
CYBIL for NOS/VE (5 2)
Keyed-File and Sort/Merge CONTRPL

Interfaces DATA

Usage 60464117

CYBIL for NOS/VE
Keyed-File and Sort/Merge

Interfaces

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464117

Related Manuals

Background (Access as Needed):

L L

SCL SCL SCL
Language System Advanced
Definition Interface File

I
Usage 11- Usage - Management I

Usage

QI 60464013 60464014 60486113

==

CYBIL Manual Set:

L L

CYBIL CYBIL CYBIL
Language File Sequential
Definition Management I and Byte-

I
Usage ,- Usage - Addressable -Files Usage

60464113 :51 60464114 60464116

=

Additional References:

L L

SCL SCL
Source Code

Diagnostic
Messages
for
NOS/VE

IQ]
Management I
Usage

6046431 3 c'5I

Object Code
Management

Usage I
60464413 QI 60464613

~ =

- Indicates the reading sequence. a Indicates an online version of the manual is available.

© 1985 by Control Data Corporation.
All rights reserved.
Print.ed in the Unit.ed States of America.

2 CYBIL Keyed-File and Sort/Merge Interfaces

CYBIL
System
Interface - Usage

60464115

Revision B

Manual History

This revision:

Revision B documents the CYBIL interfaces to AAM 1.1 and Sort/Merge 1.1
for NOS/VE Version 1.1.3 at PSR level 644. It was printed in October, 1985.

This revision documents the new keyed-file interface features: nested files,
write concurrency (locks), and direct-access file organization, and the new
Sort/Merge features: individual procedure declaration decks and
indexed-sequential file support.

Previous
Revision

A

Revision B

System Version/
PSRLevel

1.1.2/630

Product
Version

1.0

Published
Date

March 1985

CYBIL Keyed-File and Sort/Merge Interfaces 3/ 4 e

e Contents

About This Manual .. 7

-Introduction ... Introduction-1

Part I. Keyed-File Interface

Keyed-File Concepts .. 1-1-1
Using the CYBIL Keyed-File Interface 1-2-1
Keyed-File Interface Calls ... 1-3-1
Keyed-File Attributes .. 1-4-1

Part II. Sort/Merge Interface

Introduction to Sort/Merge ... II-1-1
Sort/Merge Procedure Calls ... II-2-1
Owncode Procedures .. II-3-1

Appendixes

Glossary ... A-1
ASCII Character Set . B-1
Constant and Type Declarations . C-1
Collation Tables .. D-1
Common Procedures. E-1

Index .. Index-1

Revision B Contents 5/6 e

About This Manual

This manual describes CONTROL DATA® CYBIL procedure calls that serve
as the interface between the CDC® Network Operating System/Virtual
Environment (NOS/VE) and CYBIL programs. CYBIL is the
implementation language for NOS/VE.

The CYBIL program interface is described in these manuals:

CYBIL File Management
CYBIL Sequential and Byte Addressable Files
CYBIL Keyed-File and Sort/Merge Interfaces
CYBIL System Interface

This manual, CYBIL Keyed-File and Sort/Merge Interfaces Usage,
describes the interfaces that allow CYBIL programs to use keyed files and
the Sort/Merge package.

Audience

This manual is a reference for CYBIL programmers. It assumes that the
reader knows the CYBIL programming language as described in the CYBIL
Language Definition manual.

To use the procedure calls described in this manual, the programmer must
copy decks from a system source library. Although the manual introduction
provides a brief description of the commands required to copy decks, the
complete description is in the SCL Source Code Management manual.

This manual also assumes that the reader is familiar with the NOS/VE
command interface, the System Command Language (SCL). All commands
referenced in this manual are SCL commands. The SCL command syntax is
described in the SCL Language Definition manual; SCL commands are
described in the SCL System Interface and SCL Advanced File Management
manuals.

Revision B About This Manual 7

I

I

Preface

CYBIL Manual Set
This manual belongs to the CYBIL manual set. Besides this manual, the
CYBIL manual set is composed of these manuals:

CYBIL Language Definition

Contains the complete language specification for CYBIL, the NOS/VE
implementation language, and an explaination of the Debug utility as
used with CYBIL.

CYBIL File Management

Describes the procedure calls that interface between a CYBIL program
and the NOS/VE file system. It describes local file management and
the assignment of files to device classes with a chapter describing each
device class. It also describes file attribute definition and file opening
and closing.

CYBIL Sequential and Byte Addressable Files

Describes the procedure calls that allow a CYBIL program to read and
write sequential and byte addressable files. It describes both segment
access and record access.

CYBIL System Interface

Describes system-defined CYBIL procedures that serve as the interface
between a program and non-I/O system capabilities. It describes
program management, condition processing, interstate
communication, and system command language (SCL) calls.

8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Preface

Manual Organization

This manual, CYBIL Keyed-File and Sort/Merge Interfaces, contains:

• An introduction that applies to both part I and part II e • Part I describing the keyed-file interface

• Part II describing the Sort/Merge interface

• Appendixes including:

- Glossary

- ASCII character set listing

- Alphabetical listing of CYBIL constant and type declarations

- Description of how to create and use collation tables and listings of the
NOS/VE predefined collation tables.

- Source listings of the CYBIL procedures used to report status in the
example programs

Conventions

This manual uses these conventions:

boldface

italics

blue

UPPERCASE

lowercase

nonproportional
typeface

number base

Revision A

Denotes the required parts of a format.

Denotes the optional parts of a format.

Denotes user input within interactive session
examples.

In formats, it denotes the parts of the format that
must be entered exactly as shown. In text, names
and identifiers are shown in uppercase.

In formats, it denotes the parts of the format that the
user supplies.

Denotes examples (the nonproportional typeface
simulates computer output). User input is indicated
by blue print, system output by black print.

All numbers are decimal unless otherwise indicated.

About This Manual 9

Preface

I

•

Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

Ordering Manuals
Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Submitting Comments
The last page of this manual is a comment sheet. Please tell us about any
errors you found in this manual and any problems you had using it.

If the comment sheet in this manual has been used, please send your
comments to:

Control Data Corporation
Publications and Graphics Division
P.O. Box 3492
Sunnyvale, California 94088-3492

Please include this information with your comments:

The manual title, publication number, and revision level (for this manual:
I CYBIL Keyed-File and Sort/Merge Interfaces Usage, 60464117 B)

Your system's PSR level (if you know it)

Your name, your company's name and address, your work phone number,
and whether you want a reply

I Also, if you have access to SOLVER, the CDC online facility for reporting
problems, you can use it to submit comments about this manual. When it
prompts you for a product identifier for your report, please specify AAS when
commenting on the keyed-file interface and SM8 when commenting on the
Sort/Merge interface.

10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

How to Use CYBIL Program
Interface Calls

Copying Procedure Decks Into Your Program . 1
Procedure Deck Names .. 2
Expanding Your Program. 2
Executing Your Program .. 2.1

Procedure Calls in Your Program. 3

Status Checking. 4
Exception Condition Information 4

System Naming Convention .. 6

How to Use CYBIL Program
Interface Calls

NOS/VE provides a set of CYBIL procedures, called the program interface,
by which programs can request system services. This manual describes two
parts of the program interface: the keyed-file interface and the Sort/Merge
interface. The rest of the program interface is described in the CYBIL File
Management, CYBIL Sequential and Byte Addressable Files, and CYBIL
System Interface manuals.

Copying Procedure Decks Into Your
Program
The CYBIL procedure declarations for the CYBIL program interface
procedures reside in decks in a system source library. To use a program
interface procedure, you copy the text from the appropriate decks into the
source text of your program. (This process is described in detail in the SCL
Source Code Management manual.)

To copy deck text into your program, embed *COPYC Source Code Utility
(SCU) directives into your program. Each directive is a separate line and the
directive must begin in column one. The directive specifies the name of a
deck to be inserted at that point in the text. For example, the following
directive requests insertion of the AMP$0PEN deck:

*COPYC AMPSOPEN

The deck text is inserted in your program when you execute the Source Code
Utility (SCU) to process the embedded directives as it expands your program.

It is suggested that you embed the *COPYC directives between the
PROCEND and MOD END statements at the end of your program. This is so
that line numbers returned by CYBIL runtime error message do not include
the inserted procedure declaration text. A line number that includes the
inserted text is less useful. For example, if the procedure declarations were
inserted at the beginning of your source code, a message referencing line
number 1270 might refer to line 42 of your source code.

Revision B How to Use CYBIL Program Interface Calls lntroduction-1

I

I

Copying Procedure Decks

Procedure Deck Names

I To use CYBIL program interface calls, you copy a deck for each procedure
call you use. The deck has the same name as the procedure call.

For example, if your program uses the AMP$0PEN, AMP$GET _KEY, and
AMP$CLOSE calls, it must use these three directives:

*COPYC AMPSOPEN
*COPYC AMPSGET_KEY
*COPYC AMPSCLOSE

Expanding Your Program

Before you compile a CYBIL program that uses program interface calls, you
use SCU to expand the program, as follows:

1. You must begin with an existing source library file. If you do not have
one, you can create an empty source library using the CREATE_
SOURCE_LIBRARY command.

2. Start an SCU utility session, specifying a source library file.

3. Create one or more decks containing your program text.

4. Expand the decks containing your program text. Specify these two files as
the alternate base libraries from which SCU copies the program interface A
decks: W

$SYSTEM.CYBIL.OSF$PROGRAM_INTERF ACE
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE

5. End the SCU utility session.

This process gives you the expanded program text that can be compiled.

The following is a minimal command sequence that performs the preceding
steps (numbered 1 through 5). It uses only temporary files and assumes your
program text is on file $USER.PROGRAM_ TEXT. (/, sci, and sc../ are
system prompts; you do not enter them.)

1. /create_source_Library result=temporary_Library

2. /scu base=temporary_Library

3. sc/create_deck deck=temporary_deck
sc •• /modification=temporary_modification source=Suser.program_text ~

4. sc/expand_deck deck=temporary_deck •• ~
sc •• /alternate_base=($system.cybil.osf$program_interface,
sc •• /$system.common.psf$external_interface_source)

5. sc/quit write_Library=no

Introduction·2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Copying Procedure Decks

The EXP AND _DECK subcommand writes the expanded program text on
file COMPILE. You could next compile the expanded program text with a
command such as this:

/cybil input=compile List=Listing List_options=Cr, a)

The CYBIL command is described in the CYBIL Language Definition
manual. For more information on source libraries and source text expansion,
see the SCL Source Code Management manual.

Executing Your Program

When the compiled program is a CYBIL program containing any of the calls
described in this manual, you must add an object library to the program
library list before executing the program. The object library file to be added
to the list is as follows:

Keyed-file interface calls: $LOCAL.AAF$44D _LIBRARY

Sort/Merge interface calls: $LOCAL.SMF$LIBRARY

This step is required so that modules can be loaded from the object libraries.

The commands that can add an object library to the program library list are
described in the SCL Object Code Management manual. (If program
execution is initiated within another CYBIL program, a CYBIL call can add
the required object library to the program library list as described in the
CYBIL System Interface manual.)

For example, the following SET _PROGRAM_ATTRIBUTES command
adds both object libraries to the program library list; the LGO command
executes the object modules on file LGO:

set_program_attributes, ••
add_Libraries=C$Local.aaf$44d_Library, Slocal.smfSLibrary)

Lgo

The following EXECUTE_ TASK command performs the same operations as
the preceding two commands:

execute_task, file=Lgo,
Libraries=C$Local.aaf$44d_Library, $Local.smf$Library)

Revision B How to Use CYBIL Program Interface Calls Introduction-2.1/2.2 e

Procedure Calls in Your Program

9 Procedure Calls in Your Program

•
A call to a program int.erface procedure has the same format as any other
CYBIL procedure call. It consists of the procedure name followed by a
paramet.er list enclosed in parentheses and t.erminat.ed by a semicolon. For
example, this is a call to open a file:

AMPSOPEN (lfn, AMCSRECORD_ACCESS, NIL, fid, status >;

NOTE

You cannot omit paramet.ers in a procedure call. You must specify a value (or
a variable containing an appropriat;e value) for each paramet.er in the
procedure call format. The paramet.er values must be specified in the order
shown in the call format.

The CYBIL compiler performs type checking on all paramet.er values. The
type of each paramet.er value must conform to the type specified for the
paramet.er in the procedure declaration.

The paramet.er type is given in the paramet.er description. For example,
consider this paramet.er description:

status: VAR of ost,$status

Status variable in which the completion status is returned.

This paramet.er description describes the status paramet.er. The words VAR
OF indicat;e that it is a reference paramet.er, meaning that the procedure
returns a value to the caller in the specified variable. The paramet.er type is
OST$STATUS.

The CYBIL type declarations for the calls described in this manual are listed
in alphabetical order in appendix C.

Revision A How to Use CYBIL Program Interface Calls lntroduction-3

Status Checking

Status Checking

The last parameter on every program interface call is the status parameter.
Yoamust specify a status variable (type OST$STATUS) as the last
parameter on a call. When the procedure completes, it returns its completion
status in the specified status variable.

You can specify an error-exit procedure to process errors returned by file
interface procedures. (It does not process Sort/Merge errors.) The error-exit
procedure is specified by the error_exit_name or error_exit_procedure file
attribute.

If an error-exit procedure is specified for an instance of open, a file interface
procedure calls the error-exit procedure when it returns abnormal status. The
abnormal status is passed to the error-exit procedure which, in turn, passes
its completion status to the status variable specified on the call.

An error-exit procedure is effective only while the file is open. It is not
effective for AMP$0PEN or AMP$CLOSE calls. For these calls, and for files
without error-exit procedures, you must check the contents of the status
variable after the call to determine if the call completed successfully.

A status record is returned in the status variable. If the NORMAL field of the
status record is TRUE, the procedure completed normally. If the NORMAL
field is FALSE, the procedure completed abnormally.

For example, these lines show an AMP$0PEN call and the status check
following the call:

AMPSOPEN (lfn, AMCSRECORD_ACCESS, NIL, fid, status >;
IF NOT status.NORMAL THEN

PMPSEXITC status);
IFEND;

For the PMP$EXIT call description and additional information on condition
handling, see the CYBIL System Interface manual. A more complete
example of status variable processing is given by the p#inspect_status_
variable and p#display _status_ variable procedures in appendix E.

Exception Condition Information

•

When the procedure completes abnormally, the procedure returns additional
information about the exception condition (the error) that occurred. The A
following variant fields of the OST$STATUS record return condition W
information when the key field, NORMAL, is FALSE:

lntroduction-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Status Checking

IDENTIFIER

Two-character string identifying the process that detected the error.
These are the process identifiers that could be returned by calls
described in this manual:

AA Keyed-file interface (Advanced Access)

AM Access Method (lower-level input/ output procedure called by
the keyed-file interface)

OS Operating System

SM Sort/Merge

PF Permanent File management

PM Program management

CONDITION

Code that uniquely identifies the exception condition (an integer of
type OST$STATUS_CONDITION). Your program should reference
the exception condition by its condition identifier. (For example,
AAE$KEY _NOT _FOUND is a keyed-file interface condition
identifier.)

Each procedure description lists the condition identifiers of exception
conditions commonly returned by the procedure; the list does not
include all conditions that the procedure can return.

TEXT

Additional information about the condition contained in a string
record of type OST$STRING. The record has two fields:

SIZE The string length in characters (0 through 256)

VALUE The text string

NOTE

The TEXT field does not contain the error message. It contains
items of information that are inserted into the message template for
the exception condition when an error message is formatted. For
more information on message formatting, see the CYBIL System
Interface manual.

The error-exit procedure or your program can also fetch the error severity
level for an exception condition using an OSP$GET _STATUS_SEVERITY
call (as described in the CYBIL System Interface manual).

Revision A How to Use CYBIL Program Interface Calls lntroduction-5

System Naming Convention

System Naming Convention

In general, all CYBIL program interface identifiers follow a system naming
convention as follows:

idx$name

id Two characters identifying the process that uses the identifier.
(These are the same process identifiers returned in the
IDENTIFIER field of the status record.)

x Character indicating the type of CYBIL element identified.
These are the element types:

c Constant
d Declaration of multiple or complex types
e Error condition
f File

lnline text or code
k Keypoint or keyword
m Module
p Procedure
s Section
t Type
v Variable
x Element with XDCL attribute

$ The $ character indicates that CDC defined the identifier.

NOTE

To avoid redefining a CDC identifier, do not use the$ character
in identifiers that you define.

name A string describing the purpose of the element referenced by the
identifier.

For example, the identifier AMP$CREATE_KEY _DEFINITION follows the
naming convention:

• Its process identifier is AM (Access Method).

• It identifies a procedure (P).

• It is a CDC-defined identifier($).

• Its purpose is the creation of an alternate-key definition
(CREATE_KEY _DEFINITION)

lntroduction-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Keyed-File Concepts 1-1

Keyed-File Organizations ... 1-1-1
Indexed-Sequential File Organization 1-1-2

Indexed-Sequential File Structure 1-1-2
Data-Block Split .. 1-1-4
Index Levels .. 1-1-6
Indexed-Sequential Primary Keys 1-1-9

Direct-Access File Organization I-1-10
Direct-Access File Structure 1-1-10
Hashing Procedure ... I-1-13
Direct-Access Primary Keys I-1-14

Alternate Keys ... I-1-15
Alternate-Key Characteristics 1-1-15
The Alternate Index ... I-1-16
Alternate-Key Definition .. I-1-16

Duplicate Key Values .. 1-1-17
Null Suppression ... 1-1-19
Sparse-Key Control .. I-1-20
Concatenated Keys ... 1-1-21
Repeating Groups .. I-1-22

Nested Files .. 1-1-24

Keyed-File Concepts 1-1 I
The CYBIL keyed-file interface is a group of procedure calls that perform
operations on keyed files. A keyed file is a file whose file organization allows
record access by key value.

Keyed files are like sequential and byte-addressable files in that the data in
the files is contained in records.

A record is a collection of data that is read and written as a unit. The record
could contain several fields of data, some of which have a fixed length while
others vary in length. Thus, the records as a whole could have a fixed length
or be variable in length.

For example, a record could contain three data items of different types: an
integer, a floating point number, and a string of characters. To write a
record, a program writes all three data items together as a record; when the
record is later read, all three data items are delivered to the program.

The records in a sequential or byte-addressable file are stored as a simple
sequence. The records in a keyed file are stored within a file structure as
described in the following sections.

9 Keyed-File Organizations

A file is a keyed file if its file_organization attribute is either indexed­
sequential or direct-access. A keyed-file organization allows you to read any
record in the file directly by specifying its key value. The key value for a
record is determined when the record is written to the file.

To allow you to access each record by a key value, the file organization must
relate each key value to the location of the record in the file. The keyed-file
interface performs all processing required to relate a key value to a record
location; the user does not specify how this is done beyond choosing the file
organization. The method of relating a key value to a record location differs
for each keyed-file organization as described in the following sections.

Revision B Keyed-File Concepts 1-1-1

I

I

I

Indexed-Sequential File Organization

Indexed-Sequential File Organization

The indexed-sequential file organization allows content addressing of
records; that is, you can directly access a record by the contents of one or
more fields of data in the record. The fields of data by which a record is
addressed are its key fields, and the contents of those fields are its key
values.

An indexed-sequential file always has a primary key. (It can also have one
or more alternate keys as described in the Alternate Keys section of this
chapter.)

Each primary-key value is unique within the file; there can be no duplicate
primary-key values in a file.

The indexed-sequential file organization is used only when you can assign a
unique value to each record stored in the file. This unique value is usually a
field of data within the record (an embedded key), although it can be a value
assigned to the record and not included in the record data (a nonembedded
key).

For example, the primary key for an employee file could be the employee's
name. However, because two employees could have the same name, it is
better to assign a unique identification number to each employee and use
that number as the primary key for the file.

The indexed-sequential file organization should be used if a requirement
exists to read file records both sequentially and randomly. For example, the
records in an employee file could be read sequentially to produce a listing of
all employees or read randomly to update individual records.

When an indexed-sequential file is read sequentially, its records are accessed
in ascending order by key value. The order is kept even when new records are
added to the file. For example, if an employee file is read sequentially using
its primary key (the employee identification number), the records are read in
ascending order by their identification number.

Indexed-Sequential File Structure

This section gives a general description of the indexed-sequential structure.
You can use indexed-sequential files without knowing their structure.
However, if you understand the indexed-sequential structure and how it
grows, you can create more efficient indexed-sequential files by specifying
appropriate values for structural parameters. e
The internal structure of an indexed-sequential file is designed to provide
both random and sequential access to the data records in the file. File space
is divided into blocks, all the same size.

I 1-1-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Organization

A block contains a block header and one of the following:

Internal tables
Data records (a data block)
Index records (an index block)

Each index record points to a data block. The index record contains the
location of the data block and the range of key values of the data records
stored in that block.

You can display the contents of all components of an indexed-sequential file,
the internal tables and index blocks as well as the data blocks, using the
DISPIA Y _KEYED _FILE command described in the SCL Advanced File
Management Usage manual.

As you might expect, the actual internal index mechanism is complex. The
simplified examples in this section, however, provide the level of detail you
need to know in order to use indexed-sequential files.

To see how an index works, let's look at a very small file that contains one
index block and two data blocks. As shown in figure I-1-1, the index block
contains two index records. (The index records contain key values 1and5.)
Each index record points to a data block in the file.

Index Block

5

Data Block

2

4

Data Block

5

6

Figure I-1-1. Minimal Indexed-Sequential Structure

Revision B Keyed-File Concepts I-1-3 I

Indexed-Sequential File Organization

Let's suppose you request to read randomly the record with key value 6.
When the record is read, these steps are performed:

1. The index records are searched to find the index record whose range of
key values includes the key value 6.

2. After the correct index record (the second one) is found, the search for the e
record continues with the data block to which the second index record
points.

3. The second data block is searched for the record with key value 6. When
the record is found, its data is returned to the requestor.

Next, suppose you request that all records in the file shown in figure 1-1-1 be
read sequentially. These steps are performed:

1. The first index record is read to find the first data block.

2. The records from the first data block are read in order.

3. The second index record is read to find the second data block.

4. The records from the second data block are read in order.

5. The sequential read ends because there are no more index records and, so,
no more data blocks to read.

This process reads the records in key-value order because both the index
records and the data records are kept in key-value order.

Data-Block Split

Usually, a block has some empty space, called padding, that was left empty
so that additional records could be written later to the block. Suppose, as
shown in figure 1-1-2, that a data block has been filled, a new record is to be
written, and its key value is within the range of key values of the records in
the full data block. For the file structure to be maintained, the data block
must be split.

When a data-block split occurs, records in the data block whose key values
are less than the key value of the new record remain in the existing block. All
records in the existing block that come after the new record are moved to the
newly created block.

The new record is put into either the new block or the existing block, A
depending on the relative amount of empty space in the blocks and the size W
of the new record. If the new record does not fit in either block, another new
block is created and the new record is put into that block.

I I-1-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Before the Data-Block Split:

Keyed File

New Record Index Block

2

After the Data-Block Split:

Keyed File

Index Block

3

Figure 1-1-2. Data-Block Split

Revision B

Indexed-Sequential File Organization

Data Block

3

4

5

6

Data Block

2

Data Block

3

4

5

6

Keyed-File Concepts I-1-5 I

Indexed-Sequential File Organization

Index Levels

As with data blocks, index blocks are also initially created with some empty
space (index-block padding). However, for each new data block created due
to a data-block split, another index record must be created. With the addition
of many data records, the initial index block becomes full. When the index
block is full, the next data-block split causes an index-block split.

As shown in figure I-1-3, when the initial index block splits, it causes the
creation of another index level.

The index levels are numbered from the top down as index level 0, index level
1, and so forth. Index level 0 always has only one index block; it is always
the starting point for an index search.

The index block at an upper level contains an index record for each index
block at the next lower level. For example, the index block at level 0 contains
an index record for each index block at level 1.

A search for a data record requires an index-block search at each index level.
For example, the level-0 search finds the index record that points to the
appropriate level-1 index block. If the file has only two index levels, the level
1 search finds the index record that points to the appropriate data block.

As you can see, the addition of another index level increases the time
required to find an individual data record.

Index levels can be added up to the index-level limit of 15 levels. This sets a
limit on the number of records in the file.

The index-level limit is reached when addition of another record to the file
would require creation of another index level, but 15 index levels already
exist in the file. When this happens, the index-level-overflow flag is set and
no more records can be added to the file.

I I-1-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Before the Index-Block Split:

Keyed File

New Record Index Block

7

8

9

10

Figure 1-1-3. Index-Block Split

Revision B

Indexed-Sequential File Organization

Data Block

Data Block

9

Data Block

2

3

4

6

Data Block

8

Data Block

IO

(Continued)

Keyed-File Concepts 1-1-7 I

Indexed-Sequential File Organization

(Continued)

After the Index-Block Split:

Keyed File

Index Block

6

9

IO

Figure 1-1-3. Index-Block Split

I I-1-8 CYBIL Keyed-File and Sort/Merge Interfaces

Data Block

Data Block

6

Data Block

Data Block

Data Block

IO

Revision B

Indexed-Sequential File Organization

Indexed-Sequential Primary Keys

The primary key for a keyed file is defined when the file is created. The
primary-key value must be unique for each record in the file.

A primary-key definition requires specification of these attributes:

Embedded or nonembedded key (the default is embedded)
Key position (if the key is embedded)
Key length
Key type (the default type is uncollated_key)
Collate-table name (if the key type is collated_key)

A key is embedded if the key value is part of the data in the record. An
embedded key value is returned as part of the record data when the record is
read; a nonembedded key value is not.

The key position in the record must be specified if the key is embedded. The
first byte position in a record is byte 0. If the key is nonembedded, you do not
specify a key position.

You must specify the key length whether the key is embedded or
nonembedded. It indicates the number of bytes in the key.

Key Length

~

Record ! I
Key Position

The key type describes the data in the key. These are the possible key types:

Integer key

Uncollated key

Collated key

The key value is a signed integer; it is sorted in
numerical order.

The key value is a string of characters; it is sorted
byte-by-byte according to the ASCII collating
sequence.

The key value is a string of characters; it is sorted
byte-by-byte according to a collating sequence that
you specify.

If the key is a collated key, you must specify the collating sequence to be
used to sort the key values. The collating sequence is specified by its name.
NOS/VE provides several predefined collating sequences (listed in
appendix E). You can also create your own collating sequence as described in
appendix E.

Revision B Keyed-File Concepts I-1-9

I

Direct-Access File Organization

Direct-Access File Organization

The direct-access file organization is like the indexed-sequential file
organization in its use of a primary key. You define the primary key for the
file when you create the file. It can be a field embedded in the record or a
nonembedded value. Each primary-key value in the file must be unique; the
file can contain no duplicate primary-key values.

Like an indexed-sequential file, a direct-access file can have alternate keys.
An alternate key for a direct-access file is the same as an alternate key for
an indexed-sequential file. Alternate keys are described later in this chapter.

Like indexed-sequential file records, you must specify the primary-key value
when writing or deleting a direct-access file record. Similarly, you must
specify either a primary-key value or an alternate-key value to read a
direct-access file record.

Direct-access and indexed-sequential files differ in the ordering of records in
the file:

• When records are read sequentially from an indexed-sequential file, the
records are returned in order, sorted by primary-key value.

• When records are read sequentially from a direct-access file, the records
are returned unordered.

In general, random record access is faster for the direct-access file
organization than for the indexed-sequential file organization. This is
because the direct-access file organization determines the location of a record
directly from its primary-key value. (In indexed-sequential files, a record can
be found only after a search at each index level.)

Direct-Access File Structure

The direct-access file structure is designed to locate each record directly by
its primary-key value. The primary-key value directly specifies the file block
containing the record.

File space in a direct access file is divided into equal-size blocks. Initially, all
blocks in the file are home blocks (as opposed to overflow blocks).

When a record is written to a direct-access file, its primary-key value is
hashed to produce the number of the home block in which the record is
written. If the home block does not contain enough empty space for the new A
record, the record is written to an overflow block. W

e I-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

Assuming the hashing procedure produces a uniform distribution of numbers
from the primary-key values in the file, the records are uniformly distributed
among the home blocks of the file. Thus, each record can be found by a
single search of its home block without additional searches of overflow
blocks.

You specify the initial number of home blocks when you create the file. By
default, a system hashing procedure is used to distribute the records among
the home blocks although you can provide another hashing procedure for the
file if you like.

As an illustration of a small direct-access file, suppose you define a direct
access file as having five home blocks.

Home
Blocks

0 1 2 3 4

DDDDD
The first record written to the file has primary-key value XYZ. Assume that
hashing of this primary-key value produces the block number 2. The record
is then written in home block 2.

Home
Blocks

0 1 2 3 4

DDLJDD
Assume you want to read the record with primary-key value XYZ. The value
XYZ is hashed and, as before, produces the block number 2. The keyed-file
interface searches for the record with primary-key value XYZ in home block
2. (The records in a block are ordered by primary-key value so each record
can be quickly found.)

Suppose that many records have been written to the file and home block 2
has been filled.

Home
Blocks

Revision B Keyed-File Concepts I-1-11 e

Direct-Access File Organization

At this point, a record is to be written with primary-key value ABC. Hashing A
of the value ABC produces block number 2, but there is insufficient space for W
the record in home block 2 so it is written in an overflow block.

Home
Blocks

Overflow
Block

0

~LJ
2 3 4

lill ~-
Later, to read the record with primary-key value ABC, the primary-key
value is hashed to produce block number 2. Home block 2 is searched for
primary-key value ABC. When it is not found in the home block, the search
continues in the overflow block until the record is found.

An ideal direct-access file structure has these characteristics:

• Sufficient home blocks are allocated and records are uniformly distributed
among the home blocks so as to avoid overflow.

• Each block contains a limited number of records so as to minimize the
search time in each block.

• The number of home blocks is not so large that the file contains excessive
unused space.

These characteristics are determined by the file attribute values specified
when the file is created. You must specify the initial_home_block_count and
can optionally specify the max_block_length and the hashing_procedure_
name attributes. (The attributes are described in chapter I-2.)

One other characteristic to be considered when selecting the number of home
blocks is the loading factor. The loading factor is the percentage of block
space used. To allow for less-than-uniform distribution of records in the
home blocks, the loading factor should be no greater than 90%.

To illustrate, suppose the direct access file is to contain 10,000 80-byte
records (80,000 bytes of record data). Using a block size of 4096 bytes, 20
home blocks would be sufficient if the hashing procedure could guarantee
uniform distribution of the records in the home blocks. This would result in a
loading factor of nearly 98% (80,000 divided by 81,920). However, because
uniform distribution should not be expected, the number of home blocks
allocated should be at least 22 (for a loading factor of 89%). (It is also
recommended that the home block count be a prime number; thus, 23 would
be a better home block count for the file in this example.)

e I-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

Hashing Procedure

The system provides a default hashing procedure named AMP$SYSTEM_
HASHING _PROCEDURE. However, if desired, you may specify your own
hashing procedure that produces a uniform distribution of numbers from the
primary-key values in your file.

The system executes the hashing procedure each time a record is requested
by key value from the direct-access file. The hashing procedure is not stored
with the file so the system must be able to load the procedure each time the
direct-access file is opened.

NOTE

Any ring_attributes value is valid for the object library containing the
hashing procedure. However, in a production environment, you should store
the hashing procedure in a ring 4 object library. This improves performance
because hashing procedures are executed as asynchronous tasks. (Usually,
site personnel maintain the ring 4 object libraries.)

A hashing procedure receives a primary-key value as its input and produces
an integer as its output. It must always produce the same output from a
given input. e A hashing procedure is writt.en in the CYBIL language. It must pass these
parameters:

1. primary-key value: Acell
Variable in which the system passes the location of the primary-key
value to be hashed.

2. key_Length: amtSkey_Length
Integer variable in which the system passes the length in byt.es of the
primary-key value (from 1 through 255).

3. VAR hashed_value: integer
Integer variable in which the hashing procedure stores the hashed
value.

4. VAR status: ostSstatus
Standard NOS/VE status variable in which the hashing procedure
stores its completion status. If the hashing procedure returns an
abnormal status, the keyed-file interface issues the fatal condition
aae$system_error_occurred followed by the status returned by the
hashing procedure.

Revision B Keyed-File Concepts 1-1-13 •

Direct-Access File Organization

The system divides the value it receives from the hashing procedure by the
number of home blocks and uses the remainder as the home block number.
For example, if the number of blocks is 97, it divides the hashed value by 97
and uses the remainder (an integer from 0 through 96) as the home block
number. A more uniform distribution of records is expected if the number of
home blocks is a prime number.

Direct-Access Primary Keys

In general, the primary key of a direct-access file has the same
characteristics as the primary key of an indexed-sequential file. You specify
whether the primary key is embedded or nonembedded, its position (if the
key is embedded), and the key length. However, a key _type attribute value
specified for a direct-access file is ignored; the key_ type attribute for a
direct-access file is always uncollated.

Unlike an indexed-sequential file, sequential access calls to a direct-access
file while the primary-key is selected do not return the file records sorted by
primary-key value. The calls return records according to their physical
location in the direct-access file. Records within each block are ordered
according to the default ASCII collating sequence, but the blocks are not
ordered by primary-key values.

Direct-access file records can be accessed in order if one or more alternate
keys are defined for the file. The alternate index keeps the alternate-key
values in sorted order. Sequential access calls while an alternate key is
selected return records in the order provided by the alternate index.

If appropriate, you could define an alternate key for the same field as an
embedded primary key. In this way, you could access direct-access file
records in primary-key value order.

e I-1-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e

Alternate Keys

Alternate Keys

A record within a keyed file can always be accessed by its primary-key
value. An alternate key provides an additional way to access records.

An alternate key defines a value in the data record by which the record can
be accessed. An alternate key is defined as a field or group of fields in the
record.

Although a program can use alternate keys to read records or to position a
file, alternate keys cannot be used to write, replace, or delete records. The
primary-key value must be used to identify a record to be written, replaced,
or deleted.

Alternate-Key Characteristics

Alternate-key fields can overlap each other and an embedded primary key.
For example, the primary-key field could be bytes 0 through 9 and two
alternate-key fields bytes 0 through 19 and bytes 4 through 14.

Record

0 5

--­Primary Key

10 15

~
Alternate Key I

.............
Alternate Key 2

20 21 25

Unlike a primary-key value, one alternate-key value can be associated with
several records in a file. The reason is that an alternate-key value need not
be unique. The same alternate-key value can occur in several records; for
example, the same job title can be associated with many names, as follows:

Data Records: Hanson Computer Programmer
Jones Computer Programmer
Smith Computer Programmer

Alternate Index: Alternate Key Primary Key
Value Values

Computer Programmer Hanson
Jones
Smith

Revision B Keyed-File Concepts 1-1-15 I

Alternate Keys

A record can contain more than one alternate-key value ifthe alternate key
is defined as a field that repeats in the record; thus, a single record could
contain several alternate-key values. For example, the license numbers of
several cars owned by one person as follows:

Data Record:

Alternate Index:

R. Petty 1 LB AU

Alternate Key
Value

1 LB AU
2ASM451
ELK 592

The Alternate Index

2ASM451 ELK 592

Primary Key
Values

R. Petty
R. Petty
R. Petty

The index for the primary key was described earlier in this chapter. Each
alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an
alternate-key value with the primary-key values of the records containing
that alternate-key value. The list of primary-key values associated with an
alternate-key value is the key list for that alt.ernate-key value.

When you select an alternate key and then specify an alternate-key value,
the system searches for the value in the alternate index. Ifit finds the
alternate-key value, it uses the primary-key values in the key list for the
alternate-key value to access the data records.

When one or more alternate keys are defined for a file, file updates require
more time because the alternate indexes must also be updated. Alternate
keys should be used only when the additional record access capability offsets
the cost of increased time spent for file updates.

Alternate-Key Definition

The attributes of an alternate key are specified by its alternate-key
definition.

These attributes are required to define an alternate-key:

Key name
Key position
Key length

An alternate key has a name so that it can be selected later for use. The
alternate-key position and length define the alternate-key field within the
record.

I I-1-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alt.emate Keys

These optional attributes define how the alternate key is processed:

Key type
Collate table name (if the key type is collated)
Duplicate key values
Null suppression
Sparse-key control
Repeating groups
Concatenated key

The key type of an alternate key determines the order of the alternate-key
values in the alternate index, and therefore, the order in which records are
accessed sequentially when you use the alternate key. The key types for an
alternate key are the same as the key types for the primary key as described
earlier in this chapter.

If the key type is collated, you can explicitly specify a collation table for the
alternate key or use, as the default, the collation table for the primary key (if
the primary key type is collated).

Duplicate Key Values

By default, duplicate values for an alternate key are not allowed. However, if
you want to allow duplicate key values, you can specify whether the records
having the same alternate-key value are accessed ordered by primary key or
in first-in-first-out order.

In a key list ordered by primary key, the primary-key values are stored in
sorted order according to the primary-key type. New values are inserted into
the key list so that the primary-key value order is kept.

In a key list ordered first-in-first-out, the primary-key values are stored in
the key list in the order the values are added to the key list, instead of in
primary-key-value order. New values are always added to the end of the key
list.

Revision B Keyed-File Concepts 1-1-17 I

Alternate Keys

For example, suppose you write three records to the file in this order:

McDarrels
Burger Duke
Willys

Hamburgers
Hamburgers
Hamburgers

The following shows the resulting key list in primary-key order and in
first-in-first-out order:

Alternate
Key Value

Hamburgers

Key Lists

Ordered by
Primary Key

Burger Duke
McDarrels
Willys

First In
First Out

McDarrels
Burger Duke
Willys

Duplicate-Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a record about
to be written to the file, the record is not written to the file and a trivial error
(status AAE$DUPLICATE_ALTERNATE_KEY) is returned.

A trivial error (status AAE$UNEXPECTED _DUP _ENCOUNTERED) also
occurs if a duplicate value is found while a new alternate index is being e
created. However, the record containing the duplicate value cannot be
discarded, because it is already in the file. Subsequent processing depends on
whether incrementing the trivial-error count causes the count to exceed the
trivial-error limit as set by the user.

• If the trivial-error limit is not exceeded, the apply operation redefines the
alternate key being applied to allow duplicates, ordered by primary-key
value, discards the partially built index, and builds the redefined index.

• If the trivial-error limit is reached, the apply operation returns the status
condition AAE$DUPLICATE_KEY _LIMIT and removes all alternate
indexes it has created. (Deleted indexes are not restored.)

In either case, a message describing the action taken is written to the
$ERRORS file.

I I-1-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Null Suppression

By default, if an alternate-key field contains a null value, the null value is
stored as the alternate-key value for the record. The null_suppression
attribute allows you to exclude null values from an alternate index.

Null suppression excludes any record with a null alternate-key value from
the alternate index. Null suppression can save space, access time, and update
time because the index is smaller when null alternate-key values are
excluded. (Null suppression does not remove the null value from the data
record.)

The null value depends on the key type as follows:

Key Type Null Value

Zero
Spaces

Integer
Uncollated
Collated Spaces (before collation)

If null suppression is not specified, records containing a null value in the
alternate-key field are indexed by the null value. The records can later be
accessed by specifying the null value as the alternate-key value.

For example, suppose the spouse's name is defined as an alternate key to a
membership file. Unmarried members would have a null value for the
alternate-key field. Therefore, the key list for the null value lists all
unmarried members. The following shows the alternate index with and
without null suppression:

Without Null Suppression

Spouse's Name

Diana Simmons
Mark Ramsey
Shelly Gable

Revision B

Member's ID

1626736
8273648
4872672
7726184
2673651

With Null Suppression

Spouse's Name

Diana Simmons
Mark Ramsey
Shelly Gable

Member's ID

4872672
2673651
7726184

Keyed-File Concepts 1-1-19 I

Alternate Keys

Sparse-Key Control

You can use sparse-key control to create an alternate index that includes or
excludes records depending on the character in a specific position in the
record.

For example, suppose a student file has a one-character code indicating the
student's class. To get a mailing list for juniors and seniors only, you could
define an alternate index controlled by the class code.

To specify sparse-key control, you specify three values:

Value

Sparse-key control position

Sparse-key control characters

Sparse-key control effect
(Indicates whether the
alternate-key value should be
included or excluded if the
sparse-key character matches)

Example

Position of the class code in the record

Junior and senior class code
characters

Included if the class code indicates a
junior or senior record

Assume that the sparse-key control position is the first character after the A
name field and that the junior and senior class codes are 3 and 4. If the W
following records are copied to the file, the first three records are included in
the alternate index, but not the last record.

Louis Skolnik 4
Gilbert Sullivan 4
ELL iot Wermzer
Judy Manhasset

3
2

The sparse-key control position must be within the minimum record length.
If you specify sparse-key control for an alternate key, the alternate-key field
or fields need not be within the minimum record length.

A nonfatal (trivial) error (status AAE$SPARSE_KEY _BEYOND_EOR) is
returned if both of these conditions are true for a record:

• The character at the sparse_key _control_position indicates that the
record should be included in the alternate index

• The record has no alternate-key value because the record ends before the
alternate-key field

When an apply or write operation detects this error, it does not include the
record in the alternate index. (A write operation does write the record to the
file.)

I I-1-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Concatenated Keys

A concatenated key is an alternate key formed from several fields, or pieces,
in the record. A concatenated key can comprise up to 64 pieces.

The concatenated pieces can be noncontiguous and can be concatenated in
any order. Each piece can be a different key type. All collated-key pieces use
the same collation table.

The first piece you specify is the leftmost piece of the key. You specify it the
same as you specify a nonconcatenated key. The pieces to be concatenated to
the leftmost field are defined by individual records in the optional_attributes
array. The record order in the array specifies the order of the concatenated
pieces.

A concatenated key can use sparse-key control or null suppression or both. A
concatenated key is considered to have a null value if the values in all fields
of the key are null (before collation for collated keys).

For example, suppose you decide to define an alternate key consisting of the
initials of the member's name. The first piece of the key value would be the
first letter of the member's first name, the second piece would be the first
letter of the member's middle name, and the third piece would be the first
letter of the member's last name. Consider this data record:

0 20 40

I Kennedy I John I Fitzgerald

The desired alternate key value is JFK. The concatenated-key pieces could be
defined by the following CYBIL lines. (The second and third pieces are
defined by records in the optional_attributes array.)

First piece (position 20, length 1):

AMPSCREATE_KEY_DEFINITIONC fid, 'initials', 20, 1,
optional_attributes, status>;

Second piece (position 40, length 1):

[AMCSCONCATENATED_KEY_PORTION, [40, 1, AMCSUNCOLLATED_KEYJ J,

Third piece (position 0, length 1):

[AMCSCONCATENATED_KEY_PORTION, [0, 1, AMCSUNCOLLATED_KEY] J,

Revision B Keyed-File Concepts I-1-21 I

Alternate Keys

Repeating Groups

The repeating-groups attribute allows a data record to contain more than
one value for the same alternate key. This allows a primary-key value to be
associated with more than one alternate-key value.

To specify an alternate-key field within a repeating group:

1. Specify the first alternate-key field by its key position, key length, and
key type. All subsequent alternate-key fields have the same length and
type as the first.

2. Specify repeating groups for the alternate key by specifying the repeating
group length: that is, the distance from the beginning of the first instance
of the alternate key to the beginning of the second instance of the
alternate key in the record.

3. Specify the repeating-group count: that is, how many times the alternate
key field repeats in the record.

You can specify that the repeating group repeats a fixed number of times or
that it repeats until the end of the record.

• If the alternate-key field repeats a fixed number of times, all
alternate-key fields must be within the minimum record length.

• If the alternate-key field repeats to the end of the record, the minimum
record length imposes no restriction. The system stores as many
alternate-key values as the record length allows.

Repeating groups cannot be used with concatenated keys or when
duplicate-key values are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports the
member enjoys and his or her years of experience as follows (columns are
counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75 The
Sports field is 10 characters followed by a 2-digit Sports
Experience field

Type: ASCII characters

I 1-1-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

75 87 99 111

I I I I I I
~ ~ ---­
Key Length

Repeating Group Length

Alternate Keys

You could define an alternate key for the Sports values (without the
Sports-Experience values) by the following CYBIL lines. (The first two lines
initialize records in the optional_ attributes array.)

{ Repeating_Group_Length=12, Repeat_to_End_of_Record=true }
[AMCSREPEATING_GROUP, [12, TRUE]],
[AMCSDUPLICATE_KEYS, AMCSORDERED_BY_PRIMARY_KEY],

AMPSCREATE_KEY_DEFINITION(fid, 'sports', 75, 10,
~optional_attributes, status>;

The key list for an alternate-key value would list the identification numbers
of all members that enjoy that sport.

The following shows the primary keys for three records and their contents
from column 75 to the end of the record:

Primary Key

1662876
6166287
0027840

Record Contents Beginning at Column 75

Volleyball02Running 03Basketball02
Bicycling 10Volleyball01
Running 15Running 15Running 15

If these were the only records in the file, the alternate index would appear as
follows:

Alternate-Key Value

Basketbal L
Bicycling
Running
Vol Leyba LL

Primary-Key Values

1662876
6166287
0027840 1662876
1662876 6166287

Notice that the key type is the default, Uncollated_Key, and the
duplicate-key values specification is Ordered_ By _Primary _Key. Thus, each
key list is sorted according to the default ASCII collating sequence.

Notice also, as shown by the Running key list, that each primary-key value
is listed only once in a key list, regardless of the number of times the
alternate-key value occurs in the record.

Revision B Keyed-File Concepts I-1-23 I

Nested Files

Nested Files

A nested file is a file structure defined within a NOS/VE file cycle. It is
recognized and used by the keyed-file interface; it is not recognized or used
by the NOS/VE file system.

The keyed-file interface provides nested files so as to extend the NOS/VE e
limit on the number of files a task can use. All nested files defined in a file
share the same memory segment. This provides effective memory use when
the nested files are much smaller than the segment size limit (232 bytes).

The keyed-file interface creates the initial nested file (named $MAIN _FILE)
when it creates the keyed file. It uses $MAIN_FILE as the default nested file;
other nested files are used only when explicitly selected.

An AMP$CREATE_NESTED_FILE call can create a nested file (in
addition to the default nested file $MAIN _FILE). The call defines the
attributes applicable to the nested file only. These include its:

File organization

Record attributes, including its record type and its minimum and
maximum record lengths

Primary-key attributes, including its key position, key length, key type,
and collation table

Structural attributes applicable to the file organization

All other file attributes apply to all nested files in a keyed file. The
RECORD _LIMIT attribute specifies the maximum number of records in
each nested file. For more information on attributes, see Creating a Keyed
File later in chapter I-2.

Each alternate-key definition applies to only one nested file. To define an
alternate key for a nested file other than the default nested file ($MAIN_
FILE), you first select the nested file and then define the alternate key.
Similarly, to select an alternate key for a nested file other than the default
nested file ($MAIN_FILE), you first select the nested file and then select the
alternate key.

e I-1-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested Files

A task can perform operations only on the currently selected nested file.
However, file position and key selection information for a nested file is not
lost when another nested file is selected. For example, consider this sequence
of events:

1. A task is issuing AMP$GET _NEXT calls to NESTED _FILE_ 1 using
ALTERNATE_KEY _1

2. The task selects and uses NESTED_FILE_2.

3. The task selects NESTED _FILE_ 1 again. It can continue reading records
sequentially from the position it had when it selected NESTED _FILE_2.
The same key, ALTERNATE_KEY_l, remains selected.

The calls to manipulate nested files are described in chapter 1-3. The calls
are:

AMP$CREATE_NESTED _FILE
Defines a nested file

AMP$DELETE_NESTED _FILE
Destroys a nested file

AMP$SELECT _NESTED _FILE
Changes the nested file currently selected

AMP$GET _NESTED _FILE_DEFINITIONS
Returns the nested-file definitions from a keyed file

A CYBIL program demonstrating use of nested-file calls is included at the
end of chapter 1-2.

Revision B Keyed-File Concepts 1-1-25 e

Using the CYBIL Keyed-File
Interface I-2

Creating a Keyed File ... 1-2-1
Setting File Attributes .. 1-2-1

File_ Organization Attribute 1-2-2
Record Attributes .. 1-2-2
Primary-Key Attributes .. 1-2-3
File Structure Attributes 1-2-4
Processing Attributes .. 1-2-8

Writing Records ... 1-2-10
Re-creating a Keyed File ... 1-2-10

Using a Keyed File ... 1-2-12
Positioning a Keyed File ... 1-2-13

Positioning a Direct-Access File 1-2-13
Positioning an Indexed-Sequential File 1-2-13

Reading Records .. 1-2-15
Sequential Access for Indexed-Sequential Files 1-2-15
Sequential Access for Direct-Access Files 1-2-16
Random Access .. 1-2-17

Keyed-File Sharing .. 1-2-18
Sharing Temporary Keyed Files 1-2-19
Sharing Permanent Keyed Files 1-2-19
Lock Processing .. 1-2-21
Reasons for Locks .. 1-2-22
Lock Intents .. 1-2-24
Waiting for a Lock .. 1-2-26
Lock Expiration and Clearing 1-2-26
Lock Deadlock .. 1-2-29
File Locks .. 1-2-30
Effect of Locks on Keyed-File Calls 1-2-31

Creating and Deleting Alternate Keys 1-2-32
Using Alternate Keys .. 1-2-33

Selecting an Alternate Key 1-2-33
File Positioning After Alternate-Key Selection 1-2-34
Reading Records After Alternate-Key Selection 1-2-34
Updating an Alternate Index 1-2-35
Fetching Access Information After Alternate-Key Selection 1-2-36
File Position Returned .. 1-2-37
Retrieving Alternate-Index Information 1-2-38

Program Examples ... 1-2-40
Indexed-Sequential File Creation Example 1-2-41
Indexed-Sequential File Update Example 1-2-45
Alternate Key Example .. 1-2-49
Nested File Example ... 1-2-54

Using the CYBIL Keyed-File
Intedace 1-2

This chapter describes how CYBIL programs can create and use keyed files.
A set of complete program examples is provided at the end of the chapter.

Creating a Keyed File

To create a keyed file, the following steps are required:

1. Set file attributes (AMP$FILE or AMP$0PEN calls or SET _FILE_
ATTRIBUTES commands).

2. Open the file (AMP$0PEN call).

3. Optionally, write records to the file (AMP$PUT _KEY or AMP$PUT _
NEXT calls).

4. Close the file (AMP$CLOSE call).

(The AMP$FILE, AMP$0PEN, and AMP$CLOSE calls are described in the
CYBIL File Management manual. AMP$PUT _NEXT is described in the
CYBIL Sequential and Byte Addressable Files manual. AMP$PUT_KEYis
described in this manual.)

Setting File Attributes

You specify the file attributes defining the structure of the file and processing
limitations for the file before opening the file for the first time. When a new
file is opened, the file attributes are stored in the file; the system references
the attribute values whenever the file is processed.

I

I

As described in the CYBIL File Management manual, the attributes that I
define the file structure cannot be changed after the file is first opened.

You should select file attribute values carefully. Selecting suitable values for
file attributes helps ensure that the file economizes both space and the time
needed for record retrievals.

~ _N_O_T_E~~~~~~~~~~~~~~~~~~~~~~
Most attributes have a default value. However, the default value is
sometimes inappropriate for keyed files. Therefore, it is recommended that
you explicitly specify a value for all relevant keyed-file attributes.

Revision B Using the CYBIL Keyed-File Interface I-2-1

Creating a Keyed File

I File_ Organization Attribute

To create a keyed file, you specify a keyed-file organization as the file_
organization attribute. Currently, the keyed-file organizations are

I indexed-sequential and direct-access.

To specify indexed-sequential file organization, you initialize an attribute
record as follows:

[AMCSFILE_ORGANIZATION, AMCSINDEXED_SEQUENTIAL]

I To specify direct-access file organization, you initialize an attribute record as
follows:

[AMCSFILE_ORGANIZATION, AMCSDIRECT_ACCESS]

The other keyed-file attributes define record attributes, primary key
attributes, file structure attributes, and processing attributes.

Record Attributes

These attributes describe the data records to be written to the keyed file.

NOTE

The record attributes are all preserved attributes, that is, the attribute value e
is stored with the file when the file is first opened and cannot be changed
thereafter.

I The following lists the CYBIL attribute identifier (AMC$xxx) followed by the
valid attribute values:

AMC$RECORD_TYPE

Record type: AMC$FIXED, AMC$V ARIABLE, or AMC$UNDEFINED.
The default is AMC$UNDEFINED.

AMC$MAX_RECORD_LENGTH

Maximum number of bytes in a data record (from 1 through 65497). You
must specify a value for this attribute when defining a keyed file.

I-2-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision 13

Creating a Keyed File

AMC$MIN_RECORD_LENGTH

Minimum number of bytes in a data record (from 0 through 65497).

If the AMC$RECORD_ TYPE value is AMC$ANSI_FIXED, the default
minimum record length is the AMC$MAXIMUM_RECORD_LENGTH
value. If the AMC$RECORD _TYPE value is AMC$UNDEFINED or
AMC$V ARIABLE and the key is embedded, the default is the sum of the
AMC$KEY _POSITION and AMC$KEY _LENGTH values. Otherwise,
the default is 1.

For variable-length records, explicit specification of this attribute is
recommended; the minimum record length must include:

• The primary-key field

• Any alternate-key fields (or corresponding sparse-key control
characters)

• All alternate-key fields for an alternate key defined as a field in a
repeating group which repeats a fixed number of times

Primary-Key Attributes

These attributes define the primary key of the new file. See Primary Keys
earlier in this chapter for more information on primary keys.

NOTE

The primary-key attributes are all preserved attributes. That is, the attribute
value is stored with the file when the file is first opened and cannot be
changed thereafter.

I

The following lists the CYBIL attribute identifier (AMC$xxx) followed by the I
valid attribute values:

AMC$EMBEDDED_KEY

Boolean value indicating whether the primary key is part of the record
data (embedded) or separate from the record data (nonembedded). The
default is TRUE (embedded keys). e AMC$KEY _LENGTH

Integer specifying the primary-key length in bytes. This attribute has no
default value; it must be defined before the file is first opened.

Revision B Using the CYBIL Keyed-File Interface 1-2-3

I

Creating a Keyed File

AMC$KEY _POSITION

Position of the leftmost byte in the primary key (specified only if the key
is embedded). The byte positions in a record are numbered from the left,
beginning with 0. The default is 0.

AMC$KEY _TYPE

Primary key type: AMC$UNCOLLATED_KEY, AMC$INTEGER_KEY,
or AMC$COLLATED_KEY. The default is AMC$UNCOLLATED_KEY.

For direct-access files, any value specified for the key_ type attribute is
ignored. The key_ type for a direct-access file is always uncollated.

AMC$COLLATE_ TABLE_NAME

Name of the collating sequence by which collated keys are ordered
(required if the key_ type is collated).

The name can be the name of a NOS/VE predefined collating sequence
or, for a user-defined collating sequence, the name of an entry point in an
object library. See appendix D for more information.

File Structure Attributes

These attributes affect the internal file structure. Keyed-file structure is I described in chapter I-2.

The first group of attributes applies to all keyed-file organizations; the
groups that follow each apply to one keyed-file organization only.

NOTE

The file structure attributes are all preserved attributes. That is, the attribute
value is stored with the file when the file is first opened and (except for
record_limit) cannot be changed thereafter.

I-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

Common File Structure Attributes

The following lists the file structure attributes common to all keyed-file
organizations. It lists the CYBIL attribute identifier (AMC$xxx) followed by
the valid attribute values:

AMC$RECORD_LIMIT

Maximum number of data records allowed in each nested file in the file
(integer from 1through242-1).

The record_limit attribute value can be changed by the CHANGE_
FILE_ATTRIBUTES command even after the file has been opened. For
more information, see the SCL System Interface Usage manual.

AMC$MAX_ BLOCK_ LENGTH

Number of bytes in each block (integer from 1 through 16777215 [224-1]).

If the value is less than the maximum record length, the system increases
it to that value. Then, if the value is not a power of 2 between 2048 and
65536, it changes the value as follows:

• If the value is less than 2048, it is increased to 2048 (the minimum
allocation unit).

• If the value is between 2048 and 65536, but not a power of 2, it is
increased to the next power of 2 (4096, 8192, 16384, 32768, or 65536).

• If the value is greater than 65536, it is decreased to 65536.

NOTE

If the file will be shared by more than one concurrent instance of open
and forced-writing will be used (the FORCED_ WRITE attribute is either
AMC$FORCED or AMC$FORCED _IF_ STRUCTURE_ CHANGE), its
block size should be a multiple of a system page size. This ensures that
more than one instance of open is not updating blocks in the same page;
otherwise, a forced-write operation could write a page to mass storage
that contains partially-altered blocks. (A warning message is issued if
this situation exists.)

It is recommended that you do not specify the block length as the
AMC$MAX_BLOCK_LENGTH attribute, but rather allow the system to
calculate the block length using values specified by the following attributes.

Revision B Using the CYBIL Keyed-File Interface I-2-5

I
I

Creating a Keyed File

Block Length Guideline Attributes

NOTE

The following attributes do not set limits; their values are used only as
guidelines for determining the block length when the file is created.

AMC$AVERAGE_RECORD_LENGTH

Estimated median record length, in bytes, of the data records to be stored
in the file. (The length should not include a nonembedded key.)

If you omit this parameter, the system uses the arithmetic mean between
the maximum and minimum record lengths in its calculation of the block
size.

AMC$ESTIMATED _RECORD_ COUNT

Estimated number of data records to be stored in the file. If you do not
define this attribute, the system uses in its calculation of the block size
either the AMC$RECORD_LIMIT value, or if that attribute is not
defined, the value 100,000.

AMC$INDEX_LEVELS

Target number of index levels for the file (0 through 15). The default value
is 2.

I This attribute applies only to indexed-sequential files.

AMC$RECORDS_PER_BLOCK

Estimated number of data records to be stored in each data block. If you
do not define this attribute, the system uses the value 2 in its calculation
of the block size.

1-2-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

Indexed-Sequential Structure Attributes

The following structure attributes apply only to indexed-sequential files.

AMC$DATA_PADDING

Percentage of data-block space left empty when a block is created
(integer). The default is 0% (no padding). The percentage must allow for
storage of at least one maximum-length record per block.

AMC$INDEX_PADDING

Percentage of index-block space left empty when a block is created
(integer). The default is 0% (no padding). The percentage must allow for
storage of at least three index records per block. (The index record length
is the key length plus 4.)

Direct-Access Structure Attributes

The following structure attributes apply only to direct-access files.

AMC$INITIAL_ HOME_BLOCK_ COUNT

Number of home blocks in the file (1 through 231-1 [the segment size limit
divided by the minimum allocation unit]).

NOTE

Specification of this attribute is required when creating a direct-access
file.

For best results, the number should be a prime number. You should
consider the expected number of records in the file and the block size
when selecting the number of home blocks. For more information, see the
discussion under Direct-Access File Structure in chapter I-1.

Revision B Using the CYBIL Keyed-File Interface I-2-7 e

Creating a Keyed File

AMC$HASHING_PROCEDURE_NAME

Pointer to a record identifying the hashing procedure to be executed with
this file Camt$hashing_procedure_name). The record has these fields:

NAME

OBJECT_LIBRARY

Entry point name of the hashing procedure
(pmt$program_name). All letters in the name
must be specified as uppercase.

File path to the object library containing the
hashing procedure (amt$path_name,
256-character string). This feature is currently
unimplemented; specify OSC$NULL_ NAME
as the field value.

The default hashing procedure is the one provided by the system, entry
point AMP$SYSTEM_ HASHING_PROCEDURE.

If a hashing procedure other than the default is specified, it must be a
procedure declared with the XDCL attribute within the global library set
of the job or defined within the task. The hashing procedure must be
available whenever the file is used; otherwise, AMP$0PEN returns the
condition aae$cant_load_hash_routine.

Processing Attributes

These attributes set keyed-file processing options.

NOTE

The forced_ write and lock_ expiration_ time attributes are preserved
attributes, but their values can be changed by the CHANGE_FILE_
ATTRIBUTES command. For more information, see the SCL System
Interface Usage manual.

The error_limit and message_control attributes are temporary attributes;
their values can be changed each time the file is opened.

• I-2-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

AMC$ERROR_LIMIT

Maximum number of trivial (nonfatal) errors that can occur before the
trivial errors cause a fatal error. The default value is 0, meaning no limit.

AMC$FORCED _WRITE

Identifier indicating when the system copies modified blocks to mass
storage.

AMC$FORCED

AMC$UNFORCED

AMC$FORCED_IF _
STRUCTURE_ CHANGE

Write modified blocks immediately.

Allow modified blocks to remain in
memory until the next flush or close
request.

Write modified blocks immediately if the
change affects more than one block.

The default value is AMC$FORCED _IF _STRUCTURE_ CHANGE.

AMC$LOCK_EXPIRATION_ TIME

Number of milliseconds between the time a lock is granted and the time
that it could expire (integer from 0 through 604,800,000 [I week]).
(Preserved attribute.)

The default value is 0. When the lock expiration time is 0, locks do not
expire.

This attribute value can be changed by a CHANGE_ FILE_
ATTRIBUTES command.

AMC$MESSAGE_CONTROL

Indicates the additional information written to the $ERRORS file besides
fatal error messages. The attribute value is specified as a set in the set
identifier AMTMESSAGE_ CONTROL [].

AMC$TRIVIAL_ERRORS

AMC$MESSAGES

AMC$STATISTICS

Nonfatal-error messages

Informative messages

Statistical messages

I

Null set Suppress nonfatal-error, informative, and I
statistical messages.

The default value is the null set.

Revision B Using the CYBIL Keyed-File Interface 1-2-9

Creating a Keyed File

Writing Records

Records can be writt.en to a keyed file opened with at least append access. (If
alt.ernate keys are defined for the file, it must be opened with modify, append,
and short.en access.)

You can writ.e records to a new keyed file using either AMP$PUT _KEY or
AMP$PUT _NEXT calls. Use of AMP$PUT _KEY calls is recommended for
writing keyed files. AMP$PUT _NEXT should be used only if a common
int.erface for writing records, regardless of file organization, is required.

NOTE

An AMP$PUT _NEXT call cannot specify a key value. When the keyed file
has a nonembedded primary key, AMP$PUT _NEXT takes the key value
from the beginning of the working storage area. It stores the first key_ length
byt.es as the nonembedded primary-key value and the rest of the data as the
record.

In general, pre-sorting records to be writt.en to an indexed-sequential file can
result in a smaller file and less time required for writing the records. Your
program can use NOS/VE Sort/Merge to sort records as described in part II A
of this manual. W
For an indexed-sequential file with an embedded primary key, you could use
NOS/VE Sort/Merge calls to writ.e the original set of records to the file.
(NOS/VE Sort/Merge calls are described in part II of this manual.) The
Sort/Merge specification must define the primary-key field as the major sort
key.

Re-creating a Keyed File

As described earlier, the initial keyed-file structure is creat.ed when the file is
first opened using the file structure attribut.e values defined for the file. As
records are added, replaced, and deleted in the file, the file structure may
become inefficient. When this becomes evident, you should re-creat.e the file
to improve the efficiency of its structure.

The evidence of an inefficient file structure differs depending on the
keyed-file organization.

e I-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

As described at the beginning of this chapter, record access in an
indexed-sequential file is through a hierarchy of index blocks. Each
additional index level in the hierarchy requires an additional index block
search for each data record access. Performance is usually best when no
more than two index levels exist.

You can fetch the current number of index levels in an indexed-sequential
file as the levels_of_indexing file access information item using the
AMP$FETCH_ACCESS_INFORMATION call. (The AMP$FETCH_
ACCESS_INFORMATION call is described in the CYBIL File Management
manual.)

An inefficient direct-access file structure is indicated by an excessive number
of overflow blocks and overflow records. The overflow_ block_ count and
overflow _record_ count for the file are included in the list of structural
properties provided by the DISPLAY _KEYED_FILE_PROPERTIES
command.

To re-create a keyed file, you first define the structural attributes for the
re-created file and then copy the old file to the newly defined file. You can
copy the file by any of these means:

• Executing the SCLcommand COPY_KEYED_FILE (described in the
SCL Advanced File Management manual)

• Calling AMP$COPY _FILE as described in the CYBIL Sequential and
Byte Addressable Files manual

• Using the File Management Utility (FMU) as described in the SCL
Advanced File Management manual. (Unlike the preceding two methods,
FMU can reformat and selectively copy records while re-creating the file.)

The COPY _KEYED_FILE command can apply the alternate-key
definitions from the old file to the new file. AMP$COPY _FILE and FMU do
not apply alternate-key definitions.

If you did not use COPY _KEYED_FILE to re-create the file, you can
re-create alternate keys by this method:

1. Save the alternate-key definitions from the old keyed file on a file. To get
the alternate key definitions used by the file, call AMP$GET _KEY_
DEFINITIONS.

2. Use the saved definitions to redefine the alternate keys on the new file. To
do so, open the new file, call AMP$CREATE_KEY _DEFINITION to
specify each alternate-key definition, and then apply the definitions with
an AMP$APPLY _KEY_ DEFINITIONS call.

Revision B Using the CYBIL Keyed-File Interface 1-2-11

Using a Keyed File

Using a Keyed File

To process an existing keyed file, a CYBIL program performs these steps:

1. Specifies temporary attribute values to be used by this instance of open
and preserved attribute values to be verified against the attribute values
stored with the file (AMP$FILE and AMP$0PEN).

2. Opens the keyed file for record access (AMP$0PEN).

3. Performs the intended file operations.

4. Closes the file (AMP$CLOSE).

The following file operations can be performed on an existing keyed file
(assuming the file has been opened with the required access modes):

• Position the file (AMPGET_KEY, AMPREWIND, AMP$SKIP, and
AMP$START).

I • Read records randomly by key value (AMP$GET _KEY).

• Read records sequentially by position (AMP$GET _NEXT _KEY and
AMP$GET_NEXT).

• Write records (AMP$PUT _KEY, AMP$PUT _NEXT, and
AMP$PUTREP).

• Delete records (AMP$DELETE_KEY).

• Replace existing records (AMP$REPLACE_KEY and AMP$PUTREP).

• Lock key values (AMP$LOCK_KEY, AMP$GET _LOCK_KEYED_
RECORD,AMP$GET_LOCK_NEXT_KEYED_RECORD,and
AMP$LOCK_FILE).

• Unlock key values (AMP$UNLOCK_KEY and AMP$UNLOCK_FILE).

• Define, delete, and select nested files (AMP$CREATE_NESTED_FILE,
AMP$DELETE_NESTED_FILE, AMP$GET_NESTED_FILE_
DEFINITIONS, and AMP$SELECT _NESTED _FILE).

• Define, delete, and select alternate keys as described later in this chapter.

Depending on the value of the forced_ write attribute, the system might not
write modified blocks to mass storage immediately after the modification.
You can call AMP$FLUSH any time after the file is opened to write the part A
of the file in memory to mass storage. Execution of the AMP$FLUSH call W
does not change the position of the file.

I-2-12 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Positioning a Keyed File

Positioning a Keyed File

To position a keyed file, a program must open the file for at least read access.
In general, a program positions a file so that it can later read records
sequentially.

For information on positioning a file by alternate-key values, refer to Using
Alternate Keys later in this chapter.

As described later under Reading Records, the sequential access capabilities
differ for indexed-sequential and direct-access files. This results in
differences in the positioning calls available for each organization.

Positioning a Direct-Access File

While an alternate key is selected, the same positioning calls are valid for a
direct-access file as for an indexed-sequential file. However, while the
primary key is selected, the only valid positioning call is AMP$REWIND.
AMP$REWIND positions a direct-access file at the beginning of its first
home block.

While the primary key is selected, an AMP$SKIP call specifying a
direct-access file returns the nonfatal condition aae$no_skip_in_da. An
AMP$START call for a direct-access file with its primary key selected
returns the condition aae$no_da_or_sk_start.

Positioning an Indexed-Sequential File

The following positioning calls are available for indexed-sequential files:

• AMP$GET _KEY: Returns to the working storage area the record whose
key value matches the key value specified on the call and positions the file
at the end of the returned record.

• AMP$REWIND: Positions a file to read the record with the lowest key
value.

• AMP$SKIP: Positions a file forward or backward.

• AMP$START: Positions a file to read the record whose key value matches
the key value specified on the call.

Revision B Using the CYBIL Keyed-File Int.erface 1-2-13 e

Positioning a Keyed File

I Positioning an Indexed-Sequential File by Major Key

The AMP$START, AMP$GET _KEY, and AMP$GET _LOCK_KEYED_ I RECORD calls have a major_key _length parameter. This parameter allows
a call to position an indexed-sequential file according to a major-key value.

A major key consists of one or more of the leftmost bytes of a key. The
major _key _length parameter specifies the number of bytes to use as the
major key. A major key search compares only the number of bytes in the
major key.

For example, suppose the key value at the specified key _location is ABCDEF
and the major _key _length parameter value is 2. The major-key value,
therefore, is the leftmost two bytes, characters AB. The major key search
compares the characters AB with the leftmost two bytes of the searched
keys. It positions the file at the first record whose key begins with AB or
greater.

As a second example, suppose the key value is the hexadecimal integer
FFl 45 and the major key length value is 3. The major key used is the
leftmost three bytes containing the value FFI, so the file is positioned at the
first record whose key begins with FFI or greater.

If the major_key _length parameter is zero or equal to key _length, the entire
key is used to position the file.

I The major_key _length parameter is ignored on direct-access file calls.

Positioning an Indexed-Sequential File by Key Relation

The AMP$GET _KEY, AMP$GET _LOCK_KEYED_RECORD, and
AMP$START calls have a key _relation parameter. This parameter allows a
call to position an indexed-sequential file even if the specified key value does
not exist in the file.

The key _relation parameter specifies the relation to be satisfied between the
specified key value and the key value of the record at which the file is
positioned. The relation can be equal, greater than or equal, or greater than.

For example, suppose the specified key value is ABC.

• If the specified key _relation is equal, the call must find a record whose
key value matches ABC. If such a record is not found, the call returns an
abnormal completion status.

• If the specified key _relation is greater than or equal to, the first key value e
found that is greater than or equal to ABC satisfies the relation. If the
relation cannot be satisfied, the file is left positioned at its
end-of-information.

I-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Reading Records

• If the specified key _relation is great.er than, the first key value found that I
is great.er than ABC satisfies the relation. Ifno key value is great.er than
ABC, the file is left positioned at its end-of-information.

The key _relation paramet.er is ignored for direct-access file calls.

Reading Records

For records to be read from a keyed file, the file must be open for at least read
access. However, it is recommended that the file be opened for both read and
modify access. Modify access allows access statistics to be updat.ed without
allowing any record in the file to be alt.ered.

A read operation transfers a record from the file to the specified working
storage area. The number of byt.es in the record is returned in the record_
length paramet.er.

You cannot call AMP$GET _PARTIAL to read a keyed-file record. However,
a partial read of a record is performed when the record is longer than the
working storage area specified on the get call. The get call reads data until
the working storage area is filled and then returns a nonfatal error
(AAE$RECORD_LARGER_ THAN_ WSA). The get call leaves the keyed file
positioned at the end of the record; thus, the next read request cannot begin
where the partial read ended.

You can read records either sequentially by position or randomly by key
value. A sequential read returns the next logical record in the file. A random
read returns the record identified by the specified key value.

Sequential Access for Indexed-Sequential Files I
Records can be read sequentially from an indexed-sequential file using
AMP$GET _NEXT _KEY or AMP$GET _NEXT calls. Use of AMP$GET _
NEXT_ KEY calls is recommended for reading indexed-sequential files. You I
should use AMP$GET _NEXT only if a common int.erface for writing
records, regardless of file organization, is required.

AMP$GET _NEXT _KEY returns the key value of each record in the location
specified by the key _location paramet.er. The task can check the file_
position value returned to det.ermine when to stop reading records.

You can also read a contiguous group of records residing anywhere in the file
by combining random access and sequential access. This is accomplished by
issuing an AMP$GET _KEY to read the first record in the contiguous group,
and, then, issuing AMP$GET _NEXT _KEY calls (or AMP$GET _NEXT) to
read the following records sequentially.

Revision B Using the CYBIL Keyed-File Int.erface I-2-15

Reading Records

Sequential Access for Direct-Access Files

Records are not stored in sorted order by primary-key value in direct-access
files as they are in indexed-sequential files. Thus, sequential access is
appropriate only:

• When an alternate key is selected

• When a primary key is selected and all records in the file are to be read

A sequential pass through a direct-access file is valid only when no update
operation intervenes. An intervening update operation could cause the
sequential pass to miss records. (Sequential access to a direct-access file is
done by physical position in the file; an update operation could change the
record locations.)

To provide effective sequential access, the keyed-file interface imposes these
restrictions on sequential access to direct-access files:

• When the primary key is selected, AMP$GET _LOCK_NEXT _KEY,
AMP$GET _NEXT _KEY and AMP$GET _NEXT calls are valid only
when the direct-access file has been attached for exclusive access (no
share modes allowed).

When the primary key is selected and the file attachment allows sharing,
a sequential get call returns the condition aae$cant_da_getn_if_shared.

• When the primary key is selected, a program cannot intermix sequential
access calls and update operations. (The only update operation allowed is
the replacement of a record with another record of the same length.)

When the primary key is selected and an update operation has been
performed, the program must rewind the file before beginning a
sequential pass of the direct-access file. Otherwise, a sequential get call
returns the condition aae$cant_da_getn_after_put.

You can intermix sequential access (get_next) calls and AMP$GET_KEY
calls. An AMP$GET _KEY call does not change the file position used by
get_ next calls.

e 1-2-16 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Reading Records

Random Access

Records are read randomly by key value using the AMP$GET _KEY call. To
retrieve a single record from the keyed file, you specify a key value, and the
system returns to the working storage area the record with the matching key
value, ifit exists.

For indexed-sequential files, the major_key _length parameter allows the
AMP$GET _KEY call to read the first record with the specified major key.
The key _relation parameter allows AMP$GET _KEY to specify the relation
between the key value of the record to be read and the specified key value.
The relation could be equal, greater than, or greater than or equal.

The major_key _length and key _relation parameters are ignored on
direct-access file calls.

Revision B Using the CYBIL Keyed-File Interface 1-2-17

I

I

Keyed-File Sharing

Keyed-File Sharing

A NOS/VE keyed file can be accessed with or without potential sharing of
the file. A keyed file is shared when multiple concurrent instances of open of
the file exist.

The potential for sharing determines whether NOS/VE must safeguard the
keyed-file structure for multiple users:

• While a keyed file could be shared, NOS/VE performs internal locking
operations to maintain the integrity of the file structure.

• While a keyed file cannot be shared, the overhead required to maintain
file integrity is not needed, resulting in better file access performance.

File access is controlled by the set of access modes in effect for the file. File
sharing is controlled by the set of share modes in effect. The use of access
modes and share modes for NOS/VE files in general is described in the SCL
System Interface and CYBIL File Management manuals; access mode and
share mode use for keyed files is described here.

To see the access modes and share modes currently in effect for a file, enter
this SCL command (specifying the file name or file reference):

Display_File_Attributes, File=file, ..
Display_Options=CAccess_Modes, Global_Share_Modes)

The Access_ Modes set is the set of access modes currently in effect. It is
contained in the Global_Access_Modes set (the set of all available access
modes as determined when the file is created or attached). When the file is
created or attached, the Access_ Modes and Global_Access_Modes values
sets are the same. However, the Access_Modes set can be restricted to a
subset of the Global_Access_Modes by a SET _FILE_ATTRIBUTES
command or AMP$FILE or AMP$0PEN call. Keyed-file sharing is affected
only by the Access_Modes set; the Global_Access_Modes set only indicates
the possible values of the Access_Modes set.

The Global_ Share_ Modes set is the set of share modes currently in effect. It
is determined when the file is created or attached; you cannot change the
Global_Share_Modes using SET_FILE_ATTRIBUTES commands or
AMP$FILE or AMP$0PEN calls.

AMP$GET_FILE_ATTRIBUTES and AMP$FETCH calls in a CYBIL
program can fetch the Access_Modes and Global_Share_Modes sets.

• I-2-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Sharing Temporary Keyed Files

You can specify the Access_Modes currently in effect for a permanent or
temporary keyed file. However, because you can specify Share_Modes only
when attaching the file, you cannot specify Share_Modes for a temporary
file. The Global_Share_Modes value for a temporary file is always none.

Thus, a temporary keyed file cannot be shared. It can be opened
consecutively within a job, but it cannot be opened concurrently, that is, it
cannot have multiple instances of open.

To illustrate how tasks can open a temporary keyed file, suppose task X
creates and opens a temporary keyed file. Task X cannot open the file again
until it closes the existing instance of open. After task X closes the file, task
X or task Y can then open the file. Also, if task X opens the file and then
initiates task Y, task Y cannot open the file until task X closes the file.

Sharing Permanent Keyed Files

For a permanent keyed file, the Share_Modes can be explicitly specified
when the file is attached; otherwise, the default set is used. NOS/VE
provides two default Global_Share_Mode values as follows:

1. When the Access_Modes include any of the write modes (append, modify,
or shorten), the default Global_Share_Mode value is none. Thus, by
default, NOS/VE allows no sharing while the file could be changed.

For example:

/attach_file, Suser.keyed_file, access_mode=write
/display_file_attributes, keyed_file, ••
•• /display_options=<access_modes, global_share_modes)
Access_Mode (shorten, append, modify)
Global_Share_Mode : none

2. When the Access _Modes do not include any of the write modes (append,
modify, or shorten), the default Global_Share_Mode value is read and
execute. Thus, by default, the file cannot be changed.

For example:

/attach_file, Suser.keyed_file, access_mode=read
/display_file_attributes, keyed_file, ••
•• /display_options=(access_modes, global_share_modes)
Access_Mode (read)
Global_Share_Mode : <read, execute)

Revision B Using the CYBIL Keyed-File Interface I-2-19 e

Keyed-File Sharing

In the first situation, no locking is needed because no sharing is allowed. In
the second situation, no locking is needed because the data cannot change.
When no locking is needed, no setting of locks or checking for locks is done
and performance improves.

NOTE

For best performance when using a keyed file, check that the share modes
allowed are no more than those required. If possible, allow no sharing of the
file.

In general, when the file can be shared (the Global_Share_Modes value is
not none) and either the Access_Modes or the Global_Share_Modes include
shorten or append access, locking is needed. The following examples show
two situations in which locking is not needed and a third situation in which
it is needed.

1. When reading a keyed file, it is recommended that you request modify
access so that read statistics can be recorded in the file. Because modify is
one of the write access modes, no other instances of open can access the
file while you read it (if you do not explicitly specify Share_Modes). For
example:

/attach_file, $user.keyed_file, access_modes=Cread, modify)
/display_file_attributes, keyed_file, ••
•• /display_options=(access_modes, global_share_modes)
Access_Mode (read, modify)
Global_Share_Mode : none

In this case, because no sharing is allowed, no locking is performed and
performance is at its best.

2. Next, to allow other users to read the keyed file and maintain accurate
read statistics, you explicitly specify the Share_Modes as read and
modify:

/attach_file, $user.keyed_file, access_modes=Cread, modify) ••
•• /share_modes=Cread, modify)
/display_file_attributes, keyed_file, ••
•. /display_options=<access_modes, global_share_modes)
Access_Mode (read, modify)
Global_Share_Mode : (read, modify)

In this case, sharing is allowed, but the file data cannot be changed. So
again, no locking is performed and performance is at its best.

e 1-2-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

3. Suppose that the permit applicable to the attach allows all access modes
to the file, but requires that shorten and append share modes be allowed.
You choose to request all access modes and allow all share modes:

/attach_file, .xyz.keyed_file, access_modes=all, share_modes=all
/display_file_attributes, keyed_file, ••
•• /display_options=<access_modes, global_share_modes)
Access_Mode (read, shorten, append, modify)
Global_Share_Mode : (read, shorten, append, modify)

In this situation, other instances of attach, as well as this one, can writ.e,
replace, and delet.e records. Because of the pot.ential for file sharing,
NOS/VE uses int.emal locks as needed to maintain the int.egrity of the file
structure. A program using the file in a shared situation such as this may
choose to use locks to disallow changes to data it is currently using; it
must lock the primary-key value of any record it delet.es or replaces.

The reasons for using locks and the means of doing so are described in detail
in the following pages.

Lock Processing

Keyed-file sharing can be coordinat.ed through the use of locks. A lock is a
mechanism by which a task can restrict use of a keyed file or individual
primary-key values in keyed files. The lock is owned by a particular instance
of open for the file. The part of the NOS/VE syst.em software that manages
locks is called the lock manager.

In general, lock processing follows this patt.em:

1. The lock manager receives a request for a lock on a file or primary-key
value.

2. The lock manager <let.ermines whether the lock can be grant.ed.

a. If no conflicting lock exists, the lock manager grants the lock and
notifies the requesting task.

b. If a conflicting lock exists, the lock manager checks if the request
specified waiting.

i. If the request specified no waiting, the lock manager notifies the
task requesting the lock that the record or file is currently locked.

n. If the request specified waiting, the task is suspended until either:

- The lock is available (assuming no pot.ential deadlock as
described lat.er under Lock Deadlock), or

- The timeout period elapses (default value, 60 seconds).

Revision B Using the CYBIL Keyed-File Interface 1-2·21 •

Keyed-File Sharing

The lock manager also processes requests to clear locks and keeps track of
locks that have expired (as described later under Lock Expiration and
Clearing).

NOTE

In general, when the discussion of locks in this manual describes two or
more tasks requesting locks, the two or more tasks could actually be the
same task with two or more instances of open of the same file. This is
because a lock belongs to a particular instance of open and one task could be
requesting locks for more than one instance of open.

Lock use is recommended for effective sharing of a keyed file. In fact, when
more than one instance of open exists for a keyed file, NOS/VE requires that
a task lock the record before it can replace or delete the record.

Lock use ensures that:

• Requests are processed in the sequence in which requests are issued.

• The operation is performed on the most up-to-date version.

Reasons for Locks

To illustrate the need for locks, the following sequence of events describes
two tasks using the same file without locks.

1. Two tasks both read the same record containing the value 1.

File Task A TaskB

2. One task adds 2 to the value and replaces the record, containing the value
3, in the file.

File Task A TaskB

3. The other task adds 1 to the value and replaces the record, containing the
value 2, in the file.

File Task A TaskB

The work of one of the tasks has been overwritten.

e 1-2-22 CYBIL Keyed-File and Sort/Merge Interfaces !Wvision B

Keyed-File Sharing

In contrast, consider the following sequence of events describing two tasks
using the same file with locks.

1. A task locks and reads a record.

File Task A

2. A second task attempts to lock and read the record but cannot because the
record is already locked. It waits until the record is unlocked.

File Task A TaskB

3. The first task adds 2 to the value, and replaces the record containing the
value 3, in the file. It then unlocks the record.

File Task A TaskB

4. The second task can now lock and read the record. It adds 1 to the value,
and replaces the record, containing the value 4, in the file.

File Task A TaskB

&vision B Using the CYBIL Keyed-File Interface I-2-23 e

Keyed-File Sharing

Lock Intents

Each lock has a lock int.ent. The lock int.ent indicat.es why the task is
requesting the lock.

When more than one instance of open exists for a keyed file, only the owner
of an Exclusive_Access or Preserve_Access_and_ Cont.ent lock on the record
(or the file) can replace or delet.e the record. However, the replace or delet.e
operation does not take place until no unexpired Preserve_ Cont.ent locks
exist for the record.

The following paragraphs describe the lock int.ents for record locks. (Lock
int.ents for file locks are described lat.er under File Locks.)

Exclusive _Access

• Used when the task int.ends to issue writ.e or delet.e requests for the locked
record.

• Denies all requests by other tasks to read, writ.e, updat.e, or delet.e the
record or lock its key value.

• Allow requests by other tasks that position the file or perform operations
only on alt.ernat.e indexes.

Preserve_ Access_ and_ Cont.ent

• Used when the task might issue writ.e or delet.e requests for the locked
record. Only one Preserve_Access_and_ Cont.ent lock is allowed at a time
for a record.

• Allows positioning and read requests by other tasks, but denies their
writ.e, replace, and delet.e requests.

• Allows Preserve_ Cont.ent lock requests by other tasks, but denies their
requests for Exclusive_Access and Preserve_Access_and_ Cont.ent locks
on the record.

• The owner of the Preserve_Access_and_ Cont.ent lock can request a writ.e,
replace, or delet.e operation, but:

- The writ.e, replace, or delet.e operation does not begin until the
conditions for an Exclusive_Access lock are met:

- All read operations in progress for the record have complet.ed.

- All Preserve_ Cont.ent locks for the record have expired or been
cleared.

- No read operations for the record can begin until the writ.e, replace, or
delet.e operation complet.es.

e 1-2-24 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

Preserve_ Content

• Used when the task does not intend to issue write, replace, or delete
requests for the locked record.

• Allows positioning and read requests by other tasks, but denies their
write, replace, and delete requests.

• Allows Preserve_Content and Preserve_Access_and_Content locks by
other tasks, but denies their Exclusive_Access lock requests.

Multiple Preserve_ Content locks are allowed at a time, but only one
Preserve_Access_and_Content lock. Thus, multiple tasks can be reading the
record, but only one task can be waiting to write, replace, or delete the record.

Switching Lock Intents

The owner of a lock on a record can request another lock on the record with
the same lock intent without an intervening unlock request.

The owner of an Exclusive_Access or Preserve_Access_and Content lock
can also switch the lock intent to Exclusive_Access or Preserve_Access
and_ Content without an intervening unlock request.

A request to change the lock intent from Preserve_Access_and_Content to
Exclusive_Access is not performed until any Preserve_Content locks on the
record or the file are no longer effective.

A lock request that renews an existing lock restarts the expiration time for
the lock.

This table summarizes the lock intent switching that is valid without an
intervening unlock request.

Exclusive Access

Preserve_ Access
and_ Content

Preserve_ Content

Exclusive
Access

Valid

Valid

Invalid

Preserve _Access Preserve
and_ Content Content

Valid Invalid

Valid Invalid

Invalid Valid

-

Revision B Using the CYBIL Keyed-File Interface I-2-25 e

Keyed-File Sharing

Waiting for a Lock

On a call that requests a lock, you specify whether the call should wait if the
lock is unavailable. If you specify that the call should wait, it waits until the
lock is available or a lock timeout period has passed. When the time period
has passed, the call terminates with the condition aae$key _timeout.

The default timeout period is 60 seconds. However, each task can specify how
long it waits for a lock by defining and initializing an SCL integer variable.

The timeout variable is named AA V$RESOLVE_ TIME_LIMIT. You assign
the variable the new waiting period in seconds (from 1 through 604,800,000
[I week]).

For example, the following call executes the SCL command CREATE_
VARIABLE to create the AA V$RESOLVE_ TIME_ LIMIT variable and
assign it the value 45.

clpSscan_command_lineC'create_variable, AAVSRESOLVE_TIME_LIMIT, CAT
kind=integer, value=45, scope=Local', status);

(The CLP$SCAN _COMMAND_ LINE call is described in the CYBIL
System Interface manual.)

Lock Expiration and Clearing

An expired lock and a cleared lock are not the same:

• A cleared lock no longer exists; the lock manager has discarded it.

• An expired lock exists, but is no longer effective in preventing access by
other tasks. However, an expired lock prevents file access by its owner
(except to fetch or store attributes or access information). This is done so
that the owner of the lock is notified of its expiration.

A lock is cleared when one of these events occurs:

• The task with the lock issues an unlock request for the lock.

• The task closes the instance of open to which the lock belongs.

• The request for the record lock specified automatic unlock, and the task
issues any request for the instance of open (other than a call to fetch or
store attributes or fetch access information).

In general, the automatic unlock occurs when the request is issued. The
exception is for an update request for the locked record for which the lock is
kept until the update operation completes.

e I-2-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

For example, if a task issues a lock on record 1 and then issues a request to
replace record 1, the lock manager automatically clears the lock on record 1
after the replace operation.

Similarly, if a task issues a lock on record 1 and then issues a request to
position the file at record 2, the lock manager automatically clears the lock
on record 1, before positioning the file at record 2.

A lock expires when the following sequence of events occurs:

1. Its expiration time has passed since the lock was granted.

2. Another task issues a request specifying waiting that would be denied if
the lock was effective. (The request is granted.)

The number of milliseconds in the lock expiration time is specified by the
lock_ expiration_ time file attribute. Its default value is 0, meaning an
unlimited expiration time. Thus, if you do not explicitly set a nonzero lock_
expiration_ time for the file, locks for the file cannot expire.

An expired lock is no longer effective in preventing access to the file or record
by other tasks. However, it does prevent operations on the file by the task
holding the expired lock.

The task holding the expired lock is prevented from any operation on the file
until it clears the expired lock. This notifies the task that a lock has expired.

For example, consider the following sequence of events:

1. Task 1 is granted a 30-millisecond Preserve_Access_and_ Content lock
on record 1 in file 1 without automatic unlock.

2. Thirty milliseconds pass.

3. Task 1 reads record 1 from file 1. The read request restarts the expiration
time count. (The lock has not yet expired because no other task has has
issued a request for the record that a Preserve_Access_and_ Content lock
should prevent. The lock is not unlocked because automatic unlock was
not requested for the lock.)

4. Thirty milliseconds pass.

5. Task 2 requests a Preserve_ Content lock on record 1 in file 1. (The Task 1
lock does not expire because a Preserve_Access_and_ Content lock does
not prevent Preserve_ Content locks.)

6. Task 3 requests, with waiting, a Preserve_Access_and_ Content lock on
record 1 in file 1. (The Task I lock expires because a Preserve_Access_
and_ Content lock should prevent additional Preserve_Access_and_
Content locks.)

Revision B Using the CYBIL Keyed-File lnt.erface 1-2-27 •

Keyed-File Sharing

7. Task 1 attempts to read record 2 in file 1, but instead the request
terminates with a nonfatal error, notifying Task 1 that it has an expired
lock. Task 1 must clear the expired lock before it can successfully request
any record in file 1.

Notice that in the preceding example the lock would not have expired if the
lock request had specified automatic unlock. e
Expired Lock Conditions

The following nonfatal conditions can be returned for an expired lock:

aaeSkey_expired_lock_exists
The operation failed due to a leftover expired lock.

aaeSauto_unlock_frustrated
A key value could not be automatically unlocked due to an expired lock.

aaeSkey_expired_lock_exists
The key value could not be locked due to an expired lock.

aaeSexpired_Lock_interfered_1
A lock with a time limit could not be changed to a lock with no time limit
due to an expired lock.

aaeSexpired_Lock_interfered_2
The first primary-key value in the key list for an alternate-key value
could not be locked due to an expired lock. This status can be returned
only if the alternate key allows duplicate values, ordered by primary key,
and, while the task is waiting for the lock, another task inserts a
primary-key value at the beginning of the key list.

e 1-2·28 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

Lock Deadlock

A deadlock is a situation in which two or more tasks need a lock already held
by another task in the group of tasks. For example, the following situation is
a deadlock:

• Task 1 has a lock on record 1 and needs a lock on record 2.

• Task 2 has a lock on record 2 and needs a lock on record 3.

• Task 3 has a lock on record 3 and needs a lock on record 1.

If none of the tasks releases the lock it holds, none of the tasks can complete.

A deadlock can occur either when tasks are waiting for a lock or when tasks
are each repeatedly requesting a lock. The lock manager can detect the
deadlock when the tasks are actually waiting for a lock; it cannot detect a
deadlock when tasks are repeatedly requesting a lock.

When the lock manager receives a lock request indicating that the task
wants to wait until the lock is available, it checks for a possible deadlock. To
do so, it checks whether other tasks are waiting for locks held by the
requesting task. If it detects a potential deadlock, it terminates the request,
returning one of these nonfatal conditions.

aae$key_deadlock
Returned if the deadlock is with another task.

aae$key_self_deadlock
Returned if the deadlock is a self-deadlock (either this instance-of-open or
another instance-of-open in the requesting task already has the requested
lock).

To prevent a deadlock that the lock manager cannot detect, a task should
limit the number of times it repeatedly requests a lock without waiting. After
a fixed number of attempts, it should do one of the following:

• Issue a lock request with waiting in which case the lock manager can
notify it that a potential deadlock exists.

• Assume that a potential deadlock exists and clear the locks it holds.

Revision B Using the CYBIL Keyed-File Interface I-2-29 e

Keyed-File Sharing

File Locks

Your program should request a file lock when it needs locks on many keys at
the same time.

A file lock is required when your program needs more than 1024 locks at a
time because 1024 is the maximum number of locks allowed for an instance
of open. An attempt to exceed this limit returns the nonfatal condition
aae$too _many _keylocks.

The number of locks allowed also depends on the file_limit attribute value.
The lock manager tracks all locks for a file in another file called the lock file
(named AAF$DEPENDENCY _FILE). The lock file size cannot exceed 90%
of the file_limit value and, if an operation would cause the lock file to be
more than 50% full, the operation is not allowed to begin and the fatal
condition aae$lock_file_crowded is returned.

In general, the rules for using file locks are the same as those for individual
locks on primary-key values. The difference is that a file lock is a lock on all
primary-key values in the nested file currently selected.

A nested file cannot be deleted while any locks exist for the nested file. Locks
are not discarded even when another nested file is selected.

File Lock Intents

The effect of the lock intent of a file lock is as follows:

• Exclusive_Access

Only the owner of the lock can access records in the nested file; all
requests by nonowners are denied including all lock requests.

• Preserve_Access_and_ Content

Allows Preserve_ Content locks (both key locks and file locks), but denies
all Exclusive_Access and Preserve_Access_and_ Content locks.

• Preserve_ Content

Allows any number of Preserve_ Content locks and one Preserve_Access_
and_ Content lock for each primary-key value and for the nested file as a
whole, but denies all Exclusive_Access lock requests.

e 1-2-30 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

Effect of Locks on Keyed-File Calls e This section summarizes the effects of locks on calls for an open keyed file.

These calls request locks:

AMP$GET _LOCK_KEYED _RECORD AMP$LOCK_FILE
AMP$GET _LOCK_NEXT _KEYED _RECORD AMP$LOCK_KEY

These calls explicitly clear locks:

AMP$UNLOCK_FILE
AMP$UNLOCK_KEY

(A lock requested with automatic unlock is cleared by any call to the instance
of open, except calls that fetch or store attributes or fetch access
information.)

When another instance of open exists for the file, these calls require a lock on
the primary-key value:

AMP$DELETE_KEY
AMP$REPLACE_KEY

A lock held by another instance of open could cause these calls to return
abnormal status:

AMP$DELETE_NESTED _FILE
AMP$GET _KEY
AMP$GET _NEXT
AMP$GET_NEXT_KEY

AMP$PUT _KEY
AMP$PUT _NEXT
AMP$PUTREP
AMP$SELECT _NESTED _FILE

All other calls for an open keyed file return normal status regardless of locks.

For more information on the effect oflocks on a call, see the individual call
description in chapter I-3.

Revision B Using the CYBIL Keyed-File Interface I-2-31 e

Creating and Deleting Alternate Keys

Creating and Deleting Alternate Keys

To create or delete alternate keys, a CYBIL program performs these steps:

1. Opens the file, if it is not already open.

2. Issues an AMP$CREATE_KEY _DEFINITION call for each alternate ~
key to be created. Issue an AMP$DELETE_KEY _DEFINITION call for ~
each alternate key to be deleted.

3. To implement the alternate-key definitions and deletions specified in step
2, it issues an AMP$APPLY _KEY _DEFINITIONS call. Or, to discard
the specified definitions and deletions, it issues an AMP$ABANDON _
KEY _DEFINITIONS call.

A program can create alternate keys in a new file or in an existing file. The
point at which you should create alternate keys depends upon how the
alternate key handles duplicate values.

If the file data is expected to contain duplicate values for the alternate key
and the duplicate values are to be ordered first-in-first-out, the alternate key
must be defined before records are written to the file. Otherwise, when the
alternate index is built, the duplicate values already existing in the file are
ordered by primary-key value. Duplicate values added later are ordered
first-in-first-out.

If duplicate key values are not allowed for the alternate key or the duplicate
values are to be ordered by primary-key value, the alternate key should be
defined after records are written to the file. Building the alternate index is
more efficient when the records are already in sorted order. If the alternate
index is updated as each record is written, the alternate index is built in
random order. This takes much longer. The efficiency difference is even
greater when the file has more than one alternate index.

If the file is large, applying an alternate-key definition to a file can require
considerable processing time. This is because creation of a new alternate
index requires that all records in the file be read.

I 1-2-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

Using Alternate Keys

An alternate key is available for use after it has been defined and applied to
the file. The following sections describe how you can use an alternate key.

In general, file access calls perform the same processing when an alternate
key is selected as when the primary key is selected. The only difference is
that records are accessed through the alternate index.

Record access through the alternate index means that the logical record
order is the order of the alternate-key values in the alternate index. The
alternate-key values are stored in ascending order.

If more than one record is associated with the same alternate-key value, the
records are accessed in the order their primary-key values occur in the key
list for the alternate-key value.

For example, suppose the key list for alternate-key values A and B are as
follows:

A: RECORDI, RECORD3
B:RECORD2

The A records are read before the B records so that the records would be read
sequentially: RECORDI, RECORD3, RECORD2.

Selecting an Alternate Key

When a keyed file is opened, the system assumes that file processing is by
primary key. That is, the selected key is initially the primary key. You can
change the selected key by calling AMP$SELECT _KEY. The call specifies
the name of the key to be selected.

An AMP$SELECT _KEY call specifies the name of the key as it was defined
when the key was created. To specify the primary key on an
AMP$SELECT _KEY call, specify the name $PRIMARY _KEY.

The key selected by an AMP$SELECT _KEY call is used until another
AMP$SELECT _KEY call changes the selected key or until the file is closed.

Revision B Using the CYBIL Keyed-File Interface I-2-33 I

Using Alternate Keys

File Positioning After Alternate-Key Selection

When an AMP$SELECT _KEY call selects a different key, it sets the file
position to the beginning of the index for that key. (If the key specified on an
AMP$SELECT _KEY call is already the selected key, the file position is not
changed.) After an alternate key is selected, all file positioning follows the
logical record order represented in the alternate index.

As described earlier in this chapter, several calls are available to position a
keyed file. Those calls that both position the file and read and write data are
described later. The following calls position the file without reading or
writing data:

AMP$START
Positions the file to access the record having the specified value for the
selected key.

AMP$REWIND
Positions the file at the beginning of the index for the selected key. The
file is positioned to access the record with the lowest value for the selected
key.

AMP$SKIP
Positions the file forward or backward the specified number of records
(according to the record order provided by the index for the selected key).

Reading Records After Alternate-Key Selection

In general, the calls to read (or get) a record perform the same when an
alternate key is selected as when the primary key is selected. The only
difference is that records are accessed through the alternate index.

Random get calls specify the record to be read by its alternate-key value.
Sequential get calls access records in sorted order by alternate-key value.

These calls get a record and position the file to read or write the next record.
The next record is the record having the next primary-key value listed in the
alternate index.

AMP$GET _KEY
Gets the first record in the key list of the specified alternate-key value and
positions the file to read the next record.

An AMP$GET _KEY call specifies the alternate-key value. either in the
location referenced by the key _location pointer or (with a NIL key_
location pointer) in the working storage area. The second method is
especially useful for concatenated alternate keys because the fields of the
key can be assembled in the working storage area. Each key field value is
stored in the working storage area at its actual position within the record.

I I-2-34 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

AMP$GET _NEXT _KEY
Gets the record at the current position in the alternate index, returns the
alternate-key value of the record read, and positions the file to read the
next record.

The alternate-key value returned is the value stored in the alternate
index. If the alternate-key type is AMC$COLLATED _KEY, the key
values are stored in collated form. In collated form, each character is
represented by the lowest character code having the same collating
weight.

For example, assume that lowercase letters are collated as equal to the
corresponding uppercase letters (each uppercase/lowercase pair has the
same collating weight). Then the alternate-key value is stored (and later
returned) using only uppercase letters.

AMP$GET_NEXT
Gets the record at the current position in the alternate index and positions
the file to read the next record.

Updating an Alternate Index

A call to put, replace, or delete a record cannot specify an alternate-key
value; a key value specified on a put, replace, or delete call is expected to be a
primary-key value even if an alternate key is currently selected. However,
put, replace, and delete calls do update any alternate indexes affected by the
operation.

When a call deletes a record in the file, any alternate index entries for the
record are deleted.

When a call writes a new record to the file, an entry for the record is added to
the alternate indexes (unless the record is excluded from an index by
sparse-key control). The new record can then be read by its alternate-key
value.

When a call replaces an existing record in the file, the alternate index entries
for the record are replaced with the appropriate entries for the new record.
(The alternate-key value could have changed or sparse-key control could
exclude the record from an alternate index.)

To update an alternate index, the file must be open for modify, shorten, and
append access.

If an alternate index in the file was created using the default duplicate_key _
control value AMC$NO_DUPLICATES_ALLOWED, a record having the
same alternate-key value as a record already in the file cannot be written to
the file. An attempt to put or replace a duplicate record does not write the
record and returns a nonfatal error.

Revision B Using the CYBIL Keyed-File Interface I-2-35 I

Using Alternate Keys

Fetching Access Information After Alternate-Key Selection

An AMP$FETCH_ACCESS_INFORMATION call can return the following
I items of information. (The call format is in the CYBIL File Management

manual.) This list highlights the meaning of each item when returned
immediately after a call that specifies an alternate-key value:

duplicate_ value_inserted
Boolean indicating whether the last AMPPUT, AMPPUTREP,
AMP$REPLACE, or AMP$APPLY _KEY _DEFINIIONS call detected a
duplicate alternate-key value.

The duplicate_ value_inserted item does not identify the duplication. An
AMPPUT, AMPPUTREP, or AMP$REPLACE call can detect a
duplicate value for any alternate key in the file that allows duplicates. An
AMP$APPLY _KEY _DEFINITIONS call can detect a duplicate value for
any record in the file.

file _position
Returns the current file position as described later under File Position
Returned.

primary _key
Primary-key value of the record at the current file position (the next
record).

NOTE

The AMP$FETCH_ACCESS_INFORMATION call must specify a pointer
to the location where the primary-key value is to be returned. The pointer
must be specified in the PRIMARY _KEY field in the array specified by the
fetch_items parameter.

selected_key _name
Name of the currently selected key. If the primary key is currently
selected, the name $PRIMARY _KEY is returned.

I-2-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

File Position Returned

At completion of each AMP$START, AMP$GET _KEY, or AMP$GET _
NEXT _KEY call, a value is returned in the file_position variable. The value
returned is AMCEOR, AMCEOI, or AMC$END _OF _KEY _LIST as
shown in the following table.

Table 1-2-1. File Position Returned

AMC$END _OF_
AMC$EOR KEY_LlST AMC$EOI

AMP$START Not applicable. The alternate index is The alternate index is
positioned at the end of positioned at its end because
a key list and at the the specified alternate-key
beginning of the next key value was higher than any
list. The next keylist is for alternate-key value in the
either the specified index.
alternate-key value or the
next higher alternate-key
value if the specified value
was not found.

AMP$GET _KEY A record associated with The last (or only) record Same as for AMP$START.
the alternate-key value associated with the
has been returned, and if alternate-key value has
an AMP$GET _NEXT been returned, and if an
KEY call were issued next, AMP$GET _NEXT _KEY
it would return the next call were issued next, it
record in the key list for would return a record with
the same alternate-key another alternate key
value. value or the file_position

AMC$EOI.

AMP$GET Same as for Same as for No record is returned
NEXT_KEY AMP$GET _KEY. AMP$GET _KEY. because the file is positioned

at the end of the alternate
index.

Revision B Using the CYBIL Keyed-File Interface I-2-37 I

Using Alternate Keys

Retrieving Alternate-Index Information

An alternate index is a structure independent from the file data. Thus, a
program can fetch information from the alternate index without requiring
access to the file data. This section describes the calls that fetch information
from the alternate index.

An AMP$GET _KEY _DEFINITIONS call retrieves the definitions of
existing alternate keys. Your program could use the definitions returned by
AMP$GET _KEY _DEFINITIONS to:

• Determine the attributes of an alternate key

• Define identical or similar alternate keys in another file

For example, you may want to get the alternate-key definitions from an old
file to apply to a re-created file.

An AMP$GET _NEXT _PRIMARY _KEY _LIST retrieves primary-key
values from the alternate index. The primary-key values are returned in the
order the values are stored in the alternate index, beginning at the current
position.

Generally, AMP$GET _PRIMARY _KEY_ COUNT and AMP$GET _
SPACE_ USED _FOR_KEY calls prepare for subsequent calls that read or
position by alternate key. AMP$GET _PRIMARY _KEY_ COUNT counts the
number of primary-key values for a range of alternate-key values in the
alternate index. AMP$GET_SPACE_USED_FOR_KEY counts the number
of alternate-index blocks that contain the specified alternate-key value
range.

AMP$GET _PRIMARY _KEY_ COUNT gives the program the exact number
of primary-key values it would receive if it calls AMP$GET _NEXT_
PRIMARY _KEY _LIST for the alternate-key value range. To count the
values, AMP$GET _PRIMARY _KEY_ COUNT sequentially reads the
alternate-index records that contain the information.

AMP$GET _SPACE_ USED_FOR_KEY does not actually read the
alternate-index records that contain the primary-key values. It just counts
the blocks that would contain the records for a given range of alternate-key
values. This is much faster. The count returned is generally used to compare
with a count returned by another AMP$GET _SPACE_ USED_FOR_KEY to
determine the shorter primary-key value list.

e I-2-38 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

As an example of a use for this call, assume that a program is to find a set of
records in response to this query.

Find the Jones on Madison Avenue with more than two dependents.

Assume that both Jones and Madison Avenue are alternate-key values, but
number of dependents is not. The program must actually read the data
records to determine the number of dependents.

The program could read the set of records for either Jones or Madison
Avenue. To minimize the number of data records it must read, it should fetch
the shorter list. To determine which is the shorter list, it could compare
values returned by either AMP$GET _PRIMARY _KEY_ COUNT or
AMP$GET _SPACE_ USED_FOR_KEY calls. When the exact number of
primary-key values is not needed, it is faster to call AMP$GET _SPACE_
USED _FOR_ KEY.

AMP$GET _SPACE_ USED _FOR_KEY returns two values, block_ count
and block_space. The block_space value is the block_ count value multiplied
by the block size for the file. When comparing sets of records from more than
one file, a program should compare the block_space value returned, instead
of the block_count values. The block_space value is more useful in this case
because the block size could differ in the files.

Revision B Using the CYBIL Keyed-File Interface I-2-39 e

Program Examples

Program Examples

This section contains CYBIL program examples that perform these
functions:

• Create an indexed-sequential file

• Update an indexed-sequential file

• Create and use an alternate key

I • Create and delete nested files

I-2-40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

Indexed-Sequential File Creation Example

This program (module CREATE) creates an indexed-sequential file named
INDEXED by copying records from a sequential file with local file name
ORIGINAL_DATA. The first 15 characters of the record are used as the
embedded primary key. The records are fixed-length records, each 55
characters long.

The following is a listing of the data in file ORIGINAL_DATA. The first
column is a country name, the second is the population of the country, the
third is the size of the country (in square miles), and the fourth is the capital
of the country. There are several errors in the data; these will be fixed by the
second example program.

Algeria 19709000 919591 Algiers
Australia 14796000 2967895 Melbourne
Austria 7476000 32374 Vienna
Belgium 9875000 11781 Brussels
Canada 20050000 3851791 Montreal
Denmark 5157000 16629 Copenhagen
France 53844000 211207 Paris
Great Britain 55717000 94226 London
India 700734000 1269340 Delhi
Ireland 3349000 27136 Dublin
Ivory Coast 8513000 124503 Abidjan
Japan 118783000 143750 Yokohama
Mexico 70143000 761601 Mexico
Sweden 8335000 173731 Stockholm
Switzerland 6300000 15941 Bern
Tanzania 18744000 364898 Zanzibar
Turkey 47284000 301381 Ankara
United Kingdom 55717000 94226 London
United States 225195000 3615105 Washington
USSR 269302000 8649498 Moscow
Venezuela 15771000 352143 Caracas
West Germany 60948000 95976 Bonn

This is a source listing of the program that creates the indexed-sequential
file. The program uses the common procedures listed in appendix E to
inspect the status variable after each call and to produce a report on file
$OUTPUT.

MODULE create ;

{This program creates an indexed sequential file CISFILE) from}
{a sequential file (DATAIN). The primary key for ISFILE is }
{ the name of the country. }

Revision B Using the CYBIL Keyed-File Interface I-2-41 I

Indexed-Sequential File Creation Example

CONST
key_length = 15,
max_record_length = 55,
record_count = 30,
key_position = O,
data_padding = 15,
index_padding = 10,
index_levels = 2;

VAR
{ Declare variables for ISFILE.}

isfile: amtSlocal_file_name,
isfile_id: amtSfile_identifier,
isfile_fpos: amtSfile_position,

{ Declare variables for DATAIN.}
datain: amtSlocal_file_name,
sqfile_id: amtSfile_identifier,
sqfile_fpos: amtSfile_position,
sqfile_transfer_count: amtStransfer_count,
sqfile_byte_address: amtSfile_byte_address,

{ Wsa is used by both ISFILE and DATAIN.}
wsa: string Cmax_record_length);

{Establish for file_description an array of file attribute}
{ values. }

VAR file_description: [STATIC] array [1 •• 13] of
amtSfile_item :=

[[amcSfile_organization,
[amc$max_record_length,
[amcSrecord_type,
[amc$average_record_Length,
[amcSembedded_key,
[amcSkey _Length,
[amcSkey_position,
[amcSkey_type,
[amc$data_padd1ng,
[amc$index_padding,
[amcSindex_Levels,
[amcSestimated_record_count,
[amcSmessage_control,

amcSindexed_sequentiaLJ,
max_record_LengthJ,
amcSansi_fixedJ,
max_ record_ Length],
TRUE],
key_LengthJ,
key_positionJ,
amcSuncollated_keyJ,
data_paddingJ,
index_paddingJ,
index_ Levels],
record_ count],
SamtSmessage_control

[amcStrivial_errors,
amcSmessages,
amcSstatisticsJJJ;

I I-2-42 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

PROGRAM creation_phase (VAR program_status ostSstatus) ;

p#start_report_generation(
'Begin indexed-sequential file creation.'>;

isfile := 'indexed';
datain := 'original_data';
ampSfile Cisfile, file_description, status);

p#inspect_status_variable ;

ampSopen Cisfile, amcSrecord, NIL, isfile_id, status);
p#inspect_status_variable ;

ampSopen Cdatain, amcSrecord, NIL, sqfile_id, status>;
p#inspect_status_variable ;

{ The next part of the program reads records from DATAIN and }
{ writes the records to ISFILE. A WHILE Loop is used to read }
{and write the records until the file position of DATAIN is }
{ end-of-information. }

wsa := ' ';
amp$get_next Csqfile_id, ~wsa, max_record_Length,

sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status>;
p#inspect_status_variable;

WHILE Csqfile_fpos <> amcSeoi) DO
{The working storage Length (the third parameter) is
{ignored because the record type is amcSansi_fixed.
amp$put_key Cisfile_id, ~wsa, O, NIL, oscSwait, status);

p#inspect_status_variable;
wsa := ' ';
amp$get_next Csqfile_id, ~wsa, max_record_Length,

sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status);
p#inspect_status_variable;

WHILEND;

ampSclose Cisfile_id, status>;
p#inspect_status_variable;

ampSclose Csqfile_id, status>;
p#inspect_status_variable;

p#stop_report_generationC
'Indexed-sequential file creation complete.'>;

program_status.normal := TRUE
{ Exit with normal status. }

~ PROCEND creation_phase ;

Revision B Using the CYBIL Keyed-File Interface 1-2-43 I

Indexed-Sequential File Creation Example

?? PUSH (LIST := OFF) ??
{This deck contains the common procedures Listed in appendix E.}
*copyc comproc

*copyc ampSclose
*copyc ampSfile
*copyc ampSg~t_next
*copyc ampSopen
*copyc ampSput_key
?? POP ??

MODEND create;

Assuming the program source text is stored as file $USER.CREATE, the
following are the SCL commands required to expand, compile, attach the
data files, and execute the program. After the commands is a listing of the
statistical messages from the program.

/create_source_Library base=temporary_Library
/scu base=temporary_Library
sc/create_deck deck=create modification=original
sc •• /source=Suser.create
sc/expand_deck deck=create
sc •• /alternate_base=<Ssystem.cybil.osf$program_interface,
sc •• /Ssystem.common.psfSexternal_interface_source>
sc/quit, write_library=no
/cybil input=compile list=listing
/attach_file Suser.original_data
I Lgo

Begin indexed-sequential file creation.
File INDEXED 0 DELETE_KEYs done since last open.
File INDEXED 0 GET_KEYs done since Last open.
File INDEXED 0 GET_NEXT_KEYs done since Last open.
File INDEXED 22 PUT_KEYs (and PUTREPs->put) since last

open.
File INDEXED 0 PUTREPs done since last open.
File INDEXED 0 REPLACE_KEYs (and PUTREPs->replace)

Last open.
No error has been found by the program.
Indexed-sequential file creation complete.

I 1-2-44 CYBIL Keyed-File and Sort/Merge Interfaces

since

Revision B

Indexed-Sequential File Update Example

Indexed-Sequential File Update Example

This program (module UPDATE) adds, deletes, and replaces records in the
file INDEXED created by the CREATE program. The program reads its
input from a file named UPDATE_DATA.

The directives on file UPDATE_DATA are listed in the program output. In
the program, only the first letter of the words Delete, Replace, and Put are
used. The full word is included in the file to make the example clearer. Only
the primary key is required to delete a record.

This is a source listing of the program that updates the indexed-sequential
file. The program uses the common procedures listed in appendix E to
inspect the status variable after each call and to produce a report on file
$OUTPUT.

MODULE update;

{This program updates an indexed sequential file (INDEXED)}
{using information in an update file CUPDATE_DATA). }

CONST
record_length = 55;

VAR
{ Declare variables for ISFILE.}

isfile: amtSlocal_file_name := 'indexed',
isfile_id: amt$file_identifier,
isfile_fpos: amtSfile_position,
key: string C15>,
isfile_wsa: string Crecord_length>,

{ Declare variables for UPDATE.}
update: amtSlocal_file_name := 'update_data',
update_id: amtSfile_identifier,
update_fpos: amtSfile_position,
update_transfer_count: amtStransfer_count,
update_byte_address: amtSfile_byte_address,
update_wsa: string Crecord_length + 7),

{ Declare access_selections array for amp$open.}
access_selections: [STATIC] array [1 •• 1J of amtSfile_item

:= [[amcSmessage_control, SamtSmessage_control
[amcStrivial_errors, amcSmessages, amcSstatisticsJJJ;

Revision B Using the CYBIL Keyed-File Interface I-2-45 I

Indexed-lSequential l''ile Update Example

PROGRAM updating_phase <VAR program_status : ostSstatus) ;

p#start_report_generationC'Begin file update.'>;
ampSopen Cisfile, amcSrecord, Aaccess_selections,

isfile_id, status>;
p#inspect_status_variable;

ampSopen (update, amcSrecord, NIL, update_id, status>;
p#inspect_status_variable;

{ The WHILE Loop that follows reads an update record from UPDATE }
{ and edits ISFILE accordingly. The update information is }
{ contained in the first 7 characters of the records in UPDATE; }
{ however, only the first character is used to determine }
{whether a delete, put, or replace operation is to be }
{ performed. If the operation requested is not a delete, put, or }
{ replace, a message and the update record are printed on the }
{output Listing. If the status parameter check shows that an }
{ error occurred, then control is returned to the system. }

update_wsa := ' ';
ampSget_next Cupdate_id, Aupdate_wsa, STRLENGTHCupdate_wsa),

update_transfer_count, update_byte_address, update_fpos,
status>;
p#inspect_status_variable;

WHILE Cupdate_fpos <> amcSeoi) DO
p#put_m (TRUE, update_wsaC1, update_transfer_count>>;
isfile_wsa := update_wsa C8, * >;
key := isfile_wsa C1, 15);
CASE update_wsa (1) OF
= 'D' =

ampSdelete_key Cisfile_id, Akey, oscSwait, status>;
p#inspect_status_variable ;

= 'P', 'R' =
ampSputrep Cisfile_id, Aisfile_wsa, O, NIL, oscSwait,

status>;
p#inspect_status_variable;

ELSE
p#put_m (FALSE, 'Invalid code given as first character. '>;
p#put_m (TRUE, update_wsaC1, update_transfer_count>>;

CASEND;
update_wsa <1, *) := • •;
ampSget_next Cupdate_id, Aupdate_wsa, STRLENGTHCupdate_wsa>,

update_transfer_count, update_byte_address,
update_fpos, status>;
p#inspect_status_variable;

WHILEND;

I I-2-46 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ampSclose Cisfile_id, status);
p#inspect_status_variable;

ampSclose Cupdate_id, status);
p#inspect_status_variable;

Indexed-Sequential File Update Example

p#stop_report_generation('File update complete.');
program_status.normal := TRUE ;
{ Exit with normal status. }

PROCEND updating_phase

?? PUSH (LIST:=OFF) ??
{The COMPROC deck contains the common procedures Listed in}
{ appendix E. }
*copyc comproc

*copyc ampSclose
*copyc ampSdelete_key
*copyc ampSget_next
*copyc ampSopen
*copyc ampSputrep
?? POP ??

MODEND update;

Revision B Using the CYBIL Keyed-File Interface I-2-47 I

Indexed-Sequential File Update Example

Assuming the program source text is stored on file $USER. UPDATE, the
following are the SCL commands required to expand, compile, attach the
data file, and execute the program. It is assumed that the indexed-sequential
file to be updated is accessible as file INDEXED in the $LOCAL catalog.
After the commands is a listing of the statistical messages from the file
update program.

/create_source_Library base=temporary_Library
/scu base=temporary_Library
sc/create_deck deck=update modification=original
sc •• /source=Suser.update
sc/expand_deck deck=update
sc •• /alternate_base=CSsystem.cybil.osfSprogram_interface,
sc •• /$system.common.psf$external_interface_source)
sc/quit, write_Library=no
/cybil input=compile List=Listing
/attach_file Suser.update_data
/lgo

Begin file update.
ReplaceCanada
Put China
Delete Great Britain
Put Spain
Put Italy
ReplaceJapan

24336000
1053788000

38686000
57513000
11878300

3851791 Ottawa
3705390 Beijing

194897 Madrid
116303 Rome
143750 Tokyo

1 DELETE_KEYs done since Last open.
0 GET_KEYs done since Last open.
0 GET_NEXT_KEYs done since Last open.

File INDEXED
File INDEXED
File INDEXED
File INDEXED 3 PUT_KEYs (and PUTREPs->put) since last

open.
5 PUTREPs done since Last open. File INDEXED

File INDEXED 2 REPLACE_KEYs (and PUTREPs->replace) since
Last open.
No error has been found by the program.
File update complete.

I I-2-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

Alternate-Key Example

The following program illustrates the use of alternate keys. The program
uses the indexed-sequential file created and updated in the earlier examples
in this chapter. It also uses the common procedures listed in appendix E.

The program defines the capital field as the alternate key field. It then copies
the records to file ALTERNATE_KEY _OUTPUT, sorted by the alternate
key.

This is a source listing of the program.

MODULE example_3 ;

{This module defines and then uses alternate keys for ISFILE.}

CONST
max_record_length = 55;

VAR
{ Declare variables for ISFILE.}

isfile: amtSlocal_file_name,
isfile_id: amtSfile_identifier,
isfile_fpos: amtSfile_position,

~ {Declare variables for alternate key CAPITAL_KEY.}
capital_key_name: amtSkey_name := 'capital_key',
capital_key_position: amtSkey_position := 41,
capital_key_length: amtSkey_length := 14,

{ Declare variables for SQFILE.}
sqfile: amtSlocal_file_name,
sqfile_id: amtSfile_identifier,
sqfile_byte_address: amtSfile_byte_address;

VAR
wsa: string(max_record_length>,
record_length : amtSmax_record_Length;

{ Declare access_selections array for ampSopen of ISFILE.}
VAR

access_selections_isfile: [STATIC] array [1 •• 1] of
amtSfile_item :=

[[amcSmessage_control, SamtSmessage_control
[amcStrivial_errors, amcSmessages, amcSstatistics]JJ;

Revision B Using the CYBIL Keyed-File Interface 1-2-49 I

Alternate-Key Example

{ Establish the file attribute array for file_description.}
VAR

file_description: [STATIC] array [1 •• 2] of amtSfile_item :=
[[amcSfile_organization, amcSsequentialJ,
[amcSmax_record_length, max_record_lengthJJ;

{ Declare access_selections array for ampSopen of SEQFILE.}
VAR

access_selections_sqfile: [STATIC] array [1 •• 1]
of amtSfile_item :=
[[amcSfile_contents, amcSlegibleJJ;

VAR
capital_attributes: [STATIC,READ] array [1 •• 1]

of amtSoptional_key_attribute :=
[[amcSduplicate_keys, amcSordered_by_primary_keyJJ;

PROGRAM alternate_key_phase CVAR program_status : ostSstatus>;

p#start_report_generation('Begin alternate keys example.'>;

{These calls specify file attributes and open files.}
isfile := 'indexed';
sqfile := 'alternate_key_output';
ampSfile Csqfile, file_description, status>;

p#inspect_status_variable;
ampSopen Cisfile, amcSrecord, "access_selections_isfile,

isfile_id, status>;
p#inspect_status_variable;

ampSopen Csqfile, amcSrecord, "access_selections_sqfile,
sqfile_id, status>;
p#inspect_status_variable;

{These calls define and generate the alternate index. }
ampScreate_key_definition Cisfile_id, capital_key_name,

capital_key_position, capital_key_length,
"capital_attributes, status>;
p#inspect_status_variable;

ampSapply_key_definitions Cisfile_id, status>;
p#inspect_status_variable;

I 1-2-50 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

{These calls select the alternate key and read the first record. }
ampSselect_key Cisfile_id, capital_key_name, status);

p#inspect_status_variable;
ampSget_next_key Cisfile_id, "wsa, max_record_Length, NIL,

record_Length, isfile_fpos, oscSwait, status);
p#inspect_status_variable ;

{ This Loop copies the records in the indexed-sequential }
{file to the sequential file in the order the records }
{ are referenced in the alternate index. }

WHILE Cisfile_fpos <> amcSeoi) DO
ampSput_next Csqfile_id, "wsa, max_record_length,

sqfile_byte_address, status);
p#inspect_status_variable;

wsa C1, *) := ' ';
ampSget_next_key Cisfile_id, "wsa, max_record_Length, NIL,

record_Length, isfile_fpos, oscSwait, status);
p#inspect_status_variable

WHILEND;

ampSclose Cisfile_id, status);
p#inspect_status_variable;

ampSclose (sqfile_id, status);
p#inspect_status_variable ;

p#stop_report_generation('Alternate keys example complete.');
program_status.normal := TRUE;
{ Exit with normal status. }

PROCEND alternate_key_phase;

?? PUSH (LIST:=OFF) ??
{This deck contains the common procedures Listed in appendix E. }
*copyc comproc

*copyc ampSapply_key_definitions
*copyc ampSclose
*copyc ampScreate_key_definition
*copyc ampSfile
*copyc ampSget_next_key
*copyc ampSopen
*copyc ampSput_next
*copyc ampSselect_key
?? POP ??
MODEND example_3 ;

Revision B Using the CYBIL Keyed-File Interface I-2-51 I

Alternate-Key Example

Assuming the source program is stored as deck ALTERNATE_KEYS on
source library file $USER.MY _LIBRARY, the following is a listing of the
SCL commands required to expand, compile and execute the program. It is
assumed that the indexed-sequential file is accessible as file INDEXED in
the $LOCAL catalog.

/scu base=Suser.my_library
sc •• /expand_deck deck=Calternate_keys) ••
sc •• /alternate_base=<Ssystem.cybil.osfSprogram_interface,
sc •• /Ssystem.common.psfSexternal_interface_source>
sc/quit, write_library=no
/cybil input=compile
/lgo

Begin alternate keys example.
File INDEXED begin creating labels for alternate key

definitions.
File INDEXED finished creating labels for alternate key

definitions.
File INDEXED begin the data pass that collects alternate

key values.
File INDEXED AMPSAPPLY_KEY_DEFINITIONS has reached a file

boundary : EOI.
File INDEXED data pass completed.
File INDEXED begin sorting the alternate key values.
File INDEXED sorting completed.
Fi le INDEXED begin building alternate key indexes into

the file.
Fi le INDEXED completed building the indexes into the file.
File INDEXED AMPSGET_NEXT_KEY has reached a file

boundary : EOI.
File INDEXED 0 DELETE_KEYs done since Last open.
File INDEXED 0 GET_KEYs done since last open.
File INDEXED 48 GET_NEXT_KEYs done since

last open.
File INDEXED 0 PUT_KEYs (and PUTREPs->put) since last open.
File INDEXED 0 PUTREPs done since last open.
File INDEXED 0 REPLACE_KEYs (and PUTREPs->replace) since

last open.
No error has been found by the program.
Alternate keys example complete.

I 1-2-52 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

e This is a listing of the ALTERNATE_KEY _OUTPUT file written by the
program.

Ivory Coast 8513000 124503 Abidjan
Algeria 19709000 919591 Algiers
Turkey 47284000 301381 Ankara
China 1053788000 3705390 Beijing
Switzerland 6300000 15941 Bern
West Germany 60948000 95976 Bonn
Belgium 9875000 11781 Brussels
Venezuela 15771000 352143 Caracas
Denmark 5157000 16629 Copenhagen
India 700734000 1269340 Delhi
Ireland 3349000 27136 Dublin
United Kingdom 55717000 94226 London
Spain 38686000 194897 Madrid
Australia 14796000 2967895 Melbourne
Mexico 70143000 761601 Mexico
USSR 269302000 8649498 Moscow
Canada 24336000 3851791 Ottawa
France 53844000 211207 Paris
Italy 57513000 116303 Rome
Sweden 8335000 173731 Stockholm
Japan 11878300 143750 Tokyo
Austria 7476000 32374 Vienna
United States 225195000 3615105 Washington
Tanzania 18744000 364898 Zanzibar

Revision B Using the CYBIL Keyed-File Interface I-2-53 I

Nested File Example

Nested File Example

This example is a CYBIL program that first copies the nested-file definitions
from one keyed file to another keyed file and then destroys the original
nested files.

The program copies the nested-file definitions from file EXISTING_
KEYED _FILE to file ANOTHER_KEYED _FILE.

MODULE nested_file_module;

VAR
lfn1: [STATIC] amtSlocal_file_name :=

'existing_keyed_file',
lfn2: [STATIC] amtSlocal_file_name :=

'another_keyed_file',
fid1: amtSfile_identifier,
fid2: amtSfile_identifier,
access_information_ptr: AamtSaccess_information,
definitions_ptr: AamtSnested_file_definitions,
nested_file_count: amtSnested_file_count,
element: amtSnested_file_count;

{This program copies the nested-file definitions in file
{ EXISTING_KEYED_FILE CLFN1) to file ANOTHER_KEYED_FILE (LFN2).
{It then deletes all nested files (except SMAIN_FILE) from
{ LFN1. Any data in the LFN1 nested files Cother than in
{ SMAIN_FILE) is discarded.

PROGRAM nested_file_example CVAR program_status: ostSstatus>;

p#start_report_generation(
'Start copying of nested-file definitions.'>;

ampSopen(Lfn1, amcSrecord, NIL, fid1, status);
p#inspect_status_variable;

{These statements fetch the number of nested files currently
{defined in LFN1.

ALLOCATE access_information_ptr : [1 •• 1J;
access_information_ptrA[1J.key:=amcSnumber_of_nested_files;
ampSfetch_access_informationCfid1, access_information_ptrA,

status>;
p#inspect_status_variable;

e I-2-54 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested File Example

{A value is returned for number_of_nested_files only if the
{file is a keyed file. If it is not, the program sends a
{ message and terminates.

IF NOT access_information_ptr"[1J.item_returned THEN
p#stop_report_generation(

'File EXISTING_KEYED_FILE is not a keyed file.');
pmp$exit(status);

!FEND;

{ This statement allocates an array Large enough to hold a
{nested-file definition record for each nested file in LFN1.

ALLOCATE definitions_ptr :
[1 •• access_information_ptr"[1J.number_of_nested_filesJ;

amp$get_nested_file_definitions(fid1, definitions_ptr",
nested_file_count, status);

p#inspect_status_variable;

amp$openCLfn2, amc$record, NIL, fid2, status);
p#inspect_status_variable;

{This Loop defines each nested file from LFN1 in LFN2.
{ Element 1 of the array is skipped because it contains the
{definition of nested file $MAIN_FILE which already exists.

/define_ Loop/
FOR element := 2 TO nested_file_count DO

amp$create_nested_fileCfid2,
definitions_ptr"[elementJ, status);

IF NOT status.normal THEN
IF status.condition=ame$unimplemented_request THEN

p#put_m (TRUE,
'File ANOTHER_KEYED_FILE is not a keyed file.');

EXIT /define_Loop/;
ELSE

p#inspect_status_variable;
!FEND;

I FEND;

FOREND /define_Loop/;

amp$close(fid2, status);
p#inspect_status_variable;

Revision B Using the CYBIL Keyed-File Interface 1-2-55 e

Nested File Example

p#put_m <TRUE, 'Nested file definition copying is done.');
p#put_m (TRUE, 'Nested-file deletion now begins.');

{This Loop deletes each nested file in LFN1. Element 1 in
{ the array is skipped because it contains the definition
{of nested file SMAIN_FILE which cannot be deleted.

FOR element := 2 TO nested_file_count DO

ampSdelete_nested_file(fid1,
definitions_ptr"[elementJ~nested_file_name, status);

p#inspect_status_variable;

FOREND;

ampSclose(fid1, status);
p#inspect_status_variable;

p#stop_report_generation(
'Nested-file deletion complete.');

PROCEND nested_file_example;

?? PUSH (LIST := OFF) ??
{ The COMPROC deck contains the common
{procedures Listed in appendix E.
*copyc comproc

*copyc amp$open
*copyc ampSfetch_access_information
*copyc ampSget_nested_file_definitions
*copyc ampSdelete_nested_file
*copyc ampSclose
*copyc ampScreate_nested_file

{This directive is required to copy the
{ named condition identifier declaration.
*copyc ameSunimplemented_request
?? POP ??

MODEND nested_file_module

e I-2-56 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested File Example

The following commands prepare the program for execution.

"Commands to expand the program text.
create_source_Library result=temporary_Library
scu, base=temporary_Library

II

create_deck, deck=nested_file_program, ••
modification=original, source=Suser.nested_file_program

create_deck, deck=comproc, modification=original,
source=Suser.appendix_E_procedures

expand_deck, deck=nested_file_program, ••
alternate_base=($system.cybil.osf$program_interface,

Ssystem.common.psfSexternal_interface_source)
quit, write_Library=no

"Command to compile the exl)anded text on file COMPILE.
cybil, input=compile, List=Listing

After execution of the preceding commands, the object program is on file
LGO, ready for execution. To demonstrate program execution, the files
$USER.INDEXED_SEQUENTIAL_FILE and $USER.DIRECT _ACCESS_
FILE are copied to local files with the correct names. (Or, the files could be
attached as local files with these names, in which case, the program would
change the original files instead of copies.)

/copy_keyed_file, input=Suser.indexed_sequential_file,
•• /output=exi st'i ng_keyed_ fi Le
/copy_keyed_file, input=Suser.direct_access_file,
•• /output=another_keyed_file
/Lgo

Start copying of nested-file definitions.
No error has been found by the program.
Nested file definition copying is done.
Nested-file deletion now begins.
No error has been found by the program.
Nested-file deletion complete.
I

You could confirm that the nested files have been copied and deleted by
entering these commands:

display_keyed_file_properties, existing_keyed_file
display_keyed_file_properties, another_keyed_file

(The COPY _KEYED _FILE and DISPLAY _KEYED _FILE _PROPERTIES
commands are described in the SCL Advanced File Management Usage
manual.)

Revision B Using the CYBIL Keyed-File Interface I-2-57 e

9 Keyed-File Interface Calls 1-3

Using Keyed-File Interface Calls I-3-1
File Access ... I-3-2
AMP$ABANDON_KEY _DEFINITIONS I-3-4
AMP$APPLY _KEY _DEFINITIONS I-3-5
AMP$CREATE_KEY _DEFINITION I-3-7
AMP$CREATE_NESTED_FILE I-3-14
AMP$DELETE_KEY ... I-3-17
AMP$DELETE_KEY _DEFINITION I-3-19
AMP$DELETE_NESTED_FILE I-3-20
AMP$GET_KEY .. I-3-22
AMP$GET _KEY _DEFINITIONS I-3-27
AMP$GET_LOCK_KEYED_RECORD I-3-30
AMP$GET_LOCK_NEXT_KEYED_RECORD I-3-34
AMP$GET _NESTED _FILE_DEFINITIONS I-3-38
AMP$GET _NEXT _KEY .. I-3-40
AMP$GET _NEXT _PRIMARY _KEY _LIST I-3-43
AMP$GET _PRIMARY _KEY_ COUNT I-3-47
AMP$GET_SPACE_USED_FOR_KEY I-3-51
AMP$LOCK_FILE .. I-3-54
AMP$LOCK_KEY .. I-3-56
AMP$PUT_KEY .. I-3-59
AMP$PUTREP ... I-3-62
AMP$REPLACE_KEY .. I-3-64
AMP$SELECT _KEY .. I-3-66
AMP$SELECT_NESTED_FILE I-3-67
AMP$START ... I-3-69
AMP$UNLOCK_FILE .. I-3-72
AMP$UNLOCK_KEY _ I-3-73

Keyed-File Interface Calls 1-3

This chapter contains detailed descriptions of each keyed-file interface call,
organized in alphabetical order by the procedure name.

NOTE

As described in the manual introduction, a CYBIL program must include a
*COPYC directive for each keyed-file interface procedure call it uses.

When you expand your program, you must specify these files as alternate
base libraries:

$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE

When you execute your program, you must add the following object library
file to the program library list:

$LOCAL.AAF$44D _LIBRARY

9 Using Keyed-File Interface Calls

I
When using keyed-file interface calls, you follow the same general rules you
follow when using the other file interface calls described in the CYBIL File
Management and CYBIL Sequential and Byte Addressable Files manuals. I
A keyed-file interface call can only be issued for an instance of open of a
keyed file. As shown in the individual descriptions, each call references a file
by the file identifier returned by the AMP$0PEN call that opened the file.
The AMP$0PEN call is described in detail in the CYBIL File Management I
manual.

File processing is guided by the attribute values of the file. The file attributes
used by keyed files are described in chapter 1-4. The calls that specify file
attribute values are described in detail in the CYBIL File Management
manual.

Revision B Keyed-File Interface Calls I-3-1

File Access

File Access

You can use a file only if you have access to it. Your access to a file is limited e
by the permissions you have been granted to the file. You can limit access
further by requesting a subset of your permitted access modes when
attaching the file. This process is described in the SCL System Interface e Usage manual.

The access allowed for a particular instance of open is limited by the access_
mode file attribute as specified when the file is opened. The following is a list
of the access modes required for each keyed-file interface call.

Call Access Modes Required

AMP$ABANDON _KEY _DEFINITIONS Append, shorten, and modify
AMP$APPLY _KEY _DEFINITIONS Append, shorten, and modify
AMP$CREATE_KEY _DEFINITION Append, shorten, and modify

I AMP$CREATE_NESTED_FILE Append, shorten, and modify

AMP$DELETE_KEY Shorten
AMP$DELETE_KEY _DEFINITION Append, shorten, and modify

I AMP$DELETE_NESTED _FILE Append, shorten, and modify

AMP$GET _KEY Read (modify required to
record statistics)

AMP$GET _KEY _DEFINITIONS Any access mode
AMP$GET_LOCK_KEYED_RECORD Read (modify required to

record statistics)
AMP$GET_LOCK_NEXT_KEYED_ Read (modify required to
RECORD record statistics)
AMP$GET _NESTED _FILE_ Any access mode
DEFINITIONS
AMP$GET _NEXT _KEY Read (modify required to

record statistics)
AMP$GET _NEXT _PRIMARY_ Read
KEY_LIST
AMP$GET _PRIMARY _KEY_ COUNT Read

I
AMP$GET_SPACE_USED_FOR_KEY Read

AMP$LOCK_FILE Any access mode
AMP$LOCK_KEY Any access mode

AMP$PUT _KEY Append (shorten and modify
also required if the file has one
or more alternate keys) e

I-3-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Call

AMP$PUTREP

AMP$REPLACE_KEY

I AMP$SELECT _NESTED _FILE
AMP$SELECT _KEY
AMP$START I AMP$UNLOCK_FILE
AMP$UNLOCK_KEY

Revision B

File Access

Access Modes Required

Append and shorten (modify
also required if the file has one
or more alternate keys)
Append and shorten (modify
also required if the file has one
or more alternate keys)

Any access mode
Any access mode
Read
Any access mode
Any access mode

Keyed-File Interface Calls I-3-3

AMP$ABANDON _KEY _DEFINITIONS

AMP$ABANDON_KEY _DEFINITIONS

Purpose Discards the pending alternate-key definitions or deletions.

Format AMP$ABANDON_KEY _DEFINITIONS
(file _identifier ,status);

Parameters file _identifier: amt$file _identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$no _definitions _pending
aae$not _enough _permission

• A pending alternate-key definition or deletion is one that
has been requested but has not yet been discarded or
applied to the nested file. An AMP$ABANDON _KEY_
DEFINITIONS call or the closing of the file discards all
pending definitions and deletions. An AMP$APPLY _
KEY _DEFINITIONS call applies all pending definitions
and deletions.

• AMP$ABANDON _KEY _DEFINITIONS cannot discard
an alternate-key definition that has already been applied
to the nested file. To delete an applied alternate-key
definition, call AMP$DELETE_KEY _DEFINITION, and
then call AMP$APPLY _KEY _DEFINITION to apply the
deletion request.

I I-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$APPLY _KEY _DEFINITIONS

AMP$APPL Y _KEY _DEFINITIONS

Purpose

Format

Applies the pending alternate-key definitions and deletions to
the file.

AMP$APPLY _KEY _DEFINITIONS
(file_identifier, status);

Parameters file _identifier: amt$file _identifier

Condition
Identifiers

Remarks

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$begin_altkey _labels
aae$begin _delete_ keydefs
aae$duplica te _alternate_ key
aae$enable_altkey _duplicates
aae$end_altkey _labels
aae$end _delete_ keydefs
aae$index _being_ built
aae$keydef _has_ been_ deleted
aae$no _definitions
aae$not _enough_ permission
aae$sparse _key_ beyond_ eor
aae$unexpected _ dup _encountered

• AMP$APPLY _KEY _DEFINITIONS applies the pending
requests to the currently selected nested file only. (The
nested file selected when the file is opened is the default
nested file, $MAIN _FILE.)

• An AMP$APPLY _KEY _DEFINITIONS call first deletes
each alternate index specified by a pending alternate-key
deletion. It then creates an alternate index for each
pending alternate-key definition.

A pending definition or deletion is one requested by an
AMP$CREATE_KEY _DEFINITION or AMP$DELETE_
KEY _DEFINTION call that has not yet been discarded or
applied to the file. (Closing the file or issuing an
AMP$ABANDON _KEY _DEFINITIONS call discards all
pending definitions and deletions.)

Keyed-File Interface Calls I-3-5

I

AMP$APPLY _KEY _DEFINITIONS

Remarks
(Contd)

• If AMC$NO _DUPLICATES_ALLOWED is specified for a
new key and the file contains data, AMP$APPLY _KEY_
DEFINITIONS returns a nonfatal error (condition
AAE$UNEXPECTED _DUP _ENCOUNTERED) if it finds
a duplicate alternate-key value. It then changes the
duplicate control for the index from AMC$NO _ A
DUPLICATES_ALLOWED to AMC$0RDERED _BY_ W
PRIMARY _KEY, and restarts creation of the alternate
index. (All other indexes are unaffected by this change.)

If a change to AMC$0RDER_BY _PRIMARY _KEY is not
desired, set the error_limit attribute to 1. The occurrence of
a nonfatal error (such as a duplicate-key value) causes the
nonfatal-error limit to be reached and a fatal error to be
issued. The fatal error terminates alternate index creation
and discards any alternate indexes already built by the
call.

No alternate indexes are created by the terminated
AMP$APPLY _KEY _DEFINITIONS procedure; however,
it does perform all pending alternate-key deletions.

• Entry of a pause_break_character (usually control-p) is
ignored during application of alternate-key definitions.

• Entry of a terminate_break_character (usually control-t)
during application of alternate-key definitions returns a
prompt to the terminal user, asking for confirmation.

As described in the prompt, the terminal user should then
enter a carriage return or any entry other than RUIN FILE
(uppercase or lowercase) to continue the application of
alternate-key definitions. Applied alternate-key definitions
can be removed without harm to the file after the apply
operation has completed.

A request to ruin the file is not recommended. No file
operation can be performed on a ruined file and so no data
can be retrieved from the file.

I I-3-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

AMP$CREATE_KEY _DEFINITION

Purpose

Format

Defines an alternate key.

AMP$CREATE_KEY _DEFINITION
(file_identifier, key _name, key _position, key _length,
optional_attributes, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _name: amt$key _name

Name to be given the alternate key. The name must follow the I
SCL naming rules. It can be specified by an amt$key _name
variable or by a 31-character string on the call. (The name
must be left-justified with blank fill within the string.)

key _position: amt$key _position

Position of the first byte of the alternate key in the record.
(The bytes in a record are numbered from the left, beginning
with zero.)

key _length: amt$key _length

Length, in bytes, of the alternate key. The maximum length is
255 bytes.

optional_attributes: Aamt$optional_key _attributes

Pointer to an adaptable array defining optional attributes of
the alternate key. Specify NIL if no optional attributes are to
be specified.

Each record in the array specifies an optional attribute; the
attribute defined is indicated by the SELECTOR field of the
record. Table 1-3-1 lists the SELECTOR field values and the
attribute record fields generated for each SELECTOR field
value.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$alt_key _past_minrl
aae$bad_name
aae$can t _create __ existing_ name
aae$concatenated_key _too_big
aae$cant_get_ collate_ table
aae$collated_altkey _no_ table
aae$no _repeating _group

Keyed-File Interface Calls I-3-7

AMP$CREATE_KEY _DEFINITION

Remarks • To apply the alternate-key definition specified by an
AMP$CREATE_KEY _DEFINITION call to the file, call
AMP$APPLY _KEY _DEFINITIONS. Before the apply
operation, an alternate-key definition is only pending and
cannot be used to access records in the file. A call to
AMP$ABANDON _KEY _DEFINITIONS discards
pending alternate-key definitions.

• If the SELECTOR field in a record in the optional_
attributes array has the value AMC$NULL_ATTRIBUTE,
that record is ignored.

• Sparse key control is defined by three values:

Sparse_Key _ Control_Position
Sparse_ Key_ Control_ Characters
Sparse_Key _ Control_Effect

If an alternate key is subject to sparse-key control, the
sparse-key control character must be within the minimum
record length, but the alternate-key fields need not be. For
more information, see the Sparse-Key Control description
in chapter I-1.

• A concatenated key can have up to 64 pieces. The leftmost
piece is defined by the key _position and key _length A
values. W

Each piece concatenated to the first piece is specified by a
record in the optional_ attributes array containing three
fields:

Concatenated_Key _Position
Concatenated_Key _Length
Concatenated_Key _Type

The pieces are concatenated in the same order as the
records that define the pieces in the optional_attributes
array.

The total length of a concatenated key cannot exceed 700
bytes.

• The first alternate key value in a repeating group begins at
key _position. Subsequent keys are found by adding the
value of repeating _group _length to key _position until e
either the repeating _group_ count is satisfied (repeat_ to_
end_ of_record is FALSE) or the end of the record is
reached (repeat_to_end_of_record is TRUE).

I 1-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

Remarks
(Contd)

• Repeating groups cannot be used with concatenated keys.
Also, repeating groups cannot be used when duplicate_
key _control is set to AMC$FIRST _IN_FIRST _OUT.

NOTE

The CYBIL declaration for AMT$0PTIONAL_KEY _ATIRIBUTE in
appendix C lists additional fields besides those listed in table 1-3-1. These
additional fields are for features not yet implemented.

Table 1-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _ATTRIBUTE)

Value of
SELECTOR Field

AMC$KEY _TYPE

Revision B

Resulting Attribute Record Fields

KEY_ TYPE: amt$key _type

Type of the alternate key.

AMC$UNCOLLATED_KEY

Order key values byte-by-byte according
to the ASCII character set sequence
(listed in appendix B). Key values can be
positive integers or ASCII strings (1
through 255 bytes).

AMC$INTEGER_KEY

Order key values numerically. Key
values are positive or negative integers (1
through 8 bytes).

AMC$COLLA TED _KEY

Order key values according to a
user-specified collation table (see the
COLLATE_ TABLE_NAME description
in this table). Key values can be positive
integers or ASCII strings (1 through 255
bytes).

If you omit the attribute,
AMC$UNCOLLATED _KEY is used.

(Continued)

Keyed-File Interface Calls I-3-9

I

I

AMP$CREATE _KEY_ DEFINITION

I Table 1-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$COLLATE_
TABLE_NAME

AMC$DUPLICATE _KEYS

Resulting Attribute Record Fields

COLLATE_TABLE_NAME:
pmt$program_name

Name of the collation table to be used for
collating the alternate key. (The
alternate-key collation table can differ from
the primary-key collation table. See
appendix D for more information on
collation tables.)

If the file is an indexed-sequential file with
a collated primary key, the default collation
table for the alternate key is the collation
table for the primary key. Otherwise, you
must specify a collation table for each
collated alternate key.

DUPLICATE_KEY _CONTROL:
amt$duplicate _key_ control

Indicates how duplicate alternate-key
values are handled in the alternate index.

AMC$NO_DUPLICATES_ALLOWED

No duplicate alternate-key values are
allowed in the alternate index.

AMC$FIRST _IN _FIRST_ OUT

Duplicate alternate-key values are
ordered according to when the record is
written to the file.

AMC$0RDERED _BY _PRIMARY _KEY

Duplicate alternate-key values are
ordered according to primary-key values.

Omission causes AMC$NO _
DUPLICATES_ALLOWED to be used. e

(Continued)

1-3-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

Table 1-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$NULL_
SUPPRESSION

AMC$SPARSE_KEYS

Revision B

Resulting Attribute Record Fields

NULL_SUPPRESSION : boolean

Indicates whether alternate keys with a null
value should be included in the alternate
index. (For AMC$INTEGER_KEY, the null
value is zero; for AMC$UNCOLLA TED_
KEY, the null value is all spaces; for
AMC$COLLATED_KEY, the null value is
all spaces before collation.)

FALSE

All values are included in the index.

TRUE

Null values are not included in the index.

Omission causes FALSE to be used.

SPARSE_KEY _CONTROL_POSITION:
amt$key_position

Position of the sparse-key control character.
The position must be within the minimum
record length. (Bytes in a record are
numbered from the left, beginning with
zero.)

SPARSE KEY_CONTROL
CHARACTERS : set of char

Set of characters with which the sparse-key
character is compared.

SPARSE_KEY _CONTROL EFFECT:
amt$sparse_key _control_effect

Indicates whether a sparse-key control
character match causes the alternate key to
be included or excluded from the alternate
index.

(Continued)

Keyed-File Interface Calls I-3-11

I

AMP$CREATE_KEY _DEFINITION

I Table I-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field Resulting Attribute Record Fields

AMC$INCLUDE_KEY _VALUE
Alternate-key value is included in the
alternate index.

AMC$EXCLUDE_KEY_VALUE
Alternate-key value is not included in
the alternate index.

AMC$REPEATING_GROUP REPEATING_GROUP _LENGTH:
amt$max_record_length,
Length, in bytes, of the repeating group of
fields. It is the distance from the beginning
of an alternate-key value to the beginning
of the next alternate-key value in the record.

REPETITION_ CONTROL:
amt$repetition_control
This record indicates whether the alternate A
key repeats until the end of the record. If no W'
values are specified for the repetition_
control record, it is assumed that the
repeating group repeats until the end of the
record.

REPEAT_TO_END_OF_RECORD:
boolean

TRUE
The alternate key repeats until the
record ends. (An incomplete key at the
end of the record is not used.)

FALSE
The alternate key repeats the number
of times specified in the
REPEATING_GROUP _COUNT
field. If sparse-key control is not used,
the specified number of key values
must be within the minimum record e
length.

(Continued)

I-3-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

Table 1-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _A '!TRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$CONCATENATED _
KEY _PORTION

Revision B

Resulting Attribute Record Fields

REPEATING_GROUP _COUNT:
amt$max_repeating _group_ count
Number of times the group of fields repeats
in a record. This field exists only if
REPEAT_TO_END_OF_RECORDis
FALSE.

CONCATENATED_KEY _POSITION:
amt$key _position
Starting position of a concatenated piece.
(Bytes are numbered from the left,
beginning with zero.)

CONCATENATED_KEY_LENGTH:
amt$key _length
Length, in bytes, of a concatenated piece.

CONCATENATED_KEY_TYPE:
amt$key _type
Key type of a concatenated piece.

AMC$UNCOLLATED_KEY
Order piece values byte-by-byte
according to the ASCII character set
sequence (listed in appendix B). Piece
values can be positive integers or ASCII
strings (1 through 255 bytes).

AMC$INTEGER_KEY
Order piece values numerically. Piece
values are positive or negative integers
(1 through 8 bytes).

AMC$COLLATED_KEY
Order piece values according to a
user-specified collation table (see the
COLLATE_ TABLE_NAME description
in this table). Piece values can be positive
integers or ASCII strings (1 through 255
bytes).

Keyed-File Interface Calls I-3-13

I

AMP$CREATE_NESTED _FILE

AMP$CREATE_NESTED_FILE

Purpose Defines a nested file in an existing NOS/VE file.

Format AMP$CREATE_NESTED _FILE
(file_identifier, definition, status);

Parameters file_identifier: amt,$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

definition: amt,$nested_file _definition

Variant record which specifies the nested-file name and its
attributes. The record declaration is as follows:

amtSnested_file_definition =record
nested_file_name: amtSnested_file_name,
embedded_key: boolean,
key_position: amtSkey_position,
key_Length: amtSkey_Length,
maximum_record: amtSmax_record_Length,
minimum_record: amtSmin_record_Length,
record_type: amtSrecord_type,
case file_organization:

amt$file_organization of
= amcSindexed_sequential =

key_type: amtSkey_type,
collate_table_name: pmtSprogram_name,
data_padding: amtSdata_padding,
index_padding: amtSindex_padding,

= amcSdirect_access =
home_block_count:

amtSinitial_home_block_count,
dynamic_home_block_space:

amt$dynamic_home_block_space,
Loading_factor: amtSLoading_factor,
hashing_procedure:

amtShashing_procedure_name,
ca send,

rec end;

status: VAR of ost,$status

Status variable in which the procedure returns its completion A
status. W

e I-3-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Condition
Identifiers

Remarks

Revision B

aae$bad_name
aae$cant_get_ collate_ table
aae$collated_ key_ needs_ table
aae$da ta_ pad_ too_ large
aae$d up_ nested_ file_ name
aae$index_ pad_ too_ large
aae$integer_key _gt_one_ word
aae$min_gt_max_rec_length
aae$no _home_ block_ count
aae$no _select_ during_ keydef
aae$not _enough_ permission
aae$rec _too_ small_ for_ key
aae$system _error_ occurred

AMP$CREATE_NESTED _FILE

• AMP$CREATE_NESTED_FILE requires append, modify,
and shorten access to the file; otherwise, it returns
condition aae$not_ enough_permission.

• AMP$CREATE_NESTED_FILE cannot create a nested
file if one or more alternate-key requests are pending. Call
AMP$APPLY _KEY _DEFINITIONS or
AMP$ABANDON_KEY _DEFINITIONS to dispose of the
pending requests.

• The specified nested-file name must be unique among the
nested files in the file; otherwise, AMP$CREATE_
NESTED_FILE returns condition aae$dup_nested_
file_name.

• You must specify values for all fields in the nested-file
definition record that apply to the file organization. No
default values are provided; the corresponding attribute
values specified when the file was created apply only to the
default nested file ($MAIN_FILE).

The attributes and their values are described in
chapter I-4.

• When creating an indexed-sequential nested file, specify
OSC$NULL_NAME for the collate_table_name field
when the key_ type specified is AMC$UNCOLLATED or
AMC$INTEGER. Specify the collation table name in the
field when the key_ type is AMC$COLLA TED.

• If the key type is collated, specification of a collation table
is required. AMP$CREATE_NESTED_FILE loads the
collation table and stores it for use by the nested file. If it
cannot load the collation table, it returns condition
aae$cant_get_ collate_ table.

Keyed-File Interface Calls I-3-15 e

AMP$CREATE_NESTED _FILE

Remarks
(Contd)

• When creating a direct-access nested file, specify values for
the dynamic_home_block_space and loading_factor fields
(although the values are not yet used). Specify the default
values, FALSE and 0, respectively.

For the hashing_procedure specification, values are A
required for two fields (NAME and OBJECT _LIBRARY). W
Currently, you should always specify OSC$NULL_NAME
for the OBJECT _LIBRARY field. To specify the default
hashing procedure, specify AMP$SYSTEM_HASHING_
PROCEDURE as the NAME field value.

• Creating a nested file does not select the nested file for use.
To select a nested file, call AMP$SELECT _NESTED_
FILE.

• To remove a nested file, call AMP$DELETE_NESTED _
FILE.

• For more information on nested files, see Nested Files in
chapter I-1.

• The nested-file example at the end of chapter 1-2
demonstrates the use of this call.

e I-3-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$DELETE_KEY

AMP$DELETE_KEY

Purpose Removes a record from a keyed file.

Format AMP$DELETE_KEY
(file_identifier, key _location, wait, status); e Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _location: Acell

Pointer to the primary-key value of the record to be deleted.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$file _at_ file_ limit
aae$file _is_ ruined
aae$key _not_ already _locked
aae$key _not_found
aae$key _required
aae$nonembedded_key _not_given
aae$not_ enough_permission

• An AMP$DELETE_KEY call requires that the file be
opened for at least shorten access. However, if the file has
one or more alternate keys, the file must be opened with at
least append, shorten, and modify access so that the
alternate indexes can be updated.

• If the file could be shared (more than one instance of open
could exist), a record can be deleted only by the owner of a
Preserve_Access_and_ Content or Exclusive_Access lock
on the primary-key value of the record. An invalid attempt
returns the nonfatal condition aae$key _not_already _
locked.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

• When the delete request is executed, the specified record is
either flagged as deleted or physically deleted from the
data block. When the first record in a data block is deleted,
index blocks are updated as applicable.

Keyed-File Interface Calls 1-3-17

I

I

AMP$DELETE_KEY

Remarks
(Contd)

• If execution of a delete request empties a data or index
block, the block is linked into a chain of empty blocks.
These blocks are reused when new blocks are required for
file expansion.

• AMP$DELETE_KEY searches for the specified
primary-key value only in the nested file currently
selected. If it does not find it, it returns the nonfatal
condition aae$key _not_ found.

• Execution of an AMP$DELETE_KEY call does not
change the file position or the currently selected key.

An AMP$DELETE_KEY call updates the alternate
indexes if alternate keys are defined for the file. Calls to
delete records are effective even if an alternate key is
currently selected for reading and positioning the file.

• When deleting a series of contiguous fixed-length records,
you can save execution time by beginning with the record
having the highest primary-key value.

Deletion of the last record in a data block is performed
quickly because the system just needs to reduce the record
count by one. Deletion of the first record in a data block,
however, can move all remaining records in the data block. e
By deleting records in order from the highest to the lowest
primary-key value, you can avoid relocation of records to
be subsequently deleted.

I-3-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$DELETE_KEY _DEFINITION

e AMP$DELETE_KEY _DEFINITION

Purpose Requests removal of an alternate-key definition by the next
AMP$APPLY _KEY _DEFINITIONS call.

Format AMP$DELETE_KEY _DEFINITION e (file_identifier, key _name, status);

Parameters file_ identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _name: amt$key _name

Name of the alternate key to be deleted. It can be specified by
an amt$key _name variable or by a 31-character string on the I
call. (The name must be left-justified with blank fill within
the string.)

status: VAR of ost$status

Status variable in which the completion status is returned.

Condition aae$bad_ name
Identifiers aae$cant _delete_ missing_ name

aae$no_delete_current_key

e aae$not _enough_ permission

Remarks • A subsequent AMP$APPLY _KEY _DEFINITIONS call is
required to implement an alternate-key deletion specified
by an AMP$DELETE_KEY _DEFINITION call.

Before the apply operation, an alternate-key deletion is
only pending; the alternate key remains in the file,
although it is not available for use. (Another instance of
open that has already selected the alternate key can
continue to use it; however, no instance of open can select
the key while its deletion is pending.)

A call to AMP$ABANDON_KEY _DEFINITIONS
discards pending alternate-key deletions.

• You cannot delete an alternate key while you have the key
selected. Before calling AMP$DELETE_KEY _
DEFINITION for the current key, you must call
AMP$SELECT _KEY to select another key; otherwise
AMP$DELETE_KEY _DEFINITION returns the
condition aae$no _delete_ current_ key.

e
Revision B Keyed-File Interface Calls I-3-19

AMP$DELETE_NESTED _FILE

AMP$DELETE_NESTED_FILE

Purpose

Format

Destroys a nested file. It deletes its data, alternate keys, and
the nested file definition.

AMP$DELETE_NESTED _FILE
(file_identifier, nested_file_name, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

nested_ file_ name: amt$nested_file_name

Name given the nested file when it was created. It can be
specified by an amt$nested_file_name variable or by a
31-character string on the call. (The name must be
left-justified with blank fill within the string.)

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

aae$bad_name
aae$cant_delete_main_nested_f
aae$nested_file_not_found
aae$no_delete_current_nested_f
aae$no_delete_rasp_in_use
aae$no_select_during_keydef
aae$not_ enough_permission
aae$system _error_ occurred

• AMP$DELETE_NESTED_FILE requires append, modify,
and shorten access to the file.

• The default nested file $MAIN_FILE cannot be deleted.

• The task must have exclusive access to the nested file to
delete it. AMP$DELETE_NESTED _FILE cannot delete a
nested file while:

- Any instance of open has the nested file selected.

- Any instance of open has any locks that apply to the
nested file.

An attempt to delete a nested file while it is in use returns
the nonfatal condition aae$no_delete_rasp_in_use.

• I-3-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$DELETE_NESTED _FILE

• AMP$DELETE _NESTED _FILE cannot delete a nested
file if the instance of open has one or more alternate-key
requests pending. Call AMP$APPLY _KEY_
DEFINITIONS or AMP$ABANDON _KEY_
DEFINITIONS to dispose of the pending requests and
then call AMP$SELECT _NESTED _FILE to select
another nested file.

The default nested file $MAIN _FILE is the recommended
selection while deleting nested files because $MAIN_FILE
cannot be deleted.

• For more information on nested files, see Nested Files in
chapter I-1.

• The nested-file example at the end of chapter I-2
demonstrates the use of this call.

Keyed-File Interface Calls I-3-21 e

I

AMP$GET _KEY

AMP$GET_KEY

Purpose

Format

Reads a record from a keyed file using the specified key value.

AMP$GET_KEY
(file_identifier, working_storage_area, working_
storage_length, key _location, major _key _length, key_
relation, record_length, file_position, wait, status);

Parameters file _identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: "cell

Pointer to the space to which the record is copied.

working _storage _length: amt$working _storage _length

Length, in bytes, of the working storage area.

key _location: "cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major _key _length: amt$major_key _length

Length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the value is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

I-3-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Parameters
(Contd)

Revision B

AMP$GET _KEY

key _relation: amt.$key _relation

Relationship between the key value of the record and the key
value at key _location. The possible values are as follows:

AMC$EQUAL_KEY

AMP$GET _KEY reads the first record whose key value is
equal to the key value at key _location.

AMC$GREATER_OR_EQUAL_KEY

AMP$GET _KEY reads the first record whose key value is
equal to or greater than the key value at key _location.

AMC$GREATER_KEY

AMP$GET _KEY reads the first record whose key value is
greater than the key value at key _location.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

record_ length: VAR of amt.$max_record_length

Variable in which the number of bytes read is returned.

file_position: VAR of amt.$file_position

Variable in which the file position at completion of the read
operation is returned.

AMC$END_OF _KEY_LIST

File is positioned at the end of the key list for the
alternate-key value specified on the call.

AMC$EOR

File is positioned at end-of-record.

AMC$EOI

File is positioned at end-of-information.

wait: ost.$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost.$status

Status variable in which the completion status is returned.

Keyed-File Interface Calls 1-3-23

I

AMP$GET _KEY

Condition
Identifiers

Remarks

aae$file_at_file_limit
aae$file _is_ ruined
aae$key _found_lock_no_ wait
aae$key _not_found
aae$major _key_ too_ long
aae$nonembedded_key _not_given
aae$not_ enough_pennission
aae$record_ longer_ than_ wsa

• To allow for updating of file statistics, you should open the
file for both read and modify access.

• If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is read. The
program should either lock the key value before the
AMP$GET _KEY call or replace the AMP$GET _KEY call
with an AMP$GET _LOCK_KEYED _RECORD call.

If another instance of open has an Exclusive_Access lock
on the primary-key value of the record, AMP$GET _KEY
returns the nonfatal condition aae$key _found_lock_no_
wait and leaves the file positioned to read the record it
found.

To read about locks, see Keyed-File Sharing in
chapter I-2.

• AMP$GET _KEY searches for the specified key value only
in the currently selected nested file.

• AMP$GET _KEY can read a record by its primary-key
value or by an alternate-key value. The primary key is
used unless a preceding AMP$SELECT _KEY call has
selected an alternate key.

• If the primary key is selected, the key _location parameter
must point to the location of the key value.

• If an alternate key is selected, the key _location parameter
can point to the location of the key or it can be set to NIL.

If key _location is set to NIL, AMP$GET _KEY expects the
key to be in the working storage area. The location of the
key in the working storage area must match the location of
the key in the record.

If the alternate key is a concatenated key, each field in the
concatenated key must be stored in its appropriate location
in the working storage area.

I-3-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$GET _KEY

• For an indexed-sequential file, AMP$GET _KEY uses a
major key ifthe major_key _length parameter value is
nonzero. A major key is the leftmost bytes of the key.
AMP$GET_KEY searches for the lowest key value that
begins with the major-key value or, if that is not found, a
value greater than the major-key value.

• For an indexed-sequential file, the nonfatal condition
aae$key _not_found is returned if no record in the nested
file has a key value that satisfies the relation specified by
the key _relation parameter (equal, greater than, or greater
than or equal). AMP$GET _KEY always positions the file
at the point where the record satisfying the relation would
be located ifit existed in the file.

• AMP$GET _KEY returns the actual length of the record in
the variable specified by the record_ length parameter. If
the length of the record is greater than the length of the
working storage area, AMP$GET _KEY returns working_
storage_length characters to the working storage area; it
also returns the nonfatal condition aae$record_longer_
than_wsa.

• File positioning by AMP$GET _KEY differs depending on
the file organization and the key selected.

• For a direct-access file with its primary key selected, the
following statements are true:

- An AMP$GET _KEY call does not change the file
position used by sequential access calls.

- The only file_position value AMP$GET _KEY returns is
AMC$EOR.

- The only calls that reposition the file are the
AMP$REWIND call and the sequential access calls
(AMP$GET _NEXT, AMP$GET _NEXT _KEY,
AMP$GET _LOCK_NEXT _KEY).

- The major_key _length and key _relation parameter
values are not used.

• An AMP$GET _KEY call for a direct-access file with an
alternate key selected is processed the same as a call to an
indexed-sequential file with an alternate key selected.

Keyed-File Interface Calls I-3-25 e

AMP$GET_KEY

I Remarks
(Contd)

• For an indexed-sequential file, execution of the
AMP$GET _KEY call leaves the file positioned at the end
of the record that was read. (AMC$EOR or AMC$END _
OF _KEY _LIST is returned in the file_position parameter.)

When AMP$GET _KEY returns AMC$EOI as the file
position, it has not found the requested record and does not e
return data in the working storage area. It returns
AMC$EOI in both of these cases:

- It is searching for a key value that is greater than or
equal to the specified key value and the specified key
value is greater than all key values in the file.

- It is searching for a key value that is greater than the
specified key value and the specified key value is the
highest value in the file.

I-3-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _KEY _DEFINITIONS

AMP$GET_KEY_DEFINITIONS

Purpose Retrieves the definitions of all alternate keys in the file.

Format AMP$GET _KEY _DEFINITIONS
(file_identifier, key _definitions, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _definitions: SEQ(*)

Sequence to receive the description of the alternate keys.

Each definition is written in two parts: a record of type
AMT$BASIC_KEY _DEFINITION and an array of type
AMT$0PTIONAL_KEY _ATTRIBUTES records containing
four or more additional records. (The number of records is
returned in the NUMBER_ OF_ OPTIONAL_ATTRIBUTES
field of the AMT$BASIC _KEY _DEFINITION record.)

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$not_ enough_permission
aae$too _little_ space

• A successful AMP$GET _KEY _DEFINITIONS call
returns a sequence of key definitions. The last key
definition in the sequence consists of an AMT$BASIC_
KEY _DEFINITION record in which the field
DEFINITION_RETURNED is FALSE; the record serves
as the terminator for the sequence of key definitions.

• Hthe DEFINITION_RETURNED field is TRUE in an
AMT$BASIC_KEY _DEFINITION record, the record is
the first part of a key definition. The NUMBER_ OF_
OPTIONAL_ATTRIBUTES field in the record specifies
the number of additional records returned for the key
definition; the records are returned in an array of type
AMT$0PTIONAL_KEY _ATTRIBUTES.

Keyed-File Interface Calls I-3-27 I

AMP$GET _KEY _DEFINITIONS

Remarks
(Contd)

Example

• The SELECTOR field of an optional attribute record
indicates the attribute returned in the record. The possible
attributes are: key _type, duplicate_key _control, null_
suppression, group_name, sparse_key _control,
concatenated_key, and repeating_groups. The first four
records are returned for every key definition; the
subsequent records are returned only ifthe attribute was
specified for the key definition.

• The attribute order in a key definition may not match the
attribute order specified when the alternate key was
defined. However, the returned definition is logically
equivalent and, if used to redefine the key, results in an
identical alternate key.

• All name values in an alternate-key definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

The following CYBIL statements show how the key definition
sequence returned by an AMP$GET _KEY _DEFINITIONS
call could be read. The key definition sequence is declared to
be 500 words long (500 integers). If the sequence is too small,
AMP$GET _KEY _DEFINITIONS returns the condition
AAE$TOO _LITTLE_SPACE.

I 1-3-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Example e (Contd)

Revision B

MODULE GET_DEFS_MOD;
*copyc ampSopen

AMP$GET _KEY _DEFINITIONS

*copyc ampSget_key_definitions
*copyc amtSoptional_key_attributes
PROCEDURE GET_ALT_KEY_DEFS;

VAR
Lfn: [STATIC] amtSLocal_file_name :=

'existing_is_file',
fid: amtSfile_identifier,
status: ostSstatus,
definitions_ptr : SEQ (*),
definitions : SEQCREP 500 OF integer>,
basic_definition : amtSbasic_key_definition,
optional_attributes : amtSoptional_key_attributes;

ampSopenClfn,amcSrecord,NIL,fid,status>;

{ Statements here to check the status variable.}

ampSget_key_definitions Cfid,definitions,status>;

{ Statements here to check the status variable.}

definitions_ptr := definitions;
RESET definitions_ptr;

{ Set the basic_definitions pointer to the first record.}
NEXT basic_definition IN definitions_ptr;

{Iterate until the definition_returned field in the}
{ basic_definition record is FALSE.}

WHILE basic_definition.definition_returned DO

{ Set the optional_attributes pointer to the beginning }
{ of the optional attributes array.}

NEXT optional_attributes :
[1 •• basic_definition.number_of_optional_attributes]

IN definitions_ptr;
{ : }

{ Use the key definition here. }
{ : }

{ Set the basic_definition pointer to the next key }
{ definition.}

NEXT basic_definition IN definitions_ptr;
WHILEND;

PROCEND GET_ALT_KEY_DEFS;
MODEND GET_DEFS_MOD

Keyed-File Interface Calls I-3-29 I

AMP$GET_LOCK_KEYED_RECORD

AMP$GET_LOCK_KEYED_RECORD

Purpose

Format

Locks and reads the record having the specified key value.

AMP$GET_LOCK_KEYED_RECORD
(file_identifier, working_storage_area, working_
storage_length, key _location, major_key _length, key_
relation, wait_for_lock, unlock_ control, lock_ intent,
record_ length, file_position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_ storage_ area: A cell

Pointer to the space to which the record is copied.

working_ storage _length: amt$working_storage _length

Length, in bytes of the working storage area.

key _location: A cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major _key _length: amt$major_key _length

Length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the major key length is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

• 1-3-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_KEYED_RECORD

Parameters key _relation: amt$key _relation e (Contd) Relationship between the key value of the record and the key
value specified by this call. The valid values are as follows:

AMC$EQUAL_KEY Read the first record whose
key value is equal to the
specified key value.

AMC$GREATER_ OR_ Read the first record whose
EQUAL_KEY key value is greater than or

equal to the specified key
value.

AMC$GREATER_KEY Read the first record whose
key value is greater than the
specified key value.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

wait_for _lock: ost$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK Waits for the lock.

OSC$NOWAIT _FOR_ Returns immediately with a
LOCK warning condition if the lock

is unavailable.

unlock_ control: amt$unlock_ control
Indicates whether the lock is to be cleared automatically.

AMC$AUTOMATIC Clear the lock automatically.

AMC$WAIT_FOR_ Keep the lock until it is
UNLOCK explicitly unlocked.

lock_intent: amt$lock_intent

Specifies the purpose and effects of the lock.

AMC$EXCLUSIVE_ Locked for exclusive access.
ACCESS

AMC$PRESERVE_ Locked for possible update
ACCESS_AND request later.
CONTENT

AMC$PRESERVE_ Locked to read the record
CONTENT only.

e
Revision B Keyed-File Interface Calls I-3-31 e

AMP$GET_LOCK_KEYED_RECORD

Parameters record_ length: VAR of amt$max_record_length

(Contd) Variable in which the number of bytes read is returned.

Condition
Identifiers

file_position: VAR of amt$file_position

Variable at which the file position at completion of the read
operation is returned.

AMC$END _OF _KEY_
LIST

AMC$EOR

AMC$EOI

wait: ost$wait

Positioned at the end of the
key list for the specified
alternate-key value.

Positioned at the end of the
record.

Positioned at the end-of­
information.

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the procedure returns its completion
status.

aae$bad_resolve_time_limit
aae$file_at_file_limit
aae$file _is_ ruined
aae$key _already _locked
aae$key _deadlock
aae$key _expired_ lock_ exists
aae$key _found_lock_no_ wait
aae$key _not_found
aae$key _self_ deadlock
aae$key _timeout
aae$lock_ file_ crowded
aae$major _key_ too_ long
aae$no_auto_unlock_pc
aae$nonembedded_ key _not_ given
aae$not_ enough_permission
aae$primary _key_ locked
aae$record_longer _than_ wsa
aae$too_many _keylocks

e 1-3-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks

Revision B

AMP$GET_LOCK_KEYED_RECORD

• To allow for updating of file statistics, you should open the
file for both read and modify access.

• AMP$GET_LOCK_KEYED_RECORD performs the same
processing as AMP$GET_KEY except that it locks the
primary-key value of the record before reading the record.
See the AMP$GET _KEY procedure description for details
on how AMP$GET _LOCK_KEYED_RECORD finds and
reads the record.

• AMP$GET_LOCK_KEYED_RECORD requests a lock on
the primary-key value of the record to be read. The lock
request uses the wait_for_lock, unlock_ control, and lock_
intent values on the call. For more information on locks,
see Keyed-File Sharing in chapter 1-2.

• Because a preserve_content lock cannot be automatically
unlocked, the unlock_ control value AMC$AUTOMATIC
and the lock_intent value AMC$PRESERVE_CONTENT
are not valid on the same call.

• If an alternate key is currently selected, the call requests a
lock on the first primary-key value in the key list only.

• If the call terminates abnormally, the primary-key value is
left unlocked.

• If the requested lock is unavailable, the call leaves the file
positioned to read the requested record.

Keyed-File Interface Calls I-3-33 •

AMP$GET_LOCK_NEXT_KEYED_RECORD

AMP$GET_LOCK_NEXT _KEYED_RECORD

Purpose

Format

Locks and reads the next record.

AMP$GET_LOCK_NEXT_KEYED_RECORD
(file_identifier, working_storage_area, working_
storage_length, key _location, wait_for_lock, unlock_
control, lock_intent, record_length, file_position,
wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_ storage_ area: 'cell

Pointer to the space to which the record is copied.

working_ storage _length: amt$working_storage _length

Length, in bytes of the working storage area.

key _location: 'cell

Pointer to the space in which the key value of the record is
returned.

wait_for_lock: ost$wait_for_lock

Indicates whether the call waits for the lock ifit is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK

OSC$NOWAIT_FOR_
LOCK

Waits for the lock.

Returns a warning condition
if the lock is unavailable.

unlock_ control: amt$unlock_ control

Indicates whether the lock is to be cleared automatically.

AMC$AUT01\1ATIC

AMC$WAIT _FOR_
UNLOCK

e I-3-34 CYBIL Keyed-File and Sort/Merge Interfaces

Clear the lock automatically.

Keep the lock until it is
explicitly unlocked.

RevisionB

AMP$GET_LOCK_NEXT_KEYED_RECORD

Parameters lock_intent: amt$lock_intent e (Contd) Specifies the purpose and effects of the lock.

Revision B

AMC$EXCLUSIVE_
ACCESS

AMC$PRESERVE_
ACCESS_AND
CONTENT

AMC$PRESERVE_
CONTENT

Locked for exclusive access.

Locked for possible update
request later.

Locked to read the record
only.

record_length: VAR of amt$max_record_length

Variable in which the number of bytes read is returned.

file _position: VAR of amt$file _position

Variable at which the file position at completion of the read
operation is returned.

AMC$END_OF _KEY_
LIST

AMC$EOR

AMC$EOI

wait: ost$wait

Positioned at the end of the
key list for the specified
alternate-key value.

Positioned at the end of the
record.

Positioned at the
end-of-information.

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the procedure returns its completion
status.

Keyed-File Interface Calls I-3-35 e

AMP$GET_LOCK_NEXT_KEYED_RECORD

Condition
Identifiers

Remarks

aae$bad_resolve_ time_limit
aae$cant_ da_ getn_ if_ shared
aae$cant_ da_getn_after _put
aae$cant_position_ beyond_ bound
aae$file_at_file_limit
aae$file _boundary_ encountered
aae$file _is_ ruined
aae$key _already_ locked
aae$key _deadlock
aae$key _expired_ lock_ exists
aae$key _found_lock_no_ wait
aae$key _self_ deadlock
aae$key _timeout
aae$lock_ file_ crowded
aae$no_auto_ unlock_pc
aae$nonembedded_key _not_given
aae$not_ enough_ permission
aae$primary _key _locked
aae$record_longer_ than_ wsa
aae$too_many _keylocks
aae$wsa_not_given

• To allow for updating of file statistics, you should open the
file for both read and modify access.

• AMP$GET _LOCK_NEXT _KEYED _RECORD performs
the same processing as AMP$GET _NEXT _KEY except
that it locks the primary-key value of the record before
reading the record. See the AMP$GET _NEXT _KEY
procedure description for details on how AMP$GET _
LOCK_NEXT _KEYED _RECORD finds and reads the
record.

• AMP$GET_LOCK_NEXT_KEYED_RECORD requests a
lock on the primary-key value of the record to be read. The
lock request uses the wait_for_lock, unlock_ control, and
lock_intent values on the call. For more information on
locks, see Keyed-File Sharing in chapter 1-2.

• Because a Preserve_ Content lock cannot be automatically
unlocked, the unlock_ control value AMC$AUTOMATIC
and the lock_ intent value AMC$PRESERVE_ CONTENT
are not valid on the same call.

• If an alternate key is currently selected, the call requests a
lock on the first primary-key value in the key list only.

• If the call terminates abnormally, the primary-key value is
left unlocked.

e J-3-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$GET_LOCK_NEXT_KEYED_RECORD

• Hthe requested lock is unavailable, the call leaves the file
positioned to read the requested record.

• This call is valid for a direct-access file only when an
alternate key is selected or during a sequential pass
through the file.

When the primary key is selected, the call is valid only
when the direct-access file has been attached for exclusive
access (no share modes allowed) and no update operations
intervene in the sequential pass. (The only update
operation allowed is the replacement of a record with
another record of the same length.)

Han update operation is performed on the direct-access
file and the primary key is selected, the program must
rewind the file before beginning a sequential pass of the
direct-access file.

Keyed-File Int.erface Calls I-3-37 •

AMP$GET _NESTED _FILE_DEFINITIONS

AMP$GET _NESTED_FILE_DEFINITIONS

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Returns the nested-file definitions for the file.

AMP$GET _NESTED _FILE_DEFINITIONS
(file_ identifier, definitions, nested_ file_ count, status);

file_ identifier: amt.$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

deimitions: VAR of amt.$nested_file_ definitions

Array in which the nested-file definitions are returned. Each
element is a record of type amt.$nested_file_definition as
described for the AMP$CREATE_NESTED_FILE procedure.

nested_file_count VAR of amt$nested_file_count

Variable in which the number of nested files in the file is
returned.

status: VAR of ost.$status

Status variable in which the procedure returns its completion
status.

aae$too _little_ space
aae$not_ enough_permission
aae$system_ error_ occurred

• AMP$GET_NESTED_FILE_DEFINITIONS requires the
same access required to open the file.

• The definition of the currently selected nested file is always
returned first in the nested_file_definitions array.

• If the nested_file_definitions array is too small for all
nested-file definitions in the file, AMP$GET _NESTED_
FILE_DEFINITIONS returns the nonfatal condition
aae$too_little_space.

In this case, if sufficient space is available, it returns the
definition of the currently selected nested file in the first
element of the array, but ~aves the rest of the array
undefined.

After receiving the condition aae$too_little_space, a
program can use the nested_ file_ count returned to
increase the size of the array to that required for all
nested-file definitions and then call AMP$GET _
NESTED _FILE_DEFINITIONS again.

e I-3-38 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

e

e

Remarks
(Contd)

Revision B

AMP$GET _NESTED _FILE_DEFINITIONS

• To fetch the number of nested files before calling
AMP$GET_NESTED_FILE_DEFINITIONS, call
AMP$FETCH_ACCESS_INFORMATION to fetch the
amc$number_of_nested_files item. (AMP$FETCH_
ACCESS_INFORMATION is described in the CYBIL File
Management manual.)

• All name values in a nested-file definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

• Besides using the individual field values returned in the
nested-file definition record, you can use the records
returned to create similar or identical nested files in
another file. This can be done easily because the record
type returned by AMP$GET_NESTED_FILE_
DEFINITIONS is the same record type specified on an
AMP$CREATE_NESTED _FILE call.

• For more information on nested files, see Nested Files in
chapter I-1.

• The nested-file example at the end of chapter I-2
demonstrates the use of this call.

Keyed-File Interface Calls I-3-39 •

AMP$GET_NEXT_KEY

AMP$GET_NEXT_KEY

Purpose Reads the next logical record in the keyed file.

Format AMP$GET _NEXT _KEY
(file_identifier, working_storage_area, working_
storage_length, key _location, record_length, file_
position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_ storage_ area: ·cell

Pointer to the space to which the record is copied.

working_ storage _length: amt$working _storage _length

Length, in bytes, of the working storage area.

key _location: ·cell

Pointer to the space in which the record key value is returned.

record_length: VAR of amt$max_record_length

Variable in which the number of bytes read is returned.

file_ position: VAR of amt$file _position

Variable in which the position of the file at completion of the
read operation is returned.

AMC$END_ OF _KEY _LIST

File is positioned at the end of a key list (can be returned
only if an alternate key was selected).

AMC$EOR

File is positioned at the end of a record. (When an alternate
key is selected, it indicates that the file is not at the end of
a key list.)

AMC$EOI

File is positioned at the end of the index.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

I I-3-40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Condition
Identifiers

Remarks

Revision B

aae$cant_ position_ beyond_ bound
aae$file_ at_file_ limit
aae$file_boundary _encountered
aae$file_is_ruined
aae$key _found_lock_no _wait
aae$nonembedded_key _not_given
aae$not_ enough_ permission
aae$record _longer_ than_ wsa
aae$wsa_not_given

AMP$GET_NEXT_KEY

• When a file is being read but not updated, the file should be
opened for both read and modify access. The modify access
allows statistics to be updated without allowing any record
in the file to be altered.

• If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is read. Either a
call before the AMP$GET _NEXT _KEY call should lock
the key value or an AMP$GET _LOCK_NEXT _KEYED_
RECORD call should replace the AMP$GET _NEXT _KEY
call.

If another instance of open has an Exclusive_Access lock
on the primary-key value of the record, AMP$GET _
NEXT _KEY returns the nonfatal condition aae$key _
found_ lock_ no_ wait and leaves the file positioned to read
the record it found.

To read about locks, see Keyed-File Sharing in
chapter 1-2.

• AMP$GET _NEXT _KEY reads the next record in the
currently selected nested file.

• When an alternate key is selected, get_ next calls return
records in the key-value order as provided by the alternate
index.

When the primary key is selected for an indexed-sequential
file, records are returned in the key-value order as provided
by the primary index.

When the primary key is selected for a direct-access file,
records are not returned in a logical order; records are
returned in physical order by their location in the file.

Keyed-File Interface Calls 1-3-41 e

AMP$GET_NEXT_KEY

Remarks
(Contd)

• AMP$GET _NEXT _KEY returns the file_position
AMC$EOR (or AMC$END _OF _KEY _LIST for an
alternate key) when it returns a record to the working
storage area.

When AMP$GET _NEXT _KEY reads the last record in the A
file, it returns AMC$EOR (or AMC$END_ OF _KEY _LIST W
for an alternate key) as the file position. The next
AMP$GET _NEXT _KEY call returns AMC$EOI as the file
position; it returns no data and normal status. If the task
calls AMP$GET _NEXT _KEY again after AMC$EOI has
been returned, the status condition AAE$CANT _
POSITION_BEYOND_BOUND occurs.

For more information on the use of this call with alternate
keys, refer to Using Alternate Keys in chapter 1-2.

• The key value is returned to key _location unless the key_
location parameter is set to NIL.

• At the completion of the read request, the record_ length
parameter is set to the length of the record that was read. If
the sequential read operation was unsuccessful, the
record_length parameter is not defined.

• If the length of the record that is read is greater than the e
length of the working storage area as specified by the
working_ storage_ length parameter, working_ storage_
length characters are returned and a nonfatal error occurs.

• This call is valid for a direct-access file only when an
alternate key is selected or during a sequential pass
through the file.

When the primary key is selected, the call is valid only
when the direct-access file has been attached for exclusive
access (no share modes allowed) and no update operations
intervene in the sequential pass. (The only update
operation allowed is the replacement of a record with
another record of the same length.)

If an update operation is performed on the direct-access
file and the primary key is selected, the program must
rewind the file before beginning a sequential pass of the
direct-access file.

I-3-42 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _NEXT _pRIMARY _KEY _LIST

AMP$GET _NEXT _PRIMARY _KEY _LIST

Purpose

Format

Returns a list of primary-key values associated with a range
of alternate-key values in an alternate index.

AMP$GET _NEXT _PRIMARY _KEY _LIST
(file_identifier, high_key, major_high_key, high_key _
relation, working_storage_ area, working_ storage_
length, end_of_primary _key _list, transferred_byte_
count, transferred_key _count, file_position, wait,
status);

Parameters file_identifier: amt$file_identifier

Revision B

File identifier identifying the instance of open (returned by an I
AMP$0PEN call for the file).

high_key: Acell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the end of the alternate index.

major _high_ key: amt$major _key _length

Specify a nonzero value to indicate that the upperbound
alternate-key value is to be located by major key. The nonzero
value is the number of characters beginning at the high_ key
location that are to be used as the major key. Specify zero to
indicate that the full alternate-key value is to be used.

high_ key _relation: amt$key _relation

Indicates where the list ends in relation to the highest
alternate-key value in the range.

AMC$GREATER_KEY

Include the primary-key values associated with the high_ I
key value in the list; that is, end the list when an
alternate-key value greater than the high_ key value is
encountered.

AMC$GREATER_ OR_EQUAL_KEY or
AMC$EQUAL_KEY

Exclude the primary-key values associated with the high_ I
key value from the list; that is, end the list when an
alternate-key value greater than or equal to the high_key
value is encountered.

working_storage_area: 'cell

Pointer to the variable in which the list of primary-key values
is returned.

Keyed-File Int.erface Calls 1-343

AMP$GET _NEXT _PRIMARY _KEY _LIST

Parameters working_ storage _length: amt$working_storage_length

(Contd) Length, in bytes, of the working storage area.

end_of_primary _key _list: VAR of boolean

Variable in which a boolean value is returned indicating
whether the entire list of primary-key values was returned to
the working storage area.

TRUE

The high end of the range was reached, and the entire list
of primary-key values was returned to the working storage
area.

FALSE

The high end of the range was not reached, and at least
one more AMP$GET _NEXT _PRIMARY _KEY _LIST call
is required to get the rest of the list of primary-key values.

transferred_ byte_ count: VAR of amt$working_
storage _length

Variable in which the length, in bytes, of the list of
primary-key values is returned.

transferred_ key_ count: VAR of amt$key _count_ limit

Variable in which the number of primary-key values is
returned.

file_position: VAR of amt$file_position

Variable in which the file position at completion of the
operation is returned.

AMC$EOR

File is positioned within a key list.

AMC$END_ OF _KEY _LIST

File is positioned at the end of a key list.

AMC$EOI

File is positioned at the end of the alternate index.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

I I-3-44 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

Condition
Identifiers

e Remarks

Revision B

AMP$GET _NEXT _PRIMARY _KEY _LIST

aae$high_ end_ below_ current
aae$not_ enough_permission
aae$not_positioned_ by _altkey
aae$wsa_not_given
aae$wsl_ too_ short

• You must call AMP$SELECT _KEY to select the alternate
key before calling AMP$GET _NEXT _PRIMARY_ KEY_
LIST; otherwise, AMP$GET _NEXT _PRIMARY _KEY_
LIST returns the nonfatal error aae$not_positioned_ by_ I
altkey and does not return a list of primary-key values.

• The high_key parameter points to a value that specifies
the upper bound of the range of keys to be listed. The
high_ key _relation parameter indicates whether the high_
key value is included or excluded from the range.

For example, suppose the high_key value is SMITH. The
high_ key _relation value indicates whether the primary­
key values associated with the alternate-key value SMITH
is included in the list.

• A major key consists of the leftmost bytes of a key. If the
major_high_key parameter value is nonzero, AMP$GET _
NEXT _PRIMARY _KEY _LIST uses a major key of the
specified length to find the high end of the range. It
searches for the lowest alternate-key value that begins
with the major-key or a value greater than the major key.

For example, suppose the key at the specified high_key
location is ABCDEF. If the major _high_ key parameter
value is 2, the major key used is AB. Therefore, the range
ends at the first alternate-key value beginning with AB.

• If high_ key is set to NIL, the values of major_high_key
and high_ key _relation are ignored.

• A primary-key value can be included more than once in
the list returned by AMP$GET _NEXT _PRIMARY _KEY_
LIST. This occurs if the primary-key value is associated
with more than one alternate-key value in the range. This
is possible if the repeating-groups attribute is defined for
the alternate key.

Keyed-File Interface Calls I-345

AMP$GET _NEXT _PRIMARY _KEY _LIST

Remarks
(Contd)

• AMP$GET _NEXT _PRIMARY _KEY _LIST returns
primary-key values until it reaches the end of the specified
range or until it cannot fit another value into the working
storage area. By checking the end_of_primary _key _list
value, the program can determine whether all requested
values were returned and, if not, call AMP$GET _NEXT_
PRIMARY _KEY _LIST again to fetch the rest of the
values.

• AMP$GET _NEXT _PRIMARY _KEY _LIST repositions
the file as it fetches key values. At completion of the call,
the file is positioned at the end of the last key value
returned and positioned to continue fetching values at that
point if AMP$GET _NEXT _PRIMARY _KEY _LIST is
called again.

I I-346 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _PRIMARY _KEY_ COUNT

e AMP$GET_PRIMARY _KEY _COUNT

Purpose Returns the number of primary-key values associated with a
range of alternate-key values in an alternate index.

e Format AMP$GET_PRIMARY_KEY_COUNT
(file_identifier, low _key, major_low _key, low _key_
relation, high_key, major _high_key, high_key _
relation, list_count_limit, list_ count, wait, status);

Parameters file _identifier: amt.$file _identifier

File identifier identifying the instance of open (returned by an I AMP$0PEN call for the file).

low _key: ~cell

Pointer to the alternate-key value at which the range begins.
Set to NIL if the range is to begin at the lowest alternate-key
value in the alternate index.

major _low _key: amt.$major_key _length

A nonzero value indicates that the lowerbound alternate-key
value is to be located by major key. The nonzero value is the
major-key length. A zero value indicates that the full
alternate-key value is to be used.

low _key _relation: amt.$key _relation

Indicates where the count begins in relation to the lowest
value in the alternate-key range.

AMC$GREATER_KEY

Exclude the primary keys associated with the low _key
value from the count, that is, begin the count when an
alternate-key value greater than the low _key value is
encountered.

AMC$GREATER_OR_EQUAL_KEYor
AMC$EQUAL_KEY

Include the primary keys associated with the low _key
value in the count, that is, begin the count when an
alternate-key value greater than or equal to the low _key
value is encountered.

high_key: ~cell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the highest alternate-key value
in the alternate index.

e
Revision B Keyed-File Int.erface Calls 1-3-47

I

I

I

AMP$GET _PRIMARY _KEY_ COUNT

Parameters
(Contd)

Condition
Identifiers

major_ high_key: amt$major _key _length

A nonzero value indicates that the upperbound alternate-key
value is to be located by major key. The nonzero value is the
major-key length. A zero value indicates that the full
alternate-key value is to be used.

high_key _relation: amt$key _relation

Indicates where the count ends in relation to the highest value
in the range.

AMC$GREATER_KEY

Include the primary-key values associated with the high_
key value in the count; that is, end the count when an
alternate-key value greater than the high_ key value is
encountered.

AMC$GREATER_ OR_EQUAL_KEY or
AMC$EQUAL_KEY

Exclude the primary-key values associated with the high_
key value from the count; that is, end the count when an
alternate-key value greater than or equal to the high_key
value is encountered.

list_count_limit: amt$key _count_limit

Maximum number of primary-key values counted;
AMP$GET _PRIMARY _KEY_ COUNT stops counting when
it reaches this value. If set to zero, all primary-key values are
counted.

list_ count: VAR of amt$key_count_limit

Integer variable in which the number of primary-key values
in the range is returned. If zero is returned, no primary-key
values exist in the specified range. The value cannot exceed
the list count limit.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.

aae$high_end_not_above_low _end
aae$not_ enough_ permission
aae$not_positioned_ by _altkey

I-3-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks

Revision B

AMP$GET_PRIMARY_KEY_COUNT

• You must call AMP$SELECT _KEY to select the alternate
key before calling AMP$GET _PRIMARY _KEY_ COUNT;
otherwise, AMP$GET _PRIMARY _KEY_ COUNT returns
the nonfatal error aae$not_positioned_ by _altkey and does I
not return a primary-key count.

• The low _key and high_ key parameters point to values
that specify the lower and upper bounds, respectively, of
the alternate-key range. The low _key _relation and high_
key _relation parameters indicate whether the low _key and
high_ key values, respectively, are included in the range.

For example, suppose the low _key value is JONES and the
high_ key value is SMITH. The low _key _relation value
indicates whether the primary keys associated with
alternate-key value JONES are included in the count. The
high_key _relation value indicates whether the primary
keys associated with alternate-key value SMITH are
included in the count.

• A major key consists of the leftmost characters of a key.
The major _high_ key and major_ low_ key parameters
specify the number of characters of the specified key to use
when searching for a matching key. A key is considered to
match the specified key when the major key matches the
first characters of the key.

For example, suppose the key at the specified low _key
position is ABCDEF. If the major_low_key parameter
value is 2, the major key used is AB. Therefore, the count
begins at the first alternate-key value beginning with a
value greater than or equal to AB.

• Iflow _key is set to NIL, the values of major _low _key and
low _key _relation are ignored. If high_ key is set to NIL,
the values ofmajor_high_key and high_key _relation are
ignored.

• AMP$GET _PRIMARY _KEY_ COUNT counts a single
primary-key value more than once if the primary-key
value is associated with more than one alternate-key
value. This is possible ifthe repeating groups attribute is
defined for the alternate key.

Keyed-File Interface Calls I-3-49

AMP$GET _pRIMARY _KEY_ COUNT

Remarks
(Contd)

• AMP$GET _PRIMARY _KEY_ COUNT returns the value 0
as the list count if it cannot find both the upper_ bound and
lower_bound alternate-key values in the alternate index.

For example, if you specify the alternate-key value Z as
both the upper_ bound and the lower_ bound values and the
alternate-key value z is not in the alternate index, the call e
returns 0 as the list count.

• The list_count_limit value can minimize the processing
required for the call. For example, if you call AMP$GET _
PRIMARY _KEY_ COUNT call to determine whether the
number of primary-key values for the alternate-key value
Z is 0, 1, or more than 1, you should set the list_ count_
limit value to 2.

I I-3-50 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_SPACE_USED_FOR_KEY

AMP$GET _SPACE_USED_FOR_KEY

Purpose

Format

Returns the number of alternate-index blocks that contain the
specified alternate-key range.

AMP$GET_SPACE_USED_FOR_KEY
(file_identifier, low _key, major _low _key, low _key_
relation, high_key, major _high_key, high_key _
relation, data_ block_ count, data_ block_ space, wait,
status);

Parameters file_identifier: amt$file_identifier

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

low _key: 'cell

Pointer to the alternate-key value at which the range begins.
Set to NIL ifthe range is to begin at the lowest alternate-key
value in the alternate index.

major _low _key: amt$major_key _length

A nonzero value indicates that the lowerbound is specified by
a major key (the leftmost part of the key). The nonzero value
is the major key length. A zero value indicates that the full
alternate-key value is to be used.

low _key _relation: amt$key _relation

Indicates where the count begins in relation to the lowest
value in the alternate-key range.

AMC$GREATER_KEY

Exclude the low _key value from the range.

AMC$GREATER_ OR_EQUAL_KEY or
AMC$EQUAL_KEY

Include the low _key value in the range.

high_key: 'cell

Pointer to the alternate-key value at which the range ends.
Set to NIL if the range ends at the highest alternate-key value
in the alternate index.

major _high_key: amt$major_key _length

A nonzero value indicates that the upperbound is specified by
a major key (the leftmost part of the key). The nonzero value
is the major key length. A zero value indicates that the full
alternate-key value is to be used.

Keyed-File Int.erface Calls 1-3-51 e

AMP$GET_SPACE_USED_FOR_KEY

Parameters
(Contd)

Condition
Identifiers

Remarks

high_ key _relation: amt$key _relation

Indicat.es where the range ends in relation to the highest
value in the range.

AMC$GREATER_KEY

Include the high_key value in the range.

AMC$GREATER_ OR_EQUAL_KEY or
AMC$EQUAL_KEY

Exclude the high_ key value from the range.

data_ block_ count VAR of amt$data_block_count

Variable in which the block count is returned. It is returned as
an int.egerfrom 1 through amt$max_blocks_per_file.

data_ block_ space: VAR of amt$file_length

Variable in which the combined length of the blocks is
returned. (The value is the number of blocks multiplied by the
block size.)

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.

aae$high_end_not_above_low _end
aae$not_ enough_permission
aae$not_positioned_ by_ altkey

• The structure of an alt.ernat.e index is an
indexed-sequential structure. One or more index levels are
used to find the block containing the alt.ernate-key value.
Only the blocks at the lowest level of the search actually
contain the alt.ernate-key values and their corresponding
primary-key values.

An AMP$GET_SPACE_USED_FOR_KEY call does not
actually find the specified alt.ernate-key values in the
alt.ernat.e index. Rather, it searches the index to det.ermine
the number oflowest-level blocks that would contain the
specified range of alt.emate-key values.

AMP$GET _SPACE_ USED_FOR_KEY returns a value
even if the specified low _key and high_key values are not
in the alternat.e index.

e 1-3-52 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Remarks e (Contd)

Revision B

AMP$GET_SPACE_USED_FOR_KEY

• This call can be used to compare alternate methods of
fetching a set of primary-key values. This is discussed
under Retrieving Alternate-Index Information in
chapter I-2.

• An AMP$GET _SPACE_ USED_FOR_KEY call returns
two values, a block count and the combined length of the
blocks counted. The second value is derived by multiplying
the block count by the block size for the file. It is useful
when comparing values from files with different block
sizes. (Larger blocks require longer searches.)

• An alternate key must be currently selected when
AMP$GET_SPACE_USED_FOR_KEYis called. If the
primary key is currently selected, AMP$GET _SPACE_
USED_FOR_KEY returns the nonfatal error aae$not_
positioned_by _altkey and does not return block_ count or
block_length values.

• The low _key, major_low _key, low _key _relation, high_
key, major_high_key, and high_key _relation parameters
specify the range of alternate-key values. Their use on an
AMP$GET _SPACE_ USED_FOR_KEY call is the same
as on an AMP$GET _PRIMARY _KEY_ COUNT call. For
details, see the Remarks in the AMP$GET _PRIMARY_
KEY_ COUNT description.

Keyed-File Interface Calls I-3-53 e

AMP$LOCK_ FILE

AMP$LOCK_FILE

Purpose Locks the file.

Format AMP$LOCK_FILE
(file_identifier, wait_ for _lock, lock_ intent, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

wait_ for _lock: ost$wait_for_lock

Indicates whether the call waits for the lock ifit is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK

OSC$NOWAIT _FOR_
LOCK

lock_intent: amt$lock_intent

Waits for the lock.

Returns immediately with a
warning condition if the lock
is unavailable.

Specifies the purpose and effects of the lock.

AMC$EXCLUSIVE_
ACCESS

AMC$PRESERVE_
ACCESS_AND
CONTENT

AMC$PRESERVE_
CONTENT

status: VAR of ost$status

Locked for exclusive access.

Locked for possible update
requests later.

Locked to read records only.

Status variable in which the procedure returns its completion
status.

aae$bad_resolve_ time_limit
aae$key _timeout
aae$lock_file_ crowded

e I-3-54 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks

Revision B

AMP$LOCK_FILE

• The file lock applies to the currently select.ed nest.ed file
only. It applies to all primary-key values in that nest.ed file
and to all lock requests for the nest.ed file.

• File locks are not automatically unlocked. A file lock is
cleared when one of these events occurs:

- An AMP$UNLOCK_FILE call clears the lock.

- The instance of open is closed.

• For more information, see File Locks in chapt.er 1-2.

Keyed-File Interface Calls 1-3-55 e

AMP$LOCK_KEY

AMP$LOCK_KEY

Purpose

Format

Locks the specified primary-key value.

AMP$LOCK_KEY
(file_identifier, key _location, wait_for _lock, unlock_
control, lock_intent, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _location: ·cell

Pointer to the primary-key value to be locked.

wait_for _lock: ost$wait_for _lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT _FOR_LOCK

OSC$NOWAIT _FOR_
LOCK

Waits for the lock.

Returns immediately with a
warning condition if the lock
is unavailable.

unlock_ control: amt$unlock_ control

Indicates whether the lock is automatically cleared.

AMC$AUTOMATIC

AMC$WAIT _FOR_
UNLOCK

The lock is cleared by the
next request that reads,
updates, or positions the file
or requests or clears a lock.

The lock is held until it is
explicitly cleared.

AMC$AUTOMATIC is not valid ifthe lock_intent value is
AMC$PRESERVE_ CONTENT.

e I-3-56 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$LOCK_KEY

Parameters lock_intent: amt.$lock_intent e (Contd) Specifies the purpose and effects of the lock.

Condition
Identifiers

Remarks

Revision B

AMC$EXCLUSIVE_
ACCESS

AMC$PRESERVE _
ACCESS_AND
CONTENT

AMC$PRESERVE _
CONTENT

status: VAR of ost.$status

Locked for exclusive access.

Locked for possible update
request later.

Locked to read the record
only.

Status variable in which the procedure returns its completion
status.

aae$bad_resolve_ time_limit
aae$key _already _locked
aae$key _deadlock
aae$key _expired_lock_exists
aae$key _found_lock_no_ wait
aae$key _self_ deadlock
aae$key _timeout
aae$lock_file _crowded
aae$no_auto_ unlock_pc
aae$primary _key _locked
aae$too _many_ key locks

• Only primary-key values can be locked; alternate-key
values cannot be locked. The currently selected key does
not affect AMP$LOCK_KEY.

• The key lock applies only to the nested file currently
selected.

• The specified primary-key value may or may not be that of
a record in the nested file.

- If the primary-key value is already in the nested file,
the lock prevents access to the record associated with
that primary-key value.

- If the primary-key value is not yet in the nested file, the
lock reserves the key value for a record to be written by
the task. No other task can write a record with that
primary-key value while the lock is in effect.

Keyed-File Int.erface Calls I-3-57 e

AMP$LOCK_KEY

Remarks
(Contd)

• AMP$LOCK_KEY does not verify that the primary-key
value is valid. The validity of the key value is determined
by a subsequent call that uses the key value.

• Because a Preserve_ Content lock cannot be automatically
unlocked, the unlock_ control value AMC$AUTOMATIC
and the lock_intent value AMC$PRESERVE_ CONTENT
are not valid on the same call.

• If automatic unlock is not chosen for the key lock, the lock
is not cleared until one of these events occurs:

- An AMP$UNLOCK_KEY call clears the lock.

- The instance of open is closed.

• For more information, see Keyed-File Sharing in
chapter I-2.

e I-3-58 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$PUT _KEY

AMP$PUT _KEY

Purpose

Format

Writ.es a record to a keyed file.

AMP$PUT _KEY
(file_identifier, working_storage_area, working_
storage_length, key _location, wait, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: ·cell

Point.er to the new record.

working_ storage_ length: amt$working_ storage_ length

Length, in byt.es, of the record to be written.

key _location: "cell

Point.er to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$duplicat.e_alt.ernat.e_key
aae$file_at_file_limit
aae$file_at_ user _record_ limit
aae$file _full_ no_ puts_ or_ reps
aae$file _is_ ruined
aae$key _already_ exists
aae$key _found_lock_no_ wait
aae$key _required
aae$nonembedded_ key_ not_given
aae$not_ enough_ permission

Keyed-File Interface Calls I-3-59

I

AMP$PUT _KEY

Remarks • An AMP$PUT _KEY call requires that the file be opened
for at least append access. If the file has one or more
alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

• A lock is not required for an AMP$PUT _KEY call.
However, if the file could be shared (more than one
concurrent instance of open could exist), the primary-key
value of the record should be locked before the record is
written. A Preserve_ Content_ and_ Access or Exclusive
Access lock prevents another task from writing a record
with the same primary-key value.

If another instance of open has a lock on the primary-key
value, AMP$PUT _KEY returns the nonfatal condition
aae$key _found_lock_no_ wait.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

• AMP$PUT _KEY writes the record in the nested file
currently selected.

• If the primary key is nonembedded, the key_ location
parameter specifies the starting address of the key. If the
primary key is embedded, the key _location parameter is
ignored, and the location of the key is determined by the
key _position attribute; therefore, you should specify the
key _location parameter as NIL.

• If the file has AMC$ANSI_FIXED records, the working_
storage_length parameter is ignored, and the value of the
max_record_length attribute is used as the length of the
working storage area.

A warning message is issued for the first call on which the
working_storage_length value differs from the max_
record_length value. The warning is given because,
although excess data is truncated, insufficient data in the
working storage area is not padded. This could mean that
garbage has been written as the last part of the fixed­
length record.

• Execution of an AMP$PUT _KEY call does not change the
key currently selected. It leaves the file positioned at the
end of the record it writes.

I-3-60 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$PUT_KEY

• Writing records to an indexed-sequential file is usually
faster if the records are sorted in ascending primary-key
value order before being written to the file. Also, the
resulting file is usually smaller.

Writing unsorted records to an indexed-sequential file
could result in an inefficient file structure with more data
blocks than necessary because of numerous data-block
splits.

• An AMP$PUT _KEY call updates the alternate indexes for
the new record if alternate keys are defined for the file.
Calls to put or replace records are effective even if an
alternate key is currently selected for reading and
positioning the file.

• AMP$PUT _KEY returns one of these nonfatal conditions
when it cannot write the record because the nested file has
reached a limit:

aaeSfile_at_user_record_Limit
The number of records in the nested file has reached
the record_ limit attribute value.

aaeSfile_full_no_puts_or_reps
The record cannot be written because it would require
addition of another index level to the indexed­
sequential structure and the number of index levels
has already reached the limit (15).

Keyed-File Interface Calls I-3-61

I

I

AMP$PUTREP

AMP$PUTREP

Purpose

Format

Either replaces a record if the record is in the keyed file or
adds a new record if the record is not in the file.

AMP$PUTREP
(file_identifier, working_storage_area, working_
storage_length, key _location, wait, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: "cell

Pointer to the new record.

working_ storage _length: amt$working_ storage _length

Length, in bytes, of the record to be written.

key_ location: "cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$file_at_file_limit
aae$file_at_ user_record_limit
aae$file_full_no_puts_ or_reps
aae$file _is_ ruined
aae$key _found_lock_no_ wait
aae$key _required
aae$nonembedded_key _not_given

• An AMP$PUTREP call requires that the file be opened
with at least append and shorten access. If the file has one
or more alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

• AMP$PUTREP writes or replaces a record in the nested
file currently selected.

I-3-02 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$PUTREP

• If the primary-key value specified on the call matches the
primary-key value of a record in the nested file,
AMP$PUTREP performs the same processing as an
AMP$REPLACE_KEY call.

If the primary-key value specified on the call does not
match any primary-key value in the nested file,
AMP$PUTREP performs the same processing as an
AMP$PUT_KEY call.

The only exception to the preceding statements is that,
even if the primary-key values match, an AMP$PUTREP
call does not require a lock on the specified primary-key
value (unlike an AMP$REPLACE_KEY call which
requires a lock if the file is shared).

• If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is written or
replaced. A Preserve_ Content_and_Access or Exclusive_
Access lock prevents another task from writing or
replacing the record.

If another instance of open has a lock on the primary-key
value, AMP$PUTREP returns the nonfatal condition
aae$key _found_lock_no_ wait.

To read about file sharing, see Keyed-File Sharing in
chapter 1-2.

Keyed-File Interface Calls 1-3-63 •

AMP$REPLACE_KEY

AMP$REPLACE_KEY

Purpose

Format

Replaces an existing record in a keyed file with a new record
having the same primary-key value.

AMP$REPLACE_KEY
(file_ identifier, working_storage_area, working_
storage_length, key _location, wait, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: Acell

Pointer to the new record.

working_ storage_ length: amt$working _storage _length

Length, in bytes, of the record to be written.

key _location: Acell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$duplicate _alternate_ key
aae$file_at_file_limit
aae$file_full_no_puts_ or_reps
aae$file _is_ ruined
aae$key _not_ found
aae$key _required
aae$nonembedded_key _not_given
aae$not_ enough_permission
aae$sparse _key_ beyond_ eor

• An AMP$REPLACE_KEY call requires that the file be
opened with at least append and shorten access. If the file
has one or more alternate keys, the file must be opened
with at least append, shorten, and modify access so that
the alternate index can be updated.

I I-3-04 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$REPLACE_KEY

• If the file could be shared (more than one instance of open
could exist), a record can be replaced only by the owner of a
Preserve_Access_and_ Content or Exclusive_Access lock
on the primary-key value of the record. An invalid attempt
returns the nonfatal condition aae$key _not_already _
locked.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

• AMP$REPLACE_KEY searches for the specified
primary-key value only in the nested file currently
selected. If it does not find it, it returns the nonfatal
condition aae$key _not_found.

• The replace request fails if the file does not contain a
record whose primary-key value matches the primary-key
value of the replacement record. It returns the nonfatal
condition aae$key _not_ found; file processing can
continue.

• If the record type of the file is AMC$V ARIABLE or
AMC$UNDEFINED, the new record can be shorter or
longer than the existing record; however, the length of the
new record must be within the minimum and maximum
record length values defined for the file.

• For AMC$ANSI_FIXED type records, the value of
working_storage_length is ignored and the fixed record
length (the max_record_length attribute value) is used.

A warning message is issued for the first call on which the
working_storage_length value differs from the max_
record_length value. The warning is given because,
although excess data is truncated, insufficient data in the
working storage area is not padded. This could mean that
garbage has been written as the last part of the fixed­
length record.

• Execution of an AMP$REPLACE_KEY call does not
change the file position or the currently selected key.

An AMP$REPLACE_KEY call updates the alternate
indexes for the new record if alternate keys are defined for
the file. Calls to put or replace records are effective even if
an alternate key is currently selected for reading and
positioning the file.

Keyed-File Interface Calls I-3-65

I

AMP$SELECT _KEY

AMP$SELECT _KEY

Purpose Selects the key to be used by subsequent calls that read or
position the file.

Format AMP$SELECT_KEY
(file_identifier, key _name, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _name: amt$key _name

Name of the key to be used. It can be specified by an
amt$key _name variable or by a 31-character string on the
call. (The name must be left-justified with blank fill within
the string.)

Specify the name $PRIMARY _KEY to switch from an
alternate key back to the primary key.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$altkey _name_ not_found
aae$can t _select_ key
aae$cant_select_ until_ applied
aae$no _select_ on_ pending_ delete
aae$not_ enough_ permission

• The initial key selected when a file is opened is always the
primary key.

• The key selection remains in effect until another
AMP$SELECT _KEY call is issued or the file is closed.

• AMP$SELECT_KEY cannot select an alternate key for
which a deletion request is pending (an AMP$DELETE_
KEY _DEFINITION call has specified the key). If a
deletion request is pending for the specified key,
AMP$SELECT_KEY returns the condition aae$no_
select_ on_ pending_ delete.

• When an AMP$SELECT _KEY call changes the selected
key, it positions the file at the record having the lowest key
value for the selected key (that is, it rewinds the file for A
that key). However, ifthe AMP$SELECT_KEY call does W
not change the selected key (the key specified on the call is
already selected), it does not rewind the file (the file is left
in its current position).

I-3-66 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e
e

AMP$SELECT _NESTED_ FILE

AMP$SELECT _NESTED _FILE

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Selects a nested file for use.

AMP$SELECT _NESTED _FILE
(file_identifier, nested_file_name, status);

file _identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

nested_ file_ name: amt$nested_ file _name

Name given the nested file when it was created or $MAIN_
FILE, the name of the default nested file.

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

aae$no _select_ during_ keydef
aae$nested _file_ not_ found
aae$cant_select_nested_file
aae$not _enough_ permission
aae$system _error_ occurred

• AMP$SELECT _NESTED_ FILE requires the same access
required to open the file.

• An Exclusive_Access file lock prevents other instances of
open from selecting the nested file. AMP$SELECT _
NESTED_FILE returns the nonfatal condition aae$cant_
select_nested_file.

• The default nested file ($MAIN _FILE) is initially selected
when the file is opened.

• All requests specifying the file identifier apply to the
selected nested file until another AMP$SELECT _
NESTED_ FILE call selects another nested file.

• The initial file position of each nested file is the open_
position of the file. The initially selected key is
$PRIMARY KEY.

Keyed-File Interface Calls I-3-67 e

AMP$SELECT _NESTED_ FILE

Remarks

(Contd)
• AMP$SELECT _NESTED_FILE does not discard the file

position, selected key, or locks of previously selected nested
files. The instance of open keeps this information for all
nested files.

Thus, a task can sequentially access records on one nested
file, select another nested file, reselect the first nested file, e
and continue the sequential access.

Similarly, when a task selects an alternate key and then
selects another nested file, the alternate key remains
selected for the first nested file.

• AMP$SELECT _NESTED_ FILE cannot select another
nested file if one or more alternate key requests are
pending. Call AMP$APPLY _KEY _DEFINITIONS or
AMP$ABANDON_KEY _DEFINITIONS to dispose of the
pending requests.

• To fetch the name of the currently selected nested file, call
AMP$FETCH_ACCESS_INFORMATION to fetch the
amc$selected_nested_file item. (AMP$FETCH_ACCESS_
INFORMATION is described in the CYBIL File
Management manual.)

• For more information on nested files, see Nested Files in A
chapterl-1. •

e I-3-68 CYBIL Keyed-File and Sort/Merge In1:erfaces Revision B

AMP$START

AMP$START

Purpose

Format

Positions the file to the beginning of the first record in the file
having a key value that satisfies the specified key relation. A
record is not returned to the working storage area.

AMP$START
(file_identifier, key _location, major _key _length, key_
relation, file_position, wait, status);

Parameters file_identifier: amt.$file_identifier

Revision B

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _location: "cell

Location of the key value to which the key value of each
record in the file is compared.

major _key _length: amt.$major_key _length

Length of the major key in bytes. The major key is the
leftmost bytes of the key at key _location. The major key is
compared to the leftmost bytes of a key.

If the value is zero, a full-length key is used to position the
file. Otherwise, the number of bytes specified for the major_
key _length parameter must be less than or equal to the value
of the key _length attribute.

key _relation: amt.$key _relation

Relationship between the key of the record and the key at
key_location. The possible values are as follows:

AMC$EQUAL_KEY

The key value of the record equals the key value at
key _location.

AMC$GREATER_OR_EQUAL_KEY

The key value of the record equals the key value at key
location or, if an equal key value does not exist, it is the
next greater key value.

AMC$GREATER_KEY

The key value of the record is the first key value greater
than the key value at key _location.

Keyed-File Interface Calls I-3-69 I

I

AMP$START

Parameters file_position: VAR amt$file_position

(Contd) File position at completion of the start operation.

Condition
Identifiers

Remarks

AMC$END _OF _KEY _LIST

File is positioned to read the first record containing the
alternate-key value specified on the call (that is, at the end a
of the preceding key list, if one exists). W

AMC$EOR

File is positioned to access the record containing the
primary-key value specified on the call (that is, at the end
of the preceding record, if one exists).

AMC$EOI

File is positioned at the end-of-information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR ost$status

Status variable in which the completion status is returned.

aae$file_at_file_limit
aae$file _is_ ruined
aae$key _not_found
aae$major _key_ too _long
aae$no_da_ or_sk_start
aae$nonembedded_key _not_given
aae$not_ enough_ permission

• An AMP$START call requires that the file be opened for at
least read access.

• AMP$START searches for the specified key value in the
nested file currently selected.

• The current file position does not affect AMP$ST ART
processing.

• For direct-access files, an AMP$ST ART call is valid only if
an alternate key is currently selected. If the primary key is
selected, an AMP$ST ART call for a direct-access file
returns the nonfatal condition aae$no_da_or_sk_start.

I-3-70 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

AMP$START

• The AMP$ST ART call does not specify a working storage
area, so the key value cannot be specified in the working
storage area as it can on other calls. Instead, the key_
location parameter must point to the location of the key
value.

• If an alternate key has been selected and the key is a
concatenated key, the values for the key fields must be
assembled at key _location. The key fields must be
concatenated in order as defined for the key.

For example, if the key is the last three bytes of the record
followed by the first three bytes of the record, the value at
key _location must be the last three bytes followed by the
first three bytes. For more information on concatenated
keys, see the description in chapter I-1. I

• If no key value in the file satisfies the specified key_
relation with the specified key value, AMP$START returns
the nonfatal condition aae$key _not_ found. The file is left
positioned either at the beginning of the first record whose
key value is greater than the specified key value or, if the
specified key value is greater than all key values in the file,
at the end-of-information.

• A lock on a primary-key value does not prevent
AMP$START from positioning the file using that key
value.

Like other file request calls, an AMP$ST ART call clears
any lock requested with automatic unlock.

Keyed-File Interface Calls 1-3-71

AMP$UNLOCK_ FILE

AMP$UNLOCK_FILE

Purpose Clears a file lock.

Format AMP$UNLOCK_FILE
(file_identifier, status);

Parameters file_identifier: amt$file_identifier

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

status.: VAR of ost,$status

Status variable in which the procedure returns its completion
status.

• An AMP$UNLOCK_FILE call clears the file lock for the
currently selected nested file only.

To clear all file locks and all key locks belonging to the
instance of open, call AMP$UNLOCK_KEY and specify
TRUE for the unlock_all_keys parameter.

• When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the
file.

• For more information, see Keyed-File Sharing in
chapter I-2.

e I-3-72 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$UNLOCK_ KEY

AMP$UNLOCK_KEY

Purpose

Format

Parameters

Condition
Identifiers

Revision B

Clears locks.

AMP$UNLOCK_KEY
(file_identifier, unlock_all_keys, key _location, status);

file_ identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

unlock_all_keys: boolean

Indicates whether the call clears all locks or only a single key
lock.

TRUE

FALSE

Clears all locks for the instance of open.

Clears only the key lock for the value at
key _location.

key _location: 'cell

Pointer to the primary-key value to be unlocked. The value is
ignored ifunlock_all_keys is true.

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

aae$bad _resolve_ time_ limit
aae$key _already _locked
aae$key _deadlock
aae$key _expired_ lock_ exists
aae$key _found_lock_no_ wait
aae$key _self_ deadlock
aae$key _timeout
aae$lock _file_ crowded
aae$no_auto_ unlock_pc
aae$primary _key _locked
aae$too _many_ key locks

Keyed-File Interface Calls I-3-73 e

AMP$UNLOCK_KEY

Remarks • AMP$UNLOCK_KEY performs one of two operations
depending on the value of the unlock_ all_ keys parameter:

- Clears all locks belonging to the instance of open. This
includes all file locks and all key locks for all nested
files.

- Clears only the key lock for the primary-key value
specified at key _location. The key lock must apply to
the currently selected nested file.

• AMP$UNLOCK_KEY cannot clear an individual
nested-file lock. To do so, call AMP$UNLOCK_FILE.

• If the call is to unlock all locks, but no locks exists for the
instance of open, the call does nothing and returns normal
status. However, ifthe call is t,o clear a single key lock and
the lock does not exist, the call returns the nonfatal
condition aae$key _not_previously _locked.

• When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the
file. (A lock can expire only ifthe lock_ expiration_ time
attribute for the file is not zero.)

The task is not notified as to which lock has expired. The
most direct response to a lock expiration condition is to call
AMP$UNLOCK_KEY to clear all locks.

e 1-3-74 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e Keyed-File Attributes 1-4

Keyed-File Attribute and Access Item Descriptions I-4-5
ACCESS_MODE ... I-4-5
A VERAGE_RECORD _LENGTH I-4-8
COLLATE_ TABLE .. I-4-9
COLLATE_ TABLE_NAME I-4-10
DATA_PADDING .. I-4-11
DUPLICATE_ V ALUE_INSERTED I-4-12
EMBEDDED_KEY ... I-4-12
EOI_BYTE_ADDRESS ... I-4-13
ERROR_ COUNT ... I-4-13
ERROR_EXIT_NAME .. I-4-14
ERROR_ EXIT _pROCEDURE I-4-15
ERROR_LIMIT ... I-4-15
ERROR_STATUS ... I-4-16
ESTIMATED_RECORD_COUNT I-4-16
FILE_LENGTH .. I-4-16
FILE_LIMIT ... I-4-17
FILE_ ORGANIZATION .. I-4-17
FILE_POSITION ... I-4-18
FORCED_ WRITE ... I-4-19
GLOBAL_ACCESS_MODE I-4-20
GLOBAL_FILE_NAME .. I-4-20
GLOBAL_SHARE_MODE I-4-21
HASHING_PROCEDURE_NAME I-4-21
INDEX_ LEVELS ... I-4-22
INDEX_ PADDING ... I-4-22
INITIAL_HOME_BLOCK_COUNT I-4-23
KEY _LENGTH ... I-4-23
KEY _POSITION .. I-4-23
KEY_ TYPE ... I-4-24
LAST_ACCESS_OPERATION I-4-25
LAST_OP _STATUS .. 1-4-27
LEVELS_OF _INDEXING I-4-27
LOCK_ EXPIRATION_ TIME I-4-27
MAX_ BLOCK_ LENGTH I-4-28
MAX_RECORD_LENGTH I-4-28
MESSAGE_ CONTROL ... I-4-29
MIN _RECORD _LENGTH I-4-30
NULL_ATTRIBUTE .. I-4-30
NULL_ITEM ... I-4-30
NUMBER_OF _NESTED_FILES I-4-31
OPEN _POSITION .. I-4-31
PERMANENT _FILE ... I-4-32
PRIMARY _KEY .. I-4-32

RECORD_LIMIT ... l-4-32
RECORD_ TYPE .. I-4-33 A
RECORDS_PER_BLOCK I-4-33 W
RESIDUAL_ SKIP_ COUNT I-4-34
RETURN"_OPTION ... l-4-34
RING_ATTRIBUTES ... I-4-35
SELECTED _KEY _NAME I-4-35
SELECTED _NESTED _FILE I-4-36

Keyed-File Attributes 1-4

Like all other NOS/VE files, a keyed file has a set of file attributes. The
CYBIL procedure calls to specify and fetch attribute values are described in
detail in the CYBIL File Management manual. This chapter describes the
file attributes applicable to keyed files.

Besides file attribute values, a CYBIL program can also fetch file access
information items that pertain only to a specific instance of open. (It fetches
file access information using the AMP$FETCH_ACCESS_INFORMATION
call described in the CYBIL File Management manual.) I
This chapter describes the file access information items applicable to keyed
files. If you request an item for a keyed file that does not apply to keyed files
(and thus, is not described in this chapter), AMP$FETCH_ACCESS_
INFORMATION does not return a value for the item. To indicate this, it sets
the boolean ITEM_RETURNED field in the item record to FALSE.

Table I-4-1 lists the keyed-file attributes and access information items and
the calls that can specify or fetch the values.

Revision B Keyed-File Attributes I-4-1

Attributes and Access Information Items

Table 1-4-1. Keyed-File Attributes and Access Information Items

FETCH= AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION
FILE = AMP$FILE
GET= AMP$GET _FILE_ATTRIBUTES
OPEN= AMP$0PEN
STORE= AMP$STORE

Attribute FETCH
or Item FETCH INFO FILE GET OPEN STORE

Access_Mode x x x x
Average_Record_
Length x x x x
Collate_ Table x
Collate_ Table
Name x x x x
Data_Padding x x x x
Duplicate_ Value_
Inserted x
Embedded_ Key x x x x
EOI_Byte_Address x
Error_ Count x
Error_Exit_Name x x x x
Error_Exit
Procedure x x
Error_Limit x x x x x
Error_ Status x
Estimated
Record_ C~unt x x x x
File_Length x
File_Limit x x x x
File_ Organization x x x x
File_Position x
Forced_ Write x x x x
Global_Access
Mode x x
Global_File
Name x x

(Continued) e
I-4-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Attributes and Access Information Items

Table 1-4-1. Keyed-File Attributes and Access Information Items e (Continued)

FETCH= AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION

e FILE= AMP$FILE
GET= AMP$GET_FILE_ATTRIBUTES
OPEN= AMP$0PEN
STORE = AMP$STORE

Attribute FETCH
or Item FETCH INFO FILE GET OPEN STORE

Global_Share
Mode x x

Hashing_ I Procedure Name x x x x

Index_ Levels x x x x

Index_ Padding x x x x

Initial_ Home I e Block_ Count x x x x

Key_Length x x x x

Key _Position x x x x

Key_Type x x x x

Last_Access
Operation x

Last_ Op_Status x

Levels_Of
Indexing x

Lock_ Expiration_ I Time x x x x

Max_Block
Length x x x x

e Max_ Record
Length x x x x

Message_ Control x x x x x

e (Continued)

Revision B Keyed-File Attributes 1-4-3

Attributes and Access Information Items

Table 1-4-1. Keyed-File Attributes and Access Information Items
(Continued)

FETCH= AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION
FILE = AMP$FILE
GET= AMP$GET _FILE_ATTRIBUTES
OPEN= AMP$0PEN
STORE = AMP$STORE

Attribute FETCH
or Item FETCH INFO FILE GET OPEN STORE

Min_Record
Length x x x x
Null_Attribute x x x x x
Null_ Item x
Number_Of_
Nested_Files x
Open_Position x x x x
Permanent_File x x
Primary _Key x
Record_ Limit x x x x
Record_ Type x x x x
Records_ Per
Block x x x x
Residual
Skip_ Coiint x
Return_ Option x x x
Ring_Attributes x x x x
Selected
Key_Name x

I Selected
Nested_File x

I-4-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ACCESS_MODE

Keyed-File Attribute and Access Item
Descriptions

Each of the following attribute descriptions provides the following
information:

• Name. (The name given is the name of the value field in the record
specifying or fetching the value; the attribute or item identifier is the
name with the prefix AMC$. For example, the identifier for ACCESS_
MODE is AMC$ACCESS_MODE.)

• Meaning of the attribute or item for keyed-file use.

• Valid values.

• Default value for preserved and temporary attributes.

I

• The calls that can specify or fetch the attribute or access information I
item.

The descriptions follow in alphabetical order.

ACCESS_MODE e Meaning

Value

Revision B

Set of access modes allowed during the instance of open
(temporary attribute).

The access mode set limits the valid file operations during the
instance of open. (The access modes required for each
keyed-file interface call are listed in table 1-4-2.)

Set of access mode identifiers (specified using the set identifier
PFTUSAGE_SELECTIONS []).

PFC$READ Read access.

PFC$SHORTEN Shorten access.

PFC$APPEND Append access.

PFC$MODIFY Modify access.

PFC$EXECUTE Execute access.

The set can contain only access modes included in the global_
access_mode set (see the global_access_mode attribute
description).

Keyed-File Attributes I-4-5

I

ACCESS_MODE

Default
Value

The set of access modes defined by the global_access_mode
attribute excluding PFC$EXECUTE.

The attribute cannot be changed during the instance of open.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN. I Calls

Table 1-4-2. Required Access Modes for Calls

Call Access Modes Required

AMP$ABANDON _KEY _DEFINITIONS Append, shorten, and modify

AMP$APPLY _KEY _DEFINITIONS Append, shorten, and modify

AMP$CREATE_KEY _DEFINITION Append, shorten, and modify

I AMP$CREATE_NESTED _FILE Append, shorten, and modify

AMP$DELETE_KEY Shorten

AMP$DELETE_KEY _DEFINITION Append, shorten, and modify

I AMP$DELETE_NESTED _FILE Append, shorten, and modify

AMP$GET_KEY Read (modify required to
record statistics)

AMP$GET _KEY _DEFINITIONS Any access mode

AMP$GET_LOCK_KEYED_RECORD Read (modify required to
record statistics; shorten or
append required for an
Exclusive_Access lock)

AMP$GET_LOCK_NEXT_KEYED_ Read (modify required to
RECORD record statistics; shorten or

append required for an
Exclusive_Access lock)

AMP$GET _NESTED _FILE_ Any access mode
DEFINITIONS

AMP$GET_NEXT_KEY Read (modify required to
record statistics)

AMP$GET _NEXT _PRIMARY _KEY _LIST Read

(Continued)

1-4-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e

e

ACCES~'il\JODE

Table 1-4-2. Required Access Modes for Calls (Continued) I e Call Access Modes Required

- AMP$GET _PRIMARY _KEY_ COUNT Read

AMP$GET_SPACE_USED_FOR_KEY Read

I AMP$LOCK_FILE Any access mode (shorten or
append required for an
Exclusive_Access lock)

AMP$LOCK_KEY Any access mode (shorten or
append required for an
Exclusive_Access lock)

AMP$PUT _KEY Append (read, shorten, or
modify also required if the
file is not positioned at its
EOI)

AMP$PUTREP Append and shorten

AMP$REPLACE _KEY Append and shorten

e AMP$SELECT _NESTED _FILE Any access mode I
AMP$SELECT _KEY Any access mode

AMP$START Read

AMP$UNLOCK FILE Any access mode I AMP$UNLOCK_KEY Any access mode

I-4-7

AVERAGE_RECORD_LENGTH

AVERAGE_RECORD_LENGTH
Meaning

Value

Default
Value

I Calls

Estimate of the average record length in bytes (preserved
attribute). If specified, the system uses the attribute value to
calculate the block size used; it uses the attribute value only
when opening a new file.

For ANSI fixed-length (F) records, the average_record_
length value should be the same as the max_record_length
value.

For variable (V) and undefined (U) records, the average_
record_ length value depends on whether the majority of the
records are the same length.

• If almost all records are a specific length, set the attribute
value to that length.

• If the record lengths are well distributed within a range of
lengths, set the attribute value to the median record length
(half of the records are longer, half are shorter).

Integer from 1 through AMC$MAXIMUM_RECORD (type
AMT$AVERAGE_RECORD _LENGTH).

None. If no value is set for the attribute, the system
uses the arithmetic mean of the max_record_length and
min_record_length values to calculate block size. Although
the system uses that value, it does not store the value as the
average_record_length value.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

COLLATE TABLE

COLLATE_ TABLE

Meaning

Value

Calls

Revision B

Collation table (returned attribute). This attribute is used to
fetch the collation table stored with a file.

NOTF

To fetch the collation table, you specify a pointer in the
COLLATE_ TABLE field of the attribute record for an
AMP$FETCH call. AMP$FETCH copies the collation table to
the variable to which the pointer points. If you do not specify
a pointer, the system attempts to use an undefined pointer
and returns an error.

Pointer of type 'AMT$COLLATE_TABLE. Type
AMT$COLLATE_ TABLE has the following declaration:

ARRAY [CHAR] OF AMTSCOLLATION_VALUE

Type AMT$COLLATION _VALUE is the integer subrange 0
through 255.

To determine the collating weight the table assigns to a
particular character code, you use the character as the index
into the table; the value at that position is the collating weight
of that character.

For example, assume an AMP$FETCH call has fetched the
collation table of a file and stored it in a variable named
COLLATION_ TABLE. The following statement assigns the
collating weight of A to integer variable A_ WEIGHT:

A_WEIGHT := COLLATION_TABLE['A'J;

Assume the statement assigns the value 0 to A_ WEIGHT.
This means that the collation table assigns the collating
weight 0 to character A.

AMP$FETCH.

Keyed-File Attributef I-4-9

I

COLLATE_TABLE_NAME

COLLATE_ TABLE_NAME

Meaning

Value

Collation table name (preserved attribute). This attribute is
used to specify a collation table for a file.

The attribute value is used only when the file is first opened.
When the file is opened, the named collation table is stored
with the file. The collation table for a file cannot be changed
after a new file has been first opened.

31-character program name (PMT$PROGRAM_NAME).

NOTE

All letters in the name must be specified as uppercase letters.

The name can be that of a system-defined collation table or a
user-defined collation table. Collation table definition is
described in appendix D, Collation Tables.

The names of the system-defined collation tables follow. The
collating sequence for each table is listed in appendix D.

OSV$ASCil6_FOLDED
CYBER 170 FORTRAN 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$ASCil6 _STRICT
CYBER 170 FORTRAN 5 default collating sequence.

OSV$COBOL6_FOLDED
CYBER 170 COBOL 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$COBOL6 _STRICT
CYBER 170 COBOL 5 default collating sequence.

OSV$DISPLAY63_FOLDED
CYBER 170 63-character display code collating
sequence; lowercase letters mapped to uppercase letters.

OSV$DISPLAY63_STRICT
CYBER 170 63-character display code collating
sequence.

OSV$DISPLAY64_FOLDED
CYBER 170 64-character display code collating
sequence; lowercase letters mapped to uppercase letters.

I I-4-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e
e

Default
Value

Calls

COLLATE TABLE_NAME

OSV$DISPLAY64_STRICT
CYBER 170 64-character display code collating
sequence.

OSV$EBCDIC
Full EBCDIC collation sequence.

OSV$EBCDIC6 _FOLDED
EBCDIC 6-bit subset supported by CYBER 170 COBOL
5 and SORT 5; lowercase letters mapped to uppercase
letters.

OSV$EBCDIC6 _STRICT
EBCDIC 6-bit subset supported by CYBER 170 COBOL
5 andSORT5.

None. You must specify a value for the collate_ table_name
attribute if you specify AMC$INDEXED _SEQUENTIAL or
AMC$DIRECT _ACCESS as the file_organization attribute
value and AMC$COLLATED _KEY as the key_ type attribute
value.

If a collation table is stored with an indexed-sequential file, it
becomes the default collation table for any collated alternate
keys defined for the file.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

DATA_PADDING

Meaning Percentage of space the system is to leave empty in each data
block created during the first instance of open of an indexed-
sequential file (preserved attribute). The empty space allows
for easy file expansion by later file processing operations.

The attribute value is used only during the first instance of
open of an indexed-sequential file.

Value 0 through 99 (type AMT$DATA_PADDING).

Default 0 (no padding).
Value

Calls AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Revision B Keyed-·File Attributes I-4·11

I
I

I

I

DUPLICATE_ VALUE_INSERTED

DUPLICATE_ VALUE_INSERTED

Meaning

Value

I Calls

Indicates whether the last AMPPUT, AMPPUTREP,
AMP$REPLACE, or AMP$APPLY _KEY _DEFINIIONS call
detected a duplicate alternate-key value (access information
item).

The duplicate_ value_inserted item does not identify the
duplication. An AMPPUT, AMPPUTREP, or
AMP$REPLACE call can detect a duplicate value for any
alternate key in the file that allows duplicates. An
AMP$APPLY _KEY _DEFINITIONS call can detect a
duplicate value for any record in the file.

Boolean value.

TRUE

FALSE

The last call detected a duplicate
alternate-key value.

The last call did not detect a duplicate
alternate-key value.

AMP$FETCH_ACCESS_INFORMATION.

EMBEDDED_KEY

Meaning

Value

Default
Value

I Calls

Indicates whether the primary key is part of the record data
(preserved attribute).

Boolean value.

TRUE

FALSE

TRUE.

The primary key is part of the record data.

The primary key is separate from the record
data.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

EOI_BYTE_ADDRESS

EOI_BYTE_ADDRESS

Meaning

Value

Calls

Current length of the file in bytes (access information item).

Integer from 0 through AMC$FILE_BYTE_LIMIT (type
AMT$FILE_BYTE_ADDRESS).

AMP$FETCH_ACCESS_INFORMATION.

ERROR_ COUNT

Meaning

Value

Calls

Revision B

Number of nonfatal (trivial) errors returned by keyed-file
access requests (access information item).

Integer from 0 through AMC$MAX_ERROR_ COUNT (type
AMT$ERROR_ COUNT).

AMP$FETCH_ACCESS_INFORMATION.

Keyed-File Attributes 1-4-13

I

I

ERROR_ EXIT _NAME

ERROR_EXIT _NAME

Meaning

Value

Default
Value

I Calls

Name of an error processing procedure (temporary attribute).

The name must be that of a procedure with the XDCL
attribute within the program library list of the job or defined
within the task.

For the attribute to be effective, you must specify the error_
exit_ name value before the file is opened or on the
AMP$0PEN call. The error processing procedure is loaded
when the file is opened. To change the procedure while the file
is open, you must use the error_exit_procedure attribute.

1- through 31-character procedure name (type
PMT$PROGRAM_ NAME). (All letters in the name must be
uppercase because PMP$LOAD does not convert lowercase
letters to uppercase.)

The named procedure must be of type AMT$ERROR_EXIT _
PROCEDURE; that is, it must have the following parameter
list

Cfile_identifier: AMTSFILE_IDENTIFIER;
VAR status: OSTSSTATUS)

None. If no error-exit name is specified, the system does
not search for an error-processing procedure.

For more information, see the error-exit procedure discussion
in the CYBIL File Management Manual.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ERROR_ EXIT _PROCEDURE

Meaning

Value

Default
Value

Calls

Pointer to the current error processing procedure (temporary
attribute).

You use this attribute to change the effective error processing
procedure while the file is open. To clear the effective error
processing procedure, specify a NIL pointer for the attribute.

Pointer variable of this type:

ftprocedure(file_identifier: amtSfile_identifier;
VAR status: ostSstatus)

None. The system continues to use the error processing
procedure specified by the error_exit_name attribute when
the file was opened, if one was specified.

For more information, see the error-exit procedure discussion
in the CYBIL File Management Manual.

AMP$FETCH, AMP$STORE.

ERROR_ LIMIT

Meaning

Value

Default
Value

Calls

Revision B

Maximum number of nonfatal (trivial) errors that can occur
before the nonfatal errors cause a fatal error (temporary
attribute).

A nonfatal error is an error that prevents successful
completion of the current request, but does not prevent
processing of subsequent requests. Its error severity level is
ERROR.

Integer from 0 through OFFFF(16) (type AMT$ERROR_
LIMIT). 0 means no error limit.

0 (no error limit).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN, AMP$STORE.

Keyed-File Attributes 1-4-15

I

I

ERROR_ STATUS

ERROR_STATUS

Meaning

Value

I Calls

Completion status returned by the last file interface request
for the file (access information item).

Integer (type OST$STATUS_ CONDITION).

AMP$FETCH_ACCESS_INFORMATION.

ESTIMATED_RECORD_COUNT

Meaning

Value

Default
Value

I Calls

Estimated number of records to be stored in the file (preserved
attribute).

The system uses the attribute value to calculate the block size;
it only uses the value when it first opens a new file.

Integer (type AMT$ESTIMATED _RECORD_ COUNT).

If a value is defined for the record_ limit attribute, the record_
limit value is the default estimated_ record_ count. If the
record_limit attribute is undefined, the default value is
100,000.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATI'RIBUTES, AMP$0PEN.

FILE_LENGTH

Meaning

Value

I Calls

Length of a mass storage file in bytes (returned attribute).

Integer from 0 through AMC$FILE_BYTE_LIMIT,
4398046511103 (242-1) (type AMT$FILE_LENGTH).

AMP$GET _FILE_ATI'RIBUTES.

1-4-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision P

FILE_l IMn

FILE_LIMIT

Meaning

Value

Default
Value

Calls

Maximum file length in bytes (preserved attribute).

Integer from 0 through AMC$FILE_BYTE_LIMIT,
4398046511103 (242-1) (type AMT$FILE_LIMIT).

NOTE

If the length of a keyed file reaches its file_limit value, the file
is ruined (its structure loses its integrity). No file operations
can be performed on a ruined file. _____ " __ _

4398046511103 (2 42-1).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

FILE_ ORGANIZATION

Meaning

Value

Default
Value

Calls

Revision B

File organization (preserved attribute).

One of the following keyed file organization identifiers (type
AMT$FILE_ ORGANIZATION):

AMC$INDEXED _SEQUENTIAL Indexed-sequential
organization.

AMC$DIRECT _ACCESS Direct-access
organization.

You must specify this attribute value when creating a keyed
file because the default file organization is
AMC$SEQUENTIAL.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Keyed-File Attributes 1-4"17

I

I

I

FILE_POSITION

FILE_ POSITION

Meaning

Value

I Calls

Current file position (access information item).

One of these identifiers that apply to keyed files (type
AMT$FILE_POSITION):

AMC$BOI

AMC$END _OF_
KEY_LIST

AMC$EOR

AMC$EOI

Beginning-of-information.

End of the list of primary
keys associated with the same
alternate-key value.

End of record. (While an alternate
key is selected, AMC$EOR indicates
that the next record is associated
with the same alternate-key value as
the current record.)

End of information.

AMP$FETCH_ACCESS_INFORMATION.

I-4-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

FORCED_ WRITE

FORCED_ WRITE

Meaning

Value

Default
Value

Calls

Revision B

Indicates whether the system copies modified blocks to mass
storage immediately after modification or allows modified
blocks to remain in memory until the next flush or close
request (preserved attribute).

One of the following identifiers (type AMT$FORCED _
WRITE):

AMC$FORCED

AMC$FORCED _
IF _STRUCTURE
CHANGE

AMC$UNFORCED

The system writes each modified
block to mass storage immediately
after the block is modified.

The system writes modified
blocks to mass storage
immediately after any structure
change to the file that affects more
than one block.

The system determines when to
write modified blocks to mass
storage. Modified blocks can
remain in memory without a
backup copy on mass storage.

AMC$FORCED _IF _STRUCTURE_ CHANGE.

An AMP$FLUSH call copies the part of the file in memory to
disk. AMP$FLUSH copies internal tables as well as data and
index blocks. (A FORCED_ WRITE copy does not copy
internal tables.)

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Keyed-File Attributes 1-4-19

I

I

I

I

GLOBAL_ACCESS_MODE

GLOBAL_ACCESS_MODE

Meaning Indicates the set of valid access modes for the file (returned
attribute). (The access modes required for each keyed-file
interface call are listed in table I-4-2.)

Value Set of any (including none) of the following constant
identifiers (referenced using the set identifier PFI'USAGE_
SELECTIONS [)):

PFC$READ Read access.

PFC$SHORTEN Shorten access.

PFC$APPEND Append access.

PFC$MODIFY Modify access.

PFC$EXECUTE Execute access.

Default For an existing permanent file, the set of access modes is
Value determined when the file is attached. For a temporary file or a

new permanent file, the set includes all usage modes (read,
modify, append, shorten, and execute).

Calls AMP$FETCH, AMP$GET _FILE_ATTRIBUTES.

GLOBAL_ FILE_NAME

Meaning

Value

File name uniquely identifying the file (returned attribute).
The system generates the name for the file when it creates the
file. The global file name allows a program to determine
whether files having different local file names are actually the
same file.

I Calls

Packed record (type OST$BINARY _ UNIQUE_NAME).

AMP$FETCH, AMP$GET _FILE_ATTRIBUTES.

I-4-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

e

e

GLOBAL_SHARE_MODE

GLOBAL_SHARE_MODE

Meaning

Value

Indicates the valid share modes for the file (returned
attribute). For a permanent file, the share modes are specified
when the file is attached. Temporary files cannot be shared.
For more information, see Keyed-File Sharing in chapter I-2.

Set of any (or none) of the following constant identifiers. The
attribute value is referenced using the set identifier
PFTSHARE_SELECTIONS[].

PFC$READ

PFC$SHORTEN

PFC$APPEND

PFC$MODIFY

PFC$EXECUTE

Read access.

Shorten access.

Append access.

Modify access.

Execute access.

Calls AMP$FETCH, AMP$GET _FILE_ATTRIBUTES.

HASHING_PROCEDURE_NAME e Meaning

Value

Revision B

Identification of the hashing procedure to be executed with
the direct-access file (preserved attribute). (To read about
hashing procedures, see chapter I-1.)

Pointer to a record identifying the hashing procedure to be
executed with this file (amt$hashing_procedure_name). The
record has these fields:

NAME

OBJECT _LIBRARY

Entry point name of the hashing
procedure (pmt$program_name).
All letters in the name must be
specified as uppercase.

File path to the object library
containing the hashing procedure
(amt$path_name, 256-character
string). This feature is currently
unimplemented; specify
OSC$NULL_NAME as the field
value.

Keyed-File Attributes I-4-21 e

INDEX_LEVELS

I Default
Value

Calls

The default hashing procedure provided by the system,
AMP$SYSTEM_HASHING_PROCEDURE.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

INDEX_ LEVELS

Meaning

Value

Default
Value

I Calls

Target number of index levels (preserved attribute). The
system uses the attribute value to calculate block size. The
index_levels value is used only when an indexed-sequential
file is created.

1 through 15 (type AMT$INDEX_LEVELS).

2.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

INDEX_P ADDING

Meaning

Value

Default
Value

I Calls

Percentage of space the system is to leave empty in each
index block it creates during the first open of an
indexed-sequential file (preserved attribute).

0 through 99 (type AMT$INDEX_PADDING).

0 (no padding).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

INITIAL_HOME_BLOCK_ COUNT

INITIAL_HOME_BLOCK_ COUNT

Meaning

Value

Default
Value

Calls

Number of home blocks in the direct-access file (preserved
attribute). (To read about direct-access file structure, see
chapter I-1.)

Integer from 1 through amc$max_home_block_count (242-1)
(type amt$initial_home_block_count).

None. You must specify a value for this attribute when
defining a new direct-access file.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

KEY_LENGTH

Meaning

Value

Default
Value

Calls

Primary-key length in bytes (preserved attribute).

Integer (type AMT$KEY _LENGTH). (For files with
embedded keys, the value cannot be greater than the
minimum_ record_ length value.)

No default value. When opening a new keyed file,
AMP$0PEN returns a fatal error if the attribute value is not
defined.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

KEY_POSITION

Meaning

Value

Default
Value

Calls

Revision B

Byte position in the record where the primary key begins
(preserved attribute). This attribute is ignored for files with
nonembedded keys.

The bytes in a record are numbered from the left, beginning
with 0.

0 through MAX_RECORD _LENGTH (type AMT$KEY _
POSITION). The primary key must be within the record; thus,
the sum of the key _position and key_ length values cannot be
greater than the max_record_length value.

0 (beginning of the record).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Keyed-File Attributes I-4-23

I

I

KEY_TYPE

KEY_TYPE

Meaning

Value

Default
Value

I Calls

Primary-key type (preserved attribute).

For direct-access files, the value specified for the key_ type
attribute is ignored. The primary-key type for a direct-access
file is always uncollated. e
One of the following identifiers (type AMT$KEY _TYPE):

AMC$UNCOLLATED_KEY
Order key values byte-by-byte according to the ASCII
character set sequence (listed in appendix B). Key
values can be positive integers or ASCII strings (1
through 255 bytes).

AMC$INTEGER_KEY
Order key values numerically. Key values are positive or
negative integers (1 through 8 bytes).

AMC$COLLATED _KEY
Order key values according to a user-specified collation
table (see the COLLATE_ TABLE_ NAME description
in this table). Key values can be positive integers or
ASCII strings (1 through 255 bytes).

AMC$UNCOLLATED _KEY.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

LAST _ACCESS_OPERATION

LAST_ACCESS_ OPERATION

e Meaning Indicates the last access request for this instance of open
(access information item). (The code is set after the call checks
that the file is open, but before it actually performs the

e operation.)

Value Value of type AMT$LAST _ACCESS_ OPERATION. The
following lists the file interface calls used with keyed files and
the corresponding constant identifier declarations:

AMP$ABANDON _KEY_ amc$abandon_key _
DEFINITIONS definitions

AMP$APPLY _KEY_ amc$apply _key_
DEFINITIONS definitions

AMP$CLOSE amc$close _ req

AMP$CREATE_KEY _ amc$create_key _
DEFINITION definition

AMP$CREATE_NESTED_ amc$create _nested_ I FILE file

AMP$DELETE_KEY amc$delete_key _req

AMP$DELETE_KEY _ amc$delete _key_
DEFINITION definition

AMP$DELETE_NESTED_ amc$delete _nested_ I FILE file

AMP$FETCH amc$fetch _ req

AMP$FLUSH amc$flush_ req

AMP$GET _KEY amc$get_key _req

AMP$GET _LOCK_ amc$get_lock_
KEYED_RECORD keyed_record

AMP$GET _LOCK_ amc$get_lock_next_keyed_
NEXT_KEYED_RECORD record

AMP$GET _NESTED_ amc$get_nested_file_
FILE_DEFINITIONS definitions

AMP$GET _NEXT amc$get_next_req

AMP$GET _NEXT _KEY amc$get_next_key _req

e
Revision B Keyed-File Attributes I-4-25

I

I

LAST _ACCESS_ OPERATION

Value
(Contd)

AMP$GET _NEXT_
PRIMARY _KEY _LIST

AMP$GET _PRIMARY_
KEY_COUNT

AMP$GET_SPACE_
USED_FOR_KEY

AMP$LOCK_FILE

AMP$LOCK_KEY

AMP$0PEN

AMP$PUT _KEY

AMP$PUT _NEXT

AMP$PUTREP

AMP$REPLACE_KEY

AMP$SELECT _KEY

amc$get_next_primary _
key_list

amc$get_primary _
key_count

amc$get_space_
used_for_key

amc$lock_file

amc$lock_key

amc$open_req

amc$put_key _req

amc$put_next_req

amc$putrep _req

amc$replace_key _req

amc$select _key

AMP$SELECT _NESTED_ amc$select_nested_
FILE file

amc$skip_req

amc$start _ req

amc$store _ req

I c.u.

AMP$SKIP

AMP$START

AMP$STORE

AMP$UNLOCK_FILE

AMP$UNLOCK_KEY

amc$unlock_file

amc$unlock_key

AMP$FETCH_ACCESS_INFORMATION.

I-4-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

LAST_OP_STATUS

LAST_OP_STATUS

Meaning

Value

Calls

Indicates whether the last access request is active or complete
(access information item).

One of these identifiers (type AMT$LAST _OP _STATUS):

AMC$ACTIVE

AMC$COMPLETE

Access request is active.

Access request is complete.

AMP$FETCH_ACCESS_INFORMATION.

LEVELS_ OF _INDEXING

Meaning

Value

Calls

Number of index levels currently existing in the
indexed-sequential file (access information item).

Integer from 0 through AMC$MAX_INDEX_LEVEL (type
AMT$INDEX_LEVELS).

AMP$FETCH_ACCESS_INFORMATION.

LOCK_EXPIRATION_ TIME

Meaning

Value

Default
Value

Number of milliseconds between the time a lock is granted
and the time that it could expire (preserved attribute).

Integer from 0 through 604,800,000 [1 week] (type
amt$lock_ expiration_ time).

0 (locks do not expire).

Calls AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Revision B Keyed-File Attributes I-4-27

I

MAX_ BLOCK_ LENGTH

MAX_BLOCK_LENGTH
Meaning

Value

Default
Value

I~

Length in bytes of each keyed-file block (preserved attribute).

If specified, this value is used only when the keyed file is
opened for the first time.

Integer from 1through16777215 (224-1). If the value is less
than the maximum record length, the system increases it to
that value. Then, if needed, it changes the value as follows:

• If the value is less than 2048, it is increased to 2048 (the
minimum allocation unit).

• If the value is between 2048 and 65536, but it is not a power
of 2, it is increased to the next power of 2 (4096, 8192, 16384,
32768, or 65536).

• If the value is greater than 65536, it is decreased to 65536.

For an indexed-sequential file, the system calculates an
appropriate default value using the average_record_length,
estimated_record_count, index_levels, and records_per_
block values. For a direct-access file, it calculates the default
value using the average_record_length and estimated_
record_ count values.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

MAX_RECORD_LENGTH
Meaning

Value

Default
Value

I Calls

Maximum length of a file record in bytes (preserved attribute).

For keyed files, integer from 1 through 65497.

For keyed files, no default value is provided; AMP$0PEN
returns a fatal error if the maximum record length has not
been specified when the file is created.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-28 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

MESSAGE_ CONTROL

MESSAGE_ CONTROL

Meaning

Value

Default
Value

Calls

Revision B

Indicates the additional information to be written to the
$ERRORS file (temporary attribute).

Set of any or none of the following identifiers. The attribute
value is specified using the set identifier
AMTMESSAGE_ CONTROL{].

AMC$TRIVIAL_ERRORS Nonfatal (trivial) errors
logged (errors of severity
ERROR).

AMC$MESSAGES

AMC$STATISTICS

Informative messages
logged.

Statistics logged.

Null set (only fatal error messages are logged).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN, AMP$STORE.

Keyed-File Attributes I-4-29

I

MIN_RECORD_LENGTH

MIN_RECORD_LENGTH

Meaning

Value

Default
Value

Minimum record length in bytes (preserved attribute).

For keyed files, integer from 0 though 65497, but not greater
than the max_record_length value.

For ANSI fixed-length (F) records, the default value is the
max_record_length value. For keyed files using embedded
keys, the default value is the sum of the key _position and
key _length values. Otherwise, the default value is 1.

NOTE

For variable-length records, it is recommended that you
explicitly specify the minimum record length. The minimum
record length must include:

• The primary-key field

• Any alternate-key fields (or corresponding sparse-key
control characters)

• All alternate-key fields for an alternate key defined as a
field in a repeating group which repeats a fixed number of
times

Calls AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATI'RIBUTES, AMP$0PEN.

NULL_ ATTRIBUTE

Meaning

I Calls

Attribute identifier (AMC$NULL_ATI'RIBUTE) that
indicates that the content of the attribute record is to be
ignored.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATI'RIBUTES, AMP$0PEN, AMP$STORE.

NULL_ITEM

Meaning Access item identifier that indicates that the content of the
attribute record is to be ignored.

I Calls AMP$FETCH_ACCESS_INFORMATION.

I-4-30 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

NUMBER_ OF _NESTED _FILES

NUMBER_ OF _NESTED_FILES

Meaning

Value

Calls

Nested file count (access information item). Each keyed file
has at least one nested file (named $MAIN_FILE).

Integer from 1 through amc$max_blocks_per_file.

AMP$FETCH_ACCESS_INFORMATION.

OPEN_POSITION

Meaning

Value

Default
Value

Calls

Revision B

Positioning required when the system opens the file
(temporary attribute).

One of the following identifiers (type AMT$0PEN _
POSITION):

AMC$0PEN _NO_
POSITIONING or
AMC$0PEN_AT_BOI

AMC$0PEN_AT_EOI

When the keyed file is
opened, it is positioned
to read the record with the
lowest key value.

The file is positioned at its
end-of-information.

If the file is an old file and
the only valid access mode to
the file is append, the only
valid open position is
AMC$0PEN _AT _EOI.

For all files other than file OUTPUT, AMC$0PEN _AT _BOI.
For file OUTPUT, AMC$0PEN _AT _EOI.

The open_position specified on a file reference overrides all
specifications of that attribute except an open_ position value
specified by an AMP$0PEN call. For example, if a file is
referenced as $USER.MY _FILE.$EOI, it is opened at its
end-of-information unless the AMP$0PEN call specifies
another open_ position. For more information about file
references, see the SCL Language Definition manual.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

Keyed-File Attributes 1-4-31

I

PERMANENT _FILE

PERMANENT _FILE

Meaning

Value

I Calls

Indicates whether the file is permanent or 1R111porary
(returned attribute).

Boolean value.

TRUE

FALSE

File is permanent.

File is temporary.

AMP$FETCH, AMP$GET _FILE_ATIRIBUTES.

PRIMARY_KEY

Meaning

Value

I Calls

Pointer to a program variable in which the call is to return a
primary-key value (access information item).

The primary-key value is for the record at which the
preceding AMP$START call positioned the file or for the
record read by the preceding AMP$GET _NEXT _KEY,
AMP$GET _LOCK_NEXT _KEY, or AMP$GET _KEY call.
This item can be returned only if the preceding call used an
alternate key.

Cell pointer (type AMT$PRIMARY _KEY).

AMP$FETCH_ACCESS_INFORMATION.

RECORD_LIMIT

Meaning

Value

Default
Value

I Calls

Maximum number ofrecords in the file (preserved attribute).

Integer from 1 through AMC$FILE_BYTE_LIMIT (242-1)
(type AMT$RECORD_LIMIT).

AMC$FILE_BYTE_LIMIT (242-1).

AMP$FETCH, AMP$FILE, AMP$GET_FILE_
ATI'RIBUTES, AMP$0PEN.

1-4-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

RECORD_ TYPE

RECORD_ TYPE

Meaning

Value

Default
Value

Calls

Record type for the file (preserved attribute).

One of the following identifiers (type AMT$RECORD_
TYPE):

AMC$V ARIABLE CDC variable-length (V) records.

AMC$UNDEFINED Undefined (U) records.

AMC$ANSI_FIXED ANSI fixed-length (F) records.

For keyed files, V and U records
are processed the same (as
variable-length records).

For keyed files, AMC$UNDEFINED.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATI'RIBUTES, AMP$0PEN.

RECORDS_PER_BLOCK

e Meaning

Value

Default
Value

Calls

Revision B

Estimated number of records each data block should contain
(preserved attribute).

The system uses the attribute value to calculate block size; it
uses the value only when opening a new file. It does not use
the value as a limit to the number of records that a block can
contain.

Integer from 1 to AMC$MAX_RECORDS_PER_BLOCK
(type AMT$RECORDS_PER_BLOCK).

2.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
AITRIBUTES, AMP$0PEN.

Keyed-File Attributes I-4-33

I

I

RESIDUAL_ SKIP_ COUNT

RESIDUAL_SKIP _COUNT

Meaning

Value

I Calls

Number of units remaining to be skipped when the skip
operation reached a file boundary (access information item).
The residual skip count is the difference between the number
of skip units requested and the number of units actually
skipped.

Integer from 0 through AMC$FILE_BYTE_LIMIT (type
AMT$RESIDUAL_SKIP _COUNT).

AMP$FETCH_ACCESS_INFORMATION.

RETURN_ OPTION

Meaning

Value

Default
Value

I Calls

Indicates when the file is implicitly detached (returned) to the
system (temporary attribute). (You can explicitly detach a file
with a DETACH_ FILE command or an AMP$RETURN
call.)

One of the following identifiers (type AMT$RETURN _
OPI'ION):

AMC$RETURN _AT_
CLOSE

NOTE

Detach when the task closes
the file and the job does not
have another instance of
open for the file.

The task closing the file does not receive notification that
the file cannot be detached when the job has another
instance of open of the file.

AMC$RETURN_AT_
JOB_EXIT

Detach when the job
terminates.

AMC$RETURN _AT _JOB_EXIT.

AMP$FILE, AMP$GET _FILE_ATTRIBUTES, AMP$0PEN.

I-4-34 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

RING_ATTRIBUTES

RING_A TTRIBUTES

Meaning

Value

Default
Value

Calls

Three ring numbers (rl, r2, and r3) defining the ring brackets
of the file (preserved attribute).

• Write bracket: 1 through rl.

• Read bracket: 1 through r2.

• Execute bracket: rl through r2.

• Call bracket: r2 + 1 through r3.

The ring numbers cannot be lower than the ring number of
the caller that opens the file. If a new file is created by a file
reference, its ring_attributes are those of the provider of the
file reference specification.

Record with three integer fields Rl, R2, and R3 (type
AMT$RING_ATTRIBUTES).

All three ring numbers are the ring number of the
AMP$0PEN caller. If the file has not yet been opened, the
attribute value is undefined.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

SELECTED_KEY_NAME

Meaning

Value

Calls

Revision B

Name of the currently selected key (access infonnation item).
If the primary key is the currently selected key, the name
$PRIMARY _KEY is returned.

31-character string, left-justified, blank-filled (type
AMT$SELECTED_KEY _NAME). All letters in the name are
returned in uppercase.

AMP$FETCH_ACCESS_INFORMATION.

Keyed-File Attributes I-4-35

I

I

SELECTED _NESTED_ FILE

SELECTED_NESTED_FILE

Meaning

Value

Name of the currently selected nested file (access information
item). By default, the currently selected nested file is
$MAIN_ FILE.

31-character string, left-justified, blank-filled (type
AMT$NESTED _FILE_NAME). All letters in the name are
returned in uppercase.

Calls AMP$FETCH_ACCESS_INFORMATION.

e I-4-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

9 Introduction to Sort/Merge D-1

What Sort/Merge Does ... II-1-2
Data Flow .. II-1-2

Sort Keys . II-1-3
Multiple Keys ... II-1-3

Defining a Sort Key . II-1-4
Key Length and Position . II-1-4
Key Type ... II-1-5
Collating Sequences ... II-1-6
Numeric Data Formats .. II-1-7
Sort Order ... II-1-12

Specifying the Record Length II-1-12
Short Records .. II-1-13
Invalid Records .. II-1-13

Example Program ... II-1-14

•

•

Introduction to Sort/Merge 11-1

The CYBIL Sort/Merge interface is a set of CYBIL procedures. With these
procedures, you can use NOS/VE Sort/Merge within your CYBIL program.

e To include NOS/VE Sort/Merge within your CYBIL program, the program
must include a sequence of procedure calls that specify the sort or merge
request. The sequence of calls begins with either an SMP$BEGIN _SORT_
SPECIFICATION call (for a sort request) or an SMP$BEGIN _MERGE_
SPECIFICATION call (for a merge request). The sequence of calls ends with
an SMP$END_SPECIFICATION call.

NOS/VE Sort/Merge use within your CYBIL program requires that the
program include the Sort/Merge procedure and type declarations. The
procedure and type declarations are stored in decks in the source library on
file $SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE.

To copy the Sort/Merge procedure and type declarations into your program,
you can copy one deck or several decks as follows:

• To copy a single deck containing all Sort/Merge procedure and type
declarations, embed this SCU directive in your program:

*COPYC SMPSPROCEDURE_INTERFACE_PACKAGE

• To copy only those procedure and type declarations that are used in the
program, embed an SCU *COPYC directive for each Sort/Merge
procedure call used. The following are the directives required for a
minimal sort specification:

*COPYC SMPSBEGIN_SORT_SPECIFICATION
*COPYC SMPSFROM_FILES
*COPYC SMPSTO_FILE
*COPYC SMPSKEY
*COPYC SMPSEND_SORT_SPECIFICATION

To copy the procedure declarations from the system source library, store your
source text (with the *COPYC directives embedded) as a deck in an SCU
source library and expand it using an SCU EXPAND_DECK command. The
EXPAND_DECK command specifies the system files containing the
procedure and type declarations as alternate base libraries, as follows:

ALTERNATE_BASE=CSSYSTEM.CYBIL.OSFSPROGRAM_INTERFACE, .•
SSYSTEM.COMMON.PSFSEXTERNAL_INTERFACE_SOURCE)

This process is discussed in detail in the introduction to this manual.

Revision B Introduction to Sort/Merge II-1·1

I

I
I

What Sort/Merge Does

NOTE

To execute a CYBIL program that uses Sort/Merge calls, you must add the
following object library to the program library list:

SLOCAL.SMFSLIBRARY

What Sort/Merge Does

The purpose of sorting is to arrange items in order. The purpose of merging
is to combine two or more sets of preordered items. Ordered information
makes reports more meaningful and suggests critical relationships. Searches
for information are faster with ordered lists.

The purpose of Sort/Merge is to arrange records in the sequence you specify.
You describe the files of records that Sort/Merge is to sort and the order in
which it is to sort them.

Sort/Merge:

Sorts or merges records from as many as 100 files with one call to
Sort/Merge.

Sorts character and noncharacter key types.

Can sort and merge variable-length (V) or fixed-length (F) records.

Can read input records from and write output records to either sequential
or indexed-sequential files. (The primary key of each indexed-sequential
file must be embedded.)

Can sort according to one of eleven predefined collating sequences, seven
numeric formats, or a user-defined collating sequence.

Can sum fields of records having equal keys.

Can use owncode procedures to insert, substitute, modify, or delete records
during Sort/Merge processing.

Data Flow

Sort/Merge reads input records from one or more local files or as supplied by

I an owncode routine. Records to be merged must be presorted. Records to be A
merged and summed must be pre-sorted and pre-summed. W

Sort/Merge writes records to a single output file. The records can be
processed by an owncode procedure.

II-1-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

•

Sort Keys

Sort Keys

Sort or merge operations are based on the ordering of record fields in the
data to be sorted or merged. These fields are called sort keys. This section
discusses what sort keys are and how a key is defined.

A sort key is a field of data within each input record. Sort/Merge uses the
contents of the sort key to determine the position of the record within the
sorted sequence of records.

Data must be aligned correctly in a sort key field. Character data must be
left-justified in the field, and numeric data must be right-justified in the
field.

If sort keys extend beyond the length of the shortest record in the file, the
sort is undefined. For example, if the records range from a minimum of 25
characters to a maximum of 80 characters, all sort keys must be in the first
25 characters for the sort to be defined.

Multiple Keys

A file can be sorted or merged on more than one sort key. The combined
length of all key fields in a record cannot exceed 1023 bytes. The key fields
cannot overlap.

The first key you specify is the most important key and is called the major
sort key. This key is sorted or merged first. The keys you specify after the
first key are of lesser importance and are called minor sort keys. The minor
keys are numbered in the order they are specified.

For example, if three sort keys are specified, the first key is the major sort
key (key number 1), the next key listed is a minor key (key number 2), and
the third key is another minor key (key number 3).

When two or more records have an equal major key, Sort/Merge determines
the order by looking at the subsequent minor keys in the following order: key
number 2, key number 3, and so on. Sort/Merge compares the minor keys
until either an unequal key is found, or until there are no more keys.

For example, university student records could be sorted using multiple sort
keys. Assume each record includes the last name and first and middle
initials, the student number, the date of birth, the field of study, the grade
point average, and a code representing class (freshman, sophomore, junior,
senior); all the fields are written with character data. The file could be
maintained with the student number as the major key since records are
normally retrieved by specifying the student number. The file can be sorted
by the name in alphabetic order when a list of student names is needed.

Revision A Introduction to Sort/Merge II-1-3

Defining a Sort Key

When a university department needs to know which students are majoring in e
fields within the department, the file can be sorted on the field of study. The
same sort can specify the name as a minor key so that records with the same
field of study are also sorted in alphabetic order by the name. The file can be
sorted by the class code as the major key and by the grade point average in ~
descending numeric order as a minor key. This would produce a list of ~
students sorted by class code with the students having the highest grade
point average at the beginning of the list.

Defining a Sort Key

Each sort key to be used by the sort or merge request must be defined by a
sort key definition on an SMP$KEY call. A sort key definition includes the
following information:

Starting location of the key within the record

Key length

Type of data in the key field

Sort order

Key Length and Position

You define key field length and position by specifying the first byte of the
field.

NOTE

When defining a Sort/Merge field, the leftmost byte in a record is counted as
number 1.

For example, if you want to specify the name field of the university student
record as a sort key, and the name field is the leftmost field in the record, you
specify the first byte as 1. If the name field is 20 characters long, you specify
the length as 20.

Sort/Merge interprets the integers you specify for key length and position as
bit numbers when the key type (discussed later in this chapter) specifies bits;
otherwise, byte numbers are assumed. The first blt is numbered 1; the key
fields cannot overlap one another and cannot overlap sum fields.

II-1-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

•

Defining a Sort Key

Key Type

You specify the type of data in a key field with the name of a collating
sequence or with the name of a numeric data format. The data in a key field
can be character or noncharacter.

Character data is represented in the computer as ASCII code values. To
indicate the key type for character data, you specify the name of a collating
sequence.

Noncharacter data is represented in the computer as binary values, in
packed decimal format, or in floating-point format. For numeric character
data, you specify the name of a numeric data format.

The difference between the internal representation of character and
noncharacter data is shown in figure II-1-1.

Character Data

2 3 4

Hexadecimal equivalent of ASCII code character

39 31 23 15 7 0

2D 31 32 33 34

Noncharacter Data

1 2 3 4

Hexadecimal equivalent of binary value

63 0

FFF B2E

Figure 11-1-1. Internal Data Representation

Revision A Introduction to Sort/Merge II-1-5

Defining a Sort Key

Table II-1-1 summarizes character and noncharacter data types and the
associated sort key type.

Table 11-1-1. Data in Sort Key Fields

Internal Data Type Data Ordered
Type Representation in Field Specified by According to

Character ASCII Alphabetic Name of a Specified
collating collating
sequence sequence

Numeric Name of a Numeric
numeric data value
format

Noncharacter Binary value Numeric Name of a Numeric
numeric data value
format

Packed decimal Numeric Name of a Numeric
numeric numeric data value

format

If a sort key field contains any characters that are not meaningful for the
key type you specify (an alphabetic character in a field defined as a numeric
key, for example), the sort order for that key field in that record is undefined.
In the output file, the data for that key field in that record is also undefined.
The record is still sorted according to other major sort keys you have
specified, unless you have specified an exception file.

The collating sequences and numeric data formats you can specify are
discussed in the following paragraphs.

Collating Sequences

A collating sequence determines the precedence given to each character in
relation to the other characters. You specify the collating sequence that
determines the sort order of character data. (Character data is represented as
ASCII character codes.)

Sort/Merge defines six collating sequences: ASCII, ASCII6, COBOL6,
DISPLAY, EBCDIC, and EBCDIC6. (NOS/VE defines five additional
collating sequences, and you can define your own collating sequences.)

If you do not specify a collating sequence, ASCII is used. (Sort/Merge sorts
fastest when using the ASCII collating sequence.)

The predefined collating sequences are listed in appendix D.

II-1-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

-

•

•

Defining a Sort Key

Numeric Data Formats

Numeric data can appear in a key field in one of the formats listed in table
11-1-2. Numeric data can be signed or unsigned. For character numeric data
that is signed, the sign can be a floating sign, an overpunch representation
over the leading (leftmost) digit, a leading separate character, an overpunch
representation over the trailing (rightmost) digit, or a trailing separate
character.

Noncharacter numeric data can be signed or unsigned binary integers or
normalized single precision floating-point numbers.

You define numeric key fields by specifying the first byte of the field and
either the length of the field in bytes or the last byte of the field.

For BINARY _BITS and INTEGER_ BITS data types, you specify the first
bit position of the field and either the length of the field in bits or the last bit
of the field.

For REAL data types, the key must be a full word aligned on a word
boundary.

For other types except REAL, the fields start or stop on character
boundaries .

Revision A Introduction to Sort/Merge II-1·7

Defining a Sort Key

Table 11-1-2. Numeric Data Formats

Name Data Type Sign Comments

BINARY Binary integer None The field starts and ends on
character boundaries. Data is
ordered according to numeric value.

BINARY_BITS Binary integer None The field does not start or end on
character boundaries. Data is
ordered according to numeric value.

INTEGER Two's complement Positive if leftmost The field starts and ends on
binary integer bit is O; negative if character boundaries. Data is

leftmost bit is 1 ordered according to numeric value.

INTEGER_ BITS Two's complement Positive if leftmost The field does not start or end on
binary integer bit is O; negative if character boundaries. Data is

leftmost bit is 1 ordered according to numeric value.

NUMERIC - FS Leading blanks, - sign for The field contains leading blanks
numeric characters negative values; (leading zeros must be converted to

a + character blanks before calling Sort/Merge); if
is not allowed the value is negative, the rightmost

leading blank must be converted to
a minus sign. If the field contains no
leading blanks or does not begin
with a negative sign, the value must
be positive. This format is
equivalent to the FORTRAN I e format, or the COBOL picture clause
for zero suppressed editing of
numeric item. Data is ordered
according to numeric value.

NUMERIC - LO Numeric Leading overpunch All characters are decimal digits
characters except the leading character, which

indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally.

NUMERIC_LS Numeric Leading separate All characters are decimal digits
characters except the leading character, which

is a negative or positive sign.
Specifying a field that is not at least
two characters in length causes a
fatal error. Data is ordered
according to numeric value with all
forma of zero ordered equally.

NUMERIC_NS Numeric None All characters are decimal digits.
characters Data is ordered according to

numeric value. • NUMERIC_TO Numeric Trailing overpunch All characters are decimal digits
characters except the trailing character, which

indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally. e Continued

II-1-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Defining a Sort Key

Table 11-1-2. Numeric Data Formats (Continued)

Name

NUMERIC TS

PACKED

PACKED_NS

REAL

Data Type

Numeric
characters

Packed decimal

Unsigned packed
decimal

Sign

Trailing separate

Signed

Unsigned

Normalized binary real Signed
or single precision
floating-point number
of 64 bits

Revision A

Comments

All characters are decimal digits
except the trailing character, which
is a negative or positive sign.
Specifying a field that is not at least
two characters in length causes a
fatal error. Data is ordered
according to numeric value with all
forms of zero ordered equally.

Data is ordered according to
numeric value.

Data is ordered according to
numeric value. PACKED_NS is the
same as COBOL
COMPUTATIONAL-3
with no sign.

The field occupies a full computer
word and is aligned on word
boundaries. Data is ordered
according to numeric value with all
forms of zero ordered equally. The
order of indefinite values is
undefined. The order of infinite
values is ordered as if its value were
infinity (can be signed infinity).
Double precision is not supported,
but can be sorted by defining the
upper part of the number as a
primary real key and the lower part
of the number as a secondary
real key .

Introduction to Sort/Merge Il-1-9

Defining a Sort Key

Signed Numeric Data

A floating sign is a negative sign embedded between leading blanks and the
numeric characters. A floating sign can also be a negative sign followed by
numeric characters. Leading zeros must be converted to blanks. Positive
values in this format are not signed. The following examples are valid
floating sign formats:

- 1
1

- 0
0

- 1 2 3
1 2 3 4

The following examples are invalid floating sign formats:

0 1
- 0 1

+ 1 2 3

Leading zero not allowed
Leading zero not allowed
Positive sign not allowed
All-blank field not allowed

Diagnostic messages are not issued for invalid floating sign formats or
invalid overpunches.

A negative sign overpunch is equivalent to overstriking a digit with a - ,
which is a punch in row 11. A positive sign overpunch is equivalent to
overstriking a digit with a + , which is a punch in row 12.

When a signed overpunch digit is received as input, the digit is punched as
indicated in the second column of table II-1-3. When a signed overpunch
digit is entered from a terminal or displayed as output, the digit appears as
indicated in the third column of table II-1-3. The hexadecimal value is in the
fourth column.

II-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Defining a Sort Key

e Table 11-1-3. Sign Overpunch Representation

Sign and Input/Output Hexadecimal
Digit Input Punch Representation Value - +O 0 0 30
+1 1 1 31
+2 2 2 32
+3 3 3 33
+4 4 4 34
+5 5 5 35
+6 6 6 36
+7 7 7 37
+8 8 8 38
+9 9 9 39
+O 12-0 { 7B
+l 12-1 A 41
+2 12-2 B 42
+3 12-3 c 43
+4 12-4 D 44
+5 12-5 E 45
+6 12-6 F 46
+7 12-7 G 47

e +8 12-8 H 48
+9 12-9 I 49
-0 11-0 } 7D
-1 11-1 J 4A
-2 11-2 K 4B
-3 11-3 L 4C
-4 11-4 M 4D
-5 11-5 N 4E
-6 11-6 0 4F
-7 11-7 p 50
-8 11-8 Q 51
-9 11-9 R 52
+O 12-8-4 < 3C
+O 12 & 26
-0 12-8-7 21
-0 11 2D

•
Revision A Introduction to Sort/Merirn II-1-11

Specifying the Record Length

Sort Order

Sort/Merge can sort a key in ascending or descending order. If you do not
specify a sort order, Sort/Merge sorts the key in ascending order.

When sorting a numeric key in ascending order, Sort/Merge sorts the key
values in order from lowest to highest. When sorting a numeric key in
descending order, Sort/Merge sorts the key values in order from highest to
lowest.

A character key is sorted according to the collating sequence you specify for
the key. When sorting a character key in descending order, Sort/Merge sorts
the key values in reverse order of the collating sequence you specify.

Specifying the Record Length

Sort/Merge accepts fixed-length (F) or variable-length (V) records. It can
sort records up to 65,535 bytes long. The record type and record length are
determined by the file attributes specified when the file is created.

The default maximum record length for both fixed-length (F) and
variable-length (V) record types is 256 bytes. The default minimum record
length for variable-length records is 0 bytes.

If the minimum record length for any Sort/Merge input file is 0, you must
include an SMP$KEY call in the Sort/Merge call sequence. If you omit the
SMP$KEY call and the minimum record length for any input file is 0,
Sort/Merge attempts to use the 0 value (the smallest minimum record length
of the input files) as the key length. But Sort/Merge cannot define a key of
length 0, so it returns a fatal error.

Sort performance is best when the maximum record length is equal to the
longest record to be sorted.

If the SORT or MERGE procedures do not specify any input or output files,
Sort/Merge assumes that all records are provided by owncode procedures. In
this case, you must specify the record length using either the
SMP$0WNCODE_FIXED _RECORD _LENGTH or SMP$0WNCODE_
MAX_RECORD _LENGTH procedure.

II-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Specifying the Record Length

Short Records

Sort/Merge uses only those fields it needs to perform the sort or merge. For
example, if the major key values are unequal, it does not use the minor key
values. Similarly, ifthe key values are unequal, it does not use the sum
values.

When Sort/Merge attempts to use a sum or key field beyond the end of the
record, it sends an informative message and leaves the order of the short
record undefined. If an exception file is specified for the sort or merge, it
writes the short record to the exception records file and deletes it from the
sort or merge.

Records could be too short because the system strips off all trailing blanks
from variable-length (V) records. A record shortened by blank suppression
cannot be sorted if its length is shorter than the minimum length required to
read all key and sum fields. This is so even if you have specified a value for
the maximum record length file attribute.

Blank suppression is demonstrated when a DISPLAY _FILE command
displays empty records. An empty fixed-length (F) is shown as a record of
length MAXRL filled with blanks. An empty variable-length (V) record is
shown as having a length of zero, with no blanks present in the record. It is
a zero-length record because all trailing blanks have been stripped from the
record.

Zero-length records are not included in the sort or merge and are not counted
in the number of records sorted or merged. The zero-length records are
output as the last records, even if you specify the SMP$VERIFY,
SMP$RETAIN _ORIGINAL_ ORDER, SMPSUM, SMPEXCEPTION _
FILE, or OWNCODE procedures. An informational message is issued
stating how many zero-length records were read.

Invalid Records

Sort/Merge determines whether a key or sum field contains valid data when
it attempts to use the data. Because Sort/Merge does not attempt to compare
or sum the data in all fields, it does not validate all fields in a record; it only
validates the data it uses.

Sort/Merge copies the invalid records it finds to the exception records file (if
one has been specified) and deletes the invalid records from the sort or
merge.

Revision B Introduction to Sort/Merge II-1-13

I

Example Program

Sort/Merge determines whether a key or sum field contains valid data when
it attempts to use the data. If, when Sort/Merge attempts to compare or sum
data from two records, it finds that one record contains invalid data, it then
discards the invalid record and attempts to compare or sum the next record.
It continues to do so until it finds a record containing valid data. Therefore,
in the end cases, where either all records are invalid or the file contains only A
one record, one record will not be determined as invalid because it cannot be ..
compared or summed with a valid record. So Sort/Merge always outputs at
least one record, valid or invalid.

Example Program

The following example CYBIL program sorts a file on three keys.

The file is a file of student records. Each record has this format:

LAST NAME

FIRST INITIAL

11 13 15

STUDENT
NO.

21

DOB

MIDDLE INITIAL

27

STUDY

35 38

GPA

CODE

The records are first sorted on the field of study (byte positions 27 through 34
in each record), then on the class code (byte 38), and finally on the student's
last name (bytes 1 though 10).

I II-1-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

MODULE sort_files;

?? PUSH (LIST:= OFF) ??
*copyc smpSbegin_sort_specification
*copyc smpSfrom_file
*copyc smpSto_file
*copyc smpSend_specification
*copyc pmpSexit
?? POP ??

VAR
iarray: smtSinfo_array,
file: stringC19),
status: ostSstatus;

PROGRAM sort;
i array[1J :=O;

{ Sequence of Sort/Merge calls }
smpSbegin_sort_specification Ciarray, status>;
smpSfrom_file C'university_students', status>;
smpSto_file ('field_of_study', status);
smpSkey (27, 8, 'ascii', 'a', status);
smpSkey (38, 1, 'numeric_ns', 'a', status>;
smpSkey <1, 10, 'ascii', 'a', status>;
smpSend_specification (status);

IF status.normal <> true then
pmpSexit (status);

I FEND;

PROCEND sort;

MODEND sort_files;

Example Program

Revision B Introduction to Sort/Merge II-1-15

Example Program

Before a CYBIL program using Sort/Merge is compiled, the source text must
be expanded to include the Sort/Merge procedure declarations. See the
manual introduction for more information on this process.

Assuming that the source text is on file $USER.SOURCE_ TEXT, the
following command expand, compile, and execute the example program:

/create_source_library result=temporary_library
/source_code_utility base=temporary_library
sc/create_deck deck=sorting source=Suser.source_text
sc •• /modification=original
sc/expand_deck deck=sorting
sc •• /alternate_base=CSsystem.cybil.osfSprogram_interface,
sc •• /Ssystem.common.psfSexternal_interface_source)
sc/quit write_library=no
/cybil input=compile l=list b=lgo
/attach_file Suser.university_students
/lgo

Assuming that these records are in file UNIVERSITY _STUDENTS, the
program writes the records to the file FIELD_ OF _STUDY in this order:

REYES
MAYER
CHARLES
MARTIN
NEECE
NAKAMURA
YEH
BARTLETT
COCHRAN
HOYO

KRUTZ
WALLIN
WARNES
WONG
LANGDON
LAS EUR
SUGARMAN
SMITH
DOUGLAS
OKADA

S L 100246031558ANTHRO 3341
M l 100991122359ANTHRO 2882
S H 101418032459ANTHRO 2453
R C 100955082157Art 2891
M L 99911121358Art 2291
S L 101529051260Art 2594
F L 102005120645Art 2764
S S 100800100957Art 2735
G L 100725111857810 3011
J c 101925103060810 3014

S T 100532010353POLlSCl 1981
G E 101056041659POLlSCl 3151
D V 102116060861POLlSCl 2814
S T 101001012755PSYCH 2152
M A 101754080549PSYCH 2013
P T 100678042256PSYCH 2233
B T 100528070457SOC 3501
F R 101062120758SOC 2913
M L 101325071558UNDEC 2585
N A 100103111750UNDEC 2225

I II-1-16 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

4t Sort/Merge Procedure Calls 11-2

Sort/Merge Procedure Call Use II-2-1
SMP$BEGIN_SORT_SPECIFICATION II-2-2
SMP$BEGIN _MERGE_SPECIFICATION II-2-4
SMP$FROM_FILE and SMP$FROM_FILES II-2-5
SMP$TO _FILE ... II-2-7
SMP$KEY .. II-2-9
SMP$DEFINE_USER_COLLATING_TABLE II-2-11
SMP$ERROR_FILE ... 11-2-12
SMP$ERROR_LEVEL ... II-2-13
SMP$ESTIMATED_NUMBER_RECORDS II-2-15
SMP$EXCEPTION_RECORDS_FILE 11-2-16
SMP$LIST_FILE .. II-2-17
SMP$LIST_OPTION ... II-2-18
SMP$LOAD _COLLATING_ TABLE 11-2-18.2
SMP$0WNCODE_FIXED _RECORD _LENGTH II-2-18.4
SMP$0WNCODE_MAX_RECORD_LENGTH 11-2-19
SMP$0WNCODE_PROCEDURE_n 11-2-20
SMP$RETAIN_ORIGINAL_ORDER 11-2-21
SMP$COLLATING_x .. 11-2-22

SMP$COLLATING_NAME 11-2-22
SMP$COLLATING_CHARACTERS 11-2-23
SMP$COLLATING_ALTER 11-2-24
SMP$COLLATING_REMAINDER 11-2-24

SMP$STATUS ... 11-2-25
SMP$SUM ... 11-2-26
SMP$VERIFY ... 11-2-29
SMP$END_SPECIFICATION 11-2-29

Sort/Merge Procedure Calls 11-2

This chapter contains detailed descriptions of the Sort/Merge procedures in
alphabetical order.

Sort/Merge Procedure Call Use

As described in chapter 1, a CYBIL program that calls Sort/Merge procedure
must include the procedure declarations from decks in these files: I

SSYSTEM.CYBIL.OSFSPROGRAM_INTERFACE_SOURCE
SSYSTEM.COMMON.PSFSEXTERNAL_INTERFACE_SOURCE

The Sort/Merge procedure and type declarations are listed in appendix C.

To execute a CYBIL program that uses Sort/Merge calls, you must add the
following object library to the program library list:

SLOCAL.SMFSLIBRARY

The Sort/Merge procedures can be called in any order with two exceptions:
SMP$BEGIN _SORT _SPECIFICATION or SMP$BEGIN _MERGE_
SPECIFICATION must be the first procedure called, and SMP$END_
SPECIFICATION must be the last procedure called. Sort/Merge collects
processing information until SMP$END _SPECIFICATION is called; the
sort or merge is then performed.

Unless stated otherwise, a procedure can be called only once during a sort or
merge. Refer to chapter 3 for information on owncode procedures, which are
mentioned in the descriptions of several of the Sort/Merge procedures.

Sort/Merge uses the maximum_record_length file attribute value in its
processing. The maximum_record_length value is set when the file is
created; the default maximum record length is 256 bytes.

With one exception, you can enter the Sort/Merge parameter values using
uppercase, lowercase, or a combination of uppercase and lowercase letters.
The one exception is owncode procedure names, which must be specified
using all uppercase letters.

CYBIL owncode procedures that are loaded with the main program and
referenced with the SMP$0WNCODE_PROCEDURE_n procedure call must
be externally declared XDCL procedures.

Revision B Sort/Merge Procedure Calls II-2-1

I

SMP$BEGIN_SORT _SPECIFICATION

SMP$BEGIN_SORT _SPECIFICATION

Purpose Signals the beginning of a sort calling sequence of procedure
calls.

Format SMP$BEGIN_SORT _SPECIFICATION (array, status);

Parameters array: VAR of smt$info _array

Remarks

Result array name; 1 to 31 letters, digits, or the special
characters $ # @ _, beginning with a letter.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The SMP$BEGIN _SORT _SPECIFICATION procedure
must be the first procedure called for a sort.

• The result array is a 0- through 16-element integer array
in which Sort/Merge returns sort statistics and results to
your program when the sort is completed. The result array
is a single dimensional array.

You set the first element of the result array to the number
of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than A
15 or less than 0, Sort/Merge issues a warning message W
and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table II-2-1.

II-2-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$BEGIN_SORT _SPECIFICATION

e Table 11-2-1. Result Array Format

Array
Element

- 1

2

3

4

5

6

7

8

9

e 10

11

12

13

14

15

16

•
Revision A

Contents

Number of elements of results you want returned (0
through 15)

Number of records read from sort or merge input files

Number of records deleted by an owncode 1 routine

Number of records inserted by an owncode 1 routine

Number of records inserted by an owncode 2 routine

Number of records sorted or merged. (Does not include
zero-length records or records written to the exception file.)

Number of records deleted by an owncode 3 routine

Number of records inserted by an owncode 3 routine

Number of records inserted by an owncode 4 routine

Number of records written to the exception file

Number of records deleted by an owncode 5 routine

Number of records combined by summing

Number of records written to the output file

Minimum record length. (Actual minimum record length of
records from the file named by the SMP$FROM_FILE
procedure and/ or from own code 1 and 2 routines.)

Average record length. (Total record length divided by the
total number of records from the file named by the
SMP$FROM_FILE procedure and/or from owncode 1 and
2 routines.)

Maximum record length. (Actual maximum record length
of records from the file named by the SMP$FROM_ FILE
procedure and/ or from owncode 1 and 2 routines.)

Sort/Merge Procedure Calls 11-2-3

SMP$BEGIN _MERGE_ SPECIFICATION

SMP$BEGIN_MERGE_SPECIFICA TION

Purpose

Format

Parameters

Remarks

Signals the beginning of a merge calling sequence of
procedure calls.

SMP$BEGIN_MERGE_SPECIFICATION (array,
status);

array: VAR of smt$info_array
Result array name; 1 to 31 letters, digits, or the special
characters $ # @ _, beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The SMP$MERGE_SORT _SPECIFICATION procedure
must be the first procedure called for a merge.

• The result array is a 0- through 16-element integer array
in which Sort/Merge returns merge statistics and results to
your program when the merge is completed. The result
array is a single dimensional array.

You set the first element of the result array to the number
of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than
15 or less than 0, Sort/Merge issues a warning message
and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table 11-2-1.

II-2-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

SMP$FROM_FILE and SMP$FROM_FILES

SMP$FROM_FILE and SMP$FROM_FILES I e Purpose Specifies the input file or files from which the records to be
sorted or merged are read.

Formats SMP$FROM_FILES (file_name_array, status); e SMP$FROM_FILE (file_ref, status); I Parameters tile_ ref: string(*)

Local file from which records are read for sorting or merging.
The parameter must be a string or string variable specifying
the name. Sort/Merge treats lowercase letters as being equal
to uppercase letters.

file_name_array: array[*] of ost$name

Array of file names from which records are read for sorting or
merging. Sort/Merge treats lowercase letters as being equal to
uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

e Remarks • You can specify a maximum of 100 input (from) files using
one or more procedure calls. The files are read in the order
that you specify them. In addition, the files are not read
past an embedded end-of-partition.

• SMP$FROM_FILE and SMP$FROM_FILES are separate

I procedures; each has its own procedure declaration deck.
Call SMP$FROM_FILE to specify one input file name; call
SMP$FROM_FILES to specify an array of input file
names.

• When you are merging files, the records in each input file
must be in sorted order. For a merge with summing, the
records in each input file must be presummed as well as
presorted.

• If you do not specify any SMP$FROM_FILE or
SMP$FROM_FILES calls in the specification, records to
be sorted or merged are read from the file OLD unless an
owncode 1 procedure supplies records. However, file OLD is
not assumed to exist and is not created by default if an
owncode 1 procedure has been supplied.

e
Revision B Sort/Merge Procedure Calls 11-2·5

SMP$FROM_FILE and SMP$FROM_FILES

Remarks
(Contd)

• Specifying the file $NULL or an empty FROM file, both
without an owncode 1 procedure specified, results in a null
sort or merge. A null sort or merge has no records sorted or
merged.

• Sort/Merge input files can have either sequential or
indexed-sequential file organization and either e
variable-length (V) or fixed-length (F) record type.

If an input file is an indexed-sequential file, its primary
key must be embedded. If the primary key is nonembedded,
Sort/Merge issues a fatal error and terminates.

II-2-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$TO _FILE

SMP$TO_FILE

Purpose

Format

Parameters

Remarks:

Revision B

Specifies the file to which sorted or merged records are written
if records are left after owncode procedure processing.

SMP$TO_FILE (file_name, status); I
file_name: string(*)

Local file to which records are written. The parameter must be
a string or string variable specifying the name. Sort/Merge
treats lowercase letters as being equal to uppercase letters.

status.: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Sort/Merge closes the file when it completes the sort or
merge.

• If a SMP$TO _FILE procedure is not called, records are
written to the file NEW, an owncode 3 procedure can
process all records, or records are written to file NEW, as
changed by an owncode procedure. However, file NEW is
not created by default if an owncode 3 procedure has been
supplied. The file attributes are the NOS/VE defaults.

• The Sort/Merge output (SMP$TO_FILE) file can have
either sequential or indexed-sequential file organization
and either variable-length (V) or fixed-length (F) record
type.

• If the output file is an indexed-sequential file, its primary
key must be embedded. If the primary key is nonembedded,
Sort/Merge issues a fatal error and terminates.

• Also, if the output file is an indexed-sequential file, the
major sort key must be the primary key defined for the
output file. The input records cannot have equal major sort
key values because the primary-key values for the output
file must be unique.

Sort/Merge Procedure Calls II-2·7

SMP$TO _FILE

Remarks
(Contd)

• If the output file is an indexed-sequential file,
Sort/Merge checks the key _position, key _length, and key_
type file attributes.

- If the major sort key position does not match the key_
position attribute value, Sort/Merge issues a fatal error
and terminates. e

- If the major sort key length does not match the key_
length attribute value, Sort/Merge issues a warning
error and changes the major sort key length to match
the primary-key length.

- If the major sort key type does not match the key_ type
attribute value, Sort/Merge issues a warning error. It
also changes the major sort key type if the key_ type
attribute specifies uncollated or integer keys. (It does not
issue a warning or change the key type if the key_ type
attribute specifies collated keys.)

- For uncollated keys, the major sort key type is
changed to ASCII.

- For integer keys, the major sort key type is changed
to INTEGER.

To read about indexed-sequential file attributes, see part I
of this manual.

• II-2-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$KEY

SMP$KEY

Purpose

Format

Parameters

Remarks

&vision B

Specifies a single key field for the sort or merge.

SMP$KEY (first, length, kind, ad, status);

first: integer

First byte or bit of the key field. Bytes or bits in a record are
numbered from the left, beginning with 1.

length: integer

Number of bytes or bits in the field.

kind: string(*)

Kind of data in the key. For character data, the parameter
specifies the name of a collating sequence; for numeric data, it
specifies the name of a numeric data format. Sort/Merge
treats uppercase letters as being equal to lowercase letters.

ad: char

Sort order; A or a for ascending, D or d for descending.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• You must specify all four parameters; there are no default
values.

• The parameters first and length refer to bytes unless the
key type is BINARY _BITS or INTEGER_ BITS.

• You can call the SMP$KEY procedure as many as 106
times during a sort or merge to specify multiple sort keys.

The significance of multiple keys corresponds to the order
in which the keys are defined. Output records are sorted or
merged according to the key field described by the first
SMP$KEY procedure called, then according to the key field
described by the second SMP$KEY procedure called, and
so on.

The total number of key characters must be no more than
1,023 eight-bit bytes. Key fields cannot overlap one
another or a sum field and must be within the minimum
record length.

Sort/Merge Procedure Calls II-2-9

I

I

I

SMP$KEY

Remarks
(Contd)

• If the SMP$KEY procedure is not called, the following
assumptions are made: the first byte is 1, the key length is
the smallest minimum record length of any of the input
files, the key type is the ASCII collating sequence, and the
sort order is ascending.

• A warning error is issued if a key field contains invalid e
data. The warning error results in the following actions:

1. The record is written to the exception records file if an
exception records file was specified.

2. The record is deleted from the sort or merge if an
exception file was specified. If an exception records file
was not specified, the record remains in the sort or
merge, but its place in the sort order is undefined.

3. A diagnostic message is issued, as controlled by the list
options specification.

4. The sort or merge continues normally.

• If the output (SMP$TO _FILE) file is an indexed-sequential
file, the major sort key must be the embedded primary key
defined for the output file. For details, see the SMP$TO _
FILE procedure description.

II-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$DEFINE_ USER_ COLLATING_ TABLE

SMP$DEFINE_USER_COLLATING_ TABLE

Purpose

Format

e Parameters

Remarks

RevisionB

Specifies a user-defined collation table.

SMP$DEFINE_USER_COLLATING_TABLE
(collating_sequence_name, weight_ table, status);

collating_sequence_name: string(*)

Name you choose to call the collating sequence produced by
the collation table. This name is the name specified in a key
field definition. Sort/Merge treats lowercase letters as being
equal to uppercase letters.

weight_ table: amt$collate_ table

Array defining a collation table. The array has 256 elements;
each element is an integer from 0 through 255 defining the
collation weight of the corresponding ASCII character code.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• A sort or merge specification can include more than one
SMP$DEFINE_USER_COLLATING_TABLE call.

• The following is an example of the declaration and
initialization of a weight_ table array. (It defines the
predefined collating sequence OSV$DISPLAY64_
FOLDED.)

VAR OSVSDISPLAY64_FOLDED: [#GATE,XDCL,READ]
AMTSCOLLATE_TABLE:=
[rep 33 of 45,

54, 52, 48, 43, 51, 55, 56, 41, 42, 39, 37, 46,
38, 47, 40, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 0, 63, 58, 44, 59, 57, 60, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 49, 61,
50, 62, 53, 60, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 49, 61, 50, 62,
rep 129 of 45];

For more information on collation tables, see appendix D.

• The collating sequence name specified on the call cannot
be the name of a predefined collating sequence or another
collating sequence you have already defined for the sort or
merge.

Sort/Merge Procedure Calls II-2-11

I

SMP$ERROR_FILE

SMP$ERROR_FILE

Purpose

I Format

Parameters

Remarks

Specifies the file to which diagnostic messages are written.

SMP$ERROR_FILE (file_name, status);

file_name: string(*)

Local file name of the error file.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Sort/Merge does not rewind the error file before or after it
uses it.

• The file is written in V-type record format. If you specify
the file $NULL with the SMP$ERROR_FILE procedure,
diagnostic messages are not written.

• If you specify the same file for the listing file and for the
error file, each error diagnostic message is written only
once, not twice as it would be if the listing file and the error
file were different and the messages were written to each
file.

• In a batch job, both $LIST and $ERRORS are connected to
OUTPUT. With $LIST and $ERRORS connected to the
same file each error message is printed twice consecutively.
To alleviate this situation you should always set one of the
files to a nondefault value, using a value other than
OUTPUT.

• If the SMP$ERROR_FILE procedure is not called, errors
are written to file $ERRORS.

II-2-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$ERROR_LEVEL

SMP$EKROR_LEVEL

Purpose

Format

e Parameters

Remarks

Revision B

Specifies the error level to be reported on the error file.

SMP$ERROR_LEVEL ('limit', status);

limit: string(*)

Alphabetic character enclosed in apostrophes or a string
variable containing the character (see table II-2-2).

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• An error can be one of the following levels:

Informational

Warning

Fatal

Catastrophic

An informational diagnostic results from
a usage that is syntactically correct but
questionable.

A warning diagnostic results when
Sort/Merge finds an error but recovers
by making assumptions about your
attempt.

A fatal diagnostic results when
Sort/Merge cannot resolve an error.
Sort/Merge treats error severity ERROR
as a fatal error.

A catastrophic error causes immediate
Sort/Merge termination.

• The error levels that you can select are shown in table
II-2-2. You can specify the alphabetic character enclosed
in apostrophes in uppercase or lowercase letters. For
example, if you specify W or w, any warning, fatal, and
catastrophic error messages are reported.

• Errors are written to the file specified by the
SMP$ERROR_FILE procedure. If the SMP$ERROR_
LEVEL procedure is not called, all errors are reported,
regardless of severity.

Sort/Merge Procedure Calls II-2-13

I

SMP$ERROR_LEVEL

Table II-2-2. Error Level Specification Using the SMP$ERROR_
LEVEL Parameter

Error Level

'I' or 'i'

'T' or't'

'W'or'w'

'F' or'f

'C' or'c'

'NONE' or 'none'

Errors Reported

Informational, warning, fatal, and catastrophic

(This is a nonstandard value and its use is not
recommended)

Warning, fatal, and catastrophic

Fatal and catastrophic

Catastrophic

None

I 11-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$ESTIMATED_NUMBER_RECORDS

SMP$ESTIMATED_NUMBER_RECORDS

Purpose Provided for compatibility with NOS Sort/Merge 5; however,
NOS/VE Sort/Merge does not use the specified value.

Format SMP$ESTIMATED _NUMBER_RECORDS (value, e status);

Parameters value: integer

Revision B

Integer value indicating the estimated number of records to be
sorted. The value can be from 1 through 16, 777,215.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Sort/Merge Procedure Calls II-2-15 I

SMP$EXCEPTION _RECORDS _FILE

SMP$EXCEPTION RECORDS FILE - -
Purpose

Format

Parameters

Remarks

Specifies the file to which invalid records are written.

SMP$EXCEPTION _RECORDS_FILE (file _name,
status);

file_name: string(*)

Local file to which invalid records are written. The file name
cannot be the same file name specified by the SMP$TO _FILE
procedure. Sort/Merge converts the file name to all uppercase
letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• If the SMP$EXCEPTION_RECORDS_FILE call specifies
the $NULL file, Sort/Merge deletes all exception records. It
does not write the exception records to an exception records
file or to the output file.

• The records written to the exception records file include:

- Records containing invalid key or sum field data

- Records that caused an arithmetic overflow or
underflow when their sum fields were summed.

- Out-of-order merge input records if merge order
checking was requested by an SMP$VERIFY call.

- Records for which the system procedure AMP$PUT _
NEXT returned an error when it attempted to write the
record to the output (TO) file.

• The records in the exception file are deleted from the sort or
merge. A summary of records written to the exception is
printed in the error file named by the SMP$ERROR_FILE
procedure call and in the list file.

• If you omit the SMP$EXCEPTION _RECORDS_FILE
procedure call, Sort/Merge writes the invalid records to the
output file. The invalid records are not written in a defined
order.

e II-2-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$LIST _FILE

SMP$LIST _FILE

Purpose Specifies the name of the list file.

Format SMP$LIST_FILE (file_name, status);

Parameters file_name: string(*)

Remarks

Revision B

Local file name of the listing file.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Listing information includes the Sort/Merge version and
level numbers, time and date, error messages, and
statistics such as the number of records sorted or merged.
If the SMP$LIST _FILE procedure is not called, the default
list file is $LIST.

• If you specify the same file for the list file and for the error
file, each error diagnostic message is written only once, not
twice as it would be if the listing file and the error file were
different and the messages were written to each file.

• In a batch job, both $LIST and $ERRORS are connected to
OUTPUT. With $LIST and $ERRORS connected to the
same file each error message is printed twice consecutively.
To alleviate this situation you should always set one of the
files to a nondefault value, using a value other than
OUTPUT.

Sort/Merge Procedure Calls II-2-17

I

I

I

I

SMP$LIST _OPTION

SMP$LIST _OPTION

Purpose

Format

Parameters

Determines the type of information written to the listing file.

SMP$LIST _OPTION (option, status);

option: string(*)

Value indicating the listing information requested:

OFF

NONE

s

DE

RS

MS

No additional information is to be written to
the listing file.

Same as the OFF keyword.

Although it is a valid keyword, it has no
meaning for this CYBIL procedure call. (It is
meaningful on the SORT or MERGE command
parameter.)

Detailed exception information. A message is
written for each occurrence that causes a
record to be written to the exception records
file.

The DE keyword is valid only if you specify an
exception records file; otherwise, an
informational error message is issued.

If you omit the DE keyword, messages are
written only once per key, sum fields, or file
that causes records to be written to the
exception records file.

Record statistics for the records sorted or
merged. The statistics are from the result
array; a message is written for each element of
the array except for the first. Table 11-2-1 lists
the result array elements.

Merge statistics for the records merged.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

11-2-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks

Revision B

SMP$LIST _OPTION

• The minimum information Sort/Merge writes to the listing
file is the page heading, error messages, the exception
records file summary, and the number of records sorted or
merged.

• You can specify only one list option with each SMP$LIST _
OPTION procedure call, but the procedure can be called
more than once.

• If you do not call the SMP$LIST _OPTION procedure, the
list option used is S.

Sort/Merge Procedure Calls II-2·18.1 I

SMP$LOAD _COLLATING_ TABLE

SMP$LOAD_COLLATING_TABLE

Purpose Loads a collation table, that is a weight table that defines a
collating sequence. The table may be a NOS/VE predefined
collation table or a user-defined collation table in an object
library.

I Format

Parameters

SMP$LOAD_COLLATING_ TABLE (collating_
sequence_name, weight_table_name, status);

collating_sequence _name: string(*)

I

I Remarks

Name you choose to call the collating sequence produced by
the collation table. This name is the name specified in a key
field definition. Sort/Merge treats lowercase letters as being
equal to uppercase letters.

weight_table_name: string(*)

Name of a predefined collation table or an object library entry
point defining a collating sequence. Sort/Merge treats
lowercase letters as being equal to uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• A sort or merge specification can include more than one
SMP$LOAD_USER_COLLATING_TABLE call.

• The weight table must be loadable by PMP$LOAD.

For more information on collation tables, see appendix D.

• Your collating sequence name cannot be the name of a
predefined collating sequence or the name of a collating
sequence you have already defined for the sort or merge.

II-2-18.2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Remarks
(Contd)

Revision B

SMP$LOAD_COLLATING_TABLE

• NOS/VE supplies 11 predefined collation tables. The
following is a list of the predefined collation tables for
these collating sequences:

Collating Sequences Predefined Collation
Table

CYBER 170 FrN5 default OSV$ASCil6_FOLDED and
OSV$ASCil6 _STRICT

CYBER 170 COBOL5 OSV$COBOL6 _FOLDED
default and OSV$COBOL6_STRICT

CYBER 170 63-character OSV$DISPLA Y63 _FOLDED
display code and

OSV$DISPLA Y63_STRICT

CYBER 170 64-character OSV$DISPLA Y64_FOLDED
display code and

OSV$DISPLA Y64_STRICT

Full EBCDIC OSV$EBCDIC

EBCDIC 6-bit subset OSV$EBCDIC _FOLDED
and OSV$EBCDIC _STRICT

• For more information on using and creating collation
tables, see appendix D.

Sort/Merge Procedure Calls II-2-18.3 I

SMP$0WNCODE_FIXED_RECORD_LENGTH

SMP$0WNCODE_FIXED_RECORD_LENGTH

Purpose

Format

Specifies the number of characters in fixed-length records
entering the sort or merge from an owncode routine.

SMP$0WNCODE_FIXED _RECORD _LENGTH (value, A
status); W

Parameters value: integer

Remarks

Fixed record length in bytes of all records supplied by any
owncode procedure; maximum value is 65,535 bytes.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The integer you specify is the exact number of bytes in
each record; a fatal error results if a record entering the
sort from an owncode routine does not have the exact
number of bytes.

• If the SMP$0WNCODE_FIXED_RECORD_LENGTH
procedure is not called, records entering the sort from an
owncode routine can be no longer than the longest allowed
input or output record.

• If the sort has no input or output files (records to be sorted
are supplied by an owncode routine and sorted records are
processed by an owncode routine), you must specify one of
the following procedures or else a fatal error results:

SMP$0WNCODE_FIXED _RECORD _LENGTH
SMP$0WNCODE_MAX_RECORD_LENGTH

• You cannot call both the SMP$0WNCODE_FIXED_
RECORD _LENGTH procedure and the
SMP$0WNCODE_MAX_RECORD _LENGTH procedure
for the same sort.

I 11-2-18.4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$0WNCODE_MAX_RECORD_LENGTH

e SMP$0WNCODE_MAX_RECORD_LENGTH

Purpose

e Format

Specifies the maximum length of any record entering the sort
or merge from an owncode routine.

SMP$0WNCODE_MAX_RECORD_LENGTH (value,
status);

Parameters value: integer

Remarks

•
Revision A

Maximum record length in bytes of any record supplied by
any owncode procedure; maximum value is 65,535 bytes.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The SMP$0WNCODE_FIXED_RECORD_LENGTH
procedure is recommended if all records entering the sort
from an owncode routine are the same length.

• TheSMP$0WNCODE_MAX_RECORD_LENGTH
procedure does not have to be called if the sort has an input
or output file with a maximum record length at least as
long as the record length specified by this procedure.

• If the SMP$0WNCODE_MAX_RECORD _LENGTH
procedure is not called, records entering the sort from an
owncode procedure can be no longer than the longest
allowed input or output record.

• If the sort has no input or output files (records to be sorted
are supplied by an owncode routine and sorted records are
processed by an owncode routine), you must specify one of
these procedures or else a fatal error results:

SMP$0WNCODE_FIXED _RECORD _LENGTH
SMP$0WNCODE_ MAX_RECORD _LENGTH.

• You cannot call both the SMP$0WNCODE_FIXED_
RECORD_LENGTH procedure and the
SMP$0WNCODE_MAX_RECORD _LENGTH procedure
for the same sort .

Sort/Merge Procedure Calls II-2-19

SMP$0WNCODE_PROCEDURE_n

SMP$0WNCODE_PROCEDURE_n

Purpose

Formats

Specifies an owncode routine to be executed each time a
certain event occurs during the sort or merge.

SMP$0WNCODE_PROCEDURE_l
('procedure _name', status);

SMP$0WNCODE_PROCEDURE_2
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_3
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_4
('procedure _name', status);

SMP$0WNCODE_PROCEDURE_5
('procedure_name', status);

Parameters procedure_name: string(*)
Owncode procedure name; 1 to 31 uppercase letters, digits, or
special characters$#@_, beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the e
procedure completion status.

Remarks • The procedure name is the name of the owncode routine. If
you enter an owncode routine name in lowercase letters,
Sort/Merge will not convert the name to uppercase letters.
Use uppercase letters to name a routine.

• Sort/Merge loads the owncode procedures before it begins
the sort or merge.

• If the SMP$0WNCODE_PROCEDURE_n procedure is
not called, no owncode routine is executed.

• Owncode routines are described in detail in chapter 3.

• You cannot specify both the SMP$0WNCODE_
PROCEDURE_5 and SMP$SUM procedure calls for the
same sort or merge.

• You cannot specify an owncode 1 or 2 procedure for a
merge.

II-2·20 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

SMP$RET AIN _ORIGINAL_ ORDER

e SMP$RETAIN_ORIGINAL_ORDER

Purpose

e Format

Specifies that records with equal sort keys are output in the
same order as they are input.

SMP$RETAIN_ORIGINAL_ORDER ('option', status);

Parameters option: string (*)

Remarks

•
Revision A

Indicates whether the input order is kept.

YES orY Keep the input order.

NOorN Do not necessarily keep the input order.

status: VAR of ost.$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• If the option is YES (or Y), and you specify more than one
sort or merge input file with the SMP$FROM_FILE or
SMP$FROM_FILES procedure, the order in which you
specify the input files is the order in which records with
equal keys are output.

• If the SMP$RET AIN _ORIGINAL_ ORDER procedure is
not called, records with equal keys can be output in either
order .

Sort/Merge Procedure Calls II-2-21

SMP$COLLATING_x

SMP$COLLATING_x

Execution of the SMP$COLLATING_x procedures allow you to define your
own collating sequence. A collating sequence specifies the sort or merge order
for character data. You must define all 256 characters for the collating
sequence or use the SMP$COLLATING_REMAINDER procedure. A
collating sequence consists of a series of value steps from low value to high
value. Each value step consists of at least one character representation.
When a value step contains more than one character, all characters that are
named within the step are collated equally.

A sequence of SMP$COLLATING_x procedures defines your collating
sequence. Your collating sequence definition starts with the
SMP$COLLATING_NAME procedure and ends by any procedure other
than SMP$COLLATING_NAME, SMP$COLLATING_ CHARACTERS,
SMP$COLLATING_REMAINDER, or SMP$COLLATING_ALTER. You
can define as many as 100 collating sequences by specifying a separate
series of SMP$COLLATING_x procedures for each collating sequence.

SMP$COLLA TING_NAME

Purpose

Format

Signals the start of your collating sequence definition and
specifies the name of your collating sequence.

SMP$COLLATING_NAME ('name', status);

Parameters name: string(*)

Remarks

Your collating sequence name, 1 through 31 characters. The
name must be a quoted literal specifying the sequence name.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Your collating sequence name cannot be the same as the
predefined collating sequence names and cannot be the
same as a collating sequence you have already defined.
Sort/Merge converts your sequence name to uppercase
letters.

Il-2-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

•

Remarks
(Contd)

SMP$COLLATING _x

• Your collating sequence name is used as the key type in the
SMP$KEY procedure call when records are sorted or
merged according to your collating sequence. For example,
the SMP$COLLATING_NAME procedure call shown
below names a collating sequence.

SMP$COLLATING_NAME ('mysequence', status);

The following call defines a key field that uses the
user-defined collating sequence MYSEQUENCE:

SMP$KEY (1, 10, 'mysequence', 'a', status);

SMP$COLLATING_ CHARACTERS

Purpose Assigns collating positions to the characters in your collating
sequence.

Format SMP$COLLATING_CHARACTERS (char, status);

Parameters char: array [*] of char

Remarks

Revision A

One or more characters assigned to the collating position
corresponding to the position of the call within the sequence
ofSMP$COLLATING_CHARACTERS (and
SMP$COLLATING_REMAINDER) calls.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

The first SMP$COLLATING _CHARACTERS procedure call
specifies the first value step or range of steps, the second
SMP$COLLATING_ CHARACTERS procedure call specifies
the second value step or range of steps, and so on until your
collating sequence is completely defined .

Sort/Merge Procedure Calls Il-2-23

SMP$COLLATING_x

SMP$COLLA TING_ALTER

Purpose Determines whether the characters in the value step defined
by the preceding SMP$COLLA TING_ CHARACTERS call
are altered in the output. If altered, all characters in the value
step are output as the first character in the value step.

Format SMP$COLLATING_ALTER ('option', status);

Parameters option: string(*)

YESorY Alter characters.

NOorN Do not alter characters.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

SMP$COLLA TING_REMAINDER

Purpose

Format

Defines the position of the remainder value step in the
collating sequence. The remainder value step consists of all
characters that have not been included in value steps defined
by SMP$COLLATING_ CHARACTERS calls.

SMP$COLLATING_REMAINDER ('option', status);

Parameters option: string(*)

YES, Y, NO or N

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

Il-2-24 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision A

•

SMP$STATUS

e SMP$STATUS

•

Purpose

Format

Specifies the name of the program variable in which
Sort/Merge stores the most severe error that occurred during
the sort or merge.

SMP$STATUS (variable, status);

Parameters variable: VAR of integer

Remarks

Revision A

Name of the integer status for the Sort/Merge.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The error levels that are represented by the variable
returned to the SMP$STATUS procedure are as follows:

Value Error Level

0 No errors
10 Informational
20 Warning
30 Fatal
40 Catastrophic

For example, if a 30 is returned to the SMP$STATUS
procedure, a fatal error occurred during the sort or merge.

• If you call the SMP$STATUS procedure, Sort/Merge does
not abort if a catastrophic error occurs before any data
records are input. However, if Sort/Merge calls another
product and an unrecoverable error results, an abnormal
job termination does occur. Sort/Merge treats error severity
ERROR as a fatal error .

Sort/Merge Procedure Calls Il-2-25

SMP$SUM

SMP$SUM

Purpose Specifies one or more fields to be summed.

Format SMP$SUM (first, length, 'stype', rep, status);

Parameters first: integer

Remarks

First byte or bit of the sum field. (Bytes and bits are counted
from the left, beginning with 1.)

length: integer
Number of bytes or bits in the sum field.

stype: string(*)
Name of a numeric data format.

rep: integer
Number of times the fields should be repeated to the right; a
positive, nonzero integer.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The defined sum fields are summed when two records have
equal keys. The records with equal keys are combined into a
one new record. W
The new record contains the equal keys and the summed
fields. A data field that is not a key or sum field is written
to the new record as a field from one of the old records.

• The location of a sum field is specified as the position as
the first bit or byte in the field. Bits and bytes are
numbered from the left in the record beginning with 1. The
location is a byte position unless the numeric format of the
sum field is BINARY _BITS or INTEGER_ BITS.

• The maximum size of the BINARY, BINARY _BITS,
INTEGER, INTEGER_ BITS, PACKED, and PACKED_
NS sum fields is one word. The maximum size of
NUMERIC_LO, NUMERIC_LS, NUMERIC_ TO,
NUMERIC_TS, NUMERIC_NS, or NUMERIC_FS sum
fields with a nonseparate sign is 17 digits. If the sum fields
have a separate sign, the maximum size is 17 digits plus •
one digit for the sign.

II-2-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Remarks
(Contd)

Revision A

SMP$SUM

• Sum fields can contain any type of numeric data, except
REAL. Fields containing data in REAL format cannot be
summed. See part II, chapter 1 for a list of the numeric
data formats.

• The rep parameter specifies the number of consecutive sum
fields defined by the SMP$SUM call. If the SMP$SUM call
specified more the one field, the fields must be consecutive,
must be the same length, and must contain the same type
of numeric data.

• Sum fields cannot overlap one another.

• If a sum field contains no data because a record is short,
the sum for that field is undefined.

• You can call SMP$SUM more than once for a Sort/Merge
request. You can specify up to 100 sum fields per record.

• Sum fields and key fields cannot overlap. That is, the fields
described as sum fields cannot also be key fields.

• You cannot specify both the SMP$RETAIN_ ORIGINAL_
ORDER and SMP$SUM procedures in the same sort or
merge. If you specify both, a warning error occurs.

• You cannot specify both the SMP$SUM and
SMP$0WNCODE_PROCEDURE_5 procedures in the
same sort or merge. If you specify both, a warning error
occurs .

Sort/Merge Procedure Calls Il-2-27

SMP$SUM

Remarks
(Contd)

• A fatal error is issued when a sum field contains invalid
data or when an arithmetic overflow or underflow
condition occurs as a result of summing two fields. An
error due to invalid data leaves the contents of the sum
fields undefined; an error due to an arithmetic overflow or
underflow leaves valid data in the sum fields, but it may
not be the original data.

A fatal error results in the following actions:

1. The record or records are written to the exception file if
an exception file was specified. (If the error was due to
invalid data in a sum field, one record is written; if the
error was due to an arithmetic overflow or underflow,
both records are written.)

2. The record or records are deleted from the sort or merge
if an exception file was specified. If an exception file
was not specified, the record or records remains in the
sort or merge, but their place in the sort order is
undefined.

3. A diagnostic message is issued depending on the list
options specification.

4. The sort or merge continues normally.

If you do not include an SMP$SUM call in the sequence of
Sort/Merge calls, records with equal key values are not
combined into a single record.

II-2-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

SMP$VERIFY

e SMP$VERIFY

Purpose Directs Sort/Merge to check that merge input records are in
sorted order. e Format SMP$VERIFY ('option', status);

•

Parameters option: string(*)

Remarks

Indicates whether Sort/Merge is to verify the order of the
merge input records.

YESorY Verify record order.

NOorN Do not verify record order.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• If you omit the SMP$VERIFY call from a merge
specification, Sort/Merge does not verify the record order.

• If you request merge order verification and Sort/Merge
finds a merge input record out-of-order, Sort/Merge issues
a diagnostic message. If an exception file was specified,
Sort/Merge writes the out of order record to the exception
file, deletes the record that is out of order, and continues
merging.

• If you specify an SMP$VERIFY call for a sort, Sort/Merge
issues a warning message but otherwise ignores the call.

SMP$END _SPECIFICATION

Purpose

Format

Parameter

Remarks

Revision A

Terminates your sort or merge specification and initiates
Sort/Merge processing.

SMP$END_SPECIFICATION (status);

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

The SMP$END_SPECIFICATION procedure must be the
last call in the Sort/Merge call sequence.

Sort/Merge Procedure Calls II-2-29

•

9 Owncode Procedures D-3

Specifying Owncode Procedures II-3-1 e Owncode Procedure Parameters II-3-2

Owncode 1: Processing Input Records II-3-5

Owncode 2: Processing Input Files II-3-7

Owncode 3: Processing Output Records . II-3-9

Owncode 4: Processing the Output File II-3-11

Owncode 5: Processing Records With Equal Keys II-3-12

Owncode Procedure Example II-3-13

•

•

•

Owncode Procedures 11-3

You can write subprograms to insert, substitute, modify, or delete input and
output records during Sort/Merge processing. Such a subprogram, called an
owncode procedure, is executed each time the sort or merge reaches a certain
point in Sort/Merge processing.

Sort/Merge passes a record to the owncode procedure, which processes the
record. When the record is returned to Sort/Merge from the owncode
procedure, Sort/Merge processes the record according to a code passed by the
owncode procedure.

Owncode procedures can also supply the records to be sorted. When
Sort/Merge is ready for a record, it calls the owncode procedure, which then
passes a record to Sort/Merge.

Specifying Owncode Procedures

An SMP$0WNCODE_PROCEDURE_n call specifies the name of an
owncode procedure Sort/Merge is to use; n is an integer from 1 through 5
that tells Sort/Merge at which point in processing the procedure is executed.
The SMP$0WNCODE_PROCEDURE_n call is described in chapter 2.

Owncode procedures 1 and 2 can be called for a sort only; owncode
procedures 3, 4, and 5 can be called for a sort or a merge.

SMP$0WNCODE_PROCEDURE_n calls are optional. Each
SMP$0WNCODE_PROCEDURE_n call in the Sort/Merge sequence of calls
must specify a different procedure name.

Use uppercase letters only when specifying a procedure name on an
SMP$0WNCODE_PROCEDURE_n call. Sort/Merge does not convert
lowercase letters in an owncode procedure name to uppercase letters.

You can write an owncode procedure using any NOS/VE programming
language, including FORTRAN (subroutine subprograms), COBOL
(subprograms compiled with COBOL SP=TRUE option), or CYBIL. The
owncode procedure must be compiled and stored as a module in an object
library.

Owncode procedures must either be loaded with the main program or be
loadable from the program library list. To load an owncode procedure,
Sort/Merge calls PMP$LOAD to load the procedure. PMP$LOAD then
searches for the specified owncode procedure name in the directories of the
object libraries in the program library list.

Revision A Owncode Procedures II-3-1

Owncodc Procedure Parameters

CYBIL owncode procedures that are loaded with the main program and
referenced with SMP$0WNCODE_PROCEDURE_n procedure calls must be
declared XDCL procedures.

For Sort/Merge to use an object library containing one or more owncode
procedures, the object library file must be in the program library list. To add
a file to the program library list before executing the CYBIL program,
execute a SET _PROGRAM_ATTRIBUTES command.

For detailed information on creating object libraries, see the SCL Object
Code Management Usage manual. The example at the end of this chapter
stores an owncode procedure in an object library.

Owncode Procedure Parameters

Sort/Merge communicates with an owncode procedure via parameters. The
parameters are passed each time Sort/Merge executes the owncode
procedure.

Table Il-3-1 summarizes the owncode procedures and the parameters
passed. Some parameters cannot be omitted; see table II-3-1 for the required
parameters.

The parameters passed between Sort/Merge and your owncode procedures
are:

VAR return_ code: integer
Code altered by an owncode procedure and returned to Sort/Merge

VAR reca: string (*)
Contents of a record

VAR rla: integer
Record length of a record

VAR recb: string(*)
Contents of a second record (owncode 5 procedure only)

VAR rlb: integer
Record length of a second record (owncode 5 procedure only)

II-3·2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

•

Owncode Procedure Parameters

Table 11-3-1. Owncode Procedure Summary

Parameters Passed

Procedure
Type Processing

Return

Code reca rla recb rib Return_ code Value

Owncode 1 Input records x x x

Owncode 2 Input files x x x

Owncode 3 Output records x x x

Owncode 4 Output file x x x

Owncode 5 Equal keys x x x x

x :: required parameter

x

0 Sort current record.

1 Delete current record.

2 Insert new record.

3 Terminate input from

current file.

0 Begin processing next input
file, if any.

1 Insert new record.

0 Output current record.

1 Delete current record.

2 Insert new record.

3 Terminate output.

0 Sort or merge is complete.

1 Insert new record.

0 Retain both records.

1 Replace both records

with new record.

The return_ code parameter is passed by Sort/Merge to an owncode
procedure as an integer with value 0. The return_ code parameter can be
altered by the owncode procedure to the integer value 1, 2, or 3, or the
parameter can be left unchanged. The value returned to Sort/Merge by this
parameter indicates a specific action to be taken by Sort/Merge. A return_
code value that is not defined causes a fatal error. The meanings of the
various return_ codes are discussed later in this chapter.

The reca parameter is a variable used to pass the current record; except for
the current record, the contents of reca are undefined. The rla parameter
passes an integer value indicating the number of characters in current record
passed by reca .

The recb and rlb parameters are used only by an owncode 5 procedure; an
owncode 5 procedure processes two records with equal keys. The first record
is in reca, with length rla characters. The recb variable passes the second
record with length rib characters.

Revision A Owncode Procedures II-3-3

Owncode Procedure Parameters

The allowed length of records passed to and from an owncode procedure
depends on how you have specified the record length, as follows:

• If you have specified the SMP$0WNCODE_FIXED_LENGTH procedure,
the number of bytes in the current record must equal the
SMP$0WNCODE_FIXED _LENGTH value.

• Otherwise, the maximum record length is determined as the largest value
of the following:

- The maximum_record_length file attribute values of the input or
output files

- The record length value specified by an SMP$0WNCODE_MAX_
RECORD _LENGTH procedure call.

In this case, the number of bytes in each record can range from 1 through
the maximum record length value.

Either the owncode maximum record length or owncode fixed length must be
specified if there are no input or output files.

An rla or rib parameter value that does not correspond to a record
specification causes an error.

The contents of the reca, rla, recb, and rib variables can be altered by an A
owncode procedure; the routine can pass a different record back to W'
Sort/Merge in reca or recb, and the number of characters in the record can be
different.

The record movement from Sort/Merge to an owncode procedure and back to
Sort/Merge is shown below.

Sort/Merge
Owncode
Routine

' ./
.......... _~,,.,...../

~

II-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Owncode 1: Processing Input Records

e Owncode 1: Processing Input Records

•

An SMP$0WNCODE_PROCEDURE_l procedure call specifies an owncode
1 procedure. Sort/Merge executes an owncode_procedure_l call each time it
reads an input record.

An owncode 1 procedure is used only with a sort request; specification of an
owncode 1 procedure in a merge request returns a fatal error.

One or More Input Files Specified

If you specify one or more input files or the value $NULL on the
SMP$FROM_FILES or SMP$FROM_FILE procedure call, the owncode 1
procedure is executed after reading each record. The return_ code, reca, and
rla parameters are passed to the procedure by Sort/Merge. The return_ code
is 0, reca contains the record, and rla is the record length in characters.

After owncode processing of the record, control returns to Sort/Merge, which
processes the record passed back in reca according to the return_ code value
set by the owncode 1 procedure. The record passed back to Sort/Merge in
reca can be different from the record originally passed to the procedure.

The return_ code value and the associated processing performed by
Sort/Merge can be as follows:

0 The record passed back to Sort/Merge in reca is sorted. The
owncode 1 procedure is executed again with reca as an empty array
and with rla=O.

1 The record passed back to Sort/Merge in reca is deleted.

2 An additional record is inserted into the sort. The record in reca is
entered into the sort, and the owncode 1 procedure is executed again
with reca and rla set to the record that just entered the sort.

3 Input from the current file is terminated. The record in reca and any
remaining records in the file are not sorted. If more input files are
specified, records are read from the next input file. The owncode 1
procedure is executed for each record read from the next file .

Revision A Owncode Procedures 11-3-5

Owncode 1: Processing Input Records

Input Files Not Specified e
If you do not specify any input files (you omit the the SMP$FROM_FILES
call from the call sequence), the owncode 1 procedure is executed when
Sort/Merge is ready for another record to process. The return_ code, reca, and ~
rla parameters are· passed to the procedure by Sort/Merge. The return_ code ,.,
is 0, reca is an empty array with enough space for the largest record, and rla
is 0.

When control is returned to Sort/Merge from the owncode 1 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 The record passed back to Sort/Merge in reca is sorted. The
owncode 1 procedure is executed again with reca as an empty array
and with rla=O.

2 An additional record is inserted into the sort. The record in reca is
entered into the sort, and the owncode 1 procedure is executed again
with reca and rla set to the record that just entered the sort.

3 Input is terminated; anything in reca or rla is ignored.

11-3-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Owncode 2: Processing Input Files

9 Owncode 2: Processing Input Files

•

An SMP$0WNCODE_PROCEDURE_2 procedure call specifies an
owncode 2 procedure. Sort/Merge executes the owncode 2 procedure to
process input files.

An owncode 2 procedure is used only with a sort request; specification of an
owncode 2 procedure in a merge request returns a fatal error.

One or More Input Files Specified

If you specify one or more input files or the value $NULL with the
SMP$FROM_FILES or SMP$FROM_FILE procedure call, the owncode 2
procedure is executed after input from a file has terminated. Input terminates
when end-of-partition is found, when end-of-information is found, or when
an owncode 1 procedure passes a return_ code value of 3 to Sort/Merge.

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, and reca and rla are passed as a null
record; reca is an empty array, and record length is 0.

When control is returned to Sort/Merge from the owncode 2 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 Processing of the next input file, if any, begins.

1 An additional record is inserted into the sort after the last record. The
record inserted is the first rla characters in reca, which have been
provided by the procedure. The owncode 2 procedure is executed
again.

Input Files Not Specified

If you do not specify any input files (you omit the the SMP$FROM_FILE
call from the call sequence), the owncode 2 procedure is executed after an
owncode 1 procedure has terminated input.

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, and reca and rla are passed as a null
record .

Revision A Owncode Procedures Il-3·7

Owncode 2: Processing Input Files

When control is returned to Sort/Merge from the owncode 2 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 Signals the end of input.

1 An additional record is inserted into the sort after the last record. The
record inserted is the first rla characters in reca, which have been
provided by the procedure. The owncode 2 procedure is executed
again.

II-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

•

Owncode 3: Processing Output Records

Owncode 3: Processing Output Records

An SMP$0WNCODE_PROCEDURE_3 procedure call specifies an
owncode 3 procedure. Sort/Merge executes the owncode 3 procedure to
process output records.

Output File Specified

If you specify an output file or the value $NULL with the SMP$TO _FILE
procedure call, the owncode 3 procedure is executed each time a record is
ready to be written to the output file.

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, reca is the output record, and rla is the
record length in characters.

After owncode processing of the record, control returns to Sort/Merge, which
processes the record passed back in reca according to the return_ code value
set by the owncode 3 procedure. The return_ code value and the associated
processing performed by Sort/Merge can be as follows:

0 The record passed back to Sort/Merge in reca is written to the output
file.

1 The record passed back to Sort/Merge in reca is not written to the
output file.

2 An additional record is written to the output file. The record in reca is
written out, and the owncode 3 procedure is executed again with reca
and rla set to the original record.

3 Output to the file is terminated. The record in reca is not written out.
If an owncode 4 procedure is specified, the procedure is executed;
otherwise, the sort or merge is terminated.

Output File Not Specified

If you do not specify an output file (you omit the the SMP$TO _FILES call
from the call sequence), the owncode 3 procedure performs all output
processing. Each output record is passed to the owncode 3 procedure.
Sort/Merge does not write the record to an output file .

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, reca is the record, and rla is the record
length in characters.

Revision A Owncode Procedures Il-3-9

Owncode 3: Processing Output Records

When control is returned to Sort/Merge from the owncode 3 procedure, the
return_code value and the associated processing performed by Sort/Merge
can be as follows:

1 Owncode 3 is called again.

3 Output is terminated. If an owncode 4 procedure is specified, the
procedure is executed; otherwise, the sort or merge is terminated .

Il-3-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Owncode 4: Processing Output File

9 Owncode 4: Processing the Output File

The SMP$0WNCODE_PROCEDURE_ 4 procedure specifies an owncode 4
procedure. Sort/Merge executes the owncode 4 procedure to process the
output file.

Output File Specified

If you specify an output file or the value $NULL with the SMP$TO _FILE
procedure call, the owncode 4 procedure is executed after the last record has
been written to the output file.

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, and reca and rla are passed as a null
record.

When control is returned to Sort/Merge from the owncode 4 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 The sort or merge is completed.

1 An additional record is inserted after the last record. The record
inserted is the first rla characters in reca. The owncode 4 procedure is
executed again with return_ code, reca, and rla.

Output File Not Specified

If you do not specify an output file (you omit the the SMP$TO _FILES call
from the call sequence), the owncode 4 procedure is executed after an
owncode 3 procedure has terminated output.

The return_ code, reca, and rla parameters are passed to the procedure by
Sort/Merge. The return_ code is 0, and reca and rla are passed as a null
record.

When control is returned to Sort/Merge from the owncode 4 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 The sort or merge is completed.

• 1 This value is meaningless because no output file has been specified.

Revision A Owncode Procedures II-3-11

Owncode 5: Processing Records With Equal Keys

Owncode 5: Processing Records With
Equal Keys

An SMP$0WNCODE_PROCEDURE_5 procedure call specifies an
owncode 5 procedure. Sort/Merge executes the owncode 5 procedure when it
encounters two records with equal key values during a sort or merge.

The SMP$0WNCODE_PROCEDURE_5 procedure can be called at any
time during the sort or merge whenever Sort/Merge detects duplicate records.

The return_ code, reca, rla, recb, and rib parameters are passed to the
procedure by Sort/Merge. The return_ code is O; reca and recb contain the
first and second records, respectively, and rla and rib contain the record
lengths in characters of the first and second records, respectively.

After the owncode 5 procedure processes the two records, control is returned
to Sort/Merge. Sort/Merge then processes the records according to the
return_ code value set by the owncode 5 procedure. The return_ code value
and the associated processing performed by Sort/Merge can be as follows:

0 The first rla characters of reca are accepted as the first record; the
first rib characters ofrecb are accepted as the second record (the
records and record lengths passed back to Sort/Merge can be
different from the records and record lengths passed to the owncode A
procedure). W

1 One duplicate record is deleted. The other record is replaced with the
first rla characters of reca.

If you call the SMP$RETAIN _ORIGINAL_ ORDER procedure in a sort with
an owncode 5 procedure, the record that first entered the sort is passed to
the owncode 5 procedure as reca; otherwise, either of the two records with
equal keys could be passed to the procedure as reca.

The owncode 5 procedure can control the order in which the two records are
written to the output file. The record returned to Sort/Merge as reca is
written to the output file before the record is returned as recb.

Il-3·12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

•

Owncode Procedure Example

Owncode Procedure Example

An owncode 3 procedure written in FORTRAN is shown below. The
procedure deletes the first record in a file. The variable COUNT keeps track
of the number of times the owncode routine is entered.

SUBROUTINE OWNCODE Cretcode,reca,rla)
INTEGER retcode, rla, count
CHARACTER reca*38
DATA count IOI

count = count +1

IF (count.eq.1) THEN
retcode = 1

ELSE
retcode = 0

ENDIF

RETURN
END

For detailed information on placing a subroutine into an object library, see
the SCL Object Code Management Usage manual. The commands to place
the example subroutine OWNCODE into the object library file
$USER.OWN _LIBRARY are as follows:

lfortran input=owncode
lcreate_object_Library
COLladd_module Library=$Local.Lgo
COLlgenerate_Library Library=$user.own_Library
COL/quit

The following command displays the contents of $USER.OWN _LIBRARY:

ldisplay_object_Library Library=Suser.own_Library
•• ldisplay_option=entry_point

Display of object library - OWN_LIBRARY

OWN CODE - Load module

entry points

OWN CODE

Revision A Owncode Procedures Il-3·13

Owncode Procedure Example

The following command adds $USER.OWN _LIBRARY to the program
library list:

/set_program_attribute add_Library=Suser.own_Library

After executing these commands, a CYBIL program can be executed in
which the subroutine OWNCODE can be called from a sequence of
Sort/Merge procedure calls such as:

smpSbegin_sort_specification Ciarray, status>;
smpSfrom_file C'university_students', status);
smpSto_file C'field_of_study', status>;
smpSkey C1, 10, 'ascii', 'a', status>;
smpSowncode_procedure_3 C'owncode', status>;
smpSend_specification <status);

II-3-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Glossary

D e Data Block

A keyed-file block in which data records are stored. Contrast with Index
Block.

Data-Block Split

The process of creating two or three data blocks from an existing data
block when a record to be written does not fit into the remaining space of
the existing block.

Deck

A sequence of lines in a source library that can be manipulated as a unit
by the Source Code Utility (SCU).

Default Value

The value used for the parameter value if no value is explicitly specified.

Descending Sort Order

Used with the Sort/Merge interface to mean sorting key values from
highest to lowest value. Contrast with Ascending Sort Order.

Direct-Access File Organization I
A keyed-file organization in which records are accessed directly by
hashing the primary-key value. Records can be accessed sequentially, but
the records are not returned in sorted order. Contrast with
Indexed-Sequential File Organization.

Duplicate Key Value

The situation detected when a record to be written to the file has a key
value that matches a key value already in the file (or another value for the
alternate key in the same record). It can also be detected during
application of a new alternate-key definition to a file.

Duplicate Key Value Control

E

The alternate-key attribute that indicates whether duplicate values are
allowed for the key and, if so, how the duplicates are ordered.

EBCDIC

The abbreviation for extended binary-coded decimal interchange code, an
8-bit code representing a coded character set.

Embedded Key

Key that is part of the data in each record. (Alternate keys are always
embedded.) Contrast with Nonembedded Key.

Revision B Glossary A-3

Glossary

End-Of-Information (EOI)

The point at which data in a file ends. For a keyed file, the EOI file
position means that the file is positioned after the record with the highest
key value.

Entry Point
A location within a program unit that can be branched to from other
program units. Each entry point has a unique name.

I Exception Records File
As used with the Sort/Merge interface, a file to which invalid records are
written before the records are removed from the sort or merge.

External Reference

F

A reference in one program unit to an entry point in another program
unit.

F Record Type
Fixed-length records, as defined by the ANSI standard.

Field

A subdivision of a record.

File

A collection of information referenced by a name.

File Attribute

A characteristic of a file. Each file has a set of attributes that define the
file structure and processing limitations.

File Cycle

A version of a file. All cycles of a file share the same file entry in a
catalog. The file cycle is specified in a file reference by its number or by a
special indicator, such as $NEXT.

File Organization

The file attribute that determines the record access method for the file. See
Sequential File Organization, Byte-Addressable File Organization, and
Keyed File Organization.

File Position

The location in the file at which a subsequent sequential read or write
operation would begin.

A-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Glossary

File Reference
An SCL element that identifies a file and optionally the file position to be
established prior to use.

Flush Request

A program request to write to the file device the parts of a file that have
been modified in memory since the last time the file was written. For
keyed files, the file device is always disk; for sequential files, the flush
request can write to disk or to an interactive terminal.

Flushing

H

The process of writing to disk any parts of a file whose images in real
memory have been altered or expanded, if the alteration or expansion has
not yet been made on disk. Flushing does not alter the logical status or
position of a file.

Hashing Procedure

The procedure used to relate a primary-key value to a home block number
in a direct-access file. The procedure is executed for each file request that
specifies a key value.

Home Block

I

A unit of space in a direct-access file that can be accessed directly. If
possible, data records are stored in home blocks. Contrast with Overflow
Blocks.

Index Block

An indexed-sequential file block in which index records are stored.
Contrast with Data Block.

Index-Block Split

The process of creating two index blocks from an existing index block
when a record to be written does not fit into the remaining space of the
existing block.

Index Level

A rank in the index-block hierarchy in an indexed-sequential file. For the
pointer to a data record to be found, an index block must be searched at
each index level.

Revision B Glossary A-5

Glossary

Index Level Overflow

The condition when a record cannot be written to a file because writing
the record would require addition of another index level and the file
already has 15 index levels.

Index Record

A record in an index block that associates a key value with a pointer to
either a data block or an index block in the next-lower level of the index
hierarchy.

Indexed-Sequential File Organization

A keyed-file organization in which records can be read sequentially,
ordered by key value, or read randomly by a key value.

Instance of Open

A particular opening of a file as distinguished from all other openings of
the file. The system assigns each instance of open a unique file identifier.
Closing the file ends the instance of open.

Integer Key

J

The key type that orders key values numerically. The key values can be
positive or negative integers. Contrast with Collated Key and Uncollated
Key.

Job

I A set of tasks executed for a user name.

I

I

K

Key

For Sort/Merge, a key is a part of a record used to determine the position
of the record within a sorted sequence of records.

In a keyed file, a key is a value associated with a record as a means of
accessing records. It may be a field in the record. See Primary Key and
Alternate Key.

Key List

The sequence of primary-key values associated with an alternate-key
value in an alternate index. If the alternate key does not allow duplicate ~
values, each key list contains only one value. Otherwise, each key list
contains a primary-key value for each record that contains the
alternate-key value.

A-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Glossary

Key Type

The kind of data in a key.

For Sort/Merge, a key type is the name of a numeric data format or
collating sequence.

e For a keyed file, the possible key types are uncollated, collated, and
integer.

Keyed-File Organization

L

A file organization that provides for record access by a key value.
Currently, the keyed-file organizations are indexed-sequential and
direct-access.

Library

See Source Library and Object library.

Local File

A file that is accessed via the $LOCAL catalog. See also File, Path, and
Local Path.

Local File Name

The name used by an executing job to reference a file while the file is
assigned to the job's $LOCAL catalog. Only one file can be associated
with a given name in a job; however, in one job, a file can have more than
one instance of open by that name.

Local Path
Identifies a local file as follows:

$LOCAL.file _name

I

Lock I
The method by which an instance of open makes a primary-key value (or,
for a file lock, all primary-key values) inaccessible to other instances of
open of the file.

Revision B Glossary A-7

Glossary

M

Major Key

The leftmost part of a key. The number of bytes to be used is specified as
the major key length. A major key can be used to position or read a keyed
file.

Major Sort Key

As used with the Sort/Merge interface, a sort key that is the most
important and is specified first.

Mass Storage

Disk storage.

Merge

The process of combining two or more presorted files.

Minor Sort Key

As used with the Sort/Merge interface, a sort key that is specified after
the major sort key on a SORT or MERGE command or in a procedure call.
Minor keys are sorted after the major sort key.

Module

N

A unit of code. An object module is the unit of object code corresponding
to a compilation unit. A load module is a unit of object code stored in an
object library.

When using the Debug utility, module refers to a program unit.

I Nested File

File defined within a keyed file. A nested file is recognized and used by the
keyed-file interface; it is not recognized or used by the NOS/VE file
system.

Nonembedded Key

A primary key that is not part of the record data. Contrast with
Embedded Key.

Null Suppression

Alternate-key attribute indicating that records with null alternate-key
values are not included in the alternate index.

A-8 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

Glossary

0

Object Code

Executable code produced by the compiler.

Object Library

A library of modules that the system can load and execute as needed.

Open Operation

A set of preparatory operations performed on a file before input and
output can take place.

Open Request

A program request notifying the system that the program wants to access
file data.

Overflow Block

Unit of space in a direct-access file to which a record is written when its
home block is full. See also Home Block.

Owncode Procedure

p

A user-written module, executed by Sort/Merge, that inserts, substitutes,
modifies, or deletes records.

Padding

Space deliberately left unused in each block created during the initial
open of a keyed file. Keyed-file blocks are padded to allow easy insertion
of records after creation of the file.

Path

Identifies a file. A path may include the family name, user name,
subcatalog name or names, and file name.

Permanent File

A file preserved by NOS/VE across job executions and system deadstarts.
A permanent file has an entry in a permanent catalog. See File.

Piece

One of the fields of a concatenated alternate key.

Revision B Glossary A-9

Glossary

Primary Key

The required key in a keyed file. Primary-key value must be unique in the e
file. See also Alternate Key.

Program-Library List

R

The list of object libraries searched for modules during program loading. e
A program-library list search is required to load a collation table module
or a Sort/Merge owncode procedure module.

Random Access

The process of reading or writing a record in a file without having to read
or write the preceding records; applies only to mass storage files. Contrast
with Sequential Access.

Record

A unit of data that can be read or written by a single I/O request. Also, a
set of related data processed as a unit when reading or writing a file.

Repeating Groups

An alternate-key attribute indicating that each data record can contain
more than one value for the alternate key.

Rewind

For sequential and byte-addressable files, to position a file at its
beginning of information (BOI). For keyed files, to position a file at the
record with the lowest key value.

Ring

The level of hardware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings.

Ring_Attributes

A file attribute whose value consists of three ring numbers referenced as
rl, r2, and r3. The ring numbers define four ring brackets for the file as
follows:

Read bracket is 1 through r2.

Write bracket is 1 through rl.

Execute bracket is rl through r2.

Call bracket is r2+ 1 through r3.

A-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Glossary

s ,_

Sequential Access

An access mode in which records are processed in the order (physical or
logical) in which they occur on a storage device. Contrast with Random
Access.

Sequential File Organization

A file organization in which records can only be processed in physical
order. Records are always read in the order that they were written to the
file.

Sort

The process of arranging records in a specified order.

Sort Key

As used with the Sort/Merge interface, a field of information within each
record in a sort or merge input file that is used to determine the order in
which records are written to the output file.

Sort Order

Ordering of data according to key fields, either ascending or descending.

Source Code

Code written by the programmer in a language such as CYBIL, and input
to a compiler.

Source Library

A collection of text units on a file, generated and manipulated by the
Source Code Utility (SCU).

Sparse-Key Control

An alternate-key attribute that allows only certain records to be included
in the alternate index. Inclusion or exclusion of a record is determined by
the character at the sparse-key control position of the record.

Statistics

Counts maintained for a keyed file. Each type of file access is counted as
well as the number of records in the file.

Status Variable

The variable in which the completion status of the command or procedure
is returned.

&vision B Glossary A-11 I

I

Glossary

Sum Fields

Used with the Sort/Merge interface, a record field containing a numeric
value from the corresponding field of another record when the records are
summed. The sum of the two values is stored in the new record that is
created by the summing.

Summing e
Used with the Sort/Merge interface, the process of combining two records
having identical key values. The result of the process is a new record
containing the original values of the key fields, the summed values of the
sum fields, and data from one of the original records in any other record
fields.

System Command Language (SCL)

T

The language that provides the interface to the features and capabilities
of NOS/VE. All commands and statements are interpreted by SCL before
being processed by the system.

Task

The instance of execution of a program.

u
U Record Type

Records for which the record structure is undefined.

Uncollated Key

v

A key consisting of 1 to 255 eight-bit characters. These keys are sorted by
the magnitude of their binary ASCII code values. Contrast with Collated
Key.

V Record Type

w

Variable-sized record; system default record type. Each V-type record has
a record header. The header contains the record length and the length of
the preceding record.

Working Storage Area

An area allocated by the task to hold data copied by get or put calls to a
file.

A-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ASCII Character Set BI
This appendix lists the following character set:

ASCII (the only character set used by NOS/VE)

NOS/VE supports the American National Standards Institute (ANSI) ASCII
character set (ANSI X3.4-1977). Although the ASCII character set contains
256 character codes, only the first 128 codes are used; the second 128 codes
are unassigned. NOS/VE represents each 7-bit ASCII code in an 8-bit byte.
The 7 bits are right-justified in each byte. For ASCII characters, the eighth
or left-most bit is always zero.

Revision B ASCII Character Set B-1

ASCUCHARACTER SET

Table B-1. ASCII Character Set

ASCII Code

Decimal Hexadecimal Octal
Graphic or
Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation
012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape
028 lC 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 lF 037 us Unit separator
032 20 040 SP Space
033 21 041 ! Exclamation point
034 22 042

,,
Quotation marks

035 23 043 # Number sign
036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 ' Apostrophe
040 28 050 (Ofcening parenthesis
041 29 051) C osing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus

(Continued) e

B-2 CYBIL Keyed-File and Sort/Merge Interface Revision A

ASCII CHARACTER SET

e Table B-1. ASCII Character Set (Continued)

ASCII Code

Graphic or

e Decimal Hexadecimal Octal Mnemonic Name or Meaning

044 2C 054 Comma
045 2D 055 Hyphen
046 2E 056 Period
047 2F 057 I Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 3D 075 Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark

064 40 100 er Commercial at e 065 41 101 Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 D Uppercase D
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G
072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K

076 4C 114 L Uppercase L
077 4D 115 M UppercaseM
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0
080 50 120 p Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 s Uppercase S

084 54 124 T Uppercase T
085 55 125 u Uppercase U
086 56 126 v Uppercase V

• 087 57 127 w Uppercase W

088 58 130 x Uppercase X
089 59 131 y Uppercase Y

(Continued)

e
Revision A ASCII Character Set B-3

ASCII CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code

Graphic or
Decimal Hexadecimal Octal Mnemonic Name or Meaning

090 5A 132 z UppercaseZ
091 5B 133 [Opening bracket
092 5C 134 \ Reverse slant
093 5D 135 l Closing bracket

094 5E 136 Circumflex
095 5F 137 Underline
096 60 140 Grave accent
097 61 141 a Lowercase a

098 62 142 b Lowercase b
099 63 143 c Lowercasec
100 64 144 d Lowercased
101 65 145 e Lowercasee

102 66 146 f Lowercasef
103 67 147 g Lowercaseg
104 68 150 h Lowercaseh
105 69 151 Lowercasei

106 6A 152 j Lowercasej
107 6B 153 k Lowercasek
108 6C 154 l Lowercase l
109 6D 155 m Lowercasem

110 6E 156 n Lowercasen
111 6F 157 0 Lowercaseo
112 70 160 p Lowercasep
113 71 161 q Lowercase q

114 72 162 r Lowercase r
115 73 163 s Lowercases
116 74 164 t Lowercase t
117 75 165 u Lowercase u

118 76 166 v Lowercase v
119 77 167 w Lowercase w
120 78 170 x Lowercase x
121 79 171 y Lowercase y

122 7A 172 z Lowercase z
123 7B 173 II Opening brace
124 7C 174 Vertical line
125 7D 175 } Closing brace

126 7E 176 Tilde
127 7F 177 DEL Delete

•
B-4 CYBIL Keyed-File and Sort/Merge Interface Revision A

9 Constant and Type Declarations C

•

This appendix lists the constant and type declarations used by the
procedures described in this manual. In general, the declarations are listed in
alphabetical order by identifier name. However, the numeric order of ordinal
constants is maintained.

AM

Constants

aacSaccess_method_ID = 'AA';
amcSaccess_method_id = 'AM';
amcSapl = 'APL',
amcSassembler = 'ASSEMBLER';
amcSbasic = 'BASIC';
amcScobol = 'COBOL';
amcScybil = 'CYBIL';
amcSdata = 'DATA';
amcSdebugger ='DEBUGGER';
amcSfile_byte_Limit = 4398046511103 { 2**42 - 1 }
{ bytes } ;
amcSfortran = 'FORTRAN';
amcSlegible = 'LEGIBLE';
amcSlibrary = 'LIBRARY';
amcSList = 'LIST';
amcSmau_Length = 2048 { bytes } ;

amcSmax_attribute = 511 { 01ffC16) } ;
amcSmax_block_number = OffffffffC16);
amcSmax_blocks_per_file = amcSfile_byte_Limit DIV

amcSmau_Length;
amcSmax_buffer_Length = 16777215 { 2**24 - 1 bytes};
amcSmax_ecc_program_action = 161999;
amcSmax_ecc_validation = 160999;
amcSmax_error_count = OffffC16);
amcSmax_fap_Layers = 15;
amcSmax_file_id_ordinal = 4095;
amcSmax_home_blocks = amcSfile_byte_Limit;
amcSmax_index_Level = 15;
amcSmax_info = 01ffC16);
amcSmax_key_Length = 255,

Revision A Constant and Type Declarations C-1

AM Constants

amcSmax_key_position = OffffC16),
amcSmax_label_length = oscSmaximum_offset;
amcSmax_line_number = 6;
amcSmax_lines_per_inch = 12,
amcSmax_operation = 01ffC16>;
amcSmax_optional_attributes = 72,
amcSmax_page_width = 65535;
amcSmax_path_name_size = 256;
amcSmax_record_header = 16;
amcSmax_records_per_block = OffffC16>;
amcSmax_statement_id_length = 17;
amcSmax_tape_mark_count = 40000;
amcSmax_user_info = 32;
amcSmax_vol_number = 65536;

amcSmaximum_block = 16777216 { 2**24 bytes } ;
amcSmaximum_record = amcSfile_byte_limit;

amcSmin_ecc_program_action = 161000;
amcSmin_ecc_validation = 160000;

amcSobject = 'OBJECT';
amcSpascal = 'PASCAL';
amcSpli = 'PLI';
amcSppu_assembler = 'PPU_ASSEMBLER';
amcSscl = 'SCL';
amcSscu = 'SCU';
amcSunknown_contents = 'UNKNOWN';
amcSunknown_processor = 'UNKNOWN';
amcSunknown_structure = 'UNKNOWN';

Ordinals

{}

{Codes 1 •• 100 are reserved for operations which are}
{not passed to file_access_procedures.}
{}

amcSaccess_method_req = 1,
amcSadd_to_file_description_req = 3,
amcSallocate_req = 5,
amcSchange_file_attributes_cmd = 6,
amcScompare_file_cmd = 7,
amcScopy_file_cmd = 8,
amcScopy_file_req = 9,
amcScopy_partitions_req = 10,
amcScopy_records_req = 11,
amcScopy_partial_records_req = 12,

C-2 CYBIL Keyed-File and Sort/Merge Interfaces

•

•
Revision A

•

{}

amcSdetach_file_cmd = 17,
amcSdisplay_file_attributes_cmd = 18,
amcSdisplay_file_cmd = 19,
amcSevict_req = 20,
amcSfetch_fap_pointer_req = 22,
amcSfile_req = 24,
amcSget_file_attributes_req = 30,
amcSLabel_req = 50,
amcSoverride_file_attributes = 60,
amcSrename_req = 72,
amcSreturn_req = 74,
amcSrewind_files_cmd = 75,
amcSset_Local_name_abnormal_req = 76,
amcSset_file_attributes_cmd = 77,
amcSset_file_inst_abnormal_req = 78,
amcSskip_tape_marks_cmd = 81,
amcSskip_tape_marks_req = 82,
amcSstore_fap_pointer_req = 84,
amcSvalidate_caller_privilege = 95,

{ Codes amcSfap_op_start •• CamcSlast_access_start-1> are}
{ reserved for operations which are passed to }
{ file_access_procedures but which are not recorded in}
{ last_access_operation status. }
{}

{}

amcSfap_op_start = 101,
amcSfetch_access_information_rq = 101,

{ Codes amcSlast_access_start •• amcSmax_operation are}
{ reserved for operations which are passed to }
{ file_access_procedures.}
{}

amcSlast_access_start = 105,
amcScheck_buffer_req = 110,
amcScheck_record_req = 111,
amcSclose_req = 112,
amcSclose_volume_req = 113,
amcSdelete_req = 114,
amcSdelete_direct_req = 115,
amcSdelete_key_req = 116,
amcSfetch_req = 117,
amcSflush_req = 118,
amcSget_direct_req = 119,
amcSget_key_req = 120,
amcSget_label_req = 121,
amcSget_next_req = 122,

AM Ordinals

Revision A Constant and Type Declarations C-3

AM Ordinals

amcSget_next_key_req = 123,
amcSget_partial_req = 124,
amcSget_segment_pointer_req = 126,
amcSLock_file_req = 127,
amcSLock_file = 127,
amcSopen_req = 128,
amcSpack_block_req = 129,
amcSpack_record_req = 130,
amcSput_direct_req = 131,
amcSput_key_req = 132,
amcSput_label_req = 133,
amcSput_next_req = 134,
amcSput_partial_req = 135,
amcSputrep_req = 137,
amcSread_req = 138,
amcSread_direct_req = 139,
amcSread_direct_skip_req = 140,
amcSread_skip_req = 141,
amcSreplace_req = 142,
amcSreplace_direct_req = 143,
amcSreplace_key_req = 144,
amcSrewind_req = 145,
amcSrewind_volume_req = 146,
amcSseek_direct_req = 147,
amcSset_segment_eoi_req = 148,
amcSset_segment_position_req = 149,
amcSskip_req = 150,
amcSstart_req = 151,
amcSstore_req = 152,
amcSunlock_file_req = 153,
amcSunlock_file = 153,
amcSunpack_block_req = 154,
amcSunpack_record_req = 155,
amcSwrite_req = 156,
amcSwrite_direct_req = 157,
amcSwrite_end_partition_req = 158,
amcSwrite_tape_mark_req = 159,
ifcSfetch_terminal_req = 160,
ifcSstore_terminal_req = 161,
amcSabandon_key_definitions = 162,
amcSabort_file_parcel = 163,
amcSapply_key_definitions = 164,
amcSbegin_file_parcel = 165,
amcScheck_nowait_request = 166,
amcScommit_file_parcel = 167,
amcScreate_key_definition = 168,
amcScreate_nested_file = 169,

C-4 CYBIL Keyed-File and Sort/Merge Interfaces

•

•
Revision A

•

{}

{}

amcSdelete_key_definition = 170,
amcSdelete_nested_file = 171,
amcSfind_record_space = 172,
amcSget_key_definitions = 173,
amcSget_lock_keyed_record = 174,
amcSget_lock_next_keyed_record = 175,
amcSget_nested_file_definitions = 176,
amcSget_next_primary_key_list = 177,
amcSget_primary_key_count = 178,
amcSget_space_used_for_key = 179,
amcSlock_key = 180,
amcSselect_key = 181,
amcSselect_nested_file = 182,
amcSseparate_key_groups = 183,
amcSunlock_key = 184,

amcSblock_number = 1,
amcScurrent_byte_address = 2,
amcSeoi_byte_address = 3,
amcSerror_count = 4 {Supported only for }

{ indexed_sequential files },
amcSerror_status = 5,
amcSfile_position = 6,
amcSlast_access_operation = 7,
amcSlast_op_status = 8,

AM Ordinals

amcSlevels_of_indexing = 9 { Supported only for }
{ indexed_sequential files},

amcSprevious_record_address = 10,
amcSprevious_record_length = 11,
amcSresidual_skip_count = 12,
amcSvolume_position = 13,
amcSvolume_number = 14,
amcSduplicate_value_inserted = 15,
amcSnumber_of_nested_files = 16,
amcSnull_item = 17,
amcSnumber_of_volumes = 18,
amcSprimary_key = 19,
amcSselected_key_name = 20,
amcSselected_nested_file = 21,
amcSvolume_description = 22,

amcSaccess_level = 1,
amcSaccess_mode = 2,
amcSapplication_info = 3,
amcSaverage_record_length = 4,
amcSblock_type = 5,
amcScharacter_conversion = 6,

Revision A Constant and Type Declarations C-5

AM Ordinals

amc$clear_space = 7,
amc$collate_table = 8,
amc$collate_table_name = 9,
amc$data_padding = 12,
amc$embedded_key = 13,
amc$error_exit_name = 14,
amc$error_exit_procedure = 15,
amc$error_Limit = 16,
amc$error_options = 17,
amc$estimated_record_count = 18,
amc$file_access_procedure = 19,
amc$file_contents = 20,
amc$file_Length = 21,
amc$file_Limit = 22,
amc$file_organization = 24,
amc$file_processor = 25,
amc$file_structure = 26,
amc$forced_write = 27,
amc$global_access_mode = 28,
amc$global_file_address = 29,
amc$global_file_position = 30,
amc$global_file_name = 31,
amc$global_share_mode = 32,
amc$index_levels = 33,
amc$index_padding = 34,
amc$internal_code = 35,
amc$key_Length = 36,
amc$key_position = 37,
amc$key_type = 38,
amc$Label_exit_name = 39,
amc$label_exit_procedure = 40,
amc$Label_options = 41,
amc$Label_type = 42,
amc$line_number = 44,
amc$max_block_Length = 45,
amc$max_record_Length = 46,
amc$message_control = 47,
amc$min_block_Length = 48,
amc$min_record_Length = 49,
amc$null_attribute = 50,
amc$open_position = 51,
amc$padding_character = 52,
amc$page_format = 53,
amc$page_Length = 54,
amc$page_width = 55,
amc$permanent_file = 56,
amc$preset_value = 57,

C-6 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

{}

amc$record_Limit = 59,
amcSrecord_type = 60,
amcSrecords_per_block = 61,
amcSreturn_option = 62,
amcSring_attributes = 63,
amc$statement_identifier = 64,
amcSuser_info = 66,
amc$vertical_print_density = 67,
amcScompression_procedure_name = 68,
amc$dynamic_home_block_space = 69,
amc$hashing_procedure_name = 70,
amcSinitial_home_block_count = 71,
amc$Loading_factor = 72,
amcSLock_expiration_time = 73,
amcSLogging_options = 74,
amcSLog_residence = 75,

amcSconcatenated_key_portion = 100,
amcSduplicate_keys = 101,
amc$group_name = 102,
amc$null_suppression = 103,
amcSrepeating_group = 104,
amc$sparse_keys = 105,
amcSvariable_Length_key = 106,

AM Ordinals

Revision A Constant and Type Declarations C-7

AM Types

Types

amtSaccess_info = record
item_returned {output} : boolean,
case key { input} : amtSaccess_info_keys of

{ output }
= amcSblock_number =

block_number: amtSblock_number,
= amcScurrent_byte_address =

current_byte_address: amtSfile_byte_address,
amcSduplicate_value_inserted =
duplicate_value_inserted: boolean,

= amcSeoi_byte_address =
eoi_byte_address: amtSfile_byte_address,

= amcSerror_count =
error_count: amtSerror_count,

= amcSerror_status =
error_status: ostSstatus_condition,

= amcSfile_position =
file_position: amtSfile_position,

= amcSlast_access_operation =
last_access_operation:

amtSlast_access_operation,
= amcSlast_op_status =

last_op_status: amtSLast_op_status,
= amcSlevels_of_indexing =

levels_of_indexing: amtSindex_levels,
= amcSnull_item =

,
= amcSnumber_of_nested_files =

number_of_nested_files: amtSnested_file_count,
= amcSnumber_of_volumes =

number_of_volumes: amtSvolume_number,
= amc$previous_record_address =

previous_record_address: amtSfile_byte_address,
= amcSprevious_record_length =

previous_record_length: amtSmax_record_length,
= amcSprimary_key =

primary_key: amtSprimary_key,
= amcSresidual_skip_count =

residual_skip_count: amtSresidual_skip_count,
= amcSselected_key_name =

selected_key_name: amtSselected_key_name,
= amcSselected_nested_file =

selected_nested_file: amtSselected_nested_file,

C-8 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

= amcSvolume_description =
volume_ index {input} : amtSvolume_number,
volume_description {output} : rmtSvolume_descriptor,

= amcSvolume_number =
volume_number: amtSvolume_number,

= amcSvolume_position =
volume_position: amtSvolume_position,

ca send
rec end;

amtSaccess_info_keys = •• amcSmax_info;

amtSaccess_information =array [1 •• * J of
amtSaccess_info;

amtSaccess_Level = <amcSphysical, amcSrecord,
amcSsegment>;

amtSaccess_selection = amtSfile_item;

amtSattribute_source = (amcSundefined_attribute,
amcSLocal_file_information,
amcSchange_file_attributes, amcSopen file_request,
amcSfile_reference, amcSfile_command,
amcSfile_request, amcSadd_to_file_description,
amcSaccess_method_default, amcSstore_request)

amtSaverage_record_Length = 1 •• amcSmaximum_record;

amtSbasic_key_definition = record
case definition_returned: boolean of
= TRUE =

key_name: amtSkey_name,
key_position: amtSkey_position,
key_Length: amtSkey_Length,

AM Types

number_of_optional_attributes: amtSmax_optional_attributes,
casend,

rec end,

amtSbegin_file_parcel = record
general_commit: amtSgeneral_commit,

rec end;

amtSblock_header_type = CamcStapemark_block,
amcSdata_block>;

Revision A Constant and Type Declarations C-9

AM Types

amtSblock_number = 1 •• amcSmax_block_number;

amtSblock_status = CamcSno_error,
amcSrecovered_error, amcSunrecovered_error);

amtSblock_type = CamcSsystem_specified,
amcSuser_specified);

amtSbuffer_area = ftSEQ C * >;

amtSbuffer_length = amcSmau_length
amcSmax_buffer_length;

amtScollate_table = array [char] of
amtScollation_value;

amtScollation_value = 0 •• 255;

amtScommit_file_parcel = record
phase: amtScommit_phase,

rec end;

amtScommit_phase = CamcSsimple_commit, amcStentative_commit,
amcSpermanent_commit);

amtScompression_effect = CamcScompress, amcSdecompress>;

amtScompression_procedure = ftprocedure
(effect: amtScompression_effect;
input_working_storage_area: ftcell;
input_working_storage_length: amtSmax_record_Length;
output_working_storage_area: ftcell;
key_position: amtSkey_position;
key_Length: amtSkey_Length;
VAR output_working_storage_Length: amtSmax_record_Length;
VAR record_Left_uncompressed: boolean;
VAR status: ostSstatus>;

amtScompression_procedure_name = amtSentry_point_reference;

amtScreate_key_definition = record
key_name: amtSkey_name,
key_position: amtSkey_position,
key_Length: amtSkey_Length,
optional_attributes: ftamtSoptional_key_attributes,

recend;

C-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

amtScreate_nested_file =record
definition: AamtSnested_file_definition,

rec end;

amtScreation_date = 1 •• 99999 { yyddd, defaults}
{ to current date };

amt$data_block_count = 1 •• amcSmax_blocks_per_file;

amtSdata_padding = 0 •• 99 {expressed as a }
{ percentage } ;

amtSdelete_key_definition = record
key_name: amtSkey_name,

rec end;

amt$delete_nested_file =record
nested_file_name: amtSnested_file_name,

recend;

amt$duplicate_key_control = <amc$no_duplicates_allowed,
amcSfirst_in_first_out, amcSordered_by_primary_key);

~ amtSduplicate_value_inserted =boolean;

amtSdynamic_home_block_space = boolean;

•

amtSerror_count = 0 •• amcSmax_error_count;

amtSentry_point_reference = record
name: pmtSprogram_name,
object_library: amtSpath_name,

recend;

amtSerror_exit_procedure = Aprocedure
(file_identifier: amt$file_identifier;
VAR status: ostSstatus>;

amt$error_limit = 0 •• Offff(16);

amtSerror_options = (amcSterminate_file,
amcSdrop_block, amcSaccept_record);

amt$estimated_record_count = integer;

amtSexpiration_date = 1 99999 { yyddd, defaults }
{ to creation date plus one year };

AM Types

Revision A Constant and Type Declarations C-11

AM Types

amtSfap_layer_number = 0 •• amcSmax_fap_layers;

amtSfetch_attributes =array [1 •• * J of
amtSfetch_item;

amtSfetch_item = record
source { output } : amtSattribute_source,
case key {input} amtSfile_attribute_keys of

{ output }
= amcSaccess_level =

access_level: amt$access_level,
= amcSaccess_mode =

access_mode: pftSusage_selections,
= amcSapplication_info =

application_info: pft$application_info,
= amcSblock_type =

block_type: amtSblock_type,
= amcScharacter_conversion =

character_conversion: boolean,
= amc$clear_space =

clear_space: ost$clear_file_space,
= amc$error_exit_name =

error_exit_name: pmtSprogram_name,
= amc$error_exit_procedure =

error_exit_procedure: amtSerror_exit_procedure,
= amcSerror_options =

error_options: amtSerror_options,
= amcSfile_access_procedure =

file_access_procedure: pmtSprogram_name,
amcSfile_contents =
file_contents: amt$file_contents,

= amcSfile_limit =
file_limit: amtSfile_limit,

= amcSfile_organization =
file_organization: amtSfile_organization,

= amc$file_processor =
file_processor: amtSfile_processor,

= amcSfile_structure =
file_structure: amtSfile_structure,

= amcSforced_write =
forced_write: amtSforced_write,

= amcSglobal_access_mode =
global_access_mode: pftSusage_selections,

= amcSglobal_file_address =
global_file_address: amtSfile_byte_address,

= amcSglobal_file_name =
global_file_name: ostSbinary_unique_name,

C-12 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

= amcSglobal_file_position =
global_file_position: amtSglobal_file_position,

= amcSglobal_share_mode =
global_share_mode: pftSshare_selections,

= amcSinternal_code =
internal_code: amtSinternal_code,

= amcSLabel_exit_name =
Label_exit_name: pmtSprogram_name,

= amcSLabel_exit_procedure =
Label_exit_procedure: amtSlabel_exit_procedure,

= amcSLabel_options =
Label_options: amtSLabel_options,

= amcSLabel_type =
Label_type: amtSLabel_type,

= amcSLine_number =
Line_number: amtSLine_number,

= amcSmax_block_Length =
max_block_Length: amtSmax_block_Length,

= amcSmax_record_Length =
max_record_length: amtSmax_record_Length,

= amcSmin_block_Length =
min_block_Length: amtSmin_block_Length,

= amcSmin_record_Length =
min_record_Length: amtSmin_record_Length,

= amcSnull_attribute =
,

= amcSopen_position =
open_position: amtSopen_position,

= amcSpadding_character =
padding_character: amtSpadding_character,

= amcSpage_format =
page_format: amtSpage_format,

= amcSpage_Length =
page_Length: amtSpage_Length,

= amcSpage_width =
page_width: amtSpage_width,

= amcSpermanent_file =
permanent_file: boolean,

= amcSpreset_value =
preset_value: amtSpreset_value,

= amcSrecord_type =
record_type: amtSrecord_type,

= amcSring_attributes =
ring_attributes: amtSring_attributes,

= amcSstatement_identifier =
statement_identifier: amtSstatement_identifier,

AM Types

Revision A Constant and Type Declarations C-13

AM Types

= amcSuser_info =
user_info: amtSuser_info,

= amc$average_record_Length =
average_record_Length:

amtSaverage_record_Length,
= amcScollate_table =

collate_table: AamtScollate_table,
= amc$collate_table_name =

collate_table_name: pmtSprogram_name,
= amcScompression_procedure_name =

compression_procedure_name: [input,output]
AamtScompression_procedure_name,

amcSdata_padding =
data_padding: amtSdata_padding,

= amcSdynamic_home_block_space =
dynamic_home_block_space:

amtSdynamic_home_block_space,
= amcSembedded_key =

embedded_key: boolean,
= amc$error_Limit =

error_Limit: amtSerror_Limit,
= amcSestimated_record_count =

estimated_record_count:
amtSestimated_record_count,

= amcShashing_procedure_name =
hashing_procedure_name: [input,outputJ

AamtShashing_procedure_name,
= amcSindex_Levels =

index_Levels: amtSindex_Levels,
= amcSindex_padding =

index_padding: amtSindex_padding,
amcSinitial_home_block_count =
initial_home_block_count:

amtSinitial_home_block_count,
= amcSkey_Length =

key_Length: amtSkey_Length,
= amcSkey_position =

key_position: amtSkey_position,
amcSkey_type =
key_type: amtSkey_type,

= amcSLoading_factor =
Loading_factor: amtSLoading_factor,

= amcSLock_expiration_time =
Lock_expiration_time: amtSLock_expiration_time,

= amcSLogging_options =
Logging_options: amtSLogging_options,

C-14 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

= amc$log_residence =
log_residence: [input,output]

Aamt$log_residence,
= amc$message_control =

message_control: amt$message_control,
= amc$record_limit =

record_limit: amtSrecord_limit,
= amc$records_per_block =

records_per_block: amtSrecords_per_block,
ca send,

rec end;

amtSfile_access_code =char {defaults to space},

amt$file_access_selections = Aarray [1 •• * J of
amtSaccess_selection,

amt$file_attribute_keys = 1 amc$max_attribute,

amtSfile_attributes =array [1 •• *]of
amt$file_item,

amtSfile_byte_address = 0 •• amc$file_byte_limit;

amt$file_contents = ost$name;

amt$file_id_ordinal = 0 •• amc$max_file_id_ordinal,

amtSfile_id_sequence = 1 •• 4095;

amt$file_identifier =record
ordinal: amtSfile_id_ordinal,
sequence: amt$file_id_sequence,

rec end,

amtSfile_item =record
case key {input}: amtSfile_attribute_keys of
{ input }
= amc$access_mode =

access_mode: pft$usage_selections,
= amc$block_type =

block_type: amt$block_type,
= amc$character_conversion =

character_conversion: boolean,
= amcSclear_space =

clear_space: ost$clear_file_space,

AM Types

Revision A Constant and Type Declarations C-15

AM Types

= amcSerror_exit_name =
error_exit_name: pmtSprogram_name,

= amcSerror_options =
error_options: amtSerror_options,

= amcSfile_access_procedure =
file_access_procedure: pmtSprogram_name,

= amcSfile_contents =
file_contents: amtSfile_contents,

= amcSfile_Limit =
file_limit: amtSfile_limit,

= amcSfile_organization =
file_organization: amtSfile_organization,

= amcSfile_processor =
file_processor: amtSfile_processor,

= amcSfile_structure =
file_structure: amtSfile_structure,

= amcSforced_write =
forced_write: amtSforced_write,

= amcSinternal_code =
internal_code: amtSinternal_code,

= amcSLabel_exit_name =
Label_exit_name: pmtSprogram_name,

= amcSLabel_options =
Label_options: amtSLabel_options,

= amcSLabel_type =
Label_type: amtSLabel_type,

= amcSline_number =
Line_number: amtSline_number,

= amcSmax_block_length =
max_block_Length: amtSmax_block_Length,

= amcSmax_record_length =
max_record_Length: amtSmax_record_length,

= amcSmin_block_length =
min_block_length: amtSmin_block_length,

= amcSmin_record_length =
min_record_length: amtSmin_record_length,

= amcSnull_attribute =
,

= amcSopen_position =
open_position: amtSopen_position,

= amcSpadding_character =
padding_character: amtSpadding_character,

= amcSpage_format =
page_format: amtSpage_format,

= amcSpage_length =
page_length: amtSpage_length,

C-16 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

-
e

= amcSpage_width =
page_width: amtSpage_width,

= amcSpreset_value =
preset_value: amtSpreset_value,

= amcSrecord_type =
record_type: amtSrecord_type,

= amcSreturn_option =
return_option: amtSreturn_option,

= amcSring_attributes =
ring_attributes: amtSring_attributes,

= amcSstatement_identifier =
statement_identifier: amtSstatement_identifier,

= amcSuser_info =
user_info: amtSuser_info,

= amcSvertical_print_density =
vertical_print_density:

amtSvertical_print_density,
= amcSaverage_record_Length =

average_record_Length:

=

=

=

=

=

=

=

=

=

=

=

=

amtSaverage_record_Length,
amcScollate_table_name =
collate_table_name: pmtSprogram_name,
amcScompression_procedure_name =
compression_procedure_name: [input,output]

~amtScompression_procedure_name,

amcSdata_padding =
data_padding: amtSdata_padding,
amcSdynamic_home_block_space =
dynamic_home_block_space: amtSdynamic_home_block_space,
amcSembedded_key =
embedded_key: boolean,
amcSerror_Limit =
error_Limit: amtSerror_Limit,
amcSestimated_record_count =
estimated_record_count:

amtSestimated_record_count,
amcShashing_procedure_name =
hashing_procedure_name: [input,output]

~amtShashing_procedure_name,

amcSindex_Levels =
index_Levels: amtSindex_Levels,
amcSindex_padding =
index_padding: amtSindex_padding,
amcSinitial_home_block_count =
initial_home_block_count: amtSinitial_home_block_count,
amcSkey_Length =
key_Length: amtSkey_Length,

AM Types

Revision A Constant and Type Declarations C-17

AM Types

amc$key_position =
key_position: amtSkey_position,

= amc$key_type =
key_type: amtSkey_type,

= amc$Loading_factor =
Loading_factor: amtSLoading_factor,

= amc$Lock_expiration_time =
Lock_expiration_time: amt$Lock_expiration_time,

= amc$logging_options =
Logging_options: amtSLogging_options,

= amcSLog_residence =
Log_residence: {input,output}

"amtSLog_residence,
= amc$message_control =

message_control: amt$message_control,
= amcSrecord_Limit =

record_Limit: amtSrecord_Limit,
= amcSrecords_per_block =

records_per_block: amtSrecords_per_block,
ca send

rec end;

amtSfile_Length = 0 •• amcSfile_byte_Limit;

amtSfile_Limit = 0 •• amcSfile_byte_Limit;

I amtSfile_Lock = CamcSLock_set, amcSalready_set);

amtSfile_organization = CamcSsequential, amcSbyte_addressable,
amcSindexed_sequential, amcSdirect_access, amcSsystem_key);

amtSfile_position = CamcSboi, amcSbop,
amc$mid_record, amcSeor, amcSeop, amcSeoi, amcSend_of_key_List>;

amtSfile_processor = ostSname;

amtSfile_reference =string (* <= amcSmax_path_name_size);

amtSfile_set_id =string (6), {defaults to spaces};

amtSfile_structure = ostSname;

amtSfind_record_space = record
space: amtSfile_Length,
where: amtSput_Locality,
wait: ostSwait,

rec end;

C-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

•

amtSforced_write = CamcSforced,
amcSforced_if_structure_change, amcSunforced),

amtSgeneral_commit = record
case general_commit_in_use: boolean of
= TRUE =

general_commit_name: ostSname,
ca send,

rec end;

amtSgeneration_number = 1 •• 9999 { defaults }
{ to 0001 };
amtSget_attributes = array [1 •• *] of

amtSget_item;

amtSget_item = record
source { output }: amcSundefined_attribute

amcSaccess_method_default,
case key {input}: amtSfile_attribute_keys of

{ output }
= amcSaccess_mode =

access_mode: pftSusage_selections,
= amcSapplication_info =

application_info: pftSapplication_info,
= amcSblock_type =

block_type: amtSblock_type,

= amcScharacter_conversion =
character_conversion: boolean,

= amcSclear_space =
clear_space: ostSclear_file_space,

= amcSerror_exit_name =
error_exit_name: pmtSprogram_name,

= amcSerror_options =
error_options: amtSerror_options,

= amcSfile_access_procedure =
file_access_procedure: pmtSprogram_name,

= amcSfile_contents =
file_contents: amtSfile_contents,

= amcSfile_length =
file_length: amtSfile_length,

= amcSfile_Limit =
file_limit: amtSfile_limit,

= amcSfile_organization =
file_organization: amtSfile_organization,

= amcSfile_processor =
file_processor: amtSfile_processor,

AM Types

Revision A Constant and Type Declarations C-19

AM Types

= amcSfile_structure =
file_structure: amtSfile_structure,

= amcSforced_write =
forced_write: amtSforced_write,
amcSglobal_access_mode =
global_access_mode: pftSusage_selections,

= amcSglobal_file_address =
global_file_address: amtSfile_byte_address,

= amcSglobal_file_name =
global_file_name: ostSbinary_unique_name,

= amcSglobal_file_position =
global_file_position: amtSglobal_file_position,

= amcSglobal_share_mode =
global_share_mode: pftSshare_selections,
amcSinternal_code =
internal_code: amtSinternal_code,

= amc$Label_exit_name =
Label_exit_name: pmtSprogram_name,

= amcSLabel_options =
Label_options: amtSLabel_options,

= amcSLabel_type =
Label_type: amtSLabel_type,

= amcSLine_number =
Line_number: amtSLine_number,
amcSmax_block_Length =
max_block_Length: amtSmax_block_Length,

= amcSmax_record_Length =
max_record_Length: amtSmax_record_Length,

= amcSmin_block_Length =
min_block_Length: amtSmin_block_Length,

= amcSmin_record_Length =
min_record_Length: amtSmin_record_Length,

= amcSnull_attribute =
,

= amcSopen_position =
open_position: amtSopen_position,

= amcSpadding_character =
padding_character: amtSpadding_character,

amcSpage_format =
page_format: amtSpage_format,

= amcSpage_Length =
page_Length: amtSpage_Length,
amcSpage_width =
page_width: amtSpage_width,

= amcSpermanent_file =
permanent_file: boolean,

C-20 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

e

-
e

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

amcSpreset_value =
preset_value: amtSpreset_value,
amcSrecord_type =
record_type: amtSrecord_type,
amcSreturn_option =
return_option: amtSreturn_option,
amcSring_attributes =
ring_attributes: amtSring_attributes,
amcSstatement_identifier =
statement_identifier: amtSstatement_identifier,
amcSuser_info =
user_info: amtSuser_info,
amcSvertical_print_density
vertical_print_density:

amtSvertical_print_density,
amcSaverage_record_Length =
average_record_Length:

amtSaverage_record_Length,
amcScollate_table_name =
collate_table_name: pmtSprogram_name,
amcScompression_procedure_name =
compression_procedure_name: {input,output}

AamtScompression_procedure_name,
amcSdata_padding =
data_padding: amtSdata_padding,
amcSdynamic_home_block_space =
dynamic_home_block_space:

amtSdynamic_home_block_space
amcSembedded_key =
embedded_key: boolean,
amcSerror_Limit =
error_Limit: amtSerror_Limit,
amcSestimated_record_count =
estimated_record_count:

amtSestimated_record_count,
amcShashing_procedure_name =

hashing_procedure_name: {input,output}
AamtShashing_procedure_name,

amcSindex_Levels =
index_Levels: amtSindex_Levels,
amcSindex_padding =
index_padding: amtSindex_padding,
amcSkey_Length =
key_Length: amtSkey_Length,
amcSkey_position =
key_position: amtSkey_position,

AM Types

Revision B Constant and Type Declarations C-21

I
I

I

AM Types

amcSkey_type =
key_type: amtSkey_type,

= amcSLoading_factor =
Loading_factor: amtSLoading_factor,

= amcSLock_expiration_time =
Lock_expiration_time: amtSLock_expiration_time,

= amcSLogging_options =
Logging_options: amtSLogging_options

= amcSLog_residence =
Log_residence: {input,output}

ftamtSLog_residence
= amcSmessage_control =

message_control: amtSmessage_control,
= amcSrecord_Limit =

record_Limit: amtSrecord_Limit,
= amcSrecords_per_block =

records_per_block: amtSrecords_per_block,
ca send

recend;

amtSget_key_definitions = record
key_definitions: ftSEQ (*),

rec end;

amtSget_Lock_keyed_record = record
working_storage_area: ftcell,
working_storage_Length: amtSworking_storage_Length,
key_Location: ftcell,
major_key_Length: amtSmajor_key_Length,
relation: amtSkey_relation,
wait_for_Lock: ostSwait_for_Lock,
unlock_control: amtSunlock_control,
Lock_intent: amtSLock_intent,
record_Length: ftamtSmax_record_Length,
file_position: ftamtSfile_position,
wait: ostSwait,

rec end;

C-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

amtSget_Lock_next_keyed_record = record
working_storage_area: Acell,
working_storage_Length: amtSworking_storage_Length,
key_Location: Acell,
wait_for_Lock: ostSwait_for_Lock,
unlock_control: amtSunlock_control,
Lock_intent: amtSLock_intent,
record_Length: AamtSmax_record_Length,
file_position: AamtSfile_position,
wait: ostSwait,

recend;

amtSget_nested_file_definitions =record
definitions: AamtSnested_file_definitions,
nested_file_count: AamtSnested_file_count,

recend;

amtSget_next_primary_key_list =record
high_key: Acell,
major_high_key: amtSmajor_key_length,
high_key_relation: amtSkey_relation,
working_storage_area: Acell,
working_storage_length: amtSworking_storage_Length,
end_of_primary_key_list: Aboolean,
transferred_byte_count: AamtSworking_storage_Length,
transferred_key_count: AamtSkey_count_limit,
file_position: AamtSfile_position,
wait: ostSwait,

recend;

AM Types

Revision B Constant and Type Declarations C-22.1/C-22.2 I

amtSget_primary_key_count = record
low_key: "cell,
major_low_key: amtSmajor_key_length,
low_key_relation: amtSkey_relation,
high_key: "cell,
major_high_key: amtSmajor_key_length,
high_key_relation: amtSkey_relation,
list_count_limit: amtSkey_count_limit,
list_count: "amtSkey_count_limit,
wait: ostSwait,

rec end;

amtSglobal_file_position = amtSfile_position;

amtSgroup_name = amtSkey_name;

amtShashing_procedure = "procedure (old_key: "cell;
key_length: amtSkey_length;
VAR hashed_key: integer;
VAR status: ostSstatus>;

amtShashing_procedure_name = amtSentry_point_reference;

~ amtSindex_levels = 0 •• amcSmax_index_level;

amtSindex_padding = 0 •• 99 {expressed as a}
{ percentage };

•

amtSinitial_home_block_count = 1 •• amcSmax_home_blocks;

amtSinternal_code = CamcSas6, amcSas8, amcSascii,
amcSd64, amcSebcdic, amcSbcd);

amtSkey_count_limit = 0 •• amcSfile_byte_limit;

amtSkey_length = 1 •• amcSmax_key_length;

amtSkey_name = ostSname;

amtSkey_position = 0 •• amcSmax_key_position;

amtSkey_relation = CamcSequal_key,
amcSgreater_or_equal_key, amcSgreater_key);

amtSkey_type = (amcScollated_key, amcSinteger_key,
amcSuncollated_key);

AM Types

Revision A Constant and Type Declarations C-23

AM Types

amtSLabel_area_Length = 18 •• amcSmax_Label_Length;

amtSLabel_exit_procedure = "procedure
(file_identifier: amtSfile_identifier);

amtSLabel_options = set of (amcSvol1, amcSuvl,
amc$hdr1, amcShdr2, amc$eov1, amc$eov2, amcSuhl,
amcSeof1, amcSeof2, amcSutl);

amtSLabel_type = (amcSLabelled,
amcSnon_standard_Labelled, amcSunlabelled);

amtSLast_access_operation = amcSLast_access_start
amcSmax_operation;

amtSLast_op_status = (amcSactive, amcScomplete);

amtSLast_operation = 1 •• amcSmax_operation;

amtSLine_number = record
Length: amtSLine_number_Length,
Location: amtSLine_number_Location,

rec end;

amtSLine_number_Length = 1 •• amcSmax_Line_number;

amtSLine_number_Location = amtSpage_width;

amtSLoading_factor = 0 •• 100;

amtSLocal_file_name = ostSname;

amtSLock_expiration_time = 0 •• 604800000 {milliseconds};

amtSLock_intent = CamcSexclusive_access, amcSpreserve_access_
and_content,amcSpreserve_content);

amtSLock_file =record
wait_for_Lock: ostSwait_for_Lock,
Lock_intent: amtSLock_intent,

rec end;

amtSLock_key = record
key_Location: "cell,
wait_for_Lock: ostSwait_for_Lock,
unlock_control: amtSunlock_control,
Lock_intent: amtSLock_intent,

rec end;

C-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

amtSLogging_options =set of amtSLogging_possibilities;

amtSLogging_possibilities = CamcSenable_parcels, amcSenable_
media_recovery,amcSenable_request_recovery);

amtSLog_residence = amt$path_name;

~ amtSmajor_key_Length = 0

amtSmax_block_Length = 1

amcSmax_key_Length;

amcSmaximum_block - 1;

amtSmax_optional_attributes = 1 •• amcSmax_optional_attributes;

amtSmax_record_Length = 0 •• amcSmaximum_record;

amtSmax_repeating_group_count = amtSmax_record_Length;

amtSmessage_control = set of Camt~trivial_errors,

amcSmessages, amcSstatistics>;

amtSmin_block_Length = 18 amcSmaximum_block;

amtSmin_record_Length = 0 amcSmaximum_record;

amtSnested_file_count = 1 amcSmax_blocks_per_file;

amtSnested_file_definition = record
nested_file_name: amtSnested_file_name,
embedded_key: boolean,
key_position: amtSkey_position,
key_Length: amtSkey_Length,
maximum_record: amtSmax_record_Length,
minimum_record: amtSmin_record_Length,
record_type: amtSrecord_type,
case file_organization: amtSfile_organization of
= amcSindexed_sequential =

key_type: amtSkey_type,
collate_table_name: pmtSprogram_name,
data_padding: amtSdata_padding,
index_padding: amtSindex_padding,

= amcSdirect_access =
home_block_count: amtSinitial_home_block_count,
dynamic_home_block_space: amtSdynamic_home_block_space,
Loading_factor: amtSLoading_factor,
hashing_procedure: amtShashing_procedure_name,

= amc$system_key =
records_per_block: amtSrecords_per_block,

ca send,
rec end;

Revision B Constant and Type Declarations C-25

I

I

AM Types

amtSnested_file_definitions =array [1 •• *] of
amtSnested_file_definition;

amtSnested_file_name = ostSname;

amtSnowait_var_parameters =SEQ CREP 10 of integer);

amtSopen_position = CamcSopen_no_positioning,
amcSopen_at_boi, amcSopen_at_bop, amcSopen_at_eoi);

amtSoptional_key_attribute = record
case selector: amtSfile_attribute_keys of
= amcSkey_type =

key_type: amtSkey_type,
= amcScollate_table_name =

collate_table_name: pmtSprogram_name,
= amcSduplicate_keys =

duplicate_key_control: amtSduplicate_key_control,
= amcSnull_suppression =

null_suppression: boolean,
= amcSsparse_keys =

sparse_key_control_position: amtSkey_position,
sparse_key_control_characters: set of char,
sparse_key_control_effect: amtSsparse_key_control_effect,

= amcSrepeating_group =
repeating_group_length: amtSmax_record_length,
repetition_control: amtSrepetition_control,

= amcSconcatenated_key_portion =
concatenated_key_position: amtSkey_position,
concatenated_key_length: amtSkey_Length,
concatenated_key_type: amtSkey_type,

= amcSgroup_name =
group_name: amtSgroup_name,

= amcSvariable_Length_key =
key_delimiter_characters: set of char,

ca send,
rec end;

amtSoptional_key_attributes = array [1 •• * J of
amtSoptional_key_attribute;

C-26 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

•

amtSpack_block_header = record
header_type: amtSblock_header_type,
block_Length: amtSmax_block_Length,
block_number: amtSblock_number,
unused_bit_count: amtSunused_bit_count,

rec end;

amtSpadding_character = char;

amtSpage_format = CamcScontinuous_form,
amcSburstable_form, amcSnon_burstable_form>;

amtSpage_Length = 1 •• amcSfile_byte_Limit,

amtSpage_width = 1 •• amcSmax_page_width;

amtSpath_name = string CamcSmax_path_name_size);

amtSphysical_transfer_count = 0 ••
amcSmax_buffer_Length;

amtSpointer_kind = CamcScell_pointer,
amcSheap_pointer, amcSsequence_pointer>;

amtSpreset_value = integer;

amtSprimary_key = ·cell;

AM Types

amtSput_locality = CamcSput_near_anywhere, amcSput_near_get,
amcSput_near_update>;

amtSrecord_header = record
header_type: amtSrecord_header_type,
length: amtSmax_record_length,
previous_length: amtSmax_record_length,
unused_bit_count: amtSunused_bit_count,
user_information: cell,

rec end;

amtSrecord_header_length = 0 ••
amcSmax_record_header;

amtSrecord_header_type = CamcSfull_record,
amcSstart_record, amcScontinued_record,
amcSend_record, amcSpartition,
amcSdeleted_record);

Revision A Constant and Type Declarations C-27

AM Types

amtSrecord_limit = 1 •• amcSfile_byte_limit;

amtSrecord_type = CamcSvariable { V } ,
amcSundefined { U } , amcSansi_fixed { F } ,
amcSansi_spanned { S } , amcSansi_variable { D } >;

amtSrecords_per_block = 1 •• amcSmax_records_per_block;

amtSrecovered_request = record
past_last: boolean,
task_id: pmtStask_id,
file_identifier: amtSfile_identifier,
nested_file_selection: amtSnested_file_name,
call_block: amtScall_block,
status: ostSstatus,
working_storage_length: amtSworking_storage_length,
key_Length: amtSkey_length,

rec end;

amtSrecovery_description = record
case recover_option: amtSrecovery_options of
= amcSrecover_file_media =

media_recovery: record
backup_date_time: ostSdate_time,
Last_requests: ASEQ C * >,

rec end,
= amcSrecover_to_last_requests =

last_requests: ASEQ C * >,
= amcSrecover_file_structure =

,
= amcSsalvage_data_records =

new_keyed_file: amtSlocal_file_name,
salvage_log: amtSsalvage_log_description,

ca send,
rec end;

amtSrecovery_options = CamcSrecover_file_media,
amcSrecover_to_last_requests, amcSrecover_file_structure,
amcSsalvage_data_records>;

amtSrepetition_control = record
case repeat_to_end_of_record: boolean of
= FALSE =

repeating_group_count: amtSmax_repeating_group_count,
ca send,

rec end;

C-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

~ amtSresidual_skip_count = amtSskip_count;

amtSreturn_option = CamcSreturn_at_close,
amcSreturn_at_task_exit, amcSreturn_at_job_exit);

•

amtSring_attributes = record
r1: ostSvalid_ring,
r2: ostSvalid_ring,
r3: ostSvalid_ring,

rec end;

amtSsalvage_log_description = record
case salvage_log_wanted: boolean of
= TRUE =

rejects_file: amtSlocal_file_name,
casend,

rec end;

amtSsection_number = 1 •• 9999,
{ defaults to 0001 };

amtSsegment_pointer = record
case kind: amtSpointer_kind of
=amcScell_pointer=

cell_pointer: Acell,
=amcSheap_pointer=

heap_pointer: AHEAP C•>,
=amcSsequence_pointer=

sequence_pointer: ASEQ (•),
ca send,

rec end;

amtSselect_key = record
key_name: amtSkey_name,

rec end;

amtSselect_nested_file =record
nested_file_name: amtSnested_file_name,

rec end;

amtSseparate_key_groups = record
group: amtSgroup_name,
parallel_group: amtSgroup_name,

rec end;

amtSselected_key_name = amtSkey_name;

amtSselected_nested_file = amtSnested_file_name;

AM Types

Revision A Constant and Type Declarations C-29

AM Types

amtSsequence_number = 1 •• 9999
{ defaults to 0001 };

amt$skip_buffer_Length = 1 •• amcSmax_buffer_Length;

amtSskip_count = 0 •• amc$file_byte_Limit;

amtSskip_direction = CamcSforward, amcSbackward);

amtSskip_option = Camc$skip_to_eor, amc$no_skip);

amt$skip_unit = CamcSskip_record, amcSskip_block,
amc$skip_partition>;

amtSsparse_key_control_effect = (amcSinclude_key_value,
amc$exclude_key_value);

amtSstatement_id_Length = 1 ••
amcSmax_statement_id_Length;

amtSstatement_id_Location = amt$page_width;

amtSstatement_identifier = record
Length: amtSstatement_id_Length,
Location: amtSstatement_id_Location,

rec end;

amt$store_attributes =array [1 •• *] of
amtSstore_item;

amt$store_item = record
case key: amtSfile_attribute_keys of
= amcSerror_exit_procedure =

error_exit_procedure: amtSerror_exit_procedure,
= amc$error_options =

error_options: amt$error_options,
amc$Label_exit_procedure =
Label_exit_procedure: amtSLabel_exit_procedure,

= amcSLabel_options =
Label_options: amt$Label_options,

= amc$null_attribute =
,

= amcSerror_Limit =
error_Limit: amtSerror_Limit,

= amcSmessage_control =
message_control: amtSmessage_control,

ca send,
rec end;

C-30 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

~ amtStape_mark_count = 1 •• amcSmax_tape_mark_count;

amtSterm_option = CamcSstart, amcScontinue,
amcSterminate);

~ amtStransfer_count = amtSworking_storage_Length;

•

amtSunpack_block_header = record
header_type: amtSblock_header_type,
block_Length_as_read: amtSmax_block_Length,
block_Length_as_written: amtSmax_block_Length,
block_number: amtSblock_number,
unused_bit_count: amtSunused_bit_count,
block_status: amtSblock_status,

recend;

amtSunused_bit_count = 0 •• 7;

amtSuser_info =string CamcSmax_user_info);

amtSversion_number = 1 •• 99
{defaults to 01 };

amtSvertical_print_density = 6 ••
amcSmax_Lines_per_inch;

amtSvolume_number = •• amcSmax_vol_number;

amt$volume_position = CamcSbov,
amcSmid_bov_Label_group, amcSafter_tapemark,
amcSmid_hdr_Label_group, amcSmid_eof_label_group,
amcSmid_eov_Label_group, amcSeov);

amtSworking_storage_Length = ostSsegment_Length;

AM Types

Revision A Constant and Type Declarations C-31

OS Constants

OS

Constants

oscSmax_condition = 999999;
oscSmax_name_size = 31;
oscSmax_page_size = 65536;
oscSmax_ring = 15, { Highest ring number (least }
{privileged).};
oscSmax_segment_length = oscSmaximum_offset + 1;
oscSmax_string_size = 256;
oscSmaximum_offset = 7fffffff(16);
oscSmaximum_segment = Offf(16),

oscSmin_ring = 1 { Lowest ring number (most }
{privileged). };
oscSmin_page_size = 512;

I • , oscSnull_name = '
oscSstatus_parameter_delimiter
{ Separator } ;

= CHR (31) { Unit }

Ordinals

oscSinvalid_ring = O;
oscSos_ring_1 = 1 { Reserved for Operating System. };
oscStmtr_ring = 2 {Task Monitor. };
oscStsrv_ring = 3 { Task services. };
oscSsj_ring_1 = 4 { Reserved for system job. };
oscSsj_ring_2 = 5;
oscSsj_ring_3 = 6;
oscSapplication_ring_1 = 7 {Reserved for}
{application subsystems. };
oscSapplication_ring_2 = 8;
oscSapplication_ring_3 = 9;
oscSapplication_ring_4 = 10;
oscSuser_ring = 11 {Standard user task. };
oscSuser_ring_1 = 12 {Reserved for user ••• O.S. }
{ requests available. };
oscSuser_ring_2 = 13;
oscSuser_ring_3 = 14 { Reserved for user ••• O.S. }
{requests not available. };
oscSuser_ring_4 = 15;

C-32 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

Types

ostSbinary_unique_name = packed record
processor: pmt$processor,
year: 1980 •• 2047,
month: 1 •. 12,
day: 1 •• 31,
hour: 0 •• 23,
minute: 0 •• 59,
second: 0 •• 59,
sequence_number: 0 •• 9999999,

recend;

ostSclear_file_space =boolean;

ost$date_time = record
year: 0 •• 255,
month : 1 • • 12,
day: 1 •• 31,
hour: 0 •• 23,
minute: 0 •• 59,
second: 0 •• 59,
millisecond: 0 •• 999,

recend;

ost$family_name = ostSname;

ostSkey_Lock = packed record
global: boolean, { True if value is global key. }
Local: boolean, { True if value is Local key. }
value: ostSkey_Lock_value, { Key or Lock value. }

recend;

ost$key_Lock_value = 0 •• 3fC16);

ost$name = string CoscSmax_name_size);

ostSname_size = •• oscSmax_name_size;

ostSpage_size = oscSmin_page_size
oscSmax_page_size;

ostSpva = packed record
ring: ost$ri ng,
seg: ostSsegment,
offset: ost$segment_offset, e recend;

OS Types

Revision A Constant and Type Declarations C-33

OS Types

ostSrelative_pointer = - 7fffffffC16) ••
7fffffffC16>;

ostSring = oscSinvalid_ring
oscSmax_ring { Ring number };

ostSsegment = 0 ••
oscSmaximum_segment { Segment number };

ostSsegment_length = 0 •• oscSmax_segment_length;

ostSsegment_offset = - CoscSmaximum_offset + 1> ••
oscSmaximum_offset;

ostSstatus = record
case normal: boolean of
= FALSE =

identifier: string C2>,
condition: ostSstatus_condition,
text: ostSstring,

ca send,
rec end;

ostSstatus_condition = 0 •• oscSmax_condition;

ostSstring = record
size: ostSstring_size,
value: string CoscSmax_string_size),

recend;

ostSstring_index = 1 •• oscSmax_string_size + 1;

ostSstring_size = 0 •• oscSmax_string_size;

C-34 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

•

ostSunique_name = record
case boolean of
= TRUE =

value: ostSname,
= FALSE =

dollar_sign: string C1>,
sequence_number: string C7>,
p: string C1>,
processor_model_number: string C1>,
s: string C1>,
processor_serial_number: string (4),
d: string (1),

year: string (4),
month: string C2>,
day: string (2),
t: string C1>,
hour: string C2>,
minute: string C2>,

second: string (2),
ca send,

rec end;

ostSuser_identification = record
user: ostSuser_name,
family: ostSfamily_name,

recend;

ostSuser_name = ostSname;

ostSvalid_ring = oscSmin_ring
oscSmax_ring {valid ring Number};

ostSwait = CoscSwait, oscSnowait);

OS Types

ostSwait_for_lock = CoscSwait_for_lock, oscSnowait_for_lock);

Revision A Constant and Type Declarations C-35

PF Types

PF

Types

pftSapplication_info =string CoscSmax_name_size>;

pftSpermit_options = CpfcSread, pfcSshorten,
pfcSappend, pfcSmodify, pfcSexecute, pfcScycle,
pfcScontroL>;

pftSshare_options = pfcSread •• pfcSexecute;

pftSshare_selections = set of pftSshare_options;

pftSshare_requirements = set of pftSshare_options;

pftSusage_options = pfcSread •• pfcSexecute;

pftSusage_selections = set of pftSusage_options;

PM Types

PM

Types

pmtScpu_model_number = CpmcScpu_model_p1,
pmcScpu_model_p2, pmcScpu_model_p3,
pmcScpu_model_p4>;

pmtScpu_serial_number = 0 •• OffffC16>;

pmtSprocessor = record
serial_number: pmtScpu_serial_number,
model_number: pmtScpu_model_number,

recend;

pmtSprocessor_attributes = record
model_number: pmtScpu_model_number,
serial_number: pmtScpu_serial_number,
page_size: ostSpage_size,

rec end,

pmtSprogram_name = ostSname;

C-36 CYBIL Keyed-File and Sort/Merge Interfaces

•

•

•
Revision A

9 RM

Constants e rmcSexternal_vsn_size = 6;
rmcSrecorded_vsn_size = 6;

•

Types

rmtSexternal_vsn = string CrmcSexternal_vsn_size);

rmtSrecorded_vsn = string CrmcSrecorded_vsn_size);

rmtSvolume_descriptor = record
recorded_vsn: rmtSrecorded_vsn,
external_vsn: rmtSexternal_vsn,

recend;

rmtSvolume_list =array [* J of
rmtSvolume_descriptor;

SM

Types

{ SMTSOWNCODE_PROCEDURE_TYPES - Pointer to owncode
{ procedure types for SORT and MERGE

own1to4_type= ftPROCEDURE C
VAR return_code: integer;
VAR reca: string(*);
VAR rla: integer);

{ Collating sequence pointer.

smtScollating_sequence_pointer = ftstringC256);

{ SMTSINFO_ARRAY - Description of static array
{ for SORT and MERGE

smtSinfo_array = array[1 •• 16J OF integer;

RM Constants

Revision A Constant and Type Declarations C-37

•

Collation Tables D

This appendix describes how to use a collation table to specify how a key is
ordered.

The collation table can be one of the NOS/VE predefined collation tables
(listed at the end of this appendix) or a user-defined collation table.

The key to be ordered can be one of the following:

• The primary key of a keyed file. You specify the collation-table name as
the value of the COLLATE_ TABLE_NAME file attribute when creating
the file (as described in chapter I-2). I

• An alternate key of a keyed file. You specify the collation-table name as
the value of the COLLATE_ TABLE_NAME attribute of the
alternate-key definition (as described in chapter I-2).

• A sort key. You can associate a key type name with the collation table
using the Sort/Merge procedure calls SMP$DEFINE_ USER_
COLLATING_ TABLE or SMP$LOAD_COLLATING_ TABLE described
in part IL The key type can then be used in a key field definition on an
SMP$KEY call.

Revision B Collation Tables D· 1

I

I

Using Collation Tables

Using NOSNE Predefined Collation
Tables

To use one of the NOS/VE predefined collation tables listed at the end of this
appendix, you specify the name of the predefined collation table as the
collation-table name. Unlike user-defined collation table modules, use of
NOS/VE predefined collation tables does not require the addition of an
object library to the program-library list.

Sort/Merge Example:

To use the predefined collation table OSV$EBCDIC to define the key type
MY _KEY_ TYPE, you would include this call in the sequence of Sort/Merge
procedure calls:

smp$Load_collating_table('my_key_type', 'osv$ebcdic', status);

Then, to define the first 10 bytes of the record as a key field to be sorted in
ascending order using the key type, you would include this Sort/Merge call:

smp$key<1, 10, 'my_key_type', 'a', status>;

Keyed-File Example:

To use the predefined collation table OSV$EBCDIC to order the primary key
of a new keyed file, you specify the key type as collated and the collate-table e
name as OSV$EBCDIC. This is done by initializing two attribute records in
the attribute array for an AMP$FILE call before the new keyed file is opened
or for the AMP$0PEN call that first opens the new keyed file.

[amcSkey_type, amcScollated_keyJ,
[amcScollate_table_name, 'OSVSEBCDIC'J,

Using User-Defined Collation Tables

You can use any collation table stored in an object-library file if you have
permission to read the file. To use the collation table, you perform these
steps:

1. Specify the collation-table name in the program. (The name must be in
the entry-point list of the object library as displayed by a DISPLAY_
OBJECT _LIBRARY command.)

2. Add the object library to your program-library list using a SET_ -
PROGRAM_ATTRIBUTE command before executing the program:

set_program_attributeadd_Library=Suser.object_Library

D-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Using Collation Tables

The process of storing a collation table in an object library is described in the
Creating a Collation Table section.

For the purposes of these examples, assume another user has given you
permission to read an object library file named .WIZARD.OBJECT_
LIBRARY containing a collation table. The entry point for the collation table
is named CASE_INSENSITIVE.

Sort/Merge Example:

To use the CASE_INSENSITIVE collation table:

1. In the Sort/Merge call sequence, specify the collation table as a key type
and use the key type in a key-field definition:

smpSLoad_collating_tableC'my_key_type', 'case_insensitive',
status);

smpSkeyC1, 24, 'my_key_type', 'd', status);

2. Add the object library to your program-library list before executing the
CYBIL program:

/set_program_attribute add_Library=.wizard.object_Library

Keyed-File Example:

To use the CASE_INSENSITIVE collation table to order a new alternate
key of a keyed file:

1. Specify the key type as collated and the collate-table name as
OSV$EBCDIC by initializing two attribute records in the optional_
attributes array for the AMP$CREATE_KEY _DEFINITION call that
defines the new alternate key.

[amcSkey_type, amcScollated_keyJ,
[amcScollate_table_name, 'OSVSEBCDIC'J,

2. Add the object library to your program-library list before executing the
CYBIL program:

/set_program_attribute add_Library=.wizard.object_Library

Revision A Collation Tables D-3

Creating a Collation Table

Creating a Collation Table

Besides using collation tables created by others, you can also create your
own collation tables. The process of using your collation tables was described
previously under Using User-Defined Collation Tables.

Creating your own collation table involves these steps:

1. Writing a source code module to initialize the collation table.

2. Compiling the source code module to create the object module.

3. Storing the object module in an object library.

Writing a Module to Initialize a Collation Table

A module to initialize a collation table must perform these steps:

1. Declare a 256-integer array.

2. Store an integer in each element of the array. The integer must be in the
range 0 through 255.

The values stored in the array are the collating weights. The collating weight A
in an array element is the collating weight assigned to the ASCII character W
corresponding to that element.

How a Collation Table Works

To determine the correct values with which to initialize the collation table,
you must understand how a collation table works.

As shown in figure D-1, each element in the collation table corresponds to an
8-bit character code. The first 128 elements correspond to the 128 characters
in the ASCII character set (as listed in appendix B). For example, the
element 0 in the table corresponds to the NUL character (character code 00
decimal). Element 65 corresponds to the A character (character code 65
decimal).

Figure D-2 shows how a collation table is initialized for the default ASCII
collating sequence. As you can see, the element rank matches the element
contents. For example, the element for character NUL (character code 00)
contains 0. The element for character A (character code 65) contains 65.

Now, suppose we change two values in the initialized collation table in figure
D-2. We change the A element to contain 66 (B) and the B element to contain
65 (A). This collating sequence would order all B characters as A characters
and all A characters as B characters. A sort using the collating sequence
would sort all B characters before all A characters.

D-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

ASCII
Graphic or
Mnemonic

NUL

SOH

A

B

c
D

Unassigned

Unassigned

R
•
•
•

~

ASCII
Character

Code

00
01

65
66
67
68

254

255

Figure D-1. Uninitialized Collation Table

Creating a Collation Table

Or, suppose we change the initialized collation table so that the A element
contains 65 (A) and the B element also contains 65 (A). This collating
sequence would order all A characters as A characters and all B characters
as A characters. A sort using the collating sequence would intermix A and B
characters.

NOTE

Be careful when choosing the collating sequence to order the primary key of
a keyed file. A collating sequence that assigns equal values to different
characters reduces the possible unique key values.

If the key values are collated equally, the values are no longer unique in the
file. For example, if B is collated as A, the key value B is a duplicate of key
value A.

Revision A Collation Tables D-5

Creating a Collation Table

Default
Collating Sequence

ASCII
Graphic or
Mnemonic

NUL
SOH

Unassigned

Unassigned

ASCII
Character

Code

fOOl 00

roll 01

•

•
•
•

254

255

Collated
A as B
B as A

~ 65 __.A

~ 66 B

When A and B are ordered; B precedes A.

Collated
A as A

Bas A

When A and B are ordered, B is processed as A. (If the value
is stored in collated form, B is stored as A.)

Figure D-2. Collation Table Initialized to the Default
ASCII Collating Sequence

D-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

Creating a Collation Table

e CYBIL Collation Table Initialization Examples

•

A CYBIL module to initialize a collation table declares a 256-element array
variable and assigns a value to each element.

NOTE

The array variable must be assigned the XDCL attribute so that the name is
an entry point to the module. A module can define more than one collation
table by declaring and initializing more than one XDCL array variable.

Figure D-3 shows a CYBIL module named MY _MODULE that initializes an
XDCL variable named CASE_ INSENSITIVE. It assigns the collating
weight for the space character (32) to all elements except the elements
corresponding to letters. Each lowercase letter is to be ordered the same as
the corresponding uppercase letter (a the same as A, b the same as B, and so
forth).

MODULE my_module;

VAR
case_insensitive: [STATIC,READ,XDCLJ ARRAY [CHAR] OF 0 •• 255 :=

[{ Collating weights for the first 65 non-Letter characters }
REP 65 OF 32,

{ Collating weights for the uppercase Letters }
{A} 65, {8} 66, {C} 67, {D} 68, {E} 69, {F} 70, {G} 71,
{H} 72, {I} 73, {J} 74, {K} 75, {L} 76, {M} 77, {N} 78,
{0} 79, {P} 80, {Q} 81, {R} 82, {S} 83, {T} 84, {U} 85,
{V} 86, {W} 87, {X} 88, {Y} 89, {Z} 90,

{ Collating weights for the next 6 non-Letter characters }
REP 6 OF 32,

{ Collating weights for the Lowercase Letters }
{a} 65, {b} 66, {c} 67, {d} 68, {e} 69, {f} 70, {g} 71,
{h} 72, {i} 73, {j} 74, {k} 75, {L} 76, {m} 77, {n} 78,
{o} 79, {p} 80, {q} 81, {r} 82, {s} 83, {t} 84, {u} 85,
{v} 86, {w} 87, {x} 88, {y} 89, {z} 90,

{ Collating weights for the Last 133 non-Letter characters }
REP 133 OF 32 J;

MODEND;

Figure D-3. CASE_INSENSITIVE Collating Sequence Initialization
Module

Revision A Collation Tables D-7

Creating a Collation Table

Sort/Merge Example:

If Sort/Merge used the collation table from figure D-3, it would sort
characters as follows:

lJnordered: 10JgarbageGARBAGEgarbage9815J;J
Ordered: 10J9815J;JaaAAaabBbeEeggGGggrRr

Keyed-File Example:

If a keyed file used the collation table from figure D-3, all nonalphabetic key
values would be duplicates. lJppercase and lowercase letters would be
collated the same, so the key value ABCD would be a duplicate of the key
value abed.

Storing a Module in an Object Library

Source module compilation writes an object module on an object file. You
then use the SCL command utility CREATE_ OBJECT _LIBRARY to create
an object library containing the module. (The CREATE_ OBJECT_
LIBRARY utility is described in detail in the SCL Object Code Management
manual.)

For this example, assume that you have written a CYBIL module (such as A
the one in figure D-3) to initialize a collation table and that your source text W
is in file $lJSER.SOlJRCE. The following commands compile the program
and then store the module on file $lJSER.COLLATION_LIBRARY

/cybil input=Suser.source binary_object=object_file
•• /List=List_file
/create_object_Library
COL/add_module Library=object_file
COL/generate_Library Library=Suser.collation_Library
COL/quit
I

D-8 CYBIL Keyed-File and Sort/Merge Interfaces

•
Revision A

Collation Table Listings

NOS/VE Predefined Collation Table
Listings

The collating sequences of the predefined collation tables are listed in tables
D-1 through D-11.

Several of the predefined collation tables have two variants, FOLDED and
STRICT. The variants FOLDED and STRICT indicate two different
mappings of the characters not in the 63 or 64 characters of the original
CYBER 170 collating sequence.

• A strict mapping maps all characters not in the original 64- or
63-character set to the space character.

• A folded mapping maps some of these characters to the space character,
but not others. (For the exact mapping, see the collating sequence in the
table.)

The predefined collation tables are for these collating sequences:

Collating Sequence

CYBER 170 FTN5 default

CYBER 170 COBOL5 default

CYBER 170 63-character
display code

CYBER 170 64-character
display code

Full EBCDIC

EBCDIC 6-bit subset supported by
CYBER 170 COBOL5 and SORT5

Revision A

Predefined Collation Table

OSV$ASCII6_FOLDED and
OSV$ASCII6 _STRICT

OSV$COBOL6_FOLDED and
OSV$COBOL6 _STRICT

OSV$DISPLAY63_FOLDED and
OSV$DISPLAY63_STRICT

OSV$DISPLAY64_FOLDED and
OSV$DISPLA Y64_STRICT

OSV$EBCDIC

OSV$EBCDIC_FOLDED and
OSV$EBCDIC _STRICT

Collation Tables D-9

Collation Table Listings

Sort/Merge uses predefined collation tables for its predefined collating
sequences as follows:

Key Type Predefined Collation Table

ASCII6 OSV$ASCII6_FOLDED

COBOL6 OSV$COBOL6_FOLDED

DISPLAY OSV$DISPLAY64_FOLDED

EBCDIC OSV$EBCDIC

EBCDIC6 OSV$EBCDIC6_FOLDED

The Sort/Merge key type ASCII uses the default ASCII collating sequence; it
does not use any of the predefined collating sequences listed in this
appendix.

D-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

•

OSV$ASCII6]OLDED

e Table D-1. OSV$ASCII6_FOLDED Collating Sequence

The ASCII codes not listed in this table (ASCII codes 0 through lF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 21 Exclamation point
02 22 Quotation marks
03 23 # Number sign

04 24 $ Dollar sign
05 25 % Percent sign
06 26 & Ampersand
07 27 Apostrophe

08 28 Opening parenthesis
09 29 Closing parenthesis
10 2A Asterisk
11 2B + Plus

12 2C Comma
13 20 Hyphen
14 2E Period
15 2F I Slant

16 30 0 Zero

e 17 31 1 One
18 32 2 Two
19 33 3 Three

20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven

24 38 8 Eight
25 39 9 Nine
26 3A Colon
27 3B Semicolon

28 3C < Less than
29 30 Equals
30 3E > Greater than
31 3F ? Question mark

32 40,60 @,' Commercial at, grave accent
33 41,61 A,a Uppercase A, lowercase a
34 42,62 B,b Uppercase B, lowercase b
35 43,63 C,c Uppercase C, lowercase c

36 44,64 D,d Uppercase D, lowercased

e 37 45,65 E,e Uppercase E, lowercase e
38 46,66 F,f Uppercase F, lowercase f
39 47,67 G,g Uppercase G, lowercase g

(Continued)

e
Revision A Collation Tables D-11

OSV$ASCII6_FOLDED

Table D-1. OSV$ASCil6_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 48,68 H,h Uppercase H, lowercase h
41 49,69 I,i Uppercase I, lowercase i
42 4A,6A Jj Uppercase J, lowercase j
43 4B,6B K,k Uppercase K, lowercase k

44 4C,6C L,l Uppercase L, lowercase 1
45 4D,6D M,m Uppercase M, lowercase m
46 4E,6E N,n Uppercase N, lowercase n
47 4F,6F O,o Uppercase 0, lowercase o

48 50,70 P,p Uppercase P, lowercase p
49 51,71 Q,q Uppercase Q, lowercase q
50 52,72 R,r Uppercase R, lowercase r
51 53,73 S,s Uppercase S, lowercases

52 54,74 T,t Uppercase T, lowercase t
53 55,75 U,u Uppercase U, lowercase u
54 56,76 V,v Uppercase V, lowercase v
55 57,77 W,w Uppercase W, lowercase w

56 58,78 X,x Uppercase X, lowercase x
57 59,79 Y,y Uppercase Y, lowercase y
58 5A,7A Z,z Uppercase Z, lowercase z
59 5B,7B [,{ Opening bracket, opening brace

60 5C,7C \ ' I Reverse slant, vertical line e 61 5D,7D l ' } Closing bracket, closing brace
62 5E,7E Circumflex, tilde
63 5F Underline

•
D-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$ASCII6 _STRICT

e Table D-2. OSV$ASCII6_STRICT Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 21 Exclamation point
02 22 Quotation marks
03 23 # Number sign

04 24 $ Dollar sign
05 25 % Percent sign
06 26 & Ampersand
07 27 Apostrophe

08 28 (Opening parenthesis
09 29) Closing parenthesis
10 2A * Asterisk
11 2B + Plus

12 2C Comma
13 2D Hyphen
14 2E Period
15 2F I Slant

16 30 0 Zero e 17 31 1 One
18 32 2 Two
19 33 3 Three

20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven

24 38 8 Eight
25 39 9 Nine
26 3A Colon
27 3B Semicolon

28 3C < Less than
29 3D Equals
30 3E > Greater than
31 3F ? Question mark

32 40 @ Commercial at
33 41 A Uppercase A
34 42 B Uppercase B
35 43 c Uppercase C

36 44 D UppercaseD

e 37 45 E Uppercase E
38 46 F Uppercase F
39 47 G Uppercase G

(Continued)

e
Revision A Collation Tables D-13

OSV$ASCil6 _STRICT

Table D-2. OSV$ASCII6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 48 H Uppercase H
41 49 I Uppercase I
42 4A J UppercaseJ
43 4B K Uppercase K

44 4C L Uppercase L
45 4D M Uppercase M
46 4E N Uppercase N
47 4F 0 Uppercase 0

48 50 p Uppercase P
49 51 Q Uppercase Q
50 52 R Uppercase R
51 53 s Uppercase S

52 54 T Uppercase T
53 55 u Uppercase U
54 56 v Uppercase V
55 57 w Uppercase W

56 58 x Uppercase X
57 59 y Uppercase Y
58 5A z Uppercase Z
59 5B [Opening bracket

60 5C Reverse slant
61 5D Closing bracket
62 5E Circumflex
63 5F Underline

D-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$COBOL6_FOLDED

e Table D-3. OSV$COBOL6_FOLDED Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF and 7F through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 40,60 @,' Commercial at, grave accent
02 25 % Percent sign
03 5B,7B [,{ Opening bracket, opening brace

04 5F Underline
05 23 # Number sign
06 26 & Ampersand
07 27 Apostrophe

08 3F ? Question mark
09 3E > Greater than
10 5C,7C I , I Reverse slant, vertical line
11 5E,7E Circumflex, tilde

12 2E Period
13 29 Closing parenthesis
14 3B Semicolon
15 2B + Plus

16 24 $ Dollar sign

e 17 2A Asterisk
18 2D Hyphen
19 2F I Slant

20 2C Comma
21 28 Opening parenthesis
22 3D Equals
23 22 Quotation marks

24 3C < Less than
25 41,61 A,a Uppercase A, lowercase a
26 42,62 B,b Uppercase B, lowercase b
27 43,63 C,c Uppercase C, lowercase c

28 44,64 D,d Uppercase D, lowercased
29 45,65 E,e Uppercase E, lowercase e
30 46,66 F,f Uppercase F, lowercase f
31 47,67 G,g Uppercase G, lowercase g

32 48,68 H,h Uppercase H, lowercase h
33 49,69 I,i Uppercase I, lowercase i
34 21 ! Exclamation point
35 4A,6A J,j Uppercase J, lowercase j

36 4B,6B K,k Uppercase K, lowercase k • 37 4C,6C L,l Uppercase L, lowercase 1
38 4D,6D M,m Uppercase M, lowercase m
39 4E,6E N,n Uppercase N, lowercase n

(Continued)

e
Revision A Collation Tables D-15

OSV$COBOL6_FOLDED

Table D-3. OSV$COBOL6_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4F,6F O,o Uppercase 0, lowercase o
41 50,70 P,p Uppercase P, lowercase p
42 51,71 Q,q Uppercase Q, lowercase q
43 52,72 R,r Uppercase R, lowercase r

44 5D,7D l ' } Closing bracket, closing brace
45 53,73 S,s Uppercase S, lowercase s
46 54,74 T,t Uppercase T, lowercase t
47 55,75 U,u Uppercase U, lowercase u

48 56,76 V,v Uppercase V, lowercase v
49 57,77 W,w Uppercase W, lowercase w
50 58,78 X,x Uppercase X, lowercase x
51 59,79 Y,y Uppercase Y, lowercase y

52 5A,7A Z,z Uppercase Z, lowercase z
53 3A Colon
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$COBOL6_STRICT

e Table D-4. OSV$COBOL6_STRICT Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through IF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 40 @ Commercial at
02 25 % Percent sign
03 58 [Opening bracket

04 5F Underline
05 23 Ii Number sign
06 26 & Ampersand
07 27 Apostrophe

08 3F ? Question mark
09 3E > Greater than
10 5C \ Reverse slant
11 5E Circumflex

12 2E Period
13 29 Closing parenthesis
14 38 Semicolon
15 2B + Plus

16 24 $ Dollar sign e 17 2A * Asterisk
18 2D Hyphen
19 2F I Slant

20 2C Comma
21 28 Opening parenthesis
22 3D Equals
23 22 Quotation marks

24 3C < Less than
25 41 A Uppercase A
26 42 8 Uppercase 8
27 43 c Uppercase C

28 44 D Uppercase D
29 45 E Uppercase E
30 46 F Uppercase F
31 47 G Uppercase G

32 48 H Uppercase H
33 49 I Uppercase I
34 21 Exclamation point
35 4A J UppercaseJ

36 48 K Uppercase K

e 37 4C L Uppercase L
38 4D M Uppercase M
39 4E N Uppercase N

(Continued)

e
Revision A Collation Tables D-17

OSV$COBOL6_STRICT

Table D-4. OSV$COBOL6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4F 0 Uppercase 0
41 50 p Uppercase P
42 51 Q Uppercase Q
43 52 R Uppercase R

44 5D l Closing bracket
45 53 s Uppercase S
46 54 T Uppercase T
47 55 u Uppercase U

48 56 v Uppercase V
49 57 w Uppercase W
50 58 x Uppercase X
51 59 y Uppercase Y

52 5A z Uppercase Z
53 3A Colon
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLAY63_FOLDED

e Table D-5. OSV$DISPLA Y63_FOLDED Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF, 25, and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 41,61 A,a Uppercase A, lowercase a
01 42,62 B,b Uppercase B, lowercase b
02 43,63 C,c Uppercase C, lowercase c
03 44,64 D,d Uppercase D, lowercased

04 45,65 E,e Uppercase E, lowercase e
05 46,66 F,f Uppercase F, lowercase f
06 47,67 G,g Uppercase G, lowercase g
07 48,68 H,h Uppercase H, lowercase h

08 49,69 l,i Uppercase I, lowercase i
09 4A,6A Jj Uppercase J, lowercase j
10 4B,6B K,k Uppercase K, lowercase k
11 4C,6C L,l Uppercase L, lowercase 1

12 4D,6D M,m Uppercase M, lowercase m
13 4E,6E N,n Uppercase N, lowercase n
14 4F,6F O,o Uppercase 0, lowercase o
15 50,70 P,p Uppercase P, lowercase p

16 51,71 Q,q Uppercase Q, lowercase q

e 17 52,72 R,r Uppercase R, lowercase r
18 53,73 S,s Uppercase S, lowercase s
19 54,74 T,t Uppercase T, lowercase t

20 55,75 U,u Uppercase U, lowercase u
21 56,76 V,v Uppercase V, lowercase v
22 57,77 W,w Uppercase W, lowercase w
23 58,78 X,x Uppercase X, lowercase x

24 59,79 Y,y Uppercase Y, lowercase y
25 5A,7A Z,z Uppercase Z, lowercase z
26 30 0 Zero
27 31 1 One

28 32 2 Two
29 33 3 Three
30 34 4 Four
31 35 5 Five

32 36 6 Six
33 37 7 Seven
34 38 8 Eight
35 39 9 Nine

36 2B + Plus e 37 2D Hyphen
38 2A * Asterisk
39 2F I Slant

(Continued)

e
Revision A Collation Tables D-19

OSV$DISPLA Y63 _FOLDED

Table D-5. OSV$DISPLA Y63_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code
Position (Hexadecimal)

40 28
41 29
42 24
43 3D

44 20
45 2C
46 2E
47 23

48 58,78
49 5D,7D
50 3A
51 22

52 5F
53 21
54 26
55 27

56 3F
57 3C
58 3E
59 40,60

60 5C,7C
61 5E,7E
62 38

Graphic or
Mnemonic

(
)
$

SP

[. {

l . }

!
&

?
<
>
@,'

\ , I

D-20 CYBIL Keyed-File and Sort/Merge Interfaces

Name or Meaning

Opening parenthesis
Closing parenthesis
Dollar sign
Equals

Space
Comma
Period
Number sign

Opening bracket, opening brace
Closing bracket, closing brace
Colon
Quotation marks

Underline
Exclamation point
Ampersand
Apostrophe

Question mark
Less than
Greater than
Commercial at, grave accent

Reverse slant, vertical line
Circumflex, tilde
Semicolon

Revision A

OSV$DISPLA Y63 _STRICT

e Table D-6. OSV$DISPLA Y63_STRICT Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF, 25, and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 41 A Uppercase A
01 42 B Uppercase B
02 43 c Uppercase C
03 44 D Uppercase D

04 45 E Uppercase E
05 46 F Uppercase F
06 47 G Uppercase G
07 48 H Uppercase H

08 49 I Uppercase I
09 4A J UppercaseJ
10 4B K UppercaseK
11 4C L Uppercase L

12 4D M Uppercase M
13 4E N Uppercase N
14 4F 0 Uppercase 0
15 50 p Uppercase P

16 51 Q Uppercase Q e 17 52 R UppercaseR
18 53 s Uppercase S
19 54 T UppercaseT

20 55 u Uppercase U
21 56 v Uppercase V
22 57 w Uppercase W
23 58 x UppercaseX

24 59 y Uppercase Y
25 5A z Uppercase Z
26 30 0 Zero
27 31 1 One

28 32 2 Two
29 33 3 Three
30 34 4 Four
31 35 5 Five

32 36 6 Six
33 37 7 Seven
34 38 8 Eight
35 39 9 Nine

36 2B + Plus

e 37 20 Hyphen
38 2A * Asterisk
39 2F I Slant

(Continued)

e
Revision A Collation Tables D--21

OSV$DISPLA Y6S _STRICT

Table D-6. OSV$DISPLA Y63_STRICT Collating Sequence (Continued) e
Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 28 (Opening parenthesis e 41 29) Closing parenthesis
42 24 $ Dollar sign
4S SD Equals

44 20 SP Space
45 2C Comma
46 2E Period
47 2S # Number sign

48 5B Opening bracket
49 5D Closing bracket
50 SA Colon
51 22 Quotation marks

52 5F Underline
5S 21 ! Exclamation point
54 26 & Ampersand
55 27 Apostrophe

56 SF ? Question mark
57 SC < Less than
58 SE > Greater than
59 40 @ Commercial at

60 5C Reverse slant
61 5E Circumflex
62 SB Semicolon

•
D-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLAY64_FOLDED

e Table D-7. OSV$DISPLAY64_FOLDED Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 3A Colon
01 41,61 A,a Uppercase A, lowercase a
02 42,62 B,b Uppercase B, lowercase b
03 43,63 C,c Uppercase C, lowercase c

04 44,64 D,d Uppercase D, lowercased
05 45,65 E,e Uppercase E, lowercase e
06 46,66 F,f Uppercase F, lowercase f
07 47,67 G,g Uppercase G, lowercase g

08 48,68 H,h Uppercase H, lowercase h
09 49,69 I,i Uppercase I, lowercase i
10 4A,6A J,j Uppercase J, lowercase j
11 4B,6B K,k Uppercase K, lowercase k

12 4C,6C L,l Uppercase L, lowercase I
13 4D,6D M,m Uppercase M, lowercase m
14 4E,6E N,n Uppercase N, lowercase n
15 4F,6F O,o Uppercase 0, lowercase o

16 50,70 P,p Uppercase P, lowercase p

e 17 51,71 Q,q Uppercase Q, lowercase q
18 52,72 R,r Uppercase R, lowercase r
19 53,73 S,s Uppercase S, lowercases

20 54,74 T,t Uppercase T, lowercase t
21 55,75 U,u Uppercase U, lowercase u
22 56,76 V,v Uppercase V, lowercase v
23 57,77 W,w Uppercase W, lowercase w

24 58,78 X,x Uppercase X, lowercase x
25 59,79 Y,y Uppercase Y, lowercase y
26 5A,7A Z,z Uppercase Z, lowercase z
27 30 0 Zero

28 31 1 One
29 32 2 Two
30 33 3 Three
31 34 4 Four

32 35 5 Five
33 36 6 Six
34 37 7 Seven
35 38 8 Eight

36 39 9 Nine

e 37 2B + Plus
38 2D Hyphen
39 2A * Asterisk

(Continued)

e
Revision A Collation Tables D-23

OSV$DISPLA Y64_FOLDED

Table D-7. OSV$DISPLAY64_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 2F I Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Dollar sign

44 3D Equals
45 20 SP Space
46 2C Comma
47 2E Period

48 23 # Number sign
49 5B,7B [' { Opening bracket, opening brace
50 5D,7D l' } Closing bracket, closing brace
51 25 % Percent sign

52 22 Quotation marks
53 5F Underline
54 21 ! Exclamation point
55 26 & Ampersand

56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than

60 40,60 @, Commercial at, grave accent
61 5C,7C \ , I Reverse slant, vertical line
62 5E,7E Circumflex, tilde
63 3B Semicolon

D-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLA Y64_STRICT

e Table D-8. OSV$DISPLA Y64_STRICT Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through IF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 3A Colon
01 41 A Uppercase A
02 42 8 Uppercase 8
03 43 c Uppercase C

04 44 D Uppercase D
05 45 E Uppercase E
06 46 F Uppercase F
07 47 G Uppercase G

08 48 H Uppercase H
09 49 I Uppercase I
10 4A J UppercaseJ
11 48 K Uppercase K

12 4C L Uppercase L
13 4D M Uppercase M
14 4E N Uppercase N
15 4F 0 Uppercase 0

16 50 p Uppercase P

e 17 51 Q Uppercase Q
18 52 R Uppercase R
19 53 s Uppercase S

20 54 T UppercaseT
21 55 u Uppercase U
22 56 v Uppercase V
23 57 w Uppercase W

24 58 x Uppercase X
25 59 y Uppercase Y
26 5A z Uppercase Z
27 30 0 Zero

28 31 1 One
29 32 2 Two
30 33 3 Three
31 34 4 Four

32 35 5 Five
33 36 6 Six
34 37 7 Seven
35 38 8 Eight

36 39 9 Nine

e 37 28 + Plus
38 2D Hyphen
39 2A Asterisk

(Continued)

e
Revision A Collation Tables D-25

OSV$DISPLAY64_STRICT

Table D-8. OSV$DISPLAY64_STRICT Collating Sequence (Continued) e
Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 2F I Slant e 41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Oollarsign

44 30 Equals
45 20 SP Space
46 2C Comma
47 2E Period

48 23 # Number sign
49 5B [Opening bracket
50 50 l Closing bracket
51 25 % Percent sign

52 22 Quotation marks
53 5F Underline
54 21 ! Exclamation point
55 26 & Ampersand

56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than

60 40 @ Commercial at
61 5C \ Reverse slant
62 5E Circumflex
63 3B Semicolon

0-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC

e Table D-9. OSV$EBCDIC Collating Sequence

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

e 000 ()() NUL Null
001 01 SOH Start of heading
002 02 STX Start of text
003 03 ETX End of text

004 9C Unassigned
005 09 HT Horizontal tabulation
006 86 Unassigned
007 7F DEL Delete

008 97 Unassigned
009 SD Unassigned
010 BE Unassigned
011 OB VT Vertical tabulation

012 oc FF Form feed
013 OD CR Carriage return
014 OE so Shift out
015 OF SI Shift in

016 10 DLE Data link escape
017 11 DCl Device control 1
018 12 DC2 Device control 2
019 13 DC3 Device control 3

e 020 9D Unassigned
021 85 Unassigned
022 08 BS Backspace
023 87 Unassigned

024 18 CAN Cancel
025 19 EM End of medium
026 92 Unassigned
027 BF Unassigned

028 lC FS File separator
029 1D GS Group separator
030 1E RS Record separator
031 lF us Unit separator

032 80 Unassigned
033 81 Unassigned
034 82 Unassigned
035 83 Unassigned

036 84 Unassigned
037 OA LF Line feed
038 17 ETB End of transmission block
039 1B ESC Escape

e 040 88 Unassigned
041 89 Unassigned
042 BA Unassigned
043 BB Unassigned

e (Continued)

Revision A Collation Tables D-27

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code
Position (Hexadecimal)

044 BC
045 05
046 06
047 07

04B 90
049 91
050 16
051 93

052 94
053 95
054 96
055 04

056 98
057 99
058 9A
059 9B

060 14
061 15
062 9E
063 IA

064 20
065 AO
066 Al
067 A2

06B A3
069 A4
070 A5
071 A6

072 A7
073 AB
074 5B
075 2E

076 3C
077 28
07B 2B
079 21

080 26
OBI A9
OB2 AA
OB3 AB

OB4 AC
085 AD
OB6 AE
OB7 AF

Graphic or
Mnemonic

ENQ
ACK
BEL

SYN

EOT

DC4
NAK

SUB

SP

<
(
+
!

&

D-2B CYBIL Keyed-File and Sort/Merge Interfaces

Name or Meaning

Unassigned
Enquiry
Acknowledge
Bell

Unassigned
Unassigned
Synchronous idle
Unassigned

Unassigned
Unassigned
Unassigned
End of transmission

Unassigned
Unassigned
Unassigned
Unassigned

Device control 4
Negative acknowledge
Unassigned
Substitut.e

Space
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Opening bracket
Period

Less than
Opening parenthesis
Plus
Exclamation point

Ampersand
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

(Continued)

Revision A

•

OSV$EBCDIC

e Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning e 088 BO Unassigned
089 Bl Unassigned
090 5D l Closing bracket
091 24 $ Dollar sign

092 2A Asterisk
093 29 Closing parenthesis
094 3B Semicolon
095 5E Circumflex

096 2D Hyphen
097 2F I Slant
098 B2 Unassigned
099 B3 Unassigned

100 B4 Unassigned

104 BS Unassigned
105 B9 Unassigned
106 7C Vertical line
107 2C Comma

108 25 % Percent sign
109 5F Underline

e 110 3E > Greater than
111 3F ? Question mark

112 BA Unassigned
113 BB Unassigned
114 BC Unassigned
115 BD Unassigned

116 BE Unassigned
117 BF Unassigned
118 co Unassigned
119 Cl Unassigned

120 C2 Unassigned
121 60 Grave accent
122 3A Colon
123 23 # Number sign

124 40 @ Commercial at
125 27 Apostrophe
126 3D Equals
127 22 Quotation marks

128 C3 Unassigned
129 61 a Lowercase a

e 130 62 b Lowercase b
131 63 c Lowercasec

(Continued)

e
Revision A Collation Tables D-29

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

132 64 d Lowercased
133 65 e Lowercasee
134 66 f Lowercasef
135 67 g Lowercaseg

136 68 h Lowercaseh
137 69 Lowercasei
138 C4 Unassigned
139 C5 Unassigned

140 C6 Unassigned
141 C7 Unassigned
142 cs Unassigned
143 C9 Unassigned

144 CA Unassigned
145 6A j Lowercasej
146 6B k Lowercase k
147 6C I Lowercase I

148 6D m Lowercasem
149 6E n Lowercasen
150 6F 0 Lowercaseo
151 70 p Lowercasep

152 71 q Lowercaseq
153 72 r Lowercaser
154 CB Unassigned
155 cc Unassigned

156 CD Unassigned
157 CE Unassigned
158 CF Unassigned
159 DO Unassigned

160 D1 Unassigned
161 7E Unassigned
162 73 s Lowercases
163 74 t Lowercaset

164 75 u Lowercaseu
165 76 v Lowercasev
166 77 w Lowercasew
167 78 x Lowercasex

168 79 y Lowercasey
169 7A z Lowercase z
170 D2 Unassigned
171 D3 Unassigned

172 D4 Unassigned
173 D5 Unassigned
174 D6 Unassigned
175 D7 Unassigned

(Continued) e
D-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC

e Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning e 176 D8 Unassigned
177 D9 Unassigned
178 DA Unassigned
179 DB Unassigned

180 DC Unassigned
181 DD Unassigned
182 DE Unassigned
183 DF Unassigned

184 EO Unassigned
185 El Unassigned
186 E2 Unassigned
187 E3 Unassigned

188 E4 Unassigned
189 E5 Unassigned
190 E6 Unassigned
191 E7 Unassigned

192 7B { Opening brace
193 41 A Uppercase A
194 42 B Uppercase B
195 43 c Uppercase C e 196 44 D Uppercase D
197 45 E Uppercase E
198 46 F Uppercase F
199 47 G Uppercase G

200 48 H Uppercase H
201 49 I Uppercase I
202 ES Unassigned
203 E9 Unassigned

204 EA Unassigned
205 EB Unassigned
206 EC Unassigned
207 ED Unassigned

208 7D } Closing brace
209 4A J Uppercase J
210 4B K Uppercase K
211 4C L Uppercase L

212 4D M Uppercase M
213 4E N Uppercase N
214 4F 0 Uppercase 0
215 50 p Uppercase P

e 216 51 Q Uppercase Q
217 52 R Uppercase R
218 EE Unassigned
219 EF Unassigned

e (Continued)

Revision A Collation Tables D-31

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

220 FO Unassigned
221 Fl Unassigned
222 F2 Unassigned
223 F3 Unassigned

224 5C Reverse slant
225 9F Unassigned
226 53 s Uppercase S
227 54 T UppercaseT

228 55 u Uppercase U
229 56 v Uppercase V
230 57 w Uppercase W
231 58 x Uppercase X

232 59 y Uppercase Y
233 5A z Uppercase Z
234 F4 Unassigned
235 F5 Unassigned

236 F6 Unassigned
237 F7 Unassigned
238 F8 Unassigned
239 F9 Unassigned

240 30 0 Zero
241 31 1 One
242 32 2 Two
243 33 3 Three

244 34 4 Four
245 35 5 Five
246 36 6 Six
247 37 7 Seven

248 38 8 Eight
249 39 9 Nine
250 FA Unassigned
251 FB Unassigned

252 FC Unassigned
253 FD Unassigned
254 FE Unassigned
255 FF Unassigned

•
D-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC6 _FOLDED

e Table D-10. OSV$EBCDIC6_ FOLDED Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 2E Period
02 3C < Less than
03 28 (Opening parenthesis

04 2B + Plus
05 21 Exclamation point
06 26 & Ampersand
07 24 $ Dollar sign

08 2A Asterisk
09 29 Closing parenthesis
10 3B Semicolon
11 5E,7E Circumflex, tilde

12 2D Hyphen
13 2F I Slant
14 2C , Comma
15 25 % Percent sign

16 5F Underline e 17 3E > Greater than
18 3F Question mark
19 3A Colon

20 23 # Number sign
21 40,60 @ Commercial at, grave accent
22 27 Apostrophe
23 3D Equals

24 22 Quotation marks
25 5B,7B [, { Opening bracket, opening brace
26 41,61 A,a Uppercase A, lowercase a
27 42,62 8,b Uppercase 8, lowercase b

28 43,63 C,c Uppercase C, lowercase c
29 44,64 D,d Uppercase D, lowercased
30 45,65 E,e Uppercase E, lowercase e
31 46,66 F,f Uppercase F, lowercase f

32 47,67 G,g Uppercase G, lowercase g
33 48,68 H,h Uppercase H, lowercase h
34 49,69 l,i Uppercase I, lowercase i
35 5D,7D l ' } Closing bracket, closing brace

36 4A,6A Jj Uppercase J, lowercase j e 37 48,68 K,k Uppercase K, lowercase k
38 4C,6C L,l Uppercase L, lowercase 1
39 4D,6D M,m Uppercase M, lowercase m

(Continued)

e
Revision A Collation Tables D-33

OSV$EBCDIC6 _FOLDED

Table D-10. OSV$EBCDIC6_ FOLDED Collating Sequence (Continued)

Collating
Sequence
Position

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

ASCII Code
(Hexadecimal)

4E,6E
4F,6F
50,70
51,71
52,72
5C,7C
53,73
54,74
55,75
56,76
57,77
58,78
59,79
5A,7A
30
31
32
33
34
35
36
37
38
39

Graphic or
Mnemonic

N,n
O,o
P,p
Q,q
R,r
\, I
S,s
T,t
U,u
V,v
W,w
X,x
Y,y
Z,z
0
1
2
3
4
5
6
7
8
9

D-34 CYBIL Keyed-File and Sort/Merge Interfaces

Name or Meaning

Uppercase N, lowercase n
Uppercase 0, lowercase o
Uppercase P, lowercase p
Uppercase Q, lowercase q
Uppercase R, lowercase r
Reverse slant, vertical line
Uppercase S, lowercase s
Uppercase T, lowercase t
Uppercase U, lowercase u
Uppercase V, lowercase v
Uppercase W, lowercase w
Uppercase X, lowercase x
Uppercase Y, lowercase y
Uppercase Z, lowercase z
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

Revision A

OSV$EBCDIC6_STRICT

e Table D-11. OSV$EBCDIC6_STRICT Collating Sequence

The ASCII codes not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexcadecimal).

e Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

00 20 SP Space
01 2E Period
02 3C < Less than
03 28 (Opening parenthesis

04 2B + Plus
05 21 ! Exclamation point
06 26 & Ampersand
07 24 $ Dollar sign

08 2A * Asterisk
09 29 Closing parenthesis
10 3B Semicolon
11 5E Circumflex

12 2D Hyphen
13 2F I Slant
14 2C Comma
15 25 % Percent sign

16 5F Underline e 17 3E > Greater than
18 3F ? Question mark
19 3A Colon

20 23 # Number sign
21 40 @ Commercial at
22 27 Apostrophe
23 3D Equals

24 22 Quotation marks
25 5B [Opening bracket
26 41 A Uppercase A
27 42 B Uppercase B

28 43 c Uppercase C
29 44 D Uppercase D
30 45 E Uppercase E
31 46 F UppercaseF

32 47 G Uppercase G
33 48 H Uppercase H
34 49 I Uppercase I
35 5D l Closing bracket

36 4A J UppercaseJ e 37 4B K Uppercase K
38 4C L Uppercase L
39 4D M Uppercase M

(Continued)

e
Revision A Collation Tables D-35

OSV$EBCDIC6 _STRICT

Table D-11. OSV$EBCDIC6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4E N UppercaseN e
41 4F 0 UppercaseO
42 50 p Uppercase P
43 51 Q UppercaseQ

44 52 R UppercaseR
45 5C \ Reverse slant
46 53 s Uppercases
47 54 T UppercaseT

48 55 u Uppercase U
49 56 v Uppercase V
50 57 w Uppercase W
51 58 x UppercaseX

52 59 y Uppercase Y
53 5A z UppercaseZ
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Common Procedures E

Each CYBIL procedure call specified a status variable in which the
completion status of the call is returned. After the call, the program checks
the status returned. The examples in part I call the p#inspect_status_
variable procedure to check the status after each call. Use of the p#inspect_
status_ variable procedure also requires calls to p#start_report_generation
and p#stop_report_generation at the beginning and end of the program,
respectively.

The program examples in part I copy a deck named COMPROC to include
the common procedures in the program. The following is a listing of the text
stored in deck COMPROC.

?? PUSH (LIST := OFF) ??
*copyc ampSclose
*copyc ampSopen
*copyc amp$put_next
*copyc osp$format_message
?? POP ??

CONST
Line_Length = 137 { carriage control characters+ 136 data

{ characters }

SECTION s#storage_area
SECTION s#global_holding_area
VAR

READ ; { read-only memory }
WRITE { read-write memory }

error_count [STATIC, s#global_holding_area]
INTEGER := -1 , { global error counter }

report_file_name [STATIC, READ, s#storage_area]
AMTSLOCAL_FILE_NAME := '$output' ,

report_file_identifier [STATIC, s#global_holding_area]
AMTSFILE_IDENTIFIER ,

text index [STATIC, s#global_holding_area]
1 •• Line_Length+1 , {Line buffer pointer}

text_Line [STATIC, s#global_holding_area]
STRING (line_length) , {line buffer}

status [STATIC, s#global_holding_area]
OSTSSTATUS ; { global status variable }

Revision A Common Procedures E-1

Common Procedures

{ -- }
{This routine, P#START_REPORT_GENERATION, takes care of initialization}
{details. It sets the error tally to zero and prepares the report file to}
{ receive messages issued by the other procedures. }
{ --- }

PROCEDURE p#start_report_generation (startup_message : STRING (*)) ;

VAR
file_access_selection_p • ARRAY [1 •• *]OF AMT$ACCESS_SELECTION

{ used by AMP$0PEN_FILE }

error_count := -0 ; {initialize error counting}

ALLOCATE file_access_selection_p : [1 •• 1J ;
file_access_selection_p"[01].KEY := AMC$0PEN_POSITION;
file_access_selection_p"[01J.OPEN_POSITION := AMC$0PEN_NO_POSITIONING

{ must be positioned for append access }
AMPSOPEN Creport_file_name, AMCSRECORD, file_access_selection_p,

report_file_identifier, status) ;
FREE file_access_selection_p

text_index := 1 ;
text_Line(text_index, 1) := '0'
text_index := text_index + 1 ;
p#put_m (TRUE, startup_message)

PROCEND p#start_report_generation

{ carriage control character }

{ ---~-------------- }
{

{

{

Routine P#STOP_REPORT_GENERATION does wrap-up activity.
is printed out at this point.

The error tally }
}

--- }

PROCEDURE p#stop_report_generation (shutdown_message : STRING (*)) ;

VAR
pencil
paper

INTEGER ,
STRING (75

IF error_count = 0
THEN

{ formatting area Length }
{ formatting area }

p#put_m (TRUE, 'No error has been found by the program.')
ELSE

STRINGREP (paper, pencil, 'This program has discovered ',
error_count, ' error situation(s).')

p#put_m (TRUE, paperC1, pencil)) ;
!FEND ;

p#put_m (TRUE, shutdown_message) ;

AMPSCLOSE Creport_file_identifier, status)

PROCEND p#stop_report_generation ;

E-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Common Procedures

{ --- }
{ P#PUT_M places the parameter message_string onto the reporting file, taking}
{care to wrap around any long message text by splitting it onto additional }
{physical Lines. Data is appended at the current character position of }
{ text_Line; it doesn't automatically start in column 1. The parameter }
{ new_Line_flag tells whether or not end-of-Line should follow the message. }
{Any unprintable character is translated into'?'. }
{ --- }

PROCEDURE p#put_m Cnew_Line_flag: boolean
message_string : string (* <= 500))

VAR
garbage_eliminator_table : [s#storage_area, STATIC, READ]

string C 256 > := '????????????????????????????????'
CAT I !"#$1'&"0*+,-./0123456789:;<=>?@'
CAT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ[]-_·I

CAT 'abcdefghijklmnopqrstuvwxyz-0 }-?'
CAT
CAT

'??'
•??• .. ,

string_position_Locator •• Line_Length ,

{ Dummy variables, not used }
file_byte_address_x amtSfile_byte_address
status_x ostSstatus

IF error count = -1 {initialization forgotten }
THEN
p#start_report_generation ('Program?? is starting.');
error_count := error_count + 1 ;
p#put_m <TRUE,

ELSE

'Error Detected! P#PUT_M was invoked without being preceded
by P#START_REPORT_GENERATION.') ;

IF (text_index + STRLENGTH(message_string) - 1) = Line_Length
THEN
#TRANSLATE (garbage_eliminator_table, message_string,

text_Line<text_index, STRLENGTH(message_string)))
text_index := text_index + STRLENGTHCmessage_string) ;
AMPSPUT_NEXT (report_file_identifier, -text_Line,

text_index - 1, file_byte_address_x, status_x)
text_index := 1 ; { reset index }
text_LineC1, Line_Length) := {blank filler}
text_index := text_index + 1 { Leave column 1 as carriage }

{ control character }
ELSEIF (text_index + STRLENGTH(message_string) - 1) < line_Length

THEN
#TRANSLATE Cgarbage_eliminator_table,

message_string, text_Line(text_index, STRLENGTH(message_string)))
text_index := text_index + STRLENGTHCmessage_string) ;
IF new_Line_flag

THEN
AMPSPUT_NEXT (report_file_identifier, -text_Line,

text_index - 1, file_byte_address_x, status x)
text_ index := 1 ; { reset index }
text_Line<1, Line_Lengthl := {blank filler}
text_index := text_index + 1 { Leave column 1 as carriage}

{ control character }
!FEND ;

Revision A Common Procedures E-3

Common Procedures

ELSEIF (text_index + STRLENGTH(message_string) - 1) > Line_Length
THEN
string_position_Locator := Line_length - text_index + 1
#TRANSLATE Cgarbage_eliminator_table,

message_stringC1, string_position_Locatorl,
text_Line(text_index, string_position_Locator))

text_index := text_index + string_position_Locator;
AMPSPUT_NEXT (report_file_identifier, "text_Line, text_index - 1,

file_byte_address_x, status_xl ;
text_index := 1 ; { reset index }
text_Line(1, Line_Length) := ' ' {blank filler}
text_index := text_index + 1 { Leave column 1 as carriage}

{ control character }
p#put_m Cnew_Line_flag,

I FEND
IF END

PROCEND p#put_m

message_string(string_position_Locator + 1, *)) ;

{ --}
{ This routine Looks at the global status variable. If something has gone }
{ wrong, then the global error counter is incremented and a formatted message }
{sent to the error Listing file. To prevent excessive printout, all error }
{ message reporting is suppressed when the error counter has become too Large.}
{ --}

PROCEDURE [INLINEJ p#inspect_status_variable

IF NOT status.normal
THEN
error_count := error_count + 1
IF error_count < 333

THEN
p#display_status_variable

ELSEIF error_count = 333
THEN
p#put_m (TRUE,

{ increment error counter }

{ issue the message }

'Error_Count 333. Further message reporting is turned off.')
IF END

IF END

PROCEND p#inspect_status_variable

E-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Common Procedures

{ --------------~------------~----------------------~--~----~----------- }
{ The P#DISPLAY_STATUS_VARIABLE routine takes the "raw" status value from the }
{ global storage, formats it by Looking up the message template, then appends }
{the completed diagnostic message onto the report Listing file. }
{ --------------~--------~----------~~------------~--~----~----~----- }

PROCEDURE p#display_status_variable

VAR
annotation
message
Line_count
Line_size
Line_text
pointer
status_v

STRING (16) ,
OSTSSTATUS_MESSAGE
" OSTSSTATUS_MESSAGE_LINE_COUNT
" OSTSSTATUS_MESSAGE_LINE_SIZE
" OSTSSTATUS_MESSAGE_LINE
" OSTSSTATUS_MESSAGE
OSTSSTATUS { Local status -- ignored

IF text_index <> 2
THEN
p#put_m (TRUE, '')

!FEND ;
{flush Line buffer, put end-of-Line}

IF status.NORMAL
THEN
p#put_m CTRUE, 'NORMAL STATUS') ;

ELSE

{ global status okay

OSPSFORMAT_MESSAGE (status, OSCSFULL_MESSAGE_LEVEL,
Line_Length - 1 - STRLENGTH(annotation>,
message, status_v)

IF NOT status_v.NORMAL
THEN

p#put_m CTRUE,
'Error: Unable to convert status message in
P#DISPLAY_STATUS_VARIABLE.') ;

ELSE
annotation := ' error_status--> '
pointer := "message ;
RESET pointer ;
NEXT Line_count IN pointer
WHILE line_count" > 0 DO

NEXT Line_size IN pointer;

{ first Line only

NEXT Line_text : [Line_size"J IN pointer;
p#put_m (FALSE, annotation) ;
p#put_m CTRUE, Line_text" C1, Line_size")); {print error

message text }
Line_count" := Line_count" - 1 ;

}

annotation :=
WHILEND

--> I { second, third, ••• Line }

IF END
!FEND ;

PROCEND p#display_status_variable

Revision A Common Procedures

}

}

E-5

9 Index

•

•

Index

A

AAF$44D_LIBRARY file I-3-1
AAF$DEPENDENCY _FILE

I-2-30
AA V$RESOLVE_ TIME_LIMIT

variable I-2-26
ABANDON_KEY_

DEFINITIONS call I-3-4
Access information items I-4-2
ACCESS_MODE attribute I-4-5
Access modes

Required for each keyed-file
interface call I-3-2

When sharing keyed files I-2-18
Adding records to a sort II-3-5
Adding records to a merge II-3-9
Altering sort key

characters II-2-24
Alternate base libraries

Keyed files 1-3-1
Sort/Merge II-1-1

Alternate index
Characteristics I-1-16
Glossary definition A-1
Information retrieval I-2-38
Updating I-2-35

Alternate key
Access information

items I-2-36
Characteristics I-1-15
Creation I-2-32

Example I-2-9
Deletion I-2-32
Glossary definition A-1
Selection I-2-33
Use I-2-33

Example I-2-49
Alternate key definition

Description I-1-16
Glossary definition A-1

AMP$ABANDON _KEY_
DEFINITIONS call I-3-4

AMP$APPLY _KEY_
DEFINITIONS call I-3-5

AMP$CREATE_KEY _
DEFINITION call I-3-7

AMP$CREATE_NESTED _FILE
call I-3-14

AMP$DELETE_KEY call I-3-17
AMP$DELETE_KEY _

DEFINITIONS call I-3-19
AMP$DELETE_NESTED _FILE

call I-3-20
AMP$FETCH_ACCESS_

INFORMATION call I-2-36
AMP$GET_KEY call I-3-22
AMP$GET _KEY _DEFINITIONS

call I-3-27
AMP$GET_LOCK_KEYED_

RECORD call I-3-30
AMP$GET _LOCK_NEXT _

KEYED_RECORD call 1-3-34
AMP$GET _NESTED _FILE_

DEFINITIONS call I-3-38
AMP$GET_NEXT call

After alternate-key
selection I-2-34

For a keyed file I-2-16
AMP$GET_NEXT_KEY

call I-3-40
AMP$GET _NEXT _PRIMARY_

KEY LIST call I-3-43
AMP$GET _PARTIAL call I-2-15
AMP$GET _PRIMARY _KEY_

COUNT call I-3-47
AMP$GET _SPACE_ USED_

FOR KEY call I-3-51
AMP$LOCK_FILE call I-3-54
AMP$LOCK __ KEY call I-3-56
AMP$PUT _KEY call I-3-59
AMP$PUT _NEXT call I-2-10
AMP$PUTREP call I-3-62
AMP$REPLACE_KEY call I-3-64
AMP$REWIND call

After alternate-key
selection I-2-34

For a keyed file I-2-13
AMP$SELECT _KEY call I-3-66

Revision B CYBIL Keyed-File and Sort/Merge Interfaces Index-I •

Index

AMP$SELECT _NESTED _FILE
call I-3-67

AMP$SKIP call
After alternate-key

selection I-2-34
For a keyed file I-2-13

AMP$START call I-3-69
AMP$SYSTEM_ HASHING_

PROCEDURE I-1-13
AMP$UNLOCK_FILE call I-3-72
AMP$UNLOCK_KEY call I-3-73
APPLY _KEY _DEFINITIONS

call 1-3-5
Ascending sort order A-1
ASCII

Character set B-1
Glossary definition A-1

ASCil6_FOLDED collating
sequence D-11

ASCil6_STRICT collating
sequence D-13

Attribute
Descriptions 1-4-5
Settings for new keyed

files I-2-1
AVERAGE_RECORD_LENGTH

attribute I-4-8

B

BEGIN MERGE
SPECIFICATION call II-2-4

BEGIN _SORT _SPECIFICATION
call II-2-2

Beginning-of-information A-1
BINARY numeric data

format II-1-8
BINARY _BITS numeric data

format II-1-8
Bit A-1
Block A-1
Block length guideline

attributes I-2-6
BOI A-1
Byte A-2
Byte-addressable file organization

A-2

c
Changing lock intents I-2-25
Character A-2
Character set B-1
Cleared lock I-2-26
Close operation A-2
Close request A-2
COBOL6_FOLDED collating

sequence D-15
COBOL6_STRICT collating

sequence D-17
COLLATE TABLE

attribute I-4-9
COLLATE_TABLE_NAME

attribute I-4-10
Collated key A-2
COLLATING_ALTER

call II-2-24
COLLATING_CHARACTERS

call II-2-23
COLLATING_NAME call II-2-22
COLLA TING _REMAINDER

call II-2-24
Collating sequence A-2
Collation table

Creation D-4
Glossary definition A-2
Listings D-11
Use D-2

Collation weight A-2
Common file structure

attributes I-2-5
Compiling your
program Introduction-2.1
Concatenated key

Description I-1-21
Glossary definition A-2

Concurrent use of keyed
files 1-2-18

Condition code Introduction-5
Constant declarations C-1
Content addressing 1-1-2
Control-p character 1-3-6
Control-t character I-3-6
Conventions used in this

manual 9
*COPYC directives Introduction-I

e Index-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Copying procedure
decks Introduction-I

CREATE_KEY _DEFINITION
call 1-3-7

CREATE_NESTED _FILE
call l-3-I4

Creating
Alternate keys 1-2-32

Call description 1-3-7
Example 1-2-49

Keyed file 1-2-I
Example I-2-4I

Nested file l-3-I4
Example 1-2-55

CYBIL

9o

Constant declarations C-1
Manual set 8
Object libraries

Introduction-2.I
Procedure declarations

Introduction-I
Type declarations C-I

Data block
Description l-I-3
Glossary definition A-3

Data-block split
Description l-I-4
Glossary definition A-3

DATA PADDING
attribute 1-4-11

Deadlock 1-2-29
Deck

Glossary definition A-3
Names Introduction-I

Declarations
Constant and type C-1
Procedure Introduction-I

Default value A-3
DEFINE_ USER_ COLLATING
TABLE call 11-2-11
DELETE_KEY call 1-3-I 7
DELETE_KEY _DEFINITION

call l-3-I9

DELETE _NESTED _FILE
call 1-3-20

Deleting
Alternate keys 1-2-32
Keyed-file records 1-3-17
Nested files 1-3-20
Records from a sort or

merge 11-3-9
Descending sort order A-3
Direct-access file

Attributes I-2-7
Creation 1-2-I
Glossary definition A-3
Hashing procedure I-I-13
Organization I-I-10
Positioning I-2-I3
Primary key I-I-I4
Re-creation 1-2-11
Structure I-I-10

Index

Discarding alternate-key definition
and deletion requests I-3-4

DISPLAY63_FOLDED collating
sequence D-19

DISPLAY63_STRICT collating
sequence D-21

DISPLAY64_FOLDED collating
sequence D-23

DISPLAY64_STRICT collating
sequence D-25

Duplicate key value
Description I-I-I 7
Glossary definition A-3

DUPLICATE_ VALUE
INSERTED item l-4-I2

E

EBCDIC
Glossary definition A-3
Collating sequence D-27

EBCDIC6_FOLDED collating
sequence D-33

EBCDIC6 _STRICT collating
sequence D-35

Embedded key A-3
EMBEDDED _KEY attribute

l-4-I2

Revision B CYBIL Keyed-File and Sort/Merge Interfaces Index-3 e

Index

Empty block chain 1-3-17
End-of-information A-4
End_of_key _list position 1-2-37
END _SPECIFICATION

call II-2-29
Entry point A-4
EOI A-4
EOI_BYTE_ADDRESS

item I-4-13
Equal sort key processing

Owncode procedure 5 II-3-12
SMP$RETAIN _ORIGINAL_

ORDER call 11-2-21
SMP$SUM call 11-2-26

ERROR_COUNTitem 1-4-13
ERROR_ EXIT _NAME

attribute 1-4-14
ERROR_EXIT_PROCEDURE

attribute 1-4-15
Error exit procedure

use lntroduction-4
ERROR_ FILE call 11-2-10
ERROR_LEVEL call 11-2-11
ERROR_LIMIT attribute

Description 1-4-15
Error limit processing for

duplicate key values I-1-18
ERROR_ STATUS item 1-4-16
ESTIMATED _NUMBER

RECORDS call 11-2-15
ESTIMATED _RECORD_ COUNT

attribute 1-4-16
Example

Creating an alternate
key 1-2-49

Creating an indexed-sequential
file I-2-41

Creating and deleting nested
files I-2-55

Sort/Merge owncode
procedure 11-3-13

Sort/Merge
specification 11-1-14

Updating an indexed-sequential
file I-2-45

Exception condition
lntroduction-4

Exception records file A-4
EXCEPTION_RECORDS FILE

call 11-2-16
Exclusive_Access lock

intent 11-2-24
Executing your program

lntroduction-2.1
Expanding your program

Introduction-2
Expired lock

Conditions 1-2-28
Description I-2-26

External reference A-4

F

F record type A-4
FETCH_ACCESS

INFORMATION call I-2-36
Fetching

Access information
items 1-2-36

Alternate index
information I-2-38

Field A-4
FIFO order I-1-17
File A-4
File access modes 1-3-2
File attribute (see Attribute)
File cycle A-4
FILE_ LENGTH attribute 1-4-16
FILE_LIMIT attribute 1-4-17
File lock

Clearing 1-3-72
Description 1-2-30
Request 1-3-54

File organization A-4
FILE_ ORGANIZATION

attribute 1-4-17
File position

After alternate-key
selection 1-2-37

Glossary definition A-4
FILE_POSITION item 1-4-18
File reference A-5
File structure attributes 1-2-4

e Index-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

First-in-first-out order I-1-17
Fixed record length attribute 1-2-2
Floating sign numeric data

format Il-1-8
Flush request A-5
Flushing A-5
FORCED_ WRITE attribute

Description I-4-19
When the keyed file is

shared 1-2-5
FROM_FILES call II-2-4

G

GET KEY call 1-3-22
GET _KEY _DEFINITIONS

call I-3-27
GET_LOCK_KEYED_RECORD

call I-3-30
GET_LOCK_NEXT_KEYED

RECORD call I-3-34
GET_NESTED_FILE

DEFINITIONS call I-3-38
GET _NEXT call

After alternate-key
selection 1-2-34

For a keyed file 1-2-16
GET _NEXT _KEY call' I-3-40
GET_NEXT_PRIMARY_KEY

LIST call I-3-43
GET _PARTIAL call 1-2-15
GET _PRIMARY _KEY_ COUNT

call
Description I-3-47
Processing I-2-38

Getting
Alternate-key definitions I-3-27
Index space used for key value

range I-3-51
Keyed-file records 1-2-16
Nested-file definitions 1-3-38
Primary-key value count I-3-47

GLOBAL_ACCESS_MODE
attribute I-4-20

GLOBAL_FILE_NAME attribute
I-4-20

GLOBAL_SHARE_MODE
attribute 1-4-21

H

Hashing procedure
Attribute 1-2-7
Description I-1-13
Glossary definition A-5

Index

HASHING PROCEDURE NAME
attribute I-4-21

Home block

I

Attribute 1-2-7
Description I-1-10
Glossary definition A-5

Index block
Description 1-1-3
Glossary definition A-5

Index-block split
Description I-1-6
Glossary definition A-5

Index level
Description 1-1-6
Glossary definition A-5

INDEX_LEVELS attribute I-4-22
Index level overflow

Description I-1-6
Glossary definition A-6

INDEX_ PADDING
attribute 1-4-22

Index record A-6
Indexed-sequential file

Attributes I-2-7
Creation I-2-1
Glossary definition A-6
Organization I-1-2
Re-creation 1-2-10
Structure 1-1-2

Initial home block count
Attribute I-2-7; I-4-23
Description I-1-11

Instance of open A-6
INTEGER numeric data

format 11-1-8
INTEGER_ BITS numeric data

format 11-1-8
Integer key A-6
Invalid sort records 11-1-13

Revision B CYBIL Keyed-File and Sort/Merge Interfaces lndex-5 e

Index

J

Job A-6

K

Key A-6
KEY call II-2-9
Key count I-3-47
KEY _LENGTH attribute I-4-23
Key list

Description I-1-17
Glossary definition A-6

KEY _POSITION attribute I-4-23
Key relation positioning I-2-14
Key type

Glossary definition A-7
Keyed-file attribute I-2-4
Sort/Merge II-1-5

KEY_ TYPE attribute I-4-24
Keyed-file

Attribute
Descriptions I-4-5
Setting for a new file I-2-1

Calls I-3-1
Concepts I-1-1
Creation I-2-1
Organization I-1-1

Glossary definition A-7
Positioning I-2-13
Reading I-2-15
Records 1-2-1
Sharing 1-2-18
Writing I-2-10
Use I-2-12

Keyed-file interface object
library I-3-1

L

LAST _ACCESS OPERATION
item I-4-25

LAST_OP _STATUS item I-4-27
LEVELS_OF _INDEXING

item I-4-27
Library A-7
LIST_FILE call II-2-17

LIST_ OPTION call II-2-18
LOAD_COLLATING_TABLE

call II-2-18.2
Local file A-7
Local file name A-7
Local path A-7
Lock

Clearing 1-2-26
Deadlock I-2-29
Effect on calls I-2-31
Expiration I-2-26
Expiration conditions I-2-28
Intent

File locks I-2-30
Key locks I-2-24
Switching 1-2-25

Maximum I-2-30
Processing 1-2-30
Timeout period I-2-26
Waiting I-2-26

Lock expiration time
Attribute I-2-9; I-4-27
Use I-2-27

Lock file I-2-30
LOCK_FILE call I-3-54
LOCK KEY call I-3-56
Lock manager I-2-21

M

$MAIN FILE I-2-24
Major key

Glossary definition A-8
Positioning of a keyed

file I-2-14
Major sort key A-8
Mass storage A-8
MAX_ BLOCK_ LENGTH

attribute I-4-28
MAX_RECORD_LENGTH

attribute I-4-28
Merge A-8
Merge input record order II-2-29
MESSAGE_ CONTROL

attribute I-4-29
MIN_RECORD_LENGTH

attribute I-4-30

e Index-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Minor sort key A-8
Module A-8

N

A Naming
9 convention lntroduction-6

Nested file
Creation 1-3-14
Definition record 1-3-14
Deletion 1-3-20
Descripton 1-1-24
Example 1-2-54
Glossary definition A-8

Nonembedded key
Description 1-1-9
Glossary definition A-8

NOS/VE predefined collation table
(see Predefined collation table)

NULL_A'ITRIBUTE attribute
1-4-30

NULL_ITEM item 1-4-30
Null suppression

Description 1-1-19
Glossary definition A-8

Null values 1-1-19
NUMBER_OF _NESTED_FILES

item 1-4-31
Numeric data formats 11-1-7
NUMERIC_FS numeric data

format 11-1-8
NUMERIC_LO numeric data

format 11-1-8
NUMERIC_LS numeric data

format 11-1-8
NUMERIC_NS numeric data

format 11-1-9
NUMERIC_ TO numeric data

format 11-1-9
NUMERIC_ TS numeric data

format 11-1-9

Object code A-9
Object library A-9
Open operation A-9

Open request A-9
OPEN _POSITION

attribute 1-4-31

Index

Ordered by primary key 1-1-17
Ordering manuals 10
OST$STATUS record

Introduction-4
OSV$ASCll6_FOLDED collating

sequence D-11
OSV$ASCII6 _STRICT collating

sequence D-13
OSV$COBOL6_FOLDED

collating sequence D-15
OSV$COBOL6_STRICT collating

sequence D-17
OSV$DISPLA Y63 _FOLDED

collating sequence D-19
OSV$DISPLA Y63 _STRICT

collating sequence D-21
OSV$DISPLA Y64_FOLDED

collating sequence D-23
OSV$DISPLA Y64 _STRICT

collating sequence D-25
OSV$EBCDIC collating

sequence D-27
OSV$EBCDIC6 _FOLDED

collating sequence D-33
OSV$EBCDIC6_STRICT collating

sequence D-35
Overflow block

Description I-1-10
Glossary definition A-9

Overpunch signed numeric
data 11-1-10

Owncode A-9
OWNCODE_FIXED RECORD

LENGTH call 11-2-18.4
OWNCODE_MAX_RECORD

LENGTH call 11-2-19
Owncode procedure

Parameters 11-3-2
Processing II-3-1
Specification II-3-1

OWNCODE_PROCEDURE n
call II-2-20

Owncode 1 procedure
Processing II-3-5

Revision B CYBIL Keyed-File and Sort/Merge Interfaces Index-7 e

Index

Specification II-2-20
Owncode 2 procedure

Processing II-3-7
Specification II-2-20

Owncode 3 procedure
Processing II-3-9
Specification Il-2-20

Owncode 4 procedure
Processing II-3-I I
Specification Il-2-20

Owncode 5 procedure
Processing II-3-I2
Specification Il-2-20

p

PACKED numeric data
format II-I-9

PACKED _NS numeric data
format II-I-9

Padding
Description I-I-4
Glossary definition A-9

Path A-9
Pa use_ break character I-3-5
Permanent file A-9
PERMANENT _FILE

attribute I-4-32
Piece

Description I-2-2I
Glossary definition A-9

Positioning
Keyed files I-2-I3
Using alternate keys I-2-34

Predefined collation table
Listings D-11
Use D-2

Preserve_Access and_ Content
lock intent I-2-24

Preserve_ Content lock
intent I-2-24

Primary key
Attributes I-2-3
Characteristics

Direct-access I-I-I4
Indexed-sequential I-I-9

Glossary definition A-10

PRIMARY _KEY item I-4-32
Primary-key-value order I-I-I 7
Procedure call use Introduction-I
Procedure calls

Keyed-file interface I-3-1
Sort/Merge II-2-I

Procedure deck names
Introduction-I

Process identifiers Introduction-5
Processing attributes 1-2-8
Processing a keyed file I-2-12
Program examples

Keyed-file interface I-2-40
Sort/Merge interface II-l-I4

Program-library list A-10
PUT _KEY call I-3-59
PUT _NEXTcall I-2-10
PUTREP call I-3-62
Putting keyed-file records I-2-10

R

Random access
Description I-2-I 7
Glossary definition A-10

Reading
Keyed files I-2-I5
Using alternate keys I-2-34

REAL numeric data format II-I-9
Reca owncode parameter II-2-2
Reeb owncode parameter II-2-2
Record A-10
Record attributes I-2-2
Record length

Keyed-files I-2-2
Sort/Merge II-I-I2

RECORD_LIMIT attribute I-4-32
RECORD_ TYPE attribute I-4-33
RECORDS_PER_BLOCK

attribute I-4-33
Re-creating a keyed file I-2-10
Remainder collation step II-2-24
Repeating groups

Description I-I-22
Glossary definition A-10

REPLACE_KEY call I-3-64
Replacing keyed-file records I-3-64

e Index-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

RESIDUAL_ SKIP_ COUNT
item I-4-34

Result array II-2-3
RETAIN_ORIGINAL ORDER

call Il-2-21
Return_ code owncode

parameter II-3-2
RETURN_ OPTION

attribute I-4-34
Rewind A-10
REWIND call

After alternate-key
selection I-2-34

For a keyed file I-2-13
Ring A-10
RING_ATTRIBUTES attribute

Description I-4-35
For a hashing procedure I-1-13

Rla owncode parameter II-3-2
Rlb owncode parameter Il-3-2

s
SCL A-10
SCU Introduction-I
SELECT _KEY call I-3-60
SELECT _NESTED _FILE

call I-3-67
SELECTED_KEY_NAME

item I-4-35
SELECTED _NESTED _FILE

item I-4-36
Selecting a key I-2-33
Self-deadlock condition I-2-29
Sequential access

Direct-access file I-2-16
Glossary definition A-11
Indexed-sequential file I-2-15

Sequential file organization A-11
Setting file attributes I-2-1
Sharing keyed files I-2-18
Short sort records II-1-13
Sign overpunch representation

II-1-11
Signed numeric sort data II-1-10
SKIP call

After alternate-key selection
I-2-34

Index

For a keyed file I-2-13
SMF$LIBRARY file II-1-2
SMP$BEGIN _MERGE_

SPECIFICATION call II-2-4
SMP$BEGIN_SORT_

SPECIFICATION call II-2-2
SMP$COLLATING_ALTER

call II-2-24
SMP$COLLATING_

CHARACTERS call II-2-23
SMP$COLLATING_NAME

call II-2-22
SMP$COLLATING_

REMAINDER call II-2-24
SMP$DEFINE_ USER_

COLLATING_ TABLE
call II-2-11

SMP$END_SPECIFICATION
call II-2-29

SMP$ERROR_FILE call II-2-12
SMP$ERROR_LEVEL call

II-2-13
SMP$ESTIMA TED _NUMBER

RECORDS call II-2-15
SMP$EXCEPTION_RECORDS_

FILE call II-2-16
SMP$FROM_FILES call II-2-5
SMP$KEY call II-2-9
SMP$LIST _FILE call II-2-17
SMP$LIST _OPTION call II-2-18
SMP$LOAD _COLLA TING_

TABLE call II-2-18.2
SMP$0WNCODE_FIXED _

RECORD_LENGTH
call II-2-18.4

SMP$0WNCODE_MAX_
RECORD_LENGTH call II-2-19

SMP$0WNCODE_
PROCEDURE_n call II-2-20

SMP$RETAIN _ORIGINAL_
ORDER call II-2-21

SMP$STATUS call II-2-25
SMP$SUM call II-2-26
SMP$TO_FILE call II-2-7
SMP$VERIFY call 11-2-29
Sort A-11
Sort key

Description 11-1-3

Revision B CYBIL Keyed-File and Sort/Merge Interfaces Index-9 e

Index

Glossary definition A-11
Sort order

Description II-1-12
Glossary definition A-11

Sort/Merge
Call order II-2-1
Error levels II-2-13
Example program Il-1-14
Input files II-2-5
Object library II-1-2
Output file II-2-7
Owncode procedure

processing II-3-1
Record length Il-1-12
Record insertion Il-3-5
Record deletion II-3-9
Statistics II-2-3
Valid records Il-1-13

Source code A-11
Source Code Utility Introduction-I
Source library A-11
Sparse-key control

Description I-1-20
Glossary definition A-11

START call I-3-69
Statistics A-11
STATUS call Il-2-25
Status checking

Description Introduction-4
Procedures E-1

Status record contents
Introduction-4

Status variable A-11
Submitting comments 10
SUM call II-2-26
Sum fields A-12
Summing A-12
Switching lock intents I-2-25
System Command Language A-12
System hashing procedure I-1-13
System naming convention

Introduction-6

T

Task A-12

Terminate_break character I-3-5
Timeout period I-2-26
TO_ FILE call II-2-7
Trivial-error limit

Attribute description I-4-15
Processing duplicate-key value

errors I-1-18
Type checking lntroduction-3
Type declarations C-1

u
U record type A-12
Uncollated key A-12
UNLOCK ALL call I-3-73
UNLOCK_ FILE call 1-3-72
UNLOCK_KEY call 1-3-73
Updating an alternate

index 1-2-35
Using

v

Alternate keys 1-2-33
Example 1-2-49

Keyed files I-2-12
Example I-2-45

V record type A-12
Validating sort data Il-1-13
VERIFY call II-2-29

w
Waiting for a lock I-2-26
Working storage area A-12
Writing

z

After alternate-key
selection I-2-35

Keyed-file records I-2-10

Zero-length sort records Il-1-13

e Index-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

CYBIL for NOS/VE Keyed-File and Sort/Merge Interfaces 60464117 B

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be used. Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have?

D Manager

0 Systems Analyst or Programmer

D Applications Programmer

0 Operator
D Other ______ _

0 As an Overview

D To Learn the Product/System

D For Comprehensive Reference

D For quick Look-up

What programming languages do you use?

D Any SCL Manuals

D CYBIL Language Definition

D CYBIL System Interface

D CYBIL File Management

0 CYBIL Sequential and
Byte-Addressable Files

Which are helpful to you? D Procedures Index (inside covers) 0 Glossary D Related Manuals page

D Character Set D Other:

How Do You Like This Manual? Check those that apply

Yes Somewhat No

D D D Is the manual easy to read (print size, page layout, and :m on)'?

D D [] Is it easy to understand'!

D [] D Is the order of topics logical?
D D D Are there enough examples'!

D D [] Are the examples helpful'? (0 Too simple D Too complex)

D D D Is the technical information accurate?
[] D D Can you easily find what you want?

D [] [] Do the illustrations help you?

D [] D Does the manual tell you what you need to know about the topic'?

Comments? If applicable, note page number and paragraph.

Would you like a reply? 0 Yes 0 No Continue on other side e From:

Name ___________ ----- Company ____ _

Address _______ --------- Date------------

Phone No.

e.__~~~-··-··-·_----~~~___.
Please send program listing and output if applicable to your comment.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE Will BE PAID BY ADDRESSEE

(52)coNTRPL DATA

Publications and Graphics Division
Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

111111 NO POSTAGE
NECESSARV.
IF MAILEO

IN THE
UNITED STATES

l~

•

·;~,~~~:.~,::;:.;,~:.~~:.::r:;.~-.-.:~-..-:~:~:.-,-·········· ············--·············-··········-······-·························;~·:~·····1-

