
CYBIL for NOS/VE
File Interface

Usage

<Se>
CONT~OL

DATA

60464114

Command Index A ---------·
AMP$ABANDON _KEY_ AMP$SET _FILE_INSTANCE_

DEFINITIONS 10-67
AMP$ACCESS _METHOD_

PROCEDURE D-13
A~~~~:r~~iGMENT ~ D-209

EOI 8-18
AMP$ADD_ TO_FILE_ AMP$SET _SEGMENT_

DESCRIPTION D-11 POSITION 8-20
AMP$_APPLY _KEY_ AMP$SKIP 9-18

DEFINITIONS 10-65 AMP$SKIP _TAPE_MARKS .. 4-9
AMP$CLOSE 7-5 AMP$ST ART 10-21
AMP$COPY _FILE 11-9 AMP$STORE 6-8
AMP$CREATE_KEY _ AMP$STORE_FAP _

DEFINITION 10-58 POINTER D-15
AMP$DELETE_KEY 10-35 AMP$VALIDATE_ CALLER_
AMP$DELETE_KEY _ PRIVILEGE D-8

DEFINITION 10-64 AMP$WRITE_ END_
AMP$FETCH 6-15 PARTITION 9-39
AMP$FETCH_ACCESS _ AMP$WRITE_ TAPE_

INFORMATION 7-16 MARK 4-12
AMP$FETCH_FAP _ CLP$CREATE_FILE_

POINTER D-16 CONNECTION 2-9
AMP$FILE 6-5
AMP$FLUSH 9-31
AMP$GET _DIRECT 9-21

CLP$DELETE FILE
CONNECTION ~- 2-10-

IFP$FETCH_ TERMINAL 5-11
AMP$GET _FILE_ IFP$GET _DFLT _TERM_

ATTRIBUTES 6-13 ATTRIBUTES 5-4
AMP$GET _KEY 10-25 IFP$GET _TERMINAL_
AMP$GET _KEY_ ATTRIBUTES 5-7

DEFINITIONS 10-75 IFP$STORE_ TERMINAL 5-9
AMP$GET _NEXT 9-23 IFP$TERMINAL 5-2
AMP$GET _NEXT _KEY 10-28 PFP$A TT ACH 3-34
AMP$GET _NEXT _FRIMARY _ PFP$CHANGE 3-10

KEY _LIST 10-81 PFP$DEFINE 3-4
AMP$GET _PARTIAL 9-26 PFP$DEFINE_CATALOG ... 3-14
AMP$GET _PRIMARY _KEY_ PFP$DELETE_CATALOG_

COUNT 10-78 PERMIT 3-28
AMP$GET _SEGMENT_ PFP$DELETE_PERMIT 3-24

POINTER 8-6 PFP$PERMIT 3-20
AMP$0PEN 7-2 PFP$PERMIT _CATALOG ... 3-25
AMP$PUT _DIRECT 9-33 PFP$PURGE 3-7
AMP$PUT _KEY 10-16
AMP$PUT _NEXT 9-35

PFP$PURGE_CATALOG 3-15 A
RMP$GET _DEVICE_ W'

AMP$PUT _PARTIAL 9-37 CLASS 2-3
AMP$PUTREP 10-31 RMP$REQUEST _NULL_
AMP$REPLACE_KEY 10-33 DEVICE 2-5
AMP$RETURN 2-7
AMP$REWIND 9-17
AMP$SEEK_DIRECT 9-11

RMP$REQUEST _TAPE 4-3 A
RMP$REQUEST _ W'

TERMINAL 5-6
AMP$SELECT _KEY 10-74

CYBiL for NOS/VE
File Interface

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464114

Related Manuals

Background (Access as Needed):

~

SCL SCL
Language System
Definition - Interface

Usage Usage

SCL

Quick
Reference

I

I 1

60464013 60464014 60464018 0

CYBIL Manual Set:

CYBIL
Language
Definition

Usage

60464113

Additional References:

Diagnostic
Messages

Usage

60464613 0

SCL
Source Code
Management

Usage

CYBIL
System
Interface

Usage

60464115

SCL
Object Code
Management

Usage

indicates reading sequence.

B means available online.

I

I 1

Copyright 1983, 1984 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 CYBIL File Interface

Sort/Merge SCL
Advanced

Usage File
Management

Usage

60486413

Revision B

9 Manual History

Revision B reflects the release of NOS/VE 1.1.1 at PSR level 613. It was
printed July 1984.

The changes consist of rewrites of chapters 1 and 3 to improve usability, new
formats for all CYBIL procedures, additions to indexed sequential files,
major editorial changes throughout, and inclusion of new CYBIL types.

Because changes to this manual are extensive, individual changes are not
marked. This edition obsoletes all previous editions.

Previous
Revision

System
Level Date

----- ·--------------·---~"----·-------------------

A 1.0.2 February 1984

Revision B CYBIL File Interface 3/4

9 Contents

How To lJse This Manual ... 7

Audience For This Manual ... 7
Organization 8
Conventions 9
Additional Related

Manuals 10

Part I

Introduction

How to lJse Interface
Calls 1-1

Using File Interface
Procedures 1-1

System Naming
Convention 1-9

Procedure Call Description
Format 1-10

Part II

Assigning Files To Devices

Local File Management. ... 2-1

Specifying the Device
Class of a New File 2-1

Null Device Class 2-4
Returning a Local File 2-6
File Connections 2-8

Mass Storage File
Management 3-1

File and Catalog Paths 3-1
File Cycles 3-3
File Subcatalogs 3-13
Access Modes 3-16
File Access Log 3-16
Access Control Entries 3-17
Attaching a Permanent

File 3-29

Revision B

Tape Management 4-1

Tape File Requests 4-1
Tape File Attributes 4-6
Tape File Positioning 4-7

Terminal Management 5-1

Default Terminal
Attributes 5-1

Terminal File Requests 5-5
Changing Terminal

Attribute Values
After the File
Is Open 5-8

Terminal Attributes 5-12
Special Considerations

for Terminal File
Processing 5-26

Terminal Output 5-30
Terminal Conditions 5-33

Part III

Assigning File Data

Defining File Attributes ... 6-1

Defining New File
Attributes 6-1

Defining Old File
Attributes 6-3

Defining Attributes
for an Open File 6-4

Attribute Definition
Calls 6-4

Retrieving File
Attributes 6-9

File Attribute
Descriptions 6-16

Contents 5

CONTENTS

File Opening and
Closing 7-1

File Identifiers 7-1
Access Validation 7-6
Error Exit Procedure 7-7
File Sharing 7-8

Accessing a File as a
Memory Segment 8-1

CYBIL Data Storage 8-1
Virtual Memory Access . . . 8-3
Segment Attributes 8-4
Segment Pointer. 8-5
Sharing a Segment

Access File 8-15

Accessing Sequential and
Byte Addressable
Files 9-1

Logical File Structure 9-1
Working Storage Area 9-1
Record Types 9-2
File Blocking 9-4
Sequential Record

Access 9-7
Random Record

Access 9-9
File Positioning 9-14
Reading Records 9-20
Writing Records 9-29

Accessing Indexed
Sequential Files 10-1

Primary Keys 10-1
Indexed Sequential

File Structure 10-3
Processing an Existing

Indexed Sequential
File. 10-18

Monitoring the Index Levels
in an Indexed Sequential
File 10-37

Indexed Sequential File
Example. 10-39

Alternate Keys 10-47

6 CYBIL File Interface

File Copying 11-1 e
Sequential File

Organization to
Sequential File
Organization 11-2 e

Sequential File
Organization to
Indexed Sequential
File Organization 11-3

Byte Addressable
File Organization
to Byte Addressable
File Organization 11-4

Indexed Sequential
File Organization
to Indexed Sequential
File Organization 11-5

Indexed Sequential File
Organization to
Sequential File
Organization 11-7

List File Copying 11-8
File Copy Example 11-11 e

Part IV

Appendixes

Glossary A-1

ASCII Character Set B-1

Constant and Type
Declarations C-1

File Access Procedures D-1

Collation Tables for
Indexed Sequential
Files E-1

Common Procedures F-1

Index Index-1

Revision B

About This Manual

This manual describes CONTROL DATA® CYBIL procedure calls that
interface between the CDC® Network Operating System/Virtual
Environment (NOS/VE) and CYBIL programs. CYBIL is the
implementation language of NOS/VE.

NOS/VE provides a program interface written in the CYBIL language
through which CYBIL programs can interface to the operating system. This
program interface is comprised of CYBIL procedures which are designed to
be used in CYBIL programs. These CYBIL procedures are topically divided
for presentation in two manuals: the CYBIL System Interface manual, and
this, the CYBIL File Interface manual.

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that the reader knows the CYBIL programming language as described in the
CYBIL Language Definition manual.

To use the procedure calls described in this manual, the programmer must
copy decks from a system library. Although this manual provides a brief
description of the commands required to copy procedure declaration decks,
the SCL Source Code Management manual contains the complete
description.

This manual also assumes that the reader has used the System Command
Language (SCL). You can perform many system functions described in this
manual using either SCL commands or CYBIL procedure calls. Commands
referenced in this manual are SCL commands. For a description of SCL
command syntax, see the SCL Language Definition manual; for individual
SCL command descriptions, see the SCL System Interface manual.

Other manuals that relate to this manual are shown on the Related Manuals
page.

Revision 8 About This Manual 7

ORGANIZATION

Organization

The CYBIL File Interface manual is divided into four parts:

Introduction
Assigning Files to Devices
Accessing File Data
Appendixes

The first part is an introduction to the use of system-supplied file interface
calls. You should read the introduction first.

Each of the chapters in the second and third parts describes a certain
function. You can read these chapters in any order. For example, if you do
not plan to use tape files, you can skip the chapter on tape management.

The Assigning Files to Devices part describes calls to assign files to device
classes. Separate chapters describe mass storage, tape, and interactive
terminal assignment.

The Accessing File Data part describes calls used to access files regardless of
their device assignment. Separate chapters describe file attribute definition,
opening and closing files, and reading and writing file data.

The appendixes provide supplementary information:

Appendix A Glossary.

Appendix B ASCII character set.

Appendix C System-defined type and constant declarations used by file
interface procedures.

Appendix D Description of the use and creation of file access procedures
(FAPs).

Appendix E Description of collation table creation for indexed
sequential files.

Appendix F Common procedures.

This manual is part of the CYBIL manual set. Besides this manual, the
CYBIL manual set includes the following manuals:

• The CYBIL Language Definition manual that defines the CYBIL
language in detail.

• The CYBIL System Interface manual that describes the
NOS/VE-supplied system interface CYBIL procedures.

8 CYBIL File Interface Revision B

CONVENTIONS

Conventions

boldface

e italics

blue

Within formats, procedure names are shown in boldface type.
Required parameters are also shown in boldface.

Within formats, optional parameters are shown in italics.

Within interactive terminal examples, user input is shown in
blue.

UPPERCASE Within formats, uppercase letters represent reserved words;
they must appear exactly as shown in the format.

lowercase

examples

numbers

Revision B

Within formats, lowercase letters represent names and values
that you supply.

Examples are printed in a typeface that simulates computer
output. They are shown in lowercase, unless uppercase
characters are required for accuracy.

All numbers are base 10 unless otherwise noted.

About This Manual 9

ADDITIONAL RELATED MANUALS

Additional Related Manuals

Each procedure call description lists the exception conditions that the
procedure can return. The message template and condition code associated
with each condition is listed in the Diagnostic Messages for NOS/VE
manual (publication number 60464613).

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use this comment
sheet to give us your opinion of the manual's usability, to suggest specific A
improvements, and to report technical or typographical errors. If the W
comment sheet has already been used, you can mail your comments to:

Control Data Corporation
Publications and Graphics Division ARH219
4201 Lexington Avenue North
St. Paul, Minnesota 55112

Please indicate whether you would like a written response.

10 CYBIL File Interface Revision B

How to Use File Interface Calls 1

Using File Interface Procedures .. 1-1

Copying Procedure Declaration Decks 1-3
Expanding a Source Program 1-4

Calling a File Interface Procedure 1-6
Parameter List .. 1-6

Checking the Completion Status 1-7
Exception Condition Information 1-7

System Naming Convention ... 1-9

Procedure Call Description Format 1-10

Parameter Description Format 1-10

How to Use File Interface Calls I

NOS/VE provides a set of CYBIL procedures by which programs can request
system services. A system service is a function which supplies information
and capabilities to application programs. The functions are supported by the
operating system. This manual describes the file interface portion of the
NOS/VE-supplied CYBIL procedures. It provides the CYBIL programmer
with the information required to make calls to file interface procedures in
CYBIL programs.

Using File Interface Procedures

Each CYBIL file interface procedure resides as an externally referenced
(XREF) procedure declaration in a deck on a system source library. In
general, to use a file interface procedure, you must include the following
statements in your CYBIL source program:

• A Source Code Utility (SCU) *COPYC directive to copy the XREF
procedure declaration from a system source library.

• Statements to declare, allocate, and initialize actual parameter variables
as needed.

• The procedure call statement.

• An IF statement to check the procedure completion status which is
returned in the procedure's status variable.

Figure 1-1 lists a source program that illustrates use of a file interface
procedure. System-defined names are shown in uppercase letters; user
defined names in lowercase letters.

Revision B How to Use File Interface Calls 1-1

USING FILE INTERFACE PROCEDURES

MODULE example1;

{ Directives to copy the XREF procedure declarations.}

*copyc rmp$get_device_class
*copyc rmpSrequest_null_device

{This procedure returns the device class of the file}
{ and a status record to the caller.}

PROCEDURE get_device_class
(lfn: amt$local_file_name;
VAR class_returned: rmt$device_class;
VAR status: ost$status);

{ Parameter declarations }

VAR
device_assigned: boolean;

{ Procedure call statement }

RMPSGET_DEVICE_CLASS (lfn, device_assigned,
class_returned, status>;

{ Status record check. }

IF NOT status.NORMAL THEN
RETURN;

!FEND;

IF device_assigned = FALSE THEN
RMPSREQUEST_NULL_DEVICE (lfn, status);
IF NOT status.NORMAL THEN

RETURN;
!FEND;
class_returned

!FEND;
rmcSnul l_devi ce;

PROCEND get_device_class;
MODEND example1;

Figure 1-1. File Interface Call Example

1-2 CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

The following paragraphs describe in greater detail the SCU directives and
CYBIL statements required to use a file interface procedure.

Copying Procedure Declaration Decks

To use a file interface procedure in a CYBIL module, the module must
include an SCU *COPYC directive to copy the externally referenced
procedure from a system library. The XREF procedure declarations for all
file interface calls except the indexed sequential file calls described in
chapter 10 are stored as decks in the source library file
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. The indexed sequential
file procedure declarations are stored as decks in the source library file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE.

The deck containing the procedure declaration has the same name as the
procedure. For example, the RMP$GET _DEVICE_ CLASS procedure is
declared in a deck named RMP$GET _DEVICE_ CLASS.

As shown in figure 1-1, the *COPYC directives begin in column one, specify
the name of the deck to be copied, and, in this example, follow the MODULE
statement. You will need only one *COPYC directive for calls to the same file
interface procedure in your CYBIL module regardless of how many times the
procedure is called. For instance, if the module in figure 1-1 had called the
RMP$GET _DEVICE_ CLASS procedure more than one time, the one
*COPYC directive to copy the XREF RMP$GET _DEVICE_ CLASS
procedure deck would suffice.

For more information about the *COPYC directive, see the SCL Source Code
Management manual.

Procedure declaration decks list the parameters and their valid CYBIL types
that must be listed on a call to a file interface procedure. When a CYBIL
program is being compiled, the parameters on the call to the file interface
procedure are verified with the parameters and parameter types listed in the
procedure's XREF procedure declaration. If the parameters on the call to the
file interface procedure do not match the parameters and the parameter's
required type as defined in the procedure declaration, the program
compilation will fail. After the module in figure 1-1 is compiled, the XREF
procedure declaration will be included in the source listing.

An example of a procedure declaration deck is found later in this chapter
under the subheading, Calling a File Interface Procedure.

In this manual, the required parameters as well as each parameter's required
type is listed in the individual procedure call description format for each file
interface procedure. The parameter types for all CYBIL file interface
procedures are listed alphabetically in appendix C.

Revision B Defining File Attributes 1-3

USING FILE INTERFACE PROCEDURES

Expanding a Source Program

A CYBIL source program that calls one or more file interface procedures
must be expanded through commands provided in the Source Code Utility
(SCU). Expanding the program through SCU generates the source code to be
compiled.

The SCU process of expanding requires that the source program exist as one
or more decks on an SCU library. The contents of a file containing a CYBIL
module are transferred onto a deck when you issue the CREATE_ DECK
subcommand within an SCU session. An example of how to do this is shown
in figure 1-2.

To expand a CYBIL source program that calls file interface procedures, you
use the SCU EXPAND_DECK subcommand. You list the name of the decks
to be expanded on the DECK parameter, and you list the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE file, which contains the
XREF procedure decks for all file interface procedures, as the
ALTERNATE_BASE parameter on the same EXPAND_DECK
subcommand. SCU then processes the specified decks, copying any XREF
decks named on *COPYC directives into the CYBIL source program.

If the CYBIL program uses indexed sequential file calls, the file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE must
also be specified on the ALTERNATE_BASE parameter. Figure 1-2 shows a
command sequence.

1. /create_source_Library
2. /scu base=result result=Suser.my_Library
3. sc/create_deck deck=my_program modification=modO

sc •• /source=source_file
4. sc/expand_deck deck=my_program

sc •• /alternate_base= ••
sc •• /($system.cybil.osf$program_interface, ••
sc •• /$system.common.psf$external_interface_source)

5. sc/quit write_Library=true
6. /cybil i=compile L=Listing Lo=<x, r, a)

Figure 1-2. Source Text Preparation Example

1-4 CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

e The command sequence in figure 1-2 performs the following tasks:

1. Creates an empty source library on the default file RESULT.

2. Calls SCU. The base library is the empty library on file RESULT that
was created in step 1; the result library will be written on the user's
permanent file, MY _LIBRARY, at the end of the SCU session.

3. Creates a deck named MY _PROGRAM. The deck was created from the
local file, SOURCE_FILE which contained the CYBIL program.

4. Expands the MY _PROGRAM deck. Expanding the MY _PROGRAM
deck will process any *COPYC directives included in the source
program. Any decks specified by the *COPYC directives will be copied
from the library files OSF$PROGRAM_INTERFACE or
PSF$EXTERNAL_INTERFACE_SOURCE which are listed on the
ALTERNATE_ BASE parameter. The expanded text is written on the
default file COMPILE.

5. Ends SCU processing. The WRITE_LIBRARY=TRUE parameter
indicates that the library is to be written on the result library file. (This
is not required; the expanded source text remains available on the
COMPILE file even if no result library is written.)

6. Calls the CYBIL compiler to compile the text on file COMPILE and
write a source listing on file LISTING.

For more information on creating source libraries and decks and on
expanding decks, see the SCL Source Code Management manual.

Revision B How to Use File Interface Calls 1-5

USING FILE INTERFACE PROCEDURES

Calling a File Interface Procedure

A call to a file interface procedure has the same format as any CYBIL
procedure call. In general, a CYBIL procedure call statement has the
following format:

procedure_ name (parameter_ list);

For more information on CYBIL procedure calls, see the CYBIL Language
Definition manual.

Parameter List

A procedure parameter list provides the procedure with input values and the
locations where it is to store output values. You can specify an input value as
the value itself or as a variable containing the value.

NOTE

All parameters on a procedure call are required. You must specify a value or
variable for each parameter in the parameter list.

CYBIL performs type checking on the variables and values specified in a
procedure parameter list. It compares the parameters on the procedure call
with the parameter types listed in the XREF procedure declaration.
Therefore, to make a successful call to a file interface procedure, the
parameters on the procedure call must conform to the parameter types
specified in the procedure declaration deck.

For example, the procedure declaration for the RMP$GET _DEVICE_
CLASS procedure is as follows:

PROCEDURE [XREF] rmp$get_device_class
(Local_file_name: amt$Local_file_name;
VAR device_assigned: boolean;
VAR device_class: rmt$device_class;
VAR status: ost$status);

This declaration indicates that a call to the procedure must specify four
parameters in its parameter list. The first parameter must specify an input
value of type AMT$LOCAL_FILE_NAME; the second parameter must
specify a variable of type BOOLEAN; the third parameter must specify a
variable of type RMT$DEVICE_ CLASS; and the fourth parameter must
specify a variable of type OST$STATUS. The "VAR" listed with the last
three parameters indicates that these parameters are treated as output
parameters by the RMP$GET _DEVICE_ CLASS procedure; that is, values
will be returned to these parameters by the procedure.

1-6 CYBIL File Interface Revision B

USING FILE INTERFACE PROCEDURES

All parameter types as well as the valid parameter values are listed in the
individual parameter descriptions for each file interface procedure described
in this manual.

For more information on declaring and assigning values to variables, see the
CYBIL Language Definition manual.

Checking the Completion Status

The last parameter on a file interface procedure call must be a status
variable (type OST$STATUS). Unlike the status parameter on SCL
commands, the status parameter on file interface calls is required, not
optional. When the procedure completes, NOS/VE returns the completion
status of the procedure in the specified status variable.

The program should check the completion status returned immediately after
the procedure call. If the NORMAL field of the status variable is TRUE, the
procedure completed normally. If the NORMAL field is not TRUE (that is,
FALSE), the procedure completed abnormally.

For example, the following program fragment uses a status variable named
STATUS. Immediately after the RMP$GET _DEVICE_ CLASS call, an IF
statement checks the value of the boolean field of the status record
(STATUS.NORMAL). If its value is false (NOT STATUS.NORMAL), the
procedure terminates.

rmp$get_device_class Clocal_file_name,device_assigned,
device_class, status>;

IF NOT status.NORMAL THEN
RETURN;

I FEND;

Exception Condition Information

When the procedure completes abnormally, NOS/VE returns additional
information about the exception condition that occurred. The following
variant fields of the record return condition information when the key field,
NORMAL, is false:

identifier

Two-character string identifying the process that detected the error. Table
1-1 lists the identifiers returned by calls described in this manual.

condition

Exception condition code that uniquely identifies the condition
(OST$STATUS_CONDITION, integer). Each code can be referenced by
its constant identifier as listed in the Diagnostic Messages manual.

Revision B How to Use File Interface Calls 1-7

USING FILE INTERFACE PROCEDURES

text

String record (type OST$STRING). The record has the following two
fields:

size

Actual string length in characters (0 through 256).

value

Text string (256 characters).

NOTE

The text field does not contain the error message. It contains items of
information that are inserted in the error message template if the message is
formatted using this status variable.

If the NORMAL field of the status record is FALSE, the program determines
its subsequent processing. For example, it could check for a specific condition
in the CONDITION field or determine the severity level of the condition with
a OSP$GET _STATUS_SEVERITY procedure call. The CYBIL System
Interface manual contains the description of OSP$GET_STATUS_
SEVERITY and other condition processing calls.

Table 1-1. Process Identifiers for File Interface Calls

Process
Identifier

AA

AM

CL

IF

OS

PF

RM

Process Function

Advanced access method.

Access method.

Command language.

Interactive file and terminal management.

Operating system.

Permanent file management.

Resource management.

1-8 CYBIL File Interface Revision B

SYSTEM NAMING CONVENTION

9 System Naming Convention

All identifiers defined by the NOS/VE file interface use the system naming
convention. The system naming convention requires that all system-defined
CYBIL identifiers have the following format:

idx$name

Field Description

id Two characters identifying the process that uses the identifier.
Table 1-1 lists the identifiers used in this manual.

x Character indicating the CYBIL element type identified.

x Description

c Constant.

e Error condition.

p Procedure.

t Type.

$ The$ character indicates that Control Data defined the
identifier.

NOTE

To ensure that each identifier you define differs from all Control
Data-defined identifiers, avoid using the$ character in your
identifier. Each Control Data-defined identifier contains a$
character.

name A string of characters describing the purpose of the element the
identifier represents.

For example, the identifier RMP$GET _DEVICE_ CLASS follows the system
naming convention. Its process id is RM, for resource management. The P
following the process id indicates that it is a procedure name. The string
GET _DEVICE_ CLASS describes the purpose of the procedure.

Revision B How to Use File Interface Calls 1-9

USING FILE INTERFACE PROCEDURES

Procedure Call Description Format

Each of the remaining chapters of this manual describes a group of file
interface procedures. Within the chapter are individual procedure call
descriptions. Each procedure description uses the same format.

Each procedure description has the following subheadings:

Purpose Brief statement of the procedure function.

Format Procedure call format showing the parameter positional
order followed by individual parameter descriptions.

Parameters Descriptions of the parameters in the preceding format
including the parameter's valid CYBIL type.

Condition List of condition identifiers returned by the procedure.
Identifiers

Remarks

The list is not all-inclusive; however, it lists conditions that
are likely to be of interest to the procedure user.

If present, additional information about procedure
processing.

Parameter Description Format

Within each procedure call format description, each parameter description
states the parameter function, the valid values for the parameter, and the
parameter's valid CYBIL type. Appendix C contains an alphabetical listing
of all parameter types for the CYBIL procedures described in this manual.

If the parameter type is a set of system-defined identifiers, the parameter
description lists all possible identifiers in the set and their meanings.

If the variable type is a record, the parameter description describes each field
in the record. It states the field name, its function, and its type.

1-10 CYBIL File Interface Revision B

4t Local File Management 2

Specifying the Device Class of a New File 2-1

Overriding the Device Class ... 2-2
RMP$GET_DEVICE_CLASS 2-3

Null Device Class ... 2-4

RMP$REQUEST_NULL_DEVICE 2-5

Returning a Local File ... 2-6

AMP$RETURN .. 2-7

File Connections .. 2-8

System File Connections .. 2-8
CLP$CREATE_FILE_CONNECTION 2-9
CLP$DELETE_FILE_CONNECTION 2-10

Local File Management 2

Each file has the following characteristics:

• A local file name unique within the job.

• Assignment to a device class.

• A set of file attributes.

This chapter describes the assignment of a new file to a device class. Chapter
6, Defining File Attributes, describes the definition of file attributes.

The local file name identifies the file within the job. You can define a local
file name when you specify a file reference on a command or call. Unless
explicitly specified otherwise, the file is assigned to the default device class
(mass storage) and the default file attribute set.

Specifying the Device Class of a New
File
For purposes of clarity in this manual, a file is termed a new file if it has
never been opened. When a task opens a new file, the system assigns the file
to a device within its device class as follows:

• Magnetic tape: Assigns the file to tape devices.

• Terminal: Assigns the file to the interactive terminal.

• Mass storage: Assigns the file to a disk unit.

Before a task creates a new file, the new file can explicitly be associated with
a device class by using one of the following commands or CYBIL calls:

• Commands: CREATE_FILE, REQUEST_MAGNETIC_ TAPE, and
REQUEST_ TERMINAL.

• Calls: PFP$DEFINE, RMP$REQUEST _NULL_DEVICE,
RMP$REQUEST _TAPE, and RMP$REQUEST _TERMINAL.

If no command or call has associated the local file name with a device class
when the file is opened, the system assigns the file to mass storage.

Revision B Local File Management 2-1

SPECIFYING THE DEVICE CLASS OF A NEW FILE

Overriding the Device Class

Although device assignment calls within a program can specify the default
device class of a file, an SCL command issued for the file before the program
is executed will always override the device class specified by calls within the
program.

When NOS/VE opens a new file, it determines the file's device class as
follows:

• If the file was created on a CREATE_FILE command, it has already been
assigned to a mass storage device.

• If a REQUEST _MAGNETIC_ TAPE or REQUEST_ TERMINAL
command has been issued for the file, NOS/VE assigns the file to the tape
or terminal device class, respectively.

• If the program has issued one or more RMP$REQUEST _TAPE,
RMP$REQUEST _TERMINAL, or RMP$REQUEST _NULL_DEVICE
calls for the file, the last call issued before the file is opened is effective.

• If no command or call has assigned the file to a device class, NOS/VE
assigns the file to the mass storage device class when it opens the file.

For example, suppose a program contains an RMP$REQUEST _TAPE call
that specifies the local file name TAPEl. Suppose the following command is e
executed before the program:

REQUEST_TERMINAL FILE=TAPE1

The device class specified by the command, REQUEST_ TERMINAL,
overrides the device class specified by the call, RMP$REQUEST _TAPE, in
the CYBIL module. Therefore, when the task opens the file, the file is
assigned to the interactive terminal device.

Once the file has been opened, the device class cannot be changed; however,
the file may be deleted and the file name may then be associated with a
different device class.

To determine the device class associated with a local file name, a task can
call the RMP$GET _DEVICE_ CLASS procedure.

2-2 CYBIL File Interface Revision B

RMP$GET _DEVICE_ CLASS

RMP$GET _DEVICE_ CLASS

Purpose

Format

Parameters

Condition
Identifier

Revision B

Returns the device class for a file.

RMP$G ET _DEVICE_ CLASS (local_file _name,
device_assigned, device_class, status)

local_file _name: amt$local_file _name;

Local file name.

device_assigned: VAR of boolean;

Indicates whether the file has been assigned to a device.

TRUE

The file has been opened, or a CREATE_FILE,
REQUEST _MAGNETIC_ TAPE, or REQUEST_
TERMINAL command has been issued for the local file
name.

FALSE

The file has not yet been opened, and no CREATE_FILE,
REQUEST_ TERMINAL, or REQUEST _MAGNETIC_
TAPE command has been issued for the local file name. In
this case, the device_ class value returned is always
RMC$MASS_STORAGE_DEVICE.

device_class: VAR of rmt$device_class;

Device class.

RMC$MASS_STORAGE_DEVICE

Mass storage.

RMC$MAGNETIC_ TAPE_DEVICE

Magnetic tape.

RMC$TERMINAL DEVICE

Interactive terminal.

RMC$NULL_DEVICE

Null device.

status: VAR of ost$status;

Status variable.

None.

Local File Management 2-3

NULL DEVICE CLASS

Null Device Class

Assignment of a file to the null device class means that data is discarded as
it is written. Attempts to read data from the file always return an end-of
information status. A file is assigned to the null device class by calling the
RMP$REQUEST _NULL_DEVICE procedure.

When a task opens a null file for record access, it can issue get and put calls
to the file. A get call returns normal status, but no data; a put call discards
the data to be written and returns normal status. The file position returned
depends on the call, as follows:

• A get call always returns AMC$EOI.

• A full record put call returns AMC$EOR.

• A partial record put call to write the beginning or middle part of a record
returns AMC$MID _RECORD.

• A partial record put call to write the end of a record returns AMC$EOR.

When a task opens a null file for segment access, an AMP$GET _
SEGMENT _POINTER call returns a NIL pointer because the system does
not assign a segment to the file.

An indexed sequential file cannot be assigned to the null device class.

A null file can be used for debugging purposes when a file reference is
required in the code but any data access to the file is not appropriate. To
discard any unwanted output generated by a call to a command or a CYBIL
procedure, the file name $NULL can be passed as the file reference.

2-4 CYBIL File Interface Revision B

RMP$REQUEST _NULL_DEVICE

e RMP$REQUEST_NULL_DEVICE

Purpose

Format

Assigns a file to the null device class.

RMP$REQUEST _NULL_DEVICE (local_file_name,
status)

Parameters local_ file_ name: amt$local _file_ name;

Local file name.

Condition
Identifier

Remarks

Revision B

status: VAR of ost$status;

Status variable.

None.

• The system ignores the request if the file is already
assigned to a device.

• A null file is a temporary file.

• If the file is never opened, its association with the null
device class has no effect.

Local File Management 2-5

RETURNING A LOCAL FILE

Returning a Local File

A file remains assigned to a job until one of the following occurs:

• The file is closed while its return_option attribute value is
AMC$RETURN _AT_ CLOSE.

• The file is explicitly returned by a DETACH_ FILE command or
AMP$RETURN call.

• The job terminates.

Returning a temporary mass storage file, tape file, or terminal file ends the
device assignment and discards the local file name and its file attribute set.

If the device class of the returned file is magnetic tape, its tape unit
assignment ends; the tape volumes accessed via the local file name are no
longer associated with that name.

When a temporary mass storage file is returned, all space allocated to the file
is released and the file no longer exists. When a permanent mass storage file
is returned, its space is not released and the file continues to exist; only its
associated local file name is discarded. To access the permanent mass
storage file again using the local file name, you attach the file using an
ATTACH_ FILE command or PMP$ATTACH call and specify the local file
name. For more information on attaching a permanent mass storage file, see
chapter 3, Mass Storage File Management.

2·6 CYBIL File Interface Revision B

AMP$RETURN

- AMP$RETURN

Purpose

e Format

Detaches a file from a job. After the file is detached, it is no
longer local to the job.

AMP$RETURN (local_file_name, status)

Parameters local_file_name: amt$local_file_name;

Name of a file local to the job.

Condition
Identifiers

Remarks

Revision B

status: VAR of ost$status;

Status variable. The process identifier returned is
AMC$ACCESS_METHOD _ID.

ame$file _not_ closed
ame$file_not_known
ame$ring _ validation_ error

• To return a file, all instances of open for the specified local
file name must be closed. Standard files that reside in the
$LOCAL catalog (such as $LIST) cannot be returned
because those files always have an outstanding instance of
open within a job.

• If the file is assigned to mass storage, mass storage space
associated with the file is released if the file is a temporary
file; permanent file space is not affected.

• If the file is assigned to an interactive terminal or tape
unit, the assignment ends when the file is returned.
However, returning a tape file does not decrement the tape
unit reservation nor does it affect the information on the
tape. If the tape unit was implicitly reserved by an
AMP$0PEN call, the reservation is implicitly released by a
call to the AMP$RETURN procedure.

Local File Management 2-7

FILE CONNECTIONS

File Connections

A file connection connects a subject file and a target file. The connection
passes all data access calls for the subject file to the target file.

The CLP$CREATE_FILE_ CONNECTION call connects two files; the
CLP$DELETE_FILE_ CONNECTION call removes a connection between
files.

The system places no constraint on the file organization of either the subject
or the target of the connection except that an indexed sequential file cannot
be the subject of the connection. However, when creating a file connection, it
is recommended that the file organization of both the subject and the target
files be the same.

System File Connections

You cannot connect the system files with the following identifiers.

CLC$CURRENT _COMMAND_ OUTPUT

CLC$JOB _COMMAND _INPUT

CLC$JOB_INPUT

CLC$JOB_ OUTPUT

CLC$NULL_FILE

The system initially connects its CLC$JOB_COMMAND_RESPONSE file
to either the CLC$JOB_ OUTPUT file (for an interactive job) or to the
CLC$NULL_ FILE file (for a batch job). You cannot disconnect this initial
connection.

2-8 CYBIL File Interface &vision B

CLP$CREATE_FILE_CONNECTION

e CLP$CREATE_FILE_ CONNECTION

Purpose

Format

Connects a subject file to a target file.

CLP$CREATE_FILE_ CONNECTION (subject_file,
target_file, status)

Parameters subject_file: amt$local_file_name;

Subject file name.

Condition
Identifiers

Remarks

Revision B

target_file: amt$local_file_name;

Target file name.

status: VAR of ost$status;

Status variable.

cle$circular _file_ connection
cle$improper _subject_file_name
cle$improper _target_ file_ name
cle$subject_cannot_be_connected

• If a subject file is connected to more than one target file,
calls are passed as follows:

- A call to get data from the subject file is passed to the
target file most recently connected.

- A call to put data in the subject file is passed once for
each connection.

- An AMP$GET_FILE_ATTRIBUTES, AMP$FETCH,
or AMP$FETCH_ACCESS_INFORMATION call
specifying the subject file returns the attribute values
belonging to the first target file connected.

• A file connection takes effect immediately for all instances
of open of the file.

Local File Management 2-9

CLP$DELETE_FILE_CONNECTION

CLP$DELETE_FILE_ CONNECTION

Purpose Disconnects the subject file from the target file.

Format CLP$DELETE_FILE_ CONNECTION (subject_file,
target_file, status)

Parameters subject_file= amt$local_file_name;

Subject file name.

Condition
Identifiers

Remarks

target_file: amt$local_file_name;

Target file name.

status: VAR of ost$status;

Status variable.

cle$connection_ cannot_ be_ broken
cle$im proper_ subject _file_ name
cle$improper _target _file _name
cle$unknown_file _connection

The disconnection is effective immediately.

2-10 CYBIL File Interface Revision B

9 Mass Storage File Management 3

File and Catalog Paths .. 3-1

Path Specification .. 3-2

File Cycles .. 3-3

Defining a File Cycle ... 3-3
PFP$DEFINE ... 3-4
PFP$PURGE .. 3-7
Changing File Entry Information 3-9
PFP$CHANGE ... 3-10

File Subcatalogs ... 3-13

PFP$DEFINE_CATALOG .. 3-14
PFP$PURGE_CATALOG ... 3-15

Access Modes · 3-16

File Access Log .. 3-16

Access Control Entries .. 3-17

Permit Selections .. 3-17
Share Requirements ... 3-18
Multiple Access Control Entries 3-19
PFP$PERMIT .. 3-20
PFP$DELETE_PERMIT .. 3-24
PFP$PERMIT _CATALOG .. 3-25
PFP$DELETE_CATALOG_PERMIT 3-28

' Attaching a Permanent File .. 3-29

Attaching a File with PFP$ATTACH or ATTACH_FILE 3-29
Attaching a File with a File Reference 3-30

Evaluating Attach Requests 3-30
File Cycle Busy Status ... 3-31

Wait Option .. 3-33
PFP$ATTACH .. 3-34

Mass Storage File Management 3

The NOS/VE mass storage file system uses catalogs to organize and control
access to mass storage files. A catalog is a data structure which contains
files and subcatalogs.

Each mass storage file, temporary or permanent, is an entry in a catalog. All
temporary mass storage files are entries in the $LOCAL file catalog.
Permanent mass storage files are entries in permanent file catalogs.

As a user of NOS/VE, you have a master catalog which is named for your
user name. It contains any permanent files or subcatalogs that you create.
You can define additional files and subcatalogs within each subcatalog. You
are the owner of all files and subcatalogs defined in your master catalog.

Each job is provided with an empty $LOCAL catalog. Files created in the
$LOCAL catalog are temporary; that is, they will be deleted when the job
terminates. The $LOCAL catalog cannot have subcatalogs and files in the
$LOCAL catalog that have only one file cycle.

File and Catalog Paths

To list a permanent mass storage file or subcatalog as a file entry parameter
on a call to a file interface procedure, you must specify the path to the file or
catalog. A catalog path contains the following elements.

• Family of users.

• List of one or more catalogs beginning with the master catalog.

A file path contains the following elements.

• Family of users.

• List of one or more catalogs beginning with the master catalog.

• Permanent file name.

The catalog sequence always begins with the master catalog. If the file or
catalog is defined in the master catalog, the catalog sequence consists solely
of the master catalog. If the file or catalog is defined in a subcatalog, the
catalog sequence must include the appropriate subcatalog names.

For example, suppose user USERX in family F AMILYl defines a subcatalog,
SUBL The path for subcatalog SUBl is as follows:

F AMILYl - USERX - SUBl

Revision B Mass Storage File Management 3-1

FILE AND CATALOG PATHS

Next, USERX defines subcatalog SUBA in subcatalog SUBL The path for
subcatalog SUBA is as follows:

FAMILYl - USERX - SUBl - SUBA

Finally, USERX defines file FILEl in subcatalog SUBA. The path for file
FILEl is as follows:

FAMILYl - USERX - SUBl - SUBA - FILEl

Path Specification

A call to a file interface procedure specifies a permanent file path within a
variable of type PFT$PATH.

The PFT$PATH variable is a list of names, one per element of an adaptable
array. The names specify the file path, including the family name, the
master catalog name, the subcatalog names (if applicable), and, finally, the
permanent file name.

The first name in the array must be the family name of the user. If the first
name in the array is OSC$NULL_NAME, the family name of the job is
used.

The second name in the array must be the master catalog name. By
convention, the master catalog name is the same as the name of the user. If
the second name in the array is OSC$NULL_NAME, the user name of the
job is used.

Subsequent names in the array list the subcatalogs in the catalog path, if
applicable. The last name in the array must be the name of the permanent
file or subcatalog on which the operation is performed. The OSC$NULL_
NAME identifier cannot identify a subcatalog or permanent file.

The following constant identifiers are provided to allow symbolic reference to
the initial elements of a path array:

• PFC$FAMILY _NAME_ INDEX: index to the family name.

• PFC$MASTER_CATALOG_NAME_INDEX: index to the master
catalog.

• PFC$SUBCATALOG_NAME_INDEX: index to the first subcatalog in
the path.

For example, if the name of the path array is PATH, the master catalog
element of the array can be referenced as follows:

PATH[PFC$MASTER_CATALOG_NAME_INDEX]

3-2 CYBIL File Interface Revision B

FILE CYCLES

File Cycles

A mass storage file is defined by its file entry in a catalog. More than one
version of the file can exist through the use of file cycles. Each file cycle is a
separate version of the file and is uniquely defined by a cycle descriptor.

A file entry contains the following information:

• Permanent file name.

• File password.

• Access log selection.

• Account and project names for the file.

The information in the file entry applies to all cycles of the file.

A cycle descriptor contains the following information:

• Cycle number.

• Creation date and time for the cycle.

• Last modification date and time for the cycle. e . Last access date and time for the cycle.

• Cycle expiration date (determined by the retention period specified when
the cycle is defined).

The information in a cycle descriptor applies only to that cycle.

Defining a File Cycle

To define a new permanent file cycle, you call the PFP$DEFINE procedure.
If the file entry parameter specified on the call does not exist, PFP$DEFINE
defines a file entry in the last subcatalog of the specified path and defines
the initial cycle descriptor. If a file entry for the file already exists,
PFP$DEFINE only creates a new cycle descriptor.

A file cycle created by a PFP$DEFINE call is assigned to the mass storage
device class. When you make a call to PFP$DEFINE, you specify a local file
name by which the file cycle can be referenced within a job. The local file
name is discarded when the file is returned (detached) or the job terminates.

Once the file cycle is defined, future attempts to attach it must specify the
same file path. The file cycle definition is valid until the file cycle is purged.

A call to PFP$PURGE removes one cycle of a file. To purge a file entry, you
must call PFP$PURGE for each cycle of the file.

Revision B Mass Storage File Management 3-3

PFP$DEFINE

PFP$DEFINE

Purpose Defines a permanent file cycle.

NOTE

To define a new file, you must have cycle permission for the e
catalog. To define a new cycle of an existing file, you must
have cycle permission for the file.

Format PFP$DEFINE (lfn, path, cycle_selector, password,
retention, log, status)

Parameters lfn: amt$local_file_name;

Local file name.

path: pft$path;

File path. The last name in the path list is the permanent file
name.

cycle_ selector: pft$cycle _selector;

Permanent file cycle created.

Field

cycle_ option

Content

Key field indicating the file cycle number.

PFC$LOWEST_CYCLE

Creates a cycle numbered one less than
the current lowest cycle number. If no
cycles exist for the file, PFP$DEFINE
creates cycle 1.

PFC$HIGHEST_CYCLE

Creates a cycle numbered one greater
than the current highest cycle number. If
no cycles exist for the file, PFP$DEFINE
creates cycle 1.

PFC$SPECIFIC _CYCLE

Creates the cycle specified by the cycle_
number field.

cycle_number Cycle number (integer from 1 through
PFC$MAXIMUM_ CYCLE_NUMBER,
999). If the cycle already exists, the
procedure returns an error status
(PFE$DUPLICATE_ CYCLE) without
defining a new cycle.

3-4 CYBIL File Interface Revision B

Revision B

PFP$DEFINE

password: pft$password;

File password (1- through 31-character name). A blank
password is the same as no password.

If the PFP$DEFINE call creates a new file entry, it stores the
specified password in the file entry. If PFP$DEFINE creates a
new cycle for an existing file entry, it compares the specified
password with the password stored in the file entry. If the
passwords do not match, the call returns abnormal status
PFE$INCORRECT _PASSWORD.

retention: pft$retention;

Cycle retention period in days (1 through PFC$MAXIMUM_
RETENTION, 999; PFC$MAXIMUM_RETENTION
indicates infinite retention).

log: pft$log;

Log option. If the PFP$DEFINE call creates a new cycle for
an existing file, it does not use the log parameter value
although it checks that the value is valid.

PFC$LOG

Maintain a file access log.

PFC$NO_LOG

Do not maintain a file access log.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

Mass Storage File Management 3-5

PFP$DEFINE

Condition
Identifiers

Remarks

pfe$bad_ cycle_ number
pfe$bad_ cycle_ option
pfe$bad _family _name
pfe$bad_local_file_name
pfe$bad_ log_ option
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog _name
pfe$bad _password
pfe$bad _permanent_ file_ name
pfe$bad _retention_ period
pfe$catalog _full
pfe$cycle _overflow
pfe$cycle _underflow
pfe$d uplica te _cycle
pfe$incorrect _password
pfe$lfn_in_ use
pfe$name _already_ subcatalog
pfe$nth_name_not_subcatalog
pfe$path_ too _short
pfe$pf_system_error
pfe$unknown_family
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog
pfe$usage_not_permitted
pfe$user _not_permitted

• If the specified permanent file entry does not exist,
PFP$DEFINE creates the catalog entry for the file and its
initial cycle. If the permanent file is already registered in a
catalog, PFP$DEFINE creates a new cycle of the file.

• At completion of the procedure, the permanent file is
attached to the job. During the initial attachment, all
access modes are valid, but no sharing of the file is
allowed.

• PFP$DEFINE defines no access control entries for the file.
Therefore, access to the file is initially granted only to
users who have access to the catalog to which the file
belongs.

3-6 CYBIL File Interface Revision B

PFP$PURGE

PFP$PURGE

Purpose Removes a permanent file cycle.

NOTE e You must have control permission to the file to purge a file
cycle.

Format PFP$PURGE (path, cycle_selector, password, status)

Parameters path: pft$path;

Revision B

File pa th of the file cycle to be purged.

cycle_ selector: pft$cycle _selector;

Permanent file cycle purged.

Field

cycle_ option

Content

Key field indicating how the file cycle is
specified.

PFC$LOWEST _CYCLE

Lowest file cycle used.

PFC$HIGHEST_CYCLE

Highest cycle used.

PFC$SPECIFIC _CYCLE

Cycle specified by cycle_number field.

cycle_number Cycle number (integer from 1 through
PFC$MAXIMUM_ CYCLE_NUMBER,
999).

password: pft$password;

File password (1- through 31-character name). If the file has
no password, specify a space as the password.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

Mass Storage File Management 3-7

PFP$PURGE

Condition
Identifiers

Remarks

pfe$bad_cycle_number
pfe$bad _cycle_ option
pfe$bad_family _name
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$bad_permanent_file_name
pfe$bad _password
pfe$incorrect _password
pfe$invalid _ring_ access
pfe$name _not _permanent_ file
pfe$n th_ name_ not_ subca talog
pfe$path_too_short
pfe$pf _system_ error
pfe$unknown_ cycle
pfe$unknown_family
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog _name
pfe$unknown_permanent_file
pfe$usage _not_ permitted
pfe$user _not_permitted

• The PFP$PURGE call releases the space assigned to the
cycle. However, if the cycle is attached when the
PFP$PURGE call is issued, NOS/VE does not release the
space until all jobs to which the file is attached are
terminated. The task that calls PFP$PURGE continues
processing; it is not suspended while the file to be purged
remains attached to other jobs.

• If the cycle is the only existing cycle for the file,
PFP$PURGE also removes the catalog entry for the
permanent file.

• Removing a file entry also removes all access control
entries for the file.

• After the PFP$PURGE procedure is called for a file cycle,
no user can attach that cycle.

3-8 CYBIL File Interface Revision B

FILE CYCLES

e Changing File Entry Information

After a file is defined, you can make changes to its file entry information
with a call to the PFP$CHANGE procedure. PFP$CHANGE can change the
following items:

• Permanent file name.

• Password.

• Cycle number.

• Cycle retention period starting from the current date.

• Access log selection.

• Account and project names. The account and project names of the caller
become the new account and project names for the file.

Revision B Mass Storage File Management 3-9

PFP$CHANGE

PFP$CHANGE

Purpose Changes information in a permanent file entry.

Format PFP$CHANGE (path, cycle_selector, password,
change_list, status)

Parameters path: pft$path;

File path specifying the file entry to be changed.

cycle_ selector: pft$cycle _selector;

Permanent file cycle.

Field Content

cycle_ option Key field indicating how the file cycle is
specified.

PFC$LOWEST CYCLE

Lowest cycle used.

PFC$HIGHEST_CYCLE

Highest cycle used.

PFC$SPECIFIC _CYCLE

Cycle specified by cycle_number field.

cycle_number Cycle number (integer from 1 through
PFC$MAXIMUM_ CYCLE_NUMBER,
999).

password: pft$password;

Current file password (1- through 31-character name). If the
file does not have a password, specify a space as the
password.

change_ list: pft$change _list;

List of catalog entry changes. The list is an adaptable array
of PFT$CHANGE_DESCRIPTOR records (see table 3-1).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _ FILE_MANAGER_ID.

3-10 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

pfe$bad _change_ type
pfe$bad _cycle_ n um her
pfe$bad _cycle_ option
pfe$bad_family _name
pfe$bad _log_ option
pfe$bad _master_ ca ta log_ name
pfe$bad_nth_subcatalog_name
pfe$bad _password
pfe$bad _permanent_ file_ name
pfe$bad _ retention_ period
pfe$ca talog _full
pfe$duplicate_cycle
pfe$incorrect _password
pfe$name _already_ permanent_ file
pfe$name _already_ subcatalog
pfe$name _not_ permanent_ file
pfe$n th_ name_ not_ su bca ta log
pfe$path_ too _short
pfe$pf_system_error
pfe$unknown_ cycle
pfe$unknown_family
pfe$unknown_ master_ catalog
pfe$unknown_nth_subcatalog
pfe$unknown _permanent_ file
pfe$usage _ not_permitted
pfe$user _not_permitted

PFP$CHANGE

• You must have control permission to the file to change the
file entry.

• You can change the file entry information while the file is
attached to another job.

Mass Storage File Management 3-11

PFP$CHANGE

Table 3-1. Change List Record (PFT$CHANGE_DESCRIPTOR)

Field

change_ type

pfn

password

Content

Key field determining the attribute changed
(PFT$CHANGE_ TYPE).

PFC$PF _NAME_ CHANGE

New name in pfn field.

PFC$PASSWORD _CHANGE

New password in password field.

PFC$CYCLE_NUMBER_ CHANGE

New cycle number in cycle_number field.

PFC$RETENTION _CHANGE

New retention period in retention field.

PFC$LOG_CHANGE

New log option in log field.

PFC$CHARGE_ CHANGE

The account and project names of the job become the
new account and project names for the file.

New permanent file name (PFT$NAME, 31 characters).

New password (PFT$PASSWORD, 1- through 31-character
name).

cycle_number New number for the cycle (PFT$CYCLE_NUMBER, 1
through 999).

retention New retention period starting from current date
(PFT$RETENTION, 1 through 999 days; 999 specifies
infinite retention).

log New log option (PFT$LOG, see File Access Log later in
this chapter).

PFC$LOG

Maintain a file access log.

PFC$NO_LOG

Do not maintain a file access log.

3-12 CYBIL File Interface Revision B

FILE SUBCATALOGS

File Subcatalogs

A catalog can contain entries defining files as well as entries defining other
catalogs. A catalog defined within another catalog is called a subcatalog.
Within a file reference, a subcatalog is always preceded by the catalog in
which it resides.

Logically, a subcatalog can be named to represent topical headings. File
entries having information pertaining to the topic can then be grouped
within the structure of the subcatalog. For example, USERX has a
subcatalog named PROC which might contain several procedure files.

To define a subcatalog, call the PFP$DEFINE_ CATALOG procedure. To
delete a subcatalog, call the PFP$PURGE_ CATALOG procedure.

Revision B Mass Storage File Management 3-13

PFP$DJ<;FINE_ CATALOG

PFP$DEFINE_ CATALOG

Purpose Defines a subcatalog.

NOTE

You must own the catalog in which you define a subcatalog.

Format PFP$DEFINE_ CATALOG (path, status)

Parameters path: pft$path;

Condition
Identifiers

Remarks

Catalog path. The last name in the path list is that of the new
subcatalog.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

pfe$bad_family _name
pfe$bad _last_ subca talog _name
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog _name
pfe$name _already_ permanent_ file
pfe$name _already_ subcatalog
pfe$not _master_ catalog_ owner
pfe$nth_name_not_subcatalog
pfe$path_ too _short
pfe$pf _system_ error
pfe$unknown_family
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog

• After a subcatalog is defined, files or other subcatalogs can
be defined within the subcatalog. Referencing the file or
subcatalog requires that you specify each catalog in the
catalog path.

• The PFP$DEFINE_ CATALOG procedure cannot define a
master catalog. Only the family administrator can define a
master catalog.

3-14 CYBIL File Interface Revision B

PFP$PURGE_CATALOG

e PFP$PURGE_CATALOG

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Removes a subcatalog.

NOTE

You must own the catalog from which you remove a
subcatalog.

PFP$PURGE_CATALOG (path, status)

path: pft$path;

Catalog path. The last name in the path list is that of the
subcatalog to be purged.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad_family _name
pfe$bad _last_ subcatalog _name
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$catalog _not_ empty
pfe$last_name _not_ subcatalog
pfe$not _master_ catalog_ owner
pfe$nth_name_not_subcatalog
pfe$path_ too _short
pfe$pf_ system .. error
pfe$unknown_family
pfe$unknown_last_subcatalog
pfe$unknown _master_ catalog
pfe$unknown_nth_subcatalog

• The subcatalog must be empty before it can be purged. All
file and subcatalog entries in the subcatalog must first be
purged before removal of the subcatalog can be
accomplished.

• The PFP$PURGE_CATALOG procedure cannot purge a
master catalog. Only the family administrator can purge a
master catalog.

Mass Storage File Management 3-15

ACCESS MODES

Access Modes

Access modes protect files in that they allow the file owner to specify the
modes of operations that can be performed on the file. A task is granted
access to a file only when its requested opera ton is within a set of permitted
access modes for the file. The access modes are listed as follows:

• Read: Allows the task to read data from the file.

• Shorten: Allows the task to reduce the file length, discarding data
existing beyond that length.

• Append: Allows the task to add data to the end of the file, lengthening the
file.

• Modify: Allows the task to change existing data within the file.

• Execute: Allows the task to execute the file, assuming the file contains
executable object modules.

• Cycle: Allows the task to create a new cycle of the file or a new file.

• Control: Allows the task to change information in the file entry and purge
a file cycle or file.

To perform all possible write operations on a file, the task must have shorten, A
append, and modify permissions to the file. W

File Access Log

When defining a file, you can request that the system maintain a record of
the users that access the file. This record is called a file access log. To request
this service, you specify PFC$LOG as the log option parameter on the
PFP$DEFINE call that defines the file.

When you specify PFC$LOG, the system maintains an access log for each
user that accesses the file. Each access log contains the following
information:

• The user that accessed the file.

• The number of accesses by the user.

• The date and time of the last access by the user and the last cycle
accessed.

You can display the file access log using the DISPLAY_ CATALOG_
ENTRY command described in the SCL System Interface manual.

3-16 CYBIL File Interface Revision B

ACCESS CONTROL ENTRIES

Access Control Entries

An access control entry is a set of permitted operations that can be
performed on a file or catalog entry at a given time. Access control entries
apply either to a specific file entry or to a catalog entry and can only be
defined by the owner of the respective file or catalog. The permit selections
and share requirements parameters listed on the PFP$PERMIT call define
the access contol entry for a file. These same parameters listed on a call to
the PFP$PERMIT _CATALOG procedure define an access control entry for
all entries in a catalog.

A file can have several access control entries. Each entry can specify
different permit selections for different groups of users. Listed in each access
control entry is the specified group of users to which the defined permit
selections apply. The following are the user groups to which an individual
access control entry could apply:

• All users.

• All users in a family.

• One user in a family.

• All users executing under an account name.

• One user executing under an account name.

• All users executing under an account name and a project name.

• One user executing under an account name and a project name.

An access control entry contains a permit selections set and a share
requirements set.

Permit Selections

A file's permit selections set contains the access modes that are valid as
usage selections on an attach request. The permit selections set validates the
access modes specified on an attach request. When attempting to attach a
file with an ATTACH_ FILE command or PFP$ATTACH call, you specify
the usage selections for the attach. The usage selections are the access modes
in which the task intends to use the file while it is attached.

Revision B Mass Storage File Management 3-17

ACCESS CONTROL ENTRIES

When validating an attach request, the applicable access control entry
compares the usage modes specified on the attach request with the access
modes defined in the file's permit selection set. All usage modes specified on
the attach must be within the set of access modes defined in the applicable
access control entry. If not, the attach attempt fails.

For example, if the permit selections set contains only read access, the access
control entry allows only read access to the file. If the permit selections set
contains no access permissions, the access control entry allows no access to
the file.

If an attach request specifies read and append access as the usage selections
on the attach and the permit selections set of the applicable access control
entry does not include both read access and append access, the attach
attempt fails.

Share Requirements

A file's share requirements set is defined as the share modes in which a job
must access the file while it is attached. When attempting to attach a file
with an ATTACH_FILE command or PFP$ATTACH call, you specify the
share selections for the attach. The share requirements set validates the
share selections specified on an attach request.

The share requirements set contains the minimum set of access modes that
are required as share selections on an attach request. All access modes
defined in the file's share requirements set must be listed as share selections
on the attach request, or the attach attempt fails. For example, if an attach
attempt specifies only read access as its share selections set and the share
requirements set of the applicable access control entry contains read and
append access, the attach attempt fails.

If the share requirements set contains read access permission, the access
control entry requires that read access be specified as a share selection on the
attach request. If the share requirements set contains no access permissions,
you need not specify any share selections on your attach request as the
access control entry does not require any; in this case, the attach request is
granted exclusive access to the file, not allowing any concurrent attaches.

3-18 CYBIL File Interface Revision B

ACCESS CONTROL ENTRIES

Multiple Access Control Entries

When you attempt to attach a file that has more than one access control
entry that could apply to you, the system determines the applicable access
control entry using the following rules:

• If you belong to more than one group for which an access control entry is
defined, the access control entry applicable to the smaller group applies.

For example, if one entry applies to all users and another entry applies to
a family of users and you belong to that family, the system uses the entry
applying to the family of users.

• If access control entries for the same group exist for more than one
element of the file path, the entry applicable to the last element in the file
path applies.

For example, if a catalog has an access control entry for all users and a
file defined within the catalog also has an access control entry for all
users, the access control entry defined for the file will be used to validate
attach requests.

If necessary, the system uses both rules to determine the applicable access
control entry. For example, assume that the following access control entries
exist for a file named FILE_ 1 in a catalog named CATALOG_ 1:

1. An entry applicable to CATALOG_l for the family of users FAMILY _A.

2. An entry applicable to FILE_l for all users.

3. An entry applicable to FILE_ 1 for the family of users FAMILY _A.

Assume that the user attempting to attach the file belongs to FAMILY _A for
which access control entries are defined. Using rule 1, the system determines
that a family of users is a smaller group than all users. Because multiple
entries are defined for FAMILY _A, the system must use rule 2 to determine
the applicable access control entry. Using rule 2, FILE_ 1 is later in the file
path than CATALOG_ 1. Therefore, the entry for FAMILY _A defined for
FILE_l is the access control entry applicable to the attach attempt.

Revision B Mass Storage File Management 3-19

PFP$PERMIT

PFP$PERMIT

Purpose Defines or changes an access control entry for a file.

NOTE

Only the file owner can define an access control entry for a
file.

Format PFP$PERMIT (path, group, permit_selections, share_
requirements, application_info, status)

Parameters path: pft$path;

File path specifying the file to which the access control entry
applies.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFI'$GROUP as described in table 3-2).

permit_selections: pft$permit_selections;

Set of access permissions granted by the access control entry.
A null set indicates that the user group is to be denied access
to the file.

PFC$READ

Read permission.

PFC$SHORTEN

Shorten permission.

PFC$APPEND

Append permission.

PFC$MODIFY

Modify permission.

PFC$EXECUTE

Execute permission.

PFC$CYCLE

Cycle permission (permission to create additional file
cycles).

PFC$CONTROL

Control permission.

3-20 CYBIL File Interface Revision B

Condition
Identifiers

Revision B

PFP$PERMIT

share _requirements: pft$share _requirements;

The set of access modes that an attempt to attach the file
must specify as share selections. A null set indicates that an
attach request may specify no share selections; the attach
request could be exclusive, preventing other users from
attaching the file at the same time.

PFC$READ

Read sharing required.

PFC$SHORTEN

Shorten sharing required.

PFC$APPEND

Append sharing required.

PFC$MODIFY

Modify sharing required.

PFC$EXECUTE

Execute sharing required.

application_info: pft$application_info;

Additional access information that can be used by application
programs (31-character string).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

pfe$bad_account_name
pfe$bad_family _name
pfe$bad_group _type
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$bad_permanent_file_name
pfe$bad _project_ name
pfe$bad_ user _name
pfe$catalog _full
pfe$name_not_permanent_file
pfe$not_master _catalog_ owner
pfe$nth_name_not_subcatalog
pfe$path_ too_short
pfe$pf _system_ error
pfe$unknown_family
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog
pfe$unknown_permanent_file

Mass Storage File Management 3-21

PFP$PRRMIT

Remarks When replacing an access control entry, be certain to specify
the correct group as the group parameter on the
PFP$PERMIT call. The parameters specified as permit_
selections, share_requirements, and application_info
parameters listed on the call will replace any of those same
existing parameters for the particular group of users. e

Table 3-2. User Group Record (Type PFT$GROUP)

Field

group_type

Content

Key field indicating the group type.

PFC$PUBLIC

All users.

PFC$FAMILY

User family specified in the family _description
field.

PFC$ACCOUNT

Account specified in the account_ description field.

PFC$PROJECT

Project specified in the project_description field. e
PFC$USER

User specified in the user_description field.

PFC$USER_ACCOUNT

User specified in the user_account_description
field.

PFC$MEMBER

User specified in the member_description field.

family _description Record containing the following field:

family

Family name (type OST$FAMILY _NAME).

account_description Record containing the following fields:

family

Family name (type OST$FAMILY _NAME).

account

Account name (type AVT$ACCOUNT _NAME).

(Continued)

3-22 CYBIL File Interface Revision B

PFP$PERMIT

e Table 3-2. User Group Record (Type PFT$GROUP) (Continued)

Field Content

project_ description Record containing the following fields:

e family

Family name (type OST$FAMILY _NAME).

account

Account name (type A VT$ACCOUNT _NAME).

project

Project name (type AVT$PROJECT _NAME).

user_ description Record containing the following fields:

family

Family name (type OST$FAMILY _NAME).

user

User name (type OST$USER_NAME).

user_account Record containing the following fields:

e description
family

Family name (type OST$FAMILY _NAME).

account

Account name (type A VT$ACCOUNT _NAME).

user

User name (type OST$USER_NAME).

member_ description Record containing the following fields:

family

Family name (type OST$FAMILY _NAME).

account

Account name (type A VT$ACCOUNT _NAME).

project

Project name (type A VT$PROJECT _NAME).

user

User name (type OST$USER_NAME).

e
Revision B Mass Storage File Management 3-2:3

PFP$DELETE_PERMIT

PFP$DELETE_PERMIT

Purpose Removes an access control entry for a file.

NOTE

Only the file owner can delete an access control entry for a
file.

Format PFP$DELETE_PERMIT (path, group, status)

Parameters path: pft$path;

Condition
Identifiers

File path specifying the file to which the access control entry
applies.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFT$GROUP described in table 3-2).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

pfe$bad_account_name
pfe$bad _family _name
pfe$bad _group_ type
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$bad_permanent_ file_ name
pfe$bad_project_name
pfe$bad _user _name
pfe$name_not_permanent_file
pfe$not_master _catalog_ owner
pfe$nth_name_not_subcatalog
pfe$path_ too _short
pfe$pf_system_error
pfe$unknown_family
pfe$unknown _master_ catalog
pfe$unknown_nth_subcatalog
pfe$unknown_permanent_file

3-24 CYBIL File Interface Revision B

PFP$PERMIT _CATALOG

PFP$PERMIT _CATALOG

Purpose

Format

Defines an access control entry that applies to all files and
subcatalogs defined in a catalog.

NOTE

Only the owner of the catalog can define an access control
entry for a catalog.

PFP$PERMIT _CATALOG (path, group, permit_
selections, share_requirements, application_info,
status)

Parameters path: pft$path;

Revision B

Catalog path specifying the catalog to which the access
control entry applies. The last name in the path list must be
that of the catalog for which the access control entry is
defined.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFT$GROUP as described in table 3-2).

permit_ selections: pft$permit_ selections;

Set of access permissions granted by the access control entry.
A null set indicates that the user group is to be denied access
to all files in the catalog unless granted access by an access
control entry for the file.

PFC$READ

Read permission.

PFC$SHORTEN

Shorten permission.

PFC$APPEND

Append permission.

Mass Storage File Management 3-25

PFP$PERMIT _CATALOG

PFC$MODIFY

Modify permission.

PFC$EXECUTE

Execute permission.

PFC$CYCLE

Cycle permission (grants permission to create new entries
in the catalog).

PFC$CONTROL

Control permission.

share _requirements: pft$share _requirements;

The set of access permissions that the attach request must
specify as share selections. A null set indicates that the attach
request may specify no share selections; the attach request
could be exclusive, preventing other users from attaching the
file at the same time.

PFC$READ

Read sharing required.

PFC$SHORTEN

Shorten sharing required.

PFC$APPEND

Append sharing required.

PFC$MODIFY

Modify sharing required.

PFC$EXECUTE

Execute sharing required.

application_info: pft$application_info;

Additional access information that can be used by application
programs (31-character string).

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

3-26 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

pfe$bad_ account_name
pfe$bad_family _name
pfe$bad_group_ type
pfe$bad _last_ subca talog _name
pfe$bad_master _catalog _name
pfe$bad_nth_subcatalog_name
pfe$bad_project_name
pfe$bad_ user _name
pfe$catalog_full
pfe$last_name_not_subcatalog
pfe$nth_name_not_subcatalog
pfe$not _master_ ca ta log_ owner
pfe$path_too_short
pfe$pf _system_ error
pfe$unknown_family
pfe$unknown_last_subcatalog
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog

PFP$PERMIT _CATALOG

• The access control entry created validates access by a
group or groups of users to all files and subcatalogs
registered in the catalog specified on the PFP$PERMIT _
CATALOG call.

• When replacing an access control entry for a catalog or
subcatalog, be certain to specify the correct group of users
on the group parameter for the PFP$PERMIT _CATALOG
call. The parameters specified as permit_selections, share_
requirements, and application_info listed on the call will
replace any of those same existing parameters for the
particular group of users.

Mass Storage File Management 3-27

PFP$DELETE_CATALOG_PERMIT

PFP$DELETE_ CAT ALOG_PERMIT

Purpose Removes an access control entry that applies to a catalog.

NOTE

Only the catalog owner can delete an access control entry for
a catalog.

Format PFP$DELETE_ CATALOG_PERMIT (path, group,
status)

Parameters path= pft$path;

Condition
Identifiers

Catalog path specifying the catalog to which the access
control entry applies. The last name in the path list is that of
the subcatalog.

group: pft$group;

User group to which the access control entry applies (variant
record of type PFT$GROUP as described in table 3-2).

status= VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT_FILE_MANAGER_ID.

pfe$bad_account_name
pfe$bad_family _name
pfe$bad_group _type
pfe$bad_last_subcatalog_name
pfe$bad_ master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$bad_permanent_file_name
pfe$bad_project_name
pfe$bad_ user _name
pfe$last _name_ not_ subca talog
pfe$not_master _catalog _owner
pfe$nth_name_not_subcatalog
pfe$pa th_ too_ short
pfe$pf _system_ error
pfe$unknown_family
pfe$unknown_last_subcatalog
pfe$unknown _master_ catalog
pfe$unknown_nth_subcatalog

3-28 CYBIL File Interface Revision B

ATI'ACHING A PERMANENT FILE

Attaching a Permanent File

You can attach a permanent mass storage file to your job using an
ATTACH_FILE command, a PFP$ATTACH call, or by using a file
reference which specifies the file path, and may also specify the file cycle,
and the file open position. An ATTACH_FILE command or PFP$ATTACH
call can offer a task greater selectivity in using the file than can a file
reference. Attach commands or calls can specify a password for the file and
can select the option of waiting for a file that is currently attached. These
options are not available to the user of a file reference.

Attaching a File with PFP$ATTACH or
ATTACH_FILE

When you make an attach request for a permanent file, the permit selections
and share requirements in the file's applicable access control entry will
govern whether the attach request will be allowed. The access modes listed
as the usage_selections parameter on the PFP$ATTACH call must be within
the set of access modes defined in the file's permit_selections. If any share
modes, as listed in the file's share_requirements set were defined for the file,
these same share modes must be included in the share_selections parameter
on the attach request.

Upon successful completion of the PFP$ATTACH call or ATTACH_FILE
command, the file becomes scheduled within the job for those modes of
access specified on the attach. Subsequent access to the file while it is
attached must be a subset of these same modes of access. You can examine
the global_access_mode and global_share_mode attributes returned by a
DISPLAY _FILE_ATTRIBUTES command or an AMP$GET _FILE_
ATTRIBUTES call to determine the respective usage_ selections and share_
selections specified on the most recent successful attach. The global_ access_
mode and global_share_mode attributes as well as the AMP$GET _
FILE_ATTRIBUTES call is defined in chapter 6 of this manual. The
DISPLAY _FILE_ATTRIBUTES command is defined in the SCL System
Interface manual.

Revision B Mass Storage File Management 3-29

ATIACHING A PERMANENT FILE

Attaching a File with a File Reference

You can reference a file for use within a job by specifying its full or relative
path name. Such a reference is termed a file reference. A permanent file
reference results in the file being implicitly scheduled when it is initially
opened within the job. The usage_selections for which the file will be
scheduled within the job are determined by the access_modes specified on
the AMP$0PEN call that opens the file. If no access_modes are explicitly
specified when the AMP$0PEN call occurs, the usage_selections will default
to those modes of access specified in the file's permit_selections set in the
file's applicable access control entry. The applicable access control entry is
qualified by the ring of the caller of AMP$0PEN.

Since the AMP$0PEN call does not have available to it the ability to specify
a share_selections set when it opens a file, NOS/VE examines the file's
access control entry and determines the modes of sharing that will be
allowed for the file within the job. If file's access control entry has any kind
of write access specified in its permit_ selections, NOS/VE sets the file's
share_modes to the null set; that is, no sharing of the file will be allowed
while it is attached. If access_modes other than write are contained in the
file's permit_ selections, the share_modes set for the file will be set to
PFC$READ and PFC$EXECUTE.

When you schedule a permanent file cycle within a job for some form of write
access, and you want other jobs to be able to share the file while it is
attached, you must use either the attach call or command and specify the
share_modes in which you are willing to share the file prior to opening it.

Evaluating Attach Requests

A user can attach a file only if an applicable access control entry exists for
the user. The system determines the applicable access control entry as
described earlier in this chapter under Multiple Access Control Entries.

Having found the user's applicable access control entry, the system validates
the requested attach as follows:

• Each usage mode specified on the attach request must be within the
access modes defined in the file's permit selections set.

• The share selections set specified on the attach request must include all
share modes defined in the file's share requirements set.

3-30 CYBIL File Interface Revision B

ATTACHING A PERMANENT FILE

When a new attach request is issued for a file cycle currently attached to a
job, the following compatability checks are made:

• The usage selections specified on a new attach request must be within the
share selection set of any current attaches.

• The share selections set, as specified on the new attach request, must
include all usage selections of any current attaches.

File Cycle Busy Status

A PFP$ATTACH call returns the abnormal status PFE$CYCLE_BUSY if
the requested file cycle is busy. A file cycle is busy if the attach request
specifies a usage selections set or share selections set that is incompatible
with the current attaches of the file as outlined above.

An example which shows the interaction of several attach attempts for the
same file cycle is presented on the next page.

For example, the following is a file sharing example that consists of a
sequence of several attach requests for the same file cycle. Assume that the
first attach attempt has been granted access; therefore, the parameters
specified on its attach request were within the permit selections and share
requirements as defined in the file's applicable access control entry. Also
assume the all the requests in the sequence are governed by the same access
control entry.

In the following example, the entire sequence of attach attempts occurs
before any of the successful attaches returns the file. The successful attach
attempts 1 and 4 specified share selections on their attach requests that
restrict any subsequent attaches.

Revision B Mass Storage File Management 3-31

ATIACHING A PERMANENT FILE

Attach Usage Share
Attempt Selections Selections Result

1 Read Read Normal status. The file cycle e Execute is not currently attached, so
no compatibility check is
required.

2 Append Read PFE$CYCLE_BUSY status.
Execute Append was not specified as

a share selection in attach 1.

3 Execute Execute PFE$CYCLE_BUSY status.
The attach request's share
selection does not include
the usage selections
specified in attach 1.

4 Read Read Normal status. The attach
attempt requests read access
that is in the share
selections set of attach 1.
The specified share e selections set includes the
read access as specified in
the usage selections of
attach 1.

5 Execute Read PFE$CYCLE_BUSY status.
The attach attempt requests
execute access that is in the
share selections set of attach
1 but is not in the share
selections set of attach 4.

3-32 CYBIL File Interface Revision B

ATTACHING A PERMANENT FILE

Wait Option

The wait option on the attach request determines whether (if the file cycle is
busy) the task waits for the file cycle or returns the abnormal status
PFE$CYCLE_BUSY. If the attach request specifies the wait option and the
file cycle is busy, other attach requests for the file cycle can be processed
while the task waits for the file cycle.

For example, suppose USERI attaches a file cycle with share selections read
and append. USER2 attempts to attach the file cycle with usage selection
execute. If USER2 requested the wait option, his or her task is suspended
until USERI returns the file cycle. Suppose that, while USER2 is waiting for
the file cycle, USER3 also attaches the file cycle with share selections read
and append. Now, USER2 must wait until both USERI and USER3 have
returned the file cycle.

Revision B Mass Storage File Management 3-33

PFP$ATTACH

PFP$ATIACH

Purpose Explicitly attaches a permanent file cycle to a job.

Format PFP$ATIACH (lfn, path, cycle_selector, password,
usage_selections, share_selections, wait, status)

Parameters lfn: amt$local_file_name;

Local file name.

path: pft$path;

File path identifying the file to be attached.

cycle_ selector: pft$cycle _selector;

Permanent file cycle.

Field Content

cycle_ option Key field indicating how the file cycle is
specified.

PFC$LOWEST _CYCLE

Lowest file cycle used.

PFC$HIGHEST_CYCLE

Highest cycle used.

PFC$SPECIFIC _CYCLE

Cycle specified by cycle_number field.

cycle_number Cycle number (integer from 1 through
PFC$MAXIMUM_ CYCLE_NUMBER,
999).

password: pft$password;

File password (1- through 31-character name). If the file has
no password, specify a space for the password.

3-34 CYBIL File Interface Revision B

Revision B

PFP$ATTACH

usage_ selections: pft$usage _selections;

Set of access modes that the job requires. The usage_
selections set limits the access modes specified on calls to
open the file while it is attached.

PFC$READ

The job can read the file.

PFC$SHORTEN

The job can shorten the file.

PFC$APPEND

The job can append data to the file, thereby lengthening it.

PFC$MODIFY

The job can modify data within the file.

PFC$EXECUTE

The job can execute the file.

share_ selections: pft$share _selections;

Set of access modes that subsequent attempts to attach the
file cycle can specify as usage selections. The share_selections
set must include all access modes in the share_requirements
set in the applicable access control entry; it can also include
additional access modes not included in the share
requirements set.

PFC$READ

The file can be attached for read access.

PFC$SHORTEN

The file can be attached for shorten access.

PFC$APPEND

The file can be attached for append access.

PFC$MODIFY

The file can be attached for modify access.

PFC$EXECUTE

The file can be attached for execute access.

Mass Storage File Management 3-35

PFP$ATTACH

Condition
Identifiers

wait: pft$wait;

Action if the file cycle is busy.

PFC$WAIT

PFP$ATTACH waits until the file is available and then
attaches the file.

PFC$NOWAIT

PFP$ATTACH completes without attaching the file; it
returns the PFE$CYCLE _BUSY condition code in the
status record.

status: VAR of ost$status;

Status variable. The product identifier returned is
PFC$PERMANENT _FILE_MANAGER_ID.

pfe$bad_ cycle _number
pfe$bad _cycle_ option
pfe$bad_family _name
pfe$bad_local_file_name
pfe$bad _master_ catalog_ name
pfe$bad_nth_subcatalog_name
pfe$bad _password
pfe$bad _permanent_ file_ name
pfe$bad_ wait_ option
pfe$ca talog _full
pfe$cycle _busy
pfe$incorrect_password
pfe$in valid_ ring_ access
pfe$lfn_in_use
pfe$name _not_ permanent_ file
pfe$nth_name_not_subcatalog
pfe$pa th_ too_ short
pfe$pf _system_ error
pfe$sharing _not_ permitted
pfe$undefined_ data
pfe$unknown _cycle
pfe$unknown_family
pfe$unknown_master _catalog
pfe$unknown_nth_subcatalog
pfe$unknown _permanent_ file
pfe$usage_not_permitted
pfe$user _not_permitted

3-36 CYBIL File Interface Revision B

Remarks

Revision B

PFP$ATIACH

• If the permanent file cycle is already attached to the job, a
task within the job need not attach the file cycle before
processing it. (This assumes that the local file name
associated with the instance of attach is known to the
task).

• A task can attach an already attached file cycle again
using a different local file name. However, the file cycle
cannot be attached with usage selections or share
selections that conflict with other current attaches of the
file cycle. Procedure calls within the task could reference
the attached file cycle by either local file name. After task
completion, the file cycle remains attached to the job under
both local file names. To detach the file cycle before the job
terminates, you must issue an AMP$RETURN call or
DETACH_FILE command for each local file name.

Mass Storage File Management 3-37

Tape Management 4

Tape File Requests .. 4-1

Multivolume Tape Files ... 4-2 e RMP$REQUEST _TAPE ... 4_;3

Tape File Attributes ... 4-6

Tape File Positioning .. 4-7

Open Positioning ... 4-7
Close Positioning ... 4-7
Rewind Positioning ... 4-7
Skip Positioning .. 4-7
Forward Skip by Tapemarks .. 4-8
Backward Skip by Tapemarks 4-8
AMP$SKIP _ TAPE_MARKS 4-9
Embedded Tapemarks ... 4-11

Copying Tape Files ... 4-11
AMP$WRITE_ TAPE_MARK 4-12

Tape Management

NOS/VE supports unlabeled 9-track tape files. The file structure for
unlabeled tape files is indicated by tapemarks. Tape files are defined as the
data between two nonconsecutive tapemarks. Two consecutive tapemarks
indicate the end of a tape volume.

All tape files have sequential file organization. The description of record
access for sequential file organization in chapter 9 applies to tape files.

Unlike the other device classes, tape files cannot have more than one
instance of open at a time. An open tape file must be closed before it can be
opened again by the same task or another task.

Unlike permanent mass storage files, the file attribute set of a tape file is not
preserved with the file data. NOS/VE discards a tape file attribute set after a
DETACH_ FILE command or AMP$RETURN call ends the file assignment.

The following procedures described in this chapter perform specific tape
functions:

• RMP$REQUEST _TAPE: Associates a local file name with the magnetic
tape device class.

• AMP$SKIP _ TAPE_MARKS: Positions a tape file by skipping forward
and backward a specified number of tapemarks.

• AMP$WRITE_ TAPE_MARK: Writes a tapemark on a tape file.

Tape File Requests

The RMP$REQUEST _TAPE procedure associates a local file name with the
magnetic tape device class and provides device specifications to be used if
the file is opened.

The device specifications include the following values:

• Tape transport type: 9-track.

• Recording density: 800, 1600, or 6250 cpi (1600 and 6250 cpi densities are
recommended due to the inherent reliability of the tape recording
technique).

• Write ring requirement.

• Volumes included in the file.

Revision B Tape Management 4-1

TAPE FILE REQUESTS

Multivolume Tape Files

NOS/VE supports multivolume tape files. All device specifications for the
file, including the write ring requirement, apply to all volumes in the file.

NOS/VE manages volume switching. When it encounters the end of the
current volume, it refers to the volume list to determine the next volume in
the file. (The end-of-volume indicator for a get call is two consecutive
tapemarks; the end-of-volume indicator for a put call is the end-of-tape
reflective marker.)

If a subsequent volume exists in the list, the system requests the operator to
mount the next volume on an appropriate tape unit. When the operator
assigns the volume to a tape unit, the system changes the file assignment to
the tape unit on which the next volume is mounted. Only one tape unit is
assigned to the file at a time.

Ifno subsequent volume exists in the volume list, subsequent processing
depends on whether the task had issued a get call or a put call. For a get call,
AMC$EOI is returned as the file position, and the call terminates.

When no subsequent volume exists for a put call, the system operator is
asked to supply an additional volume. The operator must either supply a
tape volume or terminate the job. If the operator supplies an additional
volume, the put operation continues.

If a successful volume switch occurs while the task is putting data on the
tape file, the system writes an end-of-volume indicator (two consecutive tape
marks) and continues the put operation at the beginning of the next volume.
The task is not aware of or affected by the volume switch.

4-2 CYBIL File Interface Revision B

RMP$REQUEST _TAPE

RMP$REQUEST _TAPE

Purpose

e Format

Associates a local file name with the magnetic tape device
class and provides the device specifications used if the file is
opened.

RMP$REQUEST _TAPE (local_file_name, class,
density, write_ring, volume_list, status)

Parameters local_file_name: amt$local_file_name;

Local file name.

Revision B

class: rmt$tape_class;

Tape unit type.

RMC$MT9

Nine-track tape unit.

density: rmt$density;

Tape recording density.

RMC$800

800 cpi

RMC$1600

1600 cpi

RMC$6250

6250 cpi

The 1600 and 6250 cpi densities are recommended due to the
inherent reliability of the tape recording technique.

write_ring: rmt$write_ring;

Indicates whether or not a write ring must be inserted in each
tape volume. A tape unit cannot write on a tape volume unless
the tape volume has a write ring.

RMC$WRITE_RING

A write ring must be inserted.

RMC$NO_ WRITE_RING

No write ring should be inserted.

Tape Management 4-3

RMP$REQUEST _TAPE

Condition
Identifiers

volume_list: rmt$volume_list;

List of volume serial numbers (vsn) identifying the tape
volumes of the file (adaptable array of type rmt$volume _
descriptor records).

Field

recorded vsn

external_ vsn

Content

This field is currently unused.

Six-character volume serial number visible
on the tape canister (type
RMT$EXTERNAL_ VSN).

status: VAR of ost$status;

Status variable. The process identifier returned is
RMC$RESOURCE_MANAGEMENT _ID.

rme$improper_class_ value
rme$improper_density _value
rme$improper _external_ vsn_ value
rme$improper_recorded_ vsn_ value
rme$improper _write _ring_ value

4-4 CYBIL File Interface Revision B

e Remarks

Revision B

RMP$REQUEST _TAPE

• A tape unit is not assigned to the job until the tape file is
opened. If the file is never opened, the file is not assigned to
a specific tape device, and its association with a device
class has no effect.

• A REQUEST_ TERMINAL command can override the
device class association specified by an RMP$REQUEST _
TAPE call. Subsequent RMP$REQUEST _TERMINAL or
RMP$REQUEST_NULL_DEVICE calls can also change
the device class association if issued before the file is
opened.

• A REQUEST _MAGNETIC_ TAPE command supercedes
any AMP$REQUEST _TAPE or program request to assign
the file to another device class.

• If the task is to have more than one tape file open at the
same time, a RESERVE_RESOURCE command must
reserve the required number of tape units before the first
tape file is opened.

• When a tape volume is assigned to a job, NOS/VE records
the following information in the job log:

- Name of the tape unit on which the volume is mounted.

- Whether a write ring is inserted in the mounted volume.

You can display job log information with the SCL
command DISPLAY_LOG.

Tape Management 4.5

TAPE FILE ATIRIBUTES

Tape File Attributes

As for any other device class, you can set file attribute values for tape files
with the file attribute definition calls described in chapter 6. However, unlike
a permanent mass storage file, tape file attribute values are not preserved
with the file data. NOS/VE discards the attribute values after a DETACH
FILE command or AMP$RETURN call ends the file assignment.

The file_organization attribute for tape files must be sequential. All tape files
are written and read sequentially using record access calls described in part
III.

If you specify system-specified blocking when writing a tape file, the system
may pad the last block of the file with circumflex characters. Because the file
attributes (including the file length) are not stored with a tape file, the
system does not know the exact length of the file when it reads the file. So it
reads the entire last block of the file (including any padding characters) as
data. Therefore, the program that reads the tape file must check for and
discard circumflex characters at the end of the file.

If you specify user-specified blocking when writing a tape file, the system
pads any block shorter than the min_block_length value for the file with
circumflex characters. To avoid insertion by the system of circumflex
characters into the file data, ensure that the min_ block_ length value is
shorter than the shortest record to be written to the file.

Currently, NOS/VE does not perform character code conversion as the result
of the character_ con version and internal_ code file attribute values.
However, a program can retrieve the file attribute values to determine the
conversion the program itself should perform on the file data. The means of
setting and retrieving file attribute values is described in chapter 6, Defining
File Attributes.

4-6 CYBIL File Interface Revision B

TAPE FILE POSITIONING

9 Tape File Positioning

A tape file is positioned in response to close, get, put, rewind, and skip calls.

When a tape file is closed, rewound, or repositioned after put calls have been
issued, the system ensures that all data from previous put calls is recorded on
the tape and then writes two tapemarks to mark the end of the current
volume.

Open Positioning

An open_position of AMC$0PEN _AT _BOI results in the rewinding and
dismounting of any currently mounted volume of tape and the mounting of
the first volume of the file from the volume list.

An open_position of AMC$0PEN _NO _POSITIONING results in the
physical position of the tape remaining unchanged. An open_position of
AMC$0PEN _AT _EOI is treated as AMC$0PEN _NO _POSITIONING.

Close Positioning

When a tape file is closed after one or more put calls, it is left positioned
immediately before the two tapemarks which mark the end of the volume.

Rewind Positioning

When a tape file is rewound, it is positioned at the beginning of the first
volume of the file.

Skip Positioning

An AMP$SKIP call can reposition the tape by records. An AMP$SKIP _
TAPE_ MARKS call can reposition the tape by tapemarks. (The AMP$SKIP
call is described in chapter 7, Opening and Closing Files; the AMP$SKIP _
TAPE_ MARKS call is described in this chapter.)

Revision B Tape Management 4-7

TAPE FILE POSITIONING

Forward Skip by Tapemarks

For a forward skip, the AMP$SKIP _ TAPE_MARKS procedure reads the
tape until it has read the specified number of nonconsecutive tapemarks. No
tape data is transferred to access method buffers.

If the procedure reads the specified number of nonconsecutive tapemarks, it
returns normal status and leaves the file positioned after the last tapemark
read.

If the procedure encounters two consecutive tapemarks, neither tapemark is
counted. Instead, the double tapemark causes the procedure to switch the file
assignment to the next volume of the tape file; it continues the skip operation
using the data on the next volume. If the current volume is the last volume of
the file, the skip terminates, returning abnormal status.

Backward Skip by Tapemarks

Before skipping backward, AMP$SKIP _ TAPE_MARKS writes to the tape
any data written to the file by a previous operation. AMP$SKIP _TAPE_
MARKS then writes two consecutive tapemarks to terminate the volume
before skipping backward.

AMP$SKIP _ TAPE_MARKS skips backward until it finds the specified
number of tapemarks or the beginning of the volume. No tape data is
transferred to access method buffers.

If AMP$SKIP _ TAPE_MARKS reads the specified number of
nonconsecutive tapemarks, it returns normal status and leaves the file
positioned before the last tapemark read (positioned past the last tapemark
counted while skipping toward the beginning of the volume).

If AMP$SKIP _ TAPE_MARKS reads the beginning of the tape volume, it
returns abnormal status and leaves the file positioned at the beginning of the
volume.

4-8 CYBIL File Interface Revision B

AMP$SKIP _TAPE_ MARKS

e AMP$SKIP_TAPE_MARKS

Purpose Repositions a tape file forward or backward the specified
number of tapemarks.

NOTE

Read permission to the file is required. The file must not be
open when the AMP$SKIP _ TAPE_MARKS call is issued.

Format AMP$SKIP _ TAPE_MARKS (local_file_name,
direction, count, status)

Parameters local_file_name: amt$local_file_name;

Local file name.

Condition
Identifiers

Revision B

direction: amt$skip_direction;

Direction of skip.

AMC$FORWARD

Skip forward.

AMC$BACKWARD

Skip backward.

count: amt$tape _mark_ count;

Number of tapemarks to be skipped (integer from I through
40,000).

status: VAR of ost$status;

Status variable. The process identifier returned is
AMC$ACCESS_METHOD_ID.

ame$file _not_ closed
ame$file _not_known
ame$improper _ANSI_ operation
ame$im proper_ device_ class
ame$improper_skip_count
ame$im proper_ skip_ direction
ame$skip _encountered_ bov
ame$ski p _encountered_ eov
ame$skip_requires_read_perm
ame$uncertain_ tape_position

Tape Management 4-9

AMP$SKIP _TAPE_ MARKS

Remarks • After normal termination of a forward skip, the file is
positioned after the last tapemark skipped. After normal
termination of a backward skip, the file is positioned before
the last tapemark skipped (towards the beginning of the
volume).

• The two consecutive tapemarks that indicate the end of a
volume are not included in a tapemark count.

4-10 CYBIL File Interface Revision B

TAPE FILE POSITIONING

Embedded Tapemarks

The AMP$WRITE_ TAPE_ MARK procedure can write a tapemark on an
unlabeled tape file. It can be used to write a single embedded tapemark to
partition data within a tape file.

A program to read a tape containing single tapemarks must be able to
distinguish between a single tapemark and a double tapemark. A get call
that encounters a tapemark, whether a single tapemark or a double
tapemark, returns a file position of AMC$EOI. The program must call the
AMP$FETCH_ACCESS_INFORMATION procedure to determine the
volume position.

If the volume position is AMC$EOV, the file is positioned at the end of the
last volume in the list. If the volume position is AMC$AFTER_ TAPEMARK,
the file is positioned after a single tapemark; a subsequent get call reads the
next record after the single tapemark.

Writing two consecutive tapemarks indicates the end of the accessible data
on the tape volume. Additional data could be written following the writing of
two consecutive tapemarks, but NOS/VE cannot read the data, nor can it
position the file between two consecutive tapemarks.

e Copying Tape Files

Each AMP$COPY _FILE call copies one file. A tape file is the data between
nonconsecutive tapemarks. If a tape volume contains more than one tape
file, a separate AMP$COPY _FILE call with an open_position of
AMC$0PEN _NO _POSITIONING is required to copy each tape file.

The first AMP$COPY _FILE call copies data up to the first embedded
tapemark. The next AMP$COPY _FILE call begins copying after the first
tapemark and continues to the second tapemark. If the file extends past the
end of the tape volume, the system automatically switches volumes as
described under Multivolume Tape Files. AMP$COPY _FILE does not
terminate when it encounters the two consecutive tapemarks that indicate
the end of a tape volume unless the last volume was read.

The last tape file has been copied when an AMP$COPY _FILE call returns
the exception condition AME$INPUT _FILE_AT _EOI.

AMP$COPY _FILE does not write embedded tapemarks on the output file.
To copy embedded tapemarks as well as file data, the program must open the
file with AMC$0PEN_NO_POSITIONING, call the AMP$WRITE_ TAPE_
MARK procedure to write each tapemark, and then close the file.

Revision B Tape Management 4-11

AMP$WRITE_ TAPE_ MARK

AMP$WRITE_ TAPE_ MARK

Purpose Writes a tapemark on a tape file.

Format AMP$WRITE_ TAPE_MARK (file_identifier, status)

Parameters file _identifier: amt$file_identifier;

Condition
Identifiers

Remarks

File identifier returned by the AMP$0PEN call that opened
the file.

status: VAR of ost$status;

Status variable. The process identifier returned is
AMC$ACCESS_METHOD _ID.

ame$conflicting _access_ level
ame$improper _ANSI_ operation
ame$im proper_ device_ class
ame$improper_output_attempt
ame$ring_ validation_ error
ame$unrecovered_ write_ error

• Any blocks in memory are written before the tapemark.
The call terminates the current block.

• The call is invalid for mass storage files and files opened
for segment access.

4-12 CYBIL File Interface Revision B

9 Terminal Management 5

Default Terminal Attributes .. 5-1

IFP$TERMINAL ... 5-2
IFP$GET _DFLT _ TERM_ATTRIBUTES 5-4

Terminal File Requests .. 5-5

RMP$REQUEST _TERMINAL 5-6
IFP$GET _TERMINAL_ATTRIBUTES 5-7

Changing Terminal Attribute Values After the File Ts Open 5-8

IFP$STORF:_ TERMINAL .. 5-9
TFP$FETCH _TERMINAL ... 5-11

Terminal Attributes .. 5-12

Special Considerations for Terminal File Processing 5-26

File Attributes ... 5-26
File Access Information .. 5-26
File Interface Calls .. 5-27
Terminal Input .. 5-28
Typed Ahead Input .. 5-29

Terminal Output ... 5-30

Format Effectors .. 5-30
Logical Lines .. 5-31
Page Wait ... 5-32
Line Folding .. 5-32

Terminal Conditions ... 5-33

Terminal Management 5

This chapter describes the calls that perform the following functions:

• Associate a local file name with the interactive terminal device class.

• Change and retrieve terminal attribute values.

Each interactive job has one and only one interactive terminal associated
with it. Each file belonging to the interactive terminal device class within the
job is associated with the job's terminal. A request to read data from the file
reads data input at the terminal; a request to write data to the file displays
data at the terminal.

Default Terminal Attributes

To perform interactive 1/0, NOS/VE communicates with the Network
Access Method (NAM). NAM validates you, the interactive user, before you
can log in to NOS/VE. When you log in to NOS/VE, NAM passes the initial
set of default terminal attributes for the job to NOS/VE.

NOTE e A NOS/VE user should not use NAM commands to change terminal
attributes. You should use only NOS/VE commands and calls to change
terminal attributes.

After logging in to NOS/VE, you can change your default terminal
attributes with the SCL command SET_ TERMINAL_ATTRIBUTES.

When you execute a task, NOS/VE initially assigns the task the default
terminal attributes of the job (including the values specified by SET_
TERMINAL_ATTRIBUTES commands). A task can change its default
terminal attribute values by using an IFP$TERMINAL call; however, a
value specified on an IFP$TERMINAL call is effective only if it was not
previously set by a SET_ TERMINAL_ATTRIBUTES command.

A task can retrieve the current values of its default terminal attributes by
calling IFP$GET_DFLT_ TERM_ATTRIBUTES. The call also returns the
source of each attribute.

Revision B Terminal Management 5-1

IFP$TERMINAL

IFP$TERMINAL

Purpose Sets terminal default values.

NOTE

An IFP$TERMINAL call cannot override a value set by a
previous SET_ TERMINAL_ATTRIBUTES command. An
attribute value specified by an IFP$TERMINAL call is
effective only if it has not been set by a previous SET_
TERMINAL_A TTRIBUTES command.

Format IFP$TERMINAL (attributes, status)

Parameters attributes: ift$terminal_request_attributes;

Terminal attributes (type IFT$TERMINAL_REQUEST _
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the following attributes:

abort_line_char
backspace_ char
cancel_ line_ char
network_ control_ char
output_flow-control
parity
pa use_ break_ char
terminal_ class
terminate_ break_ char

status: VAR of ost$status;

Status variable.

5-2 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

ife$auto _input_mode _range
ife$cr _idle_range
ife$current _job _not_interactive
ife$echoplex_ range
ife$lf _idle_ range
ife$no _format_ effectors_ range
ife$no _ transp _delim_selection
ife$page _length_ range
ife$page_ wait_range
ife$page_ width_range
ife$prompt_file_name_ill_formed
ife$prompt_file_name_not_found
ife$prompt_file_name_not_ term
ife$prom pt_ string_ size_ range
ife$special _editing_ range
ife$transp _count_ select_ range
ife$transp _ delim _count_ range
ife$transp _timeout_ select_ range
ife$transparent _mode_ range
ife$unknown_ attribute_ key
ife$unknown_input_device
ife$unknown_ output_ device
ife$unknown_parity _mode
ife$unknown_store_attr _key
ife$unknown_ terminal_ class

IFP$TERMINAL

The default values established by the call apply to all files
that the task subsequently associates with the interactive
terminal class.

Terminal Management 5-3

IFP$GET_DFLT_TERM_ATTRIBUTES

IFP$GET _DFL T _ TERM_ATTRIBUTES

Purpose Returns the current default terminal attribute values for the
task.

Format IFP$GET _ DFL T _ TERM_A TTRIBUTES (attributes,
status)

Parameters attributes: VAR of ift$get_ terminal_attributes;

Condition
Identifiers

Remarks

Terminal attributes (type IFT$GET _TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;

Status variable.

ife$current_job _not_interactive
ife$unknown_attribute_key

IFP$GET _DFLT _ TERM_ATTRIBUTES returns the
attribute source with the attribute value. The attribute sources
are listed in table 5-1.

5.4 CYBIL File Interface Revision B

Table 5-1. Terminal Attribute Sources

Constant Identifier

IFC$UNDEFINED _ATIRIBUTE
IFC$NAM_DEFAULT
IFC$0S_DEFAULT
IFC$TERMINAL_ COMMAND

IFC$TERMINAL_REQUEST
IFC$REQUEST _ TERMINAL_REQUEST

IFC$STORE_ TERMINAL_REQUEST
IFC$BAM_REQUEST

Terminal File Requests

TERMINAL FILE REQUESTS

Attribute Value Source

No attribute value.
NAM default value.
NOS/VE default value.
SET_ TERMINAL_
ATIRIBUTE command.
IFP$TERMINAL call.
RMP$REQUEST _TERMINAL
call.
IFP$STORE_ TERMINAL call.
File attribute definition call.

The RMP$REQUEST _TERMINAL procedure associates a local file name
with the interactive terminal device class and with a terminal attribute set.

The terminal attribute set consists of the default attribute set for the task and
any attributes specified on the RMP$REQUEST _TERMINAL call. A value
specified on the RMP$REQUEST _TERMINAL call overrides all values
previously specified for the attribute, including values specified by a SET_
TERMINAL_ATIRIBUTES command or IFP$TERMINAL call.

NOTE

When writing a program that sets terminal attributes, you should determine
which attributes the user of the program should be allowed to override using
SET_ TERMINAL_A TIRIBUTE commands. Attributes that the user may
override with SET_ TERMINAL_ATIRIBUTES commands are specified on
IFP$TERMINAL calls; attributes that the user may not override are
specified on the RMP$REQUEST _TERMINAL call for the file.

The task can retrieve the terminal attribute values associated with a local file
name by calling IFP$GET _ TERMINAL_ATIRIBUTES. The call also
returns the source of each attribute.

Revision B Terminal Management 5-5

RMP$REQUEST _TERMINAL

RMP$REQUEST_ TERMINAL

Purpose

Format

Associates a file with the interactive terminal device class and
specifies its terminal attributes.

RMP$REQUEST _TERMINAL (local_file_name,
attributes. i;;tRtns)

Parameters local_file_name: amt$local_file_name;

Local file name.

Condition
Identifiers

Remarks

attributes: ift$req_ terminal_req_attributes;

Terminal attributes (type IFT$REQ_ TERMINAL_REQ_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the values of the following attributes.

abort_ line_ char
backspace_ char
cancel_line_char
network_control_char
output_flow _control
page_length
page_ width
parity
pause_ break_ character
terminal_ class
terminate_ break_ character

status: VAR of ost$status;

Status variable.

rme$improper _term_ attrib _key
rme$improper_term_attrib_ value

A value specified on the RMP$REQUEST _TERMINAL call
overrides all values previously specified for the attribute
including values specified by a SET_ TERMINAL_
ATTRIBUTES command. If the file specified on the command
is never opened, the file is not assigned to a terminal device,
and its association with a device class has no effect (unless it
was created by a CREATE_FILE command). e

5-6 CYBIL File Interface Revision B

IFP$GET _ TERMINAL_ATTRIBUTES

IFP$GET _ TERMINAL_A TTRIBUTES

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Returns terminal attribute values before the file is opened.

IFP$GET_ TERMINAL_ATTRIBUTES (local_file_
name, attributes, status)

local_file_name: amt$local_file_name;

Local file name.

attributes: VAR ofift$get_terminal_attributes;

Terminal attributes (type IFI'$GET _TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;

Status variable.

ife$current_job _not _interactive
ife$file_name_ill_formed
ife$file _name_ not_ terminal
ife$file _name_ not_ found
ife$unknown _attribute_ key

The request returns the terminal attribute values that would
be in effect if the file was opened immediately following this
request. It enables the task to determine whether the current
terminal attribute values are appropriate for the processing to
follow.

Terminal Management 5-7

CHANGING TERMINAL ATI'RIBUTE VALUES AFTER FILE IS OPEN

Changing Terminal Attribute V aloes
After the File Is Open

When a terminal file is opened, its initial set of terminal attributes are those
associated with the local file name. After the file is opened, the task can A
change terminal attribute values with calls to IFP$STORE_ TERMINAL. 'W'

The task can retrieve the terminal attribute values currently in effect for the
instance of open by calling IFP$FETCH_ TERMINAL. The call also returns
the source of each attribute.

5-8 CYBIL File Interface Revision B

IFP$STORE_ TERMINAL

e IFP$STORE_ TERMINAL

Purpose

Format

Changes terminal attribute values after the file is opened.

IFP$STORE_ TERMINAL (file_identifier, attributes,
status)

Parameters file_ identifier: am t$file _identifier;

Revision B

File identifier returned when the file is opened.

attributes: ift$store_ terminal_attributes;

Terminal attributes (type IFT$STORE_ TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier and attribute value for each record.

The call cannot change the values of the following attributes:

abort_line_char
backspace_ char
cancel_ line_ char
network_ control_ char
output_ flow-control
page_length
page_ width
parity
pa use_ break_ character
terminal_ class
terminate_ break_ character

status: VAR of ost$status;

Status variable.

Terminal Management 5-9

IFP$STORE_ TERMINAL

Condition
Identifiers

Remarks

ife$cr _idle_ range
ife$current _job_ not_ interactive
ife$invalid_key _for _request
ife$lf _idle_ range
ife$no _format_ effectors_ range
ife$no _ transp _ delim _selection
ife$page_ wait_range
ife$prompt_file_id_not_found
ife$prompt_file_id_not_term
ife$prompt_file_name_ill_formed
ife$prom pt_ file_ name_ not _found
ife$prom pt_ file_ name _not_ term
ife$prom pt_ string_ size_ range
ife$special _editing_ range
ife$transp _char_ select_ range
ife$transp _count_ select_ range
ife$transp _ delim_ count_ range
ife$transp _timeout_ select_ range
ife$transparent _mode_ range
ife$unknown_attribute_key
ife$unknown_input _device
ife$unknown_ output_ device

The terminal attribute values specified by the call are used
during the instance of open of the file. The values are
discarded when the file is closed.

5-10 CYBIL File Interface Revision B

IFP$FETCH_ TERMINAL

e IFP$FETCH_ TERMINAL

Purpose

Format

Parameters

Condition
Identifiers

e Remarks

Revision B

Returns terminal attribute values after the file is opened.

IFP$FETCH_ TERMINAL (file_identifier, attributes,
status)

file _identifier: amt$file_identifier;

File identifier returned when the file is opened.

attributes: VAR of ift$get_ terminal_attributes;

Terminal attributes (type IFT$GET _TERMINAL_
ATTRIBUTES). You must allocate a record in the adaptable
array for each terminal attribute to be specified and specify
an attribute identifier for each record; the procedure returns
the attribute source and value in the record. The attribute
sources are listed in table 5-1.

status: VAR of ost$status;

Status variable.

ife$current_job _not _interactive
ife$unknown_attribute_key

The request returns the terminal attribute values that are
currently in effect for this instance of open.

Terminal Management 5-11

TERMINAL ATI'RIBUTES

Terminal Attributes

As well as the set of file attributes described in chapter 6, Defining File
Attributes, each local file name associated with the interactive terminal
device class has a set of terminal attributes. The system uses terminal A
attribute values when processing interactive I/O. W

The procedure calls described in this chapter specify terminal attribute
values by allocating an array of records and assigning an attribute identifier
to the key field of each record.

The null_ attribute identifier is used to indicate that the record is to be
ignored; it indicates that the call should not copy a value to the record or
store a value from the record.

The following are descriptions of the terminal attributes. Further description
of their functions can be found in the SCL System Interface manual. The
default values set by NAM and NOS/VE are listed in tables 5-2 and 5-3.

abort_line_character

Character that, when entered as the only character on a line, discards the
current output line.

Set by SET_ TERMINAL_ATTRIBUTES command only.

backspace_ character

Character that, when entered in an input line, discards the previous input
character.

Set by SET_ TERMINAL_ATTRIBUTES command only.

cancel_line_character

Character that discards the previous input line.

Set by SET_ TERMINAL_ATTRIBUTES command only.

carriage_ return_ idle

Number of idle characters sent after a carriage return (0 through 99). The
idle characters sent enable proper operation of mechanical printers.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

5·12 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

e echoplex

Indicates whether each input character is automatically echoed back to
the terminal.

TRUE

Selects echoplex.

FALSE

Deselects echoplex.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

eoi_string

When this string is entered as a separate physical input line, the line
serves the function of an end-of-information mark on the input file.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _ TERMINAL_ATTRIBUTES, and
IFP$STORE_ TERMINAL.

input_ device

Input device.

IFC$KEYBOARD INPUT

Terminal keyboard input.

IFC$PAPER_ TAPE_INPUT

Paper tape reader input.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

line_feed_idle

Number of idle characters sent after a line feed (0 through 99). Like
carriage_return_idle, the idle characters sent enable proper operation of
mechanical printers.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

network_ control_ character

Character which, when entered as the first character on a line, causes the
line to be processed as a network command rather than transmitted as
data.

Set by SET_ TERMINAL_ ATTRIBUTES command only.

Revision B Terminal Management 5-13

TERMINAL ATTRIBUTES

no _format_ effectors

Indicates hether the system processes the first character of each output
line as a character or a format effector.

TRUE

Do not process the first character as a format effector; pass the
character to the terminal.

FALSE

Process the first character as a format effector.

Set by IFP$TERMINAL, RMP$REQUEST _TERMINAL, and
IFP$STORE_ TERMINAL.

NOTE

Setting the no_format_effectors to TRUE for the terminal file will not
affect the no_format_effectors attribute for the prompt file. You must set
this attribute separately for the prompt file to enforce or suppress format
effectors.

null_ attribute

Used to fill space in the attributes list. No attribute field generated; no
value returned.

Set by IFP$TERMINAL, RMP$REQUEST _TERMINAL, and
IFP$STORE _TERMINAL.

output_ device

Output device used by terminal.

IFC$DISPLA Y _OUTPUT

Output displayed.

IFC$PRINTER_ OUTPUT

Output printed.

IFC$PAPER_ TAPE_ OUTPUT

Output punched on paper tape.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

5-14 CYBIL File Interface Revision B

TERMINAL A 'ITRIBUTES

output _flow_ control

Indicates whether the network is to allow the terminal to regulate the flow
of output data to the terminal. When set to TRUE, the network suspends
output data when an ASCII DC3 character is received from the terminal.
Output resumes when the terminal sends an ASCII DCl character.
Neither the DCl nor the DC3 character will be transmitted as data.

Set by SET_ TERMINAL_ATTRIBUTES command only.

page_length

Number of lines on display device (1 through 4,398,046,511,103). NAM
interprets any value greater than 255 as meaning unlimited page length.

Set by SET_ TERMINAL_ATTRIBUTES and IFP$TERMINAL.

page_wait

Indicates whether output is suspended at the end of a page and
subsequently resumed when the user enters a carriage return.

TRUE

Waits at end of page.

FALSE

Does not wait at end of page.

The page length is specified by the page_length attribute. This attribute
is effective only if the output_ device attribute value is
IFC$DISPLA Y _OUTPUT.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

page_width

Number of characters in a line on the display device (1 through 65,535).
NAM interprets any value greater than 255 as meaning unlimited page
width.

Set by SET_ TERMINAL_ATTRIBUTES and IFP$TERMINAL.

Revision B Terminal Management 5-15

TERMINAL ATTRIBUTES

parity

Parity type.

IFC$EVEN PARITY

Performs even parity check.

IFC$0DD_PARITY

Performs odd parity check.

IFC$NO _PARITY

No parity check is performed; the parity bit is cleared if the
transparent_ mode attribute value is FALSE.

IFC$ZERO _PARITY

No parity check is performed; the parity bit is always cleared.

Set by SET_ TERMINAL_ATTRIBUTES command only.

pause_break_character

Character that, when entered as the only character on a line, causes a
pause_break condition.

Set by SET_ TERMINAL_ATTRIBUTES command only.

prompt _file

Local file name of the file to which the prompt string is written.

Unless the prompt_file_id attribute is set, the system opens the file
specified by the prompt_file attribute when the task issues its first get call
for the terminal file.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

5-16 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

prompt _file_ id

File identifier of the open file to which the prompt string is written.

A task uses this attribute when it wants to open the prompt file with
additional file attribute values specified on the AMP$0PEN call. To do so,
it does the following:

1. Opens the prompt file; AMP$0PEN returns a file identifier.

2. Specifies the returned file identifier as the prompt_file_id terminal
attribute.

If the task does not specify the file identifier as the prompt_file_id, the
system is not aware that the task has already opened the prompt file; it
performs its own open of the prompt file using the name provided by the
prompt_ file attribute.

Set by IFP$TERMINAL, RMP$REQUEST _TERMINAL, and
IFP$STORE_ TERMINAL.

NOTE

If the task specifies a prompt_file_id attribute value on an
IFP$TERMINAL or RMP$REQUEST _TERMINAL call, the prompt file
does not revert to the file specified by the prompt_file attribute until the
task terminates. If the task specifies the prompt_file_id attribute on an
IFP$STORE_ TERMINAL after the file is open, the prompt file reverts
when the file is closed or when the task terminates.

Revision 13 Terminal Management 5-17

TERMINAL ATTRIBUTES

prompt_ string

Record describing the string output to the prompt file when a task issues a
get call to the terminal file (type IFT$PROMPT _STRING).

Field Content

size String length (0 through 31). (If the string length is zero, no
prompt string is output.)

value String

If transparent mode is selected, no prompting is performed.

If one or more AMP$PUT _PARTIAL calls have written a record that has
not yet been terminated and sent to the terminal, a get call sends the
partial record. If a prompt string is defined, it is appended to the partial
record. The processing sequence is as follows:

1. The task issues one or more AMP$PUT _PARTIAL calls with
AMC$START or AMC$CONTINUE specified to write the first parts
of an output record.

2. The task issues a get call. The system appends the prompt string to
the partial output record, terminates the record, displays the prompt
record at the terminal, and then waits for input.

If the no_format_ effectors attribute is TRUE, the first character of the
prompt string is interpreted as data, not as a format effector. If the no_
format_ effectors attribute is FALSE, the first character of the prompt
string is interpreted as a format effector.

NOTE

If the first character of the prompt string is processed as a format effector,
it is removed from the string before the string is appended to a pending
partial output record and written to the prompt file.

5-18 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

special_ editing

Determines whether the cancel_line character, backspace_ character, and
line_feed_idle character edit a line or are passed to the task as input data
(boolean).

TRUE

Selects special editing.

FALSE

Deselects special editing.

Set by IFP$TERMINAL, RMP$REQUEST _TERMINAL, and
IFP$STORE_ TERMINAL.

terminal_ c/,ass

Class of terminal used.

IFC$TTY _CLASS

IFC$C75x_ CLASS

IFC$C721 _CLASS

IFC$Il741_CLASS

IFC$TTY 40 _CLASS

IFC$H2000 _CLASS

IFC$X364_ CLASS

IFC$T4010_CLASS

IFC$HASP _CLASS

IFC$C200UT _CLASS

IFC$C711 _CLASS

IFC$C714 _CLASS

IFC$C73X_ CLASS

IFC$Il 780 _CLASS

IFC$I3780 _CLASS

M3x teletypewriters.

CDC 75x or 713 terminals.

CDC 721 terminals.

IBM 2741 terminals.

M40 teletypewriters.

Hazeltine 2000 terminals.

ANSI! x3.64 terminals.

Tektronix 4010 terminals and CDC 721 and
722 terminals.

HASP protocol terminals.

CDC 200 user terminals.

CDC 711 terminals.

CDC 714 terminals.

CDC 73x terminals.

IBM 2780 terminals.

IBM 3780 terminals.

Set by SET_ TERMINAL_AITRIBUTES command only.

Revision B Terminal Management 5-19

TERMINAL ATTRIBUTES

terminal_name

Terminal name (7-character string).

Set by NOS/VE.

terminate_ break_ character

Character that, when entered as the only character on a line, causes a
terminate_break condition.

Set by SET_ TERMINAL_ATTRIBUTES command only.

transparent_ de Lim_ selection

Record specifying the conditions that end a transparent input block. If a
field is TRUE, the condition is used; if it is FALSE, the condition is not
used. At least one condition must be selected.

Field Content

enable end_delimiter Transparent input delimiter (boolean). The
delimiter is specified by the transparent_ end_
character attribute.

enable_end_count Character count (boolean). The count is
specified by the transparent_ end_ count
attribute.

enable_ time_ out Time period used (boolean).

The first of the selected conditions encountered ends the tranparent input
block. The condition does not end transparent input mode; transparent
input mode ends when the transparent_mode attribute is set to FALSE.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

transparent_ end_ character

Character that delimits transparent input if selected by transparent_
delim_selection attribute.

Set by SET_ TERMINAL_ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

transparent_ end_ count

Character count that delimits transparent input if selected by
transparent_delim_selection attribute (1through4,096).

Set by SET_ TERMINAL_ ATTRIBUTES, IFP$TERMINAL,
RMP$REQUEST _TERMINAL, and IFP$STORE_ TERMINAL.

5-20 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

transparent _mode

I/O mode in which all terminal code conversion is bypassed.

TRUE

Selects transparent mode.

FALSE

Deselects transparent mode.

In transparent mode, the system does not assume that output is ASCII
characters; it delivers output as 8-bit codes without any terminal
dependent conversions. Transparent input is passed to the program
without any preprocessing or editing (such as backspacing or line
cancelling).

The transparent_delim_selection specifies the input block delimiter
conditions for transparent mode.

Set by IFP$TERMINAL, RMP$REQUEST _TERMINAL, and
IFP$STORE_ TERMINAL.

Revision B Terminal Management 5·21

TERMINAL ATTRIBUTES

Table 5-2. Default Attribute Values for Asynchronous Terminal Classes e
Terminal Classes

Attribute ITY C75X 12741 C721

abort_line e
character $CHAR(24) $CHAR(24) ' (' $CHAR(24)
backspace_ BS BS BS BS
character $CHAR(8) $CHAR(8) $CHAR(8) $CHAR(8)
cancel line -
character $CHAR(24) $CHAR(24) ' (' $CHAR(24)
carriage _return_
idle 2 0 8 0
echoplex FALSE FALSE NIA FALSE
input_ device Keyboard Keyboard Keyboard Keyboard
line_feed_idle 1 0 1 0
network control ESC ESC ESC
character $CHAR(27) $CHAR(27) '%' $CHAR(27)
no format -
effectors FALSE FALSE FALSE FALSE
output_ device Printer Display Printer Display
output_flow _
control FALSE FALSE NIA FALSE
page_length 0 24 0 30 e page_ wait FALSE FALSE FALSE FALSE
page_ width 72 80 132 80
parity Even Even Odd Even
prompt_file 'OUTPUT' 'OUTPUT' 'OUTPUT' 'OUTPUT'
prompt_string.
size 3 3 3 3
prompt_string.
value ' ? ' ' ? ' ' ? ' ' ? '
special_ editing FALSE FALSE FALSE FALSE
transparent_ delim _
selection.enable
end_ character TRUE TRUE TRUE TRUE
transparent_delim_
selection.enable
end_ count FALSE FALSE FALSE FALSE
transparent_ delim_
selection.enable
time_out FALSE FALSE FALSE FALSE
transparent_end_ CR CR CR CR
character $CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13) e transparent_end_
count 2044 2044 NIA 2044
transparent _mode FALSE FALSE FALSE FALSE
NI A= Not applicable

(Continued) e
5-22 CYBIL File Interface Revision B

TERMINAL ATTRIBUTES

e Table 5-2. Default Attribute Values for Asynchronous Terminal Classes
(Continued)

Terminal Classes

TTY40 H2000 x364 T4010 e
$CHAR(24) $CHAR(24) $CHAR(24) $CHAR(24)

BS BS BS
NIA $CHAR(8) $CHAR(8) $CHAR(8)

$CHAR(24) $CHAR(24) $CHAR(24) $CHAR(24)

1 0 0 0
FALSE FALSE FALSE FALSE
Keyboard Keyboard Keyboard Keyboard
3 3 0 0
ESC ESC ESC ESC
$CHAR(27) $CHAR(27) $CHAR(27) $CHAR(27)

FALSE FALSE FALSE FALSE
Display Display Display Display

FALSE FALSE FALSE FALSE

e 24 27 24 35
FALSE FALSE FALSE FALSE
74 74 80 74
Even Even Even Even
'OUTPUT' 'OUTPUT' 'OUTPUT' 'OUTPUT'

3 3 3 3

' ? ' ' ? ' ' ? ' ' ? '
FALSE FALSE FALSE FALSE

TRUE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE
CR CR CR CR

e $CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13)

2044 2044 2044 2044
FALSE FALSE FALSE FALSE

e
Revision B Terminal Management 5-23

TERMINAL ATTRIBUTES

Table 5-3. Default Attribute Values for Synchronous Terminal Classes

Terminal Classes

Attribute HASP C200UT C711

abort line
character NIA NIA NIA
backspace_
character NIA NIA NIA
cancel_line
character ' (, ' (, ' (,
carriage_ return_
idle NIA NIA NIA
echo pl ex NIA NIA NIA
input_ device Keyboard Keyboard Keyboard
line_feed_idle NIA NIA NIA
network_control
character '%' '%' '%'
no_format
effectors FALSE FALSE FALSE
output_ device Display Display Display
output_flow _
control NIA NIA NIA
page_ length 0 13 16
page_ wait NIA TRUE TRUE
page_ width 80 80 80
parity NIA Odd Odd
prompt_file 'OUTPUT' 'OUTPUT' 'OUTPUT'
prompt_string.
size 3 3 3
prompt_string.
value '?' '?' '?'
special_ editing FALSE FALSE FALSE
transparent_delim_
selection.enable
end_ character TRUE TRUE TRUE
transparent_ delim _
selection.enable
end_ count FALSE FALSE FALSE
transparent_ delim_
selection.enable
time_out FALSE FALSE FALSE
transparent_ end_ CR CR CR
character $CHAR(13) $CHAR(13) $CHAR(13)
transparent_ end_
count 2044 2044 2044
transparent_ mode FALSE FALSE FALSE

(Continued) e
5-24 CYBIL File Interface Revision B

TERMINALATI'RIBUTES

e Table 5-3. Default Attribute Values for Synchronous Terminal Classes
(Continued)

Terminal Classes

e C714 73x 12780 13780

NIA NIA NIA NIA

NIA NIA NIA NIA

' (, ' (, NIA NIA

NIA NIA NIA NIA
NIA NIA NIA NIA
Keyboard Keyboard NIA NIA
NIA NIA NIA NIA

'%' 'o/o ' '%' 'o/o'

FALSE FALSE FALSE FALSE
Display Display NIA NIA

NIA NIA NIA NIA

e 16 13 0 0
TRUE TRUE NIA NIA
80 80 80 120
Odd Odd NIA NIA
'OUTPUT' 'OUTPUT' 'OUTPUT' 'OUTPUT'

3 3 3 3

'?' '?' '?' '?'
FALSE FALSE FALSE FALSE

TRUE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE

e CR CR CR CR
$CHAR(13) $CHAR(13) $CHAR(13) $CHAR(13)

2044 2044 2044 2044
FALSE FALSE FALSE FALSE

e
Revision B Terminal Management 5-25

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Special Considerations for Terminal File 9
Processing

When using the file interface calls described in part II for a terminal file, you A
should be aware of the following special considerations. W

File Attributes

Only the following file attributes are effective for terminal files. Differences
in attribute processing for terminal files are listed.

• access_mode: Shorten and modify access have the same meaning as
append access.

• error_exit_name, file_access_procedure, return_ option, and ring_
attributes: Same as for a local mass storage file.

• file_organization: Either sequential or byte_addressable file organization
can be specified, but byte_addressable is processed the same as
sequential.

• internal_ code: Must be AMC$ASCII (the default attribute value).

• page_length and page_ width: By default, the values for the respective
terminal attributes are used as the corresponding file attributes. However,
a file attribute definition command or call overrides the terminal attribute
value.

File Access Information

An AMP$FETCH_ACCESS_INFORMATION call can return the following
information for an open terminal file:

• block_number: The last NAM application block number accessed on the
file.

• last_op_status: Always returns operation complete status.

• error_status, file_position, last_access_operation, and previous_record_
length: Processed the same as for a local mass storage file.

The following access information items are not applicable to a terminal file: e
current_ byte_ address, eoi_ byte_ address, previous _record_ address,
volume_number, and volume_position.

5-26 CYBIL File Interface Revision B

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

e File Interface Calls

The following file interface calls return an error status if a terminal file is
specified on the call:

AMP$GET _SEGMENT_ POINTER
AMP$SET _SEGMENT _EOI
AMP$SET _SEGMENT_ POSITION
AMP$SKIP _ TAPE_MARKS
AMP$WRITE_ TAPE_MARK

The following file interface calls are ineffective (act as no-ops) if a terminal
file is specified on the call:

AMP$SKIP
AMP$REWIND
AMP$WRITE_END _PARTITION

The following file interface calls are effective for terminal files. Special
processing considerations are noted.

• AMP$RETURN: Discards the file definition within the job. The
connection of the job to the terminal and of other files to the terminal is
not affected. e. AMP$0PEN: The specified access level must be AMC$RECORD _
ACCESS.

• AMP$CLOSE: Flushes undelivered output to the terminal.

• AMP$GET _NEXT: The length of the input line is returned in the
transfer_ count parameter variable.

• AMP$GET _PARTIAL: The accumulated length of the input line is
returned in the record_ length parameter variable.

• AMP$GET _DIRECT and AMP$PUT _DIRECT: The file_organization
attribute must be AMC$BYTE_ADDRESSABLE.

• AMP$PUT _NEXT and AMP$PUT _PARTIAL: Processed the same as for
a mass storage file.

• AMP$FLUSH: Delivers all output data to the terminal before returning
control to the task.

Revision B Terminal Management 5-27

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Terminal Input

A terminal input line is terminated by a RETURN key. The RETURN is not
passed to the task as part of the input data. Unless transparent mode is
selected, the input data is edited (backspace and cancel_line characters are A
interpreted) before the input data is passed to the task. W

To terminate interactive data to a task requesting terminal input, the string
'*EOI' can be entered.

Line feeds within an input line are ignored. For example, suppose a user
enters two lines, the first ending with a line feed and the second with a
RETURN, as follows:

Line 1 [LINE FEED]
Line 2 [RETURN]

The input is passed to the task as a single line as follows:

Line 1Line 2

If transparent mode is not selected, the terminal codes are interpreted as
character codes in the 128-character ASCII set. If transparent mode is
selected, the terminal transfers data as 8-bit frames using whatever code the
terminal sends on its communication line. Input blocks are terminated by the A
selected transparent input conditions, not by RETURNs. W

NOS/VE allows more than one task in a job to be reading from the same
terminal at the same time. However, NOS/VE performs no input request
queueing for the tasks. When a task issues a get request, a full input line is
delivered. A sequence of AMP$GET _PARTIAL calls is satisfied from the
same input line. File positioning information is separate for each task.

When a task has more than one concurrent instance of open of a terminal
file, the file positioning information is shared for all instances of open.
Therefore, AMP$GET _PARTIAL calls for different instances of open could
read parts of the same input line.

5-28 CYBIL File Interface Revision B

SPECIAL CONSIDERATIONS FOR TERMINAL FILE PROCESSING

Typed Ahead Input

Terminal input can be typed ahead; that is, the user can enter input data
before the task is ready to process it. The system queues the input lines until
the task requests the input.

The number of lines that can be queued depends on the NAM terminal
definition. NAM can queue up to 20 lines of input; NOS/VE can queue 5
additional lines. When you reach the type-ahead limit, NAM sends the
following message:

WAIT ••

You must then wait until the task accepts the input you have entered. You
cannot interrupt the task (with a pause_break or terminate_break character)
until the task accepts the input.

Revision B Terminal Management 5-29

TERMINAL OUTPUT

Terminal Output

Unless transparent mode is selected, output sent to a terminal file is assumed
to be character codes of the 128-character ASCII set, and the system
performs any needed code conversions for the terminal display. In
transparent mode, the system sends the output data as a stream of 8-bit
codes without any conversion.

NOS/VE allows more than one task in a job to be writing to the same
terminal at the same time. However, NOS/VE performs no output request
queueing for the tasks. The terminal usually receives output lines in the order
that tasks create them.

When a task issues a put request, a full output line is delivered. A sequence of
AMP$PUT _PARTIAL calls is written as a single logical line unless the line
exceeds 2,043 bytes. If a line exceeds 2,043 bytes, AMP$PUT _p ARTIAL calls
from different tasks could write data as part of the same logical line. File
positioning information is separate for each task.

When a task has more than one instance of open of a terminal file at the
same time, the file positioning information is shared for all instances of
open. Therefore, AMP$PUT _PARTIAL calls for different instances of open
could write parts of the same output line.

Format Effectors

Unless transparent mode is selected or the terminal attribute no_format_
effectors is TRUE, the system processes the first character of an output line
as a format effector. A format effector controls the vertical spacing of output
at the terminal.

5-30 CYBIL File Interface Revision B

TERMINAL OUTPUT

The following are the format effector constant identifiers, characters (in
parentheses), and their effect:

• IFC$PRE_PRINT _SPACE_ l (): Spaces down one line before printing.

e • IFC$PRE_PRINT_SPACE_2 (0): Spaces down two lines before printing.

• IFC$PRE_PRINT_SPACE_3 (-):Spaces down three lines before
printing.

• IFC$PRE_PRINT _START_OF _LINE(+): Positions to the start of the
current line before printing.

• IFC$PRE_PRINT_HOME_CURSOR (*):Positions to the top of form
before printing.

• IFC$PRE_PRINT _HOME_ CLEAR_ SCREEN (1): Clears the screen
before printing.

• IFC$PRE_PRINT_NO_POSITIONING (,):Does nothing before printing.

• IFC$POST _PRINT_ SP ACE_ 1 (.): Spaces down one line after printing.

• IFC$POST _PRINT _START_ OF _LINE(/): Positions to the start of the
current line after printing.

The system converts the format effector character to the appropriate code for
the terminal class.

Logical Lines

Each output record can contain more than one logical line. (Logical lines are
not applicable in transparent mode.) Logical lines are separated by the
ASCII US character. If the line contains only one logical line, do not include
an ASCII US character at its end (because NOS/VE automatically adds an
ASCII US to the end of the line). Each logical line begins with a format
effector character (unless the attribute no_format_effectors is TRUE).

Revision B Terminal Management 5-31

TERMINAL OUTPUT

Page Wait e
The page wait option causes the system to suspend output after sending a
page of data. You then enter an empty line (by pressing the RETURN key
only) to receive the next page of output. The empty line is not passed to the
task as input. However, if you enter a nonempty line, the line is passed to the e
task as input; the entered line also restarts output.

The page wait option is effective when the page_ wait terminal attribute is
selected, the output_ device attribute is IFC$DISPLA Y _OUTPUT or
IFC$PRINTER_ OUTPUT, and a value has been defined for the page_
length attribute unless in transparent mode. If the page_length attribute is
undefined, the page length is assumed to be infinite and no page wait is
performed. In transparent mode, an output block is considered to be a page,
so a page_length value is not required.

The page_length attribute is both a terminal attribute and a file attribute.
Therefore, a task can change the page length used for an instance of open
using a file attribute definition call.

Line Folding

Line folding causes a line to continue on the next physical line when its
length reaches the page_ width value. The logical line remains the same
regardless of the number of physical lines used to output or input the line.

Definition of a page_ width terminal attribute value enables line folding. If
the output_ device attribute is IFC$DISPLAY _OUTPUT, the system
assumes the terminal performs the line folding. However, if the output_
device attribute is IFC$PRINTER_ OUTPUT, the system performs the line
folding.

The page_ width attribute is both a terminal attribute and a file attribute.
Therefore, a task can change the page width used for an instance of open
using a file attribute definition call.

5-32 CYBIL File Interface Revision B

TERMINAL CONDITIONS

Terminal Conditions

Within NOS/VE, a condition is an occurrence that interrupts normal task
processing. The chapter on condition processing in the CYBIL System
Interface manual provides a complete description of condition processing.

Conditions that are especially pertinent to interactive processing include the
following:

• Entry of the pause_ break or terminate_ break characters.

• Determination that the job is approaching a resource limit, such as a time
limit.

The system processes these conditions by performing the following steps:

1. The system attempts to pass the condition to a condition handler
selected by the task.

2. If the task has no condition handler for the condition, the system
determines whether an SCL WHEN statement has specified processing
for the condition. (For more information on the WHEN statement, see
the SCL System Interface manual.)

3. Ifno WHEN statement is in effect for the condition, the system
processes the condition itself, as follows:

• Pause_ break: Discards any input not yet read by a task (including
any typed-ahead data) and suspends all user activity in the job. You
can then enter SCL commands (such as a command to determine
the job status). You can then resume or terminate the job.

• Terminate_break: Discards any input not yet read by a task
(including any typed-ahead data), terminates all user activity in the
job, and discards all output not yet delivered to the terminal. It does
not, however, terminate tasks suspended by a previous pause_
break. You can then enter a command to continue processing.

• Resource limit: Discards any input not yet read by a task, suspends
all user activity in the job, and sends a message to the terminal. You
can then respond to the message.

Revislnn B Terminal Management 5-33

Defining File Attributes 6

Defining New File Attributes ... 6-1

Defining Old File Attributes ... 6-3

Verifying Preserved Attribute Values 6-3

Defining Attributes for an Open File 6-3

Attribute Definition Calls .. 6-4

AMP$FILE _ _ 6-5
AMPSTORE ... 6.S

Retrieving File Atttibutes .. 6-9

Attribute Specification .. 6-9
Attribute Sources .. 6-10

Returned Attributes ... 6-11
Retrieving Attributes for Connected Files 6-12
Retrieving File Characteristics 6-12
AMP$GET_FILE_ATTRIBUTES 6-13
AMP$FETCH _ 6-15

File Attribute Descriptions .. 6-16

List Attributes .. 6-42

9 Defining File Attributes

Each file has the following characteristics:

e • A local file name unique to a job.

• Assignment to a device class.

• A set of file attributes.

You can associate the name of a new file with a file attribute set, with a
device class, or before it is opened.

6

A file attribute set is a set of values that the system references to determine
how it processes a request to access the file. This chapter describes the
specification of file attribute values.

The default device class assignment is mass st.orage. Part II of this manual
describes device class assignment in detail.

Defining New File Attributes
A new file is a file that has never been opened. After a file has been opened,
it becomes an old file.

A new mass storage file has no file space assigned t.o it. When a mass
storage file is opened, it is assigned space, and the system stores certain file
attributes with the file.

The file attributes st.ored with a mass storage file are called structural
attributes or preserved attributes. These attributes determine the file
structure and are preserved for the lifetime of the file. (You can change some
preserved attribute values with a CHANGE_FILE_ATIRIBUTES
command.)

The file attributes that are not stored with the file are called temporary
attributes. The system discards temporary attribute values when the file is
returned or closed.

The initial set of file attributes consists of default values which are system
defined. For a new file, you can change default attribute values and assign
attribute values that do not have default values using the SET _FILE_
ATTRIBUTES command and AMP$FILE and AMP$0PEN procedure calls.

Revision B Defining File Attributes 6-1

DEFINING FILE A'ITRIBUTES

You can specify more than one value for an attribute before a file is opened.
An AMP$FILE call discards all attribute values specified by previous
AMP$FILE calls; the resulting attribute set for the new file then consists of
system_ -defined default values and the values specified on the most recent
AMP$FILE call.

Values specified by SET _FILE_ATTRIBUTES commands override values
set by AMP$FILE calls. Values specified on the AMP$0PEN call override
values set by either SET _FILE_ATTRIBUTES or AMP$FILE. Values
specified by a SET _FILE_ATI'RIBUTES or AMP$0PEN call are
cumulative; previously specified values are not discarded; the resulting
attribute set consists of the previously specified values and the values
specified on the call or command.

NOTE

When writing a program, you should consider whether the user of the
program should be allowed to change a file attribute value using the SET_
FILE_ATTRIBUTES command. To specify attribute values that the
program user can change, use an AMP$FILE call. To specify attribute
values the program user cannot change, use the AMP$0PEN call.

The value assigned to a structural attribute when you open the new file is the
value preserved with the file.

6-2 CYBIL File Interface Revision B

DEFINING OLD FILE ATTRIBUTES

Defining Old File Attributes

When you access an old mass storage file (a file that has previously been
opened), its initial file attribute set consists of the preserved attribute values
stored with the file, default values for temporary attributes defined by the
system, and any values set by SET _FILE_ATTRIBUTES commands for the
file. A task can also specify temporary attribute values that apply only to the
current file access.

For an old file, if a SET _FILE_ATTRIBUTES command or an AMP$FILE
request attempts to specify a value for a preserved attribute, the specified
value will be ignored.

You can change the value of an attribute more than once before you open the
old file. Values specified by SET _FILE_ATTRIBUTES commands override
values set by AMP$FILE calls. Values specified on the AMP$0PEN call
override values set by either SET _FILE_ATTRIBUTES or AMP$FILE.

Verifying Preserved Attribute Values

Besides changing temporary attribute values, the AMP$0PEN call also
verifies preserved attribute values. If a preserved attribute value specified on
the AMP$0PEN call does not match the actual preserved value, the
procedure returns abnormal status (AME$ATTRIBUTE_ VALIDATION_
ERROR).

Defining Attributes for an Open File

As described earlier, the SET _FILE_ATTRIBUTES command and
AMP$FILE call can specify attribute values before the file is opened. The
AMP$0PEN call that opens the file can also specify attribute values.

After a file is opened, an AMP$STORE call can change attribute values.
However, it is effective only for the error _exit_procedure, error _limit, and
message_ control attributes.

Revision B Defining File Attributes 6-3

ATTRIBUTE DEFINITION CALLS

Attribute Definition Calls
Each call that defines file attributes specifies the file attribute values by
specifying an array or a pointer to an array on the call. AMP$FILE and
AMP$STORE calls specify the array; an AMP$0PEN call specifies a pointer
to an array.

To prepare the file attributes array, you first declare the array variable of the
appropriate type. If you declare the parameter variable to be a pointer to the
appropriate array type, you must also allocate the variable space with a
PUSH or ALLOCATE statement.

Each file attributes array type is an adaptable array type. Therefore, you
must fix the array size. The array should contain one element for each
attribute to be specified.

For example, the following statements declare pointer variables for an
AMP$FILE call and an AMP$0PEN call and then allocate space for the
arrays:

VAR
file_attributes_ptr: Aamt$file_attributes,
open_attributes_ptr: amt$file_access_selections;

PUSH file_attributes_ptr: [1 •• 1J;
PUSH open_attributes_ptr: [1 •• 1J;

After declaring the variable type and allocating space for the variable, you
initialize the tag field of each record to an attribute identifier and the value
field to the attribute value.

An attribute identifier is the attribute name prefixed by AMC$. The name of
the attribute value field is the name of the attribute. (A listing of all
attributes and the attributes valid for each call is provided later in this
chapter.)

For example, the following statements initialize the file attributes variables
for an AMP$FILE call and an AMP$0PEN call. The AMP$FILE call
specifies a value for the page_length attribute; the AMP$0PEN call specifies
a value for the page_ width attribute. "Key" is the tag field.

file_attributes ptrA[1J.key := amc$page_length;
file_attributes ptrA[1J.page_length := 55;
open_attributes_ptrA[1J.key := amc$page_width;
open_attributes_ptrA[1J.page_width := 54;

The following are the procedure call descriptions for AMP$FILE and
AMP$STORE. The AMP$0PEN procedure call description is in chapter 7,
Opening and Closing Files.

6-4 CYBIL File Interface Revision B

AMP$FILE

AMP$FILE

Purpose Defines file attribute values for subsequent instances of open.

NOTE

You issue the AMP$FILE call before you open the file. To
change attributes of an open file, use an AMP$STORE call.

An AMP$FILE call discards any attribute values specified by
previous AMP$FILE calls specifying the file.

Format AMP$FILE Oocal_file_name, file_attributes, status)

Parameters local_file _name: amt$local_file _name;

Local file name.

Condition
Identifiers

Remarks

Revision B

file_ attributes: amt$file _attributes;

Array of attribute records. Each array record should contain
an attribute identifier and an attribute value. The valid
attributes for AMP$FILE are listed in table 6-1.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS_
METHOD_ID.

ame$improper _file_ attrib _key
ame$improper _file_ attrib _value
ame$ring _validation_ error

• For a new file, an AMP$FILE call can specify values for
temporary attributes and preserved attributes. For an old
file, an AMP$FILE call can specify values only for
temporary attributes.

• Calls to AMP$FILE are not cumulative. If a task calls
AMP$FILE more than once before it opens the file, only
the values specified on the last AMP$FILE call are used.

• By specifying an attribute value with the AMP$FILE
procedure, you permit a user to override the value with a
SET _FILE_ATTRIBUTES command; to prevent a task
from overriding an attribute value, you must use an
AMP$0PEN call to specify the attribute value.

• The temporary attribute values specified on an AMP$FILE
call apply only to subsequent opens of the file within the
issuing task until the file is returned. The values do not
apply to previous or current instances of open of the file.

Defining File Attributes 6-5

AMP$FILE

Table 6-1. Valid Attributes for Each File Attributes Call e AMP$ADD_ AMP$GET
TO FILE FILE

Attribute DESCRIPTION AMP$FETCH AMP$FILE A'ITRIBUTES AMP$0PEN AMP$STORE

access_ level x
access_mode x x x x e application_
info x x
average_ record_
length x x x x x
block_ type x x x x
character
conversion x x x x x
clear_ space x x x x
collate_ table x x
collate_ table
name x x x x
compression_
procedure_name x x x x
data_ padding x x x x x
dynamic_ home -
block_ space x x x x
embedded_key x x x x x
error_ exit_name x x x x
error _exit
procedure x x
error_hmit x x x x x
estimated
record_count x x x x x
file_access
procedure x x x x
file_contents x x x x x
file_length x
file_limit x x x x x
file_organization x x x x
file_ processor x x x x x
file_structure x x x x x
forced_ write x x x x x
global_ access_
mode x x
global_ file -
address x x
global_ file -
name x x
global_ file_
position x x

(Continued!

e

6-6 CYBIL File Interface Revision B

AMP$FILE

e Table 6-1. Valid Attributes for Each File Attributes Call (Continued)

AMP$ADD_ AMP$GET_
TO FILE FILE

Attribute DESCRIPTION AMP$FETCH AMP$FILE ATTRIBUTES AMP$0PEN AMP$STORE

e global_ share_
mode x x
hashing_
procedure_name x x x x
index_levels x x x x x
index_padding x x x x x
initial home
block_~ount x x x x
internal_code x x x x x
key_length x x x x x
key _position x x x x x
key_type x x x x x
label_type x x x x
line_number x x x x x
loading_factor x x x x
lock_ expiration_
time x x x x
logging_ options x x x x
log_residence x x x x
max_block
length x x x x x
max_record

e length x x x x x
message_
control x x x x x
min_ block
length x x x x x
min record
length x x x x x
null_ attribute x x x x x x
open_position x x x x
padding_
character x x x x x
page_ format x x x x x
page_ length x x x x x
page_ width x x x x x
permanent_file x x
record_limit x x x x x
record_ type x x x x x
records_ per_
block x x x x x
return_ option x x x
ring_attributes x x x x
statement e identifier x x x x x
user _info x x x x x
vertical_ print_
density x x x x

e
Revision B Defining File Attributes 6-7

AMP$STORE

AMP$STORE

Purpose Changes file attribute values for an open file.

NOTE

The AMP$STORE procedure can only be called after the file
is open. The attribute values specified on the call are
applicable only to the instance of open specified on the call
and are discarded when the file is closed.

Format AMP$STORE (file_identifier, file_attributes, status)

Parameters file_identifier: amt$file_identifier;

Condition
Identifiers

Remarks

File access identifier returned by the AMP$0PEN call that
opened the file.

file_ attributes: amt$store _attributes;

Array of attribute records. Each array record should contain
an attribute identifier and an attribute value. An
AMP$STORE call can only specify values for the error_ exit_
procedure, error _limit, and message_ control attributes.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

ame$improper _file_attrib _key
ame$improper _file_attrib _value
ame$improper_file_id
ame$ring _validation_ error

For indexed sequential files only:
aae$not _enough _permission

To retrieve attribute values specified by an AMP$STORE call,
use an AMP$FETCH call. The AMP$GET _FILE_
A TIRIBUTES call does not return values set by an
AMP$STORE call.

6-8 CYBIL File Interface Revision B

RETRIEVING FILE ATTRIBUTES

Retrieving File Attributes
Besides specifying attribute values, you can also retrieve attribute values.
Retrieving an attribute value allows you to change processing of the file
according to the value returned.

Both AMP$GET _FILE_ATTRIBUTES and AMP$FETCH retrieve attribute
values. The procedures have the following differences:

• You can callAMP$GET_FILE_ATTRIBUTES before or after you open
the file; you can call AMP$FETCH only while the file is open.

• An AMP$GET _FILE_ATTRIBUTES call specifies the file by its local file
name; the AMP$FETCH call specifies an instance of open of the file by
the file_identifier returned by the AMP$0PEN call.

• To retrieve attribute values specified by an AMP$STORE call, you must
use an AMP$FETCH call; AMP$GET _FILE_ATTRIBUTES does not
return values stored by AMP$STORE.

Attribute Specification

Like file definition calls, each call to retrieve file attribute values has a file_
attributes parameter. The file _attributes parameter must either name a
static array or point to a dynamic array. In either case, the array must be of
the type declared for the file_ attributes parameter in the procedure
declaration (AMT$GET _ATTRIBUTES for AMP$GET _FILE_
ATTRIBUTES and AMT$FETCH_ATTRIBUTES for AMP$FETCH).

You declare and allocate the attributes array for an attribute retrieval call
the same as for an attribute definition call except that you specify only the
attribute identifier, not the attribute value. The procedure returns the
attribute value in the value field of the record. (The only exception is the
collate_ table attribute; see the collate_ table attribute description.)

For example, the following statements declare a pointer variable for an
AMP$GET _FILE_ATI'RIBUTES call, allocate space for an array
containing two elements, and assign an attribute identifier to each record.

VAR
get_attributes: AamtSget_attributes;

PUSH get_attributes: [1 •• 2J;

get_attributesA[1J.key := amc$page_Length;
get_attributesA[2J.key := amc$page_width;

Revision B Defining File Attributes 6-9

RETRIEVING FILE ATTRIBUTES

After the AMP$GET _FILE_ATTRIBUTES call is processed, an attribute
value can be referenced as follows:

IF get_attributesft[2J.page_width > 132 THEN
L ine_folder;

!FEND;

If the attribute value is greater than 132, the IF statement calls a procedure
named LINE_FOLDER.

Attribute Sources

Besides the attribute value, an attribute retrieval call also returns the
attribute source. The attribute source indicates how the attribute value was
defined.

The attribute retrieval call returns one of the identifiers listed in table 6-2 in
the source field.

Table 6-2. File Attribute Sources

Identifier

AMC$UNDEFINED _ATTRIBUTE

Meaning

The attribute does not have a
default value, and no value has
been specified for it.

AMC$LOCAL_FILE_INFORMATION The attribute value is determined
by the job environment (returned
attribute only).

AMC$FILE_COMMAND The attribute value was specified
on a SET _FILE_ATTRIBUTES
command.

AMC$CHANGE_FILE_ATTRIBUTES The attribute value was specified
on a CHANGE_FILE
ATTRIBUTES command.

AMC$FILE_REFERENCE

AMC$FILE_REQUEST

The attribute value was specified
on the file reference. (For example,
the open_position can be specified
as $BOI, $EOI, or $ASIS).

The attribute value was specified
on an AMP$FILE call.

AMC$ACCESS _METHOD _DEFAULT The attribute value is the default
value defined by the system. e

(Continued)

6·10 CYBIL File Interface Revision B

RETRIEVING FILE ATTRIBUTES

e Table 6-2. File Attribute Sources (Continued)

Identifier

AMC$0PEN_REQUEST

Meaning

The attribute value was specified
on an AMP$0PEN call.

AMC$ADD_ TO_FILE_DESCRIPTION The attribute value was specified
on an AMP$ADD_ TO_FILE_
DESCRIPTION call.

AMC$STORE _REQUEST

Returned Attributes

The attribute value was specified
on an AMP$STORE call. (The
AMP$GET _FILE_A'ITRIBUTES
call cannot return this identifier.)

Certain file attributes cannot be specified by a user although the attribute
retrieval calls can return the current value of these attributes. This manual
refers to these attributes as returned attributes, rather than preserved or
temporary attributes.

The system determines the values for returned attributes from the job
environment, rather than a value specification. The attribute source
identifier for a returned attribute is AMC$LOCAL_FILE_INFORMATION.

The returned attributes include the following:

application_ info
file_length
global_ access_ mode
global_ file_ address
global_file_name
global_ file_ position
global_ share_ mode
permanent_file

Revision B Defining File Attributes 6-11

RETRIEVING FILE ATTRIBUTES

Retrieving Attributes for Connected Files e
A CREATE_FILE_ CONNECTION command or CLP$CREATE_FILE_
CONNECTION call connects a subject file to a target file. If an attribute
retrieval call specifies a subject file connected to one or more target files, the A
call returns the file attributes of the target file first connected to the subject W
file.

For example, suppose file $ECHO is the subject file first connected to the
target file MY _FILE and then connected to the target file YOUR_FILE. An
AMP$GET _FILE_ATTRIBUTES call that specifies $ECHO would return
the attributes of MY _FILE because it is the first connected target file.

Retrieving File Characteristics

An AMP$GET _FILE_ATTRIBUTES call returns additional information
besides file attribute values and sources. It also returns boolean values for
the following parameters:

• local_ file: Indicates whether the local file name is defined within the job.

• old_file: Indicates whether the file has previously been opened.

• contains_ data: For a mass storage file, indicates whether the file
contains data. (A file assigned to the terminal or null device classes
always returns FALSE; a tape file always returns TRUE.)

If the call returns FALSE for both local_ file and old_file, the file is not local
to the job and has never been opened. In this case, the attribute values
AMP$GET _FILE_ATTRIBUTES returns are the default attribute values; if
the attribute does not have a default value, its value is AMC$UNDEFINED _
ATTRIBUTE.

6-12 CYBIL File Interface RevisionB

AMP$GET _FILE_ATTRIBUTES

e AMP$GET_FILE_ATTRIBUTES

Purpose

Format

Parameters

Revision B

Returns file attribute values.

NOTE

The specified file can be open or closed when the AMP$GET _
FILE_ATTRIBUTES call is processed.

AMP$GET_FILE_ATTRIBUTES (local_file_name,
file_ attributes, local_ file, old_ file, contains_ data,
status)

local_ file_ name: amt$local_ file_ name;

Local file name.

file_attributes: VAR of amt$get_attributes;

Array of attribute records. Each array record should contain
an attribute identifier; the procedure AMP$GET _FILE_
ATTRIBUTES returns the attribute source and the attribute
value in the record. The valid attributes are listed in table 6-1.

local_ file: VAR of boolean;

Indicates whether the local file name is registered in the
$LOCAL catalog (boolean). TRUE is returned if the file is
existent in the local catalog, FALSE if it is not.

old_ file: VAR of boolean;

Indicates whether the file has been opened (boolean). TRUE is
returned if the file has been opened, F AI.SE if it has not.

contains_ data: VAR of boolean;

Indicates whether the file contains data (boolean). TRUE is
returned if the file contains data, F AI.SE if it does not.

The call always returns FALSE if the file is assigned to a
terminal or a null device. It always returns TRUE if the file is
assigned to tape.

For indexed sequential files, contains_ data is always TRUE
after the file has been opened even if no data records have
been written to the file. (Opening an indexed sequential file
writes the internal file label.)

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

Defining File Attributes 6-13

AMP$GET _FILE_ATTRIBUTES

Condition
Identifiers

Remarks

ame$im proper_ file_ attrib _key
ame$ring_ validation_ error

• AMP$GET_FILE_ATTRIBUTES does not return
attribute values defined by AMP$STORE calls.

• If the AMP$GET _FILE_ATTRIBUTES call specifies a
subject file connected to one or more target files, the call
returns the attributes of the target file to which the subject
file was first connected.

6-14 CYBIL File Interface Revision B

AMP$FETCH

AMP$FETCH

Purpose

Format

Parameters

Condition

Identifiers

Remarks

Revision B

Returns file attribute values.

NOTE

The instance of open specified by the file identifier on the
AMP$FETCH call must be open when the call is processed.

AMP$FETCH (file_identifier, file_attributes, status)

file_ identifier: amt$file_identifier;

File identifier identifying the instance of open. AMP$0PEN
returns a file identifier when it opens a file.

file_attributes: VAR of amt$fetch_attributes;

Array of attribute records. Each array record should contain
an attribute identifier; AMP$FETCH returns the attribute
source and the attribute value in the record. The valid
attributes are listed in table 6-1.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS_
METHOD_ID.

ame$improper_file_attrib_key
ame$im proper_ file_ id
ame$ring_ validation_ error

An AMP$FETCH call returns attribute values specified by an
AMP$STORE call if the calls specify the same file identifier.

Defining File Attributes 6-15

FILE ATTRIBUTE DESCRIPTIONS

File Attribute Descriptions

Each of the following attribute descriptions provides the following
information:

• Attribute name. (The name given is the name of the value field in the
attribute record; the attribute identifier is the attribute name with the
prefix AMC$. For example, the attribute identifier for block_ type is
AMC$BLOCK_ TYPE.)

• Attribute purpose.

• Indicates whether the attribute is a preserved, temporary, or returned
attribute.

• Valid attribute values.

• Default value for preserved and temporary attributes.

A preserved attribute is an attribute whose value is kept for the lifetime of
the file. (You can change some preserved attribute values with a CHANGE_
FILE_ATTRIBUTES command.) A temporary attribute is an attribute
whose value is discarded after the file is returned. A returned attribute is an
attribute whose value cannot be specified by an attribute definition
command or call but can be returned by an attribute retrieval command or a
call. The file attribute descriptions follow. W

access_ level

Indicates the level of file data access used for this instance of open
(returned attribute). The user defines the attribute value on the
AMP$0PEN call.

Value: One of the following identifiers (type AMT$ACCESS_LEVEL):

AMC$RECORD

Record access.

AMC$SEGMENT

Segment access (valid only for mass storage files whose file_
organization attribute is not AMC$INDEXED _SEQUENTIAL).

6-16 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

access_ mode

Set of access modes allowed within the instance of open (temporary
attribute).

Value: Set of access mode identifiers (type PFf$USAGE_SELECTIONS). e PFC$READ

Read access.

PFC$SHORTEN

Shorten access.

PFC$APPEND

Append access (required to write to a new file).

PFC$MODIFY

Modify access.

PFC$EXECUTE

Execute access.

The set can contain only access modes included in the global_ access_
mode set (see the global_access_mode attribute description).

Default value: The set of access modes defined by the global_ access_
mode attribute excluding PFC$EXECUTE.

The attribute cannot be changed while the file is opened.

For more information on access modes, see chapter 3, Mass Storage File
Management.

application_ info

Access control information used by an application program (returned
attribute).

The application information string can be specified on a PFP$PERMIT
call. The Source Code Utility (SCU) uses the application information to
determine whether a user has authority to perform certain operations.

Value: 31-character string (type PFf$APPLICATION_INFO).

Default value: 31 spaces.

For more information on SCU use of this attribute, see the SCL Source
Code Management manual.

Revision B Defining File Attributes 6-1 7

FILE ATIRIBUTE DESCRIPI'IONS

average_ record_ length (indexed sequential files only)

Estimate of the average record length in bytes (preserved attribute). If
specified, the system uses the attribute value to calculate the block size
used; it uses the attribute value only when opening a new file.

For ANSI fixed-length (F) records, the average_record_length should be
the same as the maxi_record_length.

For variable (V) and undefined (U) records, the average_ record_ length
value depends on whether the majority of the records are the same length.

• If most records are a specific length, set the attribute value to that
length.

• If the record lengths are well distributed within a range of lengths, set
the attribute value to the median record length (half of the records are
longer, half are shorter).

Value: integer from 1 through AMC$MAXIMUM_RECORD (type
AMT$AVERAGE_RECORD _LENGTH).

Default value: None. If no value is set for the attribute, the system uses
the arithmetic mean of the max_record_length and min_record_length
values to calculate block size. However, the system does not set the
average_record_length attribute to that value.

For more information, see chapter 10, Accessing Indexed Sequential Files.

block_ type (sequential or byte addressable files only)

Indicates whether the user or the system determines file blocking
(preserved attribute).

Value: One of the following identifiers (type AMT$BLOCK_ TYPE):

AMC$SYSTEM_SPECIFIED

Access method determines block size.

AMC$USER_SPECIFIED

User determines block size.

Default value: AMC$SYSTEM_SPECIFIED.

For more information, see File Blocking in chapter 9, Accessing
Sequential and Byte Addressable Files.

character _conversion (tape files only)

Indicates whether the tape file data requires conversion to 8-bit ASCII
code (preserved attribute).

6-18 CYBIL File Interface Revision B

FILE A'ITRIBUTE DESCRIPI'IONS

NOTE

Currently, NOS/VE does not perform tape file character conversion.
However, the character_conversion attribute is available for use by a
program that intends to perform its own character conversion.

Value: Boolean value.

TRUE

The system converts the character code.

FALSE

The system does not convert the character code.

Default value: FALSE.

collate_ table

Collation table (returned attribute). This attribute is used to fetch the
collation table assigned to a file.

NOTE

To fetch the collation table, you specify a pointer in the COLLATE_
TABLE field of the attribute record for an AMP$FETCH call.
AMP$FETCH copies the collation table to the variable to which the
pointer points. If you do not specify a pointer, the system attempts to use
an undefined pointer and returns an error.

Value: Pointer of type 'AMT$COLLATE_ TABLE. Type
AMT$COLLATE_ TABLE has the following declaration:

ARRAY [CHAR] OF AMT$COLLATION_ VALUE

Type AMT$COLLATION_ VALUE is the integer subrange 0 through 255.

To determine the collating weight the table assigns to a particular
character code, you use the character as the index into the table; the value
at that position is the collating weight of that character. For example,
assume an AMP$FETCH call has fetched the collation table of a file and
stored it in an array variable COLLATION_ TABLE. The following
statement assigns the collating weight of A to integer variable
A_ WEIGHT:

A_WEIGHT := COLLATION_TABLE['A'J;

Assume the statement assigns the value 0 to A_ WEIGHT. This means
that the collation table assigns the collating weight 0 to character A.

Default value: None. e For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-19

FILE A'ITRIBUTE DESCRIPTIONS

collate_ table_ name

Collation table name (preserved attribute). This attribute is used to specify
a collation table for a file.

The attribute value is used only whe the file is first opened. When the file
is opened, the named collation table is stored in the file label. The
collation table for the file cannot be changed after the file has been
opened.

Value: 31-character program name (PMT$PROGRAM_NAME).

NOTE

All letters in the name must be specified as uppercase letters.

The name can be that of a system-defined collation table or a user-defined
collation table. Collation table definition is described in appendix E,
Collation Tables for Indexed Sequential Files.

The names of the system-defined collation tables follow. The collating
sequence for each table is listed in appendix E.

OSV$ASCII6 _FOLDED

CYBER 170 FORTRAN 5 default collating sequence; lowercase letters
mapped to uppercase letters.

OSV$ASCII6 _STRICT

CYBER 170 FORTRAN 5 default collating sequence.

OSV$COBOL6_FOLDED

CYBER 170 COBOL 5 default collating sequence; lowercase letters
mapped to uppercase letters.

OSV$COBOL6 _STRICT

CYBER 170 COBOL 5 default collating sequence.

OSV$DISPLAY63_FOLDED

CYBER 1 70 63-character display code collating sequence; lowercase
letters mapped to uppercase letters.

OSV$DISPLA Y63 _STRICT

CYBER 1 70 63-character display code collating sequence.

OSV$DISPLAY64_FOLDED

CYBER 170 64-character display code collating sequence; lowercase
letters mapped to uppercase letters.

OSV$DISPLAY64 _STRICT

CYBER 170 64-character display code collating sequence.

6-20 CYBIL File Interface Revision B

FILE ATIRIBUTE DESCRIPTIONS

OSV$EBCDIC

Full EBCDIC collation sequence.

OSV$EBCDIC6_FOLDED

EBCDIC 6-bit subset supported by CYBER 170 COBOL 5 and SORT 5;
lowercase letters mapped to uppercase letters.

OSV$EBCDIC6 _STRICT

EBCDIC 6-bit subset supported by CYBER 170 COBOL 5 and SORT 5.

Default value: None. You must specify a value for the collate_table_name
attribute if you specify AMC$INDEXED _SEQUENTIAL as the file_
organization attribute value and AMC$COLLATED _KEY as the key_
type attribute value.

For more information, see chapter 10, Accessing Indexed Sequential Files.

data_padding (indexed sequential files only)

Percentage of empty space the system is to leave in each data block when
writing records at file creation time. The empty space allows for easy file
expansion during later file processing operations (preserved attribute).

The attribute value is used only when an indexed sequential file is
created.

Value: 0 through 99 (type AMT$DATA_PADDING).

Default value: 0 (no padding).

For more information, see chapter 10, Accessing Indexed Sequential Files.

embedded_key (indexed sequential files only)

Indicates whether the primary key is stored in the record (preserved
attribute).

Value: Boolean value.

TRUE

Primary key is located in the record.

FALSE

Primary key is located separately from the record.

Default value: TRUE.

For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-21

FILE ATTRIBUTE DESCRIPTIONS

error _exit_name

Name of an error processing procedure (temporary attribute).

The name must be that of a procedure with the XDCL attribute within the
global library set of the job or defined within the task.

For the attribute to be effective, you must specify the error_exit_name
value before the file is opened or on the AMP$0PEN call. The error
processing procedure is loaded when the file is opened. To change the
procedure while the file is open, you must use the error_exit_procedure
attribute.

Value: 1through31-character procedure name (type PMT$PROGRAM_
NAME). The named procedure must be of type AMT$ERROR_EXIT _
PROCEDURE; that is, it must have the following parameter list:

(file_ identifier: amt$file _identifier;
VAR status: ost$status)

Default value: None. If no error exit name is specified, the system does not
search for an error processing procedure.

For more information, see Error Exit Procedure in chapter 7, Opening and
Closing Files.

error_ exit _procedure

Address of the current error processing procedure (temporary attribute).

You use this attribute to change the effective error processing procedure
while the file is open. To clear the effective error processing procedure,
specify a nil pointer for the attribute.

Value: Pointer variable of type -AMT$ERROR_EXIT _PROCEDURE. A
procedure of type AMT$ERROR_EXIT _PROCEDURE has the following
parameter list.

(file_ identifier: amt$file _identifier;
VAR status: ost$status)

Default value: None. The system continues to use the error processing
procedure specified by the error_exit_name attribute when the file was
opened, if one was specified.

For more information, see Error Exit Procedure in chapter 7, Opening and
Closing Files.

6-22 CYBIL File Interface Revision B

FILE ATI'RIBUTE DESCRIPTIONS

error_ limit (indexed sequential files only)

Maximum number of trivial errors that can occur before the trival errors
cause a fatal error (temporary attribute).

Value: Integer (type AMT$ERROR_LIMIT). 0 means no error limit.

Default value: 0 (no error limit).

For more information, see chapter 10, Accessing Indexed Sequential Files.

estimated_record_count (indexed sequential files only)

Estimated number of records the file will hold (preserved attribute). The
system uses the attribute value to calculate block size; it only uses the
value when it first opens a new file.

Value: Integer (type AMT$ESTIMATED _RECORD_ COUNT).

Default value: If a value is defined for the record_ limit attribute, the
record_limit value is the default estimated_ record_ count. If the record
limit attribute is undefined, the default value is 100,000.

For more information, see chapter 10, Accessing Indexed Sequential Files.

file_ access _procedure

Name of the file access procedure (FAP) called when the file is accessed
(preserved attribute).

Value: 1 through 31-character procedure name (type PMT$PROGRAM_
NAME). The name must be that of a procedure declared with the XDCL
attribute within the global library set of the job or defined within the task.
The procedure must be a FAP as described in appendix D, File Access
Procedures.

Default value: If the attribute does not have a value when the file is first
opened, the file has no FAP associated with it. However, a CHANGE_
FILE_ATTRIBUTE command can specify a FAP for the file.

Revision B Defining File Attributes 6-23

FILE ATTRIBUTE DESCRIPTIONS

file_ contents

String describing the file contents (preserved attribute).

Value: The following string identifiers are defined by the system (type
AMT$FILE_ CONTENTS):

AMC$UNKNOWN_CONTENTS

AMC$LIST

AMC$LEGIBLE

AMC$SOURCE

'UNKNOWN'

'LIST'

'LEGIBLE'

'SOURCE'

Default value: AMC$UNKNOWN _CONTENTS.

file-_ length

Length of a mass storage file in bytes (returned attribute).

Value: Integer(type AMT$FILE_LENGTH).

file_ limit

Maximum file length in bytes (preserved attribute).

For files opened for record access, the end-of-information (EOI) must not
exceed the file_limit value. Ifit does, the procedure returns abnormal
status.

For files opened for segment access using a sequence or heap structure,
the file_ limit value is the maximum size of the sequence or heap. A page
reference beyond file_ limit causes a segment access condition.

Value: Integer (type AMT$FILE_LIMIT).

Default value: 100,000,000 (the effective file byte limit).

file_ organization

File organization (preserved attribute).

Value: One of the following identifiers (type AMT$FILE_
ORGANIZATION):

AMC$SEQUENTIAL

Sequential organization.

AMC$BYTE_ADDRESSABLE

Byte addressable organization.

AMC$INDEXED _SEQUENTIAL

Indexed sequential organization.

Default value: AMC$SEQUENTIAL.

6-24 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

file _processor

String identifying the intended processor of the file (preserved attribute).
It is used with the file_ contents and file_ structure values to identify the
file contents.

The file_processor identifies the intended processor of the file data, not
the file creator. For example, AMC$CYBIL indicates that the file contains
input (source code) for the CYBIL compiler.

Value: The following string identifiers are defined by the system (type
AMT$FILE_PROCESSOR).

AMC$UNKNOWN _PROCESSOR 'UNKNOWN'

AMC$COBOL

AMC$CYBIL

AMC$DEBUGGER

AMC$FORTRAN

AMC$SCU

AMC$CPU _ASSEMBLER

AMC$PPU _ASSEMBLER

'COBOL'

'CYBIL'

'DEBUGGER'

'FORTRAN'

'SCU'

'CPU _ASSEMBLER'

'PPU _ASSEMBLER'

Default value: AMC$UNKNOWN _PROCESSOR.

file_ structure

String identifying the file structure (preserved attribute). It is used with
the file_ contents and file_ processor values to identify the file contents.

Value: The following string identifiers are defined by the system (type
AMT$FILE_STRUCTURE):

AMC$UNKNOWN _STRUCTURE 'UNKNOWN'

AMC$DATA

AMC$LIBRARY

'DATA'

'LIBRARY'

Default value: AMC$UNKNOWN _STRUCTURE.

Revision B Defining File Attributes 6-25

FILE ATTRIBUTE DESCRIPTIONS

forced_write (indexed sequential files only)

Indicates whether the system copies modified blocks to mass storage
immediately after modification or allows modified blocks to remain in
memory until the next flush or close request (preserved attribute).

Value: One of the following identifiers (type AMT$FORCED _WRITE):

AMC$FORCED

The system writes each modified block to mass storage immediately
after the block is modified.

AMC$FORCED _IF_ STRUCTURE_ CHANGE

The system writes modified blocks to mass storage immediately after
any structure change to the file that affects more than one block.

AMC$UNFORCED

The system determines when to write modified blocks to mass storage.
Modified blocks can remain in memory without a backup copy on mass
storage.

Default value: AMC$FORCED _IF _STRUCTURE_ CHANGE.

global_ access_ mode

Indicates the set of valid access modes for the file (returned attribute). For
an existing permanent file, the set of access modes is determined when
the file is attached. For a temporary file or a new permanent file, the set
includes all usage modes.

Value: Set of any (including none) of the following constant identifiers
(type PFT$USAGE_SELECTIONS):

PFC$READ

Read access.

PFC$SHORTEN

Shorten access.

PFC$APPEND

Append access (required to write to a new file).

PFC$MODIFY

Modify access.

PFC$EXECUTE

Execute access.

Default value: For permanent files, the set of access modes specified when
the file is attached. For temporary files, the set containing all access
modes (read, modify, append, shorten, and execute).

6-26 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

global _file_ address

File byte address attained by the last get, put, AMP$SET _SEGMENT_
EOI, or AMP$SET _SEGMENT _POSITION call to the file (returned
attribute).

Value: Integer (type AMT$FILE_BYTE_ADDRESS).

For more information, see Sharing a Segment Access File in chapter 8,
Accessing a File as a Memory Segment.

global_file_ name

File name uniquely identifying the file (returned attribute). The system
generates the name for the file when it creates the file. The global file
name allows a program to determine whether files having different local
file names are actually the same file.

Value: Packed record having the following fields (type
OST$BINARY _ UNIQUE_NAME):

processor_
serial_ number

processor_
model_ number

year

month

hour

day

minute

second

sequence_ number

Revision B

Integer (type PMT$CPU _SERIAL_NUMBER)

One of the following constant
identifiers (type PMT$CPU _MODEL_
NUMBER):

PMC$CPU _MODEL_Pl

PMC$CPU _MODEL_P2

PMC$CPU _MODEL_P3

PMC$CPU _MODEL_P4

Integer from 1980 through 2047.

Integer from 1 through 12.

Integer from 0 through 23.

Integer from 1 through 31.

Integer from 0 through 59.

Integer from 0 through 59.

Integer from 0 through 9,999,999.

Defining File Attributes 6-27

FILE ATTRIBUTE DESCRIPTIONS

global _file _position

File position at completion of the last access request for the file (returned
attribute). For more information, see Sharing a Segment Access File in
chapter 8, Accesing a File as a Memory Segment.

Value: One of the following identifiers (type AMT$GLOBAL_
FILE_POSITION):

AMC$BOI

Beginning-of-file.

AMC$BOP

Beginning-of-partition.

AMC$MID_RECORD

Within a record.

AMC$EOR

End-of-record.

AMC$EOP

End-of-partition.

AMC$EOI

End-of-file.

global_ share_ mode

Indicates the valid share modes for the file (returned attribute). For a
permanent file, the share modes are specified when the file is attached.
Temporary files cannot be shared.

Value: Set of any number (including none) of the following constant
identifiers (type PFT$SHARE_SELECTIONS):

PFC$READ

Read access.

PFC$SHORTEN

Shorten access.

PFC$APPEND

Append access.

PFC$MODIFY

Modify access.

PFC$EXECUTE

Execute access.

6-28 CYBIL File Interface Revision R

FILE ATTRIBUTE DESCRIPTIONS

e index_levels (indexed sequential files only)

Target number of index levels (preserved attribute). The system uses the
attribute value to calculate block size. The index_levels value is used only
when the file is created.

Value: 1through15 (type AMT$INDEXLEVELS).

Default value: 2.

For more information, see chapter 10, Accessing Indexed Sequential Files.

index_padding (indexed sequential files only)

Percentage of index block space to be left empty when the file is created.
The empty space allows easy file expansion (preserved attribute).

Value: 0 through 99 (type AMT$INDEX_PADDING).

Default value: 0 (no padding).

For more information, see chapter 10, Accessing Indexed Sequential Files.

Revision B Defining File Attributes 6-29

FILE ATTRIBUTE DESCRIPTIONS

internal_ code (sequential or byte addressable files only)

Character code of file (preserved attribute).

NOTE

Currently, NOS/VE does not perform character conversion. However, the e
internal_ code attribute is available for use by a program that intends to
perform its own character conversion.

Value: One of the following identifiers (type AMT$INTERNAL_ CODE):

AMC$AS6

CYBER 170 6/12 ASCII code.

AMC$AS8

CYBER 170 8/12 ASCII code.

AMC$ASCII

8-bit ASCII code.

AMC$BCD

Binary coded decimal code.

AMC$D64

CYBER 1 70 64-character display code.

AMC$EBCDIC

9-bit EBCDIC tape code.

Default value: AMC$ASCII.

key_ length (indexed sequential files only)

Primary key length in bytes (preserved attribute).

Value: Integer (type AMT$KEY _LENGTH). (For files with embedded
keys, the value cannot be greater than the minimum_ record_ length
value.)

Default value: No default value. When opening a new indexed sequential
file, AMP$0PEN returns a fatal error if the attribute value is not set.

For more information, see chapter 10, Accessing Indexed Sequential Files.

6-30 CYBIL File Interface Revision B

FILE A'ITRIBUTE DESCRIPTIONS

key _position (indexed sequential files only)

Byte offset in the record where the primary key begins (preserved
attribute). This attribute is ignored for files with nonembedded keys.

The value of key _position + 1 defines the first byte of the primary key. For
example, if key _position is set to three the primary key begins in the
fourth byte of the record.

Value: 0 through MAX_RECORD _LENGTH (type AMT$KEY _
POSITION). The sum of the key _position and key _length values cannot
be greater than the max_record_length value.

Default value: 0 (beginning of record).

For more information, see chapter 10, Accessing Indexed Sequential Files.

key _type (indexed sequential files only)

Primary key type (preserved attribute).

Value: One of the following identifiers (type AMT$KEY _TYPE):

AMC$UNCOLLATED_KEY

Keys (1 through 255 bytes) ordered byte-by-byte according to the ASCII
character set sequence (listed in appendix B). The key can be a positive
integer or a string of ASCII character codes.

AMC$INTEGER_KEY

Integer keys (1 through 8 bytes) ordered numerically. The integer can
be positive or negative.

AMC$COLLA TED _KEY

Collated character keys (1 through 255 characters) ordered using the
collation table specified by the collate_table_name attribute. If
AMC$COLLATED _KEY is specified, the collate_table_name
attribute must also be specified.

Default value: AMC$UNCOLLATED_KEY.

For more information, see chapter 10, Accessing Indexed Sequential Files.

label_type (sequential or byte addressable files only)

Tape labels used (preserved attribute).

Value: Currently, the following constant identifier (type
AMT$LABEL_ TYPE):

AMC$UNLABELLED

No labels.

Default value: AMC$UNLABELLED.

Revision B Defining File Attributes 6-31

FILE A'ITRIBUTE DESCRIPTIONS

last_ operation

Code indicating the latest operation the system has performed for the file
(returned attribute).

Value of type AMT$LAST _OPERATION. The following lists file
interface calls and the corresponding constant identifier declarations:

AMP$ABANDON _KEY _DEFINITIONS

amc$abandon_key _definitions

AMP$ACCESS_METHOD

amc$access _ method_req

AMP$APPLY _KEY _DEFINITIONS

amc$apply _key _definitions

AMP$ADD _TO _FILE_DESCRIPTION

amc$add _to_ file_ description_ req

AMP$CLOSE

amc$close _ req

AMP$COPY _FILE

amc$copy _file_req

AMP$CREATE_KEY _DEFINITION

amc$create _key_ definition

AMP$DELETE_KEY

amc$delete_key _req

AMP$DELETE_KEY _DEFINITION

amc$delete_key _definition

AMP$FETCH

amc$fetch _ req

AMP$FETCH_ACCESS_INFORMATION

amc$fetch _access_ information_ rq

AMP$FETCH_F AP _POINTER

amc$fetch_fap_pointer_req

AMP$FILE
amc$file _ req

AMP$FLUSH

amc$flush_req

6-32 CYBIL File Interface Revision B

FILE ATI'RIBUTE DESCRIPTIONS

AMP$GET _DIRECT

arnc$get_direct_req

AMP$GET _FILE_AITRIBUTES

amc$get_file_attributes_req

AMP$GET _KEY

amc$get_key _req

AMP$GET _NEXT

amc$get _next _req

AMP$GET _NEXT _KEY

amc$get _next_key _req

AMP$GET _NEXT _FRIMARY _KEY _LIST

amc$get_next_primary _key _list

AMP$GET _PARTIAL

amc$get_partial_req

AMP$GET _PRIMARY _KEY_ COUNT

arnc$get_primary _key _count

AMP$GET _SEGMENT _POINTER

arnc$get_segment_pointer _req

AMP$0PEN

amc$open_req

AMP$PUT _DIRECT

arnc$put _direct_ req

AMP$PUT _KEY

amc$put_key _req

AMP$PUT _NEXT

amc$put_next_req

AMP$PUT _PARTIAL

amc$put_partial_req

AMP$PUTREP

amc$putrep _req

AMP$REPLACE _KEY

amc$replace_key _req

Revision B Defining File Attributes 6-33

FILE A'ITRIBUTE DESCRIPTIONS

AMP$RETURN

amc$return_req

AMP$REWIND

amc$rewind_req

AMP$SEEK_DIRECT

amc$seek _direct_ req

AMP$SELECT _KEY

amc$select _key

AMP$SET _FILE_INSTANCE_ABNORMAL

amc$set_file_inst_abnormal_req

AMP$SET _LOCAL_NAME_ABNORMAL

amc$set_local_name _abnormal_req

AMP$SET _SEGMENT _EOI

amc$set_segment_eoi_req

AMP$SET _SEGMENT _POSITION

amc$set_segment_position_req

AMP$SKIP

amc$skip_req

AMP$SKIP _ TAPE_MARKS

amc$skip _tape _marks _req

AMP$START

amc$start_req

AMP$STORE

amc$store _ req

AMP$STORE_FAP _POINTER

amc$store_fap_pointer_req

AMP$WRITE_END _PARTITION

amc$write _end _partition_ req

AMP$WRITE_ TAPE_MARK

amc$write _tape _mark_req

6-34 CYBIL File Interface Revision B

FILE ATI'RIBUTE DESCRIPTIONS

line_number (sequential or byte addressable files only)

Line number length and its location in the record (preserved attribute).

Leading and trailing blanks are acceptable, but blanks cannot be
embedded in a line number. Line numbers must be in ascending order
within a compilation unit.

Value: Record containing the following fields (type
AMT$LINE _NUMBER):

length

Number of bytes in the line number (integer from 1 through 6).

location

Byte within the line at which the line number begins (integer from 1
through 65,536).

Default value: None.

max_block_length

Maximum length of a file block in bytes (preserved attribute). The
attribute is effective only with user-specified blocking.

Value: Integer from 1 through AMC$MAXIMUM_BLOCK-l (type
AMT$MAX_BLOCK_LENGTH). For indexed sequential files, the range
is 1 through 65,536; the system rounds up to the next power of 2 from
2,048 to 65,536, inclusive.

Default value: For sequential and byte addressable files, 4,128. For
indexed sequential files, the system calculates an appropriate default
value.

max _record_ length

Maximum length of a file record in bytes (preserved attribute). The system
only uses this attribute for indexed sequential files and for files with
ANSI fixed length (F) records although certain products (such as
Sort/Merge) use the attribute when processing other record types.

Value: Integer from 0 through AMC$MAXIMUM_RECORD (type
AMT$MAX_RECORD _LENGTH). For indexed sequential files, the
range is 1 through 65,497.

Default value: For sequential and byte addressable files, 256. For indexed
sequential files, no default value is provided; AMP$0PEN returns a fatal
error if an attribute value is not specified when the file is created.

Revision B Defining File Attributes 6-35

FILE ATTRIBUTE DESCRIPTIONS

message_control (indexed sequential files only)

Indicates that additional information is written on the $ERRORS file
(temporary attribute).

Value: Set of one or more of the following identifiers indicating the
information written (type AMT$MESSAGE_CONTROL):

AMC$TRIVIAL_ERRORS

Trivial errors logged (errors of severity ERROR).

AMC$MESSAGES

Informative messages logged.

AMC$STATISTICS

Statistics logged.

Default value: Null set (only fatal error messages are logged).

For more information, see chapter 10, Accessing Indexed Sequential Files.

min_block_length (sequential or byte addressable files only)

Minimum length of a file block in bytes (preserved attribute). The
attribute is effective only with user-specified blocking.

Value: Integer from 18 through AMC$MAXIMUM_BLOCK-1 (type
AMT$MIN _BLOCK_LENGTH). Seventeen bytes is the longest tape
noise block size.

Default value: 18.

min_record_length (indexed sequential files only)

Minimum record length in bytes (preserved attribute).

Value: Integer from 0 to AMC$MAXIMUM_RECORD (type AMT$MIN _
RECORD _LENGTH). For indexed sequential files, the value must be in
the range 0 though 65,497, but not greater than the max_record_length
value.

Default value: For ANSI fixed-length (F) records, the default value is the
max_record_length value. For indexed sequential files using embedded
keys, the default value is the sum of the key _position and key _length
values. Otherwise, the default value is 1.

For more information, see chapter 10, Accessing Indexed Sequential Files.

null_ attribute

Attribute identifier (AMC$NULL_ATTRIBUTE) that indicates that the
content of the attribute record is to be ignored.

6-36 CYBIL File Interface Revision B

FILE A'ITRIBUTE DESCRIPTIONS

open _position

Positioning required when the system opens the file (temporary attribute).

Value: One of the following identifiers (type AMT$0PEN_POSITION):

AMC$0PEN _NO _POSITIONING

File opened at current position (ASIS). This value opens an indexed
sequential file at its beginning-of-information (BOI).

AMC$0PEN _AT _BOI

File opened at its beginning-of-information.

AMC$0PEN_AT _EOI

File opened at its end-of-information.

If the file is an old file and the only valid access mode to the file is
append, AMC$0PEN _AT _EOI is the only valid open position.

Default value: For all files other than file OUTPUT, AMC$0PEN _AT_
BOI. For file OUTPUT, AMC$0PEN _AT _EOI.

The open_position specified on a file reference overrides all specifications
of that attribute except an open_position value specified on an
AMP$0PEN call. For example, if a file is referenced as $USER.MY_
FILE.$BOI, it is opened at its beginning-of-information unless the
AMP$0PEN call specifies another open_position. For more information
on file references, see the SCL Language Definition manual.

padding_character (sequential or byte addressable files only)

Character used to pad a short fixed-length (F) record (preserved attribute).

Value: An ASCII character (type AMT$PADDING_CHARACTER).

Default value: Space.

page_format (for listing file use)

Determines the listing format (preserved attribute). By system convention,
a processor specifies this value for its listing file and then calls internal
system routines that use the value to format the listing. A user can
display this attribute value to determine how a listing is formatted before
sending it to a printer.

The meanings listed for the attribute values describe how the internal
system routines interpret the values.

Revision B Defining File Attributes 6-37

FILE ATTRIBUTE DESCRIPTIONS

Value: One of the following identifiers (type AMT$PAGE_FORMAT):

AMC$CONTINUOUS _FORM

No page numbering; title inserted at the beginning of each new type of
information (source, errors, and so forth) and at the beginning of each
page. (The page_length is determined by the page_length attribute
value.) This is the recommended value for files to be listed at a
terminal.

AMC$BURSTABLE _FORM

Pages are numbered; top-of-form character and title inserted at the
beginning of each new type of information (source, errors, and so forth)
and at the beginning of each page. This is the commended value for
files to be listed on a forms printer with a page eject required for each
page.

AMC$NON _BURSTABLE_FORM

Pages are numbered; title inserted at the beginning of each new type of
information (source, errors, and so forth) and at the beginning of each
page. Insertion of a top-of-form character before the title depends on
the amount of space left on the page. If sufficient space remains to trip
space and print the title and three lines of data, the top-of-form
charcter is omitted. This value shortens listing printed on a forms
printer; each page is filled before a page eject is performed. e

Default value: For terminal files, AMC$CONTINUOUS_FORM; for all
other files, AMC$BURSTABLE_FORM.

page_length (sequential or byte addressable files only)

Number oflines on a page (preserved attribute).

Value: Integer from 1 through AMC$FILE_BYTE_LIMIT (type
AMT$PAGE_LENGTH).

Default value: For terminal files, the maximum file length (AMC$FILE_
BYTE_LIMIT). For all other files, the vertical_print_density value
multiplied by ten. (The default value assumes a 10-inch print form.)

page_width (sequential or byte addressable files only)

Number of characters on a line (preserved attribute).

Value: Integer value from 1 through AMC$MAX_PAGE_ WIDTH (type
AMT$PAGE_ WIDTH).

Default value: For a print line, 132; for a terminal line, the width of the
terminal screen.

6-38 CYBIL File Interface Revision B

FILE ATIRIBUTE DESCRIPTIONS

e permanent _file

Indicates whether the file is permanent or temporary (returned attribute).

Value: Boolean value.

TRUE

File is permanent.

FALSE

File is temporary.

record_limit (indexed sequential files only)

Maximum number of records in the file (preserved attribute).

Value: Integer from 1 through AMC$FILE_BYTE_LIMIT (242-1) (type
AMT$RECORD _LIMIT).

Default value: AMC$FILE_BYTE_LIMIT (242-J).

For more information, see chapter 10, Accessing Indexed Sequential Files.

record_type

Record type of file (preserved attribute).

Value: One of the following identifiers (type AMT$RECORD _TYPE):

AMC$V ARIABLE

CDC variable-length (V) records.

AMC$UNDEFINED

Undefined (U) records.

AMC$ANSI_FIXED

ANSI fixed-length (F) records.

For indexed sequential files, V and U records are internally equivalent.

Default value: For sequential and byte addressable files,
AMC$V ARIABLE; for indexed sequential files, AMC$UNDEFINED; for
files created with segment access, AMC$UNDEFINED.

For more information on record types, see Record Types in chapter 9.

Revision 13 Defining File Attributes 6-39

FILE ATTRIBUTE DESCRIPTIONS

records_per _block (indexed sequential files only)

Estimated number of records each data block should contain (preserved
attribute). The system uses the attribute value to calculate block size; it
uses the value only when opening a new file . It does not use the value as
a limit to the number of records that a block can contain.

Value: Integer from 1 to AMC$MAX_RECORDS_PER_BLOCK (type
AMT$RECORDS _PER_BLOCK).

Default value: 2.

For more information, see chapter 10, Accessing Indexed Sequential Files.

return_ option

Indicates when the file is implicitly detached (returned) to the system
(temporary attribute). (You can explicitly detach a file with a DETACH_
FILE command or an AMP$RETURN call.)

Value: One of the following identifiers (type AMT$RETURN _
OPTION):

AMC$RETURN_AT_CLOSE

Detach when the task closes the file and the job does not have another
instance of open for the file.

AMC$RETURN_AT_JOB_EXIT

Return when the job terminates.

NOTE

If the file cannot be detached when it is closed and the return_ option
AMC$RETURN _AT_ CLOSE was specified, the task does not receive
notification that the file is not detached.

Default value: AMC$RETURN _AT _JOB_EXIT.

6-40 CYBIL File Interface Revision B

FILE ATTRIBUTE DESCRIPTIONS

ring_ attributes

Three ring numbers (rl, r2, and r3) defining the ring brackets of the file
(preserved attribute).

• Write bracket: 1 through rl.

• Read bracket: 1 through r2.

• Execute bracket: rl through r2.

• Call bracket: r2+ 1 through r3.

The ring numbers cannot be lower than the ring number of the caller that
opens the file. If a new file is created by a file reference, it.s ring_ attributes
are those of the provider of the file reference specification.

Value: Record with three integer fields rl, r2, and r3 (type AMT$RING_
ATTRIBUTES).

Default value: All three ring numbers are the ring number of the
AMP$0PEN caller. If the file has not yet been opened, the attribute value
is undefined.

statement_identifier (sequential or byte addressable files only)

Statement identifier length and its location in the line (preserved
attribute).

Value: Record containing the following fields (type AMT$STATEMENT _
IDENTIFIER):

length

Number of characters in the statement identifier (integer from 1
through 17).

location

Character position of the first digit of the statement identifier (integer
from 1 through AMC$MAX_PAGE_ WIDTH).

Default value: None.

Revision B Defining File Attributes 6-41

FILE ATIRIBUTE DESCRIPTIONS

user_info ~
String that the system maintains as a file attribute (preserved attribute).
This attribute is used for interstate communication (see the CYBIL
System Interface manual).

Value: 32-character string (type AMT$USER_INFO). e
Default value: 32 blanks.

vertical_print_density (sequential or byte addressable files only)

Number oflines printed per inch (preserved attribute). A program can
reference this attribute value to determine the appropriate print density
and then add format effectors to select and deselect the print density.

The NOS/VE product set does not add format effectors to control the
print density.

Value: Integer from 6 through 12 (AMT$VERTICAL_PRINT _
DENSITY).

Default value: 6.

List Attributes

When creating a file to be printed, the task should set the following
attributes:

• file_ contents (must be AMC$LIST or AMC$UNKNOWN _CONTENTS).

• file_structure (must be AMC$DATA or AMC$UNKNOWN _
STRUCTURE).

• page_format.

• page_length.

• page_ width.

• vertical_print_density.

The NOS/VE product set does not add format effectors to control the print
density. Currently, to change the print density from the default, the program
must add format effectors to select and deselect a print density.

6·42 CYBIL File Interface Revision B

9 File Opening and Closing 7

File Identifiers .. 7-1

AMP$0PEN ... 7-2
AMP$CLOSE .. 7-5

Access Validation ... 7-6

Ring Number Validation .. 7-6
Access Mode Validation .. 7-6
Open Position for Appending .. 7-6
Implicit Release of File Data .. 7-6

Error Exit Procedure .. 7-7

Error Exit Procedure Attributes 7-7

File Sharing .. 7-8

Reading a Shared File .. 7-8
Writing a Shared File ... 7-9
Retrieving Access Information 7-9
AMP$FETCH_ACCESS_INFORMATION 7-16

File Opening and Closing 7

Opening a file enables access to its data; closing a file prevents access to its
data until the file is reopened. An AMP$0PEN call opens a file; an
AMP$CLOSE call closes an opened file.

An instance of open corresponds to an AMP$0PEN call for the file. Separate
access information is maintained for each instance of open. The access
information for an instance of open can be retrieved by an AMP$FETCH_
ACCESS_INFORMATION call.

For each instance of open, file data access is either through record access or
segment access. The access level is specified on the AMP$0PEN call.

File Identifiers
For each instance of open, AMP$0PEN assigns a file identifier. File
interface calls, then uses the file identifier to reference an instance of open.
Separate file positioning information is kept for each file identifier.

An AMP$CLOSE call closes only one instance of open, the instance of open
specified by the file identifier on the call.

Revision B File Opening and Closing 7-1

AMP$0PEN

AMP$0PEN

Purpose Prepares a local file for 1/0.

NOTE

If the AMP$0PEN call specifies a file with indexed
sequential file organization, you must specify
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_
SOURCE as an alternate base library when expanding the
source program decks.

Format AMP$0PEN (local_file_name, access_level, access_
selections, file_identifier, status)

Parameters local_file_name: amt$local_file_name;

Local file name.

access_level: amt$access_level;

Type of file 110 to be performed.

AMC$RECORD

Record access.

AMC$SEGMENT

Segment access (valid only for mass storage files whose
file_ organization attribute is not AMC$INDEXED _
SEQUENTIAL).

access_ selections: amt$file _ access_selections;

Pointer to an array of one or more file attribute records. You
must specify an attribute identifier and an attribute value in
each record. The valid attributes are listed in table 6-2.

To specify no attribute values, specify a NIL pointer for the
parameter or the keyword value NIL.

file_identifier: VAR of amt$file_identifier;

File access identifier (used subsequently to reference this
instance of open).

status: VAR of ost$status;

Status record. The process identifier returned is either AA
(for an indexed sequential file) or AM (AMC$ACCESS_
METHOD_ID).

7-2 CYBIL File Interface Revision B

Condition
Identifiers

Revision B

ame$attribute_ validation_ error
ame$concurrent_ tape _limit
ame$file_not_known
ame$fo _access_ level_ conflict
ame$fo _device_ class_ conflict
ame$improper _access_ level
ame$improper _append_ open
ame$improper _ fo _override
ame$im proper_ override_ access
ame$improper _record_ override
ame$im proper_ ss _block_ override
ame$improper __ us_ block_ override
ame$local_file_limit
ame$mbl _less_ than_ mi bl
ame$mbl _less_ than_ mrl
ame$multiple_ open_ of_ tape
ame$new _file_requires_append
ame$no _permission_ for_ access
ame$not _physical_ access_ device
ame$not_ virtual_ memory_ device
ame$null _access_ mode
ame$ring_ validation_ error
ame$terminal_ task_ limit
ame$unable_ to_load_collate_ tab!
ame$unable_ to_load_ error_exit
ame$unable_ to_load_fap

For indexed sequential files only:
aae$aam _requires_ access
aae$adding _level_ of_ index
aae$altered_not_closed
aae$can t _open_ new_ an_ old_ file
aae$cant_open_old_a_new _file
aae$collated_key _needs_ table
aae$data _pad_ too_ large
aae$file_reached_file_limit
aae$index_pad_too_large
aae$integer_key _gt_one_ word
aae$key _length_ O _or_ undef
aae$ max_ rec_ length_ 0 _or_ undef
aae$max_rec_length_too_big
aae$ min_ gt_ max_ record_ length
aae$no_home_ block_ count
aae$rec_ too_small_for_key

AMP$0PEN

File Opening and Closing 7 -3

AMP$0PEN

Remarks In preparing the file for I/O, the AMP$0PEN procedure
performs the following functions.

• Assigns a file identifier to this instance of open.

• Registers the local file name of a new temporary file in the
$LOCAL catalog if no call or command has defined it
previously.

• Overrides previously defined temporary attribute values
with any temporary attribute values specified by the
access_selections parameter on the call.

• For a new file, overrides previously defined structural
attribute values with any corresponding attribute values
specified by the access_selections parameter on the call. It
then stores the new attribute values with the file.

For an old file, it compares the structural attribute values
specified by the access_selections parameter with the
structural attribute values stored with the file. If the values
do not match, it returns abnormal status
(AME$ATTRIBUTE_ VALIDATION_ERROR). For more
information, see chapter 6, Defining File Attributes.

• Prepares the instance of open for either segment access or
record access according to the access_ level parameter on
the call.

• Positions the file according to its open_ position attribute.

• Loads the file access procedure and error exit procedure if
those attributes are defined.

• Loads the collate table if the collate table_ name attribute
is defined and the file is a new file. For an old file the
collate table value saved from the original open of the file
is made available; the table is not reloaded.

7-4 CYBIL File Interface Revision B

AMP$CLOSE

AMP$CLOSE

Purpose Terminates access to a file for a specified instance of open.

Format AMP$CLOSE (file_identifier, status)

e Parameters file_identifier.: amt$file_identifier;

File identifier assigned by AMP$0PEN.

Condition
Identifiers

Remarks

Revision B

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$improper _file_ id
ame$ring _validation_ error
ame$unrecovered_ write_ error

For indexed sequential files only:
aae$delete _keys_ this_ open
aae$get_keys_ this_ open
aae$get _next_ keys_ this_ open
aae$last _error_ repeated
aae$put _keys_ this_ open
aae$putreps _this_ open
aae$replace _keys_ this_ open

• Closing a file terminates the association of the file_
identifier parameter with an instance of open.

• If the file is an unlabeled tape file and the last operation to
the file was an output operation, the procedure terminates
the tape volume by writing two consecutive tapemarks on
the file, and then positions the tape just prior to the two
tapemarks.

File Opening and Closing 7-5

ACCESS VALIDATION

Access Validation

When a task attempts to open a file, NOS/VE validates both the caller's ring
number and the requested access modes. The valid open position depends on
the access modes requested.

Ring Number Validation

The ring number of the caller is compared with the read, write, and execute
ring attributes stored for the file. If the caller's ring is less than or equal to
the ring attribute value, the requested access is granted.

Access Mode Validation

The access modes requested on the AMP$0PEN call must be within the
global access mode set. The global access mode set for a permanent file is
specified when the file is attached to the job. The global access mode set for
a temporary file always includes all access modes (read, append, modify,
shorten, and execute).

For a new mass storage file, the access modes requested must include
append.

Open Position for Appending

If an AMP$0PEN call for an old file requests only append access, the open_
position attribute value must be AMC$0PEN _AT _EOI.

Implicit Release of File Data

If an AMP$0PEN call for an old file requests append and shorten access
with an open_ position of AMC$BOI, NOS/VE releases all existing data in
the file. Although the file is empty, its space and file attribute set remain
assigned to the file. For indexed sequential files, a message is issued to
inform the user that this has happened.

7-6 CYBIL File Interface Revision B

ERROR EXIT PROCEDURE

Error Exit Procedure

Normally, a file interface procedure returns abnormal status directly to its
caller. However, if an error exit procedure is defined for the specified
instance of open, the file interface procedure passes the abnormal status to
the error exit procedure. The status returned by the error exit procedure is the
status returned to the caller. This allows the error exit procedure to perform
error recovery for the instance of open.

A task can establish an error exit procedure to trap errors so that the task
need not check for abnormal status after each file interface call during an
instance of open. The error exit procedure is not effective for the
AMP$0PEN or AMP$CLOSE calls.

Error Exit Procedure Attributes

The error_exit_name attribute can name an error exit procedure for a file.
When the file is opened, the system searches for the procedure as an entry
point in the task or as an entry point in the object library list. After finding
the procedure, it loads the procedure in the program space, if it is not already
loaded, and then stores the procedure address as a temporary attribute.

While the file is open, the program can change the error exit procedure used
by replacing the address. It does so by calling AMP$STORE with a pointer
for the error_exit_procedure attribute. The new pointer address is used until
it is replaced by another address or the file is closed. An address specified by
AMP$STORE is never preserved.

The procedure declaration of the error processing procedure must specify the
XDCL attribute and have the parameter list defined as follows:

"procedure Cfile_identifier: amtSfile_ide~tifier;
VAR status: ostSstatus)

The error processing procedure must be callable from the ring from which
the file interface procedure is called.

When a file interface procedure (other than AMP$0PEN or AMP$CLOSE)
returns an abnormal status record, the system checks the file attributes to
determine whether the file has an error exit procedure. If it does, the system
calls the procedure and passes it the file identifier and the abnormal status
variable.

Revision B File Opening and Closing 7 -7

FILE SHARING

The procedure can then investigate the error and process it as desired. It A
could decide that the error can be ignored and change the status to normal; W
it could initiate recovery or diagnostic processing, or it could pass the same
or different abnormal status condition to the file interface procedure, which,
in turn, passes the condition to its caller.

File Sharing

Files assigned to the mass storage, interactive and null device classes can be
shared among tasks; files assigned to tape cannot be shared. Sharing of
interactive files is described in the Terminal Management chapter under
Terminal Input and under Terminal Output.

Separate file positioning information is maintained for each instance of
open that reads the file, including instances of open within the same task.
However, all tasks having concurrent instances of open for a file cycle share
a common end-of-information position.

Both temporary and permanent mass storage files and interactive files can
be shared among tasks within a job. Only permanent mass storage files can
be shared among tasks in different jobs.

All instances of open of a mass storage file share the same file copy in
virtual memory. Each instance of open is constrained to the mode of access e
granted to it. A file operation performed by one instance of open is effective
for all other instances of open. For example, an instance of open that can
read the file can read data written by a concurrent instance of open.

More than one job can attach a permanent mass storage file at the same
time if the share modes for the file allow it.

Reading a Shared File

Tasks within the same or different jobs that have opened the same file can
read the file independently. A get call always uses the file positioning
information maintained for its instance of open.

7-8 CYBIL File Interface Revision B

FILE SHARING

Writing a Shared File

In general, tasks writing to a shared file must coordinate their file access
among themselves. If the tasks open the file for segment access, the
coordinating information can be stored in the shared segment.

e The system supports a simple form of write serialization for sequential files
opened with the same local file name within the same job. In this case, each
put call to the file uses the global_file_address and global_file_position
attribute values to determine where it writes the record. These values are
updated by each get or put call to the file. The shared values are available to
each task that opens the file with that local file name within the same job.

Note that a get call does not use the global_file_address or global_file_
position values to determine where to read; it always uses the values
maintained for its instance of open. However, put calls do update the
global_file_address and global_file_position values.

Retrieving Access Information

While a file is open, the system maintains access information for that
instance of open. The access information items are listed in table 7-1.

The contents of the access information items change as the task performs
1/0 operations on the file. These operations are described in later chapters.
A task can fetch the value of any access information item with an
AMP$FETCH_ACCESS_INFORMATION call.

Revision B File Opening and Closing 7 -9

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)

Field

item_returned

key

block_ number

Content

Indicates whether the procedure returned a value
for the item (boolean value).

For indexed sequential files, AMP$FETCH_
ACCESS_INFORMATION always returns
FALSE as the item_ returned value for the
following items.

block_ number
current_ byte_ address
previous_ record_ address
previous_ record_ length
volume_number
volume_position

Key field specifying the item to be returned in the
record (AMT$ACCESS_INFO _KEYS). The key
identifier is the field name prefixed by AMC$ (for
example, AMC$BLOCK_NUMBER for the
block_ number field).

Number of the last block accessed by record I/O
(integer from 1 through AMC$MAX_BLOCK_
NUMBER).

current_ byte_address Current file position (byte offset into the file)
(integer from 0 through AMC$FILE_BYTE_
LIMIT).

duplicate_ value_insert,ed Boolean indicating whether the last put or replace
call wrote a record having an alternate key value
that duplicates the alternate key value of a record
already in the file (indexed sequential files only).
The indicated duplication could be for any
alternate key defined for the file.

eoi_ byte_address Current length of the file in bytes (integer from
0 through AMC$FILE_BYTE_LIMIT).

error_count

7-10 CYBIL File Interface

Number of errors returned by file access requests
for an indexed sequential file (integer from 0
through AMC$MAX_ERROR_ COUNT).

(Continued)

Revision B

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field

error_status

file_position

last_ access_ opera ti on

Revision B

Content

Condition code returned as the status of the last
file interface request for the file
(OST$STATUS_CONDITION).

Current file position of a file using record access
(AMT$FILE_POSITION).

AMC$BOI

Beginning-of-information

AMC$BOP

Beginning-of-partition

AMC$END _OF _KEY _LIST

End of a key list in an alternate index. (See
chapter 10 for more information.)

AMC$MID _RECORD

Within a record

AMC$EOR

End-of-record

AMC$EOP

End-of-partition

AMC$EOI

End-of-information

Code indicating the latest access request issued
for this instance of open (AMT$LAST _ACCESS_
OPERATION, integer from 105 through
AMC$MAX_ OPERATION). The following lists
the access requests and the corresponding
constant identifier declarations.

AMP$ABANDON_KEY _DEFINITIONS

amc$abandon_key _definitions

AMP$APPLY _KEY _DEFINITIONS

amc$apply _key_ definitions

(Continued)

File Opening and Closing 7-11

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field

7-12 CYBIL File Interface

Content

AMP$CLOSE

amc$close _ req

AMP$CREATE_KEY _DEFINITION
amc$create _key_ definition

AMP$DELETE
amc$delete _ req

AMP$DELETE_KEY
amc$delete _key_ req

AMP$DELETE_KEY _DEFINITION
amc$delete _key_ definition

AMP$FETCH
amc$fetch_req

AMP$FLUSH

amc$flush_ req

AMP$GET _DIRECT

amc$get _direct_ req

AMP$GET _KEY
amc$get_key _req

AMP$GET _KEY _DEFINITIONS
amc$get_key _definitions

AMP$GET _NEXT
amc$get_next_req

AMP$GET_NEXT_KEY

amc$get_next_key _req

AMP$GET _NEXT _PRIMARY _KEY _LIST
amc$get_next_primary _key _list

AMP$GET_PARTIAL
amc$get _partial_ req

AMP$GET _PRIMARY _KEY_ COUNT
amc$get_primary _key_ count

AMP$GET _SEGMENT _POINTER
amc$get _segment_ pointer_ req

(Continued)

Revision B

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field

Revision B

Content

AMP$0PEN
amc$open_ req

AMP$PUT _DIRECT
amc$put_direct_req

AMP$PUT _KEY
amc$put_key _req

AMP$PUT _NEXT
amc$put _next_ req

AMP$PUT _PARTIAL
amc$put_partial_req

AMP$PUTREP
amc$putrep _ req

AMP$REPLACE_KEY
amc$replace _key_ req

AMP$REWIND
amc$rewind_req

AMP$SEEK_DIRECT
amc$seek _direct_ req

AMP$SELECT _KEY
amc$select _key

AMP$SET _SEGMENT _EOI
amc$set_segment_eoi_req

AMP$SET _SEGMENT _POSITION
amc$set _segment_ position_ req

AMP$SKIP
amc$skip_req

AMP$START
amc$start _ req

AMP$STORE
amc$store _ req

AMP$WRITE_END_PARTITION
amc$write_end_partition_req

(Continued)

File Opening and Closing 7-13

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field

last_op_status

levels_ of_ indexing

Content

AMP$WRITE_ TAPE_MARK

amc$write_ tape_mark_req

Indicates whether the last access request is active
or complete.

AMC$ACTIVE

Access request is active.

AMC$COMPLETE

Access request is complete.

Number of index levels in an indexed sequential
file (integer from 0 through AMC$MAX_INDEX_
LEVEL). For more information, see chapter 10,
Accessing Indexed Sequential Files.

previous_record_address Starting address of the previous record (integer
from 0 through AMC$FILE_BYTE_LIMIT). It is
valid only for files opened for record access. The
value is defined only when the file position is
AMC$EOR.

previous_record_length Number of bytes in the last full record accessed
(integer from 0 through AMC$MAXIMUM_
RECORD). It is valid only for files opened for
record access. The value is updated whenever the
file position is AMCEOR, AMCBOP, or
AMC$EOP. For files accessed sequentially, the
value is the length of the previous record (0 after
an AMP$WRITE_END_pARTITION call).

primary _key Pointer to the location in which the primary key
for the record at the current file position is
returned. The pointer must be predefined before
the AMP$FETCH_ACCESS _INFORMATION
call is made (indexed sequential files only).

(Continued)

7-14 CYBIL File Interface Revision B

FILE SHARING

Table 7-1. File Information Record (AMT$ACCESS_INFO)
(Continued)

Field e residual_skip_count

selected_ key _name

volume_number

volume_ position

NOTE

Content

Number of units remaining to be skipped when
the file delimiter which ended the skip was
encountered (integer from 0 through AMC$FILE_
BYTE_LIMIT). The number of units requested
minus the residual_ skip_ count yields the number
of units skipped.

Name of last key selected for the file (indexed
sequential files only). If no alternate key has been
selected, the name $PRIMARY _KEY is returned.

Number of the current tape volume in the volume
sequence. The first volume in the sequence is
volume 1 (integer from 1 through
AMC$MAX_ VOLUME_NUMBER).

Current position of the current tape volume.

AMC$BOV

Beginning-of-volume.

AMC$AFTER_ TAPEMARK

After a tape mark

AMC$EOV

End-of-volume.

The CYBIL declaration for AMT$ACCESS_INFO in Appendix C lists
additional fields besides those listed here. These additional fields are for
features not yet implemented.

Revision B File Opening and Closing 7-15

AMP$FETCH_ACCESS_INFORMATION

AMP$FETCH_ACCESS_INFORMATION

Purpose

Format

Parameters

Condition
Identifiers

Retrieves information about an open file.

NOTE

The information applies only to the specified instance of
open.

AMP$FETCH_ACCESS _INFORMATION (file_
identifier, access_information, status)

file_ identifier: amt$file _identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

access information: VAR of amt$access_information;

File information array. Each record in the array specifies the
access information item to be returned in the record. (See
table 7-1.)

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$improper _access _info_ key
ame$im proper_ file_ id
ame$ring_ validation_ error

For indexed sequential files only:
aae$not_ enough_ permission

7-16 CYBIL File Interface Revision B

a Accessing a File as a Memory
•Segment 8

e C~BIL Data Storage .. 8-1

Virtual Memory Access .. 8-3

Segment Attributes .. 8-4

Segment Length .. 8-4

Segment Pointer .. 8-5

AMP$GET _SEGMENT _POINTER 8-6
Cell Pointer .. 8-8
Heap Pointer ... 8-9

Allocating a Heap Within a Sequence 8-10
Sequence Pointer .. 8-13

Sharing a Segment Access File .. 8-15

Setting the End-of-Information Address 8-15
Setting the End-of-Information Address Using a
Sequence Pointer ... 8-15
Setting the End-of-Information Address Using a Cell Pointer 8-17
Setting the Current Byte Address 8-17

AMP$SET _SEGMENT_EOI 8-18
AMP$SET _SEGMENT _POSITION 8-20

9 Accessing a File as a Memory
Segment 8

e NOS/VE provides two levels of access for mass storage files: record access
and segment access. When a task opens a file, it specifies the access level for
the instance of open.

NOTE

Segment access is valid only for mass storage files with sequential or byte
addressable file organization. It is not valid for files with indexed sequential
file organization or files assigned to the tape or terminal device classes; an
attempt to get a segment pointer for a file assigned to the null device class
returns a NIL pointer.

CYBIL Data Storage
When deciding whether to access a file as a segment, you should consider
how segment access compares to the other data storage mechanisms
available to a CYBIL program. A CYBIL program can use any or all of the
following:

• The CYBIL run-time stack or default heap.

• Files read or written using segment access.

• Files read or written using record access.

When comparing use of the CYBIL run-time stack or default heap with use
of a segment access file, consider the following:

• Segment access, the run-time stack, and the default heap all allow
dynamic expansion of the task address space to fit task needs. (Space is
allocated using the PUSH statement for the run-time stack, the
ALLOCATE statement for the default heap, and ALLOCATE or NEXT
statements for a segment access file.)

• Segment access, the run-time stack, and the default heap all allow you to
read and write data using pointer variables declared within the task.

• Data stored in a segment access file can be accessed after the task
terminates. Data stored in the run-time stack or default heap is discarded.

Revision B Accessing a File as a Memory Segment 8-1

CYBIL DATA STORAGE

• Data stored in a segment access file is sharable. Data stored in the run- e
time stack or default heap is not sharable. (For an example of sharing a
segment access file between tasks, see the queue communication example
in the CYBIL System Interface manual.)

• Data stored in a sequence is contiguous whereas data stored in a heap is e
interspersed with system information. For example, data written as a
sequence could later be read as an array because the data is contiguous. If
the task cannot predict the required size of the sequence, it should write
the sequence in a segment access file because a segment access file allows
dynamic extension with contiguity of data.

When comparing use of segment access with use of record access, consider
the following:

• A task that opens a file for record access reads and writes file data as
records using the file interface calls described in chapters 9 and 10. A task
that opens a file for segment access reads and writes file data using
CYBIL statements.

• File 1/0 using segment access is more efficient than file 1/0 using record
access because no explicit system calls are required to access data. Using
segment access, the movement of data between memory and mass
storage is done implicitly as the task references the data in memory.

• Unlike a record access file, a segment access file has no structure imposed
on it by NOS/VE. Record and partition boundaries are not recognized.
Opening a file for segment access allows the task to impose its own
structure on the file data.

• Because NOS/VE imposes no structure on a segment access file, the task
that writes data on the file is responsible for determining how the data
can later be read. It should write data organization indicators as needed.
A program that reads the file data must use the data conventions
imposed by the program that wrote the data.

• Character data files to be referenced by NOS/VE commands should be
read and written using record access.

• Error handling for a segment access file requires establishment of a
condition handler for segment access conditions. (Condition handlers and
segment access conditions are described in the CYBIL System Interface
manual.)

8-2 CYBIL File Interface Revision B

Virtual Memory Access

When a task opens a file for segment access, the file is referenced as a
segment of virtual memory. A virtual memory segment is a portion of the
task's address space. Access to a segment is controlled by its access modes
and ring attributes.

The system memory manager associates real pages of memory with the
virtual memory segment. An address in a virtual memory segment is called
a process virtual address (PV A). When the task references a PV A, the
system memory manager associates the PV A with its real memory address.

The system memory manager ensures that all values written in memory are
also stored in the mass storage copy of the file. Similarly, when data is read
from a file, the system memory manager ensures that the referenced data is
copied from the mass storage copy to memory.

Figure 8-1 illustrates the association of a PVA with a real memory address,
that, in turn, is associated with a mass storage address. The system
performs all translation of addresses; the process is transparent to the user.

Revision B

Virtual Memory
Segment

address

Real Memory
Pages

Figure 8-1. Virtual Address Translation

Accessing a File as a Memory Segment 8-3

SEGMENT ATTRIBUTES

Segment Attributes

The ring attributes of the segment referenced as a segment access file are
determined by the value of its file attribute ring_ attributes. The access
modes of the segment are determined by the value of its access_modes
attribute. File attribute definition is described in chapter 6.

NOTE

If a file is opened for segment access without read access, any PACKED
data structures written in the segment must have each component aligned
on a byte boundary. To write a component of a packed data structure that is
not aligned on a byte boundary, the system must perform a read operation
before the write operation. The read operation requires read access.
Therefore, if the file is opened without read access, an attempt to write an
unaligned PACKED component causes an access_fault condition.

Segment Length

The maximum size of a segment access file is determined by the value of the
file_limit file attribute. It is therefore recommended that you specify the file_
limit attribute value when you open a file for segment access. In general, you A
do so by declaring a type and then specifying its size as the file_limit value. -

For example, the following statement declares a heap type.

TYPE
sequence_type = SEQ(REP 100 OF INTEGER);

The following statement declares an access_selections variable using the
declared heap type.

VAR
access_selections: [STATIC] ARRAY [1 •• 1J OF

amt$access_selections := [[amc$file_Limit,
C#SIZECsequence_type))JJ;

The following AMP$0PEN call references the access_selections variable.

amp$open(Lfn, amc$segment, ~access_selections,
fid, status);

8-4 CYBIL File Interface Revision B

SEGMENT POINTER

Segment Pointer

The CYBIL statements (such as ALLOCATE and NEXT) that reference the
segment require a pointer to the segment. To get the pointer, the task calls
AMP$GET _SEGMENT _POINTER. e The AMP$GET _SEGMENT _POINTER call specifies the type of pointer
required and, therefore, the data storage type accessed through the segment
pointer. The call can request a cell pointer, a sequence pointer, or a heap
pointer.

Revision B Accessing a File as a Memory Segment 8-5

AMP$GET _SEGMENT _POINTER

AMP$GET _SEGMENT _POINTER

Purpose

Format

Returns a pointer to the virtual memory segment assigned to
a file.

AMP$GET _SEGMENT _POINTER (file_identifier,
pointer_kind, segment_pointer, status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

pointer _kind: amt$pointer_kind;

Type of pointer to be returned.

AMC$CELL_POINTER

Pointer to a cell.

AMC$HEAP _POINTER

Pointer to an adaptable heap.

AMC$SEQUENCE_POINTER

Pointer to an adaptable sequence.

segment_pointer: VAR of amt$segment_pointer;

Record containing the pointer kind identifier and a pointer
variable initialized by the call.

kind

Key field determining the pointer type returned.

AMC$CELL_POINTER

Cell pointer returned in the cell_ pointer field.

AMC$HEAP _POINTER

Heap pointer returned in the heap_pointer field.

AMC$SEQUENCE_POINTER

Sequence pointer returned in the sequence_pointer field.

cell_ pointer

Cell pointer ("CELL).

heap_pointer

Adaptable heap pointer ["HEAP(*)].

sequence_pointer

Adaptable sequence pointer ["SEQ(*)].

8-6 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

AMP$GET _SEGMENT _po INTER

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS _METHOD _ID.

ame$improper _file_ id
ame$improper _pointer _kind
ame$read_of_empty _segment
ame$ring _validation_ error
ame$write _of_ empty_ segment

• If the pointer returned is a cell pointer, the call initializes
the byte offset portion of the pointer to the current_ byte_
address of the file.

• If the pointer returned is an adaptable heap pointer, the
call initializes the byte offset portion of the pointer to zero,
the address of the first byte of the segment. It initializes
the heap length portion of the pointer depending on the
content and access modes of the file as follows:

- If the file contains no data (null length) and the task
has requested append access to the file, the heap length
is initialized to the file_limit attribute value. (If the file
contains no data and the task has not requested append
access, the call returns abnormal status.)

- If the file contains data but the task has not requested
append access to the file, the heap length is initialized to
the eoi _byte_ address of the file.

- If the file contains data and the task has requested
append access to the file, the heap length is initialized to
the file_limit attribute value.

• If the pointer returned is an adaptable sequence pointer,
the call initializes the byte offset in the pointer to the first
byte of the segment and the current position in the pointer
to the current_ byte_address value. It initializes the
sequence length in the pointer the same way it initializes
the heap length in an adaptable heap pointer.

• An AMP$GET _SEGMENT _POINTER call does not
change the contents of the file.

• An AMP$GET _SEGMENT _POINTER call that specifies
a file assigned to the null device class (such as the $NULL
file) returns a NIL pointer.

Accessing a File as a Memory Segment 8-7

SEGMENT POINTER

Cell Pointer

A cell pointer is the process virtual address (PV A) of a location in virtual
memory. A PV A contains a ring number, the segment number, and a byte
offset within the segment. When AMP$GET _SEGMENT _POINTER
returns a cell pointer to the segment, it initializes the PV A byte offset to the
current_byte_address of the file. (An AMP$FETCH_ACCESS_
INFORMATION call can return the current_byte_address value.)

For example, if the file is opened at its beginning-of-information, the byte
offset is set to 0, pointing to the first byte in the segment. However, if the file
is opened at its end-of-information, the byte offset is set to the eoi_byte_
address and the file is positioned for appending data.

A cell pointer can only be used within an assignment statement; it cannot be
used to reference the segment directly. To use the cell pointer, the task must
perform the following steps.

1. Declare a pointer to a fixed type data structure. For example, the
following statement declares a pointer to a character array:

VAR
array_pointer: "ARRAY[1 •• 1000J OF char;

2. Assign the cell pointer value to the declared pointer variable. For
example, the following statement assigns the value of a cell pointer
returned by AMP$GET _SEGMENT _POINTER to the previously
declared pointer variable:

array_pointer := segment_pointer.cell_pointer;

3. Dereference the pointer variable to reference space in the segment. For
example, the following statement stores 'A' as the first character in the
array:

array_pointer"[1J := 'A';

8-8 CYBIL File Interface Revision B

SEGMENT POINTER

Heap Pointer

A heap pointer contains a PV A and the heap length. AMP$GET _
SEGMENT _POINTER initializes the byte offset of a heap pointer to zero,
pointing to the first byte in the heap.

The heap length initialization depends on whether the file is opened for
append access. If the file is opened for append access, AMP$GET _
SEGMENT _POINTER initializes the heap length to the file_limit value, the
maximum length of the file. If the file is not opened for append access,
AMP$GET _SEGMENT _POINTER initializes the heap length to the eoi_
byte_ address, its current end-of-information.

Before executing the first ALLOCATE statement for a new heap, the task
must execute a RESET statement to ensure that the heap is initialized. It
can then execute ALLOCATE statements to reserve space for variables in
the heap.

The ALLOCATE statement returns a NIL pointer if the heap does not
contain enough free space for the variable. The task should check for a NIL
pointer after each ALLOCATE statement. If the task attempts to dereference
a NIL pointer, either a CYBIL run-time error or a segment access condition
occurs, depending on whether the program compilation requested NIL
pointer checking (RUN_ CHECKS= N on the CYBIL command).

The task can free space within the heap with a FREE statement. The FREE
statement specifies a pointer to the variable whose space is to be released. A
RESET statement frees all space in the heap.

Revision B Accessing a File as a Memory Segment 8-9

SEGMENT POINTER

Allocating a Heap Within a Sequence

Data written in a heap is more easily accessed by subsequent tasks if the
heap is created within a sequence. The sequence could begin with a directory
to the heap variables followed by the heap itself.

NOTE

To be used by a subsequent task, a directory of pointers must contain CYBIL
relative pointers. Absolute pointers are not usable because they include the
segment number, which could differ for the next instance of open.

For example, figure 8-2 lists a program that performs the following steps.

1. Opens a file for segment access and gets a sequence pointer to the file.

2. Reserves space for a heap directory and a heap in the sequence.

3. Reserves space for an integer variable in the heap and then stores a
value in the heap variable and a relative pointer to the heap variable
in the directory.

4. Closes the file.

8-10 CYBIL File Interface Revision B

SEGMENT POINTER

MODULE segment_example;
*copyc amp$open
*copyc pmp$exit
*copyc amp$get_segment_pointer
*copyc amp$close

PROGRAM heap_in_sequence;

CONST
{This is the number of integer variables in the}
{heap.}

number_of_variables 1;

TYPE
heap_type = HEAP(REP number of variables

OF integer),
relative_pointer_type = REL(heap_type) "integer,
directory_type =ARRAY [1 •• number_of_variables] OF

relative_pointer_type;

VAR
lfn: [STATIC] amt$local_file_name := 'FILE1',
status: ost$status,
fid: amt$file_identifier,
segment_pointer: amt$segment_pointer,

{The following specifies the segment Length as }
{the size of the directory plus the size of}
{the heap.}

access_selections: [STATIC] ARRAY [1 •• 1] OF
amt$access_selection := [[amc$file_Limit,
(#SIZE(directory_type) + #SIZE(heap_type))JJ,

directory_pointer: "directory_type,
heap_pointer: "heap_type,
variable_pointer: "integer;

(Continued)

Figure 8-2. Example of Allocating a Heap in a Sequence

Revision B Accessing a File as a Memory Segment 8-11

SEGMENT POINTER

(Continued)

amp$open (lfn, amc$segment, "access_selections,
fid, status);

IF NOT status.normal THEN
pmp$exit (status);

!FEND;

amp$get_segment_pointer (fid, amc$sequence_pointer,
segment_pointer, status);

IF NOT status.normal THEN
pmp$exit (status);

!FEND;

RESET segment_pointer.sequence_pointer;
NEXT directory_pointer IN

segment_pointer.sequence_pointer;
IF directory_pointer <>NIL THEN

NEXT heap_pointer IN segment_pointer.sequence_pointer;
IF heap_pointer < > NIL THEN

RESET heap_pointer";
ALLOCATE variable_pointer IN heap_pointer";
IF variable_pointer < > NIL THEN

variable_pointer" := 1;
directory_pointer"[1J :=

#REL(variable_pointer, heap_pointer");
!FEND;

!FEND;
!FEND;

amp$close (fid, status);
IF NOT status.normal THEN

pmp$exit (status);
!FEND;

PROCEND heap_in_sequence;
MODEND segment_example;

Figure 8-2. Example of Allocating a Heap in a Sequence

8-12 CYBIL File Interface Revision B

SEGMENT POINTER

After the segment access file is written using the program listed in figure 8-2,
another task can read the value written by using the same variable
declarations used by the task that wrote the file. The task would open the file
for segment access, get a sequence pointer to the segment, and then execute
the following statements to read the value from the heap:

RESET segment_pointer.sequence_pointer;
NEXT directory_pointer IN

segment_pointer.sequence_pointer;
IF directory_pointer <>NIL THEN

NEXT heap_pointer IN
segment_pointer.sequence_pointer;

IF heap_pointer < > NIL THEN
RESET heap_pointerA;
variable_pointer :=

#PTR(directory_pointerA[1J, heap_pointerA);
IF variable_pointer < > NIL THEN

value := variable_pointerA;
!FEND;

I FEND;
!FEND;

The #PTR function returns a pointer to the integer value in the heap. The
pointer is then dereferenced to assign the integer value to the integer
variable, VALUE.

Sequence Pointer

A sequence pointer has three components: a pointer to the beginning of the
sequence, the current position in the sequence, and the sequence length. The
values of the beginning-of-sequence pointer and the sequence length do not
change during the lifetime of the pointer; the value of the current position is
changed by each NEXT or RESET statement.

AMP$GET _SEGMENT _POINTER initializes the pointer to the beginning
of the sequence to zero. It initializes the current position to the current_
byte_ address. The initialization of the sequence length depends on whether
the file is opened for append access.

If the file is opened for append access, AMP$GET _SEGMENT _POINTER
initializes the sequence length to the file_limit value; in this case, the
sequence length is the maximum length of the file. If the file is not opened
for append access, AMP$GET _SEGMENT _POINTER initializes the
sequence length to the eoi_byte_address; the sequence length is the current
length of the file.

Revision B Accessing a File as a Memory Segment 8-13

SEGMENT POINTER

A NEXT statement is used to reserve space for a variable in the sequence
beginning at the current position. As described in the CYBIL Language
Definition manual, the NEXT statement has the following format:

NEXT pointer_ variable IN sequence_ pointer;

As shown, the NEXT statement specifies two pointers: a pointer variable
and the sequence pointer. The pointer variable type determines the amount
of space reserved by the NEXT statement.

A NEXT statement initializes the byte offset in the pointer variable to the
current position value in the sequence pointer. It then advances the current
position to the next available byte in the sequence. For example, if the
current position in the sequence pointer is 0 before the NEXT statement and
the variable to be reserved by the NEXT statement is 10 bytes long, the
NEXT statement initializes the pointer variable to point to byte 0 in the
sequence and advances the current position in the sequence pointer to 10. A
second execution of the same NEXT statement would set the pointer variable
to byte 10 and the current position in the sequence pointer to byte 20.

Subsequent NEXT statements continue to advance the current position
within the segment pointer. When a NEXT statement returns a NIL pointer,
the current position has reached the sequence length, and no more space can
be reserved.

The task should check for a NIL pointer after each NEXT statement. If the
task attempts to dereference a NIL pointer (pointer'), either a CYBIL run
time error or a segment access condition occurs depending upon whether the
program compilation requested CYBIL NIL pointer checking (RUNTIME_
CHECKS=N on the CYBIL command).

A RESET statement can always reset the current position to the beginning
of the sequence or to a previous position in the sequence (if the pointer value
to the position has not been discarded).

The RESET and NEXT statements do not read data from or write data to
the file. Data is read or written by dereferencing a variable pointing to space
reserved in the sequence.

The RESET and NEXT statements do not change the current_ byte_ address
or the eoi_byte_address of the file. To change the current_byte_address or
the eoi_byte_address, you call AMP$SET _SEGMENT _POSITION or
AMP$SET _SEGMENT _EOI, respectively.

8-14 CYBIL File Interface Revision B

SHARING A SEGMENT ACCESS FILE

Sharing a Segment Access File

When a task writes data in a segment access file for use by another instance
of open, it can store the following information for later use:

• The position where the data ends (its eoi_ byte_address).

• The position within the file to which the next segment pointer should be
initialized (its current_ byte_ address), assuming the file is opened without
repositioning (open_ position attribute value AMC$0PEN _NO_
POSITIONING).

Setting the End-of-Information Address

If the task that writes data in a segment access file does not set the eoi_
byte_ address of the value, the system assumes the file extends to the end of
the highest page referenced by the task. However, if the file data does not
extend to the end of the highest page referenced, the file includes unused
space (which might be considered data by the next reader of the file). To
reduce the file length to include only the space used, the task calls
AMP$SET _SEGMENT _EOI to store the eoi_ byte_address of the file.

A task cannot pass a heap pointer to AMP$SET _SEGMENT _EOI. It can e only pass a cell pointer or a sequence pointer.

Setting the End-of-Information Address Using a Sequence
Pointer

If the segment pointer is a sequence pointer, the task specifies on the
AMP$SET _SEGMENT _EOI call the segment pointer value returned by the
NEXT statement for the last element in the sequence. For example, if the
end-of-information is to be after the tenth element in the sequence, the task
should pass the value of the segment pointer after the tenth NEXT
statement is executed.

Revision B Accessing a File as a Memory Segment 8-15

SHARING A SEGMENT ACCESS FILE

When setting the eoi_byte_address of a sequence, the task could set the end
of-information at a previous element in the sequence. For example, suppose a
task uses the following statements to reserve space for two integer variables
in a sequence and assign values to the variables.

NEXT variable1_pointer IN
segment_pointer.sequence_pointer;

IF variable1_pointer < > NIL THEN
variable1_pointer" := 1;
NEXT variable2_pointer IN

segment_pointer.sequence_pointer;
IF variable2_pointer < > NIL THEN

variable2_pointer" := 2;
!FEND;

I FEND;

The task then decides to discard the second variable. To do so, it uses the
following statements:

RESET segment_pointer.sequence_pointer TO
variable2_pointer;

amp$set_segment_eoi (fid, segment_pointer, status);

The AMP$SET _SEGMENT _EOI call sets the end-of-information after the
first variable in the sequence.

8-16 CYBIL File Interface Revision B

SHARING A SEGMENT ACCESS FILE

Setting the End-of-Information Address Using a Cell Pointer

If the segment pointer is a cell pointer, the task sets the end of information
address by initializing the cell pointer to the byte following the data storage
used.

For example, suppose the cell pointer was assigned to point to an array of
500 elements. Assuming that the task stored data in the first 425 elements of
the array, it should set the end of information at the next element. Therefore,
before calling AMP$SET _SEGMENT _EOI, the task initializes the cell
pointer as follows:

segment_pointer.cell_pointer := Aarray_pointerA[426J;

It then specifies the segment pointer on an AMP$SET _SEGMENT_ EOI
call.

Setting the Current Byte Address

As stated before, when AMP$GET _SEGMENT _POINTER returns a
segment pointer, it initializes the byte offset in the pointer to the current_
byte_ address of the file. The current_ byte_ address where the next segment
pointer should be initialized can be set by an AMP$SET _SEGMENT_
POSITION call.

If the file is opened without repositioning (open_ position attribute value
AMC$0PEN _NO _POSITIONING), the current_ byte_address provided by
a previous file accessor is used in the segment pointer. This is so only if the
file is opened without repositioning; opening at the beginning of information
(AMC$0PEN _AT _BOI) or end-of-information (AMC$0PEN _AT _EOI)
changes the current_ byte_ address.

Revision B Accessinl! a File as a Memorv Se!!ment 8-1 7

AMP$SET _SEGMENT _EOI

AMP$SET _SEGMENT _EOI

Purpose

Format

Parameters

Condition
Identifiers

Sets the byte address of the end of information (EOI) of a file.
It also sets the current_ byte_address and the global_file_
address to the new EOI address.

NOTE

To lengthen the file, the instance of open must have append
access. To shorten the file, the instance of open must have
shorten access.

AMP$SET _SEGMENT _EOI (file_identifier, segment_
pointer, status)

file _identifier: amt$file_identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

segment_pointer: amt$segment_pointer;

Segment pointer to the new end-of-information of the file. The
pointer can contain a cell pointer or a sequence pointer; it
cannot contain a heap pointer.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS _METHOD _ID.

ame$im proper_ file_ id
ame$improper_segment_number
ame$improper_segment_pointer
ame$ring_ validation_ error
ame$set _ eoi _needs_ append
ame$set _ eoi _needs_ shorten
ame$set_on_adaptable_heap

8-18 CYBIL File Interface Revision B

Remarks

Revision B

AMP$SET _SEGMENT _EOI

• The procedure uses the byte offset in the segment pointer
as the new eoi_byte_address value. Assuming that the
next instance of open does not request append access, the
file length extends to the stored eoi_byte_address.

• Calling the AMP$SET _SEGMENT _EOI procedure stores
the actual end-of-information of the file. Otherwise, if the
AMP$SET _SEGMENT _EOI procedure is not called, the
end-of-information is assumed to be the first byte beyond
the end of the highest page referenced. The last page of the
file could be only partially filled with data. Therefore,
subsequent tasks could read file space that contains
invalid information.

• To shorten the file (assuming the task has shorten
privilege to the file), the call specifies a new EOI address
numerically less than the former EOI address. The
procedure discards the pages following the new EOI
address. However, it retains the page containing the new
EOI address; all data within that page remains available.

• The segment pointer specified cannot be a heap pointer.
The EOI of an adaptable CYBIL heap is always extended
to the end of the highest page the task has referenced in
the heap.

• A task can determine the current end-of-information byte
address by calling AMP$FETCH_ACCESS_
INFORMATION.

Accessing a File as a Memory Segment 8-19

AMP$SET _SEGMENT _POSITION

AMP$SET _SEGMENT _POSITION

Purpose

Format

Sets the current byte address and global file address of a file.

AMP$SET _SEGMENT _POSITION (file_identifier,
segment_pointer, status)

Parameters file_identifier: amt$file_identifier;

Condition
Identifiers

Remarks:

File identifier returned by the AMP$0PEN call that opened
the file.

segment_pointer: amt$segment_pointer;

Segment pointer to the new current byte address. The pointer
can contain a cell pointer or a sequence pointer; it cannot
contain a heap pointer.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD _ID.

ame$improper_file_id
ame$improper_segment_number
ame$improper_segment_pointer
ame$ring_ validation_ error
ame$set_ on_ adaptable_ heap
ame$set_pos_beyond_eoi

• When creating a new file, a task must call AMP$SET _
SEGMENT _EOI before calling AMP$SET _SEGMENT_
POSITION.

• The segment pointer specified cannot be a heap pointer
because a heap does not have a position.

• By storing the current position of the file, the next task can
open the file at that position by specifying no positioning
on the next AMP$0PEN call.

• A task can determine the current byte address by calling
AMP$FETCH_ACCESS_INFORMATION.

8-20 CYBIL File Interface Revision B

Accessing Sequential and Byte
Addressable Files 9

Logical File Structure .. 9-1

Working Storage Area ... 9-1

Record Types ... 9-2
CDC Variable (V) Record Type 9-2
ANSI Fixed-Length (F) Record Type 9-2
Undefined (U) Record Type ... 9-3

File Blocking .. 9-4
System-Specified Blocking .. 9-4

U Record Type .. 9-4
User-Specified Blocking ... 9-4

V Record Type ... 9-5
F Record Type ... 9-5
U Record Type .. 9-6

Sequential Record Access .. 9-7
Using Sequential Access Calls to Write

a Byte Addressable File .. 9-8

Random Record Access .. 9-9
File Directory Use ... 9-10
User-Specified Blocking .. 9-10
AMP$SEEK_DIRECT ... 9-11

Byte Addressable File Example 9-12

File Positioning .. 9-14
Positioning a File by Records or Partitions 9-14

File Position After a Skip 9-14
Skip That Encounters File Boundaries 9-16
AMP$REWIND ... 9-17
AMP$SKIP ... 9-18

Reading Records ... 9-20
File Position Returned ... 9-20
Get Calls .. 9-20
AMP$GET _DIRECT .. 9-21
AMP$GET _NEXT .. 9-23
AMP$GET _PARTIAL ... 9-26

Writing Records .. 9-29
Establishing a New End-of-Information 9-29
Padding Fixed-Length Records 9-29
Truncating Fixed-Length Records 9-30
Writing Records Longer Than the Working Storage Area 9-30
AMP$FLUSH ... 9-31
AMP$PUT _DIRECT .. 9-33
AMP$PUT _NEXT .. 9-35
AMP$PUT _PARTIAL ... 9-37
Writing Partition Delimiters 9-38
AMP$WRITE_END_PARTITION 9-39

Accessing Sequential and Byte
Addressable Files

Opening a file for record access indicates that get and put calls are used to
read and write records of data. To open a file for record access, specify
AMC$RECORD for the access_level parameter on the AMP$0PEN call.

9

Record access is valid for all device classes. (Segment access is valid only for
mass storage files.)

Record access offers device class independence. The same get or put call can
read or write a record to any device class.

Logical File Structure

Opening a file for record access indicates that the program gets and puts file
data within a file structure. File data exists within records. Records can be
grouped into partitions if the record type used has partition delimiters.

The beginning-of-information for record access is the point at which the
system can begin to read the first record. The end-of-information is the point e immediately after the last record in the file.

The CDC variable (V) record type is the only record type that supports file
partitioning. A file that uses the V record type consists of one or more
partitions. If the file contains no end-of-partition delimiters, the entire file is
one partition. A partition delimiter is a special record separating two
partitions.

Working Storage Area

Record access calls specify a working storage area. When putting data in the
file, the system copies data from the working storage area to a buffer it
maintains. It manages the writing of data from the buffer to the file. When
getting data from the file, the system reads data from the file to its buffer. It
then copies data from the buffer to the working storage area.

Revision B Accessing Sequential and Byte Addressable Files 9-1

RECORD TYPES

Record Types

When a file is opened for record access, the record_ type file attribute
determines the record format that the system reads and writes on the file.
The record types are CDC variable (V), ANSI fixed length (F), and undefined
(U).

CDC Variable (V) Record Type

The V record type has the following characteristics.

• Default record type for NOS/VE.

• Supports fixed or variable record lengths.

• Supports partial record I/O and file partitioning.

Each V record has a record header. The header contains the record length
and the length of the preceding record.

The end-of-partition delimiter for the V record type is a record header that
has a record length of zero and its end-of-partition flag set.

The system ·writes the header when it writes the record. It uses the header
information for positioning of the file. When reading a record, it does not
copy the record header to the working storage area.

ANSI Fixed-Length (F) Record Type

The F record type has the following characteristics:

• Supports data interchange between differing systems because it is an
ANSI standard record type.

• Supports partial record I/O, but does not support partitioning.

• Provides efficient storage of records of constant length. If a record is
shorter than the fixed record length, however, the system pads the record
to the fixed record length.

The fixed record length is the number of bytes specified by the max_record_
length attribute value. Depending on the amount of file space used for record
padding, the V record type is usually more space efficient for variable length
records.

If the block_ type is user-specified and the block being written does not have
space for another record, the system pads the block with circumflex n
characters. The user-specified minimum block length must be at least the
max_ record_ length value. For more information, see User-Specified
Blocking in this chapter.

9-2 CYBIL File Interface Revision B

RECORD TYPES

Undefined (U) Record Type

The system considers a file with U record type as an unstructured byte
string. The U record type has the following characteristics:

• Supports tape files for which a block is equivalent to a record.

• Supports data interchange with differing systems without using an ANSI
standard record type.

• Supports partial record I/O but does not support file partitioning.

• Any file can be read as U records regardless of its previous record type.

The task specifies the starting location and length of each record. The
system imposes no structure on the file other than file blocking.

If the block_ type is user-specified and the record being written is shorter
than the min_ block_ length attribute value, the system pads the block with
circumflex (') characters. For more information, see User-Specified Blocking
in this chapter.

Revision B Accessing Sequential and Byte Addressable Files 9-3

FILE BLOCKING

File Blocking
Data within a tape or mass storage file is written and read as a series of
blocks. NOS/VE supports both system-specified and user-specified file
blocking. The block_ type file attribute specifies the physical group ofrecords
in the file.

System-Specified Blocking

In system-specified blocking, the system determines the size of file blocks
according to the storage device on which the file resides. Mass storage blocks
are 4,096 bytes or less (depending on the device); tape blocks are 4,128 bytes.

In system-specified blocking, records are always contiguous because blocks
are not padded. Records can span system-specified blocks. The max_ block_
length and min_ block_ length attributes have no effect on system-specified
blocking.

Generally, system-specified blocking is invisible to the user program.

U Record Type

U records can span system-specified blocks. Unlike other record types, the A
system cnnot determine where a U record begins or ends. Therefore, the task W'
is responsible for managing the location and length of each record in the file.

With U record type and system-specified blocking, processing of the get calls
changes as follows.

• An AMP$GET _NEXT call always returns end-of-record as its file position
unless the end-of-information was encountered.

• An AMP$GET _PARTIAL call always returns mid-record as its file
position if data was transferred by the call.

• The skip_ option parameter on an AMP$GET _PARTIAL call is ignored.

• AMP$GET _PARTIAL calls do not accumulate the record length. The
record_ length parameter is undefined after the call.

User-Specified Blocking

In user-specified blocking, the max_block_length and min_block_length
attributes determine the range of block sizes written to a device. If a block is
shorter than the size specified by the min_block_length attribute, the block
is padded with the circumflex n character.

9-4 CYBIL File Interface Revision B

FILE BLOCKING

A file with user-specified blocking must be initially created and appended
sequentially.

User-specified blocking differs for each record type.

e V Record Type

With V record type and user-specified blocking, the length of each file block
is between the max_ block_ length and min_block_length values. Although
the data in a V record can span blocks, the V record header cannot.
Therefore, the block length varies, as necessary, to accommodate record
headers.

F Record Type

With F record type and user-specified blocking, an integral number of records
is included in each block. The block length is between the min_block_length
and max_block_length attribute values. An F record cannot span a user
specified block.

For example, ifthe min_block_length value is 25 bytes, the max_ block_
length value is 4,128 bytes, and the max_record_length value (the fixed
record length) is 100 bytes, the system writes the file with 40 records (4,000
bytes) per block because 40 is the maximum number of records that can be
written without exceeding the max_block_length value.

NOTE

When using F record type and user-specified blocking, the fixed record length
specified by the max_ record_ length attribute should be greater than the
min_ block_length value for the file. If it is not, the system pads each block
with circumflex(') characters. For example, ifthe min_block_length is 50
bytes and the fixed record length is 30 bytes, each block would consist of one
30-byte record followed by 20 bytes of block padding.

Revision B Accessing Sequential and Byte Addressable Files 9-5

FILE BLOCKING

U Record Type

With U record type and user-specified blocking, the system processes each
block as a record. A U record cannot span a user-specified block.

A block boundary is recognized as a record boundary. A put call (or a series A
of put_ partial calls) that writes a record writes one block. The working W
storage length on the put call (or the cumulative record length of the series of
put_partial calls) specifies the size of the block written.

A get call to read a record reads one block. If the working storage length on
the get call is less than the block length, the call returns AMC$MID _
RECORD as the file position.

NOTE

When using U record type and user-specified blocking, the length of each
record written should be greater than the min_block_length value for the
file. If it is not, the system pads the block containing the short record with
circumflex n characters. This could result in the reading of file data suffixed
by circumflex characters. For example, if the min_ block_length of a file is 20
bytes and a put call writes a 15-byte record to the file, the system would write
five additional circumflex characters to pad the block to its minimum length.
A get call to read the block would read the circumflex characters with the file
data.

9-6 CYBIL File Interface Revision B

SEQUENTIAL RECORD ACCESS

Sequential Record Access

If the file_ organization attribute of a file is AMC$SEQUENTIAL, only
sequential access calls can get and put data on the file.

The sequential access calls do not specify a byte address where the system is
to get or put data. Sequential access calls always get or put data at the
current file position.

The following are the sequential access calls:

AMP$GET _NEXT

Gets a complete record.

AMP$GET _PARTIAL

Gets a complete record or part of a record.

AMP$PUT _NEXT

Puts a complete record.

AMP$PUT _p ARTIAL

Puts a complete record or part of a record.

A program can get any existing record on a sequential file by positioning the
file at the beginning of the record.

By positioning the file at its end-of-information, a program can append
records in sequence.

Doing a GET or PUT operation positions the file at the end of a record.

If a program overwrites an existing record, all data following the record is
lost. After completion of a put operation to a sequential file, the system
changes the end-of-information of the file to the current position of the file.
The file position after a put operation is immediately after the data just
copied to the buffer. Therefore, a program cannot get file data after the most
recently written record because the system cannot get data after the end-of
information of the file. It is recommended that the file_position be checked
after each GET call.

Sequential access calls are device-independent. Programs use the same calls
to get and put data on any device class. This is possible because the system
performs the physical access operations between the device and its buffer e space in central memory.

Sequential access calls use file space efficiently because the calls get and put
contiguous records. Random access calls can leave unused space between
records.

Revision B Accessing Sequential and Byte Addressable Files 9-7

SEQUENTIAL RECORD ACCESS

Using Sequential Access Calls to Write a Byte
Addressable File

Sequential access calls can write a file whose file organization attribute is
byte addressable. Each put call returns the byte address of the record it
writes. While writing the file, the task stores the byte address of each record
in a directory. After the file is written, a task can use random access calls
and the addresses in the directory to read records.

9-8 CYBIL File Interface Revision B

RANDOM RECORD ACCESS

9 Random Record Access

If the file_organization attribute of a file is AMC$BYTE_ADDRESSABLE,
the system gets or puts data at the specified byte address.

The bytes in a file are numbered consecutively beginning with O; a byte
address is the number of a byte in the file.

A program can explicitly or implicitly change the current byte address. A
random access call explicitly changes the current byte address; any call that
gets or puts data to a byte addressable file implicitly changes the current
byte address.

The following are the random access calls.

AMP$GET _DIRECT

Gets a record at the specified byte address.

AMP$PUT _DIRECT

Puts a record at the specified byte address.

AMP$SEEK_DIRECT

Changes the current byte address to a specified value.

Both random access calls and sequential access calls can get and put data on
a byte addressable file. If the first call is a random access call specifying the
byte address to be accessed, subsequent calls can be sequential access calls
that get or put data from the byte address implicitly set by the random
access call. For example, if the first call specifies byte address 200 and gets
100 bytes, a subsequent sequential get call gets data beginning at byte
address 300.

If the blocking type is system-specified and append access is specified for the
instance of open, a call to put data at a byte address past the end-of
information extends the file past that address up to the file limit. A call to get
data at a byte address past the end-of-information returns abnormal status.

If the blocking type is system-specified, and append is specified as the access
mode for the instance of open, an AMP$PUT _DIRECT call that specifies a
byte address beyond the end of the file extends the file to include the space
for the record written. If not previously written, the space between the former
end-of-information and the new record is then initialized. Creating unused
spaces within the file in this manner is not recommended, especially if
variable length records are used. It is not allowed for user-specified blocking.

Revision B Accessing Sequential and Byte Addressable Files 9-9

RANDOM RECORD ACCESS

File Directory Use

To access a record randomly, you must know its byte address in the file. If
the file was written sequentially with F record type and system-specified
blocking, the byte address of each record can be computed. Otherwise, the A
byte address of each record must be recorded in a directory. W

The directory must be modified as the records in the file are created. Each
put call returns the byte address of the record written; the task must record
the byte address of the record in the task's directory. The task must fetch the
byte address value from the directory before issuing a call to access a record
randomly. The location and management of the directory is the
responsibility of the task.

User-Specified Blocking

If a file is created with user-specified blocking, it must be created
contiguously.

Random calls can read and modify the records.

NOTE

When rewriting variable-length records, you must ensure that the new record A
is the same length as the record overwritten in order to maintain record W
integrity. The system does not check that the record lengths are the same.

9-10 CYBIL File Interface Revision B

AMP$SEEK_DIRECT

e AMP$SEEK_DIRECT

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Sets the current byte address of a byte addressable file.

NOTE

The access_level file attribute must be AMC$RECORD and
the file_organization attribute must be AMC$BYTE_
ADDRESSABLE.

AMP$SEEK_DIRECT (file_identifier, byte_address,
status)

file_ identifier: amt$file _identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

byte_address= amt$file_byte_address;

New byte address of the file (integer 0 through AMC$FILE_
BYTE_LIMIT).

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS_
METHOD_ID.

ame$conflicting _access_ level
ame$file_ organization_ conflict
ame$im proper_ access_ attempt
ame$im proper_ file_ id
ame$position_ beyond_ eoi
ame$position_ beyond_ file_ limit
ame$ring _validation_ error

• By calling AMP$SEEK_DIRECT, you can use sequential
access calls (AMP$GET _NEXT, AMP$GET _PARTIAL,
AMP$PUT _NEXT, and AMP$PUT _PARTIAL) to read a
byte addressable file. After an AMP$SEEK_DIRECT call
sets the current byte address, the subsequent sequential
access call begins reading or writing data at that address.

• The task must position the file to the beginning of a record.

Accessing Sequential and Byte Addressable Files 9-11

RANDOM RECORD ACCESS

Byte Addressable File Example e
The following program example writes a byte addressable file using
sequential access calls. The byte address of each record written is stored in a
directory. After the file is written, the program writes the directory at the A
beginning of the file. -

MODULE byte_address_example;

?? PUSH (LISTEXT := ON) ??
*copyc amp$open
*copyc amp$seek_direct
*copyc amp$put_next
*copyc amp$put_direct
*copyc amp$close
?? POP ??

PROCEDURE byte_addressable
Clfn: amt$Local_file_name;
VAR status: ost$status);

CONST
max_index = 100;

VAR
access_selections: amtSfile_access_selections,
fid: amt$file_identifier,
address: amt$file_byte_address,

record_ptr: ftRECORD
Link: amt$file_byte_address,
number: integer

REC END,

directory_ptr: ftARRAY [1
amtSfile_byte_address,

index: 1 •• max_index;

max_index] OF

{Specifies byte_addressable file organization}
PUSH access_selections: [1 •• 1J;
access_selectionsft[1J.key := amc$file_organization;
access_selectionsft[1J.file_organization :=

amc$byte_addressable;

9-12 CYBIL File Interface Revision B

RANDOM RECORD ACCESS

AMPSOPEN Clfn, amcSrecord, access_selections, fid,
status>;

IF NOT status.normal THEN
RETURN;

I FEND;

PUSH directory_ptr;
PUSH record_ptr;

{ Sets the current byte address so that space is }
{ left at the beginning of the file for the address}
{ directory.}

AMPSSEEK_DIRECT (fid, (#SIZECdirectory_ptrA) + 1),
status>;

IF NOT status.normal THEN
RETURN;

I FEND;

{Initializes first record to be written.}

record_ptrA.link := O;
record_ptrA.number := 1;

{ Writes a sequence of records }

FOR index := 1 TO max_ index DO
AMPSPUT_NEXT (fid, record_ptr, #SIZE(record_ptrA),

directory_ptrA[indexJ, status>;
record_ptrA.link := directory_ptrA[indexJ;
record_ptrA.number := record_ptrA.number + 1;

FOREND;

{Writes the address directory at the beginning of}
{the file.}

AMPSPUT_DIRECT (fid, directory_ptr,
#SIZECdirectory_ptrA), O, status>;

IF NOT status.normal THEN
RETURN;

I FEND;

AMPSCLOSE Cfid, status);
PROCEND byte_addressable;
MODEND byte_address_example;

Revision B Accessing Sequential and Byte Addressable Files 9-13

FILE POSITIONING

File Positioning
The initial position of a file is specified by its open_position attribute. To
change the file position, a program can get or put data or issue file
positioning calls. The following are the file positioning calls:

AMP$REWIND

Rewinds the file so that it is positioned at its beginning.

AMP$SKIP

Repositions the file forward or backward. The call specifies the number of
records or partitions skipped.

Positioning a File by Records or Partitions

An AMP$SKIP call positions a file by records or partitions. The valid file
positioning options for a file depend on the blocking type and record type of
the file:

• A file with V records and user-specified or system-specified blocking can
be positioned by records or partitions.

• A file with F records and user-specified or system-specified blocking can
be positioned by records, but not by partitions.

• A file with U records and user-specified blocking can be positioned by
records, but not by partitions. A file with U records and system-specified
blocking cannot be positioned by either records or partitions.

Specifying an invalid option on an AMP$SKIP call returns abnormal status.

File Position After a Skip

The file position after the skip operation depends on the skip unit (records or
partitions), the initial file position, the number of units skipped, and the skip
direction. Table 9-1 lists the skip operation results assuming that no
boundary condition is encountered before the skip count is exhausted.

9-14 CYBIL File Interface Revision B

FILE POSITIONING

NOTE

A file containing no partition delimiters is considered to contain one
partition beginning at the beginning-of-information and ending at the
end-of-information.

If the last record in a file is a partition delimiter and the current position of
the file is after the final partition delimiter, AMP$SKIP considers the file to
be positioned at the beginning of the next partition.

Table 9-1. Skip Operation Results

File Position Before
the Skip Operation

Skipping by Records:

AMCBOI, AMCBOP,
AMC$EOR, or AMC$EOI

AMC$MID_RECORD

AMC$MID_RECORD

End of record N

End of record N

Skipping by Partitions:

AMC$BOI or AMC$BOP

AMC$EOP. AMC$EOR, or
AMC$MID_RECORD

AMC$, AMC$EOR, or
AMC$MID_RECORD

Beginning of partition N

Beginning of partition N

AMCEOP, AMCEOR, or
AMC$MID_RECORD

AMCEOP, AMCEOR, or
AMC$MID_RECORD

Revision B

Skip Operation

Skip forward or backward zero
records.

Skip forward zero records.

Skip backward Zf~ro records.

Skip forward one or more (M)
records.

Result

No movement; the file remains
positioned the same as before
the skip operation.

Skips to the end of the current
record.

Skips to the end of the
preceding record.

Skips to the end of record N + M.

Skip backward one or more (M) Skips to the end of remrd N - M.
records.

Skip forward or backward zero
partitions.

Skip forward zero partitions.

Skip backward zero partitions.

Skip forward one or more (M)
partitions.

Skip backward one or more (M)
partitions.

Skip forward one or more (M)
partitions.

Skip backward one or more (M)
partitions.

No movement; the file remains
positioned the same as before
the skip operation.

Skips to the beginning of the
next partition.

Skips to the beginning of the
current partition.

Skips to the beginning of
partition N + M.

Skips to the beginning of
partition N - M.

Skips to the beginning of
partition N + M + 1.

Skips to the beginning of
partition N - M.

Accessing a File as a Memory Segment 9-15

FILE POSITIONING

Skip That Encounters File Boundaries e
The information in table 9-1 assumes that no boundary conditions are
encountered during the skip operation. If AMP$SKIP encounters a boundary
condition before the skip count is exhausted, it returns abnormal status. The A
task can determine the actual number of units skipped by calling '9
AMP$FETCH_ACCESS_INFORMATION to fetch the residual_skip_count
value and subtracting that value from the number of units specified on the
AMP$SKIP call.

The following are the boundary conditions:

• A skip forward by records encounters a partition delimiter or the EOI.

• A skip forward by partitions encounters the EOI.

• A skip backward by records encounters a partition delimiter or the BOI.

• A skip backward by partitions encounters the BOI.

When a skip by records encounters a partition delimiter, the final position
depends on whether the skip direction was forward or backward. A forward
skip positions the file beyond the partition delimiter, at the beginning of the
next partition. A backward skip positions the file before the partition
delimiter, at the end of the preceding partition.

9-16 CYBIL File Interface Revision B

AMP$REWIND

AMP$REWIND

Purpose Repositions a file to its BOI.

NOTE e The access_level file attribute must be AMC$RECORD.

Format AMP$REWIND (file_identifier, wait, status)

Parameters file_identifier: amt$file_identifier;

Condition
Identifiers

Remarks

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

wait: ost$wait;

Procedure action after the rewind request is issued. Currently,
specifying either of the following identifiers returns control to
the caller when the rewind operation is complete:

OSC$WAIT

Returns control to the caller when the operation is
complete.

OSC$NOWAIT

Currently returns control to the caller when the operation
is complete. However, since this will change in a future
release, it is recommended that you specify OSC$WAIT to
ensure that your program will continue to execute correctly.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

ame$conflicting _access_ level
ame$improper _file_id
ame$ring _ validation_ error
ame$unrecovered_ write_ error

• If the label_ type of a tape file is AMC$UNLABELLED
and the preceding operation was an output operation, the
procedure terminates the volume by writing two
consecutive tapemarks before rewinding the file. The file is
rewound to the beginning of the first volume.

• See chapter 10 for additional information when using
AMP$REWIND to position an indexed sequential file.

Accessing Sequential and Byte Addressable Files 9-17

AMP$SKIP

AMP$SKIP

Purpose Repositions a file forward or backward the specified number
of records or partitions.

NOTE

The access_level file attribute must be AMC$RECORD.

Format AMP$SKIP (file_identifier, direction, unit, count, file_
position, status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

direction: amt$skip _direction;

Direction of skip.

AMC$FORW ARD

Skip forward.

AMC$BACKW ARD

Skip backward.

unit: amt$skip_unit;

Skip unit.

AMC$SKIP _RECORD

Skip records.

AMC$SKIP _PARTITION

Skip partitions.

count: amt$skip _count;

Number of units skipped (integer 0 through
AMC$FILE_BYTE_LIMIT).

file_position: VAR of amt$file_position;

File position after skip completes.

9-18 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

Skip Type

Forward skip by records.

Forward skip by partitions.

Backward skip by records.

Backward skip by partitions.

status: VAR of ost$status;

AMP$SKIP

Values Returned

AMCEOR, AMCBOP,
AMC$EOI

AMCBOP, AMCEOI

AMCEOR, AMCEOP,
AMC$BOI

AMCBOP, AMCBOI

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$conflicting _access_ level
ame$conflicting _ fo
ame$improper _file_id
ame$improper _skip_ count
ame$improper _skip_ direction
ame$improper _skip_ unit
ame$ring_ validation_ error
ame$skip _encountered_ boi
ame$skip _encountered_ bop
ame$skip _encountered_ eoi
ame$skip _encountered_ eop
ame$skip_requires_read_perm
ame$uncertain_ tape_position
ame$unrecovered_ write_error
ame$unsupported_skip

• The procedure does not copy data to or from a user-defined
working storage area or buffer space.

• Before skipping backward on an unlabeled tape file,
AMP$SKIP writes to the device any data written to the file
by a previous operation.

• If the file is an unlabeled tape file and the last operation
was an output operation, the procedure writes any buffered
data to the tape and then terminates the volume by writing
two tapemarks before skipping backward.

• See chapter 10 for additional information when using
AMP$SKIP to position an indexed sequential file.

Accessing Sequential and Byte AddreRsahle Files 9-19

READING RECORDS

Reading Records

To read (or get) a record means to copy data from a system buffer to a
working storage area. The system reads data until it encounters a record
boundary or the end of the working storage area.

File Position Returned

If the read terminates because the system encountered a record boundary, it
returns the file position AMC$EOR. If the read terminates because the
system encountered the end of the working storage area, it returns the file
position AMC$MID _RECORD. (To read the remainder of the record, the
program must issue AMP$GET _PARTIAL calls until the system returns the
file position AMC$EOR.)

If the system encounters a partition boundary, it positions the file beyond the
partition delimiter and returns AMC$EOP as the file position but transfers
no data. The content of the working storage area remains the same. The next
get call reads data from the first record of the next partition.

Similarly, ifthe system encounters the end-of-information, it returns the file
position AMC$EOI but transfers no data. After AMC$EOI is returned,
subsequent get calls return abnormal status (AME$INPUT _AFI'ER_EOI).

A null file is a file assigned to the null device class (the file $NULL is always
assigned to the null device class). A get or put call to a file assigned to the
null device class always returns the same file position: AMC$EOI for a get
call, AMC$EOR for a full record put call, and AMC$MID _RECORD for a
partial record put call.

Get Calls

The get calls all read data as previously described, but differ in the file
position where the read begins.

AMP$GET _DIRECT

Reads data at the byte address specified on the call.

AMP$GET _NEXT

Reads data at the beginning of the next record.

AMP$GET_PARTIAL

Reads data either at the current file position or at the beginning of the
next record.

9-20 CYBIL File Interface Revision B

AMP$GET _DIRECT

AMP$GET _DIRECT

Purpose

Format

Parameters

Revision B

Reads a record at the specified byte address.

NOTE

The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$BYTE_
ADDRESSABLE.

AMP$GET_DIRECT (file_identifier, working_
storage_ area, working_storage _length, transfer_
count, byte_address, file_position, status)

file_ identifier: amt$file _identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

working_storage _area: 'cell;

Working storage area address.

working_ storage _length: amt$working_storage _length;

Number of bytes in the working storage area (integer 0
through OSC$MAX_SEGMENT _LENGTH+ 1).

transfer _count: VAR of amt$transfer _count;

Number of bytes copied to the working storage area (integer 0
through OSC$MAX_SEGMENT _LENGTH+ 1).

byte_ address: amt$file _byte_ address;

Byte address of the beginning of the record (integer 0 through
AMC$FILE_BYTE_LIMIT).

file_position: VAR of amt$file_position;

File position at completion of the procedure.

AMC$MID _RECORD

Within a record.

AMC$EOR

End-of-record.

AMC$EOP

End-of-partition.

AMC$EOI

End-of-information.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS _METHOD _ID.

Accessing Sequential and Byte Addressable Files 9·21

AMP$GET _DIRECT

Condition
Identifiers

ame$accept _bad_ block
ame$conflicting _access_ level
ame$file _organization_ conflict
ame$improper _access_ attempt
ame$improper _file_ id
ame$improper _input_attempt
ame$improper _record_ address
ame$improper _ wsl_ value
ame$input_after _ eoi
ame$max_cancellable_input
ame$ring_ validation_ error
ame$terminal _disconnected
ame$unrecovered _read_ error

9-22 CYBIL File Interface Revision B

AMP$GET _NEXT

AMP$GET _NEXT

Purpose Reads the next record.

NOTE e The access_level file attribute must be AMC$RECORD.

Format AMP$GET _NEXT (file_identifier, working_storage_
area, working_storage_length, transfer_count, byte_
address, file _position, status)

Parameters file_identifier: amt$file_identifier;

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

working_storage_area: 'cell;

Working storage area address.

working_ storage _length: amt$working _storage _length;

Number of bytes in the working storage area (integer 0
through OSC$MAX_SEGMENT _LENGTH+ 1).

transfer_ count: VAR of amt$transfer _count;

Number of bytes copied to the working storage area (integer
from 0 through OSC$MAX_SEGMENT _LENGTH+ 1).

byte_ address: VAR of amt$file _byte_ address;

Byte address of the beginning of the record (integer 0 through
AMC$FILE_BYTE_LIMIT). The procedure returns a byte
address only if the file is a mass storage file.

file_position: VAR of amt$file_position;

File position at completion of the procedure.

AMC$MID _RECORD

Within a record.

AMC$EOR

End-of-record.

AMC$EOP

End-of-partition.

AMC$EOI

End-of-information.

Accessing Sequential and Byte Addressable Files 9-2:=!

AMP$GET _NEXT

Condition
Identifiers

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$accept_ bad_ block
ame$conflicting _access_ level
ame$improper _access_ attempt
ame$improper_file_id
ame$improper_input_attempt
ame$improper _record_ address
ame$improper_ wsl_ value
ame$input _after_ eoi
ame$input _after_ output
ame$max_ cancellable _input
ame$ring_ validation_error
ame$terminal_ disconnected
ame$unrecovered_read_ error

For indexed sequential files only:
aae$cant_position_ beyond_ bound
aae$file _boundary_ encountered
aae$not _ enough_permission
aae$record_longer _than_ wsa
aae$wsa_not_given

9-24 CYBIL File Interface Revision B

Remarks

Revision B

AMP$GET _NEXT

• If the current file position is not at a record boundary, the
procedure repositions the file forward to the next record
boundary.

• The AMP$GET _NEXT call provides a common interface
for reading records, regardless of file organization.
However, when reading an indexed sequential file, an
AMP$GET _NEXT call cannot return the key separately
from the record.

• When reading an indexed sequential file with embedded
keys, AMP$GET _NEXT returns the record to the working
storage area. When reading an indexed sequential file with
nonembedded keys, AMP$GET _NEXT prefixes the
primary key to the record and returns the key and the
record together to the working storage area. Therefore, to
ensure that the key and entire record can be returned, you
should set the working_storage_length parameter to the
sum of the max_record_length and the key _length
attributes.

• For an indexed sequential file, an AMP$GET _NEXT call
always returns a value of zero in the byte_address
parameter.

• See chapter 10 for additional information when using
AMP$GET _NEXT to read records from an indexed
sequential file.

• When reading an indexed sequential file, AMP$GET _
NEXT returns a file position of AMC$EOR; or, if the last
record ended the list of primary keys for an alternate key
value, AMC$END _OF _KEY _LIST.

Accessing Sequential and Byte Addressable Files 9-25

AMP$GET _PARTIAL

AMP$GET _PARTIAL

Purpose Reads the specified number of bytes at the current file
position.

NOTE

The access_level file attribute must be AMC$RECORD, and
the file_ organization attribute must be AMC$SEQUENTIAL
or AMC$BYTE_ADDRESSABLE.

Format AMP$GET _PARTIAL (file_identifier, working_
storage_area, working_storage_length, record_
length, transfer_count, byte_address, file_position,
skip_option, status)

Parameters file_identifier: amt$file_identifier;

File identifier returned by the AMP$0PEN call that opened
the file.

working_ storage_ area: 'cell;

Working storage area address.

working_ storage_ length: amt$working_storage _length;

Number of bytes in the working storage area.

record_length: VAR of amt$max_record_length;

Number of bytes read since the previous record boundary.

If more than one call is required to read the record, the count
is cumulative over the series of read operations.

transfer_ count: VAR of amt$transfer _count;

Number of bytes copied to the working storage area.

byte_address: VAR of amt$file_byte_address;

Byte address of the beginning of the record. The procedure
returns a byte address only if the file is a mass storage file.

9-26 CYBIL File Interface Revision B

Condition
Identifiers

Revision I:\

AMP$GET_PARTIAL

file _position: VAR of amt$file _position;

File position at completion of the procedure.

AMC$MID _RECORD

Within a record.

AMC$EOR

End-of-record.

AMC$EOP

End-of-partition.

AMC$EOI

End-of-information.

skip_ option: amt$skip _option;

Indicates whether the procedure repositions the file before
reading data.

AMC$SKIP _TO_EOR

If the current file position is not at the beginning of a
record, the procedure repositions the file forward to the
next record boundary.

AMC$NO_SKIP

The procedure does not reposition the file.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS_
METHOD_ID.

ame$accept _bad_ block
ame$conflicting _access_ level
ame$improper _access_ attempt
ame$improper _file_id
ame$improper_input_attempt
ame$improper _skip_ option
ame$improper_ wsl_ value
ame$input_after _ eoi
ame$input_ after_ output
ame$max _can cell able_ input
ame$ring _validation_ error
ame$terminal _disconnected
ame$unrecovered _read_ error

Accessing Sequential and Byte Addressable Files 9-27

AMP$GET _PARTIAL

Remarks If the skip_ option parameter specifies AMC$SKIP _TO_ EOR
and the current file position is not at the beginning of a
record, the procedure repositions the file forward to the next
record boundary.

9-28 CYBIL File Interface Revision B

WRITING RECORDS

Writing Records
To put a record means to copy data from a working storage area to a system
buffer. The system performs the physical I/O operations required to write
data from the buffer to the file.

The working_storage_length parameter on the put call specifies the number
of bytes copied (starting at the address specified as the working_storage_
address). An AMP$PUT _DIRECT or AMP$PUT _NEXT call puts an entire
record; an AMP$PUT _PARTIAL call can put part of a record, allowing you
to write records longer than your working storage area.

The file location at which the write begins depends on the put call used.

AMP$PUT _DIRECT

Writes data at the specified byte address.

AMP$PUT _NEXT

Writes data at the current file position.

AMP$PUT _PARTIAL

Writes data at the current file position.

e Establishing a New End-of-Information

A put call establishes a new end-of-information for a sequential file. For
AMP$PUT _NEXT and AMP$PUT _PARTIAL, the new end-of-information
is always immediately after the data just written. Data that was previously
written after that address is no longer accessible.

For AMP$PUT _DIRECT, a new end-of-information is established only ifthe
writing of the record lengthens the file. It determines this by checking
whether the working storage length added to the specified byte address
exceeds the current end-of-information address.

Writing an end-of-partition at the file EOI extends the file to include the end
of-partition indicator (a zero-length V record).

Padding Fixed-Length Records

For AMP$PUT _DIRECT and AMP$PUT _NEXT, if the record type of the
file is AMC$ANSI_FIXED and the working storage area length is shorter
than the fixed record length, the system pads the record. To do so, it appends
padding characters until the record is the fixed record length. AMP$PUT _
PARTIAL also pads AMC$ANSI_FIXED records, but only when the call
writes the last part of the record.

Revision B Accessing Sequential and Byte Addressable Files 9-29

WRITING RECORDS

Truncating Fixed-Length Records e
When making AMP$PUT _DIRECT and AMP$PUT _NEXT calls, and the
record type is AMC$ANSI_FIXED, ifthe working storage length exceeds the
fixed record length, the record is truncated to the fixed record length as it is A
written. W

Writing Records Longer Than the Working
Storage Area

Successive AMP$PUT _PARTIAL calls can write a record whose cumulative
length exceeds the working storage area length. The call specifies whether
the data is to be written as the first part of the record, a middle part of the
record, or the last part of the record.

At any time, an AMP$PUT _PARTIAL call can specify that the data is the
starting part of a record. If the file position is AMC$MID _RECORD, the call
terminates the current record before writing the data as the beginning of a
new record. The file position after the call is always AMC$MID _RECORD.

If the AMP$PUT _PARTIAL call specifies that the data is a middle part of a
record, it writes the data at the current file position. The file position before
and after the call is always AMC$MID _RECORD.

If the AMP$PUT _PARTIAL call specifies that the data is the ending part of
the record, the procedure writes the data and then terminates the record. The
file position after the call is always AMC$EOR. If the file position before the
call is AMC$EOR, the action taken is the same as that of an AMP$PUT _
NEXT call.

9-30 CYBIL File Interface Revision B

AMP$FLUSH

e AMP$FLUSH

Purpose Writes all modified file data in memory to the device to which
the file is assigned.

NOTE

This procedure is valid only for files assigned to interactive
terminals and files with indexed sequential file organization.

Format AMP$FLUSH (file_identifier, wait, status)

Parameters file_identifier: amt$file_identifier;

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

wait= ost$wait;

Action to be taken after the flushing operation is initiated.

NOTE

The wait parameter is ineffective for interactive terminal files
because the flush operation is always completed before control
is returned to the user (0SC$WAIT option).

OSC$WAIT

Complete the flush operation before returning control to
the caller.

OSC$NOWAIT

Return control to the caller immediately. To determine
whether the flush operation has completed, the program
must call AMP$FETCH_ACCESS_INFORMATION and
check the value of the last_op_status item.

status: VAR of ost$status;

Status record. The process identifier is AMC or
AAC$ACCESS_METHOD_ID.

Accessing Sequential and Byte Addressable Files 9-31

AMP$FLUSH

Condition
Identifiers

Remarks

ame$improper _file_ id
ame$ring_ validation_ error

For indexed sequential files only:
aae$bad _block_ table_ overflow
aae$file_reached_file_limit
aae$no _updates_ till_ recovered
aae$not _enough_ permission
aae$system_ routine_ failed
aae$write_parity _error

• Flushing data to an indexed sequential file updates the
data on mass storage to reflect the current data in memory.
This ensures that if the data in memory is lost due to a
system failure, the updated data is still available in the
mass storage file.

• Flushing data destined for an interactive terminal ensures
that all output has been sent to the terminal. Interactive
terminal output is buffered if NAM cannot output data as
quickly as the program sends it. A task could call
AMP$FLUSH to ensure that all output has been displayed
at the terminal before it continues processing.

• A get or close call for a terminal file flushes all output data e
to the terminal before performing the get or close operation.

• A close call for a permanent mass storage file flushes all
output data to mass storage before the call terminates. If
the data cannot be successfully written, AMP$CLOSE
returns abnormal status. AMP$CLOSE closes the instance
of open regardless of any I/O errors.

9-32 CYBIL File Interface Revision B

AMP$PUT _DIRECT

e AMP$PUT_DIRECT

Purpose Writes a record at the specified byte address.

NOTE e The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$BYTE_
ADDRESSABLE.

Format AMP$PUT _DIRECT (file_identifier, working_
storage_ area, working_ storage_ length, byte_ address,
status)

Parameters file _identifier: amt$file _identifier;

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

working_storage_area: 'cell;

Working storage area address.

working_ storage _length: amt$working _storage_ length;

Number of bytes in the working storage area (0 through
OSC$MAX_SEGMENT _LENGTH+ 1).

byte_address: var of amt$file_byte_address;

Byte address of the beginning of the record (0 through
AMC$FILE_BYTE_LIMIT).

status: VAR of ost$status;

Status record. The process identifier is AAC$ACCESS_
METHOD_ID or AMC$ACCESS_METHOD_ID.

Accessing Sequential and Byte Addressable Files 9-33

AMP$PUT _NEXT

Remarks • If the current file position is AMC$MID _RECORD, the
procedure terminates the current record before writing the
next record.

• If the file is a mass storage file, the procedure returns the
starting byte address of the record. If the task stores the e
starting byte address of the record, the record could later be
accessed by address using an AMP$GET _DIRECT call.

• If the record type is F and the working storage length is
less than the max_record_length, the record is padded to
the fixed record length using the padding character. When
the working storage length is greater then the max_
record_length, the record is truncated to the fixed_record
length.

• AMP$PUT _NEXT can write records sequentially to any
file regardless of its file organization. When writing to an
indexed sequential file with embedded keys, AMP$PUT _
NEXT assumes that the record key is embedded in the
record data within the working storage area as indicated
by the key _position attribute value. When writing to an
indexed sequential file with nonembedded keys,
AMP$PUT _NEXT assumes that the key is at the
beginning of the working storage area. It removes the e
number of bytes specified by the key _length attribute from
the beginning of the working storage area and writes those
bytes as the nonembedded key. It then writes the bytes
remaining in the working storage area as the data record.
When AMP$PUT _NEXT is used for indexed sequential
files, a value of zero is always returned in the byte_address
parameter.

9-36 CYBIL File Interface Revision B

AMP$PUT _PARTIAL

- AMP$PUT_PARTIAL

Purpose Writes a partial record at the current byte address.

NOTE e The access_level file attribute must be AMC$RECORD, and
the file_organization attribute must be AMC$SEQUENTIAL
or AMC$BYTE_ADDRESSABLE.

Format AMP$GET _PARTIAL (file_identifier, working_
storage_ area, working_ storage_ length, byte_ address,
term_ option, status)

Parameters file_ identifier: amt$file _identifier;

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

working_storage_area: 'cell;

Working storage area address.

working_ storage_ length: amt$working _storage _length;

Number of bytes in the working storage area (integer from 0
through OSC$MAX_SEGMENT _LENGTH+ 1).

byte_address: VAR of amt$file_byte_address;

Byte address of the beginning of the record (integer 0 through
AMC$FILE_BYTE_LIMIT). The procedure returns a value
only if the file is a mass storage file.

term_option: amt$term_option;

Record part to be written.

AMC$START

First part of the record.

AMC$CONTINUE

Middle part of the record.

AMC$TERMINATE

Last part of the record.

status: VAR of ost$status;

Status record. The process identifier is AMC$ACCESS _
METHOD_ID.

Accessing Sequential and Byte Addressable Files 9-37

AMP$PUT _PARTIAL

Condition
Identifiers

Remarks:

ame$conflicting _access_ level
ame$improper _access_ attempt
ame$improper _continue
ame$im proper_ file_ id
ame$improper_output_attempt
ame$improper _term_ option
ame$improper_ wsl_ value
ame$put_beyond_file_limit
ame$record_ exceeds _mbl
ame$ring _validation_ error
ame$terminal_ disconnected
ame$unrecovered_ write_error

If the file is a mass storage file, the procedure returns the
starting byte address of the record. (The same address is
returned by each call that writes part of the record.) If the task
stores the starting byte address of the record, the record could
later be accessed by address using an AMP$GET _DIRECT
call.

Writing Partition Delimiters

Writing a partition delimiter groups preceding records into a partition. If the A
delimiter is the first partition delimiter on the file, the partition comprises the W
records between the beginning of the file and the partition delimiter;
otherwise, the partition comprises the records between the previous partition
delimiter and the current partition delimiter.

Of the supported record types, only the V record type supports partitions.
Therefore, the AMP$WRITE_END _PARTITION call that writes a partition
delimiter is effective only when the file record type is AMC$V ARIABLE, and
the file organization is sequential or byte-addressable.

9-38 CYBIL File Interface Revision B

AMP$WRITE_END_PARTITION

e AMP$WRITE_END_PARTITION

Purpose Writes a partition delimiter at the current file position.

NOTE e The access_level file attribute must be AMC$RECORD, and
the record_ type attribute must be AMC$V ARIABLE.

Format AMP$WRITE_END _PARTITION (file _identifier,
status)

Parameters file_identifier: amt$file_identifier;

Condition
Identifiers

Revision B

File identifier returned by the AMP$0PEN call that opened
the file.

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD _ID.

ame$conflicting _access_ level
ame$improper _file_ id
ame$improper_output_attempt
ame$partitioning _unsupported
ame$ring_ validation_ error

Accessing a File as a Memory Segment 9-39

e Using the Indexed Sequential
File Organization 10

A Primary Keys .. 10-1
W Indexed Sequential File Structure 10-3

Data Blocks ... 10-3
Index Blocks .. 10-6

Creating an Indexed Sequential File 10-10

Setting File Attributes .. 10-10
Writing Records .. 10-15
AMP$PUT_KEY ... 10-16

Processing an Existing Indexed Sequential File 10-18

Setting Temporary Attribute Values 10-19
Positioning the File ... 10-19
AMP$START .. 10-21
Reading Records ... 10-24
AMP$GET _KEY ... 10-25
AMP$GET _NEXT _KEY ... 10-28
Replacing and Deleting Records 10-30
AMP$PUTREP .. 10-31
AMP$REPLACE_KEY ... 10-33
AMP$DELETE_KEY .. 10-35

Monitoring the Index Levels in an Indexed Sequential File 10-37

Recreating an Indexed Sequential File 10-37

Indexed Sequential File Example 10-39

Alternate Keys .. 10-47

The Alternate Index .. 10-47
Alternate Key Definition .. 10-48
Creating and Deleting Alternate Keys 10-57
AMP$CREATE_KEY _DEFINITION 10-58
AMP$DELETE_KEY _DEFINITION 10-64
AMP$APPLY _KEY _DEFINITIONS 10-65
AMP$ABANDON_KEY _DEFINITIONS 10-67
Using Alternate Keys ... 10-68
AMP$SELECT _KEY ... 10-74
AMP$GET _KEY _DEFINITIONS 10-75
AMP$GET _PRIMARY _KEY_ COUNT 10-78
AMP$GET _NEXT _PRIMARY _KEY _LIST 10-81
Alternate Key Example ... 10-84

Using the Indexed Sequential File
Organization 10

Besides the sequential and byte-addressable file organizations, NOS/VE also
supports the indexed sequential file organization. The indexed sequential file
organization allows direct access to each record in the file through the
unique key value associated with each record.

Primary Keys

Within an indexed sequential file, data is stored as records. Each data record
is associated with a unique value called its primary key. A data record is
associated with its primary key when the record is written to the file.

The primary key can he embedded in the data (an embedded key) or separate
from the data (a nonembedded key). Each primary key value is unique
within the file; there can be no duplicate primary key values in a file.

When an indexed sequential file is read sequentially, its records are accessed
in order by ascending key value. This sorted order is kept even when new
records are added to the file.

Part 1 of figure 10-1 shows an unsorted sequence of records. Assume these
records are written to an indexed sequential file with the first field, the
employee number, specified as the primary key. If the records were then read
sequentially from the file, they would be read in sorted order by employee
number. Part 2 of figure 10-1 shows the records sorted by employee number.

In the figure 10-1 example, the primary key is the employee number because
each employee has a unique number. The employee's last name could not be
used as the primary key because two employees have the same last name.

Revision B Using the Indexed Sequential File Organization 10-1

PRIMARY KEYS

1. Unsorted Records

39248 Miller Robert Driver
42976 Stevens Carol Manager
39048 Jet son Harry Asst Manager
51234 Miller Catherine Secretary
82176 Beirmeyer William Driver
75090 Arnold Terry Computer Operator
49257 Lane Gladys Accountant
38602 Johnstone Mark Computer Operator
13905 McGuire Stewart Clerk

2. Sorted Records

13905 McGuire Stewart Clerk
38602 Johnstone Mark Computer Operator
39048 Jet son Harry Asst Manager
39248 Mi L Ler Robert Driver
42976 Stevens Carol Manager
49257 Lane Gladys Accountant
51234 Miller Catherine Secretary
75090 Arnold Terry Computer Operator
82176 Beirmeyer William Driver

Figure 10-1. Records Sorted by Primary Key

10-2 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

Indexed Sequential File Structure
Unlike the sequential and byte addressable file organizations, the structure
of an indexed sequential file has a more than one component. The
components of the file structure are the internal file label, data blocks and
index blocks.

You cannot access the internal file label or directly change information
contained in the label; the internal file label is for system use only.

Data Blocks

Records in an indexed sequential file are grouped into data blocks. All data
blocks in the file are the same size. Each block contains a header, data
records, padding, and record pointers.

Figure 10-2 shows the structure of a data block that contains four records.
The block header is at the beginning of the block and is immediately
followed by four data records. The four record pointers are at the end of the
block. The empty space between the last data record and the record pointers
is the data block padding that allows for insertion of additional records into
the data block.

Block Header

Record 1

Record 2

Record 3

Record 4

Empty Space

Record Pointer 4 Record Pointer 3

Record Pointer 2 Record Pointer 1

Figure 10-2. Indexed Sequential File Data Block Structure

Revision B Using the Indexed Sequential File Organization 10-3

INDEXED SEQUENTIAL FILE STRUCTURE

Data Block Record Pointers

The record pointers in each data block provide direct access to each record in
the block. If all records in a block are the same length, only one record
pointer is needed; otherwise, one pointer per record is needed.

Record pointers are stored at the end of the data block, beginning with the
last byte. Each pointer requires three bytes of storage. This means that the
record pointer for the first record in the data block is stored in the last three
bytes in the block, the record pointer for the second record is stored in the
next to the last three bytes, and so forth (see figure 10-2).

Data Block Padding

When an indexed sequential file is created, each data block can be created
with extra space for later insertion of records. The extra empty space is
called data block padding.

The amount of data block padding is a percentage of the space in each block.
For example, if the data block padding is 25 percent, records and record
pointers are written to the block until it is 75 percent full. The system then
stops writing records in that block and starts a new block.

The data block padding percentage is a file attribute value. However, the
attribute value is used only when the file is created. It is not used after the e
initial instance of open of the file.

If you are certain that an indexed sequential file will only be read and never
written after file creation, you should specify 0 as the data block padding
percentage. In this case, no extra space is left for later record insertion. It
does not mean that records cannot be inserted; it just means that an
insertion would result in an immediate data block split.

10-4 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

Data Block Split

When a data record is added to an indexed sequential file, it is stored so as to
maintain the sorted order of the data records. For example, if a record with
primary key value 3 is added, it must be stored between the records with
primary key values 2 and 4.

If the data block in which the record should be inserted does not have
enough empty space for the record, a data block split occurs. Records in the
data block which precede the new record remain in the existing block. All
records in the existing block that come after the new record are moved to the
newly created block. The new record is put into either the new block or the
existing block depending on the amount of empty space in the blocks and the
size of the new record. If the new record does not fit in either block, a second
new block is created and the new record is put into this block.

Figure 10-3 shows an example of a data block split. Part I shows data block
A before record 3 is inserted. To keep the indexed sequential file in order,
record 3 must be inserted between record 2 and record 4; therefore, a data
block split occurs. Part II shows the result of the block split. Record 1 and
record 2 remain in data block A, while record 4 and record 5 are moved to
data block B. Record 3 is inserted in data block A because data block A has
more empty space than data block B.

Part I:

Revision B

Block Header
Record 1
Record 2

Record 4

Record 5
Empty Space

Record Ptr. s:IRecord Ptr.
Record Ptr. ZIRecord Ptr.

Data Block A

Part II:
Block Header

Record 1
Record 2

Record 3

Empty Space

jRecord Ptr.
Record Ptr. zIRecord Ptr.

Data Block A

4

1

3
1

Record 3

Record 3 needs to be inserted
into data block A. Therefore,
a data block split occurs.

Block Header

Record 4

Record 5

Empty Space

Record Pt r. sIRecord Ptr. 4

Data Block B

Figure 10-3. Data Block Split

Using tile Indexed Sequential File Organization 10-5

INDEXED SEQUENTIAL FILE STRUCTUR'

Index Blocks

To access a data record, the system must know which data block contains
the record. To do so, it searches the index blocks.

Index blocks are the same size as data blocks. Like data blocks, each index
block contains a header, a sequence of records, empty space, and a record
pointer.

The structure of an index block is illustrated in figure 10-4.

Block Header

Index Record 1

Index Record 2

Index Record 3

Index Record 4

Index Record 5

Index Record 6

Empty Space

J Record Pointer

Figure 10-4. Indexed Sequential File Index Block Structure

Index Records

Each index record contains the value of the primary key for the first record
in another block and the physical address of the block. The block to which
the index record points can be either a data block or a lower-level index
block.

Index records are stored in ascending order according to primary key value
in each record. An index record is used to access all records with primary key
values between its key and the key in the next index record.

Index Block Record Pointer

Each index block contains only one record pointer because all index records
are the same length and so only one pointer is needed to access each record e
in the block. The pointer is always the last three bytes in the index block.

10-6 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE STRUCTURE

e Index Block Padding

Like data blocks, a percentage of the space in each index block is left empty
when the file is created. The space is used for the insertion of new index
records. New index records are inserted when new data blocks are created e due to a data block split.

The index block padding percentage is a file attribute value. However, the
attribute value is used only when the file is created. It is not used after the
initial instance of open of the file.

Index Levels

All indexed sequential files, except those consisting of a single data block,
have at least one index block. If the file has more than one index block, the
blocks are linked in a hierarchy. The topmost block in the hierarchy, the
level 0 block, contains an index record for each index block on the next lower
level, the level 1 blocks. The level 1 blocks contains index records for each
index block at level 2, and so forth.

A maximum of 15 levels of index blocks (numbered 0to14) is allowed;
however, performance is usually best when no more than two index levels
exist. New index levels are created due to index block splits.

Index Block Split

When the first data record is written to the file, no index blocks exist. When
the first data block is full and a second data block is needed, the system
creates a primary (level 0) index block. The system stores an index record in
the level 0 index block for each new data block it creates.

Index block splits create the hierarchy of index blocks. When the level 0
index block cannot hold any more index records, the system creates a second
index block. The new index block and the existing index block become level 1
index blocks and contain index records for the data blocks. At the same time,
a new level 0 index block is created to hold index records referencing the level
1 index blocks. Additional level 1 index blocks are added until the primary
index block is filled and another level of indexing is needed.

Revision B Using t}le Indexed Sequential File Organization Hl-7

INDEXED SEQUENTIAL FILE STRUCTURE

For example, figure 10-5 illustrates a search through two index levels.
Suppose you wanted to access the record with primary key 43. The system
always begins its search with the level 0 index block. It searches the level 0
block and finds an index record for primary key 15 followed by an index
record for primary key 100. It then follows the pointer in the primary key 15
index record to a level 1 index block. There, it finds an index record for
primary key 25 followed by a key for primary key 55. It then follows the
pointer for the index record for primary key 25 to a data block. It then
searches the data block for the data record having primary key 43.

The percentage of empty space left in each index block when it is created
(that is, the index block padding) determines how much space is left for
insertion of additional index records and thus, when an index block split is
required. The index block padding percentage is specified by the index_
padding attribute value.

10-8 CYBIL File Interface Revision B

1NDEXED SEQUENTIAL FILE STRUCTURE

AAB
MOM

Primary
(Level Q)

Index
Block

r----' AAB ~ MOM
r- CAL .- PAV

FIL !------ Level 1 UNO t------i

Index
Blocks

AAB CAL FIL MOM PAV UNO
ADF ENP HMK OCA PXA VRY
BGC KLZ REZ zxu

TUT

Data Blocks

Figure 10-5. Record Search Through Two Index Levels

Revision B Using the Indexed Sequential File Organization 10-9

CREATING AN INDEXED SEQUENTIAL FILE

Creating an Indexed Sequential File

To create an indexed sequential file, a task performs the following steps:

I. Set file attributes (AMP$FILE or AMP$0PEN calls).

2. Open the file (AMP$0PEN call).

3. Write records to the file (AMP$PUT _KEY or AMP$PUT _NEXT calls).

4. Close the file (AMP$CLOSE call).

As described here, the file data is written in the same instance of open that
created the file. However, this is not required; the file data can be written
during a later instance of open.

Setting File Attributes

Before opening an indexed sequential file for the first time, you must set file
attributes defining the structure of the file and processing limitations for the
file. When the new file is opened, the file attributes are stored in the internal
label of the file, and the system references the attribute values whenever the
file is processed.

As described in chapter 6, Defining File Attributes, the attributes that define e
the file structure cannot be changed after the file is first opened. Chapter 6
describes the means of setting file attribute values.

You should select file attribute values carefully. Selecting suitable values for
file attributes helps ensure that the file economizes space and the time
needed for record retrievals.

Required File Attributes

The file attribute listing in chapter 6, Defining File Attributes, describes all
file attributes. As indicated in the attribute description, certain file attributes
are effective for indexed sequential files only. Other file attributes are
effective for all file organizations, but have additional processing rules for
indexed sequential files. Therefore, to ensure that attribute values are
specified correctly for indexed sequential files, you should read the attribute
description before defining an attribute value.

10-10 CYBIL File Interface Revision B

CREATING AN INDEXED SEQUENTIAL FILE

For an indexed sequential file, you must define values for the following
attributes:

• file_organization: Must be set to AMC$INDEXED_SEQUENTIAL.

• key _length: No default value provided; AMP$0PEN returns a fatal error
if undefined.

• max_record_length: No default value provided; AMP$0PEN returns a
fatal error if undefined.

These attributes and the attributes described in the following paragraphs are
preserved with the file and cannot be changed after the file is first opened.

Defining the Record Type and Length

You must establish the record type, minimum record length, and maximum
record length before the new file is first opened. These are defined by the
record_type, min_record_length, and max_record_length attributes.

The valid values for the record_type attribute are AMC$VARIABLE,
AMC$ANSI_FIXED, or AMC$UNDEFINED; the default record type for
indexed sequential files is AMC$UNDEFINED.

You must specify a value for the max_record_length attribute; it has no
default value. The default value for the min_record_length attribute depends
on the values of the embedded_key and record_ type attributes:

• If the record_type is AMC$ANSI_FIXED, the default min_record_length
value is the max_record_length value.

• If the record_type is AMC$V ARIABLE or AMC$UNDEFINED and the
embedded_key attribute is TRUE, the default min_record_length value is
the sum of the key _position and key _length values.

• If the record_ type is AMC$VARIABLE or AMC$UNDEFINED and the
embedded_key attribute is FALSE, the default min_record_length value
is 1 byte.

The min_record_length value cannot exceed the max_record_length value.
If the record_type is AMC$ANSI_FIXED, the min_record_length value
must be the same as the max_record_length value.

If the primary key is embedded in the record, the primary key field must be
within the minimum record length. Therefore, the key _length value cannot
exceed the min_record_length value. An attempt to write a record smaller
than the minimum record length or longer than the maximum record length
is rejected with a trivial error.

Revision B Using the Indexed Sequential File Organization 10·11

CREATING AN INDEXED SEQUENTIAL FILE

Defining the Primary Key e
In an indexed sequential file, each data record must have a unique primary
key value. Before opening a new indexed sequential file, you must define the
primary key by setting or accepting defaults for the key _type, embedded_
key, and key _position attributes. e
Setting Key_Type

The key _type attribute defines the primary key type for the file and can be
set as follows:

AMC$UNCOLLATED_KEY

Keys (1 through 255 bytes) ordered byte-by-byte according to the ASCII
character set sequence (listed in appendix B). The key can be a positive
integer or a string of ASCII character codes.

AMC$INTEGER_KEY

Integer keys (1 through 8 bytes) ordered numerically. The integer can be
positive or negative.

AMC$COLLATED _KEY

Collated keys are 1- through 255-character keys ordered according to the
collation table you specify as the collate_table_name attribute. If you
specify this key type, you must supply a collation table; there is no
system-supplied default collation table.

Appendix E lists the predefined collation tables. Primary keys are not
stored in collated form. (The system uses hardware instructions for
collated key operations.) Therefore, the collation tables can map more
than one character to the same position in the collating sequence. For
example, several predefined tables map the 256 ASCII characters to 64
collating positions.

If you do not specify a value for the key_ type attribute, the value
AMC$UNCOLLATED _KEY is used.

Setting Embedded Ke!l_and Key_Position

The embedded_key attribute determines whether the primary key for a
record is located in the record (embedded) or is separate from the record
(nonembedded).

If the value of the embedded_key attribute is TRUE, the primary keys are
embedded. If the attribute value is FALSE, the keys are nonembedded. If you
do not set a value for the embedded_key attribute, the value TRUE is used.

For files with embedded keys, you must also set the key _position attribute or
accept the default value of zero. The system uses the key _position attribute
to locate the first byte of the primary key.

10-12 CYBIL File Interface RevisionB

CREATING AN INDEXED SEQUENTIAL FILE

e Defining the Block Size

Data blocks and index blocks are the same size. You can specify the block
size explicitly using the max_block_length attribute or accept the default
block size calculated by the system.

e It is recommended that you allow the system to calculate block size.

You specify block size explicitly by setting the max_block_length attribute.
If you specify a value for max_block_length, the system increases the value,
if necessary, so that a block can hold at least one maximum-length record.
Then the value is rounded up to the next power of 2 between 2,048 and 65,536
bytes, inclusive.

If you do not specify a value for the max_block_length attribute, the system
uses the values of the following attributes to calculate block size:

average_ record_ length
estimated_record_ count
index_ levels
max_ record_ length
min_record_length
records _per_ block

If you decide to let the system calculate block size, you should set as many of
these attributes as possible.

The system calculates block size as follows:

1. The value of the average_record_length attribute is used as the
average length of the records in the file. If you did not specify a value
for average_record_length, the arithmetic mean of the max_record_
length and min_record_length attributes is used as the average record
length; however, the system does not store this value as the average_
record_length attribute.

When the indexed sequential file has AMC$VARIABLE or
AMC$UNDEFINED type records, you should determine the value of
the average_record_length attribute as follows:

• If most records in the file are of a specific length, the value of
average_record_length should be set to that length.

• If record lengths are well distributed, the value of average_record_
length should be set to the median of the record lengths; that is, half
the records are smaller and half are larger than the value of
average_record_length.

If keys are nonembedded, the value of average_record_length should
be determined without regard to the value of the key _length attribute.

Revision B Using the Indexed Sequential File Organization 10-13

CREA TING AN INDEXED SEQUENTIAL FILE

2. The value of the records _per_ block attribute is used as an estimate of
the number of records a data block should contain. If records _per_
block is not specified, the estimate of two records per block is used.

The value of the records _per_ block attribute has only a small effect on
the calculation of block size and is used only for the calculation; it is A
not a limit to the number ofrecords a block can contain. •

3. The value of the estimated_record_count attribute is used as the
estimated maximum number of records in the file. If estimated
record_count is not specified, the value ofrecord_limit is used. If
record_limit is not specified, the estimate of 100,000 records is used.

4. The value of the index_level attribute is used as the estimate of the
number of index levels for the file. Ifindex_level is not specified, the
estimate of two index levels is used.

5. The system determines the smallest block size so that it can contain
both:

• The number of records specified by the records _per_ block attribute
with each record the length specified by the average_record_length
attribute.

• Sufficient index records so that if the file grows to its estimated A
maximum number of data records (estimated_record_count value), •
the number of index levels will be within the maximum (index_level
value).

A large block size is efficient in that it minimizes the number of index
levels. However, in extreme cases, a large block size can reduce
efficiency because a larger block will have to be read to memory each
time a record is randomly accessed. For accessing records sequentially,
a larger data block is always more efficient because fewer blocks will
be read to memory.

10-14 CYBIL File Interface Revision B

CREATING AN INDEXED SEQUENTIAL FILE

Defining Data_Padding and lndex_Padding

The data_padding and index_padding attributes specify the percentage of
data block and index block padding, respectively (0 through 99). The default
value for both attributes is zero, no padding.

Data block padding should be used only if the records being inserted during
the creation of the file have been already sorted by primary key. In this case,
data block padding helps avoid data block splits when the file is updated.
Also, data block padding should be used with care because the padding is
allocated in every data block in the data file.

Although index blocks are the same size as data blocks, the percentage of
index block padding need not be the same as for data block padding. A small
percentage of index block padding is usually recommended if a number of
updates to the file is expected. If you specify index block padding at file
creation time, index records can be added without creating additional index
levels.

Writing Records

After the indexed sequential file is opened, records can be written to the file
using the AMP$PUT _KEY or the AMP$PUT _NEXT calls. e A write operation copies the data moved from the working storage area to
the file. The value of the primary key determines the logical position of the
record in the file.

Whenever you write a large number of records to the file, such as is usually
done when the file is created, you should presort the records in ascending
order by primary key value. Presorting records can result in a smaller file
and less time required for writing the records. You can sort records using
NOS/VE Sort/Merge as described in the Sort/Merge manual.

You can write records sequentially using either AMP$PUT _KEY or
AMP$PUT _NEXT calls. Use of AMP$PUT _KEY calls is recommended for
writing indexed sequential files. AMP$PUT _NEXT should be used only if a
common interface for writing records, regardless of file organization, is
required.

Revision R Using the Indexed Sequential File Organization HJ.15

AMP$PUT _KEY

AMP$PUT_KEY

Purpose Writes a record to an indexed sequential file.

NOTE

The file must be open with at least PFC$APPEND
permission.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

Format AMP$PUT _KEY (file_identifier, working_storage_
area, working_storage_length, key _location, wait,
status);

Parameters file _identifier: amt$file_identifier

File identifier returned by AMP$0PEN for the file.

working_ storage_ area: ·cell

Pointer to the new record.

working_storage _length: amt$working _storage _length

Length, in bytes, of the record to be written.

key _location: "cell

Pointer to the primary key of the new record; specify NIL if
the primary keys are embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR ost$status

Status variable in which the completion status is returned.

10-16 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

aae$duplicate _alternate _key
aae$file _at_ file_ limit
aae$file _at_ user_ record_ limit
aae$file _full_ no _puts_ or_ reps
aae$file _is_ ruined
aae$key _already_ exists
aae$key _required
aae$nonembedded_key _not_given
aae$not _ enough_permission

AMP$PUT _KEY

• If the primary key is nonembedded, the key _location
parameter specifies the starting address of the key. If the
primary key is embedded, the key _location parameter is
ignored, and the location of the key is determined by the
key _position attribute; therefore, the key _location
parameter should be specified as NIL.

• If the file has AMC$ANSI_FIXED records, the working_
storage_length parameter is ignored, and the value of the
max_record_length attribute is used as the length of the
working storage area.

• Writing records to an indexed sequential file is usually
faster if the records are sorted in ascending primary key
order before being written to the file. Also, the resulting file
will probably be smaller.

• Writing unsorted records to an indexed sequential file could
result in inefficient file structure with more data blocks
than necessary because of numerous data block splits.
Also, more time is required to create the file.

• An AMP$PUT _KEY call updates the alternate indexes for
the new record if alternate keys are defined for the file.
Calls to put or replace records are effective even if an
alternate key is currently selected for reading and
positioning the file.

Using the Indexed Sequential File Organization 10-17

PROCESSING AN EXISTING INDEXED SEQUENTIAL FILE

Processing an Existing Indexed
Sequential File
After you create an indexed sequential file, you can perform these functions
on the file:

• Read records.

• Write records.

• Delete records.

• Replace existing records.

• Define alternate keys as described later in this chapter.

File processing is governed by the file attributes specified when the file was
created.

To use or change the data in an existing indexed sequential file, a task
performs the following steps:

1. Sets temporary file attribute values, if desired (AMP$FILE or
AMP$0PEN calls).

2. Opens the file (AMP$0PEN call).

3. Positions the file to a specific record, if desired (AMP$GET _KEY,
AMP$REWIND, AMP$SKIP or AMP$START calls).

4. Accesses records in the file:

• Reads records (AMP$GET _KEY, AMP$GET _NEXT _KEY, or
AMP$GET _NEXT calls).

• Writes records (AMP$PUT _KEY, AMP$PUT _NEXT, or
AMP$PUTREP calls).

• Replaces records (AMP$REPLACE_KEY or AMP$PUTREP calls).

• Deletes records (AMP$DELETE_KEY calls).

5. Closes the file (AMP$CLOSE call).

Depending on the value of the forced_ write attribute, the system might not
write modified blocks to mass storage immediately after the modification. A
AMP$FLUSH can be used any time after the file is opened to write all blocks W
to mass storage. Execution of the AMP$FLUSH call does not change the
position of the file.

10.18 CYBIL File Interface Revision B

PROCESSING AN EXISTING INDEXED SEQUENTIAL FILE

Setting Temporary Attribute Values

You can change the values of temporary attributes before or after the file is
opened. The attribute values you can specify and the means of changing old
file attributes are described in chapter 6, Defining File Attributes.

The following temporary attributes are effective only for indexed sequential
files:

• error limit: Sets a limit on the number of trivial errors that can occur. A
trivial error is an error that prevents successful completion of the current
request, but does not prevent processing of subsequent requests. The
system declares a fatal error when the trivial error limit is reached.

• message_ control: Determines the types of information written on the
$ERRORS file (trivial errors, informative messages, and/or statistics).

Positioning the File

A task can use AMP$GET _KEY, AMP$REWIND, AMP$SKIP, and
AMP$START calls to position an indexed sequential file. The calls position
the file as follows:

• AMP$GET _KEY: Returns to the working storage area the record whose
key value matches the key specified on the call and positions the file at
the end of the returned record.

• AMP$REWIND: Positions a file in front of the record with the lowest key
value.

• AMP$SKIP: Positions a file forward or backward one or more records.

• AMP$START: Positions a file to the beginning of the record whose key
value matches the key specified on the call.

To use a positioning call on a file, you must open the file for record access
with at least read access permission.

For information on a positioning a file by alternate key values, refer to Using
Alternate Keys later in this chapter.

Revision B Using the Indexed Sequential File Organization 10-19

PROCESSING AN EXISTING INDEXED SEQUENTIAL FILE

Positioning a File by Major Key

The AMP$START and AMP$GET _KEY calls have a major _key _length
parameter. This parameter allows a call to position the file according to a
major key value.

A major key consists of one or more of the leftmost bytes of a key. The
major_key _length parameter specifies the number of bytes to use as the
major key. A major key search compares only the number of bytes in the
major key.

For example, suppose the key at the specified key _location is ABCDEF and
the major _key _length parameter value is 2. The major key is the leftmost
two bytes, characters AB. The major key search compares the characters AB
with the leftmost two bytes of the searched keys. It positions the file at the
first record whose key begins with AB or greater.

As a second example, suppose the key specified on the call is the
hexadecimal integer FF145 and the major key length value is 3. The major
key used is the leftmost three bytes containing the value FFl so the file is
positioned at the first record whose key begins with FFl or greater.

If the major _key _length parameter is zero or equal to key _length, the entire
key is used to position the file.

10-20 CYBIL File Interface Revision B

AMP$START

AMP$START

Purpose Positions the file to the beginning of the first record in the file
having a key that satisfies the specified key relation. A record
is not returned to the working storage area.

NOTE

The file must be open with at least PFC$READ permission.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

Format AMP$START (file _identifier, key _location, major_
key _length, key _relation, file_position, wait, status);

Parameters file _identifier: amt$file _identifier

Revision B

File identifier returned by the AMP$0PEN call for the file.

key _location: 'cell

Location of the key to which the key of each record in the file
is compared.

major _key _length: amt$major _key _length

Length of the major key in bytes. The major key is the
leftmost bytes of the key at key _location. The major key is
compared to the leftmost bytes of a key.

If the value is zero, a full-length key is used to position the file.
Otherwise, the number of bytes specified for the major _key_
length parameter must be less than or equal to the value of
the key _length attribute.

key _relation: amt$key _relation

Relationship between the key of the record and the key at
key _location. The possible values are as follows:

AMC$EQUAL_KEY

The key of the record must be equal to the key at
key _location.

AMC$GREATER_OR_EQUAL_KEY

The key of the record must be equal to the key at key_
location or, if an equal key does not exist, must be the next
greater key value.

Using the Indexed Sequential File Organization 10-21

AMP$START

Condition
Identifiers

AMC$GREATER_KEY

The key of the record must be the first key value greater
than the key at key _location.

file _position: VAR amt$file _position

File position at completion of the start operation.

AMC$END _OF _KEY _LIST

File is positioned to read the first record containing the
alternate key value specified on the call (that is, at the end
of the preceding key list, if one exists).

AMC$EOR

File is positioned to access the record containing the
primary key value specified on the call (that is, at the end
of the preceding record, if one exists).

AMC$EOI

File is positioned at the end-of-information.

wait: amt$file _position

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR ost$status

Status variable in which the completion status is returned.

aae$file _at_ file_ limit
aae$file _is _ruined
aae$key _not_found
aae$major _key_ too _long
aae$nonembedded_key _not_given
aae$not _ enough_permission

10-22 CYBIL File Interface Revision B

Remarks

Revision B

AMP$START

• The AMP$START call does not specify a working storage
area so the key cannot be specified in the working storage
area as it can on other calls. Instead, the key _location
parameter must point to the location of the key.

• If an alternate key has been selected and the key is a
concatenated key, the values for the key fields are
assembled at key _location. The key fields must be
concatenated as defined for the key. For example, if the key
is the last three bytes of the record followed by the first
three bytes of the record, the value at key_ location must be
the last three bytes followed by the first three bytes. For
more information on concatenated keys, refer to Alternate
Key Definition later in this chapter.

• If no record in the file has a key that matches the specified
key, a trivial error (aae$key _not_found) occurs. The file is
left positioned either at the beginning of the first record
whose key is greater than the specified key or, if the
specified key is greater than all keys in the file, at the
end-of-information.

Using the Indexed Sequential File Organization 10-23

PROCESSING AN EXISTING INDEXED SEQUENTIAL FILE

Reading Records

For records to be read from an indexed sequential file, the file must be open
for record access with at least read access permission. However, it is
recommended that the file be opened with both read and modify access
permissions. Modify access permission allows access statistics to be updated
without allowing any record in the file to be altered.

A read operation transfers a record from the file to the specified working
storage area and positions the file at the end of the returned record. The
number of bytes in the record is returned in the record_length parameter.

You can read records either sequentially by position or randomly by key
value. A sequential read returns the next logical record in the file. A random
read returns the record identified by the specified key.

Sequential Access

Records can be read sequentially from an indexed sequential file using
AMP$GET _NEXT _KEY or AMP$GET _NEXT calls. Use of AMP$GET _
NEXT _KEY calls is recommended for reading indexed sequential files.
AMP$GET _NEXT should be used only if a common interface for writing
records, regardless of file organization, is required.

AMP$GET _NEXT _KEY returns the key of each record in the location
specified by the key _location parameter. The task can check the file_
position value returned to determine when to stop reading records.

Random Access

Records are read randomly by key value using the AMP$GET _KEY call. To
retrieve a single record from the indexed sequential file, you specify a key
value, and the system returns to the working storage area the record with the
matching key, ifit exists.

The major _key _length parameter allows the AMP$GET _KEY call to read
the first record with the specified major key. The key _relation parameter
allows AMP$GET _KEY to specify the relation between the specified key and
the key of the record to be read. The relation could be equal to, greater than,
or greater than or equal to. This allows the task to position the file without a
separate AMP$START call.

Random and Sequential Access

You can also read a contiguous group of records residing anywhere in the file
by combining random access and sequential access. This is accomplished by
issuing an AMP$GET _KEY to read the first record in the contiguous group,
and, then, issuing AMP$GET _NEXT _KEY calls (or AMP$GET _NEXT) to
sequentially read the following records.

10.24 CYBIL File Interface RevisionB

AMP$GET _KEY

e AMP$GET_KEY

Purpose

Format

Parameters

Revision B

Reads a record from an indexed sequential file by the value of
the specified key.

NOTE

To allow for updating of file statistics, the file should be
opened with both PFC$READ and PFC$MODIFY access
permissions.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

AMP$GET _KEY (file_identifier, working_storage_
area, working_storage_length, key _location, major_
key _length, key _relation, record_length, file_position,
wait, status)

file _identifier. amt$file_identifier

File identifier returned by the AMP$0PEN call for the file.

working_ storage_ area: "cell

Pointer to the space to which the record is copied.

working_storage _length amt$working _storage_ length

Length, in bytes, of the working storage area.

key _location "cell

Pointer to the key of the record to be read. Set to NIL if the
key is an alternate key specified in the working storage area.

major _key _length amt$major _key _length

Length of the major key in bytes. The major key is the
leftmost bytes of the key at key_ location. The major key is
compared to the leftmost bytes of a key.

If the value is zero, the full key length is used. Otherwise, the
number of bytes specified for the major_ key_ length
parameter must be less than or equal to the value of the key_
length parameter.

Using the Indexed Sequential File Organization 1().25

AMP$GET _KEY

key _relation: amt$key _relation

Relationship between the key of the record and the key at
key _location. The possible values are as follows:

AMC$EQUAL_KEY

The key of the record must be equal to the key at
key _location.

AMC$GREATER_OR_EQUAL_KEY

The key of the record must be equal to the key at key_
location or, if an equal key does not exist, must be the next
greater key value.

AMC$GREATER_KEY

The key of the record must be the first key value greater
than the key at key _location.

record_length: VAR of amt$max_record_length

Variable in which the number of bytes read is returned.

file _position: VAR of amt$file _position

Variable in which the file position at completion of the read
operation is returned.

AMC$END _OF _KEY _LIST

File is positioned at the end of the key list for the
alternate_key value specified on the call.

AMC$EOR

File is positioned at end-of-record.

AMC$EOI

File is positioned at end-of-information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

10-26 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

RevisionB

aae$file _at_ file_ limit
aae$file _is _ruined
aae$key _not_found
aae$major_key _too_long
aae$nonembedded_key _not_given
aae$not _ enough_permission
aae$record_longer _than_ wsa

AMP$GET _KEY

• If an alternate key is selected, the key _location parameter
can point to the location of the key or it can be set to NIL.
If key _location is set to NIL, AMP$GET _KEY expects the
key to be in the working storage area. The location of the
key in the working storage area must match the location of
the key in the record. If the alternate key is a concatenated
key, each field in the concatenated key must be stored in its
appropriate location in the working storage area.

• If the value of the key _relation parameter is
AMC$EQUAL_KEY and a record with the specified key
value does not exist, a tri"ial error occurs. The file is
positioned at the point where the record would be located if
it existed.

• AMP$GET _KEY returns the actual length of the record in
the variable specified by the record_length parameter. If
the length of the record is greater than the length of the
working storage area, working_ storage_ length characters
are returned to the working storage area and a trivial error
occurs.

• Execution of the AMP$GET _KEY call leaves the file
positioned at the end of the record that was read.
(AMC$EOR or AMC$END _OF _KEY _LIST is returned in
the file_position parameter.)

Using the Indexed Sequential File Organization 10.27

AMP$GET_NEXT_KEY

AMP$GET_NEXT_KEY

Purpose Reads the next logical record in the indexed sequential file.

NOTE

To allow for updating of file statistics, the file should be
opened with both PFC$READ and PFC$MODIFY access
permissions.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

Format AMP$GET _NEXT _KEY (file_identifier, working_
storage_area, working_storage_length, key _location,
record_length, file_position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier returned by the AMP$0PEN call for the file.

working_storage_area: "cell

Pointer to the space to which the record is copied.

working_storage _length: amt$working _storage _length

Length, in bytes, of the working storage area.

key _location: "cell

Pointer to the space in which the record key is returned.

record_length: VAR of amt$max_record_length

Variable in which the number of bytes read is returned.

file _position: VAR of amt$file _position

Variable in which the position of the file at completion of the
read operation is returned.

AMC$END _OF _KEY _LIST

File is positioned at the end of a key list (can be returned
only if an alternate key was selected).

AMC$EOR

File is positioned at the end of a record. (When an alternate
key is selected, indicates that the file is not at the end of a
key list.)

AMC$EOI

File is positioned at the end of the index.

10-28 CYBIL File Interface Revision B

Condition
Identifiers

Remarks

Revision B

AMP$GET _NEXT _KEY

wait ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status= VAR of ost$status

Status variable in which the completion status is returned.

aae$cant _position_ beyond_ bound
aae$file _at_file _limit
aae$file _boundary_ encountered
aae$file _is_ ruined
aae$nonembedded_key _not_given
aae$not _enough _permission
aae$record _longer_ than_ wsa
aae$wsa _not_ given

• AMP$GET _NEXT _KEY returns the next record in the file
as listed in the index.

• AMP$GET _NEXT _KEY returns the file_position
AMC$EOR (or AMC$END _OF _KEY _LIST for an
alternate key) when it returns a record to the working
storage area.

When AMP$GET _NEXT _KEY reads the last record in the
file, it returns AMC$EOR (or AMC$END _OF _KEY _LIST
for an alternate key) as the file position. The next
AMP$GET _NEXT _KEY call returns AMC$EOI as the file
position; it returns no data. If the task calls AMP$GET _
NEXT _KEY again after AMC$EOI has been returned, the
condition AAE$CANT _POSITION _BEYOND _BOUND
is returned.

For more information on the use of this call with alternate
keys, refer to Using Alternate Keys later in this chapter.

Using the Indexed Sequential F'ile Organization 10-29

AMP$GET_NEXT_KEY

• The key will be returned as a separate character string to
key _location unless the key _location parameter is set to
NIL.

• At the completion of the read request, the record_length
parameter is set to the length of the record that was read. If A
the sequential read operation was unsuccessful, the W
record_length parameter is not defined.

• If the length of the record that is read is greater than the
length of the working storage area as specified by the
working _storage _length parameter, working _storage_
length characters are returned and a trivial error occurs.

• When a file is being read but not updated, the file should be
opened with both PFC$READ and PFC$MODIFY
permission. The PFC$MODIFY permission allows access
statistics to be updated without allowing any record in the
file to be altered.

Replacing and Deleting Records

A call to replace or delete a record specifies the primary key of the record.
Alternate keys are not used to replace or delete records; selection of an A
alternate key does not affect subsequent replace or delete calls. W

You can replace any record in an existing file with a new record that has the
same primary key value. The new record can be shorter or longer than the
existing record as long as the length of the record is within the limits
established by the min_record_length and max_record_length attributes.
The record in the working storage area replaces the record in the file with the
specified primary key value.

The AMP$REPLACE_KEY and AMP$PUTREP calls both replace the
record having the primary key specified on the call. However, if no record in
the file has a matching primary key, an AMP$REPLACE_KEY call returns
a trivial error, whereas an AMP$PUTREP call acts as an AMP$PUT _KEY
call and writes the record to the file.

The AMP$DELETE_KEY procedure deletes a record from an indexed
sequential file. Deleting records does not release file space; the space is
reused when new records are added.

10.30 CYBIL File Interface Revision B

AMP$PUTREP

AMP$PUTREP

Purpose Replaces a record if the record exists in the indexed sequential
file or adds a new record if the record does not exist.

NOTE

The file must be opened with at least PFC$APPEND and
PFC$SHORTEN access permissions.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

Format AMP$PUTREP (file_identifier, working_storage_
area, working_storage_length, key _location, wait,
status)

Parameters file_ identifier amt$file _identifier

Condition
Identifiers

Revision 8

File identifier returned by the AMP$0PEN call for the file.

working_storage_area ·cell

Pointer to the new record.

working_ storage _lengtli amt$working _storage _length

Length, in bytes, of the record to be written.

key _location ·cell

Pointer to the primary key of the new record; specify NIL if
primary keys are embedded.

waii ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status VAR of ost$status

Status variable in which the completion status is returned.

aae$file _at_file_limit
aae$file _at_ user_ record_ limit
aae$file_full_no_puts_or _reps
aae$file is ruined
aae$key _required
aae$nonembedded_key _not_given

Using the Indexed Sequential File Organization 10-31

AMP$REPLACE_KEY

Condition
Identifiers

Remarks

aae$duplicate_alternate_key
aae$file_at_file_limit
aae$file_full_no_puts_or_reps
aae$file _is_ ruined
aae$key _not_found
aae$key _required
aae$nonembedded_key _not_given
aae$not_ enough_permission
aae$sparse_key _beyond_eor

• The replace request fails if the file does not contain a
record whose primary key matches the primary key of the
replacement record. This error is a trivial error; file
processing can continue.

• For AMC$VARIABLE and AMC$UNDEFINED type
records, the new record can be smaller or larger than the
existing record; however, the length of the new record must
be within the minimum and maximum record length
values defined for the file.

• For AMC$ANSI_FIXED type records, the value of
working_storage_length is ignored and the value of the
fixed record length (max_record_length) is used.

• Execution of an AMP$REPLACE_KEY call does not
change the position of the file.

An AMP$REPLACE_KEY call updates the alternate
indexes for the new record if alternate keys are defined for
the file. Calls to put or replace records are effective even if
an alternate key is currently selected for reading and
positioning the file.

10-34 CYBIL File Interface Revision B

AMP$DELETE_KEY

e AMP$DELETE_KEY

Purpose Removes a record from an indexed sequential file.

NOTE

The file must be open with at least PFC$SHORTEN
permission.

The procedure declaration for this procedure is stored as a
deck in file $SYSTEM.COMMON.PSF$EXTERNAL_
INTERFACE_SOURCE. Therefore, you must specify this file
as an alternate base library when expanding your source
program decks.

Format AMP$DELETE_KEY (file_identifier, key _location,
wait, status)

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Revision B

File identifier returned by the AMP$0PEN call for the file.

key _location: 'cell

Pointer to the primary key of the record to be deleted.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$file _at_ file_ limit
aae$file _is_ ruined
aae$key _required
aae$nonembedded_key _not_given
aae$not_ enough_permission

Using the Indexed Sequential File Organization 10-35

AMP$DELETE_KEY

Remarks • When the delete request is executed, the specified record is
either flagged as deleted or physically deleted from the
data block. When the first record in a data block is deleted,
index blocks are updated as applicable.

• If execution of a delete request empties a data or index e
block, the block is linked into a chain of empty blocks.
These blocks are reused when new blocks are required for
file expansion.

• If the file does not contain a record whose primary key
matches the specified primary key value, a trivial error
(aae$key _not_found) occurs.

• Execution of an AMP$DELETE_KEY call does not
change the position of the file.

An AMP$DELETE_KEY call updates the alternate
indexes if alternate keys are defined for the file. Calls to
delete records are effective even if an alternate key is
currently selected for reading and positioning the file.

• When deleting a series of contiguous fixed-length records,
you can save execution time by beginning with the record
having the highest primary key value. Deletion of the last
record in a data block is performed quickly because the
system just needs to reduce the record count by one.
Deletion of the first record in a data block, however, can
move all remaining records in the data block. By deleting
records in order from the highest to the lowest primary key
value, you can avoid relocation of records to be
subsequently deleted.

10-36 CYBIL File Interface Revision B

MONITORING THE INDEX LEVELS IN AN INDEXED SEQUENTIAL FILE

Monitoring the Index Levels in an
Indexed Sequential File

As described at the beginning of this chapter, record access in an indexed
sequential file is through a hierarchy of index blocks. Each additional index
level in the hierarchy requires an additional index block search for each data
record access. Performance is usually best when no more than two index
levels exist.

The efficiency of an indexed sequential file also depends on the block size
chosen. A larger block size requires fewer index records, but it increases the
time required for each block search.

An efficient indexed sequential file economizes space and the time needed to
access a record. The efficiency of the file depends on the attribute values
specified when the file was created. However, selecting suitable attribute
values requires that you know how large the file will grow.

You should monitor the growth of an indexed sequential file by periodically
checking the value of the levels_of_indexing file attribute. If the number of
index levels remains constant, the time to retrieve a record randomly
remains the same.

The AMP$FETCH_ACCESS_INFORMATION call can fetch the current
value of the levels_of_indexing attribute. (AMP$FETCH_ACCESS_
INFORMATION is described in chapter 7, Opening and Closing Files.)

Recreating an Indexed Sequential File

If the indexed sequential file becomes inefficient or if the current structure of
the file does not match your needs, you should consider recreating the file.
You can recreate the file as follows:

• Calling AMP$COPY _FILE as described in chapter 11, File Copying.

• Using the File Management Utility (FMU).

The AMP$COPY _FILE call recreates an indexed sequential file by copying
the records in the file to another file. The existing file is called the input file;
the new file is the output file. You should set the appropriate attribute values
for the output file as described under Setting File Attributes in this chapter.

Revision B Using the Indexed Sequential File Organization 10.:H

MONITORING THE INDEX LEVELS IN AN INDEXED SEQUENTIAL FILE

Recreating a file using the File Management Utility is described in the SCL A
Advanced File Management manual. W

If the file has one or more alternate keys defined, you must redefine the
alternate keys after the file is recreated. AMP$COPY _FILE and FMU do not
recreate the alternate key definitions. You should save the alternate key A
definitions from the old indexed sequential file on a text file so that you can W
use the definitions to redefine the alternate keys on the new file. To get the
alternate key definitions used by the file, call AMP$GET _KEY_
DEFINITIONS. To redefine the alternate keys, open the new file, specify
each alternate key definition on an AMP$CREATE_KEY _DEFINITION
call, and apply the definitions with an AMP$APPLY _KEY _DEFINITIONS
call.

10-38 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE EXAMPLE

9 Indexed Sequential File Example
The following example consists of two programs. The first program creates
an indexed sequential file and the second program updates the file.

The first program (module CREATE) creates an indexed sequential file
named INDEXED by copying records from a sequential file with local file
name 0 RIG IN AL_ DAT A. The first 15 characters of the record are used as
the embedded primary key. The records are fixed-length records, each 55
characters long.

The following is a listing of the data in file ORIGINAL_DATA. The first
column is a country name, the second is the population of the country, the
third is the size of the country (in square miles), and the fourth is the capital
of the country. There are several errors in the data; these will be fixed with
the update program.

Algeria 19709000 919591 Algiers
Australia 14796000 2967895 Melbourne
Austria 7476000 32374 Vienna
Belgium 9875000 11781 Brussels
Canada 20050000 3851791 Montreal
Denmark 5157000 16629 Copenhagen
France 53844000 211207 Paris
Great Britain 55717000 94226 London
India 700734000 1269340 Delhi
Ireland 3349000 27136 Dublin
Ivory Coast 8513000 124503 Abidjan
Japan 118783000 143750 Yokohama
Mexico 70143000 761601 Mexico
Sweden 8335000 173731 Stockholm
Switzerland 6300000 15941 Bern
Tanzania 18744000 364898 Zanzibar
Turkey 47284000 301381 Ankara
United Kingdom 55717000 94226 London
United States 225195000 3615105 Washington
USSR 269302000 8649498 Moscow
Venezuela 15771000 352143 Caracas
West Germany 60948000 95976 Bonn

The second program (module UPDATE) adds, deletes, and replaces records
in the file INDEXED created by the first program. The second program reads
its input from a file named UPDATE_DATA.

The directives on file UPDATE_DATA are listed in the program output. In
the program only the first letter of the words Delete, Replace, and Put are
used. The full word is included in the file to make the example clearer. Only
the primary key is required to delete a record.

Revision B Using the Imlexe<l Sequential File Organization 10-39

INDEXED SEQUENTIAL FILE EXAMPLE

This is a source listing of the program that creates the indexed sequential
file. The program uses the common procedures listed in appendix F to inspect
the status variable after each call and to produce a report on file $OUTPUT.

MODULE create ;
?? left := 1, right := 110 {source line margin control}??
?? PUSH (LIST := OFF) ??
*copyc ampSclose
*copyc ampSfile
*copyc ampSget_next
*copyc ampSopen
*copyc ampSput_key
{This deck contains the common procedures Listed in appendix F. }
*copyc comproc
?? POP ??

{This program creates an indexed sequential file (ISFILE) from}
{a sequential file CDATAIN). The primary key for ISFILE is}
{ the name of the country. }

CONST
key_Length = 15,
max_record_Length = 55,
record_count = 30,
key_position = O,
data_padding = 15,
index_padding = 10,
index_Levels = 2;

VAR
{ Declare variables for ISFILE.}

isfile: amtSlocal_file_name,
isfile_id: amtSfile_identifier,
isfile_fpos: amtSfile_position,

{ Declare variables for DATAIN.}
datain: amtSLocal_file_name,
sqfile_id: amtSfile_identifier,
sqfile_fpos: amtSfile_position,
sqfile_transfer_count: amtStransfer_count,
sqfile_byte_address: amtSfile_byte_address,

{ Wsa is used by both ISFILE and DATAIN.}
wsa: string Cmax_record_Length);

10-40 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE EXAMPLE

{Establish for file_description an array of file attribute}
{ values.}

VAR file_description: [STATIC] array [1 13] of
amt$file_item :=

[[amc$file_organization, amc$indexed_sequentialJ,
[amc$max_record_length, max_record_lengthJ,
[amc$record_type, amc$ansi_fixedJ,
[amc$average_record_length, max_record_lengthJ,
[amc$embedded_key, TRUE],
[amc$key_length, key_lengthJ,
[amc$key_position, key_positionJ,
[amcSkey_type, amc$uncollated_keyJ,
[amc$data_padding, data_paddingJ,
[amc$index_padding, index_paddingJ,
[amc$index_levels, index_levelsJ,
[amc$estimated_record_count, record_countJ,
[amc$message_control, amtmessage_controlJ
[amc$trivial_errors, amc$messages, amc$statistics]JJ;

PROGRAM creation_phase (VAR program_status : ost$status) ;

p#start_report_generationC'Begin indexed sequential file
creation.');

isfile :='indexed';
datain := 'original_data';
amp$file Cisfile, file_description, status);

p#inspect_status_variable ;

amp$open (isfile, amc$record, NIL, isfile_id, status);
p#inspect_status_variable ;

amp$open Cdatain, amc$record, NIL, sqfile_id, status);
p#inspect_status_variable ;

Revision B Using the Indexed Sequential File Organization 10-41

INDEXED SEQUENTIAL FILE EXAMPLE

{ The next part of the program reads records from DATAIN and }
{ writes the records to ISFILE. A WHILE Loop is used to read }
{and write the records until the file position of DATAIN is}
{ end-of-information.}

wsa := ' ';
ampSget_next (sqfile_id, Awsa, max_record_Length,

sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status);
p#inspect_status_variable;

WHILE (sqfile_fpos <> amcSeoi) DO
{The working storage Length (the third parameter) is
{ignored because the record type is amc$ansi_fixed.
amp$put_key (isfile_id, Awsa, O, NIL, osc$wait, status);

p#inspect_status_variable;
wsa := ' ';
amp$get_next (sqfile_id, Awsa, max_record_Length,

sqfile_transfer_count, sqfile_byte_address,
sqfile_fpos, status);
p#inspect_status_variable;

WHILEND;

amp$close <isfile_id, status);
p#inspect_status_variable;

amp$close (sqfile_id, status);
p#inspect_status_variable;

p#stop_report_generationC'Indexed sequential file
creation complete.');

program_status.normal := TRUE ;
{ Exit with normal status. }

PROCEND creation_phase ;

MODEND create;

10-42 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE EXAMPLE

This is a source listing of the program that updates the indexed sequential
file. The program uses the common procedures listed in appendix G to
inspect the status variable after each call and to produce a report on file
$OUTPUT.

MODULE update;
?? Left := 1, right := 110 {source Line margin control}??
?? PUSH (LIST:=OFF) ??
*copyc amp$close
*copyc amp$delete_key
*copyc amp$get_next
*copyc amp$open
*copyc amp$putrep
{The COMPROC deck contains the common procedures Listed in}
{ appendix G. }
*copyc comproc
?? POP ??

{This program updates indexed sequential file (INDEXED) }
{information contained in an update file (UPDATE_DATA). }

CONST
record_Length = 55;

VAR
{Declare variables for ISFILE.}

isfile: amt$Local_file_name :='indexed',
isfile_id: amt$file_identifier,
isfile_fpos: amt$file_position,
key: string (15),
isfile_wsa: string (record_Length),

{Declare variables for UPDATE.}
update: amt$Local_file_name := 'update_data',
update_id: amt$file_identifier,
update_fpos: amt$file_position,
update_transfer_count: amt$transfer_count,
update_byte_address: amt$file_byte_address,
update_wsa: string (record_Length + 7),

{ Declare access_selections array for amp$open.}
access_selections: [STATIC] array [1 •• 1J of amt$file_item

:= [[amc$message_control, amtmessage_control
[amc$trivial_errors, amc$messages, amc$statisticsJJJ;

Revision B Using the Indexed Sequential File Organization 10-43

INDEXED SEQUENTIAL FILE EXAMPLE

PROGRAM updating_phase <VAR program_status : ost$status)

p#start_report_generationC'Begin file update.');
amp$open (isfile, amc$record, "access_selections,

isfile_id, status);
p#inspect_status_variable;

ampSopen (update, amc$record, NIL, update_id, status);
p#inspect_status_variable;

{ The WHILE Loop that follows reads an update record from UPDATE }
{and edits ISFILE accordingly. The update information is }
{ contained in the first 7 characters of the records in UPDATE; }
{ however, only the first character is used to determine }
{ whether a delete, put, or replace operation is to be }
{ performed. If the operation requested is not a delete, put, or }
{ replace, a message and the update record are printed on the }
{output Listing. If the status parameter check shows that an }
{ error occurred, then control is returned to the system.}

update_wsa := ' ';
amp$get_next (update_id, "update_wsa, STRLENGTH(update_wsa),

update_transfer_count, update_byte_address, update_fpos,
status>;
p#inspect_status_variable;

WHILE (update_fpos <> amc$eoi) DO
p#put_m (TRUE, update_wsa(1, update_transfer_count));
isfile_wsa := update_wsa <8, *);
key := isfile_wsa (1, 15);
CASE update_wsa (1) OF

'D' =
amp$delete_key <isfile_id, "key, osc$wait, status);
p#inspect_status_variable ;
'P', 'R' =
amp$putrep <isfile_id, "isfile_wsa, 0, NIL, osc$wait, status>;
p#inspect_status_variable;

ELSE
p#put_m (FALSE, 'Invalid code given as first character. -->'>;
p#put_m <TRUE, update_wsa<1, update_transfer_count));

CA SEND;
update_wsa <1, *) := ' ';
amp$get_next (update_id, "update_wsa, STRLENGTH(update_wsa),

update_transfer_count, update_byte_address,
update_fpos, status);
p#inspect_status_variable;

WHILEND;

10-44 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE EXAMPLE

amp$close Cisfile_id, status>;
p#inspect_status_variable;

amp$close (update_id, status);
p#inspect_status_variable;

p#stop_report_generation('File update complete.');
program_status.normal := TRUE
{ Exit with normal status. }

PROCEND updating_phase ;

MODEND update;

Revision B Using the Indexed Sequential File Organization 10-45

INDEXED SEQUENTIAL FILE EXAMPLE

Assuming the program source text is stored as decks CREATE and
UPDATE on the source library $USER.MY _LIBRARY and the data files are
stored in the $USER catalog, the following are the SCL commands required
to expand, compile, attach the data files, and execute the programs. After the
commands is a listing of the update statistic messages from the programs.

/scu_expand_deck base=Suser.my_Library deck=Ccreate,update)
•• /alternate_base=($system.cybil.osf$program_interface,
•• /$system.common.psf$external_interface_source)
/cybil input=compile
/attach_file Suser.original_data
/attach_file Suser.update_data
/lgo

Begin indeKed sequential file creation.
File INDEXED 0 DELETE_KEYs done since last open.
File INDEXED 0 GET_KEYs done since last open.
File INDEXED 0 GET_NEXT_KEYs done since last open.
File INDEXED 22 PUT_KEYs (and PUTREPs->put) since Last open.
File INDEXED 0 PUTREPs done since last open.
File INDEXED 0 REPLACE_KEYs (and PUTREPs->replace) since last open.

No error has been found by the program.
Indexed sequential file creation complete.

Begin file update.
ReplaceCanada
Put China
Delete Great Britain
Put Spain
Put Italy
ReplaceJapan

File INDEXED
File INDEXED
File INDEXED
File INDEXED
File INDEXED
File INDEXED

24336000 3851791 Ottawa
1053788000 3705390 Beijing

38686000
57513000
11878300

194897 Madrid
116303 Rome
143750 Tokyo

1 DELETE_KEYs done since Last open.
0 GET_KEYs done since Last open.
0 GET_NEXT_KEYs done since Last open.
3 PUT_KEYs <and PUTREPs->put) since Last open.
5 PUTREPs done since Last open.
2 REPLACE_KEYs (and PUTREPs->replace) since last

No error has been found by the program.
File update complete.

open.

10-46 CYBIL File Interface Revision B

ALTERNATE KEYS

9 Alternate Keys

Records within an indexed sequential file can always be accessed by their
primary key values. An alternate key provides an additional way to access
records.

An alternate key is a field or group of fields in a data record. Alternate key
fields can overlap each other and the primary key.

Unlike a primary key value, one alternate key value be associated with
several records in a file. This is because an alternate key value need not be
unique. The same alternate key value can occur in several records (such as
the same job title associated with many names).

A record can contain more than one alternate key value if the alternate key
is defined as a field that repeats in the record; thus, a single record could
contain several alternate key values (such as the license numbers of several
cars owned by one person).

Although alternate keys can be used to read records or to position a file, they
cannot be used to write, replace, or delete records. Primary keys must be used
to write, replace, or delete records. (You can use alternate keys to locate the
primary key of a record prior to writing, replacing, or deleting the record.)

Alternate key definitions can be created or deleted by any user of the file who
has read, append, modify, and shorten access permissions. Only read
permission is needed to retrieve data records or index entries.

The Alternate Index

The index blocks for the primary key were described earlier in this chapter.
Each alternate key defined for a file has its own index.

An alternate index contains records that associate each alternate key value
with the primary key values of the records containing that alternate key
value. The list of primary key values associated with an alternate key value
is its key list.

When you select an alternate key and then specify an alternate key value,
the system searches for the value in the alternate index. If it finds the
alternate key value, it uses the primary key values in the key list to access
the records. e When one or more alternate keys are defined for a file, file updates require
more time because the alternate indexes must also be updated. Alternate
keys should be used only when the additional record access capability offsets
the cost of increased time spent for file updates.

RevisionB Using the Indexed Sequential File Organization 10.47

ALTERNATE KEYS

Alternate Key Definition

An alternate key is specified by an alternate key definition. The alternate
key definition specifies the attributes of the alternate key.

Alternate keys have both required and optional attributes. The required
attributes are key _name, key _position, and key _length. An alternate key
has a name so that it can be selected for use. The alternate key position and
length define the alternate key field within the record.

The key type of an alternate key specifies the order of the index records in
the alternate key index. (The index records are ordered by the alternate key
value in the record.) The valid key type values for an alternate key are the
same as the key type values for the primary key as described earlier in this
chapter. If the key type is AMC$COLLA TED _KEY, you can explicitly
specify a collation table for the alternate key or use, as the default, the
collation table specified for the primary key. The default key type for an
alternate key is the same as the default key type for the primary key.

Duplicate Key Values

The duplicate_key _control attribute controls the handling of duplicate
alternate key values in an alternate index. The attribute values are:

AMC$NO _DUPLICATES _ALLOWED

An attempt to add a duplicate key value to the alternate index results in a
trivial error.

If the duplicate is found during creation of the alternate index, creation of
the alternate index is restarted using the AMC$0RDERED _BY_
PRIMARY _KEY attribute value. (If this is not desired, set the error_limit
attribute to 1. The occurrence of a trivial error [such as a duplicate key
value] causes the trivial error limit to be reached and issuance of a fatal
error. The fatal error terminates alternate index creation. No alternate
indexes are created by the terminated AMP$APPLY _KEY_
DEFINITIONS procedure; however, it does perform all pending alternate
key deletions.)

If the duplicate is found during an attempt to write a record to the file, the
record is not written to the file and a trivial error (AAE$DUPLICATE_
ALTERNATE_KEY) is returned.

AMC$0RDERED _BY _PRIMARY _KEY

Duplicate key values are allowed in the alternate index. When a duplicate e
alternate key value is found, the associated primary key value is stored in
the key list for the alternate key value. The primary key values are stored
in sorted order according to the primary key type.

10-48 CYBIL File Interface Revision B

ALTERNATE KEYS

AMC$FIRST _IN _FIRST_ OUT

Duplicate key values are allowed in the alternate index. When a duplicate
alternate key value is found, the associated primary key value is stored in
the key list for the alternate key value. The primary keys are stored in the
key list in the order the values are added to the key list, instead of in
sorted order; new values are always added to the end of the key list.
AMC$FIRST _IN _FIRST_ OUT cannot be used for keys having repeating
groups.

A key list ordered by AMC$FIRST _IN _FIRST_ OUT is not reordered
when a data record is replaced unless the replaced record has a different
alternate key value (before collation for collated keys). For example, ifthe
first data record referenced by a key list is replaced and its alternate key
value remains the same, its position in the key list remains the same; it is
still the first record in the key list. However, if the alternate key value in
the record has changed, the record is removed from its former key list and
placed at the end of the key list for its new alternate key value; it would
then be the last record in that key list.

If you do not set a value for duplicate _key_ control, the value AMC$NO _
DUPLICATES_ALLOWED is used.

If you choose to allow duplicate alternate key values, AMC$0RDERED _
BY _PRIMARY _KEY is more efficient than AMC$FIRST _IN _FIRST_ OUT
because the primary key order allows more direct index searches.

To illustrate, figure 10-6 shows a list of data records and three alternate
indexes having each of the three duplicate_key _control attribute values. The
primary key is defined as the employee number; the last name, full name,
and job title are defined as alternate keys. The alternate index for the last
name uses AMC$0RDERED _BY _PRIMARY _KEY; the alternate index for
the full name uses AMC$NO _DUPLICATES _ALLOWED; and the alternate
index for job title uses AMC$FIRST _IN _FIRST_ OUT.

The key list for Computer Operator in the AMC$FIRST _IN _FIRST_ OUT
index shows that the record with primary key value 38602 was written to the
file after the record for primary key value 75090.

Revision B Using the Indexed Sequential File Organization 10-49

ALTERNATE KEYS

Data Records:
Emp. # Last Name First Name Job Title

13905 McGuire Stewart Clerk
38602 Johnstone Mark Computer Operator
39048 Jet son Harry Asst Manager
39248 Miller Robert Driver
42976 Stevens Carol Manager
49257 Lane Gladys Accountant
51234 Miller Catherine Secretary
75090 Arnold Terry Computer Operator
82176 Beirmeyer William Driver

Alternate Indexes:

Last Name Full Name
(AMC$0RDERED_BY_PRIMARY KEY) CAMC$NO_DUPLICATES_ALLOWED)

Arnold
Beirmeyer
Jetson
Johnstone
Lane
McGuire
Miller
Stevens

75090 Arnold
82176 Beirmeyer
39048 Jet son
38602 Johnstone
49257 Lane
13905 McGuire
39248 51234 Miller
42976 Miller

Stevens

Job Title
CAMC$FIRST_IN_FIRST_OUT)

Accountant 49257
Asst Manager 39048
Clerk 13905
Computer Operator 75090
Driver 39248
Manager 42976
Secretary 51234

Terry
Willi am
Harry
Mark
Gladys
Stewart
Catherine
Robert
Carol

38602
82176

Figure 10-6. Example of Duplicate Key Control

10-50 CYBIL File Interface

75090
82176
39048
38602
49257
13905
51234
39248
42976

RevisionB

e

e

ALTERNATE KEYS

Null Suppression

The null_ suppression attribute allows you to exclude from an alternate index
all records that have a null value for the specified alternate key. Null
suppression can save space, access time, and update time because the index
is smaller when the null alternate key values are excluded.

If the key type is AMC$INTEGER_KEY, the null value is O; if the key type is
AMC$UNCOLLATED_KEY, the null value is all spaces; ifthe key type is
AMC$COLLATED_KEY, the null value is all spaces before collation.

If null suppression is not specified, records containing a null value in the
alternate key field are indexed by the null value. The records can later be
accessed by specifying the null value as the alternate key value.

For example, consider the records shown in figure 10-7. Each record consists
of an employee number, name, job title, and car license number. Assume the
primary key is the employee number and the license number is the alternate
key for which AMC$0RDERED _BY _PRIMARY _KEY. The first alternate
index is the index created if null suppression is not used. The second
alternate index is the index created if null suppression is used.

Data Records:

Emp. # Last Name First Name Job Title License #

39248 Miller Robert Driver 3BMW862
42976 Stevens Carol Manager 1BOS003
39048 Jet son Harry Asst Manager
51234 Mi Ller Catherine Secretary
82176 Bei rmeyer··,· William Driver 3CAR395
75090 Arnold Terry Computer Operator 4CI0999
49257 Lane Gladys Accountant 1CPA120
38602 Johnstone Mark Computer Operator
13905 McGuire Stewart Clerk 5PEN485

Alternate Index Alternate Index
Without Null Suppression: With Null Suppression:

License# Emp. # License # Emp. #

39048 51234 38602 1BOS003 42976
1BOS003 42976 1CPA120 49257
1CPA120 49257 3BMW862 39248
3BMW862 39248 3CAR395 82176
3CAR395 82176 4CI0999 75090
4CI0999 75090 5PEN485 13905
5PEN485 13905

Figure 10-7. Example of Null Suppression

Revision B Using the Indexed Sequential File Organization 10-51

ALTERNATE KEYS

Sparse Keys

Sparse key control is used to determine whether a record is included or
excluded in an alternate index. To use sparse key control, you specify three
values:

A one-character field within the minimum record length (sparse_key _
control_position).

One or more possible sparse control values (sparse_key _control_
characters).

Whether the alternate key value should be included or excluded if the
character in the sparse key field matches one of the specified values
(sparse_key _control_effect).

If sparse key control is specified for an alternate key, the alternate key field
or fields need not be within the minimum record length. If the character at
the sparse_key _control_position indicates that the record should be included
in the alternate index, but the record has no alternate key value because the
record ends before the alternate key field, the record is not included in the
alternate index. Although the record is not included in the alternate index, it
is written to the file and a trivial error (AAE$SPARSE_KEY _BEYOND_
EOR) is returned.

To illustrate sparse key control use, figure 10-8 contains a list of data records e
and two alternate indexes. The data records contain an employee number,
name, job title, pay rate, and pay period. Assume that the employee number
is the primary key and that you want to define pay rate as an alternate key
(using AMC$0RDERED _BY _PRIMARY _KEY). However, hourly and
monthly pay rates are not directly comparable so two alternate keys are
defined, one to access records with an hourly pay rate and the other to access
records with a monthly pay rate. Both alternate keys specify the pay rate
field as the alternate key field and the pay period field as the sparse_key _
control_position. The hourly pay rate alternate key specifies H for the
sparse_key _control_characters attribute; the monthly pay rate alternate key
specifies M. Both alternate keys specify that the record is to be included if the
sparse key matches.

10-52 CYBIL File Interface Revision B

ALTERNATE KEYS

Data Records:

e Emp. # Last Name First Name

39248 Miller Robert

Job Title Pay Rate Pay Period

Driver 10.00 H
42976 Stevens Carol Manager 10000.00 M
39048 Jet son Harry Asst Manager 9000.00 M
51234 Miller Catherine Secretary 9.00 H
82176 Bei rmeyer William Driver 10.00 H
75090 Arnold Terry Computer Operator 7.00 H
49257 Lane Gladys Accountant 8000.00 M
38602 Johnstone Mark Computer Operator 6.00 H
13905 McGuire Stewart Clerk 6.00 H

Alternate Indexes:

Monthly Pay Emp. # Hourly Pay Emp. #

8000.00 49257 6.00 13905 38602
9000.00 39048 7.00 75090

10000.00 42976 9.00 51234
10.00 39248 82176

Figure 10-8. Sparse Key Example

Revision B Using the Indexed Sequential File Organization 10-53

ALTERNATE KEYS

Concatenated Keys

A concatenated key is an alternate key formed from several fields in the
record. The fields can be noncontiguous. This means that you can set up the
fields in the data records in any order and still use any combination of fields
as an alternate key. The order in which the fields are concatenated to form
the key is specified when the key is defined.

A concatenated key can comprise up to 64 fields. Each field can be a different
key type. All AMC$COLLATED_KEY fields use the same collation table.

The leftmost field of the key (the most significant field) is specified by the
key _position, key _length, and key _type attributes. Each concatenated field
is specified by a set of three attribute values: concatenated_key _position,
concatenated_key _length, and concatenated_key _type. The order of the
concatenated fields within the key is specified by the order you specify the
fields in the alternate key definiton.

A concatenated key can use sparse key control and/or null suppression. A
concatenated key is considered to have a null value if the values in all fields
of the key are null (before collation for collated keys).

Figure 10-9 shows a concatenated key example. Each data record contains
an employee number, name, and job title. Assume that the employee number
is the primary key, and that the employee first name and last name form a
concatenated alternate key. The resulting alternate index is shown.

Data Records:

Emp. # Last Name First Name Job Tit Le

39248 Miller Robert Driver
42976 Stevens Carol Manager
39048 Jet son Harry Asst Manager
51234 Miller Catherine Secretary
82176 Bei rmeyer Wi LL iam Driver
75090 Arnold Terry Computer Operator
49257 Lane Gladys Accountant
38602 Johnstone Mark Computer Operator
13905 McGuire Stewart Clerk

Alternate Index:

Carol Stevens 42976
Catherine Mi LL er 51234
Gladys Lane 49257
Harry Jet son 39048
Mark Johnstone 38602
Robert Miller 39248
Stewart McGuire 13905
Terry Arnold 75090
William Bei rmeyer 82176

Figure 10-9. Concatenated Key Example

10-54 CYBIL File Interface Revision B

ALTERNATE KEYS

e Repeating Groups

The repeating groups attribute allows a data record to contain more than one
alternate key value. This allows the same primary key value to be associated
with more than one alternate key value in an alternate index.

To specify an alternate key field within a repeating group, you specify values
for the following fields:

key _position: the beginning of the first alternate key value in a record.
(Bytes are numbered from the left beginning with 0.)

key _length: the length of each alternate key value.

repeating_group_length: the length of the repeating group, that is, the
distance between the beginning of an alternate key value and the
beginning of the next alternate key value.

repetition_control.repeat_to_end_of_record: indicates whether the
repeating group repeats a fixed number of times or until the end of the
record.

If repetition_ control.repeat_ to_ end_ of_record is true, the repeating group
repeats until the end of the record. In this case, the alternate key values need
not occur within the minimum record length. The system stores as many
alternate key values as the record length allows; it ignores trailing
information not long enough to be a repeating group.

Ifrepetition_control.repeat_to_end_of_record is false, the alternate key
field repeats a fixed number of times. In this case, the alternate key values
must occur within the minimum record length. The number of alternate key
values in each record is specified by repetition_control.repeating_group_
count.

If an alternate key value appears more than once in a record, the primary
key value is stored only once in the key list for that alternate key value. This
is illustrated for the name Darryl in the figure 10-10 example. Even though
employee 51234 has two dependents named Darryl, the primary key value is
stored only once for alternate key value Darryl.

Repeating groups cannot be used with concatenated keys or when duplicate_
key_ control is set to AMC$FIRST _IN _FIRST_ OUT.

As an example of repeating groups, consider the data records shown in
figure 10-10. Each record contains an employee number, name, job title, and
a list of employee children. Each child is identifed by two fields giving his or
her first name and age. Assume that the employee number is the primary
key and that the children's names are to be defined as the alternate key.

Revision B Using the Indexed Sequential File Organization 10-55

ALTERNATE KEYS

To do so, the two fields identifying each child are defined as a repeating
group. The key _position is specified as the beginning of the first child's
name in the record. The key _length is the length of the child's name field.
The repeating_group_length is the distance from the beginning of one
child's name to the beginning of the next child's name in the record. The
repeat_to_end_of_record field is true because the number of children is
variable. The resulting index is shown.

Data Records:

Emp. # Last Name First Name Children

39248 Miller Robert Mary 03Thomas 01
42976 Stevens Carol Mary 18George 13Richard 07
39048 Jet son Harry Patricia 10
51234 Miller Catherine Larry 06Darryl 05Darryl 05
82176 Beirmeyer William Linda 14
75090 Arnold Terry Anne 06Tara 04
49257 Lane Gladys Darryl 19
38602 Johnstone Mark Larry 08Linda 06Lily 05
13905 McGuire Stewart Mary 02

Alternate Index:

Dependent Emp. #

Anne 75090
Darryl 49257 51234
George 42976
Larry 38602 51234
Lily 38602
Linda 38602 82176
Mary 13905 39248 42976
Patricia 39048
Richard 42976
Tara 75090
Thomas 39248

Figure 10-10. Repeating Groups Example

10-56 CYBIL File Interface Revision B

ALTERNATE KEYS

Creating and Deleting Alternate Keys

You can create and delete alternate keys in a new indexed sequential file or
an existing indexed sequential file. To do so, perform these steps:

1. Open the indexed sequential file, if it is not already open.

2. Issue an AMP$CREATE_KEY _DEFINITION call for each alternate
key to be created. Issue an AMP$DELETE_KEY _DEFINITION call
for each alternate key to be deleted.

3. To implement the alternate key definitions and deletions specified in
step 2, issue an AMP$APPLY _KEY _DEFINITIONS call. Or, to
discard the specified definitions and deletions, issue an
AMP$ABANDON _KEY _DEFINITIONS call.

Although you can define alternate keys before any records are written to the
file, it is more efficient to define alternate keys after the initial records are
written to the file. This is because the alternate index can then be written in
sorted order. If the alternate index is written as each record is written, the
alternate index is written in random order. This takes much longer. The
efficiency difference is even greater when the file has more than one
alternate index.

Applying an alternate key definition to a file can require considerable
processing time if the file is large because creation of the new alternate index
requires that all records in the file be read.

Revision B Using the Indexed Sequential File Organization 10-57

AMP$CREATE_KEY _DEFINITION

AMP$CREATE KEY DEFINITION - -
Purpose Defines an alternate key.

Format AMP$CREATE_KEY _DEFINITION
(file _identifier,key _name,key _position,
key _length,optional_attributes,status)

Parameters file _identifier: amt$file _identifier

Condition
Identifiers

File identifier returned by the AMP$0PEN call for the file.

key _name: amt$key _name

Alternate key name. The name is specified as a 31-character
string; the name is left-justified with blank fill within the
string and must follow the SCL naming rules.

key _position: amt$key _position

Position of the first byte of the alternate key in the record.
(The bytes in a record are numbered from the left, beginning
with zero.)

key _length: amt$key _length

Length, in bytes, of the alternate key. The maximum length is
255 bytes.

optional_attributes: "amt$optional_key _attributes

Pointer to an adaptable array defining optional attributes of
the alternate key. Specify NIL if no optional attributes are to
be specified.

Each record in the array specifies an optional attribute; the
attribute defined is indicated by the SELECTOR field of the
record. Table 10-1 lists the SELECTOR field values and the
attribute record fields generated for each SELECTOR field
value.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$alt_key _past_minrl
aae$bad_name
aae$cant _create_ existing _name
aae$concatenated_key _too_ big
aae$cant_get_ collate_ table
aae$collated_altkey _no_table
aae$no_repeating_group

10-58 CYBIL File Interface Revision B

Remarks

NOTE

AMP$CREATE_KEY _DEFINITION

• A subsequent AMP$APPLY _KEY _DEFINITIONS call is
required to implement an alternate key definition specified
by an AMP$CREATE_KEY _DEFINITION call. Before
the apply operation, an alternate key definition is only
pending and cannot be used to access records in the file. A
call to AMP$ABANDON _KEY _DEFINITIONS discards
pending alternate key definitions.

• If the selector field in a record in the optional_ attributes
array has the value AMC$NULL_ATTRIBUTE, the
record is ignored.

• Sparse key control is defined by the sparse_ key _control_
position, sparse_key _control_characters, and sparse_
key_ control_ effect values. If an alternate key is subject to
sparse key control, the sparse key control character must
be within the minimum record length, but the alternate key
fields need not be. For more information, see the sparse
keys description earlier in this chapter.

• A concatenated key can comprise up to 64 fields in the
record. The most significant field of the key is defined by
the key _position and key _length values. Each field
concatenated to the first field is specified by a record in the
optional_ attributes array containing concatenated_key _
position, concatenated_ key _length, and concatenated_
key _type fields. The order in which the fields are
concatenated corresponds to the order of the records in the
array.

The total length of a concatenated key can be a maximum
of 700 bytes.

• The first alternate key value in a repeating group begins at
key _position. Subsequent keys are found by adding the
value ofrepeating_group_length to key _position until
either the repeating_group_count is satisfied (repeat_ to_
end_of_record is FALSE) or the end of the record is
reached (repeat_ to_ end_ of_ record is TRUE).

• Repeating groups cannot be used with concatenated keys.
Also, repeating groups cannot be used when duplicate_
key_ control is set to AMC$FIRST _IN _FIRST_ OUT.

The CYBIL declaration for AMT$0PTIONAL_KEY _ATTRIBUTE in appendix
C lists additional fields besides those listed in table 10-1. These additional fields
are for features not yet implemented.

Revision B Using the Indexed Sequential File Organization 10-59

AMP$CREATE_KEY _DEFINITION

Table 10-1. Optional Attribute Record Contents (AMT$0PTIONAL_ e
KEY _ATTRIBUTE)

Value of
SELECTOR Field Resulting Attribute Record Fields

AMC$KEY _TYPE KEY_ TYPE: amt$key _type

Type of the alternate key.

AMC$COLLATE _
TABLE_NAME

AMC$UNCOLLATED KEY

Keys (1 through 255 bytes) ordered byte-by-byte
according to the ASCII character set sequence
(listed in appendix B). The key can be a positive
integer or a string of ASCII character codes.

AMC$INTEGER_KEY

Integer keys (1 through 255 bytes) ordered
numerically. The integer can be positive or
negative.

AMC$COLLATED _KEY

Keys (1 through 255 bytes) ordered according to a
user-specified collation table (see the COLLATE_
TABLE_NAME description in this table). e

If you omit the attribute, AMC$UNCOLLATED _KEY
is used.

COLLATE TABLE_NAME:
pmt$program_name

Name of the collation table to be used for collating the
alternate key. (The alternate key collation table can
differ from the primary key collation table. See
appendix E for more information on collation tables.)

If you omit the attribute and the key type of both the
alternate key and the primary key is
AMC$COLLATED_KEY, the collation table for the
primary key is used; however, if the alternate key type
is AMC$COLLATED_KEY but the primary key type
is not AMC$COLLATED _KEY, you must specify a
collation table for the alternate key.

(Continued)

10-60 CYBIL File Interface Revision B

AMP$CREATE_KEY _DEFINITION

Table 10-1. Optional Attribute Record Contents (AMT$0PTIONAL_
KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field Resulting Attribute Record Fields e AMC$DUPLICATE_KEYS DUPLICATE_KEY _CONTROL:

amt$duplicate_key _control

AMC$NULL
SUPPRESSION

Revision H

Indicates how duplicate alternate key values
are handled in the alternate index.

AMC$NO_DUPLICATES_ALLOWED

No duplicate alternate key values are
allowed in the alternate index.

AMC$FIRST _IN _FIRST_ OUT

Duplicate alternate key values are ordered
according to when the record is written to
the file.

AMC$0RDERED_BY_PRIMARY_KEY

Duplicate alternate key values are ordered
according to primary key values.

Omission causes AMC$NO _DUPLICATES
ALLOWED to be used.

NULL_SUPPRESSION: boolean

Indicates whether alternate keys with a null
value should be included in the alternate key
index. (For AMC$INTEGER_KEY, the null
value is zero; for AMC$UNCOLLATED _
KEY, the null value is all spaces; for
AMC$COLLATED_KEY, the null value is all
spaces before collation.)

FALSE

All values are included in the index.

TRUE

Null values are not included in the index.

Omission causes FALSE to be used.

(Continued)

Using the Indexed Sequential File Organization 10-61

AMP$CREATE_KEY _DEFINITION

Table 10-1. Optional Attribute Record Contents (AMT$0PTIONAL_ e
KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$SPARSE_KEYS

AMC$REPEATING_
GROUP

10~62 CYBIL File Interface

Resulting Attribute Record Fields

SPARSE_KEY _CONTROL_POSITION:
amt$key _position

Position of the sparse key control character. The
position must be within the minimum record
length. (Bytes in a record are numbered from the
left, beginning with zero.)

SPARSE_KEY_CONTROL
CHARACTERS : set of char

Set of characters with which the sparse key
character is compared.

SPARSE_KEY_CONTROL_EFFECT:
amt$sparse _key_ control_ effect

Indicates whether a sparse key control character
match causes the alternate key to be included or
excluded from the alternate index.

AMC$INCLUDE_KEY _VALUE

Alternate key value is included in the
alternate index.

AMC$EXCLUDE_KEY_VALUE

Alternate key value is not included in the
alternate index.

REPEATING_GROUP _LENGTH:
amt$max_record_length,

Length, in bytes, of the repeating group of fields.
It is the distance from the beginning of an
alternate key value to the beginning of the next
alternate key value in the record.

(Continued)

Revision B

AMP$CREATE_KEY _DEFINITION

Table 10-1. Optional Attribute Record Contents (AMT$0PTIONAL_
KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$CONCATENATED
KEY _PORTION

Revision B

Resulting Attribute Record Fields

REPETITION_ CONTROL :
am t$repetition _control

This record indicates whether the alternate key
repeats until the end of the record. If no values
are specified for the repetition_ control record, it
is assumed that the repeating group repeats
until the end of the record.

REPEAT_TO_END_OF_RECORD:
boolean

TRUE

The alternate key repeats until the record
ends. (An incomplete key at the end of the
record is not used.)

FALSE

The alternate key repeats the number of
times specified in the REPEATING_
GROUP_ COUNT field. If sparse key
control is not used, the specified number of
key values must be within the minimum
record length.

REPEATING_ GROUP_ COUNT:
amt$max_repeating_group _count

Number of times the group of fields repeats in a
record. This field is generated only if REPEAT_
TO_END_OF _RECORD is FALSE.

CONCATENATED _KEY _POSITION:
amt$key _position

Position of a field to be concatenated to the key.
(Bytes are numbered from the left, beginning
with zero.)

CONCATENATED_KEY_LENGTH:
amt$key _length

Length, in bytes, of a field to be concatenated to
the key.

CONCATENATED KEY_TYPE:
amt$key _type

Key type of a field to be concatenated to the key.
The key types are the same as for the key_ type
parameter.

Using the Indexed Sequential File Oql"anization 10-6:3

AMP$DELETE_KEY _DEFINITION

AMP$DELETE_KEY _DEFINITION

Purpose Requests removal of an alternate key definition by the next
AMP$APPLY _KEY _DEFINITIONS call.

Format AMP$DELETE_KEY _DEFINITION (file_identifier,
key _name,status);

Parameters file _identifier: amt$:file _identifier

Condition
Identifiers

Remarks

File identifier returned by the AMP$0PEN call for the file.

key _name: amt$key _name

Name of the alternate key to be deleted. The name is specified
as a 31-character string; the name is left-justified with blank
fill within the string.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$bad_name
aae$cant _delete_ missing_ name
aae$no _delete_ current_ key
aae$not _enough _permission

• A subsequent AMP$APPLY _KEY _DEFINITIONS call is
required to implement an alternate key deletion specified
by an AMP$DELETE _KEY _DEFINITION call.

Before the apply operation, an alternate key deletion is
only pending; the alternate key remains in the file,
although it is not available for use. (An instance of open
that has already selected the alternate key can continue to
use it; however, no instance of open can select the key
while its deletion is pending.)

A call to AMP$ABANDON _KEY _DEFINITIONS
discards pending alternate key deletions.

• You cannot delete an alternate key while you have the key
selected. Before calling AMP$DELETE_KEY _
DEFINITION for the current key, you must call
AMP$SELECT _KEY to select another key; otherwise
AMP$DELETE_KEY _DEFINITION returns the
condition AAE$NO _DELETE_ CURRENT _KEY. e

10-64 CYBIL File Interface Revision B

AMP$APPLY _KEY _DEFINITIONS

e AMP$APPL Y _KEY _DEFINITIONS

Purpose

e Format

Applies the pending alternate key definitions and deletions to
the file.

AMP$APPLY _KEY _DEFINITIONS (file_identifier,
status)

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

Revision B

File identifier returned by the AMP$0PEN call for the file.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$begin_altkey _labels
aae$begin _delete_ keydefs
aae$duplicate _alternate_ key
aae$enable_altkey _duplicates
aae$end_altkey _labels
aae$end _delete_ keydefs
aae$index _being_ built
aae$keydef _has_ been_ deleted
aae$no _definitions
aae$not _enough _permission
aae$sparse _key_ beyond_ eor
aae$unexpected _ dup _encountered

• An AMP$APPLY _KEY _DEFINITIONS call first deletes
each alternate index specified by a pending alternate key
deletion. It then creates an alternate index for each
pending alternate key definition. A pending definition or
deletion is one requested by an AMP$CREATE_KEY _
DEFINITION or AMP$DELETE_KEY _DEFINTION call
that has not yet been discarded or applied to the file.
(Closing the file or issuing an AMP$ABANDON _KEY_
DEFINITIONS call discards all pending definitions and
deletions.)

• If AMC$NO _DUPLICATES _ALLOWED is specified for a
new key and the file contains data, AMP$APPLY _KEY_
DEFINITIONS returns a trivial error (condition
AAE$UNEXPECTED _DUP _ENCOUNTERED) if it finds
a duplicate alternate key value. It then changes the
duplicate control for the index from AMC$NO _
DUPLICATES_ALLOWED to AMC$0RDERED _BY_
PRIMARY _KEY, and restarts creation of the alternate
index. (All other indexes are unaffected by this change.)

Using the Indexed Sequential File Organization 10-65

AMP$APPLY _KEY _DEFINITIONS

If a change to AMC$0RDER_BY _PRIMARY _KEY is not
desired, set the error _limit attribute to 1. The occurrence of
a trivial error (such as a duplicate key value) causes the
trivial error limit to be reached and a fatal error issued.
The fatal error terminates alternate index creation. No
alternate indexes are created by the terminated
AMP$APPLY _KEY _DEFINITIONS procedure; however,
it does perform all pending alternate key deletions.

10-66 CYBIL File Interface Revision B

AMP$ABANDON _KEY _DEFINITIONS

e AMP$ABANDON_KEY _DEFINITIONS

Purpose

Format

Discards the pending alternate key definitions or deletions.

AMP$ABANDON _KEY _DEFINITIONS
(file_ identifier ,status);

Parameters file_ identifier: amt$file _identifier

Condition
Identifiers

Remarks

Revision B

File identifier returned by the AMP$0PEN call for the file.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$no _definitions _pending
aae$not _ enough_permission

A pending alternate key definition or deletion is one requested
by an AMP$CREATE_KEY _DEFINITION or
AMP$DELETE_KEY _DEFINITION call that has not yet
been discarded or applied to the file. An AMP$ABANDON _
KEY _DEFINITIONS call or the closing of the file discards
all pending definitions and deletions. (An AMP$APPLY _
KEY _DEFINITIONS call applies all pending definitions and
deletions.)

Using the Indexed Sequential File Organization 10-67

USING ALTERNATE KEYS

Using Alternate Keys

An alternate key is available for use after it has been defined by an
AMP$CREATE_KEY _DEFINITION call and the definition applied by an
AMP$APPLY _KEY _DEFINITIONS call. The following sections describe
how you can use an alternate key.

In general, file access calls perform the same when an alternate key is
selected as when the primary key is selected. The only difference is that
records are accessed through the alternate index.

Record access through the alternate index means that the logical record
order is the order of the alternate key values in the alternate index. The
alternate key values are stored in ascending order.

If more than one record is associated with the same alternate key value, the
records are accessed in the order their primary key values occur in the key
list for the alternate key value. For example, if the key list for alternate key
value A contains the primary key values for records RECI and REC3 and
the key list for alternate key value B contains only the primary key value for
record REC2, the records would be read sequentially: RECI, REC3, REC2.

Selecting an Alternate Key

When an indexed sequential file is opened, the system assumes that file
processing is by primary key. That is, the selected key is initially the primary
key. You can change the selected key by calling AMP$SELECT _KEY. The
call names the key selected.

To specify an alternate key on an AMP$SELECT _KEY call, you specify the
name of the key as it was defined when the key was created. To specify the
primary key on an AMP$SELECT _KEY call, you specify $PRIMARY _KEY.

The key selected by an AMP$SELECT _KEY call is used until another
AMP$SELECT _KEY call changes the selected key or until the file is closed.

10-68 CYBIL File Interface Revision B

USING ALTERNATE KEYS

File Positioning After Alternate Key Selection

When an AMP$SELECT _KEY call selects a different key, it sets the file
position to the beginning of the index for that key. (If the key specified on an
AMP$SELECT _KEY call is already the selected key, the file position is not
changed.) After an alternate key is selected, all file positioning follows the
logical record order represented in the alternate index.

As described earlier in this chapter, several calls are available to position an
indexed sequential file. Those calls that both position the file and read and
write data are described later. The following calls position the file without
reading or writing data:

AMP$START

Positions the file to access the record with the specified alternate key
value.

AMP$REWIND

Positions the file at the beginning of the alternate index. The file is
positioned to access the record with the lowest alternate key value.

AMP$SKIP

Positions the file forward or backward the specified number ofrecords
(according to the record order provided by the alternate index).

Reading Records After Alternate Key Selection

In general, the calls to read (or get) a record perform the same when an
alternate key is selected as when the primary key is selected. The only
difference is that records are accessed through the alternate index.

Random get calls specify the record to be read by its alternate key value.
Sequential get calls access records in sorted order by alternate key value.

These calls get a record and position the file to read or write the next record.
The next record is the record having the next primary key value listed in the
alternate index.

AMP$GET _KEY

Gets the first record in the key list of the specified alternate key value and
positions the file to read the next record.

An AMP$GET _KEY call specifies the alternate key value either in the
location referenced by the key _location pointer or (with a NIL key_
location pointer) in the working storage area. The second method is
especially useful for concatenated alternate keys because the fields of the
key can be assembled in the working storage area. Each key field value is
stored in the working storage area at its actual position within the record.

Revision B Using the Indexed Sequential File Organization 10-69

USING ALTERNATE KEYS

AMP$GET _NEXT _KEY

Gets the record at the current position in the alternate index, returns the
alternate key value of the record read, and positions the file to read the
next record.

The alternate key value returned is the value stored in the alternate index. A
If the alternate key type is AMC$COLLA TED _KEY, the key values are W'
stored in collated form. In collated form, each character is represented by
the lowest character code having the same collating weight. For example,
if lowercase letters are collated as equal to the corresponding uppercase
letters (each uppercase/lowercase pair has the same collating weight), the
alternate key value is stored (and later returned) using only uppercase
letters.

AMP$GET _NEXT

Gets the record at the current position in the alternate index and positions
the file to read the next record.

Updating an Alternate Index

A call to put, replace, or delete a record cannot specify an alternate key value;
a key value specified on a put, replace, or delete call is expected to be a
primary key value even if an alternate key is currently selected. However,
put, replace, and delete calls do update any alternate key indexes affected by e
the operation.

When a call deletes a record in the file, any alternate index entries for the
record are deleted.

When a call writes a new record to the file, an entry for the record is added to
the alternate indexes (unless the record is excluded from an index by sparse
key control). The new record can then be read by its alternate key value.

When a call replaces an existing record in the file, the alternate index entries
for the record are replaced with the appropriate entries for the new record.
(The alternate key value could have changed or sparse key control could
exclude the record from an alternate index.)

If an alternate index in the file was created using the default duplicate _key_
control value AMC$NO _DUPLICATES_ALLOWED, a record having the
same alternate key value as a record already in the file cannot be written to
the file. An attempt to put or replace a duplicate record returns a trivial error
and the record is not written.

10~ 70 CYBIL File Interface Revision B

USING ALTERNATE KEYS

e Fetching Access Information After Alternate Key Selection

An AMP$FETCH_ACCESS_INFORMATION call can return the following
items of information as described in section 7. This list highlights the
meaning of each item when returned immediately after a file access call that
specifies an alternate key value:

duplicate_ value _inserted

Boolean indicating whether the last put or replace call wrote a record
having a duplicate alternate key value. The duplication may not be for the
currently selected alternate key; it could be for any alternate key that
allows duplicates.

file_ position

Returns the current file position as described later under File Position
Returned.

primary_ key

Primary key of the record at the current file position (the next record). The
AMP$FETCH_ACCESS_INFORMATION call must specify a pointer to
the location where the primary key value is to be returned.

selected_key _name

Name of the currently selected key. If the primary key is currently
selected, $PRIMARY _KEY is returned.

File Position Returned

At completion of each AMP$START, AMP$GET _KEY, or AMP$GET _
NEXT _KEY call, a value is returned in the file_position variable. The value
returned is AMCEOR, AMCEOI, or AMC$END _OF _KEY _LIST.

When returned by an AMP$START call, the file_position values have these
meanings:

AMC$END_OF _KEY _LIST

The alternate index is positioned at the end of a key list and at the
beginning of the next key list. The next key list is for either the specified
alternate key value or the next higher alternate key value if the specified
value was not found.

AMC$EOI

The alternate index is positioned at its end because the specified alternate
key value was higher than any alternate key value in the index.

Revision B Using the Indexed Sequential File Organization 10-71

USING ALTERNATE KEYS

When returned by an AMP$GET _KEY call, the file_position values have
these meanings:

AMC$EOR

A record associated with the alternate key value has been returned, and if A
an AMP$GET _NEXT _KEY call were issued next, it would return the W
next record in the key list for the alternate key value.

AMC$END _OF _KEY _LIST

The last (or only) record associated with the alternate key value has been
returned, and if an AMP$GET _NEXT _KEY call were issued next, it
would return a record with another alternate key value or the file_position
AMC$EOI.

AMC$EOI

Same as for AMP$START.

When returned by an AMP$GET _NEXT _KEY call, the file_position values
have these meanings:

AMC$EOR

Same as for AMP$GET KEY.

AMC$END _OF _KEY _LIST

Same as for AMP$GET _KEY.

AMC$EOI

No record is returned because the file is positioned at the end of the
alternate index.

10-72 CYBIL File Interface Revision B

USING ALTERNATE KEYS

Retrieving Alternate Index Information

Three calls retrieve alternate index information:

AMP$GET _NEXT _PRIMARY _KEY _LIST

Retrieves a list of primary keys based on the current position in the index
and an upperbound that you specify.

AMP$GET _PRIMARY _KEY_ COUNT

Returns the number of primary keys based on boundaries that you
specify.

AMP$GET _KEY _DEFINITIONS

Retrieves the definitions of existing alternate keys.

Your program could use the definitions returned by AMP$GET _KEY_
DEFINITIONS to:

• Determine the attributes of an alternate key

• Define identical or similar alternate keys in another file

For example, when you recreate an indexed sequential file, the alternate key
definitions must be redefined for the new file. By retrieving and saving the
alternate key definitions of the old file, you can use the definitions when
defining the alternate keys for the new file and ensure that the new alternate
key definitions are identical to those of the old file.

Revision B Using the Indexed Sequential File Organization 10-7:1

AMP$SELECT _KEY

AMP$SELECT _KEY

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Selects the key to be used by subsequent calls.

AMP$SELECT _KEY (file_ identifier ,key _name,status);

file _identifier: amt$file_identifier

File identifier returned by the AMP$0PEN call for the file.

key _name: amt$key _name

Name of the key to be used. Specify an alternate key name or
specify $PRIMARY _KEY to switch from an alternate key
back to the primary key.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$altkey _name_not_found
aae$can t _select_ key
aae$cant _select_ until_ a pp lied
aae$no _select_ on _pending_ delete
aae$not _enough_ permission

• The initial key selected when a file is opened is always the
primary key. e

• The key selection remains in effect until another
AMP$SELECT _KEY call is issued or the file is closed.

• AMP$SELECT _KEY cannot select an alternate key for
which a deletion request is pending (an AMP$DELETE_
KEY _DEFINITION has specified the key). If a deletion
request is pending for the specified key, AMP$SELECT _
KEY returns the condition
AAE$NO _SELECT_ ON _PENDING _DELETE.

• When an AMP$SELECT _KEY call changes the selected
key, it positions the file at the record having the lowest key
value for the selected key (that is, it rewinds the file for
that key). However, if the AMP$SELECT _KEY call does
not change the selected key (the key specified on the call is
already selected), it does not rewind the file (the file is left
in its current position).

10-7 4 CYBIL File Interface Revision B

AMP$GET _KEY _DEFINITIONS

AMP$GET _KEY _DEFINITIONS

Purpose

Format

Parameters

Condition
Identifiers

Remarks

Revision B

Retrieves the definitions of all alternate keys in the file.

AMP$GET _KEY _DEFINITIONS
(file_ identifier ,key_ definitions,status);

file_ identifier: amt$file _identifier

File identifier returned by the AMP$0PEN call for the file.

key _definitions: SEQ (*)

Sequence to receive the description of the alternate keys. Each
definition is written in two parts: a record of type
AMT$BASIC_KEY _DEFINITION and an array of type
AMT$0PTIONAL_KEY _ATTRIBUTES containing three or
more additional records. (The number of records is returned in
the NUMBER_ OF_ OPTIONAL_ATTRIBUTES field of the
AMT$BASIC_KEY _DEFINITION record.)

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$not _enough_ permission
aae$too _little_ space

• A successful AMP$GET _KEY _DEFINITIONS call
returns the key definitions in the sequence specified by the
key _definitions parameter. The last key definition in the
sequence consists of an amt$basic_key _definition record
in which the field definition_returned is FALSE; the record
serves as the terminator for the sequence of key definitions.

• If the definition_returned field is TRUE in an
AMT$BASIC_KEY _DEFINITION record, the record is
the first part of a key definition. The NUMBER_ OF_
OPTIONAL_ATTRIBUTES field in the record specifies
the number of additional records returned for the key
definition; the records are returns in an array of type
AMT$0PTIONAL_KEY _ATTRIBUTES.

Using the Indexed Sequential File Organization 10-75

AMP$GET _KEY _DEFINITIONS

Example:

• The SELECTOR field of an optional attribute record
indicates the attribute returned in the record. The possible
attributes are: key_ type, duplicate _key_ control, null_
suppression, sparse_key _control, concatenated_key, and
repeating_groups. The first three records are returned for
every key definition; the subsequent records are returned
only if the attribute was specified for the key definition.

• Although the attribute order in a key definition may not
match the attribute order specified when the alternate key
was defined, the returned definition is logically equivalent
and, if used to redefine the key, results in an identical
alternate key.

• All name values in an alternate key definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

The following CYBIL statements show how the key definition
sequence returned by an AMP$GET _KEY _DEFINITIONS
call could be read. The key definition sequence is declared to
be 500 words long (500 integers). If the sequence is too small,
AMP$GET _KEY _DEFINITIONS returns the condition
AAE$TOO _LITTLE_ SPACE.

10-76 CYBIL File Interface Revision B

MODULE GET_DEFS_MOD;
*copyc ampSopen
*copyc ampSget_key_definitions
*copyc amtSoptional_key_attributes
PROCEDURE GET_ALT_KEY_DEFS;

VAR

AMP$GET _KEY _DEFINITIONS

lfn: [STATIC] amtSlocal_file name := 'existing_is_file',
fid: amtSfile_identifier,
status: ostSstatus,
definitions_ptr : ftSEQ <*>,
definitions : SEQ(REP 500 OF integer>,
basic_definition : ftamtSbasic_key_definition,
optional_attributes : ftamtSoptional_key_attributes;

ampSopen(lfn,amcSrecord,NIL,fid,status);

{ Statements here to check the status variable.}

ampSget_key_definitions (fid,definitions,status);

{ Statements here to check the status variable.}

definitions_ptr := ftdefinitions;
RESET definitions_ptr;

{ Set the basic_definitions pointer to the first record.}
NEXT basic_definition IN definitions_ptr;

{Iterate until the definition_returned field in the}
{ basic_definition record is FALSE.}

WHILE basic_definitionft.definition_returned DO

{ Set the optional_attributes pointer to the beginning }
{ of the optional attributes array.}

NEXT optional_attributes :
[1 •• basic_definitionft.number_of_optional_attributes]
IN definitions_ptr;

{ Use the key definition here. }

{ Set the basic_definition pointer to the next key }
{ definition.}

NEXT basic_definition IN definitions_ptr;

WHILEND;
PROCEND GET_ALT_KEY_DEFS;
MODEND GET_DEFS_MOD

Revision B Using the Indexed Sequential File Organization 10-77

AMP$GET _pRIMARY _KEY_ COUNT

AMP$GET _PRIMARY _KEY_ COUNT

Purpose

Format

Returns the number of primary key values that are associated
with all alternate key values in a range.

AMP$GET _PRIMARY _KEY_ COUNT (file_
identifier,low _key, major _low _key,low _key_
relation,high_key,major _high_key, high_key _
relation,list _count_ limit,list _count, wait,status);

Parameters file_identifier: amt$file_identifier

File identifier returned by the AMP$0PEN for the file.

low _key: "cell

Pointer to the alternate key value at which the range begins.
Set to NIL if the range begins at the lowest alternate key
value in the alternate index.

major _low _key: amt$major _key _length

Specify a nonzero value to indicate that the lowerbound
alternate key value is to be located by major key. The nonzero
value is the number of characters beginning at the low _key
location that are to be used as the major key. Specify zero to
indicate that the full alternate key value is to be used.

low _key _relation: amt$key _relation

Indicates where the count begins in relation to the lowest
value in the range.

AMC$GREATER_KEY

Exclude the primary keys associated with the low _key
value from the count, that is, begin the count when an
alternate key value greater than the low _key value is
encountered.

AMC$GREATER_OR_EQUAL_KEYor
AMC$EQUAL_KEY

Include the primary keys associated with the low _key
value in the count, that is, begin the count when an
alternate key value greater than or equal to the low _key
value is encountered.

high_key: ·cell

Pointer to the alternate key value at which the range ends. Set
to NIL if the range ends at the highest alternate key value in
the alternate index.

10-78 CYBIL File Interface Revision B

Condition
Identifiers

Hevi.sion B

AMP$GET _PRIMARY _KEY_ COUNT

major _high_key: amt$major_key _length

Specify a nonzero value tu indicate that the upperbound
alternate key value is to be located by major key. The nonzero
value is the number of characters beginning at the high_key
location that are to be used as the major key. Specify zero to
indicate that the full alternate key value is to be used.

high_key _relation: amt$key _relation

Indicates where the count ends in relation to the highest value
in the range.

AMC$GREATER_KEY

Include the primary keys associated with the high_key
value in the count, that is, end the count when an alternate
key value greater than the high_key value is encountered.

AMC$GREATER_OR_EQUAL_KEYor
AMC$EQUAL_KEY

Exclude the primary keys associated with the high_ key
value from the count, that is, end the count when an
alternate key value greater than or equal to the high_ key
value is encountered.

list_count_limit: 0 .. amt$key _count_limit

Maximum number of primary keys counted; the system stops
counting when it reaches this value. If set to zero, all primary
keys are counted.

list_count: VAR of 0 .. amt$key _count_limit

Integer variable in which the number of primary keys in the
range is returned. If zero is returned, no primary keys exist in
the specified range. The value cannot exceed the list count
limit.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.

aae$high_end_not_above_low _end
aae$not _enough_ permission
aae$not _positioned_ by_ altkey

Using thP Indexed Sequential File Organization 10-7~

AMP$GET _pRIMARY _KEY_ COUNT

Remarks • You must call AMP$SELECT _KEY to select the alternate
key before calling AMP$GET _PRIMARY _KEY_ COUNT;
otherwise, AMP$GET _PRIMARY_ KEY_ COUNT returns
the trivial error aae$not_positioned_ by _altkey and does
not return a primary key count.

• The low _key and high_key parameters point to values e
that specify the lower and upper bounds, respectively, of
the range of keys to be counted. The low _key _relation and
high_key _relation parameters indicate whether the low_
key and high_ key values, respectively, are included in the
range.

For example, suppose the low _key value is JONES and the
high_key value is SMITH. The low _key _relation value
indicates whether the primary keys associated with
alternate key value JONES are included in the count. The
high_key _relation value indicates whether the primary
keys associated with alternate key value SMITH are
included in the count.

• A major key consists of the leftmost characters of a key.
The major _high_key and major _low _key parameters
specify the number of characters of the specified key to use
when searching for a matching key. A key is considered to
match the specified key when the major key matches the
first characters of the key.

For example, suppose the key at the specified low _key
position is ABCDEF. If the major _low _key parameter
value is 2, the major key used is AB. Therefore, the count
begins at the first alternate key value beginning with a
value greater than or equal to AB.

• If low _key is set to NIL, the values of major _low _key and
low _key _relation are ignored. Ifhigh_key is set to NIL,
the values of major _high_key and high_key _relation are
ignored.

• AMP$GET _PRIMARY _KEY_ COUNT counts a single
primary key value more than once if the primary key value
is associated with more than one alternate key value. This
is possible if the repeating groups attribute is defined for
the alternate key.

• The list_count_limit value can minimize the processing
required for the call. If, for example, you call AMP$GET _
PRIMARY _KEY_ COUNT call to determine whether the
number of primary key values is 0, 1 or more than 1, you
should set the list_ count_ limit value to 2.

10-80 CYBIL File Interface Revision B

AMP$GET _NEXT _PRIMARY _KEY _LIST

e AMP$GET _NEXT _PRIMARY _KEY _LIST

Purpose

e Format

Returns a list of primary keys values corresponding to a range
of alternate key values.

AMP$GET _NEXT _PRIMARY _KEY _LIST (file_
identifier,high_key, major _high_key,high_key _
relation, working_ storage_ area, working_ storage_
length,end_of_primary _key _list, transferred_byte_
count,transferred_key _count, file _position, wait,
status);

Parameters file_ identifier: amt$file _identifier

Revision B

File identifier returned by the AMP$0PEN call for the file.

high_key: 'cell

Pointer to the alternate key value at which the range ends. Set
to NIL if the range ends at the end of the alternate index.

major _high_ key: amt$major _key _length

Specify a nonzero value to indicate that the upperbound
alternate key value is to be located by major key. The nonzero
value is the number of characters beginning at the high_key
location that are to be used as the major key. Specify zero to
indicate that the full alternate key value is to be used.

high_key _relation: amt$key _relation

Indicates where the list ends in relation to the highest
alternate key value in the range.

AMC$GREATER_KEY

Include the primary keys associated with the high_ key
value in the list, that is, end the list when an alternate key
value greater than the high_ key value is encountered.

AMC$GREATER_OR_EQUAL_KEYor
AMC$EQUAL_KEY

Exclude the primary keys associated with the high_ key
value from the list, that is, end the list when an alternate
key value greater than or equal to the high_ key value is
encountered.

working_storage_area: 'cell

Pointer to the variable in which the primary key list is
returned.

Using the Indexed Sequential File Organization 10-81

AMP$GET _NEXT _PRIMARY _KEY _LIST

working_storage _length: amt$working _storage _length

Length, in bytes, of the working storage area.

end_of_primary _key _list: VAR of boolean

Variable in which a boolean value is returned indicating
whether the entire list of primary key values was returned to
the working storage area.

TRUE

The high end of the range was reached, and the entire list
of primary key values was returned to the working storage
area.

FALSE

The high end of the range was not reached, and at least
one more AMP$GET _NEXT _PRIMARY _KEY _LIST call
is required to get the rest of the primary key list.

transferred_byte _count: VAR of
amt$working_storage _length

Variable in which the length, in bytes, of the list of primary
key values is returned.

transferred_key _count: VAR of amt$key _count_limit

Variable in which the number of primary key values is
returned.

file _position: VAR of amt$file _position

Variable in which the file position at completion of the
operation is returned.

AMC$EOR

File is positioned within a key list.

AMC$END _OF _KEY _LIST

File is positioned at the end of a key list.

AMC$EOI

File is positioned at the end of the alternate index.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

10.82 CYBIL File Interface RevisionB

Condition
Identifiers

Remarks

Revision B

AMP$GET _NEXT _PRIMARY _KEY _LIST

aae$high _end_ below_ current
aae$not _enough _permission
aae$not _positioned_ by_ altkey
aae$wsa_not_given
aae$wsl _too_ short

• You must call AMP$SELECT _KEY to select the alternate
key before calling AMP$GET _NEXT _PRIMARY _KEY_
LIST; otherwise, AMP$GET _NEXT _PRIMARY _KEY_
LIST returns the trivial error aae$not_positioned_by _
altkey and does not return a primary key list.

• The high_key parameter points to a value that specifies
the upper bound of the range of keys to be listed. The
high_key _relation parameter indicates whether the high_
key value is included or excluded from the range. For
example, suppose the high_ key value is SMITH. The
high_key _relation value indicates whether the primary
keys associated with alternate key value SMITH are
included in the list.

• A major key consists of the leftmost characters of a key.
The major _high_key parameter specifies the number of
characters of the specified key to use when searching for a
matching key. A key is considered to match the specified
key when the major key matches the first characters of the
key.

For example, suppose the key at the specified high_key
location is ABCDEF. If the major_high_key parameter
value is 2, the major key used is AB. Therefore, the range
ends at the first alternate key value beginning with AB.

• If high_key is set to NIL, the values of major _high_key
and high_key _relation are ignored.

• A primary key value can be included more than once in the
list returned by AMP$GET _NEXT _PRIMARY _KEY_
LIST. This occurs if the primary key value is associated
with more than one alternate key value in the range. This
is possible if the repeating groups attribute is defined for
the alternate key.

Using the Indexed Sequential File Organization 1().83

ALTERNATE KEY EXAMPLE

Alternate Key Example

The following program illustrates the use of alternate keys. The program
uses the indexed sequential file created and updated in the earlier examples
in this chapter. It also uses the common procedures listed in appendix G.

The program defines the capital field as the alternate key field. It then copies
the records to file ALTERNATE_KEY _OUTPUT, sorted by the alternate
key.

This is a source listing of the program.

MODULE example_3 ;
?? Left := 1, right := 110 {source Line margin control}??
?? PUSH CLIST:=OFF) ??

ampSapply_key_definitions
ampSclose
amp$create_key_definition
ampSfile
amp$get_next_key
ampSopen
ampSput_next

*COpyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
*copyc
{ This

ampSselect_key
deck contains the

*copyc comproc
?? POP ??

common procedures Listed in appendix G. } e
{This module defines and then uses alternate keys for ISFILE.}

CONST
max_record_Length = 55;

VAR
{ Declare variables for ISFILE.}

isfile: amtSLocal_file_name,
isfile_id: amtSfile_identifier,
isfile_fpos: amtSfile_position,

{Declare variables for alternate key CAPTIAL_KEY.}
capital_key_name: amtSkey_name := 'capital_key',
capital_key_position: amtSkey_position := 41,
capital_key_Length: amtSkey_length := 14,

{ Declare variables for SEQFILE.}
sqfile: amtSlocal_file_name,
sqfile_id: amtSfile_identifier,
sqfile_byte_address: amtSfile_byte_address;

10-84 CYBIL File Interface Revision B

ALTERNATE KEY EXAMPLE

VAR
wsa: string(max_record_length),
record_length : amt$max_record_length;

{ Declare access_selections array for amp$open of ISFILE.}
VAR

access_selections_isfile: [STATIC] array [1 •. 1J of
amt$file_item :=

[[amc$message_control, amtmessage_control
[amc$trivial_errors, amc$messages, amc$statisticsJJJ;

{Establish the file attribute array for file_description.}
VAR

file_description: [STATIC]
[[amc$file_organization,
[amc$max_record_length,

array [1 •. 2J of amt$file_item :=
amc$sequentialJ,
max_record_lengthJJ;

{ Declare access_selections array for amp$open of SEQFILE.}
VAR

access_selections_sqfile: [STATIC] array [1 •• 1J
of amt$file_item :=
[[amc$file_contents, amc$legibleJJ;

VAR
capital_attributes: [STATIC,READJ array [1 •. 1J

of amt$optional_key_attribute :=
[[amc$duplicate_keys, amc$ordered_by_primary_keyJJ;

PROGRAM alternate_key_phase (VAR program_status : ost$status);

p#start_report_generation('Begin alternate keys example.');

{These calls specify file attributes and open files. }
isfile := 'indexed';
sqfile := 'alternate_key_output';
amp$file (sqfile, file_description, status);

p#inspect_status_variable;
amp$open (isfile, amc$record, "access_selections_isfile,

isfile_id, status);
p#inspect_status_variable;

amp$open (sqfile, amc$record, "access_selections_sqfile,
sqfile_id, status);
p#inspect_status_variable;

{These calls define and generate the alternate index. }
amp$create_key_definition (isfile_id, capital_key_name,

capital_key_position, capital_key_length,
"capital_attributes, status);
p#inspect_status_variable;

amp$apply_key_definitions (isfile_id, status);
p#inspect_status_variable;

Revision B Using the Indexed Sequential File Organization 10-85

ALTERNATE KEY EXAMPLE

{These calls select the alternate key and read the first record. }
amp$select_key Cisfile_id, capital_key_name, status>;

p#inspect_status_variable;
amp$get_next_key Cisfile_id, Awsa, max_record_Length, NIL,

record_Length, isfile_fpos, osc$wait, status>;
p#inspect_status_variable ;

{ This Loop copies the records in the indexed sequential }
{file to the sequential file in the order the records}
{ are referenced in the alternate index. }

WHILE Cisfile_fpos <> amc$eoi) DO
amp$put_next Csqfile_id, Awsa, max_record_Length,

sqfile_byte_address, status>;
p#inspect_status_variable;

wsa (1, *) := ' ';
amp$get_next_key Cisfile_id, Awsa, max_record_Length, NIL,

record_Length, isfile_fpos, osc$wait, status>;
p#inspect_status_variable ;

WHILEND;

amp$close Cisfile_id, status>;
p#inspect_status_variable;

amp$close Csqfile_id, status>;
p#inspect_status_variable ;

p#stop_report_generationC'Alternate keys example complete.'>;
program_status.normal := TRUE;
{ Exit with normal status. }

PROCEND alternate_key_phase;

MODEND example_3 ;

10-86 CYBIL File Interface Revision B

ALTERNATE KEY EXAMPLE

VAR
wsa: string(max_record_length),
record_length : amt$max_record_length;

{ Declare access_selections array for amp$open of ISFILE.}
VAR

access_selections_isfile: [STATIC] array [1 •• 1] of
amt$file_item :=

[[amc$message_control, amtmessage_control
[amc$trivial_errors, amc$messages, amc$statistics]JJ;

{Establish the file attribute array for file_description.}
VAR

file_description: [STATIC]
[[amc$file_organization,
[amc$max_record_length,

array [1 •• 2J of amt$file_item :=
amc$sequentialJ,
max_record_lengthJJ;

{ Declare access_selections array for amp$open of SEQFILE.}
VAR

access_selections_sqfile: [STATIC] array [1 .. 1]
of amt$file_item :=
[[amc$file_contents, amc$legibleJJ;

VAR
capital_attributes: [STATIC,READJ array [1 •• 1]

of amt$optional_key_attribute :=
[[amc$duplicate_keys, amc$ordered_by_primary_keyJJ;

PROGRAM alternate_key_phase (VAR program_status : ost$status);

p#start_report_generation('Begin alternate keys example.');

{These calls specify file attributes and open files. }
isfile :='indexed';
sqfile := 'alternate_key_output';
amp$file (sqfile, file_description, status);

p#inspect_status_variable;
amp$open (isfile, amc$record, "access_selections_isfile,

isfile_id, status);
p#inspect_status_variable;

amp$open (sqfile, amc$record, ·access_selections_sqfile,
sqfile_id, status);
p#inspect_status_variable;

{These calls define and generate the alternate index. }
amp$create_key_definition Cisfile_id, capital_key_name,

capital_key_position, capital_key_length,
"capital_attributes, status);
p#inspect_status_variable;

amp$apply_key_definitions Cisfile_id, status);
p#inspect_status_variable;

Revision B Using the Indexed Sequential File Organization 10-85

ALTERNATE KEY EXAMPLE

{These calls select the alternate key and read the first record. }
ampSselect_key Cisfile_id, capital_key_name, status>;

p#inspect_status_variable;
ampSget_next_key Cisfile_id, "wsa, max_record_Length, NIL,

record_Length, isfile_fpos, oscSwait, status>;
p#inspect_status_variable ;

{ This Loop copies the records in the indexed sequential }
{file to the sequential file in the order the records}
{ are referenced in the alternate index. }

WHILE Cisfile_fpos <> amc$eoi) DO
ampSput_next Csqfile_id, "wsa, max_record_Length,

sqfile_byte_address, status);
p#inspect_status_variable;

wsa C1, * > := ' ';
amp$get_next_key Cisfile_id, "wsa, max_record_Length, NIL,

record_Length, isfile_fpos, oscSwait, status>;
p#inspect_status_variable ;

WHILEND;

ampSclose Cisfile_id, status>;
p#inspect_status_variable;

ampSclose Csqfile_id, status>;
p#inspect_status_variable ;

p#stop_report_generationC'Alternate keys example complete.');
program_status.normal := TRUE;
{ Exit with normal status. }

PROCEND alternate_key_phase;

MODEND example_3 ;

10-86 CYBIL File Interface RevisionB

ALTERNATE KEY EXAMPLE

Assuming the source program is stored as deck ALTERNATE_KEYS on
source library file $USER.MY _LIBRARY, the following is a listing of the
SCL commands required to expand, compile and execute the program and
the output produced by the program.

/scu_expand_deck base=Suser.my_Library deck=Calternate_keys)
•• /alternate_base=($system.cybil.osf$program_interface,
•• /$system.common.psf$external_interface_source)
/cybil input=compile
/attach_file $user.indexed
I Lgo

Begin alternate keys example.
File INDEXED begin creating Labels for alternate key

definitions.
File INDEXED finished creating Labels for alternate key

File INDEXED

File INDEXED

File INDEXED
File INDEXED
File INDEXED
File INDEXED

File INDEXED
File INDEXED

File INDEXED
File INDEXED
File INDEXED

File INDEXED
File INDEXED
File INDEXED

definitions.
begin the data pass that collects alternate
key values.
AMPSAPPLY_KEY_DEFINITIONS has reached a file
boundary : EOI.
data pass completed.
begin sorting the alternate key values.
sorting completed.
begin building alternate key indexes into
the file.
completed building the indexes into the file.
AMPSGET_NEXT_KEY has reached a file
boundary : EOI.
0 DELETE_KEYs done since Last open.
0 GET_KEYs done since Last open.
48 GET_NEXT_KEYs done since
Last open.
0 PUT_KEYs (and PUTREPs->put) since Last open.
0 PUTREPs done since Last open.
0 REPLACE_KEYs (and PUTREPs->replace) since
Last open.

No error has been found by the program.
Alternate keys example complete.

Revision B Using the Indexed Sequential File Organization 10-87

ALTERNATE KEY EXAMPLE

This is a listing of the ALTERNATE_KEY _OUTPUT file written by the
program.

Ivory Coast 8513000 124503 Abidjan
Algeria 19709000 919591 Algiers
Turkey 47284000 301381 Ankara
China 1053788000 3705390 Beijing
Switzer Land 6300000 15941 Bern
West Germany 60948000 95976 Bonn
Belgium 9875000 11781 Brusse Ls
Venezuela 15771000 352143 Caracas
Denmark 5157000 16629 Copenhagen
India 700734000 1269340 Delhi
Ireland 3349000 27136 Dublin
United Kingdom 55717000 94226 London
Spain 38686000 194897 Madrid
Australia 14796000 2967895 Melbourne
Mexico 70143000 761601 Mexico
USSR 269302000 8649498 Moscow
Canada 24336000 3851791 Ottawa
France 53844000 211207 Paris
Italy 57513000 116303 Rome
Sweden 8335000 173731 Stockholm
Japan 11878300 143750 Tokyo
Austria 7476000 32374 Vienna
United States 225195000 3615105 Washington
Tanzania 18744000 364898 Zanzibar

10-88 CYBER File Interface Revision B

9 File Copying 11

Sequential File Organization to Sequential File Organization 11-2

e Sequential File Organization to Indexed Sequential File Organization ... 11-3

Byte Addressable File Organization to Byte Addressable File
Organization .. 11-4

Indexed Sequential File Organization to Indexed Sequential File
Organization .. 11-5

Indexed Sequential File Organization to Sequential File Organization ... 11-7

List File Copying ... 11-8

AMP$COPY _FILE .. 11-9

File Copy Example .. 11-11

File Copying 11

NOS/VE offers more than one means of copying files. It provides the SCL
command COPY _FILE (described in the SCL System Interface manual), the
File Management Utility (FMU) (described in the SCL Advanced File
Management manual), and the file interface call AMP$COPY _FILE
described in this chapter.

An AMP$COPY _FILE call copies a file to another file. The file copied from
is called the input file; the file copied to is called the output file. The file
organization, block type, and record type attributes of the output file may
differ from the corresponding attributes of the input file.

AMP$COPY _FILE performs either a byte-by-byte copy or a record-by-record
copy, depending on the attributes of the specified input and output files. A
byte-by-byte copy does not change the physical representation of the file; the
output file is an identical copy, byte by byte, of the input file. A record-by
record copy changes the physical representation of the file, although its
logical content remains the same. That is, the contents of each record in the
file does not change although the means of accessing each record may differ
due to differing file attributes.

Table 11-1 shows the valid file organization combinations for input and
output files. If an attempted copy is invalid, AMP$COPY _FILE returns
abnormal status (AME$COPY _NOT _SUPPORTED).

Table 11-1. Valid File Organizations for AMP$COPY _FILE

Output File

Byte Indexed
Input File Sequential Addressable Sequential

Sequential Valid Invalid Valid

Byte addressable Invalid Valid Invalid

Indexed sequential Valid Invalid Valid

Revision B File Copying 11-1

SEQUENTIAL FILE ORGANIZATION TO SEQUENTIAL FILE ORGANIZATION

Sequential File Organization to
Sequential File Organization

If both input and output files have the file organization attribute
AMC$SEQUENTIAL, AMP$COPY _FILE performs either a byte-by-byte
copy or a record-by-record copy.

AMP$COPY _FILE performs a byte-by-byte copy if all of the following
conditions are met:

• Both files are mass storage files.

• Both files are opened at their beginning-of-information (BOI).

• The following file attributes of both files are identical:

block_ type
file_ access_ procedure
file_contents
file_organization (AMC$SEQUENTIAL)
file_ structure
record_ type

Otherwise, AMC$COPY _FILE performs a record-by-record copy if the
following conditions are met:

• The file_structure attributes of both files must be identical or one file has
unknown file structure.

• The file_ contents attributes of both files must be identical, or one file has
unknown file contents, or the input file is legible or unknown and the
output file is list. The last case is described under List File Copying.

If the file_contents attribute of both files is legible, the line_number and
statement_identifier attributes of both files must be identical.

If the open_position attribute of the output file is AMC$0PEN _AT _BOI,
AMP$COPY _FILE releases any data previously written on the output file.

If the record_ type attribute of the input file is variable (V) records and the
record_ type attribute of the output file is ANSI fixed-length (F) records, the
max_record_length attribute of the output file must be as large as the
largest input record; otherwise, the copy truncates input records to the max_
record_length value of the output file.

11 ·2 CYBIL File Interface Revision B

SEQUENTIAL FILE ORGANIZATION TO INDEXED SEQUENTIAL FILE
ORGANIZATION

Sequential File Organization to Indexed
Sequential File Organization

Copying from a sequential input file to an indexed sequential output file is
valid if the following file attribute conditions are met:

• The file_structure attributes of both files are identical, or one file has
unknown file structure.

• The file_contents attributes of both files are identical, or one file has
unknown file contents.

If the open_position attribute of the output file is AMC$0PEN_AT _BOI,
AMP$COPY _FILE releases any data previously written on the output file.

If the open_position of the output file is not AMC$0PEN_AT _BOI,
AMP$COPY _FILE adds only those records from the input file that have
unique keys. It copies records from the input file beginning at its open
position. Ifit reads a record from the input file having a key that already
belongs to a record on the output file, AMP$COPY _FILE terminates and
returns abnormal status.

When copying a sequential file to an indexed sequential file, AMP$COPY _
FILE assumes that each sequential file record has an embedded key whose
location is determined by the key _length and key _position attributes of the
output file.

If the output file is to have nonembedded keys, the key _length attribute of
the output file specifies the length of the key in the input file record.

Copying a file from a sequential file to an indexed sequential file changes the
physical representation of the file, although its logical content remains the
same. That is, when you get the same record in the input file and the output
file, the data is the same (assuming the key has not changed); however, if
you display the input and output files, their content would appear to be
different.

Revision B File Copying 11-3

BYTE ADDRESSABLE FILE ORGANIZATION TO BYTE ADDRESSABLE FILE
ORGANIZATION

Byte Addressable File Organization to
Byte Addressable File Organization

An AMP$COPY _FILE call cannot copy a byte addressable file to a file
having a dissimilar structure.

AMP$COPY _FILE performs a byte-by-byte copy of a byte addressable file to
another byte addressable file if the following conditions are met:

• Both files are mass storage files.

• Both files are opened at the same byte address.

• The following file attributes of both files are identical:

block_ type
file_ access _procedure
file_ con ten ts
file_ organization (byte-addressable)
file_ structure
record_ type

11-4 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE ORGANIZATION TO INDEXED SEQUENTIAL FILE
ORGANIZATION

Indexed Sequential File Organization to
Indexed Sequential File Organization

If both input and output files have the file organization attribute
AMC$INDEXED _SEQUENTIAL, AMP$COPY _FILE performs either a
byte-by-byte copy or a record-by-record copy.

AMP$COPY _FILE performs a byte-by-byte copy if all of the following
conditions are met:

• Both files are mass storage files.

• Both files are opened at their beginning-of-information (BOI).

• The following file attributes of both files are identical:

block_ type
collate_ table_ name (if key type= AMC$CO LLA TED_ KEY)
embedded_key
file_ access_ procedure
file_contents
file_ organization (AMC$INDEXED _SEQUENTIAL)
file_ structure
key _length
key _position
key _type
max_block_length
max_record_length
min_record_length
record_ type

Otherwise, AMC$COPY _FILE performs a record-by-record copy if the
following conditions are met:

• The file_structure attributes of both files are identical, or one file has
unknown file structure.

• The file_ contents attributes of both files are identical, or one file has
unknown file contents.

If the open_position attribute of the output file is AMC$0PEN _AT _BOI,
AMP$COPY _FILE releases any data previously written on the output file.

If the open_position of the output file is not AMC$0PEN_AT _BOI,
AMP$COPY _FILE keeps the content of the output file_ It copies records
from the input file; however, it only copies records with unique keys. If it
reads a record from the input file having a key that already belongs to a
record on the output file, AMP$COPY _FILE terminates and returns
abnormal status.

Revic;ion B File Copying 11-5

INDEXED SEQUENTIAL FILE ORGANIZATION TO INDEXED SEQUENTIAL FILE
ORGANIZATION

If the input file has embedded keys and the output file has nonembedded
keys, AMP$COPY _FILE uses the key _length attribute of the output file. It
uses the first key _length number of characters of the input file record as the
primary key. Unless specified otherwise by a SET _FILE_ATIRIBUTES
command or an AMP$FILE call, the max_ record_ length attribute of the
output file is assumed to be the max_ record_ length attribute of the input file
less the value of its key _length attribute.

If the input file has nonembedded keys and the output file has embedded
keys, AMP$COPY _FILE prefixes each input record with its key when it
copies the record to the output file. Unless specified otherwise by a SET_
FILE_ATIRIBUTES command or AMP$FILE call, the max_ record_ length
attribute of the output file is assumed to be the max_record_length attribute
of the input file plus its key _length attribute value.

NOTE

AMP$COPY _FILE stores different keys for the output file than those used
in the input file in the following cases:

• If the key_ position attribute of the output file is not zero.

• If the key _length attributes of the input and output files are not the same.

11-6 CYBIL File Interface Revision B

INDEXED SEQUENTIAL FILE ORGANIZATION TO SEQUENTIAL FILE
ORGANIZATION

Indexed Sequential File Organization to
Sequential File Organization

Copying an indexed sequential file to a sequential file is valid if the following
file attribute conditions are met:

• The file_structure attributes of both files are identical, or one file has
unknown file structure.

• The file_ contents attributes of both files are identical, one file has
unknown file contents, or the input file is legible or unknown and the
output file is list. The last case is described under List File Copying.

If the file_contents attribute of both files is legible, the line_number and
statement_identifier attributes must also be identical.

If the open_position attribute of the output file is AMC$0PEN _AT _BOI,
AMP$COPY _FILE releases any data previously written on the output file.

AMP$COPY _FILE considers the sequential file to be a file with embedded
keys, the location of which in the output record is determined by the key_
position and key _length attributes of the output file.

If the input file has nonembedded keys, AMP$COPY _FILE prefixes each
input record with its primary key when it copies the record to the output file.
Unless specified otherwise by a SET _FILE_ATTRIBUTES command, the
max_record_length attribute of the output file is set by AMP$COPY _FILE
to the max_record_length attribute of the input file plus its key _length
attribute value.

NOTE

AMP$COPY _FILE stores different keys for the output file than those used
in the input file in the following cases:

• For nunembedded keys: if the key _position attribute of the output file is
not zero; for embedded keys: if the key _position attributes of the input
and output files are not the same.

• If the key _length attributes of the input and output files are not the same.

l{evision B File Copying 11-7

LIST FILE COPYING

List File Copying

If the file_ contents attribute of the input file is legible or unknown and the
file_ contents attribute of the output file is list, AMP$COPY _FILE adds the
following format effectors to the data:

• It adds a top-of-form format effector at the beginning of the first record of
the file and at each partition boundary.

• If the page _format is burstable, it adds a top-of-form format effector to the
first record of each page, that is, every page_length lines.

• If the page_format is nonburstable, it adds a triple-space format effector
every page_length lines.

• It adds a single-space format effector to all other records.

11-8 CYBIL File Interface Revision B

AMP$COPY _FILE

e AMP$COPY_FILE

Purpose

Format

Parameters

Condition
Identifiers

Revision B

Copies a file to another file.

AMP$COPY _FILE (input_file, output_file, status)

input_file: amt$local_file_name;

File to be copied.

output_file: amt$local_file_name;

File to which the data is copied.

status: VAR of ost$status;

Status record. The process identifier is AAC$ACCESS_
METHOD_ID or AMC$ACCESS_METHOD_ID.

aae$file_at_ user _record_limit
aae$file_full_no _puts_or _reps
aae$key _required
ase$not _enough _permission
aae$file _boundary_ encoutered
aae$record_longer _than_ wsa
aae$aam _requires_ access
ame$altered_not_ closed
aae$collated_key _needs_ table
aae$da ta_ pad_ too_ large
aae$file _reached_ file_ limit
aae$index _pad_ too_ large
aae$integer_key _gt_one_ word
aae$key _length_ o _or_ undef
aae$max _rec_ length_ o _or_ undef
aae$max _rec_ length_ too_ big
aae$min_gt_max_record_length
aae$rec _too_ small_ for_ key
ame$concurren t _tape_ limit
ame$conflicting _block_ types
ame$conflicting _file_ addresses
ame$conflicting _file_ contents
ame$conflicting _file_ structures
ame$conflicting _record_ types
ame$copy _not_supported
ame$copy _device_ conflict
ame$empty _input_file
ame$fap_names_not_identical
ame$improper _fo _for _copy
ame$improper _ fo _override
ame$improper _override_ access

File Copying 11-9

AMP$COPY _FILE

Remarks

ame$improper _record_ override
ame$improper _ ss _block_ override
ame$improper _us_ block_ override
ame$input_and_ output_same_file
ame$input_file _at_ eoi
ame$input_file_not_local
ame$line_numbers_ unequal
ame$local_file _limit
ame$mbl_less_than_mibl
ame$mbl_less_than mrl
ame$multiple _open_ of_ tape
ame$no _permission_ for_ access
ame$non_ANSI _blocking
ame$record _exceeds_ m bl
ame$ring _validation_ error
ame$statement_idents_ unequal
ame$terminal _task_ limit
ame$unable _to_ load_ collate_ ta bl
ame$unable _to _load_ error _exit
ame$unable _to _load_fap
ame$unrecovered _read_ error
ame$unrecovered_ write_error

• The copy begins at the position indicated by the open_
position file attribute of the input and output files.

• The copy terminates when AMP$COPY _FILE reads the
end of information (EOI) of the input file. If the input file is
empty, AMP$COPY _FILE returns abnormal status
(AME$EMPTY _INPUT _FILE).

• If the output file has not been registered in a catalog,
AMP$COPY _FILE creates the output file. Unless
otherwise specified, the created output file has the same
attributes as the input file (except its ring attributes).

• To specify other attributes for the created output file, you
must specify the output file name on a SET _FILE_
ATTRIBUTES command or AMP$FILE call specifying the
appropriate attributes.

• AMP$COPY _FILE can perform either a byte-by-byte copy
or a record-by-record copy. The copy performed depends on
the file attributes of the input and output files as described
in this chapter.

• For information on copying tape files, see chapter 4, Tape
Management.

11-10 CYBIL File Interface Revision B

FILE COPY EXAMPLE

File Copy Example

The following CYBIL procedure copies a permanent file to a local file it
creates. The caller provides the permanent file identification and password
and the name to be given the local copy.

MODULE copy_example

?? PUSH (LISTEXT := ON) ??
*copyc pmp$generate_unique_name
*copyc amp$attach
*copyc amp$copy_file
?? POP ??

PROCEDURE Local_copy
(permanent_file: pft$path;
cycle_no: pft$cycle_selector;
password: pft$password;
Local_copy_name: amt$Local_file_name;
VAR status: ost$status);

VAR
unique_name: ost$unique_name,
Lfn: amt$Local_file_name,
usage: pft$usage_selections,
share: pft$share_selections,
copy_status: ost$status;

status.normal := true;
usage := pftusage_selections[pfc$readJ;
share := pftshare_selections[pfc$readJ;

/copy_operation/
BEGIN

{Generates the Local file name for the}
{permanent file attachment.}

pmp$generate_unique_name (unique_name, copy_status);
IF NOT status.NORMAL THEN

EXIT /copy_operation/;
!FEND;
Lfn := unique_name.value;

Hevision B File Copying 11-11

FILE COPY EXAMPLE

pfp$attach (Lfn, permanent_file, cycle_no,
password, usage, share, pfc$wait, copy_status);

IF NOT copy_status.NORMAL THEN
EXIT /copy_operation/;

I FEND;

amp$copy_file (Lfn, Local_copy_name, copy_status);
IF NOT copy_status.NORMAL THEN

EXIT /copy_operation/;
I FEND;

{Returns the attached permanent file. }

amp$return (Lfn, copy_status);
END /copy_operation/;

IF copy_status.NORMAL THEN
RETURN;

ELSE
status := copy_status;

I FEND;

PROCEND local_copy;
MODEND copy_example;

11-12 CYBIL File Interface Revision B

Glossary A

A

Alphabetic Character

One of the following letters:

A toZ

a to z

See Character and Alphanumeric Character.

Alphanumeric Character

An alphabetic character or a digit. See Character and Alphabetic
Character.

Alternate Index

An index used to access records in an indexed sequential file by their
alternate key value.

Alternate Key

8

A key defined for an indexed sequential file other than the primary key.
See also Primary Key.

Beginning-of-Information (BOI)

The point at which file data begins. The byte address at the beginning-of
information is always zero.

Bit

A binary digit. A bit has the value 0 or 1. See Byte.

Block

A logical or physical grouping of data. A disk block or tape block is a
physical unit of data written to the storage medium in a single operation.
A block within an indexed sequential file is a logical unit of data. See
Data Block and Index Block.

Byte

A group of bits. For NOS/VE, a byte is 8 bits. An ASCII character code
uses the rightmost 7 bits of 1 byte.

Byte Addressable File Organization

A file organization in which records are accessed by their byte address.

Revision B Glossary Al

GLOSSARY

c
Catalog

A directory of files and catalogs maintained by the system for a user. The
catalog $LOCAL contains only file entries (no catalog entries).

Also, the part of a path that identifies a particular catalog in a catalog
hierarchy. The format is as follows:

name.name name

where each name is a catalog. See Catalog Name and Path.

Catalog Name

The name of a catalog in a catalog hierarchy (path). By convention, the
name of the user's master catalog is the same as the user's user name.

Character

A letter, digit, space, or symbol that is represented by a code in one or
more of the standard character sets.

A character can be a graphic character or a control character. A graphic
character is printable; a control character is nonprintable and is used to
control an input or output operation.

Close Operation

A set of terminating operations performed on a file when input and output
operations are complete. All files must be closed before the task
terminates.

Collated Key

A key consisting of 1 through 255 8-bit characters. These keys are sorted
according to the sequence indicated by the user-specified collation table in
effect. Contrast with Uncollated Key.

Collation Table

A data structure that orders a set of characters. The character order is
used when sorting keys in an indexed sequential file.

Concatenated Key

An alternate key comprising two or more noncontiguous fields within a
record.

Creation Run

All processing of a file, from open to close, the first time the file is written.

A-2 CYBIL File Interface Revision B

GLOSSARY

D

Data Block

A block in an indexed sequential file in which data records are stored.
Contrast with Index Block.

Deck

A sequence of lines in a source library that can be manipulated as a unit
by the Source Code Utility (SCU).

Default

The system-defined value assumed in the absence of a user-specified
value.

Device Class

E

The type of device with which a file definition is associated. When the file
is opened, it is assigned to a device in the device class.

Embedded Key

Primary key that is located in the record. e End-of-Information Byte Address

The address of the byte following the last valid byte of data in a file. It is
also the number of valid data bytes in the file.

End-of-Information (EOI)

The point at which data in the file ends.

Exception Condition

A situation that, when detected by a procedure caller, indicates an
abnormal completion of the called procedure.

Execution Ring

The level of hardware protection assigned to a procedure while it is
executing.

Revision R Glossary A-3

GLOSSARY

F

Field

A subdivision of a record that is referenced by name. For example, the
field NORMAL in a record named OLD STATUS is referenced as
follows:

OLD STATUS.NORMAL

File

A collection of information referenced by a name.

FAP

File Access Procedure

File Attribute

A characteristic of a file. Each file has a set of attributes that completely
define file structure and processing limitations.

File Reference

An SCL element that identifies a file and, optionally, the file position to
be established prior to use. The format of a file reference is as follows:

file.file position

See File.

Flushing

I

The process of writing to disk parts of a file whose images in real memory
have been altered since the file was last written to disk. Flushing does not
alter the logical status or position of a file.

Index Block

A block in an indexed sequential file that contains ordered keys and
pointers to index blocks or other data blocks. Contrast with Data Block.

Index Record

An internal record in an index block that guides the system in locating
data records by primary key value. An index record consists of a primary
key value and a pointer to a block. The primary key value in the index
record matches the primary key value of the first record in either a lower- A
level index block or a data block. W

A-4 CYBIL File Interface Revision B

GLOSSARY

Indexed Sequential File Organization

A file organization in which records are accessed using a primary key.
Indexed sequential files contain data blocks and index blocks.

Instance of Open

A particular opening of a file as distinguished from all other openings of
the file. The system assigns each instance of open a unique file identifier.
Closing the file ends the instance of open.

Integer Key

J

A signed binary key used with an indexed sequential file. Integer keys are
sorted by arithmetic value. It can be from 1 - 8 bytes in length.

Joh

A set of tasks executed for a user name. NOS/VE accepts interactive and
batch jobs.

Job Library List

K

Object libraries included in the program library list for each program
executed in the job.

Key

A string of bytes used to access a record in an indexed sequential file. See
Primary Key and Major Key.

Key List

L

The primary key values associated with an alternate key value within an
alternate index.

Local File Name

The name used by an executing job to reference a file while the file is
assigned to the job's $LOCAL catalog. Only one file can be associated
with a given name in one job; however, in one job a file can have more
than one instance of open by that name.

Revision B Glossary A-5

GLOSSARY

M

Major Key

A high-order portion of a primary key in an indexed sequential file. A
major key is used to position a file to a specific record.

Mass Storage

Disk storage that allows random file access and permanent file storage.

N

Nonembedded Key

A primary key that is not physically contained in the record. Internally, a
nonembedded key is stored before its record in a data block.

Null Suppression

0

' Alternate key attribute indicating that records with null alternate key
values are not included in the alternate index.

Open Operation

p

A set of preparatory operations performed on a file before file input and
output can occur.

Padding

Space deliberately left unused. Fixet.-length records are padded ifthe data
provided for the record is shorter than the record length. Within an
indexed sequential file, blocks are padded during file creation to allow
easy addition or expansion during later file updates.

Page

An allocatable unit of real memory.

Partition

A unit of data on a sequential or byte addressable file delimited by end-of
partition separators or the beginning- or end-of-information.

Path

Identifies a file. It may include the family name, user name, subcatalog
name or names, and file name.

A-6 CYBIL File Interface Revision B

GLOSSARY

Pointer

The virtual address of a value.

Primary Key

The key of a record in an indexed sequential file. The primary key must be
defined for a file when the file is first created, and each record in the file
must have a unique value for the key.

Program Library List

R

A list of object libraries searched for modules during the loading of a
program.

Random Access

The process of reading or writing a record in a file without having to read
or write the preceding records; applies only to disk files. Contrast with
Sequential Access.

Record

A set of related data treated as a unit; also, a CYBIL data structure.

Repeating Groups

An alternate key attribute indicating that each data record contains a
sequence of one or more alternate key values.

Rewind

An operation that positions a file at the beginning-of-information.

Ring

The level of hardware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings.

See Execution Ring.

Ring Attribute

A file attribute whose value consists of three ring numbers, referred to as
rl, r2, and r3. The ring numbers define the four ring brackets for the file
as follows:

Read bracket is 1 through r2.

Write bracket is 1 through rl.

Execute bracket is rl through r2.

Call bracket is r2+ 1 through r3.

Revision B Glossary A-7

GLOSSARY

s
SCL Procedure

A sequence of SCL commands executed when the procedure name is
entered. It can be stored as a module on an object library.

Segment

One or more pages assigned to a file. The segment has the ring attributes
of the file.

Sequential Access

The processing of records in order (physical or logical). Contrast with
Random Access.

Sequential File Organization

A file with records stored and retrieved in the order in which they were
written. No logical order exists other than the relative physical record
position.

Sparse Key

A one-character flag that indicates whether an alternate key value is
included in an alternate index.

T

Tape mark

The physical delimiter of data on a tape.

Task

The instance of execution of a program.

Terminal Attribute

A characteristic of an interactive tPnninal class.

Terminal Class

Interactive terminal type; the system associates a set of default terminal
attributes with the terminal type.

A-8 CYBIL File Interface Revision B

GLOSSARY

u
Uncollated Key

w

A key consisting of from 1 through 255 8-bit characters. These keys are
sorted by the magnitude of their binary ASCII code values. Contrast with
Collated Key.

Working Storage Area

An area allocated by the task to hold data copied by get or put calls to a
file.

Revision B Glossary A-9

ASCII Character Set B

Table B-1 lists the ASCII character set used by the NOS/VE system.

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7-
bit ASCII code in an 8-bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the leftmost bit is always zero.

Revision A ASCII Character Set B-1

CHARACTER SET

Table B-1. ASCII Character Set

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation

012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in

016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3

020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle e 023 17 027 ETB End of transmission block

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape

028 lC 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 iF 037 us Unit separator

032 20 040 SP Space
033 21 041 Exclamation point
034 22 042 Quotation marks
035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 Opening parenthesis
041 29 051 Closing parenthesis
042 2A 052 Asterisk
043 2B 053 + Plus

044 2C 054 Comma
045 2D 055 Hyphen
046 2E 056 Period
047 2F 057 I Slant

(Continued) e
B-2 CYBIL File Interface Revision B

CHARACTER SET

e Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

e 048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 38 073 Semicolon

060 3C 074 < Less than
061 3D 075 Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 8 Uppercase 8
067 43 103 c UppercaseC

068 44 104 D Uppercase D
069 45 105 E Uppercase E

e 070 46 106 F UppercaseF
071 47 107 G Uppercase G

072 48 llO H Uppercase H
073 49 lll I Uppercase I
074 4A ll2 J UppercaseJ
075 48 113 K Uppercase K

076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N UppercaseN
079 4F 117 0 Uppercase 0

080 50 120 p Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R UppercaseR
083 53 123 s Uppercases

084 54 124 T Uppercase T
085 55 125 u Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W

088 58 130 x Uppercase X
089 59 131 y Uppercase Y
090 5A 132 z Uppercase Z
091 58 133 [Opening bracket

e (Continued)

Revision R ASCII Character Set B-3

CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

092 5C 134 \ Reverse slant
093 5D 135 l Closing bracket
094 5E 136 Circumflex
095 5F 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercased
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

104 68 150 h Lowercaseh
105 69 151 Lowercase i
106 6A 152 j Inwercasej
107 6B 153 k Lowercase k

108 6C 154 Lowercase 1
109 6D 155 m Lowercasem
110 6E 156 n Lowercasen
111 6F 157 0 Lowercase o

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 Lowercase r
115 73 163 s Lowercases

116 74 164 Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercasew

120 78 170 x Lowercasex
121 79 171 y Lowercasey
122 7A 172 z Lowercase z
123 7B 173 Opening brace

124 7C 174 Vertical line
125 7D 175 Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

B-4 CYBIL File Interface Revision B

Constant and Type Declarations c
This appendix lists the constant and type declarations used by the
procedures described in this manual. In general, the declarations are listed in
alphabetical order by identifier name. However, the numeric order of ordinal
constants is maintained. Also, the F AP call block declarations are listed
separately following the AM type declarations.

AM

Constants

aac$access_method_ID = 'AA';
amc$access_method_id = 'AM';
amc$apl ='APL',
amc$assembler = 'ASSEMBLER';
amc$basic = 'BASIC';
amc$cobol = 'COBOL';
amc$cybil = 'CYBIL';
amc$data = 'DATA';
amc$debugger = 'DEBUGGER';
amc$file_byte_Limit = 4398046511103 { 2**42 - 1 }
{ bytes } ;
amc$fortran = 'FORTRAN';
amc$legible ='LEGIBLE';
amc$library = 'LIBRARY';
amc$list = 'LIST';
amc$max_Length = 2048 { bytes } ;

amc$max_attribute = 511 { 01ff (16) } ;
amc$max_block_number = Offffffff(16);
amc$max_blocks_per_file = amc$file_byte_Limit DIV

amc$mau_Length;
amc$max_buffer_Length = 16777215 { 2**24 - 1 bytes};
amc$max_ecc_program_action = 161999;
amc$max_ecc_validation = 160999;
amc$max_error_count = OffffC16);
amc$max_fap_Layers = 15;
amcSmax_file_id_ordinal = 4095;
amc$max_home_blocks = amc$file_byte_Limit;
amc$max_index_Level = 15;
amc$max_info = 01ffC16);
amc$max_key_Length = 255,
amc$max_key_position = OffffC16),
amc$max_Label_Length = osc$maximum_offset;

Revision B Constant and Type Declarations C-1

CONSTANT AND TYPE DECLARATIONS

amcSmax_Line_number = 6;
amcSmax_Lines_per_inch = 12,
amcSmax_operation = 01ffC16);
amcSmax_page_width = 65535;
amcSmax_record_header = 16;
amcSmax_records_per_block = OffffC16);
amcSmax_path_name_size = 256;
amcSmax_statement_id_Length = 17;
amcSmax_tape_mark_count = 40000;
amcSmax_user_info = 32;
amcSmax_vol_number = 64;

amcSmaximum_block = 16777216 { 2**24 bytes } ;
amcSmaximum_record = amcSfile_byte_Limit;

amcSmin_ecc_program_action = 161000;
amcSmin_ecc_validation = 160000;

amcSobject = 'OBJECT';
amcSpascal = 'PASCAL';
amcSpli = 'PLI';
amcSppu_assembler = 'PPU_ASSEMBLER';
amcSscl = 'SCL';
amcSscu = 'SCU';
amcSunknown_contents = 'UNKNOWN';
amcSunknown_processor = 'UNKNOWN';
amcSunknown_structure = 'UNKNOWN';

C-2 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

Ordinals

{}

{Codes 1 •• 100 are reserved for operations which are}
{not passed to file_access_procedures.}
{}

{}

amcSaccess_method_req = 1,
amcSadd_to_file_description_req = 3,
amcSallocate_req = 5,
amcSchange_file_attributes_cmd = 6,
amcScompare_file_cmd = 7,
amcScopy_file_cmd = 8,
amcScopy_file_req = 9,
amcScopy_partitions_req = 10,
amcScopy_records_req = 11,
amcScopy_partial_records_req = 12,
amcSdetach_file_cmd = 17,
amcSdisplay_file_attributes_cmd = 18,
amcSdisplay_file_cmd = 19,
amcSevict_req = 20,
amcSfetch_fap_pointer_req = 22,
amcSfile_req = 24,
amcSget_file_attributes_req = 30,
amcSLabel_req = SO,
amcSoverride_file_attributes = 60,
amcSrename_req = 72,
amcSreturn_req = 74,
amcSrewind_files_cmd = 75,
amcSset_Local_name_abnormal_req = 76,
amcSset_file_attributes_cmd = 77,
amcSset_file_inst_abnormal_req = 78,
amcSskip_tape_marks_cmd = 81,
amcSskip_tape_marks_req = 82,
amcSstore_fap_pointer_req = 84,
amcSvalidate_caller_privilege = 95,

Revision B Constant and Type Declarations C-3

CONSTANT AND TYPE DECLARATIONS

{ Codes amc$fap_op_start •• (amc$Last_access_start-1) are}
{ reserved for operations which are passed to }
{ file_access_procedures but which are not recorded in}
{ Last_access_operation status. }
{}

{}

amc$fap_op_start = 101,
amc$fetch_access_information_rq = 101,

{ Codes amc$Last_access_start •• amc$max_operation are }
{ reserved for operations which are passed to }
{ file_access_procedures.}
{}

amc$Last_access_start = 105,
amc$check_buffer_req = 110,
amc$check_record_req = 111,
amc$close_req = 112,
amc$close_volume_req = 113,
amc$delete_req = 114,
amc$delete_direct_req = 115,
amcSdelete_key_req = 116,
amc$fetch_req = 117,
amc$flush_req = 118,
amc$get_direct_req = 119,
amc$get_key_req = 120,
amc$get_Label_req = 121,
amc$get_next_req = 122,
amc$get_next_key_req = 123,
amc$get_partial_req = 124,
amc$get_segment_pointer_req = 126,
amc$Lock_file_req = 127,
amcSLock_file = 127,
amc$open_req = 128,
amcSpack_block_req = 129,
amc$pack_record_req = 130,
amc$put_direct_req = 131,
amc$put_key_req = 132,
amc$put_Label_req = 133,
amc$put_next_req = 134,
amc$put_partial_req = 135,
amc$putrep_req = 137,
amc$read_req = 138,

C-4 CYBIL File Interface Revision B

{}

CONSTANT AND TYPE DECLARATIONS

amc$read_direct_req = 139,
amcSread_direct_skip_req = 140,
amc$read_skip_req = 141,
amc$replace_req = 142,
amcSreplace_direct_req = 143,
amc$replace_key_req = 144,
amcSrewind_req = 145,
amc$rewind_volume_req = 146,
amc$seek_direct_req = 147,
amc$set_segment_eoi_req = 148,
amc$set_segment_position_req 149,
amcSskip_req = 150,
amcSstart_req = 151,
amcSstore_req = 152,
amc$unlock_file_req = 153,
amc$unlock_file = 153,
amcSunpack_block_req = 154,
amc$unpack_record_req = 155,
amc$write_req = 156,
amc$write_direct_req = 157,
amc$write_end_partition_req = 158,
amc$write_tape_mark_req = 159,
ifc$fetch_terminal_req = 160,
ifc$store_terminal_req = 161,
amc$abandon_key_definitions = 162,
amc$abort_file_parcel = 163,
amc$apply_key_definitions = 164,
amc$begin_file_parcel = 165,
amc$check_nowait_request = 166,
amc$commit_file_parcel = 167,
amc$create_key_definition = 168,
amc$create_nested_file = 169,
amc$delete_key_definition = 170,
amc$delete_nested_file = 171,
amc$find_record_space = 172,
amc$get_key_definitions = 173,
amc$get_Lock_keyed_record = 174,
amcSget_Lock_next_keyed_record = 175,
amc$get_nested_file_definitions = 176,
amcSget_next_primary_key_List = 177,
amc$get_primary_key_count = 178,
amc$get_space_used_for_key = 179,
amc$Lock_key = 180,
amcSselect_key = 181,
amt$select_nested_file = 182,
amc$separate_key_groups = 183,
amc$unlock_key = 184,

Revision B Constant and Type Declarations C-5

CONSTANT AND TYPE DECLARATIONS

amcSblock_number = 1,
amcScurrent_byte_address = 2,
amcSeoi_byte_address = 3,
amcSerror_count = 4 {Supported only for}

{ indexed_sequential files},
amcSerror_status = 5,
amcSfile_position = 6,
amcSlast_access_operation = 7,
amcSlast_op_status = 8,
amcSlevels_of_indexing = 9 { Supported only for }

{ indexed_sequential files},
amcSprevious_record_address = 10,
amcSprevious_record_length = 11,
amcSresidual_skip_count = 12,
amcSvolume_position = 13,
amcSvolume_number = 14,

{}

amcSaccess_level = 1,
amcSaccess_mode = 2,
amcSapplication_info = 3,
amcSaverage_record_length = 4,
amcSblock_type = 5,
amcScharacter_conversion = 6,
amcSclear_space = 7,
amcScollate_table = 8,
amcScollate_table_name = 9,
amcSdata_padding = 12,
amcSembedded_key = 13,
amcSerror_exit_name = 14,
amcSerror_exit_procedure = 15,
amcSerror_limit = 16,
amcSerror_options = 17,
amcSestimated_record_count = 18,
amcSfile_access_procedure = 19,
amcSfile_contents = 20,
amcSfile_length = 21,
amcSfile_limit = 22,
amcSfile_organization = 24,
amcSfile_processor = 25,
amcSfile_structure = 26,
amcSforced_write = 27,
amcSglobal_access_mode = 28,
amcSglobal_file_address = 29,
amcSglobal_file_position = 30,
amcSglobal_file_name = 31,

C-6 CYBIL File Interface Revision B

{}

amc$global_share_mode = 32,
amc$index_Levels = 33,
amc$index_padding = 34,
amc$internal_code = 3S,
amc$key_Length = 36,
amc$key_position = 37,
amc$key_type = 38,
amc$Label_exit_name = 39,
amc$Label_exit_procedure 40,
amc$Label_options = 41,
amc$Label_type = 42,
amc$Line_number = 44,
amc$max_block_Length = 4S,
amc$max_record_Length = 46,
amc$message_control = 47,
amc$min_block_Length = 48,
amc$min_record_Length = 49,
amc$null_attribute = SO,
amc$open_position = S1,
amc$padding_character = S2,
amcSpage_format = S3,
amc$page_Length = S4,

CONSTANT AND TYPE DECLARATIONS

amc$page_width = SS,
amc$permanent_file = S6,
amc$preset_value = S7,
amc$record_Limit = S9,
amc$record_type = 60,
amc$records_per_block = 61,
amc$return_option = 62,
amc$ring_attributes = 63,
amc$statement_identifier = 64,
amcSuser_info = 66,
amc$vertical_print_density = 67,
amc$compression_procedure_name = 68,
amc$dynamic_home_block_space = 69,
amc$hashing_procedure_name = 70,
amc$initial_home_block_count = 71,
amc$Loading_factor = 72,
amc$Lock_expiration_time = 73,
amc$Logging_options = 74,
amc$Log_residence = 7S,

Revision B Constant and Type Declarations C-7

CONSTANT AND TYPE DECLARATIONS

amc$concatenated_key_portion = 100,
amc$duplicate_keys = 101,
amc$group_name = 102,
amc$null_suppression = 103,
amc$repeating_group = 104,
amc$sparse_keys = 105,
amc$variable_length_key = 106,

Types

amt$access_info = record
item_returned {output} : boolean,
case key { input} : amt$access_info_keys of

{ output }
= amc$block_number =

block_number: amt$block_number,
= amcScurrent_byte_address =

current_byte_address: amt$file_byte_address,
= amc$eoi_byte_address =

eoi_byte_address: amt$file_byte_address,
= amcSerror_count =

error_count: amt$error_count,
= amcSerror_status =

error_status: ost$status_condition,
= amc$file_position =

file_position: amt$file_position,
= amcSlast_access_operation =

last_access_operation:
amt$last_access_operation,

= amcSlast_op_status =
last_op_status: amt$last_op_status,

= amc$levels_of_indexing =
levels_of_indexing: amt$index_levels,

= amc$previous_record_address =
previous_record_address: amt$file_byte_address,

= amc$previous_record_length =
previous_record_length: amt$max_record_length,

= amcSresidual_skip_count =
residual_skip_count: amtSresidual_skip_count,

= amc$volume_position =
volume_position: amtSvolume_position,

= amc$volume_number =
volume_number: amt$volume_number,

ca send,
rec end;

C-8 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amtSaccess_info_keys = •• amcSmax_info;

amt$access_information =array [1 •• * J of
amt$access_info;

amtSaccess_Level = (amc$physical, amcSrecord,
amcSsegment);

amtSaccess_selection = amtSfile_item;

amtSadd_to_attributes =array [1 •• * J of
amt$add_to_item;

amtSadd_to_item = record
case key {input} : amtSfile_attribute_keys of

{ input }
= amcScharacter_conversion =

character_conversion: boolean,
= amc$file_contents =

file_contents: amt$file_contents,
= amcSfile_Limit =

file_Limit: amt$file_Limit,
= amcSfile_processor =

file_processor: amtSfile_processor,
= amcSfile_structure =

file_structure: amtSfile_structure,
= amcSforced_write =

forced_write: amtSforced_write,
= amc$internal_code =

internal_code: amtSinternal_code,
= amcSLine_number =

Line_number: amtSLine_number,
= amcSmax_block_Length =

max_block_Length: amtSmax_block_Length,
= amcSmax_record_Length =

max_record_Length: amtSmax_record_Length,
= amc$min_block_Length =

min_block_Length: amtSmin_block_Length,
= amcSmin_record_Length =

min_record_Length: amt$min_record_Length,
= amcSnull_attribute =

,

Revision B Constant and Type Declarations C-9

CONSTANT AND TYPE DECLARATIONS

= amcSpadding_character =
padding_character: amtSpadding_character,

= amcSpage_format =
page_format: amtSpage_format,

= amcSpage_Length =
page_Length: amtSpage_Length,

= amcSpage_width =
page_width: amtSpage_width,

= amcSrecord_type =
record_type: amtSrecord_type,

= amcSstatement_identifier =
statement_identifier: amtSstatement_identifier,

= amcSuser_info =
user_info: amtSuser_info,

= amcSvertical_print_density =
vertical_print_density:

amtSvertical_print_density,
= amcSaverage_record_Length =

average_ record_ Length:
amtSaverage_record_Length,

= amcScollate_table =
collate_table: "amtScollate_table,

= amcSdata_padding =
data_padding: amtSdata_padding,

= amcSembedded_key =
embedded_key: boolean,

= amcSestimated_record_count =
estimated_record_count:

amtSestimated_record_count,
= amcSindex_Levels =

index_Levels: amtSindex_Levels,
= amcSindex_padding =

index_padding: amtSindex_padding,
= amcSkey_Length =

key_Length: amtSkey_Length,
= amcSkey_position =

key_position: amtSkey_position,
= amcSkey_type =

key_type: amtSkey_type,
= amcSrecord_Limit =

record_Limit: amtSrecord_Limit,
= amcSrecords_per_block =

records_per_block: amtSrecords_per_block,
ca send,

rec end;

C-10 CYBIL File Int.erface RevisionB

CONSTANT AND TYPE DECLARATIONS

amt$attribute_source = Camc$undefined_attribute,
amcSLocal_file_information,
amc$change_file_attributes_req, amcSopen file __ request,
amc$file_reference, amc$file_command,
amcSfile_request, amcSadd_to_file_desc_request,
amc$access_method_default, amc$put_instance_
attributes_req;

amtSaverage_record_Length = 1 •• amcSmaximum_record;

amtSbasic_key_definition = record
case definition_returned: boolean of
= TRUE =

key_name: amtSkey_name,
key_position: amtSkey_position,
key_Length: amt$key_Length,
number_of_optional_attributes: amtSmax_optional_attributes,

ca send,
rec end,

amtSbegin_file_parcel =record
general_commit: amtSgeneral_commit,

rec end;

amt$block_header_type = Camc$tapemark_block,
amc$data_block);

amt$block_number = 1 •• amcSmax_block_number;

amt$block_status = CamcSno_error,
amcSrecovered_error, amcSunrecovered_error);

amt$block_type = (amc$system_specified,
amc$user_specified>;

amtSbuffer_area = ASEQ C * >;

amt$buffer_Length = amcSmau_Length
amcSmax_buffer_Length;

Revision B Constant and Type Declarations C-11

CONSTANT AND TYPE DECLARATIONS

amt$call_block = record
case operation: amt$fap_operation of
= amc$abandon_key_definitions =

,
= amc$abort_file_parcel =

,
= amc$apply_key_definitions =

,
= amc$begin_file_parcel =

begin_file_parcel: amt$begin_file_parcel,
= amc$check_buffer_req =

check_buffer: amt$check_buffer_req,
amc$check_nowait_request =
check_nowait_request: amt$check_nowait_request,

= amc$check_record_req =
check_record: amt$check_record_req,

= amc$close_req =
,

= amc$close_volume_req =
,

= amc$commit_file_parcel =
commit_file_parcel: amt$commit_file_parcel,

= amc$create_key_definition =
create_key_definition: amt$create_key_definition,

= amc$create_nested_file =
create_nested_file: amt$create_nested_file,
amc$delete_req =
,

= amc$delete_direct_req =
deld: amt$delete_direct_req,

= amc$delete_key_req =
delk: amt$delete_key_req,

= amc$delete_key_definition =
delete_key_definition: amt$delete_key_definition,

= amc$delete_nested_file =
delete_nested_file: amt$delete_nested_file,

= amc$fetch_req =
fetch: amt$fetch_req,
amc$fetch_access_information_rq =
fai: amt$fetch_access_information_rq,

= amc$find= record_space =
find_record_space: amt$find_record_space,

= amc$flush_req =
flush: amt$flush_req,

C-12 CYBIL File Interface Revision B

= amc$get_direct_req =
getd: amt$get_direct_req,

= amc$get_key_req =
getk: amt$get_key_req,

CONSTANT AND TYPE DECLARATIONS

= amc$get_key_definitions =
get_key_definitions: amt$get_key_definitions,

= amc$get_Label_req =
getl: amt$get_Label_req,
amc$get_Lock_keyed_record =
get_Lock_keyed_record: amt$get_Lock_keyed_record,

= amc$get_Lock_next_keyed_record =
get_Lock_next_keyed_record: amt$get_Lock_next_keyed_record,

= amc$get_nested_file_definitions =
get_nested_file_definitions: amt$get_nested_file_definitions,

= amc$get_next_req =
getn: amt$get_next_req,

= amc$get_next_key_req =
getnk: amt$get_next_key_req,

= amc$get_next_primary_key_List =
get_next_primary_key_List: amt$get_next_primary_key_List,
amc$get_partial_req =
getp: amt$get_partial_req,
amc$get_primary_key_count =
get_primary_key_count: amt$get_primary_key_count,

= amc$get_segment_pointer_req =
getsegp: amt$get_segment_pointer_req,
amc$get_space_used_for_key =
get_space_used_for_key: amt$get_space_used_for_key,

= amc$Lock_file_req =
Lock: amt$Lock_file_req,
amc$Lock_key =
Lock_key: amt$Lock_key,

= amc$open_req =
open: amt$open_req,

= amc$pack_block_req =
packb: amt$pack_block_req,

= amc$pack_record_req =
packr: amt$pack_record_req,

= amc$put_direct_req =
putd: amt$put_direct_req,

= amc$put_key_req =
putk: amt$put_key_req,

= amc$put_Label_req =
putl: amt$put_Label_req,
amc$put_next_req =
putn: amt$put_next_req,

= amc$put_partial_req =
putp: amt$put_partial_req,

Revision B Constant and Type Declarations C-13

CONSTANT AND TYPE DECLARATIONS

= amcSputrep_req =
putrep: amtSputrep_req,

= amcSread_req =
rsq: amtSread_req,

= amcSread_direct_req =
rba: amtSread_direct_req,

= amcSread_direct_skip_req =
rbaskp: amtSread_direct_skip_req,

= amcSread_skip_req =
rsqskp: amtSread_skip_req,

= amcSreplace_req =
replace: amtSreplace_req,

= amcSreplace_direct_req =
repld: amtSreplace_direct_req,

= amcSreplace_key_req =
repk: amtSreplace_key_req,

= amcSrewind_req =
rewind: amtSrewind_req,

= amcSrewind_volume_req =
rewvol: amtSrewind_volume_req,

= amcSseek_direct_req =
seekd: amtSseek_direct_req,

= amcSselect_key =
select_key: amtSselect_key,

= amcSselect_nested_file =
select_nested_file: amtSselect_nested_file,

= amcSseparate_key_groups =
separate_key_groups: amtSseparate_key_groups,

= amcSset_segment_eoi_req =
segeoi: amtSset_segment_eoi_req,

= amcSset_segment_position_req =
segpos: amtSset_segment_position_req,

= amcSskip_req =
skp: amtSskip_req,

= amcSstart_req =
start: amtSstart_req,

= amcSstore_req =
store: amtSstore_req,

= amcSunlock_file_req =

C-14 CYBIL File Int.erface RevisionB

CONSTANT AND TYPE DECLARATIONS

= amcSunlock_key =
unlock_key: amtSunlock_key,

= amcSunpack_block_req =
unpackb: amtSunpack_block_req,

= amcSunpack_record_req =
unpackr: amtSunpack_record_req,

= amcSwrite_req =
wsq: amtSwrite_req,

= amcSwrite_direct_req =
wba: amtSwrite_direct_req,

= amcSwrite_end_partition_req =
,

= amcSwrite_tape_mark_req =
,

= ifcSfetch_terminal_req =
fetch_terminal: iftSfetch_terminal_req,

= ifcSstore_terminal_req =
store_terminal: iftSstore_terminal_req,

casend,
rec end;

amtScheck_nowait_request = record
request_complete: ftboolean,
returned_parameters: ftamtSnowait_var_parameters,
request_status: ftostSstatus,
wait: ostSwait,

rec end;

amtScollate_table = array [char] of
amtScollation_value;

amtScollation_value = 0 •• 255;

amtScommit_file_parcel =record
phase: amtScommit_phase,

recend;

amtScommit_phase = CamcSsimple_commit, amcStentative_commit,
amcSpermanent_commit>;

amtScompression_effect = CamcScompress, amcSdecompress);

Revision B Constant and Type Declarations C-15

CONSTANT AND TYPE DECLARATIONS

amt$compression_procedure = -procedure (effect: amt$compression_effect~
input_working_storage_area: -cell; -...,
input_working_storage_length: amt$max_record_length;
output_working_storage_area: -cell;
key_position: amt$key_position; ~

key_length: amt$key_length; ,._.,
VAR output_working_storage_length: amt$max_record_length;
VAR record_left_uncompressed: boolean;
VAR status: ost$status>;

amt$compression_procedure_name = amt$entry_point_reference;

amt$create_key_definition = record
key_name: amt$key_name,
key_position: amt$key_position,
key_length: amt$key_length,
optional_attributes: -amt$optional_key_attributes,

recend;

amt$create_nested_file = record
definition: -amt$nested_file_definition,

recend;

amt$creation_date = 1 •• 99999 { yyddd, defaults}
{ to current date };

amt$data_block_count = 1 •• amc$max_blocks_per_file;

amt$data_padding = 0 .. 99 {expressed as a}
{ percentage } ;

amt$delete_key_definition = record
key_name: amt$key_name,

recend;

amt$delete_nested_file = record
nested_file_name: amt$nested_file_name,

recend;

amt$duplicate_key_control = (amc$no_duplicates_allowed,
amc$first_in_first_out, amc$ordered_by_primary_key);

amt$duplicate_value_inserted boolean;

amt$dynamic_home_block_space = boolean;

amt$error_count = 0 •• amc$max_error_count;

C-16 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amtSentry_point_reference = record
name: pmtSprogram_name,
object_library: amtSpath_name,

recend;

amtSerror_exit_procedure = Aprocedure
Cfile_identifier: amtSfile_identifier;
VAR status: ostSstatus>;

amtSerror_limit = 0 •• OffffC16>;

amtSerror_options = CamcSterminate_file,
amcSdrop_block, amcSaccept_record>;

amt$estimated_record_count = integer;

amt$expiration_date = 1 99999 { yyddd, defaults}
{ to creation date plus one year };

amt$fap_layer_number = 0 •• amcSmax_fap_layers;

amt$fap_operation = amcSfap_op_start
amcSmax_operation;

amtSfap_pointer = Aprocedure
Cfile_identifier: amtSfile_identifier;
call_block: amt$call_block;
layer_number: amtSfap_layer_number;
VAR status: ostSstatus>;

amtSfetch_attributes = array [1 •• * J of
amt$fetch_item;

amtSfetch_item = record
source { output } : amtSattribute_source,
case key {input} amtSfile_attribute_keys of

{ output }
= amcSaccess_level =

access_level: amtSaccess_level,
= amcSaccess_mode =

access_mode: pftSusage_selections,
= amc$application_info =

application_info: pftSapplication_info,
= amcSblock_type =

block_type: amtSblock_type,
= amc$character_conversion =

character_conversion: boolean,
= amc$clear_space =

clear_space: ostSclear_file_space,

Revision B Constant and Type Declarations C-17

CONSTANT AND TYPE DECLARATIONS

= amc$error_exit_name =
error_exit_name: pmtSprogram_name,

= amc$error_exit_procedure =
error_exit_procedure: amt$error_exit_procedure,

= amcSerror_options =
error_options: amt$error_options,

= amc$file_access_procedure =
file_access_procedure: pmt$program_name,

= amcSfile_contents =
file_contents: amt$file_contents,

= amcSfile_Limit =
file_Limit: amt$file_Limit,

= amc$file_organization =
file_organization: amt$file_organization,

= amcSfile_processor =
file_processor: amtSfile_processor,

= amc$file_structure =
file_structure: amt$file_structure,

= amc$forced_write =
forced_write: amt$forced_write,

= amc$global_access_mode =
global_access_mode: pft$usage_selections,

= amc$global_file_address =
global_file_address: amt$file_byte_address,

= amc$global_file_name =
global_file_name: ost$binary_unique_name,

= amc$global_file_position =
global_file_position: amtSglobal_file_position,

= amc$global_share_mode =
global_share_mode: pft$share_selections,

= amcSinternal_code =
internal_code: amt$internal_code,

= amc$label_exit_name =
label_exit_name: pmt$program_name,

= amc$Label_exit_procedure =
label_exit_procedure: amtSlabel_exit_procedure,

= amcSLabel_options =
label_options: amt$label_options,

= amcSLabel_type =
label_type: amtSLabel_type,

= amcSline_number =
line_number: amt$line_number,

C-18 CYBIL File Int.erface Revision B

CONSTANT AND TYPE DECLARATIONS

= amc$max_block_Length =
max_block_Length: amt$max_block_Length,

= amcSmax_record_Length =
max_record_Length: amt$max_record_Length,

= amcSmin_block_Length =
min_block_Length: amt$min_block_Length,

= amc$min_record_Length =
min_record_Length: amt$min_record_Length,

= amc$null_attribute =
,

= amc$open_position =
open_position: amt$open_position,

= amc$padding_character =
padding_character: amt$padding_character,
amc$page_format =
page_format: amt$page_format,
amc$page_Length =
page_Length: amtSpage_Length,

= amc$page_width =
page_width: amt$page_width,

= amcSpermanent_file =
permanent_file: boolean,
amc$preset_value =
preset_value: amt$preset_value,

= amc$record_type =
record_type: amtSrecord_type,

= amc$ring_attributes =
ring_attributes: amt$ring_attributes,

= amcSstatement_identifier =
statement_identifier: amt$statement_identifier,

= amcSuser_info =
user_info: amt$user_info,

= amcSaverage_record_Length =
average_ record_ Length:

amtSaverage_record_Length,
= amc$collate_table =

collate_table: ~amtScollate_table,
= amc$collate_table_name =

collate_table_name: pmt$program_name,
= amc$compression_procedure_name =

compression_procedure_name: [input,outputJ
~amtScompression_procedure_name,

Revision B Constant and Type Declarations C-19

CONSTANT AND TYPE DECLARATIONS

= amc$data_padding =
data_padding: amt$data_padding,

= amc$dynamic_home_block_space =
dynamic_home_block_space:

amt$dynamic_home_block_space,
= amc$embedded_key =

embedded_key: boolean,
= amc$error_Limit =

error_Limit: amt$error_Limit,
= amc$estimated_record_count =

estimated_record_count:
amt$estimated_record_count,

= amc$hashing_procedure_name =
hashing_procedure_name: [input,output]

"amt$hashing_procedure_name,
= amc$index_levels =

index_Levels: amt$index_Levels,
= amc$index_padding =

index_padding: amt$index_padding,
= amc$initial_home_block_count =

initial_home_block_count:
amt$initial_home_block_count,

= amc$key_length =
key_Length: amt$key_length,

= amc$key_position =
key_position: amt$key_position,
amc$key_type =
key_type: amt$key_type,

= amc$Loading_factor =
loading_factor: amt$loading_factor,

= amc$lock_expiration_time =
lock_expiration_time: amt$lock_expiration_time,

= amc$Logging_options =
Logging_options: amt$logging_options,

= amc$Log_residence =
log_residence: [input,output]

·amt$log_residence,
= amc$message_control =

message_control: amt$message_control,
= amc$record_Limit =

record_limit: amt$record_limit,
amc$records_per_block =
records_per_block: amt$records_per_block,

ca send,
rec end;

C-20 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

~ amt$file_access_code =char {defaults to space},

amt$file_access_selections ="array [1 * J of
amt$access_selection,

amt$file_attribute_keys = 1 amc$max_attribute,

amt$file_attributes =array [1 •. * J of
amt$file_item,

amt$file_byte_address = 0 •• amc$file_byte_limit;

amt$file_contents = ost$name;

amt$file_id_ordinal = 0 •. amc$max_file_id_ordinal,

amt$file_id_sequence = 1 •• 4095;

amt$file_identifier = record
ordinal: amt$file_id_ordinal,
sequence: amt$file_id_sequence,

recend,

amt$file_item = record
case key {input}: amt$file_attribute_keys of

{ input }
amc$access_mode =
access_mode: pft$usage_selections,

= amc$block_type =
block_type: amt$block_type,

= amc$character_conversion =
character_conversion: boolean,

= amc$clear_space =
clear_space: ost$clear_file_space,

= amc$error_exit_name =
error_exit_name: pmt$program_name,

= amc$error_options =
error_options: amt$error_options,

= amc$file_access_procedure =
file_access_procedure: pmt$program_name,
amc$file_contents =
file_contents: amt$file_contents,

= amc$file_limit =
file_limit: amt$file_limit,

= amc$file_organization =
file_organization: amt$file_organization,

= amc$file_processor =
file_processor: amt$file_processor,

Revision B Constant and Type Declarations C-21

CONSTANT AND TYPE DECLARATIONS

= amcSfile_structure =
file_structure: amt$file_structure,

= amcSforced_write =
forced_write: amt$forced_write,

= amc$internal_code =
internal_code: amtSinternal_code,

= amcSLabel_exit_name =
Label_exit_name: pmtSprogram_name,

= amc$Label_options =
Label_options: amt$Label_options,
amc$Label_type =
Label_type: amtSLabel_type,

= amc$Line_number =
Line_number: amtSLine_number,

= amc$max_block_Length =
max_block_Length: amtSmax_block_Length,

= amc$max_record_Length =
max_record_Length: amt$max_record_Length,

= amcSmin_block_Length =
min_block_Length: amtSmin_block_Length,

= amcSmin_record_Length =
min_record_l.ength: amtSmin_record_Length,

= amcSnull_attribute =
,

= amc$open_position =
open_position: amtSopen_position,

= amc$padding_character =
padding_character: amtSpadding_character,

= amc$page_format =
page_format: amt$page_format,

= amc$page_Length =
page_Length: amt$page_Length,

= amc$page_width =
page_width: amt$page_width,

= amc$preset_value =
preset_value: amt$preset_value,

= amcSrecord_type =
record_type: amtSrecord_type,

= amcSreturn_option =
return_option: amtSreturn_option,

= amc$ring_attributes =
ring_attributes: amtSring_attributes,

= amc$statement_identifier =
statement_identifier: amt$statement_identifier,

C-22 CYBIL File Interface RevisionB

CONSTANT AND TYPE DECLARATIONS

= amc$user_info =
user_info: amt$user_info,

= amc$vertical_print_density =
vertical_print_density:

amt$vertical_print_density,
= amc$average_record_Length =

average_record_Length:
amt$average_record_Length,

= amc$collate_table_name =
collate_table_name: pmt$program_name,

= amc$compression_procedure_name =
compression_procedure_name: [input,outputJ

Aamt$compression_procedure_name,
= amc$data_padding =

data_padding: amt$data_padding,
= amc$dynamic_home_block_space =

dynamic_home_block_space: amt$dynamic_home_block_space,
= amc$embedded_key =

embedded_key: boolean,
amc$error_Limit =
error_Limit: amt$error_Limit,

= amc$estimated_record_count =
estimated_record_count:

amt$estimated_record_count,
= amc$hashing_procedure_name =

hashing_procedure_name: [input,output]
Aamt$hashing_procedure_name,

amc$index_Levels =
index_Levels: amt$index_Levels,

= amc$index_padding =
index_padding: amt$index_padding,

= amc$initial_home_block_count =
initial_home_block_count: amt$initial_home_block_count,

= amc$key_Length =
key_Length: amt$key_Length,

= amc$key_position =
key_position: amt$key_position,

= amc$key_type =
key_type: amt$key_type,
amc$Loading_factor =
Loading_factor: amt$Loading_factor,
amc$Lock_expiration_time =
Lock_expiration_time: amt$Lock_expiration_time,
amc$Logging_options =
Logging_options: amt$Logging_options,

Revision B Constant and Type Declarations C-23

CONSTANT AND TYPE DECLARATIONS

amc$log_residence =
log_residence: [input,outputJ "amt$log_residence,

= amcSmessage_control =
message_control: amtSmessage_control,

= amcSrecord_limit =
record_limit: amt$record_limit,
amcSrecords_per_block =
records_per_block: amt$records_per_block,

ca send,
recend;

amt$file_label_field = record
case key {input} : amt$file_label_keys of {input}
= amc$file_label id=

{identifies file within volume}
file_label_id: amt$file_label_id,

= amc$file_set_id =
{identifies this file_set among others}

file_set_id: amtSfile_set_id,
= amcSsection_number =

{ identifies this section among the sections of }
{this file.}

section_number: amt$section_number,
= amcSsequence_number =

{identifies this file among the files of this}
{file set.}

sequence_number: amtSsequence_number,
= amc$generation_number =

generation_number: amt$generation_number,
= amc$version_number =

version_number: amt$version_number,
= amcScreation_date =

creation_date: amt$creation_date,
= amc$expiration_date =

expiration_date: amt$expiration_date,
= amc$file_access_code =

{Indicates restrictions on access to the file.}
{ Space means no access restrictions }

file_access_code: amtSfile_access_code,
ca send,

recend;

C-24 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$file_label_fields =array [* J of
amt$file_label_field;

amt$file_label_id =string (17), {defaults to}
{ spaces };

amt$file_label_keys = Camc$file_label_id,
amc$file_set_id, amc$section_number,
amc$sequence_number, amc$generation_number,
amc$version_number, amc$creation_date,
amc$expiration_date, amc$file_access_code);

amt$file_lock = Camc$lock_set, amc$already_set);

amt$file_length = 0 •• amc$file_byte_limit;

amt$file_limit = 0 •• amc$file_byte_limit;

amt$file_organization = Camc$sequential, amc$byte_addressable,
amc$indexed_sequential, amc$direct_access, amc$system_key);

amt$file_position = Camc$boi, amc$bop,
amcmid_record, amceor, amceop, amceoi);

amt$file_processor = ost$name;

~ amt$file_reference = string (* <= amc$max_path_name_size);

amt$file_set_id =string (6), {defaults to spaces};

amt$file_structure = ost$name;

amt$find_record_space = record
space: amt$file_length,
where: amt$put_locality,
wait: ost$wait,

rec end;

amt$forced_write = (amc$forced,
amc$forced_if_structure_change, amc$unforced),

amt$general_commit = record
case general_commit_in_use: boolean of
= TRUE =

general_commit_name: ost$name,
ca send,

recend;

Revision B Constant and Type Declarations C-25

CONSTANT AND TYPE DECLARATIONS

amt$generation_number = 1 •• 9999 {defaults}
{ to 0001 };
amt$get_attributes = array [1 •• * J of

amt$get_item;

amt$get_item = record
source { output }: amc$undefined_attribute

amc$access_method_default,
case key {input}: amt$file_attribute_keys of

{ output }
= amc$access_mode =

access_mode: pft$usage_selections,
= amc$application_info =

application_info: pft$application_info,
= amc$block_type =

block_type: amt$block_type,

= amc$character_conversion =
character_conversion: boolean,

= amc$clear_space =
clear_space: ost$clear_file_space,

= amc$error_exit_name =
error_exit_name: pmt$program_name,

= amc$error_options =
error_options: amt$error_options,

= amc$file_access_procedure =
file_access_procedure: pmt$program_name,

= amc$file_contents =
file_contents: amt$file_contents,

= amc$file_length =
file_length: amt$file_length,

= amc$file_limit =
file_limit: amt$file_limit,

= amc$file_organization =
file_organization: amt$file_organization,

= amc$file_processor =
file_processor: amt$file_processor,

= amc$file_structure =
file_structure: amt$file_structure,

= amc$forced_write =
forced_write: amt$forced_write,

= amc$global_access_mode =
global_access_mode: pft$usage_selections,

= amc$global_file_address =
global_file_address: amt$file_byte_address,

= amc$global_file_name =
global_file_name: ost$binary_unique_name,

C-26 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

= amc$global_file_position =
global_file_position: amt$global_file_position,

= amc$global_share_mode =
global_share_mode: pft$share_selections,

= amc$internal code =
internal_code: amt$internal_code,

= amc$Label_exit_name =
Label_exit_name: pmt$program_name,

= amc$Label_options =
Label_options: amt$Label_options,

= amc$Label_type =
Label_type: amt$Label_type,

= amc$Line_number =
Line_number: amt$Line_number,

= amc$max_block_Length =
max_block_Length: amt$max_block_Length,

= amc$max_record_Length =
max_record_Length: amt$max_record_Length,

= amc$min_block_Length =
min_block_Length: amt$min_block_Length,

= amc$min_record_Length =
min_record_Length: amt$min_record_Length,

= amc$null_attribute =
,

= amc$open_position =
open_position: amt$open_position,

= amc$padding_character =
padding_character: amt$padding_character,

= amc$page_format =
page_format: amt$page_format,

= amc$page_Length =
page_Length: amt$page_Length,
amc$page_width =
page_width: amt$page_width,
amc$permanent_file =
permanent_file: boolean,

= amc$preset_value =
preset_value: amt$preset_value,
amc$record_type =
record_type: amt$record_type,

= amc$return_option =
return_option: amt$return_option,

= amc$ring_attributes =
ring_attributes: amt$ring_attributes,

= amc$statement identifier =
statement_identifier: amt$statement_identifier,

= amc$user_info =
user_info: amt$user_info,

Revision B Constant and Type Declarations C-27

CONSTANT AND TYPE DECLARATIONS

= amc$vertical_print_density =
vertical_print_density:

amt$vertical_print_density,
= amc$average_record_Length =

average_ record_ Length:
amt$average_record_Length,

= amc$collate_table_name =
collate_table_name: pmt$program_name,

= amc$data_padding =
data_padding: amt$data_padding,
amc$embedded_key =
embedded_key: boolean,

= amc$error_Limit =
error_Limit: amt$error_Limit,

= amc$estimated_record_count =
estimated_record_count:

amt$estimated_record_count,
= amc$index_Levels =

index_Levels: amt$index_Levels,
= amc$index_padding =

index_padding: amt$index_padding,
= amc$key_Length =

key_Length: amt$key_Length,
= amc$key_position =

key_position: amt$key_position,
= amc$key_type =

key_type: amt$key_type,
= amc$message_control =

message_control: amt$message_control,
amc$record_Limit =
record_Limit: amt$record_Limit,

= amc$records_per_block =
records_per_block: amt$records_per_block,

ca send
rec end;

amt$get_key_definitions = record
key_definitions: ~SEQ (*),

rec end;

C-28 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$get_lock_keyed_record = record
working_storage_area: "cell,
working_storage_length: amt$working_storage_length,
key_location: "cell,
major_key_length: amt$major_key_length,
relation: amt$key_relation,
wait_for_lock: ostSwait_for_lock,
unlock_control: amtSunlock_control,
lock_intent: amt$lock_intent,
record_length: "amt$max_record_length,
file_position: "amt$file_position,
wait: ost$wait,

rec end;

amt$get_lock_next_keyed_record = record
working_storage_area: "cell,
working_storage_length: amtSworking_storage_length,
key_location: "cell,
wait_for_lock: ostSwait_for_lock,
unlock_control: amt$unlock_control,
lock_intent: amt$lock_intent,
record_length: "amt$max_record_length,
file_position: "amt$file_position,
wait: ost$wait,

recend;

amt$get_nested_file_definitions =record
definitions: "amt$nested_file_definitions,
nested_file_count: "amt$nested_file_count,

recend;

amt$get_next_primary_key_list =record
high_key: "cell,
major_high_key: amt$major_key_length,
high_key_relation: amt$key_relation,
working_storage_area: "cell,
working_storage_length: amt$working_storage_length,
end_of_primary_key_list: "boolean,
transferred_byte_count: ·amtSworking_storage_length,
transferred_key_count: "amt$key_count_limit,
file_position: "amt$file_position,
wait: ostSwait,

rec end;

Revision B Constant and Type Declarations C-29

CONSTANT AND TYPE DECLARATIONS

amtSget_primary_key_count = record
Low_key: Acell,
major_Low_key: amtSmajor_key_Length,
Low_key_relation: amtSkey_relation,
high_key: Acell,
major_high_key: amtSmajor_key_Length,
high_key_relation: amt$key_relation,
List_count_Limit: amtSkey_count_Limit,
List_count: AamtSkey_count_Limit,
wait: ostSwait,

rec end;

amtSglobal_file_position = amtSfile_position;

amtSgroup_name = amtSkey_name;

amtShashing_procedure = Aprocedure Cold_key: Acell;
key_Length: amtSkey_Length;
VAR hashed_key: integer;
VAR status: ostSstatus>;

amtShashing_procedure_name = amtSentry_point_reference;

amtSindex_Levels = 0 •• amcSmax_index_Level;

amtSindex_padding = 0 •• 99 {expressed as a}
{ percentage };

amtSinitial_home_block_count = 1 •• amcSmax_home_blocks;

amtSinternal_code = CamcSas6, amcSas8, amcSascii,
amcSd64, amcSebcdic, amcSbcd);

amtSkey_count_Limit = 0 •• amcSfile_byte_Limit;

amtSkey_Length = 1 •• amcSmax_key_Length;

amtSkey_name = ostSname;

amtSkey_position = 0 •• amcSmax_key_position;

amtSkey_relation = CamcSequal_key,
amcSgreater_or_equal_key, amcSgreater_key>;

amtSkey_type = CamcScollated_key, amcSinteger_key,
amcSuncollated_key);

C-30 CYBIL File Interface RevisionB

CONSTANT AND TYPE DECLARATIONS

~ amt$Label_area_Length = 18 •• amc$max_Label_Length;

amt$Label_exit_procedure = "procedure
(file_identifier: amt$file_identifier);

amt$Label_options = set of (amc$vol1, amc$uvl,
amc$hdr1, amc$hdr2, amc$eov1, amc$eov2, amc$uhl,
amc$eof1, amc$eof2, amc$utl);

amt$Label_type = <amc$Labelled,
amc$non_standard_Labelled, amc$unlabelled);

amt$Last_access_operation = amc$Last_access_start
amc$max_operation;

amt$Last_op_status = (amc$active, amc$complete);

amt$Last_operation = 1 .• amc$max_operation;

amt$Line_number =record
Length: amt$Line_number_Length,
Location: amt$Line_number_Location,

rec end;

amt$Line_number_Length = •• amc$max_Line_number;

amt$Line_number_Location amt$page_width;

amt$Loading_factor = 0 •• 100;

amt$Local_file_name = ost$name;

amt$Lock_expiration_time = 0 •• 604800000 {milliseconds};

amt$Lock_intent = (amc$exclusive_access, amc$preserve_access_
and_content,amc$preserve_content);

amt$Lock_file =record
wait_for_Lock: ost$wait_for_Lock,
Lock_intent: amt$Lock_intent,

recend;

amt$Lock_key = record
key_Location: "cell,
wait_for_Lock: ost$wait_for_Lock,
unlock_control: amt$unlock_control,
Lock_intent: amt$Lock_intent,

rec end;

Revision B Constant and Type Declarations C-31

CONSTANT AND TYPE DECIARATIONS

amt$logging_options =set of amt$logging_possibilities;

amt$logging_possibilities = (amc$enable_parcels, amc$enable_
media_recovery,amc$enable_request_recovery);

amt$log_residence = amt$path_name;

amt$major_key_length 0

amt$max_block_length =

amc$max_key_length;

amc$maximum_block - 1;

amt$max_optional_attributes = 1 •• amc$max_optional_attributes;

amt$max_record_length = 0 •• amc$maximum_record;

amt$max_repeating_group_count = amt$max_record_length;

amt$message_control = set of (amc$trivial_errors,
amc$messages, amc$statistics);

amt$min_block_Length = 18 amc$maximum_block;

amt$min_record_Length = 0 amc$maximum_record;

amt$nested_file_definition =record
nested_file_name: amt$nested_file_name,
embedded_key: boolean,
key_position: amt$key_position,
key_Length: amt$key_length,
maximum_record: amt$max_record_Length,
minimum_record: amt$min_record_length,
record_type: amt$record_type,
case file_organization: amt$file_organization of
= amc$indexed_sequential =

key_type: amt$key_type,
collate_table_name: pmt$program_name,
data_padding: amt$data_padding,
index_padding: amt$index_padding,

= amc$direct_access =
home_block_count: amt$initial_home_block_count,
dynamic_home_block_space: amt$dynamic_home_block_space,
loading_factor: amt$Loading_factor,
hashing_procedure: amt$hashing_procedure_name,

= amc$system_key =
records_per_block: amt$records_oer_block,

ca send,
rec end;

C-32 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$nested_file_definitions =array [1 •• * J of
amt$nested_file_definition;

amt$nested_file_count = 1 •• amc$max_blocks_per_file;

~ amt$nested_file_name = ost$name;

amt$nowait_var_parameters =SEQ (REP 10 of integer);

amt$open_position = (amc$open_no_positioning,
amc$open_at_boi, amc$open_at_bop, amc$open_at_eoi);

amt$optional_key_attribute = record
case selector: amt$file_attribute_keys of

amcSkey_type =
key_type: amt$key_type,

= amcScollate_table_name =
collate_table_name: pmt$program_name,

= amc$duplicate_keys =
duplicate_key_control: amtSduplicate_key_control,

= amcSnull_suppression =
null_suppression: boolean,

= amcSsparse_keys =
sparse_key_control_position: amtSkey_position,
sparse_key_control_characters: set of char,
sparse_key_control_effect: amt$sparse_key_control_effect,

= amcSrepeating_group =
repeating_group_Length: amtSmax_record_length,
repetition_control: amt$repetition_control,

= amc$concatenated_key_portion =
concatenated_key_position: amtSkey_position,
concatenated_key_length: amt$key_length,
concatenated_key_type: amt$key_type,

= amcSgroup_name =
group_name: amtSgroup_name,

= amc$variable_length_key =
key_delimiter_characters: set of char,

ca send,
rec end;

amt$optional_key_attributes =array [1 •• * J of
amt$optional_key_attribute;

amtSpack_block_header = record
header_type: amt$block_header_type,
block_length: amtSmax_block_length,
block_number: amtSblock_number,
unused_bit_count: amt$unused_bit_count,

rec end;

Revision B Constant and Type Declarations C-33

CONSTANT AND TYPE DECLARATIONS

amt$padding_character = char;

amt$page_format = Camc$continuous_form,
amc$burstable_form, amc$non_burstable_form);

amt$page_Length = 1 •• amc$file_byte_Limit,

amt$page_width = 1 •• amc$max_page_width;

amt$path_name = string Camc$max_path_name_size);

amt$physical_transfer_count = 0 ••
amc$max_buffer_Length;

amt$pointer_kind = Camc$cell_pointer,
amc$heap_pointer, amc$sequence_pointer);

amt$preset_value = integer;

amt$primary_key = Acell;

amt$put_Locality = Camc$put_near_anywhere, amc$put_near_get,
amc$put_near_update);

amt$record_header = record
header_type: amt$record_header_type,
Length: amt$max_record_Length,
previous_Length: amt$max_record_Length,
unused_bit_count: amt$unused_bit_count,
user_information: cell,

rec end;

amt$record_header_Length = 0 ••
amc$max_record_header;

amt$record_header_type = (amc$full_record,
amc$start_record, amc$continued_record,
amcend_record, amcpartition,
amc$deleted_record);

amt$record_Limit = 1 •• amc$file_byte_Limit;

amt$record_type = (amc$variable { V } ,
amc$undefined { U } , amc$ansi_fixed { F } ,
amc$ansi_spanned { S } , amc$ansi_variable { D});

amt$records_per_block = •• amc$max_records_per_block;

C-34 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$recovered_request = record
past_last: boolean,
task_id: pmtStask_id,
file_identifier: amtSfile_identifier,
nested_file_selection: amtSnested_file_name,
call_block: amtScall_block,
status: ostSstatus,
working_storage_length: amt$working_storage_length,
key_length: amt$key_Length,

recend;

amt$recovery_description = record
case recover_option: amtSrecovery_options of
= amc$recover_file_media =

media_recovery: record
backup_date_time: ost$date_time,
last_requests: "SEQ (* >,

rec end,
amc$recover_to_last_requests
last_requests: "SEQ (* >,

= amcSrecover_file_structure
,

= amc$salvage_data_records =
new_keyed_file: amt$local_file_name,
salvage_log: amt$salvage_log_description,

ca send,
recend;

amt$recovery_options = Camc$recover_file_media,
amcSrecover_to_last_requests, amcSrecover_file_structure,
amc$salvage_data_records);

amt$repetition_control = record
case repeat_to_end_of _record: boolean of
= FALSE =

repeating_group_count: amt$max_repeating_group_count,
ca send,

rec end;

amt$residual_skip_count = amtSskip_count;

amtSreturn_option = (amcSreturn_at_close,
amc$return_at_task_exit, amc$return_at_job_exit);

Revision B Constant and Type Declarations C-35

CONSTANT AND TYPE DECLARATIONS

amtSring_attributes = record
r1: ostSvalid_ring,
r2: ostSvalid_ring,
r3: ostSvalid_ring,

rec end;

amt$salvage_log_description = record
case salvage_Log_wanted: boolean of
= TRUE =

rejects_file: amtSlocal_file_name,
ca send,

rec end;

amt$section_number = 1 •• 9999,
{defaults to 0001 };

amtSsegment_pointer = record
case kind: amtSpointer_kind of
=amcScell_pointer=

cell_pointer: ftcell,
=amcSheap_pointer=

heap_pointer: ftHEAP (*),
=amcSsequence_pointer=

sequence_pointer: ftSEQ (*),
ca send,

rec end;

amtSselect_key = record
key_name: amtSkey_name,

rec end;

amtSselect_nested_file =record
nested_file_name: amtSnested_file_name,

rec end;

amtSseparate_key_groups = record
group: amtSgroup_name,
parallel_group: amtSgroup_name,

rec end;

C~36 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

~ amtSselected_key_name = amt$key_name;

amt$selected_nested_file = amt$nested_file_name;

amtSsequence_number = 1 9999
{ defaults to 0001 };

amt$skip_buffer_Length = 1 •• amc$max_buffer_Length;

amt$skip_count = 0 •• amcSfile_byte_Limit;

amtSskip_direction = (amc$forward, amcSbackward);

amtSskip_option = (amc$skip_to_eor, amcSno_skip);

amt$skip_unit = <amc$skip_record, amc$skip_block,
amcSskip_partition>;

amt$sparse_key_control_effect = (amcSinclude_key_value,
amc$exclude_key_value);

amt$statement_id_Length = 1 ••
amcSmax_statement_id_Length;

amt$statement_id_Location = amtSpage_width;

amtSstatement_identifier = record
Length: amtSstatement_id_Length,
Location: amtSstatement_id_Location,

recend;

amtSstore_attributes =array [1 •• * J of
amtSstore_item;

amt$store_item = record
case key: amt$file_attribute_keys of
= amc$error_exit_procedure =

error_exit_procedure: amt$error_exit_procedure,
= amc$error_options =

error_options: amtSerror_options,
= amcSLabel_exit_procedure =

Label_exit_procedure: amt$Label_exit_procedure,
= amcSLabel_options =

Label_options: amtSLabel_options,
= amcSnull_attribute =

,
= amc$error_Limit =

error_Limit: amt$error_Limit,
amcSmessage_control =
message_control: amtSmessage_control,

ca send,
recend;

Revision B Constant and Type Declarations C-37

CONSTANT AND TYPE DECLARATIONS

amt$tape_mark_count = 1 •• amc$max_tape_mark_count;

amt$term_option = (amc$start, amc$continue,
amc$terminate);

amt$transfer_count = amt$working_storage_Length;

amt$unpack_block_header = record
header_type: amt$block_header_type,
block_Length_as_read: amt$max_block_Length,
block_Length_as_written: amt$max_block_Length,
block_number: amt$block_number,
unused_bit_count: amt$unused_bit_count,
block_status: amt$block_status,

recend;

amt$unused_bit_count = 0 •• 7;

amt$user_info = string (amc$max_user_info);

amt$version_number =
{ defaults to 01 };

•• 99

amt$vertical_print_density = 6 ••
amc$max_Lines_per_inch;

amt$volume_number = .• amcSmax_vol_number;

amt$volume_position = (amc$bov,
amc$mid_bov_Label_group, amc$after_tapemark,
amc$mid_hdr_Label_group, amc$mid_eof_label_group,
amc$mid_eov_Label_group, amc$eov);

amt$working_storage_Length = ost$segment_Length;

C-38 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

F AP Call Block Declarations

amt$check_buffer_req = record
buffer_area: "cell,
request_complete: "boolean,
byte_address: "amtSfile_byte_address,
transfer_count: "amt$physical_transfer_count,
wait: ostSwait,

rec end;

amtScheck_record_req = record
working_storage_area: "cell,
request_complete: "boolean,
record_length: "amtSmax_record_length,
file_position: "amt$file_position,
wait: ost$wait,

rec end;

amtSdelete_direct_req = record
byte_address: amtSfile_byte_address,

rec end;

amtSdelete_key_req = record
key_location: "cell,
wait: ost$wait,

rec end;

amtSfetch_access_information_rq = record
access_information: "amtSaccess_information,

rec end;

amtSfetch_req = record
file_attributes: "amtSfetch_attributes,

rec end;

amtSflush_req = record
wait: ostSwait,

rec end;

amt$get_direct_req = record
working_storage_area: "cell,
working_storage_length:

amt$working_storage_length,
transfer_count: "amtStransfer_count,
byte_address: amt$file_byte_address,
file_position: "amtSfile_position,

rec end;

Revision B Constant and Type Dedarations C-39

CONST ANT AND TYPE DECLARATIONS

amtSget_key_req = record
working_storage_area: -cell,
working_storage_length:

amtSworking_storage_length,
key_location: -cell,
major_key_length: amt$major_key_length,
key_relation: amt$key_relation,
record_length: -amtSmax_record_length,
file_position: -amtSfile_position,
wait: ostSwait,

rec end;

amtSget_label_req = record
label_area: -cell,
label_area_length: amtSlabel_area_length,

rec end;

amtSget_next_req = record
working_storage_area: -cell,
working_storage_length:

amtSworking_storage_length,
transfer_count: -amt$transfer_count,
byte_address: -amt$file_byte_address,
file_position: -amtSfile_position,

rec end;

amtSget_next_key_req = record
working_storage_area: -cell,
working_storage_length:

amt$working_storage_length,
key_location: -cell,
record_length: -amt$max_record_length,
file_position: -amtSfile_position,
wait: ost$wait,

rec end;

amt$get_space_used_for_key = record
low_key: -cell,
major_low_key: amtSmajor_key_length,
low_key_relation: amtSkey_relation,
high_key: -cell,
major_high_key: amtSmajor_key_length,
high_key_relation: amtSkey_relation,
data_block_count: -amtSdata_block_count,
data_block_space: -amtSfile_length,
wait: ostSwait,

rec end;

C-40 CYBIL File Interface Revision B

amtSget_partial_req = record
working_storage_area: "cell,
working_storage_length:

CONSTANT AND TYPE DECLARATIONS

amtSworking_storage_length,
record_length: "amtSmax_record_length,
transfer_count: "amtStransfer_count,
byte_address: "amtSfile_byte_address,
file_position: "amtSfile_position,
skip_option: amtSskip_option,

rec end;

amtSget_segment_pointer_req = record
pointer_kind: amtSpointer_kind,
segment_pointer: "amtSsegment_pointer,

rec end;

amtSlock_file_req = record
status: "amtSfile_lock,

rec end;

amtSopen_req = record
local_file_name: amtSlocal_file_name,
access_level: amtSaccess_level,
existing_file: boolean,
contains_data: boolean,

recend;

amtSpack_block_req = record
buffer_area: amtSbuffer_area,
header: amtSpack_block_header,

rec end;

amtSpack_record_req = record
buffer_area: amtSbuffer_area,
header: amtSrecord_header,

rec end;

amt$put_direct_req = record
working_storage_area: "cell,
working_storage_Length:

amtSworking_storage_length,
byte_address: amtSfile_byte_address,

rec end;

Revision B Constant and Type Declarations C-41

CONSTANT AND TYPE DECLARATIONS

amtSput_key_req = record
working_storage_area: "cell,
working_storage_length:

amtSworking_storage_length,
key_location: "cell,
wait: ostSwait,

rec end;

amt$put_label_req = record
label_area: "cell,
label_area_length: amtSlabel_area_length,

rec end;

amtSput_next_req = record
working_storage_area: "cell,
working_storage_length:

amtSworking_storage_length,
byte_address: ·amtSfile_byte_address,

rec end;

amt$put_partial_req = record
working_storage_area: "cell,
working_storage_length:

amtSworking_storage_length,
byte_address: "amt$file_byte_address,
term_option: amtSterm_option,

rec end;

amt$putrep_req = record
working_storage_area: "cell,
working_storage_length:

amtSworking_storage_length,
key_location: "cell,
wait: ostSwait,

rec end;

amtSread_req = record
buffer_area: "cell,
buffer_length: amtSbuffer_length,
byte_address: ·amtSfile_byte_address,
transfer_count: "amt$physical_transfer_count,
wait: ostSwait,

rec end;

C-42 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$read_direct_req; record
buffer_area: Acell,
buffer_Length: amt$buffer_Length,
byte_address: amt$file_byte_address,
transfer_count: Aamt$physical_transfer_count,
wait: ostSwait,

recend;

amt$read_direct_skip_req; record
buffer_area: Acell,
buffer_Length: amt$buffer_Length,
byte_address: amtSfile_byte_address,
transfer_count: Aamt$physical_transfer_count,
wait: ost$wait,

recend;

amt$read_skip_req ; record
buffer_area: Acell,
buffer_Length: amt$buffer_Length,
byte_address: Aamt$file_byte_address,
transfer_count: Aamt$physical_transfer_count,
wait: ost$wait,

recend;

amt$replace_req ; record
working_storage_area: Acell,
working_storage_Length:

amt$working_storage_Length,
recend;

amt$replace_direct_req = record
working_storage_area: Acell,
working_storage_Length:

amt$working_storage_Length,
byte_address: amtSfile_byte_address,

recend;

amt$replace_key_req ; record
working_storage_area: Acell,
working_storage_Length:

amtSworking_storage_Length,
key_Location: Acell,
wait: ost$wait,

rec end;

amtSrewind_req ; record
wait: ost$wait,

rec end;

Revision B Constant and Type Declarations C-43

CONSTANT AND TYPE DECLARATIONS

amt$rewind_volume_req ; record
wait: ost$wait,

recend;

amt$salvage_log_description ; record
case salvage_log_wanted: boolean of
; TRUE =

rejects_file: amt$local_file_name,
ca send,

rec end;

amtSseek_direct_req = record
byte_address: amt$file_byte_address,

rec end;

amt$set_segment_eoi_req = record
segment_pointer: amt$segment_pointer,

rec end;

amt$set_segment_position_req = record
segment_pointer: amt$segment_pointer,

recend;

amt$skip_req = record
direction: amt$skip_direction,
unit: amt$skip_unit,
count: amtSskip_count,
file_position: ·amt$file_position,

recend;

amt$start_req ; record
key_location: ·cell,
major_key_length: amt$major_key_length,
key_relation: amt$key_relation,
file_position: ·amt$file_position,
wait: ostSwait,

rec end;

amt$store_req = record
file_attributes: ·amt$store_attributes,

rec end;

amt$unlock_key = record
unlock_all_keys: boolean,
key_Location: ·cell,

recend;

C-44 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

amt$unpack_block_req = record
buffer_area: amtSbuffer_area,
header: Aamt$unpack_block_header,

rec end;

amt$unpack_record_req = record
buffer_area: amt$buffer_area,
header: AamtSrecord_header,

rec end;

amt$write_req = record
buffer_area: Acell,
buffer_Length: amt$buffer_Length,
byte_address: Aamt$file_byte_address,
wait: ost$wait,

rec end;

amt$write_direct_req = record
buffer_area: Acell,
buffer_Length: amtSbuffer_Length,
byte_address: amt$file_byte_address,
wait: ostSwait,

rec end;

ift$fetch_terminal_req = record
terminal_attributes: Aift$get_terminal_attributes,

rec end;

ift$store_terminal_req = record
terminal_attributes:

AiftSstore_terminal_attributes,
rec end;

Revision B Constant and Type Declarations C-45

CONSTANT AND TYPE DECLARATIONS

AV
avtSaccount_name = ostSname;

avtSproject_name = ost$name;

IF

Constants

ifc$interactive_facility_id = 'IF';
ifcSmax_collector_string_size = 31 { * } ;
ifc$max_ecc = ifcSmin_ecc + 500;
ifcSmax_file_mark_string_size = 31;
ifc$max_prompt_string_size = 31;
ifc$max_transparent_count_size = 4096;
ifcSmin_ecc = 320000;

Types

ift$attribute_source = CifcSundefined_attribute,
ifcSnam_default, ifc$os_default,
ifcSterminal_command, ifcSterminal_request,
ifcSrequest_terminal_command,
ifcSrequest_terminal_request,
ifcSstore_terminal_request, ifcSbam_request);

ift$carriage_return_idle_range = 0 •• 99;

iftScollector_delimiter = record
relation: iftScollector_relations,
delimiter_string: iftScollector_delimiter_string,

recend;

ift$collector_delimiter_string = record
size: iftScollector_string_size,
value: string Cifc$max_collector_string_size),

rec end;

C-46 CYBIL File Interface Revision B

e

e

CONSTANT AND TYPE DECLARATIONS

ift$collector_relations = (ifc$less_relation,
ifc$less_equal_relation, ifc$equal_relation,
ifc$not_equal_relation, ifc$greater_relation,
ifc$greater_equal_relation);

ift$collector_string_size = 1 .•
ifc$max_collector_string_size;

ift$file_mark_string = record
size: ift$file_mark_string_size,
value: string (ifc$max_file_mark_string_size),

recend;

ift$file_mark_string_size = 0 ••
ifc$max_file_mark_string_size;

ift$get_terminal_attributes = array [1 •• * J of
ift$get_terminal_attribute;

ift$get_terminal_attribute = record
source { output } : ift$attribute_source,
case key { input} : ift$terminal_attribute_keys of
= ifc$abort line_character =

abort_line_character: char,
= ifc$auto_input_mode =

auto_input_mode: boolean,
= ifc$backspace_character =

backspace_character: char,
= ifc$buffer_behind { *} =

buffer_behind: boolean,
= ifc$cancel_group_character

cancel_group_character: char,
ifc$cancel_line_character =
cancel_line_character: char,
ifc$carriage_return_idle =
carriage_return_idle:

=

=

=

ift$carriage_return_idle_range,
ifc$collector_delimiter { *} =
collector_delimiter: ift$collector_delimiter,
ifc$collector_mode { * } =

=

=

=

collector_mode: boolean,
ifcSechoplex =
echoplex: boolean,
ifc$eoi_string =
eoi_string: ift$file_mark_string,
ifc$eop_string =
eop_string: ift$file_mark_string,

Revision B Constant and Type Declarations C-47

CONSTANT AND TYPE DECLARATIONS

= ifc$input_device =
input_device: ift$input_devices,

= ifc$line_feed_idle =
line_feed_idle: ift$line_feed_idle_range,

= ifc$network_control_character =
network_control_character: char,

= ifc$no_format_effectors =
no_format_effectors: boolean,

= ifc$null_attribute =
,

= ifc$output_device =
output_device: ift$output_devices,

= ifc$output_flow_control =
output_flow_control: boolean,

= ifc$output_translation =
output_translation: pmt$program_name,

= ifc$page_length =
page_length: amt$page_length,
ifc$page_wait =
page_wait: boolean,

= ifc$page_width =
page_width: amt$page_width,

= ifc$parity =
parity: ift$parity_modes,

= ifc$pause_break_character
pause_break_character: char,

= ifc$prompt_file =
prompt_file: amt$local_file_name,

= ifc$prompt_file_id =
prompt_file_id: amt$file_identifier,

= ifc$prompt_string =
prompt_string: ift$prompt_string,

= ifc$special_editing =
special_editing: boolean,

= ifc$terminal_class =
terminal_class: ift$terminal_classes,

= ifc$terminal_name =
terminal_name: string (7),

= ifc$terminate_break_character =
terminate_break_character: char,

= ifc$transparent_delim_selection =
transparent_delim_selection:

ift$transparent_delim_selection,
= ifc$transparent_end_character =

transparent_end_character: char,

C-48 CYBIL File Interface Revision B

= ifc$transparent_end_count =
transparent_end_count:

ift$transparent_count_range,
= ifc$transparent_mode =

transparent_mode: boolean,
= ifc$type_ahead =

type_ahead: boolean,
ca send,

rec end;

CONSTANT AND TYPE DECLARATIONS

ift$input_devices = (ifc$keyboard_input,
ifc$paper_tape_input>;

ift$line_feed_idle_range = 0 •• 99;

ift$output_devices = (ifc$display_output,
ifc$printer_output, ifc$paper_tape_output);

ift$parity_modes = (ifc$no_parity, ifc$even_parity,
ifcodd_parity, ifczero_parity);

ift$prompt_string = record
size: ift$prompt_string_size,
value: string (ifc$max_prompt_string_size), e rec end;

ift$prompt_string_size = 0 ••
ifc$max_prompt_string_size;

ift$req_terminal_req_attribute = record
case key { input } : ift$terminal_attribute_keys of
= ifc$auto_input_mode =

auto_input_mode: boolean,
= ifc$carriage_return_idle =

carriage_return_idle:
ift$carriage_return_idle_range,

ifc$collector_delimiter { *} =
collector_delimiter: ift$collector_delimiter,

= ifc$collector_mode { * } =
collector_mode: boolean,

= ifc$echoplex =
echoplex: boolean,

Revision B Constant and Type Declarations C-49

CONST ANT AND TYPE DECLARATIONS

= ifcSeoi_string =
eoi_string: iftSfile_mark_string,

= ifcSeop_string =
eop_string: iftSfile_mark_string,

= ifcSinput_device =
input_device: iftSinput_devices,

= ifcSline_feed_idle =
line_feed_idle: iftSline_feed_idle_range,

= ifcSno_format_effectors =
no_format_effectors: boolean,

= ifcSnull_attribute =
,

= ifcSoutput_device =
output_device: iftSoutput_devices,
ifcSoutput_translation =
output_translation: pmtSprogram_name,

= ifcSpage_wait =
page_wait: boolean,

= ifcSprompt_file =
prompt_file: amtSlocal_file_name,

= ifcSprompt_file_id =
prompt_file_id: amtSfile_identifier,

= ifcSprompt_string =
prompt_string: iftSprompt_string,

= ifcSspecial_editing =
special_editing: boolean,
ifcStransparent_delim_selection
transparent_delim_selection:

iftStransparent_delim_selection,
= ifcStransparent_end_character =

transparent_end_character: char,
= ifc$transparent_end_count =

transparent_end_count:
iftStransparent_count_range,

= ifcStransparent_mode =
transparent_mode: boolean,

= ifcStype_ahead =
type_ahead: boolean,

ca send,
rec end;

iftSreq_terminal_req_attributes = array [1 •• * J of
ift$req_terminal_req_attribute;

ift$store_terminal_attributes =array [1 .• * J of
ift$store_terminal_attribute;

C-50 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

iftSstore_terminal_attribute = record
case key { input } : ift$terminal_attribute_keys of
= ifc$auto_input_mode =

auto_input_mode: boolean,
= ifcSbuffer_behind { *} =

buffer_behind: boolean,
= ifcScarriage_return_idle =

carriage_return_idle:
ift$carriage_return_idle_range,

= ifcScollector_delimiter { * } =
collector_delimiter: ift$collector_delimiter,
ifc$collector_mode { *} =
collector_mode: boolean,

= ifcSechoplex =
echoplex: boolean,

= ifcSeoi_string =
eoi_string: iftSfile_mark_string,

= ifcSeop_string =
eop_string: iftSfile_mark_string,

= ifcSinput_device =
input_device: iftSinput_devices,

= ifcSline_feed_idle =
line_feed_idle: iftSline_feed_idle_range,

= ifcSno_format_effectors =
no_format_effectors: boolean,

= ifc$null_attribute =
,

= ifcSoutput_device =
output_device: ift$output_devices,

= ifcSoutput_translation =
output_translation: pmt$program_name,

= ifcSpage_wait =
page_wait: boolean,

= ifcSprompt_file =
prompt_file: amtSlocal_file_name,

= ifcSprompt_file_id =
prompt_file_id: amt$file_identifier,

= ifc$prompt_string =
prompt_string: iftSprompt_string,

= ifcSspecial_editing =
special_editing: boolean,

= ifc$transparent_delim_selection =
transparent_delim_selection:

iftStransparent_delim_selection,
= ifc$transparent_end_character =

transparent_end_character: char,

Revision B Constant and Type Declarations C-51

CONSTANT AND TYPE DECLARATIONS

= ifcStransparent_end_count =
transparent_end_count:

ift$transparent_count_range,
= ifc$transparent_mode =

transparent_mode: boolean,
= ifc$type_ahead =

type_ahead: boolean,
ca send,

rec end;

iftSterminal_attribute_keys =
(ifc$abort_line_character, ifcSauto_input_mode,
ifc$backspace_character, ifcSbuffer_behind,
ifc$cancel_group_character,
ifc$cancel_line_character,
ifcScarriage_return_idle, ifcScollector_delimiter,
ifc$collector_mode, ifcSechoplex, ifcSeoi_string,
ifc$eop_string, ifcSinput_device,
ifc$line_feed_idle, ifc$network_control_character,
ifcSno_format_effectors,
ifc$null_attribute, ifcSoutput_device,
ifc$output_flow_control,
ifcSoutput_translation, ifc$page_length,
ifcSpage_wait, ifc$page_width, ifcSparity,
ifc$pause_break_character, ifc$prompt_file,
ifcSprompt_file_id, ifcSprompt_string,
ifcSspecial_editing, ifc$terminal_class,
ifcSterminal_name, ifcSterminate_break_character,
ifcStransparent_delim_selection,
ifcStransparent_end_character,
ifcStransparent_end_count, ifc$transparent_mode,
ifc$type_ahead);

iftSterminal_classes = CifcStty_class,
ifc$c75x_class, ifc$c721_class, ifc$i2741_class,
ifc$tty40_class, ifc$h2000_class, ifc$x364_class,
ifc$t4010_class, ifcShasp_class, ifc$c200ut_class,
ifc$c711_class, ifc$c714_class, ifc$c73x_class,
ifc$i2780_class, ifc$i3780_class>;

C-52 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

ift$terminal_request_attribute = record
case key { input } : iftSterminal_attribute_keys of
= ifcSauto_input_mode =

auto_input_mode: boolean,
= ifcScarriage_return_idle =

carriage_return_idle:
iftScarriage_return_idle_range,

= ifcScollector_delimiter { *} =
collector_delimiter: iftScollector_delimiter,

= ifcScollector_mode { *} =
collector_mode: boolean,

= ifc$echoplex =
echoplex: boolean,

= ifcSeoi_string =
eoi_string: iftSfile_mark_string,

= ifcSeop_string =
eop_string: iftSfile_mark_string,

= ifc$input_device =
input_device: iftSinput_devices,

= ifcSline_feed_idle =
line_feed_idle: iftSline_feed_idle_range,

= ifcSno_format_effectors =
no_format_effectors: boolean,

= ifcSnull_attribute =
,

= ifcSoutput_device =
output_device: iftSoutput_devices,

= ifcSoutput_translation =
output_translation: pmt$program_name,

= ifcSpage_length =
page_length: amtSpage_length,

= ifc$page_wait =
page_wait: boolean,

= ifcSpage_width =
page_width: amtSpage_width,

= ifc$prompt_file =
prompt_file: amtSlocal_file_name,

= ifc$prompt_file_id =
prompt_file_id: amtSfile_identifier,

= ifcSprompt_string =
prompt_string: iftSprompt_string,

= ifcSspecial_editing =
special_editing: boolean,

= ifcStransparent_delim_selection =
transparent_delim_selection:

iftStransparent_delim_selection,

RevisionB Constant and Type Declarations C-53

CONSTANT AND TYPE DECLARATIONS

= ifc$transparent_end_character =
transparent_end_character: char,

= ifcStransparent_end_count =
transparent_end_count:

iftStransparent_count_range,
= ifcStransparent_mode =

transparent_mode: boolean,
= ifcStype_ahead =

type_ahead: boolean,
ca send,

recend;

iftSterminal_request_attributes =array [1 •• * J of
iftSterminal_request_attribute;

iftStransparent_count_range = 1 ••
ifc$max_transparent_count_size;

iftStransparent_delim_selection =record
enable_end_character: boolean,
enable_end_count: boolean,
enable_time_out: boolean,

rec end;

C-54 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

OS

Constants

osc$max_condition = 999999;
osc$max_name_size = 31;
osc$max_page_size = 65536;
osc$max_ring = 15, { Highest ring number (Least }
{privileged). };
osc$max_segment_Length = osc$maximum_offset + 1;
osc$max_string_size = 256;
osc$maximum_offset = 7fffffff(16);
osc$maximum_segment = Offf(16),

osc$min_ring = 1 { Lowest ring number (most }
{privileged). };
osc$min_page_size = 512;

I• , osc$null_name = '
osc$status_parameter_delimiter =
{ Separator } ;

CHR (31) { Unit }

Ordinals

osc$invalid_ring = O;
osc$os_ring_1 = 1 { Reserved for Operating System. };
osc$tmtr_ring = 2 {Task Monitor. };
oscStsrv_ring = 3 { Task services. };
osc$sj_ring_1 = 4 { Reserved for system job. };
osc$sj_ring_2 = 5;
osc$sj_ring_3 = 6;
osc$application_ring_1 = 7 {Reserved for}
{application subsystems.};
osc$application_ring_2 = 8;
osc$application_ring_3 = 9;
osc$application_ring_4 = 10;
osc$user_ring = 11 {Standard user task.};
osc$user_ring_1 = 12 {Reserved for user ••• o.s. }
{requests available.};
osc$user_ring_2 = 13;
osc$user_ring_3 = 14 {Reserved for user ••• o.s. }
{requests not available. };
osc$user_ring_4 = 15;

Revision B Constant and Type Declarations C-55

CONSTANT AND TYPE DECLARATIONS

Types

ost$binary_unique_name = packed record
processor: pmt$processor,
year: 1980 •• 2047,
month: 1 •• 12,
day: 1 .• 31,
hour: 0 •• 23,
minute: 0 •• 59,
second: 0 •• 59,
sequence_number: 0 •• 9999999,

recend;

ostSclear_file_space =boolean;

ost$date_time = record
year: 0 •• 255,
month: 1 •• 12,
day: 1 •• 31,
hour: 0 •• 23,
minute: 0 •• 59,
second: 0 •• 59,
millisecond: 0 •• 999,

rec end;

ostSfamily_name = ost$name;

ostSkey_Lock = packed record
global: boolean, { True if value is global key. }
Local: boolean, { True if value is Local key. }
value: ost$key_Lock_value, { Key or Lock value. }

rec end;

ostSkey_Lock_value = 0 •• 3fC16>;

ostSname = string (osc$max_name_size>;

ostSname_size = .. osc$max_name_size;

ost$page_size = osc$min_page_size
oscSmax_page_size;

ost$pva = packed record
ring: ostSring,
seg: ostSsegment,
offset: ostSsegment_offset,

rec end;

C-56 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

ostSrelative_pointer = - ?fffffff (16)
7fffffff(16>;

ostSring = oscSinvalid_ring ••
oscSmax_ring { Ring number };

ostSsegment = 0 ••
oscSmaximum_segment { Segment number };

ostSsegment_length = 0 •• oscSmax_segment_length;

ostSsegment_offset = - CoscSmaximum_offset + 1) ••
oscSmaximum_offset;

ostSstatus = record
case normal: boolean of
= FALSE =

identifier: string (2),
condition: ostSstatus_condition,
text: ostSstring,

casend,
recend;

ostSstatus_condition = 0 •• oscSmax_condition;

ostSstring = record
size: ostSstring_size,
value: string CoscSmax_string_size),

recend;

ostSstring_index = 1 •• oscSmax_string_size + 1;

ostSstring_size = 0 •• oscSmax_string_size;

ostSunique_name = record
case boolean of
= TRUE =

value: ostSname,
= FALSE =

dollar_sign: string C1>,
sequence_number: string (7),
p: string C1>,
processor_model_number: string C1>,
s: string (1) ,
processor_serial_number: string (4),
d: string <1>,
year: string (4),
month: string <2>,
day: string (2),
t: string (1),

hour: string C2>,
minute: string (2),

Revision B Constant and Type Declarations C-57

CONSTANT AND TYPE DECLARATIONS

second: string C2>,
ca send,

rec end;

ostSuser_identification = record
user: ostSuser_name,
family: ostSfamily_name,

recend;

ostSuser_name = ostSname;

ostSvalid_ring = oscSmin_ring
oscSmax_ring {valid ring Number};

ostSwait = CoscSwait, oscSnowait>;

ostSwait_for_lock = (oscSwait_for_lock, oscSnowait_for_lock);

C-58 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

9 PF

Constants

pfc$family_name_index = 1;
pfcSmaster_catalog_name_index =

pfcSfamily_name_index + 1;
pfc$maximum_cycle_number = 999;
pfcSmaximum_retention = 999;
pfcSminimum_cycle_number = 1;
pfc$minimum_retention = 1;
pfcSsubcatalog_name_index =

pfcSmaster_catalog_name_index + 1;

Types

pft$application_info =string Cosc$max_name_size>;

pft$array_index = 1 •• 7FFFFFFFC16>;

pft$change_descriptor = record
case change_type: pft$change_type of
= pfc$pf_name_change =

pfn: pft$name,
= pfcSpassword_change =

password: pft$password,
= pfcScycle_number_change =

cycle_number: pft$cycle_number,
= pfcSretention_change =

retention: pftSretention,
= pfcSLog_change =

Log: pftSLog,
= pfc$charge_change =

,
ca send,

rec end;

Revision B Constant and Type Declarations C~'\9

CONSTANT AND TYPE DECLARATIONS

pft$change_list =array [1 .• * J of
pft$change_descriptor;

pft$change_type = (pfc$pf _name_change,
pfc$password_change, pfc$cycle_number_change,
pfc$retention_change, pfc$log_change,
pfc$charge_change);

pft$cycle_number = pfc$minimum_cycle_number
pfc$maximum_cycle_number;

pft$cycle_options = (pfc$lowest_cycle,
pfc$highest_cycle, pfc$specific_cycle);

pft$cycle_selector = record
case cycle_option: pft$cycle_options of
= pfc$lowest_cycle =

,
= pfc$highest_cycle =

,
= pfc$specific_cycle =

cycle_number: pft$cycle_number,
ca send,

rec end;

pft$group = record
case group_type: pft$group_types of
= pfc$public =

,
= pfc$family

family_description: record
family: ost$family_name,

rec end,
= pfc$account =

account_description: record
family: ost$family_name,
account: avt$account_name,

rec end,
= pfc$project =

project_description: record
family: ost$family_name,
account: avt$account_name,
project: avt$project_name,

rec end,
= pfc$user =

user_description: record
family: ost$family_name,
user: ost$user_name,

rec end,

C-60 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

= pf cSuser account =
user_account_description: record

family: ostSfamily_name,
account: avtSaccount_name,
user: ostSuser_name,

rec end,
= pfcSmember =

member_description: record
family: ostSfamily_name,
account: avtSaccount_name,
project: avtSproject_name,
user: ostSuser_name,

rec end,
ca send,

rec end;

pftSgroup_types = Cpfc$public, pfcSfamily,
pfcSaccount, pfcSproject, pfcSuser,
pfcSuser_account, pfcSmember),

pftSlog = CpfcSlog, pfc$no_log);

pftSname = ostSname;

~ pftSpassword = pftSname;

pftSpath = array [1 •• *] of pftSname;

pftSpermit_options = CpfcSread, pfcSshorten,
pfcSappend, pfcSmodify, pfcSexecute, pfcScycle,
pfcScontroL>;

pftSpermit_selections = set of pftSpermit_options;

pftSretention = pfcSminimum_retention
pfcSmaximum_retention;

pftSshare_options = pfcSread •• pfcSexecute;

pftSshare selections = set of pftSshare_options;

pftSshare_requirements =set of pftSshare_options;

pftSusage_options = pfcSread pfcSexecute;

~ pftSusage_selections = set of pftSusage_options;

pftSwait = CpfcSwait, pfcSno_wait);

Revision B Con8tant and Type Declarations C-61

CONSTANT AND TYPE DECLARATIONS

PM

Types

pmtScpu_model_number = (pmc$cpu_model_p1,
pmc$cpu_model_p2, pmcScpu_model_p3,
pmc$cpu_model_p4>;

pmtScpu_serial_number = 0 •• OffffC16>;

pmtSprocessor = record
serial_number: pmtScpu_serial_number,
model_number: pmtScpu_model_number,

rec end;

pmtSprocessor_attributes = record
model_number: pmtScpu_model_number,
serial_number: pmtScpu_serial_number,
page_size: ostSpage_size,

rec end;

pmtSprogram_name = ostSname;

RM

Constants

rmcSexternal_vsn_size = 6;
rmcSmax_ecc_resource_management = 249999;
rmcSmin_ecc_resource_management = 240000;
rmcSrecorded_vsn_size = 6;
rmcSresource_management_id = 'RM';

C-62 CYBIL File Interface Revision B

CONSTANT AND TYPE DECLARATIONS

e Types

rmtSdensity = (rmc$200, rmc$556, rmcSBOO, rmc$1600,
rmcS6250);

rmtSdevice_class = CrmcSmass_storage_device,
rmcSmagnetic_tape_device,rmcSterminaL_device,
rmcSnuLL_device);

rmtSexternaL_vsn = string CrmcSexternaL_vsn_size>;

rmtSrecorded_vsn = string CrmcSrecorded_vsn_size);

rmtSrelease_tape_request = record
tape_class: rmtStape_class,
nt9$800_count: integer,
nt9S1600_count: integer,
nt9S6250_count: integer,

rec end;

rmtSreserve_tape_request = record
tape_class: rmtStape_class,
nt9S800_count: integer,
nt9$1600_count: integer,
nt9S6250_count: integer,

rec end;

rmtStape_class = CrmcSmt7, rmcSmt9);

rmtSvolume_descriptor = record
recorded_vsn: rmtSrecorded_vsn,
external_vsn: rmtSexternaL_vsn,

rec end;

rmtSvolume_List =array [*]of
rmtSvolume_descriptor;

rmtSwrite_ring = CrmcSwrite_ring,
rmcSno_write_ring);

RevisionB Constant and Type Declarations C-63

File Access Procedures D

A file access procedure (FAP) is a procedure that acts as an interface between
calls to file interface procedures and the actual file processing by the
procedures.

If a file has a F AP associated with it, the system passes file interface calls
from a task to the FAP, instead of processing the call immediately itself.
Table D-1 lists the procedure calls passed to a FAP. In general, the calls
passed to the FAP are the file interface calls issued during an instance of
open. The calls passed do not include the calls that can be issued only within
a F AP or the calls generally issued only before or after an instance of open.
Each procedure call passed to a FAP specifies a file identifier parameter.

The F AP determines the processing of a call passed to it. The F AP can call
the system to process the call or it can simulate system processing. All
system simulation must be compatible with actual system processing.

The user writes a FAP to provide a service not supported by the system. The
following are possible services a F AP could provide:

• Data encryption and decryption. e • I/O modeling.

• Data conversion.

• Data compression.

• Logging of changes or accesses to the file.

• Trapping l/O operations during debugging.

Revision B File Access Procedures D-1

FILE ACCESS PROCEDURES

Table D-1. Calls Passed to a FAP

Procedure Call Call Block Identifier

AMP$ABANDON KEY _DEFINITIONS AMC$ABANDON _KEY _DEFINITIONS

AMP$ABORT _ FILE_PARCEL AMC$ABORT _FILE _PARCEL

AMP$APl'LY _KEY _DEFINITIONS AMC$APPLY _KEY _DEFIN!TIONS

AMP$BEGIN _ FILE_PARCEL AMC$m:GIN _ FILE_PARCEL

AMP$CHr;CK_NOWAIT _REQUEST AMC$CHECK_NOWAIT _REQUEST

AMP$CLOSE AMC$CLOSE_REQ

AMP$COMMIT FILE_PARC8L AMC$COMMIT _FILE PARCB:L

AMP$CREATE_KEY _DEFINITIONS AMC$CREATE_KEY _DEFINITIONS

AMP$CREATE_NESTED _FILE AMC$CREATE_NESTED _FILE

AMP$DELETE _KEY AMC$DELETE _KEY _REQ

AMP$DELETE KEY DEFINITIONS AMC$DELETE KEY _DEFINITIONS

AMP$DELETE_NESTED_FILE AMC$DELETE_NESTED_FILE

AMP$FETCH AMC$FETCH_REQ

AMP$FETCH ACCESS_INFORMATION AMC$FETCH_ACCESS_INFOltMATION _ RQ

AMP$FLUSH AMC$FLL:SH_REQ

AMP$G ET_ DIRECT AMC$G ET_ DIRECT_ REQ

AMP$GET_KEY AMC$GET_KEY _REQ

AMP$GET_ KEY DEFINITIONS AMC$GET __ KEY _DEFINITIONS

AMP$GET _LOCK_ KEYED_ DEFINITIONS AMC$GET_LOCK_KEYED _DEFINITIONS

AMP$GET _LOCK_KEYED _RECORD AMC$GET _LOCK_KEYED _ltECORD

AMP$GET_LOCK _NEXT_ KEYB:D _RECORD AMC$GET_LOCK_NEXT _KEYED _RECORD

AMP$GET _NEXT AMC$GET _NEXT _REQ

AMP$m~ T_NB:XT KEY AMC$GET_NEXT_KEY _REQ

AMP$GET _NEXT_PRIMARY _KEY _LIST AMC$GET NEXT PRIMARY _KEY LIST

AMP$GET _PARTIAL AMC$GET _PARTIAL_REQ

AMP$GET _PRIMARY _KEY _COUNT AMC$GET _PRIMARY _KEY COUNT

(Continued)

D-2 CYBIL File Interface Revision B

FILE ACCESS PROCEDURES

Table D-1. Calls Passed to a FAP (Continued)

Procedure Call

AMP$GET_SEGMENT POINTER e AMP$GET_SPACE USED_FOR KEY

AMP$0PEN

AMP$PUT _DIRECT

AMP$PUT_KEY

AMP$PUT _NEXT

AMP$Pl TT_ PARTIAL

AMP$PUTREP

AMP$REPLACE_KEY

AMP$REWIND

AMP$SEEK_DIRECT

AMP$SELECT_KJ<:Y

AMP$SELECT NESTED FILE

AMPSSEPARATE _KEY _GROUPS

AMP$SET_Sr:GMENT_ r:or

AMP$SF:T _SF:GMF:NT _POSITION

AMP$SKIP

AMP$START

AMP$STORE

AMP$UNLOCK KEY

AMP$WRITE END_PAR'l'ITION

AMP$WRITE TAPE_MARK

IFP$FETCH_ TERMINAL

IFP$STORE_ TERMINAL

Revision B

Call Block Identifier

AMC$GET_SEGMENT _POINTER_ REQ

AMC$GET _SPACE_ USED _FOR_KEY

AMC$0PEN _REQ

AMC$PUT _DIRECT_REQ

AMC$PUT _KEY _REQ

AMC$PUT_NEXT_REQ

AMC$PUT _PARTIAL_REQ

AMC$PUTREP _REQ

AMC$REPLACE_KEY _REQ

AMC$REWIND _ REQ

AMC$SEEK_DIRECT_ m;Q

AMC$SELECT_KEY

AMC$SELECT _NESTF:D FILE

AMC$SEPARATE_KEY _GROUPS

AMC$SET_SF:GMENT_EOI_REQ

AMC$SF:T _SEGMENT _POSITION _REQ

AMC$SKIP _REQ

AMC$START_REQ

AMC$STORE_REQ

AMC$lJNLOCK_KEY

AMC$WRITE_ END _PARTITION _REQ

AMC$WRITE_ TAPE_MARK_REQ

IFC$FETCH_ TERMINAL_REQ

IFC$STORE_ TERMINAL_REQ

File Access Procedures D-3

FILE ACCESS PROCEDURE A'ITRIBUTE

File Access Procedure Attribute

The file_access_procedure attribute names the FAP for the file. A FAP is
optional; the attribute has no default value.

To associate a FAP with a file, you specify the FAP name as the file_
access_procedure attribute value for a new file before the file is opened. The
means of defining attribute values for a new file are described in chapter 6.

If the file_access_procedure attribute has a value when the file is first
opened, the attribute value is preserved with the file. Thereafter, a F AP
remains associated with the file for the lifetime of the file. You can specify or
change the FAP associated with an old file (a file that has been opened) with
a CHANGE_FILE_AITRIBUTES command.

NOTE

Although you can change the F AP attribute value of an old file, you cannot
clear the F AP attribute value. Once a F AP is associated with the file, the file
must continue to have a FAP associated with it, although it need not be the
original FAP. After a new file is opened, the FAP name is preserved with the
file and a task cannot open the file unless the system can load the F AP with
the task.

FAPLoading

Each time an AMP$0PEN call attempts to open a file, it attempts to load the
F AP named by the file_ access _procedure file attribute (if the F AP is not
already loaded for the task). The F AP must either be named in the current
task object library list or be an entry point in the task itself. If the F AP
cannot be loaded, the attempt to open the file fails, and the AMP$0PEN call
returns abnormal status (AME$UNABLE_ TO_LOAD_FAP).

A FAP does not acquire additional privilege by being associated with a file.
It has the privilege of the object file or object library from which it is loaded
qualified by the ring of the caller of AMP$0PEN.

Assigning a F AP to a file does not in itself give the F AP permission to access
the file. A FAP must have sufficient ring privilege to access the file in some
way or it cannot be loaded when the file is accessed. However, ifthe type of
access granted to the task is not the access required to perform the function A
passed to the FAP, the FAP should either simulate that type of file access or W
return abnormal status.

D-4 CYBIL File Interface Revision B

FAP DECLARATION

F AP Declaration

After loading the FAP, the system calls the FAP for each file interface call it
receives from the task. When it calls the FAP, it passes information from the
file interface call.

When the system calls a FAP, it passes the file identifier and call block from
the file interface call; it also passes a layer number and a status variable.

The FAP declaration must have the following form:

PROCEDURE [XDCLJ name
Cfile_identifier: amtSfile_identifier;
call_block: amtScall_block;
Layer_number: amt$fap_Layer_number;
VAR status: ostSstatus>;

file_identifier

File identifier specified on the file interface call.

call_ block

Actual parameters specified on the system call. The call_ block also
contains the call identifier as listed in table D-1.

layer_number

Layer number of the FAP (integer from 0 through 15).

NOTE

The FAP must not modify the layer number passed to it. If the F AP
calls AMP$ACCESS_METHOD, it must pass the layer number,
unmodified, to the procedure.

Although the layer _number type has the range 0 through 15, only one
FAP layer (the uppermost) is available to the user. All other FAP
layers are available only to the system.

status

Status record specified on the file interface call.

Revision B File Access Procedures D-5

FAP DECLARATION

Call Block

Within the call_ block, the system passes the actual parameters from the file
interface call to the FAP. For each parameter in the parameter list, the call_
block contains either the parameter value or a pointer to the parameter
value.

The call_ block type, AMT$CALL_BLOCK, as listed in appendix C, is a
variant record. The key field is the operation field that contains one of the
call identifiers listed in table D-1. As listed in appendix C, the call identifier
determines the other fields in the record. The record contains one field for
each parameter on the file interface call (except the file identifier and status
parameters). For more information about the parameter values passed, see
the individual call description.

D-6 CYBIL File Interface Revision B

FAP PROCESSING

F AP Processing

NOS/VE provides the following special system procedures for use by a F AP:

• AMP$VALIDATE_CALLER_PRIVILEGE:

Ensures that the caller has the privilege required for the processing
performed.

• AMP$ADD _TO _FILE_DESCRIPTION:

Allows the F AP to specify a file attribute value when opening a new file if
the user has not explicitly defined the attribute.

• AMP$ACCESS_METHOD:

Allows the FAP to access the file with which it is associated.

• AMP$STORE_FAP _POINTER and AMP$FETCH_FAP _POINTER:

Allows the FAP to request and use a pointer to its own data structure.

• AMP$SET _FILE_INSTANCE_ABNORMAL:

Allows the F AP to set abnormal status for an instance of open.

FAP Security

When writing a FAP that executes in a lower (more secure) ring than the file
accessor, you must ensure that the FAP protects file security. It must check
that the caller that requests an operation has the required privilege.

For example, a task with read-only access to a file could open a file for read
access and subsequently request a write operation. If the FAP associated
with the file has write access to the file, it must check that its caller also has
the necessary privilege before performing the operation.

The FAP checks the privilege of a caller by calling AMP$VALIDATE_
CALLER_PRIVILEGE. If the call returns abnormal status, the FAP must
terminate and return the abnormal status to its caller.

Revision B File Access Procedures D· 7

AMP$VALIDATE_CALLER_PRIVILEGE

AMP$VALIDATE_ CALLER_PRIVILEGE

Purpose

Format

Ensures that the caller of a F AP is authorized to perform the
requested operation. It also returns a pointer to the F AP data
structure.

AMP$V ALIDA TE_ CALLER_PRIVILEGE (file_
identifier, layer _number, required_ write_privilege,
caller _ring_number, structure_pointer, status)

Parameters file_identifier: amt$file_identifier;

File identifier passed to the F AP when it was called.

layer _number: amt$fap_layer _number;

Layer number passed to the FAP when it was called.

required_ write_privilege: pft$usage_selections;

Set of one or more access modes that must have been included
in the access privileges for this instance of open of the file.
Required for write operations; ignored for other operations.

PFC$SHORTEN

Shorten access.

PFC$APPEND

Append access.

PFC$MODIFY

Modify access.

caller _ring _number: ost$ring;

Ring of the caller of the FAP. To get the ring number, use the
#CALLER_ID procedure described in the CYBIL Language
Definition manual and reference the ring field of the record
the function returns.

structure_pointer: VAR of "cell;

Pointer to FAP data structure.

status: VAR of ost$status;

Status variable. The process identifier returned is
AMC$ACCESS_METHOD _ID.

D-8 CYBIL File Interface Revision B

Condition
Identifiers

e Remarks

Revision B

AMP$VALIDATE_ CALLER_ PRIVILEGE

ame$im proper_ access_ attempt
ame$improper _fap _operation
ame$im proper_ file_ id
ame$n ull _set_ specified
ame$ring _validation_ error

• Use of this call is mandatory when the caller of a FAP
could have less privilege than the FAP. If the caller does
not have the privilege required to perform the operation
specified in the call block passed to the FAP, the
AMP$VALIDATE_ CALLER_PRIVILEGE call returns
either AME$RING_ VALIDATION_ERROR or
AME$IMPROPER_ACCESS _ATTEMPT status.

• For write operations, the call must specify the privilege
required to perform the operation. This allows the FAP to
determine the required access modes for each type of write
operation.

• For example, an AMP$PUT _NEXT operation for a
sequential file requires either append or shorten access.
The access required depends on the current byte address of
the file (returned by an AMP$FETCH_ACCESS_
INFORMATION call). If the address is before the end of
the file, it requires shorten access. If it is at the end of the
file, it requires append access.

• The FAP data structure pointer returned is NIL if a pointer
has not previously been stored by an AMP$STORE_FAP _
POINTER call.

File Access Procedures D-9

AMP$VALIDATE_ CALLER_PRIVILEGE

File Attribute Specification

While a new file is opened, the F AP can specify additional file attribute
values with an AMP$ADD _TO _FILE_DESCRIPTION call. The call is only
valid for the first instance of open of the file.

The file attributes specified on the call must be attributes that have not been
explicitly defined; that is, the attribute value is as yet undefined or a default
value has been supplied by the system. If the call attempts to define an
explicitly defined file attribute, an abnormal status is returned
(AME$ATI'RIB_ALREADY _DEFINED).

D-10 CYBIL File Interface Revision B

AMP$ADD _TO _FILE_DESCRIPTION

AMP$ADD _TO _FILE_DESCRIPTION

Purpose Defines file attribute values of a new file within a F AP.

NOTE

The call is valid only within a F AP and only when the system
calls the F AP due to an AMP$0PEN call for a new file. The
only file attributes that can be defined by the call are those
that are undefined or defined by default attribute values, that
is, those that have not been explicitly defined by the task.

Format AMP$ADD _TO_ FILE_ DESCRIPTION (file _identifier,
file_attributes, status)

Parameters file_identifier: amt$file_identifier;

Condition
Identifiers

Remarks

Revision B

File identifier passed to F AP.

file_attributes: amt$add_to_attributes;

Attribute array containing one record for each attribute to be
defined. You must specify an attribute identifier and an
attribute value in each record. The valid attributes are listed
in table 6-1.

status': VAR of ost$status;

Status record specified on the access method call. The process
identifier is AMC$ACCESS_METHOD _ID.

ame$attrib _already_ defined
ame$improper _file_ a ttrib _key
ame$improper_file_attrib_ value
ame$improper _file _id
ame$not_ open_new
ame$ring _validation_ error

• The F AP can determine the undefined attributes by calling
AMP$FETCH. If the attribute is undefined,
AMC$UNDEFINED is returned as the source of the file
attribute value. See table 6-2 for a list of file attribute
sources.

• For a file with sequential or byte addressable file
organization, the call cannot change the max_ block_
length, max_record_length, block_ type, or record_ type
attributes.

• Although more than one F AP layer can specify a value for
a file attribute, the first definition of an attribute overrides
all others.

File Access Procedures D-11

AMP$ADD_TO_FILE_DESCRIPTION

F AP System Calls

A FAP can pass a file interface call it receives to the system with an
AMP$ACCESS_METHOD call. The parameter list for the AMP$ACCESS_
METHOD call is the same as the parameter list passed to the FAP for a call.

When using the AMP$ACCESS_METHOD interface, the FAP can only -
reference the instance of open specified on the call to the F AP. The F AP can
access other files using calls other than AMP$ACCESS_METHOD.

When the system calls the F AP for a file, the task has already issued the
AMP$0PEN call for the file. The FAP must pass the AMP$0PEN call block
to the system using an AMP$ACCESS_METHOD call before issuing other
AMP$ACCESS_METHOD calls. The AMP$ACCESS_METHOD call
passing the AMP$0PEN call block provides other system F AP layers with
the open information.

Because the PAP passes the AMP$0PEN call, it must also pass an
AMP$CLOSE call. If the F AP does not pass the AMP$CLOSE call, the
end-user program cannot gain access to any abnormal status which may
have been generated as a result of close processing by other system FAP
layers. In this case, the system puts the abnormal status into the job and
system logs.

If the FAP emulates system processing rather than passing the requests to A
the access method, it must execute each request in a manner functionally W'
compatible with the access method it replaces. This includes initializing the
status record and other actual parameters, where applicable.

D-12 CYBIL File Interface Revision B

AMP$ACCESS_METHOD

AMP$ACCESS_METHOD

Purpose

Format

Parameters

Condition
Identifiers

Transfers control to the system from a FAP.

A FAP uses this call to pass a call it receives to the system or
to issue its own system requests.

AMP$ACCESS_METHOD (file_identifier, call_ block,
fap_layer _number, status)

file _identifier: amt$file _identifier;

File identifier passed from the system call.

call_block: amt$call_block;

Actual parameters for the access method call (type
AMT$CALL_BLOCK as defined in appendix C).

layer _number: amt$fap_layer _number;

FAP layer number passed to the FAP when it was called
(integer from 0 through 15).

status: VAR of ost$status;

Status record specified on the access method call. The process
identifier is AMC$ACCESS_METHOD_ID.

ame$improper _fap _operation
ame$improper _file_id
ame$improper _layer _number
ame$ring_ validation_error

Remarks • To pass a system request to the system, the FAP passes the
parameter list it received when it was called as the
parameter list on the AMP$ACCESS_METHOD call. That
is, it specifies the formal parameters from its declaration
statement as the actual parameter list of the
AMP$ACCESS_METHOD call (see the FAP example).

Revision B

• To issue its own system request, the F AP must initialize its
own call_block values for the call. The layer_number value
must be the same passed to the FAP when it was called;
the same layer_number value is used on all
AMP$ACCESS_METHOD calls from the FAP.

File Access Procedures D-13

AMP$ACCESS _METHOD

F AP Data Structure

When more than one file opened within a task has the same F AP associated
with it, each file shares the same copy of the FAP and the same static
variable space defined within the F AP. If a data structure should be
associated with only one instance of open, the F AP should dynamically
allocate the structure for each instance of open.

To associate a dynamically allocated structure with each instance of open,
the FAP should use the AMP$STORE_FAP _POINTER and AMP$GET
FAP _POINTER calls as follows:

1. If the F AP is called as the result of an AMP$0PEN call, it should
allocate the data structure and then call,AMP$STORE_FAP _
POINTER to store a pointer to the structure.

2. Later, when the FAP is called due to other file interface calls that
reference the instance of open, the FAP can call AMP$FETCH_FAP _
POINTER to get a pointer to the structure associated with the instance
of open. It can then reference the structure using the pointer.

The F AP example in this section illustrates use of a FAP data structure to
maintain a count.

D-14 CYBIL File Interface Revision B

/

AMP$STORE_FAP _POINTER

e AMP$STORE_FAP _POINTER

Purpose

e Format

Stores a pointer to a data structure associated with an
instance of open.

AMP$STORE_FAP _POINTER (file_identifier,
layer_number, structure_pointer, status)

Parameters file _identifier: amt$file_identifier;

File identifier passed to the FAP.

Condition
Identifiers

Remarks

Revision 13

layer _number: amt$fap_layer _number;

FAP layer number passed to the FAP when it was called
(integer from 0 through 15).

structure_pointer: 'cell;

Pointer to a data structure ('cell).

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD _ID.

ame$improper _file _id
ame$red undant _structure_ pointer
ame$ring _ validation_ error

• Using this procedure, the FAP can allocate a different data
structure for each instance of open.

• If the structure pointer has already been stored for the
specified FAP layer number, the call returns the
AME$REDUNDANT _STRUCTURE_POINTER
exception condition.

File Access Procedures D-15

AMP$FETCH_FAP _POINTER

AMP$FETCH_F AP _POINTER

Purpose

Format

Returns a pointer to the data structure owned by the FAP.

AMP$FETCH_FAP _POINTER (file_identifier, layer_
number, structure_pointer, status)

Parameters file _identifier: amt$file _identifier;

File identifier passed to the FAP.

Condition
Identifiers

Remarks

layer _number: amt$fap_layer_number;

FAP layer number passed to the F AP when it was called
(integer from 0 through 15).

structure_pointer: VAR of 'cell;

Pointer to the data structure owned by the FAP ('cell).

status: VAR of ost$status;

Status record. The process identifier is
AMC$ACCESS_METHOD_ID.

ame$im proper_ file_ id
ame$nil _structure_ pointer
ame$ring _validation_ error

• The data structure is unique to the instance of open of the
file.

• The pointer must be stored by an AMP$STORE_FAP _
POINTER call within the FAP. If the FAP pointer is NIL,
the procedure returns abnormal status to the FAP.

D-16 CYBIL File Interface Revision B

AMP$FETCH_FAP _POINTER

FAPExample

The following is an example of a F AP that counts the number of
AMP$GET _NEXT calls to the file issued during an instance of open. The
count is kept until the file is closed. All calls are passed to the access method
for processing.

MODULE fap_example;

*copyc ampSstore_fap_pointer
*copyc ampSfetch_fap_pointer
*copyc ampSaccess_method

PROCEDURE [XDCLJ f ap_example
(file_id: amtSfile_identifier;
call_block: amtScall_block;
Layer: amtSfap_layer_number;
VAR status: ostSstatus);

VAR
access_count: "integer,
fap_stat: ostSstatus;

{ In response to an AMPSOPEN call, the procedure }
{ allocates an integer variable in the CYBIL }
{ heap, stores the pointer to the variable }
{ (access_count), and initializes the cell to 0.}

IF call_block.operation = amcSopen_req THEN
ALLOCATE access_count;

AMPSSTORE_FAP_POINTER (file_id, layer,
access_count, fap_stat>;

access_count" := O;

Revision B File Access Procedures D-17

AMP$FETCH_FAP _pOJNTER

{ In response to a call other than AMP$0PEN, the }
{ procedure fetches the pointer to the access }
{ count. If the call is an AMP$GET_NEXT call, }
{ the procedure increments the count. If the }
{ call is an AMP$CLOSE call, the procedure frees }
{ the access count variable. }

ELSE
AMP$FETCH_FAP_POINTER (file_id, layer,

access_count, fap_stat);

CASE call_block.operation OF
amc$get_next_req
access_count" := access count" + 1;

= amc$close_req =
FREE access_count;

ELSE

CASEND;
!FEND;

{ Each call block is passed to the access method }
{ for processing. }

AMP$ACCESS_METHOD (file_id, call_block, layer,
status);

PROCEND fap_example;
MODEND fap_example;

D-18 CYBIL File Interface Revision B

AMP$FETCH_FAP _POINTER

F AP Error Reporting

If, after the F AP receives the AMP$0PEN call, it detects an exception
condition, the FAP must return with abnormal staus to AMP$0PEN. The
AMP$0PEN interface then detects the exception condition, sends a close
operation to the FAP, and returns the abnormal status to the program. In
this manner, all FAP layers receive the close operation.

To initialize the status record to indicate an abnormal condition, the F AP
can call AMP$SET _FILE_INSTANCE_ABNORMAL. The AMP$SET _
FILE_INSTANCE_ABNORMAL procedure generates a status record,
recording the following status parameters in the text field of the status
record:

• Pl: Local file name.

• P2: Name of the access method request that detected the condition.

• P3: Access level.

• P4: File organization.

• P5: Record type.

• P6: Block type.

• P7: Information reserved for internal use by the access method.

• PS: Text string specified on the AMP$SET _FILE_INSTANCE_
ABNORMAL call.

By convention, message templates use the Pn notation to indicate the status
parameters inserted in the template. The applicable message templates are in
deck AME$EXCEPTION _CONDITION_ CODES on file
$SYSTEM.OSF$PROGRAM_INTERFACE_LIBRARY and deck
AAE$EXCEPTION _CONDITION_ CODES on file
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE.

NOTE

The text parameter on the AMP$SET _FILE_INSTANCE_ABNORMAL
call can specify a null string unless the message template for the specified
condition code indicates that the P8 status parameter is inserted in the
template.

Revision B File Access Procedures D-19

AMP$SET]ILE_INSTANCE_ABNORMAL

AMP$SET _FILE_INSTANCE_ABNORMAL

Purpose

Format

Sets abnormal status for an instance of open.

AMP$SET_FILE_INSTANCE_ABNORMAL (file_
identifier, exception_ condition, request_ code, text,
status)

Parameters file _identifier: amt$file _identifier;

File identifier passed to the F AP.

Condition
Identifier

exception_ condition: ost$status _condition;

Condition code for the exception condition. A condition code
can be specified with its condition identifier. The condition
codes and condition identifiers are listed in the Diagnostic
Messages for NOS/VE manual.

request_ code:: amt$last _operation;

Code specifying the access method request that detected the
condition (type AMT$LAST _OPERATION as listed in the
last_operation attribute description in chapter 6).

text.: string (*);
String to be appended to the text field of the status record as
the eighth status parameter.

The string is delimited by the OSC$STATUS_
PARAMETER_DELIMITER character. If no text string is to
be appended, the call must specify a null string (two
consecutive delimiters).

status.: VAR of ost$status;

Status record to be initialized.

None.

D-20 CYBIL File Interface Revision B

Collation Tables for Indexed
Sequential Files E

One of the key types available for use with indexed sequential files (as
described in chapter 10) is collated keys. The order in which collated keys are
sorted is determined by a collation table. If you specify the KEY_ TYPE
attribute for the file as AMC$COLLATED_KEY, you must supply an
explicit collation table; there is no system-supplied default collation table.

You specify a collation table by specifying its name as the COLLATE_
TABLE_NAME attribute value before the file is first opened. The collation
table name can be the name of a system-defined table or a user-defined table.
The names of the system-defined tables are listed in the next section; the
means of creating your own collation table are decribed later in this
appendix.

The collation table you assign a new file can be the collation table of an old
file. You fetch the collation table of the old file using an AMP$FETCH call.
Before calling AMP$FETCH, you define a variable of type
AMT$COLLATE_ TABLE with attribute XDCL and store a pointer to the
variable as the COLLATE_ TABLE attribute in the AMP$FETCH attribute
record. AMP$FETCH copies the collation table to the variable you defined.
You can then specify the same variable name as the COLLATE_ TABLE_
NAME attribute for the new file.

The tables in this appendix list collating sequences, not character sets. A
character set shows the codes used for internal representation of character
data. For NOS/VE, there is only one character set: ASCII. A NOS/VE
collating sequence is an ordering of the character codes in the ASCII
character set.

Certain of the collating sequences listed in this appendix use the names of
other character sets, such as CDC display code, in their names. These
collating sequences order character data the same as a system using the
other character set would order the data. For example, data ordered using a
display code collating sequence on NOS/VE is ordered the same as a NOS
system would order display code data.

Revision B Collation Tables for Indexed Sequential Files E-1

SYSTEM-DEFINED COLLATION TABLES

System-Defined Collation Tables

The collating sequences of the predefined collation tables are listed in tables
E-1 through E-11.

Several of the predefined collation tables have two variants, FOLDED and 4A
STRICT. The variants FOLDED and STRICT indicate different mapping of 9
the characters not in the 63 or 64 characters of the original CYBER 1 70
collating sequence. A strict mapping maps all characters not in the original
64- or 63-character set to the ordinal for the space character. A folded
mapping maps some characters into ordinals of the original characters and
the others into the ordinal value for the space character as shown in the
listing of the collating sequence.

• OSV$ASCII6_FOLDED and OSV$ASCII6_STRICT:

CYBER 170 FTN 5 default collating sequence.

• OSV$COBOL6_FOLDED and OSV$COBOL6_STRICT:

CYBER 170 COBOL 5 default collating sequence.

• OSV$DISPLAY63_FOLDED and OSV$DISPLAY63_STRICT:

CYBER 170 63-character display code collating sequence.

• OSV$DISPLAY64_FOLDED and OSV$DISPLAY64_STRICT:

CYBER 170 64-character display code collating sequence.

• OSV$EBCDIC:

Full EBCDIC collation sequence.

• OSV$EBCDIC6 _FOLDED and OSV$EBCDIC6 _STRICT:

EBCDIC 6-bit subset supported by CYBER 170 COBOL 5 and SORT 5.

E-2 CYBIL File Interface Revision B

CREATING YOUR OWN COLLATION TABLE

Creating Your Own Collation Table
CYBIL creates a collation table whose name is specified by the COLLATE_
TABLE_NAME attribute. The collation table is 256 bytes which represent
collating weights associated with the ASCII character set.

These steps are required to create your own collation table and assign it to a
new file:

1. Define a variable of type AMT$COLLATE_TABLE with attribute
XDCL. For example:

VAR
reverse_ascii: [XDCLJ amt$collate_table;

2. Specify AMC$COLLATED _KEY as the KEY _TYPE attribute value
and the variable name as the COLLATE_TABLE_NAME attribute
value for the file. For example, these lines would be included when
initializing the file attribute record:

[amckey_type, amccollated_keyJ,
[amc$collate_table_name, 'REVERSE_ASCII'J,

Note that all letters in the collation table name are in uppercase
(required to load the table).

3. Initialize the variable.

The AMT$COLLA TE_ TABLE variable is an array of 256 integers,
one for each character in the ASCII character set. Each array element
is referenced by its corresponding character (for example, if the array
name is COLLATE_ TABLE, COLLATE_ TABLE['a'] references the
array element for character a).

To initialize the collation table, you assign an integer to each element
of the array. The integer is the collating weight for the corresponding
ASCII character. For example, assigning the value 0 to COLLATE_
TABLE[' a'] assigns collating weight 0 to character a.

If you assign the consecutive integers 0 through 255 to the array
elements, the collation table defines the standard ASCII collating
sequence as listed in appendix B. To define a collation table that
collates in reverse order from the standard ASCII collation sequence,
you would asign the integers 0 through 255 in reverse order to the
array elements. For example:

Revision B

FOR i:=O TO 255 DO
reverse_ascii[$CHAR(i)J

FOREND;
255-i;

Collation Tables for Indexed Sequential Files E-3

CREATING YOUR OWN COLLATION TABLE

4. Ensure that the loader can find the variable when the file is opened.
The variable must be defined as an XDCL variable in a module that is
part of the program or can be loaded during program execution. (To
read about module loading, see the SCL Object Code Management
manual.)

5. Open the new file. The system stores the collation table in the file label.

Assigning the Same Collating Weight to More
Than One Character

Your collation table can assign the same collating weight to more than one
character. Characters with the same collating weight are considered to be
equal when compared during sorting. If all characters have the same
collating weight, a sort would perform no reordering because all characters
would be considered as equal.

Consider the requirement that a collation table consider each pair of
uppercase and lowercase letters as equal; that is, the collation would be case
insensitive. To create such a collation table, you would want to keep the
standard ASCII collating sequence except that lowercase letters are collated
the same as the corresponding uppercase letters. Assuming an
AMT$COLLATE_TABLE variable names NO_LOWER_CASE has been A
declared, the collation table initialization could be performed in two steps: W

1. The collation table variable is initialized to the standard ASCII
collating sequence. (The character "i" is declared as an integer
variable.)

FOR i := 0 TO 255 DO
no_Lower_case[SCHAR(i)J := i;

FOREND;

2. The collating weights for the lowercase letters are changed to match
the collating weights for the uppercase letters. (UPPER and LOWER
are declared as character variables.)

upper := 'A';
FOR lower := 'a' TO 'a' DO

no_Lower_case[LowerJ := SINTEGER(upper>;
upper := SUCCCupper);

FOREND;

E-4 CYBIL File Interface Revision B

CREATING YOUR OWN COILATION TABLE

Assigning a Collation Table Within a File Access
Procedure

A FAP can specify a collation table when the following conditions are true: e • No collation table has been specified for the file.

• The F AP has been called as the result of the first AMP$0PEN call for the
file.

A FAP specifies a collation table using the collate_ table attribute, not the
collate_table_name attribute. It specifies the collate_table attribute value
using an AMP$ADD _TO _FILE_DESCRIPTION call.

The AMP$ADD_TO_FILE_DESCRIPTION call specifies a pointer to a
collation table as the value of the collte_table attribute. When it opens the
file, the system stores the collation table in the file label.

Revision B Collation Tables for Indexed Sequential Files E-5

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-1. OSV$ASCII6_FOLDED Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

00 20 SP Space
01 21 Exclamation point
02 22 Quotation marks
03 23 # Number sign
04 24 $ Dollar sign
05 25 1p;l Percent sign
06 26 & Ampersand
07 27 Apostrophe
08 28 Opening parenthesis
09 29 Closing parenthesis
10 2A * Asterisk
11 2B + Plus
12 2C Comma
13 2D Hyphen
14 2E Period
15 2F I Slant
16 30 0 Zero
17 31 1 One
18 32 2 Two
19 33 3 Three
20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven
24 38 8 Eight
25 39 9 Nine
26 3A Colon
27 38 Semicolon
28 3C < Less than
29 3D Equals
30 3E > Greater than
31 3F ? Question mark
32 40,60 @,. Commercial at, grave accent
33 41,61 A,a Uppercase A, lowercase a
34 42,62 B,b Uppercase B, lowercase b
35 43,63 C,c Uppercase C, lowercase c
36 44,64 D,d Uppercase D, lowercased
37 45,65 E,e Uppercase E, lowercase e
:38 46,66 F,f Uppercase F, lowercase f
39 47,67 G,g Uppercase G, lowercase g
40 48,68 H,h Uppercase H, lowercase h
41 49,69 I,i Uppercase I, lowercase i
42 4A,6A J,j Uppercase J, lowercase j
43 4B,6B K,k Uppercase K, lowercase k
44 4C,6C L,l Uppercase L, lowercase 1
45 4D,6D M,m Uppercase M, lowercase m
46 4E,6E N,n Uppercase N, lowercase n

t Any ASCII code not listed here (ASCII codes 0 through lF and 7F through FF
hexadecimal) arc ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

E-6 CYBIL File Interface Revision B

e

e

e

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-1. OSV$ASCII6_FOLDED Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

47 4F,GF O,o Uppercase 0, lowercase o
48 50,70 P,p Uppercase P, lowercase p
49 51,71 Q,q Uppercase Q, lowercase q
50 52,72 R,r Uppercase R, lowercase r
51 53,73 S,s Uppercase S, lowercases
52 54,74 T,t Uppercase T, lowercase t
5:1 5f>,75 U,u Uppercase U, lowercase u
54 56,7G V,v Uppercase V, lowercase v
55 57,77 W,w Uppercase W, lowercase w
56 58,78 X,x lJ ppercase X, lowercase x
57 59,79 Y,y Uppercase Y, lowercase y
58 5A,7A Z,z lJ ppercase Z, lowercase z
59 5B,7B f,{ Opening bracket, opening brace
60 5C,7C I Reverse slant, vertical line
Gl 5D,7D } Closing bracket, closing brace
62 5E,7E Circumflex, tilde
63 5F Underline

t Any ASCII code not listed here (ASCII codes 0 through 1 F and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal),

Table E-2, OSV$ASCII6_STRICT Collating Sequence

Collating Hexadecimal
Sequence ASCII
Position Codet

00 20
01 21
02 22
o:i 2:l
04 24
05 25
06 26
07 27
08 28
09 29
10 2A
11 2B
12 2C
13 2D
14 2E
15 2F

Graphic
or
Mnemonic

SP

$
IJ:1

&

Name or Meaning

Space
Exclamation point
Quotation marks
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus
Comma
Hyphen
Period
Slant

j· Any ASCII code not listed here (ASCII codes 0 through IF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

Revision R Collation Tables for Indexed Sequential Files E-7

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-2. OSV$ASCil6_STRICT Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

16 30 0 Zero -17 31 One
18 32 2 Two
19 :33 3 Three
20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven
24 :38 8 Eight
25 39 9 Nine
26 3A Colon
27 3B Semicolon
28 3C < Less than
29 3D Equals
30 3E > Greater than
31 3F '? Question mark
32 40 @ Commercial at
3:l 41 A Uppercase A
34 42 B Uppercase B
35 43 c Uppercase C
36 44 D Uppercase D
37 45 E Uppercase E
38 46 F Uppercase F
39 47 G Uppercase G
40 48 H Uppercase H
41 49 I Uppercase I
42 4A J Uppercase J
43 4B K Uppercase K
44 4C L Uppercase L
45 4U M Uppercase M
46 4E N Uppercase N
47 4F 0 Uppercase 0
48 50 p Uppercase P
49 51 Q Uppercase Q
50 52 R Uppercase R
51 53 s Uppercase S
52 54 T Uppercase T
53 55 u Uppercase U
54 56 v Uppercase V
55 57 w Uppercase W
56 58 x Uppercase X
57 59 y Uppercase Y
58 5A z Uppercase Z
59 5B [Opening bracket
60 5C ? Reverse slant
61 5D Closing bracket
62 5E Circumflex
63 5F Underline

t Any ASCII code not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). e

E-8 CYBIL File Interface Revision B

e

e

e

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-3. OSV$COBOL6_FOLDED Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

00 20 SP Space
01 40,60 @,· Commercial at, grave accent
02 25 % Percent sign
0:1 5B,7B [,{ Opening bracket, opening brace
04 5F Underline
05 23 # Number sign
06 2G & Ampersand
07 27 Apostrophe
08 :w \~uestion mark
09 3E > Greater than
10 GC,7C Reverse slant, vertical line
11 iiE,7E Circumflex, tilde
12 2E Period
1:3 29 Closing parenthesis
14 38 Semicolon
15 2B Plus
16 24 $ Dollar sign
17 2A Asterisk
18 2D Hyphen
19 2F Slant
20 2C Comma
21 28 Opening parenthesis
22 :m Equals
2:l 22 Quotation marks
24 :JC < Less than
25 41,(j] A,a Uppercase A, lowercase a
2G 42,(i2 B,b Uppercase B, lowercase b
27 4:3,G:l C,c Uppercase C, lowercase c
28 44,64 D,d Uppercase D, lowercased
29 45,(ifi E,e Uppercase E, lowercase e
30 46,GG F,f Uppercase F, lowercase f
31 47,67 G,g Uppercase G, lowercase g
;32 48,(i8 H,h Uppercase H, lowercase h
;3;3 49,69 I,i Uppercase I, lowercase i
34 21 Exclamation point
35 4A,6A J,j Uppercase J, lowercase j
36 4B,6B K,k Uppercase K, lowercase k
37 4C,6C L,l Uppercase L, lowercase I
38 4D,6D M,m Uppercase M, lowercase m
:19 4E,6E N,n Uppercase N, lowercase n
40 4F,6F O,o Uppercase 0, lowercase o
41 50,70 P,p Uppercase P, lowercase p
42 fil ,71 Q,q Uppercase Q, lowercase q
4:3 52,72 R,r Uppercase R, lowercase r
44 5D,7D I } Closing bracket, closing brace
45 5:l,7:l S,s Uppercase S, lowercase s
46 54,71 T,t Uppercase T, lowercase t

t Any ASCII code not listed here (ASCII codes 0 through lF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued;

Revision B C:ullatiun Tables for Indexed Sequenlial Files E-9

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-3. OSV$COBOL6_FOLDED Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

47 55,75 U,u Uppercase U, lowercase u
48 56,76 V,v Uppercase V, lowercase v
49 57,77 W,w Uppercase W, lowercase w
50 58,78 X,x Uppercase X, lowercase x
5I 59,79 Y,y Uppercase Y, lowercase y
52 5A,7A Z,z Uppercase Z, lowercase z
53 3A Colon
54 30 0 Zero
55 3I I One
56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five
60 36 6 Six
6I 37 7 Seven
62 38 8 Eight
63 39 9 Nine

t Any ASCII code not listed here (ASCII codes 0 through IF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Table E-4. OSV$COBOL6_STRICT Collating Sequence

Collating Hexadecimal
Sequence ASCII
Position Cod et

00 20
OI 40
02 25
03 5B
04 5F
05 23
06 26
07 27
08 3F
09 3E
10 5C
11 5E
I2 2E
I3 29
I4 3B
I5 2B
I6 24

Graphic
or
Mnemonic

SP
@

&

?

>
?

+
$

Name or Meaning

Space
Commercial at
Percent sign
Opening bracket
Underline
Number sign
Ampersand
Apostrophe
Question mark
Greater than
Reverse slant
Circumflex
Period
Closing parenthesis
Semicolon
Plus
Dollar sign

t Any ASCII code not listed here (ASCII codes 0 through IF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

E-IO CYBIL File Interface Revision B

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-5. OSV$DISPLA Y63_FOLDED Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

00 41,61 A,a Uppercase A, lowercase a
01 42,62 B,b Uppercase B, lowercase b
02 43,63 C,c Uppercase C, lowercase c
03 44,64 D,d Uppercase D, lowercase d
04 45,65 E,e Uppercase E, lowercase e
05 46,66 F,f Uppercase F, lowercase f
06 47,67 G,g Uppercase G, lowercase g
07 48,68 H,h Uppercase H, lowercase h
08 49,69 I,i Uppercase I, lowercase i
09 4A,6A J,j Uppercase J, lowercase j
10 4B,6B K,k Uppercase K, lowercase k
11 4C,6C L,l Uppercase L, lowercase I
12 4D,6D M,m Uppercase M, lowercase m
13 4E,6E N,n Uppercase N, lowercase n
14 4F,6F O,o Uppercase 0, lowercase o
15 50,70 P,p Uppercase P, lowercase p
16 51,71 Q,q Uppercase Q, lowercase q
17 52,72 R,r Uppercase R, lowercase r
18 53,73 S,s Uppercase S, lowercases
19 54,74 T,t Uppercase T, lowercase t
20 55,75 U,u Uppercase U, lowercase u
21 56,76 V,v Uppercase V, lowercase v
22 57,77 W,w Uppercase W, lowercase w
23 58,78 X,x Uppercase X, lowercase x
24 G9,79 Y,y Uppercase Y, lowercase y
2ii 5A,7A Z,z Uppercase Z, lowercase z
26 30 0 Zero
27 31 1 One
28 32 2 Two
29 33 3 Three
30 34 4 Four
;31 35 5 Five
;;2 36 6 Six
;33 37 7 Seven
;34 38 8 Eight
3" ,) 39 9 Nine
36 2B + Plus
37 2D Hyphen
:38 2A Asterisk
39 2F I Slant
40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 3D Equals
44 20 SP Space

t Any ASCII code not listed here (ASCII codes 0 through IF, 25, and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

E-12 CYBIL File Interface Revision B

e

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-5. OSV$DISPLA Y63_FOLDED Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

45 2C Comma
46 2E Period
47 2il # Number sign
48 5B,7B [,{ Opening bracket, opening brace
49 5D,7D],} Closing bracket, closing brace
50 3A Colon
51 22 (~uotation marks
52 5F Underline
5;3 21 Exclan1ation point
54 26 & Ampersand
55 27 Apostrophe
56 :lF 'I Question mark
57 3C < Less than
58 :JE > Greater than
59 40,GO (al, - Commercial at, grave accent
60 5C,7C , I Reverse slant, vertical line
61 fiE,7E Circumflex, tilde
62 :JB Semicolon

t Any ASCII code not listed here (ASCII codes 0 through lF, 25, and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Table E-6. OSV$DISPLA Y63_STRICT Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

00 41 A Uppercase A
01 42 B Uppercase B
02 43 c Uppercase C
03 44]) Uppercase D
04 4.~ E Uppercase E
05 46 F lJ ppercase F
06 47 G Uppercase G
07 48 H Uppercase H
08 49 I Uppercase I
09 4A J Uppercase J
10 4B K Uppercase K
11 4C L Uppercase L
12 40 M Uppercase M
1:l 4E N Uppercase N
14 4F 0 Uppercase 0

t Any ASCII code not listed here (ASCII codes 0 through lF, 25, and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

Revision B Collation Tables for Indexed Sequential Files E-l:l

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-6. OSV$DISPLA Y63_STRICT Collating Sequence (Continued) e
Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

15 50 p Uppercase P -16 51 Q Uppercase Q
17 52 R UppercaseR
18 53 s Uppercases
19 54 T UppercaseT
20 55 u Uppercase U
21 56 v Uppercase V
22 57 w Uppercase W
23 58 x UppercaseX
24 59 y Uppercase Y
25 5A z Uppercase Z
26 30 0 Zero
27 31 1 One
28 32 2 Two
29 33 3 Three
30 34 4 Four
31 35 5 Five
32 36 6 Six
33 37 7 Seven
34 38 8 Eight
35 39 9 Nine
36 28 + Plus
37 2D Hyphen e 38 2A * Asterisk
39 2F I Slant
40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 30 Equals
44 20 SP Space
45 2C Comma
46 2E Period
47 23 # Number sign
48 58 [Opening bracket
49 50] Closing bracket
50 3A Colon
51 22 Quotation marks
52 5F Underline
53 21 Exclamation point
54 26 & Ampersand
55 27 Apostrophe
56 3F ? Question mark
57 3C < Less than
58 3E > Greater than
59 40 @ Commercial at e 60 5C Reverse slant
61 5E Circumflex
62 38 Semicolon

t Any ASCII code not listed here (ASCII codes 0 through lF, 25, and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal). e

E-14 CYBIL File Interface Revision B

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

e Table E-7. OSV$DISPLA Y64_FOLDED Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

e 00 3A Colon
01 41,61 A,a Uppercase A, lowercase a
02 42,62 B,b Uppercase B, lowercase b
03 43,6:3 C,c Uppercase C, lowercase c
04 44,64 D,d Uppercase D, lowercased
05 45,65 E,e Uppercase E, lowercase e
06 46,66 F,f Uppercase F, lowercase f
07 47,67 G,g Uppercase G, lowercase g
08 48,68 H,h Uppercase H, lowercase h
09 49,69 I,i Uppercase I, lowercase i
10 4A,6A .J,j Uppercase J, lowercase j
11 4B,6B K,k Uppercase K, lowercase k
12 4C,l>C L,l Uppercase L, lowercase 1
13 4D,6D M,m Uppercase M, lowercase m
14 4E,6E N,n Uppercase N, lowercase n
15 4F,6F O,o Uppercase 0, lowercase o
16 50,70 P,p Uppercase P, lowercase p
17 51,71 Q,q Uppercase Q, lowercase q
18 fJ2,72 R,r Uppercase R, lowercase r
19 5:l,7:l S,s Uppercase S, lowercases
20 54,74 T,t Uppercase T, lowercase t
21 55,75 U,u Uppercase U, lowercase u e 22 56,76 V,v Uppercase V, lowercase v
23 57,77 W,w Uppercase W, lowercase w
24 58,78 X,x Uppercase X, lowercase x
25 '19,79 Y,y Uppercase Y, lowercase y
26 i1A,7A Z,z Uppercase Z, lowercase z
27 :io 0 Zero
28 31 1 One
29 :32 2 Two
30 33 :i Three
31 :M 4 Four
::i2 ;35 5 Five
;33 36 6 Six
34 ;37 7 Seven
35 :J8 8 Eight
36 ;39 9 Nine
37 2R Plus
38 20 Hyphen
;39 2A Asterisk
40 2F Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Dollar sign e 44 :m Equals
45 20 SP Space

t Any ASCII code not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

Revision B Collation Tables for Indexed Sequential Files E-1:1

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-7. OSV$DISPLA Y64_FOLDED Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

46 2C Comma
47 2E Period
48 2;1 # Number sign
49 58,78 r { Opening bracket, opening brace
50 50,70 l } Closing bracket, closing brace
51 25 IJ7i1 Percent sign
52 22 Quotation marks
53 5F Underline
54 21 Exclamation point
55 26 & Ampersand
56 27 Apostrophe
57 3F ') Question mark
58 3C < Less than
59 3E > Greater than
60 40,60 @ Commercial at, grave accent
61 5C,7C ? , I Reverse slant, vertical line
62 5E,7E Circumflex, tilde
63 3B Semicolon

t Any ASCII code not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Table E-8. OSV$DISPLA Y64-STRICT Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

00 3A Colon
01 41 A Uppercase A
02 42 13 Uppercase B
03 4;1 c Uppercase C
04 44 D Uppercase D
05 45 E Uppercase E
06 46 F Uppercase F
07 47 G Uppercase G
08 48 H Uppercase H
09 49 I Uppercase I
10 4A J Uppercase ,J
11 4B K Uppercase K
12 4C L Uppercase L
1:1 4D M Uppercase M
14 4E N Uppercase N
15 4F 0 Uppercase 0

t Any ASCII code not listed here (ASCII codes 0 through lF and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

(Continued)

E-16 CYBIL File Interface Revision B

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-8. OSV$DISPLA Y64_STRICT Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

e 16 50 p Uppercase P
17 51 Q Uppercase Q
18 52 R Uppercase R
19 53 s Uppercase S
20 54 T Uppercase T
21 55 u Uppercase U
22 5(-) v Uppercase V
2cl 57 w Uppercase W
24 58 x Uppercase X
2S ;,g y Uppercase Y
26 5A z Uppercase Z
27 :10 () Zero
28 31 One
29 :12 2 Two
30 ;3;3 3 Three
31 :l4 4 Four
32 :-HJ s Five
33 :JG 6 Six
34 :n 7 Seven
35 38 8 Eight
3(j 39 9 Nine
37 2B Plus

e :38 20 Hyphen
:39 2A Asterisk
40 2F Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
4;3 24 $ Dollar sign
44 :m Equals
45 20 SP Space
46 2C Comma
47 2E Period
48 2:1 # Number sign
49 5B I Opening bracket
50 :lD] Closing bracket
51 25 (7i1 Percent sign
52 22 Quotation marks
5;3 SF Underline
54 21 Exclamation point
55 26 & Ampersand
56 27 Apostrophe
57 :1F Question mark
58 :3C < Less than
59 :m > Greater than

e 60 40 @l Commercial at
61 5C Reverse slant
62 :"iE Circumflex
6:3 :3B Semicolon

+ Any ASCII code not listed here (ASCII codes 0 through 1 F and GO through FF

e hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Revision B Collation Tables for Indexed Sequential Files E-17

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-9. OSV$EBCDIC Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

000 00 NUL Null
001 01 SOH Start of heading
002 02 STX Start of text
003 03 ETX End of text
004 9C Unassigned
005 09 HT Horizontal tabulation
006 S6 Unassigned
007 7F DEL Delete
oos 97 Unassigned
009 SD Unassigned
010 SE Unassigned
Oil OB VT Vertical tabulation
012 oc FF Form feed
013 OD CR Carriage return
014 OE so Shift out
015 OF SI Shift in
016 IO OLE Data link escape
017 11 DCl Device control 1
OlS 12 DC2 Device control 2
019 13 DC3 Device control 3
020 9D Unassigned
021 S5 Unassigned
022 08 BS Backspace
02:3 S7 Unassigned
024 18 CAN Cancel
025 19 EM End of medium
026 92 Unassigned
027 SF Unassigned
028 IC FS File separator
029 ID GS Group separator
o:io IE RS Record separator
o:11 IF us Unit separator
0::12 so Unassigned
o:i3 81 Unassigned
034 82 Unassigned
035 S3 Unassigned
036 S4 Unassigned
o:n OA LF Line feed
03S 17 ETB End of transmission block
o:l9 lB ESC Escape
040 SS Unassigned
041 89 Unassigned
042 SA Unassigned
043 SB Unassigned
044 SC Unassigned
045 05 ENQ Enquiry
046 06 ACK Acknowledge
047 07 BEL Bell
048 90 lJ nassigned
049 91 Unassigned
050 [(j SYN Synchronous idle e

!Continued)

E-18 CYBIL File Interface Revision B

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

e Table E-9. OSV$EBCDIC Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

e 051 93 Unassigned
052 94 Unassigned
053 95 UnassignP.d
054 96 Unassigne ...
055 04 EOT End of transmission
056 98 Unassigned
057 99 Unassigned
058 9A Unassigned
059 9B Unassigned
060 14 DC4 Device control 4
061 15 NAK Negative acknowledge
062 9E Unassigned
063 lA SUB Substitute
064 20 SP Space
065 AO Unassigned
066 Al Unassigned
067 A2 Unassigned
068 A3 Unassigned
069 A4 Unassigned
070 A5 Unassigned
071 A6 Unassigned
072 A7 Unassigned

e 073 AS Unassigned
074 5B Opening bracket
075 2E Period
076 3C < Less than
077 28 (Opening parenthesis
078 2B + Plus
079 21 ! Exclamation point
080 26 & Ampersand
081 A9 Unassigned
082 AA Unassigned
083 AB Unassigned
084 AC Unassigned
085 AD Unassigned
086 AE Unassigned
087 AF Unassigned
088 BO Unassigned
089 Bl Unassigned
090 5D l Closing bracket
091 24 $ Dollar sign
092 2A Asterisk
093 29 Closing parenthesis
094 3B Semicolon

e 095 5E Circumflex
096 20 Hyphen
097 2F I Slant
098 B2 Unassigned
099 B3 Unassigned
100 B4 Unassigned

e
(Continued)

Revision B Collation 'rabies for Indexed Sequential Files E-19

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-9. OSV$EBCDIC Collating Sequence (Continued) e
Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

101 B5 Unassigned -102 B6 Unassigned
103 B7 Unassigned
104 BS Unassigned
105 B9 Unassigned
106 7C Vertical line
107 2C Cornrna
108 25 (}j) Percent sign
109 5F Underline
110 3E > Greater than
111 3F Question mark
112 BA Unassigned
113 BB Unassigned
114 BC Unassigned
115 BD Unassigned
116 BE Unassigned
117 RF Unassigned
118 co Unassigned
119 Cl Unassigned
120 C2 Unassigned
121 60 Grave accent
122 3A Colon
123 23 # Number sign
124 40 @ Commercial at
125 27 Apostrophe
126 ~m Equals
127 22 Quotation marks
128 C3 Unassigned
129 61 a Lowercase a
130 62 b Lowercase b
131 63 c Lowercase c
132 64 d Lowercased
133 65 e Lowercase e
l~i4 66 f Lowercase f
135 67 g Lowercase g
136 68 h Lowercase h
137 69 Lowercase i
138 C4 Unassigned
139 C5 Unassigned
140 C6 Unassigned
141 C7 Unassigned
142 cs Unassigned
148 C9 Unassigned
144 CA Unassigned
145 6A j Lowercase j
146 6B k Lowercase k
147 6C Lowercase 1
148 6D m Lowercase m
149 6E n Lowercase n
150 6F 0 Lowercase o

e
(Continued)

E-20 CYBIL File Interface Revision B

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

e Table E-9. OSV$EBCDIC Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

- 1:)1 70 p Lowerr:ase p
152 71 q Lowercase q
153 72 Lowercase r
154 CB Unassigned
155 cc Unassigned
156 CD Unassigned
157 CE Unassigned
158 CF Unassigned
159 DO Unassigned
160 Dl Unassigned
161 7E Unassigned
162 7;) Lowercases
Hi3 74 Lowercase t
164 75 u Lowercase u
165 76 v Lowercase v
166 77 w Lowercase w
167 78 x Lowercase x
168 79 y Lowercase y
169 7A Lowercase z
170 D2 Unassigned
171 D:l Unassigned
172 D4 lJ nassigned e 173 D5 Unassigned
174 D6 Unassigned
175 D7 Unassigned
17(i DS lJ nassigned
177 D9 Unassigned
178 DA Unassigned
179 DB Unassigned
180 DC Unassigned
181 DD Unassigned
182 DE Unassigned
183 DF Unassigned
184 EO lJ nassigned
185 El Unassigned
186 E2 Unassigned
187 F:3 Unassigned
188 E4 Unassigned
189 E5 Unassigned
190 Eli lJ nassigned
191 E7 Unassigned
192 7B { Opening brace
193 41 A Uppercase A
194 42 B Uppercase B

e 195 4;3 c Uppercase C
196 44 [) Uppercase D
197 4;'5 E lJ ppercase E
198 46 F Uppercase F
199 47 G Uppercase G
200 48 H Uppercase H

e 201 49 I Uppercase I

(Continued)

Revision R Collation Tables for Indexed Sequential Files E-21

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-9. OSV$EBCDIC Collating Sequence (Continued) e
Collating Hexadecimal Graphic
Sequence ASCII or
Position Code Mnemonic Name or Meaning

202 ES Unassigned -203 E9 Unassigned
204 EA Unassigned
205 EB Unassigned
206 EC Unassigned
207 ED Unassigned
208 7D } Closing brace
209 4A J Uppercase J
210 4B K Uppercase K
211 4C L Uppercase L
212 4D M Uppercase M
213 4E N Uppercase N
214 4F 0 Uppercase 0
215 50 p Uppercase P
216 51 Q Uppercase Q
217 52 R Uppercase R
218 EE Unassigned
219 EF Unassigned
220 FO Unassigned
221 Fl Unassigned
222 F2 Unassigned
223 F:l Unassigned
224 5C Reverse slant
225 9F Unassigned
226 5;3 s Uppercase S
227 54 T Uppercase T
228 55 u Uppercase U
229 5G v Uppercase V
2:30 [)7 w Uppercase W
231 58 x Uppercase X
232 59 y Uppercase Y
2:l3 5A z Uppercase Z
234 F4 Unassigned
2:l5 F5 Unassigned
2:l6 F6 Unassigned
237 F7 Unassigned
238 F8 Unassigned
239 F9 Unassigned
240 :io () Zero
241 31 One
242 ;32 2 Two
243 33 3 Three
244 ;34 4 Four
245 ;35 5 Five
246 36 6 Six
247 37 7 Seven
248 38 8 Eight
249 ;:ig 9 Nine
250 FA Unassigned
251 FB Unassigned
252 FC Unassigned
253 FD Unassigned
254 FE Unassigned
255 FF Unassigned e
E-22 CYBIL File Interface Revision B

e

-

e

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-10. OSV$EBCDIC6_FOLDED Collating Sequence

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

00 20 SP Space
01 2E Period
02 3C < Less than
oa 28 (Opening parenthesis
04 28 Plus
05 21 Exclamation point
06 26 & Ampersand
07 24 $ Dollar sign
08 2A Asterisk
09 29 Closing parenthesis
10 :rn Semicolon
11 5E,7E Circumflex, tilde
12 2D Hyphen
t:i 2F Slant
14 2C Comma
15 25 10, Percent sign
lG 5F Underline
17 3E > Greater than
18 :w ? Question mark
19 :3A Colon
20 23 # Number sign
21 40,60 @ Commercial at, grave accent
22 27 Apostrophe
2:i :m Equals
24 22 Quotation marks
25 5B,7B I { Opening bracket, opening brace
26 41,61 A,a Uppercase A, lowercase a
27 42,G2 B,b Uppercase B, lowercase b
28 4:3,63 C,c Uppercase C, lowercase c
29 44,64 D,d Uppercase D, lowercased
30 45,65 E,e Uppercase E, lowercase e
:n 46,GG F,f lJ ppercase F, lowercase f
:32 47,67 G,g Uppercase G, lowercase g
;3;3 48,G8 H,h Uppercase H, lowercase h
;34 49,G9 I,i Uppercase I, lowercase i
35 :'iD,7D l } Closing bracket, dosing brace
:l6 4A,GA J,j Uppercase J, lowercase j
;37 4B,6B K,k Uppercase K, lowercase k
:38 4C,GC L,l Uppercase L, lowercase l
:19 4D,Gll M,m Uppercase M, lowercase m
40 4E,GE N,n Uppercase N, lowercase n
11 4F,6F O,o Uppercase 0, lowercase o
42 50,70 P,p Uppercase P, lowercase p
4:3 51,71 Q,q Uppercase Q, lowercase q
44 52,72 H,r Uppercase H, lowercase r
46 f>C,7C , I Reverse slant, vertical line
4() ;,:J,7:1 S,s Uppercase S, lowercases
47 :)4,74 T,t Uppercase T, lowercase t

t Any ASCII code not listed here (ASCII codes 0 through lF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Revision B
(Continued)

Collation Tahles for Indexed Sequential Files E-2:1

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-10. OSV$EBCDIC6_FOLDED Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

48 5S,75 U,u Uppercase U, lowercase u
49 56,76 V,v Uppercase V, lowercase v
50 57,77 W,w Uppercase W, lowercase w
51 58,78 X,x Uppercase X, lowercase x
52 fi9,79 Y,y Uppercase Y, lowercase y
fi:l 5A,7A Z,z Uppercase Z, lowercase z
54 :io () Zero
55 :31 One
56 :l2 2 Two
57 3:l 3 Three
58 34 4 Four
59 ~-m 5 Five
GO 36 6 Six
61 :n 7 Seven
62 38 8 Eight
6:3 ;39 9 Nine

t Any ASCII code not listed here (ASCII codes 0 through lF and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Table E-11. OSV$EBCDIC6_STRICT Collating Sequence

Collating
Sequence
Position

00
01
02
O:l
04
05
06
07
08
09
10
11
12
1:3
14
15
Hi

Hexadecimal
ASCII
Code

20
2E
:JC
28
2B
21
26
24
2A
29
:rn
5E
2D
2F
2C
25
5F

Graphic
or
Mnemonic

SP

<
(

&
$

Name or Meaning

Space
Period
Less than
Opening parenthesis
Plus
Exclamation point
Ampersand
Dollar sign
Asterisk
Closing parenlhesis
Semicolon
Circumflex
Hyphen
Slant
Comma
Percent sign
Underline

t Any ASCII code not listed here (ASCII codes 0 through lF and GO through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexcadecimal).

(Continued)

E-24 CYBIL File Interface Revision B

e

COLLATION TABLES FOR INDEXED SEQUENTIAL FILES

Table E-11. OSV$EBCDIC6_STRICT Collating Sequence (Continued)

Collating Hexadecimal Graphic
Sequence ASCII or
Position Cod et Mnemonic Name or Meaning

17 3E > Greater than
18 3F ? Question mark
19 3A Colon
20 2;3 II Number sign
21 40 @ Commercial at
22 27 Apostrophe
2:3 :m Equals
24 22 Quotation marks
2[) SB [Opening bracket
26 41 A Uppercase A
27 42 B Uppercase B
28 43 c Uppercase C
29 44 D Uppercase D
:lO ·15 E Uppercase E
:n 46 F Uppercase F
;32 47 G Uppercase G
;J:J 48 H Uppercase H
34 49 I Uppercase I
35 5D I Closing bracket
36 4A J Uppercase J
37 4B K Uppercase K
:is 4C L Uppercase L
:19 4ll M Uppercase M
40 4E N Uppercase N
41 4F 0 Uppercase 0
42 50 p Uppercase P
4;3 Gl Q Uppercase Q
44 52 R Uppercase R
4;, eiC Reverse slant
46 s:i s Uppercase S
47 54 T Uppercase T
48 ;)[) u Uppercase U
49 ;)() v Uppercase V
50 ;)7 w Uppercase W
51 08 x Uppercase X
52 '19 y Uppercase Y
5;3 ii A z !Jppf>rcasc Z
'14 :JO 0 Zero
55 :ll One
f>(i :l2 2 Two
57 :J:l 3 Three
58 :34 4 Four
59 ;35 f) Five
60 :l6 6 Six
61 :n 7 Seven
62 :JS 8 Eight
G:l :rn 9 Nine

t Any ASCII code not listed here (ASCII codes 0 through lF and GO through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexcadecimal).

Revision B Collation TahlPs for Indexed Sequential Files E-2'1

9 Common Procedures F

Each CYBIL procedure call specified a status variable in which the
completion status of the call is returned. After the call, the program checks
the status returned. The examples in chapter 10 call the p#inspect_status_
variable procedure to check the status after each call. Use of the p#inspect_
status_ variable procedure also requires calls to p#start_report_generation
and p#stop_report_generation at the beginning and end of the program,
respectively.

The program examples in chapter 10 copy a deck named COMPROC to
include the common procedures in the program. The following is a listing of
the text stored in deck COMPROC.

CONST
Line_Length = 137;

SECTION s#dry_storage_area : READ;
VAR

error_count
report_file_name

report_file_identifier
text_ index
text_Line
status

[STATIC] integer,
[STATIC, READ, s#dry_storage_area]
amtSLocal_file_name := '$output',
[STATIC] amtSfile_identifier,
[STATIC] 1 •• line_length+1,
[STATIC] string Cline_length>,
[STATIC] ostSstatus;

{ --- }

{ This routine, P#START_REPORT_GENERATION, takes care of }
{initialization details. It sets the error tally to zero and}
{prepares the report file to receive messages issued by other}
{ procedures. }

PROCEDURE p#start_report_generation
Cstartup_message : string C *)) ;

VAR
file_access_selection_p :

~ ARRAY [1 •• *] OF amtSaccess_selection;

error_count := -0;

(Continued)

Revision B Common Procedures F-1

COMMON PROCEDURES

(Continued)

ALLOCATE file_access_selection_p [1 •• 1];
file_access_selection_p"[01J.key

:= amc$open_position ;
file_access_selection_p"[01J.open_position

:= amc$open_no_positioning ;
amp$open (report_file_name, amc$record,

file_access_selection_p, report_file_identifier, status)
FREE file_access_selection_p

text_index := 1 ;
text_line(text_index, 1) := '0' ;
text_index := text_index + 1 ;
p#put_m (TRUE, startup_message) ;

PROCEND p#start_report_generation ;

{ -- }

{ Routine P#STOP_REPORT_GENERATION does wrap-up activity.
{ error tally is printed out at this point.

PROCEDURE p#stop_report_generation
(shutdown_message : string (*))

VAR
pencil
paper

integer ,
string (50) ;

IF error_count = 0
THEN

The }
}

p#put_m (TRUE, 'No error has been found by the program.') ;
ELSE

STRINGREP (paper, pencil, 'This program has discovered ',
error_count, ' error situation(s).')

p#put_m (TRUE, paper(1, pencil)) ;
!FEND ;
p#put_m (TRUE, shutdown_message) ;

amp$close (report_file_identifier, status) ;

PROCEND p#stop_report_generation ;

F-2 CYBIL File Interface Revision B

COMMON PROCEDURES

{ -- }

{ P#PUT_M places the parameter message_string onto the reporting }
{file, taking care to wrap around any Long message text by }
{splitting it onto additional physical Lines. Data is appended}
{at the current character position of text_Line; it doesn't }
{automatically start in column 1. The parameter new_Line_flag }
{tells whether or not end-of-Line should follow the message. }
{Any unprintable character is translated into '?'. }

PROCEDURE p#put_m <new_Line_flag : boolean
message_string : string * <= 321))

VAR
garbage_eliminator_table

[s#dry_storage_area, STATIC, READ]
string (256) := '????????????????????????????????'
CAT I !"#$%&'' 0*+,-./0123456789:;<=>?@'
CAT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ[]"_'I

CAT 'abcdefghijklmnopqrstuvwxyz-0 }-'
CAT
CAT
CAT

'???'
'???'
•???????????????????????????????????' ,

string_position_Locator : 1 •• Line_Length,
{ Dummy variables, not used. }
file_byte_address_x amt$file_byte_address,
status_x : ost$status;

IF (text_index + STRLENGTH(message_string) - 1) = Line_Length
THEN

#TRANSLATE (garbage_eliminator_table, message_string,
text_Line(text_index, STRLENGTH(message_string)));

text_index := text_index + STRLENGTH(message_string);
amp$put_next (report_file_identifier, "text_Line,

text_index - 1, file_byte_address_x, status_x);
{Resets index }

text_index := 1;
{Blank fill}

text_L ine(1, L ine_Length) := ' ' ;
{Column 1 is the carriage control character. }

text index := text index + 1 ;

(Continued)

Revision B Common Procedures F-3

COMMON PROCEDURES

(Continued)

ELSEIF (text_index + STRLENGTH(message_string) - 1) < Line_Length
THEN

#TRANSLATE (garbage_eliminator_table, message_string,
text_Line(text_index, STRLENGTH(message_string)));

text_index := text_index + STRLENGTH(message_string);
IF new_Line_flag
THEN

amp$put_next (report_file_identifier, Atext_Line,
text_index - 1, file_byte_address_x, status_x);

text_index := 1 ;
text_L ine(1, L ine_Length) := ' ' ;
text_index := text index + 1 ;

!FEND ;

ELSEIF (text_index + STRLENGTH(message_string) - 1) > Line_Length
THEN

string_position_Locator := Line_Length - text_index + 1 ;
#TRANSLATE (garbage_eliminator_table,

message_string(1, string_position_Locator),
text_Line(text_index, string_position_Locator))

text_index := text_index + string_position_Locator
amp$put_next (report_file_identifier, Atext_Line,

text_index - 1, file_byte_address_x, status_x)
text_index := 1 ;
text_L ine(1, L ine_Length) := ' '
text_index := text_index + 1
p#put_m (new_Line_flag,

message_string(string_position_Locator + 1, *))

!FEND ;

PROCEND p#put_m

F-4 CYBIL File Interface

(Continued)

Revision B

COMMON PROCEDURES

{--- }

{ This routine Looks at the global status variable. If status }
{ is not normal, the global error counter is incremented and a }
{formatted message sent to the error Listing file. To prevent}
{ excessive printout, all error message reporting is suppressed }
{ when the error counter reaches 333. }

PROCEDURE [INLINE] p#inspect_status_variable ;
IF NOT status.normal
THEN

{ bump error counter }
error_count := error_count + 1
IF error_count < 333
THEN

p#display_status_variable ;
ELSEIF error_count = 333
THEN

{ issue the message }
p#put_m <TRUE,

'Error_Count = 333. Further message reporting is turned off.') ;
!FEND ;

!FEND ;
PROCEND p#inspect_status_variable ;

{ -- }

{ The P#DISPLAY_STATUS_VARIABLE routine formats the status }
{ record in the global status variable using the message template, }
{ and then appends the completed diagnostic message onto the }
{report Listng file. }

PROCEDURE p#display_status_variable ;

VAR
annotation
message
Line_count
Line_size
L ine_text
pointer
status_v

Revision B

string (17) ,
ost$status_message ,
• ostSstatus_message_Line_count,
· ostSstatus_message_Line_size,
· ost$status_message_Line,
· ost$status_message ,
ostSstatus ;

(Continued)

Common Procedures F-5

COMMON PROCEDURES

(Continued)

IF status.normal
THEN

p#put_m (TRUE, 'NORMAL STATUS') ;
ELSE

osp$format_message (status, osc$explain_message_level,
line_length - 1 - STRLENGTH(annotation),
message, status_v) ;

IF NOT status_v.normal
THEN

p#put_m (TRUE, 'Unable to convert status message
in routine P#DISPLAY_STATUS_VARIABLE.') ;

ELSE
annotation := ' error status--> '
pointer := "message ;
RESET pointer ;
NEXT line_count IN pointer;
WHILE line_count" > 0 DO

NEXT line_size IN pointer;
NEXT line_text : [line_size"J IN pointer
p#put_m (FALSE, annotation) ;
p#put_m (TRUE, line_text")
line_count" := line_count" - 1 ;
annotation :=

WHILEND ;
!FEND ;

I FEND

PROCEND p#display_status_variable ;

--> I

{ --- }
?? PUSH (LIST := OFF) ??
*copyc amp$close
*copyc amp$open
*copyc amp$put_next
*copyc osp$format_message
?? POP ??

F-6 CYBIL File Interface Revision B

9 Index

Index

A Null suppression 10-51 - Repeating groups 10-55
Abnormal status Sparse key control 10-52

Processing for file interface AM declarations C-1
calls 7-7 AMP$ABANDON _KEY_

Abort_line_character attribute 5-12 DEFINITION procedure 10-67
Absolute pointer 8-10 AMP$ACCESS _METHOD
Access control entry 3-17 procedure D-13

For file AMP$ADD_ TO_FILE_
Changing 3-22 DESCRIPTION procedure D-11
Creation 3-22 AMP$APPLY _KEY _DEFINITION
Deletion 3-24 procedure 10-65

For subcatalog AMP$CLOSE procedure 7-5
Changing 3-25 AMP$COPY _FILE procedure 11-9
Creation 3-25 AMP$CREATE_KEY _DEFINITION
Deletion 3-28 procedure 10-58

Access information 7-1 AMP$DELETE_KEY
Retrieval 7-9 procedure 10-35

Access log 3-16 AMP$DELETE_KEY _DEFINITION e Access modes 3-16 procedure 10-64
Validation for attach 3-17 AMP$FETCH procedure 6-15
Validation for open 7-6 AMP$FETCH_ACCESS _

Access permissions 3-1 7 INFORMATION procedure 7-16
Access validation during open AMP$FETCH_F AP _POINTER

operation 7-6 procedure D-16
Accessing file data 6-1 AMP$FILE procedure 6-5
Access_level attribute 6-16 AMP$FLUSH procedure 9-31
Access_mode attribute 6-17 AMP$GET _DIRECT procedure 9-21
Address space 8-3 AMP$GET _FILE_ATTRIBUTES
Address translation 8-3 procedure 6-13
ALLOCATE statement 8-1 AMP$GET _KEY procedure 10-25
Allocating a heap 8-10 AMP$GET _KEY _DEFINITIONS
Alphabetic character A-1 procedure 10-75
Alphanumeric character A-1 AMP$GET _NEXT procedure 9-23
Alterate key example 10-83 AMP$GET_NEXT_KEY
Alternate index A-1 procedure 10-28
Alternate key A-1 AMP$GET _NEXT _PRIMARY_

e Alternate keys 10-4 7 KEY _LIST procedure 10-81
Alternate key index 10-47 AMP$GET _PARTIAL
Concatenated key example 10-54 procedure 9-26
Definition 10-48 AMP$GET _PRIMARY _KEY_
Duplicate key values 10-48 COUNT procedure 10-78

e File positioning 10-69

Revision B CYBIL File Interface Index-I

INDEX

AMP$GET _SEGMENT_
POINTER 8-6

AMP$0PEN procedure 7-2
AMP$PUT _DIRECT procedure 9-33
AMP$PUT _KEY procedure 10-16
AMP$PUT _NEXT procedure 9-35
AMP$PUT _p ARTIAL

procedure 9-37
AMP$PUTREP procedure 10-31
AMP$REPLACE_KEY

procedure 10-33
AMP$RETURN procedure 2-7
AMP$REWIND procedure 9-17
AMP$SEEK_DIRECT

procedure 9-11
AMP$SELECT _KEY

procedure 10-7 4
AMP$SET _FILE_INSTANCE_

ABNORMAL procedure D-20
AMP$SET _SEGMENT _EOI

procedure 8-18
AMP$SET _SEGMENT _POSITION

procedure 8-20
AMP$SKIP procedure 9-18
AMP$SKIP _ TAPE_MARKS

procedure 4-9
AMP$START procedure 10-21
AMP$STORE procedure 6-8
AMP$STORE_FAP _POINTER

procedure D-15
AMP$VALIDATE_ CALLER_

PRIVILEGE procedure D-8
AMP$WRITE_END_PARTITION

procedure 9-39
AMP$WRITE_ T APE_MARK

procedure 4-12
ANSI fixed-length record type 9-2

With user-specified blocking 9-5
Append access 3-16
Append open position 7-6
Application_info

Attribute 6-17
Parameter 3-21

ASCII character set B-1
ASCil6_FOLDED collating

sequence E-6

Index-2 CYBIL File Interface

ASCil6_STRICT collating
sequence E-7

Assigning
Cell pointer to data structure 8-8
File to device class 2-1
File to null device class 2-5

Asynchronous terminal classes 5-22
Attaching a file with a file

reference 3-30
Attaching a file with

PFP$ATTACH 3-29
Attaching a permanent file 3-29
Attribute definition calls 6-4

Valid attributes 6-6
Attribute descriptions

File attributes 6-16
Terminal attributes 5-12

Attribute identifier 6-4
Attribute sources 6-10
Attribute specification

For returning values 6-9
For setting values 6-4

Audience 7
AV declarations C-46
Average_ record_ length

attribute 6-18

B

Backspace_ character attribute 5-12
Backward skip

By records or partitions 9-15
By tapemarks 4-8

Beginning of information
Glossary definition A-1
Usage 9-1

Bit A-1
Block A-1
Block size for indexed sequential

file 10-13
Blocking 9-4
Block_number for instance of

open 7-10
Block_ type attribute 6-18
BOI 9-1
Boundary conditions effect on skip

operation 9-16

Revision B

Burstable_form page format 6-37
Busy status 3-31
Byte A-1
Byte addressable file

Copy 11-4

c

Creation using sequential access
calls 9-8

Example 9-12
Glossary definition A-1
Processing using random access

calls 9-9

Call block D-6
Call bracket 6-41
Call statement 1-6
Calling a file interface procedure 1-6
Calls passed to a FAP D-2
Cancel_line_character attribute 5-12
Carriage control characters 5-31
Carriage_return_idle attribute 5-12
Catalog 3-1

Access control entry
Creation 3-25
Deletion 3-28

Creation 3-13
Deletion 3-15
Glossary definition A-2
Name A-2
Path 3-1

CDC variable record type 9-2
Cell pointer 8-8
Changing

Access control entry information
For file 3-20
For subcatalog 3-25

File attributes
Newfile 6-2
Old file 6-3
Open file 6-8

File entry information 3-9
Terminal attributes

After the file is open 5-8
Before the file is open 5-6
Before the file is requested 5-2

Character A-2

Revision B

Character conversion 4-6
Attribute 6-19

Character set B-2

INDEX

Checking the completion status 1-7
CLC$CURRENT _COMMAND

OUTPUT file 2-8
CLC$JOB_COMMAND_INPUT

file 2-8
CLC$JOB_COMMAND RESPONSE

file 2-8 -
CLC$JOB_INPUT file 2-8
CLC$JOB_OUTPUTfile 2-8
CLC$NULL_FILE file 2-8
Close operation A-2
Closing a file 7-1
CLP$CREATE_FILE_

CONNECTION procedure 2-9
CLP$DELETE_FILE_

CONNECTION procedure 2-10
COBOL6_FOLDED collating

sequence E-9
COBOL6_STRICT collating

sequence E-10
Code conversion

Tape files 5-6
Terminal file

Input 5-28
Output 5-30

Collated key A-2
Collate_table attribute 6-19
Collate_table_name attribute 6-20
Collation table

Creation within a FAP E-5
Glossary definition A-2
System-defined E-1
User-defined E-3

Common CYBIL procedures F-1
Completion status 1-7
Concatenated keys 10-54
Concurrent file attaches 3-29
Condition code 1-7
Condition identifier 1-7
Condition information 1-7
Connected file attributes 6-12
Connecting files 2-8
Consecutive tapemarks 4-11

CYBIL File Interface Index-3

INDEX

Continuous_form page format 6-37
Control access 3-16
Conventions 9
*COPYC directive 1-3
Copying

Files 11-1
Example 11-11

Procedure declaration decks 1-3
Tape files 4-11

Creating
Collation table

Within a FAP E-5
Within your program E-3

File access control entry 3-20
File connection 2-9
File cycle descriptor 3-3
File entry 3-3
Indexed sequential file 10-10
Subcatalog access control

entry 3-25
Subcatalog entry 3-13

Creating and deleting alternate
keys 10-57

Creation run
Glossary definition A-2

Current_byte_address for instance of
open 7-10

CYBIL 7
Data storage mechanisms 8-1
Manual set 8
Procedure call statement 1-6

Cycle 3-1

D

Access 3-16
Busy status 3-3
Definition 3-3
Descriptor 3-3

Data access 6-1
Data block 10-3

Glossary definition A-3
Padding 10-4
Record pointers 10-4
Split 10-5

Data_padding attribute 6-21

Index-4 CYBIL File Interface

Deck
Creation and expansion 1-4
Glossary definition A-3

Default A-3
Default heap 8-1
Default terminal attributes 5-1
Defining a file cycle 3-3
Defining file attributes

New file 6-1
Old file 6-3
Open file 6-4

Defining primary keys for indexed
sequential files 10-12

Defining record type and length for
indexed sequential files 10-11

Deleting
File access control entry 3-24
File connection 2-10
File cycle descriptor 3-7
File entry 3-8
Records from an indexed

sequential file 10-30
Subcatalog access control

entry 3-28
Subcatalog entry 3-15

Density
Printing 6-42
Tape recording 4-1

Denying access to a file 3-20
Detaching a file 2-6
Device class

Assignment 2-1
Glossary definition A-3

Disconnecting a file 2-10
Display output 5-14
DISPLAY63_FOLDED collating

sequence E-12
DISPLAY63_STRICT collating

sequence E-13
DISPLA Y64_FOLDED collating

sequence E-15
DISPLAY64_STRICT collating

sequence E-16
Dynamic expansion of task space 8-1

Revision B

E

EBCDIC collating sequence E-18
EBCDIC6_FOLDED collating

sequence E-23
EBCDIC6_STRICT collating

sequence E-24
Echoplex attribute 5-13
Embedded key A-3
Embedded tapemarks 4-11
Embedded_key attribute 6-21
End-of-file indicator for tape files 4-1
End-of-information 9-1

Establishing 9-1
Glossary definition A-3

End-of-information byte address A-3
End-of-volume indicator 4-1
EOI string attribute 5-13
Eoi_byte_address for instance of

open 7-10
Error exit procedure 7-7
Error message template 1-8
Error reporting D-19
Error_count for instance of open 7-10
Error_exit_name attribute 6-22
Error_exit_procedure attribute 6-22
Error_limit attribute 6-23
Error_ status for instance of

open 7-11
Estimated_ record_ count

attribute 6-23
Evaluating attach requests 3-30
Even parity 5-16
Examples

Alternate key 10-83
Byte addressable file 9-12
Concatenated keys 10-54
Duplicate key control for indexed
sequential files 10-50
File access procedure (FAP) D-16
File copying 11-11
Indexed sequential file 10-39
Null suppression for alternate key
index 10-51
Repeating groups for indexed
sequential files 10-56
Segment access 8-11

Revision B

INDEX

Sparse key control for indexed
sequential files 10-53

Exception condition
Glossary definition A-3
Information 1-7

Exclusive access 3-18
Execute access 3-16
Execute bracket 6-41
Execution ring A-3
Expanding a source program 1-3
Expiration date 3-5

F

F record type 9-2
With user-specified blocking 9-5

Family 3-1
Administrator 3-14,15

FAP
Assignment D-4
Data structure D-13
Declaration D-5
Error reporting D-18
Example D-16
Glossary definition A-4
Loading D-4
Processing D-7
Security D-7
System calls D-11
Usage D-1

F AP attribute 6-23
FAP call block declarations C-39
Fetching

File attributes 6-15
Terminal attributes 5-11

Fetching access information after
alternate key selection 10-71

Field A-4
File A-4
File access identifier 7-1
File access log 3-16
File access procedure

Assignment D-4
Data structure D-13
Declaration D-5

File attaching 3-29

CYBIL File Interface Index-5

INDEX

File attribute
Descriptions 6-16
Glossary definition A-4
Set 6-1
Sources 6-10
Specification within a FAP D-10

File blocking 9-4
File characteristics 6-12
File closing 7-1
File connections 2-8
File copying 11-1

Program example 11-11
File cycle 3-1

Busy status 3-31
Definition 3-3
Descriptor 3-3

File entry 3-1
Changing 3-9
Contents 3-3
Definition 3-3
Deletion 3-8

File identifier 7-1
File information record 7-9
File interface procedure usage 1-1

Example 1-2
File management 3-1
File opening 7-1
File path 3-1
File position returned by get

calls 9-20
File positioning 9-14
File positioning after alternate key

selection 10-69
File reference A-4
File references 3-30
File sharing

Example 3-32
Open files 7-8
Permanent files 3-29
Segment access file 8-15

File storage 3-1
File subcatalogs 3-13
File_access_procedure attribute 6-23
File_contents attribute 6-24
File_length attribute 6-24
File_limit attribute 6-24
File_organization attribute 6-24

Index-6 CYBIL File Interface

File_position for instance of
open 7-11

File_processor attribute 6-25
File_structure attribute 6-25
Fixed-length record type 9-2

With user-specified blocking 9-5
Flushing A-4
Flushing data from memory 9-31
Folded collating sequence E-1
Forced_ write attribute 6-26
Format effectors 5-30

Attribute 5-14
Insertion when copying a list

file 11-8
To set print density 6-42

Forward skip
By records or partitions 9-15
By tapemarks 4-8

Frames 5-28
FREE statement 8-9

G

Get calls 9-20
Getting

Device class assignment 2-3
File attributes

After file is opened 6-15
Before file is opened 6-13

Segment pointer 8-6
Terminal attribute set

After file is opened 5-11
Before file is opened 5-7
Default values 5-4

Global_access_mode attribute 6-26
Global_file_address attribute 6-27
Global_file_name attribute 6-27
Global_file_position attribute 6-28
Global_share_mode attribute 6-28

H

HASP protocol terminals 5-19
Hazeltine 2000 terminals 5-19
Heap 8-1

Pointer 8-9

Revision B

History 3
How to use file interface calls 1-1
How to use this manual 8

I

IBM 2780 terminals 5-19
IBM 3780 terminals 5-19
Idle characters 5-13
IF declarations C-46
IFC$POST_PRINT_SPACE_l 5-31
IFC$POST_PRINT SPACE 2 5-31
IFC$PRE_PRINT_HOME CLEAR

SCREEN 5-31 - -
IFC$PRE_PRINT _HOME

CURSOR 5-31
IFC$PRE_PRINT _NO

POSITIONING 5-31
IFC$PRE PRINT SP ACE 1 5-31
IFC$PRE - PRINT - SP ACE - 2 5-31
IFC$PRE=PRINT=SPACE - 3 5-31
IFC$PRE_PRINT _START= OF

LINE 5-31
IFP$FETCH_ TERMINAL

procedure 5-11
IFP$GET _DFLT _TERM_

ATTRIBUTES procedure 5-4
IFP$GET _TERMINAL

ATTRIBUTES procedure 5-7
IFP$STORE_ TERMINAL

procedure 5-9
IFP$TERMINAL procedure 5-2
Implicit release of file data 7-6
Index block 10-6

Glossary definition A-4
Levels 10-7
Padding 10-7
Record pointer 10-6
Split 10-7

Index block structure example 10-6
Index record A-4
Index records 10-6
Indexed sequential file

Access 10-24
Alternate keys 10-47

Revision B

INDEX

Copy
To a sequential file 11-7
To another indexed 11-5

Creation 10-10
Data padding 10-15
Duplicate key control

example 10-50
Example 10-39
File attributes 10-10
Glossary definition A-5
Index padding 10-15
Key types 10-12
Maintenance 10-37
Positioning by major key 10-21
Procedure declaration source

library 1-3
Processing 10-18
Program example 10-40
Record sorting by primary

key 10-2
Structure 10-3
Writing records 10-15

Index_levels attribute 6-29
Index_padding attribute 6-29
Initializing file space 9-9
Input blocks 5-28
Input line 5-28
Input_ device attribute 5-13
Instance of open 7-1

Glossary definition A-5
Integer key A-5
Interactive conditions 5-33
Interactive terminal file

assignment 5-1
Internal file label 10-3
Internal_ code attribute 6-30

J

Job A-5
Job environment attributes 6-11
Job library list A-5
Job log entry for tape assignment 4-5

CYBIL File Interface Index-7

INDEX

K

Key
Glossary definition A-5
Usage 10-1

Key list A-5
Key types for indexed sequential

files 10-12
Key _length attribute 6-30
Key _position attribute 6-31
Key_ type attribute 6-31

L

Label_ type attribute 6-31
Last_access_operation for instance of

open 7-11
Last_ operation attribute 6-32
Last_ op_ status for instance of

open 7-11
Layer number D-5
Line feeds 5-28
Line folding 5-32
Line_feed_idle attribute 5-13
Line_number attribute 6-35
List attributes 6-42
List file copying 11-8
$LOCAL file catalog 3-1
Local file management 2-1
Local file name 2-1

Glossary definition A-5
Log 3-16
Logical file structure 9-1
Logical lines 5-31

M

Magnetic tape management 4-1
Maintaining an indexed sequential

file 10-37
Major key

Glossary definition A-6
Manual

Audience 7
Mass storage

Blocks 9-4
Glossary definition A-6

Index-8 CYBIL File Interface

Master catalog 3-1 A
Max block length attribute 6-35 9
Max=record_length attribute 6-35
Memory access 8-3
Message template 1-8
Message_ control attribute 6-36 e
Min block length attribute 6-36
Min=record_length attribute 6-36
Modify access 3-16
Monitoring indexed sequential file

growth 10-37
Mounting tapes 4-2
Multiple access control entries 3-18
Multiple file attaches 3-32
Multivolume tape files 4-2

N

NAM
Application block number 5-26

NAM 5-1
Naming convention 1-9
Network Access Method 5-1
Network Operating System/Virtual e

Environment 6
New file 2-1

Attributes 6-1
NEXT statement 8-13
Nine-track tapes 4-1
No parity 5-16
No_format_effectors attribute 5-14
Nonembedded key A-6
Null device class 2-4
$NULL file 2-4
Null Suppression

Glossary definition A-6
Null_ attribute

File attribute 6-36
Terminal attribute 5-14

0

Odd parity 5-16
Old file 6-1

Attributes 6-3

Revision B

Old files 6-3
Terminal attribute values 5-1

Open operation A-6
Opening a file 7-1
Open_position attribute 6-37
Optional key attribute record for

indexed sequential files 10-60
Ordering manuals 10
Organization 8
OS declarations C-55
OSC$NULL_NAME 3-2
OSV$ASCII6 _FOLDED collating

sequence E-6
OSV$ASCil6 _STRICT collating

sequence E-7
OSV$COBOL6 _FOLDED collating

sequence E-9
OSV$COBOL6_STRICT collating

sequence E-10
OSV$DISPLAY63_FOLDED

collating sequence E-12
OSV$DISPLAY63_STRICT collating

sequence E-13
OSV$DISPLAY64_FOLDED

collating sequence E-15
OSV$DISPLAY64_STRICT collating

sequence E-16
OSV$EBCDIC collating

sequence E-18
OSV$EBCDIC6_FOLDED collating

sequence E-23
OSV$EBCDIC6 _STRICT collating

sequence E-24
Output_ device attribute 5-14
Output_flow _control attribute 5-15
Overriding

p

Device class assignment 2-2
File attribute values

New files 6-2

PACKED data structures 8-4
Padding

Data blocks 10-4
Fixed-length records 9-29
Glossary definition A-6

Revision B

Index blocks 10-7
Tape file blocks 4-6
User-specified blocks

INDEX

Containing F records 9-5
Containing U records 9-6

Padding_character attribute 6-37
Page_format attribute 6-37
Page_ length

File attribute 6-38
Terminal attribute 5-15
Usage 5-32

Page_ wait
Terminal attribute 5-15
Usage 5-32

Page_ width
File attribute 6-38
Terminal attribute 5-15
Usage 5-32

Paper tape
Input 5-13
Output 5-14

Parameter list 1-6
Parameter types 1-10
Parity attribute 5-16
Partial record read 9-26
Partition A-6
Partition delimiter 9-1

Writing 9-38
Path 3-1

Glossary definition A-6
Specification 3-2

Pause break condition 5-33
Pause_ break_ character

attribute 5-16
Permanent file

Attaching 3-29
Creation 3-3
Deletion 3-8

Permanent_file attribute 6-39
Permit selections set 3-17
Permiting access to a file 3-20
PF declarations C-57
PFC$FAMILY _NAME_INDEX 3-2
PFC$MASTER_CATALOG_NAME_

INDEX 3-2

CYBIL File Interface Index-9

INDEX

PFC$SUBCATALOG_NAME_
INDEX 3-2

PFP$ATTACH procedure 3-34
PFP$CHANGE procedure 3-10
PFP$DEFINE procedure 3-4
PFP$DEFINE_ CATALOG

procedure 3-14
PFP$DELETE_CATALOG_PERMIT

procedure 3-28
PFP$DELETE_PERMIT

procedure 3-24
PFP$PERMIT procedure 3-20
PFP$PERMIT _CATALOG

procedure 3-25
PFP$PURGE procedure 3-7
PFP$PURGE_CATALOG

procedure 3-15
PM declarations C-62
Pointer

Glossary definition A-7
Positioning 10-19

Indexed sequential file by major
key 10-20

Mass storage files 9-14
By records or partitions 9-14

Tape files 4-7
Preface 7
Preserved attributes 6-1
Previous_ record_ address for instance

ofopen 7-13
Previous_record_length for instance

ofopen 7-13
Primary key 10-1

Defining 10-12
Glossary definition A-7

Print density attribute 6-42
Printer output 5-14
Procedure call statement 1-6
Procedure declaration decks 1-3
Procedure parameter list 1-6
Process identifier 1-8
Process virtual address 8-3
Processing for file interface calls 7-7

Returned in status 1-8
Processor names 6-25

Index-10 CYBIL File Interface

Program examples
Byte addressable file 9-12
File copying 11-11
Indexed sequential file 10-40
Segment access 8-11

Program interface 1-1
Program library list A-7
Programs for use in checking

procedure completion status F-1
Prompt_file attribute 5-16
Prompt_file_id attribute 5-17
Prompt_string attribute 5-18
Purging

File 3-8
File cycle 3-7
Subcatalog 3-15

PUSH statement 8-1
PVA 8-3

Q

Queuing terminal input 5-29

R

Random access
Glossary definition A-7
Usage 9-9

Read access 3-16
Read bracket 6-41
Reading

File shared by other tasks 7-8
Packed data structures in a
segment access file 8-4
Records

From a byte addressable
file 9-20
From a sequential file 9-20
From an indexed sequential
file 10-24

Reading records after alternate key A
selection 10-69 W

Real memory 8-3
Record

Glossary definition A-7

Revision B

Record access
For byte addressable file

organization 9-1
For indexed sequential file

organization 10-1
For sequential file

organization 9-1
Record types 9-2
Recording density 4-1
Record_ limit attribute 6-39
Records 9-1
Records_ per_ block attribute 6-40
Record_ type attribute 6-39
Recreating an indexed sequential

file 10-37
Related manuals 2
Relative pointers 8-10
Releasing

File data upon open 7-6
Heap space 8-9
Temporary file space 2-6

Replacing records in an indexed
sequential file 10-30

Repositioning a file 9-18
Requesting

Null file 2-5
Tape file 4-3
Terminal file 5-5

RESET statement
For heap 8-9
For sequence 8-13

Residual_skip_count for instance of
open 7-13

Resource limit condition
processing 5-33

Retrieving
Access information 7-9
Connected file attributes 6-12
Device class assignment 2-3
File attributes 6-9
File characteristics 6-12
Terminal attribute set

After file is opened 5-11
Before file is opened 5-7
Default values 5-4

Retrieving alternate index
information 10-73

Revision B

INDEX

Returned attributes 6-11
Returning a file 2-6
Return_option attribute 6-40
Revision record 3
Rewind A-7
Rewinding files 9-1 7
Ring A-7
Ring attribute A-7
Ring number validation 7-6
Ring_ attributes attribute 6-41
RM declarations C-62
RMP$GET _DEVICE_ CLASS

procedure 2-3
RMP$REQUEST _NULL_DEVICE

procedure 2-5
RMP$REQUEST_TAPE

procedure 4-3
RMP$REQUEST_TERMINAL

procedure 5-6
Run-time stack 8-1
RUN_ CHECKS CYBIL

parameter 8-9

s
SCL procedure A-8
SCU deck creation and expansion 1-3
Segment A-8
Segment access 8-1

Program example 8-11
Segment attributes 8-4
Segment length 8-4
Segment pointer 8-5
Sequence pointer 8-13
Sequential access

Glossary definition A-8
Usage 9-7

Sequential file copy
To an indexed sequential file 11-3
To another sequential file 11-2

Sequential file organization A-8
Setting

Current byte address
For byte addressable file 9-11
For segment 8-17

CYBIL File Interface Index-11

INDEX

End-of-information address for
segment

Using 8-15,17
File attribute values

Newfile 6-1
Old file 6-3
Open file 6-4
Within a FAP D-10

Terminal attribute values 5-1
Share requirements set 3-18
Share selections 3-18
Sharing

File with write access 3-30
Open files 7-8
Permanent files 3-32
Segment access file 8-15

Shorten access 3-16
Skipping

By partitions 9-15
By records 9-15
By tapemarks 4-7

Source library files 1-4
Source text preparation example 1-4
Sparse key control for alternate

keys 10-52
Special_ editing attribute 5-19
Statement_identifier attribute 6-41
Status variable 1-7
Storing

File attributes 6-8
Terminal attributes 5-9

Strict collating sequence E-1
Structural attributes 6-1
Subcatalog 3-1

Definition 3-13
Deletion 3-15

Subject file 2-8
Submitting comments 10
Synchronous terminal classes 5-24
$SYSTEM.COMMON.

PSF$EXTERNAL_INTERFACE_
SOURCE 1-3

$SYSTEM.CYBIL.OSF$PROGRAM_
INTERFACE 1-3

System-defined collation tables E-1
System file connections 2-8
System naming convention 1-9

Index-12 CYBIL File Interface

System services 1-1
System-specified blocking 9-4

T

Tape file
Attributes 4-6
Blocks 9-4
Character conversion 4-6
Padding 4-6
Positioning 4-7
Requests 4-1

Tape management 4-1
Tapemark

Glossary definition A-8
Usage 4-1

Target file 2-8
Task A-8
Task's address space 8-3
Tektronix 4010 terminals 5-19
Teletypewriters 5-19
Temporary attributes 6-1
Temporary file storage 3-1
Terminal attribute

Default values 5-22
Descriptions 5-12
Glossary definition A-8
Set 5-1
Sources 5-5

Terminal class A-8
Terminal conditions 5-33
Terminal file

Access information 5-26
Attributes 5-26
Processing considerations 5-26
Requests 5-5

Terminal input 5-28
Terminal management 5-1
Terminal output 5-30
Terminal class attribute 5-19
Terminal - name attribute 5-20
Terminat; break condition 5-33
Terminate_ break_ character

attribute 5-20
Title insertion frequency 6-38
Transparent_ delim_ selection

attribute 5-20

RevisionB

Transparent_ end_ character
attribute 5-20

Transparent_ end_ count
attribute 5-20

Transparent_mode attribute 5-20
Trivial error limit 6-23
Type checking 1-6
Typed ahead input 5-29

u
U record type 9-3

With system-specified blocking 9-4
With user-specified blocking 9-6

Uncollated key A-9
Undefined record type 9-3

With system-specified blocking 9-4
With user-specified blocking 9-6

Unlabeled tape files 4-1
Update run 10-16
Updating an alternate index 10-70
Usage selections 3-1 7
User groups 3-17
User-specified blocking 9-4
User_info attribute 6-42
Using alternate keys 10-68
Using alternate keys to access

indexed sequential files 10-47
Using file interface procedures 1-1
Using indexed sequential files 10-1

v
V record type 9-2

With user-specified blocking 9-5
Valid attributes for each file attribute

call 6-7
Validating caller privilege within a

FAP D-8
Variable record type 9-2

With user-specified blocking 9-5
Verifying preserved attribute

values 6-3
Vertical_print_ density attribute 6-42
Virtual address translation 8-3 e Virtual memory access 8-3

Revision B

INDEX

Volume switching 4-2
Volume_number for instance of

open 7-14
Volume_position for instance of

open 7-14

w
Wait option 3-33
Working storage area

Glossary definition A-9
Usage 9-1

Write access 3-16
Write bracket 6-41
Write ring 4-1
Writing

File shared by tasks 7-9
Partition delimiters 9-38
Records 9-29

Longer than the working
storage area 9-30
Tapemark 4-12

Writing a byte addressable file using
sequential access calls 9-8

Writing a record to an indexed
sequential file 10-15

z
Zero parity 5-16

CYBIL File Interface Index-13

CYBIL for NOS/VE, File Interface 60464114 B

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would he used. Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have?

0 Manager

D Systems Analyst or Programmer

0 Applications Proi;rammcr

D Operator

0 Other _________ _

CJ As an Overview

C To Learn the Product-' System

D For Comprehensive Reference

D For {iuick Look-up

D Any SCL Manuals

D CYBIL System Interface

D CYBIL Language Definition

What programming languages do you use? ___ ----- -------"------
Which arc helpful to you'! 0 Procedures Index (inside covrrs1 U Glossary n Rrdated Manuals pagp

C Character Set D Other

How Do You Like This Manual? Check those that applv.

Yes Somewha~ No
D D [J Is the manual easy to rt>a<l (print si..:e, page layout, and so onl'!

D ~, D Is it easy to understand?

D D D Is the order of topics logical'!

D D D Aw there enough examples'?

D c D Are tht· examples helpful" (0 Too simplt' ::::J Too complex!
[J D Is the technical information accurate'!

D D D Can you easily find what you want'?

D 0 D Do the illustrations help you'!

D iJ D Does the manual tell you what you nr-ed to know ahout the topic?

Comments? If applicable, note page number <.i.nd paragraph

Would you like a reply? :.J Yes ~No Continue on other side

From:

l'\amt- Compan.v __

Address Dak

Phone ~o.

PleasP send program listing and output if applicable to your comment.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

FOlD

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219

4201 North Lexington Avenue

Saint Paul, Minnesota 55112

Comments (continued from other side)

NO POSTAGE

NECESSARY
IF MAILED

IN THE
UNITED ST A TES

FOLD

