CYBIL for NOS/VE CC%H%L
File Interface DATA

60464114

Command Index

AMP$ABANDON_KEY _

DEFINITIONS 10-67
AMPS$SACCESS_METHOD _

PROCEDURE D-13
AMP$ADD_TO_FILE _

DESCRIPTION............ D-11
AMP$_APPLY_KEY _

DEFINITIONS 10-65
AMPS$CLOSE 75
AMP$COPY _FILE........... 119
AMPS$CREATE_KEY _

DEFINITION 10-58
AMP$DELETE_KEY 10-35
AMP$DELETE_KEY _

DEFINITION 10-64
AMPSFETCH 6-15
AMPS$FETCH_ACCESS _

INFORMATION............ 7-16
AMPSFETCH_FAP_

POINTER D-16
AMPSFILE 6-5
AMPSFLUSH 9-31
AMP$GET _DIRECT 9-21
AMP$GET _FILE _

ATTRIBUTES 6-13
AMPSGET _KEY 10-25
AMP$GET _KEY _

DEFINITIONS 10-75
AMP$GET_NEXT 9-23

AMP$GET_NEXT_KEY10-28
AMPSGET _NEXT_PRIMARY _

KEY LIST 10-81
AMP$GET _PARTIAL........ 9-26
AMP$GET _PRIMARY _KEY _

COUNT 10-78
AMPSGET_SEGMENT _

POINTER86
AMP$OPEN 7-2
AMP$PUT _DIRECT 9-33
AMP$PUT _KEY............ 10-16
AMP$PUT_NEXT 9-35
AMP$PUT _PARTIAL........ 9-37
AMPSPUTREP 10-31
AMP$REPLACE _KEY...... 10-33
AMP$RETURN 2-7
AMPSREWIND 9-17
AMP3$SEEK_DIRECT........ 9-11

AMPS$SELECT _KEY........ 10-74

AMPS$SET_FILE_INSTANCE _

ABNORMAL D-20
AMPS$SET_SEGMENT _

EOI ...t 8-18
AMPS$SET_SEGMENT _

POSITION 8-20
AMPSSKIP 9-18
AMPS$SKIP_TAPE_MARKS ..4-9
AMPS$START 10-21
AMPS$STORE 6-8
AMPS$STORE_FAP _

POINTER D-15
AMPS$VALIDATE _CALLER _

PRIVILEGE................ D-8
AMPSWRITE_END_

PARTITION................ 9-39
AMPS$WRITE _TAPE _

MARK 4-12
CLP$CREATE _FILE _

CONNECTION.............. 29
CLP$DELETE_FILE _

CONNECTION 2-10.
IFP$FETCH_TERMINAL....5-11
IFP$GET_DFLT_TERM _

ATTRIBUTES............... 54
IFP$GET_TERMINAL_

ATTRIBUTES 5-7
IFP$STORE_TERMINAL..... 59
IFPSTERMINAL.............. 52
PFPSATTACH 3-34
PFP$CHANGE 3-10
PFP$DEFINE. 34
PFP$DEFINE_CATALOG ...3-14
PFP$DELETE_CATALOG _

PERMIT 3-28
PFP$DELETE_PERMIT 3-24
PFP$PERMIT................ 3-20
PFP$PERMIT_CATALOG ...3-25
PFP$SPURGE 3-7

PFP$PURGE_CATALOG315
RMP$GET_DEVICE _

CLASS 2-3
RMP$REQUEST NULL_

DEVICE 2-5
RMP$REQUEST _TAPE 4-3
RMP$SREQUEST _

TERMINAL 5-6

CYBIL for NOS/VE
File Interface

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464114

Related Manuals

Background (Access as Needed):

SCL SCL SCL
Language System
Definition —» | [Interface Quick
Reference
Usage Usage
60464013 60464014
CYBIL Manual Set:

CcysIL
Language
Definition

Usage

60464113

Additional References:

CYBIL
System
Interface

Usage

60464115

—_—

g means available online.

indicates reading sequence.

Diagnostic ’ SCL SCL Sort/Merge
Messages Source Code Object Code
Management Management Usage
Usage
Usage Usage l
50464613 |() 60464313 60464413 J—Dl 60486113 |()

Copyright 1983, 1984 by Control Data Corporation

All rights reserved.

Printed in the United States of America.

2 CYBIL File Interface

SCL
Advanced
File
Management

Usage

60486413

Revision B

Manual Historvy

Revision B reflects the release of NOS/VE 1.1.1 at PSR level 613. It was
printed July 1984.

The changes consist of rewrites of chapters 1 and 3 to improve usability, new
formats for all CYBIL procedures, additions to indexed sequential files,
major editorial changes throughout, and inclusion of new CYBIL types.

Because changes to this manual are extensive, individual changes are not
marked. This edition obsoletes all previous editions.

Previous System
Revision Level Date
A 1.0.2 February 1984

Revision B CYBIL File Interface 3/4

Contents

How To Use This Manual ... 7
Audience For This Manual ... 7

Organization 8
Conventions................. 9
Additional Related
Manuals 10
Part I
Introduction

How to Use Interface

Calls 1-1

Using File Interface

Procedures 1-1
System Naming

Convention 19
Procedure Call Description

Format 1-10

Part 11

Assigning Files To Devices
Local File Management. ... 2-1

Specifying the Device

Class of a New File....... 21
Null Device Class.......... 2-4
Returning a Local File 2-6
File Connections........... 2-8

Mass Storage File

Management 3-1
File and Catalog Paths3-1
FileCycles 3-3
File Subcatalogs 313
Access Modes 3-16
File AccessLog 3-16

Access Control Entries 3-17
Attaching a Permanent
File...................... 3-29

Revision B

Tape Management

Tape File Requests. ...
Tape File Attributes ..
Tape File Positioning .

Terminal Management

Default Terminal
Attributes...........
Terminal File Requests
Changing Terminal
Attribute Values
After the File
IsOpen.............
Terminal Attributes. ..
Special Considerations
for Terminal File
Processing
Terminal Output......
Terminal Conditions . .

Part Il

..... 5-33

Assigning File Data

Defining New File
Attributes
Defining Old File
Attributes
Defining Attributes
for an Open File
Attribute Definition
Calls
Retrieving File
Attributes
File Attribute
Descriptions

Defining File Attributes ... 6-1

Contents 5

CONTENTS

File Opening and

Closing 7-1
File Identifiers 7-1
Access Validation 7-6
Error Exit Procedure 77
FileSharing 7-8

Accessing a File as a

Memory Segment 8-1
CYBIL Data Storage 81
Virtual Memory Access ... 83
Segment Attributes 84
Segment Pointer. 85
Sharing a Segment

AccessFile............ 815

Accessing Sequential and
Byte Addressable

Logical File Structure 9-1
Working Storage Area 9-1

Record Types 9-2
File Blocking 94
Sequential Record
Access ... 9-7
Random Record
Accesscviiuin.. 9-9
File Positioning 9-14
Reading Records 9-20
Writing Records 9-29
Accessing Indexed
Sequential Files 10-1
Primary Keys.......... 10-1
Indexed Sequential
File Structure......... 10-3
Processing an Existing
Indexed Sequential
File................. 10-18

Monitoring the Index Levels
in an Indexed Sequential

File................. 10-37
Indexed Sequential File

Example............. 10-39
Alternate Keys......... 10-47

6 CYBIL File Interface

File Copying 11-1 .

Sequential File

Organization to

Sequential File

Organization 11-2
Sequential File

Organization to

Indexed Sequential

File Organization 11-3
Byte Addressable

File Organization

to Byte Addressable

File Organization 114
Indexed Sequential

File Organization

to Indexed Sequential

File Organization 11-5
Indexed Sequential File

Organization to

Sequential File
Organization 11-7
List File Copying 11-8
File Copy Example 11-11
Part IV
Appendixes
Glossary A-1
ASCII Character Set B-1

Constant and Type
Declarations C-1

File Access Procedures .. D-1

Collation Tables for
Indexed Sequential

Files................... E-1
Common Procedures F-1
Index Index-1

Revision B

About This Manual

This manual describes CONTROL DATA® CYBIL procedure calls that
interface between the CDC® Network Operating System/Virtual
Environment (NOS/VE) and CYBIL programs. CYBIL is the
implementation language of NOS/VE.

NOS/VE provides a program interface written in the CYBIL language
through which CYBIL programs can interface to the operating system. This
program interface is comprised of CYBIL procedures which are designed to
be used in CYBIL programs. These CYBIL procedures are topically divided
for presentation in two manuals: the CYBIL System Interface manual, and
this, the CYBIL File Interface manual.

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that the reader knows the CYBIL programming language as described in the
CYBIL Language Definition manual.

To use the procedure calls described in this manual, the programmer must
copy decks from a system library. Although this manual provides a brief
description of the commands required to copy procedure declaration decks,
the SCL Source Code Management manual contains the complete
description.

This manual also assumes that the reader has used the System Command
Language (SCL). You can perform many system functions described in this
manual using either SCL commands or CYBIL procedure calls. Commands
referenced in this manual are SCL commands. For a description of SCL
command syntax, see the SCL Language Definition manual; for individual
SCL command descriptions, see the SCL System Interface manual.

Other manuals that relate to this manual are shown on the Related Manuals
page.

Revision B About This Manual 7

ORGANIZATION

Organization

The CYBIL File Interface manual is divided into four parts:

Introduction

Assigning Files to Devices
Accessing File Data
Appendixes

The first part is an introduction to the use of system-supplied file interface
calls. You should read the introduction first.

Each of the chapters in the second and third parts describes a certain
function. You can read these chapters in any order. For example, if you do
not plan to use tape files, you can skip the chapter on tape management.

The Assigning Files to Devices part describes calls to assign files to device
classes. Separate chapters describe mass storage, tape, and interactive
terminal assignment.

The Accessing File Data part describes calls used to access files regardless of
their device assignment. Separate chapters describe file attribute definition,
opening and closing files, and reading and writing file data.

The appendixes provide supplementary information:
Appendix A Glossary.
Appendix B ASCII character set.

Appendix C System-defined type and constant declarations used by file
interface procedures.

Appendix D Description of the use and creation of file access procedures
(FAPs).

Appendix E Description of collation table creation for indexed
sequential files.

Appendix F Common procedures.

This manual is part of the CYBIL manual set. Besides this manual, the
CYBIL manual set includes the following manuals:

e The CYBIL Language Definition manual that defines the CYBIL
language in detail.

e The CYBIL System Interface manual that describes the
NOS/VE-supplied system interface CYBIL procedures.

8 CYBIL File Interface Revision B

CONVENTIONS

g Conventions

boldface

italics

blue

Within formats, procedure names are shown in boldface type.
Required parameters are also shown in boldface.

Within formats, optional parameters are shown in italics.

Within interactive terminal examples, user input is shown in
blue.

UPPERCASE Within formats, uppercase letters represent reserved words;

lowercase

examples

numbers

Revision B

they must appear exactly as shown in the format.

Within formats, lowercase letters represent names and values
that you supply.

Examples are printed in a typeface that simulates computer
output. They are shown in lowercase, unless uppercase
characters are required for accuracy.

All numbers are base 10 unless otherwise noted.

About This Manual 9

ADDITIONAL RELATED MANUALS

Additional Related Manuals

Each procedure call description lists the exception conditions that the
procedure can return. The message template and condition code associated
with each condition is listed in the Diagnostic Messages for NOS/VE
manual (publication number 60464613).

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use this comment
sheet to give us your opinion of the manual’s usability, to suggest specific
improvements, and to report technical or typographical errors. If the
comment sheet has already been used, you can mail your comments to:

Control Data Corporation

Publications and Graphics Division ARH219
4201 Lexington Avenue North

St. Paul, Minnesota 55112

Please indicate whether you would like a written response.

10 CYBIL File Interface Revision B

e How to Use File Interface Calls 1

Using File Interface Procedures i, 11
Copying Procedure Declaration Decks 1-3

. Expanding a Source Program o il 1-4
Calling a File Interface Procedure 1-6
Parameter List e 1-6

Checking the Completion Status. iiiiiiiiiinnnnn.. 1-7

Exception Condition Information.................covvivin.. 1-7
System Naming Conventioniiiiiiiiiianenennnnnnn 1-9
Procedure Call Description Format ciiiiiiie.. 1-10

Parameter Description Format 1-10

® How to Use File Interface Calls 1

NOS/VE provides a set of CYBIL procedures by which programs can request
system services. A system service is a function which supplies information

‘ and capabilities to application programs. The functions are supported by the
operating system. This manual describes the file interface portion of the
NOS/VE-supplied CYBIL procedures. It provides the CYBIL programmer
with the information required to make calls to file interface procedures in
CYBIL programs.

Using File Interface Procedures

Each CYBIL file interface procedure resides as an externally referenced
(XREF) procedure declaration in a deck on a system source library. In
general, to use a file interface procedure, you must include the following
statements in your CYBIL source program:

e A Source Code Utility (SCU) *COPYC directive to copy the XREF
procedure declaration from a system source library.

e Statements to declare, allocate, and initialize actual parameter variables

‘ as needed.

® The procedure call statement.

e An IF statement to check the procedure completion status which is
returned in the procedure’s status variable.

Figure 1-1 lists a source program that illustrates use of a file interface
procedure. System-defined names are shown in uppercase letters; user-
defined names in lowercase letters.

Revision B How to Use File Interface Calls 1-1

USING FILE INTERFACE PROCEDURES

MODULE examplel;
{ Directives to copy the XREF procedure declarations.}

*copyc rmp$get_device_class
*copyc rmp$request_null_device

{ This procedure returns the device class of the file }
{ and a status record to the caller.}

PROCEDURE get_device_class
(Lfn: amt$local_file_name;
VAR class_returned: rmt$device_class;
VAR status: ost$status);

{ Parameter declarations }

VAR
device_assigned: boolean;

{ Procedure call statement }

RMP$GET_DEVICE_CLASS (Lfn, device_assigned,
class_returned, status);

{ Status record check. }

IF NOT status.NORMAL THEN
RETURN;
IFEND;

IF device_assigned = FALSE THEN
RMP$REQUEST_NULL_DEVICE (lLfn, status);
IF NOT status.NORMAL THEN

RETURN;
IFEND;
class_returned := rmc$null_device; -
IFEND;

PROCEND get_device_class;
MODEND examplel;

1-2

Figure 1-1. File Interface Call Example

CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

The following paragraphs describe in greater detail the SCU directives and
CYBIL statements required to use a file interface procedure.

Copving Procedure Declaration Decks

To use a file interface procedure in a CYBIL module, the module must
include an SCU *COPYC directive to copy the externally referenced
procedure from a system library. The XREF procedure declarations for all
file interface calls except the indexed sequential file calls described in
chapter 10 are stored as decks in the source library file
$SYSTEM.CYBIL.OSF$PROGRAM _INTERFACE. The indexed sequential
file procedure declarations are stored as decks in the source library file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE.

The deck containing the procedure declaration has the same name as the
procedure. For example, the RMP$GET_DEVICE_CLASS procedure is
declared in a deck named RMP$GET_DEVICE _CLASS.

As shown in figure 1-1, the *COPYC directives begin in column one, specify
the name of the deck to be copied, and, in this example, follow the MODULE
statement. You will need only one *COPYC directive for calls to the same file
interface procedure in your CYBIL module regardless of how many times the
procedure is called. For instance, if the module in figure 1-1 had called the
RMP$GET _DEVICE _CLASS procedure more than one time, the one
*COPYC directive to copy the XREF RMP$GET_DEVICE _CLASS
procedure deck would suffice.

For more information about the *COPYC directive, see the SCL Source Code
Management manual.

Procedure declaration decks list the parameters and their valid CYBIL types
that must be listed on a call to a file interface procedure. When a CYBIL
program is being compiled, the parameters on the call to the file interface
procedure are verified with the parameters and parameter types listed in the
procedure’s XREF procedure declaration. If the parameters on the call to the
file interface procedure do not match the parameters and the parameter’s
required type as defined in the procedure declaration, the program
compilation will fail. After the module in figure 1-1 is compiled, the XREF
procedure declaration will be included in the source listing.

An example of a procedure declaration deck is found later in this chapter
under the subheading, Calling a File Interface Procedure.

In this manual, the required parameters as well as each parameter’s required
type is listed in the individual procedure call description format for each file
interface procedure. The parameter types for all CYBIL file interface
procedures are listed alphabetically in appendix C.

Revision B Defining File Attributes 1-3

USING FILE INTERFACE PROCEDURES

Expanding a Source Program

A CYBIL source program that calls one or more file interface procedures
must be expanded through commands provided in the Source Code Utility
(SCU). Expanding the program through SCU generates the source code to be
compiled.

The SCU process of expanding requires that the source program exist as one
or more decks on an SCU library. The contents of a file containing a CYBIL
module are transferred onto a deck when you issue the CREATE_DECK
subcommand within an SCU session. An example of how to do this is shown
in figure 1-2.

To expand a CYBIL source program that calls file interface procedures, you
use the SCU EXPAND_DECK subcommand. You list the name of the decks
to be expanded on the DECK parameter, and you list the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE file, which contains the
XREF procedure decks for all file interface procedures, as the
ALTERNATE_BASE parameter on the same EXPAND_DECK
subcommand. SCU then processes the specified decks, copying any XREF
decks named on *COPYC directives into the CYBIL source program.

If the CYBIL program uses indexed sequential file calls, the file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE must
also be specified on the ALTERNATE _BASE parameter. Figure 1-2 shows a
command sequence.

1. /create_source_Llibrary

/scu base=result result=3user.my_Library

3. sc/create_deck deck=my_program modification=mod0 ..
sc../source=source_file

4. sc/expand_deck deck=my_program ..

sc../alternate_base= ..

sc../($system.cybil.osf$program_interface,..

sc../$system.common.psf$external_interface_source)

sc/quit write_Llibrary=true

6. /cybil i=compile l=listing lo=(x, r, a)

o

o

Figure 1-2. Source Text Preparation Example

1-4 CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

. The command sequence in figure 1-2 performs the following tasks:

1.
2.

)

Creates an empty source library on the default file RESULT.

Calls SCU. The base library is the empty library on file RESULT that
was created in step 1; the result library will be written on the user’s
permanent file, MY_LIBRARY, at the end of the SCU session.

. Creates a deck named MY_PROGRAM. The deck was created from the

local file, SOURCE _FILE which contained the CYBIL program.

Expands the MY_PROGRAM deck. Expanding the MY_PROGRAM
deck will process any *COPYC directives included in the source
program. Any decks specified by the *COPYC directives will be copied
from the library files OSF$PROGRAM _INTERFACE or
PSF$EXTERNAL_INTERFACE_SOURCE which are listed on the
ALTERNATE_BASE parameter. The expanded text is written on the
default file COMPILE.

Ends SCU processing. The WRITE _ LIBRARY=TRUE parameter
indicates that the library is to be written on the result library file. (This
is not required; the expanded source text remains available on the
COMPILE file even if no result library is written.)

Calls the CYBIL compiler to compile the text on file COMPILE and
write a source listing on file LISTING.

For more information on creating source libraries and decks and on
expanding decks, see the SCL Source Code Management manual.

Revision B How to Use File Interface Calls 1-5

USING FILE INTERFACE PROCEDURES

Calling a File Interface Procedure

A call to a file interface procedure has the same format as any CYBIL
procedure call. In general, a CYBIL procedure call statement has the
following format:

procedure_name (parameter_ list);

For more information on CYBIL procedure calls, see the CYBIL Language
Definition manual.

Parameter List

A procedure parameter list provides the procedure with input values and the
locations where it is to store output values. You can specify an input value as
the value itself or as a variable containing the value.

NOTE

All parameters on a procedure call are required. You must specify a value or
variable for each parameter in the parameter list.

CYBIL performs type checking on the variables and values specified in a
procedure parameter list. It compares the parameters on the procedure call
with the parameter types listed in the XREF procedure declaration.
Therefore, to make a successful call to a file interface procedure, the
parameters on the procedure call must conform to the parameter types
specified in the procedure declaration deck.

For example, the procedure declaration for the RMP$GET_DEVICE _
CLASS procedure is as follows:

PROCEDURE [CXREF] rmp$get_device_class
(local_file_name: amt$local_file_name;
VAR device_assigned: boolean;

VAR device_class: rmt$device_class;
VAR status: ost$status);

This declaration indicates that a call to the procedure must specify four
parameters in its parameter list. The first parameter must specify an input
value of type AMT$LOCAL_FILE _NAME; the second parameter must
specify a variable of type BOOLEAN; the third parameter must specify a
variable of type RMT$DEVICE _CLASS; and the fourth parameter must
specify a variable of type OST$STATUS. The “VAR?” listed with the last
three parameters indicates that these parameters are treated as output
parameters by the RMP$GET_DEVICE _CLASS procedure; that is, values
will be returned to these parameters by the procedure.

1-6 CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

. All parameter types as well as the valid parameter values are listed in the
" individual parameter descriptions for each file interface procedure described
in this manual.

For more information on declaring and assigning values to variables, see the
‘ CYBIL Language Definition manual.

Checking the Completion Status

The last parameter on a file interface procedure call must be a status
variable (type OST$STATUS). Unlike the status parameter on SCL
commands, the status parameter on file interface calls is required, not
optional. When the procedure completes, NOS/VE returns the completion
status of the procedure in the specified status variable.

The program should check the completion status returned immediately after
the procedure call. If the NORMAL field of the status variable is TRUE, the
procedure completed normally. If the NORMAL field is not TRUE (that is,
FALSE), the procedure completed abnormally.

For example, the following program fragment uses a status variable named
STATUS. Immediately after the RMP$GET_DEVICE_CLASS call, an IF
statement checks the value of the boolean field of the status record

‘ (STATUS.NORMAL). If its value is false (NOT STATUS.NORMAL), the
procedure terminates.

rmp$get_device_class (local_file_name,device_assigned,
device_class, status);

IF NOT status.NORMAL THEN
RETURN;

IFEND;

Exception Condition Information

When the procedure completes abnormally, NOS/VE returns additional
information about the exception condition that occurred. The following
variant fields of the record return condition information when the key field,
NORMAL, is false:

identifier

Two-character string identifying the process that detected the error. Table
1-1 lists the identifiers returned by calls described in this manual.
condition

Exception condition code that uniquely identifies the condition
(OST$STATUS_CONDITION, integer). Each code can be referenced by
. its constant identifier as listed in the Diagnostic Messages manual.

Revision B How to Use File Interface Calls 1.7

USING FILE INTERFACE PROCEDURES

text

String record (type OST$STRING). The record has the following two
fields:

size
Actual string length in characters (0 through 256).

value
Text string (256 characters).

NOTE

The text field does not contain the error message. It contains items of
information that are inserted in the error message template if the message is
formatted using this status variable.

If the NORMAL field of the status record is FALSE, the program determines
its subsequent processing. For example, it could check for a specific condition
in the CONDITION field or determine the severity level of the condition with
a OSP$GET_STATUS_SEVERITY procedure call. The CYBIL System
Interface manual contains the description of OSP$GET_STATUS _
SEVERITY and other condition processing calls.

Table 1-1. Process Identifiers for File Interface Calls

Process
Identifier Process Function

AA Advanced access method.

AM Access method.

CL Command language.

IF Interactive file and terminal management.
(O8] Operating system.

PF Permanent file management.

RM Resource management.

1-8 CYBIL File Interface Revision B

SYSTEM NAMING CONVENTION

. System Naming Convention

All identifiers defined by the NOS/VE file interface use the system naming
convention. The system naming convention requires that all system-defined
CYBIL identifiers have the following format:

idx$name

Field

Description

id

name

Two characters identifying the process that uses the identifier.
Table 1-1 lists the identifiers used in this manual.

Character indicating the CYBIL element type identified.

x Description

c Constant.

e Error condition.
p Procedure.

t Type.

The $ character indicates that Control Data defined the
identifier.

NOTE

To ensure that each identifier you define differs from all Control
Data-defined identifiers, avoid using the $ character in your
identifier. Each Control Data-defined identifier contains a $
character.

A string of characters describing the purpose of the element the
identifier represents.

For example, the identifier RMP$GET_DEVICE_CLASS follows the system
naming convention. Its process id is RM, for resource management. The P
following the process id indicates that it is a procedure name. The string
GET_DEVICE_CLASS describes the purpose of the procedure.

Revision B

How to Use File Interface Calls 1.9

USING FILE INTERFACE PROCEDURES

Procedure Call Description Format

Each of the remaining chapters of this manual describes a group of file
interface procedures. Within the chapter are individual procedure call
descriptions. Each procedure description uses the same format.

Each procedure description has the following subheadings:
Purpose Brief statement of the procedure function.

Format Procedure call format showing the parameter positional
order followed by individual parameter descriptions.

Parameters Descriptions of the parameters in the preceding format
including the parameter’s valid CYBIL type.

Condition List of condition identifiers returned by the procedure.
Identifiers

The list is not all-inclusive; however, it lists conditions that
are likely to be of interest to the procedure user.

Remarks If present, additional information about procedure
processing.

Parameter Description Format

Within each procedure call format description, each parameter description
states the parameter function, the valid values for the parameter, and the
parameter’s valid CYBIL type. Appendix C contains an alphabetical listing
of all parameter types for the CYBIL procedures described in this manual.

If the parameter type is a set of system-defined identifiers, the parameter
description lists all possible identifiers in the set and their meanings.

If the variable type is a record, the parameter description describes each field
in the record. It states the field name, its function, and its type.

1-10 CYBIL File Interface Revision B

PN Local File Management 2

Specifying the Device Classof a New File............................... 21
Overriding the Device Classt iii e 2-2
. RMPSGET_DEVICE _CLASS ... e 2-3
Null Device Classvviurnie ittt e 2-4
RMPSREQUEST_NULL_DEVICEo 2-5
Returning a Local Fileo i e s 2-6
AMPSRETURN ... e e 2-7
File Connectionsuuiniiiine it 2-8
Systemn File Connectionsvuuiiiiiiee it 2-8
CLP$CREATE_FILE_CONNECTION ..o, 2.9
CLP$DELETE_FILE_CONNECTION.coitiiiiiiiiieannn. 2-10

Local File Management 2

Each file has the following characteristics:
e A local file name unique within the job.
e Assignment to a device class.

® A set of file attributes.

This chapter describes the assignment of a new file to a device class. Chapter
6, Defining File Attributes, describes the definition of file attributes.

The local file name identifies the file within the job. You can define a local
file name when you specify a file reference on a command or call. Unless
explicitly specified otherwise, the file is assigned to the default device class
(mass storage) and the default file attribute set.

Specifying the Device Class of a New
File

For purposes of clarity in this manual, a file is termed a new file if it has
never been opened. When a task opens a new file, the system assigns the file
to a device within its device class as follows:

o Magnetic tape: Assigns the file to tape devices.
e Terminal: Assigns the file to the interactive terminal.
e Mass storage: Assigns the file to a disk unit.

Before a task creates a new file, the new file can explicitly be associated with
a device class by using one of the following commands or CYBIL calls:

¢ Commands: CREATE_FILE, REQUEST_MAGNETIC_TAPE, and
REQUEST_TERMINAL.

¢ (Calls: PFP$DEFINE, RMP$REQUEST _NULL_DEVICE,
RMPSREQUEST_TAPE, and RMP$SREQUEST_TERMINAL.

If no command or call has associated the local file name with a device class
when the file is opened, the system assigns the file to mass storage.

Revision B Local File Management 2-1

SPECIFYING THE DEVICE CLASS OF A NEW FILE

Overriding the Device Class

Although device assignment calls within a program can specify the default
device class of a file, an SCL command issued for the file before the program
is executed will always override the device class specified by calls within the
program.

When NOS/VE opens a new file, it determines the file’s device class as
follows:

e If the file was created on a CREATE _FILE command, it has already been
assigned to a mass storage device.

e Ifa REQUEST_MAGNETIC_TAPE or REQUEST_TERMINAL
command has been issued for the file, NOS/VE assigns the file to the tape
or terminal device class, respectively.

e If the program has issued one or more RMP$REQUEST _TAPE,
RMPS$REQUEST_TERMINAL, or RMPSREQUEST_NULL_DEVICE
calls for the file, the last call issued before the file is opened is effective.

e If no command or call has assigned the file to a device class, NOS/VE
assigns the file to the mass storage device class when it opens the file.

For example, suppose a program contains an RMPSREQUEST_TAPE call
that specifies the local file name TAPE1. Suppose the following command is
executed before the program:

REQUEST_TERMINAL FILE=TAPE1

The device class specified by the command, REQUEST_TERMINAL,
overrides the device class specified by the call, RMPSREQUEST _TAPE, in
the CYBIL module. Therefore, when the task opens the file, the file is
assigned to the interactive terminal device.

Once the file has been opened, the device class cannot be changed; however,
the file may be deleted and the file name may then be associated with a
different device class.

To determine the device class associated with a local file name, a task can
call the RMP$GET_DEVICE _CLASS procedure.

2.2 CYBIL File Interface Revision B

RMP$GET_DEVICE _CLASS

. RMP$GET_DEVICE_CLASS

Purpose Returns the device class for a file.
Format RMPS$GET_DEVICE_CLASS (local_file_name,
‘ device_assigned, device_class, status)

Parameters local_file_name: amt$local _file_name;

Local file name.

device_assigned: VAR of boolean;
Indicates whether the file has been assigned to a device.

TRUE

The file has been opened, or a CREATE _FILE,
REQUEST_MAGNETIC_TAPE, or REQUEST_
TERMINAL command has been issued for the local file
name.

FALSE

The file has not yet been opened, and no CREATE _FILE,
REQUEST_TERMINAL, or REQUEST_MAGNETIC_
TAPE command has been issued for the local file name. In

this case, the device_class value returned is always
. RMC$MASS_STORAGE_DEVICE.

device_class: VAR of rmt$device_class;

Device class.

RMC$MASS_STORAGE_DEVICE
Mass storage.

RMC$SMAGNETIC_TAPE_DEVICE
Magnetic tape.

RMC$TERMINAL_DEVICE

Interactive terminal.

RMC$NULL_DEVICE
Null device.

status: VAR of ost$status;
Status variable.

Condition None.
Identifier

Revision B Local File Management 2-3

NULL DEVICE CLASS

Null Device Class

Assignment of a file to the null device class means that data is discarded as
it is written. Attempts to read data from the file always return an end-of-
information status. A file is assigned to the null device class by calling the
RMP$REQUEST_NULL_DEVICE procedure.

When a task opens a null file for record access, it can issue get and put calls
to the file. A get call returns normal status, but no data; a put call discards
the data to be written and returns normal status. The file position returned
depends on the call, as follows:

e A get call always returns AMC$EOI
e A full record put call returns AMC$EOR.

e A partial record put call to write the beginning or middle part of a record
returns AMC$MID_RECORD.

® A partial record put call to write the end of a record returns AMC$EOR.

When a task opens a null file for segment access, an AMP$GET _
SEGMENT _POINTER call returns a NIL pointer because the system does
not assign a segment to the file.)

An indexed sequential file cannot be assigned to the null device class.

A null file can be used for debugging purposes when a file reference is
required in the code but any data access to the file is not appropriate. To
discard any unwanted output generated by a call to a command or a CYBIL
procedure, the file name $NULL can be passed as the file reference.

2-4 CYBIL File Interface Revision B

RMP$REQUEST_NULL_DEVICE

' RMP$SREQUEST_NULL_DEVICE

Purpose Assigns a file to the null device class.

Format RMPSREQUEST_NULL_DEVICE (local_file_name,

‘ status)

Parameters local_file_name: amt$local _file_name;

Local file name.

status: VAR of ost$status;
Status variable.

Condition None.
Identifier
Remarks ® The system ignores the request if the file is already

assigned to a device.
e A null file is a temporary file.

e If the file is never opened, its association with the null
device class has no effect.

Revision B Local File Management 25

RETURNING A LOCAL FILE

Returning a Local File

A file remains assigned to a job until one of the following occurs:

e The file is closed while its return_option attribute value is
AMCS$RETURN_AT_CLOSE.

e The file is explicitly returned by a DETACH _FILE command or
AMPS$RETURN call.

o The job terminates.

Returning a temporary mass storage file, tape file, or terminal file ends the
device assignment and discards the local file name and its file attribute set.

If the device class of the returned file is magnetic tape, its tape unit
assignment ends; the tape volumes accessed via the local file name are no
longer associated with that name.

When a temporary mass storage file is returned, all space allocated to the file
is released and the file no longer exists. When a permanent mass storage file
is returned, its space is not released and the file continues to exist; only its
associated local file name is discarded. To access the permanent mass
storage file again using the local file name, you attach the file using an
ATTACH_FILE command or PMPSATTACH call and specify the local file
name. For more information on attaching a permanent mass storage file, see
chapter 3, Mass Storage File Management.

2-6 CYBIL File Interface Revision B

AMP$RETURN

AMPSRETURN

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Detaches a file from a job. After the file is detached, it is no
longer local to the job.

AMPSRETURN (local _file_name, status)

local_file_name: amt$local_file_name;
Name of a file local to the job.

status: VAR of ost$status;

Status variable. The process identifier returned is
AMCS$ACCESS_METHOD_ID.

ame$file_not_closed
ame$file_not known
ame$ring _validation _error

® To return a file, all instances of open for the specified local
file name must be closed. Standard files that reside in the
$LOCAL catalog (such as $LIST) cannot be returned
because those files always have an outstanding instance of
open within a job.

e If the file is assigned to mass storage, mass storage space
associated with the file is released if the file is a temporary
file; permanent file space is not affected.

e If the file is assigned to an interactive terminal or tape
unit, the assignment ends when the file is returned.
However, returning a tape file does not decrement the tape
unit reservation nor does it affect the information on the
tape. If the tape unit was implicitly reserved by an
AMPSOPEN call, the reservation is implicitly released by a
call to the AMP$RETURN procedure.

Local File Management 2-7

FILE CONNECTIONS

File Connections .

A file connection connects a subject file and a target file. The connection
passes all data access calls for the subject file to the target file.

The CLPSCREATE_FILE_CONNECTION call connects two files; the ‘
CLP$DELETE_FILE_CONNECTION call removes a connection between
files.

The system places no constraint on the file organization of either the subject
or the target of the connection except that an indexed sequential file cannot
be the subject of the connection. However, when creating a file connection, it
is recommended that the file organization of both the subject and the target
files be the same.

System File Connections

You cannot connect the system files with the following identifiers.
CLC$CURRENT_COMMAND_OUTPUT
CLC$J OB_ COMMAND_INPUT
CLC$JOB_INPUT ‘
CLC$JOB_OUTPUT
CLC$NULL_FILE

The system initially connects its CLC$JOB_COMMAND _RESPONSE file
to either the CLC$JOB_OUTPUT file (for an interactive job) or to the
CLC$NULL_FILE file (for a batch job). You cannot disconnect this initial
connection.

2-8 CYBIL File Interface Revision B

CLP$CREATE_FILE_CONNECTION

CLP$SCREATE_FILE_CONNECTION

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Connects a subject file to a target file.

CLP$CREATE_FILE_CONNECTION (subject_file,
target_file, status)

subject_file: amt$local _file_name;
Subject file name.

target_file: amt$local _file_name;
Target file name.

status: VAR of ost$status;
Status variable.

cle$circular_file_connection
cle$improper_subject _file_name
cle$improper_target_file_name
cle$subject _cannot_be_connected

e If a subject file is connected to more than one target file,
calls are passed as follows:

- A call to get data from the subject file is passed to the
target file most recently connected.

- A call to put data in the subject file is passed once for
each connection.

- An AMPS$GET_FILE_ATTRIBUTES, AMP$FETCH,
or AMPSFETCH_ACCESS_INFORMATION call
specifying the subject file returns the attribute values
belonging to the first target file connected.

e A file connection takes effect immediately for all instances
of open of the file.

Local File Management 29

CLP$DELETE _FILE_CONNECTION

CLP$DELETE_FILE_CONNECTION

Purpose Disconnects the subject file from the target file.

Format CLP$DELETE_FILE_CONNECTION (subject_file,
target_file, status)

Parameters subject_file: amt$local _file_name;
Subject file name.

target_file: amt$local file_name;
Target file name.

status: VAR of ost$status;

Status variable.
Condition cle$connection_cannot_be_broken
Identifiers cle$improper_subject_file_name

cle$improper _target_file_name
clefunknown _file_connection

Remarks The disconnection is effective immediately.

2-10 CYBIL File Interface Revision B

® Mass Storage File Management 3

File and Catalog Paths i 31
' Path Specification i 3-2
File Cycles 33
Defining aFileCycle i 33
PRPSDEFINE ... 34
PEPSPURGE ... e 37
Changing File Entry Information 39
PFPSCHANGE ... e 3-10
File Subcatalogs ... 3-13
PFPSDEFINE_CATALOG ... e 314
PFPSPURGE _CATALOG e e 3-15
AccessModescovviiii. v e e, 3-16
File Access Log ...t e 3-16
Access Control Entries............................ e 3-17
Permit Selections i e 3-17
. Share Requirements i 3-18
Multiple Access Control Entriescooi .. 3-19
PEPSPERMIT ... o e e 3-20
PFPS$DELETE_PERMIT i 3-24
PFPSPERMIT _CATALOG i 3-25
PFP$DELETE_CATALOG _PERMIT..... coiiiiiaaiinn. 3-28
Attaching a Permanenf File e 3-29
Attaching a File with PFPSATTACH or ATTACH _FILE............ 3-29
Attaching a File with a File Reference 3-30
Evaluating Attach Requests............ 3-30

File Cycle Busy Statusttt it 3-31
Wait Optionttt 3-33

PEPSATTACH e 3-34

Mass Storage File Management 3

The NOS/VE mass storage file system uses catalogs to organize and control
access to mass storage files. A catalog is a data structure which contains
files and subcatalogs.

Each mass storage file, temporary or permanent, is an entry in a catalog. All
temporary mass storage files are entries in the $LOCAL file catalog.
Permanent mass storage files are entries in permanent file catalogs.

As a user of NOS/VE, you have a master catalog which is named for your
user name. It contains any permanent files or subcatalogs that you create.
You can define additional files and subcatalogs within each subcatalog. You
are the owner of all files and subcatalogs defined in your master catalog.

Each job is provided with an empty $LOCAL catalog. Files created in the
$LOCAL catalog are temporary; that is, they will be deleted when the job
terminates. The $LOCAL catalog cannot have subcatalogs and files in the
$LOCAL catalog that have only one file cycle.

File and Catalog Paths

To list a permanent mass storage file or subcatalog as a file entry parameter
on a call to a file interface procedure, you must specify the path to the file or
catalog. A catalog path contains the following elements.

o Family of users.

e List of one or more catalogs beginning with the master catalog.
A file path contains the following elements.

e Family of users.

e List of one or more catalogs beginning with the master catalog.
e Permanent file name.

The catalog sequence always begins with the master catalog. If the file or
catalog is defined in the master catalog, the catalog sequence consists solely
of the master catalog. If the file or catalog is defined in a subcatalog, the
catalog sequence must include the appropriate subcatalog names.

For example, suppose user USERX in family FAMILY1 defines a subcatalog,
SUBL. The path for subcatalog SUBI is as follows:

FAMILY1 — USERX — SUB1

Revision B Mass Storage File Management 3-1

FILE AND CATALOG PATHS

Next, USERX defines subcatalog SUBA in subcatalog SUBI. The path for
subcatalog SUBA is as follows:

FAMILY1 — USERX — SUB1 — SUBA

Finally, USERX defines file FILE1 in subcatalog SUBA. The path for file
FILEL is as follows:

FAMILY1 — USERX — SUB1 — SUBA — FILE1

Path Specification

A call to a file interface procedure specifies a permanent file path within a
variable of type PFT$PATH.

The PFT$PATH variable is a list of names, one per element of an adaptable
array. The names specify the file path, including the family name, the
master catalog name, the subcatalog names (if applicable), and, finally, the
permanent file name.

The first name in the array must be the family name of the user. If the first
name in the array is OSC$NULL_NAME, the family name of the job is
used.

The second name in the array must be the master catalog name. By
convention, the master catalog name is the same as the name of the user. If
the second name in the array is OSC$NULL_NAME, the user name of the
job is used.

Subsequent names in the array list the subcatalogs in the catalog path, if
applicable. The last name in the array must be the name of the permanent
file or subcatalog on which the operation is performed. The OSC$NULL_
NAME identifier cannot identify a subcatalog or permanent file.

The following constant identifiers are provided to allow symbolic reference to
the initial elements of a path array:

e PFCS$FAMILY_NAME_INDEX: index to the family name.

e PFCSMASTER_CATALOG_NAME_INDEX: index to the master
catalog.

o PFC$SUBCATALOG_NAME_INDEX: index to the first subcatalog in
the path.

For example, if the name of the path array is PATH, the master catalog
element of the array can be referenced as follows:

PATHCPFC$MASTER_CATALOG_NAME_INDEX]

3-2 CYBIL File Interface Revision B

FILE CYCLES

File Cycles

A mass storage file is defined by its file entry in a catalog. More than one
version of the file can exist through the use of file cycles. Each file cycle is a
separate version of the file and is uniquely defined by a cycle descriptor.

A file entry contains the following information:

e Permanent file name.

e File password.

® Access log selection.

® Account and project names for the file.

The information in the file entry applies to all cycles of the file.
A cycle descriptor contains the following information:
e (Cycle number.

e C(Creation date and time for the cycle.

e Last modification date and time for the cycle.

e Last access date and time for the cycle.

e (ycle expiration date (determined by the retention period specified when
the cycle is defined).

The information in a cycle descriptor applies only to that cycle.

Defining a File Cycle

To define a new permanent file cycle, you call the PFP$DEFINE procedure.
If the file entry parameter specified on the call does not exist, PFP§DEFINE
defines a file entry in the last subcatalog of the specified path and defines
the initial cycle descriptor. If a file entry for the file already exists,
PFP$DEFINE only creates a new cycle descriptor.

A file cycle created by a PFP$DEFINE call is assigned to the mass storage
device class. When you make a call to PFP$DEFINE, you specify a local file
name by which the file cycle can be referenced within a job. The local file
name is discarded when the file is returned (detached) or the job terminates.

Once the file cycle is defined, future attempts to attach it must specify the
same file path. The file cycle definition is valid until the file cycle is purged.

A call to PFP$PURGE removes one cycle of a file. To purge a file entry, you
must call PFPSPURGE for each cycle of the file.

Revision B Mass Storage File Management 3-3

PFP$DEFINE

PFP$DEFINE

Purpose

Format

Parameters

Defines a permanent file cycle.

NOTE

T'o define a new file, you must have cycle permission for the
catalog. To define a new cycle of an existing file, you must
have cycle permission for the file.

PFP$DEFINE (Ifn, path, cycle_selector, password,
retention, log, status)

Ifn: amt$local _file_name;

Local file name.

path: pft$path;

File path. The last name in the path list is the permanent file
name.

cycle_selector: pft$cycle_selector;

Permanent file cycle created.

Field Content

cycle_option Key field indicating the file cycle number.

PFCSLOWEST_CYCLE

Creates a cycle numbered one less than
the current lowest cycle number. If no
cycles exist for the file, PFPSDEFINE
creates cycle 1.

PFC$HIGHEST _CYCLE

Creates a cycle numbered one greater
than the current highest cycle number. If
no cycles exist for the file, PFP$DEFINE
creates cycle 1.

PFCS$SPECIFIC_CYCLE

Creates the cycle specified by the cycle_
number field.

cycle_number Cycle number (integer from 1 through
PFC$MAXIMUM_CYCLE_NUMBER,
999). If the cycle already exists, the
procedure returns an error status
(PFE$DUPLICATE _CYCLE) without
defining a new cycle.

3-4 CYBIL File Interface Revision B

Revision B

PFP$DEFINE

password: pft$password;

File password (1- through 31-character name). A blank
password is the same as no password.

If the PFP$DEFINE call creates a new file entry, it stores the
specified password in the file entry. If PFPSDEFINE creates a
new cycle for an existing file entry, it compares the specified
password with the password stored in the file entry. If the
passwords do not match, the call returns abnormal status
PFESINCORRECT_PASSWORD.

retention: pft$retention;

Cycle retention period in days (1 through PFC$MAXIMUM _
RETENTION, 999; PFC$MAXIMUM_RETENTION
indicates infinite retention).

log: pft$log;

Log option. If the PFP$DEFINE call creates a new cycle for
an existing file, it does not use the log parameter value
although it checks that the value is valid.

PFC$LOG

Maintain a file access log.

PFC$NO_LOG

Do not maintain a file access log.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

Mass Storage File Management 3-5

PFP$DEFINE

Condition
Identifiers

Remarks

pfe$bad_cycle_number
pfe$bad _cycle_option
pfe$bad_family _name
pfe$bad _local _file_name
pfe$bad _log _option

pfe$bad _master_catalog_name
pfe$bad_nth_subcatalog_name
pfe$bad _password

pfe$bad _permanent_file_name
pfe$bad _retention_period
pfe$catalog _full
pfe$cycle_overflow

pfe$cycle _underflow
pfe$duplicate_cycle
pfe$incorrect _password
pfe$lfn_in_use
pfe$name_already_subcatalog
pfe$nth_name_not_subcatalog
pfe$path_too_short
pfe$pf_system _error
pfe$unknown_family
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog
pfe$usage_not_permitted
pfe$user_not_permitted

e [f the specified permanent file entry does not exist,

PFP$DEFINE creates the catalog entry for the file and its
initial cycle. If the permanent file is already registered in a
catalog, PFP$DEFINE creates a new cycle of the file.

e At completion of the procedure, the permanent file is
attached to the job. During the initial attachment, all
access modes are valid, but no sharing of the file is

allowed.

e PFP$DEFINE defines no access control entries for the file.
Therefore, access to the file is initially granted only to
users who have access to the catalog to which the file

belongs.

3-6 CYBIL File Interface

Revision B

PFP$PURGE

. PFPSPURGE

Purpose

Format

Parameters

Revision B

Removes a permanent file cycle.

NOTE

You must have control permission to the file to purge a file
cycle.

PFP$PURGE (path, cycle_selector, password, status)

path: pft$path;
File path of the file cycle to be purged.

cycle_selector: pft$cycle_selector;

Permanent file cycle purged.

Field Content

cycle_option Key field indicating how the file cycle is
specified.

PFCSLOWEST_CYCLE

Lowest file cycle used.

PFC$HIGHEST _CYCLE
Highest cycle used.

PFC$SPECIFIC_CYCLE
Cycle specified by cycle_number field.
cycle_number Cycle number (integer from 1 through

PFC$MAXIMUM_CYCLE_NUMBER,
999).

password: pft$password;

File password (1- through 31-character name). If the file has
no password, specify a space as the password.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

Mass Storage File Management

3-7

PFP$PURGE

Condition
Identifiers

Remarks

pfe$bad _cycle_number

pfe$bad _cycle_option

pfe$bad _family _name

pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad _permanent_file_name
pfe$bad _password
pfe$incorrect_password
pfe$invalid _ring_access
pfe$name_not_permanent_file
pfe$nth_name_not_subcatalog
pfe$path_too_short
pfe$pf_system _error
pfe$unknown_ cycle
pfe$unknown_ family
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog_name
pfe$unknown _permanent_file
pfe$usage _not_permitted
pfe$user_not_permitted

o The PFP$PURGE call releases the space assigned to the

cycle. However, if the cycle is attached when the
PFP$PURGE call is issued, NOS/VE does not release the
space until all jobs to which the file is attached are
terminated. The task that calls PFP$PURGE continues
processing; it is not suspended while the file to be purged
remains attached to other jobs.

If the cycle is the only existing cycle for the file,
PFP$PURGE also removes the catalog entry for the
permanent file.

Removing a file entry also removes all access control
entries for the file.

After the PFP$PURGE procedure is called for a file cycle,
no user can attach that cycle.

3-8 CYBIL File Interface Revision B

FILE CYCLES

Changing File Entry Information

After a file is defined, you can make changes to its file entry information
with a call to the PFPSCHANGE procedure. PFP$CHANGE can change the
following items:

Permanent file name.

Password.

Cycle number.

Cycle retention period starting from the current date.
Access log selection.

Account and project names. The account and project names of the caller
become the new account and project names for the file.

Revision B Mass Storage File Management 3-9

PFP$CHANGE

PFPS$SCHANGE
Purpose Changes information in a permanent file entry.
Format PFP$CHANGE (path, cycle_selector, password,

change_list, status)

Parameters path: pft$path;
File path specifying the file entry to be changed.

cycle_selector: pft$cycle_selector;

Permanent file cycle.

Field Content

cycle_option Key field indicating how the file cycle is
specified.
PFCSLOWEST_CYCLE

Lowest cycle used.

PFC$HIGHEST_CYCLE
Highest cycle used.

PFC$SPECIFIC_CYCLE
Cycle specified by cycle_number field.
cycle_number Cycle number (integer from 1 through

PFC$MAXIMUM _CYCLE_NUMBER,
999).

password: pft$password;

Current file password (1- through 31-character name). If the
file does not have a password, specify a space as the
password.

change_list: pft$change_list;

List of catalog entry changes. The list is an adaptable array
of PFTSCHANGE DESCRIPTOR records (see table 3-1).
status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FII.LE_ MANAGER_ID.

3-10 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

PFP$CHANGE

pfe$bad _change_type

pfe$bad _cycle_number

pfe$bad _cycle_option

pfe$bad _family _name

pfe$bad _log_option

pfe$bad _master_catalog_name
pfe$bad_nth_subcatalog_name
pfe$bad _password

pfe$bad _permanent_file_name
pfe$bad _retention_period
pfe$catalog _full
pfe$duplicate_cycle
pfeSincorrect_password
pfe$name_already permanent_file
pfe$name_already_subcatalog
pfe$name_not_permanent_file
pfe$nth_name_not_subcatalog
pfe$path_too_short
pfe$pf_system_error
pfe$unknown _cycle
pfe$unknown_family
pfe$unknown_master_catalog
pfe$unknown_nth_subcatalog
pfeSunknown _permanent_file
pfe$usage_not_permitted
pfe$user_not_permitted

® You must have control permission to the file to change the
file entry.

¢ You can change the file entry information while the file is
attached to another job.

Mass Storage File Management 311

PFP$CHANGE

Table 3-1. Change List Record (PFT$CHANGE_DESCRIPTOR)

Field Content

change_type Key field determining the attribute changed
(PFT$CHANGE_TYPE).

PFC$PF_NAME_CHANGE
New name in pfn field.

PFC$PASSWORD_CHANGE
New password in password field.

PFC$CYCLE_NUMBER_CHANGE

New cycle number in cycle_number field.

PFC$RETENTION_CHANGE

New retention period in retention field.

PFC$LOG_CHANGE
New log option in log field.

PFC$CHARGE _CHANGE

The account and project names of the job become the
new account and project names for the file.

pfn New permanent file name (PFT$NAME, 31 characters).
password New password (PFT$PASSWORD, 1- through 31-character
name).

cycle_number New number for the cycle (PFT$CYCLE_NUMBER, 1
through 999).

retention New retention period starting from current date
(PFT$RETENTION, 1 through 999 days; 999 specifies
infinite retention).

log New log option (PFT$LOG, see File Access Log later in
this chapter).

PFC$LOG

Maintain a file access log.

PFC$NO_LOG

Do not maintain a file access log.

3-12 CYBIL File Interface Revision B

FILE SUBCATALOGS

File Subcatalogs

A catalog can contain entries defining files as well as entries defining other
catalogs. A catalog defined within another catalog is called a subcatalog.
Within a file reference, a subcatalog is always preceded by the catalog in
which it resides.

Logically, a subcatalog can be named to represent topical headings. File
entries having information pertaining to the topic can then be grouped
within the structure of the subcatalog. For example, USERX has a
subcatalog named PROC which might contain several procedure files.

To define a subcatalog, call the PFPSDEFINE _ CATALOG procedure. To
delete a subcatalog, call the PFPSPURGE _CATALOG procedure.

Revision B Mass Storage File Management 3-13

PFP$DEFINE_CATALOG

PFP$DEFINE_CATALOG

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Defines a subcatalog.

NOTE

You must own the catalog in which you define a subcatalog.

PFP$SDEFINE_CATALOG (path, status)

path: pft$path;

Catalog path. The last name in the path list is that of the new
subcatalog.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad _family _name

pfe$bad _last_subcatalog_name
pfe$bad _master_catalog _name
pfe$bad _nth_subcatalog_name
pfe$name_already_permanent_file
pfe$name_already _subcatalog
pfe$not_master_catalog_owner
pfe$nth _name_not_subcatalog
pfe$path _too_short
pfe$pf_system_error
pfe$unknown _family
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog

e After a subcatalog is defined, files or other subcatalogs can
be defined within the subcatalog. Referencing the file or
subcatalog requires that you specify each catalog in the
catalog path.

e The PFP$DEFINE_CATALOG procedure cannot define a
master catalog. Only the family administrator can define a
master catalog.

3-14 CYBIL File Interface Revision B

PFP$PURGE_CATALOG

. PFPSPURGE_CATALOG

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Removes a subcatalog.

NOTE

You must own the catalog from which you remove a
subcatalog.

PFP$PURGE_CATALOG (path, status)

path: pft$path;

Catalog path. The last name in the path list is that of the
subcatalog to be purged.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad _family _name

pfe$bad _last_subcatalog_name
pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$catalog_not_empty
pfe$last_name_not_subcatalog
pfe$not_master_catalog_owner
pfe$nth_name_not_subcatalog
pfe$path _too_short
pfe$pf_system _error
pfe$unknown _family
pfe$unknown _last_subcatalog
pfe$unknown _master_catalog
pfe$unknown_nth_subcatalog

e The subcatalog must be empty before it can be purged. All
file and subcatalog entries in the subcatalog must first be
purged before removal of the subcatalog can be
accomplished.

e The PFPSPURGE_CATALOG procedure cannot purge a
master catalog. Only the family administrator can purge a
master catalog.

Mass Storage File Management 3-15

ACCESS MODES

Access Modes

Access modes protect files in that they allow the file owner to specify the
modes of operations that can be performed on the file. A task is granted
access to a file only when its requested operaton is within a set of permitted
access modes for the file. The access modes are listed as follows:

e Read: Allows the task to read data from the file.

e Shorten: Allows the task to reduce the file length, discarding data
existing beyond that length.

e Append: Allows the task to add data to the end of the file, lengthening the
file.

e Modify: Allows the task to change existing data within the file.

e Execute: Allows the task to execute the file, assuming the file contains
executable object modules.

e Cycle: Allows the task to create a new cycle of the file or a new file.

e Control: Allows the task to change information in the file entry and purge
a file cycle or file.

To perform all possible write operations on a file, the task must have shorten,
append, and modify permissions to the file.

File Access Log

When defining a file, you can request that the system maintain a record of
the users that access the file. This record is called a file access log. To request
this service, you specify PFC$LOG as the log option parameter on the
PFP$DEFINE call that defines the file.

When you specify PFC$LOG, the system maintains an access log for each
user that accesses the file. Each access log contains the following
information:

e The user that accessed the file.
e The number of accesses by the user.

e The date and time of the last access by the user and the last cycle
accessed.

You can display the file access log using the DISPLAY _CATALOG _
ENTRY command described in the SCL System Interface manual.

3-16 CYBIL File Interface Revision B

ACCESS CONTROL ENTRIES

Access Control Entries

An access control entry is a set of permitted operations that can be
performed on a file or catalog entry at a given time. Access control entries
apply either to a specific file entry or to a catalog entry and can only be
defined by the owner of the respective file or catalog. The permit selections
and share requirements parameters listed on the PFPSPERMIT call define
the access contol entry for a file. These same parameters listed on a call to
the PFP$PERMIT_CATALOG procedure define an access control entry for
all entries in a catalog.

A file can have several access control entries. Each entry can specify
different permit selections for different groups of users. Listed in each access
control entry is the specified group of users to which the defined permit
selections apply. The following are the user groups to which an individual
access control entry could apply:

e All users.

e All users in a family.

® One user in a family.

e All users executing under an account name.

® One user executing under an account name.

e All users executing under an account name and a project name.
® One user executing under an account name and a project name.

An access control entry contains a permit selections set and a share
requirements set.

Permit Selections

A file’s permit selections set contains the access modes that are valid as
usage selections on an attach request. The permit selections set validates the
access modes specified on an attach request. When attempting to attach a
file with an ATTACH _FILE command or PFP$ATTACH call, you specify
the usage selections for the attach. The usage selections are the access modes
in which the task intends to use the file while it is attached.

Revision B Mass Storage File Management 3-17

ACCESS CONTROL ENTRIES

When validating an attach request, the applicable access control entry
compares the usage modes specified on the attach request with the access
modes defined in the file’s permit selection set. All usage modes specified on
the attach must be within the set of access modes defined in the applicable
access control entry. If not, the attach attempt fails.

For example, if the permit selections set contains only read access, the access
control entry allows only read access to the file. If the permit selections set
contains no access permissions, the access control entry allows no access to
the file.

If an attach request specifies read and append access as the usage selections
on the attach and the permit selections set of the applicable access control
entry does not include both read access and append access, the attach
attempt fails.

Share Requirements

A file’s share requirements set is defined as the share modes in which a job
must access the file while it is attached. When attempting to attach a file
with an ATTACH_FILE command or PFPSATTACH call, you specify the
share selections for the attach. The share requirements set validates the
share selections specified on an attach request.

The share requirements set contains the minimum set of access modes that
are required as share selections on an attach request. All access modes
defined in the file’s share requirements set must be listed as share selections
on the attach request, or the attach attempt fails. For example, if an attach
attempt specifies only read access as its share selections set and the share
requirements set of the applicable access control entry contains read and
append access, the attach attempt fails.

If the share requirements set contains read access permission, the access
control entry requires that read access be specified as a share selection on the
attach request. If the share requirements set contains no access permissions,
you need not specify any share selections on your attach request as the
access control entry does not require any; in this case, the attach request is
granted exclusive access to the file, not allowing any concurrent attaches.

3-18 CYBIL File Interface Revision B

ACCESS CONTROL ENTRIES

Multiple Access Control Entries

When you attempt to attach a file that has more than one access control
entry that could apply to you, the system determines the applicable access
control entry using the following rules:

e If you belong to more than one group for which an access control entry is
defined, the access control entry applicable to the smaller group applies.

For example, if one entry applies to all users and another entry applies to
a family of users and you belong to that family, the system uses the entry
applying to the family of users.

e If access control entries for the same group exist for more than one
element of the file path, the entry applicable to the last element in the file
path applies.

For example, if a catalog has an access control entry for all users and a
file defined within the catalog also has an access control entry for all
users, the access control entry defined for the file will be used to validate
attach requests.

If necessary, the system uses both rules to determine the applicable access
control entry. For example, assume that the following access control entries
exist for a file named FILE _1 in a catalog named CATALOG_1:

1. An entry applicable to CATALOG_1 for the family of users FAMILY _A.
2. An entry applicable to FILE _1 for all users.
3. An entry applicable to FILE _1 for the family of users FAMILY _A.

Assume that the user attempting to attach the file belongs to FAMILY _A for
which access control entries are defined. Using rule 1, the system determines
that a family of users is a smaller group than all users. Because multiple
entries are defined for FAMILY _A, the system must use rule 2 to determine
the applicable access control entry. Using rule 2, FILE _1 is later in the file
path than CATALOG _1. Therefore, the entry for FAMILY _ A defined for
FILE _1 is the access control entry applicable to the attach attempt.

Revision B Mass Storage File Management 3-19

PFP$PERMIT

PFPSPERMIT

Purpose Defines or changes an access control entry for a file.
NOTE
Only the file owner can define an access control entry for a
file.

Format PFP$PERMIT (path, group, permit_selections, share_

requirements, application_info, status)

Parameters path: pft$path;

File path specifying the file to which the access control entry
applies.

group: pft$group;
User group to which the access control entry applies (variant
record of type PFT$GROUP as described in table 3-2).

permit_selections: pft$permit_selections;

Set of access permissions granted by the access control entry.
A null set indicates that the user group is to be denied access
to the file.

PFCSREAD

Read permission.

PFC$SHORTEN
Shorten permission.

PFCSAPPEND

Append permission.

PFC$MODIFY
Modify permission.

PFC$EXECUTE

Execute permission.

PFC$CYCLE

Cycle permission (permission to create additional file
cycles).

PFC$CONTROL

Control permission.

3-20 CYBIL File Interface Revision B

Condition
Identifiers

Revision B

PFP$PERMIT

share_requirements: pft$share_requirements;

The set of access modes that an attempt to attach the file

must specify as share selections. A null set indicates that an

attach request may specify no share selections; the attach

request could be exclusive, preventing other users from
attaching the file at the same time.

PFC$READ
Read sharing required.

PFC$SHORTEN
Shorten sharing required.

PFC$APPEND

Append sharing required.
PFC$MODIFY

Modify sharing required.
PFC$EXECUTE

Execute sharing required.

application_info: pft$application _info;

Additional access information that can be used by application

programs (31-character string).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad _account_name
pfe$bad _family name

pfe$bad _group_type

pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad _permanent_file_name
pfe$bad _project_name
pfe$bad _user_name

pfe$catalog _full
pfe$name_not_permanent_file
pfe$not_master_catalog_owner
pfe$nth_name_not_subcatalog
pfe$path _too_short
pfe$pf_system_error
pfe$unknown _family
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog
pfe$unknown_ permanent_file

Mass Storage File Management

321

PFP$PERMIT

Remarks When replacing an access control entry, be certain to specify
the correct group as the group parameter on the
PFP$PERMIT call. The parameters specified as permit_
selections, share_requirements, and application_info
parameters listed on the call will replace any of those same
existing parameters for the particular group of users.

Table 3-2. User Group Record (Type PFT$GROUP)

Field Content

group_type Key field indicating the group type.
PFC$PUBLIC

All users.

PFC$FAMILY

User family specified in the family _description
field.

PFC$ACCOUNT

Account specified in the account_description field.

PFC$PROJECT
Project specified in the project_description field.

PFC$USER
User specified in the user_description field.

PFC$USER_ACCOUNT

User specified in the user_account_description
field.

PFC$SMEMBER

User specified in the member _description field.
family _description Record containing the following field:

family
Family name (type OST$FAMILY _NAME).

account_description Record containing the following fields:

family
Family name (type OST$SFAMILY _NAME).

account
Account name (type AVTISACCOUNT_NAME).

(Continued)
3-22 CYBIL File Interface Revision B

PFP$PERMIT

Table 3-2. User Group Record (Type PFT$GROUP) (Continued)

Field

Content

project_description

user _description

user_account _

description

Record containing the following fields:

family
Family name (type OSTSFAMILY_NAME).

account
Account name (type AVT$ACCOUNT_NAME).

project
Project name (type AVIT$PROJECT_NAME).

Record containing the following fields:

family
Family name (type OSTSFAMILY_NAME).

user
User name (type OST$USER_NAME).

Record containing the following fields:

family
Family name (type OST$FAMILY _NAME).

account
Account name (type AVTSACCOUNT _NAME).

user
User name (type OSTSUSER_NAME).

member_description Record containing the following fields:

family
Family name (type OSTSFAMILY _NAME).

account
Account name (type AVISACCOUNT_NAME).

project
Project name (type AVT$PROJECT _NAME).

user
User name (type OSTSUSER_NAME).

Revision B

Mass Storage File Management 3-23

PFP$DELETE_PERMIT

PFP$SDELETE_PERMIT

Purpose

Format

Parameters

Condition
Identifiers

Removes an access control entry for a file.

NOTE

Only the file owner can delete an access control entry for a

file.

PFP$DELETE_PERMIT (path, group, status)

path: pft$path;

File path specifying the file to which the access control entry

applies.

group: pft$group;

User group to which the access control entry applies (variant

record of type PFT$GROUP described in table 3-2).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad _account_name
pfe$bad_family _name

pfe$bad _group_type

pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad_permanent_file_name
pfe$bad _project_name

pfe$bad _user_name
pfe$name_not_permanent_file
pfe$not_master_catalog _owner
pfe$nth_name_not_subcatalog
pfe$path _too_short
pfe$pf_system_error
pfe$unknown _family
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog
pfe$unknown _permanent_ file

3-24 CYBIL File Interface

Revision B

PFP$PERMIT_CATALOG

PFPSPERMIT_CATALOG

Purpose

Format

Parameters

Revision B

Defines an access control entry that applies to all files and
subcatalogs defined in a catalog.

NOTE

Only the owner of the catalog can define an access control
entry for a catalog.

PFPSPERMIT_CATALOG (path, group, permit_
selections, share_requirements, application_info,
status)

path: pft$path;

Catalog path specifying the catalog to which the access
control entry applies. The last name in the path list must be
that of the catalog for which the access control entry is
defined.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFT$GROUP as described in table 3-2).
permit_selections: pft$permit_selections;

Set of access permissions granted by the access control entry.
A null set indicates that the user group is to be denied access
to all files in the catalog unless granted access by an access
control entry for the file.

PFC$READ

Read permission.

PFC$SHORTEN

Shorten permission.

PFC$APPEND

Append permission.

Mass Storage File Management 3-25

PFP$PERMIT_CATALOG

PFC$MODIFY
Modify permission.

PFC$EXECUTE

Execute permission.

PFC$CYCLE

Cycle permission (grants permission to create new entries
in the catalog).

PFC$CONTROL

Control permission.

share_requirements: pft$share_requirements;

The set of access permissions that the attach request must
specify as share selections. A null set indicates that the attach
request may specify no share selections; the attach request
could be exclusive, preventing other users from attaching the
file at the same time.

PFC$READ
Read sharing required.

PFC$SHORTEN
Shorten sharing required.

PFC$APPEND
Append sharing required.

PFC$MODIFY
Modify sharing required.
PFC$EXECUTE

Execute sharing required.

application_info: pft$application_info;

Additional access information that can be used by application
programs (31-character string).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFCSPERMANENT_FILE_MANAGER_ID.

3-26 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

pfe$bad _account_name
pfe$bad _family_name

pfe$bad _group_type
pfe$bad_last_subcatalog_name
pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad _project_name

pfe$bad _user_name

pfe$catalog _full
pfe$last_name_not_subcatalog
pfe$nth_name_not_subcatalog
pfe$not_master_catalog_owner
pfe$path _too_short
pfe$pf_system_error
pfe$unknown _family
pfe$unknown _last_subcatalog
pfe$unknown_master_catalog
pfe$unknown _nth_subcatalog

PFP$PERMIT_CATALOG

e The access control entry created validates access by a
group or groups of users to all files and subcatalogs
registered in the catalog specified on the PFP$PERMIT _

CATALOG call.

¢ When replacing an access control entry for a catalog or
subcatalog, be certain to specify the correct group of users
on the group parameter for the PFP$PERMIT_CATALOG
call. The parameters specified as permit_selections, share _
requirements, and application _info listed on the call will
replace any of those same existing parameters for the

particular group of users.

Mass Storage File Management 3-27

PFP$DELETE _CATALOG_PERMIT

PFPSDELETE_CATALOG_PERMIT

Purpose

Format

Parameters

Condition
Identifiers

Removes an access control entry that applies to a catalog.

NOTE

Only the catalog owner can delete an access control entry for

a catalog.

PFPSDELETE_CATALOG_PERMIT (path, group,

status)

path’ pft$path;

Catalog path specifying the catalog to which the access
control entry applies. The last name in the path list is that of

the subcatalog.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFT$GROUP as described in table 3-2).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad_account_name
pfe$bad_family _name

pfe$bad _group_type

pfe$bad _last_subcatalog_name
pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad _permanent_file_name
pfe$bad _project_name

pfe$bad _user_name
pfe$last_name_not_subcatalog
pfe$not_master_catalog_owner
pfe$nth_name_not_subcatalog
pfe$path_too_short
pfe$pf_system _error
pfe$unknown _family
pfe$unknown_last_subcatalog
pfe$unknown _master_catalog
pfe$unknown_nth_subcatalog

3-28 CYBIL File Interface

Revision B

ATTACHING A PERMANENT FILE

Attaching a Permanent File

You can attach a permanent mass storage file to your job using an
ATTACH_FILE command, a PFPSATTACH call, or by using a file
reference which specifies the file path, and may also specify the file cycle,
and the file open position. An ATTACH_FILE command or PFPSATTACH
call can offer a task greater selectivity in using the file than can a file
reference. Attach commands or calls can specify a password for the file and
can select the option of waiting for a file that is currently attached. These
options are not available to the user of a file reference.

Attaching a File with PFPSATTACH or
ATTACH_FILE

When you make an attach request for a permanent file, the permit selections
and share requirements in the file’s applicable access control entry will
govern whether the attach request will be allowed. The access modes listed
as the usage_selections parameter on the PFP$ATTACH call must be within
the set of access modes defined in the file’s permit_selections. If any share
modes, as listed in the file’s share_requirements set were defined for the file,
these same share modes must be included in the share_selections parameter
on the attach request.

Upon successful completion of the PFP$ATTACH call or ATTACH_FILE
command, the file becomes scheduled within the job for those modes of
access specified on the attach. Subsequent access to the file while it is
attached must be a subset of these same modes of access. You can examine
the global_access_mode and global_share_mode attributes returned by a
DISPLAY_FILE_ATTRIBUTES command or an AMPSGET_FILE _
ATTRIBUTES call to determine the respective usage_selections and share _
selections specified on the most recent successful attach. The global _access_
mode and global share_mode attributes as well as the AMP$GET _

FILE _ATTRIBUTES call is defined in chapter 6 of this manual. The
DISPLAY_ FILE_ATTRIBUTES command is defined in the SCL System
Interface manual.

Revision B Mass Storage File Management 3-29

ATTACHING A PERMANENT FILE

Attaching a File with a File Reference

You can reference a file for use within a job by specifying its full or relative
path name. Such a reference is termed a file reference. A permanent file
reference results in the file being implicitly scheduled when it is initially
opened within the job. The usage_selections for which the file will be
scheduled within the job are determined by the access_modes specified on
the AMP$OPEN call that opens the file. If no access_modes are explicitly
specified when the AMPSOPEN call occurs, the usage_selections will default
to those modes of access specified in the file’s permit_selections set in the
file’s applicable access control entry. The applicable access control entry is
qualified by the ring of the caller of AMP$OPEN.

Since the AMP$OPEN call does not have available to it the ability to specify
a share_selections set when it opens a file, NOS/VE examines the file’s
access control entry and determines the modes of sharing that will be
allowed for the file within the job. If file’s access control entry has any kind
of write access specified in its permit_selections, NOS/VE sets the file’s
share_modes to the null set; that is, no sharing of the file will be allowed
while it is attached. If access_modes other than write are contained in the
file’s permit_selections, the share_modes set for the file will be set to
PFC$READ and PFCSEXECUTE.

When you schedule a permanent file cycle within a job for some form of write
access, and you want other jobs to be able to share the file while it is
attached, you must use either the attach call or command and specify the
share_modes in which you are willing to share the file prior to opening it.

Evaluating Attach Requests

A user can attach a file only if an applicable access control entry exists for
the user. The system determines the applicable access control entry as
described earlier in this chapter under Multiple Access Control Entries.

Having found the user’s applicable access control entry, the system validates
the requested attach as follows:

e Each usage mode specified on the attach request must be within the
access modes defined in the file’s permit selections set.

e The share selections set specified on the attach request must include all
share modes defined in the file’s share requirements set.

3-30 CYBIL File Interface Revision B

ATTACHING A PERMANENT FILE

When a new attach request is issued for a file cycle currently attached to a
job, the following compatability checks are made:

e The usage selections specified on a new attach request must be within the
share selection set of any current attaches.

e The share selections set, as specified on the new attach request, must
include all usage selections of any current attaches.

File Cycle Busy Status

A PFP$ATTACH call returns the abnormal status PFESCYCLE_BUSY if
the requested file cycle is busy. A file cycle is busy if the attach request
specifies a usage selections set or share selections set that is incompatible
with the current attaches of the file as outlined above.

An example which shows the interaction of several attach attempts for the
same file cycle is presented on the next page.

For example, the following is a file sharing example that consists of a
sequence of several attach requests for the same file cycle. Assume that the
first attach attempt has been granted access; therefore, the parameters
specified on its attach request were within the permit selections and share
requirements as defined in the file’s applicable access control entry. Also
assume the all the requests in the sequence are governed by the same access
control entry.

In the following example, the entire sequence of attach attempts occurs
before any of the successful attaches returns the file. The successful attach
attempts 1 and 4 specified share selections on their attach requests that
restrict any subsequent attaches.

Revision B Mass Storage File Management 3-31

ATTACHING A PERMANENT FILE

Attach Usage
Attempt Selections

Share
Selections

Result

Read

Append

Execute

Read

Execute

Read
Execute

Read
Execute

Execute

Read

Read

Normal status. The file cycle
is not currently attached, so
no compatibility check is
required.

PFE$CYCLE_BUSY status.
Append was not specified as
a share selection in attach 1.

PFE$CYCLE_BUSY status.
The attach request’s share
selection does not include
the usage selections
specified in attach 1.

Normal status. The attach
attempt requests read access
that is in the share
selections set of attach 1.
The specified share
selections set includes the
read access as specified in
the usage selections of
attach 1.

PFE$SCYCLE_BUSY status.
The attach attempt requests
execute access that is in the
share selections set of attach
1 but is not in the share
selections set of attach 4.

3-32

CYBIL File Interface

Revision B

ATTACHING A PERMANENT FILE

Wait Option

The wait option on the attach request determines whether (if the file cycle is
busy) the task waits for the file cycle or returns the abnormal status
PFE$CYCLE_BUSY. If the attach request specifies the wait option and the
file cycle is busy, other attach requests for the file cycle can be processed
while the task waits for the file cycle.

For example, suppose USERI attaches a file cycle with share selections read
and append. USER2 attempts to attach the file cycle with usage selection
execute. If USER2 requested the wait option, his or her task is suspended
until USERI returns the file cycle. Suppose that, while USER2 is waiting for
the file cycle, USER3 also attaches the file cycle with share selections read
and append. Now, USER2 must wait until both USER1 and USER3 have
returned the file cycle.

Revision B Mass Storage File Management 3-33

PFPSATTACH

PFP$SATTACH
Purpose Explicitly attaches a permanent file cycle to a job.
Format PFPSATTACH (Ifn, path, cycle_selector, password,

usage_selections, share_selections, wait, status)

Parameters 1fn: amt$local _file_name;

Local file name.

path: pft$path;
File path identifying the file to be attached.

cycle_selector: pft$cycle _selector;

Permanent file cycle.

Field Content

cycle_option Key field indicating how the file cycle is
specified.

PFC$LOWEST_CYCLE
Lowest file cycle used.

PFC$HIGHEST_CYCLE
Highest cycle used.

PFC$SPECIFIC_CYCLE
Cycle specified by cycle_number field.
cycle_number Cycle number (integer from 1 through

PFC$SMAXIMUM_CYCLE_NUMBER,
999).

password: pft$password;

File password (1- through 31-character name). If the file has
no password, specify a space for the password.

3-3¢ CYBIL File Interface Revision B

Revision B

PFPSATTACH

usage_selections: pftfusage_selections;

Set of access modes that the job requires. The usage _
selections set limits the access modes specified on calls to
open the file while it is attached.

PFC$READ
The job can read the file.

PFC$SHORTEN
The job can shorten the file.

PFC$APPEND
The job can append data to the file, thereby lengthening it.

PFC$MODIFY
The job can modify data within the file.

PFCSEXECUTE
The job can execute the file.

share_selections: pft$share_selections;

Set of access modes that subsequent attempts to attach the
file cycle can specify as usage selections. The share_selections
set must include all access modes in the share_requirements
set in the applicable access control entry; it can also include
additional access modes not included in the share_
requirements set.

PFC$READ
The file can be attached for read access.

PFC$SHORTEN
The file can be attached for shorten access.

PFC$APPEND
The file can be attached for append access.

PFC$MODIFY
The file can be attached for modify access.

PFC$EXECUTE

The file can be attached for execute access.

Mass Storage File Management 3-35

PFP$ATTACH

Condition
Identifiers

wait: pftdwait;
Action if the file cycle is busy.

PFC$WAIT

PFP$ATTACH waits until the file is available and then

attaches the file.

PFC$NOWAIT

PFP$ATTACH completes without attaching the file; it
returns the PFE$SCYCLE _BUSY condition code in the

status record.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad _cycle_number

pfe$bad _cycle_option

pfe$bad _family_name

pfe$bad _local _file_name
pfe$bad _master_catalog_name
pfe$bad _nth_subcatalog_name
pfe$bad _password

pfe$bad _permanent_file_name
pfe$bad _wait_option
pfe$catalog _full
pfe$cycle_busy
pfe$incorrect_password
pfe$invalid_ring_access
pfe$lfn_in_use
pfe$name_not_permanent_file
pfe$nth _name_not_subcatalog
pfe$path_too_short
pfe$pf_system _error
pfe$sharing _not_permitted
pfe$undefined _data
pfe$unknown_cycle
pfe$unknown_family
pfe$unknown_master_catalog
pfe$unknown_nth_subcatalog
pfe$unknown_permanent_file
pfe$usage_not_permitted
pfe$user_not_permitted

3-36 CYBIL File Interface

Revision B

‘ Remarks

Revision B

PFP$ATTACH

e If the permanent file cycle is already attached to the job, a

task within the job need not attach the file cycle before
processing it. (This assumes that the local file name
associated with the instance of attach is known to the
task).

A task can attach an already attached file cycle again
using a different local file name. However, the file cycle
cannot be attached with usage selections or share
selections that conflict with other current attaches of the
file cycle. Procedure calls within the task could reference
the attached file cycle by either local file name. After task
completion, the file cycle remains attached to the job under
both local file names. To detach the file cycle before the job
terminates, you must issue an AMP$RETURN call or
DETACH _FILE command for each local file name.

Mass Storage File Management 3-37

® Tape Management 4

Tape File Requests i 4-1
Multivolume Tape Files i eees 4-2
. RMPSREQUEST _TAPE aen s 4-3
Tape File Attributes it i 4-6
Tape File Positioning it 4-7
Open Positioningt s 4-7
Close Positioning e e 4-7
Rewind Positioning o i e 4-7
SKip PoSItionIingo e 4-7
Forward Skip by Tapemarks oo 4-8
Backward Skip by Tapemarks.............coiiiiiiiiiniiiiiinann. 4-8
AMPSSKIP_TAPE_MARKS e 49
Embedded Tapemarksooiiiiiiiiiiiiiiiiieennns 4-11
Copying Tape Files et 4-11
AMPSWRITE _TAPE_MARK. i 4-12

Tape Management 4

NOS/VE supports unlabeled 9-track tape files. The file structure for
unlabeled tape files is indicated by tapemarks. Tape files are defined as the
data between two nonconsecutive tapemarks. Two consecutive tapemarks
indicate the end of a tape volume.

All tape files have sequential file organization. The description of record
access for sequential file organization in chapter 9 applies to tape files.

Unlike the other device classes, tape files cannot have more than one
instance of open at a time. An open tape file must be closed before it can be
opened again by the same task or another task.

Unlike permanent mass storage files, the file attribute set of a tape file is not
preserved with the file data. NOS/VE discards a tape file attribute set after a
DETACH _FILE command or AMP$RETURN call ends the file assignment.

The following procedures described in this chapter perform specific tape
functions:

¢ RMPS$REQUEST _TAPE: Associates a local file name with the magnetic
tape device class.

o AMPSSKIP_TAPE_MARKS: Positions a tape file by skipping forward
and backward a specified number of tapemarks.

o AMPS$WRITE _TAPE_MARK: Writes a tapemark on a tape file.

Tape File Requests

The RMPSREQUEST_TAPE procedure associates a local file name with the
magnetic tape device class and provides device specifications to be used if
the file is opened.

The device specifications include the following values:
e Tape transport type: 9-track.

e Recording density: 800, 1600, or 6250 cpi (1600 and 6250 cpi densities are
recommended due to the inherent reliability of the tape recording
technique).

o Write ring requirement.

® Volumes included in the file.

Revision B Tape Management 4-1

TAPE FILE REQUESTS

Multivolume Tape Files

NOS/VE supports multivolume tape files. All device specifications for the
file, including the write ring requirement, apply to all volumes in the file.

NOS/VE manages volume switching. When it encounters the end of the
current volume, it refers to the volume list to determine the next volume in
the file. (The end-of-volume indicator for a get call is two consecutive
tapemarks; the end-of-volume indicator for a put call is the end-of-tape
reflective marker.)

If a subsequent volume exists in the list, the system requests the operator to
mount the next volume on an appropriate tape unit. When the operator
assigns the volume to a tape unit, the system changes the file assignment to
the tape unit on which the next volume is mounted. Only one tape unit is
assigned to the file at a time.

If no subsequent volume exists in the volume list, subsequent processing
depends on whether the task had issued a get call or a put call. For a get call,
AMCSEOI is returned as the file position, and the call terminates.

When no subsequent volume exists for a put call, the system operator is
asked to supply an additional volume. The operator must either supply a
tape volume or terminate the job. If the operator supplies an additional
volume, the put operation continues.

If a successful volume switch occurs while the task is putting data on the
tape file, the system writes an end-of-volume indicator (two consecutive tape
marks) and continues the put operation at the beginning of the next volume.
The task is not aware of or affected by the volume switch.

4-2 CYBIL File Interface Revision B

RMP$REQUEST_TAPE

RMPSREQUEST_TAPE

Purpose

Format

Parameters

Revision B

Associates a local file name with the magnetic tape device
class and provides the device specifications used if the file is
opened.

RMP$SREQUEST_TAPE (local_file_name, class,
density, write_ring, volume_list, status)

local _file_name: amt$local_file_name;

Local file name.

class: rmt$tape_class;
Tape unit type.

RMC$MT9
Nine-track tape unit.

density: rmt$density;
Tape recording density.

RMC$800
800 cpi

RMC$1600

1600 cpi

RMC$6250

6250 cpi
The 1600 and 6250 cpi densities are recommended due to the
inherent reliability of the tape recording technique.
write_ring: rmt$write_ring;
Indicates whether or not a write ring must be inserted in each

tape volume. A tape unit cannot write on a tape volume unless
the tape volume has a write ring.

RMC$WRITE_RING

A write ring must be inserted.

RMC$NO_WRITE_RING
No write ring should be inserted.

Tape Management 4-3

RMP$REQUEST_TAPE

volume_list: rmt$volume_list;

List of volume serial numbers (vsn) identifying the tape
volumes of the file (adaptable array of type rmt$volume _
descriptor records).

Field Content

recorded _vsn This field is currently unused.

external _vsn Six-character volume serial number visible
on the tape canister (type
RMT$EXTERNAL_VSN).

status: VAR of ost$status;

Status variable. The process identifier returned is
RMC$RESOURCE_MANAGEMENT _ID.

Condition rme$improper_class_value

Identifiers rme$improper_density_value
rme$improper_external _vsn_value
rme$improper_recorded _vsn_value
rme$improper_write_ring _value

4-4 CYBIL File Interface Revision B

Revision B

RMP$REQUEST_TAPE

A tape unit is not assigned to the job until the tape file is
opened. If the file is never opened, the file is not assigned to
a specific tape device, and its association with a device
class has no effect.

A REQUEST_TERMINAL command can override the
device class association specified by an RMP$REQUEST _
TAPE call. Subsequent RMPSREQUEST_TERMINAL or
RMP$REQUEST_NULL_DEVICE calls can also change
the device class association if issued before the file is
opened.

A REQUEST_MAGNETIC_TAPE command supercedes
any AMPSREQUEST_TAPE or program request to assign
the file to another device class.

If the task is to have more than one tape file open at the
same time, a RESERVE_RESOURCE command must
reserve the required number of tape units before the first
tape file is opened.

When a tape volume is assigned to a job, NOS/VE records
the following information in the job log:

- Name of the tape unit on which the volume is mounted.
- Whether a write ring is inserted in the mounted volume.

You can display job log information with the SCL
command DISPLAY _LOG.

Tape Management 4.5

TAPE FILE ATTRIBUTES

Tape File Attributes

As for any other device class, you can set file attribute values for tape files
with the file attribute definition calls described in chapter 6. However, unlike
a permanent mass storage file, tape file attribute values are not preserved
with the file data. NOS/VE discards the attribute values after a DETACH _
FILE command or AMP$RETURN call ends the file assignment.

The file_organization attribute for tape files must be sequential. All tape files
are written and read sequentially using record access calls described in part
II1.

If you specify system-specified blocking when writing a tape file, the system
may pad the last block of the file with circumflex characters. Because the file
attributes (including the file length) are not stored with a tape file, the
system does not know the exact length of the file when it reads the file. So it
reads the entire last block of the file (including any padding characters) as
data. Therefore, the program that reads the tape file must check for and
discard circumflex characters at the end of the file.

If you specify user-specified blocking when writing a tape file, the system
pads any block shorter than the min_block _length value for the file with
circumflex characters. To avoid insertion by the system of circumflex
characters into the file data, ensure that the min_block _length value is
shorter than the shortest record to be written to the file.

Currently, NOS/VE does not perform character code conversion as the result
of the character _conversion and internal _code file attribute values.
However, a program can retrieve the file attribute values to determine the
conversion the program itself should perform on the file data. The means of
setting and retrieving file attribute values is described in chapter 6, Defining
File Attributes.

4-6 CYBIL File Interface Revision B

TAPE FILE POSITIONING

Tape File Positioning

A tape file is positioned in response to close, get, put, rewind, and skip calls.

When a tape file is closed, rewound, or repositioned after put calls have been
issued, the system ensures that all data from previous put calls is recorded on
the tape and then writes two tapemarks to mark the end of the current
volume.

Open Positioning

An open_position of AMC$OPEN _AT _BOI results in the rewinding and
dismounting of any currently mounted volume of tape and the mounting of
the first volume of the file from the volume list.

An open_position of AMC$OPEN _NO_POSITIONING results in the
physical position of the tape remaining unchanged. An open _position of
AMCSOPEN_AT_EOIl is treated as AMC$OPEN _NO_POSITIONING.
Close Positioning

When a tape file is closed after one or more put calls, it is left positioned
immediately before the two tapemarks which mark the end of the volume.
Rewind Positioning

When a tape file is rewound, it is positioned at the beginning of the first
volume of the file.

Skip Positioning

An AMPS$SKIP call can reposition the tape by records. An AMP$SKIP _
TAPE_MARKS call can reposition the tape by tapemarks. (The AMP$SKIP

call is described in chapter 7, Opening and Closing Files; the AMP$SKIP _
TAPE_MARKS call is described in this chapter.)

Revision B Tape Management 4.7

TAPE FILE POSITIONING

Forward Skip by Tapemarks

For a forward skip, the AMP$SKIP_TAPE_MARKS procedure reads the
tape until it has read the specified number of nonconsecutive tapemarks. No
tape data is transferred to access method buffers.

If the procedure reads the specified number of nonconsecutive tapemarks, it
returns normal status and leaves the file positioned after the last tapemark
read.

If the procedure encounters two consecutive tapemarks, neither tapemark is
counted. Instead, the double tapemark causes the procedure to switch the file
assignment to the next volume of the tape file; it continues the skip operation
using the data on the next volume. If the current volume is the last volume of
the file, the skip terminates, returning abnormal status.

Backward Skip by Tapemarks

Before skipping backward, AMP$SKIP_TAPE_MARKS writes to the tape
any data written to the file by a previous operation. AMP$SKIP_TAPE _
MARKS then writes two consecutive tapemarks to terminate the volume
before skipping backward.

AMPS$SKIP_TAPE_MARKS skips backward until it finds the specified
number of tapemarks or the beginning of the volume. No tape data is
transferred to access method buffers.

If AMP$SKIP_TAPE_MARKS reads the specified number of
nonconsecutive tapemarks, it returns normal status and leaves the file
positioned before the last tapemark read (positioned past the last tapemark
counted while skipping toward the beginning of the volume).

If AMP$SKIP_TAPE_MARKS reads the beginning of the tape volume, it
returns abnormal status and leaves the file positioned at the beginning of the
volume.

4.8 CYBIL File Interface Revision B

AMPS$SKIP_TAPE_MARKS

AMPS$SKIP_TAPE_MARKS

Purpose

Format

Parameters

Condition
Identifiers

Revision B

Repositions a tape file forward or backward the specified
number of tapemarks.

NOTE

Read permission to the file is required. The file must not be
open when the AMP$SKIP TAPE_MARKS call is issued.

AMPS$SKIP_TAPE_MARKS (local_file_name,
direction, count, status)

local_file_name: amt$local_file_name;

Local file name.

direction: amt$skip_direction;

Direction of skip.

AMC$FORWARD
Skip forward.

AMC$BACKWARD
Skip backward.

count: amt$tape_mark _count;

Number of tapemarks to be skipped (integer from 1 through
40,000).

status: VAR of ost$status;

Status variable. The process identifier returned is
AMCS$ACCESS_METHOD_ID.

ame$file_not_closed

ame$file not _known
ame$improper_ ANSI_operation
ame$improper_device_class
ame$improper_skip_count
ame$improper_skip_direction
ame$skip_encountered _bov
ame$skip_encountered _eov
ame$skip_requires_read_perm
ame$uncertain_tape_position

Tape Management

49

AMP$SKIP_TAPE_MARKS

Remarks e After normal termination of a forward skip, the file is
positioned after the last tapemark skipped. After normal
termination of a backward skip, the file is positioned before
the last tapemark skipped (towards the beginning of the
volume).

e The two consecutive tapemarks that indicate the end of a
volume are not included in a tapemark count.

4-10 CYBIL File Interface Revision B

TAPE FILE POSITIONING

Embedded Tapemarks

The AMP$WRITE_TAPE_MARK procedure can write a tapemark on an
unlabeled tape file. It can be used to write a single embedded tapemark to
partition data within a tape file.

A program to read a tape containing single tapemarks must be able to
distinguish between a single tapemark and a double tapemark. A get call
that encounters a tapemark, whether a single tapemark or a double
tapemark, returns a file position of AMC$EOL The program must call the
AMPSFETCH_ACCESS_INFORMATION procedure to determine the
volume position.

If the volume position is AMC$EQV, the file is positioned at the end of the
last volume in the list. If the volume position is AMC$AFTER_TAPEMARK,
the file is positioned after a single tapemark; a subsequent get call reads the
next record after the single tapemark.

Writing two consecutive tapemarks indicates the end of the accessible data
on the tape volume. Additional data could be written following the writing of
two consecutive tapemarks, but NOS/VE cannot read the data, nor can it
position the file between two consecutive tapemarks.

Copving Tape Files

Each AMP$COPY _FILE call copies one file. A tape file is the data between
nonconsecutive tapemarks. If a tape volume contains more than one tape
file, a separate AMP$COPY _FILE call with an open _position of
AMCS$OPEN _NO_POSITIONING is required to copy each tape file.

The first AMP$COPY _FILE call copies data up to the first embedded
tapemark. The next AMP$COPY _FILE call begins copying after the first
tapemark and continues to the second tapemark. If the file extends past the
end of the tape volume, the system automatically switches volumes as
described under Multivolume Tape Files. AMP$COPY _FILE does not
terminate when it encounters the two consecutive tapemarks that indicate
the end of a tape volume unless the last volume was read.

The last tape file has been copied when an AMP$COPY _FILE call returns
the exception condition AMESINPUT_FILE_AT_EOL

AMP$COPY _FILE does not write embedded tapemarks on the output file.
To copy embedded tapemarks as well as file data, the program must open the
file with AMC$OPEN_NO_POSITIONING, call the AMP$SWRITE_TAPE _
MARK procedure to write each tapemark, and then close the file.

Revision B Tape Management 4-11

AMP$WRITE_TAPE_MARK

AMPSWRITE_TAPE_MARK
Purpose Writes a tapemark on a tape file.
Format AMPS$WRITE_TAPE_MARK (file_identifier, status)

Parameters file_identifier: amt$file identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

status: VAR of ost$status;

Status variable. The process identifier returned is
AMCS$ACCESS_METHOD_ID.

Condition ame$conflicting _access_level

Identifiers ame$improper_ ANSI_operation
ame$improper_device_class
ame$improper_output_attempt
ame$ring _validation_error
ame$unrecovered _write_error

Remarks e Any blocks in memory are written before the tapemark.
The call terminates the current block.

® The call is invalid for mass storage files and files opened
for segment access.

4-12 CYBIL File Interface Revision B

® Terminal Management 5

Default Terminal Attributes. it 5-1
IFPSTERMINAL s 5-2
IFPSGET_DFLT_TERM_ATTRIBUTES 54

Terminal File Requests i e 5-5
RMP$REQUEST _TERMINAL i 5-6
IFPSGET_TERMINAL_ATTRIBUTESiiiiiiei... 57

Changing Terminal Attribute Values After the File IsOpen 5-8
IFP$STORE _TERMINAL 5-9
TFPSFETCH _TERMINAL e e e 5-11

Terminal Attributes e 5-12

Special Considerations for Terminal File Processing.................... 5-26
File Attributes. 5-26
File Access Information. ... 5-26
File Interface Calls i 5-27
Terminal Input e 5-28
Typed Ahead Inputo i e 5-29

Terminal Output e 5-30
Format Effectors 5-30
Logical Lines. 5-31
Page Wait. 5-32
Line Foldingooi i et 5-32

Terminal Conditions i 5-33

Terminal Management 5

This chapter describes the calls that perform the following functions:
e Associate a local file name with the interactive terminal device class.
e Change and retrieve terminal attribute values.

Each interactive job has one and only one interactive terminal associated
with it. Each file belonging to the interactive terminal device class within the
job is associated with the job’s terminal. A request to read data from the file
reads data input at the terminal; a request to write data to the file displays
data at the terminal.

Default Terminal Attributes

To perform interactive I/0, NOS/VE communicates with the Network
Access Method (NAM). NAM validates you, the interactive user, before you
can log in to NOS/VE. When you log in to NOS/VE, NAM passes the initial
set of default terminal attributes for the job to NOS/VE.

NOTE

A NOS/VE user should not use NAM commands to change terminal
attributes. You should use only NOS/VE commands and calls to change
terminal attributes.

After logging in to NOS/VE, you can change your default terminal
attributes with the SCL command SET_TERMINAL_ATTRIBUTES.

When you execute a task, NOS/VE initially assigns the task the default
terminal attributes of the job (including the values specified by SET _
TERMINAL_ATTRIBUTES commands). A task can change its default
terminal attribute values by using an IFP$STERMINAL call; however, a
value specified on an IFP$TERMINAL call is effective only if it was not
previously set by a SET_TERMINAL_ATTRIBUTES command.

A task can retrieve the current values of its default terminal attributes by
calling IFPSGET_DFLT_TERM_ATTRIBUTES. The call also returns the
source of each attribute.

Revision B Terminal Management 5-1

IFP$TERMINAL

IFPSTERMINAL
Purpose Sets terminal default values.
NOTE

An IFP$TERMINAL call cannot override a value set by a
previous SET_TERMINAL_ATTRIBUTES command. An
attribute value specified by an IFPSTERMINAL call is
effective only if it has not been set by a previous SET _
TERMINAL_ATTRIBUTES command.

Format IFPSTERMINAL (attributes, status)

Parameters attributes: iftfterminal _request_attributes;

Terminal attributes (type IFTSTERMINAL_REQUEST _
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the following attributes:

abort_line_char
backspace_char
cancel _line_char
network _control _char
output_flow-control
parity
pause_break_char
terminal _class
terminate break char

status: VAR of ost$status;

Status variable.

5-2 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

ife$auto_input_mode_range
ife$cr_idle_range
ife$current_job_not_interactive
ife$echoplex_range

ife$lf _idle_range
ife$no_format_effectors_range
ife$no_transp_delim_selection
ife$page_length_range
ife$page_wait_range
ife$page_width_range
ife$prompt_file_name_ill_formed
ife$prompt_file_name_not_found
ife$prompt_file_name_not_term
ife$prompt_string _size_range
ife$special _editing _range
ife$transp _count_select_range
ife$transp_delim_count_range
ife$transp_timeout_select_range
ife$transparent_mode_range
ifefunknown _attribute_key
ife$unknown _input_device
ifefunknown _output_device
ifefunknown _parity _mode
ifefunknown _store_attr_key
ifefunknown _terminal _class

The default values established by the call apply to all files

IFPSTERMINAL

that the task subsequently associates with the interactive

terminal class.

Terminal Management

5-3

IFP$GET_DFLT_TERM_ATTRIBUTES

IFPSGET_DFLT_TERM_ATTRIBUTES .
Purpose Returns the current default terminal attribute values for the

task.
Format IFP$GET_DFLT_TERM_ATTRIBUTES (attributes,

status) .

Parameters attributes: VAR of ift$get_terminal _attributes;

Terminal attributes (type IFTSGET_TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;
Status variable.

Condition ife$current_job_not_interactive
Identifiers ife$unknown _attribute _key

Remarks IFP$GET_DFLT_TERM_ATTRIBUTES returns the
attribute source with the attribute value. The attribute sources
are listed in table 5-1. .

54 CYBIL File Interface Revision B

TERMINAL FILE REQUESTS

Table 5-1. Terminal Attribute Sources

Constant Identifier Attribute Value Source
IFC$UNDEFINED ATTRIBUTE No attribute value.
IFC$SNAM_DEFAULT NAM default value.
IFC$0OS_DEFAULT NOS/VE default value.
IFC$TERMINAL_COMMAND SET_TERMINAL _
ATTRIBUTE command.
IFC$TERMINAL_ REQUEST IFPSTERMINAL call.
IFC$REQUEST TERMINAL_REQUEST RMP$REQUEST_TERMINAL
call.
IFC$STORE_TERMINAL_REQUEST IFP$STORE TERMINAL call.
IFC$BAM_REQUEST File attribute definition call.

Terminal File Requests

The RMPSREQUEST _TERMINAL procedure associates a local file name
with the interactive terminal device class and with a terminal attribute set.

The terminal attribute set consists of the default attribute set for the task and
any attributes specified on the RMPSREQUEST_TERMINAL call. A value
specified on the RMPSREQUEST _TERMINAL call overrides all values
previously specified for the attribute, including values specified by a SET_
TERMINAL_ATTRIBUTES command or IFP§TERMINAL call.

NOTE

When writing a program that sets terminal attributes, you should determine
which attributes the user of the program should be allowed to override using
SET_TERMINAL_ATTRIBUTE commands. Attributes that the user may
override with SET_TERMINAL_ATTRIBUTES commands are specified on
IFPSTERMINAL calls; attributes that the user may not override are
specified on the RMPSREQUEST _TERMINAL call for the file.

The task can retrieve the terminal attribute values associated with a local file
name by calling IFPSGET_TERMINAL_ATTRIBUTES. The call also
returns the source of each attribute.

Revision B Terminal Management 5-5

RMP$REQUEST_TERMINAL

RMPS$SREQUEST_TERMINAL

Purpose Associates a file with the interactive terminal device class and
specifies its terminal attributes.

Format RMP$REQUEST_TERMINAL (local_file_name,
attributes. statng)

Parameters local_file_name: amt$local file_name;

Local file name.

attributes: ift$req_terminal_req_attributes;

Terminal attributes (type IFTSREQ_TERMINAL_REQ _
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the values of the following attributes.

abort_line_char
backspace_char
cancel_line_char
network _control _char
output_flow_control
page_length
page_width

parity

pause_break _character
terminal _class
terminate_break _character

status: VAR of ost$status;
Status variable.

Condition rme$improper_term_attrib_key
Identifiers rme$improper_term_attrib_value

Remarks A value specified on the RMPSREQUEST _TERMINAL call
overrides all values previously specified for the attribute
including values specified by a SET_TERMINAL _
ATTRIBUTES command. If the file specified on the command
is never opened, the file is not assigned to a terminal device,
and its association with a device class has no effect (unless it
was created by a CREATE _FILE command).

56 CYBIL File Interface Revision B

IFP$GET_TERMINAL_ATTRIBUTES

IFPSGET_TERMINAL_ATTRIBUTES

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Returns terminal attribute values before the file is opened.

IFPSGET_TERMINAL_ATTRIBUTES (local_file _
name, attributes, status)

local_file_name: amt$local _file_name;
Local file name.

attributes: VAR of ift$get_terminal _attributes;

Terminal attributes (type IFTSGET _TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;
Status variable.

ife$current_job_not_interactive
ife$file_name_ill formed
ife$file_name_not_terminal
ife$file_name_not_found
ife$unknown _ attribute_key

The request returns the terminal attribute values that would
be in effect if the file was opened immediately following this
request. It enables the task to determine whether the current
terminal attribute values are appropriate for the processing to
follow.

Terminal Management 5-7

CHANGING TERMINAL ATTRIBUTE VALUES AFTER FILE IS OPEN

Changing Terminal Attribute Values
After the File Is Open

When a terminal file is opened, its initial set of terminal attributes are those
associated with the local file name. After the file is opened, the task can
change terminal attribute values with calls to IFP$STORE_TERMINAL.

The task can retrieve the terminal attribute values currently in effect for the
instance of open by calling IFPSFETCH_TERMINAL. The call also returns
the source of each attribute.

5-8 CYBIL File Interface Revision B

IFP$STORE_TERMINAL

. IFP$STORE_TERMINAL

Purpose

Format

Parameters

Revision B

Changes terminal attribute values after the file is opened.

IFP$STORE_TERMINAL (file_identifier, attributes,
status)

file_identifier: amt$file_identifier;
File identifier returned when the file is opened.

attributes: ift$store_terminal_attributes;

Terminal attributes (type IFT$STORE_TERMINAL _
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the values of the following attributes:

abort_line_char
backspace_char

cancel _line char
network _control _char
output_flow-control
page_length
page_width

parity

pause_break character
terminal _class
terminate_break character

status: VAR of ost$status;
Status variable.

Terminal Management 59

IFP$STORE_TERMINAL

Condition ife$cr_idle_range

Identifiers ife$current_job_not_interactive
ife$invalid_key_for_request
ife$lf _idle_range
ife$no_format_effectors_range
ife$no_transp_delim_selection
ife$page_wait_range
ife$prompt_file_id_not_found
ife$prompt_file_id_not_term
ife$prompt_file_name_ill_formed
ife$prompt_file_name_not_found
ife$prompt_file_name_not_term
ife$prompt_string _size_range
ife$special _editing _range
ife$transp_char_select_range
ife$transp_count_select_range
ife$transp _delim_count_range
ife$transp_timeout_select_range
ife$transparent_mode_range
ifeSunknown_attribute _key
ife$unknown_input_device
ifefunknown _output_device

Remarks The terminal attribute values specified by the call are used
during the instance of open of the file. The values are
discarded when the file is closed.

5-10 CYBIL File Interface Revision B

IFP$FETCH_TERMINAL

‘ IFPSFETCH_TERMINAL

Purpose Returns terminal attribute values after the file is opened.

Format IFPSFETCH_TERMINAL (file _identifier, attributes,

. status)

Parameters file_identifier: amt$file_identifier;

File identifier returned when the file is opened.

attributes: VAR of ift$get_terminal _attributes;

Terminal attributes (type IFT$SGET_TERMINAL _
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;

Status variable.

Condition ife$current_job_not_interactive
Identifiers ifefunknown _attribute key
‘ Remarks The request returns the terminal attribute values that are

currently in effect for this instance of open.

Revision B Terminal Management 5-11

TERMINAL ATTRIBUTES

Terminal Attributes .

As well as the set of file attributes described in chapter 6, Defining File

Attributes, each local file name associated with the interactive terminal

device class has a set of terminal attributes. The system uses terminal

attribute values when processing interactive 1/0. ‘

The procedure calls described in this chapter specify terminal attribute
values by allocating an array of records and assigning an attribute identifier
to the key field of each record.

The null _attribute identifier is used to indicate that the record is to be
ignored; it indicates that the call should not copy a value to the record or
store a value from the record.

The following are descriptions of the terminal attributes. Further description
of their functions can be found in the SCL System Interface manual. The
default values set by NAM and NOS/VE are listed in tables 5-2 and 5-3.

abort_line_character

Character that, when entered as the only character on a line, discards the
current output line.

Set by SET_TERMINAL_ATTRIBUTES command only.
backspace_character .

Character that, when entered in an input line, discards the previous input
character.

Set by SET_TERMINAL_ATTRIBUTES command only.

cancel_line_character
Character that discards the previous input line.
Set by SET_TERMINAL_ATTRIBUTES command only.

carriage_return_idle

Number of idle characters sent after a carriage return (0 through 99). The
idle characters sent enable proper operation of mechanical printers.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.

5-12 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

echoplex
Indicates whether each input character is automatically echoed back to
the terminal.
TRUE

Selects echoplex.

FALSE
Deselects echoplex.
Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.
eoi_string

When this string is entered as a separate physical input line, the line
serves the function of an end-of-information mark on the input file.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL_ATTRIBUTES, and
IFP$STORE _TERMINAL.

input_device

Input device.

IFC$KEYBOARD _INPUT

Terminal keyboard input.

IFC$PAPER_TAPE_INPUT
Paper tape reader input.

Set by SET_TERMINAL_ATTRIBUTES, IFP$STERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.

line_feed _idle

Number of idle characters sent after a line feed (0 through 99). Like
carriage_return_idle, the idle characters sent enable proper operation of
mechanical printers.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.
network_control_character

Character which, when entered as the first character on a line, causes the
line to be processed as a network command rather than transmitted as
data.

Set by SET_TERMINAL_ATTRIBUTES command only.

Revision B Terminal Management 5-13

TERMINAL ATTRIBUTES

no_format_effectors .

Indicates hether the system processes the first character of each output
line as a character or a format effector.

TRUE .
Do not process the first character as a format effector; pass the
character to the terminal.

FALSE
Process the first character as a format effector.

Set by IFPSTERMINAL, RMPSREQUEST_TERMINAL, and
IFP$STORE_TERMINAL.

NOTE

Setting the no_format_effectors to TRUE for the terminal file will not
affect the no_format_effectors attribute for the prompt file. You must set
this attribute separately for the prompt file to enforce or suppress format
effectors.

null_attribute

Used to fill space in the attributes list. No attribute field generated; no .
value returned.

Set by IFP$TERMINAL, RMP$REQUEST_TERMINAL, and
IFP$STORE _TERMINAL.

output_device

Output device used by terminal.

IFC$DISPLAY_OUTPUT
Output displayed.
IFC$PRINTER_OUTPUT
Output printed.

IFC$PAPER_TAPE_OUTPUT
Output punched on paper tape.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.

514 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

. output_flow_control

Indicates whether the network is to allow the terminal to regulate the flow
of output data to the terminal. When set to TRUE, the network suspends
output data when an ASCII DC3 character is received from the terminal.
Output resumes when the terminal sends an ASCII DC1 character.

. Neither the DC1 nor the DC3 character will be transmitted as data.

Set by SET_TERMINAL_ATTRIBUTES command only.

page_length
Number of lines on display device (1 through 4,398,046,511,103). NAM
interprets any value greater than 255 as meaning unlimited page length.
Set by SET_TERMINAL_ATTRIBUTES and IFP$TERMINAL.

page_wait
Indicates whether output is suspended at the end of a page and
subsequently resumed when the user enters a carriage return.
TRUE
Waits at end of page.

FALSE
. Does not wait at end of page.
The page length is specified by the page_length attribute. This attribute

is effective only if the output_device attribute value is
IFC$DISPLAY_OUTPUT.

Set by SET_TERMINAL_ATTRIBUTES, IFP$STERMINAL,
RMPSREQUEST_TERMINAL, and IFP$STORE_TERMINAL.
page_width

Number of characters in a line on the display device (1 through 65,535).
NAM interprets any value greater than 255 as meaning unlimited page
width.

Set by SET_TERMINAL_ATTRIBUTES and IFP$TERMINAL.

Revision B Terminal Management 5-15

TERMINAL ATTRIBUTES

parity ‘

Parity type.

IFC$EVEN_PARITY
Performs even parity check. ‘

IFC$ODD_PARITY
Performs odd parity check.

IFC$NO_PARITY

No parity check is performed; the parity bit is cleared if the
transparent_mode attribute value is FALSE.
IFC$ZERO_PARITY

No parity check is performed; the parity bit is always cleared.

Set by SET_TERMINAL_ATTRIBUTES command only.

pause_break_character

Character that, when entered as the only character on a line, causes a
pause_break condition.

Set by SET_TERMINAL_ATTRIBUTES command only.

prompt _file .

Local file name of the file to which the prompt string is written.

Unless the prompt_file_id attribute is set, the system opens the file
specified by the prompt_file attribute when the task issues its first get call
for the terminal file.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE _TERMINAL.

5-16 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

prompt_file_id

File identifier of the open file to which the prompt string is written.

A task uses this attribute when it wants to open the prompt file with
additional file attribute values specified on the AMP$OPEN call. To do so,
it does the following:

1. Opens the prompt file; AMP$OPEN returns a file identifier.

2. Specifies the returned file identifier as the prompt_file_id terminal
attribute.

If the task does not specify the file identifier as the prompt_file_id, the
system is not aware that the task has already opened the prompt file; it
performs its own open of the prompt file using the name provided by the
prompt_ file attribute.

Set by IFP§TERMINAL, RMPSREQUEST_TERMINAL, and
IFP$STORE_TERMINAL.

NOTE

If the task specifies a prompt_file_id attribute value on an
IFP$TERMINAL or RMP$REQUEST_TERMINAL call, the prompt file
does not revert to the file specified by the prompt_file attribute until the
task terminates. If the task specifies the prompt_file_id attribute on an
IFP$STORE _TERMINAL after the file is open, the prompt file reverts
when the file is closed or when the task terminates.

Revision B Terminal Management 5-17

TERMINAL ATTRIBUTES

prompt_string ‘

Record describing the string output to the prompt file when a task issues a
get call to the terminal file (type IFTSPROMPT_STRING).

Field Content .

size String length (0 through 31). (If the string length is zero, no
prompt string is output.)

value String

If transparent mode is selected, no prompting is performed.

If one or more AMP$PUT_PARTIAL calls have written a record that has
not yet been terminated and sent to the terminal, a get call sends the
partial record. If a prompt string is defined, it is appended to the partial
record. The processing sequence is as follows:

1. The task issues one or more AMP$PUT PARTIAL calls with
AMCS$START or AMC$CONTINUE specified to write the first parts

of an output record.

2. The task issues a get call. The system appends the prompt string to
the partial output record, terminates the record, displays the prompt
record at the terminal, and then waits for input.

If the no_format_effectors attribute is TRUE, the first character of the ‘
prompt string is interpreted as data, not as a format effector. If the no_
format_effectors attribute is FALSE, the first character of the prompt

string is interpreted as a format effector.

NOTE

If the first character of the prompt string is processed as a format effector,
it is removed from the string before the string is appended to a pending
partial output record and written to the prompt file.

518 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

special_editing

Determines whether the cancel _line character, backspace _character, and
line_feed _idle character edit a line or are passed to the task as input data
(boolean).

TRUE
Selects special editing.

FALSE

Deselects special editing.

Set by IFP$TERMINAL, RMP$SREQUEST_TERMINAL, and
IFP$STORE_TERMINAL.

terminal_class

Class of terminal used.

IFC$TTY _CLASS M3x teletypewriters.
IFC$C75x _CLASS CDC 75x or 713 terminals.
IFC$C721_CLASS CDC 721 terminals.
IFC$I1741 _CLASS IBM 2741 terminals.

IFC$TTY40_CLASS M40 teletypewriters.
IFC$H2000_CLASS Hazeltine 2000 terminals.

IFC$X364_CLASS ANSII x3.64 terminals.
IFC$T4010_CLASS Tektronix 4010 terminals and CDC 721 and
722 terminals.

IFC$HASP_CLASS HASP protocol terminals.
IFC$C200UT _CLASS CDC 200 user terminals.

IFC$C711_CLASS CDC 711 terminals.
IFC$C714_CLASS CDC 714 terminals.
IFC$C73X _CLASS CDC 73x terminals.
IFC$I1780_CLASS IBM 2780 terminals.
IFC$13780 _CLASS IBM 3780 terminals.

Set by SET_TERMINAL_ATTRIBUTES command only.

Revision B Terminal Management 5-19

TERMINAL ATTRIBUTES

terminal_name
Terminal name (7-character string).
Set by NOS/VE.

terminate_break_character

Character that, when entered as the only character on a line, causes a
terminate_break condition.

Set by SET_TERMINAL_ATTRIBUTES command only.

transparent_delim _selection

Record specifying the conditions that end a transparent input block. If a
field is TRUE, the condition is used; if it is FALSE, the condition is not
used. At least one condition must be selected.

Field Content

enable_end _delimiter Transparent input delimiter (boolean). The
delimiter is specified by the transparent_end _

character attribute.

enable_end_count Character count (boolean). The count is
specified by the transparent_end _count
attribute.

enable_time_out Time period used (boolean).

The first of the selected conditions encountered ends the tranparent input
block. The condition does not end transparent input mode; transparent
input mode ends when the transparent_mode attribute is set to FALSE.
Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMPS$SREQUEST_TERMINAL, and IFP$STORE_TERMINAL.

transparent_end_character

Character that delimits transparent input if selected by transparent_
delim _selection attribute.

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.

transparent_end_count

Character count that delimits transparent input if selected by
transparent_delim _selection attribute (1 through 4,096).

Set by SET_TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST_TERMINAL, and IFP$STORE_TERMINAL.

5-20 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

. transparent_mode
I/0 mode in which all terminal code conversion is bypassed.

TRUE

Selects transparent mode.

‘ FALSE

Deselects transparent mode.

In transparent mode, the system does not assume that output is ASCII
characters; it delivers output as 8-bit codes without any terminal-
dependent conversions. Transparent input is passed to the program
without any preprocessing or editing (such as backspacing or line
cancelling).

The transparent_delim _selection specifies the input block delimiter
conditions for transparent mode.

Set by IFP$TERMINAL, RMP$SREQUEST_TERMINAL, and
IFP$STORE_TERMINAL.

Revision B Terminal Management 5-21

TERMINAL ATTRIBUTES

Table 5-2. Default Attribute Values for Asynchronous Terminal Classes

Terminal Classes

Attribute TTY C75X 12741 C721
abort_line_ ‘
character $CHAR(24) $CHAR(24) “(’ $CHAR(24)
backspace _ BS BS BS BS
character $CHAR(B) $CHAR(8) $CHAR(8) $CHAR(8)
cancel _line_

character $CHAR(24) $CHAR(24) “(’ $CHAR(24)
carriage_return_

idle 2 0 8 0

echoplex FALSE FALSE N/A FALSE
input_device Keyboard Keyboard Keyboard Keyboard
line_feed_idle 1 0 1 0
network_control ESC ESC ESC
character $CHAR(27) $CHAR(27) ‘%’ $CHAR(27)
no_format_

effectors FALSE FALSE FALSE FALSE
output_device Printer Display Printer Display
output_flow_

control FALSE FALSE N/A FALSE
page_length 0 24 0 30
page_wait FALSE FALSE FALSE FALSE .
page_width 72 80 132 80

parity Even Even Odd Even
prompt_file ‘OUTPUT ‘OUTPUT" ‘OUTPUT ‘OUTPUT
prompt_string.

size 3 3 3 3
prompt_string.

value c?? ©?’ c?? c??
special _editing FALSE FALSE FALSE FALSE
transparent_delim _

selection.enable_

end_character TRUE TRUE TRUE TRUE
transparent_delim _

selection.enable_

end_count FALSE FALSE FALSE FALSE
transparent_delim _

selection.enable _

time_out FALSE FALSE FALSE FALSE
transparent_end _ CR CR CR CR
character $CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13)
transparent_end _ ‘
count 2044 2044 N/A 2044
transparent_mode FALSE FALSE FALSE FALSE

N/A = Not applicable

5-22 CYBIL File Interface

(Continued) ‘

Revision B

TERMINAL ATTRIBUTES

Table 5-2. Default Attribute Values for Asynchronous Terminal Classes
(Continued)

Terminal Classes

TTY40 H2000 x364 T4010

SCHAR(24) $CHAR(24) $CHAR(24) $CHAR(24)
BS BS BS

N/A $CHAR(8) $CHAR(8) $CHAR(S)

$CHAR(24) $CHAR(24) $CHAR(24) $CHAR(24)

1 0 0 0

FALSE FALSE FALSE FALSE

Keyboard Keyboard Keyboard Keyboard

3 3 0 0

ESC ESC ESC ESC

$CHAR(27) $CHAR(27) $CHAR(27) $CHAR(27)

FALSE FALSE FALSE FALSE

Display Display Display Display

FALSE FALSE FALSE FALSE

24 27 24 35

FALSE FALSE FALSE FALSE

74 74 80 74

Even Even Even Even

’OuUTPUT ‘OUTPUT ‘OUTPUT’ ‘OuTPUT

3 3 3 3

I ? 3 3 ? s 3 ? I < ? »

FALSE FALSE FALSE FALSE

TRUE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE

CR CR CR CR

$CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13)

2044 2044 2044 2044

FALSE FALSE FALSE FALSE

Revision B Terminal Management 5-23

TERMINAL ATTRIBUTES

Table 5-3. Default Attribute Values for Synchronous Terminal Classes ‘

Terminal Classes

Attribute HASP C200UT C711
abort_line_ '
character N/A N/A N/A
backspace _

character N/A N/A N/A
cancel _line_

character ‘o ‘C ‘v
carriage_return_

idle N/A N/A N/A
echoplex N/A N/A N/A
input_device Keyboard Keyboard Keyboard
line_feed _idle N/A N/A N/A
network _control _

character ‘%’ ‘%’ ‘%’
no_format_

effectors FALSE FALSE FALSE
output_device Display Display Display
output_flow _

control N/A N/A N/A
page_length 0 13 16
page_wait N/A TRUE TRUE .
page_width 80 80 80

parity N/A Odd Odd
prompt_file ‘OUTPUT ‘OUTPUT ‘OUTPUT
prompt_string.

size 3 3 3
prompt_string.

value €7’ ’?’ ‘7
special _editing FALSE FALSE FALSE
transparent_delim _

selection.enable _

end_character TRUE TRUE TRUE

transparent_delim _
selection.enable _
end_count FALSE FALSE FALSE

transparent_delim _
selection.enable _

time_out FALSE FALSE FALSE

transparent_end _ CR CR CR

character $CHAR(13) $CHAR(13) $CHAR(13)
transparent_end _ ‘
count 2044 2044 2044

transparent_mode FALSE FALSE FALSE

(Continued) .

524 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

Table 5-3. Default Attribute Values for Synchronous Terminal Classes
(Continued)

Terminal Classes

C714 73x 12780 13780
N/A N/A N/A N/A
N/A N/A N/A N/A
‘ o’ N/A N/A
N/A N/A . N/A N/A
N/A N/A N/A N/A
Keyboard Keyboard N/A N/A
N/A N/A N/A N/A

< % b < % ke 3 % b < % b4
FALSE FALSE FALSE FALSE
Display Display N/A N/A
N/A N/A N/A N/A

16 13 0 0
TRUE TRUE N/A N/A

80 80 80 120
Odd 0Odd N/A N/A
‘OouTPUT ‘OuUTPUT ‘OUTPUT ‘OUTPUT’
3 3 3 3

3 ? ’ ‘ ? ’ 3 ? ’ 3 ? ’
FALSE FALSE FALSE FALSE
TRUE TRUE TRUE TRUE
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
CR CR CR CR
$CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13)
2044 2044 2044 2044
FALSE FALSE FALSE FALSE

Revision B Terminal Management 5-25

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Special Considerations for Terminal File @@
Processing

When using the file interface calls described in part II for a terminal file, you
should be aware of the following special considerations. .

File Attributes

Only the following file attributes are effective for terminal files. Differences
in attribute processing for terminal files are listed.

® access_mode: Shorten and modify access have the same meaning as
append access.

® error_exit_name, file_access_procedure, return_option, and ring _
attributes: Same as for a local mass storage file.

e file_organization: Either sequential or byte_addressable file organization
can be specified, but byte _addressable is processed the same as
sequential.

e internal_code: Must be AMCS$ASCII (the default attribute value).

e page_length and page_width: By default, the values for the respective .
terminal attributes are used as the corresponding file attributes. However,
a file attribute definition command or call overrides the terminal attribute
value.

File Access Information

An AMP$FETCH_ACCESS_INFORMATION call can return the following
information for an open terminal file:

e Dblock_number: The last NAM application block number accessed on the
file.

e last_op_status: Always returns operation complete status.

® error_status, file_position, last_access_operation, and previous_record _
length: Processed the same as for a local mass storage file.

The following access information items are not applicable to a terminal file: .
current_byte_address, eoi_byte_address, previous_record_address,
volume_number, and volume _position.

526 CYBIL File Interface Revision B

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

File Interface Calls

The following file interface calls return an error status if a terminal file is
specified on the call:

AMP$GET_SEGMENT_POINTER
AMP$SET_SEGMENT_EOI
AMPS$SET_SEGMENT_POSITION
AMP$SKIP_TAPE_MARKS
AMP$SWRITE_TAPE_MARK

The following file interface calls are ineffective (act as no-ops) if a terminal
file is specified on the call:

AMPS$SKIP
AMP$REWIND
AMPSWRITE_END_PARTITION

The following file interface calls are effective for terminal files. Special
processing considerations are noted.

o AMPSRETURN: Discards the file definition within the job. The
connection of the job to the terminal and of other files to the terminal is
not affected.

e AMPSOPEN: The specified access level must be AMC$RECORD _
ACCESS.

o AMP$CLOSE: Flushes undelivered output to the terminal.

o AMPSGET_NEXT: The length of the input line is returned in the
transfer_count parameter variable.

o AMPS$GET_PARTIAL: The accumulated length of the input line is
returned in the record _length parameter variable.

o AMPSGET_DIRECT and AMP$PUT_DIRECT: The file_organization
attribute must be AMC$SBYTE _ADDRESSABLE.

o AMPS$PUT_NEXT and AMP$PUT_PARTIAL: Processed the same as for
a mass storage file.

o AMPSFLUSH: Delivers all output data to the terminal before returning
control to the task.

Revision B Terminal Management 527

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Terminal Input

A terminal input line is terminated by a RETURN key. The RETURN is not
passed to the task as part of the input data. Unless transparent mode is
selected, the input data is edited (backspace and cancel _line characters are
interpreted) before the input data is passed to the task.

To terminate interactive data to a task requesting terminal input, the string
*EOT’ can be entered.

Line feeds within an input line are ignored. For example, suppose a user
enters two lines, the first ending with a line feed and the second with a
RETURN, as follows:

line 1 [LINE FEED]
line 2 [RETURN]

The input is passed to the task as a single line as follows:
Line 1line 2

If transparent mode is not selected, the terminal codes are interpreted as
character codes in the 128-character ASCII set. If transparent mode is
selected, the terminal transfers data as 8-bit frames using whatever code the
terminal sends on its communication line. Input blocks are terminated by the
selected transparent input conditions, not by RETURNS.

NOS/VE allows more than one task in a job to be reading from the same
terminal at the same time. However, NOS/VE performs no input request
queueing for the tasks. When a task issues a get request, a full input line is
delivered. A sequence of AMP$GET_PARTIAL calls is satisfied from the
same input line. File positioning information is separate for each task.

When a task has more than one concurrent instance of open of a terminal
file, the file positioning information is shared for all instances of open.
Therefore, AMP$GET_PARTIAL calls for different instances of open could
read parts of the same input line.

528 CYBIL File Interface Revision B

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Typed Ahead Input

Terminal input can be typed ahead; that is, the user can enter input data
before the task is ready to process it. The system queues the input lines until
the task requests the input.

The number of lines that can be queued depends on the NAM terminal
definition. NAM can queue up to 20 lines of input; NOS/VE can queue 5
additional lines. When you reach the type-ahead limit, NAM sends the
following message:

WAIT..

You must then wait until the task accepts the input you have entered. You
cannot interrupt the task (with a pause_break or terminate_break character)
until the task accepts the input.

Revision B Terminal Management 5-29

TERMINAL OUTPUT

Terminal Output

Unless transparent mode is selected, output sent to a terminal file is assumed
to be character codes of the 128-character ASCII set, and the system
performs any needed code conversions for the terminal display. In
transparent mode, the system sends the output data as a stream of 8-bit
codes without any conversion.

NOS/VE allows more than one task in a job to be writing to the same
terminal at the same time. However, NOS/VE performs no output request
queueing for the tasks. The terminal usually receives output lines in the order
that tasks create them.

When a task issues a put request, a full output line is delivered. A sequence of
AMPS$PUT_PARTIAL calls is written as a single logical line unless the line
exceeds 2,043 bytes. If a line exceeds 2,043 bytes, AMP$PUT_PARTIAL calls
from different tasks could write data as part of the same logical line. File
positioning information is separate for each task.

When a task has more than one instance of open of a terminal file at the
same time, the file positioning information is shared for all instances of
open. Therefore, AMP$PUT_PARTIAL calls for different instances of open
could write parts of the same output line.

Format Effectors
Unless transparent mode is selected or the terminal attribute no_format_
effectors is TRUE, the system processes the first character of an output line

as a format effector. A format effector controls the vertical spacing of output
at the terminal.

5-30 CYBIL File Interface Revision B

TERMINAL OUTPUT

The following are the format effector constant identifiers, characters (in
parentheses), and their effect:

e [FC$PRE_PRINT_SPACE_1 (): Spaces down one line before printing.
e IFC$PRE_PRINT_SPACE_2 (0): Spaces down two lines before printing.

e JFC$PRE_PRINT_SPACE_3 (-): Spaces down three lines before
printing.

e JFC$PRE_PRINT_START_OF_LINE (+): Positions to the start of the
current line before printing.

e IFC$PRE_PRINT_HOME_CURSOR (*): Positions to the top of form
before printing.

e JFC$PRE_PRINT_HOME_CLEAR_SCREEN (1): Clears the screen
before printing.

e JIFC$PRE_PRINT_NO_POSITIONING (,): Does nothing before printing.
e JFC$POST_PRINT_SPACE_1 (.): Spaces down one line after printing.
e JFC$SPOST_PRINT_START_ OF_LINE (/): Positions to the start of the

current line after printing.

The system converts the format effector character to the appropriate code for
the terminal class.

Logical Lines

Each output record can contain more than one logical line. (Logical lines are
not applicable in transparent mode.) Logical lines are separated by the
ASCII US character. If the line contains only one logical line, do not include
an ASCII US character at its end (because NOS/VE automatically adds an
ASCII US to the end of the line). Each logical line begins with a format
effector character (unless the attribute no_format_effectors is TRUE).

Revision B Terminal Management 5-31

TERMINAL OUTPUT

Page Wait

The page wait option causes the system to suspend output after sending a
page of data. You then enter an empty line (by pressing the RETURN key
only) to receive the next page of output. The empty line is not passed to the
task as input. However, if you enter a nonempty line, the line is passed to the
task as input; the entered line also restarts output.

The page wait option is effective when the page_wait terminal attribute is
selected, the output_device attribute is IFC$DISPLAY_OUTPUT or
IFC$PRINTER_OUTPUT, and a value has been defined for the page_
length attribute unless in transparent mode. If the page_length attribute is
undefined, the page length is assumed to be infinite and no page wait is
performed. In transparent mode, an output block is considered to be a page,
so a page_length value is not required.

The page_length attribute is both a terminal attribute and a file attribute.
Therefore, a task can change the page length used for an instance of open
using a file attribute definition call.

Line Folding

Line folding causes a line to continue on the next physical line when its
length reaches the page_width value. The logical line remains the same
regardless of the number of physical lines used to output or input the line.

Definition of a page_width terminal attribute value enables line folding. If
the output_device attribute is IFCSDISPLAY _OUTPUT, the system
assumes the terminal performs the line folding. However, if the output_
device attribute is IFC$PRINTER_OUTPUT, the system performs the line
folding.

The page_width attribute is both a terminal attribute and a file attribute.
Therefore, a task can change the page width used for an instance of open
using a file attribute definition call.

5.32 CYBIL File Interface Revision B

TERMINAL CONDITIONS

Terminal Conditions

Within NOS/VE, a condition is an occurrence that interrupts normal task
processing. The chapter on condition processing in the CYBIL System
Interface manual provides a complete description of condition processing.

Conditions that are especially pertinent to interactive processing include the
following:

e Entry of the pause_break or terminate_break characters.

e Determination that the job is approaching a resource limit, such as a time
limit.

The system processes these conditions by performing the following steps:

1. The system attempts to pass the condition to a condition handler
selected by the task.

2. If the task has no condition handler for the condition, the system
determines whether an SCL. WHEN statement has specified processing
for the condition. (For more information on the WHEN statement, see
the SCL System Interface manual.)

3. If no WHEN statement is in effect for the condition, the system
processes the condition itself, as follows:

e Pause_break: Discards any input not yet read by a task (including
any typed-ahead data) and suspends all user activity in the job. You
can then enter SCL commands (such as a command to determine
the job status). You can then resume or terminate the job.

e Terminate_break: Discards any input not yet read by a task
(including any typed-ahead data), terminates all user activity in the
job, and discards all output not yet delivered to the terminal. It does
not, however, terminate tasks suspended by a previous pause_
break. You can then enter a command to continue processing.

® Resource limit: Discards any input not yet read by a task, suspends
all user activity in the job, and sends a message to the terminal. You
can then respond to the message.

Revision B Terminal Management 533

Defining File Attributes 6

Defining New File Attributes................. 6-1
Defining Old File Attributes 6-3
Verifying Preserved Attribute Values 6-3
Defining Attributes foran Open File 6-3
Attribute Definition Calls e 6-4
AMPSFILE ... o 6-5
AMPSTORE ... o e 6-8
Retrieving File Atttibutes ... e 6-9
Attribute Specification 69
Attribute Sources s 6-10
Returned Attributes.coiiiiiii e 6-11
Retrieving Attributes for Connected Files 6-12
Retrieving File Characteristics i, 6-12
AMPS$GET_FILE_ATTRIBUTES i, 6-13
AMPSFETCHo e 6-15
File Attribute Descriptionsttt et 6-16
List Attributes i e 6-42

Defining File Attributes 6

Each file has the following characteristics:
e A local file name unique to a job.

o Assignment to a device class.

e A set of file attributes.

You can associate the name of a new file with a file attribute set, with a
device class, or before it is opened.

A file attribute set is a set of values that the system references to determine
how it processes a request to access the file. This chapter describes the
specification of file attribute values.

The default device class assignment is mass storage. Part II of this manual
describes device class assignment in detail.

Defining New File Attributes

A new file is a file that has never been opened. After a file has been opened,
it becomes an old file.

A new mass storage file has no file space assigned to it. When a mass
storage file is opened, it is assigned space, and the system stores certain file
attributes with the file.

The file attributes stored with a mass storage file are called structural
attributes or preserved attributes. These attributes determine the file
structure and are preserved for the lifetime of the file. (You can change some
preserved attribute values with a CHANGE _FILE_ATTRIBUTES
command.)

The file attributes that are not stored with the file are called temporary
attributes. The system discards temporary attribute values when the file is
returned or closed.

The initial set of file attributes consists of default values which are system-
defined. For a new file, you can change default attribute values and assign
attribute values that do not have default values using the SET_FILE _
ATTRIBUTES command and AMPS$FILE and AMP$OPEN procedure calls.

Revision B Defining File Attributes 6-1

DEFINING FILE ATTRIBUTES

You can specify more than one value for an attribute before a file is opened.
An AMPSFILE call discards all attribute values specified by previous
AMPSFILE calls; the resulting attribute set for the new file then consists of
system _-defined default values and the values specified on the most recent
AMPSFILE call.

Values specified by SET_FILE _ATTRIBUTES commands override values
set by AMPSFILE calls. Values specified on the AMP$OPEN call override
values set by either SET_FILE _ATTRIBUTES or AMPS$FILE. Values
specified by a SET_FILE_ATTRIBUTES or AMP$OPEN call are
cumulative; previously specified values are not discarded; the resulting
attribute set consists of the previously specified values and the values
specified on the call or command.

NOTE

When writing a program, you should consider whether the user of the
program should be allowed to change a file attribute value using the SET _
FILE_ATTRIBUTES command. To specify attribute values that the
program user can change, use an AMPS$FILE call. To specify attribute
values the program user cannot change, use the AMP$OPEN call.

The value assigned to a structural attribute when you open the new file is the
value preserved with the file.

6-2 CYBIL File Interface Revision B

DEFINING OLD FILE ATTRIBUTES

Defining Old File Attributes

When you access an old mass storage file (a file that has previously been
opened), its initial file attribute set consists of the preserved attribute values
stored with the file, default values for temporary attributes defined by the
system, and any values set by SET_FILE_ATTRIBUTES commands for the
file. A task can also specify temporary attribute values that apply only to the
current file access.

For an old file, if a SET_FILE_ATTRIBUTES command or an AMP$FILE
request attempts to specify a value for a preserved attribute, the specified
value will be ignored.

You can change the value of an attribute more than once before you open the
old file. Values specified by SET_FILE_ATTRIBUTES commands override
values set by AMPS$FILE calls. Values specified on the AMP$OPEN call
override values set by either SET_FILE _ATTRIBUTES or AMPSFILE.

Verifving Preserved Attribute Values

Besides changing temporary attribute values, the AMP$OPEN call also
verifies preserved attribute values. If a preserved attribute value specified on
the AMP$OPEN call does not match the actual preserved value, the
procedure returns abnormal status (AME$ATTRIBUTE _VALIDATION _
ERROR).

Defining Attributes for an Open File

As described earlier, the SET_FILE _ATTRIBUTES command and
AMPSFILE call can specify attribute values before the file is opened. The
AMPS$OPEN call that opens the file can also specify attribute values.

After a file is opened, an AMP$STORE call can change attribute values.
However, it is effective only for the error_exit_procedure, error_limit, and
message_control attributes.

Revision B Defining File Attributes 6-3

ATTRIBUTE DEFINITION CALLS

Attribute Definition Calls

Each call that defines file attributes specifies the file attribute values by
specifying an array or a pointer to an array on the call. AMP$FILE and
AMPS$STORE calls specify the array; an AMP$OPEN call specifies a pointer
to an array.

To prepare the file attributes array, you first declare the array variable of the
appropriate type. If you declare the parameter variable to be a pointer to the
appropriate array type, you must also allocate the variable space with a
PUSH or ALLOCATE statement.

Each file attributes array type is an adaptable array type. Therefore, you
must fix the array size. The array should contain one element for each
attribute to be specified.

For example, the following statements declare pointer variables for an
AMPSFILE call and an AMP$OPEN call and then allocate space for the
arrays:

VAR
file_attributes_ptr: "amt$file_attributes,
open_attributes_ptr: amt$file_access_selections;

PUSH file_attributes_ptr: [1..1];
PUSH open_attributes_ptr: [1..1];

After declaring the variable type and allocating space for the variable, you
initialize the tag field of each record to an attribute identifier and the value
field to the attribute value.

An attribute identifier is the attribute name prefixed by AMC$. The name of
the attribute value field is the name of the attribute. (A listing of all
attributes and the attributes valid for each call is provided later in this
chapter.)

For example, the following statements initialize the file attributes variables
for an AMPS$FILE call and an AMP$OPEN call. The AMPS$FILE call
specifies a value for the page_length attribute; the AMP$OPEN call specifies
a value for the page_width attribute. "Key” is the tag field.

file_attributes ptr°[1].key := amc$page_length;
file_attributes ptr~[1].page_length := 55;
open_attributes_ptr~[1]1.key := amc$page_width;
open_attributes_ptr~[1].page_width := 54;

The following are the procedure call descriptions for AMP$FILE and
AMPS$STORE. The AMP$OPEN procedure call description is in chapter 7,
Opening and Closing Files.

6-4 CYBIL File Interface Revision B

AMPSFILE

. AMPSFILE

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Defines file attribute values for subsequent instances of open.
NOTE

You issue the AMPS$FILE call before you open the file. To
change attributes of an open file, use an AMP$STORE call.

An AMPSFILE call discards any attribute values specified by
previous AMPS$FILE calls specifying the file.

AMPSFILE (local _file_name, file_attributes, status)

local _file_name: amt$local _file_name;
Local file name.

file _attributes: amt$file_attributes;

Array of attribute records. Each array record should contain
an attribute identifier and an attribute value. The valid
attributes for AMP$FILE are listed in table 6-1.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

ame$improper_file_attrib_key
ame$improper_file_attrib_value
ame$ring_validation_error

e For a new file, an AMPS$FILE call can specify values for
temporary attributes and preserved attributes. For an old
file, an AMPS$FILE call can specify values only for
temporary attributes.

e C(Calls to AMPS$FILE are not cumulative. If a task calls
AMPSFILE more than once before it opens the file, only
the values specified on the last AMP$FILE call are used.

¢ By specifying an attribute value with the AMP$FILE
procedure, you permit a user to override the value with a
SET_FILE_ATTRIBUTES command; to prevent a task
from overriding an attribute value, you must use an
AMPS$OPEN call to specify the attribute value.

e The temporary attribute values specified on an AMP$FILE
call apply only to subsequent opens of the file within the
issuing task until the file is returned. The values do not
apply to previous or current instances of open of the file.

Defining File Attributes 6-5

AMPSFILE

Table 6-1. Valid Attributes for Each File Attributes Call .
AMP$ADD_ AMPS$GET_
TO_FILE _ FILE _

Attribute DESCRIPTION AMPSFETCH AMPS$SFILE ATTRIBUTES AMP$OPEN AMP$STORE

access_level X

access_mode X X X X .

application_

info X X

average_record _

length X X X X X

block _type X X X X

character _

conversion X X X X X

clear_space X X X X

collate_table X X

collate_table_

name X X X X

compression_

procedure_name X X X X

data_padding X X X X X

dynamic_home_

block _space X X X X

embedded _key X X X X X

error_exit_name X X X X

error _exit_

procedure X X

error_limit X X X X X

o]

estimated _
record _count X X X X

file_access_
procedure X X

P
>
=

file_contents X
file_length

file_limit X
file_organization

file_processor X

ol

file_structure

[T T B
T A]
[T B I
PO M) K

forced_ write X
global _access_

mode

global _file_

address X X
global _file_

name X X

global _file
position X X

>
s

(Continued)

6-6 CYBIL File Interface Revision B

AMPS$FILE

Table 6-1. Valid Attributes for Each File Attributes Call (Continued)

AMPSADD _ AMPS$GET_
TO_FILE _ FILE_
Attribute DESCRIPTION AMPSFETCH AMPSFILE ATTRIBUTES AMPSOPEN AMP$STORE

global_share _
mode X X

hashing _
procedure_name

t
Mo
E]

>

index_levels X

>
»
]
>
>

index _padding

initial_home_
block _count

internal _code
key_length
key _position
key _type
label _type
line_number X
loading_factor

Ea I
Popd o M M
-
PAODE B pd M pE b
Pop o B M X

lock _expiration
time

>
o=
>
=

logging _options
log_residence X X X X

max_block_
length X X X X X

max _record _
length X X X X X

message_
control X X X X X

min_block _
length X X X X X

min_record _
length X X X X X

null_attribute

>
oo
>
[]
>

>

open_position

padding _
character

page_format
page_length

Mopd
E R]
POopd M

page_width
permanent_file

>

record _limit

>

F T o TR T]
>

ET T]

record _type X

records_per_
block X

return_option X
ring_attributes X X X X

statement _
identifier X X X X X

user_info X X X X X

vertical _print_
density X X X X

>
>
]
[

Revision B Defining File Attributes 6-7

AMP$STORE

AMPS$STORE
Purpose Changes file attribute values for an open file.
NOTE

The AMP$STORE procedure can only be called after the file
is open. The attribute values specified on the call are
applicable only to the instance of open specified on the call
and are discarded when the file is closed.

Format AMPS$STORE (file_identifier, file_attributes, status)

Parameters file_identifier: amt$file_ identifier;

File access identifier returned by the AMP$OPEN call that
opened the file.

file_attributes: amt$store attributes;

Array of attribute records. Each array record should contain
an attribute identifier and an attribute value. An
AMPSSTORE call can only specify values for the error_exit_
procedure, error _limit, and message_control attributes.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

Condition ame$improper_file_attrib_key
Identifiers ame$improper_file_attrib_value
ame$improper _file_id
ame$ring _validation_error

For indexed sequential files only:
aae$not_enough _permission

Remarks To retrieve attribute values specified by an AMP$STORE call,
use an AMP$FETCH call. The AMP$GET_FILE _
ATTRIBUTES call does not return values set by an
AMP$STORE call.

6-8 CYBIL File Interface Revision B

RETRIEVING FILE ATTRIBUTES

Retrieving File Attributes

Besides specifying attribute values, you can also retrieve attribute values.
Retrieving an attribute value allows you to change processing of the file
according to the value returned.

Both AMP$GET_FILE_ATTRIBUTES and AMP$FETCH retrieve attribute
values. The procedures have the following differences:

¢ You can call AMP$GET_FILE_ATTRIBUTES before or after you open
the file; you can call AMP$FETCH only while the file is open.

o An AMP$GET_FILE_ATTRIBUTES call specifies the file by its local file
name; the AMP$FETCH call specifies an instance of open of the file by
the file_identifier returned by the AMP$OPEN call.

e To retrieve attribute values specified by an AMP$STORE call, you must
use an AMP$FETCH call; AMP$GET_FILE _ATTRIBUTES does not
return values stored by AMP$STORE.

Attribute Specification

Like file definition calls, each call to retrieve file attribute values has a file_
attributes parameter. The file _attributes parameter must either name a
static array or point to a dynamic array. In either case, the array must be of
the type declared for the file_attributes parameter in the procedure
declaration (AMT$GET _ATTRIBUTES for AMP$GET_FILE _
ATTRIBUTES and AMT$FETCH _ATTRIBUTES for AMP$FETCH).

You declare and allocate the attributes array for an attribute retrieval call
the same as for an attribute definition call except that you specify only the
attribute identifier, not the attribute value. The procedure returns the
attribute value in the value field of the record. (The only exception is the
collate _table attribute; see the collate _table attribute description.)

For example, the following statements declare a pointer variable for an
AMPS$GET_FILE_ATTRIBUTES call, allocate space for an array
containing two elements, and assign an attribute identifier to each record.

VAR
get_attributes: “amt$get_attributes;

PUSH get_attributes: [1..2];

get_attributes”[1].key := amc$page_length;
get_attributes”[2].key := amc$page_width;

Revision B Defining File Attributes 6-9

RETRIEVING FILE ATTRIBUTES

After the AMP$GET_FILE _ATTRIBUTES call is processed, an attribute
value can be referenced as follows:

IF get_attributes”[2].page_width > 132 THEN
Line_folder;
IFEND;

If the attribute value is greater than 132, the IF statement calls a procedure
named LINE_FOLDER.

Attribute Sources

Besides the attribute value, an attribute retrieval call also returns the
attribute source. The attribute source indicates how the attribute value was
defined.

The attribute retrieval call returns one of the identifiers listed in table 6-2 in
the source field.

Table 6-2. File Attribute Sources

Identifier Meaning

AMCS$UNDEFINED_ATTRIBUTE The attribute does not have a
default value, and no value has
been specified for it.

AMCSLOCAL_FILE_INFORMATION The attribute value is determined
by the job environment (returned
attribute only).

AMCS$FILE _COMMAND The attribute value was specified
on a SET_FILE_ATTRIBUTES
command.

AMC$CHANGE _FILE_ATTRIBUTES The attribute value was specified
on a CHANGE_FILE _
ATTRIBUTES command.

AMCSFILE_REFERENCE The attribute value was specified
on the file reference. (For example,
the open_ position can be specified

as $BOI, $EOI, or $ASIS).

AMCS$FILE_REQUEST The attribute value was specified
on an AMPS$FILE call.
AMCS$ACCESS_METHOD_DEFAULT The attribute value is the default
value defined by the system.
(Continued)

6-10 CYBIL File Interface Revision B

RETRIEVING FILE ATTRIBUTES

Table 6-2. File Attribute Sources (Continued)

Identifier Meaning
AMC$OPEN_REQUEST The attribute value was specified
on an AMP$OPEN call.

AMCS$ADD_TO_FILE_DESCRIPTION The attribute value was specified
on an AMP$ADD _TO_FILE _
DESCRIPTION call.

AMCS$STORE _REQUEST The attribute value was specified
on an AMP$STORE call. (The
AMPS$GET_FILE _ATTRIBUTES
call cannot return this identifier.)

Returned Attributes

Certain file attributes cannot be specified by a user although the attribute
retrieval calls can return the current value of these attributes. This manual
refers to these attributes as returned attributes, rather than preserved or
temporary attributes.

The system determines the values for returned attributes from the job
environment, rather than a value specification. The attribute source
identifier for a returned attribute is AMC$LOCAL_FILE _INFORMATION.

The returned attributes include the following:

application_info
file_length

global _access_mode
global_file_address
global _file_name
global_file_position
global_share_mode
permanent_file

Revision B Defining File Attributes 6-11

RETRIEVING FILE ATTRIBUTES

Retrieving Attributes for Connected Files

A CREATE_FILE_CONNECTION command or CLP$CREATE_FILE _
CONNECTION call connects a subject file to a target file. If an attribute
retrieval call specifies a subject file connected to one or more target files, the
call returns the file attributes of the target file first connected to the subject
file.

For example, suppose file SECHO is the subject file first connected to the
target file MY _FILE and then connected to the target file YOUR_FILE. An
AMPS$GET_FILE_ATTRIBUTES call that specifies SECHO would return
the attributes of MY _FILE because it is the first connected target file.

Retrieving File Characteristics

An AMP$GET_FILE_ATTRIBUTES call returns additional information
besides file attribute values and sources. It also returns boolean values for
the following parameters:

e Jlocal_file: Indicates whether the local file name is defined within the job.
e old_file: Indicates whether the file has previously been opened.

e contains_data: For a mass storage file, indicates whether the file
contains data. (A file assigned to the terminal or null device classes
always returns FALSE,; a tape file always returns TRUE.)

If the call returns FALSE for both local_file and old_file, the file is not local
to the job and has never been opened. In this case, the attribute values
AMPS$GET_FILE_ATTRIBUTES returns are the default attribute values; if
the attribute does not have a default value, its value is AMC$UNDEFINED _
ATTRIBUTE.

6-12 CYBIL File Interface Revision B

AMP$GET _FILE_ATTRIBUTES

. AMPSGET_FILE_ATTRIBUTES

Purpose

Format

Parameters

Revision B

Returns file attribute values.

NOTE

The specified file can be open or closed when the AMP$GET _
FILE _ATTRIBUTES call is processed.

AMPSGET_FILE_ATTRIBUTES (local_file_name,
file_attributes, local_file, old_file, contains_data,
status)

local_file_name: amt$local_file_name;
Local file name.

file_attributes: VAR of amt$get_attributes;

Array of attribute records. Each array record should contain
an attribute identifier; the procedure AMP$GET _FILE _
ATTRIBUTES returns the attribute source and the attribute
value in the record. The valid attributes are listed in table 6-1.

local_file: VAR of boolean;

Indicates whether the local file name is registered in the
$LOCAL catalog (boolean). TRUE is returned if the file is
existent in the local catalog, FALSE if it is not.

old_file: VAR of boolean;

Indicates whether the file has been opened (boolean). TRUE is
returned if the file has been opened, FALSE if it has not.

contains_data: VAR of boolean;

Indicates whether the file contains data (boolean). TRUE is
returned if the file contains data, FALSE if it does not.

The call always returns FALSE if the file is assigned to a
terminal or a null device. It always returns TRUE if the file is
assigned to tape.

For indexed sequential files, contains_data is always TRUE
after the file has been opened even if no data records have
been written to the file. (Opening an indexed sequential file
writes the internal file label.)

status: VAR of ost$status;

Status record. The process identifier is
AMCS$ACCESS_METHOD_ID.

Defining File Attributes 6-13

AMP$GET_FILE_ATTRIBUTES

Condition ame$improper_file_attrib_key ‘
Identifiers ame$ring_validation_error

Remarks o AMP$GET_FILE_ATTRIBUTES does not return
attribute values defined by AMP$STORE calls.

o Ifthe AMP$GET_FILE_ATTRIBUTES call specifies a .
subject file connected to one or more target files, the call
returns the attributes of the target file to which the subject
file was first connected.

6-14 CYBIL File Interface Revision B

AMPS$FETCH

‘ AMPSFETCH

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Returns file attribute values.

NOTE

The instance of open specified by the file identifier on the
AMPS$FETCH call must be open when the call is processed.

AMPSFETCH (file_identifier, file_attributes, status)

file_identifier: amt$file_identifier;

File identifier identifying the instance of open. AMP$OPEN
returns a file identifier when it opens a file.

file_attributes: VAR of amt$fetch_attributes;

Array of attribute records. Each array record should contain
an attribute identifier; AMP$FETCH returns the attribute
source and the attribute value in the record. The valid
attributes are listed in table 6-1.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

ame$improper_file_attrib_key
ame$improper_ file_id
ame$ring_validation_error

An AMPSFETCH call returns attribute values specified by an

AMPS$STORE call if the calls specify the same file identifier.

Defining File Attributes 6-1

5

FILE ATTRIBUTE DESCRIPTIONS

File Attribute Descriptions

Each of the following attribute descriptions provides the following
information:

e Attribute name. (The name given is the name of the value field in the
attribute record; the attribute identifier is the attribute name with the
prefix AMCS$. For example, the attribute identifier for block _type is
AMC$BLOCK_TYPE)

e Attribute purpose.

e Indicates whether the attribute is a preserved, temporary, or returned
attribute.

e Valid attribute values.
e Default value for preserved and temporary attributes.

A preserved attribute is an attribute whose value is kept for the lifetime of
the file. (You can change some preserved attribute values with a CHANGE _
FILE_ATTRIBUTES command.) A temporary attribute is an attribute
whose value is discarded after the file is returned. A returned attribute is an
attribute whose value cannot be specified by an attribute definition
command or call but can be returned by an attribute retrieval command or
call. The file attribute descriptions follow.

access_level

Indicates the level of file data access used for this instance of open
(returned attribute). The user defines the attribute value on the
AMPS$OPEN call.

Value: One of the following identifiers (type AMT$ACCESS_LEVEL):
AMCS$RECORD

Record access.

AMC$SEGMENT

Segment access (valid only for mass storage files whose file_
organization attribute is not AMC$INDEXED_SEQUENTIAL).

6-16 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

. access_mode
Set of access modes allowed within the instance of open (temporary
attribute).

Value: Set of access mode identifiers (type PFTSUSAGE_SELECTIONS).

. PFC$SREAD

Read access.

PFC$SHORTEN

Shorten access.

PFC$APPEND

Append access (required to write to a new file).

PFC$MODIFY

Modify access.

PFC$EXECUTE

Execute access.

The set can contain only access modes included in the global_access_
mode set (see the global _access_mode attribute description).

Default value: The set of access modes defined by the global_access_
‘ mode attribute excluding PFC$EXECUTE.

The attribute cannot be changed while the file is opened.

For more information on access modes, see chapter 3, Mass Storage File
Management.

application_info

Access control information used by an application program (returned
attribute).

The application information string can be specified on a PFPS$PERMIT
call. The Source Code Utility (SCU) uses the application information to
determine whether a user has authority to perform certain operations.

Value: 31-character string (type PFTS$APPLICATION _INFO).
Default value: 31 spaces.

For more information on SCU use of this attribute, see the SCL Source
Code Management manual.

Revision B Defining File Attributes 6-17

FILE ATTRIBUTE DESCRIPTIONS

average_record_length (indexed sequential files only) .

Estimate of the average record length in bytes (preserved attribute). If
specified, the system uses the attribute value to calculate the block size
used; it uses the attribute value only when opening a new file.

For ANSI fixed-length (F) records, the average_record _length should be
the same as the maxi_record_length. .

For variable (V) and undefined (U) records, the average_record_ length
value depends on whether the majority of the records are the same length.

o If most records are a specific length, set the attribute value to that
length.

e If the record lengths are well distributed within a range of lengths, set
the attribute value to the median record length (half of the records are
longer, half are shorter).

Value: integer from 1 through AMC$MAXIMUM_RECORD (type
AMT$AVERAGE_RECORD_LENGTH).

Default value: None. If no value is set for the attribute, the system uses
the arithmetic mean of the max_record_length and min_record_length
values to calculate block size. However, the system does not set the
average_record_length attribute to that value.

For more information, see chapter 10, Accessing Indexed Sequential Files. .

block_type (sequential or byte addressable files only)

Indicates whether the user or the system determines file blocking
(preserved attribute).

Value: One of the following identifiers (type AMT$BLOCK_TYPE):
AMC$SYSTEM _SPECIFIED

Access method determines block size.

AMC$USER_SPECIFIED

User determines block size.

Default value: AMC$SYSTEM _SPECIFIED.

For more information, see File Blocking in chapter 9, Accessing
Sequential and Byte Addressable Files.

character_conuversion (tape files only)

Indicates whether the tape file data requires conversion to 8-bit ASCII .
code (preserved attribute).

6-18 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

NOTE

Currently, NOS/VE does not perform tape file character conversion.
However, the character_conversion attribute is available for use by a
program that intends to perform its own character conversion.

Value: Boolean value.
TRUE
The system converts the character code.
FALSE
The system does not convert the character code.
Default value: FALSE.

collate_table

Collation table (returned attribute). This attribute is used to fetch the
collation table assigned to a file.

NOTE

To fetch the collation table, you specify a pointer in the COLLATE _
TABLE field of the attribute record for an AMP$FETCH call.
AMPS$FETCH copies the collation table to the variable to which the
pointer points. If you do not specify a pointer, the system attempts to use
an undefined pointer and returns an error.

Value: Pointer of type "AMT$COLLATE_TABLE. Type
AMT$COLLATE_TABLE has the following declaration:

ARRAY [CHAR] OF AMT$COLLATION_VALUE

Type AMT$COLLATION _VALUE is the integer subrange 0 through 255.
To determine the collating weight the table assigns to a particular
character code, you use the character as the index into the table; the value
at that position is the collating weight of that character. For example,
assume an AMP$FETCH call has fetched the collation table of a file and
stored it in an array variable COLLATION _TABLE. The following

statement assigns the collating weight of A to integer variable
A_WEIGHT:

A_WEIGHT := COLLATION_TABLEL'A'];

Assume the statement assigns the value 0 to A_ WEIGHT. This means
that the collation table assigns the collating weight 0 to character A.

Default value: None.

For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-19

FILE ATTRIBUTE DESCRIPTIONS

collate_table_name

Collation table name (preserved attribute). This attribute is used to specify
a collation table for a file.

The attribute value is used only whe the file is first opened. When the file
is opened, the named collation table is stored in the file label. The
collation table for the file cannot be changed after the file has been
opened.

Value: 31-character program name (PMT$PROGRAM_NAME).
NOTE

All letters in the name must be specified as uppercase letters.

The name can be that of a system-defined collation table or a user-defined
collation table. Collation table definition is described in appendix E,
Collation Tables for Indexed Sequential Files.

The names of the system-defined collation tables follow. The collating
sequence for each table is listed in appendix E.
OSV$ASCII6 _FOLDED
CYBER 170 FORTRAN 5 default collating sequence; lowercase letters
mapped to uppercase letters.
OSV$ASCII6 _STRICT
CYBER 170 FORTRAN 5 default collating sequence.

OSV$COBOL6 _FOLDED

CYBER 170 COBOL 5 default collating sequence; lowercase letters
mapped to uppercase letters.

OSV$COBOL6_STRICT
CYBER 170 COBOL 5 default collating sequence.

OSV$DISPLAY63_FOLDED

CYBER 170 63-character display code collating sequence; lowercase
letters mapped to uppercase letters.

OSV$DISPLAY63_STRICT
CYBER 170 63-character display code collating sequence.

OSV$DISPLAY64_FOLDED

CYBER 170 64-character display code collating sequence; lowercase
letters mapped to uppercase letters.

OSV$DISPLAY64_STRICT
CYBER 170 64-character display code collating sequence.

6-20 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

OSV$EBCDIC
Full EBCDIC collation sequence.

OSV$EBCDIC6 _FOLDED

EBCDIC 6-bit subset supported by CYBER 170 COBOL 5 and SORT 5;

lowercase letters mapped to uppercase letters.

OSVS$EBCDIC6_STRICT

EBCDIC 6-bit subset supported by CYBER 170 COBOL 5 and SORT 5.
Default value: None. You must specify a value for the collate_table_name
attribute if you specify AMCS$INDEXED_SEQUENTIAL as the file_

organization attribute value and AMC$COLLATED _KEY as the key_
type attribute value.

For more information, see chapter 10, Accessing Indexed Sequential Files.

data_padding (indexed sequential files only)

Percentage of empty space the system is to leave in each data block when
writing records at file creation time. The empty space allows for easy file
expansion during later file processing operations (preserved attribute).

The attribute value is used only when an indexed sequential file is
created.

Value: 0 through 99 (type AMT$DATA _PADDING).
Default value: 0 (no padding).

For more information, see chapter 10, Accessing Indexed Sequential Files.

embedded _key (indexed sequential files only)

Indicates whether the primary key is stored in the record (preserved
attribute).

Value: Boolean value.

TRUE

Primary key is located in the record.

FALSE

Primary key is located separately from the record.

Default value: TRUE.

For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-21

FILE ATTRIBUTE DESCRIPTIONS

error_exit_name
Name of an error processing procedure (temporary attribute).

The name must be that of a procedure with the XDCL attribute within the
global library set of the job or defined within the task.

For the attribute to be effective, you must specify the error_exit_name
value before the file is opened or on the AMP$OPEN call. The error
processing procedure is loaded when the file is opened. To change the
procedure while the file is open, you must use the error_exit_procedure
attribute.

Value: 1 through 31-character procedure name (type PMT$PROGRAM _
NAME). The named procedure must be of type AMT$ERROR _EXIT _
PROCEDURE; that is, it must have the following parameter list:

(file_identifier: amt$file_identifier;
VAR status: ost$status)

Default value: None. If no error exit name is specified, the system does not
search for an error processing procedure.

For more information, see Error Exit Procedure in chapter 7, Opening and
Closing Files.

error_exit_procedure
Address of the current error processing procedure (temporary attribute).

You use this attribute to change the effective error processing procedure
while the file is open. To clear the effective error processing procedure,
specify a nil pointer for the attribute.

Value: Pointer variable of type "AMT$ERROR_EXIT_PROCEDURE. A
procedure of type AMT$ERROR_EXIT_PROCEDURE has the following
parameter list.

(file_identifier: amt$file_identifier;
VAR status: ost$status)

Default value: None. The system continues to use the error processing
procedure specified by the error exit_name attribute when the file was
opened, if one was specified.

For more information, see Error Exit Procedure in chapter 7, Opening and
Closing Files.

6-22 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

‘ error_limit (indexed sequential files only)

Maximum number of trivial errors that can occur before the trival errors
cause a fatal error (temporary attribute).

Value: Integer (type AMT$ERROR _LIMIT). 0 means no error limit.
. Default value: 0 (no error limit).

For more information, see chapter 10, Accessing Indexed Sequential Files.

estimated_record_ count (indexed sequential files only)

Estimated number of records the file will hold (preserved attribute). The
system uses the attribute value to calculate block size; it only uses the
value when it first opens a new file.

Value: Integer (type AMT$ESTIMATED _RECORD_COUNT).

Default value: If a value is defined for the record_limit attribute, the
record_limit value is the default estimated_ record _count. If the record _
limit attribute is undefined, the default value is 100,000.

For more information, see chapter 10, Accessing Indexed Sequential Files.

file_access_procedure

Name of the file access procedure (FAP) called when the file is accessed
(preserved attribute).

‘ Value: 1 through 31-character procedure name (type PMT$PROGRAM _
NAME). The name must be that of a procedure declared with the XDCL
attribute within the global library set of the job or defined within the task.
The procedure must be a FAP as described in appendix D, File Access
Procedures.

Default value: If the attribute does not have a value when the file is first
opened, the file has no FAP associated with it. However, a CHANGE _
FILE _ATTRIBUTE command can specify a FAP for the file.

Revision B Defining File Attributes 6-23

FILE ATTRIBUTE DESCRIPTIONS

file_contents
String describing the file contents (preserved attribute).
Value: The following string identifiers are defined by the system (type
AMTS$FILE _CONTENTS):

AMC$UNKNOWN _CONTENTS "UNKNOWN’

AMCSLIST LIST’
AMCS$LEGIBLE "LEGIBLE’
AMC$SOURCE "SOURCE’

Default value: AMC$UNKNOWN _CONTENTS.

file_length
Length of a mass storage file in bytes (returned attribute).
Value: Integer (type AMT$FILE _LENGTH).

file_limit
Maximum file length in bytes (preserved attribute).

For files opened for record access, the end-of-information (EOI) must not
exceed the file_limit value. If it does, the procedure returns abnormal
status.

For files opened for segment access using a sequence or heap structure,
the file_limit value is the maximum size of the sequence or heap. A page
reference beyond file_limit causes a segment access condition.

Value: Integer (type AMT$FILE _LIMIT).

Default value: 100,000,000 (the effective file byte limit).
file_organization

File organization (preserved attribute).

Value: One of the following identifiers (type AMT$FILE _
ORGANIZATION):

AMCS$SEQUENTIAL

Sequential organization.

AMC$BYTE_ADDRESSABLE

Byte addressable organization.

AMCS$INDEXED_SEQUENTIAL

Indexed sequential organization.

Default value: AMC$SEQUENTIAL.

6-24 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

‘ file_processor

String identifying the intended processor of the file (preserved attribute).
It is used with the file_contents and file_structure values to identify the
file contents.

‘ The file_processor identifies the intended processor of the file data, not
the file creator. For example, AMC$CYBIL indicates that the file contains
input (source code) for the CYBIL compiler.

Value: The following string identifiers are defined by the system (type
AMTS$FILE_PROCESSOR).

AMC$UNKNOWN_PROCESSOR ’'UNKNOWN’

AMC$COBOL ’COBOL’
AMC$CYBIL "CYBIL
AMC$DEBUGGER 'DEBUGGER’
AMCSFORTRAN 'FORTRAN’
AMC$SCU ‘SCU’
AMC$CPU_ASSEMBLER "CPU_ASSEMBLER’
‘ AMC$PPU_ASSEMBLER 'PPU_ASSEMBLER’

Default value: AMC$UNKNOWN _PROCESSOR.

file_structure

String identifying the file structure (preserved attribute). It is used with
the file_contents and file_processor values to identify the file contents.

Value: The following string identifiers are defined by the system (type
AMTS$FILE_STRUCTURE):

AMCS$UNKNOWN_STRUCTURE 'UNKNOWN’

AMCS$DATA 'DATA’

AMCSLIBRARY 'LIBRARY’
Default value: AMC$UNKNOWN_STRUCTURE.

Revision B Defining File Attributes 6-25

FILE ATTRIBUTE DESCRIPTIONS

forced_write (indexed sequential files only) .

Indicates whether the system copies modified blocks to mass storage
immediately after modification or allows modified blocks to remain in
memory until the next flush or close request (preserved attribute).

Value: One of the following identifiers (type AMT$FORCED_WRITE): ’
AMC$FORCED

The system writes each modified block to mass storage immediately
after the block is modified.
AMCS$FORCED_IF_STRUCTURE_CHANGE

The system writes modified blocks to mass storage immediately after
any structure change to the file that affects more than one block.

AMC$UNFORCED

The system determines when to write modified blocks to mass storage.
Modified blocks can remain in memory without a backup copy on mass
storage.

Default value: AMC$FORCED _IF_STRUCTURE_CHANGE.

global_access_mode

Indicates the set of valid access modes for the file (returned attribute). For
an existing permanent file, the set of access modes is determined when '
the file is attached. For a temporary file or a new permanent file, the set

includes all usage modes.

Value: Set of any (including none) of the following constant identifiers
(type PFTSUSAGE _SELECTIONS):

PFC$READ

Read access.

PFC$SHORTEN
Shorten access.

PFC$APPEND

Append access (required to write to a new file).

PFC$MODIFY
Modify access.

PFC$EXECUTE .

Execute access.

Default value: For permanent files, the set of access modes specified when
the file is attached. For temporary files, the set containing all access
modes (read, modify, append, shorten, and execute). .

6-26 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

. global_file_address

File byte address attained by the last get, put, AMP$SET_SEGMENT _
EOI or AMP$SET SEGMENT POSITION call to the file (returned
attribute).

Value: Integer (type AMT$SFILE _BYTE_ADDRESS).

For more information, see Sharing a Segment Access File in chapter 8,
Accessing a File as a Memory Segment.

global_file_name

File name uniquely identifying the file (returned attribute). The system
generates the name for the file when it creates the file. The global file
name allows a program to determine whether files having different local
file names are actually the same file.

Value: Packed record having the following fields (type
OST$BINARY_UNIQUE_ NAME):

processor_ Integer (type PMT$CPU_SERIAL_NUMBER)

serial_number

processor_ One of the following constant

model_number identifiers (type PMT$CPU_MODEL_
NUMBER):

PMC$CPU_MODEL_P1
PMC$CPU_MODEL_P2
PMC$CPU_MODEL_P3
PMC$CPU_MODEL_P4

year Integer from 1980 through 2047.
month Integer from 1 through 12.
hour Integer from 0 through 23.
day Integer from 1 through 31.
minute Integer from 0 through 59.
second Integer from 0 through 59.

sequence_number Integer from 0 through 9,999,999.

Revision B Defining File Attributes 6-27

FILE ATTRIBUTE DESCRIPTIONS

global_file_position

File position at completion of the last access request for the file (returned
attribute). For more information, see Sharing a Segment Access File in
chapter 8, Accesing a File as a Memory Segment.

Value: One of the following identifiers (type AMT$GLOBAL _
FILE_POSITION):

AMC$BOI
Beginning-of-file.
AMC$BOP
Beginning-of-partition.
AMCS$MID_RECORD

Within a record.

AMCS$EOR
End-of-record.

AMCS$EOP
End-of-partition.

AMCS$EOI
End-of-file.

global_share_mode

Indicates the valid share modes for the file (returned attribute). For a
permanent file, the share modes are specified when the file is attached.
Temporary files cannot be shared.

Value: Set of any number (including none) of the following constant
identifiers (type PFT$SHARE _SELECTIONS):

PFC$READ
Read access.

PFC$SHORTEN

Shorten access.

PFC$APPEND
Append access.

PFC$MODIFY
Modify access.

PFC$EXECUTE

Execute access.

6-28 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

. index_levels (indexed sequential files only)

Target number of index levels (preserved attribute). The system uses the
attribute value to calculate block size. The index_levels value is used only
when the file is created.

Value: 1 through 15 (type AMTSINDEX LEVELS).
Default value: 2.

For more information, see chapter 10, Accessing Indexed Sequential Files.

index _padding (indexed sequential files only)

Percentage of index block space to be left empty when the file is created.
The empty space allows easy file expansion (preserved attribute).

Value: 0 through 99 (type AMTS$INDEX _PADDING).
Default value: 0 (no padding).

For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-29

FILE ATTRIBUTE DESCRIPTIONS

internal_code (sequential or byte addressable files only)
Character code of file (preserved attribute).

NOTE

Currently, NOS/VE does not perform character conversion. However, the
internal_code attribute is available for use by a program that intends to
perform its own character conversion.

Value: One of the following identifiers (type AMTS$INTERNAL_CODE):

AMC$AS6
CYBER 170 6/12 ASCII code.

AMCS$AS8
CYBER 170 8/12 ASCII code.

AMCS$ASCII
8-bit ASCII code.

AMC$BCD
Binary coded decimal code.

AMC$D64
CYBER 170 64-character display code.

AMCS$EBCDIC
9-bit EBCDIC tape code.

Default value: AMC$ASCII.

key_length (indexed sequential files only)
Primary key length in bytes (preserved attribute).

Value: Integer (type AMT$KEY LENGTH). (For files with embedded
keys, the value cannot be greater than the minimum _record _length
value.)

Default value: No default value. When opening a new indexed sequential
file, AMP$OPEN returns a fatal error if the attribute value is not set.

For more information, see chapter 10, Accessing Indexed Sequential Files.

6-30 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

key_position (indexed sequential files only)

Byte offset in the record where the primary key begins (preserved
attribute). This attribute is ignored for files with nonembedded keys.

The value of key _position + 1 defines the first byte of the primary key. For
. example, if key _position is set to three the primary key begins in the
fourth byte of the record.

Value: 0 through MAX_RECORD _LENGTH (type AMT$KEY _
POSITION). The sum of the key position and key length values cannot
be greater than the max_record _length value.

Default value: 0 (beginning of record).
For more information, see chapter 10, Accessing Indexed Sequential Files.

key_type (indexed sequential files only)
Primary key type (preserved attribute).
Value: One of the following identifiers (type AMT$KEY _TYPE):

AMCSUNCOLLATED_KEY
Keys (1 through 255 bytes) ordered byte-by-byte according to the ASCII
character set sequence (listed in appendix B). The key can be a positive
integer or a string of ASCII character codes.
AMCSINTEGER _KEY

' Integer keys (1 through 8 bytes) ordered numerically. The integer can
be positive or negative.
AMC$COLLATED_KEY
Collated character keys (1 through 255 characters) ordered using the
collation table specified by the collate_table_name attribute. If
AMC$COLLATED_KEY is specified, the collate_table_name
attribute must also be specified.

Default value: AMC$UNCOLLATED_KEY.

For more information, see chapter 10, Accessing Indexed Sequential Files.

label _type (sequential or byte addressable files only)
Tape labels used (preserved attribute).

Value: Currently, the following constant identifier (type
AMTSLABEL_TYPE):

AMCS$UNLABELLED
. No labels.

Default value: AMC$SUNLABELLED.

Revision B Defining File Attributes 6-31

FILE ATTRIBUTE DESCRIPTIONS

last _operation

Code indicating the latest operation the system has performed for the file
(returned attribute).

Value of type AMT$LAST_OPERATION. The following lists file
interface calls and the corresponding constant identifier declarations:

6-32

AMP$SABANDON_KEY_ DEFINITIONS
amc$abandon_key _definitions

AMP$ACCESS_METHOD

amc$access_method_req

AMPS$APPLY_KEY_DEFINITIONS
amc$apply_key _definitions

AMP$ADD _TO_FILE_DESCRIPTION
amc$add_to_file_description_req
AMP$CLOSE

amc$close_req

AMP$COPY_FILE
amc$copy _file_req

AMP$CREATE _KEY_DEFINITION
amc$create _key _definition

AMP$DELETE_KEY
amc$delete _key _req

AMPS$DELETE_KEY_DEFINITION
amc$delete _key definition

AMPS$FETCH
amc$fetch _req

AMP$FETCH_ACCESS_INFORMATION

amc$fetch _access _information_rq

AMPS$FETCH_FAP_POINTER
amc$fetch _fap_pointer _req

AMPS$FILE
amc$file_req

AMPS$FLUSH
amc$flush _req

CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

AMP$GET _DIRECT
amc$get_direct_req

AMPS$GET_FILE _ATTRIBUTES
amc$get_file_attributes _req

AMPS$GET_KEY
amc$get_key _req

AMP$GET _NEXT
amc$get_next_req

AMP$GET_NEXT_KEY
amc$get_next_key req

AMP$GET _NEXT_PRIMARY_KEY_LIST
amc$get_next_primary_key _list

AMPS$GET _PARTIAL
amc$get_partial _req

AMP$GET_PRIMARY_KEY_COUNT

amc$get_primary_key_count
AMP$GET_SEGMENT _POINTER
amc$get_segment_pointer_req
AMP$SOPEN

amc$open _req
AMP$PUT_DIRECT
amc$put_direct_req
AMPS$PUT_KEY

amc$put_key_req

AMP$PUT _NEXT

amc$put_next_req
AMP$PUT_PARTIAL
amc$put_partial _req
AMP$PUTREP
amc$putrep_req

AMPS$REPLACE_KEY
amc$replace_key _req

Revision B Defining File Attributes 6-33

FILE ATTRIBUTE DESCRIPTIONS

6-34

AMPS$RETURN
amc$return_req

AMP$REWIND

amc$rewind _req
AMPS$SEEK_DIRECT
amc$seek _direct_req
AMPS$SELECT_KEY
amc$select _key

AMPS$SET_FILE _INSTANCE_ABNORMAL
amc$set_file_inst_abnormal _req

AMPS$SET_LOCAL_NAME_ABNORMAL

amc$set_local _name_abnormal _req
AMPS$SET_SEGMENT_EOI
amc$set_segment_eoi_req
AMPS$SET _SEGMENT_POSITION
amc$set_segment_position_req
AMPS$SKIP

amc$skip_req
AMPS$SKIP_TAPE_MARKS
amc$skip_tape_marks_req
AMPS$START

amc$start_req

AMP$STORE
amc$store_req

AMP$STORE _FAP_POINTER
amc$store_fap_pointer_req
AMPSWRITE _END_PARTITION
amc$write_end _partition_req
AMPS$WRITE _TAPE_MARK

amc$write _tape_mark req

CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

line_number (sequential or byte addressable files only)

Line number length and its location in the record (preserved attribute).

Leading and trailing blanks are acceptable, but blanks cannot be
embedded in a line number. Line numbers must be in ascending order
within a compilation unit.

Value: Record containing the following fields (type
AMTSLINE _NUMBER):
length
Number of bytes in the line number (integer from 1 through 6).

location

Byte within the line at which the line number begins (integer from 1
through 65,536).

Default value: None.

max_block_length

Maximum length of a file block in bytes (preserved attribute). The
attribute is effective only with user-specified blocking.

Value: Integer from 1 through AMC$SMAXIMUM _BLOCK -1 (type
AMT$MAX_BLOCK_LENGTH). For indexed sequential files, the range
is 1 through 65,536; the system rounds up to the next power of 2 from
2,048 to 65,536, inclusive.

Default value: For sequential and byte addressable files, 4,128. For
indexed sequential files, the system calculates an appropriate default
value.

max_record_length

Maximum length of a file record in bytes (preserved attribute). The system
only uses this attribute for indexed sequential files and for files with
ANSI fixed length (F) records although certain products (such as
Sort/Merge) use the attribute when processing other record types.

Value: Integer from 0 through AMC$SMAXIMUM _RECORD (type
AMT$MAX_RECORD _LENGTH). For indexed sequential files, the
range is 1 through 65,497.

Default value: For sequential and byte addressable files, 256. For indexed
sequential files, no default value is provided; AMP$OPEN returns a fatal
error if an attribute value is not specified when the file is created.

Revision B Defining File Attributes 6-35

FILE ATTRIBUTE DESCRIPTIONS

message _control (indexed sequential files only) ‘

Indicates that additional information is written on the SERRORS file
(temporary attribute).

Value: Set of one or more of the following identifiers indicating the
information written (type AMT$SMESSAGE _CONTROL): ‘

AMCS$TRIVIAL_ERRORS
Trivial errors logged (errors of severity ERROR).

AMCS$MESSAGES
Informative messages logged.

AMCS$STATISTICS
Statistics logged.

Default value: Null set (only fatal error messages are logged).
For more information, see chapter 10, Accessing Indexed Sequential Files.

min_block_length (sequential or byte addressable files only)
Minimum length of a file block in bytes (preserved attribute). The
attribute is effective only with user-specified blocking.

Value: Integer from 18 through AMC$MAXIMUM _BLOCK-1 (type
AMTS$MIN_BLOCK _LENGTH). Seventeen bytes is the longest tape ‘
noise block size.

Default value: 18.

min_record_length (indexed sequential files only)
Minimum record length in bytes (preserved attribute).
Value: Integer from 0 to AMC$MAXIMUM _RECORD (type AMT$MIN _
RECORD _LENGTH). For indexed sequential files, the value must be in

the range 0 though 65,497, but not greater than the max_record_length
value.

Default value: For ANSI fixed-length (F) records, the default value is the
max _record _length value. For indexed sequential files using embedded
keys, the default value is the sum of the key _position and key_length
values. Otherwise, the default valueis 1.

For more information, see chapter 10, Accessing Indexed Sequential Files.

null_attribute

Attribute identifier (AMC$NULL_ATTRIBUTE) that indicates that the .
content of the attribute record is to be ignored.

6-36 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

open_position

Positioning required when the system opens the file (temporary attribute).
Value: One of the following identifiers (type AMT$OPEN _POSITION):

AMC$OPEN_NO _POSITIONING

File opened at current position (ASIS). This value opens an indexed
sequential file at its beginning-of-information (BOI).

AMC$OPEN_AT_BOI

File opened at its beginning-of-information.

AMCSOPEN_AT_EOI
File opened at its end-of-information.

If the file is an old file and the only valid access mode to the file is
append, AMC$OPEN _AT_EOI is the only valid open position.

Default value: For all files other than file OUTPUT, AMC$OPEN_AT _
BOIL. For file OUTPUT, AMC$OPEN_AT_EOL

The open _position specified on a file reference overrides all specifications
of that attribute except an open_position value specified on an
AMPS$OPEN call. For example, if a file is referenced as SUSER.MY _
FILE.$BOJ, it is opened at its beginning-of-information unless the
AMPSOPEN call specifies another open_position. For more information
on file references, see the SCL Language Definition manual.

padding _character (sequential or byte addressable files only)

Character used to pad a short fixed-length (F) record (preserved attribute).
Value: An ASCII character (type AMT$PADDING _CHARACTER).
Default value: Space.

page_format (for listing file use)

Determines the listing format (preserved attribute). By system convention,
a processor specifies this value for its listing file and then calls internal
system routines that use the value to format the listing. A user can
display this attribute value to determine how a listing is formatted before
sending it to a printer.

The meanings listed for the attribute values describe how the internal
system routines interpret the values.

Revision B Defining File Attributes 6-37

FILE ATTRIBUTE DESCRIPTIONS

Value: One of the following identifiers (type AMT$PAGE _FORMAT):

AMC$CONTINUOUS_FORM

No page numbering; title inserted at the beginning of each new type of
information (source, errors, and so forth) and at the beginning of each
page. (The page_length is determined by the page_length attribute
value.) This is the recommended value for files to be listed at a
terminal.

AMCS$BURSTABLE _FORM

Pages are numbered; top-of-form character and title inserted at the
beginning of each new type of information (source, errors, and so forth)
and at the beginning of each page. This is the commended value for
files to be listed on a forms printer with a page eject required for each
page.

AMC$NON_BURSTABLE_FORM

Pages are numbered; title inserted at the beginning of each new type of
information (source, errors, and so forth) and at the beginning of each
page. Insertion of a top-of-form character before the title depends on
the amount of space left on the page. If sufficient space remains to trip-
space and print the title and three lines of data, the top-of-form
charcter is omitted. This value shortens listing printed on a forms
printer; each page is filled before a page eject is performed.

Default value: For terminal files, AMC$CONTINUOUS_FORM,; for all
other files, AMC$BURSTABLE _FORM.

page_length (sequential or byte addressable files only)
Number of lines on a page (preserved attribute).

Value: Integer from 1 through AMCS$FILE _BYTE_LIMIT (type
AMTS$PAGE_LENGTH).

Default value: For terminal files, the maximum file length (AMCS$FILE _
BYTE _LIMIT). For all other files, the vertical _print_density value
multiplied by ten. (The default value assumes a 10-inch print form.)

page_width (sequential or byte addressable files only)
Number of characters on a line (preserved attribute).

Value: Integer value from 1 through AMC$MAX_PAGE_WIDTH (type
AMTS$PAGE_WIDTH).

Default value: For a print line, 132; for a terminal line, the width of the
terminal screen.

6-38 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

. permanent _file

Indicates whether the file is permanent or temporary (returned attribute).

Value: Boolean value.

’ TRUE
File is permanent.

FALSE
File is temporary.

record_limit (indexed sequential files only)
Maximum number of records in the file (preserved attribute).

Value: Integer from 1 through AMC$FILE _BYTE _LIMIT (242-1) (type
AMT$RECORD _LIMIT).

Default value: AMCS$FILE_BYTE _LIMIT (242-1).
For more information, see chapter 10, Accessing Indexed Sequential Files.

record_type
Record type of file (preserved attribute).
Value: One of the following identifiers (type AMT$RECORD _TYPE):

' AMC$VARIABLE
CDC variable-length (V) records.

AMCS$UNDEFINED
Undefined (U) records.

AMCS$ANSI_FIXED
ANSI fixed-length (F) records.

For indexed sequential files, V and U records are internally equivalent.

Default value: For sequential and byte addressable files,
AMCS$VARIABLE; for indexed sequential files, AMC$UNDEFINED; for
files created with segment access, AMC$UNDEFINED.

For more information on record types, see Record Types in chapter 9.

Revision B Defining File Attributes 6-39

FILE ATTRIBUTE DESCRIPTIONS

records_per_block (indexed sequential files only) .

Estimated number of records each data block should contain (preserved
attribute). The system uses the attribute value to calculate block size; it

uses the value only when opening a new file . It does not use the value as

a limit to the number of records that a block can contain. ‘

Value: Integer from 1 to AMC$SMAX_ RECORDS_PER_BLOCK (type
AMT$RECORDS_PER_BLOCK).

Default value: 2.

For more information, see chapter 10, Accessing Indexed Sequential Files.

return_option

Indicates when the file is implicitly detached (returned) to the system
(temporary attribute). (You can explicitly detach a file with a DETACH _
FILE command or an AMP$RETURN call.)

Value: One of the following identifiers (type AMT$SRETURN _
OPTION):

AMCS$RETURN_AT_CLOSE

Detach when the task closes the file and the job does not have another
instance of open for the file.

AMCS$RETURN_AT_JOB_EXIT .
Return when the job terminates.

NOTE

If the file cannot be detached when it is closed and the return_option
AMCS$RETURN _AT_CLOSE was specified, the task does not receive
notification that the file is not detached.

Default value: AMC$SRETURN_AT_JOB_EXIT.

6-40 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

' ring _attributes

Three ring numbers (r1, r2, and r3) defining the ring brackets of the file
(preserved attribute).

o Write bracket: 1 through rl.

Read bracket: 1 through r2.
e Execute bracket: r1 through r2.
e (Call bracket: r2+1 through r3.

The ring numbers cannot be lower than the ring number of the caller that
opens the file. If a new file is created by a file reference, its ring _attributes
are those of the provider of the file reference specification.

Value: Record with three integer fields rl, r2, and r3 (type AMT$RING _
ATTRIBUTES).

Default value: All three ring numbers are the ring number of the
AMPSOPEN caller. If the file has not yet been opened, the attribute value
is undefined.

statement _identifier (sequential or byte addressable files only)

Statement identifier length and its location in the line (preserved
attribute).

Value: Record containing the following fields (type AMT$STATEMENT _
IDENTIFIER):
length
Number of characters in the statement identifier (integer from 1
through 17).
location
Character position of the first digit of the statement identifier (integer
from 1 through AMC$MAX_PAGE _WIDTH).

Default value: None.

Revision B Defining File Attributes 6-41

FILE ATTRIBUTE DESCRIPTIONS

user_info

String that the system maintains as a file attribute (preserved attribute).
This attribute is used for interstate communication (see the CYBIL
System Interface manual).

Value: 32-character string (type AMT$USER _INFO).
Default value: 32 blanks.

vertical _print_density (sequential or byte addressable files only)

Number of lines printed per inch (preserved attribute). A program can
reference this attribute value to determine the appropriate print density
and then add format effectors to select and deselect the print density.

The NOS/VE product set does not add format effectors to control the
print density.

Value: Integer from 6 through 12 (AMT$VERTICAL_PRINT _
DENSITY).

Default value: 6.

List Attributes

When creating a file to be printed, the task should set the following
attributes:

e file contents (must be AMC$LIST or AMC$UNKNOWN _CONTENTS).

e file_structure (must be AMC$DATA or AMC$UNKNOWN _
STRUCTURE).

e page_format.

® page_length.

e page_width.

e vertical_print_density.

The NOS/VE product set does not add format effectors to control the print
density. Currently, to change the print density from the default, the program
must add format effectors to select and deselect a print density.

6-42 CYBIL File Interface Revision B

® File Opening and Closing 7

File Identifiersot e 7-1
AMPSOPEN . 7-2
AMPS$CLOSE e e 7-5

Access Validation i it 7-6
Ring Number Validation............... e 7-6
Access Mode Validation i, 7-6
Open Position for Appending.............ciiiiiiiiiiniiiiiiaaann. 7-6
Implicit Release of File Data iiiiiiian. 7-6

Error Exit Procedureo i 7-7
Error Exit Procedure Attributes 7-7

File Sharing e 7-8
Reading aShared File i i, 7-8
WritingaShared File i 79
Retrieving Access Information, 79
AMPS$FETCH_ACCESS_INFORMATION 7-16

File Opening and Closing 7

Opening a file enables access to its data; closing a file prevents access to its
data until the file is reopened. An AMP$OPEN call opens a file; an
AMP$CLOSE call closes an opened file.

An instance of open corresponds to an AMP$OPEN call for the file. Separate
access information is maintained for each instance of open. The access

information for an instance of open can be retrieved by an AMP$FETCH _
ACCESS_INFORMATION call.

For each instance of open, file data access is either through record access or
segment access. The access level is specified on the AMP$OPEN call.

File Identifiers

For each instance of open, AMP$OPEN assigns a file identifier. File
interface calls, then uses the file identifier to reference an instance of open.
Separate file positioning information is kept for each file identifier.

An AMP$CLOSE call closes only one instance of open, the instance of open
specified by the file identifier on the call.

Revision B File Opening and Closing 7-1

AMP$SOPEN

AMPS$SOPEN .
Purpose Prepares a local file for 1/0.

NOTE

If the AMP$OPEN call specifies a file with indexed ‘

sequential file organization, you must specify
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE _
SOURCE as an alternate base library when expanding the
source program decks.

Format AMPS$OPEN (local_file_name, access_level, access_
selections, file_identifier, status)

Parameters local_file_name: amt$local_file_name;
Local file name.

access_level: amt$access_level,
Type of file I/0 to be performed.

AMCS$RECORD

Record access. .
AMC$SEGMENT

Segment access (valid only for mass storage files whose

file_organization attribute is not AMC$INDEXED _
SEQUENTIAL).

access_selections: amt$file_access_selections;

Pointer to an array of one or more file attribute records. You
must specify an attribute identifier and an attribute value in
each record. The valid attributes are listed in table 6-2.

To specify no attribute values, specify a NIL pointer for the
parameter or the keyword value NIL.

file_identifier: VAR of amt$file_identifier;

File access identifier (used subsequently to reference this
instance of open).

status: VAR of ost$status;

Status record. The process identifier returned is either AA ‘
(for an indexed sequential file) or AM (AMC$ACCESS _
METHOD _ID).

7-2 CYBIL File Interface Revision B

AMP$OPEN

‘ Condition ame$attribute_validation_error
Identifiers ame$concurrent_tape_limit

ame$file_not_known
ame$fo_access_level _conflict
ame$fo_device_class_conflict

' ame$improper_access_level
ame$improper_append_open
ame$improper_fo_override
ame$improper_override_access
ame$improper_record _override
ame$improper_ss_block_override
ame$improper_us_block_override
ame$local _file_limit
ame$mbl_less_than_mibl
ame$mbl_less than mrl
ame$multiple_open_of_tape
ame$new _file_requires_append
ame$no_permission_for_access
ame$not_physical _access_device
ame$not_ virtual_memory _device
ame$null_access_mode
ame$ring_validation _error
ameS$terminal _task_limit

. ame$unable to_load_collate_tabl
ame$unable_to_load_error_exit
ame$unable_to_load_fap

For indexed sequential files only:
aae$aam_requires_access
aae$adding_level _of index
aae$altered_not_closed
aae$cant_open_new_an_old_file
aae$cant_open_old_a_new_file
aae$collated _key_needs_table
aae$data_pad_too_large
aae$file_reached_file limit
aae$index_pad_too_large
aae$integer_key_gt_one_word
aae$key_length_0_or_undef
aae$max_rec_length_0_or_undef
aae$max_rec_length_too_big
aae$min_gt_max_record_length
aae$no_home_block_count
aae$rec_too_small_for_key

Revision B File Opening and Closing 7-3

AMP$OPEN

Remarks In preparing the file for I/0, the AMP$OPEN procedure
performs the following functions.

Assigns a file identifier to this instance of open.

Registers the local file name of a new temporary file in the
$LOCAL catalog if no call or command has defined it
previously.

Overrides previously defined temporary attribute values
with any temporary attribute values specified by the
access_selections parameter on the call.

For a new file, overrides previously defined structural
attribute values with any corresponding attribute values
specified by the access_selections parameter on the call. It
then stores the new attribute values with the file.

For an old file, it compares the structural attribute values
specified by the access_selections parameter with the
structural attribute values stored with the file. If the values
do not match, it returns abnormal status
(AMESATTRIBUTE _VALIDATION _ERROR). For more
information, see chapter 6, Defining File Attributes.

Prepares the instance of open for either segment access or
record access according to the access_level parameter on
the call.

Positions the file according to its open_ position attribute.

Loads the file access procedure and error exit procedure if
those attributes are defined.

Loads the collate table if the collate_table_name attribute
is defined and the file is a new file. For an old file the
collate table value saved from the original open of the file
is made available; the table is not reloaded.

7-4 CYBIL File Interface Revision B

AMP$CLOSE

AMPS$SCLOSE

Purpose Terminates access to a file for a specified instance of open.
Format AMPS$CLOSE (file _identifier, status)

Parameters file_identifier: amt$file_identifier;

File identifier assigned by AMP$OPEN.

status: VAR of ost$status;

Status record. The process identifier is

AMCS$ACCESS_METHOD_ID.

Condition ame$improper_file_id
Identifiers ame$ring_validation _error

ame$unrecovered _write_ error

For indexed sequential files only:

aae$delete_keys this_open

aae$get_keys_this_open

aae$get_next_keys_this_open

aae$last_error_repeated

aae$put_keys_this_open

aae$putreps_this_open

aae$replace_keys_this_open

Remarks e C(Closing a file terminates the association of the file_
identifier parameter with an instance of open.

e If the file is an unlabeled tape file and the last operation to
the file was an output operation, the procedure terminates
the tape volume by writing two consecutive tapemarks on
the file, and then positions the tape just prior to the two
tapemarks.

Revision B File Opening and Closing 7-5

ACCESS VALIDATION

Access Validation .

When a task attempts to open a file, NOS/VE validates both the caller’s ring
number and the requested access modes. The valid open position depends on
the access modes requested.

Ring Number Validation

The ring number of the caller is compared with the read, write, and execute
ring attributes stored for the file. If the caller’s ring is less than or equal to
the ring attribute value, the requested access is granted.

Access Mode Validation

The access modes requested on the AMP$OPEN call must be within the
global access mode set. The global access mode set for a permanent file is
specified when the file is attached to the job. The global access mode set for
a temporary file always includes all access modes (read, append, modify,
shorten, and execute).

For a new mass storage file, the access modes requested must include
append.

Open Position for Appending

If an AMPS$OPEN call for an old file requests only append access, the open _
position attribute value must be AMC$OPEN_AT_EOI.

Implicit Release of File Data

If an AMP$OPEN call for an old file requests append and shorten access
with an open_position of AMC$BOI, NOS/VE releases all existing data in
the file. Although the file is empty, its space and file attribute set remain

assigned to the file. For indexed sequential files, a message is issued to
inform the user that this has happened.

76 CYBIL File Interface Revision B

ERROR EXIT PROCEDURE

Error Exit Procedure

Normally, a file interface procedure returns abnormal status directly to its
caller. However, if an error exit procedure is defined for the specified
instance of open, the file interface procedure passes the abnormal status to
the error exit procedure. The status returned by the error exit procedure is the
status returned to the caller. This allows the error exit procedure to perform
error recovery for the instance of open.

A task can establish an error exit procedure to trap errors so that the task
need not check for abnormal status after each file interface call during an
instance of open. The error exit procedure is not effective for the
AMP$OPEN or AMP$CLOSE calls.

Error Exit Procedure Attributes

The error_exit_name attribute can name an error exit procedure for a file.
When the file is opened, the system searches for the procedure as an entry
point in the task or as an entry point in the object library list. After finding
the procedure, it loads the procedure in the program space, if it is not already
loaded, and then stores the procedure address as a temporary attribute.

While the file is open, the program can change the error exit procedure used
by replacing the address. It does so by calling AMP$STORE with a pointer
for the error_exit_procedure attribute. The new pointer address is used until
it is replaced by another address or the file is closed. An address specified by
AMPS$STORE is never preserved.

The procedure declaration of the error processing procedure must specify the
XDCL attribute and have the parameter list defined as follows:

“procedure (file_identifier: amt$file_identifier;
VAR status: ost$status)

The error processing procedure must be callable from the ring from which
the file interface procedure is called.

When a file interface procedure (other than AMP$OPEN or AMP$CLOSE)
returns an abnormal status record, the system checks the file attributes to
determine whether the file has an error exit procedure. If it does, the system
calls the procedure and passes it the file identifier and the abnormal status
variable.

Revision B File Opening and Closing 7-7

FILE SHARING

The procedure can then investigate the error and process it as desired. It
could decide that the error can be ignored and change the status to normal;
it could initiate recovery or diagnostic processing, or it could pass the same
or different abnormal status condition to the file interface procedure, which,
in turn, passes the condition to its caller.

File Sharing

Files assigned to the mass storage, interactive and null device classes can be
shared among tasks; files assigned to tape cannot be shared. Sharing of
interactive files is described in the Terminal Management chapter under
Terminal Input and under Terminal Output.

Separate file positioning information is maintained for each instance of
open that reads the file, including instances of open within the same task.
However, all tasks having concurrent instances of open for a file cycle share
a common end-of-information position.

Both temporary and permanent mass storage files and interactive files can
be shared among tasks within a job. Only permanent mass storage files can
be shared among tasks in different jobs.

All instances of open of a mass storage file share the same file copy in
virtual memory. Each instance of open is constrained to the mode of access
granted to it. A file operation performed by one instance of open is effective
for all other instances of open. For example, an instance of open that can
read the file can read data written by a concurrent instance of open.

More than one job can attach a permanent mass storage file at the same
time if the share modes for the file allow it.

Reading a Shared File

Tasks within the same or different jobs that have opened the same file can
read the file independently. A get call always uses the file positioning
information maintained for its instance of open.

7-8 CYBIL File Interface Revision B

FILE SHARING

Writing a Shared File

In general, tasks writing to a shared file must coordinate their file access
among themselves. If the tasks open the file for segment access, the
coordinating information can be stored in the shared segment.

The system supports a simple form of write serialization for sequential files
opened with the same local file name within the same job. In this case, each
put call to the file uses the global _file_address and global_file_ position
attribute values to determine where it writes the record. These values are
updated by each get or put call to the file. The shared values are available to
each task that opens the file with that local file name within the same job.

Note that a get call does not use the global_file_address or global _file _
position values to determine where to read; it always uses the values
maintained for its instance of open. However, put calls do update the
global _file_address and global _file_position values.

Retrieving Access Information

While a file is open, the system maintains access information for that
instance of open. The access information items are listed in table 7-1.

The contents of the access information items change as the task performs
1/0 operations on the file. These operations are described in later chapters.

A task can fetch the value of any access information item with an
AMPSFETCH_ACCESS_INFORMATION call.

Revision B File Opening and Closing 7-9

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)

Field

Content

item_returned

key

block _number

current_byte_address

duplicate_value_inserted

eoi_byte_address

error_

count

Indicates whether the procedure returned a value
for the item (boolean value).

For indexed sequential files, AMP$FETCH _
ACCESS_INFORMATION always returns
FALSE as the item_returned value for the
following items.

block_number
current_byte_address
previous_record _address
previous_record_length
volume_number

volume _ position

Key field specifying the item to be returned in the
record (AMT$ACCESS_INFO_KEYS). The key
identifier is the field name prefixed by AMCS$ (for
example, AMC$BLOCK_NUMBER for the
block _number field).

Number of the last block accessed by record 1/0
(integer from 1 through AMC$MAX_BLOCK _
NUMBER).

Current file position (byte offset into the file)
(integer from 0 through AMCSFILE_BYTE _
LIMIT).

Boolean indicating whether the last put or replace
call wrote a record having an alternate key value
that duplicates the alternate key value of a record
already in the file (indexed sequential files only).
The indicated duplication could be for any
alternate key defined for the file.

Current length of the file in bytes (integer from
0 through AMC$FILE _BYTE _LIMIT).

Number of errors returned by file access requests
for an indexed sequential file (integer from 0
through AMC$MAX_ERROR_COUNT).

7-10

CYBIL File Interface

(Continued)

Revision B

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)

(Continued)

Field

Content

error_status

file_position

last_access_operation

Condition code returned as the status of the last
file interface request for the file
(OST$STATUS_CONDITION).

Current file position of a file using record access
(AMTS$FILE _POSITION).

AMC$BOI
Beginning-of-information
AMCS$BOP
Beginning-of-partition

AMCSEND_OF_KEY_LIST

End of a key list in an alternate index. (See
chapter 10 for more information.)

AMCS$SMID _RECORD

Within a record

AMCSEOR
End-of-record

AMCS$EOP

End-of-partition

AMCS$EOI

End-of-information
Code indicating the latest access request issued
for this instance of open (AMT$LAST _ACCESS _
OPERATION, integer from 105 through
AMC$MAX_OPERATION). The following lists

the access requests and the corresponding
constant identifier declarations.

AMP$ABANDON_KEY_DEFINITIONS

amc$abandon_key _definitions

AMPSAPPLY_KEY_DEFINITIONS
amc$apply_key_definitions

Revision B

(Continued)

File Opening and Closing 7-11

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field

Content

AMP$CLOSE

amc$close_req

AMP$CREATE _KEY _DEFINITION
amc$create_key definition
AMP$DELETE

amc$delete_req
AMP$DELETE_KEY
amc$delete_key_req
AMPS$DELETE_KEY_DEFINITION
amc$delete_key _definition
AMPSFETCH

amc$fetch_req

AMPS$FLUSH

amc$flush_req

AMP$GET_DIRECT
amc$get_direct_req

AMPS$GET_KEY

amc$get_key_req
AMPS$GET_KEY_DEFINITIONS
amc$get_key_definitions
AMPS$GET_NEXT
amc$get_next_req
AMPSGET_NEXT_KEY
amc$get_next_key_req
AMPS$GET_NEXT_PRIMARY_KEY_LIST
amc$get_next_primary_key_list
AMPSGET_PARTIAL

amc$get _partial _req
AMPS$GET_PRIMARY_KEY_COUNT
amc$get_primary_key_count
AMP$GET_SEGMENT_POINTER
amc$get_segment_pointer_req

7-12

CYBIL File Interface

(Continued)

Revision B

FILE SHARING

‘ Table 7-1. File Information Record (AMT$ACCESS_INFO)

(Continued)

Field

Content

AMP$OPEN

amc$open_req
AMP$PUT_DIRECT
amc$put_direct_req
AMP$PUT_KEY
amc$put_key_req
AMP$PUT_NEXT
amc$put_next_req
AMPS$PUT_PARTIAL
amc$put_partial_req
AMP$PUTREP
amc$putrep_req
AMP$REPLACE_KEY
amc$replace_key_req
AMP$REWIND

amc$rewind _req
AMPS$SEEK _DIRECT
amc$seek _direct_req
AMP$SELECT _KEY
amc$select_key
AMPS$SET_SEGMENT_EOI
amc$set_segment_eoi_req
AMPS$SET_SEGMENT_POSITION
amc$set_segment_ position_req
AMPS$SKIP

amc$skip_req

AMP$START

amc$start_req

AMPS$STORE

amc$store_req
AMPS$WRITE_END_PARTITION
amc$write_end_ partition_req

Revision B

(Continued)

File Opening and Closing 7-13

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)

(Continued)

Field

Content

last_op_status

levels _of_indexing

previous_record _address

previous_record_length

primary _key

AMPS$WRITE_TAPE_MARK

amc$write_tape_mark_req

Indicates whether the last access request is active
or complete.

AMCS$ACTIVE

Access request is active.

AMC$COMPLETE
Access request is complete.

Number of index levels in an indexed sequential
file (integer from 0 through AMC$MAX _INDEX _
LEVEL). For more information, see chapter 10,
Accessing Indexed Sequential Files.

Starting address of the previous record (integer
from 0 through AMC$FILE_BYTE_LIMIT). It is
valid only for files opened for record access. The
value is defined only when the file position is
AMCS$EOR.

Number of bytes in the last full record accessed
(integer from 0 through AMC$MAXIMUM _
RECORD). It is valid only for files opened for
record access. The value is updated whenever the
file position is AMCEOR, AMCBOP, or
AMCSEOQP. For files accessed sequentially, the
value is the length of the previous record (0 after
an AMP$WRITE_END_PARTITION call).

Pointer to the location in which the primary key
for the record at the current file position is
returned. The pointer must be predefined before
the AMP$FETCH _ACCESS_INFORMATION
call is made (indexed sequential files only).

7-14 CYBIL File Interface

(Continued)

Revision B

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)

(Continued)

Field

Content

residual_skip_count

selected _key _name

volume_number

volume _position

NOTE

Number of units remaining to be skipped when
the file delimiter which ended the skip was
encountered (integer from 0 through AMCS$FILE _
BYTE _LIMIT). The number of units requested
minus the residual _skip_count yields the number
of units skipped.

Name of last key selected for the file (indexed
sequential files only). If no alternate key has been
selected, the name $PRIMARY _KEY is returned.

Number of the current tape volume in the volume
sequence. The first volume in the sequence is
volume 1 (integer from 1 through
AMC$MAX_VOLUME_NUMBER).

Current position of the current tape volume.
AMC$BOV
Beginning-of-volume.
AMCSAFTER_TAPEMARK
After a tape mark.

AMCS$EOV
End-of-volume.

The CYBIL declaration for AMT$ACCESS_INFO in Appendix C lists
additional fields besides those listed here. These additional fields are for
features not yet implemented.

Revision B

File Opening and Closing 7-15

AMPSFETCH_ACCESS_INFORMATION

AMPSFETCH_ACCESS_INFORMATION

Purpose Retrieves information about an open file.
NOTE
The information applies only to the specified instance of
open.

Format AMPS$FETCH_ACCESS_INFORMATION (file_

identifier, access_information, status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened

the file.

access_information: VAR of amt$access_information;

File information array. Each record in the array specifies the
access information item to be returned in the record. (See

table 7-1.)

status: VAR of ost$status;
Status record. The process identifier is
AMCS$ACCESS_METHOD_ID.

Condition ame$improper_access_info_key
Identifiers ame$improper_file_id
ame$ring _validation_error

For indexed sequential files only:
aae$not_enough_ permission

7-16 CYBIL File Interface

Revision B

® Accessing a File as a Memory

Segment 8
‘ CYBIL Data Storaget 8-1
Virtual Memory Access e e e 8-3
Segment Attributes oot 8-4
Segment Length 84
Segment Pointer 8-5
AMPSGET_SEGMENT _POINTER ..., 8-6
Cell Pointer 8-8
Heap Pointer 89
Allocating a Heap Withina Sequence 8-10
Sequence Pointer 8-13
Sharing a Segment Access File............. i i, 8-15
Setting the End-of-Information Address............................. 8-15

Setting the End-of-Information Address Using a
Sequence Pointero 8-15
Setting the End-of-Information Address Using a Cell Pointer. 817
. Setting the Current Byte Address, 8-17
AMPSSET_SEGMENT_EOI i, 818

AMP$SET_SEGMENT _POSITIONc....cooo... 8-20

Accessing a File as a Memory
Segment 8

NOS/VE provides two levels of access for mass storage files: record access
and segment access. When a task opens a file, it specifies the access level for
the instance of open.

NOTE

Segment access is valid only for mass storage files with sequential or byte
addressable file organization. It is not valid for files with indexed sequential
file organization or files assigned to the tape or terminal device classes; an
attempt to get a segment pointer for a file assigned to the null device class
returns a NIL pointer.

CYBIL Data Storage

When deciding whether to access a file as a segment, you should consider
how segment access compares to the other data storage mechanisms
available to a CYBIL program. A CYBIL program can use any or all of the
following:

e The CYBIL run-time stack or default heap.
e Files read or written using segment access.
e Files read or written using record access.

When comparing use of the CYBIL run-time stack or default heap with use
of a segment access file, consider the following:

e Segment access, the run-time stack, and the default heap all allow
dynamic expansion of the task address space to fit task needs. (Space is
allocated using the PUSH statement for the run-time stack, the
ALLOCATE statement for the default heap, and ALLOCATE or NEXT
statements for a segment access file.)

o Segment access, the run-time stack, and the default heap all allow you to
read and write data using pointer variables declared within the task.

e Data stored in a segment access file can be accessed after the task
terminates. Data stored in the run-time stack or default heap is discarded.

Revision B Accessing a File as a Memory Segment 81

CYBIL DATA STORAGE

e Data stored in a segment access file is sharable. Data stored in the run-
time stack or default heap is not sharable. (For an example of sharing a
segment access file between tasks, see the queue communication example
in the CYBIL System Interface manual.)

e Data stored in a sequence is contiguous whereas data stored in a heap is
interspersed with system information. For example, data written as a
sequence could later be read as an array because the data is contiguous. If
the task cannot predict the required size of the sequence, it should write
the sequence in a segment access file because a segment access file allows
dynamic extension with contiguity of data.

When comparing use of segment access with use of record access, consider
the following:

e A task that opens a file for record access reads and writes file data as
records using the file interface calls described in chapters 9 and 10. A task
that opens a file for segment access reads and writes file data using
CYBIL statements.

e File I/0 using segment access is more efficient than file I/O using record
access because no explicit system calls are required to access data. Using
segment access, the movement of data between memory and mass
storage is done implicitly as the task references the data in memory.

e Unlike a record access file, a segment access file has no structure imposed
on it by NOS/VE. Record and partition boundaries are not recognized.
Opening a file for segment access allows the task to impose its own
structure on the file data.

e Because NOS/VE imposes no structure on a segment access file, the task
that writes data on the file is responsible for determining how the data
can later be read. It should write data organization indicators as needed.
A program that reads the file data must use the data conventions
imposed by the program that wrote the data.

e Character data files to be referenced by NOS/VE commands should be
read and written using record access.

e Error handling for a segment access file requires establishment of a
condition handler for segment access conditions. (Condition handlers and
segment access conditions are described in the CYBIL System Interface
manual.)

82 CYBIL File Interface Revision B

Virtual Memory Access

When a task opens a file for segment access, the file is referenced as a
segment of virtual memory. A virtual memory segment is a portion of the
task’s address space. Access to a segment is controlled by its access modes
and ring attributes.

The system memory manager associates real pages of memory with the
virtual memory segment. An address in a virtual memory segment is called
a process virtual address (PVA). When the task references a PVA, the
system memory manager associates the PVA with its real memory address.

The system memory manager ensures that all values written in memory are
also stored in the mass storage copy of the file. Similarly, when data is read
from a file, the system memory manager ensures that the referenced data is
copied from the mass storage copy to memory.

Figure 8-1 illustrates the association of a PVA with a real memory address,
that, in turn, is associated with a mass storage address. The system
performs all translation of addresses; the process is transparent to the user.

Virtual Memory Real Memory
Segment Pages

I TIT]T]|~<— PVA

real —> [[T]TTITT]]
address

Figure 8-1. Virtual Address Translation

Revision B Accessing a File as a Memory Segment 8-3

SEGMENT ATTRIBUTES

Segment Attributes

The ring attributes of the segment referenced as a segment access file are
determined by the value of its file attribute ring _attributes. The access
modes of the segment are determined by the value of its access_modes
attribute. File attribute definition is described in chapter 6.

NOTE

If a file is opened for segment access without read access, any PACKED
data structures written in the segment must have each component aligned
on a byte boundary. To write a component of a packed data structure that is
not aligned on a byte boundary, the system must perform a read operation
before the write operation. The read operation requires read access.
Therefore, if the file is opened without read access, an attempt to write an
unaligned PACKED component causes an access_fault condition.

Segment Length

The maximum size of a segment access file is determined by the value of the
file_limit file attribute. It is therefore recommended that you specify the file_
limit attribute value when you open a file for segment access. In general, you
do so by declaring a type and then specifying its size as the file_limit value.

For example, the following statement declares a heap type.

TYPE
sequence_type = SEQ(REP 100 OF INTEGER);

The following statement declares an access_selections variable using the
declared heap type.

VAR
access_selections: [STATIC] ARRAY [1..1]1 OF
amt$access_selections := L[Lamc$file_Llimit,
(#SIZE(sequence_type))1];

The following AMP$OPEN call references the access_selections variable.

amp$open(lLfn, amc$segment, “access_selections,
fid, status);

84 CYBIL File Interface Revision B

SEGMENT POINTER

Segment Pointer

The CYBIL statements (such as ALLOCATE and NEXT) that reference the
segment require a pointer to the segment. To get the pointer, the task calls
AMP$GET_SEGMENT_POINTER.

The AMP$GET_SEGMENT_POINTER call specifies the type of pointer
required and, therefore, the data storage type accessed through the segment
pointer. The call can request a cell pointer, a sequence pointer, or a heap
pointer.

Revision B Accessing a File as a Memory Segment 85

AMP$GET_SEGMENT_POINTER

AMP$GET_SEG MENT_POINTER

Purpose

Format

Parameters

Returns a pointer to the virtual memory segment assigned to

a file.

AMPS$GET_SEGMENT _POINTER (file_identifier,
pointer_kind, segment_pointer, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

pointer_kind: amt$pointer_kind;

Type of pointer to be returned.

AMC$CELL_POINTER
Pointer to a cell.

AMCS$HEAP_POINTER
Pointer to an adaptable heap.

AMCS$SEQUENCE_POINTER

Pointer to an adaptable sequence.

segment_pointer: VAR of amt$segment_pointer;

Record containing the pointer kind identifier and a pointer
variable initialized by the call.

kind
Key field determining the pointer type returned.

AMC$CELL_POINTER
Cell pointer returned in the cell _pointer field.

AMCS$HEAP_POINTER
Heap pointer returned in the heap_ pointer field.

AMC$SEQUENCE_POINTER

Sequence pointer returned in the sequence_ pointer field.

cell_pointer
Cell pointer ("CELL).

heap_pointer
Adaptable heap pointer ["HEAP(*)].

sequence_pointer
Adaptable sequence pointer ["SEQ(*)].

86 CYBIL File Interface Revision B

Condition

‘ Identifiers

Remarks

Revision B

AMP$GET_SEGMENT _POINTER

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD _ID.

ame$improper_file_id
ame$improper_pointer_kind
ame$read_of _empty_segment
ame$ring_validation _error
ame$write_of _empty_segment

e If the pointer returned is a cell pointer, the call initializes
the byte offset portion of the pointer to the current_byte
address of the file.

e If the pointer returned is an adaptable heap pointer, the
call initializes the byte offset portion of the pointer to zero,
the address of the first byte of the segment. It initializes
the heap length portion of the pointer depending on the
content and access modes of the file as follows:

- If the file contains no data (null length) and the task
has requested append access to the file, the heap length
is initialized to the file_limit attribute value. (If the file
contains no data and the task has not requested append
access, the call returns abnormal status.)

- If the file contains data but the task has not requested
append access to the file, the heap length is initialized to
the eoi_byte address of the file.

- If the file contains data and the task has requested
append access to the file, the heap length is initialized to
the file_limit attribute value.

e If the pointer returned is an adaptable sequence pointer,
the call initializes the byte offset in the pointer to the first
byte of the segment and the current position in the pointer
to the current_byte _address value. It initializes the
sequence length in the pointer the same way it initializes
the heap length in an adaptable heap pointer.

e An AMP$GET_SEGMENT _POINTER call does not
change the contents of the file.

e An AMP$GET SEGMENT_POINTER call that specifies
a file assigned to the null device class (such as the $NULL
file) returns a NIL pointer.

Accessing a File as a Memory Segment 8-7

SEGMENT POINTER

Cell Pointer

A cell pointer is the process virtual address (PVA) of a location in virtual

memory. A PVA contains a ring number, the segment number, and a byte

offset within the segment. When AMP$GET_SEGMENT_POINTER

returns a cell pointer to the segment, it initializes the PV A byte offset to the
current_byte_address of the file. (An AMP$FETCH _ACCESS _ .
INFORMATION call can return the current_byte_address value.)

For example, if the file is opened at its beginning-of-information, the byte
offset is set to 0, pointing to the first byte in the segment. However, if the file
is opened at its end-of-information, the byte offset is set to the eoi_byte_
address and the file is positioned for appending data.

A cell pointer can only be used within an assighment statement; it cannot be
used to reference the segment directly. To use the cell pointer, the task must
perform the following steps.

1. Declare a pointer to a fixed type data structure. For example, the
following statement declares a pointer to a character array:

VAR
array_pointer: "ARRAY[1..1000]1 OF char;

2. Assign the cell pointer value to the declared pointer variable. For
example, the following statement assigns the value of a cell pointer
returned by AMP$GET_SEGMENT _POINTER to the previously ’
declared pointer variable:

array_pointer := segment_pointer.cell_pointer;
3. Dereference the pointer variable to reference space in the segment. For

example, the following statement stores A’ as the first character in the
array:

array_pointer”[1] := 'A';

8-8 CYBIL File Interface Revision B

SEGMENT POINTER

Heap Pointer

A heap pointer contains a PVA and the heap length. AMP$GET _
SEGMENT _POINTER initializes the byte offset of a heap pointer to zero,
pointing to the first byte in the heap.

The heap length initialization depends on whether the file is opened for
append access. If the file is opened for append access, AMP$GET _
SEGMENT _POINTER initializes the heap length to the file_limit value, the
maximum length of the file. If the file is not opened for append access,
AMP$GET_SEGMENT _POINTER initializes the heap length to the eoi_
byte _address, its current end-of-information.

Before executing the first ALLOCATE statement for a new heap, the task
must execute a RESET statement to ensure that the heap is initialized. It
can then execute ALLOCATE statements to reserve space for variables in
the heap.

The ALLOCATE statement returns a NIL pointer if the heap does not
contain enough free space for the variable. The task should check for a NIL
pointer after each ALLOCATE statement. If the task attempts to dereference
a NIL pointer, either a CYBIL run-time error or a segment access condition
occurs, depending on whether the program compilation requested NIL
pointer checking (RUN_CHECKS=N on the CYBIL command).

The task can free space within the heap with a FREE statement. The FREE
statement specifies a pointer to the variable whose space is to be released. A
RESET statement frees all space in the heap.

Revision B Accessing a File as a Memory Segment 89

SEGMENT POINTER

Allocating a Heap Within a Sequence .

Data written in a heap is more easily accessed by subsequent tasks if the
heap is created within a sequence. The sequence could begin with a directory
to the heap variables followed by the heap itself.

NOTE ‘

To be used by a subsequent task, a directory of pointers must contain CYBIL
relative pointers. Absolute pointers are not usable because they include the
segment number, which could differ for the next instance of open.

For example, figure 8-2 lists a program that performs the following steps.
1. Opens a file for segment access and gets a sequence pointer to the file.
2. Reserves space for a heap directory and a heap in the sequence.

3. Reserves space for an integer variable in the heap and then stores a
value in the heap variable and a relative pointer to the heap variable
in the directory.

4. Closes the file.

8-10 CYBIL File Interface Revision B

SEGMENT POINTER

MODULE segment_example;

*copyc amp$open

*copyc pmp$exit

*copyc amp$get_segment_pointer
*copyc amp$close

PROGRAM heap_in_sequence;

CONST
{This is the number of integer variables in the)
{heap.}
number_of_variables = 1;

TYPE
heap_type = HEAP(REP number_of_variables
OF integer),
relative_pointer_type = REL(heap_type) “integer,
directory_type = ARRAY [1..number_of_variablesl OF
relative_pointer_type;

VAR
Lfn: [STATIC] amt$local_file_name := 'FILE1',
status: ost$status,
fid: amt$file_identifier,
segment_pointer: amt$segment_pointer,

{The following specifies the segment length as }
{the size of the directory plus the size of X
{the heap.}
access_selections: L[STATIC] ARRAY [1..1]1 OF
amt$access_selection := [Lamc$file_Limit,
(#SIZE(directory_type) + #SIZE(heap_type))1],

directory_pointer: “directory_type,
heap_pointer: “heap_type,
variable_pointer: “integer;

(Continued)

Figure 8-2. Example of Allocating a Heap in a Sequence

Revision B Accessing a File as a Memory Segment 8-11

SEGMENT POINTER

(Continued)

amp$open (Lfn, amc$segment, “access_selections,
fid, status);

IF NOT status.normal THEN
pmp$exit (status);

IFEND;

amp$get_segment_pointer (fid, amc$sequence_pointer,
segment_pointer, status);

IF NOT status.normal THEN
pmp$exit (status);

IFEND;

RESET segment_pointer.sequence_pointer;
NEXT directory_pointer IN
segment_pointer.sequence_pointer;
IF directory_pointer < > NIL THEN
NEXT heap_pointer IN segment_pointer.sequence_pointer;
IF heap_pointer < > NIL THEN
RESET heap_pointer”;
ALLOCATE variable_pointer IN heap_pointer”;
IF variable_pointer < > NIL THEN
variable_pointer”™ := 1;
directory_pointer~[1] :=
#REL (variable_pointer, heap_pointer~);
IFEND;
IFEND;
IFEND;

amp$close (fid, status);
IF NOT status.normal THEN

pmp$exit (status);
IFEND;

PROCEND heap_in_sequence;
MODEND segment_example;

812

Figure 8-2. Example of Allocating a Heap in a Sequence

CYBIL File Interface Revision B

SEGMENT POINTER

After the segment access file is written using the program listed in figure 8-2,
another task can read the value written by using the same variable
declarations used by the task that wrote the file. The task would open the file
for segment access, get a sequence pointer to the segment, and then execute
the following statements to read the value from the heap:

RESET segment_pointer.sequence_pointer;
NEXT directory_pointer IN
segment_pointer.sequence_pointer;
IF directory_pointer < > NIL THEN
NEXT heap_pointer IN
segment_pointer.sequence_pointer;
IF heap_pointer < > NIL THEN
RESET heap_pointer”;
variable_pointer :=
#PTR(directory_pointer“[1], heap_pointer™);
IF variable_pointer < > NIL THEN
value := varijable_pointer”;
IFEND;
IFEND;
IFEND;

The #PTR function returns a pointer to the integer value in the heap. The
pointer is then dereferenced to assign the integer value to the integer
variable, VALUE.

Sequence Pointer

A sequence pointer has three components: a pointer to the beginning of the
sequence, the current position in the sequence, and the sequence length. The
values of the beginning-of-sequence pointer and the sequence length do not
change during the lifetime of the pointer; the value of the current position is
changed by each NEXT or RESET statement.

AMPS$GET_SEGMENT _POINTER initializes the pointer to the beginning
of the sequence to zero. It initializes the current position to the current_
byte_address. The initialization of the sequence length depends on whether
the file is opened for append access.

If the file is opened for append access, AMP$GET_SEGMENT_POINTER
initializes the sequence length to the file_limit value; in this case, the
sequence length is the maximum length of the file. If the file is not opened
for append access, AMP$GET _SEGMENT _POINTER initializes the
sequence length to the eoi_byte_address; the sequence length is the current
length of the file.

Revision B Accessing a File as a Memory Segment ~ 8-13

SEGMENT POINTER

A NEXT statement is used to reserve space for a variable in the sequence ‘
beginning at the current position. As described in the CYBIL Language
Definition manual, the NEXT statement has the following format:

NEXT pointer_variable IN sequence_pointer; .

As shown, the NEXT statement specifies two pointers: a pointer variable
and the sequence pointer. The pointer variable type determines the amount
of space reserved by the NEXT statement.

A NEXT statement initializes the byte offset in the pointer variable to the
current position value in the sequence pointer. It then advances the current
position to the next available byte in the sequence. For example, if the
current position in the sequence pointer is 0 before the NEXT statement and
the variable to be reserved by the NEXT statement is 10 bytes long, the
NEXT statement initializes the pointer variable to point to byte 0 in the
sequence and advances the current position in the sequence pointer to 10. A
second execution of the same NEXT statement would set the pointer variable
to byte 10 and the current position in the sequence pointer to byte 20.

Subsequent NEXT statements continue to advance the current position
within the segment pointer. When a NEXT statement returns a NIL pointer,
the current position has reached the sequence length, and no more space can

be reserved.

The task should check for a NIL pointer after each NEXT statement. If the .
task attempts to dereference a NIL pointer (pointer”), either a CYBIL run-

time error or a segment access condition occurs depending upon whether the
program compilation requested CYBIL NIL pointer checking (RUNTIME _
CHECKS=N on the CYBIL command).

A RESET statement can always reset the current position to the beginning
of the sequence or to a previous position in the sequence (if the pointer value
to the position has not been discarded).

The RESET and NEXT statements do not read data from or write data to
the file. Data is read or written by dereferencing a variable pointing to space
reserved in the sequence.

The RESET and NEXT statements do not change the current_byte _address
or the eoi_byte_address of the file. To change the current_byte_address or
the eoi_byte_address, you call AMP$SET _SEGMENT _POSITION or
AMPSSET_SEGMENT_EOI, respectively.

8-14 CYBIL File Interface Revision B

SHARING A SEGMENT ACCESS FILE

Sharing a Segment Access File

When a task writes data in a segment access file for use by another instance
of open, it can store the following information for later use:

o The position where the data ends (its eoi_byte _address).

e The position within the file to which the next segment pointer should be
initialized (its current_byte_address), assuming the file is opened without
repositioning (open _ position attribute value AMC$OPEN _NO _
POSITIONING).

Setting the End-of-Information Address

If the task that writes data in a segment access file does not set the eoi_
byte address of the value, the system assumes the file extends to the end of
the highest page referenced by the task. However, if the file data does not
extend to the end of the highest page referenced, the file includes unused
space (which might be considered data by the next reader of the file). To
reduce the file length to include only the space used, the task calls
AMPS$SET_SEGMENT_EOI to store the eoi_byte_address of the file.

A task cannot pass a heap pointer to AMP$SET_SEGMENT _EOL It can
only pass a cell pointer or a sequence pointer.

Setting the End-of-Information Address Using a Sequence
Pointer

If the segment pointer is a sequence pointer, the task specifies on the
AMPS$SET_SEGMENT_EOI call the segment pointer value returned by the
NEXT statement for the last element in the sequence. For example, if the
end-of-information is to be after the tenth element in the sequence, the task
should pass the value of the segment pointer after the tenth NEXT
statement is executed.

Revision B Accessing a File as a Memory Segment ~ 8-15

SHARING A SEGMENT ACCESS FILE

When setting the eoi_byte_address of a sequence, the task could set the end-
of-information at a previous element in the sequence. For example, suppose a
task uses the following statements to reserve space for two integer variables

in a sequence and assign values to the variables.

NEXT variablel_pointer IN
segment_pointer.sequence_pointer;
IF variablel_pointer < > NIL THEN
variablel_pointer” := 1;
NEXT variable2_pointer IN
segment_pointer.sequence_pointer;
IF variable2_pointer < > NIL THEN
variable2_pointer” := 2;
IFEND;
IFEND;

The task then decides to discard the second variable. To do so, it uses the
following statements:

RESET segment_pointer.sequence_pointer TO
variable2_pointer;
amp$set_segment_eoi (fid, segment_pointer, status);

The AMP$SET_SEGMENT _EOI call sets the end-of-information after the
first variable in the sequence.

8-16 CYBIL File Interface Revision B

SHARING A SEGMENT ACCESS FILE

Setting the End-of-Information Address Using a Cell Pointer

If the segment pointer is a cell pointer, the task sets the end of information
address by initializing the cell pointer to the byte following the data storage
used.

For example, suppose the cell pointer was assigned to point to an array of
500 elements. Assuming that the task stored data in the first 425 elements of
the array, it should set the end of information at the next element. Therefore,
before calling AMP$SET_SEGMENT _EOI, the task initializes the cell
pointer as follows:

segment_pointer.cell_pointer := "array_pointer~[426];

It then specifies the segment pointer on an AMP$SET_SEGMENT _EOI
call.

Setting the Current Byte Address

As stated before, when AMP$GET_SEGMENT _POINTER returns a
segment pointer, it initializes the byte offset in the pointer to the current_
byte_address of the file. The current_byte_address where the next segment
pointer should be initialized can be set by an AMP$SET_SEGMENT _
POSITION call.

If the file is opened without repositioning (open _position attribute value
AMCS$OPEN_NO_POSITIONING), the current_byte_address provided by
a previous file accessor is used in the segment pointer. This is so only if the
file is opened without repositioning; opening at the beginning of information
(AMCSOPEN _AT _BOI) or end-of-information (AMC$OPEN _AT_EOI)
changes the current_byte_address.

Revision B Accessing a File as a Memory Segment ~ 8-17

AMP$SET_SEGMENT _EOI

AMPSSET_SEGMENT_EOI

Purpose

Format

Parameters

Condition
Identifiers

Sets the byte address of the end of information (EOI) of a file.
It also sets the current_byte_address and the global_file_
address to the new EOI address.

NOTE

To lengthen the file, the instance of open must have append
access. To shorten the file, the instance of open must have
shorten access.

AMPS$SET_SEGMENT_EOI (file_identifier, segment_
pointer, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

segment_pointer: amt$segment_pointer;

Segment pointer to the new end-of-information of the file. The
pointer can contain a cell pointer or a sequence pointer; it
cannot contain a heap pointer.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$improper_file_id
ame$improper_segment_number
ame$improper_segment_pointer
ame$ring_ validation_error
ame$set_eoi_needs_append
ame$set_eoi_needs_shorten
ame$set_on_adaptable_heap

8-18 CYBIL File Interface Revision B

Remarks

Revision B

AMP$SET_SEGMENT_EOI

The procedure uses the byte offset in the segment pointer
as the new eoi_byte_address value. Assuming that the
next instance of open does not request append access, the
file length extends to the stored eoi_byte_address.

Calling the AMP$SET _SEGMENT_EOI procedure stores
the actual end-of-information of the file. Otherwise, if the
AMPS$SET_SEGMENT_EOI procedure is not called, the
end-of-information is assumed to be the first byte beyond
the end of the highest page referenced. The last page of the
file could be only partially filled with data. Therefore,
subsequent tasks could read file space that contains
invalid information.

To shorten the file (assuming the task has shorten
privilege to the file), the call specifies a new EOI address
numerically less than the former EOI address. The
procedure discards the pages following the new EOI
address. However, it retains the page containing the new
EOI address; all data within that page remains available.

The segment pointer specified cannot be a heap pointer.
The EOI of an adaptable CYBIL heap is always extended
to the end of the highest page the task has referenced in
the heap.

A task can determine the current end-of-information byte
address by calling AMP$FETCH_ACCESS_
INFORMATION.

Accessing a File as a Memory Segment 8-19

AMP$SET_SEGMENT_POSITION

AMPS$SET_SEGMENT_POSITION

Purpose

Format

Parameters

Condition
Identifiers

Remarks:

Sets the current byte address and global file address of a file.

AMPS$SET_SEGMENT _POSITION (file_identifier,
segment_pointer, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

segment_pointer: amt$segment_ pointer;

Segment pointer to the new current byte address. The pointer
can contain a cell pointer or a sequence pointer; it cannot
contain a heap pointer.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$improper_file_id
ame$improper_segment_number
ame$improper_segment_ pointer
ame$ring_validation_error
ame$set_on_adaptable_heap
ame$set_pos_beyond_eoi

e When creating a new file, a task must call AMP$SET _
SEGMENT_EOI before calling AMP$SET_SEGMENT _
POSITION.

e The segment pointer specified cannot be a heap pointer
because a heap does not have a position.

e By storing the current position of the file, the next task can
open the file at that position by specifying no positioning
on the next AMP$OPEN call.

e A task can determine the current byte address by calling
AMPS$FETCH_ACCESS_INFORMATION.

8-20 CYBIL File Interface Revision B

Accessing Sequential and Byte
Addressable Files 9

. Logical File Structure.t 91
Working Storage ATeaouuiiiiiii it e 91
Record Types ..o 9-2

CDC Variable (V) Record Typecouviiiiei i 92
ANSI Fixed-Length (F) Record Typecoiiiiiiiiinnian. 92
Undefined (U) Record Typeoviriiiiiiin i, 93
File BlocKingttt et ettt 94
System-Specified Blocking i 94
URecord TYPe ..ot e e e et 94
User-Specified Blockingcoiiiiiiiiii .. 94
Y 5 YT e I 7 o =3 95
FRecord Type ..o e e 95
URecord TYPe . ..viieiiiit e e ettt 9-6
Sequential Record ACCESSc.oiiuuiiiie i e 9-7
Using Sequential Access Calls to Write
aByte Addressable Filec i 9-8
Random Record ACCeSSooviiiiiiiit ittt 99
. File Directory Useottt e 9-10
User-Specified Blocking . ..o 9-10
AMPSSEEK _DIRECT. 9-11
Byte Addressable File Example...........................cco.... 9-12
File Positioningt 9-14
Positioning a File by Records or Partitions 9-14
File Position After a SKipccoiiiiiiiiii i 9-14
Skip That Encounters File Boundaries 9-16
AMPSREWIND 9-17
AMPSESKIP ... 9-18
Reading Recordsuuiniiiiniii e e et 9-20
File Position Returned i 9-20
Get Calls. ... 9-20
AMPSGET _DIRECT e e 9-21
AMPSGET _NEXT ... e e 9-23
AMPSGET _PARTIAL. e 9-26
Writing Recordsttt e e e 9-29
Establishing a New End-of-Information 9-29
Padding Fixed-Length Records, 9-29
Truncating Fixed-Length Records 9-30
Writing Records Longer Than the Working Storage Area 9-30
AMPSFLUSH e et 9-31
AMPSPUT _DIRECT e e 9-33
AMPSPU T _NEXT .. e e 9-35
AMPSPUT_PARTIAL. ... B 9-37
Writing Partition Delimiterscoo .. 9-38

AMPSWRITE_END_PARTITIONo iiiiiiiini .. 9-39

Accessing Sequential and Byte
Addressable Files 9

Opening a file for record access indicates that get and put calls are used to
read and write records of data. To open a file for record access, specify
AMCS$RECORD for the access_level parameter on the AMP$OPEN call.

Record access is valid for all device classes. (Segment access is valid only for
mass storage files.)

Record access offers device class independence. The same get or put call can
read or write a record to any device class.

Logical File Structure

Opening a file for record access indicates that the program gets and puts file
data within a file structure. File data exists within records. Records can be
grouped into partitions if the record type used has partition delimiters.

The beginning-of-information for record access is the point at which the
system can begin to read the first record. The end-of-information is the point
immediately after the last record in the file.

The CDC variable (V) record type is the only record type that supports file
partitioning. A file that uses the V record type consists of one or more
partitions. If the file contains no end-of-partition delimiters, the entire file is
one partition. A partition delimiter is a special record separating two
partitions.

Working Storage Area

Record access calls specify a working storage area. When putting data in the
file, the system copies data from the working storage area to a buffer it
maintains. It manages the writing of data from the buffer to the file. When
getting data from the file, the system reads data from the file to its buffer. It
then copies data from the buffer to the working storage area.

Revision B Accessing Sequential and Byte Addressable Files 9-1

RECORD TYPES

Record Types
o

When a file is opened for record access, the record _type file attribute
determines the record format that the system reads and writes on the file.
The record types are CDC variable (V), ANSI fixed length (F), and undefined

°
CDC Variable (V) Record Type

The V record type has the following characteristics.
e Default record type for NOS/VE.

e Supports fixed or variable record lengths.

e Supports partial record I/0 and file partitioning.

Each V record has a record header. The header contains the record length
and the length of the preceding record.

The end-of-partition delimiter for the V record type is a record header that
has a record length of zero and its end-of-partition flag set.

The system writes the header when it writes the record. It uses the header
information for positioning of the file. When reading a record, it does not
copy the record header to the working storage area.

ANSI Fixed-Length (F) Record Type

The F record type has the following characteristics:

® Supports data interchange between differing systems because it is an
ANSI standard record type.

e Supports partial record I/0, but does not support partitioning.

e Provides efficient storage of records of constant length. If a record is
shorter than the fixed record length, however, the system pads the record
to the fixed record length.

The fixed record length is the number of bytes specified by the max_record _
length attribute value. Depending on the amount of file space used for record
padding, the V record type is usually more space efficient for variable length
records.

If the block _type is user-specified and the block being written does not have
space for another record, the system pads the block with circumflex (7)
characters. The user-specified minimum block length must be at least the
max_record_length value. For more information, see User-Specified
Blocking in this chapter.

9-2 CYBIL File Interface Revision B

RECORD TYPES

Undefined (U) Record Type

The system considers a file with U record type as an unstructured byte
string. The U record type has the following characteristics:

e Supports tape files for which a block is equivalent to a record.

e Supports data interchange with differing systems without using an ANSI
standard record type.

e Supports partial record I/0 but does not support file partitioning.
e Any file can be read as U records regardless of its previous record type.

The task specifies the starting location and length of each record. The
system imposes no structure on the file other than file blocking.

If the block _type is user-specified and the record being written is shorter
than the min_block_length attribute value, the system pads the block with
circumflex (*) characters. For more information, see User-Specified Blocking
in this chapter.

Revision B Accessing Sequential and Byte Addressable Files 9-3

FILE BLOCKING

File Blocking

Data within a tape or mass storage file is written and read as a series of
blocks. NOS/VE supports both system-specified and user-specified file
blocking. The block_type file attribute specifies the physical group of records
in the file.

System-Specified Blocking

In system-specified blocking, the system determines the size of file blocks
according to the storage device on which the file resides. Mass storage blocks
are 4,096 bytes or less (depending on the device); tape blocks are 4,128 bytes.

In system-specified blocking, records are always contiguous because blocks
are not padded. Records can span system-specified blocks. The max_block_
length and min_block _length attributes have no effect on system-specified
blocking.

Generally, system-specified blocking is invisible to the user program.

U Record Type

U records can span system-specified blocks. Unlike other record types, the
system cnnot determine where a U record begins or ends. Therefore, the task
is responsible for managing the location and length of each record in the file.

With U record type and system-specified blocking, processing of the get calls
changes as follows.

o An AMP$GET _NEXT call always returns end-of-record as its file position
unless the end-of-information was encountered.

e An AMP$GET_PARTIAL call always returns mid-record as its file
position if data was transferred by the call.

® The skip_option parameter on an AMP$GET_PARTIAL call is ignored.

o AMPSGET_PARTIAL calls do not accumulate the record length. The
record _length parameter is undefined after the call.

User-Specified Blocking
In user-specified blocking, the max_block _length and min_block_length
attributes determine the range of block sizes written to a device. If a block is

shorter than the size specified by the min_block_length attribute, the block
is padded with the circumflex (*) character.

94 CYBIL File Interface Revision B

FILE BLOCKING

A file with user-specified blocking must be initially created and appended
sequentially.

User-specified blocking differs for each record type.

V Record Type

With V record type and user-specified blocking, the length of each file block
is between the max _block _length and min_block_length values. Although
the data in a V record can span blocks, the V record header cannot.
Therefore, the block length varies, as necessary, to accommodate record
headers.

F Record Type

With F record type and user-specified blocking, an integral number of records
is included in each block. The block length is between the min_block_length
and max_block_length attribute values. An F record cannot span a user-
specified block.

For example, if the min_block_length value is 25 bytes, the max_block _
length value is 4,128 bytes, and the max_record_length value (the fixed
record length) is 100 bytes, the system writes the file with 40 records (4,000
bytes) per block because 40 is the maximum number of records that can be
written without exceeding the max_block _length value.

NOTE

When using F record type and user-specified blocking, the fixed record length
specified by the max_record_length attribute should be greater than the
min_block_length value for the file. If it is not, the system pads each block
with circumflex (") characters. For example, if the min_block _length is 50
bytes and the fixed record length is 30 bytes, each block would consist of one
30-byte record followed by 20 bytes of block padding.

Revision B Accessing Sequential and Byte Addressable Files 9.5

FILE BLOCKING

U Record Type

With U record type and user-specified blocking, the system processes each
block as a record. A U record cannot span a user-specified block.

A block boundary is recognized as a record boundary. A put call (or a series
of put_ partial calls) that writes a record writes one block. The working
storage length on the put call (or the cumulative record length of the series of
put_partial calls) specifies the size of the block written.

A get call to read a record reads one block. If the working storage length on
the get call is less than the block length, the call returns AMC$MID _
RECORD as the file position.

NOTE

When using U record type and user-specified blocking, the length of each
record written should be greater than the min_block _length value for the
file. If it is not, the system pads the block containing the short record with
circumflex (") characters. This could result in the reading of file data suffixed
by circumflex characters. For example, if the min_block_length of a file is 20
bytes and a put call writes a 15-byte record to the file, the system would write
five additional circumflex characters to pad the block to its minimum length.
A get call to read the block would read the circumflex characters with the file
data.

96 CYBIL File Interface Revision B

SEQUENTIAL RECORD ACCESS

Sequential Record Access

If the file_organization attribute of a file is AMC$SEQUENTIAL, only
sequential access calls can get and put data on the file.

The sequential access calls do not specify a byte address where the system is
to get or put data. Sequential access calls always get or put data at the
current file position.

The following are the sequential access calls:

AMPS$GET_NEXT
Gets a complete record.

AMPS$GET _PARTIAL

Gets a complete record or part of a record.

AMPS$PUT_NEXT
Puts a complete record.

AMPS$PUT_PARTIAL
Puts a complete record or part of a record.

A program can get any existing record on a sequential file by positioning the
file at the beginning of the record.

By positioning the file at its end-of-information, a program can append
records in sequence.

Doing a GET or PUT operation positions the file at the end of a record.

If a program overwrites an existing record, all data following the record is
lost. After completion of a put operation to a sequential file, the system
changes the end-of-information of the file to the current position of the file.
The file position after a put operation is immediately after the data just
copied to the buffer. Therefore, a program cannot get file data after the most
recently written record because the system cannot get data after the end-of-
information of the file. It is recommended that the file_position be checked
after each GET call.

Sequential access calls are device-independent. Programs use the same calls
to get and put data on any device class. This is possible because the system
performs the physical access operations between the device and its buffer
space in central memory.

Sequential access calls use file space efficiently because the calls get and put
contiguous records. Random access calls can leave unused space between
records.

Revision B Accessing Sequential and Byte Addressable Files 9-7

SEQUENTIAL RECORD ACCESS

Using Sequential Access Calls to Write a Byte
Addressable File ‘

Sequential access calls can write a file whose file organization attribute is

byte addressable. Each put call returns the byte address of the record it

writes. While writing the file, the task stores the byte address of each record ‘
in a directory. After the file is written, a task can use random access calls

and the addresses in the directory to read records.

98 CYBIL File Interface Revision B

RANDOM RECORD ACCESS

Random Record Access

If the file_organization attribute of a file is AMC$BYTE_ADDRESSABLE,
the system gets or puts data at the specified byte address.

The bytes in a file are numbered consecutively beginning with 0; a byte
address is the number of a byte in the file.

A program can explicitly or implicitly change the current byte address. A
random access call explicitly changes the current byte address; any call that
gets or puts data to a byte addressable file implicitly changes the current
byte address.

The following are the random access calls.

AMP$GET_DIRECT
Gets a record at the specified byte address.

AMP$PUT_DIRECT
Puts a record at the specified byte address.

AMPS$SEEK_DIRECT

Changes the current byte address to a specified value.

Both random access calls and sequential access calls can get and put data on
a byte addressable file. If the first call is a random access call specifying the
byte address to be accessed, subsequent calls can be sequential access calls
that get or put data from the byte address implicitly set by the random
access call. For example, if the first call specifies byte address 200 and gets
100 bytes, a subsequent sequential get call gets data beginning at byte
address 300.

If the blocking type is system-specified and append access is specified for the
instance of open, a call to put data at a byte address past the end-of-
information extends the file past that address up to the file limit. A call to get
data at a byte address past the end-of-information returns abnormal status.

If the blocking type is system-specified, and append is specified as the access
mode for the instance of open, an AMP$PUT_DIRECT call that specifies a
byte address beyond the end of the file extends the file to include the space
for the record written. If not previously written, the space between the former
end-of-information and the new record is then initialized. Creating unused
spaces within the file in this manner is not recommended, especially if
variable length records are used. It is not allowed for user-specified blocking.

Revision B Accessing Sequential and Byte Addressable Files 9-9

RANDOM RECORD ACCESS

File Directory Use .

To access a record randomly, you must know its byte address in the file. If

the file was written sequentially with F record type and system-specified

blocking, the byte address of each record can be computed. Otherwise, the

byte address of each record must be recorded in a directory. .

The directory must be modified as the records in the file are created. Each
put call returns the byte address of the record written; the task must record
the byte address of the record in the task’s directory. The task must fetch the
byte address value from the directory before issuing a call to access a record
randomly. The location and management of the directory is the
responsibility of the task.

User-Specified Blocking

If a file is created with user-specified blocking, it must be created
contiguously.

Random calls can read and modify the records.

NOTE

When rewriting variable-length records, you must ensure that the new record
is the same length as the record overwritten in order to maintain record
integrity. The system does not check that the record lengths are the same.

9-10 CYBIL File Interface Revision B

AMPS$SEEK _DIRECT

AMPSSEEK_DIRECT

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Sets the current byte address of a byte addressable file.

NOTE

The access_level file attribute must be AMC$RECORD and
the file_organization attribute must be AMC$BYTE _
ADDRESSABLE.

AMPS$SEEK _DIRECT (file_identifier, byte_address,
status)

file_identifier: amt$file_identifier;
File identifier returned by the AMP$OPEN call that opened
the file.

byte_address: amt$file_byte_address;

New byte address of the file (integer O through AMCS$FILE _
BYTE _LIMIT).

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

ame$conflicting _access_level
ame$file_organization_conflict
ame$improper_access_attempt
ame$improper_file_id
ame$position_beyond_eoi
ame$position_beyond_file_limit
ame$ring _validation_error

e By calling AMP$SEEK_DIRECT, you can use sequential
access calls (AMPGET_NEXT, AMPGET_PARTIAL,
AMPS$PUT_NEXT, and AMP$PUT_PARTIAL) to read a
byte addressable file. After an AMP$SEEK _DIRECT call
sets the current byte address, the subsequent sequential
access call begins reading or writing data at that address.

e The task must position the file to the beginning of a record.

Accessing Sequential and Byte Addressable Files 9-11

RANDOM RECORD ACCESS

Byte Addressable File Example .

The following program example writes a byte addressable file using

sequential access calls. The byte address of each record written is stored in a
directory. After the file is written, the program writes the directory at the

beginning of the file. .

MODULE byte_address_example;

?? PUSH (LISTEXT := ON) ??
*copyc amp$open

*copyc amp$seek_direct
*copyc amp$put_next

*copyc amp$put_direct
*copyc amp$close

?? POP ??

PROCEDURE byte_addressable
(Lfn: amt$local_file_name;
VAR status: ost$status);

CONST
max_index = 100;

VAR .

access_selections: amt$file_access_selections,
fid: amt$file_identifier,
address: amt$file_byte_address,

record_ptr: “RECORD
Link: amt$file_byte_address,
number: integer

RECEND,

directory_ptr: "ARRAY [1 .. max_index] OF
amt$file_byte_address,
index: 1 .. max_index;

{Specifies byte_addressable file organization}

PUSH access_selections: [1..1];

access_selections”[1].key := amc$file_organization;

access_selections"[1].file_organization :=
amc$byte_addressable;

9-12 CYBIL File Interface Revision B

RANDOM RECORD ACCESS

AMPSOPEN (Lfn, amc$record, access_selections, fid,
status);

IF NOT status.normal THEN
RETURN;

IFEND;

PUSH directory_ptr;
PUSH record_ptr;

{ Sets the current byte address so that space is }
{ Lleft at the beginning of the file for the address }
{ directory.}

AMP$SEEK_DIRECT (fid, (#SIZE(directory_ptr™) + 1),
status);

IF NOT status.normal THEN
RETURN;

IFEND;

{ Initializes first record to be written.}

record_ptr~.link := 0;
record_ptr~.number := 1;

{ Writes a sequence of records }

FOR index := 1 TO max_index DO
AMP$PUT_NEXT (fid, record_ptr, #SIZE(record_ptr”),
directory_ptr~[index], status);
record_ptr~.link := directory_ptr~Lindex];
record_ptr~.number := record_ptr”.number + 1;
FOREND;

{ Writes the address directory at the beginning of }
{ the file.}

AMP$PUT_DIRECT (fid, directory_ptr,
#SIZE(directory_ptr”), 0, status);
IF NOT status.normal THEN
RETURN;
IFEND;

AMP$CLOSE (fid, status);

PROCEND byte_addressable;
MODEND byte_address_example;

Revision B Accessing Sequential and Byte Addressable Files 9-13

FILE POSITIONING

File Positioning

The initial position of a file is specified by its open_position attribute. To

change the file position, a program can get or put data or issue file

positioning calls. The following are the file positioning calls:
AMP$SREWIND

Rewinds the file so that it is positioned at its beginning.

AMP$SKIP

Repositions the file forward or backward. The call specifies the number of
records or partitions skipped.

Positioning a File by Records or Partitions

An AMPS$SKIP call positions a file by records or partitions. The valid file
positioning options for a file depend on the blocking type and record type of
the file:

e A file with V records and user-specified or system-specified blocking can
be positioned by records or partitions.

e A file with F records and user-specified or system-specified blocking can
be positioned by records, but not by partitions.

o A file with U records and user-specified blocking can be positioned by
records, but not by partitions. A file with U records and system-specified
blocking cannot be positioned by either records or partitions.

Specifying an invalid option on an AMP$SKIP call returns abnormal status.

File Position After a Skip

The file position after the skip operation depends on the skip unit (records or
partitions), the initial file position, the number of units skipped, and the skip
direction. Table 9-1 lists the skip operation results assuming that no
boundary condition is encountered before the skip count is exhausted.

9-14 CYBIL File Interface Revision B

NOTE

FILE POSITIONING

A file containing no partition delimiters is considered to contain one
partition beginning at the beginning-of-information and ending at the

end-of-information.

If the last record in a file is a partition delimiter and the current position of
the file is after the final partition delimiter, AMP$SKIP considers the file to

be positioned at the beginning of the next partition.

Table 9-1. Skip Operation Results

File Position Before
the Skip Operation

Skip Operation

Result

Skipping by Records:

AMCSBOI, AMCBOP,
AMCSEOR, or AMCS$EOI

AMCS$MID_RECORD

AMCSMID_RECORD

End of record N

End of record N

Skipping by Partitions:

AMC$BOI or AMC$BOP

AMCSEOP, AMC$EOR, or
AMCSMID_RECORD

AMC$, AMCSEOR, or
AMC$MID_RECORD

Beginning of partition N

Beginning of partition N

AMCS$EOP, AMCSEOR, or
AMCSMID_RECORD

AMCSEOP, AMC$EOR, or
AMC$MID_RECORD

Skip forward or backward zero
records.

Skip forward zero records.

Skip backward zero records.

Skip forward one or more (M)
records.

Skip backward one or more (M)
records.

Skip forward or backward zero
partitions.

Skip forward zero partitions.

Skip backward zero partitions.

Skip forward one or more (M)

partitions.

Skip backward one or more (M)
partitions.

Skip forward one or more (M)
partitions.

Skip backward one or more (M)
partitions.

No movement; the file remains
positioned the same as before
the skip operation.

Skips to the end of the current
record.

Skips to the end of the
preceding record.

Skips to the end of record N + M.

Skips to the end of record N - M.

No movement; the file remains
positioned the same as before
the skip operation.

Skips to the beginning of the
next partition.

Skips to the beginning of the
current partition.

Skips to the beginning of
partition N + M.

Skips to the beginning of
partition N - M.

Skips to the beginning of
partition N+ M + 1.

Skips to the beginning of
partition N - M.

Revision B

Accessing a File as a Memory Segment ~ 9-15

FILE POSITIONING

Skip That Encounters File Boundaries

The information in table 9-1 assumes that no boundary conditions are
encountered during the skip operation. If AMP$SKIP encounters a boundary
condition before the skip count is exhausted, it returns abnormal status. The
task can determine the actual number of units skipped by calling
AMP$FETCH_ACCESS_INFORMATION to fetch the residual _skip_count
value and subtracting that value from the number of units specified on the
AMP$SKIP call.

The following are the boundary conditions:

e A skip forward by records encounters a partition delimiter or the EOI.

e A skip forward by partitions encounters the EOI.

® A skip backward by records encounters a partition delimiter or the BOL.
e A skip backward by partitions encounters the BOI.

When a skip by records encounters a partition delimiter, the final position
depends on whether the skip direction was forward or backward. A forward
skip positions the file beyond the partition delimiter, at the beginning of the
next partition. A backward skip positions the file before the partition
delimiter, at the end of the preceding partition.

9-16 CYBIL File Interface Revision B

AMPS$REWIND

AMPSREWIND
Purpose Repositions a file to its BOI.
NOTE

Format

Parameters

Condition
Identifiers

Remarks

Revision B

The access_level file attribute must be AMCSRECORD.

AMPSREWIND (file_identifier, wait, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

wait: ost$wait;
Procedure action after the rewind request is issued. Currently,

specifying either of the following identifiers returns control to
the caller when the rewind operation is complete:

OSCSWAIT

Returns control to the caller when the operation is
complete.

OSCS$NOWAIT

Currently returns control to the caller when the operation
is complete. However, since this will change in a future
release, it is recommended that you specify OSC$WAIT to
ensure that your program will continue to execute correctly.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD _ID.

ame$conflicting _access_level
ame$improper _file_id
ame$ring_validation_error
ame$unrecovered _write_error

e If the label _type of a tape file is AMC$UNLABELLED
and the preceding operation was an output operation, the
procedure terminates the volume by writing two
consecutive tapemarks before rewinding the file. The file is
rewound to the beginning of the first volume.

e See chapter 10 for additional information when using
AMPSREWIND to position an indexed sequential file.

Accessing Sequential and Byte Addressable Files 9-17

AMP$SKIP

AMPS$SKIP

Purpose

Format

Parameters

9-18 CYBIL File Interface

Repositions a file forward or backward the specified number
of records or partitions.

NOTE

The access_level file attribute must be AMCSRECORD.

AMPS$SKIP (file_identifier, direction, unit, count, file_
position, status)
file_identifier: amt$file_identifier;
File identifier returned by the AMP$OPEN call that opened
the file.
direction: amt$skip_direction;
Direction of skip.
AMC$FORWARD
Skip forward.

AMC$BACKWARD
Skip backward.

unit: amt$skip_unit;
Skip unit.

AMCS$SKIP_RECORD
Skip records.

AMCS$SKIP_PARTITION
Skip partitions.

count: amt$skip_count;

Number of units skipped (integer 0 through
AMCS$FILE _BYTE_LIMIT).

file_position: VAR of amt$file_position;
File position after skip completes.

Revision B

Condition
Identifiers

Remarks

Revision B

AMP$SKIP

Skip Type Values Returned

Forward skip by records. AMCSEOR, AMCBOP,
AMCS$EOI

Forward skip by partitions. AMC$BOP, AMCS$EOI

Backward skip by records. AMCS$EOR, AMCS$EOP,
AMC$BOI

Backward skip by partitions. AMCBOP, AMCBOI

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$conflicting _access_level
ame$conflicting _fo
ame$improper_file_id
ame$improper_skip_count
ame$improper_skip_direction
ame$improper_skip_unit
ame$ring _validation_error
ame$skip_encountered _boi
ame$skip encountered _bop
ame$skip_encountered _eol
ame$skip_encountered _eop
ame$skip_requires_read _perm
ame$uncertain _tape_position
ame$unrecovered _write error
ame$unsupported _skip

e The procedure does not copy data to or from a user-defined
working storage area or buffer space.

e Before skipping backward on an unlabeled tape file,
AMPS$SKIP writes to the device any data written to the file
by a previous operation.

e If the file is an unlabeled tape file and the last operation
was an output operation, the procedure writes any buffered
data to the tape and then terminates the volume by writing
two tapemarks before skipping backward.

e See chapter 10 for additional information when using
AMPS$SKIP to position an indexed sequential file.

Accessing Sequential and Byte Addressable Files 9-19

READING RECORDS

Reading Records ‘

To read (or get) a record means to copy data from a system buffer to a
working storage area. The system reads data until it encounters a record
boundary or the end of the working storage area.

File Position Returned

If the read terminates because the system encountered a record boundary, it
returns the file position AMC$EOR. If the read terminates because the
system encountered the end of the working storage area, it returns the file
position AMC$MID _RECORD. (To read the remainder of the record, the
program must issue AMP$GET_PARTIAL calls until the system returns the
file position AMC$EOR.)

If the system encounters a partition boundary, it positions the file beyond the
partition delimiter and returns AMCS$EOP as the file position but transfers
no data. The content of the working storage area remains the same. The next
get call reads data from the first record of the next partition.

Similarly, if the system encounters the end-of-information, it returns the file
position AMC$EOI but transfers no data. After AMC$EOI is returned,
subsequent get calls return abnormal status (AMESINPUT_AFTER_EOI).

A null file is a file assigned to the null device class (the file SNULL is always ‘
assigned to the null device class). A get or put call to a file assigned to the

null device class always returns the same file position: AMC$EOI for a get

call, AMC$EOR for a full record put call, and AMC$MID_RECORD for a

partial record put call.

Get Calls

The get calls all read data as previously described, but differ in the file
position where the read begins.

AMP$GET_DIRECT
Reads data at the byte address specified on the call.

AMP$GET _NEXT
Reads data at the beginning of the next record.

AMP$GET_PARTIAL

Reads data either at the current file position or at the beginning of the
next record.

920 CYBIL File Interface Revision B

AMPS$GET _DIRECT

AMPS$SGET_DIRECT

Purpose

Format

Parameters

Revision B

Reads a record at the specified byte address.
NOTE

The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$BYTE _
ADDRESSABLE.

AMPS$GET _DIRECT (file_identifier, working _
storage_area, working_storage_length, transfer_
count, byte_address, file_position, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

working_storage_area: “cell;
Working storage area address.
working_storage_length: amt$working_storage_length;

Number of bytes in the working storage area (integer 0
through OSC$MAX_SEGMENT_LENGTH + 1).

transfer_count: VAR of amt$transfer_count;

Number of bytes copied to the working storage area (integer O
through OSC$MAX_SEGMENT_LENGTH + 1).

byte_address: amt$file_byte_address;

Byte address of the beginning of the record (integer 0 through
AMCSFILE BYTE_LIMIT).

file_position: VAR of amt$file_position;
File position at completion of the procedure.
AMCS$MID_RECORD
Within a record.
AMCSEOR
End-of-record.
AMCS$EOP
End-of-partition.
AMCS$EOI
End-of-information.
status: VAR of ost$status;

Status record. The process identifier is
AMCS$ACCESS_METHOD_ID.

Accessing Sequential and Byte Addressable Files 9-21

AMP$GET_DIRECT

Condition
Identifiers

ame$accept_bad_block
ame$conflicting_access_level
ame$file_organization_conflict
ame$improper_access_attempt
ame$improper _file_id
ame$improper_input_attempt
ame$improper_record _address
ame$improper_wsl_value
ame$input_after_eoi
ame$max _cancellable_input
ame$ring _validation _error
ame$terminal _disconnected
ame$unrecovered read_error

9-22 CYBIL File Interface

Revision B

AMPS$GET_NEXT

' AMPSGET_NEXT

Purpose Reads the next record.
NOTE
. The access_level file attribute must be AMC$RECORD.
Format AMPS$SGET _NEXT (file_identifier, working_storage_

area, working_storage_length, transfer_count, byte _
address, file_position, status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

working _storage_area: “cell;
Working storage area address.

working_storage_length: amt$working_storage_length;

Number of bytes in the working storage area (integer 0
through OSC$MAX_SEGMENT_LENGTH + 1).

‘ transfer_count: VAR of amt$transfer_count;

Number of bytes copied to the working storage area (integer
from 0 through OSC$MAX_SEGMENT_LENGTH + 1).

byte_address: VAR of amt$file_byte_address;

Byte address of the beginning of the record (integer 0 through
AMCSFILE _BYTE _LIMIT). The procedure returns a byte
address only if the file is a mass storage file.

file_position: VAR of amt$file_position;
File position at completion of the procedure.

AMC$MID_RECORD
Within a record.

AMCSEOR

End-of-record.

AMCS$EOP
End-of-partition.

AMCS$EOI
End-of-information.

Revision B Accessing Sequential and Byte Addressable Files 923

AMP$GET _NEXT

Condition
Identifiers

status: VAR of ost$status;

Status record. The process identifier is

AMCS$ACCESS_METHOD_ID.

ame$accept_bad_block
ame$conflicting_access_level
ame$improper _access_attempt
ame$improper_file_id
ame$improper_input_attempt
ame$improper _record_address
ame$improper_wsl_value
ame$input_after_eoi
ameS$input_after output
ame$max_cancellable input
ame$ring _validation_error
ame$terminal _disconnected
ame$unrecovered read_error

For indexed sequential files only:
aae$cant_position _beyond_bound
aae$file_boundary_ encountered
aae$not_enough permission
aae$record _longer_than_wsa
aae$wsa_not_given

9-24 CYBIL File Interface

Revision B

Remarks

Revision B

AMPS$GET_NEXT

If the current file position is not at a record boundary, the
procedure repositions the file forward to the next record
boundary.

The AMP$GET _NEXT call provides a common interface
for reading records, regardless of file organization.
However, when reading an indexed sequential file, an
AMPS$GET_NEXT call cannot return the key separately
from the record.

When reading an indexed sequential file with embedded
keys, AMP$GET _NEXT returns the record to the working
storage area. When reading an indexed sequential file with
nonembedded keys, AMP$GET _NEXT prefixes the
primary key to the record and returns the key and the
record together to the working storage area. Therefore, to
ensure that the key and entire record can be returned, you
should set the working _storage _length parameter to the
sum of the max_record_length and the key_length
attributes.

For an indexed sequential file, an AMP$GET _NEXT call
always returns a value of zero in the byte_address
parameter.

See chapter 10 for additional information when using
AMPS$GET _NEXT to read records from an indexed
sequential file.

When reading an indexed sequential file, AMP$GET _
NEXT returns a file position of AMC$EOR; or, if the last
record ended the list of primary keys for an alternate key
value, AMCSEND_OF_KEY_LIST.

Accessing Sequential and Byte Addressable Files 925

AMPS$SGET _PARTIAL

AMPSGET_PARTIAL

Purpose

Format

Parameters

Reads the specified number of bytes at the current file
position.

NOTE

The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$SEQUENTIAL
or AMC$BYTE _ADDRESSABLE.

AMPSGET_PARTIAL (file_identifier, working _
storage_area, working _storage_length, record_
length, transfer_count, byte_address, file_position,
skip_option, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

working_storage_area: “cell;

Working storage area address.

working_storage_length: amt$working_storage_length;

Number of bytes in the working storage area.

record_length: VAR of amt$max_record _length;

Number of bytes read since the previous record boundary.

If more than one call is required to read the record, the count
is cumulative over the series of read operations.
transfer_count: VAR of amt$transfer_count;

Number of bytes copied to the working storage area.

byte_address: VAR of amt$file_byte_address;

Byte address of the beginning of the record. The procedure
returns a byte address only if the file is a mass storage file.

9-26 CYBIL File Interface Revision B

AMPSGET_PARTIAL

. file_position: VAR of amt$file_position;
File position at completion of the procedure.

AMC$MID_RECORD

. Within a record.

AMCS$EOR
End-of-record.

AMCS$EOP
End-of-partition.

AMCS$EOI

End-ofinformation.

skip_option: amt$skip_option;

Indicates whether the procedure repositions the file before
reading data.

AMC$SKIP_TO_EOR

If the current file position is not at the beginning of a
record, the procedure repositions the file forward to the
. next record boundary.

AMCSNO_SKIP

The procedure does not reposition the file.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD _ID.

Condition ame$accept_bad_block

Identifiers ame$conflicting _access_level
ame$improper_access_attempt
ameS$improper _file_id
ame$improper_input_attempt
ame$improper_skip_option
ame$improper_wsl_value
ame$input_after_eoi
ame$input_after _output
ame$max_cancellable_input
ame$ring _validation _error
ame$terminal _disconnected
ame$unrecovered _read _error

Revision B Accessing Sequential and Byte Addressable Files 927

AMP$GET _PARTIAL

Remarks If the skip_option parameter specifies AMC$SKIP_TO_EOR .
and the current file position is not at the beginning of a
record, the procedure repositions the file forward to the next
record boundary.

9-28 CYBIL File Interface Revision B

WRITING RECORDS

Writing Records

To put a record means to copy data from a working storage area to a system
buffer. The system performs the physical I/0 operations required to write
data from the buffer to the file.

The working _storage_length parameter on the put call specifies the number
of bytes copied (starting at the address specified as the working _storage_
address). An AMP$PUT_DIRECT or AMP$PUT _NEXT call puts an entire
record; an AMP$PUT_PARTIAL call can put part of a record, allowing you
to write records longer than your working storage area.

The file location at which the write begins depends on the put call used.

AMP$PUT_DIRECT
Writes data at the specified byte address.

AMPS$PUT _NEXT
Writes data at the current file position.

AMPS$PUT_PARTIAL
Writes data at the current file position.

Establishing a New End-of-Information

A put call establishes a new end-of-information for a sequential file. For
AMP$PUT_NEXT and AMP$PUT _PARTIAL, the new end-of-information
is always immediately after the data just written. Data that was previously
written after that address is no longer accessible.

For AMP$PUT _DIRECT, a new end-of-information is established only if the
writing of the record lengthens the file. It determines this by checking
whether the working storage length added to the specified byte address
exceeds the current end-of-information address.

Writing an end-of-partition at the file EOI extends the file to include the end-
of-partition indicator (a zero-length V record).

Padding Fixed-Length Records

For AMP$PUT_DIRECT and AMP$PUT _NEXT, if the record type of the
file is AMC$ANSI_FIXED and the working storage area length is shorter
than the fixed record length, the system pads the record. To do so, it appends
padding characters until the record is the fixed record length. AMP$PUT _
PARTIAL also pads AMC$ANSI_FIXED records, but only when the call
writes the last part of the record.

Revision B Accessing Sequential and Byte Addressable Files 9-29

WRITING RECORDS

Truncating Fixed-Length Records

When making AMP$PUT_DIRECT and AMP$PUT_NEXT calls, and the
record type is AMC$ANSI_FIXED, if the working storage length exceeds the
fixed record length, the record is truncated to the fixed record length as it is
written.

Writing Records Longer Than the Working
Storage Area

Successive AMP$PUT _PARTIAL calls can write a record whose cumulative
length exceeds the working storage area length. The call specifies whether
the data is to be written as the first part of the record, a middle part of the
record, or the last part of the record.

At any time, an AMP$PUT _PARTIAL call can specify that the data is the
starting part of a record. If the file position is AMC$MID _RECORD, the call
terminates the current record before writing the data as the beginning of a
new record. The file position after the call is always AMC$MID_RECORD.

If the AMP$PUT _PARTIAL call specifies that the data is a middle part of a
record, it writes the data at the current file position. The file position before
and after the call is always AMC$MID_RECORD.

If the AMP$PUT_PARTIAL call specifies that the data is the ending part of
the record, the procedure writes the data and then terminates the record. The
file position after the call is always AMC$EOR. If the file position before the
call is AMC$EOR, the action taken is the same as that of an AMP$PUT _
NEXT call.

9-30 CYBIL File Interface Revision B

AMPS$FLUSH

AMPS$SFLUSH

Purpose

Format

Parameters

Revision B

Writes all modified file data in memory to the device to which
the file is assigned.

NOTE

This procedure is valid only for files assigned to interactive
terminals and files with indexed sequential file organization.

AMPS$FLUSH (file_identifier, wait, status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

wait: ost$wait;

Action to be taken after the flushing operation is initiated.

NOTE

The wait parameter is ineffective for interactive terminal files
because the flush operation is always completed before control
is returned to the user (OSC$WALIT option).

OSC$WAIT

Complete the flush operation before returning control to
the caller.

OSCSNOWAIT

Return control to the caller immediately. To determine
whether the flush operation has completed, the program
must call AMP$FETCH_ACCESS_INFORMATION and
check the value of the last_op_status item.

status: VAR of ost$status;

Status record. The process identifier is AMC or
AAC$ACCESS_METHOD_ID.

Accessing Sequential and Byte Addressable Files 9-31

AMPS$FLUSH

Condition
Identifiers

Remarks

ame$improper_file_id
ame$ring_validation _error

For indexed sequential files only:
aae$bad_block_table _overflow
aae$file_reached_file limit
aae$no_updates_till_recovered
aae$not_enough_permission
aae$system_routine_failed
aae$write_parity _error

¢ Flushing data to an indexed sequential file updates the

data on mass storage to reflect the current data in memory.
This ensures that if the data in memory is lost due to a
system failure, the updated data is still available in the
mass storage file.

Flushing data destined for an interactive terminal ensures
that all output has been sent to the terminal. Interactive
terminal output is buffered if NAM cannot output data as
quickly as the program sends it. A task could call
AMPS$FLUSH to ensure that all output has been displayed
at the terminal before it continues processing.

A get or close call for a terminal file flushes all output data
to the terminal before performing the get or close operation.

A close call for a permanent mass storage file flushes all
output data to mass storage before the call terminates. If
the data cannot be successfully written, AMP$CLOSE
returns abnormal status. AMP$CLOSE closes the instance
of open regardless of any I/0 errors.

9-32 CYBIL File Interface Revision B

AMP$PUT_DIRECT

’ AMPS$SPUT_DIRECT

Purpose Writes a record at the specified byte address.
NOTE

. The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$BYTE _
ADDRESSABLE.

Format AMP$PUT _DIRECT (file _identifier, working_
storage_area, working_storage_length, byte_address,
status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.
working_storage_area: “cell;

Working storage area address.

working_storage_length: amt$working_storage_length;

Number of bytes in the working storage area (0 through
. OSC$MAX_SEGMENT_LENGTH + 1),

byte_address: var of amt$file_byte_address;

Byte address of the beginning of the record (0 through

AMCSFILE_BYTE_LIMIT).

status: VAR of ost$status;

Status record. The process identifier is AACSACCESS _
METHOD _ID or AMC$ACCESS_METHOD _ID.

Revision B Accessing Sequential and Byte Addressable Files 9-33

AMP$PUT_NEXT

Remarks .

If the current file position is AMC$MID _RECORD, the
procedure terminates the current record before writing the
next record.

If the file is a mass storage file, the procedure returns the
starting byte address of the record. If the task stores the
starting byte address of the record, the record could later be
accessed by address using an AMP$GET_DIRECT call.

If the record type is F and the working storage length is
less than the max_record_length, the record is padded to
the fixed record length using the padding character. When
the working storage length is greater then the max _
record _length, the record is truncated to the fixed _record
length.

AMPS$PUT _NEXT can write records sequentially to any
file regardless of its file organization. When writing to an
indexed sequential file with embedded keys, AMP$PUT _
NEXT assumes that the record key is embedded in the
record data within the working storage area as indicated
by the key _position attribute value. When writing to an
indexed sequential file with nonembedded keys,
AMPS$PUT _NEXT assumes that the key is at the
beginning of the working storage area. It removes the
number of bytes specified by the key _length attribute from
the beginning of the working storage area and writes those
bytes as the nonembedded key. It then writes the bytes
remaining in the working storage area as the data record.
When AMP$PUT_NEXT is used for indexed sequential
files, a value of zero is always returned in the byte _address
parameter.

9-36 CYBIL File Interface Revision B

AMP$PUT_PARTIAL

‘ AMPSPUT_PARTIAL

Purpose Writes a partial record at the current byte address.
NOTE

. The access _level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$SEQUENTIAL
or AMC$BYTE_ADDRESSABLE.

Format AMPSGET_PARTIAL (file_identifier, working _
storage_area, working_storage_length, byte _address,
term_option, status)

Parameters file_identifier: amt$file identifier;

File identifier returned by the AMP$OPEN call that opened
the file.
working_storage_area: “cell;

Working storage area address.

working _storage_length: amt$working _storage_length;

Number of bytes in the working storage area (integer from 0

‘ through OSC$MAX SEGMENT LENGTH +1).

byte_address: VAR of amt$file_byte_address;

Byte address of the beginning of the record (integer 0 through
AMCSFILE _BYTE_LIMIT). The procedure returns a value
only if the file is a mass storage file.

term_option: amt$term_option;
Record part to be written.

AMCS$START
First part of the record.

AMC$CONTINUE
Middle part of the record.

AMCS$TERMINATE
Last part of the record.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD _ID.

Revision B Accessing Sequential and Byte Addressable Files 937

AMP$SPUT_PARTIAL

Condition ame$conflicting_access_level

Identifiers ame$improper_access_attempt
ame$improper _continue
ame$improper_ file_id
ameS$improper _output_attempt
ameS$improper_term_option
ame$improper_wsl_value
ame$put_beyond _file_limit
ame$record _exceeds_mbl
ame$ring _validation_error
ame$terminal _disconnected
ame$unrecovered _write_error

Remarks: If the file is a mass storage file, the procedure returns the
starting byte address of the record. (The same address is
returned by each call that writes part of the record.) If the task
stores the starting byte address of the record, the record could
later be accessed by address using an AMP$GET_DIRECT
call.

Writing Partition Delimiters

Writing a partition delimiter groups preceding records into a partition. If the
delimiter is the first partition delimiter on the file, the partition comprises the
records between the beginning of the file and the partition delimiter;
otherwise, the partition comprises the records between the previous partition
delimiter and the current partition delimiter.

Of the supported record types, only the V record type supports partitions.
Therefore, the AMP$SWRITE_END_PARTITION call that writes a partition
delimiter is effective only when the file record type is AMC$VARIABLE, and
the file organization is sequential or byte-addressable.

9-38 CYBIL File Interface Revision B

AMP$WRITE _END_PARTITION

AMPSWRITE_END_PARTITION

Purpose

Format

Parameters

Condition
Identifiers

Revision B

Writes a partition delimiter at the current file position.

NOTE

The access_level file attribute must be AMC$RECORD, and
the record _type attribute must be AMC$VARIABLE.

AMPSWRITE_END_PARTITION (file_identifier,
status)

file_identifier: amt$file_identifier;

File identifier returned by the AMP$OPEN call that opened
the file.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$conflicting _access_level
ameS$improper _file_id
ame$improper_output_attempt
ame$partitioning _unsupported
ame$ring _validation_error

Accessing a File as a Memory Segment ~ 9-39

PS Using the Indexed Sequential

File Organization 10
Primary Keys ... e 10-1
Indexed Sequential File Structurecciiiiiiiiiieaneiinn .. 10-3
Data Blocks e 10-3
Index BlocKS ... e 10-6
Creating an Indexed Sequential File........ oo iiiiiin... 10-10
Setting File Attributes 10-10
Writing Records ... i e 10-15
AMPSPUT _KEY ... 10-16
Processing an Existing Indexed Sequential File 10-18
Setting Temporary Attribute Values 10-19
Positioning the File.......... 10-19
AMPSST AR .. e 10-21
Reading Records o i 10-24
AMPSGET _KEY ... 10-25
AMPSGET_NEXT_KEY 10-28
Replacing and Deleting Recordsc.oiiiiiiiinn.. 10-30
AMPSPUTREP 10-31
. AMPSREPLACE _KEY ... e e 10-33
AMPSDELETE _KEY 10-35
Monitoring the Index Levels in an Indexed Sequential File 10-37
Recreating an Indexed Sequential File 10-37
Indexed Sequential File Example..................ccoiiiiiiiiien... 10-39
Alternate Keys 10-47
The Alternate Index i 10-47
Alternate Key Definition 10-48
Creating and Deleting Alternate Keys 10-57
AMPSCREATE_KEY_DEFINITION 10-58
AMPSDELETE_KEY_DEFINITIONc.coiiiine.... 10-64
AMPSAPPLY _KEY_DEFINITIONS ..., 10-65
AMPSABANDON_KEY_DEFINITIONS 10-67
Using Alternate Keys ... 10-68
AMPSSELECT _KEYo e 10-74
AMPSGET_KEY_DEFINITIONS 10-75
AMPSGET_PRIMARY_KEY_COUNTiiii.... 10-78
AMPSGET_NEXT_PRIMARY_KEY_LIST....................... 10-81

Alternate Key Example 10-84

Using the Indexed Sequential File
Organization 10

Besides the sequential and byte-addressable file organizations, NOS/VE also
supports the indexed sequential file organization. The indexed sequential file
organization allows direct access to each record in the file through the
unique key value associated with each record.

Primary Keys

Within an indexed sequential file, data is stored as records. Each data record
is associated with a unique value called its primary key. A data record is
associated with its primary key when the record is written to the file.

The primary key can be embedded in the data (an embedded key) or separate
from the data (a nonembedded key). Each primary key value is unique
within the file; there can be no duplicate primary key values in a file.

When an indexed sequential file is read sequentially, its records are accessed
in order by ascending key value. This sorted order is kept even when new
records are added to the file.

Part 1 of figure 10-1 shows an unsorted sequence of records. Assume these
records are written to an indexed sequential file with the first field, the
employee number, specified as the primary key. If the records were then read
sequentially from the file, they would be read in sorted order by employee
number. Part 2 of figure 10-1 shows the records sorted by employee number.

In the figure 10-1 example, the primary key is the employee number because
each employee has a unique number. The employee’s last name could not be
used as the primary key because two employees have the same last name.

Revision B Using the Indexed Sequential File Organization 10-1

PRIMARY KEYS

1. Unsorted Records

39248 Miller Robert Driver

42976 Stevens Carol Manager

39048 Jetson Harry Asst Manager
51234 Miller Catherine Secretary

82176 Beirmeyer William Driver

75090 Arnold Terry Computer Operator
49257 Lane Gladys Accountant

38602 Johnstone Mark Computer Operator
13905 McGuire Stewart Clerk

2. Sorted Records

13905 McGuire Stewart Clerk

38602 Johnstone Mark Computer Operator
39048 Jetson Harry Asst Manager
39248 Miller Robert Driver

42976 Stevens Carol Manager

49257 Lane Gladys Accountant

51234 Miller Catherine Secretary

75090 Arnold Terry Computer Operator
82176 Beirmeyer William Driver

Figure 10-1. Records Sorted by Primary Key

10-2 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

Indexed Sequential File Structure

Unlike the sequential and byte addressable file organizations, the structure
of an indexed sequential file has a more than one component. The
components of the file structure are the internal file label, data blocks and
index blocks.

You cannot access the internal file label or directly change information
contained in the label; the internal file label is for system use only.

Data Blocks

Records in an indexed sequential file are grouped into data blocks. All data
blocks in the file are the same size. Each block contains a header, data
records, padding, and record pointers.

Figure 10-2 shows the structure of a data block that contains four records.
The block header is at the beginning of the block and is immediately
followed by four data records. The four record pointers are at the end of the
block. The empty space between the last data record and the record pointers
is the data block padding that allows for insertion of additional records into
the data block.

Block Header

Record 1

Record 2

Record 3

Record 4

Empty Space

Record Pointer &4 Record Pointer 3

Record Pointer 2 Record Pointer 1

Figure 10-2. Indexed Sequential File Data Block Structure

Revision B Using the Indexed Sequential File Organization 10-3

INDEXED SEQUENTIAL FILE STRUCTURE

Data Block Record Pointers

The record pointers in each data block provide direct access to each record in
the block. If all records in a block are the same length, only one record
pointer is needed; otherwise, one pointer per record is needed.

Record pointers are stored at the end of the data block, beginning with the
last byte. Each pointer requires three bytes of storage. This means that the
record pointer for the first record in the data block is stored in the last three
bytes in the block, the record pointer for the second record is stored in the
next to the last three bytes, and so forth (see figure 10-2).

Data Block Padding

When an indexed sequential file is created, each data block can be created
with extra space for later insertion of records. The extra empty space is
called data block padding.

The amount of data block padding is a percentage of the space in each block.
For example, if the data block padding is 25 percent, records and record
pointers are written to the block until it is 75 percent full. The system then
stops writing records in that block and starts a new block.

The data block padding percentage is a file attribute value. However, the
attribute value is used only when the file is created. It is not used after the
initial instance of open of the file.

If you are certain that an indexed sequential file will only be read and never
written after file creation, you should specify 0 as the data block padding
percentage. In this case, no extra space is left for later record insertion. It
does not mean that records cannot be inserted; it just means that an
insertion would result in an immediate data block split.

10-4 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

Data Block Split

When a data record is added to an indexed sequential file, it is stored so as to
maintain the sorted order of the data records. For example, if a record with
primary key value 3 is added, it must be stored between the records with
primary key values 2 and 4.

If the data block in which the record should be inserted does not have
enough empty space for the record, a data block split occurs. Records in the
data block which precede the new record remain in the existing block. All
records in the existing block that come after the new record are moved to the
newly created block. The new record is put into either the new block or the
existing block depending on the amount of empty space in the blocks and the
size of the new record. If the new record does not fit in either block, a second
new block is created and the new record is put into this block.

Figure 10-3 shows an example of a data block split. Part I shows data block
A before record 3 is inserted. To keep the indexed sequential file in order,
record 3 must be inserted between record 2 and record 4; therefore, a data
block split occurs. Part IT shows the result of the block split. Record 1 and
record 2 remain in data block A, while record 4 and record 5 are moved to
data block B. Record 3 is inserted in data block A because data block A has
more empty space than data block B.

Part I:
Block Header
Record 1 Record 3
Record 2
Record &4 Record 3 needs to be inserted
into data block A. Therefore,
Record 5 a data block split occurs.
Empty Space
Record Ptr. 5 |Record Ptr. 4
Record Ptr. 2 |Record Ptr. 1
Data Block A
Part II:
Block Header Block Header
Record 1 Record 4
Record 2
Record 5
Record 3
Empty Space
Empty Space
Record Ptr. 3
Record Ptr. 2| Record Ptr. 1 Record Ptr. SATkecord Ptr. 4

Data Block A Data Block B

Figure 10-3. Data Block Split

Revision B Using the Indexed Sequential File Organization 10-5

INDEXED SEQUENTIAL FILE STRUCTUR’

Index Blocks

To access a data record, the system must know which data block contains
the record. To do so, it searches the index blocks.

Index blocks are the same size as data blocks. Like data blocks, each index
block contains a header, a sequence of records, empty space, and a record
pointer.

The structure of an index block is illustrated in figure 10-4.

Block Header

Index Record 1

Index Record 2

Index Record 3

Index Record &

Index Record 5

Index Record 6

Empty Space

| Record Pointer

Figure 10-4. Indexed Sequential File Index Block Structure

Index Records

Each index record contains the value of the primary key for the first record
in another block and the physical address of the block. The block to which
the index record points can be either a data block or a lower-level index
block.

Index records are stored in ascending order according to primary key value
in each record. An index record is used to access all records with primary key
values between its key and the key in the next index record.

Index Block Record Pointer

Each index block contains only one record pointer because all index records
are the same length and so only one pointer is needed to access each record
in the block. The pointer is always the last three bytes in the index block.

10-6 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

Index Block Padding

Like data blocks, a percentage of the space in each index block is left empty
when the file is created. The space is used for the insertion of new index
records. New index records are inserted when new data blocks are created
due to a data block split.

The index block padding percentage is a file attribute value. However, the
attribute value is used only when the file is created. It is not used after the
initial instance of open of the file.

Index Levels

All indexed sequential files, except those consisting of a single data block,
have at least one index block. If the file has more than one index block, the
blocks are linked in a hierarchy. The topmost block in the hierarchy, the
level 0 block, contains an index record for each index block on the next lower
level, the level 1 blocks. The level 1 blocks contains index records for each
index block at level 2, and so forth.

A maximum of 15 levels of index blocks (numbered 0 to 14) is allowed;
however, performance is usually best when no more than two index levels
exist. New index levels are created due to index block splits.

Index Block Split

When the first data record is written to the file, no index blocks exist. When
the first data block is full and a second data block is needed, the system
creates a primary (level 0) index block. The system stores an index record in
the level 0 index block for each new data block it creates.

Index block splits create the hierarchy of index blocks. When the level 0
index block cannot hold any more index records, the system creates a second
index block. The new index block and the existing index block become level 1
index blocks and contain index records for the data blocks. At the same time,
a new level 0 index block is created to hold index records referencing the level
1 index blocks. Additional level 1 index blocks are added until the primary
index block is filled and another level of indexing is needed.

Revision B Using the Indexed Sequential File Organization 10-7

INDEXED SEQUENTIAL FILE STRUCTURE

For example, figure 10-5 illustrates a search through two index levels. .
Suppose you wanted to access the record with primary key 43. The system

always begins its search with the level 0 index block. It searches the level 0

block and finds an index record for primary key 15 followed by an index

record for primary key 100. It then follows the pointer in the primary key 15

index record to a level 1 index block. There, it finds an index record for

primary key 25 followed by a key for primary key 55. It then follows the

pointer for the index record for primary key 25 to a data block. It then

searches the data block for the data record having primary key 43.

The percentage of empty space left in each index block when it is created
(that is, the index block padding) determines how much space is left for
insertion of additional index records and thus, when an index block split is
required. The index block padding percentage is specified by the index _
padding attribute value.

10-8 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

AAB
MOM
Primary
(Level 0)
Index
Block
AAB MOM
CAL PAV
FIL Level 1 UND
Index
Blocks
AAB CAL FIL MOM PAV UND
ADF ENP HMK OCA PXA VRY
BGC KLZ REZ ZXU
TUT

Data Blocks

Figure 10-5. Record Search Through Two Index Levels

Revision B

Using the Indexed Sequential File Organization

10-9

CREATING AN INDEXED SEQUENTIAL FILE

Creating an Indexed Sequential File

To create an indexed sequential file, a task performs the following steps:
1. Set file attributes (AMP$FILE or AMP$OPEN calls).
2. Open the file (AMP$OPEN call).
3. Write records to the file (AMP$PUT_KEY or AMP$PUT_NEXT calls).
4. Close the file (AMP$CLOSE call).

As described here, the file data is written in the same instance of open that
created the file. However, this is not required; the file data can be written
during a later instance of open.

Setting File Attributes

Before opening an indexed sequential file for the first time, you must set file
attributes defining the structure of the file and processing limitations for the
file. When the new file is opened, the file attributes are stored in the internal
label of the file, and the system references the attribute values whenever the
file is processed.

As described in chapter 6, Defining File Attributes, the attributes that define
the file structure cannot be changed after the file is first opened. Chapter 6
describes the means of setting file attribute values.

You should select file attribute values carefully. Selecting suitable values for
file attributes helps ensure that the file economizes space and the time
needed for record retrievals.

Required File Attributes

The file attribute listing in chapter 6, Defining File Attributes, describes all
file attributes. As indicated in the attribute description, certain file attributes
are effective for indexed sequential files only. Other file attributes are
effective for all file organizations, but have additional processing rules for
indexed sequential files. Therefore, to ensure that attribute values are
specified correctly for indexed sequential files, you should read the attribute
description before defining an attribute value.

10-10 CYBIL File Interface Revision B

CREATING AN INDEXED SEQUENTIAL FILE

For an indexed sequential file, you must define values for the following
attributes:

e file_organization: Must be set to AMCSINDEXED _SEQUENTIAL.

e key_length: No default value provided; AMP$OPEN returns a fatal error
if undefined.

e max_record_length: No default value provided; AMP$OPEN returns a
fatal error if undefined.

These attributes and the attributes described in the following paragraphs are
preserved with the file and cannot be changed after the file is first opened.

Defining the Record Type and Length

You must establish the record type, minimum record length, and maximum
record length before the new file is first opened. These are defined by the
record _type, min_record_length, and max_record _length attributes.

The valid values for the record _type attribute are AMC$VARIABLE,
AMCS$ANSI_FIXED, or AMC$UNDEFINED; the default record type for
indexed sequential files is AMC$UNDEFINED.

You must specify a value for the max _record _length attribute; it has no
default value. The default value for the min_record _length attribute depends
on the values of the embedded key and record _type attributes:

o Iftherecord typeis AMC$ANSI_FIXED, the default min_record length
value is the max_record _length value.

o Ifthe record type is AMC$VARIABLE or AMC$UNDEFINED and the
embedded _key attribute is TRUE, the default min_record length value is
the sum of the key _position and key _length values.

e Iftherecord type is AMC$VARIABLE or AMC$UNDEFINED and the
embedded key attribute is FALSE, the default min_record _length value
is 1 byte.

The min _record _length value cannot exceed the max _record length value.
If the record _type is AMC$ANSI_FIXED, the min_record _length value
must be the same as the max_record _length value.

If the primary key is embedded in the record, the primary key field must be
within the minimum record length. Therefore, the key _length value cannot
exceed the min_record _length value. An attempt to write a record smaller
than the minimum record length or longer than the maximum record length
is rejected with a trivial error.

Revision B Using the Indexed Sequential File Organization 10-11

CREATING AN INDEXED SEQUENTIAL FILE

Defining the Primarv Key

In an indexed sequential file, each data record must have a unique primary
key value. Before opening a new indexed sequential file, you must define the
primary key by setting or accepting defaults for the key _type, embedded _
key, and key _position attributes.

Setting Key Type

The key _type attribute defines the primary key type for the file and can be
set as follows:

AMCSUNCOLLATED _KEY

Keys (1 through 255 bytes) ordered byte-by-byte according to the ASCII
character set sequence (listed in appendix B). The key can be a positive
integer or a string of ASCII character codes.

AMCSINTEGER_KEY

Integer keys (1 through 8 bytes) ordered numerically. The integer can be
positive or negative.

AMC$COLLATED _KEY

Collated keys are 1- through 255-character keys ordered according to the
collation table you specify as the collate _table_name attribute. If you
specify this key type, you must supply a collation table; there is no
system-supplied default collation table.

Appendix E lists the predefined collation tables. Primary keys are not
stored in collated form. (The system uses hardware instructions for
collated key operations.) Therefore, the collation tables can map more
than one character to the same position in the collating sequence. For
example, several predefined tables map the 256 ASCII characters to 64
collating positions.

If you do not specify a value for the key _type attribute, the value
AMCS$UNCOLLATED _KEY is used.

Setting Embedded Key and Key Position

The embedded _key attribute determines whether the primary key for a
record is located in the record (embedded) or is separate from the record
(nonembedded).

If the value of the embedded _key attribute is TRUE, the primary keys are
embedded. If the attribute value is FALSE, the keys are nonembedded. If you
do not set a value for the embedded _key attribute, the value TRUE is used.

For files with embedded keys, you must also set the key_position attribute or
accept the default value of zero. The system uses the key _position attribute
to locate the first byte of the primary key.

10-12 CYBIL File Interface Revision B

CREATING AN INDEXED SEQUENTIAL FILE

Defining the Block Size

Data blocks and index blocks are the same size. You can specify the block
size explicitly using the max_block length attribute or accept the default
block size calculated by the system.

It is recommended that you allow the system to calculate block size.

You specify block size explicitly by setting the max_block _length attribute.
If you specify a value for max _block _length, the system increases the value,
if necessary, so that a block can hold at least one maximum-length record.
Then the value is rounded up to the next power of 2 between 2,048 and 65,536
bytes, inclusive.

If you do not specify a value for the max _block _length attribute, the system
uses the values of the following attributes to calculate block size:

average_record _length
estimated _record count
index _levels

max _record _length

min _record _length
records _per_block

If you decide to let the system calculate block size, you should set as many of
these attributes as possible.

The system calculates block size as follows:

1. The value of the average _record length attribute is used as the
average length of the records in the file. If you did not specify a value
for average _record_length, the arithmetic mean of the max record _
length and min_record _length attributes is used as the average record
length; however, the system does not store this value as the average
record_length attribute.

When the indexed sequential file has AMC$VARIABLE or
AMCS$UNDEFINED type records, you should determine the value of
the average _record _length attribute as follows:

e If most records in the file are of a specific length, the value of
average_record _length should be set to that length.

e Ifrecord lengths are well distributed, the value of average record
length should be set to the median of the record lengths; that is, half
the records are smaller and half are larger than the value of
average_record length.

If keys are nonembedded, the value of average record _length should
be determined without regard to the value of the key length attribute.

Revision B Using the Indexed Sequential File Organization 10-13

CREATING AN INDEXED SEQUENTIAL FILE

2. The value of the records_per_block attribute is used as an estimate of
the number of records a data block should contain. If records_per
block is not specified, the estimate of two records per block is used.

The value of the records_per_block attribute has only a small effect on
the calculation of block size and is used only for the calculation; it is
not a limit to the number of records a block can contain.

3. The value of the estimated _record _count attribute is used as the
estimated maximum number of records in the file. If estimated _
record _count is not specified, the value of record _limit is used. If
record _limit is not specified, the estimate of 100,000 records is used.

4. The value of the index _level attribute is used as the estimate of the
number of index levels for the file. If index _level is not specified, the
estimate of two index levels is used.

5. The system determines the smallest block size so that it can contain
both:

® The number of records specified by the records _per_block attribute
with each record the length specified by the average record_length
attribute.

e Sufficient index records so that if the file grows to its estimated
maximum number of data records (estimated _record _count value),
the number of index levels will be within the maximum (index _level
value).

A large block size is efficient in that it minimizes the number of index
levels. However, in extreme cases, a large block size can reduce
efficiency because a larger block will have to be read to memory each
time a record is randomly accessed. For accessing records sequentially,
a larger data block is always more efficient because fewer blocks will
be read to memory.

10-14 CYBIL File Interface Revision B

CREATING AN INDEXED SEQUENTIAL FILE

Defining Data_Padding and Index_Padding

The data_padding and index padding attributes specify the percentage of
data block and index block padding, respectively (0 through 99). The default
value for both attributes is zero, no padding.

Data block padding should be used only if the records being inserted during
the creation of the file have been already sorted by primary key. In this case,
data block padding helps avoid data block splits when the file is updated.
Also, data block padding should be used with care because the padding is
allocated in every data block in the data file.

Although index blocks are the same size as data blocks, the percentage of
index block padding need not be the same as for data block padding. A small
percentage of index block padding is usually recommended if a number of
updates to the file is expected. If you specify index block padding at file
creation time, index records can be added without creating additional index
levels.

Writing Records

After the indexed sequential file is opened, records can be written to the file
using the AMP$PUT _KEY or the AMPSPUT_NEXT calls.

A write operation copies the data moved from the working storage area to
the file. The value of the primary key determines the logical position of the
record in the file.

Whenever you write a large number of records to the file, such as is usually
done when the file is created, you should presort the records in ascending
order by primary key value. Presorting records can result in a smaller file
and less time required for writing the records. You can sort records using
NOS/VE Sort/Merge as described in the Sort/Merge manual.

You can write records sequentially using either AMP$PUT KEY or
AMPS$PUT _NEXT calls. Use of AMP$PUT _KEY calls is recommended for
writing indexed sequential files,. AMP$PUT _NEXT should be used only if a
common interface for writing records, regardless of file organization, is
required.

Revision B Using the Indexed Sequential File Organization 10-15

AMP$PUT_KEY

AMP$PUT_KEY

Purpose

Format

Parameters

Writes a record to an indexed sequential file.

NOTE

The file must be open with at least PFC$APPEND
permission.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL _
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

AMPS$PUT_KEY (file_identifier, work