of open could be 
changing the file at the same time), a record can be replaced only by 
the owner of a Preserve_Access_and_Content or Exclusive_Access lock 
on the record. 

The task should lock the primary-key value by calling GET, GETN, or 
LOCKK before the REPLC call. 

To read about locks, see Keyed File Sharing earlier in this section. 

• A REPLC call always specifies a primary-key value, not an 
alternate-key value, even if an alternate key is currently selected. 

• The new record must have the same primary-key value as the record 
being replaced. If REPLC cannot find a record with a matching 
primary-key value, it returns a nonfatal error ($ERROR_STATUS value 
AA2005). 

• The REPLC call updates each alternate index that is to include the 
new record. 

If the new record contains an alternate-key value that duplicates a 
value already in the alternate index and the alternate key does not 
allow duplicates, the REPLC call returns a nonfatal error ($ERROR_ 
STATUS value AA2100). 

• A REPLC call does not reposition the file. 

• If the record type for the file is U or V, the record length is the 
$WORKING_STORAGE_LENGTH (wsl) value in the FIT. 

For a file with variable (U or V) records, the new record need not be 
the same length as the existing record; however, the new record length 
must be within the minimum and maximum record lengths for the file. 

• If the file has fixed-length (F) records, the record length (rl) value on 
the call is ignored; the fixed record length for the file is always used. 

A warning message is issued for the first PUT, PUTREP, or REPLC 
call whose rl value differs from the fixed record length for the file. The 
warning is given because, although excess data is truncated, insufficient 
data is not padded. 

11-98 FORTRAN Version 1 Language Definition Usage Revision H 



REWND Call 

REWND Call 

Purpose Rewinds the file. 

Format CALL REWND (fit) 

Parameters (1) fit 

Remarks 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

• When the primary key is selected, REWND positions an 
indexed-sequential file at its lowest primary-key value and a direct 
access file at the beginning of its first block. 

• If the currently selected key is an alternate key, REWND positions the 
file to read the record with the lowest value for that alternate key. 

• The $FILE_POSITION value after a successful REWND call is always 
16 (end-of-record). It is not 1 (beginning-of-information). 

• The file must be ope:ti when you issue the rewind request. 

For Better Performance 

Rewinding a file is more efficient than extensive backward skipping of 
records. 

Keyed-File Interface 11·99 



RMKDEF Call 

RMKDEF Call 

Purpose 

Format 
• 

Parameters 

Creates an alternate key in a keyed file. 

NOTE 

The NOS/VE RMKDEF call is provided for compatibility when migrating 
CYBER 170 programs that contain RMKDEF calls. When writing a new 
NOS/VE program, you should call the SCL utility CREATE_ALTERNATE_ 
INDEXES using the SCLCMD call. (The CREATE_ALTERNATE_ 
INDEXES utility is described in the SCL Advanced File Management 
Usage manual.) 

CALL RMKDEF (fit, akw, akp, akl, 0, akt, aks, akg, akc, anl, aie, 
ach, asp, ave) 

(1) fit 

Name of the variable containing the file information table (FIT) pointer. 
This parameter is required. 

(2) akw 

Integer that, with the akp value, defines the key position. The akw value 
is multiplied by ten and added to the akp value to determine the byte 
position of the beginning of the key. 

It is recommended that you specify zero as the akw parameter value so 
that the entire key position value is specified by the akp parameter. 

(3) akp 

Integer that, with the akw value, defines the· key position. The akw integer 
is multiplied by ten and added to the akp value to determine the byte 
position of the beginning of the key. Bytes are numbered from the left, 
beginning with zero. 

(4) akl 

Key length in bytes (1 through 255). 

A zero value indicates that this call and the following RMKDEF call define 
a key using sparse key control. (See the following Remarks.) 

For a variable-length key, this parameter defines the maximum length of 
the key values. 

(5) 0 

Reserved position for unused parameter. 

(6) akt 

Key type. 

'COLLATED' or 'C' or 'S' 

Collated key (valid only for an indexed-sequential file with a collated 
primary key) 

'INTEGER' or 'I' 

Integer key (invalid for a variable-length key) 

11-100 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

'UNCOLLATED' or 'UC' or 0 

Uncollated key 

NOTE 

RMKDEF Call 

Unlike the SCL utility CREATE_ALTERNATE_INDEXES, RMKDEF 
cannot specify a separate collation table for the alternate key. A collated 
key created by RMKDEF uses the collation table for the primary key, 
which is available only if the file is an indexed-sequential file with a 
collated primary key. 

(7) aks 

Duplicate key control attribute. 

'NOT_ALLOWED' or 'NA' or 'U' or 0 

No duplicate key values allowed in the alternate index. 

'ORDERED_BY_PRIMARY_KEY' or 'OBPK' or 'I' 

Duplicate key values allowed; the key list for each value is kept in 
sorted ascending order. 

'FIRST_IN_FIRST_OUT' or 'FIFO' or 'F' 

Duplicate key values allowed; the key list for each value is not sorted 
so the primary-key values are in chronological order. (FIFO ordering is 
not allowed with repeating groups or variable-length keys.) 

(8) akg 

Optional repeating-group length. A zero value indicates that each record 
can contain only one value for the alternate key. 

A nonzero value indicates that each record can contain more than one 
value for the alternate key. 

For a fixed-length key (last parameter, ave, omitted), a nonzero akg value 
specifies the length, in bytes, of the repeating group of fields, that is, the 
distance from the beginning of an alternate-key value to the beginning of 
the next alternate-key value. 

(9) akc 

Indicates whether the search for alternate-key values continues to the end 
of the record. 

0 (zero) 

Search continues to the end of the record. 

Nonzero positive integer 

Search ends at the specified limit (valid only if akg is nonzero). 

For a fixed-length key (ave omitted), a nonzero integer is the number of 
alternate-key values in each record. (Unless sparse-key control is used, the 
specified number of alternate-key values must fit in the minimum record 
length.) 

Keyed-File Interface 11-101 



RMKDEF Call 

Remarks 

For a variable-length key (ave specified), a nonzero integer is the length, 
in bytes, of the key field. The contents of the field is read as a sequence of 
key values, separated by delimiters. The end of the last key value is 
marked by a delimiter, the end of the field, or the end of the record. 

(10) anl 

Null-suppression attribute. 

'FALSE' or 'F' or 0 

Null suppression is not used. 

'TRUE' or 'T' or 'N' 

Null suppression is used. 

(11) aie 

Optional sparse-key control effect. 

'INCLUDE_KEY_ VALUE' or 'I' or 0 

Include the alternate-key value in the alternate index if the sparse-key 
control character matches. 

'EXCLUDE_KEY_ VALUE' or 'E' 

Exclude the alternate-key value from the alternate index if the 
sparse-key control character matches. 

If a nonzero value is specified for aie, a nonzero value must be specified 
for ach. 

(12) ach 

Sparse-key control characters (character string from 1 through 256 
characters long). This parameter must be nonzero if sparse-key control is 
used. 

(13) asp 

Sparse-key control position (integer). Bytes are numbered from the left, 
beginning with zero. See Remarks. 

(14) ave 

Character string (0 through 256 bytes) containing the delimiter characters 
for the key. Specify this parameter to define the key as a variable-length 
key. (Each delimiter character can occur only once in the string.) 

• The RMKDEF parameters are not FIT fields. Specifying a nonzero 
parameter value on an RMKDEF call does not implicitly store the 
value in the FIT. Specifying zero for a parameter does not cause a FIT 
field value to be used. 

• The three values specifying the key position and length (akw, akp, and 
akl), taken together, must be unique among the file keys. RMKDEF 
cannot create an alternate key having the same position and length as 
the primary key. (The SCL utility CREATE_ALTERNATE_INDEXES 
can create an alternate key having the same position and length as the 
primary key.) 

11-102 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

RMKDEF Call 

RMKDEF uses the three values (akw, akp, and akl) to name the key. 
For example, an alternate key specified using the values 567, 9, and 
250 as its akw, akp, and akl values, respectively, is given the name 
ALTERNATE_567 _9_250. 

• An alternate key that is to use sparse-key control can be specified 
using one or two RMKDEF calls. (The two-call method is provided for 
CYBER 170 compatibility.) 

- Using the one-call method, the call specifies the byte position of the 
sparse-key control character as the thirteenth parameter value, asp. 

- Using the two-call method, the first call specifies only the first four 
parameters: the fit, the akw and akp parameters specifying the 
sparse-key control position, and a zero value for the akl parameter. 
(The thirteenth parameter, asp, is omitted.) 

The second call specifies the alternate-key field position and length 
as the akw, akp, and akl parameters. It also specifies any optional 
attributes desired for the key. 

See the sparse-key control examples under Examples. 

• If the terminate_ break_character (CCP default, control-t; CDCNET 
default, %2) is entered while RMKDEF is applying the alternate_key 
definition to the file, the terminal user receives a prompt, requesting 
confirmation of his or her intentions. 

The terminal user should enter a carriage return or any entry other 
than RUIN FILE (uppercase or lowercase) to continue the application of 
the alternate-key definition. No file operation can be performed on a 
ruined file; no data can be retrieved from the file. You should attempt 
to re-create the file using the SCL command COPY_KEYED_FILE. 

If the apply operation is allowed to complete, the CREATE_ 
ALTERNATE_INDEXES utility can remove any unwanted alternate 
keys without harm to the file. 

• Entry of a pause_break_character (CCP default, control-p; CDCNET 
default, %1) is ignored during application of alternate-key definitions. 

• RMKDEF cannot specify a separate collation table for an alternate key. 
RMKDEF must use the collation table for the primary key. 

A primary-key collation table is available only if the file is an 
indexed-sequential file with a collated primary key. RMKDEF cannot 
create a collated key for a direct access file or a file with an integer or 
uncollated primary key. 

When RMKDEF cannot create the key, use the SCL utility CREATE_ 
ALTERNATE_INDEXES described in the SCL Advanced File 
Management manual. 

• RMKDEF cannot create a concatenated key. To create a concatenated 
key, execute the SCL utility CREATE_ALTERNATE_INDEXES 
described in the SCL Advanced File Management manual. 

Keyed-File Interface 11-103 



RMKDEF Call 

Examples 

• An alternate-key definition cannot specify both first-in, first-out (FIFO) 
duplicate-key value control and repeating groups. 

It also cannot define a variable-length key with: 

- FIFO duplicate-key value control 

- Null suppression 

- Sparse-key control 

This call defines a 25-byte alternate key beginning at byte position 152. By 
default, the key type is uncollated and no duplicate key values are allowed. 

CALL RMKDEF(fit,15,2,25) 

This call defines a 2-byte alternate key beginning at byte position 0. The 
alternate key field repeats each 100 bytes. The key type is the default, 
uncollated; duplicate key values are allowed and are ordered by primary 
key. 

CALL RMKDEF(fit,o,o,2,o,o,'OBPK',100,10) 

This call defines the same alternate key as the first example, except that 
the alternate key now uses sparse-key control. The sparse-key control 
character is at byte position 5. The sparse-key characters are 1, 2, or 3. If 
the sparse key matches, the alternate-key value for the record is excluded 
from the alternate index. 

CALL RMKDEF(fit,15,2,25,0,0,0,0,0,0,'E','123',5) 

These calls define the same alternate key as the preceding example, except 
that the two-call method is used to specify sparse-key control as described 
under Remarks. 

CALL RMKDEF(fit,0,5,0) 
CALL RMKDEF(fit,15,2,25,0,0,0,0,0,0,'E' ,'123') 

This call defines the entire record as a single variable-length uncollated 
key. The key length is defined as the maximum record length for the file 
(80 bytes). 

CALL RMKDEF(fit, 0, 0, 80, 0, 'UNCOLLATED', 
+ 'ORDERED_BY_PRIMARY_KEY',0,0,'FALSE',0,0,0,'') 

The following call is the same as the preceding one except it defines the 
key as a repeating group (rgl= 1) and defines several delimiter characters. 
The call defines each string delimited by punctuation, digits, or spaces as a 
key value. 

+ 
+ 

CALL RMKDEF(fit, 0, 0, 80, 0, 'UNCOLLATED', 
'ORDERED_BY_PRIMARY_KEY', 1,0,'FALSE',0,0,0, 
, t@.lt#$%A&• o_ +-=<Hr': .. :,,, 1 <>? • .10123456789 , > 

Notice that the apostrophe delimiter is specified using two apostrophe 
characters. 

11-104 FORTRAN Version 1 Language Definition Usage Revision H 



RSBUILD Call 

RSBUILD Call 

Purpose Gets primary-key values from a keyed file and combines them with a 
result set. 

Format CALL RSBUILD (fit,source_result_set, target_result_set, low _key, 
major _low _key, low _key _relation, high_key, major _high_key, 
high_key _relation, logical_ operation, new _result_placement, actual_ 
result_set_placement, condition_code) 

Parameters (1) fit 

Revision H 

Name of the variable containing the FIT pointer for the keyed file. 

(2) source_result_set 

Identifier of the result set to be combined (as returned by its RSOPEN 
call). 

(3) target_result_set 

Identifier of the target resu.It set (as returned by its RSOPEN call). 

(4) low _key 

Key value at which the range begins. The value must be valid for the key 
type (integer for an integer key, characters for a collated or uncollated 
key). 

(5) major _low _key 

For a fixed-length key, a nonzero value indicates that the low end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the low_key value to be used as the major 
key. A zero value indicates that the full low_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the low _key value. 

(6) low _key _relation 

Indicates where the range begins in relation to the lowest key value in the 
range. 

'GREATER_KEY' or 'GK' or 'GT' 

Exclude the lowest key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or 'GE' 

Include the lowest key value. 

'LOWEST_KEY' or 'LK' 

Start at the beginning of the index. (Ignore the low_ key and major_ 
low_key values.) 

(7) high_key 

Key value at which the range ends. The value must be valid for the key 
type (integer for an integer key, characters for a collated or uncollated 
key). 

If the high_key value is less than the low_key value, RSBUILD returns 
the nonfatal $ERROR_STATUS value AA2750. 

Keyed-File Interface 11-105 



RSBUILD Call 

(8) major _high_key 

For a fixed-length key, a nonzero value indicates that the high end of the 
range is to be found by a major-key search. The specified value is the 
number of leftmost bytes of the high_key value to be used as the major 
key. A zero value indicates that the full high_key value is to be used. 

For a variable-length alternate key, a nonzero value is required because it 
specifies the length of the high_key value. 

(9) high_key _relation 

Indicates where the range begins in relation to the highest key value in 
the range. 

'GREATER_KEY' or 'GK' or 'GT' 

Include the highest key value. 

'EQUAL_KEY' or 'EK' or 'EQ' or 'GREATER_OR_EQUAL_KEY' or 
'GOEK' or ;GE' 

Exclude the highest key value. 

'HIGHEST_KEY' or 'HK' 

Stop at the end of the index. (Ignore the high_ key and major _high_ 
key values.) 

(10) logical_ operation 

Integer specifying the logical operation performed to combine the source 
result set with the new range of key values. 

0 Logical AND. The combined result set is the intersection of the original 
result sets. It contains only those key values that belong to both of the 
original sets. 

1 Logical OR. The combined result set is the union of the original result 
sets. It contains all key values from both original result sets. 

2 Logical XOR. The combined result set is the union of the original 
result sets without the intersection of the original result sets. It 
contains all key values from each of the original result sets that do not 
belong also to the other result set. 

(11) new _result_placement 

Integer specifying the result set file to which the combined result set is 
written. 

0 The combined result set overwrites the source result set. Use this value 
when the source result set is no longer needed. 

1 The combined result set is written to the target result set. Use this 
value when the source_result_set is to be saved for later use. It is 
also used on the initial AMP$BUILD_RESULT_SET call for a new 
result set. 

11-106 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

RSBUILD Call 

2 The placement of the combined result set is chosen to provide the 
fastest performance. The location chosen is returned in the variable 
specified by the actual_result_set_placement parameter on the call. 
Use this value when the source result set is no longer needed and the 
source and target result sets differ. 

(12) actual_result_set_placement 

Integer variable in which the call indicates the result set file to which the 
combined result set has been written. 

0 The source result set has been overwritten. 

1 The combined result set has been written to the target result set; the 
source result set has been preserved. 

(13) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. For information on deciphering the 
condition_code, see the $ERROR_STATUS description later in this chapter . 

. 
$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 

Fatal: 

AA2750 -- high_end_not_above_low _end 

AA3365 -- keyed_file_expected 
AA3535 -- file_not_open 
AA3540 -- data_files_differ 
AA3545 -- nested_files_differ 
AA3550 -- target_not_given 
AA3555 -- wrong_data_file 

• RSBUILD adds a range of key values to a result set. It can be used to: 

- Add primary-key values to an empty result set. 

For this use, the call specifies the same result set as the source_ 
result_set and as the target_result_set, but the new _result_ 
placement value should be 1 (result_in_target). The logical_ 
operation value should be 1 (logical OR). 

- Add primary-key values to an existing result set. The combined 
result set can overwrite the source result set or be written to the 
target result set. 

When the source result set is to be overwritten, the call specifies 
the same result set as the source_result_set and as the target_ 
result_set. The new _result_placement value should be 0 (result_ 
in_ source). 

When the source result set is to be kept, the call specifies different 
result sets as the source result set and as the target result set and 
the new result placement value 1 (result in target). 

- When two result sets are specified, but it does not matter whether 
the source_result_set is overwritten, specify the new_result_ 
placement value 2 (result_in_fastest_place). 

Keyed-File Interface 11-107 



RSBUILD Call 

• The specified data file, source result set, and target result set must be 
open. The data file is opened by an OPENM call; the result set is 
opened by an RSOPEN call. 

The data file and nested file identification in the result set files must 
match the data file cycle opened using the FIT and the nested file 
specified in the FIT. The file identification is stored in the result set 
when the result set is first opened. 

The currently selected nested file for the data file must be the nested 
file specified on the RSOPEN call. The nested file selected when the 
file is opened is the default nested file, $MAIN _FILE: to select another 
nested file, store the nested file name as the $NESTED_FILE_NAME 
value in the FIT. 

• The currently selected key must be the key whose index is to be 
searched for the range specified on the call. The key selected when the 
file is opened is the primary key ($PRIMARY_KEY); to select another 
key, call STOREF to store the key name in the FIT. 

NOTE 

For a direct-access file, the selected key must be an alternate key. 
RSBUILD cannot use the primary key of a direct-access file. 

• The search for the range . specified on the call is the same as the range 
search performed by KLCOUNT. For more information, see the 
KLCOUNT call description. 

• After finding the specified range in the index, the call gets the 
primary-key values from the index. If the index is for an alternate key 
which allows duplicate values, the call gets the list of primary-key 
values for each alternate-key value in the range. 

11-108 FORTRAN Version 1 Language Definition Usage Revision H 



RSCLEAR Call 

RSCLEAR Call 

Purpose Discards the existing result set in the result set file. 

Format Call RSCLEAR (result_set_id, condition_code) 

Parameters (1) result_set_id 

Remarks 

Revision H 

Identifier of the result set to be cleared (as returned by its RSOPEN call). 

(2) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

The RSCLEAR call is used to erase the existing result set in a result set 
file after it has been opened by an RSOPEN call. After the file is cleared, 
it is equivalent to a new result set file. 

Keyed-File Interface 11-109 



RSCLOSE Call 

RSCLOSE Call 

Purpose Closes an open result set. 

Format Call RSCLOSE (result_set_id, condition_code) 

Parameters (1) result_set_id 

Remarks 

Result set identifier (as returned by its RSOPEN call). 

(2) condition_ code 

Integer variable in which the error status value is returned. Return of a 
zero value indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

• Closing a result set prevents further operations using the result set 
until it is opened again. 

• If an RSCLOSE call is not issued for an open result set, the result set 
is closed at task termination. 

• A closed result set continues to exist until its file is deleted. 

11-110 FORTRAN Version 1 Language Definition Usage Revision H 



RSCOMB Call 

RSCOMB Call 

Purpose Combines two result sets. 

Format CALL RSCOMB (first_result_set, second_result_set, target_result_ 
set, logical_operation, new _result_placement, actual_result_set_ 
placement, condition_code) 

Parameters (1) first_result_set 

Revision H 

Identifier of the first result set to be combined (as returned by its 
RSOPEN call). 

(2) second _result_set 

Identifier of the second result set be combined (as returned by its RSOPEN 
call). 

If the new _result_placement parameter specifies 0 (result in source), the 
second source_result_set is overwritten. 

(3) target_ result_ set 

Identifier of the target result set (as returned by its RSOPEN). 

( 4) logical_ operation 

Integer specifying the logical operation performed to combine the two 
source result sets. 

0 Logical AND. The combined result set is the intersection of the original 
result sets. It contains only those key values that belong to both of the 
original sets. 

1 Logical OR. The combined result set is the union of the original result 
sets. It contains all key values from both original result sets. 

2 Logical XOR. The combined result set is the union of the original 
result sets without the intersection of the original result sets. It 
contains all key values from each of the original result sets that are 
not in both of the original result sets. 

(5) new _result_placement 

Integer specifying the result set file to which the combined result set is 
written. 

0 The combined result set overwrites the second source result set. Use 
this value only when the second source result set is no longer needed 
or the second source result set and the target result set are the same. 

1 The combined result set is written to the target result set. Use this 
value when the second source result set is to be saved for later use. 

2 The placement of the combined result set is chosen to provide the 
fastest performance. The location chosen is returned in the actual_ 
result_set_placement variable. Use this value when the second source 
result set is no longer needed and the second source result set and 
target result set differ. 

Keyed-File Interface 11-111 



RSCOMB Call 

Remarks 

(6) actual_result_set_placement 

Integer variable in which the call indicates the result set file to which the 
combined result set has been written. 

0 Result in source. The second source result set has been overwritten. 

1 Result in target. The combined result set has been written to the target 
result set file; the second source result set has been preserved. 

(7) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS desc:ription later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3540 -- data_files_differ 
AA3545 -- nested_files_differ 
AA3550 -- target_not_given 
AA3580 -- invalid_result_set_id 

• The RSCOMB call performs the same combination operations that can 
be performed by an RSBUILD call. When possible, use RSBUILD to 
perform the combination at the same time the key values are taken 
from the data file. 

• All result sets specified on the call must be open. However, the data 
file to which the result set applies need not be open. 

If the data file is open, its selected nested file need not be the nested 
file to 'Yhich the result set applies. This is because the RSCOMB call 
does not require any information from the data file. 

• All result sets specified on the call must apply to the same keyed file 
cycle and nested file in the keyed file. (The first RSOPEN call for a 
result set stores the identification of the data file cycle and nested file 
to which the result set file applies in the result set.) 

11-112 FORTRAN Version 1 Language Definition Usage Revision H 



RSDLTE Call 

RSDLTE Call 

Purpose Deletes a primary-key value from a result set. 

Format CALL RSDLTE (target_result_set, key _location, condition_code) 

Parameters (1) target_set_id 

Remarks 

Revision H 

Identifier of the result set from which the primary-key value is deleted (as 
returned by its RSOPEN call). 

(2) key _location 

Location of the primary-key value to be deleted from the result set. 

If RSDLTE cannot find the specified key value in the result set, it returns 
the warning status AA1335. 

(3) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_resulLset_id 

• If the key value is not in the result set, the call does nothing and no 
message is issued. 

• Use this call when only a few scattered primary-key values need to be 
deleted from the result set. 

When several primary-key values need to be deleted, it is more efficient 
to create a temporary result set containing those values and combine it 
with the original result set. 

For more information, see Adding and Deleting Key Values in the 
Result Sets description earlier in this section. 

• This call can specify a primary-key value only. It cannot specify an 
alternate-key value. 

However, you can delete the primary-key values associated with an 
alternate-key value from the result set. To do so, perform the following 
steps: 

1. Select the alternate key. 

2. Call RSBUILD specifying the logical XOR (2) operation to remove 
the key values. It specifies the key values to be removed as a range 
containing only the one alternate-key value. (The low _key and 
high_key values of the range are the same.) 

3. If any of the primary-key values in the alternate key list might not 
be in the original result set, combine the target result set again 
with the original result set using a logical AND (0) operation. 

Keyed-File Interface 11-113 



RSGETN Call 

RSGETN Call 

Purpose Reads a record from a keyed file using a result set. 

Format CALL RSGETN (fit, source_result_set, result_set_not, wsa, ka, ex) 

Parameters (1) fit 

Remarks 

Name of the variable containing the FIT pointer for the keyed file. 

(2) source_result_set 

Identifier of the result set used to read the record (as returned by its 
RSOPEN call). 

(3) result_set_not 

Indicates whether the call reads the next record that is in the result set or 
the next record that is not in the result set. 

'NO' 

Reads the next record in the result set. 

'YES' 

Reads the next record NOT in the result set. 

(4) wsa 

Working storage area (location to which the record data is copied). (The 
default is the $WSA value in the FIT.) 

(5) ka 

Variable in which the primary-key value of the record is returned. (The 
default is the $KA value in the FIT.) 

(6) ex 

Error exit procedure name. (The default is the $EEPN FIT value.) 

$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 

Fatal: 

AA2010 -- record_ longer_ than_ wsa 
AA2075 -- key _found_lock_no_ wait 
AA2620 -- wsa_not_given 
AA2635 -- cant_position_beyond_bound 
AA2977 -- illegal_key _or _nf_selected 

AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 
AA3590 -- is_file_expected 
AA3595 -- repeated_read_at_eoi 

• The RSGETN call is intended to be used to read a sequence of records. 
The sequence of records can be the records in the result set or all 
records in the data file that are not in the result set. 

To read the records in the result set, specify 'NO' for the result_set_ 
not parameter on each RSGETN call. To read the records NOT in the 
result set, specify 'YES' for the result_set_not parameter on each 
RSGETN call. 

11-114 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

RSGETN Call 

NOTE 

For a direct-access file, RSGETN can read the sequence of records in 
the result set, but it cannot read the sequence of records not in the 
result set. In other words, the NOT operator is invalid so each 
RSGETN call for a direct-access file must specify 'NO' for the result_ 
set_not parameter. 

• The data file must be open. The selected nested file must be the nested 
file specified when the result set was first opened. The selected key for 
the nested file must be its primary key. 

• The RSOPEN call establishes the result set position at its beginning. 
(The result set is also positioned at its beginning by any of the calls 
that change the result set.) 

Each RSGETN call without the NOT operator repositions the result set 
forward one primary-key value. RSGETN calls with the NOT operator 
position the result set forward as needed. 

RSREWND, RSSTART, RSSKIP calls explicitly reposition the result set. 

• Other calls can intervene between result set get calls. However, calls 
that reposition the data file must not intervene between result set get_ 
not calls. 

• An RSGETN call without the NOT operator issues a GET call using 
the primary-key value at the current result set position. It then 
advances the result-set position one primary-key value. 

• RSGETN calls with the NOT operator get the records that are not in 
the result set. The first get_not call establishes the starting data file 
position. 

It does so by reading the primary-key value at the current result set 
position and then positioning the data file at that record. The first get_ 
not call then reads a record, the same as subsequent get_not calls, as 
follows: 

• Each get_not call performs the following steps: 

1. Calls GETN to read the record at the current data file position. 
(GETN reads a record and advances the data file position one 
record.) 

2. Compares the primary-key value returned by the GETN call and the 
primary-key value at the current position of the result set. 

a. If the values match, it: 

Discards the record read, advances the result set position 
forward one value, and continues at step 1. 

b. If the values do not match, it: 

Terminates, leaving the record read in the working storage area. 

Keyed-File Interface 11-115 



RSGETN Call 

• Each call that returns a record, including the last record in the 
sequence, returns the $FILE_POSITION value 16 in the FIT. The next 
RSGETN call after the call that returns the last record returns the 
value 64, indicating that the end of the sequence has been reached. The 
call that returns 64 copies no data to the working storage area. 

A $FILE_POSITION value of 64 returned by a get call indicates that 
the result set is positioned at its end, and so all records in the result 
set have been read. 

A $FILE_POSITION value of 64 returned by a get_not call, indicates 
that the data file, as well as the result set, is positioned at its end, 
and so all records not in the result set have been read. 

11-116 FORTRAN Version 1 Language Definition Usage Revision H 



RSINFO Call 

RSINFO Call 

Purpose Returns current information about a result set. 

Format Call RSINFO (result_set_id, previous_key, next_key, key _count, 
keys_remaining, position, condition_code) 

Parameters (1) result_set_id 

Revision H 

Identifier of the result set for which information is returned (as returned 
by its RSOPEN call). 

(2) previous _key 

Variable in which the call returns the preceding primary-key value in the 
result set. Use an integer variable for an integer primary key; use a 
character variable for a collated or uncollated primary key. (A previous_ 
key value is returned only when the position returned is 1 or 2.) 

(3) next_key 

Variable in which the call returns the next primary-key value in the result 
set. Use an integer variable for an integer primary key; use a character 
variable for a collated or uncollated primary key. (A next_key value is 
returned only when the position returned is 0 or 1.) 

(4) key _count 

Integer variable in which the call returns the number of primary-key 
values in the result set. 

(5) keys_remaining 

Integer variable in which the call returns the number of primary-key 
values from the current position to the end of the result set. 

(6) position 

Integer variable in which the call returns the relative position of the result 
set. 

0 Positioned at its beginning (previous_key undefined). 

1 Positioned somewhere between its beginning and end. (Both the 
previous_key and the next_key values are defined.) 

2 Positioned at its end (next_key undefined). 

3 The result set is empty. (The previous_key and next_key values are 
both undefined.) 

(7) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

Keyed-File Interface 11-117 



RSINFO Call 

Remarks • The following figure illustrates the count and position values returned. 

Result Set 
801 (Q) ___. ..----

MID_RESULT_ 
SET (1) 

1------~ Current 
Position 

EOI (2) _____. .___ __ _, 

Keys_ 
Remain
ing 

Key 
Count 

• Assuming the result set has not been repositioned since the call, the 
previous_key value is the primary _key value used by the last 
RSGETN call and the next_key value is the primary-key alue that will 
be used by the next RSGETN call. 

• The key _count value returned is the number of primary-key values in 
the result set and therefore, the number of records that a series of get 
calls could fetch using the result set. 

However, to determine the number of records that series of get_not 
calls could fetch, your program must know the total number of records 
in the nested file and subtract the key _count value from that number. 
The record count for a nested file is not available from the keyed-file 
interface although you can display it using the DISPLAY_KEYED_ 
FILE_PROPERTIES command. 

• RSINFO calls do not change the result set position or the data file 
position and so do not disrupt a sequence of RSGETN calls. 

11-118 FORTRAN Version 1 Language Definition Usage Revision H 



RSOPEN Call 

RSOPEN Call 

Purpose Opens a result set and positions it at its beginning. 

Format CALL RSOPEN (result_set_file, data_file, nested_file, result_set_id, 
condition_ code) 

Parameters (1) result_set_file 

Remarks 

Revision H 

Name of the result set file to be opened (1 through 31-character string). If 
an existing file is to be used, it must be attached with at least read 
access. Otherwise, if the file does not exist, RSOPEN creates it. 

(2) data_file 

Name of the keyed file to which the result set applies (1 through 
31-character string). The file must be attached with at least read access.• 

(3) nested_ file 

Name of a nested file in the data file (1 through 31-character string). (To 
specify the default nested file, specify either the name $MAIN _FILE or all 
blanks.) 

(4) result_set_id 

Integer variable in which the result set identifier is returned. It is used by 
later result set calls to identify the open result set. 

(5) condition_code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3555 -- wrong_data_file 
AA3560 -- wrong_nested_file 
AA3565 -- file_must_exist 
AA3575 -- system_heap_full 

• A result set must be opened by an RSOPEN call before it can be used 
for any purpose. The result set remains open until it is closed by an 
RSCLOSE call or by the termination of the task. 

• If the specified result set file does not exist or is not attached, 
RSOPEN creates a new temporary file and records in its file attributes 
that it is a result set. It also stores the identification of the specified 
data file and nested file in the result set. 

• If the specified result set file is in the $LOCAL catalog, RSOPEN 
checks its attributes to ensure that it is a result set file. It also checks 
that the data file and nested-file identification in the result set file 
matches that of the data file and nested file specified on the call. 

• The RSOPEN returns the identifier that all subsequent result set calls 
use to specify the result set. 

Keyed-File Interface 11-119 



RSOPEN Call 

NOTE 

Do not change the contents of the result_set_id variable while the 
result set is open; any change would invalidate the identifier. 

• The same result set identifier can be used with different instances of 
open of the data file. However, the result set may no longer be correct 
after the data file is updated. For more information, see Result Set' 
Validity earlier in this section. 

• A result set file can have only one instance of open at a time. 

11-120 FORTRAN Version 1 Language Definition Usage Revision H 



RSPUT Call 

RSPUT Call 

Purpose Adds a primary-key value to the result set. 

Format CALL RSPUT (target_result_set, key _location, condition_code) · 

Parameters (1) target_set_id 

Remarks 

Revision H 

Identifier of the result set to which the primary-key value is added (as 
returned by its RSOPEN call). 

(2) key _location 

Location of the primary-key value to be added to the result set. 

(3) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

• This call can be used to either: 

Directly add a few scattered primary-key values to the result set. 

Create a temporary result set of scattered primary-key values to be 
added or deleted from the result set. 

o When several primary-key values need to be added, it is more efficient 
to create a temporary result set containing those values and combine it 
with the original result set. For more information, see Adding and 
Deleting Key Values in the Result Sets description earlier in this 
section. 

For Better Performance 

If possible, put primary-key values into a result set in ascending order. 

• This call can specify a primary-key value only. It cannot specify an 
alternate-key value. 

However, you can add the primary-key values associated with an 
alternate-key value to the result set. To do so, perform the following 
steps: 

1. Select the alternate key. 

2. Call RSBUILD specifying the logical OR (1) operation to add the 
key values. The specified key-value range should contain only the 
one alternate-key value. (The low _key and high_key values of the 
range are the same value.) 

Keyed-File Interface 11-121 



RSREWND Call 

RSREWND Call 

Purpose Repositions a result set at its beginning. 

Format CALL RSREWND (source_result_set, condition_code) 

Parameters (1) source_result_set 

Remarks 

Identifier of the result set to be rewound (as returned by its RSOPEN 
call). 

(2) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

• The result set is also positioned at its beginning by an RSOPEN call 
and by any result set call that changes the result set. 

11-122 FORTRAN Version 1 Language Definition Usage Revision H 



RSSKIP Call 

RSSKIP Call 

Purpose Repositions a result set forward or backward. 

Format CALL RSSKIP (source_result_set, count, condition_code); 

Parameters (1) source_result_set 

Remarks 

Revision H 

Identifier of the result set to be repositioned (as returned by its RSOPEN 
call). 

(2) count 

Number of primary-key values to be skipped. A positive integer causes a 
skip forward (toward the end of the result set); a negative integer causes a 
skip backward (toward the heginning of the result set). 

(3) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later .in this chapter. 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

• A skip forward that encounters the end of the result set does not 
return an error. The result set is left positioned at its end. The next 
RSGETN call returns no data and a $FILE_POSITION value of 64 in 
the FIT. 

Similarly, a skip backward that encounters the beginning of the result 
set does not return an error. The result set is left positioned at its 
beginning. 

If necessary, the program can call RSINFO to get the result set 
position after a skip. 

Keyed-File Interface 11-123 



RSSTART Call 

RSSTART Call 

Purpose Positions a result set using a primary-key value. 

Format CALL RSSTART (source_result_set, key _location, major _key_ 
length, key _relation, condition_ code) 

Parameters (1) source_result_set 

Remarks 

Identifier of the result set to be 'repositioned (as returned by its RSOPEN 
call). 

(2) key _location 

Location containing the primary-key value at which the result set is to be 
positioned. 

(3) major _key _length 

Indicates whether the primary-key value is to be located by major key. A 
zero value specifies that a major key is not used; a nonzero value specifies 
the number of bytes in the major key. 

(4) key _relation 

Indicates whether the primary-key value in the file must match the 
primary-key value specified on the call. 

0 The primary-key values must match. 

1 If a matching primary-key value is not found, the next greater 
primary-key value is used. 

2 The first primary-key value found that is greater than the specified 
primary-key value is used. 

(5) condition_ code 

Integer variable in which the error status value is returned. A zero value 
indicates successful completion. 

For information on decyphering the condition_code, see the $ERROR_ 
STATUS description later in this chapter. 

Nonfatal: AA2130 -- key_not_located 

Fatal: AA3535 -- file_not_open 
AA3580 -- invalid_result_set_id 

• The RSSTART call establishes the result set position at the primary-key 
value specified by the call. Subsequent get or get_not calls use only 
the result set values from the start position to the end of the result 
set. 

11-124 FORTRAN Version 1 Language Definition Usage Revision H 



SKIP Call 

SKIP Call 

Purpose Repositions a keyed file either forward or backward the specified number 
of records. 

Format CALL SKIP (fit, count) 

Parameters (1) fit 

Remarks 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) count 

Number of records to be skipped. A positive integer causes a skip forward 
(toward the end-of-information); a negative integer causes a skip backward 
(toward the beginning-of-information). 

If zero is specified for the count parameter, the $SKIP _COUNT value in 
the FIT is used. If it is also 0, no skipping is done. 

$ERROR_STATUS Nonfatal: AM665 -- improper _skip_count 
AM670 -- skip_requires_read_perm 
AM1245 -- skip_encountered_boi 
AM1260 -- skip_encountered_eoi 
AA2825 -- no_skip_in_da 

• A SKIP call requires read access to the file. 

• A SKIP call skips records in order by key value. This is because it 
actually skips key values in the index for the key. 

SKIP calls are valid only when an index exists for the selected key. 
Thus, SKIP calls are not valid while the primary key of a direct access 
file is selected. An attempt to do so returns the nonfatal error AA2825. 

If the currently selected key is an alternate key, it skips records in 
order by alternate-key value. 

The same record may be skipped more than once if it contains more 
than one alternate-key value. For example, suppose a record with 
primary-key value XYZ contains two integer alternate-key values, 123 
and 124. Assume that the file is positioned to read the record with 
alternate-key value 123 as follows: 

File Alternate Index 

:::~tion i 123 XYZ 
Data Record 

>-----~ XYZ 123 124 
124 XYZ 

A SKIP call to skip one record forward skips forward one alternate-key 
value in the alternate index. The file is then positioned to read the 
data record for alternate-key value 124, which is also the data record 
for alternate-key value 123. 

Keyed-File Interface 11-125 



SKIP Call 

For Better Performance 

A skip call should be used for skipping a few records only, because 
each intervening record is read and counted, which increases execution 
time. A random read request takes less time than a lengthy skip 
request. 

• The $FILE_POSITION value after a SKIP call is always 16, 
end-of-record (or 8, end-of-key-list, if an alternate key is selected) unless 
the SKIP reaches a file boundary (nonfatal error AA1005). The $FILE_ 
POSITION value is then 1, beginning-of-information, or 64, 
end-of-information. 

• A SKIP reaches a file boundary only when it cannot skip the requested 
number of records in the requested direction. 

For example, suppose the primary key is selected and the file is 
positioned to read the third record (the $FILE_POSITION is 16): 

BOI..recordl .. record2 .. record3 .. EOI 
t 

If a SKIP skips backward two records, the SKIP does not reach a file 
boundary and the $FILE_POSITION value is still 16: 

BOI..recordl .. record2 .. record3 .. EOI 
t 

If the SKIP skips backward another record, it reaches the file boundary 
and the $FILE_POSITION value is 1. (The first record can be read 
from this position or the preceding position.) 

BOI..recordl .. record2 .. record3 .. EOI 
t 

A SKIP now skips forward three records and the $FILE_POSITION 
value is 16. 

BOI. .record 1 .. record2 .. record3 .. EOI 
t 

A read at this position or one more skip forward reaches the file 
boundary, and the $FILE_POSITION value is 64. 

BO I.. record 1 .. record2 .. record3 .. EOI 
t 

A skip backward one record positions the file to read the last record 
and the $FILE_POSITION value is 16. 

BOI..recordl .. record2 .. record3 .. EOI 

' 

11-126 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

SKIP Call 

• When a skip encounters the end-of-information, it returns a nonfatal 
error ($ERROR_STATUS value AM1260). When a skip encounters the 
beginning-of-information, it also returns a nonfatal error ($ERROR_ 
STATUS value AM1245). 

In either case, SKIP calls the DX procedure if one is specified in the 
FIT. 

If the program immediately calls SKIP again to skip in the same 
direction, SKIP calls the error-exit procedure (if one is specified in the 
FIT). 

• If the skip reaches a file boundary and cannot be completed, the 
$SKIP _COUNT value in the FIT is the number of records that could 
not he skipped. The number of records actually skipped can he 
calculated by subtracting the residual skip count from the requested 
skip count. 

Keyed-File Interface 11-127 



STARTM Call 

STARTM Call 

Purpose Positions a keyed file using the specified key value and key relation. 

Format CALL STARTM (fit, ka, kp, mkl, ex) 

Parameters (1) fit 

Remarks 

Variable containing the FIT ·pointer returned by the FILEIS or FILEDA 
call that created the FIT. 

(2) ka 

Key area (variable containing the key value used to position the file). 

(3) kp 

For CYBER 170 compatibility only. New programs should set this 
parameter to zero. 

(4) mkl 

For a fixed-length key, it is the length of the major key in bytes. A zero 
value indicates that the full key value is used. 

For a variable-length key, a nonzero value is required because it specifies 
the length, in bytes, of the specified key value. 

If the mkl value on the call is zero, the $MAJOR_KEY_LENGTH value 
in the FIT is used. However, the $MAJOR_KEY_LENGTH value is 
always reset to zero after any call with an mkl parameter. 

(5) ex 

Error-exit procedure name. 

$ERROR_STATUS Nonfatal: AA2000 -- key_not_found 
AA2095 -- no_da_or_sk_start 

Fatal: 

AA2615 -- non_ embedded_key _not_given 
AA2640 -- major_key_too_long 
AA2650 -- not_enough_permission 

AA3250 -- file_is_ruined 
AA3430 -- file_at_file_limit 

• A STARTM call requires read access to the file. 

• STARTM searches for the key value in the index of the selected key in 
the selected nested file only. 

A STARTM call is valid only when an index exists for the selected key. 
Thus, STARTM calls are invalid while the primary key of a direct 
access file is selected. An attempt returns the nonfatal error status 
AA2095. 

• If an alternate key has been selected and the key is a concatenated 
key, the values for the pieces of the concatenated key are assembled in 
the key area. The pieces must be concatenated in the key area in the 
order defined for the alternate key. 

For example, if the key is the last three bytes of the record followed by 
the first three bytes of the record, the value in the key area must be 
the value of last three bytes followed by the value of the first three 
bytes. 

11-128 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

STARTM Call 

• STARTM searches for the first key value that satisfies the relation 
specified l;>y the $KEY_RELATION value in the FIT. 

- If the relation is EQUAL_KEY and an equal key value does not 
exist in the file, STARTM returns a nonfatal error ($ERROR_ 
STATUS) value AA2000). The file is left positioned to read the next 
record (the record that would follow the specified record if it 
existed). 

- If the $KEY_RELATION value is GREATER_OR_EQUAL_KEY or 
GREATER_KEY and no key value in the file satisfies the relation, 
the data-exit (DX) procedure is called, if one is specified in the FIT. 
The file is left positioned at the end of information. 

• STARTM cannot return a file position of 1 (beginning of information). 
When the key value to be found is less than any key value in the file, 
STARTM returns a file position value of 8 or 16 (end of key list or end 
of record). 

• If the mkl value on the call or in the FIT is zero, the $MAJOR_KEY_ 
LENGTH value in the FIT is used. The $MAJOR_KEY_LENGTH 
value in the FIT is cleared after any call having an mkl parameter. 
For more information, see the $MAJOR_KEY_LENGTH FIT value 
description. 

A nonzero mkl value is required while a variable-length alternate key 
is selected. Otherwise, a nonzero value is specified only when a 
major-key search is to be used. 

• A STARTM call does not return a record to the working storage area. 

• When an alternate key is selected and a primary-key area is specified 
in a FIT, a STARTM call returns the primary-key value of the record 
at which the file is positioned. The value is returned in the 
primary-key area. 

Keyed-File Interface 11-129 



STOREF Call 

STOREF Call 

Purpose Stores a value in the FIT. 

Format CALL STOREF (fit, keyword, value) 

Parameters (1) fit 

Remarks 

Variable containing the FIT pointer returned by the call that created the 
FIT. 

(2) keyword 

Character expression specifying a FIT keyword. The keyword can he 
specified using uppercase and/or lowercase letters. 

(3) value 

FIT value to he stored for the preceding keyword. The applicable values 
are listed in the individual keyword description. Character values can he 
specified using uppercase and/or lowercase letters. 

• You can call STOREF any time after the FILEIS or FILED A call that 
returns FIT pointer. 

• If the keyword specified is an SCL keyword, the value must be an SCL 
value. Similarly, if the keyword is a CYBER 170 keyword, the value 
must he a CYBER 170 value. For more information, see the discussion 
of FIT Keywords under FIT Values Introduction later in this section. 

• To clear a FIT value, specify the keyword for the value and a 0 on a 
STOREF call. 

For example, suppose you previously specified a primary-key area, hut 
now no longer want any primary-key values returned. To prevent this, 
you clear the $PRIMARY_KEY_ADDRESS value as follows: 

CALL STOREF(fit, '$PRIMARY_KEY_ADDRESS', 0) 

• Preserved file attribute values cannot he changed after the file has 
been first opened. These include: 

$EMBEDDED_KEY 

$FILE_ ORGANIZATION 

$KEY_LENGTH 

$KEY_POSITION 

$KEY_ TYPE 

$MAXIMUM_BLOCK_LENGTH 

$MAXIMUM_RECORD_LENGTH 

$MINIMUM_RECORD_LENGTH 

$RECORD_ TYPE 

Specifying a value for $KEY_LENGTH or $KEY_POSITION after the 
file is first opened does not change the preserved attributes (the 
primary key length and position). Instead, the $KEY_LENGTH and 
$KEY_POSITION values can be used to select an alternate key or to 
specify the sparse-key control position for an RMKDEF call. 

11-130 FORTRAN Version 1 Language Definition Usage Revision H 



Examples 

Revision H 

STOREF Call 

This call specifies that the key value is to be returned in the variable 
RETKEY. (RETKEY should be in a common block.) 

CALL STOREF(fit, '$KEY_ADDRESS', retkey) 

This call specifies the primary-key starting position as the beginning of the 
record. 

CALL STOREF(fit, '$KEY_POSITION', 0) 

This call clears the error-exit procedure specification. 

CALL STOREF(fit, '$ERROR_EXIT_PROCEDURE', 0) 

Keyed-File Interface 11-131 



UNLOCKF Call 

UNLOCKF Call 

Purpose Clears a file lock for the currently selected nested file. 

Format UNLOCKF CALL (fit) 

Parameters (1) fit 

Remarks 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call. It specifies the instance of open whose file lock is to be cleared. 

• An UNLOCKF call clears only the file lock for the nested file specified 
by the $NESTED_FILE_NAME value in the FIT. It clears only the 
lock belonging to the instance of open. 

An UNLOCKF call clears only one nested file lock. It does not clear 
any other file locks or any key-value locks. To clear individual 
key-value locks or all locks, use UNLOCKK. 

• If no lock exists for the specified instance of open, UNLOCKF returns 
the nonfatal $ERROR_STATUS value AA2090. 

• When a lock expires, the task must clear the lock before it can perform 
any more operations on the instance of open. To clear all locks 
belonging to the instance of open (both file and key locks), call 
UNLOCKK with the 'ALL' parameter value specified. 

To read about lock expiration, see Lock Expiration and Clearing earlier 
in this section. 

11-132 FORTRAN Version 1 Language Definition Usage Revision H 



UNLOCKK Call 

UNLOCKK Call 

Purpose Clears either a single key-value lock or all locks for the currently selected 
nested file. 

Format CALL UNLOCKK (fit, ka, 'ALL') 

Parameters (1) fit 

Remarks 

Revision H 

Variable containing the FIT pointer returned by the FILEIS or FILEDA 
call. 

$ERROR_ STATUS Nonfatal: AA2805 -- key_ expired_ lock_ exists 
AA2850 -- key_last_exp_unlocked 
AA2855 -- key _non_last_exp_ unlocked 

(2) ka 

Key area (location containing the primary-key value to be unlocked). 
Specify 0 for this parameter if 'ALL' is specified. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

'ALL' 

Requests clearing of all locks for this instance of open. If you specify 'ALL' 
as the third parmeter value, specify 0 for the second parameter (ka) value. 

$ERROR_ STATUS Nonfatal: AA2125 -- incompatible_ unlocking 
AA2805 -- key _expired_lock_exists 
AA2850 -- key_last_exp_unlocked 
AA2855 -- key_non_last_exp_unlocked 

• An UNLOCKK call performs one of two operations depending on 
whether the third parameter value ('ALL') is specified: 

- If 'ALL' is specified, UNLOCKK clears all locks for the currently 
selected nested file (both the file lock, if any, and all key-value 
locks, if any). 

- If 'ALL' is omitted, UNLOCKK clears only the lock for the 
primary-key value at the specified key location (ka). 

• A key value lock can be cleared without an UNLOCKK call: 

- It is cleared when the instance of open is closed. 

- If automatic unlock was requested for the lock, it is cleared when 
the task issues another call for the instance of open (other than an 
IFETCH or STOREF). (The lock is unlocked even if the request 
fails.) 

Keyed-File Interface 11-133 



UNLOCKK Call 

Examples 

NOTE 

Do not call UNLOCKK to clear a key-value lock requested with 
automatic unlock. Such a call would first perform the automatic unlock 
and then the UNLOCKK operation. The second unlock operation would 
find no lock on the key value and issue the nonfatal error status 
AA2090. 

• When 'ALL' is specified and no locks exist for the nested file, no error 
is returned. However, if 'ALL' is omitted and the instance of open does 
not own a lock on the key value, UNLOCKK returns the nonfatal 
$ERROR_STATUS value AA2090. 

• When a lock expires, the task must clear the expired lock before it can 
perform any more operations on the instance of open. 

The task is notified that a lock has expired by the status returned by 
the next operation attempted. However, it is not notified as to which 
lock has expired. 

When notified that an expired lock exists, the task can either clear all 
locks or clear each lock individually. It can clear all locks by calling 
UNLOCKK with the 'ALL' option. An UNLOCKF call clears an 
individual file lock; UNLOCKK calls can clear individual key locks. 

While an expired lock exists, UNLOCKK calls that specify a key value 
return one of these nonfatal status values: 

AA2820 

The request fails because an ~xpired lock exists. (You cannot unlock 
an unexpired lock while an expired lock exists.) 

AA2855 

This lock has expired and is cleared, but one or more additional 
expired locks exist. 

AA2850 

This lock has expired and is cleared, and no more expired locks 
exist. 

• To read about lock expiration, see Lock Expiration and Clearing earlier 
in this section. 

This call clears the lock on the key value in the variable specified by the 
$KEY_ADDRESS value in the FIT: 

CALL UNLOCKK (fit) 

This call clears the lock on the key value in variable KEYl (and stores 
KEYl as the $KEY_ADDRESS in the FIT): 

CALL UNLOCKK (fit, key1) 

This call clears all key-value and file locks for the currently selected 
nested file. 

CALL UNLOCKK (fit, 0, 'ALL') 

11-134 FORTRAN Version 1 Language Definition Usage Revision H 



FIT Values 

FIT Values 

These are the keywords used to store and fetch FIT values. Most keywords have a 
$-prefixed SCL form, a $-prefixed SCL abbreviation form, and a CYBER 170 FORTRAN 
5 form. (With a few exceptions, the FORTRAN 5 keywords are the same keywords used 
with AAM 2 in a FORTRAN 5 program.) 

SCL 
SCL Keyword Abbreviation CYBER 170 Keyword 

$ACCESS_ MODE $AM PD 
$AUTOMATIC_ UNLOCK $AU AU 
$AVERAGE_RECORD_LENGTH $ARL ARL 
$COLLATE_ TABLE $CT DCT 
$COLLATE_TABLE_NAME $CTN CTN 
$COMPRESSION _PROCEDURE_ $CPN CPN 
NAME 
$DATA_ PADDING $DP DP 

DX 
$EMBEDDED_KEY $EK EMK 
$ERROR_ COUNT $EC ECT 
$ERROR_EXIT_NAME $EEN EXN 
$ERROR_EXIT_PROCEDURE $EEP EX 
$ERROR_ LIMIT $EL ERL 
$ERROR_ STATUS $ES ES 
$ESTIMATED_RECORD_COUNT $ERC ERC 

FNF 
$FILE_IDENTIFIER $FI 
$FILE_ ORGANIZATION $FO FO 
$FILE_POSITION $FP FP 
$FORCED_ WRITE $FW FWI 
$GET_AND_LOCK $GAL GAL 
$HASHING_PROCEDURE_NAME $HPN HPN 
$INDEX_ LEVELS $IL NL 
$INDEX_ PADDING $IP IP 
$1NITIAL_HOME_BLOCK_COUNT $1HBC HMB 
$KEY_ADDRESS $KA KA 
$KEY_LENGTH $KL KL 
$KEY_NAME $KN KN 
$KEY_POSITION $KP RKP 
$KEY_RELATION $KR REL 
$KEY_ TYPE $KT KT 
$LAST_ OPERATION $LO LOP 
$LOCAL_FILE_NAME $LFN LFN 
$LOCK_EXPIRATION _TIME $LET LET 
$LOCK_ INTENT $LI LI 
$LOG _RESIDENCE $LR LR 
$LOGGING_ OPTIONS 
$MAJOR_KEY_LENGTH $MKL MKL 
$MAXIMUM_ BLOCK_ LENGTH $MAXBL MBL 
$MAXIMUM_RECORD_LENGTH $MAXRL MRL 
$MESSAGE_CONTROL $MC DFC 

Revision H Keyed-File Interface 11-135 



FIT Value Introduction 

SCL Keyword 

$MINIMUM_RECORD_LENGTH 
$NESTED_FILE_NAME 

$OPEN _POSITION 
$PRIMARY_ KEY_ ADDRESS 

$RECORD_LIMIT 
$RECORD_ TYPE 
$RECORDS_ PER_ BLOCK 

I ~~~~§~g:g:=t:~~TH 
FIT Value· Introduction 

SCL 
Abbreviation 

$MINRL 
$NFN 

$OP 
$PKA 

$RL 
$RT 
$RPB 

$SC 
$WFL 
$WSA 
$WSL 

CYBER 170 Keyword 

MNR 
NFN 
oc 
ON 
OF 
PKA 
RL 
FLM 
RT 
RPB 
RKW 
SKP 
WFL 
WSA 
WSL 

Some FIT values are file attributes; others are kept or used only by the FORTRAN 
keyed-file interface. 

The FORTRAN interface values include the parameter values specified on keyed-file 
interface calls. If a value has not been stored for the parameter, the parameter value 
is . initialized to 0 when the file is opened. 

Unless indicated otherwise in the FIT value description, a parameter value specified on 
a call is stored in the FIT. The stored value becomes the value for that parameter 
until another value is specified for the parameter. 

Other FIT values correspond to NOSNE file attributes used outside the FORTRAN 
program. When the file is opened, these values are set as follows: 

1. The attribute value specified on a SET_FILE_ATTRIBUTES command (if any). 

2. For existing files, the attribute value stored with the file. 

3. The attribute value specified by the FILEIS or FILEDA call or a STOREF call 
before the open. 

4. The default value for the attribute. 

NOSNE file attributes fall into three ·categories: returned attributes, temporary 
attributes, and preserved attributes. 

• Returned attributes are attributes whose values cannot be specified but can be 
fetched; 

• Temporary attributes are attributes that are not stored with the file and may be 
changed each time the file is opened. 

11-136 FORTRAN Version 1 Language Definition Usage Revision H 



FIT Value Introduction 

• Preserved attributes are attributes that are stored with the file when it is first 
opened and are preserved for the lifetime of the file. 

In general, you cannot change a preserved file attribute after the file has been first 
opened. However, you can specify a preserved file attribute value in the FIT of an 
existing file to verify that the correct file is being used. For example, if you set the 
file_organization value to indexed-sequential in the FIT, the OPENM call checks that 
the preserved file_organization attribute is indexed-sequential. If it is not, OPENM 
returns an error. 

FIT Keywords 

To specify or fetch a FIT value, you specify the keyword for that value. Most of the 
FIT value keywords have three forms: an SCL name, an SCL abbreviation, and a 
CYBER 170 abbreviation. 

In general, the SCL names and abbreviations are the same as those used by the SCL 
command SET_FILE_ATTRIBUTES, except that they have a dollar sign ($) prefix. The 
CYBER 170 abbreviations are identical to those used with CYBER 170 AAM 2 in 
FORTRAN 5 programs. 

FIT keywords and character values can be specified using uppercase and/or lowercase 
letters. 

FIT Value Forms 

In some cases, two sets of values are defined for a keyword. The set of SCL values can 
be used only with the SCL keyword or abbreviation, and the set of CYBER 170 values 
can be used only with the CYBER 170 keyword. 

For example, the following three STOREF calls are equivalent. The first call uses the 
SCL keyword, the second call uses the SCL abbreviation, and the third call uses the 
CYBER 170 keyword. 

CALL STOREF (AFIT, '$ACCESS_MODE', 'READ') 
CALL STOREF (AFIT, '$AM', 'R') 
CALL STOREF (AFIT, 'PD', 'INPUT') 

In a value description, a Value Specified subsection describes the value you specify on 
a STOREF call. A Value Returned subsection describes the value returned by an 
!FETCH call. 

Revision H Keyed-File Interface 11-137 



$ACCESS_MODE ($AM or PD) 

$ACCESS_MODE ($AM or PD) 

Purpose Set of access modes allowed for this instance of open (temporary attribute). 

For an existing file, all modes in the set must be in the usage mode set 
specified when you attached the file. 

Input SCL values (values specified with the $ACCESS_MODE or $AM keywords). 
(More than one mode may be specified.) 

Output 

'READ' 

Read access 

'APPEND' 

Append access 

'SHORTEN' 

Shorten access 

'MODIFY' 

Modify permission (file statistics are kept) 

CYBER 170 values (values specified with the PD keyword) 

'INPUT' 

Read access (file statistics are not kept) 

'OUTPUT' 

Modify, shorten, and append access 

'1-0' or 'IO' 

Read, modify, shorten, and append access 

'NEW' 

Same as 'IO'. Specify 'NEW' only when creating a new file; it sets the 
old/new (ON) flag to 'NEW' 

Integer as follows: 

1 Read access only (file statistics are not kept) 
2 Modify, shorten, and append access 
3 Read, modify, shorten, and append access 
4 Modify access only 
5 Append access only 
6 Shorten access only 
7 Read and modify access 
8 Read and append access 
9 Read and shorten access 
10 Modify and shorten access 
11 Modify and append access 
12 Shorten and append access 
13 Read, modify, and shorten access 
14 Read, modify, and append access 
15 Read, shorten, and append access 

11-138 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

$ACCESS_MODE ($AM or PD) 

• Default: Read permission only ('INPUT'). 

• These are the access modes to the keyed file required for each call. 

Call Access Modes 

CLOSEM None 
DLTE Append, shorten, and modify 
FILEDA None 
FILEIS None 
FLUSHM Append, shorten, or modify 
GET Read1 

GETN Read1 

!FETCH None 
KEYLIST Read 
KLCOUNT Read 
KLSPACE Read 
LOCKF Anyl 
LOCKK Any1 

OPE NM Any 
PUT Append2 

PUTREP Append and shorten2 

REPLC Append and shorten2 

REWND Any 
RMKDEF Append, shorten, and modify 
RSBUILD Read 
RSGETN Read 
SKIP Any 
STARTM Read 
STOREF None 
UNLOCKF Any 
UNLOCKK Any 
1 If an Exclusive_Access lock is requested, shorten or append access is 
required. 

2If one or more alternate keys are defined in the file, append, shorten, 
and modify access modes are required to update the alternate indexes. 

• You can specify two or more values by enclosing the values in a single 
pair of apostrophes and separating the values with a comma. 

NOTE 

No spaces can separate the values, only a comma. 

For example, the following STOREF call specifies read and modify 
·access: 

CALL STOREF (f1t, '$AM', 'READ,MODIFY') 

• Specifying a string of blanks requests no access modes. But, if you 
request no access modes, you cannot open the file. 

• Although you can store another $ACCESS_MODE value while the file 
is open, the new value does not take effect until the next open. 

Keyed-File Interface 11-139 



$AUTOMATIC_UNLOCK ($AU or AU) 

$AUTOMATIC_ UNLOCK ($AU or AU) 

Purpose 

Input 

Output 

Remarks 

Indicates whether a lock should be cleared automatically (used when a lock 
is requested). 

One of these strings: 

'TRUE' or 'T' or 'YES' or 'Y' or 'ON' 

The lock is cleared when the task issues a request for the instance of 
open (other than an !FETCH or STOREF call). 

'FALSE' or 'F' or 'NO' or 'N' or 'OFF' 

The lock is not cleared automatically. The lock is cleared by an 
UNLOCK call for the key value or when the instance of open closes. 

One of these int~gers: 

-1 Automatic unlock is requested (YES). 

0 Automatic unlock is not requested (NO). 

• Default: YES (the lock is cleared automatically). 

• This FIT value may be used by LOCKK, GET, and GETN calls as 
follows: 

- Used by LOCKK if the au parameter is omitted from the call. 

- Used when a GET or GETN call requests a lock, that is, when the 
FIT value $GET_AND_LOCK is YES (-1). 

NOTE 

Automatic unlock cannot be used with Preserve_ Content lock intent. 

• For an update request for the locked record, the automatic unlock does 
not occur until the operation completes. For all other requests, the 
automatic unlock occurs as soon as the request is issued. 

11-140 FORTRAN Version 1 Language Definition Usage Revision H 



$AVERAGE_RECORD_LENGTH ($ARL or ARL) 

$AVERAGE_RECORD_LENGTH ($ARL or ARL) 

Purpose 

Input 

Remarks 

Revision H 

Estimated median record length, in bytes, of the data records to be stored 
in the file. (The length should not include the primary-key length if the 
primary key is nonembedded.) 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute value 
is not preserved with the file because it is used only when the file is 
opened for the first time. 

Integer from 1 through 65497. 

• Default: None. If the FIT value is zero when a new file is opened, 
NOSNE uses the arithmetic mean of the minimum and maximum 
record lengths as the average record length when selecting the block 
size for the new file. 

• When the file contains variable-length records, you should choose the 
average record length value as follows: 

- If almost all records in the file are nearly the same length, use that 
length. 

- If the record lengths are well-distributed, use the median record 
length. 

Keyed-File Interface 11-141 



$COLLATE_ TABLE ($CT or DCT) 

$COLLATE_ TABLE ($CT or DCT) 

Purpose 

Input 

Output 

Remarks 

Variable defining the collation table for the primary key. 

The value is used only when a new file is opened for the first time; it is 
not preserved with the file. 

Name of a 256-character variable (CHARACTER*256). Each character in 
the variable is the collating weight for the corresponding ASCII character. 
(For example, the first character in the variable is the collating weight for 
the first ASCII character [code 00] .) 

A program should not fetch the $COLLATE_TABLE value from the FIT. It 
is stored as an address which the program cannot use. 

• Default: None. A collation table must be specified if the primary key 
type is collated. The collation table can be specified by the 
$COLLATE_ TABLE or $COLLATE_ TABLE_NAME value. 

• OPENM copies the table from the variable to the internal entry point 
AAV$DCT. It then stores AAV$DCT as the collation table name and the 
collation table at AAV$DCT as the collation table for the new file. 

11-142 FORTRAN Version 1 Language Definition Usage Revision H 



$COLLATE_ TABLE_NAME ($CTN or CTN) 

$COLLATE_ TABLE _NAME ($CTN or CTN) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Collation table for the primary key specified as the name of an entry point 
(preserved attribute). The value is used only when a new file is opened for 
the first time. 

String of up to 31 characters specifying the entry point name. 

The first 8 characters of the entry point name, left-justified, blank-filled 
(returned using uppercase letters even if the name was specified using 
lowercase letters). g 

• Default: None. A collation table must be specified if the primary-key 
type is collated. The collation table can be specified by the 
$COLLATE_ TABLE or $COLLATE_ TABLE_NAME value. 

• The collation table can be one of the NOSNE predefined collation 
tables. The predefined collation tables are listed in appendix B. 

• The COLSEQ routine can be used to create a table named · 
FTV$USER_COLLATE_ TABLE which can be specified as the 
$COLLATE_ TABLE_NAME. For information on creating a collation 
table, see appendix H. 

• The entry point can be in a module already loaded with the FORTRAN 
program or in a module in an object library in the program-library list. 
For a module to be loaded from an object library, it must be in the 
program-library list. For more information, see the SCL Object Code 
Management manual. 

Keyed-File Interface 11-143 



$COMPRESSION_PROCEDURE_NAME ($CPN or CPN) 

$COMPRESSION_PROCEDURE_NAME ($CPN or CPN) 

Purpose 

Input 

Output 

Remarks 

Name of the data compression or encryption procedure (preserved 
attribute). 

String of up to 31 characters specifying an entry point name in an object 
library in the current program library list. 

The name must be enclosed in apostrophes ('name'). 

First 8 characters of the entry point name (letters are returned as 
uppercase letters even if specified as lowercase letters). 

• Default: None. Unless a procedure is specified when the file is created, 
no compression procedure is used. 

o This FIT value can be specified only before the file is opened for the 
first time. The value is stored as a preserved attribute when the file is 
first opened. 

o The compression procedure is not stored with the file. It must be loaded 
each time the file is opened. Therefore, the object library containing the 
compression procedure must be in the program library list. 

For example, this command adds a library to the library list: 

set_program_attributes, add_l1brary=$user.my_obj_library 

o A compression procedure name AMP$RECORD_COMPRESSION is 
provided with the system. It compresses strings of consecutive ASCII 
spaces, ASCII zeros, binary zeros, and nulls. 

When records are fetched from the file, AMP$RECORD_ 
COMPRESSION decompresses the record data to its original length and 
content. 

(The system-defined procedure is on a system library so you do not 
need to add it to your program library list.) 

• Usually a compression procedure individually processes each byte of 
data for each record operation. This significantly increases the time 
required for each record operation. Therefore, you should specify a 
compression procedure only when the special processing it performs is 
worth the extra processing time. 

• If you specify a compression procedure, you should consider its effect 
when specifying the file structure attributes. If you specify an 
$AVERAGE_RECORD_LENGTH value, it should be the average record 
length after data compression. Similarly, when creating a direct-access 
file, you should choose the INITIAL_HOME_BLOCK_COUNT value 
based on the size of the compressed file data. 

• User-defined compression procedures can be written, but the procedures 
may be written in the CYBIL language only. For more information, see 
the CYBIL Keyed-File and Sort/Merge Ip.terfaces manual. 

11-144 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

$COMPRESSION_PROCEDURE_NAME ($CPN or CPN) 

• The NOSNE compression procedure performs both compression and 
decompression, unlike CYBER 170 AAM 2 for which a compression 
routine (CPA) and a decompression routine (DCA) are required. 

Also, the primary-key field can be anywhere in the record. For 
compression on the CYBER 170, the primary key had to begin the 
record. 

Keyed-File Interface 11-145 



$DATA_PADDING ($DP or DP) 

$DATA_PADDING ($DP or DP) 

Purpose 

Input 

Remarks 

Percentage of block space left empty as each data block is created during 
the first instance of open of an indexed-sequential file (preserved attribute). 

Integer from 0 through 99. The padding percentage must allow at least one 
maximum-length record to be written to each block. 

• Default: 0 (no data block padding). 

11-146 FORTRAN Version 1 Language Definition Usage Revision H 



Data Exit Procedure (DX) 

Data Exit Procedure (DX) 

Purpose 

Input 

Output 

Remarks 

Revision H 

End-of-data exit procedure. 

Name of a subroutine that is declared as EXTERNAL. 

A FORTRAN program should not fetch the DX value from the FIT. It is 
stored as an address which the program cannot use. 

• Default: None. 

• The DX FIT value is provided for CYBER 170 FORTRAN compatibility. 
No SCL keyword is defined for the value. 

• If a DX value has been stored in the FIT, a GETN or SKIP call calls 
the specified subroutine when the GETN or SKIP call encounters the 
beginning-of-information or end-of-information. 

• The data-exit routine can determine whether the file is at its BOI or 
EOI by fetching the $FILE_POSITION value. 

Keyed-File Interface 11-147 



$EMBEDDED_KEY ($EK or EMK) 

$EMBEDDED _KEY ($EK or EMK) 

Purpose 

Input 

Output 

Remarks 

Indicates whether the primary key is embedded or nonembedded (preserved 
attribute). 

SCL values (specified with $EMBEDDED_KEY or $EK) 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

Embedded key. (The key value is part of the record data.) 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

Nonembedded key. (The key value is separate from the record data.) 

CYBER 170 values (specified with EMK) 

'YES' 

Embedded key. (The key value is part of the record data.) 

'NO' 

Nonembedded key. (The key value is separate from the record data.) 

Integer as follows: 

-1 Embedded key. (The key value is part of the record data.) 

0 Nonembedded key. (The key value is separate from the record data.) 

Default: Embedded key. 

11-148 FORTRAN Version 1 Language Definition Usage Revision H 



$ERROR_COUNT ($EC or ECT) 

$ERROR_COUNT ($EC or ECT) 

Purpose 

Output 

Remarks 

Revision H 

Number of trivial (nonfatal) errors that have been returned by keyed-file 
interface calls since the OPENM call. 

Integer. The value is limited by a nonzero $ERROR_LIMIT value. 

• Default: Initialized to 0 when the file is opened. 

• This attribute can be fetched only while the file is open. 

Keyed-File Interface 11-149 



$ERROR_EXIT_PROCEDURE_NAME or $ERROR_EXIT_NAME ($EEPN, $EEN or EXN) 

$ERROR_EXIT_PROCEDURE_NAME or $ERROR_EXIT_NAME 
($EEPN, $EEN or EXN) 

Purpose 

Input 

Output 

Remarks 

Error-exit procedure specified as an entry point (temporary attribute). 

String of up to 31 characters specifying the entry point name. The name 
must be enclosed in apostrophes ('name'). 

The first 8 characters of the entry point name, left-justified, blank-filled 
(returned using uppercase letters even if the name was specified using 
lowercase letters). 

• Default: None. If you do not specify a name before opening the file, the 
system does not load an error-exit procedure. 

o The error-exit entry point may be an entry point already loaded with 
the program or an entry point in an object library. For a module to be 
loaded from an object library, it must be in the program library list. 
For more information on program libraries and the SET_PROGRAM_ 
ATTRIBUTES command, see the SCL Object Code Management manual. 

• You can clear the $ERROR_EXIT_PROCEDURE_NAME value by 
calling STOREF with a string of blanks. For example: 

CALL STOREF (fit, '$ERROR_EXIT_PROCEDURE_NAME', ' ') 

o The OPENM call gets the address of the $ERROR_EXIT_ 
PROCEDURE_NAME procedure and stores it as the $ERROR_EXIT_ 
PROCEDURE value in the FIT. Therefore, if you specify two error-exit 
procedures before opening the file: one using the $ERROR_EXIT_ 
PROCEDURE_NAME keyword and the other, the $ERROR_EXIT_ 
PROCEDURE keyword, the procedure specified using $ERROR_EXIT_ 
PROCEDURE_NAME is used. 

• Storing an $ERROR_EXIT_PROCEDURE_NAME value after the file 
is open has no effect; the value is used only if the file is re-opened 
using the same FIT. 

To change the error-exit procedure for the current open, specify an 
error-exit procedure parameter on a keyed-file interface call or specify 
the $ERROR_EXIT_PROCEDURE value on a STOREF call. 

11-150 FORTRAN Version 1 Language Definition Usage Revision H 



$ERROR_EXIT_PROCEDURE ($EEP or EX) 

$ERROR_EXIT_PROCEDURE ($EEP or EX) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Error-exit procedure specified as a subroutine name (parameter). 

Name of a subroutine that is declared as EXTERNAL in the calling 
program. 

A program should not fetch the $ERROR_EXIT_PROCEDURE value from 
the FIT. It is stored as an address which the program cannot use. 

• Default: None. The error-exit procedure specified by the ERROR_ 
EXIT_PROCEDURE_NAME attribute before the file was opened (if 
any) is used. 

• Specifying a value using the $ERROR_EXIT_PROCEDURE keyword 
changes the effective error-exit procedure immediately. (Specifying a 
value using the $ERROR_EXIT_PROCEDURE_NAME keyword 
changes the procedure only when the file is opened.) 

• A nonzero value specified with the $ERROR_EXIT_PROCEDURE 
keyword is stored as the default error-exit procedure value in the FIT. 
It becomes the default eep parameter value until another eep value is 
specified on a call. 

• To clear the $ERROR_EXIT_PROCEDURE value, call STOREF to 
store a value of zero as the $ERROR_EXIT_PROCEDURE value. 

Keyed-File Interface 11-151 



$ERROR_LIMIT ($EL or ERL) 

$ERROR_LIMIT ($EL or ERL) 

Purpose 

Input 

Remarks 

Nonfatal (trivial) error limit (temporary attribute). When the limit is 
reached, a fatal error is returned. 

Integer between 0 and 65535. 0 allows unlimited trivial errors. 

• Default: 0 (no limit). 

• ERROR_LIMIT is compared to ERROR_COUNT to determine when the 
error limit has been reached. For more information on error processing, 
see the earlier subsection, Keyed-File Interface Error Processing. 

11-152 FORTRAN Version 1 Language Definition Usage Revision H 



$ERROR_STATUS ($ES or ES) 

$ERROR_STATUS ($ES or ES) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Error status code returned by the previous keyed-file interface call. 

Integer. (Specifying a value does not affect the value returned in the field.) 

Integer status condition code. A zero value indicates the previous keyed-file 
interface call completed successfully, without error. 

The condition code for an abnormal status consists of the two-byte product 
identifier (such as AA or AM) and a three-byte value specifying the 
particular error condition for that product. 

To reference an AA condition code, you should define a statement function 
in your program such as the following: 

INTEGER AA 
AA(i) = 256**3 * (256 * ichar('A') + ichar('A')) + i 

To reference a AM condition code, you should define a statement function 
in your program such as the following: 

INTEGER AM 
AM(i) = 256**3 * (256 * 1char('A') + ichar('M')) + i 

To reference the error status values AA3230 and AMOIOO, your program 
would reference the AA and AM functions as follows: 

number = IFETCH(fit, 'ES') 
IF (number .EQ. AA(3230)) 
THEN 

C process AA3230 error 
ELSEIF (number .EQ. AM(0100)) 
THEN 

C process AM0100 error 
END IF 

• Default: Initialized to 0 before each keyed-file interface call. 

• If an error-exit procedure has not been specified, the program should 
fetch the error status value after each keyed-file interface call. A 
nonzero value returned indicates that the call did not complete 
successfully. 

• The Diagnostic Messages for NOSNE manual lists the meaning of each 
status condition code. 

Keyed-File Interface 11-153 



ESTIMATED_RECORD_COUNT ($ERC or ERC) 

ESTIMATED_RECORD_COUNT ($ERC or ERC) 

Purpose 

Input 

Remarks 

Estimated number of data records to be stored in the file. 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute value 
is not preserved with the file because it is used only when the file is 
opened for the first time. 

Integer from 1 through 4398046511103 (2**42 - 1). 

• Default: The $RECORD_LIMIT value if specified. If no $RECORD_ 
LIMIT value is specified, an estimate of 100,000 records is used. 

11-154 FORTRAN Version 1 Language Definition Usage Revision H 



Fatal/Nonfatal Flag (FNF) 

Fatal/Nonfatal Flag (FNF) 

Purpose 

Input 

Remarks 

Revision H 

Indicates whether the severity of the last error for the file is fatal or 
nonfatal. 

Integer values as follows: 

0 The error severity is nonfatal (trivial). 

-1 The error severity is fatal. 

This value is not defined outside the FORTRAN keyed-file interface. No 
SCL keyword or SCL abbreviation is defined for the FIT value. 

Keyed-File Interface 11-155 



$FILE_IDENTIFIER ($Fl) 

$FILE _IDENTIFIER ($Fl) 

Purpose 

Output 

Remarks 

Returns the CYBIL file identifier for the current open of the file. 

Integer. 

• An IFETCH call can fetch the file identifier only while the file is open. 
The file identifier cannot be fetched before the OPENM call or after the 
CLOSEM call. 

o A FORTRAN program fetches the file identifier so that it can pass it 
to a CYBIL procedure. The CYBIL procedure requires the file identifier 
so that it can issue file interface calls for the open file. 

• To receive the file identifier value as a parameter, a CYBIL procedure 
declaration specifies a VAR declaration of type AMT$FILE_ 
IDENTIFIER. For example: 

PROCEDURE cybil_proc (VAR fi: amt$file_identifier); 

• The CYBIL procedure must not close a file opened in the FORTRAN 
program. A file opened by an OPENM call must be closed by a 
CLOSEM call (or by program termination). Otherwise, the results of the 
file operations are undefined. 

• File interface calls made outside the FORTRAN program do not update 
the FIT. The CYBIL subprogram should not call AMP$STORE to 
change file attribute values because the changed values are not copied 
to the FIT. Subsequent calls to IFETCH would then return out-of-date 
information. 

11-156 FORTRAN Version 1 Language Definition Usage Revision H 



$FILE_ORGANIZATION ($FO or FO) 

$FILE_ORGANIZATION ($FO or FO) 

Purpose 

Input 

Output 

Remarks 

Revision H 

File organization (preserved attribute). (The file organization determines 
the method of storing and accessing file data.) 

SCL value (specified with $FILE_ORGANIZATION or $FO) 

'INDEXED_SEQUENTIAL' or 'IS' 

Indexed-sequential file organization 

'DIRECT_ACCESS' or 'DA' 

Direct access file organization 

CYBER 170 value (specified with FO) 

'IS' 

Indexed-sequential file organization 

'DA' 

Direct access file organization 

Integer as follows: 

3 Indexed-sequential file organization 

5 Direct access file organization 

• Default: Set by the call that created the FIT. FILEIS sets the file 
organization to indexed-sequential; FILEDA sets the file organization to 
direct access. 

Keyed-File Interface 11-157 



$FILE_POSITION ($FP or FP) 

$FILE_POSITION ($FP or FP) 

Purpose 

Input 

Remarks 

Indicates the position of the file after the last keyed-file interface call 
(returned attribute). 

One of the following integers: 

1 File is positioned at the beginning-of-information (BOI). 

8 File is positioned at the end of a key list (returned only if an alternate 
key is currently selected). 

16 File is positioned at the end of a record (EOR), but not at the end of a 
key list. 

64 File is positioned at the end-of-information (EOI). 

When the file is opened, but before any records are processed, $FILE_ 
POSITION has the same value as $0PEN_POSITION. The default 
$OPEN _POSITION value is $BOI. 

11-158 FORTRAN Version 1 Language Definition Usage Revision H 



$FORCED_ WRITE ($FW or FWI) 

$FORCED_ WRITE ($FW or FWI) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Indicates when modified blocks of the file are to be written to mass 
storage (preserved attribute). 

SCL values (specified with $FORCED_ WRITE or $FW) 

'TRUE' or 'T' or 'YES' or 'Y' or 'ON' 

The system writes each modified block to mass storage immediately 
after the modification. 

'FORCED_IF_STRUCTURE_CHANGE' or 'FISC' 

The system writes modified blocks to mass storage immediately if the 
change affects more than one block. 

'FALSE' or 'F' or 'NO' or 'N' or 'OFF' 

The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a mass-storage 
backup copy. 

CYBER 170 values (specified with FWI) 

'YES' 

The system writes each modified block to mass storage immediately 
after the modification. 

'NO' 

The system writes modified blocks to mass storage immediately if the 
change affects more than one block. 

'UNFORCED' 

The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a mass-storage 
backup copy. 

Integer as follows: 

-1 The system writes each modified block to mass storage immediately 
after the modification (TRUE). 

0 The system writes modified blocks to mass storage immediately if the 
change affects more than one block (FORCED_IF _STRUCTURE_ 
CHANGE). 

+ 1 The system determines when modified blocks are copied to mass 
storage. Modified blocks can remain in memory without a 
mass-storage backup copy (FALSE). 

• Default: FALSE. (The system determines when modified blocks are 
copied to mass storage. Modified blocks can remain in memory without 
a mass-storage backup copy.) 

• You can request that the entire file be copied to disk by calling 
FLUSHM. FLUSHM copies internal tables as well as data and index 
blocks. (A $FORCED_ WRITE copy does not copy internal tables.) 

Keyed-File Interface 11-U59 



$FORCED_ WRITE ($FW or FWI) 

• If the file could be shared and the $FORCED_ WRITE value is either 
-1 or 0, the block size of the file should be a multiple of the system 
page size. 

This ensures that multiple opens are not updating blocks in the same 
page. Otherwise, a forced-write operation could write a page that 
contains partially-altered blocks. (A warning message is issued if this 
possibility exists.) 

11-160 FORTRAN Version 1 L~ngunge Definition Usage Revision H 



$GET_AND_LOCK ($GAL or GAL) 

$GET_AND_LOCK ($GAL or GAL) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Indicates whether a GET or GETN call issues a lock request for the key 
value before reading the record. 

One of these strings: 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

A GET or GETN call requests a lock. 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

A GET or GETN call does not request a lock. 

One of these integers: 

-1 A GET or GETN call requests a lock (YES). 

0 A GET or GETN call does not request a lock (NO). 

• Default: NO (a GET or GETN call does not request a lock). 

• These FIT values are used as parameter values for the lock if the 
$GET_AND_LOCK value is YES (-1): 

$AUTOMATIC_ UNLOCK 
$LOCK_INTENT 
$WAIT_ FOR_ LOCK 

Keyed-File Interface 11-161 



$HASHING_PROCEDURE_NAME ($HPN or HPN) 

$HASHING _PROCEDURE _NAME ($HPN or HPN) 

Purpose 

Input 

Output 

Remarks 

Name of the hashing procedure used to hash primary-key values for the 
direct access file (preserved attribute). 

String of up to 31 characters specifying an entry point name from an 
object library in the current program library list. The name must be 
enclosed in apostrophes ('name'). 

First 8 characters of the entry point name (letters are returned as 
uppercase letters even if specified as lowercase letters). 

• Default: AMP$SYSTEM_HASHING_PROCEDURE (the system default 
hashing procedure). 

• This FIT value can be specified only before the file is opened for the 
first time. The value is stored as a preserved attribute when the file is 
first opened. 

• A user-defined hashing procedure can be written in the CYBIL 
language only. For more information, see the CYBIL Keyed-File and 
Sort/Merge Interfaces manual. 

• The hashing procedue is not stored with the file. It must be loaded 
each time the file is opened. Thus, the object library containing the 
hashing procedure must be in the program library list. 

• Although any ring-attributes value is valid for the object library 
containing the ·hashing procedure, you should store the hashing 
procedure in a ring 4 object library. 

This improves performance because hashing procedures are executed as 
asynchronous tasks. (Usually, site personnel maintain the ring 4 object 
libraries.) 

• A hashing procedure can be specified by name only; it cannot be 
specified by address. (The CYBER 170 FIT value HRL is not 
supported.) 

11-162 FORTRAN Version 1 Language Definition Usage Revision H 



$INDEX_LEVELS ($1NDEX_LEVEL, $IL, or NL) 

$1NDEX_LEVELS ($1NDEX_LEVEL, $IL, or NL) 

Purpose 

Input 

Output 

Remarks 

Revision H 

For a new indexed-sequential file, the target number of index levels or, for 
an existing indexed-sequential file, the current number of index levels. 

Target number of index levels (integer from 0 through 15). The system 
uses this value as a guideline in its selection of the block size for a new 
file. 

Current number of index levels (integer from 0 through 15). (An empty file 
has 0 index levels.) 

• Default: For a new file, 2 index levels. 

• If specified before the file is created, NOSNE uses the INDEX_ 
LEVELS value when selecting the block size for a new file if the 
maximum block length for the file is not specified. The specified value 
is not preserved with the file because it is used only when the file is 
opened for the first time. 

• For an existing file, the value returned is the current number of levels 
of indexing in the indexed-sequential file. 

• The current number of index levels can be fetched only while the file is 
open. 

Keyed-File Interface 11-163 



$INDEX_PADDING ($IP or IP) 

$INDEX_PADDING ($IP or IP) 

Purpose 

Input 

Remarks 

Percentage of block space left empty in each index block created during 
the first instance of open of the file (preserved attribute). 

Integer from 0 to 99. The padding percentage must allow at least three 
index records to be written to the block. (The index record length is the 
primary key length plus 4 bytes.) 

• Default: 0 (no index block padding). 

11-164 FORTRAN Version 1 Language Definition Usage Revision H 



$INITIAL_HOME_BLOCK_COUNT ($1HBC or HMB) 

$INITIAL_HOME_BLOCK_COUNT ($1HBC or HMB) 

Purpose 

Input 

Remarks 

Revision H 

Number of home blocks in the direct access file (preserved attribute). 

Integer from 1 through 4387945511193 (2**42 - 1). 

• Default: None. You must specify a value for this attribute when 
defining a new direct access file. 

• This value specifies the number of blocks allocated for the new direct 
access file. The blocks should accommodate all records expected to be 
written to the file. The addition of more records would require 
allocation of overflow blocks, slowing access to the overflow records. 

• The initial_home_block_count should allow for a loading factor of no 
more than 90%. In other words, allocate ~t least 10% extra space in 
the file because the hashing procedure may not uniformly distribute 
records among the home blocks. 

• For best results, the initial_home_block_count should be a prime 
number. 

Keyed-File Interface 11-165 



$KEY_ADDRESS ($KA or KA) 

$KEY _ADDRESS ($KA or KA) 

Purpose 

Input 

Output 

Remarks 

Location of the key value, that is, the key area (parameter). 

Variable name. 

NOTE 

The key area should be in a common block. If it is not, your program 
could execute incorrectly after being compiled with high optimization. 

A FORTRAN program should not fetch the ka value from the FIT. It is 
stored as an address which the program cannot use. 

• A key address is required in these cases: 

- When a PUT call writes a record with a nonembedded key. 

- When a GET call reads a record by its primary-key value. 

- For any STARTM or LOCKK call. 

• A key address is optional for a GET call when an alternate key is 
selected. GET reads the alternate-key value from the key address if a 
ka value is specified on the call or in the FIT. 

• The ka value in the FIT is used when 0 is specified as the ka 
parameter on a call. 

• If a keyed-file interface call specifies a ka value, the value is copied to 
the FIT. It becomes the default value for subsequent calls. 

11-166 FORTRAN Version 1 Language Definition Usage Revision H 



$KEY_LENGTH ($KL or KL) 

$KEY_LENGTH ($KL or KL) 

Purpose 

Input 

Remarks 

Revision H 

Key length (preserved attribute). It is the primary-key length for a new 
file. For an existing file, it is the key length when selecting a key by 
position and length. 

For an embedded key (primary or alternate), an integer from 1 through 
255, but not greater than the minimum record length. 

For a nonembedded primary key, an integer from 1 through 255. 

For an integer key, an integer from 1 through 8. 

Default: None. You must specify the primary-key length before calling 
OPENM for a new file. 

Keyed-File Interface 11-167 



$KEY_NAME ($KN or KN) 

$KEY _NAME ($KN or KN) 

Purpose 

Input 

Output 

Remarks 

Name of the selected key. 

String of up to 31 characters specifying the key name. The name of the 
primary key is $PRIMARY_KEY. 

The first 8 characters of the key name, left-justified, blank-filled (returned 
using uppercase letters even if the name was specified using lowercase 
letters). 

• Default: The primary key ($PRIMARY_KEY). 

• A key name can be specified by the OPENM call or by a STOREF call 
while the file is open. It cannot be specified by the FILEIS or FILEDA 
call or by a STOREF call before the OPENM call or after the CLOSEM 
call. 

• The name of an alternate key is defined when the key is defined. For 
more information, see the subsection Alternate-Key Creation earlier in 
this section. 

11-168 FORTRAN Version 1 Language Definition Usage Revision H 



$KEY_POSITION ($KP or RKP) 

$KEY_POSITION ($KP or RKP) 

Purpose Byte position at which the key begins (preserved attribute). 

It is the position of the primary key for a new file. For an existing file, it 
is the key position used when selecting a key by position and length. (See 
Selecting a Key earlier in this section.) 

Input Integer from zero to the maximum record length for the file. However, the 
key position value added to the key length value must not exceed the 
minimum record length. 

Remarks 

Revision H 

NOTE 

The byte positions in a record are numbered from the left, beginning with 
zero. 

Default: Zero. If the key is embedded, the key is assumed to begin at the 
leftmost byte of the record. If the key is nonembedded, the key position 
value is not used. 

Keyed-File Interface 11-169 



$KEY_RELATION ($KR or REL) 

$KEY_RELATION ($KR or REL) 

Purpose 

Input 

Output 

Remarks 

Relation between the key value in the record and the key value at the ka 
location. 

SCL values (specified with $KEY_RELATION or $KR) 

'EQUAL_KEY' or 'EK' 

The record key value must be equal to the specified key value. 

'GREATER_OR_EQUAL_KEY'or 'GOEK' 

The record key value must be greater than or equal to the specified 
key value. 

'GREATER_KEY' or 'GK' 

The record key value must be greater than the specified key value. 

CYBER 170 values (specified with KR) 

'EQ' 

The record key value must be equal to the specified key value. 

'GE' 

The record key value must be greater than or equal to the specified 
key value. 

'GT' 

The record key value must be greater than the specified key value. 

Integer as follows: 

1 The record key value must be equal to the specified key value. 

3 The record key value must be greater than or equal to the specified 
key value. 

6 The record key value must be greater than the specified key value. 

• Default: EQUAL_KEY. (The key value in the record must be equal to 
the specified key value.) 

• The $KEY_RELATION value is used only by GET and STARTM calls. 
A GET call reads the first record that satisfies the relation. A STARTM 
call positions the file at the first record satisfying the relation. 

• The $KEY_RELATION FIT value is not used by calls to a direct access 
file while its primary key is selected (because no index with ordered 
key values exists for the key). 

11-170 FORTRAN Version 1 Language Definition Usage Revision H 



$KEY_ TYPE ($KT or KT) 

$KEY_TYPE ($KT or KT) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Primary key type for a new indexed-sequential file (preserved attribute). 

SCL values (specified with $KEY_ TYPE or $KT). 

'COLLATED' or 'C' 

A key value is a string of characters; it is sorted byte-by-byte according 
to a user-specified collating sequence. 

'INTEGER' or 'I' 

A key value is a signed integer (8 bytes long); it is sorted in ascending 
numerical order. 

'UMNGLATED' or 'U' 

A key value is a string of characters; it is sorted byte-by-byte according 
to the default ASCII collating sequence. 

CYBER 170 values (specified with KT) 

'S' 

A key value is a string of characters; it is sorted byte-by-byte according 
to a user-specified collating sequence. 

'I' 

A key value is a signed integer (8 bytes long); it is sorted in ascending 
numerical order. · 

'U' 

A key value is a string of characters; it is sorted byte-by-byte according 
to the default ASCII collating sequence. 

Integer as follows: 

1 A key value is a string of characters; it is sorted byte-by-byte according 
to a user-specified collating sequence. 

2 A key value is a signed integer (8 bytes long); it is sorted in ascending 
numerical order. 

3 A key value is a string of characters; it is sorted byte-by-byte according 
to the default ASCII collating sequence. 

• Default: Uncollated keys ('U'). 

• The primary-key type for a direct access file is always uncollated, 
regardless of the specified value. (The primary-key values are not 
sorted so a sort-order specification is irrelevant.) 

Keyed-File Interface 11-171 



$LAST_OPERATION (LOP) 

$LAST_OPERATION (LOP) 

Purpose 

Input 

Remarks 

Last request for the file (returned attribute). 

One of the following integers: 

0 FILEIS (FIT created for an indexed-sequential file) 
1 OPENM (open request) 
2 CLOSEM (close request) 
3 GET (random read request) 
4 GETN (sequential read request) 
5 PUT (write request) 
8 DLTE (delete request) 
9 REPLC (replace request) 
10 REWND (rewind request) 
11 PUTREP (put/replace request) 
12 SKIP (skip forward request) 
13 SKIP (skip backward request) 
14 STARTM (start request) 
19 RMKDEF (alternate-key definition request) 
20 KLCOUNT (key-list count request) 
21 KLSPACE (key-list block count request) 
22 KEYLIST (key list request) 
23 LOCKF (lock file request) 
24 LOCKK (key value lock request) 
25 UNLOCKF (clear file lock request) 
26 UNLOCKK (clear key value lock request) 
27 FILEDA (FIT created for a direct-access file) 
28 FILESK (not implemented yet) 
29 RSBUILD (result set build request) 
30 RSGETN (result set get next request) 

• The following calls do not change the $LAST_OPERATION value in the 
FIT. After one of these calls, !FETCH returns the value of the 
preceding keyed-file interface call. 

- !FETCH, FLUSHM, and STOREF 

- The result set calls (other than RSBUILD and RSGETN) 

• The keyword $LO is no longer supported for this FIT value. 

11-172 FORTRAN Version 1 Language Definition Usage Revision H 



$LOCAL_FILE_NAME ($LFN or LFN) 

$LOCAL_FILE_NAME ($LFN or LFN) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Name of the file in the $LOCAL catalog. 

A valid SCL name. For a new file, the name cannot already exist in the 
$LOCAL catalog. For an existing file, the name must be the name of a file 
in the $LOCAL catalog. (It can be a temporary file or an attached 
permanent file.) 

The first 8 characters of the file name (returned using uppercase letters 
even if the name was specified using lowercase letters). 

• Default: None. This is a required parameter; it must be specified by 
the FILEIS or FILEDA call that creates the FIT or a STOREF call 
before the file is opened. 

• If the old/new flag (ON) is set to 'OLD', OPE NM searches for a file 
with the specified name in the $LOCAL catalog. If the old/new flag 
(ON) is set to 'NEW', OPENM attempts to create a file with the 
specified name in the $LOCAL catalog. 

• A FORTRAN program must set the $LOCAL_FILE_NAME (LFN) 
value in the FIT before calling OPENM. If the $LOCAL_FILE NAME 
value has not been specified, the OPENM call returns a fatal error. 

• The LOCAL_FILE_NAME value cannot be changed while the file is 
open. 

Keyed-File Interface 11-173 



$LOCK_EXPIRATION_TIME ($LET or LET) 

$LOCK_EXPIRATION _TIME ($LET or LET) 

Purpose 

Input 

Remarks 

Number of milliseconds between the time a lock is granted and the time 
that it could expire (preserved attribute). 

Integer from 0 through 604,800,000. (0 specifies an unlimited expiration 
time.) 

• Default: 60,000 milliseconds (60 seconds). 

• An expired lock prevents further access to the file by the owner of the 
lock. To remove an expired lock, the owner must call UNLOCKK or 
close the instance of open. 

• Although the lock expiration time is an attribute preserved with the 
file after its first open, the attribute value can be changed by the SCL 
command, CHANGE_FILE_ATTRIBUTE. 

• To read about lock expiration, see Lock Expiration and Clearing earlier 
in this section. 

11-174 FORTRAN Version 1 Language Definition Usage Revision H 



$LOCK_INTENT ($LI or LI) 

$LOCK_INTENT ($LI or LI) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Purpose of the lock. 

One of these strings (the string can be specified using uppercase and/or 
lowercase letters): 

'Preserve_Content' or 'PC' 

Preserve_ Content for reading 

'Preserve_Access_and_ Content' or 'PAAC' or 'PAC' 

Preserve_Access_and_ Content for reading and possibly updating 

'Exclusive_Access' or 'EA' 

Exclusive_Access for updating (requir:es shorten or append access) 

One of these integers: 

0 Preserve_ Content 

1 Preserve_Access_and_Content 

2 Exclusive_Access 

• Default: Preserve_Access_and_ Content. 

• This FIT value may be used when: 

- A GET or GETN call requests a lock, that is, when the FIT value 
$GET_AND_LOCK is YES (-1). 

- A LOCKF and LOCKK if the · u parameter is omitted from the call. 

• A Preserve_ Content lock cannot be automatically unlocked. Also, a 
Preserve_Content lock must be cleared before the lock_intent for the 
lock can be changed to PAC or EA. 

• An Exclusive_Access lock is allowed only if the instance of open has 
shorten and/or append access to the file. 

Keyed-File Interface 11-175 



$LOG_RESIDENCE ($LR or LR) 

$LOG_RESIDENCE ($LR or LR) 

Purpose 

Input 

Output 

Remarks 

Catalog in which the update recovery log for the keyed file is written 
(preserved attribute). 

Name of the character array containing the path to the log catalog. 

First 8 characters of the log catalog path. 

• Default: None if the $LOGGING_OPTIONS value does not include M 
(enabling media recovery); otherwise, the default is 
$SYSTEM.AAM.SHARED_RECOVERY_LOG. 

• The specified log must have been previously created using the 
Administer_Recovery_Log utility. (The default log is created during 
system installation.) 

• Whenever you change the log residence attribute of an existing file to a 
log other than the default log, you should immediately backup the 
keyed file. Otherwise, if the file is damaged, the RECOVER_FILE_ 
MEDIA option of the Recover _Keyed_ File utility cannot execute 
successfully for the file. 

• The Administer_Recovery_log utility and Recover_Keyed_File utility 
descriptions are in the SCL Advanced File Management Usage manual. 

11-1'16 FORTRAN Version 1 Language Definition Usage Revision H 



$LOGGING_OPTIONS 

$LOGGING_ OPTIONS 

Purpose 

Input 

Output 

Remarks 

Options enabling use of keyed-file recovery options (preserved attribute). 

String of characters, each specifying a logging option: 

'P' 

For future implementation. 

'M' 

Enable media recovery; the system maintains an update recovery log 
for the keyed file. (Update recovery logs are discussed in the SCL 
Advanced File Management manual. 

'R' 

Enable request recovery; when a task aborts, the automatic close 
removes any partially-completed update operation. 

Logging option characters, left-justified and blank-filled in a word. The 
characters may not be returned in the same order used when the options 
were specified. 

• Default: No logging options selected. 

• Multiple options can be specified in any order; for example, 'RMP' for 
all three logging options. 

Revision H Keyed-File Interface 11-177 



$MAJOR_KEY_LENGTH ($MKL or MKL) 

$MAJOR_KEY_LENGTH ($MKL or MKL) 

Purpose 

Input 

Remarks 

Length of the key value to be used by the next STARTM or GET call. The 
location of the key value is given by the ka value. 

For a fixed-length key, the value ls the major-key length, the number of 
leftmost key-value bytes compared. 

For a variable-length key, the value is the length of the key specified by 
the call. 

Integer from 0 through the key length value. 

• Default: For a fixed-length key, 0 (the full key value is used). 

For a variable-length key, the key length is required so a nonzero 
value must be specified; otherwise, the call returns the nonfatal 
$ERROR_STATUS value AA2980. 

• The $MAJOR_KEY_LENGTH FIT value is not used by calls to direct 
access file while the primary key is selected (because no index with 
ordered key values exists for the key). 

• When using a major key for a fixed-length key, the call compares only 
the leftmost bytes of the key value. 

• For a variable-length alternate key, the key value is compared with the 
full alternate-key value stored in the index, not just the leftmost bytes. 

• The $MAJOR_KEY_LENGTH value is reset to zero after execution of 
the STARTM or GET call that uses the value. 

• Major-key use with an integer key is not recommended. The leftmost 
bytes of an integer value are seldom meaningful beyond indicating the 
sign of the value. 

11-178 FORTRAN Version 1 Language Definition Usage Revision H 



$MAXIMUM_BLOCK_LENGTH ($MAXBL or MBL) 

$MAXIMUM_BLOCK_LENGTH ($MAXBL or MBL) 

Purpose 

Input 

Block length, in bytes, for a new file (preserved attribute). 

Integer from 1 through 65536. If the value is less than the maximum 
record length, it is increased to that value. Then, it is increased, if 
necessary, to the next power of 2 from 2048 through 65536. 

If the specified value is less than the maximum record length, it is 
increased to that value. Then, if the value is not a power of 2 between 
2048 and 65536, it is changed as follows: 

• A value less than 2048 is increased to 2048 (the minimum allocation 
unit). 

• A value between 2048 and 65536, but not a power of 2, is increased to 
the next power of 2 (4096, 8192, 16384, 32768, or 65536). 

• A value greater than 65536 is decreased to 65536. 

NOTE 

If the file could be changed by more than one instance of open at the same 
time and forced-writing will be used (the $FORCED_ WRITE attribute is 
-1 [TRUE] or 0 [FORCED_IF_STRUCTURE_CHANGE]), the block size 
should be a multiple of the system page size. 

This ensures that more than one instance of open is not updating blocks in 
the same page; otherwise, a forced-write operation could write a page to 
mass storage that contains partially-altered blocks. (A warning message is 
issued if this situation exists.) 

Remarks Default: The system selects the block length using the AVERAGE_ 
RECORD_LENGTH, ESTIMATED_RECORD_COUNT, INDEX_LEVELS, 
and RECORDS_PER_BLOCK values, if specified. The minimum block 
length selected by the system is 1 page. 

Revision H Keyed-File Interface 11-179 



$MAXIMUM_RECORD_LENGTH ($MAXRL or MRL) 

$MAXIMUM_RECORD_LENGTH ($MAXRL or MRL) 

Purpose 

Input 

Remarks 

Maximum record length, in bytes, for a new file (preserved attribute). 

Integer from 1 through 65497. 

Default: None. You must specify the maximum record length when 
creating a new keyed file. 

11-180 FORTRAN Version 1 Language Definition Usage Revision H 



$MESSAGE_CONTROL ($MC or DFC) 

$MESSAGE_CONTROL ($MC or DFC) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Indicates the additional information written to the $ERRORS file 
(temporary attribute). 

SCL values (specified with $MESSAGE_CONTROL or $MC) 

'MESSAGES' or 'M' 

Informative messages 

'STATISTICS' or 'S' 

Statistic messages 

'TRIVIAL_ERRORS' or 'T' 

Trivial (nonfatal) error messages 

' ' (one or more blanks) 

No additional information (fatal and catastrophic messages only) 

CYBER 170 values for MESSAGE_CONTROL are: 

0 No additional messages (fatal and catastrophic messages only) 

1 Nonfatal-error messages 

2 Informative and statistic messages 

3 All messages (catastrophic, fatal-error, nonfatal-error, informative, and 
statistic) 

4 Informative messages 

5 Statistic messages 

6 Nonfatal-error and informative messages 

7 Nonfatal-error and statistic messages 

The integers listed above. 

• Default: 0 (no additional information). Only fatal and catastrophic error 
messages are written to the $ERRORS file. 

NOTE 

It is recommended that you request at least informative and trivial 
(nonfatal) error messages. 

• To specify two or more values, enclose the values in a single pair of 
apostrophes; a comma is required between values. (Spaces are also 
allowed between values.) 

Keyed-File Interface 11-181 



$MINIMUM_RECORD_LENGTH ($MINRL or MNR) 

$MINIMUM_RECORD_LENGTH ($MINRL or MNR) 

Purpose 

Input 

Remarks 

Minimum record length, in bytes, for a new file (preserved attribute). 

Integer from 0 through 65497 bytes. The value must be less than or equal 
to the maximum record length. 

Default: For fixed-length records, the default value is O; however, the 
length of each fixed-length record must be the $MAXIMUM_RECORD_ 
LENGTH value. 

For variable-length records with an embedded primary key, the default 
value is the sum of the key position and key length values. For 
variable-length records with a nonembedded primary key, the default value 
is 1 byte. 

NOTE 

For variable-length records, it is recommended that you explictly specify 
the minimum record length. The minimum record length must include the 
primary-key field and any alternate-key fields (or corresponding sparse-key 
control characters). 

11-182 FORTRAN Version 1 Language Definition Usage Revision H 



$NESTED_FILE_NAME ($NFN OR NFN) 

$NESTED _FILE _NAME ($NFN OR NFN) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Name of the selected nested file. 

Name of an existing nested file in the file. (The FORTRAN keyed-file 
interface cannot create a new nested file.) 

First 8 characters of the nested-file name (letters are returned as 
uppercase letters even if specified as lowercase letters). 

• Default: $MAIN _FILE (the default nested file). 

• Storing a nested-file name in the FIT selects that nested file for use. 
All following calls operate on the selected nested file until another 
nested-file name is stored. 

• A nested-file name can be specified only while the file is open. It 
cannot be specified by the FILEIS or FILEDA call or by a STOREF call 
before the OPENM call or after the CLOSEM call. 

• When a nested file is selected for the first time during an 
instance-of-open, its open position is specified by the $OPEN_ 
POSITION attribute of the file. 

Later re-selection of the nested file during the instance-of-open positions 
the file at its last position during its prior selection. Thus, a task can 
sequentially access records in one nested file, select another nested file, 
re-select the first nested file, and continue the sequential access. 

• The first time a nested file is selected during an instance-of-open, the 
first key selected is the primary key. 

Later, when a nested file is re-selected during the instance-of-open, the 
selected key is set to the last key selected during the previous selection 
of the nested file. Thus, a task can select an alternate key, select 
another nested file, re-select the first nested file and continue use of 
the previously selected alternate key. 

• Selection of another nested file does not release any locks. 

An expired lock status is not returned when locks expire for nested 
files other than the nested file currently selected. However, an expired 
lock status is returned if the task re-selects the nested file and 
attempts an operation on that nested file. 

• The FORTRAN key-filed interface cannot create additional nested files 
in a keyed file. To do so, use the CREATE_KEYED_FILE utility, the 
SCL command COPY_KEYED_FILE or a CYBIL program. 

Keyed-File Interface 11-183 



Old/New Flag (ON) 

Old/New Flag (ON) 

Purpose 

Input 

Output 

Remarks 

Indicates whether the next OPENM call is to create a new file or open an 
existing file. 

FORTRAN values (specified with ON) 

'OLD' 

The file exists. 

'NEW' 

The file is being created. 

Integer as follows: 

0 The file exists. 

-1 The file is being created. 

Default: Set to 'NEW' if the $ACCESS_MODES value is 'NEW'. Reset to 
'OLD' by a CLOSEM call. 

11-184 FORTRAN Version 1 Language Definition Usage Revision H 



Open/Close Flag (QC) 

Purpose 

Output 

Revision H 

Indicates whether a file is open or closed. 

Integer as follows: 

0 The file has never been opened. 

1 The file is open. 

2 The file is closed. 

Open/Close Flag (OC) 

Keyed-File Interface 11-185 



$0PEN_POSITION ($OP or OF) 

$OPEN _POSITION ($OP or OF) 

Purpose 

Input 

Output 

Remarks 

Position at which the file is opened (temporary attribute). 

SCL values (specified with $0PEN·_POSITION or $OP) 

'$BOI' 

Open at beginning-of-information (BOI). 

'$ASIS' 

Open without changing the file position. 

'$EOI' 

Open at end-of-information (EOI). 

CYBER 170 values (specified with OF) 

'R' 

Open at beginning-of-information (BOI). 

'N' 

Open without changing the file position. 

'E' 
Open at end-of-information (EOI). 

Integer as follows: 

1 Open at beginning-of-information (BOI). 

3 Open at end-of-information (EOI). 

4 Open without changing the file position. 

• Default: Open at beginning-of-information ('BOI'). 

• If an existing file is opened for append access only, the only valid open 
position is EOI. 

11-186 FORTRAN Version 1 Language Definition Usage Revision H 



$PRIMARY_KEY_ADDRESS ($PKA or PK.A) 

$PRIMARY_KEY_ADDRESS ($PKA or PKA) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Location to which the primary-key value is returned. 

Variable name. 

NOTE 

The primary-key area should be in a common block. If it is not, your 
program could execute incorrectly after being compiled with high 
optimization. 

A FORTRAN program should not fetch the pka value from the FIT. It is 
stored as an address which the program cannot use. 

• Default: 0 (the primary-key value is not returned). 

• If the pka value in the FIT is nonzero, get calls issued while an 
alternate key is selected return the primary-key value of the record 
read to the specified location. 

Keyed-File Interface 11-187 



Record 

ltl Record Length (RL) 

Purpose 

Input 

Remarks 

Either the number of bytes written by a PUT call or the number of bytes 
read by the last GET or GETN call (parameter). 

Integer from 1 through the maximum record length. 

Default: When writing a variable-length (U or V) record, the record length 
must be specified. When writing a fixed-length (F) record, the maximum 
record length is used as the record length value. 

11-188 FORTRAN Version 1 Language Definition Usage Revision H 



$RECORD_LIMIT ($RL or FLM) 

$RECORD_LIMIT ($RL or FLM) 

Purpose 

Input 

Remarks 

Revision H 

Maximum number of records in the file (preserved attribute). 

Integer from 1 through 4398046511103 ([2**42] - 1). 

• Default: 4398046511103 ([2**42] - 1) 

• After the file is first opened, the RECORD_LIMIT attribute value is 
stored with the file. However, you can change the RECORD_LIMIT 
attribute value of an existing file with the SCL command CHANGE_ 
FILE_ATTRIBUTES. 

Keyed-File Interface 11-189 



$RECORD_TYPE ($RT or RT) 

$RECORD_ TYPE ($RT or RT) 

Purpose 

Output 

Remarks 

Record type (preserved attribute). 

SCL values (specified with $RECORD_ TYPE or $RT) 

'VARIABLE' or 'V' 

CDC variable-length records. 

'FIXED' or 'F' 

ANSI fixed-length records. 

'UNDEFINED' or 'U' 

Undefined-length records. 

CYBER 170 values (specified with RT) 

'V' 

CDC variable-length records. 

'F' 

ANSI fixed-length records. 

'U', 'S', or 'W' 

Undefined-length records. 

Integer as follows: 

0 CDC variable-length (V) records. 

1 ANSI fixed-length (F) records. 

7 Undefined-length (U, S, or W) records. 

• Default: Undefined-length (U) records. 

• The keyed-file interface processes record types U, V, S, and W the 
same. 

• The keyed-file interface does not support the trailing_character _ 
delimited record type. 

• The S and W values are provided for CYBER 170 compatibility. 

11-190 FORTRAN Version 1 Language Definition Usage Revision H 



$RECORDS_PER_BLOCK ($RPB or RB) 

$RECORDS_PER_BLOCK ($RPB or RB) 

Purpose 

Input 

Remarks 

Revision H 

Estimated number of records to be stored in each data block of a new file. 

NOSNE uses this value to select the block size for a new file if the 
maximum block length for the file is not specified. This file attribute value 
is not preserved with the file because it is used only when the file is 
opened for the first time. 

Integer from 1 through 65535. 

Default: Two records per block. 

Keyed-File Interface 11-191 



Relative Key Word (RKW) 

Relative Key Word (RKW) 

Purpose 

Input 

Remarks 

Value that, with the RKP ($KEY_POSITION) value, defines the key 
position. 

Integer. The RKW value is multiplied by 10 and added to the RKP value. 
The key ·position value cannot exceed the maximum record length. 

• Default: 0 (the key position is defined by the RKP value). 

• The RKW value is provided for CYBER 170 FORTRAN compatibility. 
Do not use it when writing new programs. Specify the key position by 
the $KEY_POSITION value only. 

11-192 FORTRAN Version 1 Language Definition Usage Revision H 



$SKIP_COUNT ($SC or SKP) 

$SKIP _COUNT ($SC or SKP) 

Purpose 

Input 

Output 

Remarks 

Revision H 

Either the number of records to be skipped by the next SKIP call 
(parameter) or the residual skip count from the last SKIP call. 

Integer. If the skip count is positive, a SKIP call skips forward the 
specified number of records. If the skip count is negative, a SKIP call 
skips backward the specified number of records. 

A zero skip count indicates that the skip operation completed. A nonzero 
value indicates that the skip operation did not complete. 

A nonzero value returned is the residual skip count. A residual skip count 
is the difference between the requested skip count and the actual number 
of records skipped. 

• Default: 0 (no file repositioning). 

• The returned skip count is nonzero when the SKIP call encounters the 
BOI or EOI of the file before it completes the skip. To determine the 
file position, call !FETCH to return the $FILE_POSITION value. 

Keyed-File Interface 11-193 



$WAIT_FOR_LOCK ($WFL or WFL) 

$WAIT_FOR_LOCK ($WFL or WFL) 

Purpose 

Input 

Output 

Remarks 

Indicates whether the lock request should wait until the lock is available 
or the time limit has been reached. 

One of these strings: 

'YES' or 'Y' or 'TRUE' or 'T' or 'ON' 

The request waits for the lock. 

'NO' or 'N' or 'FALSE' or 'F' or 'OFF' 

The request does not wait for the lock. 

One of these integers: 

-1 The request waits for the lock (YES). 

0 The request does not wait for the lock (NO). 

• Default: YES (the request waits for the lock). 

• This FIT value may be used by GET, GETN, LOCKF, and LOCKK 
calls as follows: 

- Used by GET and GETN calls when the FIT value $GET_AND_ 
LOCK is YES (-1). 

- Used by LOCKF and LOCKK if the wfl parameter is omitted from 
the call. 

• When waiting is requested, the call checks for a possible deadlock. If a 
deadlock exists with another task, it immediately returns the 
nonfatal-error status AA2040. 

• If the lock is owned by another instance-of-open of the same task, a 
self-deadlock exists and the call immediately returns the nonfatal error 
status AA2045. 

• You can change the maximum waiting period for the lock (used if wfl 
is YES). (The default value is 60 seconds.) To change the waiting 
period, create an SCL integer variable named AAV$RESOLVE_ TIME_ 
LIMIT and initialize it to the new waiting period value in seconds (any 
integer greater than 1). For example, this call executes an SCL 
command that sets the waiting period at 45 seconds: 

CALL SCLCMD ('create_variable, name=AAV$RESOLVE_TIME_LIMIT, 
+ kind=integer, value=45') 

Be aware of the scope of the AAV$RESOLVE_ TIME_LIMIT variable. 
The default scope is LOCAL. If the time limit change should apply to 
all tasks, specify SCOPE =JOB on the CREATE_ VARIABLE command. 

11-194 FORTRAN Version 1 Language Definition Usage Revision H 



$WORKING_STORAGE_ADDRESS ($WSA or WSA) 

$WORKING_STORAGE_ADDRESS ($WSA or WSA) 

Purpose 

Input 

Output 

·Remarks 

Revision H 

Location to which data is read and from which data is written (parameter). 

Variable name. 

NOTE 

The working storage area should be in a common block. If it is not, your 
program could execute incorrectly after being compiled with high 
optimization. 

A FORTRAN program should not fetch the wsa value from the FIT. It is 
stored as an address which the program cannot use. 

• You can specify the wsa location either on a STOREF call or on a get 
or put call. When you specify a wsa location on a call, the wsa location 
is stored in the FIT and used by all subsequent get or put calls until 
another wsa location is specified. 

• The length of the working-storage area is stored in the FIT as the wsl 
value. 

Keyed-File Interface 11-195 



$WORKING_STORAGE_LENGTH ($WSL or WSL) 

$WORKING_STORAGE_LENGTH ($WSL or WSL) 

Purpose 

Input 

Remarks 

Length, in bytes, of the working storage area (parameter). 

Integer greater than or equal to the maximum record length value. 

• Default: For read requests, the maximum record length value; for write 
requests, the record length value. 

• For fixed-length records, if the wsl value does not match the maximum 
record length, the wsl value is ignored and a warning message issued. 

11-196 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge· 

What Sort/Merge Does 

Sort Keys .... . 
Multiple Keys ... . 

Defining Sort Keys . . 
Key Length and Position 
Key Type ........ . 
Sort Order ........ . 

Specifying the Record Length 
Short Records . . . . . 
Zero Length Records . . . 
Invalid Records . . . . . . 

Performance Considerations 
Limiting Memory Usage . 
Page Aging Interval . . . 

Sort/Merge Procedure Calls 
SM5CC ... 
SM5DUCT. 
SM5E .. . 
SM5EL .. . 
SM5END 
SM5ENR .. 
SM5ERF .. 
SM5FMA 
SM5FROM. 
SM5KEY 
SM5LCT .. 
SM5LIST 
SM5LO ... 
SM5MERG 
SM50FL .. 
SM50MIT . 
SM50MRL. 
SM50WNn. 
SM5RETA. 
SM5SEQA. 
SM5SEQN. 
SM5SEQR. 
SM5SEQS . 
SM5SORT . 
SM5ST ... 
SM5SUM 
SM5TMA 
SM5TO ... 
SM5VER .. 
SM5ZLR .. 

Owncode Routines . 
Owncode Procedure Parameters . . 
Owncode Procedure Record Length . 

12 

12-1 

12-2 
12-2 

12-3 
12-3 
12-4 
12-9 

12-10 
12-10 
12-12 
12-13 

12-15 
12-15 
12-16 

12-17 
12-18 
12-19 
12-20 
12-21 
12-22 
12-23 
12-24 
12-25 
12-26 
12-27 
12-30 
12-31 
12-32 
12-33 
12-35 
12-36 
12-37 
12-38 
12-39 
12-40 
12-41 
12-42 
12-43 
12-44 
12-45 
12-46 
12-47 
12-48 
12-50 
12-51 

12-52 
12-54 
12-55 



Owncode 1: Processing Input Records 
One or More Input Files Specified 
Input Files Not Specified . . . . . . 

Owncode 2: Processing Input Files . . 
One or More Input Files Specified 
Input Files Not Specified . . . . . . 

Owncode 3: Processing Output Records 
Output File Specified . . . . . . . . . 
Output File Not Specified . . . . . . 

Owncode 4: Processing the Output File 
Output File Specified . . . . . . . . . 
Output File Not Specified ..... . 

Owncode 5: Processing Records With Equal Keys 

Using FORTRAN Procedure Calls . 

Creating an Object Library 

Summing Records . . . . . . 

Defining Your Own Collating Sequence 

12-56 
12-56 
12-56 
12-57 
12-57 
12-58 
12-58 
12-58 
12-59 
12-59 
12-59 
12-60 
12-60 

12-62 

12-65 

12-67 

12-68 



§ ort/WJI errge 

Sort/Merge is a set of powerful and efficient routines which operates under the NOSNE 
operating system. Sort/Merge can be used with a single command, or with procedure 
calls from within a program written in COBOL, CYBIL, or FORTRAN. 

This chapter introduces the functions and features of Sort/Merge using FORTRAN 
procedure calls. 

What Sort/Merge Does 

The purpose of sorting is to arrange items in order. The purpose of merging is to 
combine two or more sets of preordered items. Ordered information makes reports more 
meaningful and suggests critical relationships. Searches for information are faster with 
ordered lists. 

The purpose of Sort/Merge is to arrange records in the sequence you specify. You 
describe the records you want to sort or merge and how Sort/Merge is to order them. 

Sort/Merge can: 

• Sort or merge records from as many as 100 files with one call to Sort/Merge 

• Sort character and noncharacter key types 

• Read input records with variable-length (V), fixed-length (F), or 
trailing-character-delimited (T) record type. 

• Read input records from sequential, indexed-sequential, or direct-access files. It can 
write output records to sequential or indexed-sequential files. 

• Read input records from and write output records to memory areas, mass storage 
files, and magnetic tape files. 

• Sort according to twelve predefined collating sequences, thirteen numeric formats, 
and one or more user-defined collating sequences. 

• Sum fields in records that have equivalent key values. 

• Use owncode routines to insert, substitute, modify, or delete records during 
Sort/Merge processing 

• Be called from any language that matches the calling sequence although some 
restrictions may apply (described later) 

Merge capabilities are more restricted than sort capabilities. Merge input records 
cannot be supplied by owncode routines. Records to be merged must be presorted. 
Records to be merged and summed must be pre-sorted and pre-summed. 

FORTRAN sorts are initiated with the SM5SORT procedure call and merges are 
initiated with the SM5MERG procedure call. You specify processing requirements for 
the sort or merge with various procedure calls. 

Revision H Sort/Merge 12-1 



Sort Keys 

Sort Keys 

Sort or merge operations are based on the ordering of fields assigned to the data to be 
sorted or merged. These fields are called sort keys. This section discusses what sort 
keys are and how a key is defined. 

A sort key is a field of data within each input record. Sort/Merge uses the contents of 
the sort key to determine the position of the record within the sorted sequence of 
records. 

Data must be aligned correctly in a sort key field. Character data must be left-justified 
in the field, and numeric data must be right-justified in the field. 

Multiple Keys 

A file can be sorted on more than one sort key. The combined length of all key fields 
in a record cannot exceed 1023 bytes. 

The first key you specify is the most important key and is called the major sort key. 
This key is sorted or merged first. The keys you specify after the first key are of 
lesser importance and are called minor sort keys. The minor keys are numbered in the 
order they are specified. 

For example, if three sort keys are specified, the first key is the major sort key (key 
number 1), the next key listed is a minor key (key number 2), and the third key is 
another minor key (key number 3). 

When two or more records have an equal major key, Sort/Merge determines the order 
by looking at the subsequent minor keys in the following order: key number 2, key 
number 3, and so on. Sort/Merge compares the minor keys until either an unequal key 
is found, or until there are no more keys. 

For example, university student records could be sorted using multiple sort keys. 
Assume each record includes the last name and first and middle initials, the student 
number, the date of birth, the field of study, the grade point average, and a code 
representing class (freshman, sophpmore, junior, senior); all the fields are written with 
character data. The file could be maintained with the student number as the major key 
since records are normally retrieved by specifying the student number. The file can be 
sorted by the name in alphabetic order when a list of student names is needed. 

When a university department needs to know which students are majoring in fields 
within the department, the file can be sorted on the field of study. The same sort can 
specify the name as a minor key so that records with the same field of study are also 
sorted in alphabetic order by the name. The file can be sorted by the class code as the 
major key and by the grade point average in descending numeric order as a minor key. 
This would produce a list of students· sorted by class code with the students having the 
highest grade point average at the beginning of the list. 

12·2 FORTRAN Version 1 Language Definition Usage Revision H 



Defining Sort Keys 

Defining Sort Keys 

You must describe to Sort/Merge every field of data that you want used as a sort key. 
Sort key descriptions include the following information: 

• Starting location of the key within the record 

• Key length 

• Type of data in the key field 

• Sort order 

You can define sort keys with SM5KEY procedure calls. The options and assumed 
values for describing sort keys are discussed in the following paragraphs. 

Key Length and Position 

You define key field length and position by specifying the first byte of the field and 
either the number of bytes in the field (length of the field) or the last byte of the field. 
The leftmost byte in a record is counted as number 1. For character data, each 
character is 8 bits and occupies 1 byte. For example, if you want to specify the name 
of the university student file as a sort key, and the name field is the leftmost field in 
the record, you specify the first byte as 1. If the name field is 20 characters long, you 
specify the length as 20. 

Sort/Merge interprets the integers you specify for key length and position as bit 
numbers when the key type (discussed later in this chapter) specifies bits; otherwise, 
byte numbers are assumed. The first bit is numbered 1. Table 12-1 lists the maximum 
key field lengths for each key type. Sort/Merge allows key fields to overlap other key 
fields, except for the following: 

• Key fields that are ordered by collating sequences defined with the alter option 
cannot overlap other key fields. 

• Key fields cannot overlap sum fields. 

Table 12-1. Maximum Key Field Sizes 

Maximum Size (in Maximum Size (in 
Key Type Bytes) Key Type Bytes) 

Character 1023 BINARY 8 
NUMERIC_FS 1023 BINARY_BITS 8184 (bits) 
NUMERIC_LO 38 INTEGER 8 
NUMERIC_LS 38 INTEGER_ BITS 8184 (bits) 
NUMERIC_NS 38 PACKED 19 
NUMERIC_ TO 38 PACKED_NS 19 
NUMERIC_ TS 38 REAL 8 or 16 

Revision H Sort/Merge 12-3 



Defining Sort Keys 

Key Type 

You specify the type of data in a key field with the name of a collating sequence or 
with the name of a numeric data format. The data in a key field can be character or 
noncharacter. Character data is represented in the computer as ASCII code values. To 
indicate the key type for character data, 'you specify the name of a collating sequence; 
for numeric character data, you specify the name of a numeric data format. 
Noncharacter data is represented in the computer as binary values, in packed decimal 
format, or in floating-point format. 

The difference between the internal representation of character and noncharacter data 
is shown in figure 12-1. 

Character Data Noncharacwr Data 

2 3 4 

Hexadecimal f'quivalent m ASCII code character Hexadecimal f'quivalent m binary value 

39 31 23 15 7 0 63 0 

2D 31 32 33 I 34 I I FFF ... B2E I 

Figure 12-1. Internal Data Representation 

If a sort key field contains any characters that are not meaningful for the key type 
you specify (an alphabetic character in a field defined as a numeric key, for example), 
the key field is considered to contain invalid data and so the record is invalid. The 
processing of invalid records is described later in this chapter. 

The collating sequences and numeric data formats you can specify are discussed in the 
following paragraphs. 

12-4 FORTRAN Version 1 Language Definition Usage Revision H 



Defining Sort Keys 

Collating Sequences 

A collating sequence determines the precedence given to each character in relation to 
the other characters. You use a collating sequence for character data to determine the 
sort order. Character data must be in ASCII code characters. 

Twelve predefined collating sequences are available to you as a Sort/Merge user. Six of 
the twelve predefined collating sequences are: ASCII, ASCII6, COBOL6, DISPLAY, 
EBCDIC, and EBCDIC6. If you do not specify a collating sequence, ASCII code is used. 
The predefined collating sequences are listed in appendix J. 

For Better Performance 

Sort/Merge sorts fastest when using the ASCII collating sequence. 

Numeric Data Formats 

Numeric data can appear in a key field in one of the formats listed in table 12-2. 

For Better Performance 

For numeric data, the most efficient numeric data formats are INTEGER, BINARY, 
and REAL. 

Except for the BINARY_BITS and INTEGER_BITS formats, each field must start and 
stop on character (byte) boundaries. 

Numeric data can be signed or unsigned. For character numeric data that is signed, 
the sign can be a floating sign, an overpunch representation over the leading (leftmost) 
digit, a leading separate character, an overpunch representation over the trailing 
(rightmost) digit, or a trailing separate character. 

Revision H Sort/Merge 12-5 



Defining Sort Keys 

Table 12-2. Numeric Data Formats 

Name 

BINARY 

BINARY_ 
BITS 

INTEGER 

INTEGER_ 
BITS 

NUMERIC_ 
FS 

Data Type 

Binary integer 

Binary integer 

Two's 
complement 
binary integer 

Two's 
complement 
binary integer 

Leading blanks, 
numeric 
characters 

Sign 

None 

None 

Positive if 
leftmost bit is O; 
negative if 
leftmost bit is 1 

Positive if 
leftmost bit is O; 
negative if 
leftmost bit is 1 

- sign for 
negative values; a 
+ character is 
not allowed 

12-6 FORTRAN Version 1 Language Definition Usage 

Comments 

The field starts and ends on 
character boundaries. Data is 
ordered according to numeric 
value. 

The field does not start or end 
on character boundaries. Data 
is ordered according to 
numeric value. 

The field starts and ends on 
character boundaries. Data is 
ordered according to numeric 
value. 

The field does not start or end 
on character boundaries. Data 
is ordered according to 
numeric value. 

The field contains leading 
blanks (leading zeros must be 
converted to blanks before 
calling Sort/Merge); if the 
value is negative, the 
rightmost leading blank must 
be converted to a minus sign. 
If the field contains no leading 
blanks or does not begin with 
a negative sign, the value 
must be positive. This format 
is equivalent to the FORTRAN 
I format, or the COBOL 
picture clause for zero 
suppressed editing of numeric 
item. Data is ordered 
according to numeric value. 

(Continued) 

Revision H 



Table 12-2. Numeric Data Formats (Continued) 

Name 

NUMERIC_ 
LO 

NUMERIC_ 
LS 

NUMERIC_ 
NS 

NUMERIC_ 
TO 

NUMERIC_ 
TS 

Revision H 

Data Type 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Numeric 
characters 

Sign 

Leading 
overpunch 

Leading separate 

None 

Trailing 
overpunch 

Trailing separate 

Defining Sort Keys 

Comments 

All characters are decimal 
digits except the leading 
character, which indicates a 
sign by an overpunch. Data is 
ordered according to numeric 
value with all forms of zero 
ordered equally. 

All characters are decimal 
digits except the leading 
character, which is a negative 
or positive sign. Specifying a 
field that is not at least two 
characters in length causes a 
fatal error. Data is ordered 
according to numeric value 
with all forms of zero ordered 
equally. 

All characters are decimal 
digits. Data is ordered 
according to numeric value. 

All characters are decimal 
digits except the trailing 
character, which indicates a 
sign by an overpunch. Data is 
ordered according to numeric 
value with all forms of zero 
ordered equally. 

All characters are decimal 
digits except the trailing 
character, which is a negative 
or positive sign. Specifying a 
field that is not at least two 
characters in length causes a 
fatal error. Data is ordered 
according to numeric value 
with all forms of zero ordered 
equally. 

(Continued) 

Sort/Merge 12-7 



Defining Sort Keys 

Table 12-2. Numeric Data Formats (Continued) 

Name 

PACKED 

PACKED_NS 

REAL 

Data Type Sign 

Packed decimal Signed 

Unsigned packed Unsigned 
decimal 

Normalized 
floating-point 
number, either 
single-precision 
(8 bytes) or 
double-precision 
(16 bytes) 

Signed 

Comments 

Data is ordered according to 
numeric value. 

Data is ordered according to 
numeric value. PACKED_NS 
is the same as COBOL 
COMPUTATIONAL-3 with no 
sign. 

All forms of zero are ordered 
equally. The order of 
indefinite values is undefined. 
The order of infinite values is 
ordered as if its value were 
infinity (can be signed 
infinity). 

A floating sign is a negative sign embedded between leading blanks and the numeric 
characters. A floating sign can also be a negative sign followed by numeric characters. 
Leading zeros must be converted to blanks. Positive values in this format are not 
signed. The following examples are valid floating sign formats: 

AA-1 
AAAl 
AA-0 
AAAO 
-123 
1234 

The following examples are invalid floating sign formats: 

AAOl 
A-01 
+123 
AA All 

Leading zero not allowed 
Leading zero not allowed 
Positive sign not allowed 
All-blank field not allowed 

Diagnostic messages are issued for invalid floating sign formats or invalid overpunches. 

A negative sign overpunch is equivalent to overstriking a digit with a - , which is a 
punch in row 11 of a punched card. A positive sign overpunch is equivalent to 
overstriking a digit with a + , which is a punch in row 12 of a punched card. When a 
signed overpunch digit is received as input, the digit is punched as indicated in the 
second column of table 12-3. When a signed overpunch digit is entered from a terminal 
or displayed as output, the digit appears as indicated in the third column of table 12-3. 
The hexadecimal value is in the fourth column. 

12-8 FORTRAN Version 1 Language Definition Usage Revision H 



Defining Sort Keys 

Table 12-3. Sign Overpunch Representation 

Sign and Input Input/Output Hexadecimal 
Digit Punch Representation Value 

+o 0 0 30 
+1 1 1 31 
+2 2 2, 32 
+3 3 3 33 
+4 4 4 34 
+5 5 5 35 
+6 6 6 36 
+7 7 7 37 
+8 8 8 38 
+9 9 9 39 
+o 12-0 { 7B 
+1 12-1 A 41 
+2 12-2 B 42 
+3 12-3 c 43 
+4 12-4 D 44 
+5 12-5 E 45 
+6 12-6 F 46 
+7 12-7 G 47 
+8 12-8 H 48 
+9 12-9 I 49 
-0 11-0 } 7D 
-1 11-1 J 4A 
-2 11-2 K 4B 
-3 11-3 L 4C 
-4 11-4 M 4D 
-5 11-5 N 4E 
-6 11-6 0 4F 
-7 11-7 p 50 
-8 11-8 Q 51 
-9 11-9 R 52 
+o 12-8-4 < 3C 
+o 12 & 26 
-0 12-8-7 21 
-0 11 2D 

Sort Order 

Sort/Merge can sort a key in ascending or descending order. If you do not specify a 
sort order, Sort/Merge sorts the key in ascending order. 

When sorting a numeric key in ascending order, Sort/Merge sorts the key values in 
numeric order from least to greatest. When sorting a numeric key in descending order, 
Sort/Merge sorts the key values in numeric order from greatest to least. 

A character key is sorted according to the collating sequence you specify for the key. 
When sorting a character key in descending order, Sort/Merge sorts the key values in 
reverse order of the collating sequence you specify. 

Revision H Sort/Merge 12-9 



Specifying the Record Length 

Specifying the Record Length 

Sort/Merge can sort records up to 65,535 bytes long. Sort/Merge determines the 
maximum and minimum record lengths for a file by its MAXIMUM_RECORD_ 
LENGTH and MINIMUM_RECORD_LENGTH file attributes. The record length 
attributes are set when the file is created 

The default sort key begins with the first byte in the record and extends to the 
smallest minimum record length value for all input files. If the minimum MINIMUM_ 
RECORD_LENGTH attribute for all input files is 0, Sort/Merge uses 1 as the key 
length. If the minimum MINIMUM_RECORD_LENGTH attribute for all input files is 
greater than 1023, Sort/Merge uses 1023 as the key length. 

When the Sort/Merge specification specifies an owncode 1 procedure and an owncode 3 
procedure, but no input or output file, Sort/Merge expects all input records to be 
provided by the owncode 1 procedure and all output processing to be performed by the 
owncode 3 procedure. In this case you must specify the record length SM50FL or 
SM50MRL call. . 

Short Records 

A short record is a record that does not contain all the key and sum fields defined for 
the sort or merge. Sort/Merge determines that a record is short when it reads the 
record from the input source. 

NOTE 

Records can become short when the system strips off all trailing blanks from 
variable-length (V) records. For example, when a variable-length (V) record containing 
all spaces is displayed by the SCL command DISPLAY_FILE, the spaces are stripped 
from the record, leaving a zero-length record. 

When Sort/Merge attempts to use a field in a record and finds that the field is entirely 
beyond the end of the record, it uses a default value for the field. For character keys, 
the default value is all spaces. For numeric keys and sum fields, the default value is 
zero in the appropriate format. 

Sort/Merge uses the default value only when using the key value or the sum field 
value. It does not pass the default value to an owncode procedure or store it in the 
output record. 

Sort/Merge processing differs when the field it attempts to use is only partially beyond 
the end of the record. If the partial field is a character key field, Sort/Merge pads it 
with spaces, but if the partial field is a numeric key field or a sum field, Sort/Merge 
processes it as an exception. 

12-10 FORTRAN Version 1 Language Definition Usage Revision H 



Specifying the Record Length 

Exception Processing for Partial Numeric Key Sum Fields 

Exception processing for partial numeric key fields is as follows: 

1. The record is written to the exception records file if one is specified for the sort or 
merge. 

2. If an exception records file exists, the record is removed from. the sort or merge; 
otherwise, its order is left undefined. 

3. The count of partial numeric key fields or sum fields is incremented. A warning 
error message gives the count at the end of the sort or merge. 

Exception Processing for Partial Sum Fields 

Exception processing for partial sum fields differs if an exception records file is 
specified: 

1. If an exception records file is specified: 

a. Sort/Merge writes the record with the partial sum field to the exception records 
file. It writes the record with its original data as it was read from the input 
source. 

b. It then removes the record from the sort or merge. 

2. If an exception records file is not specified: 

a. Sort/Merge keeps the record with the partial sum field in the sort or merge. 

b. Later, if Sort/Merge finds other records whose key values are equivalent to the 
record, it sums the records as if the partial sum field contains a valid value; it 
does not process the partial sum field as invalid data. However, because the 
results of summing with a partial field are undefined, the resulting contents of 
the sum field are undefined. 

I 

If Sort/Merge reads any records with partial sum fields, it returns a summary 
diagnostic at the end of the sort or merge, giving the number of records with partial 
sum fields. 

Revision H Sort/Merge 12-11 



Specifying the Record Length 

Zero-Length Records 

A zero-length record is a record that contains no data and so its record length is 0. 
The processing of zero-length records read from input files depends on the SM5ZLR call 
in the Sort/Merge specification. 

By default, if the SM5ZLR call is omitted, Sort/Merge deletes all zero-length records 
from the sort or merge. This is the DELETE option. 

However, instead of a DELETE specification, SM5ZLR can specify one of these 
processing options for zero-length records: 

PAD 

Assign default values to key fields and sum fields in zero-length records (as it 
would short records) and keep the zero-length records in the sort or merge. 

LAST 

Write all zero-length records at the end of the output file or memory area. 

Zero-length records are never written to the exception records file if the DELETE 
option is selected. Zero-length records are written to the exception records file if the 
PAD option is selected and either of the following situations exist: 

• If merge order verification is requested and the input files contain zero-length 
records which are not pre-sorted on the merge keys. 

• If AMP$PUT_NEXT detects an error while writing a zero-length record. (In 
general, attempts to write zero-length records to an indexed-sequential file cause 
errors.) 

If duplicate records are to be omitted (as specified by an SM50MIT call) and the PAD 
option is specified for zero-length records, only one zero-length record is included in the 
sort or merge. 

Zero-length records are passed to owncode procedures only if the PAD option is 
selected. When passing a zero-length record to an owncode procedure, Sort/Merge passes 
an empty array of the maximum record length and the record length parameter set to 
zero. 

12-12 FORTRAN Version 1 Language Definition Usage Revision H 



Specifying the Record Length 

The counts kept in the result array for the sort or merge may differ depending on the 
SM5ZLR specification: 

Word 2, number of records read 

Zero-length records are always included in the count. 

Word 6, number of records sorted or merged 

Zero-length records are included only if the PAD option is selected. 

Words 13, 14, and 15; number of records written, the minimum record length, and the 
average record length 

Zero-length records are included in the computation of these values only if the PAD 
or LAST option is selectetl. 

Word 17, the number of zero-length records deleted from the sort or merge 

This count is kept only if the DELETE option is selected. 

Invalid Records 

Sort/Merge checks that all key fields contain data that is valid for the key type. It 
determines whether a sum field contains valid data only when it attempts to use the 
data. It does not validate any fields other than key fields and sum fields. 

A record can also be determined to be invalid when it is written. Sort/Merge writes 
records to the output file using the system procedure AMP$PUT_NEXT. A record is 
considered invalid if AMP$PUT_NEXT returns an error when it attempts to write the 
record. For example, when writing an indexed-sequential file, AMP$PUT_NEXT 
returns an error if the primary-key value for the record is already in the file. 

Invalid records are processed as exceptions. The processing performed depends on 
whether the invalid data is in a key field or a sum field. 

Revision H Sort/Merge 12-13 



Specifying the Record Length 

Exception Processing for Invalid Key Data 

A warning error is issued if a key field contains invalid data. The warning error 
results in the following actions: · 

1. The record is written to the exception records file if an exception records file was 
specified. 

2. The record is deleted from the sort or merge if an exception file was specified. If 
an exception records file was not specified, the record remains in the sort or merge, 
but its place in the sort order is undefined. 

3. A diagnostic message is issued, as controlled by the list options specification. 

4. The sort or merge continues normally. 

Exception Processing for Summing Errors 

SortJMerge detects summing errors ·only when it attempts to sum fields. Only one error 
is detected per sum field. The summing error is processed as an exception. If the 
LIST_OPTIONS requests detailed error reporting (DE), SortJMerge issues a diagnostic 
for each summing error. 

The exception processing performed for summing errors depends on the error detected 
and on whether an exception records file is specified for the sort or merge. 

If an exception records file is specified: 

1. Sort/Merge restores all sum fields of both records so their contents is the same as 
it was before summing of the two records began. 

2. If the error is due to invalid data or an indefinite real, Sort/Merge knows that at 
least one of the sum fields in the record is in error; it does not know if the same 
sum fields in the other record is also in error. Therefore, it writes the record it 
knows to be in error to the exception records file and removes it from the sort or 
merge, but it leaves the other record in the sort or merge. 

3. If Sort/Merge detects an arithmetic overflow or underflow error or finds that each 
record has invalid data in different sum fields, it knows that both records are in 
error. Therefore, it writes both records to the exception records file and removes 
both from the sort or merge. 

If an exception records file is not specified: 

1. Sort/Merge deletes one of the records. If one record is longer than the other, the 
shorter is deleted. Otherwise, either record could be deleted. 

2. The other record remains in the sort or merge with undefined data in the sum field 
for which the error was detected. Summing is completed for the other sum fields. 

12-14 FORTRAN Version 1 Language Definition Usage Revision H 



Performance Considerations 

Performance Considerations 

To improve the performance of Sort/Merge in your programs, consider the following: 

• Do not use owncode procedures except when necessary. Allow Sort/Merge to read 
the input records from files and write the output records to a file. 

• Ensure that all key fields and sum fields are within the minimum record length for 
all input records. Additional processing is required for short records. 

• If possible, use a fixed record length instead of a variable record length. 

• Sort/Merge sorts fastest when using the ASCII collating sequence. For numeric data, 
the most efficient numeric data formats are INTEGER, BINARY, and REAL. 

• Sort/Merge can read and write files faster if the files use the following default 
attributes: 

Sequential file organization 

F or V record type 

System-specified blocking 

No error-exit procedure 

No file access procedure (FAP) 

- The padding character is space 

• Use the optimum page_aging interval for your sort, ·as described under Page_ 
Aging_Interval in this chapter. 

Sort/Merge also executes faster when your site uses a larger page size. 

Limiting Memory Usage 

By default, Sort/Merge limits the memory assigned to its sorting array to 262,144 
(256K) bytes. However, you can change this limit by defining an SCL integer variable 
named SMV$MEMORY_ USAGE_LIMIT. The integer you assign to the variable is used 
as the memory usage limit for subsequent sorts within the scope of the variable. 

NOTE 

The SMV$MEMORY_ USAGE_ LIMIT value is not used to limit memory usage for 
merges; it is used only for sorts (including the internal merge performed as part of a 
sort). 

The integer assigned to the SMV$MEMORY_ USAGE_ LIMIT variable is the memory 
limit in 1024-byte (lK) units. 

The minimum limit is 64. If you specify an integer less than 64, Sort/Merge uses the 
minimum limit of 64. 

The maximum limit is 16,383. If you specify an integer greater than 16,383, 
Sort/Merge uses the maximum limit of 16,383. 

Revision H Sort/Merge 12-15 



Performance Considerations 

A warning error is issued when you specify a value outside the range from 64 to 
16,383. 

As an example of creating the variable, the SCL command CREATE_ VARIABLE is 
used to create the SMV$MEMORY_USAGE_LIMIT variable and assign it the value 
64. 

call sclc create_variable, SMV$MEMORY_USAGE_LIMIT, 
'CAT 'kind=integer, value=64, scope=local); 

Page _Aging _Interval 

Page_aging_interval is the job attribute that controls how quickly pages are aged from 
the working set of a task. If you increase the memory usage limit for your sorts using 
the SMV$MEMORY_ USAGE_LIMIT variable, you should also increase your page_ 
aging_interval value. 

The optimum page_aging_interval depends on the CYBER 180 model you use. A 
smaller value is appropriate for the faster models. For example, when the default 
memory usage limit of 256 pages is used, the optimum page_aging_interval for a 
CYBER 180/830 is about 500,000 microseconds, while, for a CYBER 180/860, the 
optimum value is about 100,000 microseconds. 

To see your current page_aging_interval attribute value, enter the following SCL 
command: 

display_job_attribute, display_option=page_aging_interval 

To change yourpage_aging_interval value, use the CHANGE_JOB_ATTRIBUTE 
command. For example, the following command changes the page_aging_interval to 
500,000 microseconds: 

change_job_attribute, page_aging_interval=SOOOOO 

12-16 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

Sort/Merge Procedure Calls 

FORTRAN Sort/Merge procedure calls must follow the same coding rules as other 
FORTRAN call statements. The Sort/Merge calls can be used by other languages that 
use the standard calling sequence. 

NOTE 

When a program written in a language other than FORTRAN or COBOL uses 
Sort/Merge calls described in this chapter, you must add the following object library to 
the program library list before executing the program: 

$LOCAL.SMF$LIBRARY 

If the Sort/Merge calls are compiled within the FORTRAN program unit, you do not 
need to add this library. 

The system attaches the file when you login, but you must add it to your library list 
so that modules can be loaded from the file. 

For example, the following SET_PROGRAM_ATTRIBUTE command adds the object 
library to the program library list: 

set_program_attribute, add_library=$1oca1.smf$11brary 

To read more about the program library list, see the SCL Object Code Management 
manual. 

The procedures can be called in any order with two exceptions: SM5SORT, SM5MERG, 
must be the first procedures called, and SM5END must be the last procedure called. 
Sort/Merge collects processing information until SM5END is called; the sort or merge is 
then performed. 

Sort/Merge requires a value for the maximum record length for all procedure calls. You 
must specify a value for MAXRL on the SET_FILE_ATTRIBUTE command if the 
system default (MAXRL = 256) is too small for your files. 

Unless otherwise stated, the file characteristics are block type SYSTEM_SPECIFIED 
(BT=SS) and record type VARIABLE (RT=V). For files with other block types and 
record types, you must execute the SET_FILE_ATTRIBUTE command before the file is 
created and before the sort or merge. 

Input files are named by the SM5FROM procedure; output files are named by the 
SM5TO procedure. You can enter the Sort/Merge parameter and user-defined values in 
uppercase, lowercase, or a combination, because Sort/Merge treats lowercase letters as 
being equal to uppercase letters. Owncode routine names must be specified in all 
uppercase letters. 

If you specify an owncode procedure name in lowercase letters, Sort/Merge does not 
convert the name to uppercase letters, unless you specify the true option on the 
SM5CC procedure. 

Unless stated otherwise, a procedure can be called only once during a sort or merge. 

Revision H Sort/Merge 12-17 



Sort/Merge Procedure Calls 

SM5CC 

Purpose Specifies whether lowercase letters in owncode procedure names are to be 
converted to uppercase letters. 

Format CALL SM5CC(opt) 

Parameters opt 

Remarks 

Required; string containing one of these values: 

TRUE, T, YES, Y, ON, true, t, yes, y, on 

Sort/Merge converts any lowercase letters in owncode procedure names 
to uppercase letters. 

FALSE, F, NO, N, OFF, false, f, no, n, off 

Sort/Merge does not convert lowercase letters in owncode procedure 
names. 

If the SM5CC call is omitted, lowercase letters in owncode procedure 
names are not converted. 

When SortJMerge attempts to load an owncode procedure, it passes the 
procedure name as you have specified it on the SM50WNn call. If you 
specify the name with lowercase letters, SortJMerge passes the lowercase 
letters unless an SM5CC call requests conversion. 

The system stores entry point names using uppercase letters only. 
Therefore, if the loader is given a procedure name containing lowercase 
letters, it cannot find that name in the program library list and so it 
cannot to load the requested procedure. 

12-18 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5DUCT 

Purpose Specifies a user-defined collation table. 

Format CALL SM5DUCT (ktype, collating_ table_name) 

Parameters ktype 

Remarks 

Revision H 

Required; name you choose to call the collating sequence defined by the 
weight table. It is specified as the key type on the SM5KEY calls that use 
this collating sequence. 

collating_ table_name 

Required; name of the 256-character string containing the collating 
weights. 

• SortJMerge does not distinguish between lowercase and uppercase letters 
in the specified names. 

• A Sort/Merge call sequence can include more than one SM5DUCT call. 

• The total number of SM5SEQN, SM5LCT, and SM5DUCT calls in a 
SortJMerge call sequence cannot exceed 100. 

• The name SM5DUCT assigns to the collating sequence cannot be the 
name of a predefined collating sequence or another collating sequence 
already defined for the sort or merge. 

• The weight table must already be loaded as part of the program. It 
must be a string declared by CHARACTER USER*256. Each character 
specifies the collating weight of the corresponding ASCII character. 

• For more information, see the Collation Tables appendix in this 
manual. 

Sort/Merge 12-19 



Sort/Merge Procedure Calls 

SM5E 

Purpose Specifies the file to which diagnostic messages for this sort or merge are 
written. 

Format CALL SM5E (file) 

Parameters file 

Remarks 

Required; character expression specifying the name of the file to receive 
diagnostic messages. 

If SM5E call is omitted, error messages are written to file $ERRORS. 

• Sort/Merge writes the error file only if it detects errors of at least the 
severity specified by the SM5EL call. 

• Sort/Merge does not rewind the error file before or after it uses it. 

• If you specify $NULL as the error file, diagnostic messages are not 
written. 

• If you specify the same file as the listing file and as the error file 
(SM5E and SM5LIST), each diagnostic message is written only once to 
the file. (Otherwise, each message is written twice, once to the error 
file and once to the listing file.) 

·• The error level reported to the error file is specified by the SM5EL 
call. 

12-20 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5EL 

Purpose Specifies the minimum severity level to be reported on the error file. 

Format CALL SM5EL (lim) 

Parameters lim 

Remarks 

Revision H 

Required; character expression specifying the severity level of errors to be 
written to the error file: 

I or i 

All informational, warning, fatal, and catastrophic errors. 

Tort 

Same as informational; (obsolete value; its use is not recommended). 

W or w 

All warning, fatal, and catastrophic errors. 

For f 

All fatal and catastrophic errors. 

C or c 

Only catastrophic errors. 

NONE or none 

No errors are written to the error file. 

If the SM5EL call is omitted, all diagnostics are reported regardless of 
severity. 

The error file is specified by ·the SM5E call. 

Sort/Merge 12-21 



Sort/Merge Procedure Calls 

SM5END 

Purpose 

Format 

Remarks 

Terminates a sort or merge specification and initiates Sort/Merge 
processing. 

CALL SM5END 

The SM5END call is required. It must be the last in the sequence of 
Sort/Merge calls. 

12-22 FORTRAN Version· 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5ENR 

Purpose Allows compatibility with NOS Sort/Merge 5. NOSNE does not use the 
specified value. 

Format CALL SM5ENR (value) 

Parameters value 

Revision H 

Required; an integer value indicating the estimated number of records to 
be sorted. The value can be from 1 through 16,777,215. 

Sort/Merge 12-23 



Sort/Merge Procedure Calls 

SM5ERF 

Purpose Specifies the file to which invalid records are written. 

Format CALL SM5ERF (file) 

Parameters file 

Remarks 

Required; character expression specifying the file name of the exception 
records file. 

If the SM5ERF call is omitted, exception records are not removed from the 
sort or merge. The order of records with invalid keys is undefined. The 
contents of sum fields for which summing errors are detected is also 
undefined. 

• The exception records file cannot also be the output file or an input 
file. Its file organization must be sequential; it cannot be a keyed file. 

• If you specify $NULL as the exception records file, each exception 
record is deleted as it is written to the file. 

• All records written to the exception records file are deleted from the 
sort or merge. 

• The records written to the exception records file include: 

Records containing invalid key data. 

Records containing invalid sum data if Sort/Merge attempts to sum 
the data. 

Records that caused an arithmetic overflow or underflow when their 
sum fields were summed. 

Short records in which Sort/Merge found a partial numeric key field 
or partial sum field. 

Out-of-order merge input records if merge order checking was 
requested by an SM5VER call. 

Records for which the system procedure AMP$PUT_NEXT returned 
an error when it attempted to write the record to the output file for 
the sort or merge. 

• A summary of the records written to the exception records file is 
written to the errors file and to the list file. 

12-24 FORTRAN Version 1 Language Definition Usage Revision H 



SortJMerge Procedure Calls 

SM5FMA 

Purpose Specifies a memory area to be read as a source of input records. 

Format CALL SM5FMA (variable, 'FIXED', max_record_length, number_of_ 
records) 

Parameters variable 

Remarks 

Revision H 

Required; name of the memory location at which Sort/Merge begins reading 
input records. 

'FIXED' 

Required; string expression (FIXED or fixed) specifying that each input 
record read from the memory area is the fixed length specified by the 
third parameter on the call. 

max_ record_ length 

Required; integer giving the fixed record length in bytes. The maximum 
input record size is 65,536. 

number _of_records 

Required; integer giving the number of records Sort/Merge is to read from 
the memory area. 

If the SM5FMA call is omitted, all input records are read from files or 
supplied by owncode procedures. 

• A Sort/Merge specification can specify up to 100 sources of input 
records. These sources can be files or memory area; the sources are 
read in the order you specify them. Files are specified by SM5FROM 
calls; memory areas are specified by SM5FMA calls. 

• When a memory area is used as an input record source, a sort cannot 
use an owncode 1 or owncode 2 procedure. 

• The record order is undefined when a memory area specified by an 
SM5FMA call overlaps the memory area specified by the SM5TMA call. 

Sort/Merge 12-25 



SorUMerge Procedure Calls 

SM5FROM 

Purpose Specifies one or more files from which input records are read. 

Format CALL SM5FROM (file, ... , file ) 

Parameters file 

Remarks 

Required; character expression specifying the name of an input file. The 
files are read in the order specified on the call. 

If the SM5FMA call is omitted, input records are read from the specified 
memory area. Or, if SM50WN1 is called, input records could be supplied 
by the owncode 1 procedure. Otherwise, Sort/Merge attempts to open and 
read file $LOCAL.OLD as the source of input records. 

• A Sort/Merge specification can specify up to 100 sources of input 
records. These sources can be files or memory areas; the sources are 
read in the order you specify them. Files are specified by SM5FROM 
calls; memory areas are specified by SM5FMA calls. 

• All instances of open of the input files must he closed before the sort 
or merge begins. Sort/Merge opens each file before it reads it and 
closes it when it has finished reading it. 

• Sort/Merge does not read past an end-of-partition delimiter embedded in 
an input file. 

• The input files for a merge must be pre-sorted on the same keys used 
for the merge. For a merge with summing, the input files must also he 
pre-summed using the same sum fields specified for the merge. 

• A Sort/Merge input file can reside on either mass storage or magnetic 
tape. 

• The Sort/Merge output file can have sequential, direct-access, or 
indexed-sequential file organization and its record type can be variable 
(V), fixed-length (F), or trailing-character-delimited (T). 

12-26 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5KEY 

Purpose Specifies a key field to be used by the sort or merge. 

Format CALL SM5KEY (first, len, ktype, ad) 

Parameters first 

Revision H 

Required; integer expression specifying the first position of the key field. 
Bit positions are used for the BINARY_BITS and INTEGER_BITS key 
types, byte positions for all others. Positions are numbered from the left 
beginning with 1. 

len 

Required; integer expression specifying the number of positions in the key 
field. The number of bits are given for the BINARY_BITS and INTEGER_ 
BITS key types, byte positions for all others. 

To see the maximum key field sizes, see table 12-1. 

ktype 

Required; character expression specifying the numeric data format or, for 
character data, the collating sequence. 

You can define a collating sequence name with an SM5DUCT, SM5LCT, or 
SM5SEQN call or use one of the following collating sequences without 
predefinition: 

ASCII 

ASCII collating sequence. 

ASCII6 

OSV$ASCII6_FOLDED collating sequence. 

COBOL6 

OSV$COBOL6_FOLDED collating sequence. 

DISPLAY 

OSV$DISPLAY64_FOLDED collating sequence. 

EBCDIC 

OSV$EBCDIC collating sequence. 

EBCDIC6 

OSV$EBCDIC6_FOLDED collating sequence. 

Appendix J lists the predefined collating sequence. 

The following are the available numeric data formats: 

BINARY 

Binary integer starting and ending on byte boundaries. 

BINARY_BITS 

Binary integer not required to start or end on byte boundaries. 

Sort/Merge 12-27 



SorUMerge Procedure Calls 

ad 

INTEGER 

Two's complement binary integer starting and ending on byte 
boundaries. 

INTEGER_ BITS 

Two's complement binary integer not required to start or end on byte 
boundaries. 

NUMERIC_FS 

Numeric characters with floating sign (FORTRAN I format or COBOL 
zero-suppressed editing item). 

NUMERIC_LO 

Numeric characters with leading overpunch sign. 

NUMERIC_LS 

Numeric characters with leading separate sign. 

NUMERIC_NS 

Numeric characters with no sign. 

NUMERIC_ TO 

Numeric characters with trailing overpunch sign. 

NUMERIC_ TS 

Numeric characters with trailing separate sign. 

PACKED 

Signed packed decimal. 

PACKED_NS 

Unsigned packed decimal. 

REAL 

Normalized floating-point number, single-precision (8 bytes) or 
double-precision (16 bytes). 

Required; character expression specifying the order of the sort or merge 
operation: 

A or a 

Ascending order 

Dor d 

Descending order 

If the SM5KEY call is omitted, the only key field used begins at position 1 
and extends through the smallest minimum record length of the input 
sources. However, the minimum key length used is 1 and the maximum 
key length used is 1023. 

The key is sorted by the ASCII collating sequence in ascending order. 

12-28 FORTRAN Version 1 Language Definition Usage Revision H 



Remarks 

Revision H 

SortJMerge Procedure Calls 

• Sort/Merge treats lowercase letters in parameter values as being equal 
to uppercase letters. 

• The combined length of all key fields defined for a sort or merge 
cannot exceed 1023 bytes. 

• The total number of SM5KEY calls in a Sort/Merge call sequence 
cannot exceed 106. 

• The significance of multiple keys corresponds to the order in which the 
keys are defined. 

• Sort key fields can overlap other sort key fields with the following 
exceptions: 

Key fields that are ordered by collating sequences defined with an 
SM5SEQA call cannot overlap other key fields. 

Key fields cannot overlap sum fields. 

• For more information, see the description of Short Records and 
Zero-Length Records ear lier in this chapter. 

SortJMerge 12-29 



Sort/Merge Procedure Calls 

SM5LCT 

Purpose Loads a collation table, that is, a weight table that defines a collating 
sequence. The table may be a NOS/VE predefined collation table or a 
user-defined collation table in an object library. 

Format CALL SM5LCT (ktype, collation_ table_name) 

Parameters ktype 

Remarks 

Required; name you choose to call the collating sequence defined by the 
weight table. It is specified as the key type on the SM5KEY calls that use 
this collating sequence. 

The name cannot be the name of a predefined collating sequence or the 
name of a collating sequence you have already defined. 

collation_ table_name 

Required; name of a predefined weight table or an object library module 
defining a collating sequence. 

• Sort/Merge treats lowercase letters as being equal to uppercase letters. 

• The total number of SM5DUCT, SM5LCT, and SM5SEQN calls in a 
Sort/Merge specification cannot exceed 100. 

• The weight table must be loadable by PMP$LOAD and have 256 weight 
values. 

• For more information, see the collation table appendix in this manual. 

12-30 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5LIST 

Purpose Specifies the name of the list file. 

Format CALL SM5LIST (file) 

Parameters file 

Remarks 

Required; character expression specifying the file name of the listing 
information file. 

If the SM5LIST call is omitted, the default list file is $LIST. 

• Listing information includes the Sort/Merge version and level numbers, 
time and date, diagnostics, and statistics such as the number of records 
sorted or merged. 

• If you specify the same file as the listing file and as the error file 
(SM5E and SM5LIST), each diagnostic message is written only once to 
the file. (Otherwise, each message is written twice, once to the error 
file and once to the listing file.) 

Revision H Sort/Merge 12-31 



Sort/Merge Procedure Calls 

SM5LO 

Purpose Specifies the information written to the listing file. 

Format CALL SM5LO (option) 

Parameters option 

Remarks 

Required; one of the following values: 

OFF 

All listing information is suppressed. 

NONE 

Same as OFF keyword. 

DE 

Detailed exception information (valid only if SM5ERF is called). 

RS 

Record statistics for those records sorted or merged. 

MS 

Merge statistics for the records merged. 

s 
Valid keyword, but meaningless on an SM5LO call. 

• The minimum information SortJMerge writes to the listing file is the 
page heading, error messages, the exception file summary, and the 
number of records sorted or merged. 

• You can specify only one option with each SM5LO call, but the 
Sort/Merge specification can include more than one SM5LO call. 

12-32 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5MERG 

Purpose Signals the beginning of a sequence of Sort/Merge calls for a merge 
operation. 

Format CALL SM5MERG (array) 

Parameters array 

Remarks 

Revision H 

Required; name of a one-dimensional array of 1 through 18 integers in 
which Sort/Merge returns statistics about the merge. Or, if you specify 0, 
Sort/Merge returns no statistics. 

NOTE 

The specified result array should be declared inside a common block. 
FORTRAN optimization requires that variables specified on a call, but 
modified after return from the call, occur only in common blocks. 

• SM5MERG must be the first routine called for a merge operation. 

• In the first word of the array, you must specify the number of values 
(0 through 17) you want returned. Values are returned in words 2 
through 18. The array must be long enough to contain the number of 
values you request in the first word. 

• ·The result array format is listed in table 12-4. 

Sort/Merge 12-33 



Sort/Merge Procedure Calls 

Table 12-4. Result Array Format 

Array 
Element 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Contents 

Number of elements of results you want returned in the array (0 
through 17) 

Number of records read from input files or memory areas 

Number of records deleted by an owncode 1 procedure 

Number of records inserted by an owncode 1 procedure 

Number of records inserted by an owncode 2 procedure 

Number of records sorted or merged. The count does not include 
records written to the exception records file or zero-length records 
(unless the SM5ZLR call selects the PAD option.) 

Number of records deleted by an owncode 3 procedure 

Number of records inserted by an owncode 3 procedure 

Number of records inserted by an owncode 4 procedure 

Number of records written to the exception file 

Number of records deleted by an owncode 5 procedure 

Number of records· combined by summing 

Number of records written to the output file or memory area 

Actual minimum record length of all input records 

Average record length (total record length divided by the total number 
of input records) 

Actual maximum record length of all input records 

Number of zero-length records removed from the sort or merge 
because the default SM5ZLR option (DELETE) is selected. 

Number of records with equivalent key values (duplicates) removed 
from the sort or merge as requested by an SM50MIT call. 

12-34 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM50FL 

Purpose Specifies the length of each fixed-length record entering the sort or merge 
from an owncode procedure. 

Format CALL SM50FL (flen) 

Parameters flen 

Remarks 

Revision H 

Required; integer expression specifying the fixed length in bytes. Valid 
values are from 1 through 65,535. 

If SM50WN1 and SM50WN3 are called, but SM5FROM and SM5TO are 
not, an SM50FL or SM50MRL call is required. Otherwise, if SM50FL and 
SM50MRL are omitted, the record length is the largest MAXIMUM_ 
RECORD_LENGTH attribute for the input and output files used by the 
sort. 

• A fatal error occurs if a owncode procedure supplies a record of any 
other length. 

• You cannot call both SM50FL and SM50MRL for the same sort 
operation. 

Sort/Merge 12-35 



Sort/Merge Procedure Calls 

SM50MIT 

Purpose Specifies whether Sort/Merge outputs only one record in each set of records 
with equivalent key values. 

Format SM50MIT (option) 

Parameters option 

Remarks 

Required; one of the following character expressions: 

TRUE, T, YES, Y, ON, true, t, yes, y, or on 

Duplicates are omitted. 

FALSE, F, NO, N, OFF, false, f, no, n, or off 

Duplicates are not omitted. 

If the SM50MIT call is omitted, duplicates are not omitted. The processing 
of records with equivalent key values depends on whether SM50WN5, 
SM5RETA, or SM5SUM is called. If all of these calls are omitted, records 
with equivalent key values remain in the sort or merge, but their relative 
order is undefined. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• When duplicates are omitted, Sort/Merge removes the shorter duplicate 
records from the sort or merge. When the duplicates have the same 
length, any of the duplicates could be the one that is kept. 

• A count is kept in word 18 of the result array of the number of 
duplicate records deleted from the sort or merge due to an SM50MIT 
call. (The result array is specified on the SM5MERG or SM5SORT call.) 

• Duplicates omitted by an SM50MIT call are not written to the 
exception records file. 

• Zero-length records are processed as duplicates only if the SM5ZLR call 
specifies the PAD option. 

12-36 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM50MRL 

Purpose Specifies the maximum length of any record entering the sort or merge 
from an owncode procedure. 

Format CALL SM50MRL (mlen) 

Parameters mlen 

Remarks 

Revision H 

Required; integer expression specifying the maximum length in bytes. 

If SM50WN1 and SM50WN3 are called, but SM5FROM and SM5TO are 
not, an SM50FL or SM50MRL call is required. Otherwise, if SM50FL and 
SM50MRL are omitted, the record length is the largest MAXIMUM_ 
RECORD_LENGTH attribute for the input and output files used by the 
sort. 

• SM50MRL need not be called if Sort/Merge has an input or output file 
with a maximum record length at least as long as the maximum record 
length of the user-supplied records. 

• You cannot call both the SM50FL and SM50MRL routines for the 
same sort operation. If all records supplied by owncode procedures have 
the same length, SM50FL should be called instead of SM50MRL. 

Sort/Merge 12-37 



Sort/Merge Procedure Calls 

SM50WNn 

Purpose 

Format 

Specifies a user-written (owncode) procedure to be executed each time a 
certain event occurs during the sort or merge. 

CALL SM50WN1(name) Specifies the name of the owncode 1 procedure 
executed each time a sort reads an input record. 

CALL SM50WN2(name) Specifies the name of the owncode 2 procedure 
executed each time a sort finishes reading an 
input file. 

CALL SM50WN3(name) Specifies the name of the owncode 3 procedure 
executed each time a sort or merge is ready to 
write an output record. 

CALL SM50WN4(name) Specifies the name of the owncode 4 procedure 
executed each time a sort or merge finishes 
writing its output records. 

CALL SM50WN5(name) Specifies the name of the owncode 5 procedure 
executed each time a sort or merge finds two 
records with equivalent key values. 

Parameters name 

Remarks 

Required; character expression specifying the name of an owncode 
procedure. 

The name must be specified using all uppercase letters unless the sort or 
merge calls SM5CC with the true option. 

Owncode procedures are executed only if they are specified. 

• Merge specifications cannot call SM50WN1 or SM50WN2. 

• Sort/Merge specifications that call SM5FMA cannot call SM50WN1 or 
SM50WN2. Sort/Merge specifications that call SM5TMA cannot call 
SM50WN3 or SM50WN4. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• For further information about owncode procedures, see the discussion 
later in this chapter. 

12-38 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5RETA 

Purpose Specifies whether input records having equal keys are to be output in the 
same order they are input. 

Format CALL SM5RETA (opt) 

Parameters opt 

Remarks 

Optional; character expression having one of the following values: 

YES 

Records with equal keys retain their original order. 

NO 

Records with equal keys may not retain their original order. 

If this argument is omitted (no argument list specified), the default is YES. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• If you select the 'YES' option and specify more than one input source, 
the order in which you specify the input sources is the order in which 
records with equal keys will be written. 

• Maintaining the original order of records with equal key values 
increases the required processing time because Sort/Merge must keep 
track of the input order. 

Revision H Sort/Merge 12-39 



Sort/Merge Procedure Calls 

SM5SEQA 

Purpose Used with the SM5SEQS call to . specify whether characters are altered in 
the output. If characters are altered, all characters in the value step 
specified by the preceding SM5SEQS call are output as the first character 
in the value step. 

Format CALL SM5SEQA (opt) 

Parameters opt 

Remarks 

Examples 

Required; character expression having one of the following values: 

TRUE, T, YES, Y, ON, true, t, yes, y, or on 

Alters the equated characters. 

FALSE, F, NO, N, OFF, false, f, no, n, or off 

Does not alter the equated characters. 

If the SM5SEQA call is omitted, characters are not altered. 

SM5SEQA is used in a sequence of calls that define a user-defined 
collating sequence. The other calls are SM5SEQN, SM5SEQS, and 
SM5SEQR. 

The sequence of calls below converts all commas and semicolons to spaces: 

CALL SMSSEQN ('ALTERSQ') 
CALL SMSSEQS ( ' ' , ' , ' , ' ; ' ) 
CALL SMSSEQA ('YES') 

12-40 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5SEQN 

Purpose Specifies the name of the collating sequence specified by the following 
SM5SEQS, SM5SEQR, and SM5SEQA calls. 

Format CALL SM5SEQN (name) 

Parameters name 

Remarks 

Examples 

Revision H 

Required; character expression specifying the name of the user-defined 
collating sequence. 

• The end of the collating sequence definition is indicated by any 
statement other than an SM5SEQS, SM5SEQR, and SM5SEQA call. 

• The specified name cannot be the same as that of any predefined 
collating sequence or user-defined collating sequence that you have 
already defined for the sort or merge. 

• The specified name is used as the key type on SM5KEY calls defining 
key fields to be ordered by the user-defined collating sequence. 

This statement names a user-defined collating sequence: 

CALL SMSSEQN ('MYSEQ') 

·This statement defines a key field that uses the user-defined collating 
sequence: 

CALL SM5KEY(1, 10, 'MYSEQ', 'A') 

Sort/Merge 12-41 



Sort/Merge Procedure Calls 

SM5SEQR 

Purpose Defines the position of the remainder value step in the collating sequence 
being defined. The remainder value step consists of all characters that 
have not been included in value steps defined by SM5SEQS calls. 

Format CALL SM5SEQR (opt) 

Parameters opt 

Remarks 

Examples 

Required; character expression having one of the following values: 

TRUE, T, YES, Y, ON, true, t, yes, y, or on 

The remainder value step is defined at this position. 

FALSE, F, NO, N, OFF, false, f, no, n, or off 

The remainder value step is not defined. 

If the SM5SEQR call is omitted, the last value step in the collating 
sequence is defined as the remainder value step. 

SM5SEQR is used in a sequence of calls that define a user-defined 
collating sequence. The other calls are SM5SEQN, SM5SEQS, and 
SM5SEQA. 

The sequence below defines a collating sequence with two value steps: all 
nondigits followed by all digits. 

CALL SMSSEQN ('DIGITS') 
CALL SMSSEQR ('YES') 
CALL SMSSEQS ('0','1','2','3','4' ,'5','6','7','8','9') 

12-42 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5SEQS 

Purpose Specifies a value step in the collating sequence being defined. 

A value step consists of one or more characters that are to have the same 
collating weight in the sequence. 

The first CALL SM5SEQS statement specifies the first value step, the 
second SM5SEQS statement specifies the second value step, and so on until 
the collating sequence is completely defined. 

Format CALL SM5SEQS (char, ... , char) 

Parameters char 

Remarks 

Examples 

Revision H 

Required; character expression specifying a character in the value step. 

SM5SEQS is used in a sequence of calls that define a user-defined collating 
sequence. The other calls are SM5SEQN, SM5SEQR, and SM5SEQA. 

This statement defines a value step consisting of one character: 

CALL SMSSEQS ('A') 

This statement defines a value step consisting of several characters: 

CALL · SMSSEQS ( ' 1 ' , '2' , '3' , '4' ) 

Sort/Merge 12-43 



Sort/Merge Procedure Calls 

SM5SORT 

Purpose Signals the beginning of a sequence of Sort/Merge calls for a sort 
operation. 

Format CALL SM5SORT (array) 

Parameters array 

Remarks 

Required; name of an integer array in which Sort/Merge returns statistics 
about the merge. Or, if you specify 0, Sort/Merge returns no statistics. 

NOTE 

The specified result array should be declared inside a common block. 
FORTRAN optimization requires that variables specified on a call, but 
modified after return from the call, occur only in common blocks. 

• SM5SORT must be the first routine called for a sort operation. 

• In the first word of the array, you must specify the number of values 
(O through 17) you want returned. Values are returned in words 2 
through 18. The array must be long enough to contain the number of 
values you request in the first word. 

• To see the result array format, see table 12-4. 

12-44 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5ST 

Purpose Returns the severity level of the most severe error encountered during the 
sort or merge operation. 

Format CALL SM5ST (lev) 

Parameters lev 

Required; variable in which Sort/Merge returns an integer indicating the 
highest severity level of all errors detected during the sort or merge: 

0 No errors 

10 Informational errors 

20 Warning errors 

30 Fatal errors 

40 Catastrophic errors 

Revision H Sort/Merge 12-45 



Sort/Merge Procedure Calls 

SM5SUM 

Purpose Specifies that summing is to be performed on the specified fields. 

Format CALL SM5SUM (first, len, type, rep) 

Parameters first 

Remarks 

Required; integer ~xpression specifying the first byte or bit of the sum 
field (numbered from the left starting with 1). 

len 

Required; integer expression specifying the number of bytes or bits in the 
sum field. 

type 

Required; character expression specifying the numeric data format. The 
numeric data formats are listed in table 12-2. 

rep 

Required; integer greater than zero specifying the number of times the 
field repeats in the record. 

• Each sort or merge can specify only one method of processing records 
with equivalent key values. Therefore, the SM50MIT, SM50WN5, 
SM5RETA, and SM5SUM calls are mutually exclusive. 

• Sum fields cannot overlap one another. Sum fields cannot overlap key 
fields. 

• SM5SUM can be called up to 100 times for each sort or merge. 

• If SM5SUM is called, Sort/Merge processes records with equivalent 
values by combining the records into one output record. The sum fields 
contain the sums of the values in the corresponding sum fields in the 
input records. The rest of he record is taken from the longest of the 
original input records. 

• To read about exception processing for partial sum fields, see the 
discussion under short records in this chapter. 

12-46 FORTRAN Version 1 Language Definition Usage Revision H 



Sort/Merge Procedure Calls 

SM5TMA 

Purpose Specifies a memory area to used as the destination of output records. 

Format CALL SM5TMA (variable, 'FIXED', max_record_length) 

Parameters variable 

Remarks 

Revision H 

Required; name of the memory location at which Sort/Merge begins writing 
output records. 

'FIXED' 

Required; string expression (FIXED or fixed) specifying that each input 
record written to the memory area is the fixed length specified by the 
third parameter on the call. 

max_ record_ length 

Required; integer giving the fixed record length in bytes. The maximum 
input record size is 65,536. 

If the SM5TMA call is omitted, all output records are written to an output 
file or processed by an owncode 3 procedure. 

• A Sort/Merge specification can specify only one destination for output 
records. The destination can be a file or a memory area, but not both. 
A file is specified by an SM5TO call; a memory area is specified by an 
SM5TMA call. 

• When a memory area is used as the destination for output records, the 
sort or merge cannot use owncode 3 or owncode 4 procedures. 

• The record order is undefined when a memory area specified by an 
SM5FMA call overlaps the memory area specified by the SM5TMA call. 

• A count of the records written to the memory area is kept in word 13 
of the result array. (The result array is specified on the SM5SORT or 
SM5MERG call.) 

Sort/Merge 12-47 



Sort/Merge Procedure Calls 

SM5TO 

Purpose Specifies the file to receive the sorted or merged output records. 

Format CALL SM5TO (file) 

Parameters file 

Remarks 

Required; character expression specifying the name of the file. 

If the SM5TMA call is omitted, output records are written to the specified 
memory area. Or, if SM50WN3 is called, output records are processed by 
an owncode 3 procedure. Otherwise, Sort/Merge writes the output records to 
file $LOCAL.NEW. 

·• The output file cannot also be an input file or the exception records file 
or the error file or the list file. 

• The file must be closed when the sort or merge begins. Sort/Merge 
closes the file when it completes the sort or merge. 

• The Sort/Merge output file can reside on either mass storage or 
magnetic tape. 

• The Sort/Merge output file can have either sequential or 
indexed-sequential file organization and its record type can be variable 
(V), fixed-length (F), or trailing-character-delimited (T). 

• The Sort/Merge output file cannot use the direct-access file organization. 

• If the output file is an indexed-sequential file with a nonembedded 
primary key, the primary-key value is removed from the beginning of 
the record when it is written to the output file. 

The removed primary-key value is stored in the primary index of the 
file. The record data stored is shortened by key_ length characters. 

• If the output file is an indexed-sequential file, the major sort key must 
be the primary key defined for the output file. 

The indexed-sequential file organization requires that each primary-key 
value be unique. Therefore, the value in the major sort key field must 
be unique for each output record. This can be ensured by specifying the 
OMIT_DUPLICATES=YES parameter or using an owncode 5 procedure. 

12-48 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

Sort/Merge Procedure Calls 

• If the output (TO) file is an indexed-sequential file, SortJMerge checks 
the KEY_POSITION, KEY_LENGTH, and KEY_ TYPE attributes: 

- If the major sort key position does not match the KEY_POSITION 
attribute value, SortJMerge issues a fatal error and terminates. 

- If the major sort key length does not match the KEY_LENGTH 
attribute value, SortJMerge issues a warning error and changes the 
major sort key length to match the primary key length. 

- If the major sort key type does not match the KEY_ TYPE attribute 
value, SortJMerge issues a warning error and changes the major sort 
key type if the KEY_ TYPE value is UNCOLLATED or INTEGER. 
(It does not issue a warning or change the key type if the KEY_ 
TYPE value is COLLATED.) 

If the KEY_ TYPE is UNCOLLATED, the major sort key type is 
changed to ASCII. 

If the KEY_ TYPE is INTEGER, the major sort key type is 
changed to INTEGER. 

Sort/Merge 12-49 



Sort/Merge Procedure Calls 

SM5VER 

Purpose Specifies whether Sort/Merge checks that the input records to a merge are 
in sorted order. 

Format CALL SM5VER (opt) 

Parameters opt 

Remarks 

Required; character expression having one of the following values: 

TRUE, T, YES, Y, ON, true, t, yes, y, or on 

The order of merge input records is verified. 

FALSE, F, NO, N, OFF, false, f, no, n, or off 

The order of merge input records is not verified. 

If the SM5VER call is omitted, the order of merge input records is not 
verified. Out-of-order input records remain in the merge. Their order in the 
output file is undefined. 

• If merge order verification is requested and Sort/Merge finds an input 
record out of order, it issues a warning message. 

If an exception records file has been specified (SM5ERF), any 
out-of-order input records are written to the exception records file and 
then deleted from the merge. 

• If you include an SM5VER call is a sort specification, Sort/Merge issues 
a warning message, but otherwise ignores the call. 

12-50 FORTRAN Version 1 Language Definition Usage Revision H 



SM5ZLR 

Purpose 

SorUMerge Procedure Calls 

Specifies the disposition of zero-length records. 

NOTE 

The SM5ZLR option applies only to records read from input files; it does 
not apply to records read from memory areas or supplied by owncode 
procedures. 

Format CALL SM5ZLR (keyword) 

Parameters keyword 

Remarks 

Revision H 

Required; character expression specifying one of the following keywords: 

DELETE 

Each zero-length record is deleted from the sort or merge. (The deleted 
records are not written to the exception records file.) 

PAD 

Each zero-length record is processed as a short record. Key fields are 
assigned default values (spaces for character keys; zero for numeric 
keys). 

LAST 

Each zero-length record is written at the end of the output. 

If the SM5ZLR call is omitted, each zero-length record is deleted from the 
sort or merge. 

For more information about zero-length records, see the discussion earlier 
in this chapter. 

SorUMerge 12-51 



Owncode Routines 

Owncode Routines 

You can write subprograms to insert, substitute, modify, or delete input and output 
records during Sort/Merge processing. Such a subprogram, called an owncode routine, is 
executed each time the sort or merge reaches ~ certain point in Sort/Merge processing. 
Figure 12-2 illustrates the points at which Sort/Merge can call owncode routines. 

Sort/Merge passes a record to the owncode routine, which processes the record. When 
the record is returned to Sort/Merge from the owncode routine, Sort/Merge processes 
the record according to a code passed by the owncode routine. 

Owncode routines can also supply the records to be sorted. When Sort/Merge is ready 
for a record, it calls the owncode routine, which then passes a record to Sort/Merge. 

12-52 FORTRAN Version 1 Language Definition Usage Revision H 



Input to a Sort: 

yes 

Record Key Comparison: 

Output from a Sort or Merge: 

Opens input file 

Reads input 
record 

Finishes reading 

Calls 

Calls 
an input file -----

Input complete. 

Key values Calls 
equivalent 

Opens output file 

Output record Calls 
ready 

No more Calls 
output records 

Owncode Routines 

Owncode 1 
routine 

Owncode 2 
routine 

Owncode 5 
routine 

Owncode 3 
routine 

Owncode 4 
routine 

Sort or merge 
complete. 

Figure 12-2. When Owncode Routines are Called 

Revision H Sort/Merge 12-53 



Owncode Routines 

An SM50WN n call specifies the name of an owncode routine Sort/Merge is to use; n is 
an integer from 1 through 5 that tells Sort/Merge at which point in processing the 
routine is executed. The SM50WNn call is described earlier in this chapter. 

Owncode routines 1 and 2 can be called for a sort only; owncode routines 3, 4, and 5 
can be called for a sort or a merge. 

SM50WN n calls are optional. Each SM50WN n call in the Sort/Merge sequence of calls 
must specify a different routine name. 

NOTE 

When Sort/Merge calls PMP$LOAD to load the owncode routine, it must pass it a 
name that uses only uppercase letters. Otherwise, PMP$LOAD cannot find the name in 
the program library list. Therefore, the user must either specify all owncode routine 
names using only uppercase letters or call SM5CC with the TRUE option to convert 
the names, if necessary. 

You can write an owncode routine using any NOSNE programming language, including 
FORTRAN (subroutine subprograms), COBOL (subprograms compiled with COBOL 
SP=TRUE option), or CYBIL. The owncode routine must be compiled and stored as a 
module in an object library. 

Owncode routines must either be loaded with the main program or be loadable from 
the program library list. To load 8:n owncode routine, Sort/Merge calls PMP$LOAD to 
load the routine. PMP$LOAD then searches for the specified owncode routine name in 
the directories of the object libraries in the program library list. 

CYBIL owncode routines must be declared XDCL procedures. 

For Sort/Merge to use an object library containing one or more owncode routines, the 
object library file must be in the program library list. To add a file to the program 
library list before executing the CYBIL program, execute a SET_PROGRAM_ 
ATTRIBUTES command. 

For detailed information on creating object libraries, see the SCL Object Code 
Management Usage manual. The example at the end of this chapter stores an owncode 
routine in an object library. 

Owncode Procedure Parameters 

Sort/Merge communicates with an owncode routine via the procedure parameter list. 
SortlMerge passes record data to the procedure and the procedure returns record data 
and a code indicating how Sort/Merge is to process the record data. 

12-54 FORTRAN Version 1 Language Definition Usage Revision H 



Owncode Routines 

The following lists the required CYBIL procedure parameter list for owncode 1, 
owncode 2, owncode 3, and owncode 4 procedures: 

(VAR return_code: integer; 
VAR reca: string(*); 
VAR rla: integer); 

The following lists the required CYBIL procedure parameter list for owncode 5 
procedures: 

(VAR return_code: integer; 
VAR reca: string(*); 
VAR rla: integer; 
VAR recb: string(*); 
VAR rlb: integer); 

The return_code parameter passes an integer code back to Sort/Merge specifying how 
Sort/Merge is to process the returned records. Sort/Merge always initializes the return_ 
code value to 0 when it calls an owncode routine. The owncode routine can leave the 
return_code value unchanged or change it to one of the valid values for the owncode 
routine. (The valid values are listed in the individual owncode routine description later 
in this chapter.) If an invalid return_ code value is returned, Sort/Merge returns a fatal 
error. 

The subsequent parameters are used to pass one or two records to the owncode routine. 
For an owncode 1 through owncode 4 procedure, Sort/Merge passes only one record, the 
current record being input or ourput. The record data is passed in the reca variable 
and the record length in bytes is passed in the rla variable. 

When calling an owncode 5 procedure, Sort/Merge passes two records having equal 
keys. The record data is passed in the reca and recb variables and the corresponding 
record lengths in the rla and rlb variables. 

An owncode routine can change the record data and record length values passed to it. 
The procedure must ensure that the record length value returned is correct for the 
record data returned. However, Sort/Merge does check that the record length returned 
does not exceed the maximum record length for the sort or merge. 

Owncode Procedure Record Length 

Sort/Merge checks the length of each record returned to it by an owncode routine. If a 
record is too long, Sort/Merge issues an error. 

The Sort/Merge specification can explicitly specify the owncode record length. 
Otherwise, by default, the maximum record length is the largest MAXIMUM_ 
RECORD_LENGTH file attribute value of the input files or output file specified for 
the sort or merge. 

To explicitly specify the owncode record length, you must call SM50FL or SM50MRL. 
If the sort or merge specifies no input or output files, a call to specify the owncode 
record length is required. 

If you call SM50FL, the length of each record returned by an owncode routine must 
exactly match the specified record length value. 

If you call SM50MRL, the length of each record returned by an owncode routine 
cannot exceed the specified record length value. 

Revision H Sort/Merge 12-55 



Owncode 1: Processing Input Records 

Owncode 1: Processing Input Records 

You specify an owncode 1 procedure to process or supply the input records for a sort. 
An owncode 1 procedure is used only with a sort request; specifying an owncode 1 
procedure with a merge request returns a fatal error. 

An owncode 1 procedure cannot be used when SMP$FROM_MEMORY is called. 

Owncode 1 procedure processing differs depending on whether input files are specified 
for the sort. 

One or More Input Files Specified 

If you specify one or more input files for a sort (even if the input file is $NULL), 
Sort/Merge calls the owncode 1 procedure each time it reads an input record. 
Sort/Merge passes the input record to the procedure in the reca variable, the record 
length (in bytes) in the rla variable, and the return_code variable initialized to 0. 

After owncode processing of the record, control returns to Sort/Merge, which processes 
the record passed back in reca according to the return_code value set by the owncode 
1 procedure. The contents of the reca and rla variables can differ from those originally 
passed to the procedure. 

The following are the valid return_code values and their meanings: 

0 Sort/Merge sorts the record passed back in reca and reads the next input record. 

1 Sort/Merge does not sort the record in reca and reads the next input record. 

2 Sort/Merge sorts the record passed back in reca, but does not read the next input 
record. Instead, Sort/Merge calls the owncode 1 procedure again so additional 
records can be added to the sort. The owncode 1 procedure should continue to 
specify return_code 2 until all records to be inserted at this point have been 
passed; it should then set the return_code to 0. 

3 Sort/Merge does not sort the record passed back in reca, closes the current input 
file, and calls the owncode 2 procedure if one has been specified. After owncode 2 
processing has completed, Sort/Merge opens the next input file, if any, and reads 
the next input record. 

For example, to insert one record after the current input record, the owncode 1 
procedure performs the following steps: 

1. Checks that the record passed in reca is the record after which the new record is to 
be inserted. 

2. Sets the return_code value to 2 and returns control to Sort/Merge. 

3. When called again, it stores the new record in reca, stores the length of the new 
record in rla, sets the return_code value to 0, and returns control to SortJMerge. 

Input Files Not Specified 

If you do not specify any input files for the sort (SM5FROM is not called), Sort/Merge 
calls the owncode 1 procedure as the source of input records. SortJMerge passes reca as 
an empty array of the maximum record length, rla set to 0, and the return_code 
variable initialized to 0. 

12-56 FORTRAN Version 1 Language Definition Usage Revision H 



Owncode 2: Processing Input Files 

The following are the valid return_code values and their meanings: 

0 Sort/Merge sorts the record passed back in reca, clears the reca array, sets the 
rla and return_ code variables to 0, and, calls the owncode 1 procedure again. 

2 Sort/Merge sorts the record passed back in reca, leaves the data in reca and the 
record length in rla, initializes the return_code to 0, and calls the owncode 1 
procedure again. 

3 Sort/Merge does not sort the record passed back in reca and calls the owncode 2 
procedure if one has been specified; otherwise, terminates the input process. 

Owncode 2: Processing Input Files 

You specify an owncode 2 procedure to supply input records at the end of each input 
file. An owncode 2 procedure is used only with a sort request; specifying an owncode 2 
procedure with a merge request returns a fatal error. 

An owncode 2 procedure cannot be used when SM5FMA is used. 

Owncode 2 procedure processing differs depending on whether input files are specified 
for the sort. 

One or More Input Files Specified 

If you specify one or more input files for the sort (even if the input file is $NULL), 
Sort/Merge calls the owncode 2 procedure when it terminates input from an input file. 
It terminates input when it reads an end-of-partition delimiter or the end-of-information 
or receives a return_code value of 3 from an owncode 1 procedure. 

Sort/Merge passes reca as an empty array of the maximum record length, rla set to 0, 
and the return_code variable initialized to 0. 

The following are the valid return_code values and their meanings: 

0 Owncode 2 processing ends; Sort/Merge opens the next input file, if any, and reads 
the next input record. 

1 Sort/Merge sorts the record passed back in reca, and calls the owncode 2 
procedure again. 

For example, to insert one record at the end of an input file, the owncode 2 procedure 
performs the following steps: 

1. Stores the record in reca, stores the record length in rla, sets the return_code to 1, 
and returns control. 

2. When called again, leaves the return_code value set to 0, and returns control to 
Sort/Merge. 

Revision H Sort/Merge 12-57 



Owncode 3: Processing Output Records 

Input Files Not Specified 

If you do not specify any input files for the sort (SM5FROM is not called), Sort/Merge 
calls the owncode 2 procedure after the owncode 1 procedure returns a return_code 
value of 3. 

Sort/Merge passes reca as an empty array of the maximum record length, rla set to 0, 
and the return_code variable initialized to 0. 

The following are the valid return_code values and their meanings: 

0 Owncode 2 processing ends, signaling the end of the input records for the sort. 

1 Sort/Merge sorts the record passed back in reca, and calls the owncode 2 
procedure again. 

Owncode 3: Processing Output Records 

You specify an owncode 3 procedure to process output records from a sort or merge. 

An owncode 3 procedure cannot be used when SM5TMA is called. 

Owncode 3 procedure processing differs depending on whether an output file is specified 
for the sort or merge. 

Output File Specified 

If you specify an output file for the sort or merge (even if it is $NULL), Sort/Merge 
calls the owncode 3 procedure each time an output record is ready to be written. 
Sort/Merge passes the output record to the procedure in the reca variable, the record 
length in bytes in the rla variable, and the return_code variable initialized to 0. 

After owncode processing of the record, control returns to Sort/Merge, which processes 
the record passed back in reca according to the return_code value set by the owncode 
3 procedure. The contents of the reca and r la variables can differ from those originally 
passed to the procedure. 

The following are the valid return_code values and their meanings: 

0 Sort/Merge writes the record passed back in reca to the output file. It then 
passes the next output record, if any, to the owncode 3 procedure. 

1 Sort/Merge does not write the record passed back in reca to the output file. It 
then passes the next output record, if any, to the owncode 3 procedure. 

2 Sort/Merge writes the record passed back in reca to the output file, leaves the 
data in reca and the record length in rla, initializes the return_code to 0, and 
calls the owncode 3 procedure again. 

3 Sort/Merge does not write the record passed back in reca. It calls the owncode 4 
procedure if one is specified; otherwise, it terminates the sort or merge. 

For example, to insert one record after the current output record, the owncode 3 
procedure performs the following steps: 

1. Checks that the record passed in reca is the record after which the new record is to 
be inserted. 

12-58 FORTRAN Version 1 Language Definition Usage Revision H 



Owncode 4: Processing the Output File 

2. Sets the return_code value to 2 and returns control to Sort/Merge. 

3. When called again, stores the new record in reca, stores the length of the new 
record in rla, sets the return_code value to 0, and returns control to Sort/Merge. 

Output File Not Specified 

If you do not specify an output file (you do not call SM5TO call for the sort or merge), 
the owncode 3 procedure performs all output processing. Sort/Merge passes each output 
record to the owncode 3 procedure, but it does not process any record returned by the 
procedure. It does not write any output records. 

Sort/Merge passes the output record to the procedure in the reca variable, the record 
length in bytes in the rla variable, and the return_code variable initialized to 0. 

The following are the valid return_code values and their meanings: 

0 Sort/Merge calls the procedure again, passing the next output record. 

1 Sort/Merge calls the procedure again, passing the next output record. 

2 Sort/Merge calls the procedure again, passing the same output record. 

3 Sort/Merge terminates the output process, even if it has additional output 
records. It then calls the owncode 4 procedure if one is specified; otherwise, the 
sort or merge is terminated. 

Owncode 4: Processing the Output File 

You specify an owncode 4 procedure to write additional output records to the end of 
the output file. An owncode 4 procedure can be used with a sort or merge. 

An owncode 4 procedure cannot be used when SM5TMA is called. 

Owncode 4 procedure processing differs depending on whether an output file is specified 
for the sort or merge. 

Output File Specified 

If you specify an output file for the sort or merge (even if it is $NULL), Sort/Merge 
calls the owncode 4 procedure after it has written its last output record to the output 
file. 

Sort/Merge passes reca as an empty array of the maximum record length, rla set to 0, 
and the return_code variable initialized to 0. 

The following are the valid return_code values and their meanings: 

0 Sort/Merge terminates the sort or merge without writing the record passed back 
in reca. 

1 Sort/Merge writes the record passed back in reca and calls the owncode 4 
procedure again. 

Revision H Sort/Merge 12-59 



Owncode 4: Processing the Output File 

Output File Not Specified 

An owncode 4 procedure cannot supply additional output records when no output file 
has been specified. Still, if you specify an owncode 4 procedure for a sort or merge 
without an output file, Sort/Merge calls the owncode 4 procedure after the owncode 3 
procedure (if any) has terminated output. 

Sort/Merge passes reca as an empty array of the maximum record length, rla set to 0, 
and the return_code variable initialized to 0. 

The following are the valid return_code values and their meanings: 

0 Sort/Merge terminates the sort or merge. 

1 Sort/Merge terminates the sort or merge. 

Owncode 5: Processing Records With Equal Keys 

When an owncode 5 procedure is specified, Sort/Merge calls the owncode 5 procedure 
each time it compares the key values of two records and finds that the values are 
equivalent. It passes both records to the owncode 5 procedure for processing. An 
owncode 5 procedure is specified by an SM50WN5 call. 

NOTE 

Sort/Merge can interpret character key values as equivalent that are not identical. 
When the collating sequence used for the key assigns the same collating weight to 
more than one character, those characters are equivalent key values. 

An owncode 5 procedure cannot be used when the SM5SUM, SM5RETA, or SM50MIT 
call is used. A sort or merge can use only one method of processing records with 
equivalent key values. 

For a given number (n) of records with equivalent key values, each record is passed to 
the owncode 5 procedure log n times (assuming that duplicate records are not deleted). 
The order in which the records are passed is not defined. 

NOTE 

An owncode 5 procedure can change the record data passed to it, but it must not 
change the data in the key fields of the record. If it does so, the sort order of the 
modified key field is undefined. 

The following are the valid return_code values for an owncode 5 procedure and the 
meaning of each: 

0 Sort/Merge accepts the first rla bytes of reca as the first record and the first 
rlb bytes of recb as the second record. 

1 Sort/Merge accepts the first rla bytes of reca as the first record and deletes 
recb from the sort or merge. 

2 Sort/Merge accepts the first rlb bytes of recb as the first record and the first 
rla bytes of reca as the second record. 

3 Sort/Merge accepts the first rlb bytes of recb as the first record and deletes 
reca from the sort or merge. 

12-60 FORTRAN Version 1 Language Definition Usage Revision H 



Owncode 4: Processing the Output File 

4 Sort/Merge deletes both records from the sort or merge. 

5 Sort/Merge does not read the record data returned by the procedure; it 
processes the two records in their original order (reca before recb). 

6 Sort/Merge does not read the record data returned by the procedure, but it 
deletes the second record (recb) from the sort or merge. 

7 Sort/Merge does not read the record data returned by the procedure, but it 
reverses the order of the two records (recb before reca). 

8 Sort/Merge does not read the record data returned by the procedure, but it 
deletes the first record (reca) from the sort or merge. 

For Better Performance 

When the owncode 5 procedure does not change the record data, it should use return_ 
code values 5, 6, 7, or 8 instead of return_code values 0, 1, 2, or 3. Performance is 
improved because Sort/Merge does not read the returned record data. 

Do not use return_code 0 to reverse the order of the two records by exchanging the 
contents of reca and recb. Performing an exchange sort is both incompatible with and 
much slower than the Sort/Merge sorting algorithm. 

If the owncode 5 procedure sorts the two records using one or more keys in addition to 
those specified for the sort or merge, the procedure should use return_code values 5 
and 7 only. (Return_code values 0 and 2 could also be used, but performance would be 
slower.) 

Revision H Sort/Merge 12-61 



Using FORTRAN Procedure Cnlls 

Using FORTRAN Procedure Calls 

A FORTRAN program DLIST containing the Sort/Merge procedure calls is shown 
below. File UNIVERSITY_STUDENTS is read, and student records with grade point 
average of 3.50 or better are written to an intermediate file (INTI). Sort/Merge is 
called to sort the file on grade point average in descending order (highest grade point 
average to lowest grade point average). 

c 
PROGRAM DUST 

c 
C This program calls Sort/Merge using FORTRAN procedure 
C calls. The purpose of the program is to prepare a 
C list of students with grade point averages of 3.50 
C or better, sort the file on grade point averages in 
C descending order, replace the class code number with 
C the class level, and output the completed report to a 
c new file. 
c 
c 

c 
c 

c 

c 

c 

c 

c 

INTEGER gpa 
CHARACTER sname*14, major*B, code*l, class*12 
DIMENSION iarray(16) 

OPEN (1,FILE='university_students') 
REWIND (UNIT=l) 
OPEN (2,FILE='completed_deans_list') 
OPEN (4,FILE='int1') 

READ (1,100,END=lO) sname, major, gpa, code 
IF (gpa .GE. 350) WRITE (4,200) sname, major, gpa, code 
GO TO 1 

10 CONTINUE 
CLOSE (UNIT=4,STATUS='KEEP') 

IARRAY(1)=15 
CALL SM5SORT (1array) 
CALL SM5LIST ('$OUTPUT') 
CALL SM50MRL (80) 
CALL SM5FROM ('1nt1') 
CALL SM5KEY (33,3,'NUMERIC_NS','D') 
CALL SM50WN1 ('CCODE') 
CALL SM5TO ('1nt2') 
CALL SM5END 

OPEN (3,FILE='1nt2') 
REWIND (3) 

WRITE (2,400) 
15 READ (3,300,END=20) sname, major, gpa, class 

WRITE (2,500) sname, major, class, gpa 
GO TO 15 

12-62 FORTRAN Version 1 Language Definition Usnge Revision H 



Using FORTRAN Procedure Calls 

c 
100 FORMAT (A14,12X,A8,I3,A1) 
200 FORMAT (A14,5X,A8,5X,I3,5X,A1,39X) 
300 FORMAT (A14,5X,A8,5X,I3,5X,A12,28X) 
400 FORMAT (36X,'DEANS LIST' // 15X, 'STUDENT', 

* 12X,'MAJOR' ,8X,'CLASS',12X,'GPA',65X /) 
500 FORMAT (15X,A14,5X,A8,5X,A12,5X,I3,59X) 

c 
20 STOP 

END 

The SM50WN1 call specifies that an owncode 1 routine named CCODE is to be 
executed after Sort/Merge reads each record from INTI. Records are passed to the 
routine by Sort/Merge. The FORTRAN owncode routine is shown below. 

c 
C This is the FORTRAN owncode routine that is executed 
C after Sort/Merge reads a record. This routine 
C replaces the number class code with the class 
C level in words. 
C SUBROUTINE CCODE (retcode,rec,rl) 

INTEGER retcode, rl 

c 

c 

c 

CHARACTER code*l, class*12, rec*(*) 

code= rec(41:41) 
IF (code .EQ. '1') THEN 

class = 'SENIOR' 
ELSE IF (code .EQ. '2') THEN 

class = 'JUNIOR' 
ELSE IF (code .EQ. '3') THEN 

class = 'SOPHOMORE' 
ELSE IF (code .EQ. '4') THEN 

class = 'FRESHMAN' 
ELSE IF (code .EQ. '5') THEN 

class = 'UNCLASSIFIED' 
ELSE PRINT *, code 

END IF 
rec(41:53) =class 

C Set the record length for extra length of class level. 

c 
RL = 53 

RETURN 
END 

The SUBROUTINE statement names the routine and the parameters passed by 
Sort/Merge. Parameter RETCODE is the return_code passed as 0, REC is an array 
containing the record, and RL is the record length in characters. The routine converts 
the class code in each record to the class name. 

Revision H Sort/Merge 12-63 



Using FORTRAN Procedure Calls 

The records are returned to Sort/Merge in array REC. The return_code value is left as 
0 because each record in this example is to be sorted. The record received by the 
owncode routine is lengthened (RL = 53) because the class code is converted into a word 
and needs more space. Sort/Merge then sorts the record to file INT2. The sorted file is 
returned to the FORTRAN program to be written out in a formatted report. The 
content of the intermediate files, INTI and INT2, is shown below. Figure 12-3 shows 
the output from the job, which is the completed dean's list report. 

TERRELL T H ENG 386 
SUGARMAN B T soc 350 
SMITH C R MATH 379 
SHIELDS L E COMP SCI 390 
DAVIS D A ENR 354 1 

FRANKLIN R H PHIL 370 2 
CLARK D N ECON 378 2 

TIEMON H R LNGUIS 376 3 
HANSEN R p BUS 358 3 
SMITH F R PHIL 385 3 
HORNE D N COMP SCI 389 4 

SHIELDS L E COMP SCI 390 SENIOR 
HORNE D N COMP SCI 389 FRESHMAN 
TERRELL T H ENG 386 SENIOR 
SMITH F R PHIL 385 SOPHOMORE 
SMITH C R MATH 379 SENIOR 
CLARK D N ECON 378 JUNIOR 
TIE MON H R LNGUIS 376 SOPHOMORE 
FRANKLIN R H PHIL 370 JUNIOR 
HANSEN R p BUS 358 SOPHOMORE 
DAVIS D A ENR 354 SENIOR 
SUGARMAN B T soc 350 SENIOR 

DEANS LIST 

STUDENT MAJOR CLASS GPA 

SHIELDS L E COMP SCI SENIOR 390 
HORNE D N COMP SCI FRESHMAN 389 
TERRELL T H ENG SENIOR 386 
SMITH C R PHIL SOPHOMORE 385 
SMITH C R MATH SENIOR 379 
CLARK D N ECON JUNIOR 378 
TIEMON H R LNGUIS SOPHOMORE 376 
FRANKLIN R H PHIL JUNIOR 370 
HANSEN R p BUS SOPHOMORE 358 
DAVIS D A ENR SENIOR 354 
SUGARMAN B T soc SENIOR 350 

Figure 12-3. Output From the FORTRAN Program 

12-64 FORTRAN Version 1 Language Definition Usage Revision H 



Creating an Object Library 

Creating an Object Library 

You must place an owncode routine into an object library when using command calls. 
A FORTRAN owncode 3 routine named OWNCODE is shown below. The routine 
OWNCODE will delete the first record in a file. The variable COUNT keeps track of 
the number of times the owncode routine is entered. 

SUBROUTINE OWNCODE (retcode,reca,rla) 
INTEGER retcode, rla, count 
CHARACTER reca*38 
DATA count /0/ 

count = count +1 

IF (count.eq.1) THEN 
retcode 1 

ELSE 
retcode O 

END IF 

RETURN 
END 

For detailed information on placing a routine into a library, see the SCL Object Code 
Management Usage manual. The commands to place OWN CODE into a library named 
OWN _LIBRARY are shown below. 

/ftn 1=owncode 
/create_object_11brary 
COL/add_module library=$1ocal. lgo 
COL/generate_l ibrary 1 ibrary=$1oca1 .own_l ibrary 
COL/quit 
/display_object_library library=$1oca1.own_library 
.. /display_option=entry_point 

OWNCODE - load module 

entry points 

OWNCODE 

/set_program_attr1bute add_library=$1oca1.own_11brary 

Revision H Sort/Merge 12-65 



Creating an Object Library 

After executing these commands, the routine OWNCODE can be called from a 
FORTRAN program. A FORTRAN program calling OWNCODE is shown below. 

PROGRAM OWN 

Call sm5sort(O) 
Call sm5from('univer2') 
Call sm5to('results') 
Call sm5key(1,10,'ascii' ,'a') 
Call sm5own3('0WNCODE') 
Call sm5end 

STOP 
END 

After the FORTRAN program is executed, the file UNIVERSITY_STUDENTS is sorted, 
with the first record deleted. The sorted records are written to the file RESULTS as 
shown below. 

BILLINGS c y 101579111855MUS 2965 
BRISCOE J H 102343121157ENVIRO 2544 
CARLSON M K 102126022355ENGIR 3454 
CHARLES S H 101418032459ANTHRO 2453 
CLARK D N 101400102954ECON 3782 
CLARK D V 101023101956ENG 2083 
COCHRAN G L 100725111857BIO 3011 
DAVIES E D 100812080656JOURN 2031 
DAVIS D A 100972071650ENR 3541 

WALLIN G E 101056041659POLISCI 3151 
WARNES D V 102116060861POLISCI 2814 
WILSON W L 101967010261MATH 3454 
WONG S T 101001012755PSYCH 2152 
woo R M 101315100159BUS 3223 
WOODSTOCK C T 101497030160CHEM 3483 
YEH F L 102005120645Art 2764 
YOST D L 100880111158ENG 2582 
ZEITZ F K 100963111858MATH 2612 
ZIMMERS C A 101075063059MATH 2992 

Note that the owncode routine has deleted the first record in the file. 

12-66 FORTRAN Version 1 Language Definition Usage Revision H 



Summing Records 

Summing Records 

The record layout of a university student file named STUDENTS is shown below. 

r.-

LA$? SA!-1£ 

F"IRSTISmAL 

l'SITS C'OMPl..tTtO 

Each record contains three numeric fields. They are: number of units attempted, 
number of units completed, and grade points. The file STUDENTS is shown below with 
multiple records for each student. 

GREENWOOD M R 102168101961EDU 002002000 
IRVING W R 101750111855ENG 004004016 
GREENWOOD M R 102168101961EDU 003003009 
IRVING W R 101750111855ENG 098095375 
QUINTERA L s 90154101253BIO 003000000 
ALLEN M G 102056012561LNGUIS 005000000 
ALLEN M G 102056012561LNGUIS 025020077 
ALLEN M G 102056012561LNGUIS 004004012 

Records are to be sorted according to the student number. Using the SM5SUM 
procedure, records with the same student number are combined into one record by 
adding the numeric fields together. The new record will give the total number of units 
attempted, total number of units completed, and the total number of grade points. 

The procedure to sort and sum the file STUDENTS is as follows: 

CALL SM5SORT (0) 
CALL SM5FROM ('students') 
CALL SM5TO ('summed_file') 
CALL SM5KEY (15,6,'ascii' ,'a') 
CALL SM5SUM (36,3,'numeric_ns' ,3) 
CALL SM5END 

The input file STUDENTS is named, and the output file SUMMED_FILE will contain 
the results of the summing. The student number (positions 15 through 20) is specified 
as the sort key. The SUM procedure specifies that a three-position numeric field of 
type NUMERIC_NS begins in position 36 in each record. The repetition indicator 
specifies that three contiguous fields are to be summed. The output from the sort is 
shown below. Each record ends with nine digits: the first three digits are the total 
units attempted, the next three are the total units completed, and the final three are 
the total grade points. 

QUINTERA L S 90154101253BIO 
IRVING WR 101750111855ENG 

003000000 
102099391 

ALLEN M G 102056012561LNGUIS 034024089 
GREENWOOD M R 102168101961EDU 005005009 

The output file contains one record for each student. The numeric fields are the totals 
of the units attempted, units completed, and grade points. 

Revision H Sort:/11:erge 12-67 



Defining Your Own Collating Sequence 

Defining Your Own Collating Sequence 

The file BIRTHDATES, ordered according to the student name, is shown below. The 
file contains the students' last names, students' first and middle initials, and the 
students' dates of birth. 

ALLEN M G 10-09-61 
ANDERSEN C R 05-01-60 
EBERHARD N I 06 05 58 
GREENWOOD M R 09-12-61 
IRVING W R 01/07/55 
KING M L 11 11 48 
QUINTERA L S 08/12/53 
WALLACE S T 12/09/55 

You can standardize the separators in the students' birthdate by defining your own 
collating sequence. 

The FORTRAN procedure to define your own collating sequence is as follows: 

CALL SM5SORT (0) 
CALL SM5FROM ('birthdates') 
CALL SM5KEY (25,2,'mysequence' ,'a') 
CALL SM5KEY (19,3,'mysequence' ,'a') 
CALL SM5KEY (22,3,'mysequence' ,'a') 
CALL SM5SEQN ('mysequence') 
CALL SM5SEQS ('0','1','2') 
CALL SM5SEQS ('-',' ','/') 
CALL SM5SEQA ('yes') 
CALL SM5TO ('dates_sorted') 
CALL SM5END 

The procedure defines a collating sequence named MYSEQUENCE. The first SEQS 
procedure specifies the digits 0, 1, and 2, all of which will collate equally. The next 
SEQS parameter specifies one step consisting of hyphens, blanks, and slashes. This 
defines the hyphen, blank, and slashes as equal values. The SEQA procedure specifies 
that blanks and slashes are to be output as hyphens. The file is sorted according to the 
date of birth. 

The file DATES_SORTED output from the sort is shown below. 

KING M L 11-11-48 
QUINTERA L S 08-12-53 
IRVING W R 01-07-55 
WALLACE S T 12-09-55 
EBERHARD N I 06-05-58 
ANDERSEN C R 05-01-60 
GREENWOOD M R 09-12-61 
ALLEN M G 10-09-61 

The file BIRTHDATES has been sorted in numeric order according to dates of birth, 
and the separators in the dates have been changed to hyphens in all records. 

12-68 FORTRAN Version 1 Language Definition Usage Revision H 



Examples 13 

This chapter presents some sample programs that illustrate some of the capabilities of 
FORTRAN. 

Program PASCAL 

Program CORR . 

Program COMPSAL . 

Subroutine COUNTC 

Program SCLCALL . 

13-1 

13-2 

13-5 

13-7 

13-8 





Examples ]_3 

This chapter shows complete executable programs along with examples of input, output, 
and terminal dialog where appropriate. Note that for examples showing actual terminal 
dialog, the dialog displayed at your terminal might vary slightly depending on the 
characteristics of the terminal. 

Program PASCAL 

Program PASCAL, shown in figure 13-1, generates a pascal triangle. The program 
illustrates the use of DO loops, including nested DO loops and a loop with a negative 
index parameter. 

PROGRAM PASCAL 
c 
C THIS PROGRAM PRODUCES A PASCAL TRIANGLE. 
c 

INTEGER LROW(15) 
DO 10 I=l, 15 

LROW(I) = 1 
10 CONTINUE 

PRINT '(" PASCAL TRIANGLE"//1X,I5,/1X,2I5)', 
+LROW(15), LROW(14), LROW(15) 

DO 20 J=14,2,-1 
DO 15 K=J, 14 

LROW(K) = LROW(K) + LROW(K+l) 
15 CONTINUE 

PRINT ' ( lX, 15I5)', (LROW(M), M=J-1, 15) 
20 CONTINUE 

END 

Figure 13-1. Program PASCAL 

The INTEGER statement declares a 15-word array to be used to contain the elements 
of a row of the triangle. The first DO loop initializes all elements of the array to 1. 
The first PRINT statement prints the first two rows of the triangle; the format 
specification uses the slash descriptor to print multiple lines. 

The nested DO loops calculate and print the remaining rows of the triangle. The value 
of the first and last element of each row is one. Each remaining element is calculated 
by adding the corresponding element in the preceding row to its preceding element. 
(For example, the third element of row three is calculated by adding the second and 
third elements of row 2, and so forth.) 

The triangle produced by program PASCAL is shown in figure 13-2. 

Revision H Examples 13-1 



Program CORR 

PASCAL TRIANGLE 

1 
2 1 
3 3 
4 6 4 
5 10 10 5 1 
6 15 20 15 6 
7 21 35 35 21 7 1 
8 28 56 70 56 28 8 1 
9 36 84 126 126 84 36 9 1 

10 45 120 210 252 210 120 45 10 

11 55 ,165 330 462 462 330 165 55 11 1 
12 66 220 495 792 924 792 495 220 66 12 1 
13 78 286 715 1287 1716 1716 1287 715 286 78 13 
14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 

Figure 13-2. Program PASCAL Output 

Program CORR 
Program CORR, shown in figure 13-3, reads two sets of integers from the terminal and 
calculates a correlation coefficient. Program CORR illustrates the following features: 

PARAMETER statement 

Interactive input and output 

The correlation coefficient measures the correlation between two sets of numbers. A 
coefficient with a value close to 1 indicates close correlation. 

13-2 FORTRAN Version 1 Language Definition Usage Revision H 



Revision H 

PROGRAM CORR 
c 
C ASSIGN SYMBOLIC NAME N TO CONSTANT 10. 
c 

PARAMETER (N=10) 
c 

Program CORR 

INTEGER SUMJ, SUMK, SUMJK, SUMJSQ, SUMKSQ, J(N), K(N) 
REAL NUM 

c 
c 
c 

c 
c 
c 

c 
c 
c 

READ NUMBERS TO BE CORRELATED. 

10 CONTINUE 
PRINT*, 'ENTER FIRST SET OF ' 
READ*, J 
IF (J(1) .EQ. 9999) STOP 
PRINT*, 'ENTER SECOND SET OF ' 
READ*, K 

INITIALIZATION. 

SUMJ = 0 
SUMK = 0 
SUMJSQ = 0 
SUMKSQ = 0 
SUMJK = 0 

CALCULATE CORRELATION COEFFICIENT. 

DO 20 I 1, N 
SUMJ SUMJ + J(I) 
SUMK SUMK + K(I) 
SUMJSQ = SUMJSQ + J(I)**2 
SUMKSQ = SUMKSQ + K(I)**2 
SUMJK = SUMJK + J(I) * K(I) 

N, ' NUMBERS' 

N, ' NUMBERS' 

20 CONTINUE 
c 

NUM = REAL(N * SUMJK - SUMJ * SUMK) 
A = REAL(N * SUMJSQ - SUMJ**2) 
B = REAL(N * SUMKSQ - SUMK**2) 
DENOM = SQRT(A) * SQRT(B) 
R = NUM/DENOM 
PRINT 100, R 

100 FORMAT(' CORRELATION COEFFICIENT ',F6.2,//) 
GO TO 10 
END 

Figure 13-3. Program CO RR 

Examples 13-3 



Program CORR 

Program CORR reads two sets of numbers from the terminal. If the first number of the 
first set is 9999, the program immediately stops; otherwise, the program performs the 
calculation and branches to the beginning to request another set of input values. The 
program is written to process sets containing 10 numbers each. The statement 
PARAMETER (N = 10) assigns the name N to the constant 10. This symbolic constant 
is used in the DIMENSION statement, the DO statement, and in the statements that 
calculate the intermediate values NUM, A, and B. The program can be modified to 
calculate a result for a different number of values simply by changing the 
PARAMETER statement. 

The two PRINT statements at the beginning of the program provide an informative 
prompt for input. Because the UNIT specifier is omitted from the succeeding READ 
statements, unit INPUT is implied. When the READ statements are executed, the 
system prints a question mark, and execution stops until the user types a set of input 
values. 

An example of terminal dialog for program CORR, showing. input and output, is shown 
in figure 13-4. 

/lgo 
ENTER FIRST SET OF 10 NUMBERS 
? 1 2 3 4 5 6 7 8 9 10 
ENTER SECOND SET OF 10 NUMBERS 
? 1 2 3 4 5 6 7 8 9 10 
CORRELATION COEFFICIENT= 1.00 

ENTER FIRST SET OF 10 NUMBERS 
? 5 96 127 0 3 25 84 16 22 50 
ENTER SECOND SET OF 10 NUMBERS 
? 0 0 4 18 9 56 32 0 0 10 
CORRELATION COEFFICIENT = -.05 

ENTER FIRST SET OF 10 NUMBERS 
? 3 4 5 3 4 5 3 4 5 3 
ENTER SECOND SET OF 10 NUMBERS 
? 3 4 5 3 4 5 3 2 1 0 
CORRELATION COEFFICIENT = .39 

ENTER FIRST SET OF 10 NUMBERS 
? 9999 0 0 0 0 0 0 0 0 0 

Figure 13-4. Program CORR Output 

13-4 FORTRAN Version 1 Language Definition Usage Revision H 



Program COMPSAL 

Program COMPSAL 

Program COMPSAL, shown in figure 13-5, calculates salaries from data input at the 
terminal. This program illustrates interactive input and output, and the use of block IF 
structures. 

PROGRAM COMPSAL 
CHARACTER NAME*20 
INTEGER AGE 

10 CONTINUE 
c 
C PROMPT FOR INPUT. 
c 

PRINT*, 'TYPE NAME, AGE, AND WAGES' 
c 
C READ INPUT VALUES. UNIT=* READS FROM FILE INPUT. 
C FMT=* SPECIFIES LIST DIRECTED INPUT. 
c 

READ (UNIT=*,FMT=*) NAME, AGE, WAGES 
c 
C CALCULATE SALARY, DEPENDING ON VALUE OF AGE. 
c 

c 

IF (AGE .GT. 65) THEN 
SALARY= WAGES*0.7 

ELSE IF (AGE .GT. 60) THEN 
SALARY = WAGES*0.6 

ELSE IF (AGE .LT. 18) THEN 
SALARY = WAGES*0.52 

ELSE 
SALARY = WAGES 

ENDIF 

PRINT 100, SALARY 
100 FORMAT(/, 'SALARY IS$', F8.2, //) 

c 
C TEST FOR LAST INPUT NAME. 
c 

IF (NAME ( 1 : 1 ) . EQ. '/' ) STOP 
c 
C BRANCH BACK TO READ ANOTHER LINE. 
c 

GO TO 10 
END 

Figure 13-5. Program COMPSAL 

Program COMPSAL reads a line from the terminal, containing values for NAME, AGE, 
and WAGES. The UNIT=* specifier in the READ statement causes the program to 
read from unit INPUT, which implies the terminal in interactive usage. 

The program uses a block IF structure to test the value of WAGES and calculate a 
value for SALARY depending on the result of the test. The program then tests for a 
slash in the first position of the input line. If a slash is found, execution stops; if no 
slash is found, control transfers to the beginning to read another input line. 

Revision H Examples 13-5 



Program COMPSAL 

A sample terminal dialog for program COMPSAL is shown in figure 13-6. 

/lgo 
TYPE NAME, AGE, AND WAGES 
? 'smith' 70 12000 

SALARY IS $ 8400.00 

TYPE NAME, AGE, AND WAGES 
? 'jones' 33 8000 

SALARY IS $ 8000.00 

TYPE NAME, AGE, AND WAGES 
? '/hansen' 16 1000 

SALARY IS $ 520.00 

Figure 13-6. Sample Terminal Dialog for Program COMPSAL 

13-6 FORTRAN Version 1 Language Definition Usage Revision H 



Subroutine COUNTC 

Subroutine COUNTC 

Subroutine COUNTC, shown in figure 13-7, counts the number of occurrences of a 
specified character in the input line. This program illustrates the use of character 
substrings and a variable length CHARACTER specification. 

PROGRAM MAIN 
CHARACTER LINE*80, CHAR*l 
PRINT*, ' TYPE A LINE' 
READ*, LINE 
PRINT*, ' TYPE A CHARACTER' 
READ*, CHAR 
CALL COUNTC (LINE, CHAR, NCHAR) 
PRINT 111, CHAR, NCHAR 

111 FORMAT (/, ' CHARACTER ', A1, ' OCCURRED ' I2, ' TIMES ' //) 
END 

SUBROUTINE COUNTC (A, CH, N) 
C* 
C* DECLARE A TO HAVE THE LENGTH USED IN THE CALL. 
C* 

C* 

CHARACTER A*(*), CH*l 
N = 0 

C* TEST EACH CHARACTER IN INPUT LINE. IF MATCH IS SUCCESSFUL, 
C* INCREMENT COUNTER. IF PERIOD, RETURN. 
C* 

DO 10 I = 1,LEN(A) 
IF (A(I:I) .EQ. CH) THEN 

N = N + 1 
ELSE IF (A(I:I) .EQ. '.'}THEN 

RETURN 
ENDIF 

10 CONTINUE 
END 

Figure 13-7. Subroutine COUNTC 

Subroutine COUNTC has three dummy arguments: Argument A receives the input 
character string, CH receives the character to be tested, and N returns the number of 
occurrences of the character passed in CH. The argument A is declared to have length 
(*). This means that when COUNTC is called, A will have the length of the string 
passed through A. Thus, a string of any length can be passed (although the main 
program accepts no more than 80 characters). 

The DO loop contains a block IF structure that tests each character of the input line 
for the occurrence of the input character. If the input character is detected, a counter 
is incremented. If the input character is not detected, the ELSE IF statement tests for 
a period. If a period is found, control returns to the calling program; otherwise, the 
next character in the line is tested. Each character is tested until either a period is 
found or the entire string has been tested; control then returns to the calling program. 

The main program in figure 13-7 reads a character string from the terminal, reads a 
single character, calls COUNTC, and prints the results. Figure 13-8 shows an example 
of terminal dialog and resulting output. 

Revision H Examples 13-7 



Program SCLCALL 

/lgo 
TYPE A LINE 

? 'this is the first line.' 
TYPE A CHARACTER 

? 't' 

CHARACTER t OCCURRED 3 TIMES. 

Figure 13-8. Sample Terminal Dialog for Subroutine COUNTC 

Program SCLCALL 

Program SCLCALL, shown in figure 13-9, illustrates the use of SCL interface calls to 
reference parameters specified on the execution call command. 

PROGRAM SCLCALL 
c 
C DEFINE A STRING PARAMETER AND AN INTEGER VARIABLE PARAMETER. 
c 
C$ PARAM ('Pl:STRING; P2:VAR OF INTEGER') 

CHARACTER KIND*8, SVAL*20, VREF*7, VARKND*7 
LOGICAL TSTPARM 
INTEGER VAL, RAD 

c 
C TEST FOR PRESENCE OF Pl ON EXECUTION COMMAND. 
c 

IF (TSTPARM('Pl')) THEN 
c 
C GET LENGTH AND VALUE OF Pl. ARGUMENTS setnum AND valnum ARE 
C NOT USED AND ARE SET TO 1. ARGUMENT lhi IS NOT USED AND IS 
C SET TO 'LOW'. 
c 

CALL GETCVAL ('Pl', 1, 1, 'LOW', LEN, SVAL) 
PRINT 100, SVAL, LEN 

100 FORMAT(' PARAMETER NAME IS Pl',/, 'VALUE IS' A20, 
+/, I LENGTH IS , • 12, /) 

ELSE 
PRINT*, ' PARAMETER Pl NOT SPECIFIED.' 

ENDIF 
c 
C TEST FOR PRESENCE OF P2 ON EXECUTION COMMAND. 
c 

IF (TSTPARM('P2')) THEN 
c 
c GET NAME AND KIND OF VARIABLE REFERENCE. ARGUMENTS setnum 
C AND valnum ARE NOT USED AND ARE SET TO 1. ARGUMENT 1h1 IS NOT 
C USED AND IS SET TO 'LOW'. 
c 

CALL GETVREF ('P2', 1, 1, 'LOW', VREF, VARKND, J, K, L) 
c 

Figure 13-9. Program SCLCALL 
(Continued) 

13-8 FORTRAN Version 1 Language Definition Usage Revision H 



1Continuedl 

C GET VALUE AND BASE OF INTEGER VARIABLE. 
c 

CALL REDIVAR (VREF, 1, VAL, RAD) 
c 
C PRINT NAME, KIND, AND BASE OF INTEGER VARIABLE. 
c 

PRINT 200, VREF, VARKND, RAD 

Program SCLCALL 

200 FORMAT (VARIABLE NAME IS', A7, /, 'KIND IS' A7, /, 
+' BASE IS ' , I2) 

c 
C DETERMINE BASE OF VALUE, THEN PRINT USING PROPER FORMAT. 
c 

IF (RAD .EQ. 2 .OR. RAD .EQ. 8) PRINT 201, VAL 
201 FORMAT (' VALUE IS ', 020) 

IF (RAD .EQ. 10) PRINT 202, VAL 
202 FORMAT(' VALUE IS', I10) 

IF (RAD .EQ. 16) PRINT 203, VAL 
203 FORMAT(' VALUE IS', Z16) 

ELSE 
PRINT*, ' PARAMETER P2 NOT SPECIFIED.' 

ENDIF 
END 

Figure 13-9. Program SCLCALL 

The C$ PARAM directive defines a string parameter Pl, and an integer variable 
parameter P2. The succeeding SCL calls test for the presence of the parameters on the 
execution command and, if the parameters are present, return information about the 
parameters. 

Note that in the GETCVAL and GETVREF calls, the values 1, 1, and 'LOW' are 
supplied for the value number, value set number, and range position arguments, 
respectively. Even though value set, value list, and range attributes are not defined for 
Pl and P2, arguments corresponding to those attributes must be specified in the SCL 
calls. 

Revision H Examples 13·9 



Program SCLCALL 

Figures 13-10 and 13-11 show examples of two execution commands for program 
SCLCALL. (The object code is assumed to be on file LGO.) In the first example, no 
parameters are specified. In the second example, a CREATE_ VARIABLE command is 
entered to define an SCL INTEGER variable named VAR, and the string parameter Pl 
and variable parameter P2 are specified on the LGO command. 

/lgo 
PARAMETER P1 NOT SPECIFIED. 
PARAMETER P2 NOT SPECIFIED. 

Figure 13-10. Sample Terminal Dialog for Program SCLCALL, Example 1 

/creariable var kind=integer value=3A(16) 
/lgo p1='abcde' p2=var 
PARAMETER NAME IS P1 
VALUE IS abcde 
LENGTH IS 5 

VARIABLE NAME IS VAR 
KIND IS INTEGER 
BAS,E IS 16 
VALUE IS 000000000000003A 

Figure 13-11. Sample Terminal Dialog for Program SCLCALL, Example 2 

13-10 FORTRAN Version 1 Language Definition Usage Revision H 



Appendixes 

Glossary . . . . . A-1 

Related Manuals . B-1 

Differences Between NOS/VE FORTRAN and NOS FORTRAN 5 C-1 

C$ Directives . . . D-1 

1/0 Implementation E-1 

Language Summary . F-1 

CDC Extensions to Standard FORTRAN G-1 

Selecting Collation Tables for Keyed Files . H-1 

Programming Environment and the Professional Programming Environment 1-1 

ASCII Character Set and Collating Weight Tables J-1 

Introduction to Debug. . . . . . . . . . . . . . . . . K-1 





Advanced Access Methods (AAM) Beginning-of-Information (BOI) 

Glossary A 

This section presents a list of definitions of terms used in this manual. It does not 
include terms defined in the ANSI standard for FORTRAN, X3.9-1978. Terms are listed 
in alphabetical order. 

A 

Advanced Access Methods (AAM) 

A file manager that processes keyed files. 

Alternate Index 

An index built in a keyed file for an alternate key. The index associates each alternate 
key value with a key list of one or more primary-key values. 

Alternate Key 

An optional key defined in addition to the primary key. An alternate key provides 
another method of directly accessing records in a keyed file. Unlike the primary key, , 
an alternate key can be defined to allow duplicate values so that more than one record 
can have the same alternate-key value. 

Alternate Key Definition 

The set of attributes that specify alternate key characteristics. The alternate-key 
definition is used to build the alternate index for the key. 

Ascending Sort Order 

Used with the sortJmerge interface, the order of sorting keys where the record having 
either a numeric or a non-numeric key, the highest value is written last on the output 
file. For non-numeric, the first item in the sequence has the lowest value. See Sort 
Order. 

ASCII 

American National Standard Code for Information Interchange. It is a 7-bit code 
representing a prescribed set of characters. NOS/VE stores each 7-bit ASCII code 
right-justified in an 8-bit byte. 

B 

Backup Copy 

Copy kept for possible future recovery. Keyed-file backup copies should be written 
using the Backup_Permanent_File utility so they can be reloaded using the Recover_ 
Keyed_File utility or the Restore_Permanent_File utility. 

Basic Access Methods (BAM) 

A file manager that processes sequential files. 

Beginning-of-Information (BOI) 

The point at which file data begins in a file. For a keyed file, the BOI file position 
means that the file is positioned to read the record with the lowest key value. 

Revision H Glossary A-1 



Bit Collation Table 

Bit 

A binary digit. It has the value 0 or 1. See Byte. 

Blank Common Block 

An unnamed common block. No data can be stored into a blank common block at load 
time. Contrast with Named Common Block. 

Block 

A logical or physical grouping of records. In a keyed file, blocks are units of file space 
linked by pointers. 

Buffer Statement 

One of the input/output statements BUFFER IN or BUFFER OUT. 

Byte 

A contiguous group of bits. A NOSNE word has 8 bytes having 8 bits each. NOSNE 
stores each ASCII character code in the rightmost 7 bits of a byte. 

Byte-Addressable File Organization 

A file organization in which records are accessed by their byte address in the file. 

c 

Calling Sequence 

A set of instructions used to transfer control to a subprogram. 

Character 

A letter, digit, or symbol represented by a code in a character set. Also, a unit of 
measure used to specify block length, record length, and so forth. Can be a nonprinting 
symbol or overpunch representation. 

Close Operation 

A set of terminating operations performed on a file when input and output operations 
are complete. 

Close Request 

A program request notifying the system that the program no longer intends to access 
file data through the specified instance of open. In response, the system flushes all 
modified data from memory to the file and ends the connection between the program 
and the file. 

Collated Key 

The key type that orders key values according to a user-specified collation table. 
Contrast with Uncollated Key. 

Collating Sequence 

A set of values defining the collation weights of the 256 ASCII characters. The 
collation weights determine the sequence in which characters are ordered and their 
relative values when compared. 

Collation Table 

A data structure defining a collating sequence. 

A-2 FORTRAN Version 1 Language Definition Usage Revision H 



Collation Weight Display Code 

Collation Weight 

The value assigned to a character that determines the position of that character when 
ordered using the collating sequence. 

Common Block 

An area of memory that can be declared in a COMMON statement by more than one 
program and used for storage of shared data. See Blank Common Block and Named 
Common Block. 

Compilation Time 

The time at which a source program is translated by the compiler to an object program 
that can be loaded and executed. Contrast with Execution Time. 

Concatenated Key 

An alternate key that has two or more places. The pieces can be noncontiguous and 
can be concatenated in any order. 

D 

Data Block 

A keyed-file block in which data records are stored. Contrast with Index Block. 

Data Block Split 

The process of creating two or three data blocks from an existing data block when a 
record to be written does not fit into the remaining space of the existing block. 

Default Data Type 

The data type assumed by a variable in the absence of any type declarations for the 
variable. Variables whose names begin with one of the letters A through H or 0 
through Z have a default type of real. Variables whose names begin with one of the 
letters I through N have a default type of integer. The default typing can be changed 
by using an IMPLICIT statement. 

Default Value 

The value used for the parameter value if no value is explicitly specified. 

Descending Sort Order 

Used with the sort/merge interface, the order of sorting keys where the record having 
either a numeric or a non-numeric key, the lowest value is written last on the output 
file. For non-numeric, the first item in the sequence has the highest value. See Sort 
Order. 

Direct Access Input/Output 

A method of input/output in which records can be read or written in any order. 

Display Code 

A 64-character subset of the ASCII code, which consists of alphabetic letters, symbols, 
and numerals. 

Revision H Glossary A-3 



Duplicate Key Value Execution Time 

Duplicate Key Value 

The situation detected when a record to be written to the file has a key value that 
matches a key value already in the file (or another value for the alternate key in the 
same record). It can also be detected during application of a new alternate-key 
definition to a file. 

Duplicate Key Value Control 

The alternate-key attribute that indicates whether duplicate values are allowed for the 
key and, if so, how the duplicates are ordered. 

E 

EBCDIC 

The abbreviation for extended binary-coded decimal interchange code, an 8-bit code 
representing a coded character set. 

Embedded Key 

Key that is part of the data in each record. (Alternate keys are always embedded.) 
Contrast with Nonembedded Key. 

End-Of-File (EOF) 

A particular kind of boundary on a sequential file, recognized by the END= specifier 
and the functions EOF and UNIT. Either of the following boundaries is recognized as 
end-of-file: 

End-of-partition 

End-of-information (EOI) 

The ENDFILE statement writes an end-of-partition boundary. 

End-Of-Information (EOI) 

The point at which data in a file ends. For a keyed file, the EOI file position means 
that the file is positioned after the record with the highest key value. 

End-Of-Partition 

A special delimiter in a file with variable record type. 

Entry Point 

A location within a program unit that can be branched to from other program units. 
Each entry point has a unique name. 

Equivalence Class 

A group of variables or arrays whose position relative to each other is defined as a 
result of an EQUIVALENCE statement. 

Exception File 

Used with the sort/merge interface, a file to which invalid records are written before 
the records are removed from the sort or merge. 

Execution Time 

The time at which a compiled program is executed. Also known as run time. 

A-4 FORTRAN Version 1 Language Definition Usage Revision H 



External File 

External File 

A file residing on an external storage device. See File. 

External Reference 

A reference in one program unit to an entry point in another program unit. 

External Storage Device 

Disk or magnetic tape. 

F 

F Record Type 

Fixed-length records, as defined by the ANSI standard. 

Field 

A subdivision of a record that consists of one or more contiguous characters. 

File 

File .Reference 

A collection of information referenced. by a name. Files read and written by FORTRAN 
programs can be classified according to their residence (external and internal files) or 
their method of access (sequential and direct access files). 

File Attribute 

A characteristic of a file. Each file has a set of attributes that define the file structure 
and processing limitations. 

File Cycle 

A version of a file. All cycles of a file share the same file entry in a catalog. The file 
cycle is specified in a file reference by its number or by a special indicator, such as 
$NEXT. 

File Information Table 

An internal table through which FORTRAN communicates with the NOSNE keyed-file 
interface. 

File Organization 

The file attribute that determines the record access method for the file. See Sequential 
File Organization, Byte-Addressable File Organization, and Keyed File Organization. 

File Position 

The location in the file at which the next read or write operation will begin. The file 
position designators are: 

$ASIS 

$BOI 

$EOI 

Leave the file in its current position. 

Position the file at the beginning-of-information. 

Position the file at the end-of-information. 

File Reference 

An SCL element that identifies a file and optionally the file position to be established 
prior to use. 

Revision H Glossary A-5 



Floating-Point Number Index Level Overflow 

Floating-Point Number 

A method of internal binary representation for numbers written with a decimal point; 
corresponds to FORTRAN types REAL and DOUBLE PRECISION. 

Flush Request 

A program request to write to the file device the parts of a file that have been 
modified in memory since the last time the file was written. For keyed files, the file 
device is always disk; for sequential files, the flush request can write to disk or to an 
interactive terminal. 

Flushing 

The process of writing to disk any parts of a file whose images in real memory have 
been altered or expanded, if the alteration or expansion has not yet been made on disk. 
Flushing does not alter the logical status or position of a file. 

G 

Generic Function Name 

The name of an intrinsic function that accepts arguments of more than one data type. 
Except for data type conversion generic functions (and functions with boolean 
arguments), the type of the result is the same as the data type of the arguments. 

Graphic Character 

A character that can be printed or displayed. 

I 

Implicit Type 

The type of a variable as declared in an IMPLICIT statement. 

Indefinite Value 

A value that results from a mathematical operation that cannot be resolved, such as a 
division where the dividend and divisor are both zero. 

Index Block 

An indexed-sequential file block in which index records are stored. Contrast with Data 
Block. 

Index-Block Split 

The process of creating two index blocks from an existing index block when a record to 
be written does not fit into the remaining space of the existing block. 

Index Level 

A rank in the index block hierarchy in an indexed-sequential file. To find the pointer 
to a data record, an index block must be searched at each index level. 

Index Level Overflow 

The condition when a record cannot be written to a file because writing the record 
would require addition of another index level and the file already has 15 index levels. 

A-6 FORTRAN Version 1 Language Definition Usage Revision H 



Index Record Key List 

Index Record 

A record in an index block that associates a key value with a pointer to either a data 
block or an index block in the next-lower level of the index hierarchy. 

Indexed-Sequential File Organization 

A keyed-file organization in which records can be read sequentially, ordered by key 
value, or read randomly by a key value. 

Infinite Value 

A value that results from a computation whose result exceeds the largest value that 
can be represented in the computer. The representation of an infinite value in a 
computer word does not correspond to the representation of a number. 

Instance of Open 

A particular opening of a file as distinguished from all other openings of the file. 
Closing the file ends the instance of open. 

Integer Key 

The key type that orders key values numerically. The key values can be positive or 
negative integers. Contrast with Collated Key and Uncollated Key. 

Internal File 

A character variable, array, or substring on which input/output operations are 
performed by formatted READ and WRITE statements. Internal files provide a method 
of transferring and converting data from one area of memory to another. 

J 

Job 

A sequence of tasks executed for a user number. 

Job Log 

A chronological listing of all operations associated with a terminal from login to logout. 

K 

Key 

A significant part of a data record. 

For Sort/Merge, a key is a part of a record used to determine the position of the 
record within a sorted sequence of records. 

In a keyed file, a key is a part of a record whose value is defined as a means of 
accessing records. See Primary Key and Alternate Key. 

Key List 

The sequence of primary-key values associated with an alternate key value in an 
alternate index. If the alternate key does not allow duplicate values, each key list 
contains only one value. Otherwise,, each key list contains a primary key value for 
each record that contains the alternate-key value. 

Revision H Glossary A-7 



Key Type Logout 

Key Type 

The kind of data in a key. 

For Sort/Merge, a key type is the name of a numeric data format or collating sequence. 

For a keyed file, the possible key types are uncollated, collated, and integer. 

Keyed File Organization 

A file organization that provides for record access by a key value. Currently, the only 
keyed file organization is the indexed-sequential organization. 

Keyword 

A word within a format that must be entered exactly as shown. 

L 

Library 

See Source Library and Object library. 

Load Time 

The time at which an object program is loaded into memory and prepared for 
execution. 

Local File 

A file that is accessed via the $LOCAL catalog. See also File, Path, and Local Path. 

Local File Name 

The name used by an executing job to reference a file while the file is assigned to the 
job's $LOCAL catalog. Only one file can be associated with a given name in a job; 
however, in one job, a file can have more than one instance of open by that name. 

Local Path 

Identifies a local file as follows: 

$LOCAL.file_name 

Lock 

A mechanism that makes a primary-key value (or, for a file lock, all primary-key 
values) inaccessible to other instances of the file. 

Log 

Entries recording a chronological series of events. The keyed-file interface uses update 
l~l recovery logs. See also Update Recovery Log. 

Login 

The process used at a terminal to gain access to the system. 

Logout 

The process used to end a terminal session. 

A-8 FORTRAN Version 1 Language Definition Usage Revision H 



Major Key Normalized Floating Point Number 

M 

Major Key 

The leftmost part of a key. The number of bytes to be used is specified as the major 
key length. A major key can be used to position or read a keyed file. 

Major Sort Key 

Used with the sort/merge interface, a sort key that is the most important and is 
specified first. 

Mass Storage 

Disk storage. 

Mass Storage File 

A particular kind of randomly accessible file, accessed by the mass storage input/output 
routines. 

Mass Storage Input/Output 

A type of input/output used for random access to files; it involves the subroutines 
OPENMS, READMS, WRITMS, CLOSMS, and STINDX. 

Media 

Storage device on which data is recorded. Currently, NOSNE files can be recorded on 
mass storage or magnetic tape. 

Merge 

The process of combining two or more presorted files. 

Minor Sort Key 

Used with the sort/merge interface, a sort key that is specified after the major sort key 
on a SORT or MERGE command or in a procedure call. Minor keys are sorted after 
the major sort key. 

Module 

A unit of code. An object module is the unit of object code corresponding to a 
compilation unit. A load module is a unit of object code stored in an object library. 

When using the Debug utility, module refers to a program unit. 

N 

Named Common Block 

A common block that has a name. Data can be stored into a named common block at 
load time. The first program unit declaring a named common block determines the 
amount of memory allocated. Contrast with Blank Common Block. 

Nonembedded Key 

A primary key that is not part of the record data. Contrast with Embedded Key. 

Normalized Floating Point Number 

A floating point number with the most significant bit of the fractional portion being 
nonzero. 

Revision H Glossary A-9 



Null Suppression Path 

Null Suppression 

Alternate-key attribute indicating that records with null alternate-key values are not 
included in the alternate index. 

0 

Object Code 

Executable code produced by the compiler. 

Object Library 

A library of modules that the system can load and execute as needed. 

Open 

A set of preparatory operations performed on a file before input and output can take 
place. 

Optimization 

The manipulation of object code to reduce execution time. You can select the level of 
optimization performed by the compiler through the OPTIMIZATION_LEVEL 
parameter on the FORTRAN command. 

Own code 

A user-written routine, executed by Sort/Merge, that inserts, substitutes, modifies, or 
deletes records. 

p 

Padding 

Space deliberately left unused in each block created during the initial open of a keyed 
file. 

Also used to refer to the non-data characters appended to a fixed-length (F) record if 
the data is shorter than the record length. 

Partition 

A unit of data on a sequential or byte addressable file, delimited by end-of-partition 
separators or the beginning-of-information or the end-of-information. 

Pass by Reference 

A method of referencing a subprogram in which the addresses of the actual arguments 
are passed. 

Pass by Value 

A method of referencing a subprogram in which only the values of the actual 
arguments are passed. 

Path 

Identifies a file. A path may include the family name, user name, subcatalog name or 
names, and file name. 

A-10 FORTRAN Version 1 Language Definition Usage Revision H 



Permanent File Reference Listing 

Permanent File 

A file preserved by NOS/VE across job executions and system deadstarts. A permanent 
file has an entry in a permanent catalog. See File. 

Piece 

One of the fields of a concatenated alternate key. 

Primary Key 

The required key in a keyed file. Primary-key value must be unique in the file. See 
also Alternate Key. 

Procedure 

A FORTRAN function subprogram, subroutine subprogram, or statement function. 

Program-Library List 

The list of object libraries searched for modules during program loading. A 
program-library list search is required to load a collation table module or a Sort/Merge 
owncode procedure module. 

Program Unit 

A sequence of FORTRAN statements terminated by an END statement. The FORTRAN 
program units are main programs, subroutines, functions, and block data subprograms. 

R 

Random Access 

The process of reading or writing a record in a file without having to read or write the 
preceding records; applies only to mass storage files. Contrast with Sequential Access. 

Random File Organization 

A file organization in which records can be accessed by the value of their keys. 
Random files are processed by direct access READ and WRITE statements, file 
interface subprograms, and the mass storage subroutines. 

Record 

A unit of data that can be read or written by a single 1/0 request. Also, a set of 
related data processed as a unit when reading or writing a file. 

Record Length 

The length of a record measured in words for unformatted inpuUoutput and in 
characters for formatted input/output. 

Recovery 

Actions taken after damage occurs to alleviate the effects of the damage. Keyed-file 
recovery actions include reloading a backup copy and restoring the copy with an update 
recovery log . See also Update Recovery Log. 

Reference Listing 

A part of the listing produced by a FORTRAN compilation, which displays some or all 
of the entities used by the program, and provides other information such as attributes 
and location of those entities. 

Revision H Glossary A-11 



Relocatable Source Library 

Relocatable 

An object program that can reside in any part of memory. The actual starting address 
is established at load time. 

Repeating Groups 

An alternate-key attribute indicating that each data record can contain more than one 
value for the alternate key. 

Rewind 

To position a file at its beginning-of-information. 

Run Time 

The time at which a compiled program is executed; also known as execution time. 

s 

Sequential Access 

An access mode in which records are processed in the order (physical or logical) in 
which they occur on a storage device. Contrast with Random Access. 

Sequential File Organization 

A file organization in which records can only be processed in physical order. Records 
are always read in the order that they were written to the file. 

Sign 

Indicates whether a number is positive or negative. A sign is one of the following 
characters: 

+ Positive number 

Negative number 

space Positive number 

Sort 

The process of arranging records in a specified order. 

Sort Key 

Used with the sort/merge interface, a field of information within each record in a sort 
or merge input file that is used to determine the order in which records are written to 
the output file. 

Sort Order 

Ordering of data according to key fields, either ascending or descending. 

Source Code 

Code written by the programmer in a language such as FORTRAN, and input to a 
compiler. 

Source Library 

A collection of text units on a file, generated and manipulated by the Source Code 
Utility (SCU). 

A-12 FORTRAN Version 1 Language Definition Usage Revision H 



Source Listing Traceback 

Source Listing 

A compiler-produced listing of the user's original source program. 

Sparse-Key Control 

An alternate-key attribute that allows only certain records to be included in the 
alternate index. Inclusion or exclusion of a record is determined by the character at 
the sparse-key control position of the record. 

Specific Function Name 

The name of an intrinsic function that accepts arguments of a particular data type, and 
returns a result of a particular data type. Contrast with Generic Function Name. 

Statistics 

Counts maintained for a keyed file. Each type of file access is counted as well as the 
number of records in the file. 

Status Variable 

The variable in which the completion status of the command or procedure is returned. 

Sum Fields 

Used with the sort/merge interface, a record field containing a numeric value from the 
corresponding field of another record when the records are summed. The sum of the 
two values is stored in the new record that is created by the summing. 

Summing 

U_sed with the sort/merge interface, the process of combining two records having 
identical key values. The result of the process is a new record containing the original 
values of the key fields, the summed values of the sum fields, and data from one of 
the original records in any other record fields. 

System Command Language (SCL) 

The language that provides the interface to the features and capabilities of NOS/VE. 
All commands and statements are interpreted by SCL before being processed by the 
system. 

T 

Task 

The instance of execution of a program. 

Traceback 

A list of subprogram names within a program, beginning with the currently executing 
subprogram, proceeding backward through the sequence of called subprograms, and 
ending with the main program. 

Revision H Glossary A-13 



U Record Type Working Storage Area 

u 

U Record Type 

Records for which the record structure is undefined. 

Uncollated Key 

A key consisting of 1 to 255 8-bit characters. These keys are sorted by the magnitude 
of their binary ASCII code values. See Collated Key. 

Unit Identifier 

An integer constant, or an integer variable with a value of either 0 to 999, an L 
format unit file name or a segment access file. In inputloutput statements, it indicates 
on which unit the operation is to be performed. It can be linked with the actual file 
name by an OPEN statement. If no OPEN statement is specified, a default file name is 
used. 

Update Recovery Log 

Log on which each backup or update operation to a keyed file is recorded so that, if 
the file is damaged, a backup file copy can be reloaded and updated using the 
information on the log. 

Utility 

A NOSNE processor consisting of routines that perform a specific operation. 

v 

V Record Type 

Variable-sized record; system default record type. Each V-type record has a record 
header. The header contains the record length and the length of the preceding record. 

w 

i ::: bytes of information. 

'\Vorking Storage Area 

An area allocated by the task to hold data copied by get or put calls to a file. 

A-14 FORTRAN Version 1 Language Definition Usage Revision H 



Related Manuals 

Table B-1 lists all manuals that are referenced in this manual or that contain 
background information. A complete list of NOSNE manuals is given in the SCL 
Language Definition manual. If your site has installed the online manuals, you can 
find an abstract for each NOSNE manual in the online System Information manual. To 
access this manual, enter: 

I explain 

Ordering Printed Manuals 

You can order Control Data manuals through Control Data sales offices or through: 

Control Data Corporation 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

Accessing Online Manuals 

To access an online manual, log in to NOSNE and specify the online manual title 
(listed in Table B-1) on the EXPLAIN command. For example, to read the FORTRAN 
online manual, enter: 

/explain manual=fortran 

Revision H Related Manuals B-1 



Accessing Online Manuals 

Table B-1. Related Manuals 

Manual Title 

FORTRAN Manuals: 

FORTRAN Version 1 for NOS/VE Quick Reference 

FORTRAN for NOS/VE Summary 

FORTRAN for NOS/VE Tutorial 

FORTRAN for NOS/VE Topics for FORTRAN 
Programmers Usage 

FORTRAN Version 2 for NOS/VE Language 
Definition Usage 

FORTRAN Version 2 for NOS/VE Quick Reference 

SCL Manuals: 

SCL for NOS/VE Advanced File Management Usage 

SCL for NOS/VE Language Definition Usage 

SCL for NOS/VE System Interface Usage 

SCL for NOS/VE Quick Reference 

SCL for NOS/VE Source Code Management Usage 

SCL for NOS/VE Object Code Management Usage 

Additional References: 

Math Library Usage 

Debug for NOS/VE Usage 

Debug for NOS/VE Quick Reference 

Diagnostic Messages for NOS/VE Usage 

Programming Environment for NOS/VE Usage 

Professional Programming Environment Usage 

Professional Programming Environment Quick 
Reference 

B-2 FORTRAN Version 1 Language Definition Usage 

Publication 
Number 

60485919 

60485912 

60485916 

60487113 

60486413 

60464013 

60464014 

60464018 

60464313 

60464413 

60486513 

60488213 

60464613 

60486613 

Online Title 

FORTRAN 

FORTRAN_T 

VFORTRAN 

AFM 

SCL 

DEBUG 

MESSAGES 

ENVIRONMENT 

PPE 

Revision H 



Differences Between NOSNE FOJR'fRAN 
and NOS FORTRAN 5 C 

This appendix presents the differences between FORTRAN 5 and the first released 
version of NOS/VE FORTRAN, and is intended as an aid to converting programs from 
FORTRAN 5 to NOS/VE FORTRAN. 

NOS/VE FORTRAN is designed to be compatible with FORTRAN 5. However, the new 
operating system and hardware have resulted in several areas of incompatibility. Other 
incompatibilities are the result of FORTRAN 5 features which are not currently 
supported under NOS/VE FORTRAN but for which future support is anticipated. 

In some cases, language incompatibilities may necessitate program modification; in 
other cases, statements using incompatible features can remain in the program but will 
not be processed. 

Two forms of differences are given. The general guidelines describe common 
programming practices which are not compatible between the two versions of 
FORTRAN. These practices are dependent on the specific characteristics of the 
hardware systems used by FORTRAN, such as word length and number of characters 
per word. The feature differences describe specific features for which incompatibilities 
exist. 

General Guidelines 

The following programming practices have different results in NOS/VE FORTRAN and 
FORTRAN 5. FORTRAN 5 programs that use these practices will probably require 
modification before they can be successfully processed under NOS/VE FORTRAN. 

• Coding that depends on the internal representation of data (floating-point layout, 
number of characters per word, and so forth) should be checked. Because of 
differences in word size and internal representations, these uses nearly always 
require modification. 

• Data manipulations based on the binary representation of the data should be 
checked. FORTRAN 5 programs that manipulate characters as octal display-coded 
values or as 6-bit binary digits must be modified before being compiled and 
executed under NOS/VE FORTRAN. 

• File structure and naming conventions differ significantly under NOS/VE, and 
default file positioning has changed. All usages that depend on any of these 
properties should be checked. 

• Code that identifies or classifies information based on the location of a specific 
value within a specific set of central memory word bits must be modified. 

• Intermixed COMPASS subprograms are not supported under NOS/VE FORTRAN. 
COMPASS subprograms must be replaced by equivalent FORTRAN routines before 
compilation and execution under NOS/VE FORTRAN. 

Revision H Differences Between NOS/VE FORTRAN and NOS FORTRAN 5 C-1 



Feature Differences 

Feature Differences 
The following paragraphs describe specific differences between FORTRAN 5 and 
NOSNE FORTRAN. 

Boolean Data Type 

The boolean data types and operations (SHIFT, MASK, and so forth) are provided 
specifically for machine-dependent uses. Most uses will require program modification. 

Buffer 1/0 

Some uses of buffer inputJoutput, such as the ubc value returned by 
LENGTH/LENGTHX and the size of the storage area to receiv~ incoming data, are 
dependent on the number of characters per word. The parity indicator (p parameter) is 
ignored by NOSNE FORTRAN. The BUFFER statements are included in NOSNE 
FORTRAN for compatibility only. Because buffers are not used in NOSNE FORTRAN 
in the same way as in FORTRAN 5, BUFFER statements are generally not 
advantageous; unformatted READ and WRITE statements should be used instead. 

Subroutines CHEKPTX and RECOVR 

Subroutines CHEKPTX and RECOVR are not supported by NOSNE FORTRAN. 
CHEKPTX and RECOVR subroutines are provided but perform no operations. 

Division Operation 

Dividing by zero in NOSNE causes a divide fault, which terminates program executon 
with an immediate fatal runtime error. In NOS, such a division causes an invalid 
quotient which can generate inaccurate results when used as an operand. 

CYBER Record Manager (AAM) Subprograms 

The capabilities provided by CYBER Record Manager (CRM) are provided by the file 
interface routines under NOS/VE. As with CRM, all FORTRAN 1/0 is performed 
through the file interface, and a set of FORTRAN subprogram calls provides direct 
communication with the file interface. 

Currently, NOSNE supports only sequential, indexed-sequential, direct access, and 
byte-addressable file organizations. Only indexed-sequential and direct access files can 
be accessed by direct FORTRAN calls. Actual-key file organization is not supported. 
The Basic Access Methods word addressable organization has been replaced by the new 
byte-addressable organization. 

You should check all uses of CRM Advanced Access Methods (AAM) subprogram calls 
in your FORTRAN programs. The NOS/VE keyed file interface calls offer only a subset 
of the features offered by the CRM AAM calls. The following paragraphs describe the 
feature differences. 

File Organization 

Currently, the only file organizations available via the keyed file interface calls are 
indexed-sequential and direct access. 

C-2 FORTRAN Version 1 Language Definition Usage Revision H 



Feature Differences 

Record Type 

The record types available are fixed-length (F) and variable-length (U or V). NOSNE 
does not support the AAM Version 2 record types D, R, S, T, and Z. 

File Information Table 

User programs do not need to reserve 35 words for the file information table. All that 
is needed is room for a one-word pointer. If the program does reserve 35 words, only 
the first word will be used. 

Values can be stored or fetched from the file information table in standard ways, i.e., 
CALL FILEIS, CALL FILEDA, CALL STOREF, CALL IFETCH, and IFETCH. Values 
in the file information table can only be modified through the file processing calls 
because the file information table is an internal table which cannot be accessed directly 
by a program. 

Any attempt to read from the table without using IFETCH returns an undefined value. 
If a value is stored in an unconventional manner, the value cannot be returned. 

Keywords must be enclosed in apostrophes; for example, 'WSA'. The boolean form 
L"WSA", used in FORTRAN 5 programs, does not work. 

The following CYBER Record Manager file information fields do not have equivalents 
in the file interface to FORTRAN:. 

BAL BBH BFF BFS BS BT 

BZF B8F CDT CL CM CNF 

CP CPA Cl DCA DFLG DKI 

EFC EO EOFWA EXD FPB FWB 

HB HL HRL IBL IRS KNE 

KR LA LAC LBL LCR LGX 

LL LNG LOP5 LP LT LVL 

LX MFN MNB MUL NDX NOFCP 

ORG OVF PC PEF PKA PM 

PNO POS PTL RC RDR RMK 

SB SBF SDS SES SOL SPR 

TL TRC ULP VF VNO WA 

WPN XBS XN 

Field FL, although not applicable to the file interface to FORTRAN, will be recognized 
as a synonym of field MRL. 

Revision H Differences Between NOSNE FORTRAN and NOS FORTRAN 5 C-3 



Feature Differences 

Other keywords from Advanced Access Methods Version 2 and their meanings for the 
file interface to FORTRAN: 

DX Data exit. Although NOS/VE does not support data exit, the FORTRAN keyed 
file interface saves the subroutine address and calls the subroutine when the 
appropriate file position (BOI or EOI) is returned from an access operation. 

OC Open/closed flag. Although NOS/VE ·system requests tell whether the file is 
opened or closed, the file information table will also contain this information 
so you can read it by a IFETCH operation. 

FNF Fatal error flag. To allow you to read the information with a fetch request, 
the FORTRAN interface maintains this information in the file information 
table. 

ON Old/new flag. The file information table maintains a value of ON which can be 
set to OLD (default) or NEW by a FILEIS or FILEDA call. When a CALL 
OPENM statement is issued, the FORTRAN interface first finds out from the 
system whether the file already exists. If the answer to this question conflicts 
with the setting of ON, a fatal error occurs. 

KP Key position. This keyword, although it has no meaning in AAM NOS/VE, is 
accepted by the FORTRAN interface as a keyword in the CALL FILEIS or 
CALL FILEDA statement or as a parameter in the CALL STARTM, CALL 
STOREF, and CALL GET statements. KP is added to KA to determine the 
position of the key. 

RKW Relative key word. If RKW is specified in a CALL FILEIS or CALL FILEDA 
statement, the keyed-file interface multiplies the value by 10 and adds it to 
RKP. This may be a problem because NOS/VE has a word size of 8 bytes and 
not 10 bytes (NOS and NOS/BE). Users should visually inspect the program to 
ensure that the correct value is specified. 

Reserving Space for WSA 

Check whether your FORTRAN 5 program uses an INTEGER or REAL array for WSA. 
Because NOS and NOS/BE use a 10-byte word and NOS/VE uses an 8-byte word, the 
number of characters that can be stored in an INTEGER or REAL array differs. 

For example, in NOS/VE FORTRAN, coding a statement like RECORD (8) reserves 
only 64 charac.ters of space (as opposed to 80 characters in FORTRAN 5), and the first 
time a record is read into the area, the record overwrites the next item in memory. 

To write a FORTRAN program in which the same number of characters can be stored 
in the WSA when the program is executed by NOS, NOS/BE, or NOS/VE, declare the 
WSA using the CHARACTER data type. 

Optimization 

FORTRAN optimization (OL=HIGH) can cause unpredictable results when WSA, KA or 
PKA are not in common. If OL=HIGH is to be used, WSA, PKA and KA should be 
declared as COMMON. 

Embedded Keys 

The default for EMK in Advanced Access Methods Version 2 was NO (nonembedded 
keys). The default for the NOS/VE keyed file interface is YES (embedded keys). 

C-4 FORTRAN Version 1 Language Definition Usage Revision H 



Feature Differences 

CALL GETNR Statement 

For purposes of compatibility, CALL GETNR statement is allowed. CALL GETNR is 
treated as a CALL GETN. 

CALL SEEKF Statement 

The SEEK function does not exist in the file interface to FORTRAN. If a CALL 
SEEKF is encountered, the FORTRAN interface copies parameters to the file 
information table, sets the FILE_POSITION field to end-of-information (EOR), and 
returns control to the program. 

DATE, TIME, and CLOCK Functions 

The values returned by the DATE, TIME, and CLOCK functions have different formats. 
The format provided by NOSNE FORTRAN is described in chapter 9. Note that the 
length declared for TIME and CLOCK by the CHARACTER statement must be changed 
to 8. (The length of DATE is still 10.) 

Default Collating Sequence 

The default collating sequence established when the DEFAULT_ COLLATION parameter 
is omitted from the FORTRAN command has been changed from USER to FIXED. 
Under NOSNE FORTRAN, the USER and FIXED collating sequences are defined as 
the 'ASCII' and 'DISPLAY' collating sequences, respe.ctively. Under FORTRAN 5, USER 
and FIXED are defined as 'DISPLAY' and 'ASCII6', respectively. 

See also Other Collating Sequence Differences in this section. 

Default Debugging Options 

Under NOSNE FORTRAN, runtime range checking of subscript and substring 
expressions is performed by default, and is suppressed by a FORTRAN command 
option. Under FORTRAN 5, this option is off by default and must be selected by a 
control statement option. 

Double Precision Functions Referenced as Single Precision 

Referencing double precision functions as single precision under FORTRAN 5 depends 
on register conventions that are not compatible with NOSNE FORTRAN. All such uses 
should be removed. 

ENCODE/DECODE 

Most usages of ENCODE/DECODE involve packing and unpacking of characters within 
a word and are dependent on the number of characters per word. All usages should be 
checked. Conversion of ENCODE/DECODE to FORTRAN standard internal READ and 
WRITE is recommended. 

Revision H Differences Between NOSNE FORTRAN and NOS FORTRAN 5 C-5 



Feature Differences 

Files INPUT and OUTPUT 

The system files INPUT and OUTPUT have been changed to $INPUT and $OUTPUT. 
Under NOS/VE, the FORTRAN compiler converts all references to INPUT or OUTPUT 
on the PROGRAM statement, and all references to unit *, to reference $INPUT or 
$OUTPUT. OPEN statements must be changed to specify $INPUT or $OUTPUT. Since 
$OUTPUT cannot be written to in a batch environment, it must be connected to a 
physical file containing data by the PROGRAM statement or by an SCL CREATE_ 
FILE_CONNECTION command. 

Floating-Point Arithmetic 

Differences in NOS and NOS/VE unrounded floating-point arithmetic can lead to 
different results if the source algorithm is numerically unstable. 

For example, in NOS, a number that becomes too small due to exponent underflow is 
rounded to zero, and processing continues. In NOS/VE, you can set an exponent 
underflow option with an SCL command. The default setting of the option is on, which 
means that a too small number results in processing being terminated with an 
immediate fatal runtime error. If you set the exponent underflow option off, NOS/VE 
treats exponent underflow the same way NOS does. 

FORTRAN Command 

The FORTRAN command for NOS/VE FORTRAN differs from the FTN5 statement for 
FORTRAN 5. Parameter names have changed, new parameters are available, and 
certain FTN5 parameters are no longer supported. 

Function Results 

In NOS, function typing could in some cases be incorrect without causing an error. For 
example, if a double precision function is typed as real in the calling program, the 
correct data would be returned since only the most significant part of data is returned 
after a function reference. In NOS/VE, the least significant part is used in passing 
data, so an error occurs. As another example, NOS handles a character function typed 
as an integer function correctly up to a certain amount of characters. On NOS/VE 
FORTRAN, mistyping a character function almost always results in an error. 

Hollerith Constants 

Under NOS/VE FORTRAN, Hollerith constants are replaced by boolean string 
constants, which are limited to 8 characters. Constants of the form nHs, L''s", R"s", or 
"s" that exceed 8 characters can be passed as actual arguments to external procedures. 
These constants are called extended Hollerith constants. ·· 

Intrinsic Function References in Constant Expressions 

NOS/VE FORTRAN allows intrinsic function references in any constant expression. 
NOS FORTRAN 5 allows intrinsic function references in constant expressions only in 
PARAMETER statements. 

LOCF Function 

The LOCF function is not supported under NOS/VE FORTRAN. 

C-6 FORTRAN Version 1 Language Definition Usage Revision H 



Feature Differences 

Maximum Length of Formatted Records 

The maximum length of formatted records is reduced from 131071 octal under 
FORTRAN 5 to 65535 octal under NOSNE FORTRAN. 

0 and Z Editing 

Under FORTRAN 5, reading a blank field with the Ow or Zw descriptor gives a minus 
zero. Under NOSNE FORTRAN, no minus zero exists (a positive zero is stored). 

All list items used with the 0 and Z descriptors should be declared type boolean. 

Other Collating Sequence Differences 

NOSNE FORTRAN uses standard system-defined collating sequences for the 
NOS-compatible 'ASCII6' and 'COBOL6' collating sequences. The 'STANDARD' sequence 
of FORTRAN 5 has been eliminated, and an 'INSTALL' sequence, equivalent to 
'COBOL6', has been added. 

Overlays and OVCAPs 

Overlays and OVCAPs are not meaningful in the NOSNE FORTRAN environment and 
are not supported. All OVERLAY and OVCAP directives should be removed from 
programs being converted. PROGRAM statements in primary and secondary overlays 
should be changed to SUBROUTINE statements. Calls to OVERLAY, LOVCAP, and 
XOVCAP should be replaced by appropriate subroutine calls. UOVCAP calls should be 
removed. 

Permanent File Subroutines 

The permanent file subroutines are not supported under NOSNE FORTRAN. A similar 
capability is provided by the SCL interface subprograms. · 

Post Mortem Dump 

NOSNE FORTRAN does not support the Post Mortem Dump debugging facility. The 
calls to PMDARRY, PMDDUMP, PMDLOAD, and PMDSTOP are provided but are 
ignored during compilation and execution. 

Procedure Communication 

Any method of procedure communication, other than through common or an argument 
list, should ·be changed to use either common .or an argument ·list. 

PROGRAM Statement 

The file buffer length specifier on the NOSNE FORTRAN PROGRAM statement is 
included for compatibility with FORTRAN 5 but is disregarded by the compiler. 
Because of the way in which buffers are used in the NOSNE FORTRAN environment, 
assigning buff er lengths is not meaningful. 

Revision H Differences Between NOSNE FORTRAN and NOS FORTRAN 5 C-7 



Feature Differences 

SAVE Statement 

Under NOSNE FORTRAN, local variables and arrays in subprograms compiled at 
OPT= HIGH do not retain their values after an exit from the subprogram, unless the 
subprogram contains a SAVE statement or the FORCED_SAVE option is specified on 
the FORTRAN command. 

SECOND Function 

Under NOSNE FORTRAN, the SECOND function is supplied as a utility subprogram 
rather than an intrinsic function. Thus, any FORTRAN 5 programs that declare the 
SECOND function in an INTRINSIC statement should be changed to declare the 
function in an EXTERNAL statement. 

Segment Loading 

Segment loading is not supported under NOSNE. In order to avoid conflicts in common 
block storage within segmented programs, the names of nonglobal common blocks 
having the same name in parallel parts of the tree structure must be changed to be 
unique. 

Static Memory Management 

The static memory management routines are not supported by NOSNE FORTRAN. 

Subroutine LABEL 

Subroutine LABEL is not supported by NOSNE FORTRAN. A LABEL subroutine is 
provided but it performs no operation. 

Subroutine GETPARM 

Subroutine GETPARM is replaced by the SCL interface capability under NOSNE 
FORTRAN. A GETPARM subroutine is provided but it performs no operation. 

Sort/Merge 

NOSNE SortJMerge is compatible only with SortJMerge Version 5; it does not attempt 
compatibility with any other SortJMerge version. NOSNE SortJMerge can only access 
NOSNE disk files. 

The File Management Utility (FMU) can convert NOS files into equivalent NOSNE 
files. This utility converts the differences in byte size, collating sequence, record type, 
and block type. See the SCL Advanced File Management Usage manual for more 
details. 

The following paragraphs list the major differences between NOSNE SortJMerge and 
NOS SortJMerge Version 5. 

Byte Size 

Under NOSNE SortJMerge, the byte size is equal to 8-bits rather than 6-bits which is 
the case under NOS SortJMerge 5. 

C-8 FORTRAN Version 1 Language Definition Usage Revision H 



Feature Differences 

Character Codes 

Character data is internally represented in 8-bit ASCII character codes under NOSNE 
Sort/Merge rather than 6-bit display codes which is the case under NOS Sort/Merge 5. 

Character Sets 

NOSNE Sort/Merge supports only the 256-character ASCII character set. NOSNE 
Sort/Merge does not support the 63- and 64-character sets. 

Collating Sequences 

There are now six predefined collating sequences under NOSNE Sort/Merge: ASCII, 
ASCII6, COBOL6, DISPLAY, EBCDIC, and EBCDIC6. ASCII is assumed if a sequence 
is not specified. 

Under NOSNE a user-defined collating sequence has 256 positions. (NOSNE can use 
the SEQR procedure to fill the rest). 

Direct Processing 

NOSNE Sort/Merge does not support direct processing (all records are read and written 
through the access method). NOS Sort/Merge 5 reads and writes directly (instead of 
thorugh CYBER Record Manager) if so specified by the SM5FAST procedure. 

Error File 

The default error file is $ERRORS under NOSNE Sort/Merge. 

Error Messages 

NOSNE Sort/Merge error numbers and message text follow NOSNE error message 
conventions. 

The NOSNE Sort/Merge error messages are listed in the NOSNE Diagnostic Messages 
manuai'. 

Estimated Number of Records 

For NOSNE Sort/Merge, the value can be specified on the SM5ENR procedure call. 

Exception File Processing 

NOSNE Sort/Merge performs exception file processing if an exception file is specified 
for the sort or merge. 

File Attributes 

The NOS default file attributes are valid for a sort or merge. 

The NOSNE default value for the minimum record length attribute could cause a fatal 
error if no key field was specified for the sort or merge. 

Revision H Differences Between NOS/VE FORTRAN and NOS FORTRAN 5 C-9 



Feature Differences 

File Manipulation 

Files are not rewound by NOSNE Sort/Merge. The open position of a NOSNE file is 
determined by the value of its open_position attribute. 

Interactive Prompting 

Interactive prompting is not currently implemented on NOSNE Sort/Merge. 

Listing File 

NOSNE Sort/Merge provides the SM5LIST procedure to specify the listing file. The 
default listing file is file $LIST. 

Messages 

For NOSNE Sort/Merge, messages are written to the list and error files. 

Messages are written to the dayfile for NOS Sort/Merge 5. 

Owncode Procedures 

For NOSNE Sort/Merge, any owncode procedures specified for a sort or merge must be 
accessible from an object library in the current object library list. If you enter an 
owncode procedure name in lowercase letters, Sort/Merge does not convert the name to 
uppercase letters. Uppercase letters must be used when naming an owncode procedure. 

Procedures for NOS/VE Only 

New procedures for NOSNE Sort/Merge include: SM5DUCT, SM5LCT, and SM5LO 
procedure calls. 

Signed Overpunches 

34 overpunches are defined for NOSNE Sort/Merge; 20 overpunches are defined for 
NOS Sort/Merge 5. 

SM5EL Procedure 

The maximum error level can only be specified as a letter for NOSNE Sort/Merge. 

SM50WNn Procedures 

For NOSNE Sort/Merge, an owncode procedure is specified by the entry point name. If 
you enter the owncode routine name in lowercase letters, NOSNE Sort/Merge will not 
convert the name to uppercase letters. Uppercase letters must be used to name an 
owncode procedure. 

SM5ST Procedure 

The NOSNE SM5ST procedure specifies a status variable in which the completion 
status of the command or procedure is returned. 

C-10 FORTRAN Version 1 Language Definition Usage Revision H 



Zero Comparison 

Positive and negative zero are ordered equally for NOSNE Sort/Merge. 

Negative zero is ordered before positive zero for NOS Sort/Merge 5. 

8 Bit Subroutines 

The 8 bit subroutines are not supported under NOSNE FORTRAN. 

SYSTEMC or SYSTEM Calls 

Feature Differences 

FORTRAN 5 error numbers are automatically mapped into the corresponding NOSNE 
FORTRAN error number for use with the SYSTEM or SYSTEMC calls. 

Revision H Differences Between NOSNE FORTRAN and NOS FORTRAN 5 C-11 





C$ Directives D 

A C$ directive is a special form of comment line that controls compiler processing. A 
particular C$ directive affects an aspect of the compiler's interpretation of those lines 
following the directive and preceding· either a subsequent directive modifying the same 
aspect, if such a directive appears, or the end of the program unit. The aspects of 
interpretation that can be controlled are: 

• Listing of the program and associated compiler-produced information, called listing 
control 

• Specification of program lines to be processed or ignored, called conditional 
compilation 

• Character data comparison collation table, called collation control 

• Minimum trip count for DO loops, called DO loop control 

• Specification of extensible common or segment access files, called loader control 

• Definition of external procedures to be used within your FORTRAN program, called 
external control 

• Definition of SCL parameters to be passed through the execution command (C$ 
PARAM directive, described in chapter 9) 

A C$ directive line is identified by the letter C in position 1 together with the 
character $ in position 2. Such a line will be interpreted as a comment if the 
COMPILATION_ DIRECTIVES parameter is not selected on the FORTRAN command. 
The entire directive must appear on a single line. A C$ directive interrupts statement 
continuation. 

In sequenced mode the letter C in the position immediately to the right of the 
sequence number together with the character $ immediately to the right of the C 
identify a C$ directive line. A line with no sequence number in sequenced mode cannot 
be a C$ directive. 

A C$ directive containing a syntax error generally results in a warning compilation 
diagnostic. 

Revision H C$ Directives D-1 



Listing Control 

Listing Control 
The listing control directive controls the compiler output list options. This directive has 
the form 

C$ LIST(p =c, ... ,p=c) 

p 

One of the symbols S, 0, R, A, M, or ALL. 

c 

Optional integer constant: 

1 Enable the specified option. 

0 Disable the specified option. 

If = c is omitted, the effect is the same as p = 1. 

The listing control directive modifies the state of any initially enabled list option 
switches. A list option switch is initially enabled when the corresponding list option is 
requested by the LIST_ OPTION parameter on the FORTRAN command. Any attempt 
to modify a list option switch that was not initially enabled is ignored. A specification 
of p = 0 disables switch p; p = 1 enables switch p. 

ALL=c is equivalent to S=c, O=c, R=c, A=c, M=c. 

A listing control parameter with values other than 0 or 1 results in a warning 
diagnostic. 

The list option switches provide the following control: 

S Source lines are listed when enabled. 

0 Generated object code is listed for statements processed when enabled. 

R Symbol references are accumulated for the cross-reference list when enabled. 
Symbols with no accumulated references will not appear in that list; no 
accumulation for an entire program unit suppresses cross-reference list. 

A The symbol attribute list is generated if this switch is enabled when the 
END statement is processed. 

M The symbol attribute list, DO loop, and common/equivalence map lists are 
generated if this switch is enabled when the program END statement is 
processed. 

The following example illustrates the listing control directives. All source statements 
appearing between C$ LIST (S=O) and C$ LIST (S=l) are suppressed in the output 
listing. (Source statement lines with errors are listed on the file $ERRORS along with 
diagnostics.) The C$ LIST (ALL= O) directive, active when the END statement is 
encountered, suppresses the reference map. 

D-2 FORTRAN Version 1 Language Definition Usage Revision H 



PROGRAM P 
C PROGRAM TO TEST LISTING CONTROL DIRECTIVES. 
C$ LIST(S=O) 

DIMENSION A( 10) 
C THE FOLLOWING CARD CONTAINS A SYNTAX ERROR 
C THE ERROR MESSAGE WILL BE LISTED ON THE $ERRORS FILE. 

INTEGER B/C 

C$ LIST(S= 1) 
DO 100 I=1, 10 
A(I) = 0.0 

100 CONTINUE 
C$ LIST(ALL=O) 

END 

Conditional Compilation 

Conditional Compilation 

A conditional compilation directive controls whether the lines immediately following the 
directive are to be processed or ignored by the compiler. 

The conditional compilation directives are divided into three categories: 

• An IF directive with the keyword IF 

• An ELSE directive with keyword ELSE 

• An ENDIF directive with keyword ENDIF 

The IF directive, ELSE directive, and ENDIF directive have the following forms: 

C$ IF(lexp), lab 

C$ ELSE, lab 

C$ ENDIF, lab 

lexp 

Extended logical constant expression. If a symbolic constant appears, it must have 
been previously defined in a PARAMETER statement in the program containing the 
IF directive. 

lab 

Optional label. 

For each IF directive there must appear exactly one ENDIF directive later in the same 
program unit, and for each ENDIF directive there must appear exactly one IF directive 
earlier in the same program unit. Between an IF directive and its corresponding 
ENDIF directive will appear zero or more lines called a conditional sequence. A 
conditional sequence can optionally contain one ELSE directive corresponding to the IF 
directive and ENDIF directive delimiting the conditional sequence. An ELSE directive 
can appear only within a conditional sequence. A conditional sequence cannot contain 
more than one ELSE directive unless it contains another conditional sequence. If an 
ELSE directive is contained within more than one conditional sequence, the ELSE 
directive corresponds to that IF-ENDIF pair which delimits the smallest, that is, 
innermost, conditional sequence containing the ELSE directive. 

Revision H C$ Directives D-3 



Conditional Compilation 

If corresponding IF, ELSE, and ENDIF directives have a label, it must be the same 
label. No other restriction applies to labels on conditional directives. There is no 
requirement that any conditional directive have a label. The same label can be used on 
more than one sequence of corresponding conditional directives in a single program 
unit, including the case of conditional directives whose conditional sequence contains 
other conditional directives with the same label. 

A conditional sequence can contain any number of properly corresponding conditional 
directives, and therefore other conditional sequences. If two conditional sequences 
contain the same line, one conditional sequence must lie wholly within the other 
conditional sequence. 

If an IF directive is processed by the compiler and the logical expression has the value 
true, following lines are processed as if the IF directive had not appeared, unless a 
corresponding ELSE directive is encountered. In this case, lines between the ELSE 
directive and the corresponding ENDIF directive are ignored by the compiler. If an IF 
directive is processed by the compiler and the logical expression has the value false, 
the following lines are ignored until the corresponding ENDIF directive is encountered, 
unless a corresponding ELSE directive is encountered. In this case, lines between the 
ELSE directive and the corresponding ENDIF directive are processed. 

The following example illustrates conditional compilation directives. The sample 
program contains two DO loops. Conditional compilation directives are included to test 
the value of the symbolic constant M. If M is 1, the first loop is compiled and the 
second loop is ignored. If M is not 1, the first loop is ignored and the second loop is 
compiled. Note, however, that the PARAMETER statement sets M = 1. 

PROGRAM B 
PARAMETER (M=1) 
DIMENSION A( 10) 

DATA A/10*0. 0/ 

C$ IF(M .EQ. 1) 

DO 8 I= 1, 10 
A(I) = A(I) + 1.0 

8 CONTINUE 

C$ ELSE 
DO 12 I=1, 10 
A(I) = A(I) - 1.0 

C$ END IF 

PRINT*, 'A= ' A 
END 

D-4 FORTRAN Version 1 Language Definition Usage Revision H 



Loader Control 

Loader Control 

The loader control directives are used to allow a named common block to be extensible 
(using C$ EXTEND) or to associate a named common block with a segment access file 
(using C$ SEGFILE). 

Extensible Common 

The C$ EXTEND directive causes a named common block to be extensible. A common 
block that is extensible has no upper bound other than the size of the memory segment 
it is contained in. This directive has the form: 

C$ EXTEND (bname/, ... ,lbname) 

bname 

A common block name. The name must be defined by a named COMMON 
statement in the same program unit. 

You must declare an extensible common block to be extensible in all program units 
that define the named common block. For more information about named common, see 
the COMMON statement description in chapter 3. Blank common blocks are always 
extensible. 

If the C$ EXTEND directive will be used in program units where over-indexing of 
arrays may occur, then subscript bounds checking should be deactivated with the 
RUNTIME_CHECKS = NONE option on the FORTRAN command. 

The following example shows the use of the C$ EXTEND directive to make the named 
common blocks (a, b, and c) extensible. 

PROGRAM E 
COMMON /a/ a(1), /b/ b(1), /c/ c(1) 

C$ EXTEND (/a/,/b/,/c/) 

a(2)=7 
b(2)=8 
END 

If the program is compiled with the C$ directive ignored (CD=OFF on the FORTRAN 
command), the assignments 'a(2) = 7' and 'b(2) = 8' overwrite the original values in the 
common block for b(l) and c(l). 

Compiling the program with the C$ EXTEND (CD=ON on the FORTRAN command), 
however, will protect any over-indexed array references within the bounds of the 
memory segment. 

In the following example, note that only the last dimension of the last array in a 
common block with more than one entity can be over indexed: 

PROGRAM X 
COMMON /A/ a(2), b(3), c(3,4) 

C$ EXTEND A 

The array element c(3,5) can be referenced while the array element a(3) can not be 
because a(3) would reference the memory location as b(l). 

Revision H C$ Directives D-5 



Loader Control 

Segment Access File Common Blocks 

The C$ SEGFILE loader control directive associates a named common block to a 
segment access file. After a named common block is associated with a segment access 
file, you can access the file directly through the common block's variables and arrays. 
This directive has the form: 

C$ SEGFILE (bname/, ... , !bname) 

bname 

A common block name. The name must be defined by a named COMMON 
statement in the same program unit. 

You must associate, or map, a common block to a segment access file with the OPEN 
statement. The UNIT specifier on the OPEN statement will specify /bname/. 

You must not reference a segment access file until after the OPEN statement has 
opened and associated the file with a common block. Therefore, you should initialize 
values in segment access files after the OPEN statement rather than in a DATA 
statement since the OPEN statement will change the values when it is executed. 

The following example shows the use of the C$ SEGFILE directive to map the common 
CBI to the segment access file SFILE: 

COMMON /CB1/A(1000) 
C$ SEGFILE (/CB1/) 

OPEN (UNIT=/CB1/, FILE='SFILE') 

D-6 FORTRAN Version 1 Language Definition Usage Revision H 



Collation Control 

Collation Control 

The collation control directive specifies whether collation of character relational 
expressions is directed by the fixed or user-specified weight table. This directive has 
the form 

C$ COLLATE(p) 

p 

One of the following: 

FIXED 

Collate according to the fixed (ASCII) weight table. 

USER 

Collate according to the user-specified (DISPLAY) weight table. 

A collation control directive directs the interpretation of character relational 
expressions and of CHAR or !CHAR intrinsic function references in the lines following 
the directive and preceding either another collation control directive or the END 
statement of the program unit. In the case of a character relational expression or a 
CHAR or ICHAR reference in a statement function definition, the collation that applies 
is that in effect for the line or lines containing a reference to the statement function. 
The following example shows a character relational expression used in a statement 
function: 

PROGRAM P 
LOGICAL LSF 
CHARACTER*S, X, Y, S, T 

C$ COLLATE(USER) 
LSF(X,Y) = X.LT.Y 

C$ COLLATE(FIXED) 
IF (LSF(S,T)) A=1.0 

END 

The reference LSF(S,T) results in an evaluation of the character relational expression 
S.LT.T according to the fixed weight table. 

Revision H C$ Directives D-7 



DO Loop Control 

DO Loop Control 
The DO loop control directive controls the minimum trip count for DO loops. This 
directive has the form 

C$ DO (OT=c) 

c 

Integer constant or integer symbolic constant: 

0 Minimum trip count is zero 

1 Minimum trip count is one 

If = c is omitted, minimum trip count is zero. 

The DO loop control directive modifies the state of the DO loop switch. The DO loop 
switch is initially set according to the presence or absence of the ONE_ TRIP _DO 
parameter on the FORTRAN command. A DO loop control directive overrides the 
ONE_ TRIP _DO request. 

The DO loop directive controls the minimum trip count for all loops that follow the 
directive, until either an END statement or another DO loop directive that resets the 
switch is encountered. 

A DO loop control directive affects the interpretation of only those DO loops whose DO 
statements follow the directive in the same program unit. 

D-8 FORTRAN Version 1 Language Definition Usage Revision H 



External Control 

External Control 

The external control directive allows a FORTRAN program to recognize and call a 
routine written in a language with different naming conventions and calling sequences 
than FORTRAN. The directive has the form: 

C$ EXTERNAL (ALIAS='exname', LANG=lspec), name 

exname 

Name of the external routine; can be up to 31 characters. 

ls pee 

Selects the programming language in which the external procedure is written. 
Options are: 

c 
Selects the C programming language 

CYBIL 

Selects the CYBIL programming language 

FTN 

Selects the FORTRAN Version 2 programming language 

name 

Name of the routine as it will be known in your FORTRAN program. Must be a 
valid FORTRAN program unit name. 

For more information on calling a routine from a FORTRAN program, see Calling 
Other Language Subprograms in chapter 7. 

The following example shows a FORTRAN program that calls a C routine named c_ 
program: 

PROGRAM M 
INTEGER JCOUNT 

C$ EXTERNAL (ALIAS='c_program', LANG=C) CPROG 
JCOUNT=3 

Revision H 

CALL CPROG(JCOUNT) 
END 

C$ Directives D-9 





I/O Jimplementation 

This appendix describes the structure of the files read and written by FORTRAN. All 
files read and written by FORTRAN input/output statements, as well as the files read 
and written by the FORTRAN compiler, are processed through the internal NOSNE 
file interface routines. 

Indexed sequential files, which can be processed directly through a set of 
FORTRAN-callable subprograms, are described in chapter 11, Keyed-File Interface. 

Runtime Input/Output 

All input and output between a file referenced in a program and the external storage 
device is under control of the internal NOSNE. file interface routines, which encompass 
sequential, indexed sequential, and byte addressable file organizations. 

Each NOSNE file is described by an internally-maintained table of file attributes. File 
processing is governed by values placed in this table by the FORTRAN compiler. 
Certain of these values are permanent for the life of the file; others can be changed by 
a SET_FILE_ATTRIBUTE command,,a CHANGE_FILE_ATTRIBUTE command, or by 
certain parameters in the PROGRAM and OPEN statements. 

FORTRAN Fast 1/0 

FORTRAN fast I/O improves internal processing of buffered, direct-access, and 
sequential input/output for .certain files. The files are those that can be opened with 
access modes of READ and WRITE, share modes of NONE, and meet the following 
criteria: 

• the file is not a system standard file 

• the file is either fixed or variable record type 

• the file is a system-specified block type 

• the file has no associated file-access procedure 

• the file has a blank padding character. 

Fast 110 is not used for terminal or tape files. When a file is opened for fast 110, the 
file cannot be opened again concurrently. It is necessary to close the file first before it 
can be opened again. This can cause differences in some input/output situations. The 
following paragraphs describe the types of differences that occur with fast 110 and ways 
to deactivate fast 110. 

Open Sharing 

Some programs that want to share opens may behave differently due to fast 110. The 
message, open share mode NONE, means that a file cannot be opened again by 
NOSNE or another language or utility (such as COBOL or SORT), until it is first 
closed. In some cases, a FORTRAN OPEN statement within the same task can be 
performed on a file that FORTRAN has already opened. For example, a FORTRAN 
OPEN satement can be used to change the BLANK= specifier that applies from a 
previous OPEN statement. This is not really opening the file again so it can be done 

Revision H I/O Implementation E-1 



I 

Runtime Input/Output 

without the file being sharable. If a file must be shared, and its attributes do not 
preclude fast 1/0, the user must prohibit fast 1/0 on the file by turning off fast 1/0 or 
by using one of the methods described in the following paragraphs to disable fast 1/0 
for individual files. 

Files Shared with Another Task or Another Language Subprogram 

If another task, or another language subprogram (such as COBOL), tries to do 
input/output operations on a file that is opened for fast 1/0, the routine will fail 
because other languages try to open the file again. The solution is to close the 
FORTRAN file before calling another language subprogram. 

Connected Files 

Programs that write to a file in more than one instance of open may behave differently 
using fast 1/0. For example, assume the following file connection exists: 

CREATE_FILE_CONNECTION $ERRORS TAPES 

If a FORTRAN program also opens TAPE6 for fast 110, then a later attempt to write 
to $ERRORS causes incorrect information to be written to $ERRORS. This error occurs 
because TAPE6 cannot be opened once it is already opened for fast 1/0. This problem 
can be avoided by using the commands: 

CREATE_FILE_CONNECTION $ERRORS TAPESX 
CREATE_FILE_CONNECTION TAPES TAPESX 

(Neither TAPE6 or $ERRORS is a disk file.) 

CALL SCLCMD 

If a file is open for fast 110, a CALL SCLCMD statement to write onto the same file 
aborts because the SCL command attempts to open the file. For example, if TAPE6 is 
being used by a FORTRAN program and has been opened for fast 1/0, then 

CALL SCLCMD ('COPY_FILE F TAPES.$EOI' 

will cause the program to abort. 

This can be avoided by using the statement 

CLOSE (6, STATUS = 'KEEP') 

before the call to SCLCMD. 

Fast 1/0 for Individual Files 

Fast 1/0 is automatically used on files residing in the $local catalog. To prevent this, 
make the files permanent with the appropriate access and share modes. For example, 

CREATE_FILE $USER.TAPES 
DETACH_FILE $USER.TAPES 
ATTACH_FILE $USER.TAPE6 SM=NONE 

E-2 FORTRAN Version 1 Language Definition Usage Revision H 



Runtime Input/Output 

Fast I/O will not be used on permanent file $user.tape6 because the file has the default 
ATTACH_FILE attributes of READ and EXECUTE, but not of WRITE which is 
required for fast I/O. Fast I/O is also not used when individual files are attached with 
share modes other than none. 

Disabling Fast 1/0 

To turn off fast I/O, you can do one of the following: 

• Create an SCL variable accessible to the FORTRAN program. The variable must be 
named FLV$IO_ OPT_HIGH; it is of type boolean. and the initial value is NO (or 
FALSE or OFF): 

CREATE_VARIABLE FLV$IO_OPT_HIGH BOOLEAN VALUE=NO SCOPE=JOB 

When the value of this variable is NO (at the beginning of a FORTRAN program) 
no file is opened for fast I/O. Fast I/O can be activated again by the SCL command: 

FLV$IO_OPT_HIGH = on 

This variable has no effect at compile time. 

• Set the pad character of a file to any character other than blank. 

• Use a block type other than system-specified or a record type other than fixed or 
variable. This method may increase execution time. 

• Connect a file to another file or associate a file access procedure to a file. This 
method may increase execution time. 

File and Record Definitions 

A file is a collection of records. It is the largest collection of information that can be 
referenced by a name. A file begins at its beginning-of-information and ends at its 
end-of-information. A record is a contiguous group of bytes within a file; it is read or 
written as a single unit. A record is read or written by: 

• One execution of an unformatted READ or WRITE statement. 

• A formatted, list directed, or namelist READ or WRITE statement. (A single 
execution of these statements can transmit more than one record.) 

• One call to READMS or WRITMS 

• One execution of a BUFFER IN or BUFFER OUT. 

The record types are: 

V Variable length 

F Fixed length 

U Undefined 

FORTRAN uses the V and F record types. 

Revision H 1/0 Implementation E-3 



Runtime lnputJOutput 

File Structure 

FORTRAN sets certain file attributes depending on the nature of the input/output 
operation and its associated file structure. Most attributes are permanent for the life of 
a file. After a file is created (that is, after the file is opened for the first time), the 
permanent attributes cannot be changed. The file attributes for the various types of 
FORTRAN input/output are shown in table E-1. The attributes which can be overridden 
by a SET_FILE_ATTRIBUTE (SETFA) command or CHANGE_FILE_ATTRIBUTE 
(CHAFA) command prior to file creation are indicated by a dagger; those attributes 
which can be overridden prior to any open of the file are indicated by two daggers. 
Files connected to $INPUT or $OUTPUT retain the attributes of $INPUT or $OUTPUT 
regardless of SETFA or CHAFA specifications. 

E-4 FORTRAN Version 1 Language Definition Usage Revision H 



Table E-1. Defaults for File Attributes 

File Attribute Formatted Unformatted 
Sequential Sequential Buffer 
1/0 1/0 I/O 

MAXIMUM_ RECL= in RECL= in n/a 
RECORD_ OPEN OPEN 
LENGTH statement statementi 

OPEN _POSITION $BOI2 $BOI2 $BOI2 

ACCESS_ MODE R/W/A/M2 R/W/AfM2 R/W/AfM2 

FILE_ SQ SQ SQ 
ORGANIZATION 

RECORD_ TYPE vi vi vi 

PADDING_ n/a n/a n/a 
CHARACTER 

PAGE_ WIDTH 132 n/a n/a 
characters 
(nonconnected 
file)i 
72 characters 
(connected 
file)i 

i Can be overridden by SETFA command prior to file creation 

2 Can be overridden by SETFA command prior to any open 

n/a = Not applicable to this mode of input/output 

$BOI = Beginning of information 

R/W/A/M = READ/WRITE/APPEND/MODIFY 

SQ = Sequential 

BA = Byte addressable 

V = Variable-length 

F = Fixed-length 

U = Undefined 

Revision H 

Runtime Input/Output 

Mass 
Storage 
1/0 

n/a 

n/a 

R/W/AIM2 

BA 

u 

n/a 

n/a 

Direct 
Access 
1/0 

RECL= 
in OPEN 
statement 

n/a 

R/W/AfM2 

BA 

F 

blanki 

n/a 

1/0 Implementation E-5 



I 

Runtime Input/Output 

SET _FILE _ATTRIBUTE Command 

The SET_FILE_ATTRIBUTE command provides a means of overriding file attributes 
compiled into a program, and consequently, a means to change processing normally 
supplied for FORTRAN input/output. In particular, this command enables you to read 
or create a file with attributes that are different from those supplied by default. 

The file attributes specified on a SET_FILE_ATTRIBUTE command are established . 
when a file is created (that is, the first time it is opened). 

The SET_FILE_ATTRIBUTE command has the form: 

SET_FILE_ATTRIBUTE or SETFA 

FILE=file 
ACCESS_MODE =list of keywords 
FILE_ CONTENTS= keyword 
FILE_ ORGANIZATION= keyword 
FILE_ STRUCTURE= keyword 
MAXIMUM _RECORD _LENGTH= integer 
OPEN _POSITION= keyword 
PADDING_ CHARACTER= character 
PAGE_ WIDTH= integer 
RECORD_ TYPE= keyword 

This format shows only those parameters which are applicable to the FORTRAN files 
described in this chapter. Refer to the SCL System Interface manual for a complete 
description of the SET_FILE_ATTRIBUTE command for sequential files. 

The FILE_ CONTENTS attribute must be LIST (to match the OUTPUT attribute) to 
honor carriage control. 

Example: 

PROGRAM ABC 
OPEN (FILE='AFILE', UNIT=1) 
WRITE (1,100) A, B, C 

This program opens and writes a file named AFILE. The following SET_FILE_ 
ATTRIBUTE command, specified before the program is executed, overrides the default 
maximum record length of 150 characters: 

SET_FILE_ATTRIBUTE FILE= AFILE MAXIMUM_RECORD_LENGTH = 100 

A MAXIMUM_RECORD_LENGTH specification in a SETFA command prior to 
program execution takes precedence over a record length specification in an OPEN or 
PROGRAM statement. In the case of direct access files, if MAXIMUM_RECORD_ 
LENGTH is specified in a SETFA command prior to execution, and if an OPEN 
statement specifies a different record length, a fatal error is issued. 

E-6 FORTRAN Version 1 Language Definition Usage Revision H 



Compile-Time Input/Output 

Sequential Input/Output 

The sequential READ and WRITE statements, namelist I/O statements, list directed I/O 
statements, and buffer I/O statements process sequential files with V type records. The 
record type can be overridden by a SET_FILE_ATTRIBUTE command before execution. 

The BACKSPACE, REWIND, and ENDFILE operations are valid only for sequential 
files with V type records. BACKSPACE skips backward (toward 
beginning-of-information) one record. (The file is positioned before the record just read 
or written). REWIND positions a file at beginning-of-information. ENDFILE writes an 
end-of-partition boundary. 

When an end-of-partition is encountered during a read, the ERR= specifier and EOF 
function return end-of-file status. If the end-of-partition does not coincide with 
end-of-information, you can continue reading the same file until the end-of-information 
is encountered. 

For F and U type records, the EOF and UNIT functions return end-of-file status only 
at end-of-information. 

Direct Access Input/Output 

Direct access input/output statements process byte addressable files with F type records. 
F is the only record type permitted for direct access input/output. 

The file positioning statements (BACKSPACE, REWIND, and ENDFILE) cannot be used 
with direct access files. 

Compile-Time Input/Output 

The FORTRAN compiler reads a source input file and produces up to three output 
files: a binary object file, an output listing file, and an error listing file. The compiler 
expects the input source file to have a certain structure, and it produces output files 
which have specific structures. 

Table E-2 describes the attributes of the compiler input and output files. 

Table E-2. File Structure 

File Attribute Compiler 
Source Output Binary 
Input File Listing File Error File Object File 

FILE_ORGANIZATION SQ SQ SQ SQ 

FILE_STRUCTURE DATA1 DATA1 DATA1 DATA 

FILE_CONTENTS LEGIBLE1 LIST1 LIST1 OBJECT 

RECORD_ TYPE yl yl yl v 
1 Can be overridden by SETFA command prior to file creation 

SQ = Sequential 

V = Variable-length 

Revision H 1/0 Implementation E-7 





Language §ummarcy 

The following symbols are used in the descriptions of the FORTRAN statements: 

v variable name, array name," or array element 

sl statement label 

iv integer variable 

name symbolic name 

u input/output unit specifier, which can be an integer expression with a 
value of 0 through 999, or a boolean expression whose value is a unit 
name in L format, or the name of a common block enclosed in slashes 

fs format specification 

iolist input/output list 

ios input/output status indicator 

recn record number 

Other symbols are defined individually in the statement descriptions. Boldface type 
indicates required parameters or arguments; italicized type indicates optional 
parameters or arguments. 

Assignment 

v = arithmetic expression 

boolean v = boolean expression 

character v = character expression 

logical v = logical or relational expression 

Multiple Assignment (CDC Extension) 

v = ... v = expression 

JF 

Revision H Language Summary F-1 



I 

Type Declaration 

Type Declaration 

INTEGER *length v*length, ... ,v*length 

REAL*length v*length, ... ,v*length 

COMPLEX *length v*length, ... ,v*length 

DOUBLE PRECISION v, ... ,v 

:lUlQPEAJitvJM#U(C.JJG?Et#ei#W.#!J 

LOGICAL v, ... ,v 

CHARACTER *length,v*length, ... ,v*length 

IMPLICIT type(ac, ... ,ac), ... ,type(ac, ... ,ac) 

where ac is a single letter, or range of letters represented by the first and last letter 
separated by a hyphen, indicating which variables are implicitly typed. 

External Declaration 

EXTERNAL name, ... ,name 

Intrinsic Declaration 

I INTRINSIC name* length, ... ,name* length 

F-2 FORTRAN Version 1 Language Definition Usage Revision H 



Storage Allocation 

type array(d), ... ,array(d) DIMENSION array(d), ... ,array(d) 

where type is INTEGER*length, CHARACTER, BOOLEAN, REAL*length, 
COMPLEX*length, DOUBLE PRECISION, or LOGICAL. 

Storage Allocation 

where d is one through seven array bound expressions separated by commas, as 
described in chapter 2. 

COMMON /name/n.list, ... ,lname/nlist 

where nlist is a list of variables or arrays, separated by commas, to be included in the 
common block. 

DATA nlist/clist/ , ... ,nlist/clist/ 

where nlist is a list of names to be initially defined. Each name in the list can take 
the form: · 

variable 

array 

element 

substring 

implied DO list 

where clist is a list of constants or symbolic constants specifying the initial values. 
Forms for list items are described in chapter 2. · 

EQUIVALENCE (nlist), ... ,(nlist) 

where nlist is a list of variable names, array names, array element names, or 
character substring names. The names are separated by commas. 

PARAMETER (name=exp, ... ,name=exp) 

where exp is a constant or constant expression. 

SAVE name, ... ,name 

Revision H Language Summary F-3 



Flow Control 

Flow Control 

GO TO sl 

GO TO (sl, ... ,sl)expression 

GO TO iv,( sl, ... ,sl) 

ASSIGN sl TO iv 

IF (arithmetic or boolean expression) sl 1'sl2,sl3 

IF (logical expression) statement 

IF (logical expression) THEN 

ELSE IF (logical expression) THEN 

ELSE 

END IF 

DO sl, v = ei ,e2 ,e3 

where ei,e2,e3 are indexing parameters; they can be integer, real, double precision, or 
boolean constants, symbolic constants, variables, or expressions. 

PAUSE n 

i .=i·:.:i :::::is a string of 1 through 5 digits, or a character constant of 1 through 70 
characters 

END 

Main Program 

PROGRAM name (upar, ... ,upar) 

where upar is a unit declaration in one of the following forms: 

unitname 

unitname =buffer-length 

unitname =/record-length 

unitname =buffer-length/record-length 

alternate-name= unitname 

(buffer-length is disregarded under NOSNE) 

F-4 FORTRAN Version 1 Language Definition Usage Revision H 



Subprogram 

SUBROUTINE name (argument, ... ,argument) 

type FUNCTION name (argument, ... ,argument) 

Subprogram 

where type is BOOLEAN, CHARACTER, INTEGER, REAL, COMPLEX, DOUBLE 
PRECISION, or LOGICAL. 

BLOCK DATA name 

Statement Function 

name (argu,ment, ... ,argument) =expression 

Subroutine Call 

CALL name (argument, ... ,argument) 

Function Reference 

name (argument, ... ,argument) 

Entry Point 

ENTRY name (argument, ... ,argument) 

Return 

RETURN expression 

Formatted Input/Output 

READ (UNIT=u, FMT=fs, IOSTAT=ios, ERR=sl, END=sl) iolist 

READ fs ,iolist 

WRITE (UNIT=u, FMT=fs, IOSTAT=ios, ERR=sl) iolist 

PRINT fs, iolist 

PUNCH fs, iolist (CDC Extension) 

Unformatted Input/Output 

READ (UNIT=u, IOSTAT=ios, ERR=sl, END=sl) iolist 

WRITE (UNIT=u, IOSTAT=ios, ERR=sl) iolist 

Revision H Language Summary F-5 



List Directed InpuUOutput 

List Directed Input/Output 

READ (UNIT= u, FMT=*, IOSTAT=ios, ERR=sl, END=s[) iolist 

READ *, iolist 

WRITE (UNIT= u, FMT=*, IOSTAT=ios, ERR =sl) iolist 

PRINT *, iolist 

PUNCH *, iolist (CDC Extension) 

Direct Access Input/Output 

READ (UNIT= u, FMT=fs, IOSTAT=ios, ERR=sl, REC=recn) iolist 

WRITE (UNIT= u, FMT=fs, IOSTAT=ios, ERR=sl,REC=recn) iolist 

Namelist Input/Output (CDC Extension) 

NAMELIST /name/v, ... ,v ... /namelv, ... ,v 

READ (UNIT= u, FMT= name , IOSTAT=ios, ERR=sl, END=s[) 

READ name 

WRITE (UNIT= u, FMT=name, IOSTAT=ios, ERR=sl) 

PRINT name 

PUNCH name 

where name is a namelist group name. 

Buffer Input/Output (CDC Extension) 

BUFFER IN (u,p) (a,b) 

BUFFER OUT (u,p) (a,b) 

where p is disregarded under NOSNE. 

where a is the first word of the data block to be transferred. 

where b is the last word of the data block to be transferred. 

Internal Data Transfer (CDC Extension) 

ENCODE (c,fs,v) iolist 

DECODE (c,fs, v) iolist 

where v is the starting location of the record to be transferred. 

where c specifies the number of characters to be transferred to or from each record. 

F-6 FORTRAN Version 1 Language Definition Usage Revision H 



Format Specification 

Format Specification 

sl FORMAT (flist) 

where flist is a list of items, separated by commas, having the following forms: 

red 
ned 
r(fiist) 

where ed is a repeatable edit descriptor. 

where ned is a nonrepeatable edit descriptor. 

where r is a nonzero unsigned integer constant repeat specification. 

Table F-1. Edit Descriptors 

Format Description 

srEw.d Single precision floating-point with exponent. 

srEw.dEe Single precision floating-point with specified exponent length. 

srFw.d Single precision floating-point without exponent. 

srDw.d Double precision floating-point with exponent. 

srGw.d Single precision floating-point with or without exponent. 

srGw.dEe Single precision floating-point with or without specified exponent length. 

rlw Decimal integer. 

rl w .m Decimal integer with specified minimum number of digits. 

rLw Logical. 

rA Character with variable length. 

rAw Character with specified length. 

rRw Rightmost characters with binary zero fill. (CDC Extension) 

rOw Octal. (CDC Extension) 

rOw.m Octal with minimum digits and leading zeros. (CDC Extension) 

rZw Hexadecimal. (CDC Extension) 

rZw.m Hexadecimal with minimum digits and leading zeros. (CDC Extension) 

kP Changes the position of a decimal point of an input or output real number. 

BN Blanks ignored on numeric input. 

(Continued) 

Revision H Language Summary F-7 



Format Specification 

Table F-1. Edit Descriptors (Continued) 

Format 

BZ 

SP 

SS 

s 
nX 

Tn 

TRn 

TLn 

nH 

" " 

' ' 

I 

Description 

Blanks treated as zeros on numeric input. 

+ characters produced on output. 

+ characters suppressed on output. 

+ characters suppressed on output. 

Skip n spaces. 

Tabulate to nth column. 

Tabulate forward. 

Tabulate backward. 

Boolean or character string output. 

Boolean or character string output. (CDC Extension) 

Character string output. 

Format control. 

End of FORTRAN record. 

s optional scale factor of the form kP. 

r optional repetition factor. 

w integer constant indicating field width. 

d integer constant indicating digits to right of decimal point. 

e integer constant indicating digits in exponent field. 

m integer constant indicating minimum number of digits in field. 

n positive nonzero decimal digit. 

k integer constant called a scale factor. 

F-8 FORTRAN Version 1 Language Definition Usage Revision H 



File Positioning 

BACKSPACE (UNIT=u, IOSTAT=ios, ERR=s[) 

BACKSPACE u 

REWIND (UNIT=u, IOSTAT=ios, ERR=s[) 

REWIND u 

ENDFILE (UNIT=u, IOSTAT=ios, ERR=s[) 

ENDFILE u 

File Status 

File Positioning 

OPEN(UNIT=u , IOSTAT=ios, ERR=sl, FILE=fin, STATUS=sta, ACCESS=acc, 
FORM=fm, RECL~rl, BLANK=blnk, BUFL=b[) 

INQUIRE(unit-or-file, IOSTAT=ios, ERR =sl, EXIST=ex, OPENED=od, 
NUMBER=num, NAMED=nmd,NAME=fn, ACCESS=acc, SEQUENTIAL=seq, 
DIRECT=dir, FORM=fm, FORMATTED=FMT, UNFORMATTED=unf, RECL=fcl, 
NEXTREC=nr, BLANK=blnk) 

where unit-or-file is one of the following: 

UNIT=u 

FILE= filename 

CLOSE (UNIT= u, IOSTAT=ios, ERR=sl, STATUS=sta, SIZE=n) 

Revision H Language Summary F-9 





CDC lExtensions to Standard FORTRAN G 

Following is a list of the FORTRAN features that constitute extensions and additions 
to ANSI FORTRAN. 

• Basic Concepts 

Symbolic names can be up to seven characters in length (ANSI allows only six). 

The " (quote) character has been added to the FORTRAN character set. 

Sequenced format for FORTRAN statements has been added. 

C$ (compiler control) directives have been added. 

A boolean data type has been added. 

• Constants 

Boolean constants have been added (the boolean constants are boolean string, 
octal, and hexadecimal). 

Extended Hollerith constants have been added. 

Symbolic constants can appear as the real and imaginary parts of a complex 
constant. 

Two- and four-byte integer constants have been added. 

Sixteen-byte real constants have been added. 

• Arrays and Substrings 

Intrinsic function references and boolean constants can appear in dimension 
bound expressions. 

Subscript or substring expressions can be real, double precision, complex, or 
boolean expressions, as well as integer. 

• Expressions 

Boolean expressions have been added. 

Boolean expressions can appear in arithmetic expressions. 

Double precision and complex operands can be combined using the +, -, *, and I 
operators. 

A double precision operand can be raised to a complex power. 

Boolean entities can appear in relational expressions. 

An .XOR. operator has been added. 

Constant expressions can include intrinsic function references with constant 
expressions as arguments. 

Revision H CDC Extensions to Standard FORTRAN G-1 

l 



I 
CDC Extensions to Standard FORTRAN 

• 

• 

Integer expressions can contain two- and four-byte integer values. 

Real expressions can contain 16-byte real values. 

Specification Statements 

- A BOOLEAN type statement has been added. 

Entities in named (labeled) common can be initialized by a DATA statement in 
any program unit. 

- The IMPLICIT statement can declare a boolean type. 

- The IMPLICIT NONE statement has been added. 

- The PARAMETER r;~g_tement can declare boolean symbolic constants. 

- A variable can be specified as integer following its appearance in a dimension 
bound expression. 

- A symbolic constant can appear as the real or imaginary part of a complex 
constant. 

The INTEGER*n (where n=2, 4, or 8) statement has been added. 

The REAL*n (where n=8 or 16) statement has been added. 

DATA Statement 

- A replicated value list can appear in a DATA statement. 

Boolean entities can appear in a DATA statement. 

• Assignment Statement 

- Assignment statements can be type boolean. 

- A multiple assignment statement has been added. 

• Flow Control Statements 

Real, double precision, complex, or boolean expressions are valid in a computed 
GO TO statement. 

- A boolean expression can be used in an arithmetic IF statement. 

- A boolean expression can be used as an indexing parameter in a DO loop or 
implied DO list. 

- A one-trip DO loop option has been added for increased compilation speed. 

- An extended range capability for DO loops has been added. 

G-2 FORTRAN Version 1 Language Definition Usage Revision H 



CDC Extensions to Standard FORTRAN 

• Input/Output 

- The following input/output statements have been added: 

NAME LIST 

BUFFER IN and BUFFER OUT 

ENCODE and DECODE 

PUNCH 

OPENMS, READMS, WRITMS, CLOSMS, STINDX 

- A record length specifier can appear in an OPEN statement for a file accessed 
sequentially. 

- More than one unit can be associated with a single external file. 

- Random access files have been added. 

- Segment access files have been added. 

- Extended internal files have been added. 

- An external unit identifier can be type boolean. 

- A buffer length specifier can appear in an OPEN statement (this specifier is 
disregarded in CDC FORTRAN). 

- A comma can optionally follow the output list of a list directed output 
statement. 

- An implicit file/unit association occurs in the absence of PROGRAM statement 
or OPEN statement declaration. 

- The following edit descriptors have been added: 

Quoted string (" . . . ") 

Rw (character) 

Ow and Ow .m (octal) 

Zw and Zw.m (hexadecimal) 

- NAMELIST formatting has been added. 

- A and Aw descriptors can be used for noncharacter data. 

- A format specification can be contained in a noncharacter array. 

• A FORM='BUFFERED' option has been added to the OPEN and INQUIRE 
statements. 

Revision H CDC Extensions to Standard FORTRAN G-3 



CDC Extensions to Standard FORTRAN 

• PROGRAM Statement 

Symbolic unit specifiers can be declared on the PROGRAM statement. 

- Buffer length (disregarded by FORTRAN) and record length can be declared on 
the PROGRAM statement. 

In a statement function reference, the actual argument is converted to the type 
of the dummy argument. 

- A substring reference can appear in the expression of a statement function 
statement. 

· • External Procedures 

Boolean arguments can be associated with integer or real arguments. 

- An external procedure name can be the same as a common block name. 

- The name of a block data subprogram can be the same as a common block 
name. 

- A RETURN statement can appear in a main program (it has the same effect as 
an END statement). 

- The expression in the alternate return form of the RETURN statement can be 
any arithmetic or boolean expression. (ANSI allows only integer expressions.) 

- Extended Hollerith constants can be passed as actual arguments. 

• Intrinsic Functions 

- The following intrinsic functions have been added: 

BOOL 

boolean operations (AND, OR, XOR, NEQV, EQV, COMPL) 

mathematical (ERF, ERFC, ATANH, SIND, COSD, TAND, COTAN) 

miscellaneous (SHIFT, MASK, RANF, EXTB, INSB, SUMlS) 

- The type conversion functions INT, REAL, DBLE, and CMPLX can have boolean 
arguments. 

• Association of Entities 

- Partial association can exist between a boolean entity and a double precision 
entity. 

- Association can exist between a boolean entity and an integer or real entity. 

G-4 FORTRAN Version 1 Language Definition Usage Revision H 



CDC Extensions to Standard FORTRAN 

• FORTRAN-Callable Subprograms 

- The following subprograms can be called from a FORTRAN program: 

Revision H 

Keyed-File Interface subprograms 

Sortnv.Ierge subprograms 

System Command Language subprograms 

Utility subprograms 

Input/Output status checking subprograms 

Miscellaneous input/output subprograms 

Debugging subprograms 

Collating sequence control subprograms 

CDC Extensions to Standard FORTRAN G-5 





§electing Collation. Tables for Keyed Files JHI 

One of the key types supported by the keyed-file interface (described in chapter 6) is 
collated keys. The order in which collated keys are sorted is determined by a collation 
table. If you specify this key type, you must supply an explicit collation table; there is 
no system-supplied default collation table. A fatal error occurs if the KEY_ TYPE 
attribute for a file is collated and the file is opened without a collation table supplied. 

Do not confuse the collation table required for collated keys with the collation table 
used for comparing characters as described under Collating Sequence Control in chapter 
9. The system supplies a default collation table for character comparison; it does not 
supply a default collation table for indexed sequential files. 

You can specify a collation table by name using the $COLLATE TABLE NAME (CTN) 
keyword or by address with the DCT keyword. You specify the CTN or DCT keyword 
on a CALL STOREF statement before the file is opened for its creation run. NOSNE 
supplies eleven predefined collation tables; you can specify a predefined collation table 
or a collation table that you have created. 

Predefined Collation Tables 
You specify a predefined collation table by specifying its name on a CALL STOREF 
statement with either the CTN or DCT keyword. For example, the following statement 
specifies OSV$ASCil6_FOLDED as the collation table name in ISFIT. 

CALL STOREF(ISFIT,'CTN','OSV$ASCil6_FOLDED') 

A collation table name should be entered using only uppercase letters. 

The collating sequences of the predefined collation tables are listed in appendix J. 

Revision H Selecting Collation Tables for Keyed Files H-1 



Creating Your Own Collation Table 

Creating Your Own Collation Table 

The easiest way to create your own collation table within a FORTRAN program is to 
use the subprograms described under Collating Sequence Control in chapter 9. These 
subprograms create a collation table from a string of characters. 

NOTE 

For these subprograms to be effective, you must include a $C COLLATE(USER) 
directive in your program or specify DEFAULT_ COLLATION= USER on the FORTRAN 
command that compiles the program. 

To create a collation table, you assign a character to each position within a 
256-character string. The characte1·s assigned must comprise the ASCII character set 
listed in appendix B. N onprintable characters are indirectly assigned to their position 
in the string using the CHAR function. (Before using the CHAR function, specify 
ASCII on a COLSEQ call as shown in the collation table example.) 

The order in which you assign characters to the string is the order in which you want 
the characters collated. For example, to collate in reverse order, you would assign the 
characters in reverse order from the order in which the characters are listed in 
appendix J. After assigning 256 characters to the string, you call the CSOWN 
subprogram described in section 9 to define the string as the user-specified collating 
sequence. 

The user-specified collating sequence within a FORTRAN program is referenced by the 
name FTV$USER_ COLLATE_ TABLE. Therefore, to assign the collating sequence you 
defined to the CTN file attribute, you specify FTV$USER_COLLATE_ TABLE as the 
collation table name on the STOREF call. For example, the following statement 
specifies the CTN value for ISFIT. 

CALL STOREF (ISFIT,'CTN','FTV$USER_COLLATE_TABLE') 

NOTE 

The name FTV$USER_COLLATE_ TABLE must be in uppercase letters because it 
must match a corresponding internal entry point in the FORTRAN run-time routine 
that handles collation control. 

The CALL STOREF statement must appear before the file is first opened for its 
creation run. When the CALL OPENM statement opens the file, the value of the CTN 
attribute becomes permanent. Subsequent jobs that read or update the file cannot 
change the collation table stored with the file. A CALL STOREF statement that 
attempts to change the collation table is diagnosed as an error. 

H-2 FORTRAN Version 1 Language Definition Usage Revision H 



Collation Table Example 

Collation Table Example 

The program in figure H-1 creates and uses a collation table. Note the placement and 
use of the C$ COLLATE, CALL STOREF, and CALL TABLE statements. 

Output from the program is shown in figure H-2. The first part of the output prints 
each record and key as records are written to the file. After the records are written to 
the file, the file is closed, opened, and read sequentially. The second part of the output 
shows the result of the sequential read. The records are in order according to the 
collating sequence defined in the collation table. 

Program CTABLE 

c ***************************************************** 

C * This program creates an indexed sequential file * 
c * (IS_FILE) from a sequential file (DATA_FILE). * 
C * Also, this program shows how to set up and use a * 
C * collation table through a FORTRAN program. * 
c ***************************************************** 

C Issue directive telling the compiler that the collation table 
C is user specified. 
C$ Collate (user) 
c Declare variables. 

Integer isfit, reclg, stat 
Comnon iswsa 
Character * 65 iswsa 

C Call subroutine to create the collation table. 
Call Table 

C Set file attributes before opening IS_FILE. 

+ 
+ 
+ 
+ 

Call Fi leis (isfit,'lfn','IS_FILE'. 
'mrl',65,'rt' ,'f', 
'kl',20,'kt','s','rkp' ,O,'emk' ,'yes', 
'ip' ,10,'dp' ,15,'erc',30, 
'dfc',3) 

C Store the name of the collate table in CTN attribute. 
Call Storef (isfit,'ctn' ,'FTV$USER_COLLATE_TABLE') 

c Open DATA_FILE and IS_FILE. Check for error on IS_FILE open. 
Open (2,file='DATA_FILE') 
Call Openm (isfit,'NEW') 
stat = !fetch (isfit,'es') 
If (stat.ne.O) go to 90 

C Read each record from DATA_FILE into the working storage area (iswsa), 
C and then put record into IS_FILE. After put, check for error. If no 
C error occured, print the record. 

Figure H-1. Creation Program 
(Continued) 

Revision H Selecting Collation Tables for Keyed Files H-3 



Collation Table Example 

(Continued) 

10 Continue 
Read (2,'(A65)',End=30) iswsa 
Call Put (isfit,iswsa) 
Call !fetch (isfit,'ES' ,stat) 
If (stat.ne.O) go to 90 
Print '(1X,A65)', iswsa 
Go to 10 

C When all records in DATA_FILE have been read, close IS_FILE and 
C check whether error occurred during CLOSE. 

30 Continue 
Call Closem (isfit) 
stat = !fetch (isfit,'ES') 
If (stat.eq.O) Go to 40 
Print 900, stat 
Stop 

c Now read IS_FILE. 
40 Continue 

Call Openm (isfit,'1nput') 
Call Storef (isfit,'WSA' ,iswsa) 
Call Storef (isfit,'WSL',80) 

50 Continue 
Call Getn (isfit) 
stat = !fetch (isfit,'ES') 
If (stat.ne.O) Go to 90 
filpos =!fetch (isf1t,'FP') 
If (filpos.eq.64) Go to 70 
Print '(''Record= '',A65)',iswsa 
Go to so 

C Close IS_FILE and stop. 
70 Continue 

Call Closem (isfit) 
stat= !fetch (1sfit,'ES') 
If (stat.ne.O) Print '(1X,I6)', stat 
Stop 

C If error occurs during OPEN or PUT, control transfers to this point 
C in program. The error number is printed and the file is closed. 

90 Continue 
Print 900, stat 
Call Closem (isf1t) 
Stop 

900 Format (1X,I6) 
End 

C The following section contains subroutine TABLE. 
Subroutine Table 

Figure H-1. Creation Program 

H-4 FORTRAN Version 1 Language Definition Usage 

(Continued) 

Revision H 



Collation Table Example 

(Continued) 

c 
c 
c 
c 
C$ 

*********************************************************************** 
*This subroutine sets up the collation table. 
*a collation table if the key type is collated. 

The user MUST specify * 
* 

*********************************************************************** 
collate (user) 
Character user*256 

C The following section puts all ascii characters into a string structure. 
C Symbols and numbers on the far right show the ascii graphics (or their 
C abbreviations) and corresponding decimal representations. Nonprintable 
C characters have to be indirectly assigned into the string by referencing 
C the CHAR function (which MUST be operating in ASCII mode by COLSEQ). 

Call colseq ('ascii') 
User(1:1) '$' $ 36 
User(2:2) 'R' R 65 
User(3:3) char(9) HT 9 
User(4:4) '<' < 60 
User(5:5) 'F' F 82 
User(6:6) 'd' d 100 
User(7:7) char(127) RO 127 
User(8:8) '+' + 43 
User(9:9) '", " 37 
User( 10: 10) 'X' x 129 
User(11:11) char(13) CR 13 
User ( 12: 12) '3' 3 51 
User ( 13: 13) '#' # 35 
User( 14: 14) char(26) CUP 26 
User( 15: 15) 'V' v 86 
User( 16: 16) 'm' m 109 
User(17: 17) 'O' 0 48 
User(18:18) char(18) DC2 18 
User ( 19 : 19) , . , 58 
User(20:20) ,., 94 
User ( 21 : 21) 'r' r 114 
User(22:22) char(21) SKIP 21 
User(23:23) '*' * 42 
User(24:24) 'K' K 75 
User(25:25) '{' { 123 
User(26:26) 'c' c 99 
User(27:27) '6' 6 54 
User(28:28) 'W' w 119 
User(29:29) 'P' p 80 
User(30:30) char(16) OLE 16 
User(31 :31) 95 
User(32:32) 'A' A 70 
User(33:33) char(3) ETX 3 
User(34:34) 'h' h 104 
User(35:35) 'H' H 72 

Figure H-1. Creation Program 
(Continued) 

Revision H Selecting Collation Tables for Keyed Files H-5 



Collation Table Example 

(Continued) 

User(36:36) 'D' D 68 
User(37:37) char(2) STX 2 
User(38:38) 'M' M 77 
User(39:39) char(29) GS 29 
User(40:40) I I 44 

' 
User ( 41 : 41) 'a' a 97 
User(42:42) 126 
User(43:43) 'k' k 107 
User(44:44) I 1' 49 
User(45:45) I • I 59 

' 
User(46:46) char(23) ETB 23 
User(47:47) 92 
User(48:48) 'u' u 117 
User(49:49) '5' 5 53 
User(50:50) 'B' B 66 
User(51 :51) 'f' f 102 
User(52:52) char(S) ENQ 5 
User(53:53) I (I ( 40 
User(54:54) '7' 7 55 
User(55:55) '&' & 38 
User(56:56) 'T' T 84 
User(57:57) 'b' b 98 
User(58:58) 'Z' z 90 
User(59:59) 'o' 0 111 
User(60:60) 32 
User ( 61 : 61 ) char(27) ESC 27 
User(62:62) char(7) BEL 7 
User(63:63) I ] I ] 93 
User(64:64) 'X' x 88 
User(65:65) '2' 2 50 
User(66:66) char(31) us 31 
User(67:67) 'N' N 78 
User(68:68) 96 
User(69:69) 'Q' Q 113 
User(70:70) char( 11) VT 11 
User ( 71 : 71 ) I) I ) 41 
User(72:72) 'J' J 74 
User(73:73) '}' } 125 
User(74:74) char(19) DC3 19 
User(75:75) 'z' z 131 
User(76:76) 's' s 115 
User(77:77) 'Q' Q 81 
User(78:78) '?' ? 63 
User(79:79) '9' 9 57 
User(80:80) char(12) FF 12 
User ( 81 : 81 ) 'e' e 101 
User(82:82) 'G' G 71 
User(83:83) '=' 61 

Figure H-1. Creation Program 
(Continued) 

H-6 FORTRAN Version 1 Language Definition Usage Revision H 



Collation Table Example 

(Continued) 

User(84:84) char(6) ACK 6 
User(85:85) 'U' u 85 
User(86:86) 39 
User(87:87) '@' @ 64 
User(88:88) 'E' E 69 
User(89:89) '4' 4 52 
User(90:90) 34 
User(91 :91) char(30) RS 30 
User(92:92) char(4) EQT 4 
User(93:93) 'g' g 103 
User(94:94) '/' I 47 
User(95:95) char(O) NUL 0 
User(96:96) ,_, 45 
User(97:97) 'I' I 73 
User(98:98) , [, [ 91 
User(99:99) , I , I 124 
User ( 100: 100) char(28) FS 28 
User ( 101 : 101 ) = 'j' j 106 
User ( 102: 102) = 'V' v 118 
User( 103: 103) = char(1) SOH 1 
User( 104: 104) = , , 46 
User( 105: 105) = 'Y' y 130 
User( 106: 106) char(8) BS 8 
User(107:107) '>' > 62 
User( 108: 108) 'W' w 67 
User ( 109: 109) , i , 105 
User(110:110) 'S' s 83 
User ( 111 : 111) , ! , 33 
User(112:112) char(24) CLR 24 
User( 113: 113) , 1, 108 
User ( 114 : 114) 'L' L 76 
User( 115: 115) 't' t 116 
User(116:116) char(22) LCLR 22 
User( 117: 117) 'n' n 110 
User(118:118) 'O' 0 79 
User(119:119) char( 17) DC1 17 
User ( 120: 120) = char(25) RSET 25 
User(121: 121) = 'C' c 87 
User( 122: 122) = char(15) SI 15 
User ( 123: 123) = 'Y' y 89 
User( 124: 124) = char(10) LF 10 
User( 125: 125) = 'p' p 112 
User(126: 126) = char(14) so 14 
User( 127: 127) char(20) DC4 20 
User( 128: 128) = '8' 8 56 

Figure H-1. Creation Program 
(Continued) 

Revision H Selecting Collation Tables for Keyed Files H-7 



Collation Table Example 

(Continued) 

C Complete the table using a loop that assigns the leftover characters 
C in reverse order filling the remaining 128 positions. 

Do 5 I = 129,256 
5 User (I:I) =char (256-I+128) 

Call Csown (user) 
Return 
End 

Figure H-1. 

19709000 

Creation Program 

919591 Algiers Africa Algeria 
Australia 
Austria 
Belguim 
Canada 
China 
Denmark 
England 
France 
India 
Ireland 
Italy 

14796000 2967895 Canberra Australia 

Ivory Coast 
Jaoan 
Mexico 
Spain 
Sweden 
Switzerland 
Tanzania 
Turkey 
USSR 
United States 
Venezuela 
West Germany 

File IS_FILE 
Fi 1 e IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 

Record France 
Record = Venezuela 
Record Australia 
Record Austria 
Record Algeria 
Record Denmark 
Record Mexico 
Record Belguim 

74760000 32374 Vienna 
9875000 11781 Brussels 

24336000 3851791 Ottawa 
1053788000 3705390 Beijing 

5157000 16629 Copenhagen 
55717000 94226 London 
53844000 211207 Paris 

700734000 1269340 New Delhi 
3349000 27136 Dublin 

57513000 116303 Rome 
8513000 124503 Abidjan 

11878300 143750 Tokyo 
70143000 761601 Mexico City 
38686000 194897 Madrid 
8335000 173731 Stockholm 

63000000 15941 Bern 
18744000 364898 Zanzibar 
47284000 301381 Ankara 

269302000 8649498 Moscow 
225195000 3615105 Washington 

15771000 352143 Caracas 
60948000 95976 Bonn 

0 DELETE_KEYs done since last open. 
0 GET_KEYs done since last open. 

Europe 
Europe 
NAmerica 
Asia 
Europe 
Europe 
Europe 
Asia 
Europe 
Europe 
Africa 
Asia 
SAmerica 
Europe 
Europe 
Europe 
Africa 
Asia 
Asia 
NAmerica 
SAmerica 
Europe 

0 GET_NEXT_KEYs done since last open. 
24 PUT_KEYs (and PUTREPs->put) since last open. 
0 PUTREPs done since last open. 
0 REPLACE_KEYs (and PUTREPs->replace) since last open. 

53844000 211207 Paris Europe 
15771000 
14796000 
74760000 
19709000 
5157000 

70143000 
9875000 

352143 Caracas 
2967895 Canberra 

32374 Vienna 
919591 Algiers 

16629 Copenhagen 
761601 Mexico City 

11781 Brussels 

SAmerica 
Australia 
Europe 
Africa 
Europe 
SAmerica 
Europe 

Figure H-2. Creation Program Output 
(Continued) 

H-8 FORTRAN Version 1 Language Definition Usage Revision H 



(Continued) 

Record 
Record 
Record 
Record 
Record 
Record 
Record 
Record 
Record 
Record 

Tanzania 
Turkey 
Japan 
USSR 
United States 
England 
Ireland 
Ivory Coast 
Italy 
India 

18744000 
47284000 
11878300 

269302000 
225195000 
55717000 

3349000 
8513000 

57513000 
700734000 

Collation Table Example 

364898 Zanzibar 
301381 Ankara 
143750 Tokyo 

8649498 Moscow 
3615105 Washington 

94226 London 
27136 Dublin 

124503 Abidjan 
116303 Rome 

1269340 New Delhi 
Record = West Germany 60948000 95976 Bonn 

Africa 
Asia 
Asia 
Asia 
NAmerica 
Europe 
Europe 
Africa 
Europe 
Asia 
Europe 
Europe 
Europe 
Europe 
Asia 
NAmerica 

Record 
Record 
Record 
Record 

Sweden 
Switzerland 
Spain 
China 

8335000 
63000000 
38686000 

1053788000 
24336000 

173731 Stockholm 
15941 Bern 

194897 Madrid 
3705390 Beijing 
3851791 Ottawa Record Canada 

File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 
File IS_FILE 

AMP$GET_NEXT_KEY has reached a file boundary : EOI. 

Revision H 

O DELETE_KEYs done since last open. 
O GET_KEYs done since last open. 
24 GET_NEXT_KEYs done since last open. 
0 PUT_KEYs (and PUTREPs->put) since last open. 
0 PUTREPs done since last open. 
O REPLACE_KEYs (and PUTREPs->replace) since last open. 

Figure H-2. Creation Program Output 

Selecting Collation Tables for Keyed Files H-9 



Creating a Collation Weight Table 

Creating a Collation Weight Table 

It is also possible to create a coliation table to be specified by address using the DCT 
keyword. The collation table must be in the form of a collation weight table. (The 
CSOWN subprogram generates a collation weight table from a character string.) 

A collation weight table is 256 contiguous bytes (32 words) with each byte containing 
an integer value. The 256 bytes within the table correspond to the 256 character codes 
in the ASCII character set. The collation weight, or ordinal, for each character is the 
value stored in the byte corresponding to the character within the table. 

Figure H-3 illustrates the collation weight table for the ASCII collation sequence with 
the weights in hexadecimal. Weights are assigned in ascending order just as the 
characters are ordered in the set. The character codes from 80 through FF hexadecimal 
do not have graphic characters associated with them. However, each character code is 
assigned a collating weight within the table. 

As illustrated, the weights for the uppercase letters are in bytes 41 through 5A 
hexadecimal of the string and the weights for the lowercase letters are in bytes 61 
through 7A. 

Suppose you want the lowercase letters to be collated the same as the uppercase letters 
(case insensitive). You would then assign the collating weight of each uppercase letter 
to the corresponding lowercase letter. The following is a listing of words 12 through 15 
of the collation weight table showing the changed values for the .lowercase letters. 

- _A_ -1L __£_ _g_ __g_ _f _ _g_ 
60 41 42 43 44 45 46 47 

_n_ _i _ _j_ _L _1 _ _ID_ _n_ _Q_ 

48 49 4A 46 4C 40 4E 4F 

_Q_ _g_ _r _ __§_ _t _ _g_ ...JL ~ 
50 51 52 53 54 55 56 57 

___!__ i_ ___£__ _{ _ _L _}_ .:::_ DEL 
58 59 SA 7B 7C 70 7E 7F 

To create a collation table, you declare a 32-word integer array and then assign a 
hexadecimal constant to each word in the array. For example, the following statement 
declares an array named TABLE with bounds 0 and 31. 

INTEGER TABLE (0:31) 

You then assign a hexadecimal constant to each of the 32 words in the array. For 
example, when creating a case insensitive collation table, you would assign the 
following hexadecimal constants to words 12 through 15 of the array. 

TABLE(12) Z"6041424344454647" 

TABLE(13) Z"48494A4B4C4D4E4F" 

TABLE(14) Z"5051525354555657" 

TABLE(15) = Z"58595A7B7C7D7E7F" 

H-10 FORTRAN Version 1 Language Definition Usage Revision H 



Creating a Collation Weight Table 

Word 
NUL SOH STX ETX EQT ENQ ACK BEL 

0 0 2 3 4 s 6 7 

~ _!:IT _hf _j[[ _ff _Q! ~ _fil 
8 9 A B C D E F 

OLE DC1 DC2 DC3 DC4 NAK SYN ETB 
2 10 11 12 13 14 1S 16 17 

CAN _£M SUB ESC ~ ~ ~ ___!!§ 
3 18 19 1A 1B 1C 10 1E 1F 

~_l ___ _L_L~~-
4 20 21 22 23 24 2S 26 27 

_( __ ) __ * _ __!_ _i_ -=- -·- _L 
5 28 29 2A 2B 2C 20 2E 2F 

_Q_ _1 _ _1._ ~ _1_ __§_ __§__ _l_ 
6 30 31 32 33 34 3S 36 37 

_JL _JL _: _ _i_ ~ ---=-- 2._ _]_ 

7 38 39 3A 3B 3C 30 3E 3F 

~ _A_ __!!__ ~ _Q_ _E __ F _ _g_ 
8 40 41 42 43 44 45 46 47 

_!!_ _I __ J _ _!S_ _!_ _lL _l!_ _Q__ 

9 48 49 4A 4B 4C 40 4E 4F 

_!:_ _Q_ _!L ~ __.!_ _!!_ _y_ _!IL 

10 50 S1 S2 S3 S4 SS S6 S7 

~ _:!_ _1_ _[ _ _l_ _] __ -_ --= 

11 S8 S9 SA SB SC SD SE SF 

_' _ _L __Q_ __£_ _g_ _JL _f _ __g_ 
12 60 61 62 63 64 6S 66 67 

_ll_ _1 _ _j_ ~ _1 _ _!!l_ _!!__ _Q_ 

13 68 69 6A 6B 6C 60 6E 6F 

_Q_ __g_ _r_ _§___ _t_ __!!__ ....)!__ _JL 

14 70 71 72 73 74 7S 76 77 

___!_ _:t_ _L _{ __ I __ } _ _:::_. DEL 
1S 78 79 7A 7B 7C 70 7E 7F 

Figure H-3. Collation Weight Table 
(Continued) 

Revision H Selecting Collation Tables for Keyed Files H-11 



Creating a Collation Weight Table 

(Continued) 

Word 

16 80 81 82 83 84 8S 86 87 

17 BB B9 8A BB BC BO BE BF 

1B 90 91 92 93 94 9S 96 97 

19 98 99 9A 9B 9C 90 9E 9F 

20 AO A1 A2 A3 A4 AS A6 A7 

21 AB A9 AA AB AC AD AE AF 

22 BO B1 B2 B3 B4 BS B6 B7 

23 BB B9 BA BB BC BO BE BF 

24 CO C1 C2 C3 C4 CS C6 C7 

25 ca C9 CA CB cc CD CE CF 

26 DO 01 D2 D3 D4 DS 06 D7 

27 DB D9 DA DB DC DD DE OF 

2B EO E1 E2 E3 E4 ES E6 E7 

29 EB E9 EA EB EC ED EE EF 

30 FO F1 F2 F3 F4 FS F6 F7 

31 F8 F9 FA FB FC FD FE FF 

Figure H-3. Collation Weight Table 

H-12 FORTRAN Version 1 Language Definition Usage Revision H 



The Programming Environment and the 
Professional Programming Environment ][ 

The Programming and Professional Programming Environment both offer a full screen 
access to NOSNE products. 

Programming Environment 

The Programming Environment is a full screen utility that provides functions to 
facilitate programming in FORTRAN on NOSNE. The Programming Environment for 
NOSNE Summary/Tutorial (publication number 60486819) provides more details about 
the Programming Env\ronment. 

Entering the Environment 

The Programming Environment can be entered using the command 

ENTER_PROGRAMMING _ENVIRONMENT or 
ENTPE 

DEFAULT_PROCESSOR = keyword, 
ENVIRONMENT_CATALOG = catalog path 

ENVIRONMENT_CATALOG must be the catalog path that the Environment is to use 
to store its files. This parameter defaults to $USER.PROGRAMMING_ 
ENVIRONMENT. 

DEFAULT_PROCESSOR may be FORTRAN, COBOL, PASCAL VECTOR_FORTRAN or 
C. VECTOR_FORTRAN selects the FORTRAN Version 2 programming language. This 
value is displayed in the programming language field of the Environment screens, and 
is used to specify the processor for each program created. FORTRAN is the default 
value. 

Do not modify or delete any files in the Programming Environment catalog. If the 
Environment files are altered, Control Data cannot be responsible for the proper 
functioning of the Environment. 

Providing HELP Information 

Depending on where you are in the Environment, a HELP request can: 

• Generate a short message 

• Take you to a menu of HELP options 

• Provide explanations of the current screen 

• Take you to the programming language usage manual 

• Provide an explanation of the functions currently available 

Revision H The Programming Environment and the Professional Programming Environment 1-1 

I 



Programming Environment 

Creating a Program 

You can use the Create function to: 

• Give the Environment the name of a new program; then code that program while in 
the Environment 

• Specify an existing file, whose contents are to become a program, to be used in the 
Environment 

Modifying a Program 

You can use the Modify function to: 

• Enter the Full Screen Editor of NOSNE and edit a program 

• Call the Usage Manual of the current programming language 

o Format the current program according to the formatting convention of the current 
programming language 

Running a Program 

You can use the Run function to: 

• Compile a program 

• Compile a program that has changed or has compilation parameters that have 
changed 

• Run a previously compiled program 

• Fix the detected compilation errors 

• Get a message about the status of the run 

• Alter run time parameters 

Debugging a Program 

You can use the Debugging function to: 

• Call up the Full Screen Interactive Debugger 

• Set and delete breaks for debugging 

• Run the program until the next interrupt 

• Display a program value 

• Change a program value 

• Execute the program one line at a time 

• Execute the program n lines at a time 

• Terminate program execution 

1-2 FORTRAN Version 1 Language Definition Usage Revision H 



Programming Environment 

Printing Components 

You can use the Printing function to print the following components: 

• Source programs 

• Compilation listings 

• Terminal output 

• Loadmap 

Viewing Components 

You can use the View function to view the following: 

• Source programs 

• Compilation listings 

• Terminal output 

• Performance graph 

• Loadmap 

Delete 

You can use the Delete function to: 

• Remove a component of a program to conserve file space 

• Delete a program 

Restore 

You can use the Restore function to: 

• Restore a deleted component within a Programming Environment session 

• Restore a deleted program within a Programming Environment session 

Exporting a Component 

You can copy a component from the environment into a user specified file. 

Generating a Program Performance Graph 

You can use this function to generate a graph of program performance showing: 

• User written routines 

• System routines 

• Number of calls 

• Amount of time spent in each procedure 

Revision H The Programming Environment and the Professional Programming Environment 1-3 



Professional Programming Environment 

Tailoring the Environment 

You can use this function to change the FORTRAN, COBOL, Pascal, VECTOR_ 
FORTRAN (for FORTRAN Version 2), or C program templates. 

Changing Runtime Parameters 

You can use this function to: 

• Display the current program parameters 

• Change the value of a program parameter 

• Return a parameter to its compiler default setting 

o View parameter lists stored in the parameter list library 

• Save a parameter list in the library of named parameter lists 

Import a Program 

You can bring an existing source program into the Environment with this function. 

Professional Programming Environment 

The Professional Programming Environment (PPE) is primarily for users working as 
part of a multi-person programming project that is developing a product fo~ use under 
the NOS/VE operating system. 

Entering PPE 

After preparing your terminal for full-screen use (see the Professional Programming 
Environment usage manual for information on this), you can start PPE by using the 
SCL command: 

ENTER_PPE or 
ENTP 

ENVIRONMENT_ CATALOG= catalog_path 
STATUS= status variable 

ENVIRONMENT_CATALOG or EC 

Path to the subcatalog for which PPE is executed. It is the lowest level of the PPE 
hierarchy presented in the session. 

PPE creates the subcatalog if it does not exist. If the subcatalog belongs to another 
user, the owner must grant you the following catalog permit: 

Access_Modes =(all, cycle, control) 

Application_ Information= 'Il' 

If you omit the ENVIRONMENT_ CATALOG parameter, the subcatalog used is 
$USER.PROFESSIONAL_ENVIRONMENT. 

STATUS 

Optional status variable in which the command returns its completion status. 

1-4 FORTRAN Version 1 Language Definition Usage Revision H 



Professional Programming Environment 

PPE Capabilities 

As a programming environment, PPE integrates the programming tasks, including: 

• Editing source text. 

• Compiling source text. 

• Debugging source text. 

• Executing object code. 

In addition, PPE can coordinate the activities of a multi-person programming project 
providing these capabilities: 

• Full-screen interface to SCU deck and modification creation. 

• Extraction and transmittal of SCU decks and modifications within a source library 
hierarchy. It enforces interlocks to ensure that only one copy of a deck can be 
changed. 

• Expansion and compilation of the product source, including copying decks from 
higher levels of the hierarchy when a deck is not present at the lower level. 

• Tracing of compilation errors to the decks containing the source. 

• Maintenance of an object library at each level of the hierarchy. Each object library 
contains the compiled code for the source decks at that level. 

• Partial builds of the product, expanding and compiling only those source decks that 
have changed. 

• Execution of the product version at the current level of the hierarchy, using object 
modules at higher levels as needed. 

PPE Limitations 

• All code for the product being developed must be written in one language. 

• The only programming languages supported are NOSNE FORTRAN Version 1 and 
NOSNE COBOL. 

• PPE does not support SCU features or groups, nor does it provide a method of 
changing other modification or deck header information. To assign features and 
decks to groups (or change the header information), you must use SCU directly. For 
more information, see the SCL Source Code Management manual. 

• PPE does not provide a method of using SCU selection criteria files. 

Revision H The Programming Environment and the Professional Programming Environment 1-5 





ASCJI][ Character Set and Collating 
Weight Tables 

Tables B-1 through B-12 give the ASCII character set, the hexadecimal character code 
for each ASCII character, and the weight tables for the following collating sequences: 

• ASCII: FORTRAN default collating sequence 

• OSV$ASCII6_FOLDED and OSV$ASCII6_STRICT: NOS FORTRAN 5 default 
collating sequence. 

• OSV$COBOL6_FOLDED and OSV$COBOL6_STRICT: NOS COBOL 5 default 
collating sequence. 

• OSV$DISPLAY63_FOLDED and OSV$DISPLAY63_STRICT: NOS 63-character 
display code collating sequence. 

• OSV$DISPLAY64_FOLDED and OSV$DISPLAY64_STRICT: NOS 64-character 
display code collating sequence. 

• OSV$EBCDIC: Full EBCDIC collating sequence. 

• OSV$EBCDIC6_FOLDED and OSV$EBCDIC6_STRICT: EBCDIC 6-bit subset 
collating sequence supported by NOS COBOL 5 and SORT 5. 

The collation table variants FOLDED and STRICT indicate different mapping of the 
characters not in the 63 or 64 characters of the original NOS collating sequence. A 
strict mapping maps all characters not in the original 64 or 63-character set to the 
ordinal for the space character. A folded mapping maps some characters into ordinals 
of the original characters and the others int9 the ordinal value for the space character 
as shown in the listing of the collating sequence. 

The following table shows the COLSEQ call parameter values and their corresponding 
weight table selection: 

CLOSEQ Call 
Parameter 
Value 

ASCII 
ASCII6 
ASCII6S 
COBOL6 
COBOL6S 
DISPLAY 
DISPLAYS 
DISPLAY63 
DISPLAY63S 
EBCDIC 
EBCDIC6 
EBCDIC6S 
INSTALL 

Revision H 

Selected Collating Weight Table 

Standard ASCII 
OSV$ASCII6_FOLDED 
OSV$ASCII6_STRICT 
OSV$COBOL6_FOLDED 
OSV$COBOL6_STRICT 
OSV$DISPLAY64_FOLDED 
OSV$DISPLAY64_STRICT 
OSV$DISPLAY63_FOLDED 
OSV$DISPLAY63_STRICT 
OSV$EBCDIC 
OSV$EBCDIC6_FOLDED 
OSV$EBCDIC6_STRICT 
OSV$COBOL6_FOLDED 

ASCII Character Set and Collating Weight Tables J-1 



ASCII Character Set and Collating Weight Tables 

Table J-1. ASCII Character Set and Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

0 00 NULL Null 
1 01 SOH Start of heading 
2 02 STX Start of text 
3 03 ETX End of text 
4 04 EOT End of transmission 
5 05 ENQ Enquiry 
6 06 ACK Acknowledge 
7 07 BEL Bell 
8 08 BS Backspace 
9 09 HT Horizontal tabulation 

10 OA LF Line feed 
11 OB VT Vertical tabulation 
12 oc FF Form feed 
13 OD CR Carriage return 
14 OE so Shift out 
15 OF SI Shift in 
16 10 DLE Data link escape 
17 11 DCl Device control 1 
18 12 DC2 Device control 2 
19 13 DC3 Device control 3 

20 14 DC4 Device control 4 
21 15 NAK Negative acknowledge 
22 16 SYN Synchronous idle 
23 17 ETB End of transmission block 
24 18 CAN Cancel 
25 19 EM End of medium 
26 IA SUB Substitute 
27 lB ESC Escape 
28 IC FS File separator 
29 ID GS Group separator 

30 IE RS Record separator 
3I IF us Unit separator 
32 20 SP Space 
33 2I Exclamation point 
34 22 II Quotation marks 
35 23 # Number sign 
36 24 $ Dollar sign 
37 25 % Percent sign 
38 26 & Ampersand 
39 27 Apostrophe 

(Continued) 

J-2 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-1. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 2A * Asterisk 
43 2B + Plus 
44 2C Comma 
45 2D Hyphen 
46 2E Period 
47 2F I Slant 
48 30 0 Zero 
49 31 1 One 

50 32 2 Two 
51 33 3 Three 
52 34 4 Four 
53 35 5 Five 
54 36 6 Six 
55 37 7 Seven 
56 38 8 Eight 
57 39 9 Nine 
58 3A Colon 
59 3B Semicolon 

60 3C < Less than 
61 3D Equal to 
62 3E > Greater than 
63 3F ? Question mark 
64 40 @ Commercial at 
65 41 A Uppercase A 
66 42 B Uppercase B 
67 43 c Uppercase C 
68 44 D Uppercase D 
69 45 E Uppercase E 

70 46 F Uppercase F 
71 47 G Uppercase G 
72 48 H Uppercase H 
73 49 I Uppercase I 
74 4A J Uppercase J 
75 4B K Uppercase K 
76 4C L Uppercase L 
77 4D M Uppercase M 
78 4E N Uppercase N 
79 4F 0 UpEercase 0 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-3 



ASCII Character Set and. Collating Weight Tables 

Table J-1. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

80 50 p Uppercase P 
81 51 Q Uppercase Q 
82 52 R Uppercase R 
83 53 s Uppercase S 
84 54 T Uppercase T 
85 55 u Uppercase U 
86 56 v Uppercase V 
87 57 w Uppercase W 
88 58 x Uppercase X 
89 59 y Uppercase Y 

90 5A z Uppercase Z 
91 5B [ Opening bracket 
92 5C \ Reverse slant 
93 5D ] Closing bracket 
94 5E Circumflex 
95 5F Underline 
96 60 Grave accent 
97 61 a Lowercase a 
98 62 b Lowercase b 
99 63 c Lowercase c 

100 64 d Lowercased 
101 65 e Lowercase e 
102 66 f Lowercase f 
103 67 g Lowercase g 
104 68 h Lowercase h 
105 69 i Lowercase i 
106 6A j Lowercase j 
107 6B k Lowercase k 
108 6C l Lowercase l 
109 6D m Lowercase m 

110 6E n Lowercase n 
111 6F 0 Lowercase o 
112 70 p Lowercase p 
113 71 q Lowercase q 
114 72 r Lowercase r 
115 73 s Lowercase s 
116 74 t Lowercase t 
117 75 u Lowercase u 
118 76 v Lowercase v 
119 77 w Lowercase w 

(Continued) 

J-4 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-1. ASCII Character Set and Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

120 78 x Lowercase x 
121 79 y Lowercase y 
122 7A z Lowercase z 
123 7B { Opening brace 
124 7C I Vertical line 
125 7D } Closing brace 
126 7E Tilde 
127 7F DEL Delete 

ASCII codes 80 through FF hexadecimal (not listed in this table) are ordered as equal 
to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-5 



ASCII Character Set and Collating Weight Tables 

Table J-2. OSV$ASCII6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 II Quotation marks 
03 23 # Number sign 
04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 28 ( Opening parenthesis 
09 29 ) Closing parenthesis 

10 2A * Asterisk 
11 2B + Plus 
12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F I Slant 
16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 
23 37 7 Seven 
24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 
28 3C < Less than 
29 3D = Equals 

30 3E > Greater than 
31 3F ? Question mark 
32 40,60 @,' Commercial at, grave accent 
33 41,61 A,a Uppercase A, lowercase a 
34 42,62 B,b Uppercase B, lowercase b 
35 43,63 C,c Uppercase C, lowercase c 
36 44,64 D,d Uppercase D, lowercase d 
37 45,65 E,e Uppercase E, lowercase e 
38 46,66 F,f Uppercase F, lowercase f 
39 47,67 G,g Uppercase G, lowercase g 

(Continued) 

J-6 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-2. OSV$ASCII6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 48,68 H,h Uppercase H, lowercase h 
41 49,69 I,i Uppercase I, lowercase i 
42 4A,6Ai J,j Uppercase J, lowercase j 
43 4B,6B K,k Uppercase K, lowercase k 
44 4C,6C L,l Uppercase L, lowercase 1 
45 4D,6D M,m Uppercase M, lowercase m 
46 4E,6E N,n Uppercase N, lowercase n 
47 4F,6F O,o Uppercase 0, lowercase o 
48 50,70 P,p Uppercase P, lowercase p 
49 51,71 Q,q Uppercase Q, lowercase q 

50 52,72 R,r Uppercase R, lowercase r 
51 53,73 S,s Uppercase S, lowercase s 
52 54,74 T,t Uppercase T, lowercase t 
53 55,75 U,u Uppercase U, lowercase u 
54 56,76 V,v Uppercase V, lowercase v 
55 57,77 W,w Uppercase W, lowercase w 
56 58,78 X,x Uppercase X, lowercase x 
57 59,79 Y,y Uppercase Y, lowercase y 
58 5A,7A Z,z Uppercase Z, lowercase z 
59 5B,7B [,{ Opening bracket, opening brace 

60 5C,7C \,I Reverse slant, vertical line 
61 5D,7D ],} Closing bracket, closing brace 
62 5E,7E Circumflex, tilde 
63 5F Underline 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-7 



ASCII Character Set and Collating Weight Tables 

Table J-3. OSV$ASCII6_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 21 Exclamation point 
02 22 II Quotation marks 
03 23 # Number sign 
04 24 $ Dollar sign 
05 25 % Percent sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 28 ( Opening parenthesis 
09 29 ) blosing parenthesis 

10 2A * Asterisk 
11 2B + Plus 
12 2C Comma 
13 2D Hyphen 
14 2E Period 
15 2F I Slant 
16 30 0 Zero 
17 31 1 One 
18 32 2 Two 
19 33 3 Three 

20 34 4 Four 
21 35 5 Five 
22 36 6 Six 
23 37 7 Seven 
24 38 8 Eight 
25 39 9 Nine 
26 3A Colon 
27 3B Semicolon 
28 3C < Less than 
29 3D = Equals 

30 3E > Greater than 
31 3F ? Question mark 
32 40 @ Commercial at 
33 41 A Uppercase A 
34 42 B Uppercase B 
35 43 c Uppercase C 
36 44 D Uppercase D 
37 45 E Uppercase E 
38 46 F Uppercase F 
39 47 G Uppercase G 

(Continued) 

J-8 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-3. OSV$ASCII6 _STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 48 H Uppercase H 
41 49 I Uppercase I 
42 4A J Uppercase J 
43 4B K Uppercase K 
44 4C L Uppercase L 
45 4D M Uppercase M 
46 4E N Uppercase N 
47 4F 0 Uppercase 0 
48 50 p Uppercase P 
49 51 Q Uppercase Q 

50 52 R Uppercase R 
51 53 s Uppercase S 
52 54 T Uppercase T 
53 55 u Uppercase U 
54 56 v Uppercase V 
55 57 w Uppercase W 
56 58 x Uppercase X 
57 59 y Uppercase Y 
58 5A z Uppercase Z 
59 5B [ Opening bracket 

60 5C \ Reverse slant 
61 5D ] Closing bracket 
62 5E Circumflex 
63 5F Underline 

Any ASCII codes not listed in this table (ASCII codes 0 through lF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-9 



ASCII Character Set and Collating Weight Tables 

Table J-4. OSV$COBOL6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40,60 @,' Commercial at, grave accent 
02 25 % Percent sign 
03 5B,7B [,{ Opening bracket, opening brace 
04 5F Underline 
05 23 # Number sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 3F ? Question mark, 
09 3E > Greater than 

10 5C,7C \,I Reverse slant, vertical line 
11 5E,7E Circumflex, tilde 
12 2E Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 
16 24 $ Dollar sign 
17 2A * Asterisk 
18 2D Hyphen 
19 2F I Slant 

20 2C Comma 
21 28 Opening parenthesis 
22 3D = Equals 
23 22 II Quotation marks 
24 3C < Less than 
25 41,61 A,a Uppercase A, lowercase a 
26 42,62 B,b Uppercase B, lowercase b 
27 43,63 C,c Uppercase C, lowercase c 
28 44,64 D,d Uppercase D, lowercase d 
29 45,65 E,e Uppercase E, lowercase e 

30 46,66 F,f Uppercase F, lowercase f 
31 47,67 G,g Uppercase G, lowercase g 
32 48,68 H,h Uppercase H, lowercase h 
33 49,69 I,i Uppercase I, lowercase i 
34 21 ! Exclamation point 
35 4A,6A J,j Uppercase J, lowercase j 
36 4B,6B · K,k Uppercase K, lowercase k 
37 4C,6C L,l Uppercase L, lowercase 1 
38 4D,6D M,m Uppercase M, lowercase m 
39 4E,6E N,n Uppercase N, lowercase n 

(Continued) 

J-10 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-4. OSV$COBOL6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4F,6F O,o Uppercase 0, lowercase o 
41 50,70 P,p Uppercase P, lowercase p 
42 51,71 Q,q Uppercase Q, lowercase q 
43 52,72 R,r Uppercase R, lowercase r 
44 5D,7D ],} Closing bracket, closing brace 
45 53,73 S,s Uppercase S, lowercase s 
46 54,74 T,t Uppercase T, lowercase t 
47 55,75 U,u Uppercase U, lowercase u 
48 56,76 V,v Uppercase V, lowercase v 
49 57,77 W,w Uppercase W, lowercase w 

50 58,78 X,x Uppercase X, lowercase x 
51 59,79 Y,y Uppercase Y, lowercase y 
52 5A,7A Z,z Uppercase Z, lowercase z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through lF arid 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-11 



ASCII Character Set and Collating Weight Tables 

Table J-5. OSV$COBOL6_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 40 @ Commercial at 
02 25 % Percent sign 
03 5B [ Opening bracket 
04 5F Underline 
05 23 # Number sign 
06 26 & Ampersand 
07 27 Apostrophe 
08 3F ? Question mark 
09 3E > Greater than 

10 5C \ Reverse slant 
11 5E Circumflex 
12 2E Period 
13 29 Closing parenthesis 
14 3B Semicolon 
15 2B + Plus 
16 24 $ Dollar sign 
17 2A * Asterisk 
18 2D Hyphen 
19 2F I Slant 

20 2C Comma 
21 28 Opening parenthesis 
22 3D = Equals 
23 22 II Quotation marks 
24 3C < Less than 
25 41 A Uppercase A 
26 42 B Uppercase B 
27 43 c Uppercase C 
28 44 D Uppercase D 
29 45 E Uppercase E 

30 46 F Uppercase F 
31 47 G Uppercase G 
32 48 H Uppercase H 
33 49 I Uppercase I 
34 21 Exclamation point 
35 4A J Uppercase J 
36 4B K Uppercase K 
37 4C L Uppercase L 
38 4D M Uppercase M 
39 4E N Uppercase N 

(Continued) 

J-12 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-5. OSV$COBOL6 _STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4F 0 Uppercase 0 
41 50 p Uppercase P 
42 51 Q Uppercase Q 
43 52 R Uppercase R 
44 5D ] Closing bracket 
45 53 s Uppercase S 
46 54 T Uppercase T 
47 55 u Uppercase U 
48 56 v Uppercase V 
49 57 w Uppercase W 

50 58 x Uppercase X 
51 59 y Uppercase Y 
52 5A z Uppercase Z 
53 3A Colon 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five· 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-13 



ASCII Character Set and Collating Weight Tables 

Table J-6. OSV$DISPLAY63 _FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 41,61 A,a Uppercase A, lowercase a 
01 42,62 B,b Uppercase B, lowercase b 
02 43,63 C,c Uppercase C, lowercase c 
03 44,64 D,d Uppercase D, lowerca~e d 
04 45,65 E,e Uppercase E, lowercase e 
05 46,66 F,f Uppercase F, lowercase f 
06 47,67 G,g Uppercase G, lowercase g 
07 48,68 H,h Uppercase H, lowercase h 
08 49,69 I,i Uppercase I, lowercase i 
09 4A,6A J,j Uppercase J, lowercase j 

10 4B,6B K,k Uppercase K, lowercase. k 
11 4C,6C L,l Uppercase L, lowercase 1 
12 4D,6D M,m Uppercase M, lowercase m 
13 4E,6E N,n Uppercase N, lowercase n 
14 4F,6F O,o Uppercase 0, lowercase o 
15 50,70 P,p Uppercase P, lowercase p 
16 51,71 Q,q Uppercase Q, lowercase q 
17 52,72 R,r Uppercase R, lowercase r 
18 53,73 S,s Uppercase S, lowercase s 
19 54,74 T,t Uppercase T, lowercase t 

20 55,75 U,u Uppercase U, lowercase u 
21 56,76 V,v Uppercase V, lowercase v 
22 57,77 W,w Uppercase W, lowercase w 
23 58,78 X,x Uppercase X, lowercase x 
24 59,79 Y,y Uppercase Y, lowercase y 
25 5A,7A Z,z Uppercase Z, lowercase z 
26 30 0 Zero 
27 31 1 One 
28 32 2 Two 
29 33 3 Three 

30 34 4 Four 
31 35 5 Five 
32 36 6 Six 
33 37 7 Seven 
34 38 8 Eight 
35 39 9 Nine 
36 2B + Plus 
37 2D Hyphen 
38 2A * Asterisk 
39 2F I Slant 

(Continued) 

J-14 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-6. OSV$DISPLAY63_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 24 $ Dollar sign 
43 3D = Equals 
44 20 SP Space 
45 2C Comma 
46 2E Period 
47 23 # Number sign 
48 5B,7B [,{ Opening bracket, opening brace 
49 5D,7D ],} Closing bracket, closing brace 

50 3A Colon 
51 22 II Quotation marks 
52 5F Underline 
53 21 Exclamation point 
54 26 & Ampersand 
55 27 Apostrophe 
56 3F ? Question mark 
57 3C < Less than 
58 3E > Greater than 
59 40,60 @,' Commercial at, grave accent 

60 5C,7C \,I Reverse slant, vertical line 
61 5E,7E Circumflex, tilde 
62 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through lF, 25, and 7F 
through FF hexadecimal) are ordered as equal to the space (ASCII code 20 
hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-15 



ASCII Character Set and Collating Weight Tables 

Table J-7. OSV$DISPLAY63 _STRICT Collating Sequence 

.Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 41 A Uppercase A 
01 42 B Uppercase B 
02 43 c Uppercase C 
03 44 D Uppercase D 
04 45 E Uppercase E 
05 46 F Uppercase F 
06 47 G Uppercase G 
07 48 H Uppercase H 
08 49 I Uppercase I 
09 4A J Uppercase J 

10 4B K Uppercase K 
11 4C L Uppercase L 
12 4D M Uppercase M 
13 4E N Uppercase N 
14 4F 0 Uppercase 0 
15 50 p Uppercase P 
16 51 Q Uppercase Q 
17 52 R Uppercase R 
18 53 s Uppercase S 
19 54 T Uppercase T 

20 55 u Uppercase U 
21 56 v Uppercase V 
22 57 w Uppercase W 
23 58 x Uppercase X 
24 59 y Uppercase Y 
25 5A z Uppercase Z · 
26 30 0 Zero 
27 31 1 One 
28 32 2 Two 
29 33 3 Three 

30 34 4 Four 
31 35 5 Five 
32 36 6 Six 
33 37 7 Seven 
34 38 8 Eight 
35 39 9 Nine 
36 2B + Plus 
37 2D Hyphen 
38 2A * Asterisk 
39 2F I Slant 

(Continued) 

J-16 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-7. OSV$DISPLAY63 _STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 28 ( Opening parenthesis 
41 29 ) Closing parenthesis 
42 24 $ Dollar sign 
43 3D = Equals 
44 20 SP Space 
45 2C Comma 
46 2E Period 
47 23 # Number sign 
48 5B [ Opening bracket 
49 5D ] Closing bracket 

50 3A Colon 
51 22 " Quotation marks 
52 5F Underline 
53 21 Exclamation point 
54 26 & Ampersand 
55 27 Apostrophe 
56 3F ? Question mark 
57 3C < Less than 
58 3E > Greater than 
59 40 @ Commercial at 

60 5C \ Reverse slant 
61 5E Circumflex 
62 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through lF, 25, and 60 
through FF hexadecimal) are ordered as equal to the space (ASCII code 20 
hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-17 



ASCII Character Set and Collating Weight Tables 

Table J-8. OSV$DISPLAY64_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 3A Colon 
01 41,61 A,a Uppercase A, lowercase a 
02 42,62 B,b Uppercase B, lowercase b 
03 43,63 C,c Uppercase C, lowercase c 
04 44,64 D,d Uppercase D, lowercase d 
05 45,65 E,e Uppercase E, lowercase e 
06 46,66 F,f Uppercase F, lowercase f 
07 47,67 G,g Uppercase G, lowercase g 
08 48,68 H,h Uppercase H, lowercase h 
09 49,69 I,i Uppercase I, lowercase i 

10 4A,6A J,j Uppercase J, lowercase j 
11 4B,6B K,k Uppercase K, lowercase k 
12 4C,6C L,l Uppercase L, lowercase l 
13 4D,6D M,m Uppercase M, lowercase m 
14 4E,6E N,n Uppercase N, lowercase n 
15 4F,6F O,o Uppercase 0, lowercase o 
16 50,70 P,p Uppercase P, lowercase p 
17 51,71 Q,q Uppercase Q, lowercase q 
18 52,72 R,r Uppercase R, lowercase r 
19 53,73 S,s Uppercase S, lowercase s 

20 54,74 T,t Uppercase T, lowercase t 
21 55,75 U,u Uppercase U, lowercase u 
22 56,76 V,v Uppercase V, lowercase v 
23 57,77 W,w Uppercase W, lowercase w 
24 58,78 X,x Uppercase X, lowercase x 
25 59,79 Y,y Uppercase Y, lowercase y 
26 5A,7A Z,z Uppercase Z, lowercase z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 

30 33 3 Three 
31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 
39 2A * Asterisk 

(Continued) 

J-18 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-8. OSV$DISPLAY64_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 2F I Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesi~ 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # Number sign 
49 5B,7B [,{ Opening bracket, opening brace 

50 5D,7D ],} Closing bracket, closing brace 
51 25 % Percent sign 
52 22 II Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40,60 @,' Commercial at, grave accent 
61 5C,7C \,I Reverse slant, vertical line 
62 5E,7E Circumflex, tilde 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through lF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables J-19 



ASCII Character Set and Collating Weight Tables 

Table J-9. OSV$DISPLAY64_STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecim~I) Mnemonic Name or Meaning 

00 3A Colon 
01 41 A Uppercase A 
02 42 B Uppercase B 
03 43 c Uppercase C 
04 44 D Uppercase D 
05 45 E Uppercase E 
06 46 F Uppercase F 
07 47 G Uppercase G 
08 48 H Uppercase H 
09 49 I Uppercase I 

10 4A J Uppercase J 
11 4B K Uppercase K 
12 4C L Uppercase L 
13 4D M Uppercase M 
14 4E N Uppercase N 
15 4F 0 Uppercase 0 
16 50 p Uppercase P 
17 51 Q Uppercase Q 
18 52 R Uppercase R 
19 53 s Uppercase S 

20 54 T Uppercase T 
21 55 u Uppercase U 
22 56 v Uppercase V 
23 57 w Uppercase W 
24 58 x Uppercase X 
25 59 y Uppercase Y 
26 5A z Uppercase Z 
27 30 0 Zero 
28 31 1 One 
29 32 2 Two 

30 33 3 Three 
31 34 4 Four 
32 35 5 Five 
33 36 6 Six 
34 37 7 Seven 
35 38 8 Eight 
36 39 9 Nine 
37 2B + Plus 
38 2D Hyphen 

. 39 2A * Asterisk 

(Continued) 

J-20 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-9. OSV$DISPLAY64_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 2F I Slant 
41 28 ( Opening parenthesis 
42 29 ) Closing parenthesis 
43 24 $ Dollar sign 
44 3D = Equals 
45 20 SP Space 
46 2C Comma 
47 2E Period 
48 23 # N upiber sign 
49 5B [ Opening bracket 

50 5D Closing bracket 
51 25 % Percent sign 
52 22 II Quotation marks 
53 5F Underline 
54 21 Exclamation point 
55 26 & Ampersand 
56 27 Apostrophe 
57 3F ? Question mark 
58 3C < Less than 
59 3E > Greater than 

60 40 @ Commercial at 
61 5C \ Reverse slant 
62 5E Circumflex 
63 3B Semicolon 

Any ASCII codes not listed in this table (ASCII codes 0 through lF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

Revision H ASCII Character Set and Collating Weight Tables · J-21 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

000 00 NUL Null 
OOI OI SOH Start of heading 
002 02 STX Start of text 
003 03 ETX End of text 
004 9C Unassigned 
005 09 HT Horizontal tabulation 
006 86 Unassigned 
007 7F DEL Delete 
008 97 Unassigned 
009 SD Unassigned 

010 BE Unassigned 
011 OB VT Vertical tabulation 
OI2 oc FF Form feed 
OI3 OD CR Carriage return 
OI4 OE so Shift out 
OI5 OF SI Shift in 
OI6 10 DLE Data link escape 
OI7 11 DCI Device control I 
OI8 I2 DC2 Device control 2 
OI9 I3 DC3 Device control 3 

020 9D Unassigned 
02I 85 Unassigned 
022 08 BS Backspace 
023 87 Unassigned 
024 I8 CAN Cancel 
025 19 EM End of medium 
026 92 Unassigned 
027 BF Unassigned 
028 IC FS File separator 
029 ID GS Group separator 

030 IE RS Record separator 
03I IF us Unit separator 
032 80 Unassigned 
033 8I Unassigned 
034 82 Unassigned 
035 83 Unassigned 
036 84 Unassigned 
037 OA LF Line feed 
038 I7 ETB End of transmission block 
039 IB ESC Escape 

(Continued) 

J-22 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

040 S8 Unassigned 
041 S9 Unassigned 
042 SA Unassigned 
043 SB Unassigned 
044 SC Unassigned 
045 05 ENQ Enquiry 
046 06 ACK Acknowledge 
047 07 BEL Bell 
048 90 Unassigned 
049 91 Unassigned 

050 16 SYN Synchronous idle 
051 93 Unassigned 
052 94 Unassigned 
053 95 Unassigned 
054 96 Unassigned 
055 04 EOT End of transmission 
056 9S Unassigned 
057 99 Unassigned 
058 9A Unassigned 
059 9B Unassigned 

060 14 DC4 Device control 4 
061 15 NAK Negative acknowledge 
062 9E Unassigned 
063 lA SUB Substitute 
064 20 SP Space 
065 AO Unassigned 
066 Al Unassigned 
067 A2 Unassigned 
068 A3 Unassigned 
069 A4 Unassigned 

070 A5 Unassigned 
071 A6 Unassigned 
072 A7 Unassigned 
073 AS Unassigned 
074 5B Opening bracket 
075 2E Period 
076 3C < Less than 
077 2S ( Opening parenthesis 
07S 2B + Plus 
079 21 Exclamation Eoint 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-23 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

080 26 & Ampersand 
081 A9 Unassigned 
082 AA Unassigned 
083 AB Unassigned 
084 AC Unassigned 
085 AD Unassigned 
086 AE Unassigned 
087 AF Unassigned 
088 BO Unassigned 
089 Bl Unassigned 

090 5D ] Closing bracket 
091 24 $ Dollar sign 
092 2A * Asterisk 
093 29 Closing parenthesis 
094 3B ' 

Semicolon 
095 5E " Circumflex 
096 2D Hyphen 
097 2F I Slant 
098 B2 Unassigned 
099 B3 Unassigned 

100 B4 Unassigned 
101 B5 Unassigned 
102 B6 Unassigned 
103 B7 Unassigned 
104 BS Unassigned 
105 B9 Unassigned 
106 7C Vertical line 
107 2C 

' 
Comma 

108 25 % Percent sign 
109 5F Underline 

110 3E > Greater than 
111 3F ? Question mark 
112 BA Unassigned 
113 BB Unassigned 
114 BC Unassigned 
115 BD Unassigned 
116 BE Unassigned 
117 BF Unassigned 
118 co Unassigned 
119 Cl Unassigned 

(Continued) 

J-24 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

120 C2 Unassigned 
121 60 Grave accent 
122 3A Colon 
123 23 # Number sign 
124 40 @ Commercial at 
125 27 Apostrophe 
126 3D = Equals 
127 22 " Quotation marks 
128 C3 Unassigned 
129 61 a Lowercase a 

130 62 b Lowercase b 
131 63 c Lowercase c 
132 64 d Lowercased 
133 65 e Lowercase e 
134 66 f Lowercase f 
135 67 g Lowercase g 
136 68 h Lowercase h 
137 69 i Lowercase i 
138 C4 Unassigned 
139 C5 Unassigned 

140 C6 Unassigned 
141 C7 Unassigned 
142 cs Unassigned 
143 C9 Unassigned 
144 CA Unassigned 
145 6A j Lowercase j 
146 6B k Lowercase k 
147 6C 1 Lowercase 1 
148 6D m Lowercase m 
149 6E n Lowercase n 

150 6F 0 Lowercase o 
151 70 p Lowercase p 
152 71 q Lowercase q 
153 72 r Lowercase r 
154 CB Unassigned 
155 cc Unassigned 
156 CD Unassigned 
157 CE Unassigned 
158 CF Unassigned 
159 DO Unassigned 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-25 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

160 Dl Unassigned 
161 7E Unassigned 
162 73 s Lowercase s 
163 74 t Lowercase t 
164 75 u Lowercase u 
165 76 v Lowercase v 
166 77 w Lowercase w 
167 78 x Lowercase x 
168 79 y Lowercase y 
169 7A z Lowercase z 

170 D2 Unassigned 
171 D3 Unassigned 
172 D4 Unassigned 
173 D5 Unassigned 
174 D6 Unassigned 
175 D7 Unassigned 
176 D8 Unassigned 
177 D9 Unassigned 
178 DA Unassigned 
179 DB Unassigned 

180 DC Unassigned 
181 DD Unassigned 
182 DE Unassigned 
183 DF Unassigned 
184 EO Unassigned 
185 El Unassigned 
186 E2 Unassigned 
187 E3 Unassigned 
188 E4 Unassigned 
189 E5 Unassigned 

190 E6 Unassigned 
191 E7 Unassigned 
192 7B { Opening brace 
193 41 A Uppercase A 
194 42 B Uppercase B 
195 43 c Uppercase C 
196 44 D Uppercase D 
197 45 E Uppercase E 
198 46 F Uppercase F 
199 47 G UEpercase G 

(Continued) 

J-26 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Seq-uence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

200 48 H Uppercase H 
201 49 I Uppercase I 
202 EB Unassigned 
203 E9 Unassigned 
204 EA Unassigned 
205 EB Unassigned 
206 EC Unassigned 
207 ED Unassigned 
208 7D } Closing brace 
209 4A J Uppercase J 

210 4B K Uppercase K 
211 4C L Uppercase L 
212 4D M Uppercase M 
213 4E N Uppercase N 
214 4F 0 Uppercase 0 
215 50 p Uppercase P 
216 51 Q Uppercase Q 
217 52 R Uppercase R 
218 EE Unassigned 
219 EF Unassigned 

220 FO Unassigned 
221 Fl Unassigned 
222 F2 Unassigned 
223 F3 Unassigned 
224 5C \ Reverse slant 
225 9F Unassigned 
226 53 s Uppercase S 
227 54 T Uppercase T 
228 55 u Uppercase U 
229 56 v Uppercase V 

230 57 w Uppercase W 
231 58 x Uppercase X 
232 59 y Uppercase Y 
233 5A z Uppercase Z 
234 F4 Unassigned 
235 F5 Unassigned 
236 F6 Unassigned 
237 F7 Unassigned 
238 FS Unassigned 
239 F9 Unassigned 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-27 



ASCII Character Set and Collating Weight Tables 

Table J-10. OSV$EBCDIC Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

240 30 0 Zero 
241 31 1 One 
242 32 2 Two 
243 33 3 Three 
244 34 4 Four 
245 35 5 Five 
246 36 6 Six 
247 37 7 Seven 
248 38 8 Eight 
249 39 9 Nine 

250 FA Unassigned 
251 FB Unassigned 
252 FC Unassigned 
253 FD Unassigned 
254 FE Unassigned 
255 FF Unassigned 

J-28 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-11. OSV$EBCDIC6_FOLDED Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 
04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 
08 2A * Asterisk 
09 29 Closing parenthesis 

10 3B Semicolon 
11 5E,7E Circumflex, tilde 
12 2D Hyphen 
13 2F I Slant 
14 2C 

' 
Comma 

15 25 % Percent sign 
16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40,60 @,' Commercial at, grave accent 
22 27 Apostrophe 
23 3D = Equals 
24 22 " Quotation marks 
25 5B,7B [,{ Opening bracket, opening brace 
26 41,61 A,a Uppercase A, lowercase a 
27 42,62 B,b Uppercase B, lowercase b 
28 43,63 C,c Uppercase C, lowercase c 
29 44,64 D,d Uppercase D, lowercase d 

30 45,65 E,e Uppercase E, lowercase e 
31 46,66 F,f Uppercase F, lowercase f 
32 47,67 G,g Uppercase G, lowercase g 
33 48,68 H,h Uppercase H, lowercase h 
34 49,69 I,i Uppercase I, lowercase i 
35 5D,7D ],} Closing bracket, closing brace 
36 4A,6A J,j Uppercase J, lowercase j 
37 4B,6B K,k Uppercase K, lowercase k 
38 4C,6C L,l Uppercase L, lowercase 1 
39 4D,6D M,m Uppercase M, lowercase m 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-29 



ASCII Character Set and Collating Weight Tables 

Table J-11. OSV$EBCDIC6_FOLDED Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4E,6E N,n Uppercase N, lowercase n 
41 4F,6F O,o Uppercase 0, lowercase o 
42 50,70 P,p Uppercase P, lowercase p 
43 51,71 Q,q Uppercase Q, lowercase q 
44 52,72 R,r Uppercase R, lowercase r 
45 5C,7C \,I Reverse slant, vertical line 
46 53,73 S,s Uppercase S, lowercase s 
47 54,74 T,t Uppercase T, lowercase t 
48 55,75 U,u Uppercase U, lowercase u 
49 56,76 V,v Uppercase V, lowercase v 

50 57,77 W,w Uppercase W, lowercase w 
51 58,78 X,x Uppercase X, lowercase x 
52 59,79 Y,y Uppercase Y, lowercase y 
53 5A,7A Z,z Uppercase Z, lowercase z 
54 30 0 Zero 
55 31 1 One 
56 32 2- Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

Any ASCII codes not listed in this table (ASCII codes 0 through lF and 7F through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

J-30 FORTRAN Version 1 Language Definition Usage Revision H 



ASCII Character Set and Collating Weight Tables 

Table J-12. OSV$EBCDIC6 _STRICT Collating Sequence 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

00 20 SP Space 
01 2E Period 
02 3C < Less than 
03 28 ( Opening parenthesis 
04 2B + Plus 
05 21 Exclamation point 
06 26 & Ampersand 
07 24 $ Dollar sign 
08 2A * Asterisk 
09 29 Closing parenthesis 

10 3B Semicolon 
11 5E Circumflex 
12 2D Hyphen 
13 2F I Slant 
14 2C 

' Comma 
15 25 % Percent sign 
16 5F Underline 
17 3E > Greater than 
18 3F ? Question mark 
19 3A Colon 

20 23 # Number sign 
21 40 @ Commercial at 
22 27 Apostrophe 
23 3D = Equals 
24 22 II Quotation marks 
25 5B [ Opening bracket 
26 41 A Uppercase A 
27 42 B Uppercase B 
28 43 c Uppercase C 
29 44 D Uppercase D 

30 45 E Uppercase E 
31 46 F Uppercase F 
32 47 G Uppercase G 
33 48 H Uppercase H 
34 49 I Uppercase I 
35 5D ] Closing bracket 
36 4A J Uppercase J 
37 4B K Uppercase K 
38 4C L Uppercase L 
39 4D M Uppercase M 

(Continued) 

Revision H ASCII Character Set and Collating Weight Tables J-31 



ASCII Character Set and Collating Weight Tables 

Table J-12. OSV$EBCDIC6_STRICT Collating Sequence (Continued) 

Collating Graphic 
Sequence ASCII Code or 
Position (Hexadecimal) Mnemonic Name or Meaning 

40 4E N Uppercase N 
41 4F 0 Uppercase 0 
42 50 p Uppercase P 
43 51 Q Uppercase Q 
44 52 R Uppercase R 
45 5C \ Reverse slant 
46 53 s Uppercase S 
47 54 T Uppercase T 
48 55 u Uppercase U 
49 56 v Uppercase V 

50 57 w Uppercase W 
51 58 x Uppercase X 
52 59 y Uppercase Y 
53 5A z Uppercase Z 
54 30 0 Zero 
55 31 1 One 
56 32 2 Two 
57 33 3 Three 
58 34 4 Four 
59 35 5 Five 

60 36 6 Six 
61 37 7 Seven 
62 38 8 Eight 
63 39 9 Nine 

. Any ASCII codes not listed in this table (ASCII codes 0 through lF and 60 through FF 
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). 

J-32 FORTRAN Version 1 Language Definition Usage Revision H 



Kntrcoduction to Debug 

Debug is an SCL command utility that lets you debug a program during execution. 
Using Debug, you can stop execution at selected points, display the values of selected 
variables, and resume execution. 

Debug is easy to use. It requires no modification of your source code and no knowledge 
of assembly language. You can reference variables by their symbolic names rather than 
their addresses in memory. Furthermore, you don't need to interpret memory dumps, 
insert PRINT statements into your program, or use a load map. 

Debug can be used in line mode or screen mode. Also, you can use Debug to perform 
machine-level debugging as well as symbolic debugging. This discussion focuses on 
using screen mode Debug for symbolic debugging. For information about line mode 
Debug, machine-level debugging, and other Debug features, see the Debug Usage 
manual. 

Screen mode Debug gives you all of the Debug features with the ease of use of a full 
screen interface. You can execute Debug commands by pressing function keys rather 
than typing commands. Online HELP enables you to learn screen mode Debug as you 
use it. 

Using screen mode Debug, you can: 

• View your source code as it executes (an arrow points to the next line to be 
executed). 

• Change the values of program variables while execution is suspended. 

• Change the location where execution of your program resumes. 

• View the program units of your program. 

Revision H Introduction to Debug K-1 



Getting Started 

Getting Started 

Using Debug in screen mode requires that your terminal support full screen operation. 
If your terminal is not set up for full screen operation, see the SCL System Interface 
manual for terminal definitions that support the full screen interface. 

To execute your FORTRAN program with Debug and use the symbolic debugging 
capability, you must compile the program with the OPTIMIZATION _LEVEL (OL) and 
DEBUG_AIDS (DA) parameters specified. Furthermore, to enter Debug in screen mode, 
you must enter the command: 

CHANGE_INTERACTION_STYLE STYLE=SCREEN 

For example, to prepare the source program EXAFORT contained in permanent file 
$USER.EXAMPLE_FORT for use with Debug, enter the following commands: 

/change_interaction_style style=screen 
/fortran input=$user.example_fort binary_object=lgo optimization_level=debug 
.. /debug_aids=all 

To execute EXAFORT with screen mode Debug, enter the following command: 

/execute_task file=lgo debug_mode=on 

The source listing of EXAFORT is displayed as follows on a Viking 721 terminal (on 
other terminals, the screen format may vary slightly). 

K-2 FORTRAN Version 1 Language Definition Usage Revision H 



Getting Started 

Debugging EXAFORT 
---) PROGRAM EXAFORT 

CHARACTER TABLE(6)*3, LIST*l8 
REAL DIVDEND, DIVISOR, QUOTENT, COUNTER, RESULT 
INTEGER COLUMN, ROW 
DATA DIVDEND, DIVISOR, COLUMN/100.,0.,1/ 
DATA LIST/'JANFEBMARAPRMAYJUN'/ 

************************************************************** 
* TEST!: Add to counter and call procedure to square and * 
* display count. * 
************************************************************** 

DO 10 COUNTER• 1,10 
CALL SQUARE (COUNTER) 

10 CONTINUE 

11-~~~~~~~~~~~~~~0UTPUT~~~~~~~~~~~~~~~~~~~.......,. 

~Welcome to Full Screen•Debugging --

Press HELP for assistance 

StepN 
fl Step! 

r-----1 Locate Cha Val DelBrk ro;;;-i ZmOut ~ 
f2~f3 HSpeed f4 SeeVal £5 SetBrk f6~f7 Trace f8~ 

CD Home line 

@ Response line 

Q) Source window 

© Output window 

® Row of function 

Revision H 

The line on which you enter Debug commands and SCL 
commands. 

The line on which short responses and advisory messages from 
Debug are displayed. 

The area in which the program you are debugging is 
displayed. 

The area in which the output generated by your program (or 
output delivered by Debug) is displayed. 

The Debug functions assigned to function keys. Also, you can 
enter key assignments Debug commands on the home line. 

Introduction to Debug K-3 



How to Get Help 

How to Get Help 

There are two ways to get help information while using screen mode Debug: 

1. The HELP key. 

Pressing the HELP key displays the Help window. The Help window overlays a 
portion of your screen and prompts you to enter the function for which you need 
help. If you press a function key, a short description of the function you select is 
displayed in the Help window. To exit HELP, press RETURN. Upon exiting HELP, 
your screen is restored to its original contents. 

2. The EXPLAIN command. 

you can request help by entering the EXPLAIN command on the HOME line. This 
command is used to read an online manual while you are debugging your program. 
To leave the online manual, press QUIT. When you leave the online manual, the 
screen is restored to its contents before you entered EXPLAIN. For example, if you 
need information about FORTRAN constants, press the HOME key and type the 
following EXPLAIN command on the HOME line: 

explain s='constants' m=fortran 

This command takes you to the VFORTRAN online manual for an explanation of 
FORTRAN constants. To return to screen mode Debug, press QUIT. See the SCL 
System Interface Manual for more information about EXPLAIN. 

Example 

This examp1e demonstrates some commonly used Debug functions. It is represented as 
a series of steps. To get the most benefit from this example, you should create the 
sample program, EXAFORT, illustrated in figure K-1 then perform each step. 

EXAFORT is divided into the following test cases: 

TES Tl 

A loop that increments a counter and then calls a subprogram to square and 
display the count. TEST! demonstrates the use of the CHAVAL, GOTO, HSPEED, 
SEEVAL, STEPl, and STEPN functions. 

TEST2 

A loop that builds a 6-row table of 3-character strings. Input to the table is an 
18-character list for the months JAN through JUN. TEST2 moves three characters 
at a time from the character list to the table and displays each entry. TEST2 shows 
how to step through loops, use line mode Debug commands in screen mode Debug, 
and how to scroll through Debug and program output data. 

TEST3 

A division test that results in a divide fault. TEST3 demonstrates how Debug 
handles execution errors. · 

In each test case, the application of some Debug functions is demonstrated. After you 
work this example, you can begin to debug your FORTRAN programs using screen 
mode Debug. 

K-4 FORTRAN Version 1 Language Definition Usage Revision H 



PROGRAM EXAFORT 

CHARACTER TABLE(6)*3, LIST*18 
REAL DIVDEND, DIVISOR~ QUOTENT, COUNTER, RESULT 
INTEGER COLUMN, ROW 
DATA DIVDEND, DIVISOR, COLUMN/100.,0.,1/ 
DATA LIST/'JANFEBMARAPRMAYJUN'/ 

************************************************************** 
* TEST1: Add to counter and call procedure to square and * 

* display count. * 
************************************************************** 

DO 10 COUNTER= 1,10 
CALL SQUARE (COUNTER) 

10 CONTINUE 

************************************************************** 
* TEST2: Create single column table for each month. * 
************************************************************** 

DO 20 ROW= 1,6 
TABLE(ROW) = LIST(COLUMN 
PRINT*, 'THE MONTH IS: 
COLUMN = COLUMN + 3 

20 CONTINUE 

COLUMN + 2) 
TABLE(ROW) 

************************************************************** 
* TEST3: Create divide fault. * 
************************************************************** 

QUOTENT = DIVDEND I DIVISOR 
PRINT*, 'ANSWER IS: ', QUOTENT 

END 

************************************************************** 
* Subroutine SQUARE * 
************************************************************** 

SUBROUTINE SQUARE (COUNTER) 
RESULT = 0. 
RESULT = COUNTER * COUNTER 
PRINT*, COUNTER, ' TIMES ' COUNTER, ' 

END 
RESULT 

Figure K-1. Example of EXAFORT Source Listing 

Example 

Revision H Introduction to Debug K-5 



Preparing to Debug 

Preparing to Debug 

After you create EXAFORT, you must prepare it for use with screen mode Debug. This 
requires preparing the screen mode environment and compiling EXAFORT for use with 
Debug. You can then execute it under screen mode Debug control. 

1. Prepare and compile EXAFORT contained in permanent file $USER.EXAMPLE_ 
FORT specifying the OPTIMIZATION_LEVEL=DEBUG and DEBUG_AIDS=ALL 
parameters by entering the following commands: 

/change_interaction_style style=screen 
/fortran input=$user.example_fort b1nary_object=lgo 
.. /opt1mization_level=debug debug_aids=all 

2. Execute EXAFORT under control of Debug by entering the following command: 

/execute_task file=lgo debug_mode=on 

The source listing of EXAFORT is displayed in the source window. The Debug 
functions are displayed at the bottom of the screen. 

Display Screen Mode Commands 

The function below is used to display helpful information about the Debugging 
enviornment: 

HELP 

Displays the Help window. Press a function key and a short explanation of the 
function's use appears in the Help window. 

Now perform the following steps to become familiar with the Debug functions: 

1. Press the HELP key. The Help window is displayed. 

2. Press each function key corresponding to a function displayed at the bottom of the 
screen. As you press each function key, a short explanation of the purpose of each 
function is displayed in the Help window. 

3. Press RETURN. Exit HELP. 

Setting Breaks 

It is often helpful to suspend program execution when debugging a program. The device 
for suspending execution of a program is called a break. In this sample session, the 
following functions are used to illustrate setting breaks: 

BKW 

Scrolls backward to the previous screen of text. 

FIRST 

Displays the first screen of the source listing. Because FIRST is a lower priority 
function, it may not be assigned to a function key on terminals with only 16 
function keys. Instead, FIRST is entered on the HOME line. 

FWD 

Scrolls forward to the next screen of text. 

K-6 FORTRAN Version 1 Language Definition Usage Revision H 



Setting Breaks 

LOCATE 

Prompts you to type in text, then searches the source listing for matching text. If a 
match is found, the cursor is moved to the line containing the matching text. 

SETBRK 

Sets an execution break on the line containing the cursor. The line is highlighted to 
show that it contains a break. Execution is suspended before the line containing the 
break is executed. Execution resumes with the statement on the line containing the 
break. 

Perform the following steps to place three execution breaks in EXAFORT: 

1. Press the LOCATE function key. At the top right hand corner of the screen, you 
are prompted for the text to be located. 

2. Enter the following text exactly as it appears in EXAFORT: 

DO 20 

The cursor is moved to the line: 

DO 20 ROW = 1,6 

3. Press the SETBRK function key. A break is set and the line containing the cursor 
is highlighted to show that it contains an execution break. 

4. Use the down-arrow key to move the cursor to the line containing: 

COLUMN = COLUMN + 3 

If you do not see this line on your screen, press the FWD key. The next screen of 
the EXAFORT source listing is displayed. Use the down-arrow key to position the 
cursor on the correct line. 

5. Press the SETBRK function key. The line is highlighted to show that it contains an 
execution break. 

6. Use the down-arrow key to move the cursor to the line: 

QUOTENT = DIVDEND I DIVISOR 

If you do not see this line on your screen, press the FWD key. The next screen of 
the EXAFORT source listing is displayed. Use the down-arrow key to position the 
cursor on the correct line. 

7. Press the SETBRK function key. The line is highlighted to show that it contains an 
execution break. 

8. Press the FIRST function key. The first screen of the EXAFORT source listing is 
displayed in the source window. 

If FIRST is not assigned to a function key, FIRST must be entered on the HOME 
line. To do this, press the HOME key. This moves the cursor to the HOME line. 
Enter the following on the HOME line: 

first 

The first screen of the EXAFORT source listing is displayed in the source window. 

Revision H Introduction to Debug K-7 



Debugging TEST! 

Debugging TESTl 

Using Debug, you can execute a program one line or several lines at a time. Also, you 
can examine a variable's contents, change its contents, and execute code containing the 
variable several times. These capabilities are demonstrated in this sample session using 
the following functions: 

CHAVAL 

Prompts you to enter a variable name and the value you want it to contain, then 
changes the variable's contents to the new value. 

GOTO 

Moves the execution pointer to the line that contains the cursor. Execution resumes 
with the statement on this line. 

HSPEED 

Executes a program until a break is encountered or the program ends. 

SEE VAL 

Prompts you to enter a variable name, then displays the value of the variable in 
the output window. 

STEP! 

Executes a program one line at a time. 

STEPN 

Executes N lines of a program, where N is an integer. 

Perform the following steps to demonstrate the use of the CHAVAL, GOTO, HSPEED, 
SEEVAL, STEP!, STEPN funtions: 

1. Press the STEPl function key. The first statement of EXAFORT is executed, 
moving the execution arrow to the statement: 

DO 10 COUNTER= 1,10 

2. Press the STEPl function key again. The DO statement is executed; the execution 
arrow points to the statement: 

CALL SQUARE (COUNTER) 

3. Press the STEPl function key six times. An iteration of TESTl is executed one line 
at a time. The output from the iteration is displayed in the output window. 

4. Press the SEEVAL function key. A prompt to enter a variable name is printed in 
the upper right hand corner of the screen. Enter the name: 

counter 

The value of COUNTER is displayed in the output window: 

counter = 2. 

Thus, you can use SEEVAL to observe the contents of a variable. 

K-8 FORTRAN Version 1 Language Definition Usage Revision H 



Debugging TEST! 

5. Press the CHAVAL function key. A prompt for a variable name and its new value 
is displayed in the ~pper right hand corner of the screen; enter: 

counter=8 

The value of COUNTER is changed to 8. 

6. Press the SEEVAL function key. When you are prompted for a variable name, 
enter: 

counter 

The following message is displayed in the output window: 

counter = 8. 

Thus, the change of COUNTER's value is verified. 

7. Press the STEPN function key. In the upper right hand corner of the screen, you 
are prompted for the number of lines to execute; enter: 

6 

STEPN executes 6 lines of TESTl. The output from this loop iteration is displayed 
in the output window. 

8. Press the SEE VAL function key. When you are prompted for a variable name, 
enter: 

counter 

The value of COUNTER is displayed in the output window: 

counter = 9. 

Therefore, the value given to COUNTER in step 5 is used by the DO statement. 

9. Use the up-arrow key to move the cursor to the line: 

DO 10 COUNTER= 1,10 

10. Press the GOTO function key. The execution arrow moves to the line containing the 
cursor; execution resumes with this statement. 

11. Press the HSPEED function key. Execution resumes from the DO statement; 
COUNTER is initialized to 1. Execution of EXAFORT continues until an execution 
break is encountered. 

Revision H Introduction to Debug K-9 



Debugging TEST2 

Debugging TEST2 

After program execution is resumed in step 11 of TESTl, it stops at the break set on 
the DO statement in TEST2. The following functions are used in TEST2 to illustrate 
more Debug capabilities: 

BKW 

Scrolls backward to the previous screen of text. 

DELBRK 

Deletes execution breaks. 

HSPEED 

Executes a program until a break is encountered or the program ends. 

This section also uses the following items: 

HOME 

Press the HOME key to move the cursor to the HOME line. Line mode Debug 
commands can be entered on the HOME line for execution in screen mode Debug. 

DISPLAY_PROGRAM_ VALUE 

A line mode Debug command that displays the values of program variables. 

Perform the following steps to learn how ~o execute loops one iteration at a time, 
execute line mode Debug commands, and scroll output data when using Debug: 

1. Press the HSPEED function key·. Execution stops at the break set on the last line 
of the DO loop in TEST2; output from the loop is displayed in the output window. 

2. Press the HSPEED function key again. One iteration of the DO loop is executed; 
execution stops at the break set at the statement, COLUMN = COLUMN + 3. 
Each time HSPEED is used, an iteration of the loop is performed. By using 
strategically placed execution breaks, as in this example, a loop can be executed 
one iteration at a time. 

3. Press the HSPEED function key. One more loop iteration is performed. 

4. Press the HOME key. The cursor moves to the HOME line. 

5. Enter the line mode Debug command: 

display_program_value name=$a11 

The values of all variables in EXAFORT are displayed in the output window. Thus, 
line mode Debug commands can be used in screen mode Debug by entering them on 
the HOME line. For more information about using line mode Debug commands see 
the Debug Usage Manual. 

6. Press the DELBRK key. The execution break is deleted. 

7. Press the down-arrow key until the cursor is inside of the output window. 

8. Press the BKW key. The data in the output window scrolls backward. When the 
cursor is contained within the output window, you can use the BKW and FWD keys 
to scroll backward and forward through the data in the window. 

K-10 FORTRAN Version 1 Language Definition Usage Revision H 



Debugging TEST3 

9. Press the HSPEED function key. The execution of EXAFORT resumes, stopping 
when the line containing the third break is reached. The execution arrow points to 
the first statement of TEST3. 

Debugging TEST3 

After resuming execution of EXAFORT in step 9 of section TEST2, execution stops at 
the begining of TEST3. In TEST3, Debug is presented with an execution error. The 
following functions are used in this sample session to demonstrate how Debug can be 
used when an execution error is encountered: 

CHAVAL 

Prompts you to enter a variable name and the value you want it to contain, then 
changes the variable's contents to the new value. 

GOTO 

Moves the execution pointer to the line that contains the cursor. Execution resumes 
with the statement on this line. 

SEE VAL 

Prompts you to enter a variable name, then displays the value of the variable in 
the output window. 

STE Pl 

Executes a program one line at a time. 

QUIT 

Used to exit Debug. 

Perform the following steps to finish the example: 

1. Press the STEPl function key again. The DIVISION statement is executed, 
execution of EXAFORT halts, and the following message flashes in the top right 
hand corner of the screen: 

d1v1de_fault 

2. Press the SEEVAL function key. When you are prompted for a variable name, 
enter: 

divisor 

The following message is displayed in the output window: 

divisor = 0. 

A division by zero caused the execution error. 

3. Press the CHAVAL function key. When you are prompted, enter: 

div1sor=1 

The value of DIVISOR is changed to 1. 

Revision H Introduction to Debug K-11 



Debugging TEST3 

4. Press the SEEVAL function key. When you are prompted, enter: 

d1v1sor 

The following text is displayed in the output window: 

d1v1sor = 1. 

The change to DIVISOR is verified. 

5. Press the GOTO function key. The execution arrow points at the DIVISION 
statement and program execution resumes with this statement. 

6. Press the STEP! function key. The DIVISION statement is executed. Therefore, the 
GOTO and CHAVAL functions can be used in concert to recover from execution 
errors. However, to correct execution errors permanently, you must exit Debug, edit 
the program, and recompile it. 

7. Press the STEP I function key again. The result of the DIVISION statement is 
displayed in the output window. 

8. Press the STEP! function key. EXAFORT ends and the following message is 
displayed in the output window: 

DEBUG: The status at termination was: NORMAL. 

9. Press the QUIT function key. Exit Debug. 

Now that you have concluded this example, you should be able to begin using screen 
mode Debug to debug your FORTRAN programs. For more information about screen 
mode Debug and line mode Debug commands, see the Debug Usage manual. 

K-12 FORTRAN Version 1 Language Definition Usage Revision H 



Index 





A edit descriptor 

Jindex 

A 
A edit descriptor 6-28 
A edit descriptor for noncharacter list 

items 6-29 
AAM (see Advanced Access Methods) 
AAV$DCT entry point 11-140 
ABORT subprogram 9-15 
ABS intrinsic function 8-10 
$ACCESS_MODE FIT value 11-136 
Access modes 

Required for each keyed-file 
call 11-136 

ACOS intrinsic function 8-10 
Actual argument 7-16 
Adjustable dimensions 7-20 
Advanced Access Methods 11-1 

Definition A-1 
AIMAG intrinsic function 8-10 
AINT intrinsic function 8-10 
ALOG intrinsic function 8-10 
ALOGlO intrinsic function 8-10 
Alternate index 11-12 
Alternate index, definition A-1 
Alternate key 

Concepts 11-12 
Creation 

Call 11-97 
Concepts 11-30 

Use 11-31 
Alternate Key, definition A-1 
Alternate return 7-23 
$AM FIT value 11-136 
AMAXO intrinsic function 8-10 
AMAX! intrinsic function 8-11 
AMINO intrinsic function 8-11 
AMINI intrinsic function 8-11 
AMOD intrinsic function 8-11 
AMP$RECORD_ COMPRESSION_ 

PROCEDURE 11-140 
AND intrinsic function 8-11 
ANINT intrinsic function 8-11 
Apostrophe edit descriptor 6-46 
Argument association 

Arrays as arguments 7-17 
Asterisks as arguments 7-19 
Characters as arguments 7-17 
Description 7-16 
Procedure names as arguments 7-18 
Variables as arguments 7-17 

Arguments 7-14 
Arithmetic 

Assignment statement 4-19 
Expressions 4-1 
IF statement 5-4 
Operators 4-2 

Arithmetic primary 4-2 

Revision H 

Array 
Assumed-size 7-20 
Bounds 3-13 

Bit, definition 

DIMENSION statement 3-13 
Dimensions 2-21 
Element 2-24 
Element positions 2-24 
References 2-24 
Specification 3-13 
Storage 2-24 

Arrays 2-21 
Arrays in namelist 6-68 
Ascending sort order 12-9' 
Ascending sort order, definition A-1 
ASCII 

Character set and collating weight 
sequence J-2 

Character set and collating weight 
tables J-1 

Definition A-1 
ASCII6 collating sequence 9-30 
ASIN intrinsic function 8-11 
$ASIS 10-5 
ASSIGN statement 5-3 
Assigned GO TO statement 5-3 
Assignment statements 

Arithmetic 4-19 
Boolean 4-21 
Character 4-20 
General description 4-18 
Logical 4-21 
Multiple 4-22 

Assumed-length character strings 7-21 
ATAN intrinsic function 8-11 
ATANH intrinsic function 8-12 
ATAN2 intrinsic function 8-12 
Attributes of keyed files 11-28 
$AU value 11-138 
Audience 5 
$AUTOMATIC_ UNLOCK value 11-138 
$AVERAGE_RECORD_LENGTH FIT 

value 11-139 

B 
BACKSPACE statement 6-100 
Backup Copy A-1 
BAM (see Basic Access Methods) 
Basic Access Methods (BAM), 

definition A-1 
Beginning-of-Information (BOI), 

definition A-1 
BINARY_BITS key type 12-6 
BINARY key type 12-6 
Binary keys 12-6 
BINARY_OBJECT parameter 10-6 
Bit, definition A-2 

FORTRAN Version 1 Language Definition Usage Index-1 



Blank common, definition 

Blank common, definition A-2 
Block 

Definition A-2 
Direct access file 11-8 
Indexed sequential file 11-1 

BLOCK DATA statement 7-10 
Block data subprogram 7-10 
Block IF statement 5-6 
Block IF statement structures 5-7 
BN edit descriptor 6-44 
$BOI 10-5 
BOI (see Beginning-of-Information) 
BOOL intrinsic function 8-12 
Boolean 

Assignment statement 4-21 
Constant 2-13 
Data type 1-1 
Expressions 4-14 
Operators 4-14 
Variable 2-20 

Boolean data type C-2 
Boolean string constant 2-13 
BOOLEAN type statement 3-6 
Buffer 1/0 C-2 
BUFFER IN statement 6-69 
BUFFER OUT statement 6-70 
Buffer statement, definition A-2 
Byte addressable file, definition A-2 
Byte, definition A-2 
BZ edit descriptor 6-44 

c 
C$ COLLATE D-7 
C$ directives 1-1; 2-4, 6; D-1 
C$ DO D-8 
C$ ELSE D-3 
C$ ENDIF D-3 
C$ EXTEND D-5 
C$ External D-9 
C$ IF D-3 
C$ LIST D-2 
C$ PARAM directive 9-7 
C$ SEGFILE D-6 
C subprograms 7-29 
CABS intrinsic function 8-12 
CALL statement 7-12 
Calling sequence, definition A-2 
Carriage control (see Printer control 

character) 
CCOS intrinsic function 8-13 
CDC extensions to standard 

FORTRAN 1-1; G-1 
CEXP intrinsic function 8-13 
CHAR intrinsic function 8-13 
Character 

Assignment statement 4-20 
Constant 2-17 
Data initialization 3-30 
Definition A-2 

COMMON statement 

Expressions 4-9 
Format specification 6-22 
Keys 12-4 
Operator 4-9 
Substrings 2-27 
Variable 2-20 

Character Set 2-1 
CHARACTER type statement 3-7 
CHECKPTX call statement C-2 
CHGUCF utility subprogram 9-35 
Clock function C-5 
CLOCK utility subprogram 9-33 
CLOG intrinsic function 8-13 
Close, definition A-2 
Close Operation, definition A-2 
Close Request, definition A-2 
CLOSE statement 6-94 
CLOSEM call 11-51 
Closing a keyed file 11-51 
CLOSMS call statement 6-76 
CMPLX intrinsic function 8-13 
COBOL subprograms 7-27 
COBOL6 collating sequence 9-30 
$COLLATE_ TABLE FIT value 11-140 
$COLLATE_ TABLE_NAME FIT 

value 11;..141 
Collated key 

Definition A-2 
Description 11-7 
Values returned 11-33 

Collating sequence 
Control for indexed sequential 

files H-1 
Control subprograms 9-30 
Definition A-2 
Description 12-5 

Collating sequences 12-5 
Collation control directives D-7 
Collation table 

Definition A-2 
Name 11-141 
Selecting for keyed-files H-1 
Variable 11-141 

Collation weight, definition A-3 
Colon edit descriptor 6-50 
COLSEQ utility subprogram 9-30 
Command interface subprogram 

(SCLCMD) 9-22 
Comments 

Against this manual 7 
Inline 2-4, 6 
N onsequenced mode 2-4 
Sequenced mode 2-6 

Common and equivalence maps 10-24 
Common blocks 3-15; 7-19; A-3 

Blank 3-15 
Extensible 3-15; D-5 
Mixed 3-15 
Named 3-15 
Segment access files D-6 

COMMON statement 3-15 

Index-2 FORTRAN Version 1 Language Definition Usage Revision H 



Compilation 

Compilation 
Conditional D-3 
Errors 10-18 
Statistics 10-18 
Time, definition A-3 

Compilation and execution 10-1 
COMPILATION _DIRECTIVES 

parameter 10-6 
Compile Command 

Examples 10-16 
FORTRAN 10-1 
Parameter formats 10-4 
Parameter names 10-5 
Parameter options 10-6 

Compile-time inputloutput E-7 
Compiler 

Description 1-1 
Options 10-6 
Output listing 10-18 
Reference map 10-19 
Source listing 10-18 
Statistics 10-18 

Compiler directive lines 
N onsequenced mode 2-4 
se~uenced tnode 2-6 

COMPL intrinsic function 8-14 
Complex 

Constant 2-12 
Variable 2-20 

COMPLEX type statement 3-5 
$COMPRESSION _PROCEDURE_ 

NAME 11-142 
Computed GO TO statement 5-2 
Concatenated key 11-16; A-3 
Condition flags 9-35 
Conditfonal compilation D-3 
CONDNAM subprogram 9-3 
CONDSYM subprogram 9-4 
CONJG intrinsic function 8-14 
CONNEC routine 6-107 
Connecting a file 6-107 
Constant expression 4-1 
Constants 

Boolean 2-13 
Character 2-17 
Cotnplex 2-12 
Double precision 2-11 
Hexadecimal 2-15 
Hollerith 2-15 
Integer 2-8 
lnteger*n 2-8 
Logical 2-12 
Octal 2-14 
Real 2-9 

Content addressing 11-1 
Continuation lines 

N onsequenced mode 2-3 
Sequenced tnode 2-6 

CONTINUE statement 5-18 
Control Data Corporation Extensions 6; 

1-1; G-1 

Revision H 

DIM intrinsic function 

Conventions 6 
COS intrinsic function 8-14 
COSD intrinsic function 8-14 
COSH intrinsic function 8-14 
COTAN intrinsic function 8-14 
Counting primary-key values 11-72 
$CPN FIT value 11-142 
CPN routine 11-142 
Creating a collation table H-1 
Creating a keyed file 11-28 
Creating an object library 12-65 
CREV subprogratn 9-16 
CSIN intrinsic function 8-15 
CSOWN utility subprogratn 9-32 
CSQRT intrinsic function 8-15 
CYBIL procedures 7-24 

D 
D edit descriptor 6-30 
DABS intrinsic function 8-15 
DACOS intrinsic function 8-15 
DASIN intrinsic function 8-15 
Data block A-3 
Data-block split 11-4 
Data block split, definition A-3 
Data exit procedure 11-145 
$DATA_PADDING FIT value 11-144 
DATA statement 3-26 
Data transfer routines 6-106 
DATAN intrinsic function 8-15 
DATAN2 intrinsic function 8-16 
Date function C-5 
DATE utility subprogram 9-33 
DBLE intrinsic function 8-16 
DCOS intrinsic function 8-16 
DCOSH intrinsic function 8-16 
DDIM intrinsic function 8-16 
Deadlock 11-42 
DEBUG_AIDS parameter 10-7 
Debug Utility K-1 
Debugging K-1 
Debugging subprograms 9-25 
DECODE statetnent 6-86 
Default collating sequence C-5 
DEFAULT_COLLATION parameter 10-7 
Default data type, definition A-3 
Default, definition A-3 
Default typing 3-2 
Defining a collating sequence 

Procedure calls 12-22 
Defining sort keys 12-3 
Deleting a keyed-file record 11-52 
DELV subprogram 9-17 
Descending sort order 12-9; A-3 
Describing sort keys 12-2 
DEXP intrinsic function 8-16 
Differences between NOS/VE FORTRAN 

and NOS FORTRAN 5 C-1 
DIM intrinsic function 8-16 

FORTRAN Version 1 Language Definition Usage Index-3 



DIMENSION statement 

DIMENSION statement 3-13 
DINT intrinsic function 8-16 
Direct access 

File organization 11-8 
Files 6-81 
Input/output 6-81; A-3; E-7 
Keyed-file organization 11-8 
READ statement 6-82 
Record length calculation 6-82 
WRITE statement 6-82 

DISCON routine 6-108 
Disconnecting a file 6-108 
DISPLA utility subprogram 9-34 
Display code, definition A-3 
DISPLAY collating sequence 9-30 
Division differences C-2 
DLOG intrinsic function 8-17 
DLOGlO intrinsic function 8-17 
DLTE call 11-52 
DMAXl intrinsic function 8-17 
DMINl intrinsic function 8-17 
DMOD intrinsic function 8-17 
DNINT intrinsic function 8-17 
DO 

Extended range 5-17 
Loop 5-11 
Loop control directive D-8 
Loops map 10-26 
Nested 5-14 

DO list, implied 3-29 
DO statement 5-11 
DO variable 5-12 
Double precision 

Constant 2-11 
Variable 2-19 

DP FIT value 11-144 
DPROD intrinsic function 8-17 
DSIGN intrinsic function 8-17 
DSIN intrinsic function 8-18 
DSINH intrinsic function 8-18 
DSQRT intrinsic function 8-18 
DTAN intrinsic function 8-18 
DTANH intrinsic function 8-18 
Dummy argument 7-16 
DUMP utility subprogram 9-25 
Duplicate key value 11-13; A-4 
Duplicate key value control A-4 
DX FIT value 11-145 

E 
E edit descriptor 6-31 
EBCDIC, definition A-4 
$EC FIT value 11-147 
ECT FIT value 11-147 
Edit descriptors 

N onrepeatable 6-24 
Repeatable 6-24, 27 

Edit descriptors Nonrepeatable 6-42 
$EEN FIT value 11-148 

EXECUTE_ TASK command 

$EEP FIT value 11-148 
$EEPN value 11-148 
$EK FIT value 11-146 
$EL FIT value 11-150 
ELSE IF statement 5-6 
ELSE statement 5-6 
Embedded key, definition A-4 
$EMBEDDED_KEY FIT value 11-146 
EMK FIT value 11-146 
ENCODE statement 6-85 
END IF statement 5-7 
End-of-File, definition A-4 
End-of-Information, definition A-4 
End-of-Partition, definition A-4 
End-of-Record edit descriptor 6-49 
END= specifier 6-7 
END statement 5-20 
ENDFILE statement 6-101 
ENR procedure 12-23 
ENTER_PPE command I-4 
ENTER_ PROGRAMMING_ 

ENVIRONMENT command I-1 
Entry point, definition A-4 
Entry points map 10-27 
ENTRY statement 7-21 
Environment I-1 
EOF routine 6-103 
EOF (see End-of-File) 
$EOI 10-5 
EOI (see End-of-Information) 
Equal keys processing 
Equivalence class, definition A-4 
EQUIVALENCE statement 3-19 
EQV intrinsic function 8-18 
$ERC FIT value 11-152 
ERF intrinsic function 8-18 
ERFC intrinsic function 8-19 
ERL FIT value 11-150 
ERR= specifier 6-7 
$ERROR_COUNT FIT value 11-147 
$ERROR_EXIT_NAME FIT 

value 11-148 
$ERROR_EXIT_PROCEDURE FIT 

value 11-148 
Error handling subprograms 9-26 
ERROR_LEVEL parameter 10-8 
ERROR parameter 10-7 
$ERROR_STATUS FIT value 11-151 
Errors 

Compilation 10-18 
Execution 10-30 

ES FIT value 11-151 
ESTIMATED_NUMBER_RECORDS 

procedure 12-23 
ESTIMATED_RECORD_COUNT_FIT 

value 11-152 
EX FIT value 11-148 
Example programs 13-1 
Exception file, definition A-4 
Exclusive_ access 
EXECUTE_ TASK command 10-30 

Index-4 FORTRAN Version 1 Language Definition Usage Revision H 



Execution 

Execution 
Command 10-30 
Command parameters 10-30 
Time, definition A-4 
Time format specification 6-23 

EXIT utility subprogram 9-36 
EXN FIT value 11-148 
EXP intrinsic function 8-19 
Explain Command B-1 
Explicit typing 3-2 
EXPRESSION _EVALUATION 

parameter 10-8 
Expressions 

Arithmetic 4-1 
Boolean 4-14 
Character 4-9 
Logical 4-12 
Relational 4-10 
Rules 4-16 

EXTB intrinsic function 8-19 
Extended constant expression 4-1 
Extended Hollerith constant 2-15 
Extended internal file 6-85 
Extensible common 3-15; D-5 
External 

File, definition A-5 
Function 7-8 
Function references 7-13; A-5 
Storage device, definition A-5 

External control directive D-9 
EXTERNAL statement 3-23 

F 
F edit descriptor 6-34 
F record type, definition A-5 
Fatal/nonfatal flag 11-153 
Fetching 

FIT values 11-66 
$Fl FIT value 11-154 
Field, definition A-5 
File 

Access methods 6-2 
Association 6-90 
Attributes 6-1; A-5; E-3, 5 
Connection routines 6-107 
Cycle, definition A-5 
Definition A-5 
Direct access 6-81 
Information table (FIT) A-5 
Internal 6-83 
Name 6-1 
Name substitution 10-32 
Opening 6-3 
Organization, definition A-5 
Physical 6-4 
Positioning 6-99; 10-5; A-5 
Reference, definition A-5 
Segment access 6-88 
Standard system 6-4 

Revision H 

Status statements 6-90 
Structure E-4 
Use of 6-1 

File and record definition E-3 
File attribute defaults E-5 
File attributes 

Compiler output files E-7 
Keyed-files 11-28 
Run time files E-5 

FORTRAN 

$FILE_ID~NTIFIER FIT value 11-154 
File information table (see FIT) 
File interface 11-1 
File Management Utility (FMU) 1-3 
File Migration Aid (FMA) 1-3 
$FILE_ORGANIZATION FIT 

value 11-155 · 
$FILE_POSITION FIT value 11-156 
File positioning statements 6-99 
File status statements 6-90 
FILEDA call 11-54 
FILEIS call 11-55 
FIT 

Creation calls 11-54 
Keywords 11-133 
Values 11-133 

FLOAT intrinsic function 8-19 
Floating-point number, definition A-6 
Flush request, definition A-6 
Flushing, definition A-6 
FLUSHM call 11-57 
FMT = specifier 6-6 
FMU (see File Management Utility) 
FORCED_SAVE parameter 10-9 
$FORCED_ WRITE value 11-157 
Format identifier 6-6 
Format specification 

Character 6-22 
Description 6-20 
Execution time 6-23 
N oncharacter 6-23 

FORMAT statement 6-21 
Formatted 

PRINT statement 6-17 
PUNCH statement 6-19 
READ statement 6-11 
WRITE statement 6-14 

FORTRAN 
Callable subprograms 9-1 
Character set 2-1 
Collating sequence control 

subprograms 9-30 
Command 10-1 
Command examples 10-17 
Compile command 10-1 
Compiler 1-1 
Debugging subprograms 9-25 
Differences between NOSNE 

FORTRAN and FORTRAN 5 C-1 
Error handling subprograms 9-26 
Example programs 13-1 
Execution command 10-30 

FORTRAN Version 1 Language Definition Usage Index-5 



FORTRAN Version 2 subprograms 

In the NOSNE Environment 1-5 
Input/output related subprograms 9-37 
Keyed-file interface 

Concepts 11-1 
Sort/Merge subprograms 12-1 
Statements 2-1, 30 
Syntax 2-1 
System Command Language 

subprograms 9-6 
Utility subprograms 9-23 

FORTRAN Version 2 subprograms 7-31 
FP FIT value 11-156 
FUNCTION statement 7-8 
Function subprogram 7-8 
$FW FIT value 11-157 

G 
G edit descriptor 6-36 
$GAL value 11-159 
General utility subprograms 1-4; 9-23 
Generic function name, definition 8-2; 

A-6 
$GET_AND_LOCK value 11-159 

. GET call 11-58 
GETBVAL subprogram 9-9 
GETCVAL subprogram 9-10 
GETIVAL subprogram 9-10 
GETN call statement 11-63 
GETNR call statement C-5 
GETPARM subroutine C-9 
GETSCNT subprogram 9-11 
GETSVAL subprogram 9-11 
GETVCNT subprogram 9-13 
GETVREF subprogram 9-13 
Glossary A-1 
GO TO statements 

Assigned 5-3 
Computed 5-2 
Unconditional 5-1 

Graphic character, definition A-6 

H 
H edit descriptor 6-46 
Hashing 11-11 
Hashing procedure 11-11 
$HASHING_PROCEDURE_ 

NAME 11-160 
Hexadecimal constant 2-15 
Home block 11-8 
$HPN FIT value 11-160 

I 
I edit descriptor 6-37 
110 Implementation E-1 
IABS intrinsic function 8-19 
!CHAR intrinsic function 8-20 
IDIM intrinsic function 8-20 

Input/Output 

!DINT intrinsic function 8-20 
IDNINT intrinsic function 8-20 
IF statements 

Arithmetic 5-4 
Block 5-6 
Logical 5-5 
Nested 5-10 

!FETCH call 11-66 
IFIX intrinsic function 8-20 
$1HBC FIT value 11-163 
$IL FIT value 11-161 
IMPLICIT NONE type statement 3-10 
Implicit type, definition A-6 
IMPLICIT type statement 3-10 
Implicit typing 3-2 
Implied DO list 3-29; 6-9 
Indefinite value, definition A-6 
Index 

Blocks 11-2; A-6 
Key types 6-72 
Level, definition A-6 
Level overflow, definition A-6 
Master 6-73 
Multilevel file 6-73 
·Record, definition A-7 

Index-block split 11-4 
Index block split, definition A-6 
INDEX intrinsic function 8-20 
Index-level-overflow flag 11-5 
Index levels 11-5 
$INDEX_LEVELS FIT value 11-161 
$INDEX_PADDING FIT value 11-166 
Indexed sequential 

Blocks 11-2 
Definition A-7 
File organization 11-2 
Primary keys 11-7 

Infinite value, definition A-7 
$INITIAL_HOME_BLOCK_COUNT FIT 

value 11-163 
Initial lines 

N onsequenced mode 2-3 
Sequenced mode 2-5 

Inline comments 2-6 
Inline intrinsic function 8-1 
Input/Output 

Buffer 6-69 
Differences C-6 
File interface 11-1 
Formatted 6-11 
Implementation E-1 
Internal 6-83 
Introduction 6-1 
List directed 6-55 
Lists 6-8 
Mass storage 6-71 
N amelist 6-62 
Related subprograms 6-90 
Restrictions 6-5 
Run-time G-1 
Statement specifiers 6-6 

lndex-6 FORTRAN Version 1 Language Definition Usage Revision H 



INPUT parameter 

Status checking routines 6-101 
Syntax· summary F-6 
Unformatted 6-51 
Units 6-3 
Units map 10-28 

INPUT parameter 10-10 
Inquire by file 6-95 
Inquire by unit 6-95 
INQUIRE statement 6-95 
INSB intrinsic function 8-21 
Instance of open A-7 
INT intrinsic function 8-21 
INTCOND subprogram 9-4 
Integer 

Constant 2-8 
Four-byte 2-8 
Two-byte 2-8 

Integer key 11-7; A-7 
Integer key type 12-6 
lnteger*n 

Constants 2-8 
Internal 

Data transfer routines 6-106 
READ statement 6-84 
WRITE statement 6-83 

Internal File 
Definition A-7 
Extended 6-85 
Standard 6-83 

Intrinsic functions 
Domain 8-8 
Mathematical 8-1 
Range 8-8 

INTRINSIC statement 3-25 
Introduction to inputJoutput 6-1 
Introduction to NOSNE FORTRAN 1-1 
Invalid records 12-13 
IOCHEC routine 6-103 
IOSTAT = specifier 6-7 
IP FIT value 11-166 
!SIGN intrinsic function 8-21 
Iteration count 5-12 

J 
JDATE utility subprogram 9-33 
Job, definition A-7 
Job log, definition A-7 

K 
KA FIT value 11-164 
$KEY_ADDRESS FIT value 11-164 
Key, definition A-7 
$KEY_LENGTH 11-165 
Key length and position 12-3 
Key list, definition A-7 
$KEY_NAME FIT value 11-166 
$KEY_POSITION FIT value 11-167 
$KEY_RELATION FIT value 11-168 

Revision H 

Key type 12-4 
Key Type 

Definition A-8 

LLE intrinsic function 

$KEY_ TYPE FIT value 11-169 
Key types 11-7 
Keyed-file 

Attributes 11-28 
Calls 11-42 
Collation tables H-1 
Concepts 11-1 
Error processing 11-26 
Organizations 11-1 
Sharing 11-35 

Keyed-File calls 1-4 
Keyed-File Calls 1-3 
Keyed-file organization, definition A-8 
KEYLIST call 11-68 
Keyword, definition A-8 
KL FIT value 11-165 
KLCOUNT call 11-72 
KLSPACE call 11-76 
KN FIT value 11-166 
$KP FIT value 11-167 
$KR FIT value 11-168 
KT FIT value 11-169 

L 
L edit descriptor 6-38 
LABEL subroutine C-9 
Language elements 2-1 
Language syntax summary F-1 
$LAST_OPERATION FIT value 11-170 
LEGVAR utility subprogram 9-26 
LEN intrinsic function 8-21 
LENGTH routine 6-104 
LENGTHB function 6-104 
LENGTHX routine 6-104 
$LET value 11-172 
LFN FIT value 11-171 
LGE intrinsic function 8-21 
LGT intrinsic function 8-21 
$LI value 11-173 
Library, definition A-8 
LIMERR utility subprogram 9-29 
Lines 

Continuation 2-3, 6 
N onsequenced mode 2-3 
Sequenced 2-5 

LINPUT_SOURCE_MAP 
parameter 10-10 

List directed 
PRINT statement 6-59 
PUNCH statement 6-59 
READ statement 6-55 
WRITE statement 6-59 

LIST_OPTIONS parameter 10-11 
LIST parameter 10-10 
Listing control directives D-2 
LLE intrinsic function 8-22 

FORTRAN Version 1 Language Definition Usage lndex-7 



LLT intrinsic function 

LLT intrinsic function 8-22 
Load time, definition A-8 
Loader control D-5 
Local file name, definition A-8 
$LOCAL_FILE_NAME FIT 

value 11-171 
Local path, definition A-8 
LOCF function C-8 
Lock 

Clearing 11-40 
Concepts 11-36 
Deadlock 11-42 
Expiration 11-40 
Intent 
Manager 11-36 

Lock, definition .A-8 
$LOCK_EXPIRATION TIME 

value 11-172 
$LOCK_INTENT value 11-173 
LOCKF call 11-80 
LOCKK call 11-82 
Log, definition A-8 
LOG intrinsic function 8-22 
Logical 

Assignment 4-21 
Constants 2-12 
Expressions 4-12 
IF statements 5-5 
Operators 4-12, 14 
Variables 2-20 

LOGICAL type statement 3-6 
Login, definition A-8 
Logout, definition A-8 
LOG 10 intrinsic function 8-22 

M 
MACHINE_DEPENDENT 

parameter 10-11 
Main program 7-3 
Major key, definition A-9 
$MAJOR_.KEY_LENGTH FIT 

value 11-174 
Major sort key, definition A-9 
Manuals, ordering 7 
Maps 

Common and equivalence 10-24 
DO loops 10-26 
Entry points 10-27 
General format 10-20 
Input/output units 10-28 
Namelist 10-23 
Procedures 10-27 
Statement labels 10-25 
Symbolic constants 10-23 
Unclassified names 10-28 
Variables 10-21 

MASK intrinsic function 8-22 

NAMELIST statement 

Mass storage 
CLOSMS statement 6-76 
Definition A-9 
File, definition A-9 
Input/output 1-1; 6-71; A-9 
Input/output examples 6-77 
OPENMS statement 6-74 
Random file 6-71 
READMS statement 6-75 
STINDX statement 6-76 
WRITMS statement 6-74 

Master index 6-76 
Math Library 8-1 
MAX intrinsic function 8-22 
$MAXBL FIT value 11-175 
$MAXIMUM_BLOCK_LENGTH FIT 

value 11-175 
$MAXIMUM_RECORD_LENGTH FIT 

value 11-176 
$MAXRL FIT value 11-176 
MAXO intrinsic function 8-22 
MAXI intrinsic function 8-23 
MBL FIT value 11-175 
$MC FIT value 11-177 
Media, definition A-9 
Merge, definition A-9 
$MESSAGE_CONTROL FIT 

value 11-177 
MIN intrinsic function 8-23 
$MINIMUM_RECORD_LENGTH FIT 

value 11-178 
Minor sort key, definitio.n A-9 
$MINRL FIT value 11-178 
MINO intrinsic function 8-23 
MINI intrinsic function 8-23 
MKL FIT value 11-174 
MNR FIT value 11-178 
MOD intrinsic function 8-23 
Module, definition A-9 
MOVLCH routine 6-107 
MOVLEV routine 6-106 
MRL FIT value 11-178 
Multilevel file indexing 6-73 
Multiple 

Assignment statement 4-22 
Procedure entry 7-21 

Multiple keys 12-2 

N 
Named common block 3-15; A-9 
Namelist 

Arrays in 6-68 
Input/output 1-1 
Map 10-23 
PRINT statement 6-66 
PUNCH statement 6-66 
READ statement 6-62 
WRITE statement 6-66 

NAMELIST statement 6-62 

lndex-8 FORTRAN Version 1 Language Definition Usage Revision H 



NEQV intrinsic function 

NEQV intrinsic function 8-23 
Nested 

DO loops 5-14 
IF statements 5-10 

$NESTED_FILE_NAME FIT 
value 11-179 

Nested files 11-24 
$NFN FIT value 11-179 
NINT intrinsic function 8-23 
Non-ANSI features G-1 
N oncharacter format specification 6-23 
Nonembedded key, definition A-9 
Nonfatal error (see Trivial error) 
N onrepeatable edit descriptors 

Apostrophe 6-46 
BN 6-44 
BZ 6-44 
Colon 6-50 
End-of-Record 6-49 
H 6-46 
p 6-43 
Quote 6-46 
S, SS, and SP 6-45 
Slash 6-49 
T, TR, and TL 6-48 
x 6-47 

N onsequenced 
Comment lines 2-4 
Compiler directive lines 2-4 
Continuation lines 2-3 
Identification field 2-3 
Initial lines 2-3 
Mode 2-3 
Positions 73 and beyond 2-4 
Statement labels 2-3 

Normalized floating point number, 
definition A-10 

NOSNE environment 1-3 
NOSNE status subprograms 9-2 
Null suppression 11-14; A-10 
Null values 11-14 
Numeric data formats 12-5 
NUMERIC_FS key type 12-6 
NUMERIC_LO key type 12-7 
NUMERIC_LS key type 12-7 
NUMERIC_NS key type 12-7 
NUMERIC_ TS key type 12-7 
NUMERR utility subprogram 9-29 

0 
0 edit descriptor 6-39 
Object 

Code, definition A-10 
Library, definition A-10 
Program 1-2 

Object Code Utility (OCM) 1-3 
OC FIT value 11-181 
Octal constant 2-14 
OCU (see Object Code Utility) 

Revision H 

Old/new flag 11-180 
ON FIT value 11-180 

OWNn procedure 

ONE_ TRIP _DO parameter 10-12 
Online Manuals B-1 
OP FIT value 11-182 
Open, definition A-10 
$OPEN _POSITION FIT value 11-182 
OPEN statement 6-90 
Opening a file 6-3 
Opening a keyed file 11-85 
OPENM call 11-85 
OPENMS statement 6-7 4 
Operator 

Arithmetic 4-2 
Boolean 4-14 
Character 4-9 
Logical 4-12, 14 
Precedence 4-16 
Relational 4-10 

Optimization 10-13; A-10 
OPTIMIZATION _LEVEL 

parameter 10-13 
OR intrinsic function 8-24 
Organization, manual 5 
OSV$ASCil6_FOLDED collating 

sequence J-6 
OSV$ASCil6_STRICT collating 

sequence J-8 
OSV$COBOL6_FOLDED collating 

sequence J-10 
OSV$COBOL6..:.:STRICT collating 

sequence J-12 
OSV$DISPLAY63_FOLDED collating 

sequence J-14 
OSV$DISPLAY63_STRICT collating 

sequence J-16 
OSV$DISPLAY64_FOLDED collating 

sequence J-18 
OSV$DISPLAY64_STRICT collating 

sequence J-20 
OSV$EBCDIC collating sequence J-22 
OSV$EBCDIC6_FOLDED collating 

sequence J-29 
OSV$EBCDIC6_STRICT collating 

sequence J-31 
Output listing file 10-11 
Own code 

Definition A-10 
Routines 12-52 

OWNCODE_PROCEDURE n 
procedure 12-38 

Owncode procedure parameters 12-55 
OWNMRL procedure 12-37 
OWNn procedure 12-38 

FORTRAN Version 1 Language Definition Usage Index-9 



P edit descriptor 

p 

P edit descriptor 6-43 
PACKED key type 12-8 
PACKED_NS key type 12-8 
Padding 11-4; A-10 
PAGE_AGING interval 12-16 
Parameter interface subprograms 9-8 
PARAMETER statement 3-14 
Parameters 

Compile command 10-1 
Execution command 10-30 

Partition, definition A-10 
Pass by reference, definition A-10 
Pass by value, definition A-10 
Path, definition A-10 
PAUSE statement 5-19 
PD FIT value 11-136 
PDUMP utility subprogram 9-25 
Performance considerations 12-15 
Performance Hint 2-8, 9, 11, 20, 22, 23; 

3-18, 28; 4-19; 5-14 
Performance hint 6-5 
Performance Hint 7-7, 9, 15, 20; 10-12, 

13, 16 
Permanent file, definition A-11 
Physical file 6-4 
Piece, definition A-11 
Piece of a concatenated key 11-16 
PKA FIT value 11-183 
PMDLOAD call statement C-5 
Positioning a keyed file 

REWND call 11-96 
SKIP call 11-123 
STARTM call 11-126 

Positions 73 and beyond 
N onsequenced mode 2-4 

Positions 73 through 80 
Precedence among operators 4-16 
Preserve_ access_ and_ content 
Preserve_content 
Primary key 

Definition A-11 
Direct-access 11-11 
Indexed-sequential 11-7 

$PRIMARY_KEY_ADDRESS FIT 
value 11-183 

Print limit 10-31 
PRINT statement 

Formatted 6-17 
List directed 6-59 
Namelist 6-66 

Printer control character 6-50 
Procedure 

Argument association 7-16 
Arguments 7-18 
Communication 7-12 
Definition 7-1; A-11 
Entry 7-21 
Maps 10-27 
Return 7-22 

Record length FIT value 

Product identifier 'J 
Professional Programming 

environment 1-4 
Program Execution Command 

Parameters 9-6 
Program library list, definition A-11 
PROGRAM statement 7-4 
PROGRAM statement usage 7-5 
Program units 7-1; A-11 
Programming environment 1-1 
PTR intrinsic function 7-29; 8-24 
PUNCH statement 

Formatted 6-19 
List directed 6-59 
N amelist 6-66 

PUT call 11-89 
PUTREP call 11-92 

Q 
Quote edit descriptor 6-46 

R 
R edit descriptor 6-41 
Random 

Access, definition A-11 
File 6-71; A-11 
Number generation 9-24 

Random Access methods 6-2 
Random file organization, 

definition A-11 
RANF intrinsic function 8-24 
RANGET utility subprogram 9-24 
RANSET utility subprogram 9-24 
RB FIT value 11-187 
READ statement 

Direct access 6-82 
Formatted 6-11 
Internal 6-84 
List directed 6-55 
N amelist 6-62 
Unformatted 6-53 

Reading a keyed-file record 
READMS statement 6-75 
Real 

Constant 2-9 
Variable 2-19 

REAL intrinsic function 8-24 
REAL key type 12-8 
Real*n 

Constants 2-8 
REC= specifier 6-7 
Record 

Definition A-11 
Length, definition A-11 
Specifier 6-7 

Record and file definition E-3 
Record length 12-10 
Record length FIT value 11-184 

Index-10 FORTRAN Version 1 Language Definition Usage Revision H 



$RECORD_LIMIT FIT value 

$RECORD_LIMIT FIT value 11-185 
$RECORD_ TYPE FIT value 11-186 
$RECORDS_PER_BLOCK FIT 

value 11-187 
Recovery, definition A-11 
RECOVR call statement C-2 
REDBVAR subprogram 9-17 
REDCVAR subprogram 9-18 
REDIVAR subprogram 9-18 
REDSVAR subprogram 9-19 
Reference 

Listing, definition A-11 
Map 1-2; 10-19 

Related Manuals B-2 
Relational 

Expressions 4-10 
Operators 4-10 

Relative key word FIT value 11-188 
Relocatable, definition A-12 
REMARK utility subprogram 9-34 
Repeatable edit descriptors 

A 6-28 
A for a noncharacter list item 6-29 
D 6-30 
E 6-31 
F 6-34 
G 6-36 
I 6-37 
L 6-38 
0 6-39 
R 6-41 
z 6-41 

Repeating groups 11-17; A-12 
Replacing a keyed-file record 

PUTREP call 11-92 
REPLC call 11-94 

REPLC call 11-94 
Result array 
Result sets 

Combining 11-44 
RETA procedure 12-39 
RETURN statement 7-22 
Rewind, definition A-12 
REWIND statement 6-100 
Rewinding a keyed file 11-96 
REWND call 11-96 
RKW FIT value 11-188 
$RL FIT value 11-185 
RMKDEF call 11-97 
RSBUILD call 11-103 
RSCLEAR call 11-107 
RSCLOSE call 11-108 
RSCOMB call 11-109 
RSDLTE call 11-111 
RSGETN call 11-112 
RSINFO call 11-115 
RSOPEN call 11-117 
RSPUT call 11-119 
RSREWND call 11-120 
RSSKIP call 11-121 
RSSTART call 11-122 

Revision H 

SM5END procedure 

Rules for expressions 4-16 
Run time 

Definition A-12 
Input/output E-1 

RUN_ TIME_CHECKS parameter 10-13 

s 
S, SS, and SP edit descriptors 6-45 
SAVE statement 3-22 
$SC FIT value 11-189 
SCL (see System Command Language) 
SCLCMD subprogram 9-22 
SCLKIND subprogram 9-14 
Screen Design Facility (SDF) 1-4 
Screen Formatting 1-4 
SCU (see Source Code Utility) 
SECOND utility subprogram 9-33 
SEEKF call statement C-5 
Segment access files 6-3, 88; D-6 
Segment Access Files 1-1 
Selecting a key 11-31 
Selecting Collation Table for Indexed 

Sequential Files H-1 
Sequenced 

C$ directives 2-6 
Comment lines 2-6 
Compiler directive lines 2-6 
Continuation lines 2-6 
Initial lines 2-5 
Mode 2-5 
Statement labels 2-5 

SEQUENCED_LINES parameter 10-14 
Sequential 

Access, definition A-12 
Access, description 6-2 
Access input/output 6-2; A-12; E-7 
File Organization, definition A-12 

Set_File_Attribute Command E-6 
Setting a FIT value 

FILEDA call 11-54 
FILEIS call 11-55 
STOREF call 11-128 

Share modes 11-35 
SHIFT intrinsic function 8-25 
Short records 12-10 
Sign, definition A-12 
SIGN intrinsic function 8-25 
SIN intrinsic function 8-25 
SIND intrinsic function 8-25 
SINH intrinsic function 8-25 
SKIP call 11-123 
$SKIP_COUNT FIT value 11-189 
SKP FIT value 11-189 
Slash edit descriptor 6-49 
SM5CC procedure 12-18 
SM5DUCT procedure 12-19 
SM5E procedure 12-20 
SM5EL procedure 12-21 
SM5END procedure 12-22 

FORTRAN Version 1 Language Definition Usage Index-11 



SM5ENR procedure 

SM5ENR procedure 12-23 
SM5ERF procedure 12-24 
SM5FMA procedure 12-25 
SM5FROM procedure 12-26 
SM5KEY procedure 12-29 
SM5LCT procedure 12-30 
SM5LIST procedure 12-31 
SM5LO procedure 12-32 
SM5MERG procedure 12-33 
SM50FL procedure 12-35 
SM50MIT procedure 12-36 
SM50MRL procedure 12-37 
SM50WNn procedure 12-38 
SM5RETA procedure 12-39 
SM5SEQA procedure 12-40 
SM5SEQN procedure 12-41 
SM5SEQR procedure 12-42 
SM5SEQS procedure 12-43 
SM5SORT procedure 12-44 
SM5ST procedure 12-45 
SM5SUM procedure 12-46 
SM5TMA procedure 12-47 
SM5TO procedure 12-48 
SM5VER procedure 12-50 
SM5ZLR procedure 12-51 
SNGL intrinsic function 8-25 
Sort, definition A-12 
Sort key, definition A-12 
Sort keys 12-2 
Sort/Merge Calls 1-3 
Sort/merge example 12-62 
Sort order, definition A-12 
Source 

Code, definition A-12 
Listing 10-18; A-13 
Program 1-2 

Source Code Utility (SCU) 1-3 
Source Library A-12 
Sparse key control A-13 
Specific function name 8-2 
Specific function name, definition A-13 
Specification statements 3-1 
SQRT intrinsic function 8-26 
SSWTCH utility subprogram 9-34 
Standard 

Internal files 6-83 
System files 6-4 
Unit 6-4 

Standard FORTRAN capabilities 1-1 
STANDARDS_ DIAGNOSTICS 

parameter 10-14 
STARTM call 11-126 
Statement 

Function 7-11 
Function reference 7-13 

Statement labels 
Map 10-25 
N onsequenced mode 2-3 
Sequenced mode 2-5 

Statement order 2-28 
Statistics, definition A-13 

TO procedure 

Status checking routines 6-101 
STATUS parameter 10-15 
STATUS variable, definition A-13 
STINDX call statement 6-76 
STOP statement 5-19 
STOREF call 11-128. 
Storing a FIT value 11-128 
STRACE utility subprogram 9-25 
Strings (see Character) 
Subindex type 6-73 
Subprograms 

Block data 7-10 
COBOL 7-27 
Collating sequence control 9-30 
Command interface 9-22 
CYBIL 7-24 
Debugging 9-25 
Error handling 9-26 
FORTRAN-callable 9-1 
FORTRAN Version 2 7-31 
Function 7-8 
Parameter interface 9-8 
Subroutine 7-5 
Utility 9-23 
Variable interface 9-15 

Subroutine subprogram 7-6 
Substring references 2-27 
Substrings and arrays 2-28 
Sum fields, definiton A-13 
Summing 12-46 · 
Summing, definition A-13 
Summing records 12-68 
SUMlS intrinsic function 8-26 
Symbolic constant 3-14 
Symbolic constants map 10-23 
Symbolic names 2-7 
System Command Language (SCL) 

Definition A-13 
Parameter interface subprograms 9-8 
Parameters 9-6 
STATUS parameter 10-31 
Subprograms 1-4; 9-6 
User-defined parameters 10-32 
Variable interface subprograms 9-15 

SYSTEM utility subprogram 9-26 
SYSTEMC utility subprogram 9-27 

T 
T, TR, and TL edit descriptors 6-48 
TAN intrinsic function 8-26 
TAND intrinsic function 8-26 
TANH intrinsic function 8-26 
TARGET_MAINFRAME 

parameter 10-15 
Task, definition A-13 
TERMINATION_ERROR_LEVEL 10-16 
Time function C-5 
TIME utility subprogram 9-33 
TO procedure 12-48 

Index-12 FORTRAN Version 1 Language Definition Usage Revision H 



Traceback 

Traceback 9-25; A-13 
Transferring data 6-106 
Tri vial-error 
TSTPARM subprogram 9-14 
TSTRANG subprogram 9-14 
Type declaration statements 

BOOLEAN 3-6 
CHARACTER 3-7 
COMPLEX 3-5 
Description 3-2 
DOUBLE PRECISION 3-5 
INTEGER 3-3 
LOGICAL 3-6 
REAL 3-4 
Syntax summary F-2 

Typing 

u 

Default 3-2 
Explicit 3-2 

U Record type, definition A-14 
Unclassified names map 10-28 
Uncollated key 11-7; A-14 
Unconditional GO TO statement 5-1 
Unformatted 

Input/output 6-51 
READ statement 6-53 
WRITE statement 6-51 

Unit identifier 6-6; A-14 
UNIT routine 6-102 
UNIT= specifier 6-6 
UNLOCKF call 11-130 
UNLOCKK call 11-131 
Update recovery log A-14 
UPKSTAT subprogram 9-5 
User-Defined System Command Language 

Parameters 10-32 
Utility A-14 
Utility subprograms 9-23 

v 
V record type A-14 
Variable interface subprograms 9-15 
Variables 

Boolean 2-20 
Character 2-20 
Complex 2-20 

Double precision 2-19 
Integer 2-18 
Logical 2-20 
Real 2-19 

Variables map 10-21 
VER procedure 12-50 
VERIFY procedure 12-50 

w 

Zero-length records 

$WAIT_FOR_LOCK value 11-190 
$WFL value 11-190 
Word A-14 
$WORKING_STORAGE_ADDRESS FIT 

value 11-191 
Working storage area 11-191; A-14 
$WORKING_STORAGE_LENGTH FIT 

value 11-192 
WRITE statement 

Direct access 6-82 
Formatted 6-14 
Internal 6-83 
List directed 6-59 
N amelist 6-66 
Unformatted 6-51 

Writing a keyed-file record 
PUT call 11-89 
PUTREP call 11-92 

Writing FORTRAN statements 2-1 
WRITMS call statement 6-74 
WRTBVAR subprogram 9-20 
WRTCVAR subprogram 9-20 
WRTIVAR subprogram 9-21 
WRTSVAR subprogram 9-21 
WSA FIT value 11-191 
WSL FIT value 11-192 
WTSET subprogram 9-32 

x 
X edit descriptor 6-47 
XOR intrinsic function 8-26 

z 
Z edit descriptor 6-41 
Zero-length records 12-12 

Revision H FORTRAN Version 1 Language Definition Usage Index-13 





FORTRAN Version 1 Language Definition Usage 60485913 H 

We value your comments on this manual. While writing it, we made some assumptions about who would use 
it and how it would be used. Your comments· will help us improve this manual. Please take a few minutes 
to reply. 

Who are you? How do you use this manual? 

D Manager D As an overview 
D Systems analyst or programmer 
D Applications programmer 

D To learn the product or system 
D For comprehensive reference 

D Operator D For quick look-up 
D Other ________________ ~ 

What programming languages do you use? ---------------------------

How do you like this manual? Check those questions that apply. 

Yes Somewhat No 
D D D Is the manual easy to read (print size, page layout, and so on)? 

D D D Is it easy to understand? 

D D D Does it tell you what you need to know about the topic? 

D D D Is the order of topics logical? 

D D D Are there enough examples? 

D D D Are the examples helpful? (0 Too simple? D Too complex?) 

D D D Is the technical information accurate? 

D D D Can you easily find what you want? 

D D D Do the illustrations help you? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Would you like a reply? D Yes D No 

From: 

Name Company 

Address Date 

Phone 

Please send program listing and output if applicable to your comment. 



Comments (continued from other side) 

Please fold on dotted line; 
seal edges with tape only. --------------

FOLD 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technology & Publications Division 
SVL104 
P.O. Box 3492 
Sunnyvale, CA 94088-3492 

__________ J 

NOPOSTAC 
NECESSAR 
IFMAILEI 

IN THE 
UNITED STA' 

11.1 ••• 1 •• 111 ••• 1 •• 1.1 •• 1 ••• 11 •• 1 •• 11.1 •••• 1.1 .. 11.1 





@: 2) CONTR.OL DATA 


