CYBIL for NOS/VE c5
Keved-File and Sort/Merge CONTROL
Interfaces EFVA

Usage 60464117

CYBIL for NOS/VE
Keved-File and Sort/Merge
Interfaces

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464117

Related Manuals

Background (Access as Needed):

scL ‘ scL I scL
Language ‘ System Advanced
Definition | Interface File
Usage | — | Usage Management
Usage
60464013 60464014 60486113
CYBIL Manual Set:
CYBIL CYBIL CYBIL
Language File Sequential
Definition Management and Byte-
Usage > Usage Addressabie
Files Usage
60464113 60464114 60464116
E
Additional References:
Diagnostic ’ SCL SCL
Messages | Source Code Object Code
for Management Management
NOS/VE Usage Usage
60464613 @) 60464313 60464413

— Indicates the reading sequence.

g Indicates an online version of the manual is available.

© 1985 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

2 CYBIL Keyed-File and Sort/Merge Interfaces

CYBIL
System
Interface
Usage

60464115

Revision B

Manual History

This revision:

Revision B documents the CYBIL interfaces to AAM 1.1 and Sort/Merge 1.1
. for NOS/VE Version 1.1.3 at PSR level 644. It was printed in October, 1985.

This revision documents the new keyed-file interface features: nested files,
write concurrency (locks), and direct-access file organization, and the new
Sort/Merge features: individual procedure declaration decks and
indexed-sequential file support.

Previous System Version/ Product Published
Revision PSR Level Version Date
A 1.1.2/630 1.0 March 1985

Revision B CYBIL Keyed-File and Sort/Merge Interfaces 3/4 @

® Contents

About ThisManual i, 7
‘lntroduction ... Introduction-1

Part 1. Keyed-File Interface

Keyed-File Conceptsoviiiiiiiiiiiii i I-1-1
Using the CYBIL Keyed-File Interface 1-2-1
Keyed-File Interface Callscooiiiiiiiiiiiiiiiinin. I-3-1
Keyed-File Attributes.................. e I-4-1

Part II. Sort/Merge Interface

Introduction to Sort/Mergeuuut 1I-1-1
Sort/Merge Procedure Callsccoiiiiiiiiiiiiiiiiieai s, 11-2-1
Owncode Procedures.t e 11-3-1
Appendixes

GlOSSaTY . ottt ettt e e e A-1
ASCIICharacter Setcouveieiii e B-1
Constant and Type Declarationsccciiviiiiiii i, C-1
Collation Tablesooii it e e et D-1
Common Procedures.ttt iiiiiiii e E-1
Index ... Index-1

Revision B Contents 5/6 @

About This Manual

This manual describes CONTROL DATA® CYBIL procedure calls that serve
as the interface between the CDC® Network Operating System/Virtual
Environment (NOS/VE) and CYBIL programs. CYBIL is the
implementation language for NOS/VE.

The CYBIL program interface is described in these manuals:

CYBIL File Management

CYBIL Sequential and Byte Addressable Files
CYBIL Keyed-File and Sort/Merge Interfaces
CYBIL System Interface

This manual, CYBIL Keyed-File and Sort/Merge Interfaces Usage,
describes the interfaces that allow CYBIL programs to use keyed files and
the Sort/Merge package.

Audience

This manual is a reference for CYBIL programmers. It assumes that the
reader knows the CYBIL programming language as described in the CYBIL
Language Definition manual.

To use the procedure calls described in this manual, the programmer must
copy decks from a system source library. Although the manual introduction
provides a brief description of the commands required to copy decks, the
complete description is in the SCL Source Code Management manual.

This manual also assumes that the reader is familiar with the NOS/VE
command interface, the System Command Language (SCL). All commands
referenced in this manual are SCL commands. The SCL command syntax is
described in the SCL Language Definition manual; SCL commands are
described in the SCL System Interface and SCL Advanced File Management
manuals.

Revision B About This Manual 7

Preface

CYBIL Manual Set

This manual belongs to the CYBIL manual set. Besides this manual, the .
CYBIL manual set is composed of these manuals:

CYBIL Language Definition

Contains the complete language specification for CYBIL, the NOS/VE I

implementation language, and an explaination of the Debug utility as
used with CYBIL.

CYBIL File Management

Describes the procedure calls that interface between a CYBIL program
and the NOS/VE file system. It describes local file management and
the assignment of files to device classes with a chapter describing each

device class. It also describes file attribute definition and file opening
and closing.

CYBIL Sequential and Byte Addressable Files

Describes the procedure calls that allow a CYBIL program to read and

write sequential and byte addressable files. It describes both segment
access and record access.

CYBIL System Interface
Describes system-defined CYBIL procedures that serve as the interface
between a program and non-1/0 system capabilities. It describes

program management, condition processing, interstate
communication, and system command language (SCL) calls.

8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Preface

Manual Organization

This manual, CYBIL Keyed-File and Sort/Merge Interfaces, contains:
e An introduction that applies to both part I and part II
‘ e Part I describing the keyed-file interface
® Part II describing the Sort/Merge interface
e Appendixes including:
- Glossary
- ASCII character set listing
- Alphabetical listing of CYBIL constant and type declarations

- Description of how to create and use collation tables and listings of the
NOS/VE predefined collation tables.

- Source listings of the CYBIL procedures used to report status in the
example programs

. Conventions

This manual uses these conventions:

boldface Denotes the required parts of a format.

italics Denotes the optional parts of a format.

blue Denotes user input within interactive session
examples.

UPPERCASE In formats, it denotes the parts of the format that

must be entered exactly as shown. In text, names
and identifiers are shown in uppercase.

lowercase In formats, it denotes the parts of the format that the
user supplies.

nonproportional Denotes examples (the nonproportional typeface

typeface simulates computer output). User input is indicated
. by blue print, system output by black print.
number base All numbers are decimal unless otherwise indicated.

Revision A About This Manual 9

Preface

l Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

() A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please tell us about any
errors you found in this manual and any problems you had using it.

If the comment sheet in this manual has been used, please send your
comments to:

Control Data Corporation
Publications and Graphics Division
P.O. Box 3492

Sunnyvale, California 94088-3492

Please include this information with your comments:

The manual title, publication number, and revision level (for this manual:
CYBIL Keyed-File and Sort/Merge Interfaces Usage, 60464117 B)

Your system’s PSR level (if you know it)

Your name, your company’s name and address, your work phone number,
and whether you want a reply

Also, if you have access to SOLVER, the CDC online facility for reporting
problems, you can use it to submit comments about this manual. When it
prompts you for a product identifier for your report, please specify AA8 when
commenting on the keyed-file interface and SM8 when commenting on the
Sort/Merge interface.

10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

How to Use CYBIL Program
® Interface Calls

Copying Procedure Decks Into Your Program 1
Procedure Deck Namesoiiiiiiiiiinieiiiiiiiieenennann 2

. Expanding Your Program.......... ...ttt 2
Executing Your Program........... ... o 2.1
Procedure Callsin Your Program................o it 3
Status ChecKingttt it ettt ettt eieaaanaeaaans 4
Exception Condition Information................... .. .o e, 4

System Naming Conventioncutiiiiiiiieieiiiinneeennnnns 6

How to Use CYBIL Program
@ Interface Calls

NOS/VE provides a set of CYBIL procedures, called the program interface,

. by which programs can request system services. This manual describes two
parts of the program interface: the keyed-file interface and the Sort/Merge
interface. The rest of the program interface is described in the CYBIL File
Management, CYBIL Sequential and Byte Addressable Files, and CYBIL
System Interface manuals.

Copving Procedure Decks Into Your
Program

The CYBIL procedure declarations for the CYBIL program interface
procedures reside in decks in a system source library. To use a program
interface procedure, you copy the text from the appropriate decks into the
source text of your program. (This process is described in detail in the SCL
Source Code Management manual.)

To copy deck text into your program, embed *COPYC Source Code Utility

‘ (SCU) directives into your program. Each directive is a separate line and the
directive must begin in column one. The directive specifies the name of a
deck to be inserted at that point in the text. For example, the following
directive requests insertion of the AMP$OPEN deck:

*COPYC AMPSOPEN

The deck text is inserted in your program when you execute the Source Code
Utility (SCU) to process the embedded directives as it expands your program.

It is suggested that you embed the *COPYC directives between the
PROCEND and MODEND statements at the end of your program. This is so
that line numbers returned by CYBIL runtime error message do not include
the inserted procedure declaration text. A line number that includes the
inserted text is less useful. For example, if the procedure declarations were
inserted at the beginning of your source code, a message referencing line
number 1270 might refer to line 42 of your source code.

Revision B How to Use CYBIL Program Interface Calls Introduction-1

Copying Procedure Decks

Procedure Deck Names

To use CYBIL program interface calls, you copy a deck for each procedure .
call you use. The deck has the same name as the procedure call.

For example, if your program uses the AMP$OPEN, AMP$GET _KEY, and
AMPS$CLOSE calls, it must use these three directives: .

*COPYC AMPS$OPEN
*COPYC AMPS$GET_KEY
*COPYC AMP$CLOSE

Expanding Your Program

Before you compile a CYBIL program that uses program interface calls, you
use SCU to expand the program, as follows:

1. You must begin with an existing source library file. If you do not have
one, you can create an empty source library using the CREATE _
SOURCE_LIBRARY command.

2. Start an SCU utility session, specifying a source library file.
3. Create one or more decks containing your program text.

4. Expand the decks containing your program text. Specify these two files as
the alternate base libraries from which SCU copies the program interface
decks:

$SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE

5. End the SCU utility session.
This process gives you the expanded program text that can be compiled.

The following is a minimal command sequence that performs the preceding
steps (numbered 1 through 5). It uses only temporary files and assumes your
program text is on file SUSER.PROGRAM_TEXT. (/, sc/, and sc../ are
system prompts; you do not enter them.)

1. /create_source_Llibrary result=temporary_Llibrary
2. /scu base=temporary_Library

3. sc/create_deck deck=temporary_deck ..
sc../modification=temporary_modification source=$user.program_text

4. sc/expand_deck deck=temporary_deck ..
sc../alternate_base=($system.cybil.osf$program_interface, ..
sC../$system.common.psf$external_interface_source)

5. sc/quit write_Llibrary=no ‘

Introduction-2 ~ CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Copying Procedure Decks

The EXPAND _DECK subcommand writes the expanded program text on
' file COMPILE. You could next compile the expanded program text with a
command such as this:

/cybil input=compile Llist=listing list_options=(r, a)

. The CYBIL coinmand is described in the CYBIL Language Definition
manual. For more information on source libraries and source text expansion,
see the SCL Source Code Management manual.

Executing Your Program

When the compiled program is a CYBIL program containing any of the calls
described in this manual, you must add an object library to the program
library list before executing the program. The object library file to be added
to the list is as follows:

Keyed-file interface calls: $LOCAL.AAF$44D LIBRARY
Sort/Merge interface calls: SLOCAL.SMF$LIBRARY
This step is required so that modules can be loaded from the object libraries.

The commands that can add an object library to the program library list are

‘ described in the SCL Object Code Management manual. (If program
execution is initiated within another CYBIL program, a CYBIL call can add
the required object library to the program library list as described in the
CYBIL System Interface manual.)

For example, the following SET _PROGRAM _ATTRIBUTES command
adds both object libraries to the program library list; the LGO command
executes the object modules on file LGO:

set_program_attributes, ..
add_libraries=($local.aaf$44d_Library, $local.smf$library)
Lgo

The following EXECUTE _TASK command performs the same operations as
the preceding two commands:

execute_task, file=lgo, ..
libraries=($local.aaf$44d_Library, $local.smf$library)

Revision B How to Use CYBIL Program Interface Calls Introduction-2.1/2.2 @

Procedure Calls in Your Program

Procedure Calls in Your Program

A call to a program interface procedure has the same format as any other
CYBIL procedure call. It consists of the procedure name followed by a
parameter list enclosed in parentheses and terminated by a semicolon. For
example, this is a call to open a file:

AMP$OPEN (Lfn, AMCSRECORD_ACCESS, NIL, fid, status);

NOTE

You cannot omit parameters in a procedure call. You must specify a value (or
a variable containing an appropriate value) for each parameter in the
procedure call format. The parameter values must be specified in the order
shown in the call format.

The CYBIL compiler performs type checking on all parameter values. The
type of each parameter value must conform to the type specified for the
parameter in the procedure declaration.

The parameter type is given in the parameter description. For example,
consider this parameter description:

status: VAR of ost$status
Status variable in which the completion status is returned.

This parameter description describes the status parameter. The words VAR
OF indicate that it is a reference parameter, meaning that the procedure

returns a value to the caller in the specified variable. The parameter type is
OST$STATUS.

The CYBIL type declarations for the calls described in this manual are listed
in alphabetical order in appendix C.

Revision A How to Use CYBIL Program Interface Calls Introduction-3

Status Checking

Status Checking '

The last parameter on every program interface call is the status parameter.
You must specify a status variable (type OST$STATUS) as the last
parameter on a call. When the procedure completes, it returns its completion
status in the specified status variable.

You can specify an error-exit procedure to process errors returned by file
interface procedures. (It does not process Sort/Merge errors.) The error-exit
procedure is specified by the error_exit_name or error_exit_ procedure file
attribute.

If an error-exit procedure is specified for an instance of open, a file interface
procedure calls the error-exit procedure when it returns abnormal status. The
abnormal status is passed to the error-exit procedure which, in turn, passes
its completion status to the status variable specified on the call.

An error-exit procedure is effective only while the file is open. It is not
effective for AMP$OPEN or AMP$CLOSE calls. For these calls, and for files
without error-exit procedures, you must check the contents of the status
variable after the call to determine if the call completed successfully.

A status record is returned in the status variable. If the NORMAL field of the
status record is TRUE, the procedure completed normally. If the NORMAL
field is FALSE, the procedure completed abnormally. ‘

For example, these lines show an AMP$OPEN call and the status check
following the call:

AMPSOPEN (Lfn, AMCSRECORD_ACCESS, NIL, fid, status);
IF NOT status.NORMAL THEN

PMPSEXIT(status);
IFEND;

For the PMP$EXIT call description and additional information on condition
handling, see the CYBIL System Interface manual. A more complete
example of status variable processing is given by the p#inspect_status_
variable and p#display_status_variable procedures in appendix E.

Exception Condition Information
When the procedure completes abnormally, the procedure returns additional
information about the exception condition (the error) that occurred. The

following variant fields of the OST$STATUS record return condition .
information when the key field, NORMAL, is FALSE:

Introduction4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Status Checking

. IDENTIFIER

Two-character string identifying the process that detected the error.
These are the process identifiers that could be returned by calls
described in this manual:

o AA

Keyed-file interface (Advanced Access)

AM Access Method (lower-level input/output procedure called by
the keyed-file interface)
oS Operating System
SM Sort/Merge
PF Permanent File management
PM Program management
CONDITION

Code that uniquely identifies the exception condition (an integer of
type OST$STATUS_CONDITION). Your program should reference
the exception condition by its condition identifier. (For example,
AAESKEY_NOT_FOUND is a keyed-file interface condition

identifier.)

conditions commonly returned by the procedure; the list does not

‘ Each procedure description lists the condition identifiers of exception

include all conditions that the procedure can return.

TEXT

Additional information about the condition contained in a string
record of type OST$STRING. The record has two fields:

SIZE

The string length in characters (0 through 256)

VALUE The text string

NOTE

The TEXT field does not contain the error message. It contains
items of information that are inserted into the message template for
the exception condition when an error message is formatted. For
more information on message formatting, see the CYBIL System
Interface manual.

The error-exit procedure or your program can also fetch the error severity
level for an exception condition using an OSP$GET_STATUS_SEVERITY
‘ call (as described in the CYBIL System Interface manual).

Revision A

How to Use CYBIL Program Interface Calls Introduction-5

System Naming Convention

System Naming Convention ‘

In general, all CYBIL program interface identifiers follow a system naming
convention as follows:

idx$name

id Two characters identifying the process that uses the identifier.
(These are the same process identifiers returned in the
IDENTIFIER field of the status record.)

X Character indicating the type of CYBIL element identified.
These are the element types:
[¢ Constant
d Declaration of multiple or complex types
e Error condition
f File
i Inline text or code
k Keypoint or keyword
m Module
P Procedure
s Section
t Type
v Variable
X Element with XDCL attribute .
$ The $ character indicates that CDC defined the identifier.
NOTE

To avoid redefining a CDC identifier, do not use the $ character
in identifiers that you define.

name A string describing the purpose of the element referenced by the
identifier.

For example, the identifier AMP$CREATE_KEY _DEFINITION follows the

naming convention:

e Its process identifier is AM (Access Method).

e It identifies a procedure (P).

e Itis a CDC-defined identifier (). .

e Its purpose is the creation of an alternate-key definition
(CREATE_KEY_DEFINITION)

Introduction-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

® Keved-File Concepts I-1

Keyed-File Organizationsc.iiiriiiimiiiiianiananneeanenns I-11
Indexed-Sequential File Organization I-1-2
. Indexed-Sequential File Structurecoiiinn. I-1-2
Data-Block Splitcoiiiiiii i e 1-1-4
Index Levels ... e e e 1-1-6
Indexed-Sequential Primary Keysot 1-1-9
Direct-Access File Organizationcccu.. 1-1-10
Direct-Access File Structurecccoiiiiiiiiiiiin., 1-1-10
Hashing Procedure i, I-1-13
Direct-Access Primary Keys ..., 1-1-14
Alternate Keysttt i 1-1-15
Alternate-Key Characteristicsccviiiiiiinieenn... 1-1-15
The AlternateIndex ...ttt iiiiiiie e 1-1-16
Alternate-Key Definitionoiiiiiiiiiiiiininennnnnnnn 1-1-16
Duplicate Key Valuesttt 1-1-17

Null Suppressiono.ouiiiiiiee it niinanns I-1-19
Sparse-Key Controlc.ciiiiiiiiiiiiiiniiininnnnns 1-1-20
Concatenated Keys ...t I-1-21
Repeating Groupscooevieiiiiiiireiniieeenannnnnnnns 1-1-22
Nested Files.t et e 1-1-24

Keyed-File Concepts I-1

The CYBIL keyed-file interface is a group of procedure calls that perform
operations on keyed files. A keyed file is a file whose file organization allows
. record access by key value.

Keyed files are like sequential and byte-addressable files in that the data in
the files is contained in records.

A record is a collection of data that is read and written as a unit. The record

could contain several fields of data, some of which have a fixed length while
others vary in length. Thus, the records as a whole could have a fixed length
or be variable in length.

For example, a record could contain three data items of different types: an
integer, a floating point number, and a string of characters. To write a
record, a program writes all three data items together as a record; when the
record is later read, all three data items are delivered to the program.

The records in a sequential or byte-addressable file are stored as a simple
sequence. The records in a keyed file are stored within a file structure as
described in the following sections.

‘ Keved-File Organizations

A file is a keyed file if its file_organization attribute is either indexed-
sequential or direct-access. A keyed-file organization allows you to read any
record in the file directly by specifying its key value. The key value for a
record is determined when the record is written to the file.

To allow you to access each record by a key value, the file organization must
relate each key value to the location of the record in the file. The keyed-file
interface performs all processing required to relate a key value to a record
location; the user does not specify how this is done beyond choosing the file
organization. The method of relating a key value to a record location differs
for each keyed-file organization as described in the following sections.

Revision B Keyed-File Concepts I-1-1

Indexed-Sequential File Organization

Indexed-Sequential File Organization

The indexed-sequential file organization allows content addressing of
records; that is, you can directly access a record by the contents of one or
more fields of data in the record. The fields of data by which a record is
addressed are its key fields, and the contents of those fields are its key
values.

An indexed-sequential file always has a primary key. (It can also have one
or more alternate keys as described in the Alternate Keys section of this
chapter.)

Each primary-key value is unique within the file; there can be no duplicate
primary-key values in a file.

The indexed-sequential file organization is used only when you can assign a
unique value to each record stored in the file. This unique value is usually a
field of data within the record (an embedded key), although it can be a value
assigned to the record and not included in the record data (a nonembedded
key).

For example, the primary key for an employee file could be the employee’s
name. However, because two employees could have the same name, it is
better to assign a unique identification number to each employee and use
that number as the primary key for the file.

The indexed-sequential file organization should be used if a requirement
exists to read file records both sequentially and randomly. For example, the
records in an employee file could be read sequentially to produce a listing of
all employees or read randomly to update individual records.

When an indexed-sequential file is read sequentially, its records are accessed
in ascending order by key value. The order is kept even when new records are
added to the file. For example, if an employee file is read sequentially using
its primary key (the employee identification number), the records are read in
ascending order by their identification number.

Indexed-Sequential File Structure

This section gives a general description of the indexed-sequential structure.
You can use indexed-sequential files without knowing their structure.
However, if you understand the indexed-sequential structure and how it
grows, you can create more efficient indexed-sequential files by specifying
appropriate values for structural parameters.

The internal structure of an indexed-sequential file is designed to provide
both random and sequential access to the data records in the file. File space
is divided into blocks, all the same size.

l I-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Organization

. A block contains a block header and one of the following:

Internal tables
Data records (a data block)
Index records (an index block)

‘ Each index record points to a data block. The index record contains the
location of the data block and the range of key values of the data records
stored in that block.

You can display the contents of all components of an indexed-sequential file,
the internal tables and index blocks as well as the data blocks, using the
DISPLAY_KEYED_FILE command described in the SCL Advanced File
Management Usage manual.

As you might expect, the actual internal index mechanism is complex. The
simplified examples in this section, however, provide the level of detail you
need to know in order to use indexed-sequential files.

To see how an index works, let’s look at a very small file that contains one
index block and two data blocks. As shown in figure I-1-1, the index block
contains two index records. (The index records contain key values 1 and 5.)
Each index record points to a data block in the file.

Data Block
g R
Index Block 4
L
S
Data Block
LS]
6

‘ Figure I-1-1. Minimal Indexed-Sequential Structure

Revision B Keyed-File Concepts I-1-3 I

Indexed-Sequential File Organization

Let’s suppose you request to read randomly the record with key value 6.
When the record is read, these steps are performed: ’

1. The index records are searched to find the index record whose range of
key values includes the key value 6.

2. After the correct index record (the second one) is found, the search for the ‘
record continues with the data block to which the second index record
points.

3. The second data block is searched for the record with key value 6. When
the record is found, its data is returned to the requestor.

Next, suppose you request that all records in the file shown in figure I-1-1 be
read sequentially. These steps are performed:

1. The first index record is read to find the first data block.

2. The records from the first data block are read in order.

3. The second index record is read to find the second data block.
4. The records from the second data block are read in order.

5. The sequential read ends because there are no more index records and, so,
no more data blocks to read.

This process reads the records in key-value order because both the index ‘
records and the data records are kept in key-value order.

Data-Block Split

Usually, a block has some empty space, called padding, that was left empty
so that additional records could be written later to the block. Suppose, as
shown in figure I-1-2, that a data block has been filled, a new record is to be
written, and its key value is within the range of key values of the records in
the full data block. For the file structure to be maintained, the data block
must be split.

When a data-block split occurs, records in the data block whose key values
are less than the key value of the new record remain in the existing block. All
records in the existing block that come after the new record are moved to the
newly created block.

The new record is put into either the new block or the existing block,
depending on the relative amount of empty space in the blocks and the size .
of the new record. If the new record does not fit in either block, another new

block is created and the new record is put into that block.

I I-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Organization

‘ Before the Data-Block Split:
Keyed File
. New Record Index Block Data Block
BN g R
N
4
EERN
6
After the Data-Block Split:
Keyed File
Data Block
® .
2
Index Block —— — T
LA
3]
Data Block
» 3 ___J
| 4
EER
6]

Figure I-1-2. Data-Block Split

Revision B Keyed-File Concepts I-1-5 l

Indexed-Sequential File Organization

Index Levels

As with data blocks, index blocks are also initially created with some empty .
space (index-block padding). However, for each new data block created due

to a data-block split, another index record must be created. With the addition

of many data records, the initial index block becomes full. When the index

block is full, the next data-block split causes an index-block split. .

As shown in figure I-1-3, when the initial index block splits, it causes the
creation of another index level.

The index levels are numbered from the top down as index level 0, index level
1, and so forth. Index level 0 always has only one index block; it is always
the starting point for an index search.

The index block at an upper level contains an index record for each index
block at the next lower level. For example, the index block at level 0 contains
an index record for each index block at level 1.

A search for a data record requires an index-block search at each index level.
For example, the level-0 search finds the index record that points to the
appropriate level-1 index block. If the file has only two index levels, the level
1 search finds the index record that points to the appropriate data block.

As you can see, the addition of another index level increases the time
required to find an individual data record. ‘

Index levels can be added up to the index-level limit of 15 levels. This sets a
limit on the number of records in the file.

The index-level limit is reached when addition of another record to the file
would require creation of another index level, but 15 index levels already
exist in the file. When this happens, the index-level-overflow flag is set and
no more records can be added to the file.

I I-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Organization

‘ Before the Index-Block Split:
Keyed File
Data Block
Data Block L
o 7 2
e — —] — -
3
4
New Record Index Block 6
l 5 I 1
7 Data Block
8, —_] Data Block _§_]
9 > 9
—_ - - — —]
10
Data Block
10

(Continued)

Figure 1I-1-3. Index-Block Split

Revision B Keyed-File Concepts I-1-7 l

Indexed-Sequential File Organization

(Continued)

After the Index-Block Split:

Keyed File

Data Block
Index Block 1
—] __I Data Block —-2- -]
6 g S e R
4
Index Block —5‘" — —
R
_7 — 1] Data Block
g LA
Index Block Data Block
— 7 8]
z — — | —
>]
[0]
Data Block
> 9
Data Block T
Lo

Figure I-1-3. Index-Block Split

l I-18 CYBIL Keyed-File and Sort/Merge Interfaces

Revision B

Indexed-Sequential File Organization

Indexed-Sequential Primary Keys

The primary key for a keyed file is defined when the file is created. The
primary-key value must be unique for each record in the file.

A primary-key definition requires specification of these attributes:

Embedded or nonembedded key (the default is embedded)
Key position (if the key is embedded)

Key length

Key type (the default type is uncollated _key)
Collate-table name (if the key type is collated _key)

A key is embedded if the key value is part of the data in the record. An
embedded key value is returned as part of the record data when the record is
read; a nonembedded key value is not.

The key position in the record must be specified if the key is embedded. The
first byte position in a record is byte 0. If the key is nonembedded, you do not
specify a key position.

You must specify the key length whether the key is embedded or
nonembedded. It indicates the number of bytes in the key.

Key Length
—~—

Record

A

Key Position

The key type describes the data in the key. These are the possible key types:

Integer key The key value is a signed integer; it is sorted in
numerical order.

Uncollated key The key value is a string of characters; it is sorted
byte-by-byte according to the ASCII collating

sequence.

Collated key The key value is a string of characters; it is sorted
byte-by-byte according to a collating sequence that
you specify.

If the key is a collated key, you must specify the collating sequence to be
used to sort the key values. The collating sequence is specified by its name.
NOS/VE provides several predefined collating sequences (listed in

appendix E). You can also create your own collating sequence as described in
appendix E.

Revision B Keyed-File Concepts I-1-9

Direct-Access File Organization

Direct-Access File Organization

The direct-access file organization is like the indexed-sequential file .
organization in its use of a primary key. You define the primary key for the

file when you create the file. It can be a field embedded in the record or a
nonembedded value. Each primary-key value in the file must be unique; the

file can contain no duplicate primary-key values. .

Like an indexed-sequential file, a direct-access file can have alternate keys.
An alternate key for a direct-access file is the same as an alternate key for
an indexed-sequential file. Alternate keys are described later in this chapter.

Like indexed-sequential file records, you must specify the primary-key value
when writing or deleting a direct-access file record. Similarly, you must
specify either a primary-key value or an alternate-key value to read a
direct-access file record.

Direct-access and indexed-sequential files differ in the ordering of records in
the file:

® When records are read sequentially from an indexed-sequential file, the
records are returned in order, sorted by primary-key value.

o When records are read sequentially from a direct-access file, the records
are returned unordered.

In general, random record access is faster for the direct-access file ‘
organization than for the indexed-sequential file organization. This is

because the direct-access file organization determines the location of a record

directly from its primary-key value. (In indexed-sequential files, a record can

be found only after a search at each index level.)

Direct-Access File Structure

The direct-access file structure is designed to locate each record directly by
its primary-key value. The primary-key value directly specifies the file block
containing the record.

File space in a direct access file is divided into equal-size blocks. Initially, all
blocks in the file are home blocks (as opposed to overflow blocks).

When a record is written to a direct-access file, its primary-key value is

hashed to produce the number of the home block in which the record is

written. If the home block does not contain enough empty space for the new

record, the record is written to an overflow block. ‘

® I-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

Assuming the hashing procedure produces a uniform distribution of numbers
from the primary-key values in the file, the records are uniformly distributed
among the home blocks of the file. Thus, each record can be found by a
single search of its home block without additional searches of overflow
blocks.

You specify the initial number of home blocks when you create the file. By
default, a system hashing procedure is used to distribute the records among
the home blocks although you can provide another hashing procedure for the
file if you like.

As an illustration of a small direct-access file, suppose you define a direct
access file as having five home blocks.

0 1 2 3 4

Home
Blocks

The first record written to the file has primary-key value XYZ. Assume that
hashing of this primary-key value produces the block number 2. The record
is then written in home block 2.

0 1

Home
Blocks

Assume you want to read the record with primary-key value XYZ. The value
XYZ is hashed and, as before, produces the block number 2. The keyed-file
interface searches for the record with primary-key value XYZ in home block
2. (The records in a block are ordered by primary-key value so each record
can be quickly found.)

Suppose that many records have been written to the file and home block 2
has been filled.

0

Home
Blocks

Revision B Keyed-File Concepts I-1-11 @

Direct-Access File Organization

At this point, a record is to be written with primary-key value ABC. Hashing
of the value ABC produces block number 2, but there is insufficient space for
the record in home block 2 so it is written in an overflow block.

0 1 2

Home
Blocks

Overflow
Block

Later, to read the record with primary-key value ABC, the primary-key
value is hashed to produce block number 2. Home block 2 is searched for
primary-key value ABC. When it is not found in the home block, the search
continues in the overflow block until the record is found.

An ideal direct-access file structure has these characteristics:

o Sufficient home blocks are allocated and records are uniformly distributed
among the home blocks so as to avoid overflow.

e Each block contains a limited number of records so as to minimize the
search time in each block.

e The number of home blocks is not so large that the file contains excessive
unused space.

These characteristics are determined by the file attribute values specified
when the file is created. You must specify the initial_home_block _count and
can optionally specify the max_block_length and the hashing_procedure_
name attributes. (The attributes are described in chapter I-2.)

One other characteristic to be considered when selecting the number of home
blocks is the loading factor. The loading factor is the percentage of block
space used. To allow for less-than-uniform distribution of records in the
home blocks, the loading factor should be no greater than 90%.

To illustrate, suppose the direct access file is to contain 10,000 80-byte
records (80,000 bytes of record data). Using a block size of 4096 bytes, 20
home blocks would be sufficient if the hashing procedure could guarantee
uniform distribution of the records in the home blocks. This would result in a
loading factor of nearly 98% (80,000 divided by 81,920). However, because
uniform distribution should not be expected, the number of home blocks
allocated should be at least 22 (for a loading factor of 89%). (It is also
recommended that the home block count be a prime number; thus, 23 would
be a better home block count for the file in this example.)

® I-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

Hashing Procedure

. The system provides a default hashing procedure named AMP$SYSTEM _
HASHING_PROCEDURE. However, if desired, you may specify your own
hashing procedure that produces a uniform distribution of numbers from the
primary-key values in your file.

. The system executes the hashing procedure each time a record is requested
by key value from the direct-access file. The hashing procedure is not stored
with the file so the system must be able to load the procedure each time the
direct-access file is opened.

NOTE

Any ring_ attributes value is valid for the object library containing the
hashing procedure. However, in a production environment, you should store
the hashing procedure in a ring 4 object library. This improves performance
because hashing procedures are executed as asynchronous tasks. (Usually,
site personnel maintain the ring 4 object libraries.)

A hashing procedure receives a primary-key value as its input and produces
an integer as its output. It must always produce the same output from a
given input.

’ A hashing procedure is written in the CYBIL language. It must pass these
parameters:

1. primary-key value: “cell
Variable in which the system passes the location of the primary-key
value to be hashed.

2. key_length: amt$key_length
Integer variable in which the system passes the length in bytes of the
primary-key value (from 1 through 255).

3. VAR hashed_value: integer
Integer variable in which the hashing procedure stores the hashed
value.

4. VAR status: ost$status
Standard NOS/VE status variable in which the hashing procedure
stores its completion status. If the hashing procedure returns an
abnormal status, the keyed-file interface issues the fatal condition
. aae$system _error_occurred followed by the status returned by the
hashing procedure.

Revision B Keyed-File Concepts I-1-13 @

Direct-Access File Organization

The system divides the value it receives from the hashing procedure by the

number of home blocks and uses the remainder as the home block number.

For example, if the number of blocks is 97, it divides the hashed value by 97

and uses the remainder (an integer from 0 through 96) as the home block

number. A more uniform distribution of records is expected if the number of

home blocks is a prime number. .

Direct-Access Primarv Keys

In general, the primary key of a direct-access file has the same
characteristics as the primary key of an indexed-sequential file. You specify
whether the primary key is embedded or nonembedded, its position (if the
key is embedded), and the key length. However, a key _type attribute value
specified for a direct-access file is ignored; the key _type attribute for a
direct-access file is always uncollated.

Unlike an indexed-sequential file, sequential access calls to a direct-access
file while the primary-key is selected do not return the file records sorted by
primary-key value. The calls return records according to their physical
location in the direct-access file. Records within each block are ordered
according to the default ASCII collating sequence, but the blocks are not
ordered by primary-key values.

Direct-access file records can be accessed in order if one or more alternate
keys are defined for the file. The alternate index keeps the alternate-key ‘
values in sorted order. Sequential access calls while an alternate key is

selected return records in the order provided by the alternate index.

If appropriate, you could define an alternate key for the same field as an
embedded primary key. In this way, you could access direct-access file
records in primary-key value order.

® I-1-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Alternate Keys

. A record within a keyed file can always be accessed by its primary-key
value. An alternate key provides an additional way to access records.

An alternate key defines a value in the data record by which the record can
be accessed. An alternate key is defined as a field or group of fields in the

' record.

Although a program can use alternate keys to read records or to position a
file, alternate keys cannot be used to write, replace, or delete records. The
primary-key value must be used to identify a record to be written, replaced,
or deleted.

Alternate-Key Characteristics
Alternate-key fields can overlap each other and an embedded primary key.

For example, the primary-key field could be bytes 0 through 9 and two
alternate-key fields bytes 0 through 19 and bytes 4 through 14.

20 21 25

. Primary Key

Alternate Key 1

—m— N ——
Alternate Key 2

Unlike a primary-key value, one alternate-key value can be associated with
several records in a file. The reason is that an alternate-key value need not
be unique. The same alternate-key value can occur in several records; for
example, the same job title can be associated with many names, as follows:

Data Records: Hanson Computer Programmer
Jones Computer Programmer
Smith Computer Programmer
Alternate Index: Alternate Key Primary Key
Value Values
' Computer Programmer Hanson
Jones
Smith

Revision B Keyed-File Concepts ~ I-1-15 l

Alternate Keys

A record can contain more than one alternate-key value if the alternate key
is defined as a field that repeats in the record; thus, a single record could
contain several alternate-key values. For example, the license numbers of
several cars owned by one person as follows:

Data Record: R. Petty 1 LB AU 2ASM451 ELK 592
Alternate Index: Alternate Key Primary Key
Value Values
1 LB AU R. Petty
2ASM451 R. Petty
ELK 592 R. Petty
The Alternate Index

The index for the primary key was described earlier in this chapter. Each
alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an
alternate-key value with the primary-key values of the records containing
that alternate-key value. The list of primary-key values associated with an
alternate-key value is the key list for that alternate-key value.

When you select an alternate key and then specify an alternate-key value,
the system searches for the value in the alternate index. If it finds the
alternate-key value, it uses the primary-key values in the key list for the
alternate-key value to access the data records.

When one or more alternate keys are defined for a file, file updates require
more time because the alternate indexes must also be updated. Alternate
keys should be used only when the additional record access capability offsets
the cost of increased time spent for file updates.

Alternate-Key Definition

The attributes of an alternate key are specified by its alternate-key
definition.

These attributes are required to define an alternate-key:

Key name
Key position
Key length

An alternate key has a name so that it can be selected later for use. The
alternate-key position and length define the alternate-key field within the
record.

I I-1-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

These optional attributes define how the alternate key is processed:

. Key type

Collate table name (if the key type is collated)
Duplicate key values
Null suppression
‘ Sparse-key control
Repeating groups
Concatenated key

The key type of an alternate key determines the order of the alternate-key
values in the alternate index, and therefore, the order in which records are
accessed sequentially when you use the alternate key. The key types for an
alternate key are the same as the key types for the primary key as described
earlier in this chapter.

If the key type is collated, you can explicitly specify a collation table for the
alternate key or use, as the default, the collation table for the primary key (if
the primary key type is collated).

Duplicate Key Values

By default, duplicate values for an alternate key are not allowed. However, if
you want to allow duplicate key values, you can specify whether the records

‘ having the same alternate-key value are accessed ordered by primary key or
in first-in-first-out order.

In a key list ordered by primary key, the primary-key values are stored in
sorted order according to the primary-key type. New values are inserted into
the key list so that the primary-key value order is kept.

In a key list ordered first-in-first-out, the primary-key values are stored in
the key list in the order the values are added to the key list, instead of in
primary-key-value order. New values are always added to the end of the key
list.

Revision B Keyed-File Concepts I-1-17 l

Alternate Keys

For example, suppose you write three records to the file in this order:
McDarrels Hamburgers .
Burger Duke Hamburgers
Willys Hamburgers
The following shows the resulting key list in primary-key order and in .
first-in-first-out order:
Key Lists
Alternate Ordered by First In
Key Value Primary Key First Out
Hamburgers Burger Duke McDarrels
McDarrels Burger Duke
Willys Willys

Duplicate-Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a record about
to be written to the file, the record is not written to the file and a trivial error
(status AAE$SDUPLICATE _ALTERNATE _KEY) is returned.

A trivial error (status AAESUNEXPECTED_DUP_ENCOUNTERED) also
occurs if a duplicate value is found while a new alternate index is being ’
created. However, the record containing the duplicate value cannot be

discarded, because it is already in the file. Subsequent processing depends on

whether incrementing the trivial-error count causes the count to exceed the
trivial-error limit as set by the user.

e If the trivial-error limit is not exceeded, the apply operation redefines the
alternate key being applied to allow duplicates, ordered by primary-key
value, discards the partially built index, and builds the redefined index.

e If the trivial-error limit is reached, the apply operation returns the status
condition AAE$DUPLICATE _KEY_LIMIT and removes all alternate
indexes it has created. (Deleted indexes are not restored.)

In either case, a message describing the action taken is written to the
$ERRORS file.

I 1-1-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

. Null Suppression

By default, if an alternate-key field contains a null value, the null value is
stored as the alternate-key value for the record. The null _suppression
attribute allows you to exclude null values from an alternate index.

. Null suppression excludes any record with a null alternate-key value from
the alternate index. Null suppression can save space, access time, and update
time because the index is smaller when null alternate-key values are
excluded. (Null suppression does not remove the null value from the data
record.)

The null value depends on the key type as follows:

Key Type Null Value

Integer Zero

Uncollated Spaces

Collated Spaces (before collation)

If null suppression is not specified, records containing a null value in the
alternate-key field are indexed by the null value. The records can later be
accessed by specifying the null value as the alternate-key value.

For example, suppose the spouse’s name is defined as an alternate key to a
membership file. Unmarried members would have a null value for the

‘ alternate-key field. Therefore, the key list for the null value lists all
unmarried members. The following shows the alternate index with and
without null suppression:

Without Null Suppression With Null Suppression

Spouse’s Name Member’s ID Spouse’s Name Member’s ID

1626736 Diana Simmons 4872672
8273648 Mark Ramsey 2673651
Diana Simmons 4872672 Shelly Gable 7726184
Mark Ramsey 7726184
Shelly Gable 2673651

Revision B Keyed-File Concepts I-1-19 .

Alternate Keys

Sparse-Key Control ‘

You can use sparse-key control to create an alternate index that includes or
excludes records depending on the character in a specific position in the
record.

For example, suppose a student file has a one-character code indicating the .
student’s class. To get a mailing list for juniors and seniors only, you could
define an alternate index controlled by the class code.

To specify sparse-key control, you specify three values:

Value Example

Sparse-key control position Position of the class code in the record

Sparse-key control characters Junior and senior class code
characters

Sparse-key control effect Included if the class code indicates a

(Indicates whether the junior or senior record

alternate-key value should be
included or excluded if the
sparse-key character matches)

Assume that the sparse-key control position is the first character after the
name field and that the junior and senior class codes are 3 and 4. If the
following records are copied to the file, the first three records are included in
the alternate index, but not the last record.

Louis Skolnik 4
Gilbert Sullivan &
ELLliot Wermzer 3
Judy Manhasset 2

The sparse-key control position must be within the minimum record length.
If you specify sparse-key control for an alternate key, the alternate-key field
or fields need not be within the minimum record length.

A nonfatal (trivial) error (status AAE$SPARSE_KEY_BEYOND_EOR)is
returned if both of these conditions are true for a record:

o The character at the sparse_key _control _position indicates that the
record should be included in the alternate index

e The record has no alternate-key value because the record ends before the .
alternate-key field

When an apply or write operation detects this error, it does not include the
record in the alternate index. (A write operation does write the record to the
file.)

J 1120 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Concatenated Keys

' A concatenated key is an alternate key formed from several fields, or pieces,
in the record. A concatenated key can comprise up to 64 pieces.

The concatenated pieces can be noncontiguous and can be concatenated in
any order. Each piece can be a different key type. All collated-key pieces use
' the same collation table.

The first piece you specify is the leftmost piece of the key. You specify it the
same as you specify a nonconcatenated key. The pieces to be concatenated to
the leftmost field are defined by individual records in the optional _attributes
array. The record order in the array specifies the order of the concatenated
pieces.

A concatenated key can use sparse-key control or null suppression or both. A
concatenated key is considered to have a null value if the values in all fields
of the key are null (before collation for collated keys).

For example, suppose you decide to define an alternate key consisting of the
initials of the member’s name. The first piece of the key value would be the
first letter of the member’s first name, the second piece would be the first
letter of the member’s middle name, and the third piece would be the first
letter of the member’s last name. Consider this data record:

{'I' 0 20 40

Kennedy John Fitzgerald

The desired alternate key value is JFK. The concatenated-key pieces could be
defined by the following CYBIL lines. (The second and third pieces are
defined by records in the optional _attributes array.)

First piece (position 20, length 1):

AMP$CREATE_KEY_DEFINITIONC fid, 'initials', 20, 1,
optional_attributes, status);

Second piece (position 40, length 1):
CAMC$CONCATENATED_KEY_PORTION, [40, 1, AMCSUNCOLLATED_KEY] 1,
Third piece (position 0, length 1):

CAMCSCONCATENATED_KEY_PORTION, [0, 1, AMCSUNCOLLATED_KEYI 1,

Revision B Keyed-File Concepts 1-121]

Alternate Keys

Repeating Groups

The repeating-groups attribute allows a data record to contain more than .
one value for the same alternate key. This allows a primary-key value to be
associated with more than one alternate-key value.

To specify an alternate-key field within a repeating group: ‘

1. Specify the first alternate-key field by its key position, key length, and
key type. All subsequent alternate-key fields have the same length and
type as the first.

2. Specify repeating groups for the alternate key by specifying the repeating
group length: that is, the distance from the beginning of the first instance
of the alternate key to the beginning of the second instance of the
alternate key in the record.

3. Specify the repeating-group count: that is, how many times the alternate
key field repeats in the record.

You can specify that the repeating group repeats a fixed number of times or
that it repeats until the end of the record.

e If the alternate-key field repeats a fixed number of times, all
alternate-key fields must be within the minimum record length.

e If the alternate-key field repeats to the end of the record, the minimum .
record length imposes no restriction. The system stores as many
alternate-key values as the record length allows.

Repeating groups cannot be used with concatenated keys or when
duplicate-key values are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports the
member enjoys and his or her years of experience as follows (columns are
counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75 The
Sports field is 10 characters followed by a 2-digit Sports
Experience field

Type: ASCII characters

I 1-1-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

75 87 99 111

N—— — N, e’ N
Key Length

‘ Repeating Group Length

You could define an alternate key for the Sports values (without the
Sports-Experience values) by the following CYBIL lines. (The first two lines
initialize records in the optional _attributes array.)

{ Repeating_Group_Length=12, Repeat_to_End_of_Record=true }
CAMCSREPEATING_GROUP, [12, TRUE] 1,
CAMC$DUPLICATE_KEYS, AMCSORDERED_BY_PRIMARY_KEY],

AMP$CREATE_KEY_DEFINITION(fid, 'sports', 75, 10,
“optional_attributes, status);

The key list for an alternate-key value would list the identification numbers
of all members that enjoy that sport.

The following shows the primary keys for three records and their contents
‘ from column 75 to the end of the record:

Primary Key Record Contents Beginning at Column 75
1662876 VolleyballO2Running 03Basketbal L02
6166287 Bicycling 10vVolleybal L0O1

0027840 Running 15Running 15Running 15

If these were the only records in the file, the alternate index would appear as
follows:

Alternate-Key Value Primary-Key Values

Basketball 1662876
Bicycling 6166287
Running 0027840 1662876
Vol leyball 1662876 6166287

Notice that the key type is the default, Uncollated _Key, and the
duplicate-key values specification is Ordered _By_Primary_Key. Thus, each
‘ key list is sorted according to the default ASCII collating sequence.

Notice also, as shown by the Running key list, that each primary-key value
is listed only once in a key list, regardless of the number of times the
alternate-key value occurs in the record.

Revision B Keyed-File Concepts 1-1-23 l

Nested Files

Nested Files

A nested file is a file structure defined within a NOS/VE file cycle. It is .
recognized and used by the keyed-file interface; it is not recognized or used
by the NOS/VE file system.

The keyed-file interface provides nested files so as to extend the NOS/VE .
limit on the number of files a task can use. All nested files defined in a file

share the same memory segment. This provides effective memory use when

the nested files are much smaller than the segment size limit (232 bytes).

The keyed-file interface creates the initial nested file (named $MAIN _FILE)
when it creates the keyed file. It uses SMAIN _FILE as the default nested file;
other nested files are used only when explicitly selected.

An AMP$CREATE _NESTED_FILE call can create a nested file (in
addition to the default nested file SMAIN _FILE). The call defines the
attributes applicable to the nested file only. These include its:

File organization

Record attributes, including its record type and its minimum and
maximum record lengths

Primary-key attributes, including its key position, key length, key type,
and collation table ‘

Structural attributes applicable to the file organization

All other file attributes apply to all nested files in a keyed file. The
RECORD_LIMIT attribute specifies the maximum number of records in
each nested file. For more information on attributes, see Creating a Keyed
File later in chapter I-2.

Each alternate-key definition applies to only one nested file. To define an
alternate key for a nested file other than the default nested file ($MAIN_
FILE), you first select the nested file and then define the alternate key.
Similarly, to select an alternate key for a nested file other than the default
nested file (MAIN_FILE), you first select the nested file and then select the
alternate key.

® [-1-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested Files

A task can perform operations only on the currently selected nested file.

. However, file position and key selection information for a nested file is not
lost when another nested file is selected. For example, consider this sequence
of events:

1. A taskis issuing AMP$GET _NEXT calls to NESTED_FILE _1 using
. ALTERNATE_KEY 1

2. The task selects and uses NESTED_FILE_2.

3. The task selects NESTED_FILE 1 again. It can continue reading records
sequentially from the position it had when it selected NESTED _FILE _2.
The same key, ALTERNATE_KEY _1, remains selected.

The calls to manipulate nested files are described in chapter I-3. The calls
are:

AMP$CREATE_NESTED_FILE
Defines a nested file

AMPS$DELETE_NESTED_FILE
Destroys a nested file

AMP$SELECT_NESTED_FILE
Changes the nested file currently selected

. AMP$SGET_NESTED_FILE_DEFINITIONS
Returns the nested-file definitions from a keyed file

A CYBIL program demonstrating use of nested-file calls is included at the
end of chapter I-2.

Revision B Keyed-File Concepts 1-1-25 @

Using the CYBIL Keved-File
PY Interface I-2

Creatinga Keyed File, I-2-1
Setting File Attributes o i I-2-1
‘ File_Organization Attribute...............ccoooii ... 1-2-2
Record Attributes ...t 1-2-2
Primary-Key Attributes............. ..o i, 1-2-3

File Structure Attributes, 1-24
Processing Attributes e 1-2-8
Writing Recordsttt e e 1-2-10
Re-creatinga Keyed File...............o i, 1-2-10
UsingaKeyedFile 1-2-12
Positioninga Keyed Fileo ... 1-2-13
Positioning a Direct-Access File 1-2-13
Positioning an Indexed-Sequential File 1-2-13
Reading Recordsottt 1-2-15
Sequential Access for Indexed-Sequential Files................. 1-2-15
Sequential Access for Direct-Access Files 1-2-16
Random AcCCESS ...ttt e 1-2-17
Keyed-File Sharing.............ooiiiiiiiiiii ... 1-2-18
Sharing Temporary Keyed Filescciiiii.. 1-2-19
Sharing Permanent Keyed Filesoo.L. 1-2-19

‘ LOCK Processingoouuuun e I-2-21
ReasonsforLocks ... 1-2-22

Lock Intents.ttt 1-2-24
WaitingforaLockoo i 1-2-26

Lock Expiration and Clearingccooviiiiniinianan, 1-2-26

Lock Deadlock............ e 1-2-29

File LOCKS . ..ot e e 1-2-30
Effect of Locks on Keyed-FileCalls............................ 1-2-31
Creating and Deleting Alternate Keys 1-2-32
Using Alternate Keyst 1-2-33
Selecting an Alternate Keycooiiiii i, 1-2-33

File Positioning After Alternate-Key Selection 1-2-34
Reading Records After Alternate-Key Selection 1-2-34
Updating an AlternateIndexccoiiiiiiiiiiiinnn.. 1-2-35
Fetching Access Information After Alternate-Key Selection.. ... 1-2-36

File Position Returned i, 1-2-37
Retrieving Alternate-Index Information 1-2-38
Program Examples e 1-2-40
Indexed-Sequential File Creation Example 1-2-41
. Indexed-Sequential File Update Example......................... 1-2-45
Alternate Key Examplettt 1-2-49
Nested File Example.............cooiiiiiiiiiiiiiiiiiiiiiiie.., 1-2-54

Using the CYBIL Keved-File
Interface I-2

This chapter describes how CYBIL programs can create and use keyed files.
A set of complete program examples is provided at the end of the chapter.

Creating a Keved File

To create a keyed file, the following steps are required:

1. Set file attributes (AMP$FILE or AMP$OPEN calls or SET_FILE _
ATTRIBUTES commands).

2. Open the file (AMP$OPEN call).

3. Optionally, write records to the file (AMP$PUT_KEY or AMP$PUT_
NEXT calls).

4. Close the file (AMP$CLOSE call).

(The AMPS$FILE, AMP$OPEN, and AMP$CLOSE calls are described in the
CYBIL File Management manual. AMP$PUT_NEXT is described in the
CYBIL Sequential and Byte Addressable Files manual. AMP$PUT _KEY is
described in this manual.)

Setting File Attributes

You specify the file attributes defining the structure of the file and processing
limitations for the file before opening the file for the first time. When a new
file is opened, the file attributes are stored in the file; the system references
the attribute values whenever the file is processed.

As described in the CYBIL File Management manual, the attributes that I
define the file structure cannot be changed after the file is first opened.

You should select file attribute values carefully. Selecting suitable values for
file attributes helps ensure that the file economizes both space and the time
needed for record retrievals.

NOTE

Most attributes have a default value. However, the default value is
sometimes inappropriate for keyed files. Therefore, it is recommended that
you explicitly specify a value for all relevant keyed-file attributes.

Revision B Using the CYBIL Keyed-File Interface 1-2-1

Creating a Keyed File

I File_Organization Attribute

To create a keyed file, you specify a keyed-file organization as the file_ ‘
organization attribute. Currently, the keyed-file organizations are
I indexed-sequential and direct-access.

To specify indexed-sequential file organization, you initialize an attribute .
record as follows:

CAMCSFILE_ORGANIZATION, AMC$INDEXED_SEQUENTIALI

To specify direct-access file organization, you initialize an attribute record as
follows:

CAMCSFILE_ORGANIZATION, AMCSDIRECT_ACCESS]

The other keyed-file attributes define record attributes, primary key
attributes, file structure attributes, and processing attributes.

Record Attributes
These attributes describe the data records to be written to the keyed file.

NOTE

The record attributes are all preserved attributes, that is, the attribute value ‘
is stored with the file when the file is first opened and cannot be changed
thereafter.

The following lists the CYBIL attribute identifier (AMC$xxx) followed by the
valid attribute values:

AMC$RECORD_TYPE

Record type: AMC$FIXED, AMC$VARIABLE, or AMC$UNDEFINED.
The default is AMC$UNDEFINED.

AMC$MAX_RECORD_LENGTH

Maximum number of bytes in a data record (from 1 through 65497). You
must specify a value for this attribute when defining a keyed file.

1-2.2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

AMCS$MIN_RECORD_LENGTH
Minimum number of bytes in a data record (from O through 65497).

If the AMC$RECORD_TYPE value is AMC$ANSI_FIXED, the default
minimum record length is the AMC$MAXIMUM_RECORD_LENGTH
value. If the AMC$RECORD _TYPE value is AMC$UNDEFINED or
AMCS$VARIABLE and the key is embedded, the default is the sum of the
AMCSKEY_POSITION and AMC$KEY _ LENGTH values. Otherwise,
the defaultis 1.

For variable-length records, explicit specification of this attribute is
recommended; the minimum record length must include:

¢ The primary-key field

¢ Any alternate-key fields (or corresponding sparse-key control
characters)

o All alternate-key fields for an alternate key defined as a field in a
repeating group which repeats a fixed number of times

Primary-Key Attributes
These attributes define the primary key of the new file. See Primary Keys

earlier in this chapter for more information on primary keys.

NOTE

The primary-key attributes are all preserved attributes. That is, the attribute
value is stored with the file when the file is first opened and cannot be
changed thereafter.

The following lists the CYBIL attribute identifier (AMC$xxx) followed by the
valid attribute values:

AMCSEMBEDDED_KEY

Boolean value indicating whether the primary key is part of the record
data (embedded) or separate from the record data (nonembedded). The
default is TRUE (embedded keys).

AMCS$KEY_LENGTH

Integer specifying the primary-key length in bytes. This attribute has no
default value; it must be defined before the file is first opened.

Revision B Using the CYBIL Keyed-File Interface =~ I-2-3

Creating a Keyed File

AMCS$KEY_POSITION

Position of the leftmost byte in the primary key (specified only if the key
is embedded). The byte positions in a record are numbered from the left,
beginning with 0. The default is 0.

AMCSKEY_TYPE

Primary key type: AMC$SUNCOLLATED_KEY, AMCS$INTEGER_KEY,
or AMC$COLLATED_KEY. The default is AMC$UNCOLLATED_KEY.

For direct-access files, any value specified for the key_type attribute is
ignored. The key _ type for a direct-access file is always uncollated.

AMC$COLLATE_TABLE_NAME

Name of the collating sequence by which collated keys are ordered
(required if the key_ type is collated).

The name can be the name of a NOS/VE predefined collating sequence
or, for a user-defined collating sequence, the name of an entry point in an
object library. See appendix D for more information.

File Structure Attributes

These attributes affect the internal file structure. Keyed-file structure is
described in chapter I-2.

The first group of attributes applies to all keyed-file organizations; the
groups that follow each apply to one keyed-file organization only.

NOTE

The file structure attributes are all preserved attributes. That is, the attribute
value is stored with the file when the file is first opened and (except for
record _limit) cannot be changed thereafter.

I-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

Common File Structure Attributes

The following lists the file structure attributes common to all keyed-file
organizations. It lists the CYBIL attribute identifier (AMC$xxx) followed by
the valid attribute values:

AMCSRECORD_LIMIT

Maximum number of data records allowed in each nested file in the file
(integer from 1 through 2%2-1).

The record _limit attribute value can be changed by the CHANGE _
FILE_ATTRIBUTES command even after the file has been opened. For
more information, see the SCL System Interface Usage manual.

AMC$MAX_BLOCK_LENGTH
Number of bytes in each block (integer from 1 through 16777215 [2%*-1]).

If the value is less than the maximum record length, the system increases
it to that value. Then, if the value is not a power of 2 between 2048 and
65536, it changes the value as follows:

e If the value is less than 2048, it is increased to 2048 (the minimum
allocation unit).

e If the value is between 2048 and 65536, but not a power of 2, it is
increased to the next power of 2 (4096, 8192, 16384, 32768, or 65536).

e If the value is greater than 65536, it is decreased to 65536.

NOTE

If the file will be shared by more than one concurrent instance of open
and forced-writing will be used (the FORCED_WRITE attribute is either
AMCS$FORCED or AMC$FORCED_IF_STRUCTURE_CHANGE), its
block size should be a multiple of a system page size. This ensures that
more than one instance of open is not updating blocks in the same page;
otherwise, a forced-write operation could write a page to mass storage
that contains partially-altered blocks. (A warning message is issued if
this situation exists.)

It is recommended that you do not specify the block length as the
AMC$SMAX_BLOCK_LENGTH attribute, but rather allow the system to
calculate the block length using values specified by the following attributes.

Revision B Using the CYBIL Keyed-File Interface 1-25

Creating a Keyed File

Block Length Guideline Attributes

NOTE

The following attributes do not set limits; their values are used only as
guidelines for determining the block length when the file is created. ‘

AMC$AVERAGE_RECORD_LENGTH

Estimated median record length, in bytes, of the data records to be stored
in the file. (The length should not include a nonembedded key.)

If you omit this parameter, the system uses the arithmetic mean between
the maximum and minimum record lengths in its calculation of the block
size.

AMCSESTIMATED_RECORD_COUNT

Estimated number of data records to be stored in the file. If you de not
define this attribute, the system uses in its calculation of the block size
either the AMC$RECORD_ LIMIT value, or if that attribute is not
defined, the value 100,000.

AMCS$INDEX_LEVELS ‘

Target number of index levels for the file (0 through 15). The default value
is 2.

This attribute applies only to indexed-sequential files.
AMCS$SRECORDS_PER_BLOCK

Estimated number of data records to be stored in each data block. If you
do not define this attribute, the system uses the value 2 in its calculation
of the block size.

I-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

Indexed-Sequential Structure Attributes
The following structure attributes apply only to indexed-sequential files.
AMC$DATA_PADDING

Percentage of data-block space left empty when a block is created
(integer). The default is 0% (no padding). The percentage must allow for
storage of at least one maximum-length record per block.

AMCS$INDEX_ PADDING

Percentage of index-block space left empty when a block is created
(integer). The default is 0% (no padding). The percentage must allow for
storage of at least three index records per block. (The index record length
is the key length plus 4.)

Direct-Access Structure Attributes
The following structure attributes apply only to direct-access files.
AMCSINITIAL_HOME_BLOCK_COUNT

Number of home blocks in the file (1 through 2°!-1 [the segment size limit
divided by the minimum allocation unit]).

NOTE

Specification of this attribute is required when creating a direct-access
file.

For best results, the number should be a prime number. You should
consider the expected number of records in the file and the block size
when selecting the number of home blocks. For more information, see the
discussion under Direct-Access File Structure in chapter I-1.

Revision B Using the CYBIL Keyed-File Interface 1-2-7 @

Creating a Keyed File

AMCS$HASHING_PROCEDURE_NAME

Pointer to a record identifying the hashing procedure to be executed with .
this file ("amt$hashing_procedure_name). The record has these fields:

NAME Entry point name of the hashing procedure
(pmt$program_name). All letters in the name '
must be specified as uppercase.

OBJECT_LIBRARY File path to the object library containing the
hashing procedure (amt$path_name,
256-character string). This feature is currently
unimplemented; specify OSC$NULL_NAME
as the field value.

The default hashing procedure is the one provided by the system, entry
point AMP$SYSTEM_HASHING_PROCEDURE.

If a hashing procedure other than the default is specified, it must be a
procedure declared with the XDCL attribute within the global library set
of the job or defined within the task. The hashing procedure must be
available whenever the file is used; otherwise, AMP$OPEN returns the
condition aae$cant_load _hash_routine.

Processing Attributes ‘

These attributes set keyed-file processing options.

NOTE

The forced _write and lock _expiration_ time attributes are preserved
attributes, but their values can be changed by the CHANGE _FILE _
ATTRIBUTES command. For more information, see the SCL System
Interface Usage manual.

The error_limit and message_control attributes are temporary attributes;
their values can be changed each time the file is opened.

® I-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

AMCS$ERROR_LIMIT

. Maximum number of trivial (nonfatal) errors that can occur before the
trivial errors cause a fatal error. The default value is 0, meaning no limit.

AMC$FORCED_WRITE

Identifier indicating when the system copies modified blocks to mass

storage.

AMC$FORCED Write modified blocks immediately.

AMC$UNFORCED Allow modified blocks to remain in
memory until the next flush or close
request.

AMCS$FORCED_IF_ Write modified blocks immediately if the

STRUCTURE_CHANGE change affects more than one block.
The default value is AMC$FORCED_IF_STRUCTURE_CHANGE.
AMCS$LOCK_EXPIRATION_TIME

Number of milliseconds between the time a lock is granted and the time
that it could expire (integer from 0 through 604,800,000 [1 week]).
(Preserved attribute.)

‘ The default value is 0. When the lock expiration time is 0, locks do not
expire.

This attribute value can be changed by a CHANGE _FILE _
ATTRIBUTES command.

AMC$MESSAGE_CONTROL

Indicates the additional information written to the $ERRORS file besides
fatal error messages. The attribute value is specified as a set in the set
identifier SBAMT$SMESSAGE_CONTROL[].

AMCSTRIVIAL_ERRORS Nonfatal-error messages I

AMC$MESSAGES Informative messages

AMCS$STATISTICS Statistical messages

Null set Suppress nonfatal-error, informative, and I
. statistical messages.

The default value is the null set.

Revision B Using the CYBIL Keyed-File Interface ~ 1-2-9

Creating a Keyed File

Writing Records

Records can be written to a keyed file opened with at least append access. (If
alternate keys are defined for the file, it must be opened with modify, append,
and shorten access.)

You can write records to a new keyed file using either AMP$PUT_KEY or
AMPS$PUT_NEXT calls. Use of AMP$PUT_KEY calls is recommended for
writing keyed files. AMP$PUT _NEXT should be used only if a common
interface for writing records, regardless of file organization, is required.

NOTE

An AMP$PUT_NEXT call cannot specify a key value. When the keyed file
has a nonembedded primary key, AMP$PUT_NEXT takes the key value
from the beginning of the working storage area. It stores the first key_length
bytes as the nonembedded primary-key value and the rest of the data as the
record.

In general, pre-sorting records to be written to an indexed-sequential file can
result in a smaller file and less time required for writing the records. Your
program can use NOS/VE Sort/Merge to sort records as described in part IT
of this manual.

For an indexed-sequential file with an embedded primary key, you could use
NOS/VE Sort/Merge calls to write the original set of records to the file.
(NOS/VE Sort/Merge calls are described in part II of this manual.) The
Sort/Merge specification must define the primary-key field as the major sort
key.

Re-creating a Keved File

As described earlier, the initial keyed-file structure is created when the file is
first opened using the file structure attribute values defined for the file. As
records are added, replaced, and deleted in the file, the file structure may
become inefficient. When this becomes evident, you should re-create the file
to improve the efficiency of its structure.

The evidence of an inefficient file structure differs depending on the
keyed-file organization.

® 1-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

As described at the beginning of this chapter, record access in an
indexed-sequential file is through a hierarchy of index blocks. Each
additional index level in the hierarchy requires an additional index block
search for each data record access. Performance is usually best when no
more than two index levels exist.

You can fetch the current number of index levels in an indexed-sequential
file as the levels_of_indexing file access information item using the
AMPS$FETCH_ACCESS_INFORMATION call. (The AMP$SFETCH _
ACCESS_INFORMATION call is described in the CYBIL File Management

manual.)

An inefficient direct-access file structure is indicated by an excessive number
of overflow blocks and overflow records. The overflow_block_count and
overflow_record _count for the file are included in the list of structural
properties provided by the DISPLAY_KEYED_FILE_PROPERTIES
command.

To re-create a keyed file, you first define the structural attributes for the
re-created file and then copy the old file to the newly defined file. You can
copy the file by any of these means:

e Executing the SCL command COPY_KEYED_FILE (described in the
SCL Advanced File Management manual)

e (alling AMP$COPY_FILE as described in the CYBIL Sequential and
Byte Addressable Files manual

e Using the File Management Utility (FMU) as described in the SCL
Advanced File Management manual. (Unlike the preceding two methods,
FMU can reformat and selectively copy records while re-creating the file.)

The COPY_KEYED_FILE command can apply the alternate-key
definitions from the old file to the new file. AMP$COPY _FILE and FMU do
not apply alternate-key definitions.

If you did not use COPY_KEYED_FILE to re-create the file, you can
re-create alternate keys by this method:

1. Save the alternate-key definitions from the old keyed file on a file. To get
the alternate key definitions used by the file, call AMP$GET_KEY _
DEFINITIONS.

2. Use the saved definitions to redefine the alternate keys on the new file. To
do so, open the new file, call AMP$SCREATE_KEY_DEFINITION to

specify each alternate-key definition, and then apply the definitions with
an AMPSAPPLY_KEY_DEFINITIONS call.

Revision B Using the CYBIL Keyed-File Interface 1-2-11

Using a Keyed File

Using a Keved File

To process an existing keyed file, a CYBIL program performs these steps: .

1. Specifies temporary attribute values to be used by this instance of open
and preserved attribute values to be verified against the attribute values
stored with the file (AMP$FILE and AMP$OPEN). .

2. Opens the keyed file for record access (AMP$OPEN).
3. Performs the intended file operations.
4. Closes the file (AMP$CLOSE).

The following file operations can be performed on an existing keyed file
(assuming the file has been opened with the required access modes):

e Position the file (AMP$SGET_KEY, AMP$REWIND, AMP$SKIP, and
AMPS$START).

e Read records randomly by key value (AMP$GET_KEY).

® Read records sequentially by position (AMP$GET_NEXT_KEY and
AMP$GET_NEXT).

® Write records (AMP$SPUT_KEY, AMP$PUT_NEXT, and
AMP$PUTREP). ’

¢ Delete records (AMP$DELETE_KEY).
e Replace existing records (AMP$REPLACE_KEY and AMP$PUTREP).

¢ TLock key values (AMP$LOCK_KEY, AMP$GET_LOCK_KEYED _
RECORD, AMP$GET_LOCK_NEXT_KEYED_RECORD, and
AMP$LOCK_FILE).

e Unlock key values (AMP$UNLOCK_KEY and AMP$UNLOCK _FILE).

® Define, delete, and select nested files (AMP$CREATE_NESTED_FILE,
AMP$DELETE_NESTED_FILE, AMP$GET_NESTED_FILE
DEFINITIONS, and AMP$SELECT_NESTED_FILE).

e Define, delete, and select alternate keys as described later in this chapter.

Depending on the value of the forced _write attribute, the system might not

write modified blocks to mass storage immediately after the modification.

You can call AMP$FLUSH any time after the file is opened to write the part

of the file in memory to mass storage. Execution of the AMP$FLUSH call ‘
does not change the position of the file.

I-2-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Positioning a Keyed File

Positioning a Keved File

To position a keyed file, a program must open the file for at least read access.
In general, a program positions a file so that it can later read records
sequentially.

For information on positioning a file by alternate-key values, refer to Using
Alternate Keys later in this chapter.

As described later under Reading Records, the sequential access capabilities
differ for indexed-sequential and direct-access files. This results in
differences in the positioning calls available for each organization.

Positioning a Direct-Access File

While an alternate key is selected, the same positioning calls are valid for a
direct-access file as for an indexed-sequential file. However, while the
primary key is selected, the only valid positioning call is AMP$SREWIND.
AMPSREWIND positions a direct-access file at the beginning of its first
home block.

While the primary key is selected, an AMP$SKIP call specifying a
direct-access file returns the nonfatal condition aae$no_skip_in_da. An
AMPS$START call for a direct-access file with its primary key selected
returns the condition aae$no_da_or_sk_start.

Positioning an Indexed-Sequential File
The following positioning calls are available for indexed-sequential files:

o AMPSGET_KEY: Returns to the working storage area the record whose
key value matches the key value specified on the call and positions the file
at the end of the returned record.

o AMPSREWIND: Positions a file to read the record with the lowest key
value.

o AMPSSKIP: Positions a file forward or backward.

o AMPSSTART: Positions a file to read the record whose key value matches
the key value specified on the call.

Revision B Using the CYBIL Keyed-File Interface 1-2-13 @

Positioning a Keyed File

Positioning an Indexed-Sequential File by Major Key

The AMP$START, AMP$GET_KEY, and AMP$GET _LOCK_KEYED_ ‘
RECORD calls have a major_key_length parameter. This parameter allows
a call to position an indexed-sequential file according to a major-key value.

A major key consists of one or more of the leftmost bytes of a key. The
major_key_length parameter specifies the number of bytes to use as the ‘
major key. A major key search compares only the number of bytes in the

major key.

For example, suppose the key value at the specified key_location is ABCDEF
and the major_key_length parameter value is 2. The major-key value,
therefore, is the leftmost two bytes, characters AB. The major key search
compares the characters AB with the leftmost two bytes of the searched
keys. It positions the file at the first record whose key begins with AB or
greater.

As a second example, suppose the key value is the hexadecimal integer
FF145 and the major key length value is 3. The major key used is the
leftmost three bytes containing the value FF1, so the file is positioned at the
first record whose key begins with FF1 or greater.

If the major_key_length parameter is zero or equal to key_length, the entire
key is used to position the file.

The major_key_length parameter is ignored on direct-access file calls. .

Positioning an Indexed-Sequential File by Key Relation

The AMPGET_KEY, AMPGET_LOCK_KEYED_RECORD, and
AMPS$START calls have a key_relation parameter. This parameter allows a
call to position an indexed-sequential file even if the specified key value does
not exist in the file.

The key_relation parameter specifies the relation to be satisfied between the
specified key value and the key value of the record at which the file is
positioned. The relation can be equal, greater than or equal, or greater than.

For example, suppose the specified key value is ABC.

o If the specified key _relation is equal, the call must find a record whose
key value matches ABC. If such a record is not found, the call returns an
abnormal completion status.

e If the specified key_relation is greater than or equal to, the first key value .
found that is greater than or equal to ABC satisfies the relation. If the
relation cannot be satisfied, the file is left positioned at its
end-of-information.

I-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Reading Records

o If the specified key_relation is greater than, the first key value found that
is greater than ABC satisfies the relation. If no key value is greater than
ABC, the file is left positioned at its end-of-information.

The key_relation parameter is ignored for direct-access file calls.

Reading Records

For records to be read from a keyed file, the file must be open for at least read
access. However, it is recommended that the file be opened for both read and
modify access. Modify access allows access statistics to be updated without
allowing any record in the file to be altered.

A read operation transfers a record from the file to the specified working
storage area. The number of bytes in the record is returned in the record _
length parameter.

You cannot call AMP$GET_PARTIAL to read a keyed-file record. However,
a partial read of a record is performed when the record is longer than the
working storage area specified on the get call. The get call reads data until
the working storage area is filled and then returns a nonfatal error
(AAESRECORD_LARGER_THAN_WSA). The get call leaves the keyed file
positioned at the end of the record; thus, the next read request cannot begin
where the partial read ended.

You can read records either sequentially by position or randomly by key
value. A sequential read returns the next logical record in the file. A random
read returns the record identified by the specified key value.

Sequential Access for Indexed-Sequential Files I

Records can be read sequentially from an indexed-sequential file using
AMPS$GET_NEXT_KEY or AMP$GET_NEXT calls. Use of AMP$GET _
NEXT_KEY calls is recommended for reading indexed-sequential files. You l
should use AMP$GET _NEXT only if a common interface for writing

records, regardless of file organization, is required.

AMPSGET NEXT KEY returns the key value of each record in the location
specified by the key_location parameter. The task can check the file_
position value returned to determine when to stop reading records.

You can also read a contiguous group of records residing anywhere in the file
by combining random access and sequential access. This is accomplished by
issuing an AMP$GET_KEY to read the first record in the contiguous group,
and, then, issuing AMP$GET_NEXT_KEY calls (or AMP$GET_NEXT) to
read the following records sequentially.

Revision B Using the CYBIL Keyed-File Interface I-2-15

Reading Records

Sequential Access for Direct-Access Files

Records are not stored in sorted order by primary-key value in direct-access
files as they are in indexed-sequential files. Thus, sequential access is
appropriate only:

o When an alternate key is selected
e When a primary key is selected and all records in the file are to be read

A sequential pass through a direct-access file is valid only when no update
operation intervenes. An intervening update operation could cause the
sequential pass to miss records. (Sequential access to a direct-access file is
done by physical position in the file; an update operation could change the
record locations.)

To provide effective sequential access, the keyed-file interface imposes these
restrictions on sequential access to direct-access files:

¢ When the primary key is selected, AMP$GET_LOCK_NEXT_KEY,
AMPSGET_NEXT_KEY and AMP$GET_NEXT calls are valid only
when the direct-access file has been attached for exclusive access (no
share modes allowed).

When the primary key is selected and the file attachment allows sharing,
a sequential get call returns the condition aae$cant_da_getn_if shared.

o When the primary key is selected, a program cannot intermix sequential
access calls and update operations. (The only update operation allowed is
the replacement of a record with another record of the same length.)

When the primary key is selected and an update operation has been
performed, the program must rewind the file before beginning a
sequential pass of the direct-access file. Otherwise, a sequential get call
returns the condition aae$cant_da_getn_after_put.

You can intermix sequential access (get_next) calls and AMP$GET_KEY
calls. An AMP$GET_KEY call does not change the file position used by
get_next calls.

® 1-2-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Reading Records

. Random Access

Records are read randomly by key value using the AMP$GET _KEY call. To
retrieve a single record from the keyed file, you specify a key value, and the
system returns to the working storage area the record with the matching key

‘ value, if it exists.

For indexed-sequential files, the major_key_length parameter allows the
AMPS$GET_KEY call to read the first record with the specified major key.
The key_relation parameter allows AMPSGET_KEY to specify the relation
between the key value of the record to be read and the specified key value.
The relation could be equal, greater than, or greater than or equal.

The major_key_length and key_relation parameters are ignored on
direct-access file calls.

Revision B Using the CYBIL Keyed-File Interface I-2-17

Keyed-File Sharing

Keved-File Sharing

A NOS/VE keyed file can be accessed with or without potential sharing of
the file. A keyed file is shared when multiple concurrent instances of open of
the file exist.

The potential for sharing determines whether NOS/VE must safeguard the ‘
keyed-file structure for multiple users:

o While a keyed file could be shared, NOS/VE performs internal locking
operations to maintain the integrity of the file structure.

e While a keyed file cannot be shared, the overhead required to maintain
file integrity is not needed, resulting in better file access performance.

File access is controlled by the set of access modes in effect for the file. File
sharing is controlled by the set of share modes in effect. The use of access
modes and share modes for NOS/VE files in general is described in the SCL
System Interface and CYBIL File Management manuals; access mode and
share mode use for keyed files is described here.

To see the access modes and share modes currently in effect for a file, enter
this SCL command (specifying the file name or file reference):

Display_File_Attributes, File=file, ..
Display_Options=(Access_Modes, Global_Share_Modes) ‘

The Access_Modes set is the set of access modes currently in effect. It is
contained in the Global _ Access_Modes set (the set of all available access
modes as determined when the file is created or attached). When the file is
created or attached, the Access_Modes and Global _Access_Modes values
sets are the same. However, the Access_Modes set can be restricted to a
subset of the Global _Access_Modes by a SET_FILE_ATTRIBUTES
command or AMP$FILE or AMP$OPEN call. Keyed-file sharing is affected
only by the Access_Modes set; the Global _ Access_Modes set only indicates
the possible values of the Access_Modes set.

The Global_Share_Modes set is the set of share modes currently in effect. It
is determined when the file is created or attached; you cannot change the
Global_Share_Modes using SET_FILE_ATTRIBUTES commands or
AMPS$FILE or AMP$OPEN calls.

AMP$GET_FILE_ATTRIBUTES and AMP$FETCH calls in a CYBIL
program can fetch the Access_Modes and Global_Share_Modes sets.

® I-2.18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Sharing Temporary Keved Files

You can specify the Access_Modes currently in effect for a permanent or
temporary keyed file. However, because you can specify Share_Modes only
when attaching the file, you cannot specify Share_Modes for a temporary
file. The Global _Share_Modes value for a temporary file is always none.

Thus, a temporary keyed file cannot be shared. It can be opened
consecutively within a job, but it cannot be opened concurrently, that is, it
cannot have multiple instances of open.

To illustrate how tasks can open a temporary keyed file, suppose task X
creates and opens a temporary keyed file. Task X cannot open the file again
until it closes the existing instance of open. After task X closes the file, task
X or task Y can then open the file. Also, if task X opens the file and then
initiates task Y, task Y cannot open the file until task X closes the file.

Sharing Permanent Keved Files

For a permanent keyed file, the Share_Modes can be explicitly specified
when the file is attached; otherwise, the default set is used. NOS/VE
provides two default Global _Share_Mode values as follows:

1. When the Access_Modes include any of the write modes (append, modify,
or shorten), the default Global _Share_Mode value is none. Thus, by
default, NOS/VE allows no sharing while the file could be changed.

For example:

/attach_file, $user.keyed_file, access_mode=write
/display_file_attributes, keyed_file, ..
../display_options=(access_modes, global_share_modes)
Access_Mode : (shorten, append, modify)
Global _Share_Mode : none

2. When the Access_Modes do not include any of the write modes (append,
modify, or shorten), the default Global _Share_Mode value is read and
execute. Thus, by default, the file cannot be changed.

For example:

/attach_file, $user.keyed_file, access_mode=read
/display_file_attributes, keyed_file, ..
../display_options=(access_modes, global_share_modes)
Access_Mode : (read)
Global_Share_Mode : (read, execute)

Revision B Using the CYBIL Keyed-File Interface 1-2-19 @

Keyed-File Sharing

In the first situation, no locking is needed because no sharing is allowed. In
the second situation, no locking is needed because the data cannot change.
When no locking is needed, no setting of locks or checking for locks is done
and performance improves.

NOTE

For best performance when using a keyed file, check that the share modes
allowed are no more than those required. If possible, allow no sharing of the
file.

In general, when the file can be shared (the Global_Share_Modes value is
not none) and either the Access_Modes or the Global_Share_Modes include
shorten or append access, locking is needed. The following examples show
two situations in which locking is not needed and a third situation in which
it is needed.

1. When reading a keyed file, it is recommended that you request modify
access so that read statistics can be recorded in the file. Because modify is
one of the write access modes, no other instances of open can access the
file while you read it (if you do not explicitly specify Share_ Modes). For
example:

/attach_file, $user.keyed_file, access_modes=(read, modify)
/display_file_attributes, keyed_file, ..
../display_options=(access_modes, global_share_modes)
Access_Mode : (read, modify)
Global_Share_Mode : none

In this case, because no sharing is allowed, no locking is performed and
performance is at its best.

2. Next, to allow other users to read the keyed file and maintain accurate
read statistics, you explicitly specify the Share_Modes as read and
modify:

/attach_file, $user.keyed_file, access_modes=(read, modify) ..
- ./share_modes=(read, modify)

/display_file_attributes, keyed_file, ..
-./display_options=(access_modes, global_share_modes)
Access_Mode : (read, modify)

Global_Share_Mode : (read, modify)

In this case, sharing is allowed, but the file data cannot be changed. So
again, no locking is performed and performance is at its best.

@® 1-220 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

3. Suppose that the permit applicable to the attach allows all access modes
to the file, but requires that shorten and append share modes be allowed.
You choose to request all access modes and allow all share modes:

/attach_file, .xyz.keyed_file, access_modes=all, share_modes=all
/display_file_attributes, keyed_file, ..

. ../display_options=(access_modes, global_share_modes)
Access_Mode : (read, shorten, append, modify)
Global_Share_Mode : (read, shorten, append, modify)

In this situation, other instances of attach, as well as this one, can write,
replace, and delete records. Because of the potential for file sharing,
NOS/VE uses internal locks as needed to maintain the integrity of the file
structure. A program using the file in a shared situation such as this may
choose to use locks to disallow changes to data it is currently using; it
must lock the primary-key value of any record it deletes or replaces.

The reasons for using locks and the means of doing so are described in detail
in the following pages.

Lock Processing

Keyed-file sharing can be coordinated through the use of locks. A lock is a
mechanism by which a task can restrict use of a keyed file or individual

‘ primary-key values in keyed files. The lock is owned by a particular instance
of open for the file. The part of the NOS/VE system software that manages
locks is called the lock manager.

In general, lock processing follows this pattern:

1. The lock manager receives a request for a lock on a file or primary-key
value.

2. The lock manager determines whether the lock can be granted.

a. If no conflicting lock exists, the lock manager grants the lock and
notifies the requesting task.

b. If a conflicting lock exists, the lock manager checks if the request
specified waiting.

i. If the request specified no waiting, the lock manager notifies the
task requesting the lock that the record or file is currently locked.

‘ ii. If the request specified waiting, the task is suspended until either:

- The lock is available (assuming no potential deadlock as
described later under Lock Deadlock), or

. - The timeout period elapses (default value, 60 seconds).

Revision B Using the CYBIL Keyed-File Interface 1-2-21 @

Keyed-File Sharing

The lock manager also processes requests to clear locks and keeps track of
locks that have expired (as described later under Lock Expiration and
Clearing).

NOTE

In general, when the discussion of locks in this manual describes two or ‘
more tasks requesting locks, the two or more tasks could actually be the

same task with two or more instances of open of the same file. This is

because a lock belongs to a particular instance of open and one task could be
requesting locks for more than one instance of open.

Lock use is recommended for effective sharing of a keyed file. In fact, when
more than one instance of open exists for a keyed file, NOS/VE requires that
a task lock the record before it can replace or delete the record.

Lock use ensures that:
¢ Requests are processed in the sequence in which requests are issued.

e The operation is performed on the most up-to-date version.

Reasons for Locks ‘

To illustrate the need for locks, the following sequence of events describes
two tasks using the same file without locks.

1. Two tasks both read the same record containing the value 1.

File Task A Task B
1 1 1
2. One task adds 2 to the value and replaces the record, containing the value
3, in the file.
File Task A Task B
3 3 1

3. The other task adds 1 to the value and replaces the record, containing the
value 2, in the file.

File Task A Task B ‘
2 3 2
The work of one of the tasks has been overwritten. I

® 1-222 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

In contrast, consider the following sequence of events describing two tasks
using the same file with locks.

1. A task locks and reads a record.

File Task A

1 1

2. A second task attempts to lock and read the record but cannot because the
record is already locked. It waits until the record is unlocked.

File Task A Task B

1 1

3. The first task adds 2 to the value, and replaces the record containing the
value 3, in the file. It then unlocks the record.

File Task A Task B

3 3

4. The second task can now lock and read the record. It adds 1 to the value,
and replaces the record, containing the value 4, in the file.

File Task A Task B

4 3 4

Revision B Using the CYBIL Keyed-File Interface 1-2-23 @

Keyed-File Sharing

Lock Intents

Each lock has a lock intent. The lock intent indicates why the task is
requesting the lock.

When more than one instance of open exists for a keyed file, only the owner
of an Exclusive_ Access or Preserve_Access_and_ Content lock on the record
(or the file) can replace or delete the record. However, the replace or delete
operation does not take place until no unexpired Preserve_Content locks
exist for the record.

The following paragraphs describe the lock intents for record locks. (Lock
intents for file locks are described later under File Locks.)

Exclusive_Access

e Used when the task intends to issue write or delete requests for the locked
record.

® Denies all requests by other tasks to read, write, update, or delete the
record or lock its key value.

e Allow requests by other tasks that position the file or perform operations
only on alternate indexes.

Preserve_ Access_and_Content

e Used when the task might issue write or delete requests for the locked
record. Only one Preserve_ Access_and_Content lock is allowed at a time
for a record.

e Allows positioning and read requests by other tasks, but denies their
write, replace, and delete requests.

e Allows Preserve_Content lock requests by other tasks, but denies their
requests for Exclusive_Access and Preserve_Access_and_Content locks
on the record.

® The owner of the Preserve_ Access_and_Content lock can request a write,
replace, or delete operation, but:

- The write, replace, or delete operation does not begin until the
conditions for an Exclusive_ Access lock are met:

- All read operations in progress for the record have completed.

- All Preserve_Content locks for the record have expired or been
cleared.

- No read operations for the record can begin until the write, replace, or
delete operation completes.

@® [-224 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Preserve_Content

‘ e Used when the task does not intend to issue write, replace, or delete
requests for the locked record.

o Allows positioning and read requests by other tasks, but denies their
' write, replace, and delete requests.

o Allows Preserve_Content and Preserve_Access_and_Content locks by
other tasks, but denies their Exclusive_Access lock requests.

Multiple Preserve_Content locks are allowed at a time, but only one
Preserve_Access_and_Content lock. Thus, multiple tasks can be reading the
record, but only one task can be waiting to write, replace, or delete the record.

Switching Lock Intents

The owner of a lock on a record can request another lock on the record with
the same lock intent without an intervening unlock request.

The owner of an Exclusive_ Access or Preserve_Access_and_Content lock
can also switch the lock intent to Exclusive _Access or Preserve_Access_
and_Content without an intervening unlock request.

A request to change the lock intent from Preserve_Access_and_Content to
. Exclusive_Access is not performed until any Preserve_Content locks on the
record or the file are no longer effective.

A lock request that renews an existing lock restarts the expiration time for
the lock.

This table summarizes the lock intent switching that is valid without an
intervening unlock request.

To Exclusive_ Preserve_Access_ Preserve_
From Access and_Content Content
Exclusive_Access Valid Valid Invalid
Preserve_Access_
and_Content Valid Valid Invalid
Preserve_Content Invalid Invalid Valid

Revision B Using the CYBIL Keyed-File Interface 1-2-25 @

Keyed-File Sharing

Waiting for a Lock

On a call that requests a lock, you specify whether the call should wait if the ‘
lock is unavailable. If you specify that the call should wait, it waits until the

lock is available or a lock timeout period has passed. When the time period

has passed, the call terminates with the condition aae$key_timeout. '

The default timeout period is 60 seconds. However, each task can specify how
long it waits for a lock by defining and initializing an SCL integer variable.

The timeout variable is named AAVSRESOLVE_TIME_LIMIT. You assign
the variable the new waiting period in seconds (from 1 through 604,800,000
[1 week]).

For example, the following call executes the SCL. command CREATE _
VARIABLE to create the AAVSRESOLVE_TIME_LIMIT variable and
assign it the value 45.

clp$scan_command_Line('create_variable, AAVSRESOLVE_TIME_LIMIT, CAT
kind=integer, value=45, scope=local', status);

(The CLP$SCAN_COMMAND_LINE call is described in the CYBIL
System Interface manual.)

Lock Expiration and Clearing ‘

An expired lock and a cleared lock are not the same:
e A cleared lock no longer exists; the lock manager has discarded it.

e An expired lock exists, but is no longer effective in preventing access by
other tasks. However, an expired lock prevents file access by its owner
(except to fetch or store attributes or access information). This is done so
that the owner of the lock is notified of its expiration.

A lock is cleared when one of these events occurs:
e The task with the lock issues an unlock request for the lock.
e The task closes the instance of open to which the lock belongs.

e The request for the record lock specified automatic unlock, and the task
issues any request for the instance of open (other than a call to fetch or
store attributes or fetch access information).

In general, the automatic unlock occurs when the request is issued. The ‘
exception is for an update request for the locked record for which the lock is
kept until the update operation completes.

® 1-2.26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

For example, if a task issues a lock on record 1 and then issues a request to
replace record 1, the lock manager automatically clears the lock on record 1
after the replace operation.

Similarly, if a task issues a lock on record 1 and then issues a request to
position the file at record 2, the lock manager automatically clears the lock
on record 1, before positioning the file at record 2.

A lock expires when the following sequence of events occurs:
1. Its expiration time has passed since the lock was granted.

2. Another task issues a request specifying waiting that would be denied if
the lock was effective. (The request is granted.)

The number of milliseconds in the lock expiration time is specified by the
lock_expiration_time file attribute. Its default value is 0, meaning an
unlimited expiration time. Thus, if you do not explicitly set a nonzero lock _
expiration_time for the file, locks for the file cannot expire.

An expired lock is no longer effective in preventing access to the file or record
by other tasks. However, it does prevent operations on the file by the task
holding the expired lock.

The task holding the expired lock is prevented from any operation on the file
until it clears the expired lock. This notifies the task that a lock has expired.

For example, consider the following sequence of events:

1. Task 1is granted a 30-millisecond Preserve_Access_and_Content lock
on record 1 in file 1 without automatic unlock.

2. Thirty milliseconds pass.

3. Task 1 reads record 1 from file 1. The read request restarts the expiration
time count. (The lock has not yet expired because no other task has has
issued a request for the record that a Preserve_Access_and_Content lock
should prevent. The lock is not unlocked because automatic unlock was
not requested for the lock.)

4. Thirty milliseconds pass.

5. Task 2 requests a Preserve_Content lock on record 1 in file 1. (The Task 1
lock does not expire because a Preserve_Access_and_ Content lock does
not prevent Preserve_Content locks.)

6. Task 3 requests, with waiting, a Preserve_ Access_and_ Content lock on
record 1 in file 1. (The Task 1 lock expires because a Preserve_Access_
and_Content lock should prevent additional Preserve_Access_and _
Content locks.)

Revision B Using the CYBIL Keyed-File Interface 1-2-27 @

Keyed-File Sharing

7. Task 1 attempts to read record 2 in file 1, but instead the request
terminates with a nonfatal error, notifying Task 1 that it has an expired ‘
lock. Task 1 must clear the expired lock before it can successfully request
any record in file 1.

Notice that in the preceding example the lock would not have expired if the
lock request had specified automatic unlock.

Expired Lock Conditions
The following nonfatal conditions can be returned for an expired lock:

aae$key_expired_lock_exists
The operation failed due to a leftover expired lock.

aae$auto_unlock_frustrated
A key value could not be automatically unlocked due to an expired lock.

aae$key_expired_lock_exists
The key value could not be locked due to an expired lock.

aae$expired_Llock_interfered_1
A lock with a time limit could not be changed to a lock with no time limit
due to an expired lock.

aae$expired_lock_interfered_2 ‘
The first primary-key value in the key list for an alternate-key value
could not be locked due to an expired lock. This status can be returned
only if the alternate key allows duplicate values, ordered by primary key,
and, while the task is waiting for the lock, another task inserts a
primary-key value at the beginning of the key list.

® 1-228 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Lock Deadlock

. A deadlock is a situation in which two or more tasks need a lock already held
by another task in the group of tasks. For example, the following situation is
a deadlock:

. ¢ Task 1 has a lock on record 1 and needs a lock on record 2.
® Task 2 has a lock on record 2 and needs a lock on record 3.
e Task 3 has a lock on record 3 and needs a lock on record 1.
If none of the tasks releases the lock it holds, none of the tasks can complete.

A deadlock can occur either when tasks are waiting for a lock or when tasks
are each repeatedly requesting a lock. The lock manager can detect the
deadlock when the tasks are actually waiting for a lock; it cannot detect a
deadlock when tasks are repeatedly requesting a lock.

When the lock manager receives a lock request indicating that the task
wants to wait until the lock is available, it checks for a possible deadlock. To
do so, it checks whether other tasks are waiting for locks held by the
requesting task. If it detects a potential deadlock, it terminates the request,
returning one of these nonfatal conditions.

aae$key_deadlock
‘ Returned if the deadlock is with another task.

aae$key_self_deadlock
Returned if the deadlock is a self-deadlock (either this instance-of-open or
another instance-of-open in the requesting task already has the requested
lock).

To prevent a deadlock that the lock manager cannot detect, a task should
limit the number of times it repeatedly requests a lock without waiting. After
a fixed number of attempts, it should do one of the following:

e Issue a lock request with waiting in which case the lock manager can
notify it that a potential deadlock exists.

® Assume that a potential deadlock exists and clear the locks it holds.

Revision B Using the CYBIL Keyed-File Interface 1-2-29 @

Keyed-File Sharing

File Locks

Your program should request a file lock when it needs locks on many keys at .
the same time.

A file lock is required when your program needs more than 1024 locks at a

time because 1024 is the maximum number of locks allowed for an instance ‘
of open. An attempt to exceed this limit returns the nonfatal condition
aae$too_many_keylocks.

The number of locks allowed also depends on the file_limit attribute value.
The lock manager tracks all locks for a file in another file called the lock file
(named AAF$SDEPENDENCY _FILE). The lock file size cannot exceed 90%
of the file_limit value and, if an operation would cause the lock file to be
more than 50% full, the operation is not allowed to begin and the fatal
condition aae$lock_file_crowded is returned.

In general, the rules for using file locks are the same as those for individual
locks on primary-key values. The difference is that a file lock is a lock on all
primary-key values in the nested file currently selected.

A nested file cannot be deleted while any locks exist for the nested file. Locks
are not discarded even when another nested file is selected.

File Lock Intents ‘
The effect of the lock intent of a file lock is as follows:

o Exclusive_Access

Only the owner of the lock can access records in the nested file; all
requests by nonowners are denied including all lock requests.

® Preserve_Access_and_Content

Allows Preserve_ Content locks (both key locks and file locks), but denies
all Exclusive_Access and Preserve_Access_and_ Content locks.

e Preserve_Content

Allows any number of Preserve_ Content locks and one Preserve_ Access_
and_ Content lock for each primary-key value and for the nested file as a
whole, but denies all Exclusive_ Access lock requests.

® [-2-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Effect of Locks on Keved-File Calls
This section summarizes the effects of locks on calls for an open keyed file.
These calls request locks:

AMP$GET_LOCK_KEYED_RECORD AMPSLOCK_FILE
AMP$GET_LOCK_NEXT_KEYED_RECORD AMP$LOCK_KEY

These calls explicitly clear locks:

AMP$UNLOCK_FILE
AMP$UNLOCK_KEY

(A lock requested with automatic unlock is cleared by any call to the instance
of open, except calls that fetch or store attributes or fetch access
information.)

When another instance of open exists for the file, these calls require a lock on
the primary-key value:

AMP$DELETE_KEY
AMP$SREPLACE_KEY

A lock held by another instance of open could cause these calls to return
abnormal status:

AMP$DELETE _NESTED _FILE AMP$PUT_KEY

AMP3SGET_KEY AMP$PUT _NEXT
AMPS$GET_NEXT AMPS$PUTREP
AMP$GET_NEXT_KEY AMPS$SELECT _NESTED_FILE

All other calls for an open keyed file return normal status regardless of locks.

For more information on the effect of locks on a call, see the individual call
description in chapter I-3.

Revision B Using the CYBIL Keyed-File Interface [-2-31 @

Creating and Deleting Alternate Keys

Creating and Deleting Alternate Keys

To create or delete alternate keys, a CYBIL program performs these steps: .
1. Opens the file, if it is not already open.

2. Issues an AMP$CREATE _KEY_DEFINITION call for each alternate .
key to be created. Issue an AMP$SDELETE _KEY _DEFINITION call for
each alternate key to be deleted.

3. To implement the alternate-key definitions and deletions specified in step
2, itissues an AMP$APPLY_KEY_DEFINITIONS call. Or, to discard
the specified definitions and deletions, it issues an AMP$ABANDON _
KEY_DEFINITIONS call.

A program can create alternate keys in a new file or in an existing file. The
point at which you should create alternate keys depends upon how the
alternate key handles duplicate values.

If the file data is expected to contain duplicate values for the alternate key
and the duplicate values are to be ordered first-in-first-out, the alternate key
must be defined before records are written to the file. Otherwise, when the
alternate index is built, the duplicate values already existing in the file are
ordered by primary-key value. Duplicate values added later are ordered
first-in-first-out.

If duplicate key values are not allowed for the alternate key or the duplicate .
values are to be ordered by primary-key value, the alternate key should be

defined after records are written to the file. Building the alternate index is

more efficient when the records are already in sorted order. If the alternate

index is updated as each record is written, the alternate index is built in

random order. This takes much longer. The efficiency difference is even

greater when the file has more than one alternate index.

If the file is large, applying an alternate-key definition to a file can require
considerable processing time. This is because creation of a new alternate
index requires that all records in the file be read.

I 1-2-.32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

Using Alternate Keys

An alternate key is available for use after it has been defined and applied to
the file. The following sections describe how you can use an alternate key.

In general, file access calls perform the same processing when an alternate
. key is selected as when the primary key is selected. The only difference is
that records are accessed through the alternate index.

Record access through the alternate index means that the logical record
order is the order of the alternate-key values in the alternate index. The
alternate-key values are stored in ascending order.

If more than one record is associated with the same alternate-key value, the
records are accessed in the order their primary-key values occur in the key
list for the alternate-key value.

For example, suppose the key list for alternate-key values A and B are as
follows:

A: RECORD1, RECORD3
B: RECORD2

The A records are read before the B records so that the records would be read
sequentially: RECORD1, RECORD3, RECORD2.

Selecting an Alternate Key

When a keyed file is opened, the system assumes that file processing is by
primary key. That is, the selected key is initially the primary key. You can
change the selected key by calling AMP$SELECT _KEY. The call specifies
the name of the key to be selected.

An AMPS$SELECT _KEY call specifies the name of the key as it was defined
when the key was created. To specify the primary key on an
AMPS$SELECT _KEY call, specify the name $PRIMARY _KEY.

The key selected by an AMP$SELECT_KEY call is used until another
AMPS$SELECT _KEY call changes the selected key or until the file is closed.

Revision B Using the CYBIL Keyed-File Interface 1-2:33 ||

Using Alternate Keys

File Positioning After Alternate-Key Selection

When an AMP$SELECT_KEY call selects a different key, it sets the file
position to the beginning of the index for that key. (If the key specified on an
AMPSSELECT_KEY call is already the selected key, the file position is not
changed.) After an alternate key is selected, all file positioning follows the
logical record order represented in the alternate index.

As described earlier in this chapter, several calls are available to position a
keyed file. Those calls that both position the file and read and write data are
described later. The following calls position the file without reading or
writing data:

AMPS$START
Positions the file to access the record having the specified value for the
selected key.

AMP$REWIND
Positions the file at the beginning of the index for the selected key. The
file is positioned to access the record with the lowest value for the selected
key.

AMPS$SKIP
Positions the file forward or backward the specified number of records
(according to the record order provided by the index for the selected key).

Reading Records After Alternate-Key Selection

In general, the calls to read (or get) a record perform the same when an
alternate key is selected as when the primary key is selected. The only
difference is that records are accessed through the alternate index.

Random get calls specify the record to be read by its alternate-key value.
Sequential get calls access records in sorted order by alternate-key value.

These calls get a record and position the file to read or write the next record.
The next record is the record having the next primary-key value listed in the
alternate index.

AMP$GET_KEY
Gets the first record in the key list of the specified alternate-key value and
positions the file to read the next record.

An AMP$GET _KEY call specifies the alternate-key value either in the
location referenced by the key _location pointer or (with a NIL key _
location pointer) in the working storage area. The second method is
especially useful for concatenated alternate keys because the fields of the
key can be assembled in the working storage area. Each key field value is
stored in the working storage area at its actual position within the record.

I I-2.34 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

AMP$GET_NEXT_KEY
Gets the record at the current position in the alternate index, returns the
alternate-key value of the record read, and positions the file to read the
next record.

The alternate-key value returned is the value stored in the alternate
index. If the alternate-key type is AMC$COLLATED _KEY, the key
values are stored in collated form. In collated form, each character is
represented by the lowest character code having the same collating
weight.

For example, assume that lowercase letters are collated as equal to the
corresponding uppercase letters (each uppercase/lowercase pair has the
same collating weight). Then the alternate-key value is stored (and later
returned) using only uppercase letters.

AMPS$GET _NEXT
Gets the record at the current position in the alternate index and positions
the file to read the next record.

Updating an Alternate Index

A call to put, replace, or delete a record cannot specify an alternate-key
value; a key value specified on a put, replace, or delete call is expected to be a
primary-key value even if an alternate key is currently selected. However,
put, replace, and delete calls do update any alternate indexes affected by the
operation.

When a call deletes a record in the file, any alternate index entries for the
record are deleted.

When a call writes a new record to the file, an entry for the record is added to
the alternate indexes (unless the record is excluded from an index by
sparse-key control). The new record can then be read by its alternate-key
value.

When a call replaces an existing record in the file, the alternate index entries
for the record are replaced with the appropriate entries for the new record.
(The alternate-key value could have changed or sparse-key control could
exclude the record from an alternate index.)

To update an alternate index, the file must be open for modify, shorten, and
append access.

If an alternate index in the file was created using the default duplicate_key _
control value AMC$NO_DUPLICATES_ALLOWED, a record having the
same alternate-key value as a record already in the file cannot be written to
the file. An attempt to put or replace a duplicate record does not write the
record and returns a nonfatal error.

Revision B Using the CYBIL Keyed-File Interface 1-2-35 '

Using Alternate Keys

Fetching Access Information After Alternate-Key Selection

An AMPSFETCH _ACCESS_INFORMATION call can return the following .
items of information. (The call format is in the CYBIL File Management

manual.) This list highlights the meaning of each item when returned

immediately after a call that specifies an alternate-key value:

duplicate_value_inserted .
Boolean indicating whether the last AMPPUT, AMPPUTREP,
AMPS$REPLACE, or AMP$SAPPLY_KEY_DEFINIIONS call detected a
duplicate alternate-key value.

The duplicate_value_inserted item does not identify the duplication. An
AMPSPUT, AMPPUTREP, or AMP$REPLACE call can detect a
duplicate value for any alternate key in the file that allows duplicates. An
AMP$APPLY_KEY_ DEFINITIONS call can detect a duplicate value for
any record in the file.

file_position
Returns the current file position as described later under File Position
Returned.

primary_key
Primary-key value of the record at the current file position (the next
record).

NOTE

The AMP$FETCH_ACCESS_INFORMATION call must specify a pointer
to the location where the primary-key value is to be returned. The pointer
must be specified in the PRIMARY _KEY field in the array specified by the
fetch _items parameter.

selected _key _name
Name of the currently selected key. If the primary key is currently
selected, the name $PRIMARY _KEY is returned.

1-2-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

File Position Returned

. At completion of each AMP$START, AMP$GET_KEY, or AMP$GET _
NEXT_KEY call, a value is returned in the file_position variable. The value
returned is AMC$EOR, AMCS$EOI, or AMC$END _OF _KEY_LIST as
shown in the following table.

‘ Table I-2-1. File Position Returned

AMCS$END_OF _
AMCS$EOR KEY_LIST AMCSEOI
AMPS$START Not applicable. The alternate index is The alternate index is
positioned at the end of positioned at its end because
a key list and at the the specified alternate-key

beginning of the next key value was higher than any
list. The next keylist is for alternate-key value in the
either the specified index.

alternate-key value or the

next higher alternate-key

value if the specified value

was not found.

AMPS$GET_KEY A record associated with The last (or only) record Same as for AMP$START.

the alternate-key value associated with the
has been returned, and if alternate-key value has
an AMP$GET _NEXT _ been returned, and if an
KEY call were issued next, AMP$GET_NEXT_KEY
it would return the next call were issued next, it
. record in the key list for would return a record with
the same alternate-key another alternate key
value. value or the file_position
AMCS$EOL
AMPS$GET _ Same as for Same as for No record is returned
NEXT_KEY AMP$GET _KEY. AMP$GET _KEY. because the file is positioned
at the end of the alternate
index.

Revision B Using the CYBIL Keyed-File Interface 1-2.37 I

Using Alternate Keys

Retrieving Alternate-Index Information

An alternate index is a structure independent from the file data, Thus, a .
program can fetch information from the alternate index without requiring

access to the file data. This section describes the calls that fetch information

from the alternate index.

An AMP$GET_KEY_DEFINITIONS call retrieves the definitions of ‘
existing alternate keys. Your program could use the definitions returned by
AMP$GET_KEY_DEFINITIONS to:

® Determine the attributes of an alternate key
® Define identical or similar alternate keys in another file

For example, you may want to get the alternate-key definitions from an old
file to apply to a re-created file.

An AMP$GET_NEXT_PRIMARY_KEY_LIST retrieves primary-key
values from the alternate index. The primary-key values are returned in the
order the values are stored in the alternate index, beginning at the current
position.

Generally, AMP$GET_PRIMARY_KEY_COUNT and AMPSGET _
SPACE_USED_FOR_KEY calls prepare for subsequent calls that read or

position by alternate key. AMP$SGET_PRIMARY_KEY_COUNT counts the

number of primary-key values for a range of alternate-key values in the .
alternate index. AMP$GET_SPACE_USED FOR_KEY counts the number

of alternate-index blocks that contain the specified alternate-key value

range.

AMPS$GET_PRIMARY_KEY_COUNT gives the program the exact number
of primary-key values it would receive if it calls AMP$SGET_NEXT _
PRIMARY_KEY _LIST for the alternate-key value range. To count the
values, AMP$GET_PRIMARY_KEY_COUNT sequentially reads the
alternate-index records that contain the information.

AMPS$GET _SPACE_USED_FOR_KEY does not actually read the
alternate-index records that contain the primary-key values. It just counts
the blocks that would contain the records for a given range of alternate-key
values. This is much faster. The count returned is generally used to compare
with a count returned by another AMP$GET _SPACE_USED_FOR_KEY to
determine the shorter primary-key value list.

® 1-2.38 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

As an example of a use for this call, assume that a program is to find a set of
‘ records in response to this query.

Find the Jones on Madison Avenue with more than two dependents.

Assume that both Jones and Madison Avenue are alternate-key values, but
. number of dependents is not. The program must actually read the data
records to determine the number of dependents.

The program could read the set of records for either Jones or Madison
Avenue. To minimize the number of data records it must read, it should fetch
the shorter list. To determine which is the shorter list, it could compare
values returned by either AMP$GET_PRIMARY_KEY_COUNT or
AMP$GET_SPACE_USED_FOR_KEY calls. When the exact number of
primary-key values is not needed, it is faster to call AMP$GET_SPACE _
USED_FOR_KEY.

AMPS$GET_SPACE_USED_FOR_KEY returns two values, block _count
and block _space. The block _space value is the block _count value multiplied
by the block size for the file. When comparing sets of records from more than
one file, a program should compare the block _space value returned, instead
of the block _count values. The block _space value is more useful in this case
because the block size could differ in the files.

Revision B Using the CYBIL Keyed-File Interface 1-2-39 @

Program Examples

Program Examples

This section contains CYBIL program examples that perform these
functions:

o C(Create an indexed-sequential file ‘
e Update an indexed-sequential file
e (Create and use an alternate key

l o (Create and delete nested files

1-2.40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

Indexed-Sequential File Creation Example

This program (module CREATE) creates an indexed-sequential file named
INDEXED by copying records from a sequential file with local file name
ORIGINAL_DATA. The first 15 characters of the record are used as the
embedded primary key. The records are fixed-length records, each 55
characters long.

The following is a listing of the data in file ORIGINAL_DATA. The first
column is a country name, the second is the population of the country, the
third is the size of the country (in square miles), and the fourth is the capital
of the country. There are several errors in the data; these will be fixed by the
second example program.

Algeria 19709000 919591 Algiers
Australia 14796000 2967895 Melbourne
Austria 7476000 32374 Vienna
Belgium 9875000 11781 Brussels
Canada 20050000 3851791 Montreal
Denmark 5157000 16629 Copenhagen
France 53844000 211207 Paris
Great Britain 55717000 94226 London
India 700734000 1269340 Delhi
Ireland 3349000 27136 Dublin
Ivory Coast 8513000 124503 Abidjan
Japan 118783000 143750 Yokohama
Mexico 70143000 761601 Mexico
Sweden 8335000 173731 Stockholm
Switzerland 6300000 15941 Bern
Tanzania 18744000 364898 Zanzibar
Turkey 47284000 301381 Ankara
United Kingdom 55717000 94226 London
United States 225195000 3615105 Washington
USSR 269302000 8649498 Moscow
Venezuela 15771000 352143 Caracas
West Germany 60948000 95976 Bonn

This is a source listing of the program that creates the indexed-sequential
file. The program uses the common procedures listed in appendix E to
inspect the status variable after each call and to produce a report on file

$OUTPUT.

MODULE create ;

{ This program creates an indexed sequential file (ISFILE) from }

{ a sequential file (DATAIN).

{ the name of the country.

Revision B

The primary key for ISFILE is)

>

Using the CYBIL Keyed-File Interface 1-241 ||

Indexed-Sequential File Creation Example

CONST

key_length = 15,
max_record_Llength = 55,
record_count = 30,
key_position = 0,
data_padding = 15,
index_padding = 10,
index_levels = 2;

VAR

{ Declare variables for ISFILE.}
isfile: amt$local_file_name,
isfile_id: amt$file_identifier,
isfile_fpos: amt$file_position,

{ Declare variables for DATAIN.}
datain: amt$local_file_name,
sgfile_id: amt$file_identifier,
sqfile_fpos: amt$file_position,

sgfile_transfer_count: amt$transfer_count,
sqfile_byte_address: amt$file_byte_address,

{ Wsa is used by both ISFILE and DATAIN.}
wsa: string (max_record_Length);

{ Establish for file_description an array of file attribute }

{ values. b
VAR file_description: [STATIC] array [1 ..
amt$file_item :=
CLamc$file_organization, amc$indexed_sequentiall,
Lamc$max_record_length, max_record_lengthl,
Lamc$record_type, amc$ansi_fixed],
Lamc$average_record_length, max_record_Length],
Lamc$embedded_key, TRUE],
Camc$key_Llength, key_Llengthl,
Camc$key_position, key_positionl,
Camckey_type, amcuncollated_key],
[amc$data_padding,) data_padding],
Lamc$index_padding, index_padding],
Lamc$index_levels, index_levels],
Camc$estimated_record_count, record_count],
[amc$message_control, amtmessage_control
Camc$trivial_errors,
amc$messages,
amc$statistics]l];
I 1-242 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

PROGRAM creation_phase (VAR program_status : ost$status) ;

. p#start_report_generation(
'Begin indexed-sequential file creation.');
isfile := 'indexed';
datain := 'original_data';
. amp$file (isfile, file_description, status);
pH#inspect_status_variable ;

amp$open (isfile, amc$record, NIL, isfile_id, status);
p#inspect_status_variable ;

amp$open (datain, amc$record, NIL, sqfile_id, status);
p#inspect_status_variable ;

{ The next part of the program reads records from DATAIN and 1}
{ writes the records to ISFILE. A WHILE loop is used to read }
{ and write the records until the file position of DATAIN is 2}
{ end-of-information. >

wsa = ' *';
amp$get_next (sqfile_id, “wsa, max_record_length,
sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status);
‘ p#inspect_status_variable;
WHILE (sqfile_fpos <> amc$eoi) DO
{The working storage length (the third parameter) is
{ignored because the record type is amc$ansi_fixed.
amp$put_key (isfile_id, "wsa, 0, NIL, osc$wait, status);
p#inspect_status_variable;
wsa := ' "';
amp$get_next (sqfile_id, "wsa, max_record_Length,
sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status);
p#inspect_status_variable;
WHILEND;

amp$close (isfile_id, status);
p#inspect_status_variable;

amp$close (sgfile_id, status);
p#inspect_status_variable;

. pHstop_report_generation(
'Indexed-sequential file creation complete.');
program_status.normal := TRUE ;
{ Exit with normal status. }

‘ PROCEND creation_phase ;

Revision B Using the CYBIL Keyed-File Interface 1-2-43 l

Indexed-Sequential File Creation Example

?? PUSH (LIST == OFF) ??
{ This deck contains the common procedures listed in appendix E. }
*Copyc comproc .

*copyc amp$close

*copyc amp$file

*copyc amp$get_next .
*copyc amp$open

*copyc amp$put_key

?? POP ??

MODEND create;

Assuming the program source text is stored as file SUSER.CREATE, the
following are the SCL commands required to expand, compile, attach the
data files, and execute the program. After the commands is a listing of the
statistical messages from the program.

/create_source_library base=temporary_Llibrary

/scu base=temporary_Library

sc/create_deck deck=create modification=original ..
sc../source=$user.create

sc/expand_deck deck=create ..
sc../alternate_base=($system.cybil.osf$program_interface, ..
sc../$system.common.psf$external_interface_source)

sc/quit, write_Library=no ‘
/cybil input=compile List=listing

/attach_file $user.original_data

/1lgo

Begin indexed-sequential file creation.

~-= File INDEXED 0 DELETE_KEYs done since last open.

—— File INDEXED 0 GET_KEYs done since last open.

-- File INDEXED 0 GET_NEXT_KEYs done since last open.

-- File INDEXED 22 PUT_KEYs (and PUTREPs=>put) since last
open.

-- File INDEXED
-— File INDEXED
Last open.

No error has been found by the program.
Indexed-sequential file creation complete.

0 PUTREPs done since last open.
0 REPLACE_KEYs (and PUTREPs->replace) since

I 1-2-44 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Update Example

Indexed-Sequential File Update Example

' This program (module UPDATE) adds, deletes, and replaces records in the
file INDEXED created by the CREATE program. The program reads its
input from a file named UPDATE _DATA.

. The directives on file UPDATE _DATA are listed in the program output. In
the program, only the first letter of the words Delete, Replace, and Put are
used. The full word is included in the file to make the example clearer. Only
the primary key is required to delete a record.

This is a source listing of the program that updates the indexed-sequential
file. The program uses the common procedures listed in appendix E to
inspect the status variable after each call and to produce a report on file
$OUTPUT.

MODULE update;

{ This program updates an indexed sequential file (INDEXED) }
{ using information in an update file (UPDATE_DATA). X

CONST
record_Length = 55;

VAR
. { Declare variables for ISFILE.}
isfile: amt$local_file_name := 'indexed',
isfile_id: amt$file_identifier,
isfile_fpos: amt$file_position,
key: string (15),
isfile_wsa: string (record_length),

{ Declare variables for UPDATE.}
update: amt$local_file_name := 'update_data',
update_id: amt$file_identifier,
update_fpos: amt$file_position,
update_transfer_count: amt$transfer_count,
update_byte_address: amt$file_byte_address,
update_wsa: string (record_length + 7),

{ Declare access_selections array for amp$open.}
access_selections: [STATIC] array [1 .. 1] of amt$file_item
:= [Camc$message_control, amtmessage_control
. Lamc$trivial_errors, amc$messages, amc$statisticsli];

Revision B Using the CYBIL Keyed-File Interface 1-2-45 I

Indexed-Sequential File Update Example

e

PROGRAM updating_phase (VAR program_status : ost$status)

pH#start_report_generation('Begin file update.'); .
amp$open (isfile, amc$record, “access_selections,
isfile_id, status);
p#inspect_status_variable;
amp$open (update, amc$record, NIL, update_id, status); .
p#inspect_status_variable;

The WHILE Loop that follows reads an update record from UPDATE 2}
and edits ISFILE accordingly. The update information is 3
contained in the first 7 characters of the records in UPDATE; 2
however, only the first character is used to determine X
whether a delete, put, or replace operation is to be 3
performed. If the operation requested is not a delete, put, or }
replace, a message and the update record are printed on the X
output listing. If the status parameter check shows that an 3
error occurred, then control is returned to the system. b

AN AAAANAAAAANA

update_wsa := ' ';
amp$get_next (update_id, "update_wsa, STRLENGTH(update_wsa),
update_transfer_count, update_byte_address, update_fpos,

status);
p#inspect_status_variable;
WHILE (update_fpos <> amc$eoi) DO .

p#put_m (TRUE, update_wsa(1, update_transfer_count));
isfile_wsa := update_wsa (8, *);
key := isfile_wsa (1, 15);
CASE update_wsa (1) OF
= 'p' =
amp$delete_key (isfile_id, “key, osc$wait, status);
p#inspect_status_variable ;

= lpl' 'R' =
amp$putrep (isfile_id, “isfile_wsa, 0, NIL, osc$wait,
status);
p#inspect_status_variable;
ELSE

p#put_m (FALSE, 'Invalid code given as first character. ');
p#put_m (TRUE , update_wsa(1, update_transfer_count));

CASEND;

update_wsa (1, *) := ' ';

amp$get_next (update_id, “update_wsa, STRLENGTH(update_wsa),
update_transfer_count, update_byte_address, ‘

update_fpos, status);
p#inspect_status_variable;
WHILEND;

I 1-2-46 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Update Example

amp$close (isfile_id, status);
pH#inspect_status_variable;

amp$close (update_id, status);
p#inspect_status_variable;

p#stop_report_generation('File update complete.');
program_status.normal := TRUE ;
{ Exit with normal status. }

PROCEND updating_phase ;

?? PUSH (LIST:=0FF) ??
{ The COMPROC deck contains the common procedures Llisted in }
{ appendix E. }

*copyc

*copyc
*copyc
*copyc
*copyc
*copyc
?? POP

MODEND

comproc

amp$close
amp$delete_key
amp$get_next
amp$open
amp$putrep

71

update;

Revision B Using the CYBIL Keyed-File Interface 1-2-47 l

Indexed-Sequential File Update Example

Assuming the program source text is stored on file SUSER.UPDATE, the
following are the SCL commands required to expand, compile, attach the
data file, and execute the program. It is assumed that the indexed-sequential
file to be updated is accessible as file INDEXED in the $LLOCAL catalog.
After the commands is a listing of the statistical messages from the file
update program.

/create_source_library base=temporary_Llibrary

/scu base=temporary_library

sc/create_deck deck=update modification=original ..
sc../source=$user.update

sc/expand_deck deck=update ..
sc../alternate_base=($system.cybil.osf$program_interface, ..
sc../$system.common.psf$external_interface_source)

sc/quit, write_Llibrary=no

/cybil input=compile Llist=listing

/attach_file $user.update_data

/lgo

Begin file update.

ReplaceCanada 24336000 3851791 Ottawa
Put China 1053788000 3705390 Beijing
Delete Great Britain

Put Spain 38686000 194897 Madrid
Put Italy 57513000 116303 Rome
ReplaceJapan 11878300 143750 Tokyo

-- File INDEXED
-- File INDEXED
-— File INDEXED
-- File INDEXED
open.

-— File INDEXED
-- File INDEXED
last open.

No error has been found by the program.
File update complete.

1 DELETE_KEYs done since last open.

0 GET_KEYs done since last open.

0 GET_NEXT_KEYs done since last open.

3 PUT_KEYs (and PUTREPs->put) since last

5 PUTREPs done since last open.
2 REPLACE_KEYs (and PUTREPs—->replace) since

I 1-2-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

Alternate-Key Example

‘ The following program illustrates the use of alternate keys. The program
uses the indexed-sequential file created and updated in the earlier examples
in this chapter. It also uses the common procedures listed in appendix E.

. The program defines the capital field as the alternate key field. It then copies
the records to file ALTERNATE_KEY_OUTPUT, sorted by the alternate
key.

This is a source listing of the program.

MODULE example_3 ;
{This module defines and then uses alternate keys for ISFILE.}

CONST
max_record_Llength = 55;

VAR

{ Declare variables for ISFILE.}
isfile: amt$local_file_name,
isfile_id: amt$file_identifier,
isfile_fpos: amt$file_position,

. {Declare variables for alternate key CAPITAL_KEY.}
capital_key_name: amt$key_name := ‘'capital_key',
capital_key_position: amt$key_position := 41,
capital_key_length: amt$key_length := 14,

{ Declare variables for SQFILE.}
sqfile: amt$local_file_name,
sqfile_id: amt$file_identifier,
sqfile_byte_address: amt$file_byte_address;

VAR
wsa: string(max_record_Llength),
record_length : amt$max_record_length;

{ Declare access_selections array for amp$open of ISFILE.}
VAR
access_selections_isfile: [STATIC] array [1 .. 11 of
amt$file_item :=
. [Lamc$message_control, amtmessage_control
Camc$trivial_errors, amc$messages, amc$statisticslll;

Revision B Using the CYBIL Keyed-File Interface 1-2-49 I

Alternate-Key Example

{ Establish the file attribute array for file_description.}

°
file_description: [STATIC] array [1 .. 21 of amt$file_item :=
Clamc$file_organization, amc$sequentiall,
Camc$max_record_Llength, max_record_lengthl];

{ Declare access_selections array for amp$open of SEQFILE.}
VAR
access_selections_sqfile: [STATIC] array [1 .. 1]
of amt$file_item :=
CLamc$file_contents, amc$legiblell;

VAR
capital_attributes: [STATIC,READ] array [1..11
of amt$optional_key_attribute :=
CLamc$duplicate_keys, amc$ordered_by_primary_keyll;

PROGRAM alternate_key_phase (VAR program_status : ost$status);
p#start_report_generation('Begin alternate keys example.');

{These calls specify file attributes and open files. }
isfile := 'indexed'; .
sqfile == 'alternate_key_output';
amp$file (sqfile, file_description, status);
p#inspect_status_variable;

amp$open (isfile, amc$record, “access_selections_isfile,
isfile_id, status);
p#inspect_status_variable;

amp$open (sqfile, amc$record, “access_selections_sqgfile,
sqfile_id, status);
p#inspect_status_variable;

{These calls define and generate the alternate index. }
amp$create_key_definition (isfile_id, capital_key_name,
capital_key_position, capital_key_Llength,
“capital_attributes, status);
p#inspect_status_variable;
amp$apply_key_definitions (isfile_id, status);
p#inspect_status_variable;

l 1-250 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

{These calls select the alternate key and read the first record. }
amp$select_key (isfile_id, capital_key_name, status);
p#inspect_status_variable;
amp$get_next_key (isfile_id, “wsa, max_record_length, NIL,
record_length, isfile_fpos, osc$wait, status);
p#inspect_status_variable ;

{ This Lloop copies the records in the indexed-sequential }
{ file to the sequential file in the order the records 2}
{ are referenced in the alternate index. }
WHILE (isfile_fpos <> amc$eoi) DO
amp$put_next (sqfile_id, “wsa, max_record_length,
sqfile_byte_address, status);
p#inspect_status_variable;
wsa (1, *) ="' "';
amp$get_next_key (isfile_id, "wsa, max_record_length, NIL,
record_Llength, isfile_fpos, osc$wait, status);
p#inspect_status_variable ;
WHILEND;

amp$close (isfile_id, status);
p#inspect_status_variable;

amp$close (sqfile_id, status);
pH#inspect_status_variable ;

pH#stop_report_generation('Alternate keys example complete.');
program_status.normal := TRUE;
{ Exit with normal status. }

PROCEND alternate_key_phase;

?? PUSH (LIST:=0FF) ??
{ This deck contains the common procedures listed in appendix E. }
*COpyC comproc

*copyc amp$apply_key_definitions
*copyc amp$close

*copyc amp$create_key_definition
*copyc amp$file

*copyc amp$get_next_key

*copyc amp$open

*copyc amp$put_next

*copyc amp$select_key

?? POP ??

MODEND example_3 ;

Revision B Using the CYBIL Keyed-File Interface I-2-51 I

Alternate-Key Example

Assuming the source program is stored as deck ALTERNATE_KEYS on
source library file SUSER.MY _LIBRARY, the following is a listing of the
SCL commands required to expand, compile and execute the program. It is
assumed that the indexed-sequential file is accessible as file INDEXED in
the $LLOCAL catalog.

/scu base=$user.my_Llibrary

sc../expand_deck deck=(alternate_keys) ..
sc../alternate_base=($system.cybil.osf$program_interface, ..
sc../$system.common.psf$external_interface_source)

sc/quit, write_Llibrary=no

/cybil input=compile

/lgo

Begin alternate keys example.

-- File
-- File
-- File
== File
-- File
== File
-- File

-- File

-- File
== File

== File
-- File
== File

-- File
-- File

-- File

No error

INDEXED

INDEXED

INDEXED

INDEXED

INDEXED
INDEXED
INDEXED
INDEXED

INDEXED
INDEXED

INDEXED
INDEXED
INDEXED

INDEXED
INDEXED
INDEXED

begin creating labels for alternate key
definitions.

finished creating labels for alternate key
definitions.

begin the data pass that collects alternate
key values.

AMP$APPLY_KEY_DEFINITIONS has reached a file
boundary : EOI.

data pass completed.

begin sorting the alternate key values.

: sorting completed.

begin building alternate key indexes into
the file.

completed building the indexes into the file.
AMPSGET_NEXT_KEY has reached a file

boundary : EOI.

O DELETE_KEYs done since last open.

0 GET_KEYs done since last open.

48 GET_NEXT_KEYs done since

Last open.

0 PUT_KEYs (and PUTREPs->put) since last open.
0 PUTREPs done since last open.

0 REPLACE_KEYs (and PUTREPs->replace) since
Last open.

has been found by the program.
Alternate keys example complete.

I 1-2.52 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

This is a listing of the ALTERNATE _KEY_OUTPUT file written by the

program.

Ivory Coast
Algeria
Turkey

China
Switzertand
West Germany
Belgium
Venezuela
Denmark
India
Ireland
United Kingdom
Spain
Australia
Mexico

USSR

Canada
France

Italy

Sweden

Japan
Austria
United States
Tanzania

Revision B

8513000
19709000
47284000

1053788000

6300000
60948000

9875000
15771000

5157000

700734000

3349000
55717000
38686000
14796000
70143000

269302000
24336000
53844000
57513000

8335000
11878300

7476000

225195000
18744000

Using the CYBIL Keyed-File Interface

124503
919591
301381
3705390
15941
95976
11781
352143
16629
1269340
27136
94226
194897
2967895
761601
8649498
3851791
211207
116303
173731
143750
32374
3615105
364898

Abidjan
Algiers
Ankara
Beijing
Bern

Bonn
Brussels
Caracas
Copenhagen
Delhi
Dublin
London
Madrid

Me lbourne
Mexico
Moscow
Ottawa
Paris
Rome
Stockholm
Tokyo
Vienna
Washington
Zanzibar

1-253 l

Nested File Example

Nested File Example

This example is a CYBIL program that first copies the nested-file definitions '
from one keyed file to another keyed file and then destroys the original
nested files.

The program copies the nested-file definitions from file EXISTING _ ’
KEYED_FILE to file ANOTHER_KEYED_FILE.

MODULE nested_file_module;

VAR

Lfn1: L[STATIC] amt$local_file_name :=
'existing_keyed_file',

Lfn2: [STATIC] amt$local_file_name :=
'another_keyed_file',

fid1: amt$file_identifier,

fid2: amt$file_identifier,

access_information_ptr: “amt$access_information,

definitions_ptr: “amt$nested_file_definitions,

nested_file_count: amt$nested_file_count,

element: amt$nested_file_count;

{ This program copies the nested-file definitions in file

{ EXISTING_KEYED_FILE (LFN1) to file ANOTHER_KEYED_FILE (LFN2).

{ It then deletes all nested files (except $MAIN_FILE) from .
{ LFN1. Any data in the LFN1 nested files (other than in

{ $MAIN_FILE) is discarded.

PROGRAM nested_file_example (VAR program_status: ost$status);

p#start_report_generation(
'Start copying of nested-file definitions.');

amp$open(Lfn1, amc$record, NIL, fid1, status);
p#inspect_status_variable;

{ These statements fetch the number of nested files currently
{ defined in LFN1.

ALLOCATE access_information_ptr : [1..1];
access_information_ptr~[1].key:=amc$number_of_nested_files;
amp$fetch_access_information(fid1, access_information_ptr~,
status); ‘
p#inspect_status_variable;

® [-254 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested File Example

{ A value is returned for number_of_nested_files only if the
‘ { file is a keyed file. If it is not, the program sends a
{ message and terminates.

IF NOT access_information_ptr”"[1].item_returned THEN
p#stop_report_generation(
. 'File EXISTING_KEYED_FILE is not a keyed file.");
pmp$exit(status);
IFEND;

This statement allocates an array lLarge enough to hold a
nested-file definition record for each nested file in LFN1.

-~

ALLOCATE definitions_ptr :
[1..access_information_ptr”[1].number_of_nested_files];
amp$get_nested_file_definitions(fid1, definitions_ptr~,
nested_file_count, status);
p#inspect_status_variable;

amp$open(Lfn2, amc$record, NIL, fid2, status);
p#inspect_status_variable;

{ This Loop defines each nested file from LFN1 in LFN2.
{ Element 1 of the array is skipped because it contains the
‘ { definition of nested file $MAIN_FILE which already exists.

/define_loop/
FOR element := 2 TO nested_file_count DO

amp$create_nested_file(fid2,
definitions_ptr-Lelement], status);

IF NOT status.normal THEN
IF status.condition=ame$unimplemented_request THEN
p#put_m (TRUE,
'File ANOTHER_KEYED_FILE is not a keyed file.');
EXIT /define_loop/;
ELSE
p#inspect_status_variable;
IFEND;
IFEND;

‘ FOREND /define_Lloop/;

amp$close(fid2, status);
p#inspect_status_variable;

Revision B Using the CYBIL Keyed-File Interface 1-255 @

Nested File Example

p#put_m (TRUE, 'Nested file definition copying is done.');
p#put_m (TRUE, 'Nested-file deletion now begins.'); .

{ This loop deletes each nested file in LFN1. Element 1 in
the array is skipped because it contains the definition
of nested file $MAIN_FILE which cannot be deleted. .

~ A

FOR element := 2 TO nested_file_count DO
amp$delete_nested_file(fid1,
definitions_ptr~[elementl.nested_file_name, status);
p#inspect_status_variable;

FOREND;

amp$c lose(fid1, status);
p#inspect_status_variable;

p#stop_report_generation(
'Nested-file deletion complete.');

PROCEND nested_file_example;
{ The COMPROC deck contains the common

{ procedures listed in appendix E.
*copyc comproc

?? PUSH (LIST := OFF) 2?7 .

*copyc amp$open

*copyc amp$fetch_access_information
*copyc amp$get_nested_file_definitions
*copyc amp$delete_nested_file

*copyc amp$close

*copyc amp$create_nested_file

{ This directive is required to copy the
{ named condition identifier declaration.
*copyc ame$unimplemented_request

?? POP ??

MODEND nested_file_module

® 1-256 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested File Example

The following commands prepare the program for execution.

""Commands to expand the program text.
create_source_library result=temporary_library
scu, base=temporary_Llibrary
create_deck, deck=nested_file_program, ..
modification=original, source=$user.nested_file_program
create_deck, deck=comproc, modification=original, ..
source=$user.appendix_E_procedures
expand_deck, deck=nested_file_program, ..
alternate_base=($system.cybil.osf$program_interface, ..
$system.common.psf$external_interface_source)
quit, write_Llibrary=no
"
""Command to compile the expanded text on file COMPILE.
cybil, input=compile, Llist=listing

After execution of the preceding commands, the object program is on file
LGO, ready for execution. To demonstrate program execution, the files
$USER.INDEXED_SEQUENTIAL_FILE and $USER.DIRECT_ACCESS _
FILE are copied to local files with the correct names. (Or, the files could be
attached as local files with these names, in which case, the program would
change the original files instead of copies.)

/copy_keyed_file, input=$user.indexed_sequential_file, ..
. . /Joutput=existing_keyed_file

/copy_keyed_file, input=$user.direct_access_file, ..

. . /output=another_keyed_file

/lgo

Start copying of nested-file definitions.
No error has been found by the program.
Nested file definition copying is done.
Nested-file deletion now begins.

No error has been found by the program.
Nested-file deletion complete.

/

You could confirm that the nested files have been copied and deleted by
entering these commands:

display_keyed_file_properties, existing_keyed_file
display_keyed_file_properties, another_keyed_file

(The COPY_KEYED _FILE and DISPLAY_KEYED_FILE_PROPERTIES
commands are described in the SCL Advanced File Management Usage
manual.)

Revision B Using the CYBIL Keyed-File Interface 1-257 @

o Keyed-File Interface Calls 1-3

Using Keyed-File Interface Calls.................coiiiiiiiiiiiinnn.. I1-3-1
File ACCeSS ..ot e e e 1-3-2
. AMPSABANDON_KEY _DEFINITIONSccovvviiiiinnnnn.. 1-34
AMPSAPPLY_KEY_DEFINITIONS ...ttt 1-35
AMP$CREATE _KEY_DEFINITION ...ttt 1-3-7
AMP$CREATE _NESTED _FILE ...ttt 1-3-14
AMPSDELETE _KEY ...t eieieens 1-3-17
AMPS$DELETE_KEY_DEFINITIONccoiieiieiiiinnnn. 1-3-19
AMPSDELETE _NESTED _FILEcooviiiiiiiiiiiiiinnnns 1-3-20
AMPSGET _KEY ..ottt e ettt i 1-3-22
AMPS$GET_KEY_DEFINITIONSt 1-3-27
AMP$GET_LOCK_KEYED_RECORDcciiiiivnnn.. 1-3-30
AMP$GET_LOCK_NEXT_KEYED_RECORDc....... 1-3-34
AMP$GET_NESTED_FILE_DEFINITIONSccvn... 1-3-38
AMPSGET _NEXT _KEY ...ttt ieiiaiiaeens 1-3-40
AMP$GET_NEXT_PRIMARY KEY_LIST..............c.oot. 1-3-43
AMPS$GET_PRIMARY_KEY_COUNTcciiiiiieen... 1-3-47
AMP$GET_SPACE_USED _FOR_KEYccoiiiiiinan. .. 1-3-51
AMPSLOCK _FILE.ot ens 1-3-54
AMPSLOCK _KEY ..ottt s e 1-3-56
. AMPSPUT_KEY - v e oo 1-359
AMPSPUTREP ...ttt et 1-3-62
AMPSREPLACE _KEY ... i e i e 1-3-64
AMPSSELECT _KEY ..ttt e 1-3-66
AMPS$SELECT _NESTED _FILE ...t 1-3-67
AMPSS T ART ...t e e 1-3-69
AMPS$UNLOCK_FILE e e 1-3-72
AMPSUNLOCK _KEY ...ttt e 1-3-73

Keved-File Interface Calls 1-3

This chapter contains detailed descriptions of each keyed-file interface call,
organized in alphabetical order by the procedure name.

‘ NOTE

As described in the manual introduction, a CYBIL program must include a
*COPYC directive for each keyed-file interface procedure call it uses.

When you expand your program, you must specify these files as alternate
base libraries:

$SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE
$SYSTEM.COMMON.PSFSEXTERNAL_INTERFACE_SOURCE

When you execute your program, you must add the following object library
file to the program library list:

$LOCAL.AAF$44D_LIBRARY

‘ Using Keved-File Interface Calls

When using keyed-file interface calls, you follow the same general rules you
follow when using the other file interface calls described in the CYBIL File
Management and CYBIL Sequential and Byte Addressable Files manuals. I

A keyed-file interface call can only be issued for an instance of open of a

keyed file. As shown in the individual descriptions, each call references a file

by the file identifier returned by the AMPSOPEN call that opened the file.

The AMP$OPEN call is described in detail in the CYBIL File Management l
manual.

File processing is guided by the attribute values of the file. The file attributes
used by keyed files are described in chapter I-4. The calls that specify file
attribute values are described in detail in the CYBIL File Management
manual.

Revision B Keyed-File Interface Calls 1-3-1

File Access

File Access

You can use a file only if you have access to it. Your access to a file is limited
by the permissions you have been granted to the file. You can limit access
further by requesting a subset of your permitted access modes when
attaching the file. This process is described in the SCL System Interface

Usage manual.

The access allowed for a particular instance of open is limited by the access_
mode file attribute as specified when the file is opened. The following is a list
of the access modes required for each keyed-file interface call.

Call

Access Modes Required

AMP$ABANDON_KEY_DEFINITIONS

AMPS$SAPPLY_KEY_DEFINITIONS
AMP$CREATE_KEY_DEFINITION
AMP$CREATE NESTED_FILE

AMP$DELETE_KEY
AMP$DELETE_KEY_DEFINITION
AMPS$DELETE _NESTED_FILE

AMP$GET_KEY

AMPS$GET_KEY_DEFINITIONS
AMPS$SGET_LOCK_KEYED_RECORD

AMP$GET_LOCK_NEXT_KEYED _
RECORD
AMP$GET_NESTED_FILE _
DEFINITIONS
AMP$GET_NEXT_KEY

AMP$SGET_NEXT_PRIMARY _
KEY_LIST
AMP$GET_PRIMARY_KEY_COUNT
AMPS$GET_SPACE_USED_FOR_KEY

AMP$LOCK_FILE
AMP$SLOCK_KEY

AMPS$PUT_KEY

1-3-2 CYBIL Keyed-File and Sort/Merge Interfaces

Append, shorten, and modify
Append, shorten, and modify
Append, shorten, and modify
Append, shorten, and modify

Shorten
Append, shorten, and modify
Append, shorten, and modify

Read (modify required to
record statistics)

Any access mode

Read (modify required to
record statistics)

Read (modify required to
record statistics)

Any access mode

Read (modify required to
record statistics)
Read

Read
Read

Any access mode
Any access mode

Append (shorten and modify
also required if the file has one
or more alternate keys)

Revision B

Call

File Access

Access Modes Required

AMP$PUTREP

AMP$REPLACE_KEY

AMP$SELECT_NESTED_FILE
AMP$SELECT_KEY
AMPS$START

AMP$UNLOCK _FILE
AMP$UNLOCK_KEY

Revision B

Append and shorten (modify
also required if the file has one
or more alternate keys)
Append and shorten (modify
also required if the file has one
or more alternate keys)

Any access mode
Any access mode
Read

Any access mode
Any access mode

Keyed-File Interface Calls 1-3-3

AMP$ABANDON_KEY_DEFINITIONS

AMPSABANDON_KEY_DEFINITIONS

Purpose Discards the pending alternate-key definitions or deletions.

Format AMP$ABANDON_KEY_DEFINITIONS
(file_identifier,status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$no_definitions_pending
Identifiers aae$not_enough_permission
Remarks e A pending alternate-key definition or deletion is one that

has been requested but has not yet been discarded or
applied to the nested file. An AMPSABANDON_KEY _
DEFINITIONS call or the closing of the file discards all
pending definitions and deletions. An AMP$APPLY _
KEY_DEFINITIONS call applies all pending definitions
and deletions.

o AMP$ABANDON_KEY_DEFINITIONS cannot discard
an alternate-key definition that has already been applied
to the nested file. To delete an applied alternate-key
definition, call AMP$DELETE_KEY_DEFINITION, and
then call AMPSAPPLY_KEY_DEFINITION to apply the
deletion request.

I 1-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$APPLY_KEY_DEFINITIONS

AMPS$SAPPLY_KEY_DEFINITIONS

‘ Purpose Applies the pending alternate-key definitions and deletions to
the file.
Format AMPS$SAPPLY _KEY_DEFINITIONS
. (file_identifier, status);

Parameters file_identifier: amt$file identifier

File identifier identifying the instance of open (returned by an
AMPSOPEN call for the file).

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$begin _altkey labels

Identifiers aae$begin_delete_keydefs
aae$duplicate _alternate_key
aae$enable_altkey _duplicates
aae$end _altkey _labels
aae$end _delete _keydefs
aae$index_being _built
aae$keydef has_been_deleted
aae$no_definitions

. aae$not_enough_permission

aae$sparse_key_beyond _eor
aae$unexpected _dup_encountered

Remarks ¢ AMPSAPPLY_KEY_DEFINITIONS applies the pending
requests to the currently selected nested file only. (The
nested file selected when the file is opened is the default
nested file, SMAIN _FILE.)

e An AMP$SAPPLY_KEY_DEFINITIONS call first deletes
each alternate index specified by a pending alternate-key
deletion. It then creates an alternate index for each
pending alternate-key definition.

A pending definition or deletion is one requested by an

AMP$CREATE_KEY_DEFINITION or AMP$DELETE _

KEY_DEFINTION call that has not yet been discarded or

applied to the file. (Closing the file or issuing an

AMP$ABANDON _KEY_DEFINITIONS call discards all
. pending definitions and deletions.)

Revision B Keyed-File Interface Calls 1-3-5

AMPSAPPLY_KEY_DEFINITIONS

Remarks e If AMC$NO_DUPLICATES_ALLOWED is specified for a

(Contd) new key and the file contains data, AMP$SAPPLY_KEY _
DEFINITIONS returns a nonfatal error (condition
AAE$UNEXPECTED_DUP_ENCOUNTERED) if it finds
a duplicate alternate-key value. It then changes the
duplicate control for the index from AMC$NO _
DUPLICATES_ALLOWED to AMC$ORDERED_BY _
PRIMARY _KEY, and restarts creation of the alternate
index. (All other indexes are unaffected by this change.)

If a change to AMC$ORDER_BY_PRIMARY_KEY is not
desired, set the error_limit attribute to 1. The occurrence of
a nonfatal error (such as a duplicate-key value) causes the
nonfatal-error limit to be reached and a fatal error to be
issued. The fatal error terminates alternate index creation
and discards any alternate indexes already built by the
call.

No alternate indexes are created by the terminated
AMPS$APPLY_KEY_DEFINITIONS procedure; however,
it does perform all pending alternate-key deletions.

e Entry of a pause_break _character (usually control-p) is
ignored during application of alternate-key definitions.

e Entry of a terminate_break_character (usually control-t)
during application of alternate-key definitions returns a
prompt to the terminal user, asking for confirmation.

As described in the prompt, the terminal user should then
enter a carriage return or any entry other than RUIN FILE
(uppercase or lowercase) to continue the application of
alternate-key definitions. Applied alternate-key definitions
can be removed without harm to the file after the apply
operation has completed.

A request to ruin the file is not recommended. No file
operation can be performed on a ruined file and so no data
can be retrieved from the file.

I 1-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE _KEY_DEFINITION

AMPS$CREATE_KEY_DEFINITION

. Purpose Defines an alternate key.
Format AMP$CREATE_KEY_DEFINITION
(file _identifier, key _name, key_position, key_length,
. optional _attributes, status);

Parameters file_identifier: amt$file identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

key_name: amt$key _name

Name to be given the alternate key. The name must follow the
SCL naming rules. It can be specified by an amt$key _name
variable or by a 31-character string on the call. (The name
must be left-justified with blank fill within the string.)

key_position: amt$key_position
Position of the first byte of the alternate key in the record.

(The bytes in a record are numbered from the left, beginning
with zero.)

key_length: amt$key_length

‘ Length, in bytes, of the alternate key. The maximum length is
255 bytes.

optional _attributes: “amt$optional _key _attributes

Pointer to an adaptable array defining optional attributes of
the alternate key. Specify NIL if no optional attributes are to
be specified.

Each record in the array specifies an optional attribute; the
attribute defined is indicated by the SELECTOR field of the
record. Table I-3-1 lists the SELECTOR field values and the
attribute record fields generated for each SELECTOR field
value.

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$alt_key_past_minrl
Identifiers aae$bad_name
aae$cant_create _existing name
aae$concatenated _key _too_big
aae$cant_get_collate_table
aae$collated _altkey_no_table
‘ aae$no_repeating _group

Revision B Keyed-File Interface Calls I-3-7

AMP$CREATE_KEY_DEFINITION

Remarks e To apply the alternate-key definition specified by an
AMP$CREATE_KEY_DEFINITION call to the file, call
AMPS$APPLY _KEY_DEFINITIONS. Before the apply
operation, an alternate-key definition is only pending and
cannot be used to access records in the file. A call to
AMP$ABANDON_KEY_DEFINITIONS discards
pending alternate-key definitions.

e If the SELECTOR field in a record in the optional _
attributes array has the value AMC$NULL_ATTRIBUTE,
that record is ignored.

e Sparse key control is defined by three values:

Sparse_Key _Control _Position
Sparse_Key_Control _Characters
Sparse_Key _Control _Effect

If an alternate key is subject to sparse-key control, the
sparse-key control character must be within the minimum
record length, but the alternate-key fields need not be. For
more information, see the Sparse-Key Control description
in chapter I-1.

@ A concatenated key can have up to 64 pieces. The leftmost
piece is defined by the key _position and key _length
values.

Each piece concatenated to the first piece is specified by a
record in the optional _attributes array containing three
fields:

Concatenated _Key_Position
Concatenated _Key _Length
Concatenated _Key_Type

The pieces are concatenated in the same order as the
records that define the pieces in the optional _attributes
array.

The total length of a concatenated key cannot exceed 700
bytes.

e The first alternate key value in a repeating group begins at
key_position. Subsequent keys are found by adding the
value of repeating _group _length to key_position until
either the repeating_group_count is satisfied (repeat_to_
end_of_record is FALSE) or the end of the record is
reached (repeat_to_end_of_record is TRUE).

I 1-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY_DEFINITION

Remarks e Repeating groups cannot be used with concatenated keys.
(Contd) Also, repeating groups cannot be used when duplicate _
key _control is set to AMC$FIRST _IN_FIRST_OUT.

NOTE

The CYBIL declaration for AMT$OPTIONAL_KEY_ATTRIBUTE in
appendix C lists additional fields besides those listed in table I-3-1. These l
additional fields are for features not yet implemented.

Table I-3-1. Optional Attribute Record Contents I
(AMT$OPTIONAL_KEY_ATTRIBUTE)

Value of
SELECTOR Field Resulting Attribute Record Fields
AMCSKEY _TYPE KEY _TYPE : amt$key _type

Type of the alternate key.

AMC$UNCOLLATED_KEY

Order key values byte-by-byte according
to the ASCII character set sequence
(listed in appendix B). Key values can be
positive integers or ASCII strings (1
through 255 bytes).

AMCSINTEGER_KEY

Order key values numerically. Key
values are positive or negative integers (1
through 8 bytes).

AMC$COLLATED_KEY

Order key values according to a
user-specified collation table (see the
COLLATE_TABLE_NAME description
in this table). Key values can be positive
integers or ASCII strings (1 through 255
bytes).

If you omit the attribute,
AMCS$UNCOLLATED _KEY is used.

(Continued)

Revision B Keyed-File Interface Calls 1-3-9

AMP$CREATE _KEY_DEFINITION

Table I-3-1. Optional Attribute Record Contents
(AMT$OPTIONAL_KEY_ATTRIBUTE) (Continued)

Value of

SELECTOR Field Resulting Attribute Record Fields
AMC$COLLATE _ COLLATE_TABLE_NAME:
TABLE_NAME pmt$program_name

Name of the collation table to be used for
collating the alternate key. (The
alternate-key collation table can differ from
the primary-key collation table. See
appendix D for more information on
collation tables.)

If the file is an indexed-sequential file with
a collated primary key, the default collation
table for the alternate key is the collation
table for the primary key. Otherwise, you
must specify a collation table for each
collated alternate key.

AMCS$DUPLICATE_KEYS DUPLICATE_KEY_CONTROL:
amt$duplicate _key_control

Indicates how duplicate alternate-key
values are handled in the alternate index.

AMCSNO_DUPLICATES_ALLOWED
No duplicate alternate-key values are
allowed in the alternate index.

AMCSFIRST_IN_FIRST_OUT

Duplicate alternate-key values are
ordered according to when the record is
written to the file.

AMCS$ORDERED_BY_PRIMARY_KEY
Duplicate alternate-key values are
ordered according to primary-key values.

Omission causes AMC$NO _
DUPLICATES _ALLOWED to be used.

(Continued)

1-3-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY_DEFINITION

Table I-3-1. Optional Attribute Record Contents

‘ (AMT$OPTIONAL_KEY_ATTRIBUTE) (Continued)
Value of
SELECTOR Field Resulting Attribute Record Fields
AMCS$NULL._ NULL_SUPPRESSION : boolean
SUPPRESSION

' AMCS$SPARSE_KEYS

Indicates whether alternate keys with a null
value should be included in the alternate
index. (For AMCSINTEGER_KEY, the null
value is zero; for AMC$UNCOLLATED _
KEY, the null value is all spaces; for
AMC$COLLATED KEY, the null value is
all spaces before collation.)

FALSE
All values are included in the index.

TRUE

Null values are not included in the index.
Omission causes FALSE to be used.

SPARSE_KEY_CONTROL_POSITION :
amt$key _position

Position of the sparse-key control character.
The position must be within the minimum
record length. (Bytes in a record are
numbered from the left, beginning with
Z€ro.)

SPARSE_KEY_CONTROL_
CHARACTERS : set of char

Set of characters with which the sparse-key
character is compared.

SPARSE_KEY_CONTROL_EFFECT :
amt$sparse_key _control _effect

Indicates whether a sparse-key control
character match causes the alternate key to
be included or excluded from the alternate
index.

Revision B

(Continued)

Keyed-File Interface Calls I-3-11

AMP$CREATE _KEY_DEFINITION

I Table I-3-1. Optional Attribute Record Contents
(AMT$SOPTIONAL_KEY_ATTRIBUTE) (Continued)

Value of
SELECTOR Field Resulting Attribute Record Fields

AMCSINCLUDE _KEY_VALUE
Alternate-key value is included in the
alternate index.

AMCSEXCLUDE_KEY_VALUE

Alternate-key value is not included in
the alternate index.

AMCSREPEATING_GROUP REPEATING_GROUP_LENGTH :
amt$max _record _length,
Length, in bytes, of the repeating group of
fields. It is the distance from the beginning
of an alternate-key value to the beginning
of the next alternate-key value in the record.

REPETITION_CONTROL:
amt$repetition _control

This record indicates whether the alternate
key repeats until the end of the record. If no
values are specified for the repetition _
control record, it is assumed that the
repeating group repeats until the end of the
record.

REPEAT _TO_END_ OF_RECORD:
boolean

TRUE

The alternate key repeats until the
record ends. (An incomplete key at the
end of the record is not used.)

FALSE

The alternate key repeats the number
of times specified in the
REPEATING_GROUP_COUNT
field. If sparse-key control is not used,
the specified number of key values
must be within the minimum record

length.

(Continued)

1-3-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY_DEFINITION

Table I-3-1. Optional Attribute Record Contents
(AMT$OPTIONAL_KEY_ATTRIBUTE) (Continued)

Value of
SELECTOR Field

Resulting Attribute Record Fields

AMCS$CONCATENATED _
KEY_PORTION

REPEATING_GROUP_COUNT:
amt$max_repeating _group_count
Number of times the group of fields repeats
in a record. This field exists only if
REPEAT_TO_END_OF_RECORD is
FALSE.

CONCATENATED_KEY_POSITION :
amt$key _position

Starting position of a concatenated piece.
(Bytes are numbered from the left,
beginning with zero.)

CONCATENATED _KEY_LENGTH :
amt$key _length

Length, in bytes, of a concatenated piece.

CONCATENATED _KEY_TYPE:
amt$key type
Key type of a concatenated piece.

AMCS$UNCOLLATED_KEY

Order piece values byte-by-byte
according to the ASCII character set
sequence (listed in appendix B). Piece
values can be positive integers or ASCII
strings (1 through 255 bytes).

AMCSINTEGER _KEY

Order piece values numerically. Piece
values are positive or negative integers
(1 through 8 bytes).

AMC$COLLATED_KEY

Order piece values according to a
user-specified collation table (see the
COLLATE_TABLE_NAME description
in this table). Piece values can be positive
integers or ASCII strings (1 through 255
bytes).

Revision B

Keyed-File Interface Calls 1-3-13

AMP$CREATE_NESTED_FILE

AMP$CREATE_NESTED_FILE

Purpose

Format

Parameters

Defines a nested file in an existing NOS/VE file.

AMPS$CREATE_NESTED_FILE
(file_identifier, definition, status);

file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

definition: amt$nested_file_definition

Variant record which specifies the nested-file name and its
attributes. The record declaration is as follows:

amt$nested_file_definition = record
nested_file_name: amt$nested_file_name,
embedded_key: boolean,
key_position: amt$key_position,
key_length: amt$key_Llength,
maximum_record: amt$max_record_Llength,

mi

nimum_record: amt$min_record_Llength,

record_type: amt$record_type,
case file_organization:

amt$file_organization of

amc$indexed_sequential =
key_type: amt$key_type,
collate_table_name: pmt$program_name,
data_padding: amt$data_padding,
index_padding: amt$index_padding,
amc$direct_access =
home_bLlock_count:

amt$initial_home_block_count,
dynamic_home_block_space:

amt$dynamic_home_block_space,
loading_factor: amt$loading_factor,
hashing_procedure:

amt$hashing_procedure_name,

casend,
recend;

status: VAR of ost$status
Status variable in which the procedure returns its completion

status.

@® 1-3-14 CYBIL Keyed-File and Sort/Merge Interfaces

Revision B

Condition
Identifiers

Remarks

Revision B

AMP$CREATE_NESTED_FILE

aae$bad_name
aae$cant_get_collate_table
aae$collated_key_needs_table
aae$data_pad_too_large
aae$dup_nested _file_name
aae$index_pad_too_large
aae$integer _key_gt_one_word
aae$min_gt_max_rec_length
aae$no_home_block_count
aae$no_select_during_keydef
aae$not_enough_permission
aae$rec_too_small_for_key
aae$system_ error_occurred

AMP$CREATE_NESTED_FILE requires append, modify,
and shorten access to the file; otherwise, it returns
condition aae$not_enough_permission.

AMP$CREATE_NESTED_FILE cannot create a nested
file if one or more alternate-key requests are pending. Call
AMP$APPLY_KEY_DEFINITIONS or
AMP$ABANDON_KEY_DEFINITIONS to dispose of the
pending requests.

The specified nested-file name must be unique among the
nested files in the file; otherwise, AMPSCREATE _
NESTED_FILE returns condition aae$dup_nested _
file_name.

You must specify values for all fields in the nested-file
definition record that apply to the file organization. No
default values are provided; the corresponding attribute
values specified when the file was created apply only to the
default nested file ($MAIN_FILE).

The attributes and their values are described in
chapter I-4.

When creating an indexed-sequential nested file, specify
OSC$NULL_NAME for the collate_table_name field
when the key_type specified is AMC$UNCOLLATED or
AMCSINTEGER. Specify the collation table name in the
field when the key_type is AMC$COLLATED.

If the key type is collated, specification of a collation table
is required. AMP$CREATE_NESTED _FILE loads the
collation table and stores it for use by the nested file. If it
cannot load the collation table, it returns condition
aae$cant_get_collate_table.

Keyed-File Interface Calls I-3-15 @

AMP$CREATE_NESTED_FILE

Remarks
(Contd)

e When creating a direct-access nested file, specify values for

the dynamic_home_block _space and loading _factor fields
(although the values are not yet used). Specify the default
values, FALSE and 0, respectively.

For the hashing_procedure specification, values are
required for two fields NAME and OBJECT_LIBRARY).
Currently, you should always specify OSC$NULL_NAME
for the OBJECT_LIBRARY field. To specify the default
hashing procedure, specify AMP$SYSTEM_HASHING _
PROCEDURE as the NAME field value.

Creating a nested file does not select the nested file for use.
To select a nested file, call AMP$SELECT _NESTED _
FILE.

To remove a nested file, call AMP$DELETE_NESTED _
FILE.

For more information on nested files, see Nested Files in
chapter I-1.

The nested-file example at the end of chapter I-2
demonstrates the use of this call.

® 1-3-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$DELETE_KEY

AMPSDELETE_KEY
. Purpose Removes a record from a keyed file.
Format AMPSDELETE_KEY

(file_identifier, key_location, wait, status);

. Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

key_location: “cell
Pointer to the primary-key value of the record to be deleted.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

Condition aae$file_at_file_limit
Identifiers aae$file_is_ruined
aae$key_not_already_locked
aae$key_not_found
. aae$key_required
aae$nonembedded_key not_given
aae$not_enough_permission

Remarks o An AMPSDELETE_KEY call requires that the file be
opened for at least shorten access. However, if the file has
one or more alternate keys, the file must be opened with at
least append, shorten, and modify access so that the
alternate indexes can be updated.

o If the file could be shared (more than one instance of open
could exist), a record can be deleted only by the owner of a
Preserve_ Access_and _Content or Exclusive_ Access lock
on the primary-key value of the record. An invalid attempt
returns the nonfatal condition aae$key not_already _
locked.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

‘ o When the delete request is executed, the specified record is
either flagged as deleted or physically deleted from the
data block. When the first record in a data block is deleted,

. index blocks are updated as applicable.

Revision B Keyed-File Interface Calls 1-3-17

AMPSDELETE_KEY

Remarks
(Contd)

If execution of a delete request empties a data or index
block, the block is linked into a chain of empty blocks.
These blocks are reused when new blocks are required for
file expansion.

AMPSDELETE _KEY searches for the specified
primary-key value only in the nested file currently
selected. If it does not find it, it returns the nonfatal
condition aae$key_not_found.

Execution of an AMP$DELETE_KEY call does not
change the file position or the currently selected key.

An AMP$DELETE _KEY call updates the alternate
indexes if alternate keys are defined for the file. Calls to
delete records are effective even if an alternate key is
currently selected for reading and positioning the file.

When deleting a series of contiguous fixed-length records,
you can save execution time by beginning with the record
having the highest primary-key value.

Deletion of the last record in a data block is performed
quickly because the system just needs to reduce the record
count by one. Deletion of the first record in a data block,
however, can move all remaining records in the data block.

By deleting records in order from the highest to the lowest
primary-key value, you can avoid relocation of records to
be subsequently deleted.

I-3-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPS$DELETE_KEY_DEFINITION

AMPSDELETE_KEY_DEFINITION

‘ Purpose Requests removal of an alternate-key definition by the next
AMPS$APPLY_KEY_DEFINITIONS call.

Format AMPS$DELETE_KEY_DEFINITION
‘ (file_identifier, key _name, status);
Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
key_name: amt$key _name

Name of the alternate key to be deleted. It can be specified by

an amt$key_name variable or by a 31-character string on the l
call. (The name must be left-justified with blank fill within

the string.)

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$bad_name
Identifiers aae$cant_delete_missing_name
aae$no_delete_current_key
‘ aae$not_enough_permission

Remarks e A subsequent AMP$APPLY_KEY_DEFINITIONS call is
required to implement an alternate-key deletion specified
by an AMP$DELETE_KEY_DEFINITION call.

Before the apply operation, an alternate-key deletion is
only pending; the alternate key remains in the file,
although it is not available for use. (Another instance of
open that has already selected the alternate key can
continue to use it; however, no instance of open can select
the key while its deletion is pending.)

A call to AMPSABANDON_KEY_DEFINITIONS
discards pending alternate-key deletions.

¢ You cannot delete an alternate key while you have the key
selected. Before calling AMP$DELETE_KEY _
DEFINITION for the current key, you must call
AMPS$SELECT _KEY to select another key; otherwise
‘ AMP$DELETE_KEY_DEFINITION returns the
condition aae$no_delete_current_key.

Revision B Keyed-File Interface Calls I-3-19

AMP$DELETE_NESTED_FILE

AMPSDELETE_NESTED_FILE

Purpose Destroys a nested file. It deletes its data, alternate keys, and
the nested file definition.
Format AMPS$DELETE_NESTED_FILE

(file_identifier, nested_file_name, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

nested_file_name: amt$nested _file_name

Name given the nested file when it was created. It can be
specified by an amt$nested _file_name variable or by a
31-character string on the call. (The name must be
left-justified with blank fill within the string.)

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

Condition aae$bad_name

Identifiers aae$cant_delete_main_nested_f
aae$nested_file_not_found
aae$no_delete_current_nested _f
aae$no_delete_rasp_in_use
aae$no_select_during_keydef
aae$not_enough_permission
aae$system_error_occurred

Remarks e AMP$DELETE_NESTED_FILE requires append, modify,
and shorten access to the file.

e The default nested file SMAIN _FILE cannot be deleted.

o The task must have exclusive access to the nested file to
delete it. AMP$DELETE_NESTED _FILE cannot delete a
nested file while:

- Any instance of open has the nested file selected.

- Any instance of open has any locks that apply to the
nested file.

An attempt to delete a nested file while it is in use returns
the nonfatal condition aae$no_delete_rasp_in_use.

® 1-320 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMPS$DELETE_NESTED_FILE

o AMP$SDELETE_NESTED_FILE cannot delete a nested

file if the instance of open has one or more alternate-key
requests pending. Call AMP$SAPPLY_KEY _
DEFINITIONS or AMPSABANDON_KEY _
DEFINITIONS to dispose of the pending requests and
then call AMP$SELECT _NESTED_FILE to select
another nested file.

The default nested file SMAIN _FILE is the recommended
selection while deleting nested files because SMAIN _FILE
cannot be deleted.

For more information on nested files, see Nested Files in
chapter I-1.

The nested-file example at the end of chapter 1-2
demonstrates the use of this call.

Keyed-File Interface Calls 1-3-21 @

AMPS$GET_KEY

AMPSGET_KEY
Purpose Reads a record from a keyed file using the specified key value.
Format AMPS$SGET_KEY
(file_identifier, working_storage_area, working _
storage_length, key_location, major_key_length, key _
relation, record_length, file_position, wait, status);
Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

working_storage_area: “cell

Pointer to the space to which the record is copied.

working_storage_length: amt$working _storage_length
Length, in bytes, of the working storage area.

key_location: "cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major_key_length: amt$major_key_length
Length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the value is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

1-3-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Parameters
(Contd)

Revision B

AMP$GET_KEY

key_relation: amt$key_relation

Relationship between the key value of the record and the key
value at key_location. The possible values are as follows:

AMCSEQUAL_KEY

AMPSGET_KEY reads the first record whose key value is

equal to the key value at key_location.
AMCS$GREATER_OR_EQUAL_KEY

AMPS$GET_KEY reads the first record whose key value is
equal to or greater than the key value at key_location.

AMCS$GREATER_KEY

AMPS$GET _KEY reads the first record whose key value is

greater than the key value at key _location.

This parameter is ignored if the file is a direct-access file and

its primary key is currently selected.

record_length: VAR of amt$max_record _length
Variable in which the number of bytes read is returned.

file_position: VAR of amt$file_position

Variable in which the file position at completion of the read

operation is returned.

AMCSEND_OF_KEY_LIST

File is positioned at the end of the key list for the
alternate-key value specified on the call.

AMCS$EOR

File is positioned at end-of-record.
AMCS$EOI

File is positioned at end-of-information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

Keyed-File Interface Calls

1-3-23

AMPS$GET_KEY

Condition
Identifiers

Remarks

aae$file_at_file_limit
aae$file_is_ruined
aae$key_found_lock_no_wait
aae$key_not_found
aae$major_key_too_long
aae$nonembedded _key_not_given
aae$not_enough_permission
aae$record _longer_than_wsa

To allow for updating of file statistics, you should open the
file for both read and modify access.

If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is read. The
program should either lock the key value before the
AMPSGET_KEY call or replace the AMP$GET _KEY call
with an AMP$GET_LOCK_KEYED_RECORD call.

If another instance of open has an Exclusive_Access lock
on the primary-key value of the record, AMP$GET_KEY
returns the nonfatal condition aae$key_found_lock_no_
wait and leaves the file positioned to read the record it
found.

To read about locks, see Keyed-File Sharing in
chapter I-2.

AMPS$GET_KEY searches for the specified key value only
in the currently selected nested file.

AMPS$GET _KEY can read a record by its primary-key
value or by an alternate-key value. The primary key is
used unless a preceding AMP$SELECT _KEY call has
selected an alternate key.

If the primary key is selected, the key_location parameter
must point to the location of the key value.

If an alternate key is selected, the key _location parameter
can point to the location of the key or it can be set to NIL.

If key_location is set to NIL, AMP$GET _KEY expects the
key to be in the working storage area. The location of the
key in the working storage area must match the location of
the key in the record.

If the alternate key is a concatenated key, each field in the
concatenated key must be stored in its appropriate location
in the working storage area.

1-3-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPS$GET_KEY

Remarks e For an indexed-sequential file, AMP$GET _KEY uses a
‘ (Contd) major key if the major_key_length parameter value is
nonzero. A major key is the leftmost bytes of the key.
AMPSGET_KEY searches for the lowest key value that
begins with the major-key value or, if that is not found, a
‘ value greater than the major-key value.

e For an indexed-sequential file, the nonfatal condition
aae$key_not_found is returned if no record in the nested
file has a key value that satisfies the relation specified by
the key _relation parameter (equal, greater than, or greater
than or equal). AMP$GET_KEY always positions the file
at the point where the record satisfying the relation would
be located if it existed in the file.

o AMP$GET_KEY returns the actual length of the record in
the variable specified by the record _length parameter. If
the length of the record is greater than the length of the
working storage area, AMP$GET _KEY returns working _
storage_length characters to the working storage area; it
also returns the nonfatal condition aae$record _longer _
than_wsa.

e File positioning by AMP$GET_KEY differs depending on
. the file organization and the key selected.

e For a direct-access file with its primary key selected, the
following statements are true:

- An AMP$GET_KEY call does not change the file
position used by sequential access calls.

- The only file_position value AMP$GET _KEY returns is
AMCSEOR.

- The only calls that reposition the file are the
AMPS$REWIND call and the sequential access calls
(AMP$GET _NEXT, AMP$GET_NEXT_KEY,
AMP$GET_LOCK_NEXT_KEY).

- The major_key_length and key _relation parameter
values are not used.

o An AMP$GET_KEY call for a direct-access file with an
alternate key selected is processed the same as a call to an
‘ indexed-sequential file with an alternate key selected.

Revision B Keyed-File Interface Calls 1-3-25 @

AMP$GET_KEY

Remarks ® For an indexed-sequential file, execution of the
(Contd) AMPS$GET_KEY call leaves the file positioned at the end .
of the record that was read. (AMCS$EOR or AMC$END _

OF_KEY _LIST is returned in the file_position parameter.)

When AMP$GET_KEY returns AMCS$EOI as the file

position, it has not found the requested record and does not '
return data in the working storage area. It returns

AMCSEOI in both of these cases:

- Ttis searching for a key value that is greater than or
equal to the specified key value and the specified key
value is greater than all key values in the file.

- Itis searching for a key value that is greater than the
specified key value and the specified key value is the
highest value in the file.

1-3-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_KEY_DEFINITIONS

AMPSGET_KEY_DEFINITIONS

Purpose Retrieves the definitions of all alternate keys in the file.

Format AMPS$GET_KEY_DEFINITIONS
(file_identifier, key _definitions, status);

Parameters file_identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMPSOPEN call for the file).

key_definitions: SEQ(*)
Sequence to receive the description of the alternate keys.

Each definition is written in two parts: a record of type
AMTS$BASIC_KEY_DEFINITION and an array of type
AMTS$OPTIONAL_KEY_ATTRIBUTES records containing
four or more additional records. (The number of records is
returned in the NUMBER_OF_OPTIONAL_ATTRIBUTES
field of the AMT$BASIC_KEY_DEFINITION record.)

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$not_enough_permission
Identifiers aae$too_little_space

Remarks ¢ A successful AMPSGET_KEY_DEFINITIONS call
returns a sequence of key definitions. The last key
definition in the sequence consists of an AMT$BASIC _
KEY_DEFINITION record in which the field
DEFINITION_RETURNED is FALSE; the record serves
as the terminator for the sequence of key definitions.

e If the DEFINITION_RETURNED field is TRUE in an
AMTS$BASIC_KEY_DEFINITION record, the record is
the first part of a key definition. The NUMBER_OF _
OPTIONAL_ATTRIBUTES field in the record specifies
the number of additional records returned for the key

definition; the records are returned in an array of type
AMTS$OPTIONAL_KEY_ATTRIBUTES.

Revision B Keyed-File Interface Calls I1-3-27 l

AMP$GET_KEY_DEFINITIONS

Remarks e The SELECTOR field of an optional attribute record

(Contd) indicates the attribute returned in the record. The possible .
attributes are: key _type, duplicate_key_control, null _
suppression, group_name, sparse_key _control,
concatenated _key, and repeating _groups. The first four
records are returned for every key definition; the
subsequent records are returned only if the attribute was ‘
specified for the key definition.

o The attribute order in a key definition may not match the
attribute order specified when the alternate key was
defined. However, the returned definition is logically
equivalent and, if used to redefine the key, results in an
identical alternate key.

® All name values in an alternate-key definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

Example The following CYBIL statements show how the key definition
sequence returned by an AMP$GET _KEY_DEFINITIONS
call could be read. The key definition sequence is declared to
be 500 words long (500 integers). If the sequence is too small,
AMPS$GET_KEY_DEFINITIONS returns the condition
AAES$TOO_LITTLE_SPACE. ‘

I 1-3-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_KEY_DEFINITIONS

Example MODULE GET_DEFS_MOD;
‘ (Contd) *copyc amp$open
*copyc amp$get_key_definitions

*copyc amt$optional_key_attributes
PROCEDURE GET_ALT_KEY_DEFS;

VAR
‘ Lfn: CSTATIC] amt$local_file_name :=
'existing_is_file',
fid: amt$file_identifier,
status: ost$status,
definitions_ptr : SEQ (%),
definitions : SEQ(REP 500 OF integer),
basic_definition : amt$basic_key_definition,
optional_attributes : amt$optional_key_attributes;

amp$open(Lfn,amc$record,NIL,fid, status);
{ Statements here to check the status variable.}
amp$get_key_definitions (fid,definitions,status);
{ Statements here to check the status variable.}

definitions_ptr := definitions;
. RESET definitions_ptr;

{ Set the basic_definitions pointer to the first record.}
NEXT basic_definition IN definitions_ptr;

{ Iterate until the definition_returned field in the }
{ basic_definition record is FALSE.}
WHILE basic_definition.definition_returned DO

{ Set the optional_attributes pointer to the beginning }
{ of the optional attributes array.}
NEXT optional_attributes :
[1 .. basic_definition.number_of_optional_attributes]
IN definitions_ptr;
{:2)
{ Use the key definition here. }
{:3
Set the basic_definition pointer to the next key
. definition.}
NEXT basic_definition IN definitions_ptr;
WHILEND;
PROCEND GET_ALT_KEY_DEFS;
. MODEND GET_DEFS_MOD

~ A

Revision B Keyed-File Interface Calls 1-3-29 I

AMPS$SGET_LOCK_KEYED_RECORD

AMPS$SGET_LOCK_KEYED_RECORD

Purpose Locks and reads the record having the specified key value. .

Format AMPS$SGET_LOCK_KEYED_RECORD
(file_identifier, working_storage_area, working_
storage_length, key_location, major_key_length, key_ ‘
relation, wait_for_lock, unlock_control, lock_intent,
record_length, file_position, wait, status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
working_storage_area: "cell
Pointer to the space to which the record is copied.

working_storage_length: amt$working_storage_length
Length, in bytes of the working storage area.

key_location: “cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major_key_length: amt$major_key_length .

Length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the major key length is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

® 1-330 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_KEYED_RECORD

Parameters key_relation: amt$key_relation

‘ (Contd) Relationship between the key value of the record and the key
value specified by this call. The valid values are as follows:

AMCSEQUAL_KEY Read the first record whose
key value is equal to the

specified key value.

AMC$GREATER_OR _
EQUAL_KEY

Read the first record whose
key value is greater than or
equal to the specified key
value.

AMCS$GREATER_KEY Read the first record whose
key value is greater than the

specified key value.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

wait_for_lock: ost$wait_for_lock
Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK

OSC$NOWAIT_FOR _
LOCK

Waits for the lock.

Returns immediately with a
warning condition if the lock
is unavailable.

unlock _control: amt$unlock _control
Indicates whether the lock is to be cleared automatically.

AMCS$AUTOMATIC Clear the lock automatically.
AMCS$WAIT_FOR _ Keep the lock until it is
UNLOCK explicitly unlocked.

lock_intent: amt$lock_intent

Specifies the purpose and effects of the lock.

AMCSEXCLUSIVE _ Locked for exclusive access.
ACCESS
AMCS$PRESERVE _ Locked for possible update
ACCESS_AND_ request later.

‘ CONTENT
AMC$PRESERVE _ Locked to read the record
CONTENT only.

Revision B

Keyed-File Interface Calls

I-3-31 @

AMP$GET_LOCK_KEYED_RECORD

Parameters record_length: VAR of amt$max_record _length

(Contd) Variable in which the number of bytes read is returned.

file_position: VAR of amt$file_position

Variable at which the file position at completion of the read
operation is returned.

AMCSEND_OF_KEY_ Positioned at the end of the

LIST key list for the specified
alternate-key value.

AMCS$EOR Positioned at the end of the
record.

AMCS$EOI Positioned at the end-of-
information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the procedure returns its completion
status.

Condition aae$bad_resolve_time_limit

Identifiers aae$file_at_file_limit
aae$file_is_ruined
aae$key_already_locked
aae$key_deadlock
aae$key_expired _lock_exists
aae$key_found_lock_no_wait
aae$key_not_found
aae$key_self_deadlock
aae$key_timeout
aae$lock_file_crowded
aae$major_key_too_long
aae$no_auto_unlock_pc
aae$nonembedded_key_not_given
aae$not_enough_permission
aae$primary_key_locked
aae$record _longer_than_wsa
aae$too_many _keylocks

® 1-3-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_KEYED_RECORD

Remarks e To allow for updating of file statistics, you should open the
‘ file for both read and modify access.

o AMP$GET_LOCK_KEYED_RECORD performs the same
processing as AMP$GET_KEY except that it locks the
primary-key value of the record before reading the record.

‘ See the AMP$GET _KEY procedure description for details
on how AMP$GET _LOCK_KEYED_RECORD finds and
reads the record.

o AMPS$GET_LOCK_KEYED_RECORD requests a lock on
the primary-key value of the record to be read. The lock
request uses the wait_for_lock, unlock_control, and lock _
intent values on the call. For more information on locks,
see Keyed-File Sharing in chapter I-2.

e Because a preserve_content lock cannot be automatically
unlocked, the unlock_control value AMC$AUTOMATIC
and the lock_intent value AMC$PRESERVE_CONTENT
are not valid on the same call.

e If an alternate key is currently selected, the call requests a
lock on the first primary-key value in the key list only.

e If the call terminates abnormally, the primary-key value is

‘ left unlocked.

e If the requested lock is unavailable, the call leaves the file
positioned to read the requested record.

Revision B Keyed-File Interface Calls 1-3-33 @

AMP$GET_LOCK_NEXT_KEYED_RECORD

AMPSGET_LOCK_NEXT_KEYED_RECORD

Purpose Locks and reads the next record.

Format AMPS$GET_LOCK_NEXT_KEYED_RECORD
(file_identifier, working_storage_area, working _
storage_length, key_location, wait_for_lock, unlock_
control, lock_intent, record_length, file_position,
wait, status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
working _storage_area: “cell
Pointer to the space to which the record is copied.

working_storage_length: amt$working_storage_length
Length, in bytes of the working storage area.

key_location: “cell

Pointer to the space in which the key value of the record is
returned.

wait_for_lock: ost$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK Waits for the lock.

OSC$NOWAIT_FOR_ Returns a warning condition
LOCK if the lock is unavailable.

unlock _control: amt$unlock_control
Indicates whether the lock is to be cleared automatically.

AMCS$AUTOMATIC Clear the lock automatically.
AMCS$WAIT_FOR_ Keep the lock until it is
UNLOCK explicitly unlocked.

® 1-3-34 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPS$GET_LOCK_NEXT_KEYED_RECORD

Parameters lock_intent: amt$lock _intent

‘ (Contd) Specifies the purpose and effects of the lock.
AMCS$EXCLUSIVE _ Locked for exclusive access.
ACCESS

. AMCS$PRESERVE _ Locked for possible update
ACCESS _AND _ request later.
CONTENT
AMCS$PRESERVE _ Locked to read the record
CONTENT only.

record_length: VAR of amt$max _record_length
Variable in which the number of bytes read is returned.

file_position: VAR of amt$file_ _position

Variable at which the file position at completion of the read
operation is returned.

AMCS$END_OF_KEY_ Positioned at the end of the
LIST key list for the specified
alternate-key value.
AMCS$EOR Positioned at the end of the
. record.
AMCS$EOI Positioned at the

end-of-information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the procedure returns its completion
status.

Revision B Keyed-File Interface Calls 1-3-35 @

AMP$GET_LOCK_NEXT_KEYED_RECORD

Condition aae$bad_resolve_time_limit

Identifiers aae$cant_da_getn_if_shared
aae$cant_da_getn_after_put
aae$cant_position_beyond_bound
aaebfile_at_file limit
aae$file_boundary_encountered
aae$file_is_ruined
aae$key_already_locked
aae$key_deadlock
aae$key_expired_lock _exists
aae$key_found_lock_no_wait
aae$key_self _deadlock
aae$key_timeout
aae$lock_file_crowded
aae$no_auto_unlock_pc
aae$nonembedded _key_not_given
aae$not_enough_permission
aae$primary_key_locked
aae$record_longer_than_wsa
aae$too_many_keylocks
aae$wsa_not_given

Remarks e To allow for updating of file statistics, you should open the
file for both read and modify access.

e AMP$GET_LOCK_NEXT_KEYED_RECORD performs
the same processing as AMPSGET _NEXT_KEY except
that it locks the primary-key value of the record before
reading the record. See the AMP$GET_NEXT_KEY
procedure description for details on how AMP$GET _
LOCK_NEXT_KEYED_RECORD finds and reads the
record.

o AMP$GET_LOCK_NEXT_KEYED_RECORD requests a
lock on the primary-key value of the record to be read. The
lock request uses the wait_for_lock, unlock _control, and
lock_intent values on the call. For more information on
locks, see Keyed-File Sharing in chapter I-2.

e Because a Preserve_Content lock cannot be automatically
unlocked, the unlock _control value AMC$AUTOMATIC
and the lock_intent value AMC$PRESERVE_CONTENT
are not valid on the same call.

e If an alternate key is currently selected, the call requests a
lock on the first primary-key value in the key list only.

o [f the call terminates abnormally, the primary-key value is
left unlocked.

@® 1-336 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_NEXT_KEYED_RECORD

Remarks e If the requested lock is unavailable, the call leaves the file
‘ (Contd) positioned to read the requested record.

e This call is valid for a direct-access file only when an
alternate key is selected or during a sequential pass

. through the file.

When the primary key is selected, the call is valid only
when the direct-access file has been attached for exclusive
access (no share modes allowed) and no update operations
intervene in the sequential pass. (The only update
operation allowed is the replacement of a record with
another record of the same length.)

If an update operation is performed on the direct-access
file and the primary key is selected, the program must
rewind the file before beginning a sequential pass of the
direct-access file.

Revision B Keyed-File Interface Calls 1-3-37 @

AMP$GET_NESTED_FILE_DEFINITIONS

AMPSGET_NESTED_FILE_DEFINITIONS

Purpose Returns the nested-file definitions for the file. .

Format AMPSGET _NESTED_FILE_DEFINITIONS
(file_identifier, definitions, nested_file_count, status);
Parameters file_identifier: amt$file_identifier '
File identifier identifying the instance of open (returned by an
AMP$OPEN call for the file).
definitions: VAR of amt$nested_file_definitions
Array in which the nested-file definitions are returned. Each
element is a record of type amt$nested _file_definition as
described for the AMP$CREATE_NESTED_FILE procedure.
nested_file_count: VAR of amt$nested_file_count
Variable in which the number of nested files in the file is
returned.
status: VAR of ost$status
Status variable in which the procedure returns its completion

status.
Condition aae$too_little_space ‘
Identifiers aae$not_enough_permission

aae$system_error_occurred

Remarks e AMPS$GET_NESTED_FILE_DEFINITIONS requires the
same access required to open the file.

e The definition of the currently selected nested file is always
returned first in the nested_file_definitions array.

e If the nested_file_definitions array is too small for all
nested-file definitions in the file, AMP$GET_NESTED _
FILE_DEFINITIONS returns the nonfatal condition
aae$too_little_space.

In this case, if sufficient space is available, it returns the
definition of the currently selected nested file in the first
element of the array, but leaves the rest of the array
undefined.

After receiving the condition aae$too_little_space, a ‘
program can use the nested_file_count returned to

increase the size of the array to that required for all

nested-file definitions and then call AMP$GET _
NESTED_FILE_DEFINITIONS again. .

® 1-3-38 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_NESTED_FILE_DEFINITIONS

Remarks e To fetch the number of nested files before calling
. (Contd) AMP$GET_NESTED_FILE_DEFINITIONS, call
AMPS$FETCH_ACCESS_INFORMATION to fetch the
amc$number_of_nested _files item. (AMP$FETCH _
ACCESS_INFORMATION is described in the CYBIL File
' Management manual.)

e All name values in a nested-file definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

o Besides using the individual field values returned in the
nested-file definition record, you can use the records
returned to create similar or identical nested files in
another file. This can be done easily because the record
type returned by AMP$GET_NESTED _FILE _
DEFINITIONS is the same record type specified on an
AMP$CREATE_NESTED_FILE call.

¢ For more information on nested files, see Nested Files in
chapter I-1.

e The nested-file example at the end of chapter -2
demonstrates the use of this call.

Revision B Keyed-File Interface Calls 1-3-39 @

AMP$GET_NEXT_KEY

AMPSGET_NEXT_KEY

Purpose Reads the next logical record in the keyed file. .
Format AMPS$SGET _NEXT_KEY
(file_identifier, working_storage_area, working _
storage_length, key_location, record_length, file_ .

position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPSOPEN call for the file).

working_storage_area: “cell

Pointer to the space to which the record is copied.
working_storage_length: amt$working_storage_length
Length, in bytes, of the working storage area.
key_location: "cell

Pointer to the space in which the record key value is returned.

record_length: VAR of amt$max_record_length
Variable in which the number of bytes read is returned.

file_position: VAR of amt$file_position ‘

Variable in which the position of the file at completion of the
read operation is returned.

AMCS$END_OF_KEY_LIST

File is positioned at the end of a key list (can be returned
only if an alternate key was selected).

AMC$EOR

File is positioned at the end of a record. (When an alternate
key is selected, it indicates that the file is not at the end of
a key list.)

AMCS$EOI
File is positioned at the end of the index.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call. ‘

status: VAR of ost$status
Status variable in which the completion status is returned.

I 1-3-40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_NEXT_KEY

Condition aae$cant_position_beyond_bound

‘ Identifiers aae$file_at_file_limit
aae$file_boundary_encountered
aae$file_is_ruined
aae$key_found_lock_no_wait
aae$nonembedded_key_not_given

‘ aae$not_enough_permission
aae$record _longer_than_wsa
aae$wsa_not_given

Remarks e When a file is being read but not updated, the file should be
opened for both read and modify access. The modify access
allows statistics to be updated without allowing any record
in the file to be altered.

e If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is read. Either a
call before the AMP$GET NEXT KEY call should lock
the key value or an AMP$GET _LOCK_NEXT_KEYED _
RECORD call should replace the AMP$GET_NEXT_KEY
call.

If another instance of open has an Exclusive_ Access lock

. on the primary-key value of the record, AMP$GET _
NEXT_KEY returns the nonfatal condition aae$key _
found_lock_no_wait and leaves the file positioned to read
the record it found.

To read about locks, see Keyed-File Sharing in
chapter I-2.

o AMP$GET_NEXT_KEY reads the next record in the
currently selected nested file.

e When an alternate key is selected, get_next calls return
records in the key-value order as provided by the alternate
index.

When the primary key is selected for an indexed-sequential
file, records are returned in the key-value order as provided
by the primary index.

When the primary key is selected for a direct-access file,
‘ records are not returned in a logical order; records are
returned in physical order by their location in the file.

Revision B Keyed-File Interface Calls I-3-41 @

AMP$GET_NEXT_KEY

Remarks
(Contd)

e AMPSGET_NEXT_KEY returns the file_position

AMCS$EOR (or AMC$SEND_OF_KEY_LIST for an
alternate key) when it returns a record to the working
storage area.

When AMP$GET_NEXT _KEY reads the last record in the
file, it returns AMC$EOR (or AMCSEND_OF_KEY_LIST
for an alternate key) as the file position. The next
AMPS$GET_NEXT_KEY call returns AMC$EOI as the file
position; it returns no data and normal status. If the task
calls AMP$GET_NEXT_KEY again after AMC$EOI has
been returned, the status condition AAESCANT _
POSITION_BEYOND_BOUND occurs.

For more information on the use of this call with alternate
keys, refer to Using Alternate Keys in chapter I-2.

The key value is returned to key_location unless the key _
location parameter is set to NIL.

At the completion of the read request, the record_length
parameter is set to the length of the record that was read. If
the sequential read operation was unsuccessful, the

record _length parameter is not defined.

If the length of the record that is read is greater than the
length of the working storage area as specified by the
working_storage_length parameter, working _storage _
length characters are returned and a nonfatal error occurs.

This call is valid for a direct-access file only when an
alternate key is selected or during a sequential pass
through the file.

When the primary key is selected, the call is valid only
when the direct-access file has been attached for exclusive
access (no share modes allowed) and no update operations
intervene in the sequential pass. (The only update
operation allowed is the replacement of a record with
another record of the same length.)

If an update operation is performed on the direct-access
file and the primary key is selected, the program must
rewind the file before beginning a sequential pass of the
direct-access file.

1-342 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_NEXT_PRIMARY_KEY_LIST

AMPSGET_NEXT_PRIMARY_KEY_LIST

. Purpose Returns a list of primary-key values associated with a range
of alternate-key values in an alternate index.
Format AMPSGET_NEXT_PRIMARY_KEY_LIST
. (file_identifier, high_key, major_high_key, high_key_

relation, working_storage_area, working_storage_
length, end_of_primary_key_list, transferred_byte_
count, transferred_key_count, file_position, wait,
status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an I
AMPS$OPEN call for the file).

high_key: “cell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the end of the alternate index.

major_high_key: amt$major_key_length

Specify a nonzero value to indicate that the upperbound

alternate-key value is to be located by major key. The nonzero

value is the number of characters beginning at the high _key
. location that are to be used as the major key. Specify zero to

indicate that the full alternate-key value is to be used.

high_key_relation: amt$key_relation

Indicates where the list ends in relation to the highest
alternate-key value in the range.

AMC$GREATER_KEY

Include the primary-key values associated with the high _ I
key value in the list; that is, end the list when an
alternate-key value greater than the high_key value is
encountered.

AMCS$GREATER_OR_EQUAL_KEY or
AMCS$EQUAL_KEY

Exclude the primary-key values associated with the high_ I

key value from the list; that is, end the list when an

alternate-key value greater than or equal to the high_key
‘ value is encountered.

working_storage_area: "cell

Pointer to the variable in which the list of primary-key values
is returned.

Revision B Keyed-File Interface Calls 1-343

AMP$GET_NEXT_PRIMARY_KEY_LIST

Parameters = Working_storage_length: amt$working_storage_length
(Contd) Length, in bytes, of the working storage area. ‘

end_of_primary_key_list: VAR of boolean

Variable in which a boolean value is returned indicating
whether the entire list of primary-key values was returned to .
the working storage area.

TRUE

The high end of the range was reached, and the entire list
of primary-key values was returned to the working storage
area.

FALSE

The high end of the range was not reached, and at least
one more AMP$GET_NEXT_PRIMARY_KEY_LIST call
is required to get the rest of the list of primary-key values.

transferred_byte_count: VAR of amt$working _
storage_length
Variable in which the length, in bytes, of the list of
primary-key values is returned.
transferred_key_count: VAR of amt$key_count_limit
Variable in which the number of primary-key values is ‘
returned.
file_position: VAR of amt$file_position
Variable in which the file position at completion of the
operation is returned.

AMCS$EOR

File is positioned within a key list.

AMCS$END_OF_KEY_LIST
File is positioned at the end of a key list.

AMCS$EOI
File is positioned at the end of the alternate index.

wait: ost$wait
Currently, the only valid value is OSC$WAIT. You must
specify this value on the call. .

status: VAR of ost$status
Status variable in which the completion status is returned.

| 1-344 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Condition
Identifiers

Remarks

Revision B

AMP$GET_NEXT_PRIMARY_KEY_LIST

aae$high_end_below_current
aae$not_enough_permission
aae$not_positioned_by _altkey
aae$wsa_not_given
aae$wsl_too_short

o You must call AMP$SELECT _KEY to select the alternate
key before calling AMP$GET_NEXT_PRIMARY_KEY_
LIST; otherwise, AMP$GET_NEXT_PRIMARY_KEY _
LIST returns the nonfatal error aae$not_positioned _by_
altkey and does not return a list of primary-key values.

® The high_key parameter points to a value that specifies
the upper bound of the range of keys to be listed. The
high_key_relation parameter indicates whether the high_
key value is included or excluded from the range.

For example, suppose the high_key value is SMITH. The
high_key_relation value indicates whether the primary-
key values associated with the alternate-key value SMITH
is included in the list.

e A major key consists of the leftmost bytes of a key. If the
major_high_key parameter value is nonzero, AMP$SGET _
NEXT_PRIMARY_KEY_LIST uses a major key of the
specified length to find the high end of the range. It
searches for the lowest alternate-key value that begins
with the major-key or a value greater than the major key.

For example, suppose the key at the specified high_key
location is ABCDEF. If the major_high_key parameter
value is 2, the major key used is AB. Therefore, the range
ends at the first alternate-key value beginning with AB.

e Ifhigh key is set to NIL, the values of major_high_key
and high_key_relation are ignored.

e A primary-key value can be included more than once in
the list returned by AMP$GET_NEXT_PRIMARY_KEY_
LIST. This occurs if the primary-key value is associated
with more than one alternate-key value in the range. This
is possible if the repeating-groups attribute is defined for
the alternate key.

Keyed-File Interface Calls 1-345

AMP$GET_NEXT_PRIMARY_KEY_LIST

Remarks ¢ AMPSGET_NEXT_PRIMARY_KEY_LIST returns

(Contd) primary-key values until it reaches the end of the specified ‘
range or until it cannot fit another value into the working
storage area. By checking the end_of_primary_key_list
value, the program can determine whether all requested
values were returned and, if not, call AMP$GET_NEXT _
PRIMARY_KEY_LIST again to fetch the rest of the ‘
values.

o AMPS$GET_NEXT_PRIMARY_KEY_LIST repositions
the file as it fetches key values. At completion of the call,
the file is positioned at the end of the last key value
returned and positioned to continue fetching values at that
point if AMP$GET_NEXT_PRIMARY_KEY_LIST is
called again.

I I-346 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_PRIMARY_KEY_COUNT

AMPSGET_PRIMARY_KEY_COUNT

Purpose Returns the number of primary-key values associated with a
range of alternate-key values in an alternate index.

Format AMPSGET_PRIMARY_KEY_COUNT
(file_identifier, low_key, major_low_key, low_key_
relation, high_key, major_high_key, high_key_
relation, list_count_limit, list_count, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

low_key: “cell
Pointer to the alternate-key value at which the range begins.

Set to NIL if the range is to begin at the lowest alternate-key
value in the alternate index.

major_low_key: amt$major_key_length

A nonzero value indicates that the lowerbound alternate-key
value is to be located by major key. The nonzero value is the
major-key length. A zero value indicates that the full
alternate-key value is to be used.

low_key_relation: amt$key_relation

Indicates where the count begins in relation to the lowest
value in the alternate-key range.

AMC$GREATER_KEY

Exclude the primary keys associated with the low_key
value from the count, that is, begin the count when an
alternate-key value greater than the low_key value is

encountered.

AMC$GREATER_OR_EQUAL_KEY or
AMCSEQUAL_KEY

Include the primary keys associated with the low_key
value in the count, that is, begin the count when an
alternate-key value greater than or equal to the low_key
value is encountered.

high_key: “cell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the highest alternate-key value
in the alternate index.

Revision B Keyed-File Interface Calls 1-347

AMP$GET_PRIMARY_KEY_COUNT

Parameters major_high_key: amt$major_key_length

(Contd) A nonzero value indicates that the upperbound alternate-key ‘
value is to be located by major key. The nonzera value is the
major-key length. A zero value indicates that the full
alternate-key value is to be used.

high_key_relation: amt$key_relation .

Indicates where the count ends in relation to the highest value
in the range.

AMC$GREATER_KEY

Include the primary-key values associated with the high_
key value in the count; that is, end the count when an
alternate-key value greater than the high_key value is
encountered.

AMCSGREATER_OR_EQUAL_KEY or
AMCS$EQUAL_KEY

Exclude the primary-key values associated with the high _
key value from the count; that is, end the count when an
alternate-key value greater than or equal to the high_key
value is encountered.

list_count_limit: amt$key_count_limit ’

Maximum number of primary-key values counted;
AMP$GET_PRIMARY_KEY_COUNT stops counting when
it reaches this value. If set to zero, all primary-key values are
counted.

list_count: VAR of amt$key_count_limit

Integer variable in which the number of primary-key values
in the range is returned. If zero is returned, no primary-key
values exist in the specified range. The value cannot exceed
the list count limit.

wait: ost$wait
Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.
status: ost$status
Status variable in which the completion status is returned.
Condition aae$high_end_not_above_low_end .

Identifiers aae$not_enough_permission
aae$not_positioned _by_altkey

1-3-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks

Revision B

AMPS$GET_PRIMARY_KEY_COUNT

You must call AMP$SELECT_KEY to select the alternate

key before calling AMP$GET_PRIMARY_KEY_COUNT;
otherwise, AMP$GET_PRIMARY_KEY_COUNT returns
the nonfatal error aae$not_positioned_by_altkey and does
not return a primary-key count.

The low_key and high _key parameters point to values
that specify the lower and upper bounds, respectively, of
the alternate-key range. The low_key_relation and high _
key_relation parameters indicate whether the low_key and
high_key values, respectively, are included in the range.

For example, suppose the low_key value is JONES and the
high_key value is SMITH. The low_key_relation value
indicates whether the primary keys associated with
alternate-key value JONES are included in the count. The
high_key_relation value indicates whether the primary
keys associated with alternate-key value SMITH are
included in the count.

A major key consists of the leftmost characters of a key.
The major_high_key and major_low_key parameters
specify the number of characters of the specified key to use
when searching for a matching key. A key is considered to
match the specified key when the major key matches the
first characters of the key.

For example, suppose the key at the specified low_key
position is ABCDEF. If the major_low_key parameter
value is 2, the major key used is AB. Therefore, the count
begins at the first alternate-key value beginning with a
value greater than or equal to AB.

If low_key is set to NIL, the values of major_low_key and
low_key _relation are ignored. If high _key is set to NIL,
the values of major_high_key and high _key _relation are
ignored.

AMPS$GET_PRIMARY_KEY_COUNT counts a single
primary-key value more than once if the primary-key
value is associated with more than one alternate-key
value. This is possible if the repeating groups attribute is
defined for the alternate key.

Keyed-File Interface Calls 1-3-49

AMP$GET_PRIMARY_KEY_COUNT

Remarks
(Contd)

o AMPSGET_PRIMARY_KEY_COUNT returns the value 0

as the list count if it cannot find both the upper_bound and
lower_bound alternate-key values in the alternate index.

For example, if you specify the alternate-key value Z as
both the upper_bound and the lower_bound values and the
alternate-key value Z is not in the alternate index, the call
returns 0 as the list count.

The list_count_limit value can minimize the processing
required for the call. For example, if you call AMP$GET_
PRIMARY_KEY_COUNT call to determine whether the
number of primary-key values for the alternate-key value
Z1is 0, 1, or more than 1, you should set the list_count_
limit value to 2.

I I-350 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPSGET_SPACE_USED_FOR_KEY

AMPSGET_SPACE_USED_FOR_KEY

Purpose Returns the number of alternate-index blocks that contain the
specified alternate-key range.
Format AMPS$GET_SPACE_USED_FOR_KEY

(file_identifier, low_key, major_low_key, low_key_
relation, high_key, major_high_key, high_key_
relation, data_block_count, data_block_space, wait,
status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
low_key: "“cell

Pointer to the alternate-key value at which the range begins.
Set to NIL if the range is to begin at the lowest alternate-key
value in the alternate index.

major_low_key: amt$major_key_length

A nonzero value indicates that the lowerbound is specified by
a major key (the leftmost part of the key). The nonzero value
is the major key length. A zero value indicates that the full
alternate-key value is to be used.

low_key_relation: amt$key_relation
Indicates where the count begins in relation to the lowest
value in the alternate-key range.
AMC$GREATER_KEY
Exclude the low_key value from the range.
AMC$GREATER_OR_EQUAL_KEY or
AMCS$EQUAL_KEY
Include the low_key value in the range.

high_key: “cell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the highest alternate-key value
in the alternate index.

major_high_key: amt$major_key_length

A nonzero value indicates that the upperbound is specified by
a major key (the leftmost part of the key). The nonzero value
is the major key length. A zero value indicates that the full
alternate-key value is to be used.

Revision B Keyed-File Interface Calls 1-351 @

AMP$GET_SPACE_USED_FOR_KEY

Parameters
(Contd)

Condition
Identifiers

Remarks

® 1-352 CYBIL Keyed-File and Sort/Merge Interfaces

high_key_relation: amt$key_relation

Indicates where the range ends in relation to the highest
value in the range.

AMCS$GREATER_KEY
Include the high _key value in the range.

AMCSGREATER_OR_EQUAL_KEY or
AMCSEQUAL_KEY

Exclude the high_key value from the range.
data_block_count: VAR of amt$data_block_count

Variable in which the block count is returned. It is returned as

an integer from 1 through amt$max_blocks_per_file.

data_block_space: VAR of amt$file_length
Variable in which the combined length of the blocks is

returned. (The value is the number of blocks multiplied by the

block size.)

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.
aae$high_end_not_above_low_end

aae$not_enough_permission
aae$not_positioned_by_altkey

e The structure of an alternate index is an

indexed-sequential structure. One or more index levels are
used to find the block containing the alternate-key value.

Only the blocks at the lowest level of the search actually

contain the alternate-key values and their corresponding

primary-key values.

An AMP$GET_SPACE_USED_FOR_KEY call does not

actually find the specified alternate-key values in the

alternate index. Rather, it searches the index to determine
the number of lowest-level blocks that would contain the

specified range of alternate-key values.

AMPS$GET_SPACE_USED_FOR_KEY returns a value
even if the specified low_key and high_key values are not

in the alternate index.

Revision B

AMP$GET_SPACE_USED_FOR_KEY

Remarks e This call can be used to compare alternate methods of
‘ (Contd) fetching a set of primary-key values. This is discussed
under Retrieving Alternate-Index Information in
chapter I-2.

e An AMP$GET_SPACE_USED_FOR_KEY call returns
‘ two values, a block count and the combined length of the
blocks counted. The second value is derived by multiplying
the block count by the block size for the file. It is useful
when comparing values from files with different block
sizes. (Larger blocks require longer searches.)

® An alternate key must be currently selected when
AMP$GET_SPACE_USED_FOR_KEY is called. If the
primary key is currently selected, AMP$GET_SPACE _
USED_FOR_KEY returns the nonfatal error aae$not_
positioned_by_altkey and does not return block _count or
block_length values.

® The low_key, major_low_key, low_key_relation, high _
key, major_high_key, and high_key_relation parameters
specify the range of alternate-key values. Their use on an
AMP$GET_SPACE_USED_FOR_KEY call is the same
as on an AMP$GET_PRIMARY_KEY_COUNT call. For
details, see the Remarks in the AMP$GET_PRIMARY _
‘ KEY_COUNT description.

Revision B Keyed-File Interface Calls I-3-53 @

AMP$LOCK_FILE

AMPSLOCK_FILE
Purpose Locks the file. ‘
Format AMPS$LOCK_FILE

(file_identifier, wait_for_lock, lock_intent, status); ‘

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
wait_for_lock: ost$wait_for_lock
Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK Waits for the lock.

OSC$NOWAIT_FOR_ Returns immediately with a
LOCK warning condition if the lock
is unavailable.
lock_intent: amt$lock_intent
Specifies the purpose and effects of the lock.

AMCS$EXCLUSIVE_ Locked for exclusive access.
ACCESS ‘
AMCS$PRESERVE _ Locked for possible update
ACCESS_AND_ requests later.

CONTENT

AMC$PRESERVE _ Locked to read records only.
CONTENT

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

Condition aae$bad_resolve_time_limit
Identifiers aae$key_timeout
aae$lock_file_crowded

® 1-354 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPSLOCK_FILE

Remarks e The file lock applies to the currently selected nested file
only. It applies to all primary-key values in that nested file
and to all lock requests for the nested file.

e File locks are not automatically unlocked. A file lock is
. cleared when one of these events occurs:

- An AMP$UNLOCK_FILE call clears the lock.
- The instance of open is closed.

¢ For more information, see File Locks in chapter I-2.

Revision B Keyed-File Interface Calls I-3-55 @

AMP$LOCK_KEY

AMPSLOCK_KEY

Purpose Locks the specified primary-key value.

Format AMPSLOCK_KEY

(file_identifier, key_location, wait_for_lock, unlock _

control, lock _intent, status); ‘
Parameters file_identifier: amt$file identifier

File identifier identifying the instance of open (returned by an

AMPS$OPEN call for the file).

key_location: ~cell

Pointer to the primary-key value to be locked.

wait_for_lock: ost$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSCSWAIT_FOR_LOCK Waits for the lock.

OSC$NOWAIT_FOR_ Returns immediately with a
LOCK warning condition if the lock
is unavailable.
unlock _control: amt$unlock control ‘

Indicates whether the lock is automatically cleared.

AMCSAUTOMATIC The lock is cleared by the
next request that reads,
updates, or positions the file
or requests or clears a lock.

AMCSWAIT_FOR_ The lock is held until it is
UNLOCK explicitly cleared.

AMCSAUTOMATIC is not valid if the lock_intent value is
AMC$PRESERVE_CONTENT.

@® I-356 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMPSLOCK_KEY

Parameters lock_intent: amt$lock_intent

' (Contd) Specifies the purpose and effects of the lock.
AMCS$EXCLUSIVE _ Locked for exclusive access.
ACCESS

. AMCS$PRESERVE _ Locked for possible update
ACCESS_AND_ request later.
CONTENT
AMCS$PRESERVE Locked to read the record
CONTENT only.

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

Condition aae$bad_resolve_time_limit

Identifiers aae$key_already_locked
aae$key_deadlock
aae$key_expired_lock _exists
aae$key_found_lock_no_wait
aae$key_self _deadlock
aae$key_timeout
aae$lock_file_crowded

‘ aae$no_auto_unlock_pc

aae$primary_key_locked
aae$too_many_keylocks

Remarks e Only primary-key values can be locked; alternate-key
values cannot be locked. The currently selected key does
not affect AMP$LOCK_KEY.

e The key lock applies only to the nested file currently
selected.

e The specified primary-key value may or may not be that of
a record in the nested file.

- If the primary-key value is already in the nested file,
the lock prevents access to the record associated with
that primary-key value.

- If the primary-key value is not yet in the nested file, the
lock reserves the key value for a record to be written by
. the task. No other task can write a record with that
primary-key value while the lock is in effect.

Revision B Keyed-File Interface Calls 1-3-57 @

AMP$LOCK_KEY

Remarks o AMPSLOCK_KEY does not verify that the primary-key
(Contd) value is valid. The validity of the key value is determined .
by a subsequent call that uses the key value.

o Because a Preserve_Content lock cannot be automatically
unlocked, the unlock _control value AMC$AUTOMATIC
and the lock_intent value AMC$PRESERVE_CONTENT ‘
are not valid on the same call.

e If automatic unlock is not chosen for the key lock, the lock
is not cleared until one of these events occurs:

- An AMP$UNLOCK_KEY call clears the lock.
- The instance of open is closed.

e For more information, see Keyed-File Sharing in
chapter I-2.

® I-358 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$PUT_KEY

AMPSPUT_KEY
Purpose Writes a record to a keyed file.
Format AMPS$SPUT_KEY

Parameters

Condition
Identifiers

Revision B

(file_identifier, working_storage_area, working _
storage_length, key_location, wait, status);

file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

working _storage_area: “cell
Pointer to the new record.

working_storage_length: amt$working _storage_length
Length, in bytes, of the record to be written.

key_location: "cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$duplicate_alternate_key
aae$file_at_file_limit

aae$file at_user_ record_limit
aae$file_full_no_puts_or_reps
aae$file_is_ruined
aae$key_already_exists
aae$key_found_lock_no_wait
aae$key_required
aae$nonembedded _key_not_given
aae$not_enough_permission

Keyed-File Interface Calls I-3-59

AMP$PUT_KEY

Remarks o An AMP$PUT_KEY call requires that the file be opened
for at least append access. If the file has one or more ‘
alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

® A lock is not required for an AMP$PUT_KEY call. .
However, if the file could be shared (more than one
concurrent instance of open could exist), the primary-key
value of the record should be locked before the record is
written. A Preserve_Content_and_ Access or Exclusive _
Access lock prevents another task from writing a record
with the same primary-key value.

If another instance of open has a lock on the primary-key
value, AMP$PUT_KEY returns the nonfatal condition
aae$key_found_lock_no_wait.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

o AMPS$PUT_KEY writes the record in the nested file
currently selected.

o If the primary key is nonembedded, the key _location
parameter specifies the starting address of the key. If the ‘
primary key is embedded, the key _location parameter is
ignored, and the location of the key is determined by the
key _position attribute; therefore, you should specify the
key _location parameter as NIL.

o If the file has AMC$ANSI_FIXED records, the working _
storage_length parameter is ignored, and the value of the
max_record_length attribute is used as the length of the
working storage area.

A warning message is issued for the first call on which the
working _storage_length value differs from the max _
record _length value. The warning is given because,
although excess data is truncated, insufficient data in the
working storage area is not padded. This could mean that
garbage has been written as the last part of the fixed-
length record.

e Execution of an AMP$PUT _KEY call does not change the .
key currently selected. It leaves the file positioned at the
end of the record it writes.

1-360 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$PUT_KEY

e Writing records to an indexed-sequential file is usually

faster if the records are sorted in ascending primary-key
value order before being written to the file. Also, the
resulting file is usually smaller.

Writing unsorted records to an indexed-sequential file
could result in an inefficient file structure with more data
blocks than necessary because of numerous data-block
splits.

An AMP$PUT_KEY call updates the alternate indexes for
the new record if alternate keys are defined for the file.
Calls to put or replace records are effective even if an
alternate key is currently selected for reading and
positioning the file.

AMPS$PUT _KEY returns one of these nonfatal conditions
when it cannot write the record because the nested file has
reached a limit:

aae$file_at_user_record_Limit
The number of records in the nested file has reached
the record_limit attribute value.

aae$file_full_no_puts_or_reps
The record cannot be written because it would require
addition of another index level to the indexed-
sequential structure and the number of index levels
has already reached the limit (15).

Keyed-File Interface Calls I-3-61

AMP$PUTREP

AMPS$PUTREP

Purpose Either replaces a record if the record is in the keyed file or
adds a new record if the record is not in the file.

Format AMPS$SPUTREP
(file_identifier, working_storage_area, working _ ‘
storage_length, key_location, wait, status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMPSOPEN call for the file).
working_storage_area: “cell

Pointer to the new record.

working_storage_length: amt$working_storage_length
Length, in bytes, of the record to be written.

key_location: “cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must ’
specify this value on the call.

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$file_at_file_limit

Identifiers aae$file_at_user_record_limit
aae$file_full_no_puts_or_reps
aae$file_is_ruined
aae$key_found_lock_no_wait
aae$key_required
aae$nonembedded_key_not_given

Remarks o An AMP$PUTREP call requires that the file be opened
with at least append and shorten access. If the file has one
or more alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

o AMPSPUTREP writes or replaces a record in the nested '
file currently selected.

1-362 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$PUTREP

primary-key value of a record in the nested file,
AMP$PUTREP performs the same processing as an
AMP$REPLACE_KEY call.

Remarks e If the primary-key value specified on the call matches the
‘ (Contd)

If the primary-key value specified on the call does not

. match any primary-key value in the nested file,
AMPS$PUTREP performs the same processing as an
AMP$PUT_KEY call.

The only exception to the preceding statements is that,
even if the primary-key values match, an AMP$PUTREP
call does not require a lock on the specified primary-key
value (unlike an AMP$REPLACE_KEY call which
requires a lock if the file is shared).

e If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is written or
replaced. A Preserve_Content_and_ Access or Exclusive
Access lock prevents another task from writing or
replacing the record.

If another instance of open has a lock on the primary-key
value, AMP$PUTREP returns the nonfatal condition
. aae$key_found_lock_no_wait.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

Revision B Keyed-File Interface Calls 1-3-63 @

AMPS$REPLACE_KEY

AMPSREPLACE_KEY

Format AMPSREPLACE_KEY
(file_identifier, working_storage_area, working_ .
storage_length, key_location, wait, status);

Purpose Replaces an existing record in a keyed file with a new record
having the same primary-key value.

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

working_storage_area: “cell
Pointer to the new record.

working_storage_length: amt$working_storage_length
Length, in bytes, of the record to be written.

key_location: “cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must ‘
specify this value on the call.

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$duplicate_alternate_key

Identifiers aae$file_at_file_limit
aae$file_full_no_puts_or_reps
aae$file_is_ruined
aae$key_not_found
aae$key_required
aae$nonembedded_key_not_given
aae$not_enough_permission
aae$sparse_key_beyond_eor

Remarks o An AMP$REPLACE_KEY call requires that the file be
opened with at least append and shorten access. If the file
has one or more alternate keys, the file must be opened
with at least append, shorten, and modify access so that ‘
the alternate index can be updated.

I 1-364 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMPS$REPLACE_KEY

e If the file could be shared (more than one instance of open

could exist), a record can be replaced only by the owner of a
Preserve_Access_and_Content or Exclusive_ Access lock
on the primary-key value of the record. An invalid attempt
returns the nonfatal condition aae$key_ not_already _
locked.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

AMPS$REPLACE_KEY searches for the specified
primary-key value only in the nested file currently
selected. If it does not find it, it returns the nonfatal
condition aae$key_not_found.

The replace request fails if the file does not contain a
record whose primary-key value matches the primary-key
value of the replacement record. It returns the nonfatal
condition aae$key_not_found; file processing can
continue.

If the record type of the file is AMC$VARIABLE or
AMCSUNDEFINED, the new record can be shorter or
longer than the existing record; however, the length of the
new record must be within the minimum and maximum
record length values defined for the file.

For AMC$ANSI_FIXED type records, the value of
working _storage_length is ignored and the fixed record
length (the max_record_length attribute value) is used.

A warning message is issued for the first call on which the
working _storage_length value differs from the max_
record _length value. The warning is given because,
although excess data is truncated, insufficient data in the
working storage area is not padded. This could mean that
garbage has been written as the last part of the fixed-
length record.

Execution of an AMPSREPLACE_KEY call does not
change the file position or the currently selected key.

An AMPSREPLACE_KEY call updates the alternate
indexes for the new record if alternate keys are defined for
the file. Calls to put or replace records are effective even if
an alternate key is currently selected for reading and
positioning the file.

Keyed-File Interface Calls I1-365

AMP$SELECT_KEY

AMPSSELECT_KEY

Purpose Selects the key to be used by subsequent calls that read or .
position the file.

Format AMPS$SELECT_KEY
(file_identifier, key_name, status); .

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

key_name: amt$key_name

Name of the key to be used. It can be specified by an
amt$key_name variable or by a 31-character string on the
call. (The name must be left-justified with blank fill within
the string.)

Specify the name $PRIMARY _KEY to switch from an
alternate key back to the primary key.

status: VAR of ost$status
Status variable in which the completion status is returned.

Condition aae$altkey_name_not_found
Identifiers aae$cant_select_key
aae$cant_select_until_applied .

aae$no_select_on_pending _delete
aae$not_enough_permission

Remarks o The initial key selected when a file is opened is always the
primary key.

o The key selection remains in effect until another
AMPSSELECT_KEY call is issued or the file is closed.

o AMPS$SELECT_KEY cannot select an alternate key for
which a deletion request is pending (an AMP$DELETE _
KEY_DEFINITION call has specified the key). If a
deletion request is pending for the specified key,
AMPS$SELECT_KEY returns the condition aae$no_
select_on_pending _delete.

o When an AMP$SELECT_KEY call changes the selected
key, it positions the file at the record having the lowest key
value for the selected key (that is, it rewinds the file for
that key). However, if the AMP$SELECT_KEY call does ‘
not change the selected key (the key specified on the call is
already selected), it does not rewind the file (the file is left
in its current position).

I-366 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$SELECT_NESTED_FILE

AMPSSELECT_NESTED_FILE

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Selects a nested file for use.

AMP$SELECT _NESTED_FILE
(file_identifier, nested_file_name, status);

file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).

nested_file_name: amt$nested_file_name

Name given the nested file when it was created or SMAIN _
FILE, the name of the default nested file.

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

aae$no_select_during_keydef
aae$nested_file_not_found
aae$cant_select_nested_file
aae$not_enough_permission
aae$system_error_occurred

o AMPSSELECT_NESTED_FILE requires the same access
required to open the file.

o An Exclusive_Access file lock prevents other instances of
open from selecting the nested file. AMP$SELECT _
NESTED_FILE returns the nonfatal condition aae$cant_
select_nested file.

e The default nested file (SMAIN_FILE) is initially selected
when the file is opened.

o All requests specifying the file identifier apply to the
selected nested file until another AMP$SELECT _
NESTED_FILE call selects another nested file.

e The initial file position of each nested file is the open_
position of the file. The initially selected key is
$PRIMARY_KEY.

Keyed-File Interface Calls [-3-67 @

AMP$SELECT_NESTED_FILE

Remarks

(Contd)

e AMPS$SELECT_NESTED_FILE does not discard the file

position, selected key, or locks of previously selected nested
files. The instance of open keeps this information for all
nested files.

Thus, a task can sequentially access records on one nested
file, select another nested file, reselect the first nested file,
and continue the sequential access.

Similarly, when a task selects an alternate key and then
selects another nested file, the alternate key remains
selected for the first nested file.

AMPS$SELECT_NESTED_FILE cannot select another
nested file if one or more alternate key requests are
pending. Call AMP$SAPPLY_KEY_DEFINITIONS or
AMP$ABANDON_KEY_DEFINITIONS to dispose of the
pending requests.

To fetch the name of the currently selected nested file, call
AMPSFETCH_ACCESS_INFORMATION to fetch the
amc$selected_nested_file item. (AMP$FETCH_ACCESS_
INFORMATION is described in the CYBIL File
Management manual.)

For more information on nested files, see Nested Files in
chapter I-1.

® 1-368 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$START

AMPSSTART

Purpose Positions the file to the beginning of the first record in the file
having a key value that satisfies the specified key relation. A
record is not returned to the working storage area.

Format AMPS$START
(file_identifier, key_location, major_key_length, key_
relation, file_position, wait, status);

Parameters file_identifier: amt$file_identifier
File identifier identifying the instance of open (returned by an
AMP$OPEN call for the file).
key_location: “cell

Location of the key value to which the key value of each
record in the file is compared.

major_key_length: amt$major_key_length

Length of the major key in bytes. The major key is the
leftmost bytes of the key at key_location. The major key is
compared to the leftmost bytes of a key.

If the value is zero, a full-length key is used to position the
file. Otherwise, the number of bytes specified for the major_
key_length parameter must be less than or equal to the value
of the key_length attribute.

key_relation: amt$key_relation
Relationship between the key of the record and the key at
key_location. The possible values are as follows:
AMCSEQUAL_KEY
The key value of the record equals the key value at
key_location.
AMCSGREATER_OR_EQUAL_KEY
The key value of the record equals the key value at key
location or, if an equal key value does not exist, it is the
next greater key value.
AMCS$GREATER_KEY

The key value of the record is the first key value greater
than the key value at key_location.

Revision B Keyed-File Interface Calls I-3-69 I

AMPS$START

Parameters file_position: VAR amt$file_position
(Contd) File position at completion of the start operation. .

AMCSEND_OF_KEY_LIST

File is positioned to read the first record containing the
alternate-key value specified on the call (that is, at the end .
of the preceding key list, if one exists).

AMCSEOR

File is positioned to access the record containing the
primary-key value specified on the call (that is, at the end
of the preceding record, if one exists).

AMCS$EOI
File is positioned at the end-of-information.

wait: ost$wait
Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR ost$status
Status variable in which the completion status is returned.

Condition aae$file_at_file_limit
Identifiers aae$file_is_ruined ‘
aae$key_not_found
aae$major_key_too_long
aae$no_da_or_sk_start
aae$nonembedded_key_not_given
aae$not_enough_permission

Remarks o An AMPS$START call requires that the file be opened for at
least read access.

o AMPS$START searches for the specified key value in the
nested file currently selected.

e The current file position does not affect AMP$START
processing.

e For direct-access files, an AMP$START call is valid only if
an alternate key is currently selected. If the primary key is
selected, an AMP$START call for a direct-access file
returns the nonfatal condition aae$no_da_or_sk_start. ‘

I-3-70 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$START

o The AMP$START call does not specify a working storage

area, so the key value cannot be specified in the working
storage area as it can on other calls. Instead, the key _
location parameter must point to the location of the key
value.

If an alternate key has been selected and the key is a
concatenated key, the values for the key fields must be
assembled at key_location. The key fields must be
concatenated in order as defined for the key.

For example, if the key is the last three bytes of the record
followed by the first three bytes of the record, the value at
key_location must be the last three bytes followed by the
first three bytes. For more information on concatenated
keys, see the description in chapter I-1.

If no key value in the file satisfies the specified key _
relation with the specified key value, AMP$START returns
the nonfatal condition aae$key_not_found. The file is left
positioned either at the beginning of the first record whose
key value is greater than the specified key value or, if the
specified key value is greater than all key values in the file,
at the end-of-information.

A lock on a primary-key value does not prevent
AMPSSTART from positioning the file using that key
value.

Like other file request calls, an AMP$START call clears
any lock requested with automatic unlock.

Keyed-File Interface Calls I-3-71

AMP$UNLOCK_FILE

AMPSUNLOCK_FILE

Purpose Clears a file lock. .
Format AMP$UNLOCK _FILE
(file_identifier, status); ‘

Parameters file_identifier: amt$file identifier
File identifier identifying the instance of open (returned by an
AMPS$OPEN call for the file).
status: VAR of ost$status
Status variable in which the procedure returns its completion
status.

Remarks o An AMP$UNLOCK_FILE call clears the file lock for the
currently selected nested file only.

To clear all file locks and all key locks belonging to the
instance of open, call AMP$UNLOCK_KEY and specify
TRUE for the unlock _all_keys parameter.

e When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the

file. .
[]

For more information, see Keyed-File Sharing in
chapter I-2.

@ 1-3-72 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$UNLOCK_KEY

AMPSUNLOCK_KEY

’ Purpose Clears locks.

Format AMP$UNLOCK_KEY
(file_identifier, unlock _all_keys, key_location, status);

‘ Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMPSOPEN call for the file).

unlock_all_keys: boolean

Indicates whether the call clears all locks or only a single key
lock.

TRUE Clears all locks for the instance of open.

FALSE Clears only the key lock for the value at
key_location.

key_location: “cell

Pointer to the primary-key value to be unlocked. The value is
ignored if unlock_all_keys is true.

status: VAR of ost$status

‘ Status variable in which the procedure returns its completion
status.

Condition aae$bad_resolve_time limit

Identifiers aae$key_already_locked
aae$key_deadlock
aae$key_expired_lock_exists
aae$key_found_lock_no_wait
aae$key_self_deadlock
aae$key_timeout
aae$lock_file_crowded
aae$no_auto_unlock_pc
aae$primary_key_locked
aae$too_many_keylocks

Revision B Keyed-File Interface Calls 1-3-73 @

AMP$UNLOCK_KEY

Remarks e AMP$UNLOCK_KEY performs one of two operations
depending on the value of the unlock_all_keys parameter: .

- Clears all locks belonging to the instance of open. This
includes all file locks and all key locks for all nested
files.

- Clears only the key lock for the primary-key value ‘
specified at key_location. The key lock must apply to
the currently selected nested file.

o AMPSUNLOCK_KEY cannot clear an individual
nested-file lock. To do so, call AMP$UNLOCK _FILE.

e [f the call is to unlock all locks, but no locks exists for the
instance of open, the call does nothing and returns normal
status. However, if the call is to clear a single key lock and
the lock does not exist, the call returns the nonfatal
condition aae$key_not_previously_locked.

® When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the
file. (A lock can expire only if the lock_expiration_time
attribute for the file is not zero.)

The task is not notified as to which lock has expired. The
most direct response to a lock expiration condition is to call ‘
AMP$UNLOCK _KEY to clear all locks.

® 1-3-74 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

P Keved-File Attributes I-4

Keyed-File Attribute and Access Item Descriptions.................... 1-4-5
ACCESS MODE.\ttt I-45
‘ AVERAGE_RECORD LENGTHoovovieeoeen, 1-48
COLLATE_TABLEot 1-4-9
COLLATE _TABLE _NAME00t 1-4-10
DATA_PADDING e I-4-11
DUPLICATE _VALUE INSERTEDoiiiieieieaaannn, 1-4-12
EMBEDDED _KEY ...ttt 1-4-12
EOI_BYTE_ADDRESSttt e 1-4-13
ERROR_COUNT ...ttt e e e 1-4-13
ERROR _EXIT NAMEottt e 1-4-14
ERROR_EXIT PROCEDURE.......otumuuaaaeaaennnn, I-4-15
ERROR LIMITttt I-4-15
ERROR_STATUS. .. e ettt 1-4-16
ESTIMATED _RECORD _COUNT ..., 1-4-16
FILE LENGTH ...ttt e 1-4-16
FILE _LIMITot e e 1-4-17
FILE_ORGANIZATIONottt e e 1-4-17
FILE_POSITIONttt e e 1-4-18
FORCED _WRITEt e 1-4-19
‘ GLOBAL_ACCESS _MODEottt 1-4-20
GLOBAL_FILE NAMEovotit e e 1-4-20
GLOBAL_SHARE MODEouuuie e, 1-4-21
HASHING _PROCEDURE NAMEo, 1-4-21
INDEX LEVELS ..ottt ettt e 1-4-22
INDEX_PADDING ...t e 1-4-22
INITIAL_HOME _BLOCK COUNTuuuriieesieeeaannn, 1-4-23
KEY LENGTHt e 1-4-23
KEY _POSITION.. . . .ot 1-4-23
KEY TYPE. ..t 1-4-24
LAST ACCESS_OPERATIONot e, 1-4-25
LAST_OP_STATUSottt e, 1-4-27
LEVELS_OF INDEXING ...\ttt e e 1-427
LOCK_EXPIRATION TIME.o\oouia e, 1-427
MAX_BLOCK_LENGTHoomuiee i, 1-4-28
MAX _RECORD LENGTHouumieeie i, 1-4-28
MESSAGE_CONTROLttt e 1-4-29
MIN _RECORD _LENGTHuouueei e, 1-4-30
NULL _ATTRIBUTEt 1-4-30
‘ NULL_ITEM ...t e, 1-4-30
NUMBER_OF _NESTED _FILESoovviieeieeaaiaaaaaaaainnn, 1-431
OPEN _POSITIONttt e e 1-4-31
PERMANENT FILEottt e 1-4-32

‘ PRIMARY KEY ..ottt et e e et 1-4-32

RECORD_LIMITo i i 1-4-32

RECORD _TYPE e 1-4-33
RECORDS_PER_BLOCKttt 1-4-33
RESIDUAL_SKIP_COUNT ..ottt I-4-34
RETURN_OPTION ...t I-4-34
RING_ATTRIBUTESt 1-4-35
SELECTED_KEY_NAME ...ttt 1-4-35

SELECTED _NESTED_FILE ...ttt I-4-36

Keved-File Attributes I-4

Like all other NOS/VE files, a keyed file has a set of file attributes. The
CYBIL procedure calls to specify and fetch attribute values are described in
detail in the CYBIL File Management manual. This chapter describes the
file attributes applicable to keyed files.

Besides file attribute values, a CYBIL program can also fetch file access
information items that pertain only to a specific instance of open. (It fetches
file access information using the AMP$SFETCH _ACCESS_INFORMATION
call described in the CYBIL File Management manual.)

This chapter describes the file access information items applicable to keyed
files. If you request an item for a keyed file that does not apply to keyed files
(and thus, is not described in this chapter), AMP$FETCH _ACCESS _
INFORMATION does not return a value for the item. To indicate this, it sets
the boolean ITEM_RETURNED field in the item record to FALSE.

Table I-4-1 lists the keyed-file attributes and access information items and
the calls that can specify or fetch the values.

Revision B Keyed-File Attributes I-4-1

Attributes and Access Information Items

Table I-4-1. Keyed-File Attributes and Access Information Items

FETCH = AMP$SFETCH

FETCH_INFO = AMPSFETCH_ACCESS_INFORMATION

FILE = AMPS$SFILE

GET = AMP$GET_FILE_ATTRIBUTES ‘
OPEN = AMP$OPEN

STORE = AMP$STORE

Attribute FETCH_

or Item FETCH INFO FILE GET OPEN STORE
Access_Mode X X X X
Average_Record _

Length X X X X

Collate _Table X

Collate_Table_

Name X X X X
Data_Padding X X X X
Duplicate_Value_

Inserted X

Embedded _Key X X X X
EOI_Byte_Address X .
Error_Count X

Error_Exit_Name X X X X
Error_Exit_

Procedure X X
Error_Limit X X X X X
Error_Status X

Estimated _

Record _Count X X X X
File_Length X

File_Limit X X X X
File_Organization X X X X
File_Position X

Forced _Write X X X X

Global _Access_

Mode X X .
Global _File_

Name X X

(Continued)

I-42 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Attributes and Access Information Items

Table I-4-1. Keyed-File Attributes and Access Information Items
(Continued)

FETCH = AMP$FETCH

FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION
FILE = AMPS$SFILE

GET = AMP$SGET _FILE_ATTRIBUTES

OPEN = AMPSOPEN

STORE = AMP$STORE

Attribute FETCH_
or Item FETCH INFO FILE GET OPEN STORE

Global_Share _
Mode X X

Hashing _
Procedure_Name X X X X

Index_Levels X X X X

Index_Padding

e
<
e
>

Initial_Home_
Block_Count

Key_Length

Key _Position

T B -
T - B
LT N -
T - -

Key_Type

Last_Access_
Operation X

Last_Op_Status X

Levels_Of _
Indexing X

Lock_Expiration _
Time X X X X

Max_Block _
Length X X X X

Max_Record _
Length X X X X

Message_ Control X X X X X

(Continued)

Revision B Keyed-File Attributes 1-4-3

Attributes and Access Information Items

Table I-4-1. Keyed-File Attributes and Access Information Items

(Continued) ‘

FETCH = AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION

FILE = AMPS$FILE .
GET = AMP$GET_FILE_ATTRIBUTES

OPEN = AMP$OPEN

STORE = AMP$STORE

Attribute FETCH _
or Item FETCH INFO FILE GET OPEN STORE

Min_Record _
Length

Null _ Attribute X X X X X
Null TItem X

Number_Of _
Nested _Files X

Open_ Position
Permanent_File X X

Primary_Key X

Record _Limit X X X X .
Record _Type X X X X

Records_Per_
Block X X X X

Residual _
Skip_Count X

Return _Option
Ring_ Attributes X X X X

Selected _
Key_Name X

Selected _
Nested _File X

<
e
>
b

<
>
<
e

>
>
<

I-4-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ACCESS_MODE

Keved-File Attribute and Access Item
. Descriptions

Each of the following attribute descriptions provides the following

' information:
[]

Name. (The name given is the name of the value field in the record
specifying or fetching the value; the attribute or item identifier is the
name with the prefix AMC$. For example, the identifier for ACCESS _
MODE is AMC$ACCESS_MODE.)

o Meaning of the attribute or item for keyed-file use.
e Valid values.
® Default value for preserved and temporary attributes.

e The calls that can specify or fetch the attribute or access information
item.

The descriptions follow in alphabetical order.

ACCESS_MODE

’ Meaning Set of access modes allowed during the instance of open
(temporary attribute).

The access mode set limits the valid file operations during the
instance of open. (The access modes required for each
keyed-file interface call are listed in table I-4-2.)

Value Set of access mode identifiers (specified using the set identifier

PFTUSAGE_SELECTIONS|).
PFC$READ Read access.
PFC$SHORTEN Shorten access.
PFC$APPEND Append access.
PFC$MODIFY Modify access.
PFC$EXECUTE Execute access.

The set can contain only access modes included in the global _

. access_mode set (see the global_access_mode attribute
description).

Revision B Keyed-File Attributes 1-4-5

ACCESS_MODE

Default The set of access modes defined by the global _access_mode

Value attribute excluding PFCSEXECUTE. .
The attribute cannot be changed during the instance of open.

Calls AMPS$FETCH, AMPS$FILE, AMP$SGET _FILE _
ATTRIBUTES, AMP$OPEN. .

Table I-4-2. Required Access Modes for Calls

Call Access Modes Required

AMP$ABANDON _KEY_DEFINITIONS Append, shorten, and modify

AMPS$APPLY_KEY_DEFINITIONS Append, shorten, and modify
AMPS$CREATE_KEY_DEFINITION Append, shorten, and modify
AMP$CREATE _NESTED_FILE Append, shorten, and modify
AMPS$DELETE_KEY Shorten
AMPSDELETE_KEY_DEFINITION Append, shorten, and modify
AMPS$DELETE NESTED_ FILE Append, shorten, and modify
AMP$GET_KEY Read (modify required to ‘
record statistics)
AMPS$GET _KEY_DEFINITIONS Any access mode
AMPS$GET_LOCK_KEYED_RECORD Read (modify required to

record statistics; shorten or
append required for an
Exclusive Access lock)

AMPS$GET LOCK_NEXT KEYED _ Read (modify required to

RECORD record statistics; shorten or
append required for an
Exclusive_Access lock)

AMPS$GET_NESTED_FILE _ Any access mode
DEFINITIONS
AMPS$GET_NEXT_KEY Read (modify required to

record statistics)

AMP$GET_NEXT_PRIMARY_KEY_LIST Read

(Continued) ‘

I-46 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ACCESS_MODE

Table I-4-2. Required Access Modes for Calls (Continued)

Call

Access Modes Required

AMPS$GET _PRIMARY_KEY_COUNT
AMP$GET_SPACE_USED_FOR_KEY

AMPSLOCK _FILE

AMPSLOCK_KEY

AMP$PUT_KEY

AMP$PUTREP

AMP$REPLACE_KEY
AMP$SELECT _NESTED_FILE

AMPS$SELECT _KEY
AMP$START
AMP$UNLOCK _FILE
AMP$UNLOCK_KEY

Read
Read

Any access mode (shorten or
append required for an
Exclusive_Access lock)

Any access mode (shorten or
append required for an
Exclusive Access lock)

Append (read, shorten, or

modify also required if the
file is not positioned at its
EOI)

Append and shorten
Append and shorten
Any access mode
Any access mode
Read

Any access mode

Any access mode

Revision R

Keved-File Attribute 1-4-7

AVERAGE_RECORD_LENGTH

AVERAGE_RECORD_LENGTH

Meaning Estimate of the average record length in bytes (preserved
attribute). If specified, the system uses the attribute value to
calculate the block size used; it uses the attribute value only
when opening a new file.

For ANSI fixed-length (F) records, the average_record_
length value should be the same as the max_record_length
value.

For variable (V) and undefined (U) records, the average _
record_ length value depends on whether the majority of the
records are the same length.

e If almost all records are a specific length, set the attribute
value to that length.

e If the record lengths are well distributed within a range of
lengths, set the attribute value to the median record length
(half of the records are longer, half are shorter).

Value Integer from 1 through AMC$MAXIMUM _RECORD (type
AMT$AVERAGE_RECORD_LENGTH).

Default None. If no value is set for the attribute, the system

Value uses the arithmetic mean of the max_record_length and
min_record_length values to calculate block size. Although
the system uses that value, it does not store the value as the
average_record_length value.

Calls AMP$FETCH, AMPS$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$SOPEN.

1-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

‘ Meaning

COLLATE TABLE

COLLATE_TABLE

Value

Calls

Revision B

Collation table (returned attribute). This attribute is used to
fetch the collation table stored with a file.

NOTE

To fetch the collation table, you specify a pointer in the
COLLATE_TABLE field of the attribute record for an
AMPS$FETCH call. AMP$FETCH copies the collation table to
the variable to which the pointer points. If you do not specify
a pointer, the system attempts to use an undefined pointer
and returns an error.

Pointer of type "TAMT$COLLATE_TABLE. Type
AMTS$COLLATE_TABLE has the following declaration:

ARRAY [CHAR] OF AMT$COLLATION_VALUE

Type AMT$COLLATION _VALUE is the integer subrange 0
through 255.

To determine the collating weight the table assigns to a
particular character code, you use the character as the index
into the table; the value at that position is the collating weight
of that character.

For example, assume an AMP$FETCH call has fetched the
collation table of a file and stored it in a variable named
COLLATION_TABLE. The following statement assigns the
collating weight of A to integer variable A_ WEIGHT:

A_WEIGHT := COLLATION_TABLEL'A'];

Assume the statement assigns the value 0 to A_ WEIGHT.
This means that the collation table assigns the collating
weight 0 to character A.

AMPSFETCH.

Keved-File Attributes 1-4-9

COLLATE_TABLE_NAME

COLLATE_TABLE_NAME

Meaning Collation table name (preserved attribute). This attribute is .
used to specify a collation table for a file.

The attribute value is used only when the file is first opened.

When the file is opened, the named collation table is stored ‘
with the file. The collation table for a file cannot be changed

after a new file has been first opened.

Value 31-character program name (PMT$PROGRAM _NAME).

NOTE

All letters in the name must be specified as uppercase letters.

The name can be that of a system-defined collation table or a
user-defined collation table. Collation table definition is
described in appendix D, Collation Tables.

The names of the system-defined collation tables follow. The
collating sequence for each table is listed in appendix D.

OSV$ASCII6_FOLDED ‘
CYBER 170 FORTRAN 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$ASCII6 _STRICT
CYBER 170 FORTRAN 5 default collating sequence.

OSV$COBOL6_FOLDED
CYBER 170 COBOL 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$COBOL6_STRICT
CYBER 170 COBOL 5 default collating sequence.

OSVS$DISPLAY63_FOLDED
CYBER 170 63-character display code collating
sequence; lowercase letters mapped to uppercase letters.

OSV$DISPLAY63_STRICT
CYBER 170 63-character display code collating
sequence. ‘

OSV$DISPLAY64_FOLDED
CYBER 170 64-character display code collating
sequence; lowercase letters mapped to uppercase letters. ‘

I 1-4-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Default
Value

Calls

OSV$DISPLAY64_STRICT

COLLATE _TABLE_NAME

CYBER 170 64-character display code collating

sequence.

OSVS$EBCDIC

Full EBCDIC collation sequence.

OSVSEBCDIC6_FOLDED

EBCDIC 6-bit subset supported by CYBER 170 COBOL
5 and SORT 5; lowercase letters mapped to uppercase

letters.
OSVS$EBCDIC6_STRICT

EBCDIC 6-bit subset supported by CYBER 170 COBOL

5 and SORT 5.

None. You must specify a value for the collate_table_name
attribute if you specify AMCSINDEXED_SEQUENTIAL or
AMCS$DIRECT _ACCESS as the file_organization attribute
value and AMC$COLLATED_KEY as the key_type attribute

value.

If a collation table is stored with an indexed-sequential file, it
becomes the default collation table for any collated alternate

keys defined for the file.

AMPS$FETCH, AMP$SFILE, AMP$GET _FILE _

ATTRIBUTES, AMP$OPEN.

DATA_PADDING

Percentage of space the system is to leave empty in each data
block created during the first instance of open of an indexed-
sequential file (preserved attribute). The empty space allows

Meaning

Value

Default
Value

Calls

Revision B

for easy file expansion by later file processing operations.

The attribute value is used only during the first instance of

open of an indexed-sequential file.

0 through 99 (type AMT$DATA _PADDING).

0 (no padding).

AMP$FETCH, AMPSFILE, AMP$GET_FILE_

ATTRIBUTES, AMP$SOPEN.

Keyed-File Attributes

I-411

DUPLICATE_VALUE_INSERTED

DUPLICATE_VALUE_INSERTED

Meaning Indicates whether the last AMPPUT, AMPPUTREP, .
AMPSREPLACE, or AMP$APPLY_KEY_DEFINIIONS call
detected a duplicate alternate-key value (access information

The duplicate_value_inserted item does not identify the
duplication. An AMPPUT, AMPPUTREP, or
AMPS$REPLACE call can detect a duplicate value for any
alternate key in the file that allows duplicates. An
AMPS$APPLY_KEY_DEFINITIONS call can detect a
duplicate value for any record in the file.

Value Boolean value.
TRUE The last call detected a duplicate
alternate-key value.
FALSE The last call did not detect a duplicate
alternate-key value.
Calls AMP$FETCH_ACCESS_INFORMATION.
EMBEDDED_KEY .
Meaning Indicates whether the primary key is part of the record data
(preserved attribute).
Value Boolean value.
TRUE The primary key is part of the record data.
FALSE The primary key is separate from the record
data.
Default TRUE.
Value
Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

I-4-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

EOI_BYTE_ADDRESS

EOI_BYTE_ADDRESS

Meaning Current length of the file in bytes (access information item).

Value Integer from 0 through AMC$FILE _BYTE _LIMIT (type
AMTS$FILE_BYTE_ADDRESS).

Calls AMP$FETCH_ACCESS_INFORMATION.

ERROR_COUNT

Meaning Number of nonfatal (trivial) errors returned by keyed-file
access requests (access information item).

Value Integer from 0 through AMC$MAX_ERROR_COUNT (type
AMT$ERROR_COUNT).

Calls AMP$FETCH_ACCESS_INFORMATION.

Revision B Keyed-File Attributes 1-4-13

ERROR_EXIT_NAME

ERROR_EXIT_NAME

Meaning Name of an error processing procedure (temporary attribute). .

The name must be that of a procedure with the XDCL
attribute within the program library list of the job or defined

within the task. .

For the attribute to be effective, you must specify the error_
exit_name value before the file is opened or on the
AMPS$OPEN call. The error processing procedure is loaded
when the file is opened. To change the procedure while the file
is open, you must use the error_exit_procedure attribute.

Value 1- through 31-character procedure name (type
PMT$PROGRAM_ NAME). (All letters in the name must be
uppercase because PMP$LOAD does not convert lowercase
letters to uppercase.)

The named procedure must be of type AMT$SERROR _EXIT _
PROCEDURE; that is, it must have the following parameter
list:

(file_identifier: AMTS$FILE_IDENTIFIER;
VAR status: OST$STATUS)

Default None. If no error-exit name is specified, the system does ‘
Value not search for an error-processing procedure.

For more information, see the error-exit procedure discussion
in the CYBIL File Management Manual.

Calls AMP$FETCH, AMPS$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

I-4-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Rt EXTT PROCELURFE

ERROR_EXIT_PROCEDURE

. Meaning Pointer to the current error processing procedure (temporary
attribute).

You use this attribute to change the effective error processing
‘ procedure while the file is open. To clear the effective error
processing procedure, specify a NIL pointer for the attribute.

Value Pointer variable of this type:

“procedure(file_identifier: amt$file_identifier;
VAR status: ost$status)

Default None. The system continues to use the error processing
Value procedure specified by the error _exit_name attribute when
the file was opened, if one was specified.

For more information, see the error-exit procedure discussion
in the CYBIL File Management Manual.

Calls AMPS$FETCH, AMP$STORE.
ERROR_LIMIT
‘ Meaning Maximum number of nonfatal (trivial) errors that can occur
before the nonfatal errors cause a fatal error (temporary
attribute).

A nonfatal error is an error that prevents successful
completion of the current request, but does not prevent
processing of subsequent requests. Its error severity level is

ERROR.

Value Integer from 0 through OFFFF(16) (type AMT$ERROR _
LIMIT). 0 means no error limit.

Default 0 (no error limit).

Value

Calls AMPS$FETCH, AMPS$FILE, AMP$GET _FILE _

ATTRIBUTES, AMP$OPEN, AMP$STORE.

Revision B Keyed-File Attributes I-4-15

ERROR_STATUS

ERROR_STATUS
Meaning Completion status returned by the last file interface request ‘
for the file (access information item).
Value Integer (type OST$STATUS _CONDITION).
l Calls AMPS$FETCH_ACCESS_INFORMATION. .

ESTIMATED_RECORD_COUNT

Meaning Estimated number of records to be stored in the file (preserved
attribute).

The system uses the attribute value to calculate the block size;
it only uses the value when it first opens a new file.

Value Integer (type AMT$ESTIMATED_RECORD_COUNT).
Default If a value is defined for the record_limit attribute, the record _
Value limit value is the default estimated _record _count. If the
record_limit attribute is undefined, the default value is
100,000.
Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _
ATTRIBUTES, AMP$OPEN. '

FILE_LENGTH

Meaning Length of a mass storage file in bytes (returned attribute).

Value Integer from 0 through AMC$FILE_BYTE_LIMIT,
4398046511103 (2%2-1) (type AMT$FILE_LENGTH).

l Calls AMPS$GET_FILE_ATTRIBUTES.

I-4-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision F

FILE _1IMIT

FILE_LIMIT
‘ Meaning Maximum file length in bytes (preserved attribute).
Value Integer from 0 through AMC$FILE_BYTE _LIMIT,

4398046511103 (2%2-1) (type AMT$FILE _LIMIT).

NOTE

If the length of a keyed file reaches its file_limit value, the file
is ruined (its structure loses its integrity). No file operations
can be performed on a ruined file.

Default 4398046511103 (242-1).
Value
Calls AMPS$FETCH, AMP$FILE, AMP$GET FILE _

ATTRIBUTES, AMP$SOPEN.

FILE_ORGANIZATION
’ Meaning File organization (preserved attribute).
Value One of the following keyed file organization identifiers (type

AMTS$FILE_ORGANIZATION):
AMCSINDEXED_SEQUENTIAL Indexed-sequential

organization.
AMCS$DIRECT_ACCESS Direct-access
organization.
Default You must specify this attribute value when creating a keyed
Value file because the default file organization is
AMCS$SEQUENTIAL.
Calls AMPS$FETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

Revision B Keyed-File Attributes 1-4-17

FILE_POSITION

FILE_POSITION

Meaning Current file position (access information item). ‘
Value One of these identifiers that apply to keyed files (type
AMTS$FILE _POSITION):

AMC$BOI Beginning-of-information. ‘

AMCSEND_OF_ End of the list of primary

KEY_LIST keys associated with the same

alternate-key value.
AMCS$EOR End of record. (While an alternate

key is selected, AMC$EOR indicates
that the next record is associated
with the same alternate-key value as
the current record.)

AMCS$EOI End of information.
l Calls AMPS$FETCH_ACCESS_INFORMATION.

1-4-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

FORCED_WRITE

FORCED_WRITE

Meaning

Value

Default
Value

Calls

Revision B

Indicates whether the system copies modified blocks to mass
storage immediately after modification or allows modified
blocks to remain in memory until the next flush or close
request (preserved attribute).

One of the following identifiers (type AMT$FORCED _
WRITE):

AMCS$FORCED The system writes each modified
block to mass storage immediately
after the block is modified.

AMCS$FORCED_ The system writes modified

IF_STRUCTURE _ blocks to mass storage

CHANGE immediately after any structure

change to the file that affects more
than one block.

AMCSUNFORCED The system determines when to
write modified blocks to mass
storage. Modified blocks can
remain in memory without a
backup copy on mass storage.

AMC$FORCED_IF_STRUCTURE_CHANGE.

An AMP$FLUSH call copies the part of the file in memory to
disk. AMP$FLUSH copies internal tables as well as data and
index blocks. (A FORCED_WRITE copy does not copy
internal tables.)

AMPS$FETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

Keyed-File Attributes 1-4-19

GLOBAL_ACCESS_MODE

GLOBAL_ACCESS_MODE

Meaning Indicates the set of valid access modes for the file (returned .
attribute). (The access modes required for each keyed-file
interface call are listed in table 1-4-2.)

Value Set of any (including none) of the following constant .
identifiers (referenced using the set identifier SPFT$USAGE _
SELECTIONS|[]):

PFC$READ Read access.

PFC$SHORTEN Shorten access.
PFC$APPEND Append access.
PFC$MODIFY Modify access.
PFC$EXECUTE Execute access.

Default For an existing permanent file, the set of access modes is

Value determined when the file is attached. For a temporary file or a
new permanent file, the set includes all usage modes (read,
modify, append, shorten, and execute).

Calls AMPSFETCH, AMP$GET _FILE_ATTRIBUTES. ‘

GLOBAL_FILE_NAME

Meaning File name uniquely identifying the file (returned attribute).
The system generates the name for the file when it creates the
file. The global file name allows a program to determine
whether files having different local file names are actually the

same file.
Value Packed record (type OST$BINARY _UNIQUE_NAME).
Calls AMPS$SFETCH, AMP$GET_FILE_ATTRIBUTES.

1-420 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

GLOBAL_SHARE_MODE

GLOBAL_SHARE_MODE

Meaning Indicates the valid share modes for the file (returned
attribute). For a permanent file, the share modes are specified
when the file is attached. Temporary files cannot be shared.
For more information, see Keyed-File Sharing in chapter I-2.

Value Set of any (or none) of the following constant identifiers. The
attribute value is referenced using the set identifier
PFTSHARE_SELECTIONS[].

PFC$READ Read access.
PFC$SHORTEN Shorten access.
PFC$APPEND Append access.
PFC$MODIFY Modify access.
PFC$EXECUTE Execute access.

Calls AMPS$FETCH, AMP$GET _FILE_ATTRIBUTES.

HASHING_PROCEDURE_NAME

Meaning Identification of the hashing procedure to be executed with
the direct-access file (preserved attribute). (To read about
hashing procedures, see chapter I-1.)

Value Pointer to a record identifying the hashing procedure to be
executed with this file ("amt$hashing_ procedure_name). The
record has these fields:

NAME Entry point name of the hashing
procedure (pmt$program_name).
All letters in the name must be
specified as uppercase.

OBJECT_LIBRARY File path to the object library
containing the hashing procedure
(amt$path_name, 256-character
string). This feature is currently
unimplemented; specify
OSC$NULL_NAME as the field
value.

Revision B Keyed-File Attributes 1-421 @

INDEX_LEVELS

Default The default hashing procedure provided by the system,
Value AMP$SYSTEM_HASHING_PROCEDURE. '
Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

INDEX_LEVELS

Meaning Target number of index levels (preserved attribute). The
system uses the attribute value to calculate block size. The
index_levels value is used only when an indexed-sequential

file is created.
Value 1 through 15 (type AMT$INDEX _LEVELS).
Default 2.
Value
Calls AMPS$FETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

INDEX_PADDING

Meaning Percentage of space the system is to leave empty in each ‘
index block it creates during the first open of an
indexed-sequential file (preserved attribute).

Value 0 through 99 (type AMT$INDEX _PADDING).

Default 0 (no padding).

Value

Calls AMPS$FETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

I1-422 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

INITIAL_HOME_BLOCK_COUNT

INITIAL_HOME_BLOCK_COUNT

Meaning Number of home blocks in the direct-access file (preserved
attribute). (To read about direct-access file structure, see
chapter I-1.)

Value Integer from 1 through amc$max_home_block_count 2*-1)
(type amt$initial_home_block_count).

Default None. You must specify a value for this attribute when

Value defining a new direct-access file.

Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

KEY_LENGTH
Meaning Primary-key length in bytes (preserved attribute).

Value Integer (type AMT$KEY _LENGTH). (For files with
embedded keys, the value cannot be greater than the
minimum_ record_length value.)

Default No default value. When opening a new keyed file,

Value AMP$OPEN returns a fatal error if the attribute value is not
defined.

Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

KEY_POSITION

Meaning Byte position in the record where the primary key begins
(preserved attribute). This attribute is ignored for files with
nonembedded keys.

The bytes in a record are numbered from the left, beginning
with 0.

Value 0 through MAX_RECORD_LENGTH (type AMT$KEY _
POSITION). The primary key must be within the record; thus,
the sum of the key_position and key_length values cannot be
greater than the max_record_length value.

Default 0 (beginning of the record).
Value
Calls AMPS$FETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

Revision B Keyed-File Attributes I-4-23

KEY_TYPE

KEY_TYPE

Meaning Primary-key type (preserved attribute). .

For direct-access files, the value specified for the key _type
attribute is ignored. The primary-key type for a direct-access
file is always uncollated. .

Value One of the following identifiers (type AMT$KEY _TYPE):

AMC$UNCOLLATED_KEY
Order key values byte-by-byte according to the ASCII
character set sequence (listed in appendix B). Key
values can be positive integers or ASCII strings (1
through 255 bytes).

AMCSINTEGER_KEY
Order key values numerically. Key values are positive or
negative integers (1 through 8 bytes).

AMC$COLLATED_KEY
Order key values according to a user-specified collation
table (see the COLLATE_TABLE_NAME description
in this table). Key values can be positive integers or
ASCII strings (1 through 255 bytes).

Default AMC$UNCOLLATED_KEY. .
Value
Calls AMPSFETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$SOPEN.

I-4-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

LAST_ACCESS_OPERATION

LAST_ACCESS_OPERATION

‘ Meaning Indicates the last access request for this instance of open
(access information item). (The code is set after the call checks
that the file is open, but before it actually performs the

operation.)

. Value Value of type AMTSLAST _ ACCESS_OPERATION. The
following lists the file interface calls used with keyed files and
the corresponding constant identifier declarations:

AMP$ABANDON_KEY_ amc$abandon_key_

DEFINITIONS definitions
AMPS$APPLY _KEY_ amc$apply _key_
DEFINITIONS definitions
AMP$CLOSE amc$close_req
AMPS$CREATE_KEY _ amc$create_key_
DEFINITION definition
AMPS$CREATE_NESTED_ amc$create_nested _
FILE file
AMPSDELETE_KEY amc$delete_key_req
. AMPS$DELETE_KEY _ amc$delete_key_
DEFINITION definition
AMPSDELETE_NESTED_ amc$delete_nested _
FILE file
AMPS$FETCH amc$fetch_req
AMPS$FLUSH amc$flush _req
AMP$GET_KEY amc$get_key_req
AMP$GET_LOCK _ amc$get_lock _
KEYED_RECORD keyed _record
AMPS$GET_LOCK _ amc$get_lock_next_keyed
NEXT_KEYED_RECORD record
AMPS$GET_NESTED _ amc$get_nested_file_
. FILE_DEFINITIONS definitions
AMPS$GET_NEXT amc$get_next_req

AMPS$GET_NEXT_KEY amc$get_next_key_req

Revision B Keyed-File Attributes 1-4-25

LAST_ACCESS_OPERATION

Value
(Contd)

Calls

I-4-26

AMPS$GET _NEXT _
PRIMARY_KEY_LIST

AMP$GET_PRIMARY _
KEY_COUNT

AMPS$GET_SPACE _
USED_FOR_KEY

AMP$LOCK_FILE
AMPSLOCK_KEY
AMP$OPEN
AMP$PUT_KEY
AMP$PUT_NEXT
AMPS$PUTREP
AMP$REPLACE_KEY
AMP$SELECT_KEY

AMP$SELECT_NESTED _
FILE

AMPS$SKIP
AMP$START
AMP$STORE
AMPSUNLOCK_FILE
AMP$UNLOCK_KEY

CYBIL Keyed-File and Sort/Merge Interfaces

amc$get_next_primary_
key_list

amc$get_primary _
key_count

amc$get_space_
used_for_key

amc$lock _file
amc$lock _key
amc$open_req
amc$put_key_req
amc$put_next_req
amc$putrep_req
amc$replace_key_req
amc$select_key

amc$select_nested _
file

amc$skip_req
amc$start_req
amc$store_req
amc$unlock _file

amc$unlock _key

AMP$FETCH_ACCESS_INFORMATION.

Revision B

LAST_OP_STATUS

LAST_OP_STATUS

‘ Meaning Indicates whether the last access request is active or complete
(access information item).

Value One of these identifiers (type AMT$LAST OP_STATUS):
‘ AMCS$ACTIVE Access request is active.
AMC$COMPLETE Access request is complete.
Calls AMPSFETCH_ACCESS_INFORMATION.

LEVELS_OF_INDEXING

Meaning Number of index levels currently existing in the
indexed-sequential file (access information item).

Value Integer from 0 through AMC$MAX_INDEX_LEVEL (type
AMTS$INDEX _LEVELS).

Calls AMPS$FETCH_ACCESS_INFORMATION.

. LOCK_EXPIRATION_TIME

Meaning Number of milliseconds between the time a lock is granted
and the time that it could expire (preserved attribute).

Value Integer from 0 through 604,800,000 [1 week] (type
amt$lock _expiration_time).

Default 0 (locks do not expire).

Value

Calls AMPS$FETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

Revision B Keyed-File Attributes 1-4-27

MAX_BLOCK_LENGTH

MAX_BLOCK_LENGTH

Meaning Length in bytes of each keyed-file block (preserved attribute). .

If specified, this value is used only when the keyed file is
opened for the first time. l

Value Integer from 1 through 16777215 (22-1). If the value is less
than the maximum record length, the system increases it to
that value. Then, if needed, it changes the value as follows:

e If the value is less than 2048, it is increased to 2048 (the
minimum allocation unit).

e If the value is between 2048 and 65536, but it is not a power
of 2, it is increased to the next power of 2 (4096, 8192, 16384,
32768, or 65536).

o If the value is greater than 65536, it is decreased to 65536.

Default For an indexed-sequential file, the system calculates an

Value appropriate default value using the average_record _length,
estimated _record _count, index_levels, and records_ per_
block values. For a direct-access file, it calculates the default
value using the average_record_length and estimated _

record _count values. .

Calls AMPS$FETCH, AMP$SFILE, AMP$GET_FILE _
ATTRIBUTES, AMP$OPEN.

MAX_RECORD_LENGTH

Meaning Maximum length of a file record in bytes (preserved attribute).

Value For keyed files, integer from 1 through 65497.

Default For keyed files, no default value is provided; AMP$OPEN

Value returns a fatal error if the maximum record length has not
been specified when the file is created.

Calls AMPS$FETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

1-4-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

MESSAGE_CONTROL

MESSAGE_CONTROL

Meaning Indicates the additional information to be written to the
$ERRORS file (temporary attribute).

value is specified using the set identifier
$SAMT$SMESSAGE_CONTROL]].

AMCS$TRIVIAL_ERRORS Nonfatal (trivial) errors
logged (errors of severity

‘ Value Set of any or none of the following identifiers. The attribute

ERROR).
AMC$MESSAGES Informative messages
logged.
AMCS$STATISTICS Statistics logged.
Default Null set (only fatal error messages are logged).
Value
Calls AMPS$FETCH, AMP$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN, AMP$STORE.

Revision B Keyed-File Attributes 1-4-29

MIN_RECORD_LENGTH

MIN_RECORD_LENGTH

Meaning Minimum record length in bytes (preserved attribute). .
Value For keyed files, integer from 0 though 65497, but not greater

than the max_record_length value.
Default For ANSI fixed-length (F) records, the default value is the .
Value max_record _length value. For keyed files using embedded

keys, the default value is the sum of the key_position and
key _length values. Otherwise, the default value is 1.

NOTE

For variable-length records, it is recommended that you
explicitly specify the minimum record length. The minimum
record length must include:

e The primary-key field

¢ Any alternate-key fields (or corresponding sparse-key
control characters)

o All alternate-key fields for an alternate key defined as a
field in a repeating group which repeats a fixed number of
times ‘

Calls AMPSFETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

NULL_ATTRIBUTE

Meaning Attribute identifier (AMC$NULL_ATTRIBUTE) that
indicates that the content of the attribute record is to be
ignored.

Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _
ATTRIBUTES, AMP$OPEN, AMP$STORE.

NULL_ITEM

Meaning Access item identifier that indicates that the content of the ‘
attribute record is to be ignored.

Calls AMPSFETCH_ACCESS_INFORMATION.

1-4-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

NUMBER_OF_NESTED_FILES

NUMBER_OF_NESTED_FILES

Meaning Nested file count (access information item). Each keyed file
has at least one nested file (named $MAIN _FILE).

Value Integer from 1 through amc$max_blocks_per_file.
Calls AMPSFETCH_ACCESS_INFORMATION.

OPEN_POSITION

Meaning Positioning required when the system opens the file
(temporary attribute).
Value One of the following identifiers (type AMT$OPEN _
POSITION):
AMCS$OPEN NO _ When the keyed file is
POSITIONING or opened, it is positioned

AMC$OPEN_AT_BOI to read the record with the
lowest key value.

AMCS$OPEN _ AT_EOI The file is positioned at its
end-of-information.

If the file is an old file and
the only valid access mode to
the file is append, the only
valid open position is
AMC$OPEN_AT_EOL

Default For all files other than file OUTPUT, AMC$OPEN _AT_BOI.
Value For file OUTPUT, AMC$OPEN _AT_EOL

The open _ position specified on a file reference overrides all
specifications of that attribute except an open_ position value
specified by an AMP$OPEN call. For example, if a file is
referenced as SUSER.MY _FILE.$EOI, it is opened at its
end-of-information unless the AMP$OPEN call specifies
another open _position. For more information about file
references, see the SCL Language Definition manual.

Calls AMPS$FETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

Revision B Keyed-File Attributes ~ 1-4-31

PERMANENT_FILE

PERMANENT_FILE

Meaning Indicates whether the file is permanent or temporary
(returned attribute).
Value Boolean value.
TRUE File is permanent.

FALSE File is temporary.
Calls AMPS$FETCH, AMP$GET_FILE_ATTRIBUTES.

PRIMARY_KEY

Meaning Pointer to a program variable in which the call is to return a

primary-key value (access information item).

The primary-key value is for the record at which the
preceding AMP$START call positioned the file or for

the

record read by the preceding AMP$GET_NEXT_KEY,
AMP$GET_LOCK_NEXT_KEY, or AMP$GET_KEY call.
This item can be returned only if the preceding call used an

alternate key.
Value Cell pointer (type AMT$PRIMARY _KEY).
Calls AMP$FETCH_ACCESS_INFORMATION.

RECORD_LIMIT

Meaning Maximum number of records in the file (preserved attribute).

Value Integer from 1 through AMC$FILE_BYTE_LIMIT 2%-1)
(type AMT$RECORD _LIMIT).

Default AMCS$FILE_BYTE_LIMIT (2%2-1).

Value

Calls AMP$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

1-4-32 CYBIL Keyed-File and Sort/Merge Interfaces

Revision B

RECORD_TYPE

RECORD_TYPE

Meaning Record type for the file (preserved attribute).
Value One of the following identifiers (type AMT$SRECORD _
TYPE):
. AMCS$VARIABLE CDC variable-length (V) records.

AMC$UNDEFINED Undefined (U) records.
AMCS$ANSI_FIXED ANSI fixed-length (F) records.

For keyed files, V and U records
are processed the same (as
variable-length records).

Default For keyed files, AMC$UNDEFINED.
Value
Calls AMPS$FETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

RECORDS_PER_BLOCK

. Meaning Estimated number of records each data block should contain
(preserved attribute).

The system uses the attribute value to calculate block size; it
uses the value only when opening a new file. It does not use
the value as a limit to the number of records that a block can

contain.

Value Integer from 1 to AMC$MAX_RECORDS_PER_BLOCK
(type AMT$SRECORDS_PER _BLOCK).

Default 2.

Value

Calls AMPS$SFETCH, AMPS$FILE, AMP$GET_FILE _

ATTRIBUTES, AMP$OPEN.

Revision B Keyed-File Attributes 1-4-33

RESIDUAL_SKIP_COUNT

RESIDUAL_SKIP_COUNT

Meaning Number of units remaining to be skipped when the skip ‘
operation reached a file boundary (access information item).
The residual skip count is the difference between the number

of skip units requested and the number of units actually
skipped. .
Value Integer from 0 through AMCS$FILE_BYTE_LIMIT (type
AMTS$RESIDUAL_SKIP_COUNT).
Calls AMP$FETCH_ACCESS_INFORMATION.

RETURN_OPTION

Meaning Indicates when the file is implicitly detached (returned) to the
system (temporary attribute). (You can explicitly detach a file
with a DETACH_FILE command or an AMP$SRETURN

call.)
Value One of the following identifiers (type AMT$SRETURN _
OPTION):
AMCS$RETURN_AT_ Detach when the task closes
CLOSE the file and the job does not ‘
have another instance of
open for the file.
NOTE

The task closing the file does not receive notification that
the file cannot be detached when the job has another
instance of open of the file.

AMCSRETURN_AT_ Detach when the job
JOB_ EXIT terminates.
Default AMCS$RETURN_AT_JOB_EXIT.
Value
Calls AMPS$FILE, AMP$GET_FILE_ATTRIBUTES, AMP$OPEN.

1-4-34 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

RING_ATTRIBUTES

RING_ATTRIBUTES

Meaning

Value

Default
Value

Calls

Three ring numbers (r1, r2, and r3) defining the ring brackets
of the file (preserved attribute).

o Write bracket: 1 through r1.
® Read bracket: 1 through r2.
e Execute bracket: r1 through r2.
e (Call bracket: r2 + 1 through r3.

The ring numbers cannot be lower than the ring number of
the caller that opens the file. If a new file is created by a file
reference, its ring _attributes are those of the provider of the
file reference specification.

Record with three integer fields R1, R2, and R3 (type
AMTS$RING_ATTRIBUTES).

All three ring numbers are the ring number of the
AMPSOPEN caller. If the file has not yet been opened, the
attribute value is undefined.

AMPSFETCH, AMP$FILE, AMP$GET _FILE _
ATTRIBUTES, AMP$OPEN.

SELECTED_KEY_NAME

Meaning
Value
Calls
Revision B

Name of the currently selected key (access information item).
If the primary key is the currently selected key, the name
$PRIMARY _KEY is returned.

31-character string, left-justified, blank-filled (type
AMTS$SELECTED_KEY_NAME). All letters in the name are
returned in uppercase.

AMP$FETCH_ACCESS_INFORMATION.

Keyed-File Attributes I-4-35

SELECTED_NESTED_FILE

SELECTED_NESTED_FILE

Meaning Name of the currently selected nested file (access information '
item). By default, the currently selected nested file is
$MAIN_FILE.

Value 31-character string, left-justified, blank-filled (type ‘

AMTS$NESTED _FILE_NAME). All letters in the name are
returned in uppercase.

Calls AMP$FETCH_ACCESS_INFORMATION.

® 1-4-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

@ Introduction to Sort/Merge II-1

What Sort/Merge Doesccooiiiiiiiiiiiiie it iieanennns II-1-2
Data Flowooiiii ettt e eeans 1I-1-2
. SOrt KOy S oottt e e 1I-1-3
Multiple Keyscoottiiiii e 11-1-3
Defining a Sort Keyoiiiiiiiiiiiiiiiiiiiiiiiiieeiiiineaaaeenes 1I-1-4
Key Length and Position.c.cooiiiiiiiiiiiiiiiainan.. II-1-4
G2 14 1= II-1-5
Collating Sequencesvvutiutentenrenteieeiieneeaanennens 11-1-6
Numeric Data Formatsc.ciiriiiiiiiiiiiiiiiiiiineeeeeens 1I-1-7
Sort Order ... e 11-1-12
Specifying the Record Length oot 1I-1-12
Short Recordsttt iieineaeneans II-1-13
Invalid Recordscoiiiiinit it iiieeeeeenns 1I-1-13
Example Programiiiiiiiiiiiiiiiiiiii i 1I-1-14

Introduction to Sort/Merge II-1

The CYBIL Sort/Merge interface is a set of CYBIL procedures. With these
procedures, you can use NOS/VE Sort/Merge within your CYBIL program.

To include NOS/VE Sort/Merge within your CYBIL program, the program
must include a sequence of procedure calls that specify the sort or merge
request. The sequence of calls begins with either an SMP$BEGIN_SORT _
SPECIFICATION call (for a sort request) or an SMP$BEGIN _MERGE _
SPECIFICATION call (for a merge request). The sequence of calls ends with
an SMP$END _SPECIFICATION call.

NOS/VE Sort/Merge use within your CYBIL program requires that the
program include the Sort/Merge procedure and type declarations. The

procedure and type declarations are stored in decks in the source library on
file $SYSTEM.COMMON.PSFSEXTERNAL _INTERFACE_SOURCE.

To copy the Sort/Merge procedure and type declarations into your program,
you can copy one deck or several decks as follows:

e To copy a single deck containing all Sort/Merge procedure and type
declarations, embed this SCU directive in your program:

*COPYC SMP$PROCEDURE_INTERFACE_PACKAGE

e To copy only those procedure and type declarations that are used in the
program, embed an SCU *COPYC directive for each Sort/Merge
procedure call used. The following are the directives required for a
minimal sort specification:

*COPYC SMP$BEGIN_SORT_SPECIFICATION
*COPYC SMP$FROM_FILES

*COPYC SMP$TO_FILE

*COPYC SMPSKEY

*COPYC SMP$END_SORT_SPECIFICATION

To copy the procedure declarations from the system source library, store your
source text (with the *COPYC directives embedded) as a deck in an SCU
source library and expand it using an SCU EXPAND_DECK command. The
EXPAND_DECK command specifies the system files containing the
procedure and type declarations as alternate base libraries, as follows:

ALTERNATE_BASE=($SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE, ..
$SYSTEM. COMMON . PSFSEXTERNAL _INTERFACE_SOURCE)

This process is discussed in detail in the introduction to this manual.

Revision B Introduction to Sort/Merge II-1-1

What Sort/Merge Does

NOTE

To execute a CYBIL program that uses Sort/Merge calls, you must add the
following object library to the program library list:

$LOCAL . SMFSLIBRARY

What Sort/Merge Does

The purpose of sorting is to arrange items in order. The purpose of merging
is to combine two or more sets of preordered items. Ordered information
makes reports more meaningful and suggests critical relationships. Searches
for information are faster with ordered lists.

The purpose of Sort/Merge is to arrange records in the sequence you specify.
You describe the files of records that Sort/Merge is to sort and the order in
which it is to sort them.

Sort/Merge:

Sorts or merges records from as many as 100 files with one call to
Sort/Merge.

Sorts character and noncharacter key types.
Can sort and merge variable-length (V) or fixed-length (F) records.

Can read input records from and write output records to either sequential
or indexed-sequential files. (The primary key of each indexed-sequential
file must be embedded.)

Can sort according to one of eleven predefined collating sequences, seven
numeric formats, or a user-defined collating sequence.

Can sum fields of records having equal keys.

Can use owncode procedures to insert, substitute, modify, or delete records
during Sort/Merge processing.

Data Flow

Sort/Merge reads input records from one or more local files or as supplied by
an owncode routine. Records to be merged must be presorted. Records to be
merged and summed must be pre-sorted and pre-summed.

Sort/Merge writes records to a single output file. The records can be
processed by an owncode procedure.

1I-1-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Sort Keys

Sort Keys

Sort or merge operations are based on the ordering of record fields in the
data to be sorted or merged. These fields are called sort keys. This section
discusses what sort keys are and how a key is defined.

A sort key is a field of data within each input record. Sort/Merge uses the
contents of the sort key to determine the position of the record within the
sorted sequence of records.

Data must be aligned correctly in a sort key field. Character data must be
left-justified in the field, and numeric data must be right-justified in the
field.

If sort keys extend beyond the length of the shortest record in the file, the
sort is undefined. For example, if the records range from a minimum of 25
characters to a maximum of 80 characters, all sort keys must be in the first
25 characters for the sort to be defined.

Multiple Keys

A file can be sorted or merged on more than one sort key. The combined
length of all key fields in a record cannot exceed 1023 bytes. The key fields
cannot overlap.

The first key you specify is the most important key and is called the major
sort key. This key is sorted or merged first. The keys you specify after the
first key are of lesser importance and are called minor sort keys. The minor
keys are numbered in the order they are specified.

For example, if three sort keys are specified, the first key is the major sort
key (key number 1), the next key listed is a minor key (key number 2), and
the third key is another minor key (key number 3).

When two or more records have an equal major key, Sort/Merge determines
the order by looking at the subsequent minor keys in the following order: key
number 2, key number 3, and so on. Sort/Merge compares the minor keys
until either an unequal key is found, or until there are no more keys.

For example, university student records could be sorted using multiple sort
keys. Assume each record includes the last name and first and middle
initials, the student number, the date of birth, the field of study, the grade
point average, and a code representing class (freshman, sophomore, junior,
senior); all the fields are written with character data. The file could be
maintained with the student number as the major key since records are
normally retrieved by specifying the student number. The file can be sorted
by the name in alphabetic order when a list of student names is needed.

Revision A Introduction to Sort/Merge II-1-3

Defining a Sort Key

When a university department needs to know which students are majoring in ’
fields within the department, the file can be sorted on the field of study. The

same sort can specify the name as a minor key so that records with the same

field of study are also sorted in alphabetic order by the name. The file can be

sorted by the class code as the major key and by the grade point average in
descending numeric order as a minor key. This would produce a list of ‘
students sorted by class code with the students having the highest grade

point average at the beginning of the list.

Defining a Sort Key

Each sort key to be used by the sort or merge request must be defined by a
sort key definition on an SMP$KEY call. A sort key definition includes the
following information:

Starting location of the key within the record
Key length
Type of data in the key field

Sort order

Kev Length and Position ‘

You define key field length and position by specifying the first byte of the
field.

NOTE

When defining a Sort/Merge field, the leftmost byte in a record is counted as
number 1.

For example, if you want to specify the name field of the university student
record as a sort key, and the name field is the leftmost field in the record, you
specify the first byte as 1. If the name field is 20 characters long, you specify
the length as 20.

Sort/Merge interprets the integers you specify for key length and position as
bit numbers when the key type (discussed later in this chapter) specifies bits;
otherwise, byte numbers are assumed. The first bit is numbered 1; the key
fields cannot overlap one another and cannot overlap sum fields.

II-1-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Defining a Sort Key

Kev Type

You specify the type of data in a key field with the name of a collating
sequence or with the name of a numeric data format. The data in a key field
can be character or noncharacter.

Character data is represented in the computer as ASCII code values. To
indicate the key type for character data, you specify the name of a collating
sequence.

Noncharacter data is represented in the computer as binary values, in
packed decimal format, or in floating-point format. For numeric character
data, you specify the name of a numeric data format.

The difference between the internal representation of character and
noncharacter data is shown in figure I1-1-1.

Character Data

Hexadecimal equivalent of ASCII code character

39 31 23 15 7 0

2D 31 32 33 34

Noncharacter Data

- 1234

Hexadecimal equivalent of binary value

63 0

FFF . .. B2E

Figure II-1-1. Internal Data Representation

Revision A Introduction to Sort/Merge II-1-5

Defining a Sort Key

Table II-1-1 summarizes character and noncharacter data types and the
associated sort key type.

Table II-1-1. Data in Sort Key Fields

Internal Data Type Data Ordered
Type Representation in Field Specified by According to
Character ASCII Alphabetic Name of a Specified
collating collating
sequence sequence
Numeric Name of a Numeric
numeric data value
format
Noncharacter Binary value Numeric Name of a Numeric
numeric data value
format
Packed decimal Numeric Name of a Numeric
numeric numeric data value
format

If a sort key field contains any characters that are not meaningful for the
key type you specify (an alphabetic character in a field defined as a numeric
key, for example), the sort order for that key field in that record is undefined.
In the output file, the data for that key field in that record is also undefined.
The record is still sorted according to other major sort keys you have
specified, unless you have specified an exception file.

The collating sequences and numeric data formats you can specify are
discussed in the following paragraphs.

Collating Sequences

A collating sequence determines the precedence given to each character in
relation to the other characters. You specify the collating sequence that
determines the sort order of character data. (Character data is represented as
ASCII character codes.)

Sort/Merge defines six collating sequences: ASCII, ASCII6, COBOLS,
DISPLAY, EBCDIC, and EBCDIC6. (NOS/VE defines five additional
collating sequences, and you can define your own collating sequences.)

If you do not specify a collating sequence, ASCII is used. (Sort/Merge sorts
fastest when using the ASCII collating sequence.)

The predefined collating sequences are listed in appendix D.

1I-1-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Defining a Sort Key

Numeric Data Formats

Numeric data can appear in a key field in one of the formats listed in table
II-1-2. Numeric data can be signed or unsigned. For character numeric data
that is signed, the sign can be a floating sign, an overpunch representation
over the leading (leftmost) digit, a leading separate character, an overpunch
representation over the trailing (rightmost) digit, or a trailing separate
character.

Noncharacter numeric data can be signed or unsigned binary integers or
normalized single precision floating-point numbers.

You define numeric key fields by specifying the first byte of the field and
either the length of the field in bytes or the last byte of the field.

For BINARY_BITS and INTEGER_BITS data types, you specify the first
bit position of the field and either the length of the field in bits or the last bit
of the field.

For REAL data types, the key must be a full word aligned on a word
boundary.

For other types except REAL, the fields start or stop on character
boundaries.

Revision A Introduction to Sort/Merge II-1-7

Defining a Sort Key

Table II-1-2. Numeric Data Formats

Name Data Type Sign Comments
BINARY Binary integer None The field starts and ends on
character boundaries. Data is
ordered according to numeric value.
BINARY_BITS Binary integer None The field does not start or end on
character boundaries. Data is
ordered according to numeric value.
INTEGER Two’s complement Positive if leftmost The field starts and ends on
binary integer bit is 0; negative if character boundaries. Data is
leftmost bit is 1 ordered according to numeric value.
INTEGER_BITS Two’s complement Positive if leftmost The field does not start or end on

NUMERIC_FS

NUMERIC_LO

NUMERIC_LS

NUMERIC _NS

NUMERIC_TO

binary integer

Leading blanks,
numeric characters

Numeric
characters

Numeric
characters

Numeric
characters

Numeric
characters

bit is 0; negative if
leftmost bit is 1

- sign for
negative values;
a + character

is not allowed

Leading overpunch

Leading separate

None

Trailing overpunch

character boundaries. Data is
ordered according to numeric value.

The field contains leading blanks
(leading zeros must be converted to
blanks before calling Sort/Merge); if
the value is negative, the rightmost
leading blank must be converted to
a minus sign. If the field contains no
leading blanks or does not begin
with a negative sign, the value must
be positive. This format is
equivalent to the FORTRAN I
format, or the COBOL picture clause
for zero suppressed editing of
numeric item. Data is ordered
according to numeric value.

All characters are decimal digits
except the leading character, which
indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally.

All characters are decimal digits
except the leading character, which
is a negative or positive sign.
Specifying a field that is not at least
two characters in length causes a
fatal error. Data is ordered
according to numeric value with all
forms of zero ordered equally.

All characters are decimal digits.
Data is ordered according to
numeric value.

All characters are decimal digits
except the trailing character, which
indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally.

II-1-8 CYBIL Keyed-File and Sort/Merge Interfaces

Continued

Revision A

Defining a Sort Key

‘ Table II-1-2. Numeric Data Formats (Continued)

Name

Data Type Sign

Comments

NUMERIC_TS

PACKED

PACKED_NS

REAL

Numeric Trailing separate

characters

Packed decimal Signed

Unsigned packed Unsigned
decimal

Normalized binary real Signed
or single precision
floating-point number

of 64 bits

All characters are decimal digits
except the trailing character, which
is a negative or positive sign.
Specifying a field that is not at least
two characters in length causes a
fatal error. Data is ordered
according to numeric value with all
forms of zero ordered equally.

Data is ordered according to
numeric value.

Data is ordered according to
numeric value. PACKED _NS is the
same as COBOL
COMPUTATIONAL-3

with no sign.

The field occupies a full computer
word and is aligned on word
boundaries. Data is ordered
according to numeric value with all
forms of zero ordered equally. The
order of indefinite values is
undefined. The order of infinite
values is ordered as if its value were
infinity (can be signed infinity).
Double precision is not supported,
but can be sorted by defining the
upper part of the number as a
primary real key and the lower part
of the number as a secondary

real key.

Revision A

Introduction to Sort/Merge 1I-1-9

Defining a Sort Key

Signed Numeric Data

A floating sign is a negative sign embedded between leading blanks and the
numeric characters. A floating sign can also be a negative sign followed by

numeric characters. Leading zeros must be converted to blanks. Positive
values in this format are not signed. The following examples are valid
floating sign formats:

|
WO O -

W N

-1
12

The following examples are invalid floating sign formats:

01 Leading zero not allowed
- 01 Leading zero not allowed
+1 23 Positive sign not allowed

All-blank field not allowed

Diagnostic messages are not issued for invalid floating sign formats or
invalid overpunches.

A negative sign overpunch is equivalent to overstriking a digit with a -,
which is a punch in row 11. A positive sign overpunch is equivalent to
overstriking a digit with a +, which is a punch in row 12.

When a signed overpunch digit is received as input, the digit is punched as
indicated in the second column of table II-1-3. When a signed overpunch
digit is entered from a terminal or displayed as output, the digit appears as
indicated in the third column of table II-1-3. The hexadecimal value is in the

fourth column.

II-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Defining a Sort Key

' Table II-1-3. Sign Overpunch Representation

Sign and Input/Output Hexadecimal
Digit Input Punch Representation Value
. +0 0 0 30
+1 1 1 31
+2 2 2 32
+3 3 3 33
+4 4 4 34
+5 5 5 35
+6 6 6 36
+7 7 7 37
+8 8 8 38
+9 9 9 39
+0 12-0 { 7B
+1 12-1 A 41
+2 12-2 B 42
+3 12-3 C 43
+4 12-4 D 44
+5 12-5 E 45
+6 12-6 F 46
+7 12-7 G 47
. +8 12-8 H 48
+9 12-9 I 49
-0 11-0 } 7D
-1 11-1 J 4A
-2 11-2 K 4B
-3 11-3 L 4C
-4 11-4 M 4D
-5 11-5 N 4E
-6 11-6 (0 4F
-7 11-7 P 50
-8 11-8 Q 51
-9 11-9 R 52
+0 12-8-4 < 3C
+0 12 & 26
-0 12-8-7 ! 21
-0 11 - 2D

Revision A Introduction to Sort/Merge II-1-11

Specifying the Record Length

Sort Order

Sort/Merge can sort a key in ascending or descending order. If you do not
specify a sort order, Sort/Merge sorts the key in ascending order.

When sorting a numeric key in ascending order, Sort/Merge sorts the key
values in order from lowest to highest. When sorting a numeric key in
descending order, Sort/Merge sorts the key values in order from highest to
lowest.

A character key is sorted according to the collating sequence you specify for
the key. When sorting a character key in descending order, Sort/Merge sorts
the key values in reverse order of the collating sequence you specify.

Specifving the Record Length

Sort/Merge accepts fixed-length (F) or variable-length (V) records. It can
sort records up to 65,535 bytes long. The record type and record length are
determined by the file attributes specified when the file is created.

The default maximum record length for both fixed-length (F) and
variable-length (V) record types is 256 bytes. The default minimum record
length for variable-length records is 0 bytes.

If the minimum record length for any Sort/Merge input file is 0, you must
include an SMP$KEY call in the Sort/Merge call sequence. If you omit the
SMP$KEY call and the minimum record length for any input file is 0,
Sort/Merge attempts to use the 0 value (the smallest minimum record length
of the input files) as the key length. But Sort/Merge cannot define a key of
length 0, so it returns a fatal error.

Sort performance is best when the maximum record length is equal to the
longest record to be sorted.

If the SORT or MERGE procedures do not specify any input or output files,
Sort/Merge assumes that all records are provided by owncode procedures. In
this case, you must specify the record length using either the

SMP$OWNCODE _FIXED_RECORD_LENGTH or SMP$OWNCODE _
MAX_RECORD_LENGTH procedure.

II-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Specifying the Record Length

Short Records

Sort/Merge uses only those fields it needs to perform the sort or merge. For
example, if the major key values are unequal, it does not use the minor key
values. Similarly, if the key values are unequal, it does not use the sum
values.

When Sort/Merge attempts to use a sum or key field beyond the end of the
record, it sends an informative message and leaves the order of the short
record undefined. If an exception file is specified for the sort or merge, it
writes the short record to the exception records file and deletes it from the
sort or merge.

Records could be too short because the system strips off all trailing blanks
from variable-length (V) records. A record shortened by blank suppression
cannot be sorted if its length is shorter than the minimum length required to
read all key and sum fields. This is so even if you have specified a value for
the maximum record length file attribute.

Blank suppression is demonstrated when a DISPLAY _FILE command
displays empty records. An empty fixed-length (F) is shown as a record of
length MAXRL filled with blanks. An empty variable-length (V) record is
shown as having a length of zero, with no blanks present in the record. It is
a zero-length record because all trailing blanks have been stripped from the
record.

Zero-length records are not included in the sort or merge and are not counted
in the number of records sorted or merged. The zero-length records are
output as the last records, even if you specify the SMP$VERIFY,
SMP$RETAIN _ORIGINAL_ORDER, SMPSUM, SMPEXCEPTION _
FILE, or OWNCODE procedures. An informational message is issued
stating how many zero-length records were read.

Invalid Records

Sort/Merge determines whether a key or sum field contains valid data when
it attempts to use the data. Because Sort/Merge does not attempt to compare
or sum the data in all fields, it does not validate all fields in a record; it only

validates the data it uses.

Sort/Merge copies the invalid records it finds to the exception records file (if
one has been specified) and deletes the invalid records from the sort or
merge.

Revision B Introduction to Sort/Merge II-1-13

Example Program

Sort/Merge determines whether a key or sum field contains valid data when
it attempts to use the data. If, when Sort/Merge attempts to compare or sum
data from two records, it finds that one record contains invalid data, it then
discards the invalid record and attempts to compare or sum the next record.
It continues to do so until it finds a record containing valid data. Therefore,
in the end cases, where either all records are invalid or the file contains only
one record, one record will not be determined as invalid because it cannot be
compared or summed with a valid record. So Sort/Merge always outputs at
least one record, valid or invalid.

Example Program

The following example CYBIL program sorts a file on three keys.

The file is a file of student records. Each record has this format:

1 11 13 15 21 27 35 38
EN
LAST NAME S'ngq% T DOB STUDY GPA
J L !
FIRST INITIAL MIDDLE INITIAL CODE

The records are first sorted on the field of study (byte positions 27 through 34
in each record), then on the class code (byte 38), and finally on the student’s
last name (bytes 1 though 10).

I II-1-14 CYBIL Keyed-File and Sort/Merge Interfaces

Revision B

MODULE

Example Program

sort_files;

7?7 PUSH (LIST:= OFF) ??

*copyc
*copyc
*copyc
*copyc
*copyc
7?7 POP

VAR

smp$begin_sort_specification
smp$from_file

smp$to_file
smp$end_specification
pmp$exit

?

iarray: smt$info_array,

file:

string(19),

status: ost$status;

PROGRAM sort;
iarray[1]1:=0;

{ Sequence of Sort/Merge calls }
smp$begin_sort_specification (iarray, status);
smp$from_file ('university_students', status);
smp$to_file ('field_of_study', status);
smp$key (27, 8, 'ascii', 'a', status);
smp$key (38, 1, 'numeric_ns', 'a', status);
smp$key (1, 10, 'ascii', 'a', status);
smp$end_specification (status);

IF

status.normal <> true then
pmp$exit (status);

IFEND;

PROCEND sort;

MODEND

Revision B

sort_files;

Introduction to Sort/Merge II-1-15

Example Program

Before a CYBIL program using Sort/Merge is compiled, the source text must
be expanded to include the Sort/Merge procedure declarations. See the

manual introduction for more information on this process.

Assuming that the source text is on file SUSER.SOURCE _TEXT, the
following command expand, compile, and execute the example program:

/create_source_Library result=temporary_Llibrary
/source_code_utility base=temporary_Library
sc/create_deck deck=sorting source=$user.source_text ..

sc../modification=original
sc/expand_deck deck=sorting ..

sc../alternate_base=($system.cybil.osf$program_interface, ..

sc../$system.common.psf$external_interface_source)

sc/quit write_Llibrary=no
/cybil input=compile Ll=list b=lgo

/attach_file $user.university_students

/lgo

Assuming that these records are in file UNIVERSITY _STUDENTS, the
program writes the records to the file FIELD _OF_STUDY in this order:

REYES S L 100246031558ANTHRO
MAYER M I 100991122359ANTHRO
CHARLES S H 101418032459ANTHRO
MARTIN R C 100955082157Art
NEECE ML 99911121358Art
NAKAMURA S L 101529051260Art

YEH F L 102005120645Art
BARTLETT S S 100800100957Art
COCHRAN G L 100725111857BIO
HOYO J C 101925103060B10
KRUTZ S T 100532010353POLISCI
WALLIN G E 101056041659POLISCI
WARNES D V 102116060861POLISCI
WONG S T 101001012755PSYCH
LANGDON M A 101754080549PSYCH
LASEUR P T 100678042256PSYCH
SUGARMAN B T 100528070457S0C
SMITH F R 101062120758s0C
DOUGLAS M L 101325071558UNDEC
OKADA N A 100103111750UNDEC

3341
2882
2453
2891
2291
2594
2764
2735
3011
3014

1981
3151
2814
2152
2013
2233
3501
2913
2585
2225

l 1I-1-16 CYBIL Keyed-File and Sort/Merge Interfaces

Revision B

PS Sort/Merge Procedure Calls II-2

Sort/Merge Procedure CallUsecccoviiiiiiiinennennnnnnn, I1-2-1
SMP$BEGIN _SORT_SPECIFICATIONoovieeeenrenns.. 11-22
‘ SMP$BEGIN MERGE_SPECIFICATIONooveeeen.... 1-24
SMP$FROM _FILE and SMP$FROM _FILES 11-25
SMPSTO FILE\ oo, I1-27
SMPSKEY ... vv e e 11-2.9
SMP$DEFINE_USER_COLLATING TABLE.................. 1-2-11
SMPSERROR_FILEoovtneeneee e 11-2-12
SMP$SERROR _LEVELoonriet i e 11-2-13
SMP$ESTIMATED NUMBER_RECORDSoovvoveonn... 11-215
SMP$EXCEPTION RECORDS FILEoeeeeeeeneenns.. 11-2-16
SMPSLIST_FILE ...\t 11-2-17
SMPSLIST OPTIONot e e 11-2-18
SMP$LOAD_COLLATING TABLEoovoeennennenn.. 11-2-18.2
SMP$OWNCODE_FIXED RECORD LENGTH.............. 11-2-18.4
SMP$OWNCODE_MAX _RECORD LENGTH 1-2-19
SMP$OWNCODE_PROCEDURE 1vvoveneeneeneaneannn. 11-2-20
SMP$RETAIN ORIGINAL ORDERoooreennannenn... 11-221
SMPSCOLLATING X ..\ nvneee e 11-2-22
SMP$COLLATING NAMEo\t 11-2-22

‘ SMP$COLLATING CHARACTERScvoeeeenannnnn.. 11-2-23
SMP$COLLATING ALTER.......0vooeieeeaniaeannannnnns. 11-2-24
SMP$COLLATING REMAINDERccovveeneennnnn.. 11-2-24
SMPSSTATUS v v e e e e e e 11-2:25
SMPSSUM . ..o e e e e 11-2-26
SMPSVERIFYottt e, 11-2-29
SMP$END_SPECIFICATION\t 11-2-29

Sort/Merge Procedure Calls I1-2

This chapter contains detailed descriptions of the Sort/Merge procedures in
alphabetical order.

Sort/Merge Procedure Call Use

As described in chapter 1, a CYBIL program that calls Sort/Merge procedure
must include the procedure declarations from decks in these files: l

$SYSTEM. CYBIL . OSF$PROGRAM_INTERFACE_SOURCE
$SYSTEM. COMMON . PSFSEXTERNAL _INTERFACE_SOURCE

The Sort/Merge procedure and type declarations are listed in appendix C.

To execute a CYBIL program that uses Sort/Merge calls, you must add the
following object library to the program library list:

$LOCAL . SMFSLIBRARY

The Sort/Merge procedures can be called in any order with two exceptions:
SMP$BEGIN_SORT_SPECIFICATION or SMP$BEGIN_MERGE _
SPECIFICATION must be the first procedure called, and SMP$END _
SPECIFICATION must be the last procedure called. Sort/Merge collects
processing information until SMPSEND_SPECIFICATION is called; the
sort or merge is then performed.

Unless stated otherwise, a procedure can be called only once during a sort or
merge. Refer to chapter 3 for information on owncode procedures, which are
mentioned in the descriptions of several of the Sort/Merge procedures.

Sort/Merge uses the maximum _record _length file attribute value in its
processing. The maximum _record_length value is set when the file is
created; the default maximum record length is 256 bytes.

With one exception, you can enter the Sort/Merge parameter values using
uppercase, lowercase, or a combination of uppercase and lowercase letters.
The one exception is owncode procedure names, which must be specified
using all uppercase letters.

CYBIL owncode procedures that are loaded with the main program and
referenced with the SMP$SOWNCODE _PROCEDURE _n procedure call must
be externally declared XDCL procedures.

Revision B Sort/Merge Procedure Calls I-2-1

SMP$BEGIN_SORT_SPECIFICATION

SMPS$SBEGIN_SORT_SPECIFICATION

Purpose Signals the beginning of a sort calling sequence of procedure .
calls.
Format SMP$BEGIN_SORT_SPECIFICATION (array, status);

Parameters array: VAR of smt$info_array

Result array name; 1 to 31 letters, digits, or the special
characters $ # @ _, beginning with a letter.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks o The SMP$BEGIN_SORT_SPECIFICATION procedure
must be the first procedure called for a sort.

® The result array is a 0- through 16-element integer array
in which Sort/Merge returns sort statistics and results to
your program when the sort is completed. The result array
is a single dimensional array.

You set the first element of the result array to the number

of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than .
15 or less than 0, Sort/Merge issues a warning message

and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table II-2-1.

1I-2-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$BEGIN_SORT_SPECIFICATION

. Table II-2-1. Result Array Format

Array
Element

Contents

®

S Otox W N

N

®

11
12
13

14

15

16

Number of elements of results you want returned (0
through 15)

Number of records read from sort or merge input files
Number of records deleted by an owncode 1 routine
Number of records inserted by an owncode 1 routine
Number of records inserted by an owncode 2 routine

Number of records sorted or merged. (Does not include
zero-length records or records written to the exception file.)

Number of records deleted by an owncode 3 routine
Number of records inserted by an owncode 3 routine
Number of records inserted by an owncode 4 routine
Number of records written to the exception file
Number of records deleted by an owncode 5 routine
Number of records combined by summing

Number of records written to the output file

Minimum record length. (Actual minimum record length of
records from the file named by the SMP$FROM _FILE
procedure and/or from owncode 1 and 2 routines.)

Average record length. (Total record length divided by the
total number of records from the file named by the
SMP$FROM _FILE procedure and/or from owncode 1 and
2 routines.)

Maximum record length. (Actual maximum record length
of records from the file named by the SMP$FROM_FILE
procedure and/or from owncode 1 and 2 routines.)

Revision A

Sort/Merge Procedure Calls I1I-2-3

SMP$BEGIN_MERGE_SPECIFICATION

SMP$BEGIN_MERGE_SPECIFICATION

Purpose

Format

Parameters

Remarks

Signals the beginning of a merge calling sequence of
procedure calls.

SMP$BEGIN_MERGE_SPECIFICATION (array,
status);

array: VAR of smt$info_array
Result array name; 1 to 31 letters, digits, or the special
characters $ # @ _, beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

¢ The SMPSMERGE_SORT_SPECIFICATION procedure

must be the first procedure called for a merge.

The result array is a 0- through 16-element integer array
in which Sort/Merge returns merge statistics and results to
your program when the merge is completed. The result
array is a single dimensional array.

You set the first element of the result array to the number
of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than
15 or less than 0, Sort/Merge issues a warning message
and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table II-2-1.

11-2-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$FROM_FILE and SMP$FROM_FILES

SMP$FROM_FILE and SMPSFROM_FILES

Purpose

Formats

Parameters

Remarks

Revision B

Specifies the input file or files from which the records to be
sorted or merged are read.

SMP$FROM _FILES (file_name_array, status);
SMP$FROM_FILE (file_ref, status);

file_ref: string(*)

Local file from which records are read for sorting or merging.
The parameter must be a string or string variable specifying

the name. Sort/Merge treats lowercase letters as being equal

to uppercase letters.

file_name_array: array [*] of ost$name

Array of file names from which records are read for sorting or
merging. Sort/Merge treats lowercase letters as being equal to
uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

® You can specify a maximum of 100 input (from) files using
one or more procedure calls. The files are read in the order
that you specify them. In addition, the files are not read
past an embedded end-of-partition.

e SMP$FROM _FILE and SMP$FROM _FILES are separate
procedures; each has its own procedure declaration deck.
Call SMP$FROM _FILE to specify one input file name; call
SMP$FROM _FILES to specify an array of input file
names.

e When you are merging files, the records in each input file
must be in sorted order. For a merge with summing, the
records in each input file must be presummed as well as
presorted.

e If you do not specify any SMP$FROM _FILE or
SMP$FROM _FILES calls in the specification, records to
be sorted or merged are read from the file OLD unless an
owncode 1 procedure supplies records. However, file OLD is
not assumed to exist and is not created by default if an
owncode 1 procedure has been supplied.

Sort/Merge Procedure Calls II-2-5

SMP$FROM_FILE and SMP$FROM_FILES

Remarks e Specifying the file SNULL or an empty FROM file, both

(Contd) without an owncode 1 procedure specified, results in a null ‘
sort or merge. A null sort or merge has no records sorted or
merged.

e Sort/Merge input files can have either sequential or
indexed-sequential file organization and either ‘
variable-length (V) or fixed-length (F) record type.

If an input file is an indexed-sequential file, its primary
key must be embedded. If the primary key is nonembedded,
Sort/Merge issues a fatal error and terminates.

II-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMPS$TO_FILE

SMPS$TO_FILE

. Purpose Specifies the file to which sorted or merged records are written
if records are left after owncode procedure processing.

Format SMPS$TO_FILE (file_name, status);

‘ Parameters file_name: string(*)

Local file to which records are written. The parameter must be
a string or string variable specifying the name. Sort/Merge
treats lowercase letters as being equal to uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks: L

Revision B

Sort/Merge closes the file when it completes the sort or
merge.

If a SMP$TO _FILE procedure is not called, records are
written to the file NEW, an owncode 3 procedure can
process all records, or records are written to file NEW, as
changed by an owncode procedure. However, file NEW is
not created by default if an owncode 3 procedure has been
supplied. The file attributes are the NOS/VE defaults.

The Sort/Merge output (SMP$TO_FILE) file can have
either sequential or indexed-sequential file organization
and either variable-length (V) or fixed-length (F) record
type.

If the output file is an indexed-sequential file, its primary
key must be embedded. If the primary key is nonembedded,
Sort/Merge issues a fatal error and terminates.

Also, if the output file is an indexed-sequential file, the
major sort key must be the primary key defined for the
output file. The input records cannot have equal major sort
key values because the primary-key values for the output
file must be unique.

Sort/Merge Procedure Calls II-2-7

SMP$TO_FILE

Remarks e If the output file is an indexed-sequential file,
(Contd) Sort/Merge checks the key _position, key_length, and key _ .
type file attributes.

- If the major sort key position does not match the key _
position attribute value, Sort/Merge issues a fatal error

and terminates. .

- If the major sort key length does not match the key _
length attribute value, Sort/Merge issues a warning
error and changes the major sort key length to match
the primary-key length.

- If the major sort key type does not match the key_type
attribute value, Sort/Merge issues a warning error. It
also changes the major sort key type if the key_type
attribute specifies uncollated or integer keys. (It does not
issue a warning or change the key type if the key _type
attribute specifies collated keys.)

- For uncollated keys, the major sort key type is
changed to ASCII.

- For integer keys, the major sort key type is changed
to INTEGER.

To read about indexed-sequential file attributes, see part I ‘
of this manual.

® [I-2-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$KEY

SMPS$SKEY
‘ Purpose Specifies a single key field for the sort or merge.
Format SMPSKEY (first, length, kind, ad, status);

. Parameters first: integer

First byte or bit of the key field. Bytes or bits in a record are
numbered from the left, beginning with 1.

length: integer
Number of bytes or bits in the field.

kind: string(*)

Kind of data in the key. For character data, the parameter
specifies the name of a collating sequence; for numeric data, it
specifies the name of a numeric data format. Sort/Merge
treats uppercase letters as being equal to lowercase letters.

ad: char

Sort order; A or a for ascending, D or d for descending.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
. procedure completion status.

Remarks ® You must specify all four parameters; there are no default
values.

® The parameters first and length refer to bytes unless the
key type is BINARY_BITS or INTEGER_BITS.

® You can call the SMP$KEY procedure as many as 106
times during a sort or merge to specify multiple sort keys.

The significance of multiple keys corresponds to the order
in which the keys are defined. Output records are sorted or
merged according to the key field described by the first
SMPS$KEY procedure called, then according to the key field
described by the second SMP$KEY procedure called, and
S0 on.

The total number of key characters must be no more than
1,023 eight-bit bytes. Key fields cannot overlap one

‘ another or a sum field and must be within the minimum
record length.

Revision B Sort/Merge Procedure Calls [1-2-9

SMP$KEY

Remarks e If the SMP$KEY procedure is not called, the following

(Contd) assumptions are made: the first byte is 1, the key length is .
the smallest minimum record length of any of the input
files, the key type is the ASCII collating sequence, and the
sort order is ascending.

® A warning error is issued if a key field contains invalid .
data. The warning error results in the following actions:

1. The record is written to the exception records file if an
exception records file was specified.

2. The record is deleted from the sort or merge if an
exception file was specified. If an exception records file
was not specified, the record remains in the sort or
merge, but its place in the sort order is undefined.

3. A diagnostic message is issued, as controlled by the list
options specification.

4. The sort or merge continues normally.

e If the output (SMP$TO_FILE) file is an indexed-sequential
file, the major sort key must be the embedded primary key
defined for the output file. For details, see the SMP$TO _
FILE procedure description. .

II-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$DEFINE_USER_COLLATING_TABLE

SMPS$SDEFINE_USER_COLLATING_TABLE

Purpose

Format

. Parameters

Remarks
Revision B

Specifies a user-defined collation table.

SMP$DEFINE_USER_COLLATING_TABLE
(collating_sequence_name, weight_table, status);

collating_sequence_name: string(*)

Name you choose to call the collating sequence produced by
the collation table. This name is the name specified in a key
field definition. Sort/Merge treats lowercase letters as being
equal to uppercase letters.

weight_table: amt$collate_table

Array defining a collation table. The array has 256 elements;
each element is an integer from 0 through 255 defining the
collation weight of the corresponding ASCII character code.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

e A sort or merge specification can include more than one
SMP$DEFINE_USER_COLLATING _TABLE call.

e The following is an example of the declaration and
initialization of a weight_table array. (It defines the
predefined collating sequence OSV$DISPLLAY64 _
FOLDED.)

VAR OSV$DISPLAY64_FOLDED: [H#GATE,XDCL,READ]

AMT$COLLATE_TABLE:=

[rep 33 of 45,
54, 52, 48, 43, 51, 55, 56, 41, 42, 39, 37, 46,
38, 47, 40, 27, 28, 29, 30, 31, 32, 33, 34, 35,
3, 0, 63, 58, 44,59, 57,60, 1, 2, 3, 4,
5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 49, 61,
50, 62, 53, 60, 1, 2, 3, &4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 49, 61, 50, 62,
rep 129 of 45];

For more information on collation tables, see appendix D.

e The collating sequence name specified on the call cannot
be the name of a predefined collating sequence or another
collating sequence you have already defined for the sort or
merge.

Sort/Merge Procedure Calls II-2-11

SMP$ERROR _FILE

SMPS$ERROR_FILE

Purpose Specifies the file to which diagnostic messages are written. .
Format SMP$SERROR_FILE (file_name, status);
Parameters file_name: string(*) ‘

Local file name of the error file.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e Sort/Merge does not rewind the error file before or after it
uses it.

® The file is written in V-type record format. If you specify
the file SNULL with the SMPSERROR _FILE procedure,
diagnostic messages are not written.

e If you specify the same file for the listing file and for the
error file, each error diagnostic message is written only
once, not twice as it would be if the listing file and the error
file were different and the messages were written to each
file.

e In a batch job, both $LIST and $ERRORS are connected to ‘
OUTPUT. With $LIST and $SERRORS connected to the
same file each error message is printed twice consecutively.
To alleviate this situation you should always set one of the
files to a nondefault value, using a value other than
OUTPUT.

o If the SMPSERROR_FILE procedure is not called, errors
are written to file SERRORS.

II-2-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

‘ Parameters

SMPS$SERROR_LEVEL

Purpose

Format

Remarks

Revision B

SMP$ERROR_LEVEL

Specifies the error level to be reported on the error file.

SMP$SERROR_LEVEL (limit’, status);

limit: string(*)

Alphabetic character enclosed in apostrophes or a string
variable containing the character (see table 1I-2-2).

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

® An error can be one of the following levels:

Informational

Warning

Fatal

Catastrophic

An informational diagnostic results from
a usage that is syntactically correct but
questionable.

A warning diagnostic results when
Sort/Merge finds an error but recovers
by making assumptions about your
attempt.

A fatal diagnostic results when
Sort/Merge cannot resolve an error.
Sort/Merge treats error severity ERROR
as a fatal error.

A catastrophic error causes immediate
Sort/Merge termination.

e The error levels that you can select are shown in table
II-2-2. You can specify the alphabetic character enclosed
in apostrophes in uppercase or lowercase letters. For
example, if you specify W or w, any warning, fatal, and
catastrophic error messages are reported.

e Errors are written to the file specified by the
SMP$ERROR_FILE procedure. If the SMPSERROR _
LEVEL procedure is not called, all errors are reported,
regardless of severity.

Sort/Merge Procedure Calls II-2-13

SMP$ERROR _LEVEL

Table II-2-2. Error Level Specification Using the SMPSERROR _

LEVEL Parameter .
Error Level Errors Reported
T or’t’ Informational, warning, fatal, and catastrophic .
T’ or’t’ (This is a nonstandard value and its use is not
recommended)
"W’ or 'w’ Warning, fatal, and catastrophic
F’or’f Fatal and catastrophic
'C’or’c Catastrophic
"NONE’ or ’none’ None

I 11-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMPSESTIMATED _NUMBER_RECORDS

SMPSESTIMATED_NUMBER_RECORDS

Purpose Provided for compatibility with NOS Sort/Merge 5; however,
NOS/VE Sort/Merge does not use the specified value.

Format SMPSESTIMATED_NUMBER_RECORDS (value,
status);

Parameters value: integer
Integer value indicating the estimated number of records to be
sorted. The value can be from 1 through 16,777,215.
status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Revision B Sort/Merge Procedure Calls II-2-15 I

SMP$EXCEPTION_RECORDS_FILE

SMPSEXCEPTION_RECORDS_FILE

Purpose Specifies the file to which invalid records are written. .
Format SMPSEXCEPTION_RECORDS_FILE (file_name,

status);
Parameters file_name: string(*) .

Local file to which invalid records are written. The file name
cannot be the same file name specified by the SMP$TO _FILE
procedure. Sort/Merge converts the file name to all uppercase
letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e If the SMPSEXCEPTION _RECORDS_FILE call specifies
the $NULL file, Sort/Merge deletes all exception records. It
does not write the exception records to an exception records
file or to the output file.

e The records written to the exception records file include:
- Records containing invalid key or sum field data

- Records that caused an arithmetic overflow or ‘
underflow when their sum fields were summed.

- Out-of-order merge input records if merge order
checking was requested by an SMP$VERIFY call.

- Records for which the system procedure AMP$PUT _
NEXT returned an error when it attempted to write the
record to the output (TO) file.

® The records in the exception file are deleted from the sort or
merge. A summary of records written to the exception is
printed in the error file named by the SMPSERROR_FILE
procedure call and in the list file.

e If you omit the SMPSEXCEPTION_RECORDS_FILE
procedure call, Sort/Merge writes the invalid records to the
output file. The invalid records are not written in a defined
order.

@® 11-2.16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMPS$LIST _FILE

SMPSLIST_FILE

. Purpose Specifies the name of the list file.
Format SMPSLIST_FILE (file_name, status);

. Parameters file_name: string(*)
Local file name of the listing file.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e Listing information includes the Sort/Merge version and
level numbers, time and date, error messages, and
statistics such as the number of records sorted or merged.
If the SMPS$LIST _FILE procedure is not called, the default
list file is $LIST.

o If you specify the same file for the list file and for the error
file, each error diagnostic message is written only once, not
twice as it would be if the listing file and the error file were
different and the messages were written to each file.

e In a batch job, both $LIST and $ERRORS are connected to
‘ OUTPUT. With $LIST and $ERRORS connected to the
same file each error message is printed twice consecutively.
To alleviate this situation you should always set one of the
files to a nondefault value, using a value other than
OUTPUT.

Revision B Sort/Merge Procedure Calls II-2-17

SMP$LIST _OPTION

SMPSLIST_OPTION
Purpose Determines the type of information written to the listing file.
Format SMPSLIST_OPTION (option, status);

Parameters option: string(*¥)

Value indicating the listing information requested:

OFF

NONE
S

DE

MS

No additional information is to be written to
the listing file.

Same as the OFF keyword.

Although it is a valid keyword, it has no
meaning for this CYBIL procedure call. (It is
meaningful on the SORT or MERGE command
parameter.)

Detailed exception information. A message is
written for each occurrence that causes a
record to be written to the exception records
file.

The DE keyword is valid only if you specify an
exception records file; otherwise, an
informational error message is issued.

If you omit the DE keyword, messages are
written only once per key, sum fields, or file
that causes records to be written to the
exception records file.

Record statistics for the records sorted or
merged. The statistics are from the result
array; a message is written for each element of
the array except for the first. Table 1I-2-1 lists
the result array elements.

Merge statistics for the records merged.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

11-2-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMPS$LIST_OPTION

Remarks ® The minimum information Sort/Merge writes to the listing
. file is the page heading, error messages, the exception
records file summary, and the number of records sorted or
merged.

® You can specify only one list option with each SMP$LIST _
‘ OPTION procedure call, but the procedure can be called
more than once.

e If you do not call the SMP$LIST _OPTION procedure, the
list option used is S.

Revision B Sort/Merge Procedure Calls II-2-18.1 '

SMP$LOAD_COLLATING_TABLE

SMP$SLOAD_COLLATING_TABLE

Purpose Loads a collation table, that is a weight table that defines a
collating sequence. The table may be a NOS/VE predefined
collation table or a user-defined collation table in an object
library.

Format SMP$LOAD_COLLATING_TABLE (collating _
sequence_name, weight_table_name, status);
Parameters collating_sequence_name: string(*)

Name you choose to call the collating sequence produced by
the collation table. This name is the name specified in a key
field definition. Sort/Merge treats lowercase letters as being
equal to uppercase letters.

l weight_table_name: string(*)

Name of a predefined collation table or an object library entry
point defining a collating sequence. Sort/Merge treats
lowercase letters as being equal to uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e A sort or merge specification can include more than one
SMP$LOAD_USER_COLLATING_TABLE call.

o The weight table must be loadable by PMP$LOAD.
For more information on collation tables, see appendix D.

e Your collating sequence name cannot be the name of a
predefined collating sequence or the name of a collating
sequence you have already defined for the sort or merge.

11-2-18.2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

SMP$LOAD_COLLATING_TABLE

e NOS/VE supplies 11 predefined collation tables. The
following is a list of the predefined collation tables for
these collating sequences:

Collating Sequences Predefined Collation
Table

CYBER 170 FTN5 default OSV$ASCII6_FOLDED and
OSVS$ASCII6 _STRICT

CYBER 170 COBOL5 OSV$COBOL6_FOLDED
default and OSV$COBOL6_STRICT

CYBER 170 63-character OSV$DISPLAY63_FOLDED
display code and
OSV$DISPLAY63_STRICT

CYBER 170 64-character OSV3$DISPLAY64_FOLDED

display code and
OSV$DISPLAY64_STRICT

Full EBCDIC OSVS$EBCDIC

EBCDIC 6-bit subset OSV$EBCDIC_FOLDED

and OSVSEBCDIC_STRICT

e For more information on using and creating collation
tables, see appendix D.

Sort/Merge Procedure Calls 1I-2-18.3 I

SMP$OWNCODE _FIXED_RECORD_LENGTH

SMP$OWNCODE_FIXED_RECORD_LENGTH

Purpose Specifies the number of characters in fixed-length records
entering the sort or merge from an owncode routine.

Format SMP$OWNCODE _FIXED_RECORD_LENGTH (value,
status);

Parameters value: integer

Fixed record length in bytes of all records supplied by any
owncode procedure; maximum value is 65,535 bytes.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e The integer you specify is the exact number of bytes in
each record; a fatal error results if a record entering the
sort from an owncode routine does not have the exact
number of bytes.

e Ifthe SMPSOWNCODE _FIXED_RECORD_LENGTH
procedure is not called, records entering the sort from an
owncode routine can be no longer than the longest allowed
input or output record.

e If the sort has no input or output files (records to be sorted
are supplied by an owncode routine and sorted records are
processed by an owncode routine), you must specify one of
the following procedures or else a fatal error results:

SMP$OWNCODE_FIXED_RECORD_LENGTH
SMP$OWNCODE_MAX_RECORD_LENGTH

® You cannot call both the SMPSOWNCODE _FIXED _
RECORD _LENGTH procedure and the
SMP$OWNCODE_MAX_RECORD_LENGTH procedure
for the same sort.

I 11-2-18.4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$OWNCODE_MAX_RECORD_LENGTH

. SMP$OWNCODE_MAX_RECORD_LENGTH

Purpose Specifies the maximum length of any record entering the sort
or merge from an owncode routine.

‘ Format SMP$OWNCODE_MAX_RECORD_LENGTH (value,
status);

Parameters value: integer
Maximum record length in bytes of any record supplied by
any owncode procedure; maximum value is 65,535 bytes.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks [

Revision A

The SMP$OWNCODE_FIXED_RECORD_LENGTH
procedure is recommended if all records entering the sort
from an owncode routine are the same length.

The SMPSOWNCODE_MAX_RECORD_LENGTH
procedure does not have to be called if the sort has an input
or output file with a maximum record length at least as
long as the record length specified by this procedure.

If the SMPSOWNCODE_MAX_RECORD_LENGTH
procedure is not called, records entering the sort from an
owncode procedure can be no longer than the longest
allowed input or output record.

If the sort has no input or output files (records to be sorted
are supplied by an owncode routine and sorted records are
processed by an owncode routine), you must specify one of
these procedures or else a fatal error results:

SMP$OWNCODE_FIXED_RECORD_LENGTH
SMP$OWNCODE_MAX_RECORD_LENGTH.

You cannot call both the SMPSOWNCODE _FIXED _
RECORD_LENGTH procedure and the
SMP$OWNCODE_MAX_RECORD_LENGTH procedure
for the same sort.

Sort/Merge Procedure Calls II-2-19

SMP$OWNCODE_PROCEDURE _n

SMP$OWNCODE_PROCEDURE_n

Purpose Specifies an owncode routine to be executed each time a
certain event occurs during the sort or merge.

Formats SMP$OWNCODE_PROCEDURE_1
(Cprocedure_name’, status);

SMP$OWNCODE_PROCEDURE_2
(Cprocedure_name’, status);

SMP$OWNCODE_PROCEDURE_3
(’procedure_name’, status);

SMP$OWNCODE_PROCEDURE_4
(Cprocedure_name’, status);

SMP$OWNCODE_PROCEDURE_5
(Cprocedure_name’, status);

Parameters procedure_name: string(*)
Owncode procedure name; 1 to 31 uppercase letters, digits, or
special characters $ # @ _, beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks ® The procedure name is the name of the owncode routine. If
you enter an owncode routine name in lowercase letters,
Sort/Merge will not convert the name to uppercase letters.
Use uppercase letters to name a routine.

e Sort/Merge loads the owncode procedures before it begins
the sort or merge.

o If the SMPSOWNCODE _PROCEDURE _n procedure is
not called, no owncode routine is executed.

o Owncode routines are described in detail in chapter 3.

® You cannot specify both the SMPSOWNCODE _
PROCEDURE_5 and SMP$SUM procedure calls for the
same sort or merge.

® You cannot specify an owncode 1 or 2 procedure for a
merge.

11-2-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$RETAIN_ORIGINAL_ORDER

SMPS$SRETAIN_ORIGINAL_ORDER

Purpose

Format

Parameters

Remarks

Revision A

Specifies that records with equal sort keys are output in the
same order as they are input.

SMP$RETAIN_ORIGINAL_ORDER (option’, status);

option: string (*)
Indicates whether the input order is kept.

YESorY Keep the input order.
NOorN Do not necessarily keep the input order.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

e If the option is YES (or Y), and you specify more than one
sort or merge input file with the SMP$FROM _FILE or
SMP$FROM _FILES procedure, the order in which you
specify the input files is the order in which records with
equal keys are output.

e Ifthe SMPSRETAIN_ORIGINAL_ORDER procedure is
not called, records with equal keys can be output in either
order.

Sort/Merge Procedure Calls II-2-21

SMP$COLLATING _x

SMP$COLLATING_x

Execution of the SMP$COLLATING _x procedures allow you to define your
own collating sequence. A collating sequence specifies the sort or merge order
for character data. You must define all 256 characters for the collating
sequence or use the SMP$COLLATING_REMAINDER procedure. A
collating sequence consists of a series of value steps from low value to high
value. Each value step consists of at least one character representation.
When a value step contains more than one character, all characters that are
named within the step are collated equally.

A sequence of SMP$COLLATING_x procedures defines your collating
sequence. Your collating sequence definition starts with the
SMP$COLLATING_NAME procedure and ends by any procedure other
than SMP$COLLATING_NAME, SMP$COLLATING_CHARACTERS,
SMP$COLLATING_REMAINDER, or SMP$COLLATING_ALTER. You
can define as many as 100 collating sequences by specifying a separate
series of SMP$COLLATING_x procedures for each collating sequence.

SMP$COLLATING_NAME

Purpose Signals the start of your collating sequence definition and
specifies the name of your collating sequence.

Format SMP$COLLATING_NAME (’name’, status);

Parameters name: string(*)
Your collating sequence name, 1 through 31 characters. The
name must be a quoted literal specifying the sequence name.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks ® Your collating sequence name cannot be the same as the
predefined collating sequence names and cannot be the
same as a collating sequence you have already defined.
Sort/Merge converts your sequence name to uppercase
letters.

11-2-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

. Remarks
(Contd)

SMP$COLLATING _x

e Your collating sequence name is used as the key type in the
SMPS$KEY procedure call when records are sorted or
merged according to your collating sequence. For example,
the SMP$COLLATING_NAME procedure call shown
below names a collating sequence.

SMP$COLLATING_NAME ('mysequence’, status);

The following call defines a key field that uses the
user-defined collating sequence MYSEQUENCE:

SMP$KEY (1, 10, ’'mysequence’, ’a’, status);

SMP$COLLATING_CHARACTERS

Purpose
Format
Parameters
Remarks
Revision A

Assigns collating positions to the characters in your collating
sequence.

SMP$COLLATING_CHARACTERS (char, status);

char: array [*] of char

One or more characters assigned to the collating position
corresponding to the position of the call within the sequence
of SMP$COLLATING_CHARACTERS (and
SMP$COLLATING_REMAINDER) calls.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

The first SMP$COLLATING_CHARACTERS procedure call
specifies the first value step or range of steps, the second
SMP$COLLATING_CHARACTERS procedure call specifies
the second value step or range of steps, and so on until your
collating sequence is completely defined.

Sort/Merge Procedure Calls I1-2-23

SMP$COLLATING _x

SMP$COLLATING_ALTER

Purpose

Format

Parameters

Determines whether the characters in the value step defined
by the preceding SMP$COLLATING_CHARACTERS call
are altered in the output. If altered, all characters in the value
step are output as the first character in the value step.

SMP$COLLATING_ALTER (option’, status);
option: string(*)

YESorY Alter characters.

NOorN Do not alter characters.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

SMP$COLLATING_REMAINDER

Purpose

Format

Parameters

Defines the position of the remainder value step in the
collating sequence. The remainder value step consists of all
characters that have not been included in value steps defined
by SMP$COLLATING_CHARACTERS calls.

SMPSCOLLATING_REMAINDER (option’, status);
option: string(*)
YES,Y,NOor N

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

I1-2-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$STATUS

SMP$STATUS

Purpose Specifies the name of the program variable in which
Sort/Merge stores the most severe error that occurred during

the sort or merge.
‘ Format SMP$STATUS (variable, status);

Parameters variable: VAR of integer
Name of the integer status for the Sort/Merge.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

Remarks e The error levels that are represented by the variable
returned to the SMP$STATUS procedure are as follows:

Value Error Level
0 No errors
10 Informational
20 Warning
30 Fatal
‘ 40 Catastrophic
For example, if a 30 is returned to the SMP$STATUS

procedure, a fatal error occurred during the sort or merge.

e If you call the SMP$STATUS procedure, Sort/Merge does
not abort if a catastrophic error occurs before any data
records are input. However, if Sort/Merge calls another
product and an unrecoverable error results, an abnormal

job termination does occur. Sort/Merge treats error severity
ERROR as a fatal error.

Revision A

Sort/Merge Procedure Calls II-2-25

SMP$SUM

SMP$SUM

Purpose
Format

Parameters

Remarks

Specifies one or more fields to be summed.
SMP$SUM (first, length, ’stype’, rep, status);

first: integer
First byte or bit of the sum field. (Bytes and bits are counted
from the left, beginning with 1.)

length: integer
Number of bytes or bits in the sum field.

stype: string(*)
Name of a numeric data format.

rep: integer
Number of times the fields should be repeated to the right; a
positive, nonzero integer.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

® The defined sum fields are summed when two records have
equal keys. The records with equal keys are combined into
one new record.

The new record contains the equal keys and the summed
fields. A data field that is not a key or sum field is written
to the new record as a field from one of the old records.

e The location of a sum field is specified as the position as
the first bit or byte in the field. Bits and bytes are
numbered from the left in the record beginning with 1. The
location is a byte position unless the numeric format of the
sum field is BINARY_BITS or INTEGER_BITS.

o The maximum size of the BINARY, BINARY _BITS,
INTEGER, INTEGER_BITS, PACKED, and PACKED _
NS sum fields is one word. The maximum size of
NUMERIC_LO, NUMERIC_LS, NUMERIC_TO,
NUMERIC_TS, NUMERIC_NS, or NUMERIC_FS sum
fields with a nonseparate sign is 17 digits. If the sum fields
have a separate sign, the maximum size is 17 digits plus
one digit for the sign.

11-2-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Remarks
(Contd)

Revision A

SMP$SUM

Sum fields can contain any type of numeric data, except
REAL. Fields containing data in REAL format cannot be
summed. See part II, chapter 1 for a list of the numeric
data formats.

The rep parameter specifies the number of consecutive sum
fields defined by the SMP$SUM call. If the SMP$SUM call
specified more the one field, the fields must be consecutive,
must be the same length, and must contain the same type
of numeric data.

Sum fields cannot overlap one another.

If a sum field contains no data because a record is short,
the sum for that field is undefined.

You can call SMP$SUM more than once for a Sort/Merge
request. You can specify up to 100 sum fields per record.

Sum fields and key fields cannot overlap. That is, the fields
described as sum fields cannot also be key fields.

You cannot specify both the SMP$RETAIN _ORIGINAL_
ORDER and SMP$SUM procedures in the same sort or
merge. If you specify both, a warning error occurs.

You cannot specify both the SMP$SUM and
SMP$OWNCODE_PROCEDURE_5 procedures in the
same sort or merge. If you specify both, a warning error
occurs.

Sort/Merge Procedure Calls II-2-27

SMP$SUM

Remarks
(Contd)

e A fatal error is issued when a sum field contains invalid
data or when an arithmetic overflow or underflow
condition occurs as a result of summing two fields. An
error due to invalid data leaves the contents of the sum
fields undefined; an error due to an arithmetic overflow or
underflow leaves valid data in the sum fields, but it may
not be the original data.

A fatal error results in the following actions:

1

4.

The record or records are written to the exception file if
an exception file was specified. (If the error was due to
invalid data in a sum field, one record is written; if the
error was due to an arithmetic overflow or underflow,
both records are written.)

. The record or records are deleted from the sort or merge

if an exception file was specified. If an exception file
was not specified, the record or records remains in the
sort or merge, but their place in the sort order is
undefined.

. A diagnostic message is issued depending on the list

options specification.

The sort or merge continues normally.

If you do not include an SMP$SUM call in the sequence of
Sort/Merge calls, records with equal key values are not
combined into a single record.

1I-2-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Purpose

‘ Format

Parameters

Remarks

SMP$VERIFY

SMPSVERIFY

Directs Sort/Merge to check that merge input records are in
sorted order.

SMP$VERIFY (option’, status);

option: string(*)
Indicates whether Sort/Merge is to verify the order of the
merge input records.

YESorY Verify record order.
NOor N Do not verify record order.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

e If you omit the SMP$VERIFY call from a merge
specification, Sort/Merge does not verify the record order.

e If you request merge order verification and Sort/Merge
finds a merge input record out-of-order, Sort/Merge issues
a diagnostic message. If an exception file was specified,
Sort/Merge writes the out of order record to the exception
file, deletes the record that is out of order, and continues
merging.

e If you specify an SMP$VERIFY call for a sort, Sort/Merge
issues a warning message but otherwise ignores the call.

SMPS$SEND_SPECIFICATION

Purpose

Format

Parameter

. Remarks

Revision A

Terminates your sort or merge specification and initiates
Sort/Merge processing.

SMP$END_SPECIFICATION (status);

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

The SMP$END_SPECIFICATION procedure must be the
last call in the Sort/Merge call sequence.

Sort/Merge Procedure Calls II-2-29

‘ Owncode Procedures 11-3

Specifying Owncode Proceduresccoieiiieriininannnnnnn.
‘ Owncode Procedure Parameterso,
Owncode 1: Processing Input Recordsooiet.
Owncode 2: Processing Input Filesot
Owncode 3: Processing Output Records
Owncode 4: Processing the OutputFile
Owncode 5: Processing Records With Equal Keys

Owncode Procedure Example,

Owncode Procedures II-3

You can write subprograms to insert, substitute, modify, or delete input and

output records during Sort/Merge processing. Such a subprogram, called an
owncode procedure, is executed each time the sort or merge reaches a certain
point in Sort/Merge processing.

Sort/Merge passes a record to the owncode procedure, which processes the
record. When the record is returned to Sort/Merge from the owncode
procedure, Sort/Merge processes the record according to a code passed by the
owncode procedure.

Owncode procedures can also supply the records to be sorted. When
Sort/Merge is ready for a record, it calls the owncode procedure, which then
passes a record to Sort/Merge.

Specifying Owncode Procedures

An SMPSOWNCODE _PROCEDURE _n call specifies the name of an
owncode procedure Sort/Merge is to use; n is an integer from 1 through 5
that tells Sort/Merge at which point in processing the procedure is executed.

The SMP$OWNCODE_PROCEDURE _n call is described in chapter 2.

Owncode procedures 1 and 2 can be called for a sort only; owncode
procedures 3, 4, and 5 can be called for a sort or a merge.

SMP$SOWNCODE_PROCEDURE _n calls are optional. Each
SMP$OWNCODE_PROCEDURE _n call in the Sort/Merge sequence of calls
must specify a different procedure name.

Use uppercase letters only when specifying a procedure name on an
SMP$OWNCODE_PROCEDURE _n call. Sort/Merge does not convert
lowercase letters in an owncode procedure name to uppercase letters.

You can write an owncode procedure using any NOS/VE programming
language, including FORTRAN (subroutine subprograms), COBOL
(subprograms compiled with COBOL SP=TRUE option), or CYBIL. The
owncode procedure must be compiled and stored as a module in an object
library.

Owncode procedures must either be loaded with the main program or be
loadable from the program library list. To load an owncode procedure,
Sort/Merge calls PMP$LOAD to load the procedure. PMP$LOAD then
searches for the specified owncode procedure name in the directories of the
object libraries in the program library list.

Revision A Owncode Procedures II-3-1

Owncode Procedure Parameters

CYBIL owncode procedures that are loaded with the main program and
referenced with SMPSOWNCODE_PROCEDURE _n procedure calls must be
declared XDCL procedures.

For Sort/Merge to use an object library containing one or more owncode
procedures, the object library file must be in the program library list. To add
a file to the program library list before executing the CYBIL program,
execute a SET_PROGRAM _ATTRIBUTES command.

For detailed information on creating object libraries, see the SCL Object
Code Management Usage manual. The example at the end of this chapter
stores an owncode procedure in an object library.

Owncode Procedure Parameters

Sort/Merge communicates with an owncode procedure via parameters. The
parameters are passed each time Sort/Merge executes the owncode
procedure.

Table II-3-1 summarizes the owncode procedures and the parameters
passed. Some parameters cannot be omitted; see table II-3-1 for the required
parameters.

The parameters passed between Sort/Merge and your owncode procedures
are:

VAR return_code: integer
Code altered by an owncode procedure and returned to Sort/Merge

VAR reca: string (*)
Contents of a record

VAR rla: integer
Record length of a record

VAR recb: string(*)
Contents of a second record (owncode 5 procedure only)

VAR rlb: integer
Record length of a second record (owncode 5 procedure only)

1I-3-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode Procedure Parameters

Table II-3-1. Owncode Procedure Summary

Parameters Passed

Procedure Return_
Type Processing Code reca rla recb rlb Return_code Value

Owncode 1 Input records x x X 0 Sort current record.
1 Delete current record.
2 Insert new record.

3 Terminate input from
current file.

Owncode 2 Input files X X X 0 Begin processing next input
file, if any.

—

Insert new record.

o

Owncode 3 Output records x X x Output current record.

—

Delete current record.
2 Insert new record.
3 Terminate output.

Owncode 4 Output file x x X

o

Sort or merge is complete.

—

Insert new record.

(=]

Owncode 5 Equal keys X b'q X X X Retain both records.

—

Replace both records
with new record.

X = required parameter

The return_code parameter is passed by Sort/Merge to an owncode
procedure as an integer with value 0. The return_code parameter can be
altered by the owncode procedure to the integer value 1, 2, or 3, or the
parameter can be left unchanged. The value returned to Sort/Merge by this
parameter indicates a specific action to be taken by Sort/Merge. A return_
code value that is not defined causes a fatal error. The meanings of the
various return_codes are discussed later in this chapter.

The reca parameter is a variable used to pass the current record; except for
the current record, the contents of reca are undefined. The rla parameter
passes an integer value indicating the number of characters in current record
passed by reca.

The recb and rlb parameters are used only by an owncode 5 procedure; an
owncode 5 procedure processes two records with equal keys. The first record
is in reca, with length rla characters. The recb variable passes the second
record with length rlb characters.

Revision A Owncode Procedures I1I-3-3

Owncode Procedure Parameters

The allowed length of records passed to and from an owncode procedure
depends on how you have specified the record length, as follows:

e If you have specified the SMPSOWNCODE _FIXED_LENGTH procedure,
the number of bytes in the current record must equal the
SMP$OWNCODE _FIXED_LENGTH value.

e Otherwise, the maximum record length is determined as the largest value
of the following:

- The maximum_record_length file attribute values of the input or
output files

- The record length value specified by an SMPSOWNCODE_MAX _
RECORD_LENGTH procedure call.

In this case, the number of bytes in each record can range from 1 through
the maximum record length value.

Either the owncode maximum record length or owncode fixed length must be
specified if there are no input or output files.

An rla or rlb parameter value that does not correspond to a record
specification causes an error.

The contents of the reca, rla, recb, and rlb variables can be altered by an
owncode procedure; the routine can pass a different record back to
Sort/Merge in reca or recb, and the number of characters in the record can be
different.

The record movement from Sort/Merge to an owncode procedure and back to
Sort/Merge is shown below.

Record |~
_ _» cor ~
- ~
s/
/ A\
Owncode
Sort/Merge Routine
\ /
v
N
~ -
~ S—
Record

1I-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 1: Processing Input Records

Owncode 1: Processing Input Records

An SMP$OWNCODE_PROCEDURE _1 procedure call specifies an owncode
1 procedure. Sort/Merge executes an owncode_procedure_1 call each time it
reads an input record.

An owncode 1 procedure is used only with a sort request; specification of an
owncode 1 procedure in a merge request returns a fatal error.

One or More Input Files Specified

If you specify one or more input files or the value $NULL on the
SMP$FROM _FILES or SMP$FROM _FILE procedure call, the owncode 1
procedure is executed after reading each record. The return_code, reca, and
rla parameters are passed to the procedure by Sort/Merge. The return_code
is 0, reca contains the record, and rla is the record length in characters.

After owncode processing of the record, control returns to Sort/Merge, which
processes the record passed back in reca according to the return_code value
set by the owncode 1 procedure. The record passed back to Sort/Merge in
reca can be different from the record originally passed to the procedure.

The return_code value and the associated processing performed by
Sort/Merge can be as follows:

0 The record passed back to Sort/Merge in reca is sorted. The
owncode 1 procedure is executed again with reca as an empty array
and with rla=0.

1 The record passed back to Sort/Merge in reca is deleted.

2 An additional record is inserted into the sort. The record in reca is
entered into the sort, and the owncode 1 procedure is executed again
with reca and rla set to the record that just entered the sort.

3 Input from the current file is terminated. The record in reca and any
remaining records in the file are not sorted. If more input files are
specified, records are read from the next input file. The owncode 1
procedure is executed for each record read from the next file.

Revision A Owncode Procedures 11-35

Owncode 1: Processing Input Records

Input Files Not Specified .

If you do not specify any input files (you omit the the SMP$FROM _FILES

call from the call sequence), the owncode 1 procedure is executed when

Sort/Merge is ready for another record to process. The return_code, reca, and

rla parameters are passed to the procedure by Sort/Merge. The return_code ‘
is 0, reca is an empty array with enough space for the largest record, and rla

is 0.

When control is returned to Sort/Merge from the owncode 1 procedure, the
return_code value and the associated processing performed by Sort/Merge
can be as follows:

0 The record passed back to Sort/Merge in reca is sorted. The
owncode 1 procedure is executed again with reca as an empty array
and with rla=0.

2 An additional record is inserted into the sort. The record in reca is
entered into the sort, and the owncode 1 procedure is executed again
with reca and rla set to the record that just entered the sort.

3 Inputis terminated; anything in reca or rla is ignored.

11-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 2: Processing Input Files

‘ Owncode 2: Processing Input Files

An SMP$OWNCODE _PROCEDURE _2 procedure call specifies an
owncode 2 procedure. Sort/Merge executes the owncode 2 procedure to
process input files.

An owncode 2 procedure is used only with a sort request; specification of an
owncode 2 procedure in a merge request returns a fatal error.

One or More Input Files Specified

If you specify one or more input files or the value $NULL with the
SMP$FROM_FILES or SMP$FROM _FILE procedure call, the owncode 2
procedure is executed after input from a file has terminated. Input terminates
when end-of-partition is found, when end-of-information is found, or when
an owncode 1 procedure passes a return_code value of 3 to Sort/Merge.

The return_code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_code is 0, and reca and rla are passed as a null
record; reca is an empty array, and record length is 0.

When control is returned to Sort/Merge from the owncode 2 procedure, the
return_code value and the associated processing performed by Sort/Merge
can be as follows:

0 Processing of the next input file, if any, begins.

1 An additional record is inserted into the sort after the last record. The
record inserted is the first rla characters in reca, which have been
provided by the procedure. The owncode 2 procedure is executed
again.

Input Files Not Specified

If you do not specify any input files (you omit the the SMP$FROM _FILE
call from the call sequence), the owncode 2 procedure is executed after an
owncode 1 procedure has terminated input.

The return_code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_code is 0, and reca and rla are passed as a null
record.

Revision A Owncode Procedures 11-3-7

Owncode 2: Processing Input Files

When control is returned to Sort/Merge from the owncode 2 procedure, the
return_code value and the associated processing performed by Sort/Merge
can be as follows:

0 Signals the end of input.

1 An additional record is inserted into the sort after the last record. The
record inserted is the first rla characters in reca, which have been
provided by the procedure. The owncode 2 procedure is executed
again.

1I-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 3: Processing Output Records

Owncode 3: Processing Output Records

An SMP$OWNCODE _PROCEDURE _3 procedure call specifies an
owncode 3 procedure. Sort/Merge executes the owncode 3 procedure to
process output records.

Output File Specified

If you specify an output file or the value $NULL with the SMP$TO _FILE
procedure call, the owncode 3 procedure is executed each time a record is
ready to be written to the output file.

The return_code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_code is 0, reca is the output record, and rla is the
record length in characters.

After owncode processing of the record, control returns to Sort/Merge, which
processes the record passed back in reca according to the return_code value
set by the owncode 3 procedure. The return_code value and the associated
processing performed by Sort/Merge can be as follows:

0 The record passed back to Sort/Merge in reca is written to the output
file.

1 The record passed back to Sort/Merge in reca is not written to the
output file.

2 An additional record is written to the output file. The record in reca is
written out, and the owncode 3 procedure is executed again with reca
and rla set to the original record.

3 Output to the file is terminated. The record in reca is not written out.
If an owncode 4 procedure is specified, the procedure is executed;
otherwise, the so<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>