
CYBIL for NOS/VE
Language Definition

Usage

(52)
CONTRPL

DATA

60464113

_K_e~y~w_o_r_d~ln_d_e_x~~~~~~~~~~~~~~~~~~~~tlt
ARRAY (adaptable) 4-42 PROCEND (for a program) ... 2-11
ARRAY (fixed) 4-24 PROGRAM 2-11
BOOLEAN 4-6 REAL 4-11
CELL 4-12
CHAR 4-5

RECORD (adaptable) 4-43 e
RECORD (invariant) 4-27

CONST 3-1 RECORD (variant) 4-29
FUNCEND 6-23 REL 4-18
FUNCTION 6-23 SECTION 3-17
HEAP (adaptable) 4-46 SET 4-37
HEAP (fixed) 4-40 SEQ (Adaptable) 4-45
INTEGER 4-4 SEQ (Fixed) 4-39
MODEND 2-9 STRING (Adaptable) 4-19
MODULE 2-9 STRING (Fixed) 4-19
Ordinal 4-7 Subrange 4-9
Pointer 4-13 TYPE 3-15
PROCEDURE 7-21 VAR 3-3
PROCEND (for a procedure) .. 7-21

Statement Index

ALLOCATE 5-38 IF 5-24
Assignment 5-13 NEXT 5-37
BEGIN 5-16 PUSH 5-40
CASE 5-26 REPEAT 5-20
CYCLE 5-28 RESET (in a heap) 5-36
EXIT 5-:lO RESET (in a sequence) 5-35
FOR 5-17 RETURN 531
FREE 5-39 WHILE 5-21

Function Index

#ADDRESS 6-16 #PTR 6-8
$CHAR 6-2 #READ _REGISTER 6-20
#FREE_RUNNING $REAL 6-9

CLOCK 6-17 #REL 6-10
FUNCEND 6-23 #RING 6-21
FUNCTION 6-23 #SEGMENT 6-22
$INTEGER 6-3 #SIZE 6-11
#LOC 6-4 STRLENGTH 6-12
LOWERBOUND 6-5 succ 6-13
LOWERVALUE 6-6 UPPERBOUND 6-14
#OFFSET 6-18 UPPERVALUE 6-15
PRED 6-7 User-defined functions 6-23
#PREVIOUS_SAVE

AREA 6-19

(Continued on inside back cover)

CYBIL for NOS/VE
Language Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features
and parameters.

Publication Number 60464113

Related Manuals

Background (Access as Needed):

~ ~

SCL SCL
Language System
Definition Interface ---Usage Usage

60464013 60464014

CYBIL Manual Set:

L

CYBIL CYBIL
File System
Interface --- Interface

Usage Usage

60464114 60464115

Additional References:

SCL SCL SCL
Source Code Object Code
Management Management lluick

Reference
Usage Usage

60464313 60464413

--- indicates the reading sequence.

) Dl indicates an online version of the manual is available.

@ 1984 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

• 2 CYBIL Language Definition Revision B

9 Manual History

This manual is Revision B, printed in July 1984. It reflects NOS/VE Version
1.1.1. at PSR level 613. Minor technical corrections and editorial changes
have been incorporated. New Debug commands and functions have been
added.

Previous
Revision

A

Revision B

System Version

1.0.2.

Date

February 1984

CYBIL Language Definition 3/ 4 •

9 Contents

About This Manual 7

Audience 7
Organization 7
Conventions 8
Additional Related Manuals . . 9
Ordering Manuals 9
Submitting Comments 9

Introduction 1-1

Program Structure 2-1

Elements Within a
Program 2-1

Structure of a Program 2-7

Constant, Variable, Type, and
Section Declarations 3-1

Constant Declaration 3-1
Variable Declaration 3-3
Type Declaration 3-15
Section Declaration 3-17

Types 4-1

Using Types 4-2
Equivalent Types 4-2
Basic Types 4-3
Structured Types 4-19
Storage Types 4-39
Adaptable Types 4-41

Expressions and
Statements 5-1

Expressions 5-1
Statements 5-13

Functions 6-1

Standard Functions 6-1

Revision B

System-Dependent
Functions 6-16

User-Defined Functions 6-23

Procedures 7-1

Standard Procedures 7-1
System-Dependent

Procedures 7-9
User-Defined Procedures ... 7-21

The CYBIL Command and
Other Compilation
Facilities 8-1

CYBIL Command 8-1
Compilation Declarations and

Statements 8-7
Compile-Time Directives ... 8-11

The Debug Utility 9-1

Introduction 9-1
Accessing Debug 9-2
Debug Concepts 9-5
Debug Commands 9-18
Debug Functions 9-72
Using Debug 9-80

Glossary A-1

Character Set B-1

Reserved Words C-1

Data Representation in
Memory D-1

Index Index-I

Contents 516

9 About This Manual

This manual describes CYBIL, the implementation language of the
A CONTROL DATA® Network Operating System/Virtual Environment
-(NOS/VE).

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that you understand NOS/VE and System Command Language (SCL)
concepts as presented in the SCL Language Definition manual and the SCL
System Interface manual. You will also need to be familiar with the CYBIL
File Interface manual in order to perform input to and output from a CYBIL
program.

Organization

This manual is organized by topic, based on elements of the CYBIL
language. The first chapter introduces the basic elements of the language e and refers you to the chapter in which each is further described.

This manual is part of the CYBIL manual set. The CYBIL File Interface
manual describes the facilities available to read and write files used by
CYBIL. The CYBIL System Interface manual describes the CYBIL
procedures you can call to use the special capabilities of NOS/VE.

Revision B About This Manual 7 e

CONVENTIONS

Conventions

Within the formats for declarations, type specifications, and statements
shown in this manual, uppercase letters represent reserved words; they must
appear exactly as shown. Lowercase letters represent names and values that
you supply.

Required parameters are shown in bold type. Optional parameters are shown
in italics and are enclosed by braces, as in:

{PACKED}

If the parameter is optional and can be repeated any number of times, it is
also followed by several periods, as in:

{name} ...

For example, the notation {digit) means zero digits or one digit can appear;
{digits) ... means zero, one, or more digits can appear. Braces indicate that the
enclosed parameters are used together. For example,

{offset MOD base)

is considered a single parameter. Except for the braces and periods
indicating repetition, all other symbols shown in a format must be included.

Numbers are assumed to be decimal unless otherwise noted.

In examples that show interactive terminal sessions, user input is printed in
blue. System output is printed in black.

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by vertical bars in the margins or by a dot near
the page number if more than half the page is affected.

8 CYBIL Language Definition Revision B

ADDITIONAL RELATED MANUALS

9 Additional Related Manuals
The related manuals listed on page 2 include the manuals you should be
familiar with to this point, and which manuals you may want to read

A following this one. In addition, you may want to have a copy of the CDC@
W CYBER 170/180 Models 810, 815, 825, 830, 835, 845, 855, and 990 (Virtual

State) Hardware Reference Manual, Volume II, publication number
60458890. You do not need the hardware manual to use the information in
this manual, but it provides you with more detail about the hardware and, in
particular, the hardware instructions used in certain CYBIL procedures
described in this manual.

The Math Library manual, publication number 60486513, describes the
mathematical routines available in the Math Library. These routines can be
accessed by CYBIL programs.

The Diagnostic Messages for NOS/VE manual, publication number
60464613, documents diagnostic messages generated by NOS/VE.

Ordering Manuals
A Control Data manuals are available through Control Data sales offices or
-through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Submitting Comments
The last page of this manual is a comment sheet. Please use it to give us your
opinion of the manual's usability, to suggest specific improvements, and to
report technical or typographical errors. If the l:omment sheet has already
been used, you can mail your comments to:

Control Data Corporation
Publications and Graphics Division ARH219
4201 Lexington Avenue North e St. Paul, Minnesota 55112

Please indicate whether you would like a written response.

Revision B About This Manual 9

I

9 Introduction

This chapter introduces the basic elements of a CYBIL program and refers e you to the chapter in which each is further described.

1

9 Introduction 1

A CYBIL program consists essentially of two kinds of elements: declarations
A and statements. Declarations describe the data to be used in the program.
W Statements describe the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words and
user-defined names and values. The way you form these elements is
described in chapter 2, as is the general structure for forming a CYBIL
program.

Data can be either constant or variable. You can use the constant value itself
or give it a name using the constant declaration (CONST). Variables are
named, initialized, and given certain characteristics with the variable
declaration (VAR). One of the characteristics of a variable is its type, for
example, integer or character. You can use CYBIL's predefined types or
define your own types. To define a new type or redefine an existing type with
a new name, you use the type declaration (TYPE). Once you have defined a
type, CYBIL will treat it as a standard data type; you can specify your new
type name as a valid type in a variable declaration and CYBIL will perform
standard type checking on it. You can also declare where you want certain
variables to reside by defining an area called a section, which can be a read
only section or a read/write section. This is done with the SECTION
declaration. All of these data-related declarations are described in chapter 3.

Many standard types are available, including integers, floating-point
numbers, characters, and boolean values, to name a few. In addition, you
can use combinations of the standard types to define your own data types,
for example, a record that contains several fields. The next few paragraphs
summarize the types that are predefined by CYBIL. They are described in
detail in chapter 4.

Among the basic types are scalar types, that is, those that have a Bpecific
order. Besides integer, character, and boolean values, you can declare an
ordinal type in which you define the elements and their order. You can also
specify a subrange of any of the scalar types by giving a lower and upper
bound. Floating-point (real) numbers are also available. A cell, which
represents the smallest addressable unit of memory, can be specified as a
type. A pointer is a type that points to a variable, allowing you to access the
variable by location rather than by name. These are the basic types: scalar,
floating point, cell, and pointer. With these basic types you can construct the
structured types: strings, arrays, records, and sets.

Revision A Introduction

INTRODUCTION

A string is a sequence of characters. You can reference a portion of a string
(called a substring) or a single character within a string. An array is a
structure that contains components all of the same type. The components of
an array have a specific order and each one can be referenced individually. A
record is a structure that contains a fixed number of fields, which may be of A
different types. Each field has a unique name within the record and can be W
referenced individually. You can also declare a variant record that has
several possible variations (variants). The current value of a field common to
all variants, or the latest assignment to a specific variant field determines
which of the variants should be used for each execution. A set is a structure
that contains elements of a single type. Yet unlike an array, elements in a set
have no order and individual elements cannot be referenced. A set can be
operated on only as a whole.

Storage types are structures to which variables can be added, referenced, and
deleted under explicit program control using a set of storage management
statements. The two storage types are sequences and heaps.

All of the types mentioned above are considered fixed types; that is, there is a
definite size associated with each one when it is declared. If you want to
delay specifying a size until execution time, you can declare it as an
adaptable type. Then, sometime during execution, you assign a fixed size or
value to the type. A string, array, record, sequence, or heap can be adaptable.

All of these types are described in chapter 4. e
Statements define the actions to be performed on the data you've defined.
The assignment statement changes the value of a variable. Structured
statements contain and control the execution of a list of statements. The
BEGIN statement unconditionally executes a statement list. The WHILE,
FOR, and REPEAT statements control repetitive executions of a statement
list.

Control statements control the flow of execution. The IF and CASE
statements execute one of a set of statement lists based on the evaluation of a
given expression or the value of a specific variable. CYCLE, EXIT, and
RETURN statements stop execution of a statement list and transfer control
to another place in the program.

Storage management statements allocate, access, and release variables in
sequences (using the RESET and NEXT statements), heaps (using the
RESET, ALLOCATE, and FREE statements), and the run-time stack (using
the PUSH statement). e
All of the preceding statements are described in detail in chapter 5, along
with the operands and operators that can be used in expressions within
statements and declarations.

1-2 CYBIL Language Definition Revision A

INTRODUCTION

Statements can appear within a program (as described in chapter 2), a
function, or a procedure.

A function is a list of statements, optionally preceded by a list of
declarations. It is known by a unique name and can be called by that name
from elsewhere in the program. A function performs some calculation and
returns a value that takes the place of the function reference. There are many
standard functions defined in CYBIL and you can also create your own.
Standard functions and rules for forming your own functions are described
in chapter 6.

A procedure, like a function, is a list of statements, optionally preceded by a
list of declarations. It also is known by a unique name and can be called by
that name from elsewhere in the program. A procedure performs specific
operations and may or may not return values to existing variables. You can
use the standard procedures and also define your own. Chapter 7 describes
the standard procedures and rules for forming your own procedures.

Chapter 8 describes the CYBIL command you use to call the CYBIL
compiler, tell it which files to use for input and output, and specify what kind
oflisting you want. It also describes directives that are available at
compilation time to specify listing options, run-time options, the layout of the
source text and resulting object listing, and what specific portions of the
source text to compile.

Chapter 9 describes the Debug utility, which aids you in debugging CYBIL
programs at a source code level or machine code level, in either interactive or
batch mode.

In summary, chapters 2 through 7 describe the elements within a CYBIL
program. Chapter 8 describes the command and directives that control how
the program is actually compiled. Chapter 9 describes debugging
capabilities.

Procedures that perform input to and output from CYBIL programs are
described in the CYBIL File Interface manual.

Revision A Introduction 1-3

9 Program Structure

This chapter describes how to form the individual elements used within a e program and how to structure the program itself.

2

Elements Within a Program ... 2-1

Valid Characters ... 2-1
CYBIL-Defined Elements ... 2-1
User-Defined Elements ... 2-2
Syntax ... 2-5

Structure of a Program .. 2-7

Module Structure ... 2-7
Scope .. 2-7
Module Declaration ... 2-9
Program Declaration .. 2-11

9 Program Structure

This chapter describes how to form the individual elements used within a e program and how to structure the program itself.

Elements Within a Program

Valid Characters

2

The characters that can be used within a program are those in the ASCII
character set that have graphic representations (that is, can be printed). This
character set is included in appendix B. It contains uppercase and lowercase
letters. In names that you define, you can use uppercase and lowercase
letters interchangeably. For example, the name LOOP_ COUNT is
equivalent to the name loop_count.

CYBIL-Defined Elements

A CYBIL has predefined meanings for many words and symbols. You cannot
9 redefine or use these words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix C. In the
formats for declarations, type specifications, and statements shown in this
manual, reserved words are shown in uppercase letters.

The following list includes the reserved symbols and a brief description of
the purpose of each. They are discussed in more detail throughout this
manual.

Symbol

+, -, *,I,=,<,<=,
>, >=, < >, :=, (,)

Revision A

Purpose

These symbols are primarily operators used
in expressions. They are discussed in chapter 5.

The semicolon separates individual declarations and
statements.

The colon is used in declarations as described in chapter
3.

The comma separates repeated parameters or other
elements.

A single period indicates a reference to a field within a
record as described in chapter 4.

(Continued)

Program Structure 2-1

ELEMENTS WITHIN A PROGRAM

(Continued)

Symbol

[]

{)

? or??

Purpose

Two consecutive periods indicate a subrange as
described in chapter 4.

The circumflex indicates a pointer reference as
described in chapter 4.

Apostrophes delimit strings.

Brackets enclose array subscripts, indefinite value
constructors, and set value constructors as described in
chapter 4.

Braces delimit comments. (Within the formats shown in
this manual, they are also used to enclose optional
parameters.)

A single question mark or a pair of consecutive question
marks indicate compile-time statements and directives
as described in chapter 8.

User-Defined Elements

Names

You define the names for elements, such as constants, variables, types,
procedures, and so on, that you use within a program. A name:

• Can be from 1 through 31 characters in length.

• Can consist of letters, digits, and the special characters # (number sign),
@ (commercial at sign), _ (underline), and$ (dollar sign).t

• Must begin with a letter. (There is an exception to this rule for system
defined functions and procedures that begin with the# or$ character.)

• Cannot contain spaces.

t NOS/VE often uses$ in its predefined names. To keep from matching a
system reserved name, avoid using$ in the names you define.

2-2 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

In the formats included in this manual, names that you supply are shown in
lowercase letters. Within a program, however, there is no distinction between
uppercase and lowercase letters. The name my _file is identical to the name
My_File.

There is considerable flexibility in forming names, so you should make them
as descriptive as possible to promote readability and maintainability of the
program. For example, LAST _FILE_ACCESSED is more obvious than
LASTFIL.

Examples:

Valid Names

SUM
REGISTER#3
POINTER_ TABLE

Invalid Names

ARRAY
FILES&POSITIONS
2ND

The valid names need no explanation. Among the invalid names, ARRAY
cannot be used because it is a reserved word; FILES&POSITIONS contains
an invalid character (the ampersand); and 2ND does not begin with a letter.

Constants

A constant is a fixed value. It is known at compilation time and does not
change throughout the execution of a program. It can be an integer,
character, boolean, ordinal, floating-point number, pointer, or string.

Integer constants can be binary, octal, decimal, or hexadecimal. The base is
specified by enclosing the radix in parentheses following the integer, as
follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer is
assumed to be decimal. Integer constants must start with a digit; therefore,
zero must precede any hexadecimal constant that would otherwise begin
with a letter, for example, OFF(16). Negative integer constants must be
preceded by a minus sign. Positive integer constants can be preceded by a
plus sign but need not be.

Integer constants range in value from -(263.1) through 263-1.

A character constant can be any single character in the ASCII character set.
The character is enclosed in apostrophes in the following form:

'character'

Examples are 'A' and'?'. The apostrophe character itself is specified by a
pair of apostrophes.

Revision B Program Structure 2-3

I

ELEMENTS WITHIN A PROGRAM

A boolean constant can be either FALSE or TRUE, each having its usual
meaning.

An ordinal constant is an element of an ordinal type that you have defined.
For further information, refer to Ordinal under Scalar Types in chapter 4.

Floating-point (real) constants can be written in either decimal notation or
scientific notation. A real number written in decimal notation contains a
decimal point and at least one digit on each side, for example, 5.123 or
- 72.18. If the number is positive, the sign is optional; if negative, the sign is
required.

A real number written in scientific notation is represented by a number (the
coefficient), which is multiplied by a power of 10 (the exponent) in ihe form:

coefficientEexponent

The prefix E is read as "times 10 to the power of"; for example,

5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in the
coefficient is optional. A decimal point cannot appear in the exponent; it
must be a whole number. If the coefficient or exponent is positive, the sign is
optional; if negative, the sign is required.

The pointer constant is NIL. It indicates an unassigned pointer. NIL can be
assigned to a pointer of any type.

String constants consist of one or more characters enclosed in apostrophes in
the following form:

'string'

An example is 'USER1234', a string of eight characters. An apostrophe in a
string constant is specified by a pair of apostrophes, for example, 'DON''T'.

String constants can be concatenated by using the reserved word CAT, as in:

'characters_l' CAT 'characters_2'

The result is the string 'characters_lcharacters_2'. The CAT operation
cannot be used with string variables.

A string constant can be empty, that is, a null string; for example,

str := ";

assigns a null string to the string constant STR.

You cannot reference parts (substrings) of string constants.

2-4 CYBIL Language Definition Revision B

ELEMENTS WITHIN A PROGRAM

Constant Expressions

Expressions are combinations of operands and operators that are evaluated
to find scalar or string type values. In a constant expression, the operands
must be constants, names of constants (that you declare using the CONST
declaration described in chapter 3), or other constant expressions within
parentheses. Computation is done at compile time and the resulting value
used in the same way a constant is used.

The general rules for forming and evaluating expressions are described
under Expressions in chapter 5. These rules apply to constant expressions
with the following exceptions:

• Constant expressions must be simple expressions; terms involving
relational operators must be delimited with parentheses.

• The only functions allowed as factors in constant expressions are the
$INTEGER, $CHAR, SUCC, and PRED functions with constant
expressions as arguments.

• Substring references are not allowed.

Syntax

The exact syntax of the language is shown in the formats of individual
declarations and statements described in the remainder of this manual. The
following paragraphs discuss general syntax rules.

Spaces

Spaces can be used freely in programs with the following exceptions:

• Names and reserved words cannot contain embedded spaces. Normally,
constants cannot contain spaces either, but a character constant or string
constant can.

• A name, reserved word, or constant cannot be split over two lines; it must
appear completely on one line.

• Names, reserved words, and constants must be separated from each other
by at least one space, or one of the other delimiters such as a parenthesis
or comma.

For further information, refer to Spacing later in this chapter.

Revision A Program Structure 2-5

I

ELEMENTS WITHIN A PROGRAM

Comments

Comments can be used in a program anywhere that spaces can be used
(except in string constants). They are printed in the source listing but
otherwise are ignored by the compiler.

A comment is enclosed in left and right braces: {). It can contain any
character except the right brace ()). To extend a comment over several lines,
repeat the left brace ({) at the beginning of each line. If the right brace is
omitted at the end of the comment, the compiler ends it automatically at the
end of the line.

Example:

{this comment
{appears on
{several Lines.}

Within this manual, the formats for declarations, type specifications, and
statements use braces to indicate an optional parameter.

Punctuation

A semicolon separates individual declarations and statements. It must be A
included at the end of almost every declaration and statement. The single W
exception is MODEND which can, but need not, end with a semicolon ifit is
the last occurrence of MODEND in a compilation. Punctuation for specific
declarations and statements is shown in the formats in the following
chapters.

Two consecutive semicolons indicate an empty statement, which the
compiler ignores. Spacing between the semicolons in this case is
unimportant.

Spacing

Declarations and statements can start in any column. In this manual,
indentations are used in examples to improve readability. It is recommended
that similar cunventions be used in your programs to aid in debugging and
documentation for yourself and other users.

The LEFT and RIGHT directives, described in chapter 8, can be used at
compilation time to specify the left and right margins of the source text. All e
source text outside of those margins is then ignored. A warning diagnostic is
issued for every line that exceeds the specified right margin.

A name, reserved word, or constant cannot be split over two lines; each must
appear completely on one line.

2-6 CYBIL Language Definition Revision B

9 Structure of a Program

Module Structure

STlWCTUKE OF A PROGRAM

The basic unit that can be compiled is a module and, optionally, compile-time
statements and directives. A module can, but need not, contain a program.
The general structure of a module is:

MODULE module_name;
declarations
PROGRAM program_ name;

declarations
statements

PROCEND program_name;
MODEND module_name;

Declarations can be constant, type, variable, section, function, and procedure
declarations. A module can contain any number and combination of
declarations, but it can contain at most one program. The program contains
the code (that is, the statements) that are actually executed. The required
module and program declarations are described later in this chapter.

The structure within a module determines the scope of the elements you
declare within it.

Scope

The scope of an element you declare, such as a variable, function, or
procedure, is the area of code where you can refer to the element and it will
be recognized. Scope is determined by the way the program and procedures
are positioned in a module and where the elements are declared.

In terms of scope, the programs, procedures, and functions are often referred
to as blocks (that is, blocks of code). Generally, if an element is declared
within a block, its scope is just that block. Outside the block, the element is
unknown and references to it are not valid. A variable declared within a
block is said to be local to the block and is called a local variable.

An element declared at the module level (that is, one that is not declared
within a program, procedure, or function) has a scope of the entire module. It
can be referred to anywhere within the module. A variable declared at the
module level is said to be global and is called a global variable.

A block can contain one or more subordinate blocks. A variable declared in
an outer block can always be referenced in a subordinate block. However, if a
subordinate block declares an element of the same name, the new declaration
applies while inside that block. Figure 2-1 illustrates these rules.

Hevision A Program Structure 2-7

STRUCTURE OF A PROGRAM

BLOCK 1

A DECLARATION

BLOCK 2

B DECLARATION

BLOCK 3

C DECLARATION
D DECLARATION

BLOCK 4

D DECLARATION

+----- Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.

..____Variable B can be referred to only in
block 2.

..____ Variables C and D can be referred to
anywhere in blocks 3 and 4.

..____ However, block 4 again declares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. Outside of block 4,
yet within block 3, the original
declaration for D applies.

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is
declared is entered. Space is released when an exit is made from the block.
Because space is allocated and released automatically, these variables are
called automatic variables. You can specify that storage for a variable
remains throughout execution by including the STATIC attribute when you
declare the variable. A variable declared in this way is called a static
variable. A global variable is always static. Because it is declared at the
outermost level of a module (consider the module to be a block), storage for a
global variable is allocated throughout execution of the module (or block).
For further information on automatic and static variables, refer to Variable
Declaration in chapter 3.

The one exception to the preceding rules is an element declared with the
XDCL (externally declared) attribute. This attribute means the element is
declared in one module but can be referred to in another. In this case, the
loader handles the links between modules. For further information on the
XDCL attribute, refer to chapter 3.

2-8 CYBIL Language Definition Revision A

MODULE DECLARATION

Module Declaration

The module declaration marks the beginning of a module. MODEND marks
the end of a module. A module can contain at most one program and any
combination of type, constant, variable, section, function, and procedure
declarations. If two or more modules are compiled and linked together for
execution, there can be only one program declaration in all the linked
modules.

The format of the module declaration is:

MODULE name;t

name

The name of the module.

The format ofMODEND is:

MODEND (name };

name

The name of the module. This parameter is optional. If used, the name
must be the same as that specified in the module declaration.

When compiling more than one module, a semicolon is required after each
occurrence of MOD END except the last one. There it is not required but is
recommended.

Examples:

The following example shows a module named ONE that contains various
declarations and a program named MAIN. The module name and semicolon
could be omitted following MODEND, but it is recommended that they both
be included.

MODULE one;
declarations
PROGRAM main;

declarations
statements

PROCEND main;
MODEND one;

---t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a module declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision A Program Structure 2-9

MODULE DECLARATION

The following example shows a compilation consisting of three modules
named ONE, TWO, and THREE. All three modules can be compiled and the
resulting object modules linked together to form a single object module that
can then be executed. For readability, the module names are included in all
occurrences ofMODEND. The semicolon could be left off the last occurrence
of MODEND, but it is a good practice to include it.

MODULE one;
declarations/statements

MODEND one;
MODULE two;

declarations/statements
MODEND two;
MODULE three;

declarations/statements
MODEND three;

2-10 CYBIL Language Definition Revision A

PROGRAM DECLARATION

e Program Declaration

The program declaration marks the beginning of a program. The end of a
program is marked by a PROCEND statement. A program can contain any
combination of type, constant, variable, section, function, and procedure
declarations, and any statements. If two or more modules are compiled and
linked together for execution, there can be only one program declaration in
the linked modules.

The format of the program declaration is:

PROGRAM name {(formal_parameters));t

name

The name of the program.

formal _parameters

One or more optional parameters included if the program is to be called by
the operating system. They can be in the form

VAR name {,name) ... : type
{,name {,name} ... : type} ...

and/or

name {,name} ... : type
{,name {,name) ... : type) ...

where name is the name of the parameter and type is the type of the
parameter, that is, a predefined type (described in chapter 4) or a user
defined type (described in chapter 3).

The first form is called a reference parameter; its value can be changed
during execution of the program. The second form is called a value
parameter; its value cannot be changed by the program. Both kinds of
parameters can appear in the formal parameter list; if so, they are
separated by semicolons (for example, I: INTEGER; VAR A: CHAR).
Reference and value parameters are discussed in more detail later in this
chapter.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a program declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

Revision B Program Structure 2-11

I

PROGRAM DECLARATION

The optional parameter list is included if a CYBIL program is to be called by e
the operating system. It allows the system fo pass values (for example, a
string that represents a command) to a CYBIL program. When the system
calls a program, it includes parameters called actual parameters in the call.
The values of those actual parameters replace the formal parameters in the A
parameter list one-for-one based on position; that is, the first actual W
parameter replaces the first formal parameter, and so on. Wherever the
formal parameters appear in statements within the program, the values of
the corresponding actual parameters are substituted. For every formal
parameter in the program declaration, there must be a corresponding actual
parameter.

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the program. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter that
corresponds to a formal reference parameter must be addressable. A formal
reference parameter can be of any type.

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the program cannot change a
value parameter by assigning a value to it or specifying it as an actual
reference parameter to a procedure or function. A formal value parameter
can be of any type except a heap, or an array or record that contains a heap.

The format of PROCEND is:

PROCEND { name);

name

The name of the program. This parameter is optional. If used, the name
must be the same as that specified in the program declaration.

Example:

The following example shows a program named MAIN that contains various
declarations, including a procedure named SUB_l.

PROGRAM main;
declarations
PROCEDURE sub_1;

declarations
statements

PROCEND sub_1;
statements

PROCEND main;

2-12 CYBIL Language Definition Revision A

9 Constant, Variable, Type, and
Section Declarations 3

e This chapter describes how you declare constant and variable data types and
new data types. It also describes how you specify a particular section in
which to group data.

Constant Declaration .. 3-1

Variable Declaration .. 3-3

Attributes .. 3-6
Initialization .. 3-12

Type Declaration ... 3-15

Section Declaration ... 3-1 7

9 Constant, Variable, Type, and
Section Declarations 3

This chapter describes the constant declaration, which defines a name for a
value that never changes; the variable declaration, which defines a name for
a value that can change; and the type declaration, which defines a new type
of data and gives a name to that type. In addition, it also describes the
section declaration, which groups variables that share common access
characteristics.

Constant Declaration

A constant, as described in chapter 2, is a fixed value that is known at
compile time and doesn't change during execution. A constant declaration
allows you to associate a name with a value and use that name instead of the
actual constant value. This provides greater readability because the name
can be descriptive of the constant. Constant declarations also provide greater
maintainability because the constant value need only be changed in one
place, the constant declaration, not every place it is used in the code.

The format of the constant declaration is:

CONST name= value {,name= value) ... ;

name

The name associated with the constant value.

value

The constant value. It can be an integer, character, boolean, ordinal,
floating-point, pointer, string, or constant expression. Rules for forming
these values are given under Constants and under Constant Expressions
in chapter 2.

You can write several constant declarations, each declaring a single
constant, or a single declaration declaring several constants where each
name = value combination is separated by a comma.

Type is not specified in a constant declaration. The type of the constant is
the same as the type of the value assigned to it.

If used, an expression is evaluated during compilation. The expression itself
can contain other constants.

Revision A Declarations 3-1

CUN~TANT JmCLAHATION

Examples:

Rather than repeat the value of pi throughout a program, you can use a
constant declaration to assign a descriptive name (in this case, PI) to the
value and use that name in subsequent expressions and operations. The
constant declaration is:

CONST pi = 3.1415927;

The following example shows a constant declaration containing several
different types.

CONST
first= 1,
Last = 80,
hex = OA8(16),
bit_pattern = 10110101(2),
fp_number = 1.2E3,
stop_character = '.',
continue = TRUE,
message= 'end of Line',
Last_pointer = NIL,
Length Last - first,

I result = (1 * 2) DIV 3;

Each constant has the same type as the value assigned to it. For example, A
FIRST and LAST are integer types, as is LENGTH, which is the result of an W
expression containing integers. Notice that the value of HEX begins with a 0
(zero) because integers must begin with a digit.

3-2 CYBIL Language Definition Revision B

VARIABLE DECLARATION

Variable Declaration

A variable is an element within a program whose value can change during
execution. The name of the variable stays the same; it is only the value
contained in the variable that changes. To use a variable, you must declare
it.

The format for a variable declaration is:

VAR name {,name) ... : ff attributes]) type(:= initial_value)
{,name {,name) ... : ff attributes]) type{:= initial_value)) ... ;t

name

The name of the variable. Specifying more than one name indicates that
all of the named variables will have the characteristics that follow
(attributes, type, and initial_ value).

attributes

One or more of the following attributes. If more than one are specified,
they are separated by commas.

READ

Access attribute specifying that the variable is a read-only variable;
the compiler checks to ensure that the value of the variable is not
changed. If READ is specified, an initial value is required.

XDCL

Scope attribute specifying that the variable is declared in this module
but can be referenced from another module.

XREF

Scope attribute specifying that the variable is declared in another
module but can be referenced from this module.

#GATEtt

Scope attribute that allows the variable to be accessed by a procedure
at a higher ring level. If #GATE is specified, the XDCL attribute is
required also.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a variable declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

tt This attribute is not supported on variations of CYBIL available on other
operating systems.

Revision A Declarations 3-3

VARIABLE DECLARATION

STATIC

Storage attribute specifying that storage space for the variable is
allocated at load time and remains when control exits from the block.
Static storage is assumed when any attributes are specified.

section_ name

Storage attribute specifying the name of the section in which the
variable resides. A variable in a read-only section is protected by
hardware, as opposed to software. The section name and its read/write
attributes must be declared using the section declaration (discussed
later in this chapter).

Attributes are described in more detail later in this chapter.

The attributes parameter is optional. If omitted, CYBIL assumes the
variable can be read and written; can be referenced only within the block
where it is created; and, unless it is declared at the outermost level of a
module, is automatic (that is, storage for the variable is allocated only
during execution of the block in which the variable is declared.)

type

Data type defining the values that the variable can have. Only values
within this data type are allowed. Types are described in chapter 4.

initial_ value

Initial value assigned to the variable. It can be a constant expression, an
indefinite value constructor (described under Initialization later in this
chapter), or a pointer to a global procedure. Only a static variable can be
assigned an initial value. Initialization is discussed later in this chapter.

This parameter is optional. If omitted, the variable is undefined and filled
with the loader's preset value.

Any variable referenced in a program must be declared with the VAR
declaration. A variable can be declared only once at each block level
although it can be redefined in another block or in a contained (nested) block.

The type assigned to a variable defines the range of values it can take on
and also the operations, functions, and procedures that can use it. CYBIL
checks to ensure that the operations performed on variables are compatible
with their types.

3-4 CYBIL Language Definition Revision B

VARIABLE DECLARATION

Examples:

The following declarations define a variable named SCORES that can be
any integer number, a variable named STATUS that can be either of the
boolean values FALSE or TRUE, and two variables named ALP HAI and
ALPHA2 that can be characters.

VAR scores
VAR status
VAR a Lpha1
VAR alphaZ

integer;
boolean;
char;
char;

The declarations for the two character type variables, ALPHAI and
ALPHA2, could be combined as follows:

VAR alpha1, alphaZ : char;

To combine all of the variables in one declaration, you could use:

VAR scores : integer,
status : boolean,
alpha1, alphaZ : char;

Revision A Declarations 3-5

VARIABLE DECLARATION

Attributes

Attributes control three characteristics of a variable:

Access - whether the variable can be both read and written

Scope - where within the program the variable can be referenced

Storage - when and where the variable is stored

Access

The access attribute that you can specify is READ. A variable declared with
the READ attribute can only be read. It must be initialized in the declaration
and cannot be assigned another value later. It is called a read-only variable.
If the READ attribute is omitted, CYBIL assumes the variable can be both
read and written (changed).

The READ attribute is enforced by software; that is, the compiler checks to
ensure that the value of a variable does not change. The READ attribute
alone does not mean that the variable is actually in a read-only section.t To
do that, you must specify the name of a read-only section as declared in a
section declaration (described later in this chapter).

A variable with the READ attribute specified is assumed to be static. (For A
further information on static variables, refer to Storage later in this chapter.) W
A read-only variable can be used as an actual parameter in a procedure call
only if the corresponding formal parameter is a value parameter; that is, a
read-only variable can be passed to a procedure only ifthe procedure makes
no attempt to assign a value to it. (Procedure parameters are described in
chapter 7.)

A read-only variable is similar to a constant, but can't always be used in the
same places. For example, the initial value that can be assigned to a variable
(as described earlier in this chapter) must be a constant expression, an
indefinite value constructor, or a pointer to a global procedure. In this case,
even though a read-only variable has a constant value, it cannot be used in
place of a constant expression. Also, as mentioned in chapter 2, you cannot
reference a substring of a constant.You can, however, reference a substring
of a variable and, thus, a read-only variable. There are other differences
similar to these. The descriptions in this manual state explicitly whether
constants and/ or variables can be used.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

3-6 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Examples:

In this example the variable DEBUG is a read-only variable set to the
constant value of TRUE. NUMBER can be read and written.

VAR
debug : [READ] boolean .- TRUE,
number : integer;

The following example illustrates a difference between constants and read
only variables. To declare a string type, you must specify the length of the
string in parentheses following its name. As defined in chapter 4, the length
must be a positive, integer constant expression.

CONST
string_size_1 = S;

VAR
string_size_2 : [READ] integer := S,
string1 string <string_size_1),
string2 : string (string_size_2);

The declaration of STRING I is valid; the length of the string is 5 which is
the value of the constant STRING_SIZE_l. However, STRING2 is invalid;
even though STRING_SIZE_2 does not change in value, it is still a variable
and cannot be used in place of a constant expression.

Scope

The scope attributes define the part or parts of a module to which a variable
declaration applies. If no scope attributes are included in the declaration, the
scope of a variable is the block in which it is declared. A variable declared in
an outermost block applies to that block and all the blocks it contains.
However, a variable declared even at the outermost level of a module cannot
be used outside of that module. The scope attributes, XDCL and XREF, are
used to extend the scope of a variable so that it can be shared among
modules.

To use the same variable in different modules, you must specify the XDCL
and XREF attributes. The XDCL attribute indicates that the variable being
declared can be referenced from other modules. The XREF attribute indicates
that the variable is declared in another module. When the loader loads
modules, it resolves variable declarations so that each XDCL variable is
allocated static storage and the XREF variable shares the same space. This
is known as satisfying externals. The loader issues an error if an XREF
variable does not have a corresponding XDCL variable. In one compilation
unit or group of units that will be combined for execution, a specific variable
can have only one declaration that contains the XDCL attribute.

Revision A Declarations 3-7

VARIABLE DECLARATION

Declarations for a shared variable must match except for initialization. A
variable declared with the XDCL attribute can be initialized and have
different values assigned during program execution. A variable declared
with the XREF attribute cannot be initialized but can be assigned values.

The #GATE attribute is an extension of the XDCL attribute. It allows the
variable to be accessed by a procedure at a higher ring level.t If #GATE is
specified, XDCL must also be specified or a compilation error occurs.

If any attributes are declared, the variable is assumed to be static in storage.
If no attributes are declared, the variable is assumed to be automatic, unless
it is declared at the outermost level of the module. (A variable declared at the
outermost level is always static.)

Example:

Assume the following two modules have been compiled. When the loader
loads the resulting object modules and satisfies externals, it allocates storage
to FLAG, an XDCL variable, and initializes it to FALSE. When the loader
finds the XREF variable FLAG in module TWO, it assigns the same storage.
Thus, references to FLAG from either module refer to the same storage
location.

MODULE one:

VAR
flag : [XDCLJ boolean .- FALSE;

MOD END one;

MODULE two;

VAR
flag : [XREFJ boolean;

MODEND two;

t A ring level is a hardware feature. Rings provide hardware protection in
that an unauthorized program cannot access anything at a lower ring
level. The ring levels you have access to are determined by your site
administrator. For further information on rings, refer to the SCL Object
Code Management manual and volume II of the virtual state hardware
reference manual.

3-8 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Storage

The storage attributes determine when storage is allocated and where
storage is allocated.

When Storage Is Allocated

There are two methods of allocating storage for variables: automatic and
static. For an automatic variable, storage is allocated when the block
containing the variable's declaration begins execution. Storage is released
when execution of the block ends. If the block is entered again, storage is
allocated again, and so on. When storage is released, the value of the
variable is lost.

For a static variable, storage is allocated (and initialized, if that parameter is
included) only once, at load time. Storage remains allocated throughout
execution of the module. However, even though storage remains allocated, a
static variable still follows normal scope rules. It can be accessed only within
the block in which it is declared. A reference to a static variable from an
outer block is an error even though storage for the static variable is still
allocated.

The ability to declare a static variable is important, for example, in the case
where an XDCL variable is referenced by a procedure before the procedure
that declares the variable is executed. Because an XDCL variable is static
(refer to Scope earlier in this chapter for further information), it is allocated
space and is initialized immediately at load time; therefore, it is available to
be referenced before execution of the procedure that actually declares it as
XDCL.

A variable can be declared static explicitly with the STATIC attribute. It is
assumed to be static implicitly ifit is in the outermost level of a module or if
it has any other attributes declared. In all other cases, CYBIL assumes the
variable is automatic. Only a static variable can be initialized.

Revision A Declarations 3.9

VARIABLE DECLARATION

The period between the time storage for a variable is allocated and the time
that storage is released is called the lifetime of the variable. It is defined in
terms of modules and blocks. The lifetime of an automatic variable is the
execution of the block in which it is declared. The lifetime of a static variable
is the execution of the entire module. An attempt to reference a variable
beyond its lifetime causes an error and unpredictable results.

The lifetime of a formal parameter in a procedure is the lifetime of the
procedure in which it is a part. Storage space for the parameter is allocated
when the procedure is called and released when the procedure finishes
executing.

The lifetime of a pointer must be less than or equal to the lifetime of the data
to which it is pointing.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage and the release of storage. A variable allocated by an automatic
pointer (using the ALLOCATE statement) must be explicitly freed (using the
FREE statement) before the block is left, or the space will not be released by
the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the
previous pointer and the variable referenced by the pointer cannot be
reclaimed.

Example:

In this example, the variables COUNTER and FLAG will exist during
execution of the entire module; however, they can be accessed only within
program MAIN.

PROGRAM main;
VAR

counter : [STATIC] integer := 0,
flag : [STATIC] boolean;

PROCEND main;

3-10 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Where Storage Is Allocated

You can optionally specify that storage for a variable be allocated in a
particular section. A section is a storage area that can hold variables sharing
common access attributes, that is, read-only variables or read/write
variables. You define the section and its access attributes yourself using the
section declaration (discussed later in this chapter).

If you define a section with the section READ attribute, you define a read
only section in the hardware.t Any variable declared with that section's
name as an attribute will reside in that read-only section. When you specify
the name of a read-only section in a variable declaration, you must also
include the variable access attribute READ.

Example:

This example defines a read-only section named NUMBERS. The variable
INPUT _NUMBER is a read-only variable that also resides in the section
NUMBERS. In the variable declaration, the READ attribute causes the
compiler to check that the variable is not written; the read-only section name,
NUMBERS, causes the hardware to ensure that the variable is not written.

SECTION
numbers : READ;

VAR
input_number : [READ, numbers] integer .- 100;

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision A Declarations 3-11

VARIABLE DECLARATION

Initialization

An initial value can be assigned to a variable only if it is a static variable.
The value can be a constant expression, an indefinite value constructor
(described next), or a pointer to a global procedure. The value must be of the
proper type and in the proper range. If no initial value is specified, the value
of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is used to
assign values to the structured types sets, arrays, and records. It allows you
to specify several values rather than just one. Values listed in a value
constructor are assigned in order (except for sets, which have no order). The
types of the values must match the types of the components in the structure
to which they are being assigned. An indefinite value constructor has the
form

[value {,value) ...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The phrase

REP number OF value

which indicates the specified value is repeated the specified number of
times.

• The asterisk character(*), which indicates the element in the
corresponding position is uninitialized.

The REP phrase can be used only in arrays. The asterisk can be used only in
arrays and records. For further information, refer to the descriptions of
arrays and records in chapter 4.

If an initial value is assigned to a string variable and the variable is longer
than the initial value, spaces are appended on the right of the initial value to
fill the field. If the initial value is longer than the variable, the initial value is
truncated on the right to fit the variable.

In a variant record, fields are initialized in order until a special variable
called the tag field name is initialized. The tag field name is then used to A
determine the variant for the remaining field or fields in the record, and they W
are likewise initialized in order.

Depending on the attributes defined in the variable declaration, initialization
is required, prohibited, or optional. Table 3-1 shows the initialization possible A
for various attributes. W

3-12 CYBIL Language Definition Revision A

e

e

VARIABLE DECLARATION

Table 3-1. Attributes and Initialization

Attributes Specifiedt

None

READ

READ,STATIC

READ,XDCL

READ,STATIC,XDCL

READ,section_name

READ,XDCL,section_name

XREF

XREF,READ

XREF,STATIC

XREF,READ,STATIC

STATIC

XDCL

XDCL,STATIC

section_name

section_name,XDCL

Initialization

Optional if static variable; prohibited
if automatic variable.

Required.

Required.

Required.

Required.

Required.

Required.

Prohibited.

Prohibited.

Prohibited.

Prohibited.

Optional.

Optional.

Optional.

Optional.

Optional.

t The static attribute is assumed if any attributes are specified.

Revision A Declarations 3-13

VARIABLE DECLARATION

Example:

The variables declared in this example are inside program MAIN.
Therefore, they are automatic unless declared with an attribute. TOTAL is
automatic and as such cannot be initialized. COUNT is declared static
and can be initialized. ALPHA and BETA are also static and can be
initialized because they have other attributes declared.

PROGRAM main;

VAR
total : integer,
count : [STATIC] integer := O,
alpha, beta: [XDCL,READJ char.- 'p';

PROCEND main;

3-14 CYBIL Language Definition Revision A

TYPE DECLARATION

9-rype Declaration

The standard data types that are defined in CYBIL are described in
chapter 4. Any of these can be declared as a valid type within a variable

Aieclaration. The type declaration allows you to define a new data type
9i.nd give it a name, or redefine an existing type with a new name. Then

that name can be used as a valid type within a variable declaration.

The format of the type declaration is:

TYPE name= type {,name= type) ... ;

name

Name to be given to the new type.

type

Any of the standard types defined by CYBIL or another user-defined type.

Once you define a type, you can use it to define yet another type. Thus, you
can build a very complex type that can be referred to by a single name.

The type declaration is evaluated at compilation time. It does not occupy
storage space during execution.

-Example:

In this example, INT is defined as a type consisting of all the integers; it is
just a shortened name for a standard type. LETTERS is defined as a type
consisting of the characters A through Z only; this is a selective subset of the
standard type characters. DEVICES is an ordinal type that in tum is used to
define EQ_ TABLE, a type consisting of an array of 10 elements. Any
element in the type EQ_ TABLE can have one of the ordinal values specified
in DEVICES.

TYPE
int = integer,
Letters= 'a' .. 'z',
devices = (Lp512, dk844, dk885, nt679),
eq_tabLe =array [1 •• 10] of devices;

VAR
i : int,
a Lpha : Letters,
table_1 : eq_tabLe,
status_tabLe: array [1 .• 3] of eq_table;

Revision A Declarations 3· 15

TYPE DECLARATION

All of the variables in the preceding example could have been declared
strictly using variable declarations, as in:

VAR
i integer,
alpha : 'a' •• 'z',
table_1 : array [1 •• 10] of (Lp512, dk844, dk885, nt679),
status_table : array [1 •• 3] of array [1 •• 10] of

(Lp512, dk844, dk885, nt679);

However, it obviously becomes quite cumbersome to declare a complex
structure using only standard types. Defining your own types lets you avoid
needless repetition and the increased possibility of errors. In addition, it
makes code easier to maintain; to add a new device, you need add it only in
the type declaration, not in every variable declaration that contains devices.

3-16 CYBIL Language Definition Revision A

SECTION DECLARATION

Section Declaration

A section is an optional working storage area that contains variables with
common access attributes. Including the section name in a variable
declaration causes the variable to reside in that section.

The format of the section declaration is:

SECTION name {,name) ... : attribute
{,name {,name) ... : attribute) ... ;

name

Name of the section.

attribute

The keyword READ or WRITE.

A section defined with the READ attribute is considered a read-only section.t
A variable declared with that section's name will reside in read-only
memory. In this case, the variable access attribute READ must also be
included in the variable declaration. The section name causes hardware
protection; the READ attribute causes compiler checking.

A section defined with the WRITE attribute contains variables that can be
both read and written.

The initialization of variables declared with a section name depends on their
attributes, as shown in table 3-1. Variables declared with a section name are
static.

The SCL Object Code Management manual gives further information on
sections regarding the object module format expected as input by the loader
and the object library generator.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision A Declarations 3-1 7

SECTION DBCLARATION

Example:

Two sections are defined in this example: LETTERS is a read-only section
and NUMBERS is a read/write section. The variable CONTROL_LETIER
is a read-only variable that resides in LETTERS. The READ attribute is A
required because of the read-only section name. UPDATE_NUMBER is a •
variable that can be read or written, and resides in the section NUMBERS.
In this example, it is also declared as an XDCL variable but this is not
required.

SECTION
Letters
numbers

VAR

READ,
WRITE;

control_Letter : [READ,LettersJ char := 'p',
update_number : [XDCL,humbers] integer;

3-18 CYBIL Language Definition Revision A

9 .. Types 4

This chapter describes the standard types predefined by CYBIL. e Using Types .. 4-2

Equivalent Types ... 4-2

Basic Types ... 4-3

Scalar Types ... 4-3
Floating-Point Type ... 4-11
Cell Type ... 4-12
Pointer Types ... 4-13

Structured Types ... 4-19

Strings _ 4-19
Arrays .. 4-24
Records ... 4-27
Sets ... 4-37

Storage Types .. 4-39

Sequences ... 4-39
Heaps .. 4-40

Adaptable Types ... 4-41

Adaptable Strings ... 4-41
Adaptable Arrays ... 4-42
Adaptable Records .. 4-43
Adaptable Sequences .. 4-45
Adaptable Heaps .. 4-46

9 Types 4

There are many standard types defined within CYBIL. A variable can be
assigned to (that is, an element of) any of these types. The type defines
characteristics of the variable and what operations can be performed using
the variable. In general, operations involving nonequivalent types are not
allowed; one type cannot be used where another type is expected. Exceptions
are noted in the descriptions that follow.

In this chapter, types are grouped into three major categories: basic types,
structured types, and storage types.

Basic types are the most elementary. They can stand alone but are also used
to build the more complex structures. The basic types are:

• Scalar types (integer, character, boolean, ordinal, and subrange)

• Floating-point types (real)

• Cell types

• Pointer types

Structured types are made from combinations of the basic types. The
structured types are:

• Strings

• Arrays

• Records

• Sets

Storage types hold groups of components of various types. The storage types
are:

• Heaps

• Sequences

Most types, when they are declared, have a fixed size. Strings, arrays,
records, sequences, and heaps can also be declared with an adaptable size
that is not fixed until execution. For this reason, they are sometimes called
adaptable types. Adaptable strings, arrays, records, sequences, and heaps
are discussed at the end of this chapter.

Revision A Types 4-1

USING TYPES

Using Types
Types are used as parameters in two kinds of declarations: the variable
declaration (to associate a type with a variable name) and the type
declaration (to associate a type with a new type name). Both declarations are
described in detail in chapter 3, but their basic formats are:

VAR name: {[attributes]} type { := initial_value };

TYPE name= type;

The description of each type shown in this chapter will give the keyword and
any additional information necessary to specify that type as a parameter.
They replace the generic word "type" in the variable and type declarations.
For example, the keyword to specify an integer type is INTEGER. The
variable declaration would be:

VAR name: {[attributes]} INTEGER { := initial_value };

The type declaration would be:

TYPE name= INTEGER;

Equivalent Types
As mentioned earlier in this chapter, operations involving nonequivalent
types are not allowed. Two types can be equivalent, though, even if they
don't appear to be identical. For example, two arrays can have different
expressions defining their sizes, but the expressions may yield the same
value. Rules for determining whether types are equivalent are given in the
following descriptions of the types.

Adaptable types and bound variant record types (described under Records
later in this chapter) actually define classes of related types that Vary by a
characteristic, such as size. Adaptable type variables, bound variant record
type variables, and pointers to both types are fixed explicitly at execution
time. These types are said to be potentially equivalent to any of the types to
which they can adapt. That is, during compilation, references to adaptable
types and bound variant record types are allowed wherever there is a
reference to one of the types to which they can adapt. However, further type
checking is done during execution when each type is fixed (assigned to a
specific type). It is the current type of an adaptable or bound variant record
type that determines what operations are valid for it at any given time.

4-2 CYBIL Language Definition Revision A

BASIC TYPES

9 Basic Types

Scalar Types

A All scalar types have an order; that is, for every element of a scalar type you
W can find its predecessor and successor.

Scalar types are made up of five types:

• Integer

• Character

• Boolean

• Ordinal

• Subrange

Revision A Types 4-3

I

INTEGER

Integer

The keyword used to specify an integer type is:

INTEGER

Integers range in value from -(263-1) through 263_1.

In general, the subrange type should be used rather than the integer type.
This allows the compiler to perform more rigorous type-checking and reduces
the amount of storage needed to hold the value.

The following operations are permitted on integers: assignment, addition,
subtraction, multiplication, division (both quotient and remainder), all
relational operations, and set membership. Refer to Operators in chapter 5
for further information on operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type. The $CHAR function, also described in
chapter 6, converts an integer value from 0 through 255 to a character
according to its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which consists
of elements of the type integer. The variable declaration declares variable I to
be of type INT, which is the integer type just declared. Also declared as a
variable is NUMBERS, which is explicitly of integer type. Because
NUMBERS is static, it can be initialized.

TYPE
int = integer;

VAR
i : int,
numbers : [STATIC] integer := 100,

4-4 CYBIL Language Definition Revision B

CHARACTER

Character

The keyword used to specify a character type is:

CHAR

An element of the character type can be any of the characters in the ASCII
character set defined in appendix B. It is always a single character; more
than one character is considered a string. (A string is a structured type that
is discussed later in this chapter. A string of length 1 can sometimes be used
as a character. Refer to Substrings under Strings later in this chapter.)

The following operations are permitted on characters: assignment, all
relational operations, and set membership. A character can be assigned to
and compared to a string of length 1. Refer to Operators in chapter 5 for
further information on operations and to Strings later in this chapter for
further information on string assignment.

The $INTEGER function described in chapter 6 converts a character value to
an integer value based on its position in the ASCII collating sequence. The
$CHAR function, also in chapter 6, converts an integer value between 0 and
255 to a character in the ASCII collating sequence.

Example:

This example shows the definition of a new type named LETTERS, which
consists of elements of the type character. The variable declaration declares
variable ALPHA to be of type LETTERS, which is type character; it is static
and initialized to the character J. The variable IDS is explicitly declared to
be of type character.

TYPE
letters = char;

VAR
alpha [STATIC] letters :=
ids : char;

Revision A

, . ,
J ,

Types 4-5

BOOLEAN

Boolean

The keyword used to specify a boolean type is:

BOOLEAN

An element of the boolean type can have one of two values: FALSE or
TRUE. As with other scalar types, boolean values are ordered. Their order is
FALSE, TRUE. FALSE is always less than TRUE.

You get a boolean value by performing a relational operation on integers,
characters, ordinals, floating-point numbers, or boolean values.

The following operations are permitted on boolean values: assignment, all
relational operations, set membership, and boolean sum, product, difference,
exclusive OR, and negation. Refer to Operators in chapter 5 for further
information on operations.

The $INTEGER function described in chapter 6 converts a boolean value to
an integer value. Zero (0) is returned for FALSE; one (1) is returned for
TRUE.

Example:

This example shows the definition of a new type named ST A TUS, which
consists of the boolean values FALSE and TRUE. The variable declaration
declares variable CONTINUE to be of type STATUS; that is, it can be either
FALSE or TRUE. The variable DEBUG is explicitly declared to be boolean
and, because it is a read-only variable and therefore static, it can be
initialized.

TYPE
status = boolean;

VAR
continue : status,
debug : [READ] boolean := TRUE;

4-6 CYBIL Language Definition Revision A

ORDINAL

Ordinal

The ordinal type differs from the other scalar types in that you, the user,
define the elements within the type and their order. The term ordinal refers
to the list of elements you define; the term ordinal name refers to an
individual element within the ordinal.

The format used to specify an ordinal is:

(name, name (,name ... })

name
Name of an element within the ordinal. There must be at least two ordinal
names.

The order is given in ascending order from left to right.

Each ordinal name can be used in just one ordinal type. If a name is used in
more than one ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of
programs. They allow you to use meaningful names within a program rather
than, for example, map the names to a set of integers that are then used in
the program to represent the names.

The following operations are permitted on ordinals: assignment, all
relational operations, and set membership.

Two ordinal types are equivalent if they are defined in terms of the same
ordinal type names.

The $INTEGER function described in chapter 6 converts an ordinal value
(name) to an integer value based on its position within the defined ordinal.

Revision A Types 4-7

ORDINAL

Examples:

In this example, the type declaration defines a type named COLORS, which
is an ordinal that consists of the elements RED, GREEN, and BLUE. The
variable PRIMARY_ COLORS is of COLORS type and therefore has the
same elements. The variable WORK_ DAYS explicitly declares the ordinal
consisting of elements MONDAY through FRIDAY.

TYPE
colors = (red, green, blue);

VAR
I primary_colors : colors,

work_days : Cmonday, tuesday, wednesday, thursday,
friday);

In the ordinal type COLORS, the following relationships hold:

RED<GREEN

RED<BLUE

GREEN<BLUE

You can find the predecessor and successor of every element of an ordinal.
You can also map each element onto an integer using the $INTEGER
function (described in chapter 6.) For example, $INTEGER(RED) = O; this is e
the first element of the ordinal.

The type declaration

TYPE
primary_colors = (red, green, blue),
hot_colors = (red, orange, yellow);

is in error because the name RED appears in two ordinal definitions.

4-8 CYBIL Language Definition Revision B

SUBRANGE

Subrange

A subrange is not really a new type but a specified range of values within an
existing scalar type. A variable defined by a subrange can take on only the
values between and including the specified lower and upper bounds.

The format used to specify a subrange is:

lowerbound .. upperbound

lowerbound

Scalar expression specifying the lower bound of the subrange.

upperbound

Scalar expression specifying the upper bound of the subrange.

The lower bound must be less than or equal to the upper bound. Both bounds
must be of the same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a
subrange completely encompasses its own type, it is said to be an improper
subrange type. For example, the subrange

FALSE..TRUE

is of type boolean and also contains every element of type boolean. It is
equivalent to specifying the type itself. An improper subrange type is always
equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper bounds.

Subranges allow for additional error checking. Compilation options are
available that cause the compiler to check assignments during program
execution and issue an error if it finds a variable not within range. (Range
checking is available as an option on the compiler call command and as a
compiler directive. They are both described in chapter 8.) In addition,
subranges improve readability. Because a subrange defines the valid range
of values for a variable, it is more meaningful to the user for documentation
and maintenance.

The operations permitted on a subrange are the same as those permitted on
its type (the type of its lower and upper bound).

Revision A Types 4-9

I

SUBRANGE

Example:

This example shows the definition of a new type named LETTERS, which
consists of the characters A through Z only. It also defines an ordinal named
COLORS consisting of the colors listed. The variable declaration declares
variable SCORES to consist of the numbers 0 through 100. The lower and
upper bounds are of integer type, so the subrange is also an integer type.
STATUS is a subrange of boolean values, which could have been declared
simply as BOOLEAN. HOT_ COLORS is a subrange of the ordinal type
COLORS. It consists of the colors RED, ORANGE, and YELLOW.

TYPE
Letters= 'a' •• 'z',
colors (red, orange, yellow, white, green, blue);

VAR
scores= 0 •. 100,
status= FALSE •• TRUE,
hot_colors = red •• yellow;

4-10 CYBIL Language Definition Revision B

REAL

Floating-Point Type

The floating-point type defines real numbers.

e Real

The keyword used to specify a real type is:

REAL

Real numbers range in value from 4.8*10-1234 through 5.2*101232.

The following operations are permitted on real types: assignment, addition,
subtraction, multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type.

Revision A Types 4-11

CELL

Cell Type

The cell type represents the smallest storage location that is directly
addressable by a pointer. On NOS/VE, a cell is an 8-bit byte within a 64-bit
memory word.

The keyword used for specifying a cell type is:

CELL

Operations permitted on a cell type are assignment and comparison for
equality and inequality.

4-12 CYBIL Language Definition Revision A

POINTER
Pointer Types

A pointer represents the location of a value rather than the value itself.
When you reference a pointer, you indirectly reference the object to which it
is pointing.

The format for specifying a pointer type is:

"type

type

Type to which the pointer can point. It can be any defined type. With the
exception of a pointer to cell type (discussed later in this chapter), the
pointer can point only to objects of the type specified.

For example,

VAR integer_pointer = "integer;

defines a pointer named INTEGER_ POINTER that can point only to
integers.

INTEGER_POINTER
J any

~~___..,'l~L~~i_n_te_g_e_r~~~

The format for specifying the object of a pointer (that is, what the pointer
points to) is:

pointer _name·

pointer _name

The name you gave the pointer in the variable declaration.

This preceding notation is called a pointer reference; it refers to the object to
which pointer_name points. It can also be referred to as a dereference. For
example,

integer_pointer •

identifies a location in memory; it is the location to which INTEGER_
POINTER points.

INTEGER_POINTER A

INTEGER_POINTER l any
~~___..,•~L~~i_n_te_g_e_r~--

Revision B Types 4-13 9

POINn~R

You can initialize or assign a value to the object of a pointer as you would
any other variable; that is:

pointer_name" :=value;

This assigns the specified value to the object that the pointer points to. For e
example,

integer_pointer " := 5;

assigns the integer value 5 to the location INTEGER_ POINTER points to:

INTEGER POINTER A

INTEGER POINTER ·!.____5 ______,

You can assign the object of a pointer to a variable in the same way:

variable:= pointer_name ";

This takes the value of what pointer_name points to and assigns it to the
variable. For example,

i := integer_pointer ";

assigns to I the contents of what INTEGER_POINTER points to, that is, 5.

If a pointer reference is to another pointer type variable, meaning that the
pointer points to a pointer that in turn points to a variable, you can specify
the variable with the form:

pointer _name""

For example, the declarations

TYPE
integer_pointer = "integer;

VAR
pointer_2: "integer_pointer;

can be pictured conceptually as follows:

POINTER 2 A POINTER r A

POINTER 2 I a pointer I I any
__ ..., • ., INTEGER _PO INTER >---....... .__ __ i_n_te_g_e_r _ ___.

e 4-14 CYBIL Language Definition Revision B

POINTER

POINTER_2 points to a pointer of type INTEGER_POINTER. INTEGER_
POINTER points to integers. A reference to POINTER_2 " refers to the
location of the pointer that in turn points to an integer. A reference to
POINTER_2 "" refers to the location of the integer. e The value assigned to a pointer can be:

• The pointer constant NIL.

• The pointer symbol " followed by a variable of the type to which the
pointer can point.

• A pointer variable.

• A pointer-valued function.

NIL is the value of a pointer variable without an object; the variable is not
currently assigned to any location. It can be assigned to or compared with
any pointer of any type.

Pointers allow you to manipulate storage dynamically. Using pointers, you
can create and destroy variables while a program is executing. Memory is
allocated when the variable is created and released when it is destroyed.
Pointers also allow you to reference the variables without giving each a
unique name.

A pointer variable can be a component of a structured type as well as a valid
parameter in a function. A function can return a pointer variable as a value.

Permissible operations on pointers are assignment and comparison for
equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records, sequences,
and heaps) provide the only method for accessing objects of these types other
than through formal parameters of a procedure. In particular, pointers to
adaptable types and pointers to bound variant records are used to access
adaptable variables and bound variant records whose types have been fixed
by an ALLOCATE, PUSH, or NEXT statement (described in chapter 5).

Pointers are equivalent if they are defined in terms of equivalent types. A
pointer to a fixed type (as opposed to an adaptable type) can be assigned and
compared to a pointer to an adaptable type or bound variant record if the
adaptable type is potentially equivalent to the fixed type. (Refer to
Equivalent Types earlier in this chapter for further information on
potentially equivalent types.)

Revision B Types 4-15

I

POINTER

Example:

The following example shows the declaration and manipulation of two
pointer type variables. Comments appear to the right.

TYPE ptr = ftinteger;

VAR i, j, k : integer,
p1 ptr,

b1, b2 : boolean;
ALLOCATE p1;

ALLOCATE p2;

p1ft := 10;
p2ft := p1;

:= p1ft;

k := p2ftft;

b1 := j = k;
b2 := p1ft = p2ftft;

p1 := NIL;
k := p1ft;

IF p2 = NIL THEN
k := k + 1

!FEND;
p1 := ft(i + j + 2 * k>;

4-16 CYBIL Language Definition

PTR is a type that can contain pointers to
integers.

Pl is a variable that can contain pointers to
integers.
P2 is a variable that can contain pointers to
Pl (that is, pointers that point to pointers to
integers). It could have been written as
P2 : A A INTEGER.

Allocates space for an integer (because that
is what Pl points to) and sets Pl to point to
that space.
Allocates space for a pointer that points to
an integer and sets P2 to point to that
pointer.
The space pointed to by Pl is set to 10.
The space pointed to by P2 is set to the
value of the pointer Pl. A
The integer variable J is set to what Pl W
points to: the integer 10.
The integer variable K is set to the object of
the pointer that P2 points to. (Think of P2 ""
as "P2 points to a pointer; that pointer
points to an object." You are assigning that
object to K.) P2 points to Pl, which points to
the integer 10.
J and K are both 10. Bl is TRUE.
Pl points to an integer. P2 points to the
pointer (Pl) that points to the same integer.
Their values are the same and B2 is TRUE.
Pl no longer points to anything.
The statement is in error because Pl does
not point to anything.
A valid statement. K is not incremented
because P2 still points to Pl.

An invalid statement. The location of an
expression cannot be found.

Revision A

POINTER TO CELL

e Pointer to Cell

A pointer to cell type can take on values of any type.

The format for declaring a pointer to a cell is:

'CELL

A variable declared simply as a pointer type variable can take on as values
only pointers to a single type, which is specified in the pointer's declaration.
A variable declared as a pointer to cell variable has no such restrictions. It
can take on values of any type. Also, any fixed or bound variant pointer
variable can assume a value of pointer to cell.

Permissible operations on a pointer to a cell are assignment and comparison
for equality and inequality. In addition, a pointer to a cell can be assigned to
any pointer to a fixed or bound variant type. But the pointer to the fixed or
bound variant type cannot have as its value a pointer to a variable that is
not a cell type or, furthermore, whose type is not equivalent to the type to
which the target of the assignment points. A pointer to a cell can be the
target of assignment of any pointer to a fixed or bound variant type.

Revision A Types 4-17

.RELATIVE POINTE.R

Relative Pointer

Relative pointer types represent relative locations of components within an
object with respect to the beginning of the object.

The format for specifying a relative pointer is:

REL { (parent_name)] 'component_ type

parent_name

Name of the variable that contains the components being designated by
relative pointers. The variable can be a string, array, record, heap, or
sequence type (either fixed or adaptable). If omitted, the default heap is
used.

component_ type

Type of the component to which the relative pointer will point.

Relative pointers are generated using the standard function #REL (described
in chapter 6). A relative pointer cannot be used to access data directly.
Instead, the relative pointer must be converted to a direct pointer using the
standard function #PTR (also described in chapter 6). The direct pointer can
then be used to access the data.

Relative pointers have three major differences from the other pointers
discussed in this chapter:

• Relative pointers may need less space than other pointers.

• A linked list or array of relative pointers (or some similar organization)
within a parent type variable is still correct ifthe entire variable is
assigned to another variable of the same parent type.

• Relative pointers are independent of the base address of the parent type
variable.

Operations permitted on a relative pointer are assignment, comparison for
equality and inequality, and the #PTR function. Relative pointers can be
assigned and compared if they are of equivalent relative pointer types.
Relative pointer types are equivalent if they are defined in terms of
equivalent parent types and equivalent component types.

4-18 CYBIL Language Definition .Revision A

STRINGS

9 Structured Types

Structured types are combinations of the basic types already described in
this chapter (integer, character, boolean, ordinal, subrange, real, pointer, and

A cell). Even the structured types discussed here can be combined with each
• other but they are still essentially groups of the basic types. The structured

types described in this section are:

• Strings

• Arrays

• Records

• Sets

Strings

A string is one or more characters that can be identified and referenced as a
whole by one name.

The format used to specify a string type is:

STRING (length)

length

A positive integer constant expression from 1 through 65,535.

If an initial value is specified in the variable declaration for a string, it can
be:

• A string constant.

• The name of a string constant declared with a constant declaration.

• A constant expression (as described in chapter 2).

A string cannot be packed. Two string types are equivalent if they have the
same length.

The following operations are permitted on string types: assignment and
comparison (all six relational operations). For further information, refer to
Assigning and Comparing String Elements later in this chapter.

Revision A Types 4-19

STRINGS

Substrings

You can reference a part of a string (this is called a substring) or a single
character of a string.

The format for referencing a substring or single character is:

name (position{, length))

name

Name of the string.

position

Position within the string of the first character of the substring. (The
position of the first character of the string is always 1.) It must be a
positive integer expression less than or equal to the length of the string
plus one; that is,

I 1 .S position .s string length + 1

I

If the string length plus one is specified, the substring is an empty string.

length

Number of characters in the substring. It must be a non-negative integer
expression or* (the asterisk character). If* is specified, the substring
consists of the character specified by the position parameter and all
characters following it in the string. If 0 is specified, the substring is an
empty string. If the parameter is omitted, a length of 1 is assumed.

4-20 CYBIL Language Definition Revision B

STRINGS

A substring reference in the form

name(position)

is a substring of length 1, a single character. In this form, it can be used
anywhere a character expression is allowed. It can be:

• Compared with a character.

• Tested for membership in a set of characters.

• Used as the initial and/or final value in a FOR statement that is
controlled by a character variable.

• Used as a value in a CASE statement.

• Used as an argument in the standard functions $INTEGER, SUCC, and
PRED.

• Assigned to a character variable.

• Used as an actual parameter to a formal parameter of type character.

• Used as an index value corresponding to a character type index in an
array.

A string constant, even if it is declared with a name in a CONST declaration,
is not a variable. Therefore, substrings cannot be referenced in a string
constant.

Revision A Types 4-21

STRINGS

Examples:

If a string variable LETTERS is declared and initialized as follows

VAR letters : string (6) ;; 'abcdef';

the following substring references are valid:

Substring Comments

LETTERS(!) Refers to 'A'.

LETTERS(6) Refers to 'F'.

LETTERS(l,6) Refers to the entire string.

LETTERS(l,*) Refers to the entire string.

LETTERS(2,5) Refers to 'BCDEF'.

LETTERS(2, *) Refers to 'BCDEF'.

LETTERS(2,0) Refers to an empty string".

LETTERS(7, *) Refers to an empty string".

LETTERS(O), LETTERS(8) and LETTERS(8,0) are illegal.

If a pointer variable is declared and initialized as follows

VAR string_ptr : ftstring (6) ;; ftletters;

then STRING_PTR points to the string LETTERS and the pointer variable
STRING_ PTR • can be used to make substring references just like the
variable LETTERS.

Substring

STRING_PTR"(1)

STRING_PTR"(6)

STRING_PTR"(l,6)

STRING_PTR"(2,*)

STRING_PTR"(2,0)

Comments

Refers to 'A'.

Refers to 'F'.

Refers to the entire string.

Refers to 'BCDEF'.

Refers to an empty string ".

4-22 CYBIL Language Definition Revision A

STRINGS

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a substring,
string variable, or character variable. A character is treated as a string of
length 1.

If you are assigning a value that is longer than the substring or variable to
which it is being assigned, the value is truncated on the right. If you are
assigning a value that is shorter, spaces are appended on the right to fill the
field. This method is also used for comparing strings of different lengths.

If a substring is being assigned to a substring of the same variable, the fields
cannot overlap or the results are undefined.

The concatentation operation, CAT, cannot be used with string variables.

Example:

Assume the string variable DAY is declared and initialized as follows:

VAR
day: string (6) := 'monday';

The following assignments can be made:

short :=day C1,3>;
empty :=day (1,0);

SHORT is assigned the string 'MON'. EMPTY is assigned a null string.

Revision B Types 4-23

ARRAYS

Arrays

An array in CYBIL is a collection of data of the same type. You can access
an array as a whole, using a single name, or you can access its elements
individually.

The format used for specifying an array type is:

{PACKED) ARRAY [subscript_bounds] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the array is unpacked; that is,
the elements are mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an addressable
memory location; that is, it starts on a word boundary or, in the case of a
packed array in a record, on a byte boundary.) For further information on
how data is stored in memory, refer to appendix D, Data Representation
in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

subscript_ bounds

Value that specifies the size of the array and what values you can use to
refer to individual elements. The bounds can be any scalar type or
subrange of a scalar type, except REAL; the bounds is often a subrange of
integers.

type

Type of the elements within the array. The type can be any defined type,
including another array, except an adaptable type (that is, an adaptable
string, array, or record). All elements must be of the same type.

Elements of a packed array cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures.

Two array types are equivalent if they have the same packing attribute,
equivalent subscript bounds, and equivalent component types.

The only operation permitted on an array type is assignment.

4-24 CYBIL Language Definition Revision A

ARRAYS

Initializing Elements

An array can be initialized using an indefinite value constructor. An
indefinite value constuctor is a list of values assigned in order to the
elements of an array. The first value in the list is assigned to the first
element, and so on. The number of values in the value constructor must be
the same as the number of elements in the array. The type of the values must
match the type of the elements in the array. An indefinite value constructor
has the form

[value (,value) ...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The phrase

REP number OF value

which indicates the specified value is repeated the specified number of
times.

e· The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual elements can
be assigned during execution using the assignment statement (described in
chapter 5).

Referencing Elements

The array name alone refers to the entire structure. The format for referring
to an individual element of an array is:

array_ name[subscript]

subscript

A scalar expression within the range and of the type specified in the
subscript_ bounds field of the array declaration. This subscript specifies a
particular element.

Revision A Types 4-25

ARRAYS

Examples:

This example shows the definition of a type named POS _TABLE, which is
an array of 10 elements that can take on the values defined in POSITION.
The variable declaration declares variable NUMBERS to be an array of five
elements initialized to the values 1, 2, 3, 4, and 5 where 1 is the value of the
first element, and so on. LETTERS is an array of 26 elements that can be
any characters. BIG_ TABLE is a 100-element array, each element of which
is an array of 10 elements.

TYPE
position= (boi, asis, eoi),
pos_table =array [1 •• 10] of position;

VAR
i : integer := S,
numbers: array [1 •• SJ of integer := [1,2,3,4,SJ,
Letters= array ['a' •• 'z'J of char,
big_table =array [1 •• 100] of pos_table;

The declaration of BIG .. TABLE is equivalent to:

VAR big_table =array [1 •• 100] of array [1 •• 10J of position;

Individual elements can be referenced using the following statements.

numbers [i J

Letters ['b'J .- 'B';

big_table [13J[10J := asis;

This reference is the same as
NUMBERS[5]; it refers to the fifth
element of the array NUMBERS.

This statement sets the second element of
the array LETTERS to the uppercase
character R

This statement sets the tenth element of
the thirteenth array to ASIS.

The following example shows the declaration and initialization of a two
dimensional array named DATA_ TABLE. All of the components of the third
element of the array (which is an array itself) are set to zero. Notice that the
third element of the last array, DATA_ TABLE [4][3], is uninitialized.

TYPE
innerarray =array [1 •• SJ of integer,
twodim =array [1 •• 4] of innerarray;

VAR
data table twodim := [[S, -10, 2, 6, 3 J,

[4, 11, 19, -3, 6J,
[rep S of OJ,
[3, -9, *, 4, 15] J;

4-26 CYBIL Language Definition Revision B

RECORDS

e Records

Records are collections of data that can be of different types. You can access
a record as a whole using a single name, or you can access elements e individually.

A record has a fixed number of components, usually called fields, each with
its own unique name. Different fields are used to indicate different data types
or purposes.

There are two types of records: invariant records and variant records.
Invariant records consist of fields that don't change in size or type. Variant
records can contain fields that vary depending on the value of a key variable.
Formats used for specifying both kinds of records are given later in this
chapter.

Operations permitted on record types are assignment and, for invariant
records only, comparison for equality and inequality. The invariant records
being compared cannot contain arrays as fields.

Invariant Records

An invariant record consists of fields that do not vary in size or type once
they have been declared. They are called fixed or invariant fields.

The format used for specifying an invariant record is:

(PACKED} RECORD
field_name: (ALIGNED If offset MOD base]}} type
{,fiel.d_name: (ALIGNED ([offset MOD base]}} type} ...

RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If one of the fields is a structured type (such as another record), the
elements of that type are not packed automatically. The structured type
itself must be declared packed.

field_name

Name identifying a particular field. The name must be unique within the
record. Outside of the record declaration, it can be redefined.

Revision A Types 4-27

RECORDS

ALIGNED

Optional alignment parameter. If specified, it can appear alone or with an
offset, in the form:

ALIGNED [offset MOD base}

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment later in
this chapter.

offset MOD base

Optional offset to be used in conjunction with the ALIGNED parameter.
This offset causes the field to be mapped to a particular hardware address
relative to the specified base and offset. It can be a particular word or a
particular byte within a word. Base is evaluated first to find the word
boundary; offset is then evaluated to determine the number of bytes offset
within that word. Filler is created if necessary to ensure that the field
begins on the specified word or byte.

offset

Byte offset within the word specified by base. It must be an integer
constant less than base.

base

Word boundary. It must be an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type

Any defined type, including another record, but not an adaptable type.

Elements of a packed record cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures unless they are aligned.

The only operations possible on whole invariant records are assignment and
comparison. A record can be assigned to another record if they are both of
the same type. A record can also be compared to another record for equality
or inequality if they are both of the same type. Invariant record types are the
same if they have the same packing attributes, the same number of fields,
and corresponding fields have the same field names, same alignment
attribute, and equivalent types. e

4-28 CYBIL Language Definition Revision A

RECORDS

Example:

This example shows the definition of two new types, both records. The record
named DATE has three fields that can hold, respectively, DAY, MONTH,

A and YEAR. The record named RECEIPTS appears to contain two fields,
9 NAME and PAYMENT; but PAYMENT is itself a record consisting of the

three fields in DATE, just described. Initialization of fields within records is
discussed under Initializing Elements later in this chapter.

TYPE
date = RECORD

day : 1 •• 31,
month : string (4),
year : 1900 •• 2100,

REC END,

receipts = RECORD
name : string (40),
payment : date,

REC END;

Variant Records

A A variant record contains fields that may vary in size, type, or number
9 depending on the value of an optional tag field. These different fields are

called variant fields or simply variants.

The format used for specifying a variant record is:

{PACKED) {BOUND) RECORD
{fixed_field_name: {ALIGNED if offset MOD base]l) type) ... t
CASE {tag_field_name:) tag_ field_ type OF
= tag_field_ value=

variant_field
{= tag _field_ value=

variant _fiekl) ...
CASEND

REC END

et When more than one fixed field is specified, they must be separated by
commas.

Revision A Types 4-29

RECORDS

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of that
type are not packed automatically. The structured type itself must be
declared packed.

BOUND

Optional parameter indicating that this is a bound variant record. If
specified, the tag_field_name parameter is required. Additional
information on bound variant records follows the parameter descriptions.

fixed _field _name

The name of a fixed field (one that does not vary in size), as described
under Invariant Records earlier in this chapter. The name must be unique
within the record. Outside of the record declaration, it can be redefined.
There can be zero or more fixed fields.

ALIGNED

Optional alignment parameter; the same as that for an invariant record.
If specified, it can appear alone or with an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment later in
this chapter.

4-30 CYBIL Language Definition Revision A

RECORDS

offset MOD base

Optional offset to be used in conjunction with the ALIGNED parameter,
the same as that for an invariant record. This offset causes the field to be
mapped to a particular hardware address relative to the specified base
and offset. It can be a particular word or a particular byte within a word.
Base is evaluated first to find the word boundary; offset is then evaluated
to determine the number of bytes offset within that word. Filler is created
if necessary to ensure that the field begins on the specified word or byte.

offset

Byte offset within the word specified by base. It must be an integer
constant less than base.

base

Word boundary. It must be an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type

Any defined type, including another record, but not an adaptable type.

tag _field_ name

Optional parameter specifying the name of the variable that determines
the variant. The current value of this variable determines which of the
variant fields that follow will actually be used. If omitted, the variant that
had the last assignment made to one of its fields is used. This parameter
is required if the record is a bound variant record (BOUND is specified).
Additional information is given following the parameter descriptions.

tag_field_ type

Any scalar type. This type defines the values that the tag_field_ value can
have.

tag_ field_ value

A constant scalar expression or subrange. It must be one of the possible
values that can be assigned to the variable specified by tag_field_name.
It must be of the type and within the range specified by tag_field_ type.
Specifying a subrange has the same effect as listing each value
separately.

variant_ field

Zero or more fixed fields of the same form as that shown in the second
line of this format. This field exists only if the current value of tag_field_
name is the same as that in the tag_field_ value associated with the
variant_field. The last field can be a variant itself.

Revision A Types 4-31

RECORDS

The variant fields must follow all invariant (fixed) fields in the record. The
field following the reserved word CASE is called the tag_field_name. The
tag_field_name can take on different values during execution. When its
value matches one of the values specified in a tag_field_ value, the variants
associated with that tag_field_ value are used. Variants themselves consists
of zero or more fixed fields optionally followed by another variant. If the last
field is itself a variant, it can have another CASE clause, tag_field_name,
and so on.

The tag_field_name is an optional field. When it is omitted, no storage is
assigned for the tag field. If the record has no tag field, you choose a variant
by making an assignment to a subfield within a variant. The variant
containing that subfield becomes the currently active variant. In a variant
record without a tag field, all fields in a new active variant become undefined
except the subfield that was just assigned. An attempt to access a variant
field that is not currently active produces undefined results.

Space for a variant record is allocated using the largest possible variant.

Variant record types are equivalent if they have the same packing attribute,
their fixed fields are equivalent (as defined for invariant record types), they
have the same tag field names, their tag field types are equivalent, their tag
field values are the same, and their corresponding variant fields are
equivalent.

A bound variant record is specified by including the BOUND parameter; the
tag_field_name is also required. A bound variant record type can be used
only to define pointers for bound variant record types (that is, bound variant
pointers). A variable of this type is always allocated in a sequence or heap, or
in the run-time stack managed by the system.

When allocating a bound variant record, you must specify the tag field
values that select the variation of the record. Only the specified space is
allocated. The ALLOCATE statement in this case returns a bound variant
pointer.

If a formal parameter of a procedure is a variant record type, the actual
parameter cannot be a bound variant record type.

A record cannot be assigned to a variable of bound variant record type.

Bound variant record types are equivalent if they are defined in terms of
equivalent, unbound records. A bound variant record type is never equivalent
to a variant record type. e

4-32 CYBIL Language Definition Revision A

RECORDS

Example:

This example defines a type named SHAPE, which becomes the type of the
tag field, in this case a variable named S. When S is equal to TRIANGLE,
the record containing fields SIZE, INCLINATION, ANGLEl, and ANGLE2
is used as if it were the only record available. When the value of S changes,
the record variant being used changes too.

TYPE
shape= (triangle, rectangle, circle),
angle= -180 .. 180,
figure = RECORD

Revision A

x,
y,
area : real,

CASE s : shape OF
= triangle =

size : real,
inclination,
angle1,
angle2 : angle,

= rectangle =
side1,
side2 : integer,
skew,
angle3 : angle,
circle=
diameter : integer,

CASEND,
RECEND;

Types 4-33

RECORDS

Initializing Elements

A record can be initialized using an indefinite value constructor. An
indefinite value constructor is a list of values assigned in order to the fields
of a record. The first value in the list is assigned to the first field, or first
element in a field, and so on. The type of the values must match the type of
the elements in the field. An indefinite value constructor has the form

[value {,value) ...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual fields can be
assigned during execution using the assignment statement (described in
chapter 5).

Example:

The variable BIRTH_DA Y, in this example, is a record with the fields e
described in the record type named DATE. It is initialized using an indefinite
value constructor to the 24th day of August, 1950.

TYPE
date :;; RECORD

VAR

day : 1 •• 31,
month : string (4),
year : 1900 •• 2100,

REC END;

birth_day : date ::;;[24, AUG, 1950J;

4-34 CYBIL Language Definition Revision B

RECORDS

Referencing Elements

The record name alone refers to the entire structure. The format for accessing
a field in a record is: e record_name.field_name {.sub_field_name) ...

record_ name

Name of the record as declared in the variable declaration.

field_name

Name of the field to be accessed. If the field is an array, a reference to an
individual element can also be included using the form:

field_name[subscript]

sub_field_name

Optional field name. This parameter is used if the field previously
specified is itself a structured type, for example, another record. If the
contained field is an array, a reference to an individual element can be
included using the form:

sub _field_ name[subscript] e Example:

The variable PROFILE is a record with the fields described in the record
type STATS. In this example, PROFILE is initialized with the values in the
indefinite value constructor in the variable declaration.

TYPE stats = RECORD
age : 6 •• 66,
married : boolean,
date : RECORD

RECEND;

day : 1 •. 31,
month : 1 •• 12,
year : 80 •• 90,

RECEND,

VAR profile : stats := [23,FALSE,[3,S,82JJ;

The following references can be made to fields. e profile.age
profile.married
profile.date.day
profile.date.month
profile.date.year

Revision A

This field contains 23.
This field contains FALSE.
This field contains 3.
This field contains 5.
This field contains 82.

Types 4-35

RECORDS

Alignment

Unpacked records and their fields are always aligned (that is, directly
addressable). Even if it is packed, a record itself is always aligned (that is,
the first field is directly addressable) unless it is an unaligned field within
another packed structure. Fields in a packed record, however, are not aligned
unless the ALIGNED attribute is explicitly included. Aligning the first field
of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can always be
passed as reference (that is, VAR) parameters in programs, functions, and
procedures. Packed records must be aligned to be valid as reference
parameters. Packed, unaligned records cannot be used.

4-36 CYBIL Language Definition Revision A

SETS

Sets

A set is a collection of elements that, unlike arrays and records, is always
operated on as a single unit. Individual elements are never referenced. e The format used to specify a set type is:

SET OF scalar _type

scalar_ type

Type of all the elements that will be within the set. It can be a scalar type
or a subrange of a scalar type.

All members of a set must be of the same type. Members within a set have no
specific order; that is, order has no effect in any of the operations performed
on sets.

Set types are equivalent if their elements have equivalent types.

Permissible operations on sets are assignment, intersection, union,
difference, symmetric difference, negation, inclusion, identity, and
membership. Refer to Operators in chapter 5 for further information on set
operations. The SUCC and PRED functions are not defined for set types.

The difference(-) or symmetric difference (XOR) of two identical sets is the
empty set. The empty set is contained in any set. For a given set, the
complement of the empty set, -[], is the full set.

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor or a set
value constructor. An indefinite value constructor can be used only for
initialization; a set value constructor can be used for both initialization and
assignment during program execution.

An indefinite value constructor is a list of values assigned to the set. The
type of the values must match the type of the set. An indefinite value
constructor has the form:

[value {,value) ...]

value

A constant expression or another indefinite value constructor (that is,
another list).

Revision A Types 4-37

I

I

I

SETS

A set value constructor constructs a set through explicit assignment. A set
value constructor has the form:

$name [{ value {,value} ... }]

name

Name of the set type. The dollar sign ($)must precede the name to
indicate a set value constructor.

value

An expression of the same type as that specified for the set. When used in
initialization, only constants or constant expressions are valid. The empty
set can be specified by [].

A set value constructor can be used wherever an expression can be used.

Example:

This example shows the declaration of a variable named ODD that is a type
of a set of integers from 0 through 10. It is initialized with an indefinite value
constructor assigning the integers 1, 3, and 5 to the set. The variable
VOWELS is a set that can contain any of the letters A through Z. It is
assigned the letters A, E, I, 0, and U using a set value constructor. It
constructs a set of type C, which contains the specified letters; then that set
is assigned to the set VOWELS. The variables LIST_ 1 and LIST_ 2 are sets e
that can contain any characters. LIST _1 is assigned, using a set value
constructor, the letters X, Y, and Z. LIST _2 is assigned the complement of X,
Y, and Z, that is, a set consisting of every character except the letters X, Y,
andZ.

TYPE
a= set of 0 •• 10,
c =set of 'a' •• 'z',
ch = set of char;

VAR
odd : a := [1, 3, SJ,
vowels : c,
List_1, List_2 : ch;

vowels:= Sc['a', 'e', 'i', 'o', 'u'J;
List_1 := Sch['x', 'y', 'z'J;
List_2 := -$ch['x', 'y', 'z'J;

4-38 CYBIL Language Definition Revision B

SEQUENCES

Storage Types

Storage types represent structures to which variables can be added, deleted,
and referenced under program control. (The statements used to access the
storage types are described under Storage Management Statements in
chapter 5.) There are two storage types:

• Sequences

• Heaps

Sequences

A sequence type is a storage structure whose components are referenced
sequentially using pointers. These pointers are constructed by the NEXT and
RESET statements (described in chapter 5).

The format used for specifying a sequence type is:

SEQ ({REP number OF) type {,{REP number of} type) ...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the predefined
types integer, character, boolean, real, or cell; or a structured type using
the preceding types.

The phrase "REP number OF type" can be repeated as many times as
desired. It specifies that storage must be available to hold the indicated
number of occurrences of the named types simultaneously. The types that
are actually stored in a sequence do not have to be the same as the types
specified in the declaration, but adequate space must have been allocated to
hold those types in the declaration. In other words, if a sequence is declared
with several repetitions of integer type, the space to hold these integers has
to be available, but it might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP phrases
and corresponding phrases are equivalent. Two REP phrases are equivalent
if they have the same number of repetitions of equivalent types.

Assignment to another sequence is the only operation permitted on
sequences.

Revision A Types 4-39

HEAPS

Heaps

A heap type is a storage structure whose components are allocated explicitly
by the ALLOCATE statement and released by the FREE and RESET
statements (described in chapter 5). They are referenced by pointers
constructed by the ALLOCATE statement.

The format used for specifying a heap type is:

HEAP ({REP number OF) type {,{REP number of} type) ...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the predefined
types integer, character, boolean, real, or cell; or a structured type using
the preceding types.

The phrase "REP number OF type" can be repeated as many times as
desired. It specifies that storage must be available to hold the indicated
number of occurrences of the named types simultaneously. The types that
are actually stored in a heap do not have to be the same as the types A
specified in the declaration, but adequate space must have been allocated to W
hold those types in the declaration. In other words, if a heap is declared with
several repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Heap types are equivalent if they have the same number of REP phrases and
corresponding phrases are equivalent. Two REP phrases are equivalent if
they have the same number of repetitions of equivalent types.

The default heap can be managed with the ALLOCATE and FREE
statements in the same way as a user-defined heap. For further information,
refer to the descriptions of these statements in chapter 5.

4-40 CYBIL Language Definition Revision A

ADAPTABLE STRINGS

Adaptable Types

An adaptable type is a type that has indefinite size or bounds; it adapts to
data of the same type but of different sizes and bounds. The types described
thus far in this chapter are fixed types. An adaptable type differs from a
fixed type in that the storage required for a fixed type is constant and can be
determined before execution. Storage for an adaptable type is determined
during program execution.

An adaptable type can be a string, array, record, sequence, or heap. An
adaptable type can be used to define formal parameters in a procedure and
adapatable pointers. Pointers are the mechanism used for referencing
adaptable variables.

The size of an adaptable type must be fixed during execution. This can be
done in one of three ways:

• If the adaptable type is a formal parameter to a procedure or function, the
size is fixed by the actual parameters when the procedure or function is
called. You can determine the length of an actual parameter string using
the STRLENGTH function, and the bounds of an actual parameter array
using the UPPERBOUND and LOWERBOUND functions. (For further
information, refer to the description of the appropriate function in chapter
6.)

• An adaptable pointer type on the left side of an assignment statement is
fixed by the assignment operation. It can be assigned any pointer whose
current type is one of the types that the adaptable type can take on.

• An adaptable type can be fixed explicitly using the storage management
statements (described in chapter 5).

An adaptable type is declared with an asterisk taking the place of the size or
bounds normally found in the type or variable declaration.

Adaptable Strings

The format used for specifying an adaptable string is:

STRING (* (<= length})

length

Optional parameter specifying the maximum length of the adaptable
string. If omitted, 65,535 characters is assumed.

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

Revision B Types 4·41

I

ADAPTABLE ARRAYS

Adaptable Arrays

The format used for specifying an adaptable array is:

(PACKED) ARRAY [(lower _bound ..)*] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the array is unpacked; that is,
the elements are mapped in storage to optimize access time rather than to
conserve space. (The array itself is always mapped into an addressable
memory location.) For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

lower _bound

A constant integer expression that specifies the lower bound of the
adaptable array. This parameter is optional, but its use is encouraged.
Omission of this parameter (only the * appears) indicates it is an
adaptable bound of type integer.

type

Type of the elements within the array. The type can be any defined type
except an adaptable type (that is, an adaptable string, array, record,
sequence, or heap). All elements must be of the same type.

Only one dimension can be adaptable in an array and that dimension must
be the outermost (first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable array
can adapt to any array with the same packing attribute, equivalent subscript
bounds, and equivalent component types. If a lower bound is specified in the
adaptable array declaration, both arrays must also have the same lower
bound.

Adaptable array types are equivalent if they have the same packing
attributes and equivalent component types, and if their corresponding array
and component subscript bounds are equivalent. Two subscript bounds that
contain asterisks only are always equivalent. Two subscript bounds that a
contain identical lower bounds are equivalent. W'

4-42 CYBIL Language Definition Revision A

ADAPTABLE RECORDS

Adaptable Records

An adaptable record contains zero or more fixed fields followed by one
adaptable field that is a field of an adaptable type. e The format used for specifying an adaptable record is:

{PACKED) RECORD
{fixedJield_name: {ALIGNED {[offset MOD base]}) type) ... t
adaptable_field_name: {ALIGNED {[offset MOD base]})

adaptable_ type
REC END

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly at
the expense of access time. If omitted, the record is unpacked; that is, the
fields are mapped in storage to optimize access time rather than to
conserve space. For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of that
type are not packed automatically. The structured type itself must be
declared packed.

fixed_{ ield _name

Name identifying a particular fixed field. The name must be unique
within the record.

ALIGNED

Optional alignment parameter. If specified, it can appear alone, or with
an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary to
facilitate rapid access to the field. This may negate some of the effect of
packing the record. For further information, refer to Alignment earlier in
this chapter.

t If more than one fixed (nonadaptable) field is specified, they must be
separated by commas.

Revision A Types 4-43

ADAPTABLE RECORDS

[offset MOD base]

Optional offset to be used in conjunction with the ALIGNED parameter.
This offset causes the field to be mapped to a particular hardware address
relative to the specified base and offset. Filler is created if necessary to
ensure that the field begins on the specified addressable unit.

offset

An integer constant. Offset must be less than base.

base

An integer constant that must be divisible by 8. For automatic
variables, the base can only be 8.

type

Any defined type, including another record, but not an adaptable type.

adaptable_ field_ name

Name identifying the adaptable field.

adaptable_ type

An adaptable type.

An adaptable record can adapt to any record whose types are the same
except for the last field. That last field must be one to which the adaptable e
field can adapt.

Two adaptable record types are equivalent if they have the same packing
attributes, the same alignment, the same number of fields, and
corresponding fields with identical names and equivalent types.

4.44 CYBIL Language Definition Revision A

ADAPTABLE SEQUENCES

Adaptable Sequences

The format used for specifying an adaptable sequence is:

SEQ(*)

An adaptable sequence can adapt to a sequence of any size.

Two adaptable sequence types are always equivalent.

Revision A Types 4-45

ADAPTABLE HEAPS

Adaptable Heaps

The format used for specifying an adaptable heap is:

HEAP(*)

An adaptable heap can adapt to a heap of any size.

Two adaptable heap types are always equivalent.

4-46 CYBIL Language Definition Revision A

9 Expressions and Statements 5

This chapter describes expressions and statements that can be used within a
CYBIL program, procedure, or function.

Expressions . 5-1

Operands .. 5-1
Operators .. 5-2

Statements ... 5-13

Assignment Statement. .. 5-13
Structured Statements ... 5-16

BEGIN Statement .. 5-16
FOR Statement ... 5-17
REPEAT Statement .. 5-20
WHILE Statement .. 5-21

Control Statements .. 5-23
IF Statement ... 5-24
CASE Statement ... 5-26
CYCLE Statement .. 5-28
EXIT Statement .. 5-30
RETURN Statement .. 5-31

Storage Management Statements 5-32
RESET Statement .. 5-35
NEXT Statement ... 5-37
ALLOCATE Statement ... 5-38
FREE Statement ... 5-39
PUSH Statement ... 5-40

9 Expressions and Statements 5

e
Expressions

Expressions are made up of operands and operators. Operators act on
operands to produce new values. (Constant expressions are evaluated to
provide values for constants. Refer also to Constant Expressions in chapter
2.)

In general, operations involving nonequivalent types are not allowed; one
type cannot be used where another type is expected. Exceptions are noted in
the following descriptions.

Operands

Operands hold or represent the values to be used during evaluation of an
expression. An operand can be a variable, constant, name of a constant, set
value constructor, function reference (either standard function or user
defined function), pointer to a procedure name, pointer to a variable, or
another expression enclosed in parentheses.

The value of a variable being used as an operand is the last value assigned
to it. A constant name is replaced by the constant value associated with it in
the constant declaration.

A function reference causes the function to be executed; the value returned by
the function takes the place of the function reference in the expression.

Revision A Expressions and Statements 5-1

OPERATORS

Operators

Operators cause an action to be performed on one operand or a pair of
operands. Many of the operators can be used only on basic types; they will be
noted in their individual descriptions. Some operators can be used on sets.
Although they are discussed in the individual descriptions that follow, there
is also a separate description in this chapter on set operations.

An operation on a variable or component of a variable that has an undefined
value will produce an undefined result.

There are five kinds of operators, many of which are identified by reserved
symbols. They are listed here in the order in which they are evaluated from
highest to lowest precedence.

• Negation operator (NOT)

• Multiplication operators (* , DIV, I , MOD, and AND)

• Sign operators (+ and -)

• Addition operators (+ , - , OR, and XOR)

• Relational operators (< , <= , > , >= , = , < > , and IN)

In the relational operators that consist of two symbols (that is,<=,>=,
and<>), the symbols cannot be separated by a space or by any other
character; they must appear together.

When an expression contains two or more operators of the same precedence,
operations are performed from left to right. The only way to explicitly change
the order of evaluation is to use parentheses. Parentheses indicate that the
expression inside them should be evaluated first.

Negation Operator

The negation operator, NOT, applies only to boolean operands.

NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set intersection(*),
integer quotient division (DIV), real quotient division(/), remainder division e
(MOD), and the logical AND operation (AND). Table 5-1 shows the
multiplication operators, the permissible types of their operands, and the
type of result they produce.

5-2 CYBIL Language Definition Revision A

OPERATORS

Table 5-1. Multiplication Operators

Type of Type of
Operator Operation Operands Result

Multiplication Integer or subrange Integer
of integer

Real Real

* Set intersection Set of a scalar type Set of the
same type

DIV Integer quotientt Integer or subrange Integer
of integer

I Real quotient Real Real

MOD Remaindertt Integer or subrange Integer
of integer

AND Logical ANDttt Boolean Boolean

t Integer quotient refers to the whole number that results from a
division operation. The remainder is ignored. A more formal definition
is: for positive integers a, b, and n,

aDIVb= n

where n is the largest integer such that b * n <= a.

For one or two negative integers,

(-a) DIV b =(a) DIV (-b) = - (a DIV b) and
(-a) DIV (-b) =a DIV b

tt Remainder refers to the remainder of a division operation. A more
formal definition is:

a MOD b =a - (a DIV b) * b

ttt TRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE
FALSE AND FALSE= FALSE
FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never
evaluated.

Revision A Expressions and Statements 5-3

OPERATORS

Sign Operators

The sign operators perform the identity operation(+) and sign inversion and
set complement operation(-). Table 5-2 shows the sign operators, the
permissible types of their operands, and the type of result they produce.

Table 5-2. Sign Operators

Type of Type of
Operator Operation Operands Result

+ Identity Integer Integer
(indicates a
positive operand) Real Real

Sign inversion Integer Integer
(indicates a
negative operand) Real Real

Set complement Set of a Set of the
scalar type same type

Addition Operators

The addition operators perform addition and set union(+), subtraction,
boolean difference, and set difference(-), the logical OR operation (OR), and
the exclusive OR operation (XOR). Table 5-3 shows the addition operators,
the permissible types of their operands, and the type of result they produce.

5-4 CYBIL Language Definition Revision A

OPERATORS

e Table 5-3. Addition Operators

e

Operator Operation

+

OR

XOR

t

tt

Addition

Set union

Subtraction

Boolean
differencet

Set difference

Logical ORtt

Exclusive ORttt

Symmetric
difference

TRUE - TRUE =FALSE
TRUE - FALSE =TRUE
FALSE - TRUE = FALSE
FALSE - FALSE = FALSE

TRUE OR TRUE =TRUE
TRUE OR FALSE= TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE= FALSE

Type of Type of
Operands Result

Integer of subrange Integer
of integer

Set of a Set of the
scalar type same type

Integer or subrange Integer
of integer

Real Real

Boolean Boolean

Set of a Set of the
scalar type same type

Boolean Boolean

Boolean Boolean

Set of a Set of the
scalar type same type

When the first operand is TRUE, the second operand is never
evaluated.

ttt TRUE XOR TRUE= FALSE
TRUE XOR FALSE= TRUE
FALSE XOR TRUE =TRUE
FALSE XOR FALSE =FALSE

Revision A Expressions and Statements 5-5

OPERATORS

Relational Operators

The relational operators(<,<=,>,>=,=,<>, and IN) test for the truth or falsity
of th~se given conditions: less than (<), less than or equal to or subset of a set
(<=), greater than(>), greater than or equal to or a superset of a set(>=), equal
to or set identity(=), not equal to or set inequality(<>), and set membership
(IN).

Because relational operators are valid on so many different types, some
special points about each type are noted next. Following these comments,
table 5-4 lists the relational operators and the permissible types of their
operands; they always prpduce a boolean type result.

Comparison of Scalar Types

The comparison operators (< , <= , > , >= , = , and < >) are allowed only
between operands of the same scalar type or between a substring of length 1
and a character.

For integer type operands, the relationships all have their usual meaning.

For character type operands, each character is essentially mapped to its
corresponding integer value according to the ASCII collating sequence. (This
is the same operation performed by the $INTEGER function described in A
chapter 6.) The operands and relational operators are then evaluated using 9
the characters' integer values.

For boolean type operands, FALSE is always considered to be less than
TRUE.

For ordinal type operands, operands are equal only if they are the same
value; otherwise, they are not equal. For the other relational operators, each
ordinal is essentially mapped to the corresponding integer value of its
position in the ordinal list where it is defined. (This is the same operation
performed by the $INTEGER function described in chapter 6.) The operands
and relational operators are then evaluated using the ordinals' integer
values. For an example, refer to the discussion of ordinal types under Scalar
Types in chapter 4.

Operands that are a subrange of a scalar type can be compared with
operands of the same type, including another subrange of the same type.

5-6 CYBIL Language Definition Revision A

OPERATORS

Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real type.

e Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or
potentially equivalent types. (For further information on equivalent types,
refer to Equivalent Types in chapter 4.) For potentially equivalent types, one
or both of the pointers can be pointers to adaptable or bound variant types.
The current type of such a pointer must be equivalent to the type of the
pointer with which it is being compared; ifit is not, the operation is
undefined.

Pointers can be compared for equality and inequality only. Two pointers are
equal if they designate the same variable or if they both have the value NIL.
A pointer of any type can be compared with the value NIL. Two pointers to a
procedure are equal if they designate the same declaration of a procedure.

Comparison of Relative Pointers

Two relative pointers can be compared only if they are of equivalent types.
Two relative pointers are equal if they can be converted to equal pointers
using the #PTR function (described in chapter 6).

Comparison of String Types

All of the comparison operators are valid between operands that are strings.
If the lengths of the two string operands are unequal, spaces are appended to
the right of the shorter string to fill the field.

Strings are compared character by character from left to right; that is, each
character from one string is compared with the character in the
corresponding position of the second string. Each character is compared
using the same method as for operands of character type; the integer value of
the character, when mapped to the ASCII collating sequence, is used.

Revision A Expressions and Statements 5-7

OPERATORS

Comparison of Sets and Set Membership

Comparison operators have slightly different meanings for sets than for
other types. The only comparison operators valid for sets are: = (meaning
identical to), < > (meaning different from), <= (meaning the left operand is
contained in the right operand), and >= (meaning the left operand contains
the right operand). These operators are valid between two sets of the same
type. Their exact meanings are detailed later in this chapter under Set
Operators.

The other relational operator for sets is IN. A specified operand is IN a set if
that operand is a member of the set. The set must be the same type or a
subrange of the same type as the operand. The operand can be a subrange of
the type of the set.

Comparison of Other Types

Invariant records can be compared for equality and inequality only. Two
equivalent records are equal if their corresponding fields are equal.

The following types cannot be compared:

• Arrays or structures that contain an array as a component or field.

• Variant records.

• Sequences.

• Heaps.

• Records that contain a field of one of the preceding types.

However, pointers to these types can be compared.

5-8 CYBIL Language Definition Revision A

OPERATORS

e Table 5-4. Relational Operators

Type of Type of
Operator Operation Left Operand Right Operand

e < Less than Any scalar The same
type scalar type

<= Less than or A string A string of
equal to the same

length

> Greater than

>= Greater than or A string A character
equal to of length It

Equal to

<> Not equal to A character A string
of length It

IN Set membership Any scalar A set of the
type same type

A string A set of

e of length It character type

Equality (also A set of any A set of the
called identity) scalar type same type

<> Inequality

<= Is contained in

<= Contains

Equality A non variant The same type
<> Inequality record type

containing
no arrays

Any pointer The same type
type or the or the value
value NIL NIL

9t The string of length I has the form

STRING(position)

where the length is implied. The form

e STRING(position,I)

is not valid in this case.

Revision A Expressions and Statements 5.9

OPERATORS

Set Operators

The set operators have already been mentioned briefly in the preceding
sections on multiplication, sign, addition, and relational operators. This
section discusses all of them and details how they are used with sets.

The set operators perform assignment, union(+), intersection(*), difference
(-),symmetric difference (XOR), negation(-), identity or equality(=),
inequality(<>), inclusion(<=), containment(>=), and membership (IN).

Assignment is discussed under Sets in chapter 4. The next five operations
(union, intersection, difference, symmetric difference, and negation) all
produce results that are sets. They are described in table 5-5. The remaining
operations (identity, inequality, inclusion, containment, and membership)
produce boolean results. They are described in table 5-6.

The relational operations described in table 5-6 take place only after any
operations described in table 5-5 have been performed.

e 5-10 CYBIL Language Definition Revision B

OPERATOl{S

Table 5-5. Operations That Produce Sets

Operator Operation

*

e XOR

Union

Difference

Intersection

Negation
(complement)

Symmetric
difference

Description of Operation

The resulting set consists of all members of
both sets. The result of A+ B is all elements of
sets A and B.

The resulting set consists of the members in
the lefthand set that are not in the righthand
set. The result of A - B is the elements of A
that are not in B. This operation differs from
negation in that two operands are present.

The resulting set consists of the members that
are in both sets. The result of A * B is all
elements that are in both A and B.

The resulting set consists of the members of the
set's type that are not in the set. The result of
-A is all elements of A's type that are not in A.
This operation differs from the difference
operation in that only one operand is present.

The resulting set consists of the members of
either but not both sets. The result of A XOR B
is all elements in A or B that are not common
to both A and B.

Expressions and Statements 5-11

OPERATORS

Table 5-6. Operations That Produce Boolean Results

Operator Operation

>

<=

>=

IN

Equality
(identity)

Inequality

Inclusion

Containment

Membership

Description of Operation

The resulting value is TRUE if every member
of one set is present in the other set and vice e
versa. A= B is TRUE if every element of A is in
B and every element of B is in A. It is also
TRUE if A and B are both empty sets. In any
other case, it is FALSE.

The resulting value is TRUE if not every
member of one set is a member of the other set.
A<> Bis TRUE if A= Bis FALSE.

The resulting value is TRUE if every member
of the lefthand set is also a member of the
righthand set. A<= Bis TRUE if every element
of A is in B. It is also TRUE if A is an empty
set. In all other cases, it is FALSE.

The resulting value is TRUE if every member
of the righthand set is also a member of the
lefthand set. A >= B is TRUE if every element
of Bis in A (that is, B <=A).

This operation differs somewhat from the
others in that it can specify as an operand a
value or a variable rather than a set. It has the
form

scalar IN set

where scalar can be a value (including a
subrange) or a variable. The resulting value is
TRUE if the scalar is of the same type as the
type of the set, and is an element within the
set. A IN B is TRUE if A is the same type as
the set B and A is an element of B.

5-12 CYBIL Language Definition Revision B

ASSIGNMENT

9 Statements

Statements indicate actions to be performed. Unlike declarations, statements
A can be executed. They can appear only in a program, procedure, or function.

W A statement list is an ordered sequence of statements. In a statement list, a
statement is separated from the one following it by a semicolon. Two
consecutive semicolons indicate an empty statement, which means no action.

Statements can be divided into four types depending on their purpose or
nature:

• Assignment

• Structured

• Control

• Storage management

Assignment Statement

The assignment statement assigns a value to a variable. e The format of the assignment statement is:

name : = expression

name

Name of a variable previously declared.

expression

An expression that meets the requirements stated earlier in this chapter.
Any constant or variable contained in the expression must be defined and
have a value assigned.

Revision A Expressions and Statements 5-13

ASSIGNMENT

This statement is similar to the initialization part of the VAR declaration
where you can assign an initial value to a variable. (For further information
on initialization, refer to Variable Declaration in chapter 3.) The assignment
statement allows you to change that value at any point in the program. The
expression is evaluated and the result becomes the current value of the
named variable.

The variable cannot be:

• A read-only variable.

• A formal value parameter of the procedure that contains the assignment
statement.

• A bound variant record.

• The tag field name of a bound variant record.

• Aheap.

• An array or record that contains a heap.

The type of the expression must be equivalent to the type of the variable,
with the exceptions discussed next. Both types can be subranges of
equivalent types.

A character, string, or substring variable can be assigned the value of a
character expression, a string, or a substring. If you assign a value that is
shorter than the variable or substring to which it is being assigned, spaces
are added to the right of the shorter string to fill the field. If you assign a
value that is longer than the variable or substring, the value is truncated on
the right. Assigning strings or substrings that overlap is not a valid
operation, for example, STRING_l := STRING_1(3,7); results are
unpredictable.

5-14 CYBIL Language Definition Revision A

ASSIGNMENT

e If the variable is a pointer, its scope must be less than or equal to the scope of
the data to which it is pointing. For example, a static pointer variable should
not point to an automatic variable local to a procedure. When the procedure
is left, the pointer variable will be pointing at undefined data. e A pointer to a bound variant record can be assigned a pointer to a variant
record that is not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to which it
can adapt, or an adaptable pointer than has been adapted to one of those
types. Both the type of the expression and its value are assigned, thus setting
the current type of the adaptable pointer.

Any fixed pointer except a pointer to sequence can be assigned a pointer to
cell. After the assignment, the #LOC function (described in chapter 6)
performed on the fixed pointer would return the same value as the pointer to
cell.

A pointer to cell can be assigned any pointer type. The value assigned is a
pointer to the first cell allocated for the variable to which the pointer being
assigned points.

When assigning pointers, remember that generally the object of a pointer has
a different lifetime than the pointer variable. Automatic variables are
released when the block in which they are declared has been executed.
Allocated variables no longer exist when they are explicitly released with the
FREE statement. An attempt to reference a variable beyond its lifetime
causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that are
otherwise equivalent.

The colon(:) and equals sign(=) together are called the assignment operator.
When used as the assignment operator, there can be no spaces or comments
between the two symbols.

Revision A Expressions and Statements 5-15

BEGIN

Structured Statements

A structured statement is one that actually contains one or more
statements. The statements contained in a structured statement are called,
collectively, a statement list. The structured statement determines when
the statement list contained in it will be executed.

There are four structured statements:

BEGIN

FOR

REPEAT

WHILE

Provides a logical grouping of statements that performs a
specific function.

Executes a list of statements while a variable is incremented
or decremented from an initial value to a final value.

Executes a list of statements until a specified condition is
true. The test is made after each execution of the statements.

Executes a list of statements while a specified condition is
true. The test is made before each execution of the
statements.

BEGIN Statement

The BEGIN statement executes a single statement list once; there is no e
repetition. This statement provides for a logical grouping of statements that
performs a particular function and can improve readability.

The format of the BEGIN statement is:

(/label!)
BEGIN

statement list;
END {/label!);

label

Name that identifies the BEGIN statement and the statement list within
it. Use of labels is optional. If a label is used before BEGIN, it is not
required after END but is encouraged. If labels are used in both places,
they must match. The label name must be unique within the block in
which it is used.

statement list

One or more statements.

Declarations are not allowed with the BEGIN statement. Execution of the
BEGIN statement ends when either the last statement in the list is executed
or control is explicitly transferred from within the list.

5-16 CYBIL Language Definition Revision A

FOR

FOR Statement

The FOR statement executes a statement list repeatedly while a special
variable ranges from an initial value to a final value. There are two formats
for the FOR statement: one that increments the variable and one that
decrements the variable.

The format that increments the variable is:

{!label/)
FOR name:= initial_ value TO final_ value DO

statement list;
FOREND {!label/);

The format that decrements the variable is:

{/label/)
FOR name:= initial value DOWNTO final_ value DO

statement list;
FOREND {!label/);

label

Name that identifies the FOR statement and the statement list in it. Use
oflabels is optional. If a label is used before FOR, it is not required after
FOREND but is encouraged. If labels are used in both places, they must
match. The label name must be unique within the block in which it is
used.

name

Name of the variable that controls the number of repetitions of the
statement list. It keeps track of the number of iterations performed or the
current position within the range of values.

initial_ value

Scalar expression specifying the initial value assigned to the variable.

final,_ value

Scalar expression specifying the final value to be assigned to the variable
if the statement ends normally. If the statement ends abnormally or as
the result of an EXIT statement, this may not be the actual final value.

statement list

One or more statements.

Revision A Expressions and Statements 5-17

FOR

The variable, initial value, and final value must be of equivalent scalar types
or subranges of equivalent types. The variable cannot be assigned a value
within the statement list, or be passed as a reference parameter to a
procedure called within the statement list. Either condition causes a fatal
compilation error. The variable cannot be an unaligned component of a
packed structure.

When CYBIL encounters a FOR statement that increments (one containing
the TO clause), it evaluates the initial value and final value. If the initial
value is greater than the final value, the FOR statement ends and execution
continues with the statement following FOREND; the statement list is not
executed. If the initial value is less than or equal to the final value, the initial
value is assigned to the control variable and the statement list is executed.
Then, the control variable is incremented by one value and, for each
increment, the statement list is executed. This sequence of actions continues
through the final value. For example, the statement

FOR i = 1 TO 5 DO

FOREND;

causes the statement list to be executed five times, that is, while I takes on
values from 1 through 5. Then the FOR statement ends and execution
continues with the statement following FOREND.

5-18 CYBIL Language Definition Revision A

FOR

e When CYBIL encounters a FOR statement that decrements (one containing
the DOWNTO clause), it performs essentially the same process. If the initial
value is less than the final value, the FOR statement ends and execution
continues with the statement following FOREND. ffthe initial value is

A greater than or equal to the final value, the initial value is assigned to the
• control variable and the statement list is executed. The control variable is

decremented by one value and, for each decrement, the statement list is
executed. When the control variable reaches the final value and the
statement list is executed the last time, the FOR statement ends.

The initial value and final value expressions are evaluated once, when the
statement is entered; the values are then held in temporary locations. Thus,
subsequent assignments to initial value and final value have no effect on the
execution of the FOR statement.

When a FOR statement completes normally, the value of the control
variable is that of the final value specified in the statement. This may not
be the case if the statement ends abnormally or ends as a result of an EXIT
statement.

Example:

Integer values are often used in FOR statements, but any scalar type can
be used. The following example executes a statement list while the value of
a character variable is incremented.

FOR control := 'a' TO 'z' DO

FOREND;

Each time the statement list is performed, the value of CONTROL increases
by one value, following the normal sequence of alphabetic characters from A
through Z; that is, after the statement list is executed once, the value of
CONTROL changes to B, and so on until the list has been executed 26 times.

Revision A Expressions anrl Statements 5-19

REPEAT

REPEAT Statement

The REPEAT statement executes a statement list repeatedly until a specific
condition is true.

The format of the REPEAT statement is:

(/label/)
REPEAT

statement list;
UNTIL expression;

label

Name that identifies the REPEAT statement and the statement list in it.
Use of the label before REPEAT is optional; a label is not permitted after
UNTIL. The label name must be unique within the block in which it is
used.

statement list

One or more statements.

expression

A boolean type expression.

The statement list is always executed at least once. After the last statement e
in the list, the expression is evaluated. Every time the expression is FALSE,
the statement list is executed again. When the expression is TRUE, the
REPEAT statement ends and execution continues with the statement
following the UNTIL clause.

The statement list can contain nested REPEAT statements.

Example:

In this example, the statement list (mod operation and assignments) is
executed once. If J is not equal to zero, it is executed again and continues
until J is equal to zero.

REPEAT
k := i MOD j;
i := j;
j := k;

UNTIL j = 0;

5-20 CYBIL Language Definition Revision A

WHILE

WHILE Statement

The WHILE statement executes a statement list repeatedly while a specific
condition is true. e The format of the WHILE statement is:

{/label/)
WHILE expression DO

statement list;
WHILEND {!label!);

label

Name that identifies the WHILE statement and the statement list in it.
Use of labels is optional. If a label is used before WHILE, it is not required
after WHILEND but is encouraged. If labels are used in both places, they
must match. The label name must be unique within the block in which it
is used.

expression

A boolean type expression.

statement list

One or more statements.

Revision A Expressions and Statements 5-21

WHILE

If the boolean expression is evaluated as TRUE, the statement list is
executed. After the last statement in the list, the expression is again
evaluated. Every time the expression is TRUE, the statement list is executed.
When the expression is FALSE, the WHILE statement ends and execution
continues with the statement following WHILEND. If the expression is
FALSE in the initial evaluation, the statement list is never executed.

Example:

In this example, the expression TABLE[!]<> 0 is evaluated; an element of
the array TABLE is compared to zero. While the expression is true (the
element is not zero), I is incremented. This causes the next element of the
array to be checked. When the expression is false, the statement list is not
executed. Execution continues with the statement following WHILEND. I is
the position of an element in the array that is zero.

/check_for_zero/
WHILE table[i] < > 0 DO

i := i + 1;
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an
element with the value zero. If not, the WHILE statement list executes in an
infinite loop. In either the WHILE expression or the statement list, there A
must be a check. One solution is to set a variable, TABLE_MAX, to the W
maximum number of elements in the array and check it before executing the
statement list, as in:

WHILE (i < table_max) AND (table[i] < > 0) DO

Now both expressions must be true before the statement list is executed. If
either is false, execution continues following WHILEND.

5-22 CYBIL Language Definition Revision A

CONTROL STATEMENTS

Control Statements

A control statement can change the flow of execution of a program by
transferring control from one place in the program to another. e There are five control statements:

IF

CASE

CYCLE

EXIT

RETURN

Executes one statement list if a given condition is true; ends
the statement or executes another statement list if the
condition is false.

Executes one statement list out of a set of statement lists
depending on the value of a given expression.

Causes the remaining statements in a repetitive statement
(FOR, REPEAT, or WHILE) to be skipped and the next
iteration of the statement to take place.

Unconditionally stops execution within a procedure,
function, or a structured statement (BEGIN, REPEAT,
WHILE, and FOR).

Returns control from a procedure or function to the point at
which it was called.

Procedure and function calls also transfer control of an executing program.
Functions are discussed in chapter 6 and procedures are discussed in
chapter 7.

Revision A Expressions and Statements 5-23

IF

IF Statement

The IF statement executes or skips a statement list depending on whether a
given condition is true or false.

The format of the IF statement is:

IF expression THEN
statement list;

{ELSEIF expression THEN
statement list;) ...

{ELSE
statement list;)

IFEND;

expression

A boolean expression.

statement list

One or more statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause contains
another test condition that is evaluated only if the preceding condition
(expression) is false. The ELSE clause provides a statement list that is
executed unconditionally when the preceding expression is false. e
When an expression is evaluated as true, the statement list following the
reserved word THEN is executed. When the list is completed, execution
continues with the first statement following IFEND. If the expression is
false, execution continues with the next clause or reserved word in the IF
statement format (that is, ELSEIF, ELSE, or IFEND).

If the next reserved word in the IF statement format is IFEND, execution
continues with the first statement following it.

5-24 CYBIL Language Definition Revision A

e

IF

If the next reserved word is ELSEIF, the expression contained in that clause
is evaluated; if true, the statement list that follows is executed. Otherwise,
execution continues with the next reserved word in the IF statement format.

If the next reserved word is ELSE, the statement list that follows is always
executed. You get to this point only if the preceding expression(s) is false.

Additional IF statements can be contained (nested) in any of the statement
lists. A consistent style of indentation or spacing greatly improves
readability of such statements.

If the ELSE clause is included in a nested IF statement, the clause applies to
the most recent IF statement.

Examples:

In this example, Y is assigned to X if and only if X is less than Y.

IF x < y THEN
x := y;

I FEND;

In the next example, Z is always assigned one of the values 1, 2, 3, or 4
depending on the value of X.

IF x <= 5 THEN
z := 1 • ,

ELSEIF x > 30 THEN
z := 2· ,

ELSEIF x = 15 THEN
z := 3· ,

ELSE
z := 4;

I FEND;

Revision A Expressions and Statements 5-25

CASE

CASE Statement

The CASE statement executes one statement list out of a set of lists based on
the value of a given expression.

The format of the CASE statement is:

CASE expression OF
=value {,value} ... =

statement list;
{= value (,value) ... =

statement list;) ...
{ELSE statement list;}
CASEND;

expression

A scalar expression. The expression must be of the same type as the value
or values that follow.

value

One or more constant scalar expressions or a subrange of constant scalar
expressions. A subrange indicates that all of the values included in the
subrange are acceptable values. If two or more values are specified, they
are separated by commas. The values must be of the same type as the
expression. Values can be in any order, not strictly sequential. Values e
must be unique within the CASE statement.

statement list

One or more statements.

You define a set of possible values that a variable or expression can have.
With one or more of the values you associate a statement list using
the format:

=value=
statement list;

When the CASE statement is executed, the expression is evaluated and the
statement list associated with the current value of the expression is executed.
If the current value is not found among those in the CASE statement,
execution continues with the ELSE clause. If ELSE is omitted and the value
is not found in the CASE statement, an error occurs at execution time. After
any one of the statement lists is executed, execution continues with the A
statement following CASEND. W'

5-26 CYBIL Language Definition Revision A

CASE

Examples:

In this example, I is a variable that is expected to take on one of the values 1
through 4. If its value is 1, the first statement list (X := X + 1) is executed and
control goes to the statement following CASEND. If the value of I is 2, the
second list is executed, and so on.

CASE i OF
; 1

x := x + 1 · ,
; 2 ;

x := x + 2;
; 3 -

x := x + 3;
; 4

x := x + 4;
CASEND;

In the next example, OPERATOR is a variable that is expected to take on
values of PLUS, MINUS, or TIMES. Depending on the current value of
OPERATOR, the associated statement is executed.

CASE operator OF
"' plus =

x := x + y;
= minus =

x := x - y;
= times =

x := x * y;
CASEND;

Revision A Expressions and Statements 5-27

CYCLE

CYCLE Statement

The CYCLE statement can be included in the statement list of a repetitive
statement (FOR, REPEAT, or WHILE) and causes any statements following
it to be skipped and the next iteration of the repetitive statement to take
place.

The format of the CYCLE statement is:

CYCLE /label/

label

Name that identifies the repetitive statement in which the CYCLE
statement is contained.

The CYCLE statement is usually used in conjunction with an IF statement,
as in:

/label/
repetitive statement

IF expression THEN
CYCLE /label/;
IFEND;
remainder of statement list;

end ofrepetitive statement;

The IF statement tests for a condition that, if true, causes the CYCLE
statement to be executed. Then the remaining statements of the repetitive
statement are skipped and execution continues with whatever would
normally follow the statement list, either another cycle of the repetitive
statement or the next statement following the end of the repetitive statement.
If the condition in the IF statement is false, the remaining statements in the
repetitive statement are executed.

If not contained in a repetitive statement, the CYCLE statement is diagnosed
as a compilation error.

5-28 CYBIL Language Definition Revision A

CYCLE

Example:

This example finds the smallest element of an array TABLE. On the first
execution, X (the first element of the array) is assumed to be smallest. IfX is
smaller than succeeding elements of the array, the CYCLE statement is
executed; the remainder of the statements are then skipped, and the next
iteration of the FOR statement occurs. If an element smaller than X is found,
the CYCLE statement is ignored and the rest of the statement list is
processed; X is replaced by the smaller element. If N has not yet been
reached, the FOR statement continues. When N is reached, X will contain the
smallest element of the array.

x := table[1J;

/find_smallest/
FOR k := 2 TO n DO

IF x < table[k] THEN
CYCLE /find_smallest/;

!FEND;
x := table[kJ;

FOREND /find_smallest/;

Revision A Expressions and Statements 5-29

EXIT

EXIT Statement

The EXIT statement causes an unconditional exit from a procedure, function,
or a structured statement (BEGIN, FOR, REPEAT, and WHILE).

The format of the EXIT statement is:

EXIT name;

name

Name that identifies the procedure, function, or statement. For a
procedure or function, it is the procedure or function name. For a
structured statement, it is the statement label; in this case the format
could be shown as EXIT /label/.

When the EXIT statement is encountered, execution of the named procedure,
function, or statement is automatically stopped and execution resumes with
the statement that would follow normal completion. For a procedure or
function, it is the statement that would normally follow the procedure or
function call. For a structured statement, it is the statement following the
end of the structured statement (END, FOREND, UNTIL expression, and
WHILEND).

The EXIT statement must be within the scope of the procedure, function, or
statement it names. Otherwise, it has no meaning and is diagnosed as a
programming error.

With a single EXIT statement, you can exit several levels of procedures,
functions, or statements; they need not be exited separately. If the EXIT
statement is executed in a nested recursive procedure or function, it is the
most recent invocation of the procedure or function and any intervening
procedures or functions that are exited.

5-30 CYBIL Language Definition Revision A

RETURN

- RETURN Statement

The RETURN statement completes the execution of a procedure or function
and returns control to the program, procedure, or function that called it.

The format of the RETURN statement is:

RETURN;

If omitted at the end of a procedure or function, the RETURN statement is
assumed.

&vision B Expressions and Statements 5-31

STORAGE MANAGEMENT STATEMENTS

Storage Management Statements

Storage management statements allow you to manipulate components of
sequence and heap types, and put variables in the run-time stack.

There are five storage management statements:

RESET

NEXT

ALLOCATE

FREE

PUSH

Resets the pointer in a sequence or releases all the
variables in a user-defined heap.

Creates or accesses the next element of a sequence given
a starting element.

Allocates storage for a variable in a heap.

Releases a variable from a heap.

Allocates storage for a variable in the run-time stack.

Sequences use the RESET and NEXT statements. Heaps use the RESET,
ALLOCATE, and FREE statements. The run-time stack uses the PUSH
statement. (Refer to Storage Types in chapter 4 for further information on
sequences and heaps.) The NEXT and ALLOCATE statements can also be
used to allocate space for a segment access file. Accessing a file as a memory
segment is described in the CYBIL File Interface manual. That manual also A
compares use of the default heap and run-time stack with use of a segment W
access file for data storage.

In the NEXT, ALLOCATE, and PUSH statements, you must specify a
pointer to the variable to be manipulated so that sufficient space can be
allocated for that type. This pointer can be a pointer to a fixed type, a pointer
to an adaptable type, or a pointer to a bound variant record type. Space is
then allocated for a variable of the type to which the pointer can point. This
pointer is also used to access the variable. When space is allocated, CYBIL
returns the address of the variable to the pointer. Therefore, to reference a
variable in a sequence, heap, or the run-time stack, you indicate the object of
the pointer in the form: pointer name •.

5-32 CYBIL Language Definition Revision A

STORAGE MANAGEMENT STATEMENTS

If a fixed type pointer is specified, the statement uses a variable of the type
designated by that pointer variable. If an adaptable type pointer or bound
variant record type pointer is specified, you must also indicate the size of the
adaptable type or the tag field of the variant record to be used. This causes a
fixed type to be set and the adaptable or bound variant record pointer
designates a variable of that fixed type. That particular fixed type is
designated until it is reset by a subsequent assignment or another storage
management statement.

To indicate the size of an adaptable pointer or the tag field of a bound
variant record pointer, you use the format:

pointer: [size]

pointer

Name of an adaptable pointer variable or a bound variant record pointer
variable.

size

Fixed amount of space required for the variable designated by pointer.
You set the size of the adaptable type the same way you specify the size of
the corresponding unadaptable (fixed) type. For example, in a variable or
type declaration, you specify the size of a fixed array with subscript
bounds, usually a subrange of "scalar expression .. scalar expression".
You set the size of an adaptable array here using the same form. The
forms used to set the size of all possible adaptable types are summarized
as follows. For more detailed information, refer to the descriptions of the
corresponding fixed types in chapter 4.

Pointer Type

Adaptable array

Adaptable string

Adaptable heap

Adaptable sequence

Adaptable record

Bound variant record

Revision A

Form Used to Set Size

scalar expression .. scalar expression

A positive integer expression specifying the
length of the string

[{REP positive integer expression OF) fixed
type name {,{REP positive integer expression
OF) fixed type name} ...]

[{REP positive integer expression OF) fixed
type name {,{REP positive integer expression
OF) fixed type name} ...]

One of the forms used for an adaptable array,
string, heap, or sequence

A scalar expression or one or more constant
scalar expressions followed by an optional
scalar expression

Expressions and Statements 5-33

STORAGE MANAGEMENT STATEMENTS

If an adaptable array had a lower bound specified in its original declaration,
the lower bound specified here must match that value. For an adaptable
record, the form used must be a value and type to which the record can
adapt. For a bound variant record, the order, types, and values used must be
valid for a variant of the record; all but the last of the expressions must be
constant expressions.

Examples:

This example declares a type that is an adaptable array named
ADAPT _ARRAY. PTR is a pointer to that type. BUNCH is a heap with
space for 100 integers. The heap BUNCH is reset; that is, any existing
elements are released. Space is then allocated in the heap for a variable of
the type designated by PTR. That variable is of type ADAPT _ARRAY (an
array of integers) and it has fixed subscript bounds of from 1 through 15.
PTR now points to that array.

TYPE
adapt_array =array [1 •• *] of integer;

VAR
ptr : ~ adapt_array,
bunch heap (rep 100 of integer);

RESET bunch;
ALLOCATE ptr : [1 •• 15] IN bunch;

The following example shows the setting of an adaptable sequence. Notice
that two sets of brackets are required in the PUSH statement.

VAR
ptr : ~ SEQ (*);

PUSH ptr : [[REP 10 OF integer, REP 22 OF charJJ;

5.34 CYBIL Language Definition Revision B

RESET

RESET Statement

The RESET statement operates on both sequences and heaps. In a sequence,
it resets the pointer to the beginning of the sequence or to a specific variable
within the sequence. In a heap, it releases all the variables in the heap.

The RESET statement must appear before the first NEXT statement (for a
sequence) or ALLOCATE statement (for a user-defined heap). This ensures
that the sequence is at the beginning or the heap is empty. If space is
reserved (by a NEXT or ALLOCATE statement) before the RESET
statement, the program is in error.

RESET in a Sequence

This statement sets the current element being pointed to in a sequence.

The format of the RESET statement in a sequence is:

RESET sequence_pointer {TO variable_pointer)

sequence _pointer

Name of a pointer to a sequence. This specifies the particular sequence.

variable _pointer

Name of a pointer to a particular variable within the sequence. If omitted,
the pointer points to the first element of the sequence.

The value of the pointer variable must have been set with a NEXT statement
for the same sequence or an error occurs. An error also occurs if the value of
the pointer variable is NIL.

The RESET statement must appear before the first occurrence of a NEXT
statement to reset the sequence to its beginning; otherwise, the program is in
error.

Revision A Expressions and Statements 5-35

RESET

RESET in a Heap

This statement releases the variables currently in a heap.

The format of the RESET statement in a heap is:

RESET heap

heap

Name of a heap type variable.

Space for the variables is released and their values become undefined.

The RESET statement must appear before the first occurrence of an
ALLOCATE statement for a user-defined heap to ensure that the heap is
empty; otherwise, the program is in error.

5-36 CYBIL Language Definition Revision A

NEXT

NEXT Statement

The NEXT statement sets the specified pointer to designate the current
element of the sequence and then makes the next element in the sequence the
current element. This essentially moves the pointer along the sequence
allowing you to assign values to and access elements.

The format of the NEXT statement is:

NEXT pointer {:[size]} IN sequence_pointer

pointer

Name of a pointer to a fixed type, pointer to an adaptable type, or pointer
to a bound variant record type. The type pointed to by the pointer is the
type of the variable in the sequence. These pointers are described in detail
under Storage Management Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management Statements
earlier in this section.

sequence_ pointer

Name of a pointer to a sequence. This specifies the particular sequence.

After a RESET statement, the current element is always the first element of
the sequence. A NEXT statement assigns to the specified pointer the address
of the current (first) element, and then makes the next element (the second)
the new current element. Thus, the order of variables in a sequence is
determined by the order in which the NEXT statements are executed.

If the NEXT statement causes the new element to be outside the bounds of
the sequence, the pointer is set to NIL. Before attempting to reference an
element in a sequence, check for a NIL pointer value. Using a pointer
variable with a value of NIL to access an element causes an error to occur.

The type of the pointer specified when data is retrieved from the sequence
must be equivalent to the type of the pointer used when the same data was
stored in the sequence; otherwise, the program is in error.

Revision A Expressions and Statements 5-37

ALLOCATE

ALLOCATE Statement

The ALLOCATE statement allocates storage space for a variable of the
specified type in the specified heap and then sets the pointer to point to that
variable.

The format of the ALLOCATE statement is:

ALLOCATE pointer {:[size]} {IN heap}

pointer

Name of a pointer to a fixed type, adaptable type, or bound variant record
type. These pointers are described in detail under Storage Management
Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management Statements
earlier in this section.

heap

Name of a heap type variable. If omitted, the default heap is assumed.

If there is not enough space for the variable to be allocated, the pointer is set a
to NIL. Before attempting to reference a variable in a heap, check for a NIL W
pointer value. Using a pointer variable with a value of NIL to access data
causes an error to occur.

The RESET statement must appear before the first occurrence of an
ALLOCATE statement for a user-defined heap to ensure that the heap is
empty; otherwise, the program is in error. (This is not allowed for the default
heap.)

The lifetime of a variable that is allocated using the storage management
statements is the time between the allocation of storage (with the
ALLOCATE statement) and the release of storage (with the FREE
statement). A variable allocated using an automatic pointer must be
explicitly freed (using the FREE statement) before the block is left, or the
space will not be released by the program. When the block is left, the pointer
no longer exists and, therefore, the variable cannot be referenced. If the block
is entered again, the previous pointer and the variable referenced by the
pointer cannot be reclaimed.

5-38 CYBIL Language Definition Revision A

FREE

FREE Statement

The FREE statement releases the specified variable from the specified heap.

The format of the FREE statement is:

FREE pointer { IN heap }

pointer
Name of the pointer variable that designates the variable to be released.

heap

Name of a heap type variable. If omitted, the default heap is assumed.

The variable's space in the heap is released and its value becomes undefined.
The pointer variable designating the released variable is set to NIL. If the
specified variable is not currently allocated in the heap, the effect is
undefined.

Using a pointer variable with the value NIL to access data causes an error to
occur. Releasing the NIL pointer is also an error.

Revision A Expressions and Statements 5-39

PUSH

PUSH Statement

The PUSH statement allocates storage space on the run-time stack for a
variable of the specified type and then sets the pointer to point to that
variable.

The format of the PUSH statement is:

PUSH pointer {:[size]}

pointer

Name of a pointer to a fixed type, adaptable type, or bound variant record
type. These pointers are described in detail under Storage Management
Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management Statements
earlier in this section.

If there is not enough space for the variable to be allocated, the pointer is set
to NIL. The value of the variable that has just been allocated is undefined
until a subsequent assignment to the variable is made.

You cannot release space on the run-time stack explicitly. It is released
automatically when the procedure containing the PUSH statement is
completed and control leaves the procedure. At that time, space for the
variable is released and its value becomes undefined.

Example:

This example shows the declaration of a pointer variable named ARRAY_
PTR that points to an adaptable array. The PUSH statement allocates space
in the run-time stack for a fixed array of from 1 through 20 elements.
Elements of the array can be referenced by ARRAY _PTR'[i], where i is an
integer from 1 through 20.

VAR array_ptr : ~array [1 •• *] of integer;

PUSH array_ptr : [1 •• 20J;

5-40 CYBIL Language Definition Revision A

9Functions

This chapter describes the functions that are predefined in CYBIL and
-describes how to define your own functions.

6

Standard Functions ... 6-1

System-Dependent Functions ... 6-16

User-Defined Functions ... 6-23

9 Functions 6

A function is one or more statements that perform a specific action and can
be called by name from a statement elsewhere in a program. A reference to a
function causes actual parameters in the calling statement to be substituted
for the formal parameters in the function declaration and then the function's
statements to be executed. Usually the function computes a value and
returns it to the portion of the program that called it.

A function differs from a procedure in that the value returned for a function
replaces the actual function reference within the statement. A function is a
valid operand in an expression; the value returned by the function replaces
the reference and becomes the operand.

The value of a function is the last value assigned to it before the function
returns to the point where it was called. The reason for its return doesn't
matter; it could complete normally or abnormally. If the function returns for
any reason before a value is assigned to the function name, results are
undefined.

Functions can be recursive; that is, a function can call itself. In that case,
however, there must be some provision for ending the calls.

You can call functions that are already defined in the language or you can
define your own functions. This chapter describes both.

Standard Functions

The functions described here are standard CYBIL functions. They can be
used safely in variations of CYBIL available on other operating systems.
The next section in this chapter, System-Dependent Functions, describes
functions unique to CYBIL on NOS/VE.

The functions are described in alphabetical order according to the first
alphabetic character.

R~vision A Functions 6-1

$CHAR

$CHAR Function

The $CHAR function returns the character whose ordinal number within the
ASCII collating sequence is that of a given expression.

The format of the $CHAR function call is:

$CHAR(expression)

expression

An integer expression whose value can be from 0 through 255.

If the value of the integer expression is less than 0 or greater than 255, an
error occurs.

6-2 CYBIL Language Definition Revision A

$INTEGER

$INTEGER Function

The $INTEGER function returns the integer value of a given expression.

The format of the $INTEGER function call is:

$INTEGER(expression)

expression

An expression of type integer, subrange of integer, boolean, character,
ordinal, or real.

If the expression is an integer expression, the value of that expression is
returned.

If the expression is a boolean expression, 0 (zero) is returned for a false
expression and 1 is returned for a true expression.

If the expression is a character expression, the ordinal number of the
character in the ASCII collating sequence is returned.

If the expression is an ordinal expression, the ordinal number associated
with that ordinal value is returned. The value returned for the first element
of an ordinal type is zero, the second element is one, and so on.

If the expression is a real expression, the value of the expression is truncated
to a whole number. If the number is in the range defined for integers, that
number is returned; otherwise, an out-of-range error occurs.

Revision A Functions 6-3

#LOC

#LOC Function

The #LOC function returns a pointer to the first cell allocated for a given
variable.

The format of the #LOC function call is:

#LOC(name)

name

Name of a variable.

6-4 CYBIL Language Definition Revision A

LOWERBOUND

LOWERBOUND Function

The LOWERBOUND function returns the lower bound of an array's
subscript bounds. e The format of the LOWERBOUND function call is:

LOWERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is same as the type of the array's subscript
bounds.

Example:

Assuming the following declaration has been made

VAR
x array [1 •• 100] of boolean,
y array ['a' .• 't'J of integer;

the value ofLOWERBOUND(X) is 1; the value ofLOWERBOUND(Y) is 'A'.

Revision A Functions 6·5

LOWERVALUE

LOWERV ALUE Function

The LOWERV ALUE function returns the smallest possible value that a
given variable or type can have.

The format of the LOWERV ALUE function call is:

LOWERV ALUE(name)

name
A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Examples:

Assuming the following declaration has been made

VAR
dozen : 1 •• 12;

the value of LOWERV ALUE(DOZEN) is 1.

After the declarations

TYPE
t = (first, second, third);

VAR
v : t;

the value of LOWERV ALUE(V) is FIRST and the value of
LOWERV ALUE(T) is FIRST.

6-6 CYBIL Language Definition Revision B

PRED

PRED Function

The PRED function returns the predecessor of a given expression.

The format of the PRED function call is:

PRED(expression)

expression

A scalar expression.

If the predecessor of the expression does not exist, the program is in error.

Example:

The following example declares two variables, WARM and COLD, each of
which can take on ordinal values of the type SEASONS. The variable
WARM is assigned the value SPRING while the variable COLD is assigned
the value WINTER.

TYPE
seasons

VAR
warm
cold

(winter, spring, summer, fall);

seasons,
seasons;

warm := spring;
cold := PRED(warm);

Revision B Functions 6-7 e

#PTR

#PTR Function

The #PTR function returns a pointer that can be used to access the object of
a relative pointer.

The format of the #PTR function call is:

#PTR(pointer _name {,parent_name})

pointer _name

Name of the relative pointer variable.

parent_ name

Name of the variable that contains the components being designated by
relative pointers. If omitted, the default heap is used. The variable can be
a string, array, record, heap, or sequence type (either fixed or adaptable).

Relative pointers cannot be used to access data directly. The #PTR function
converts a relative pointer to a pointer in order to reference the object of the
relative pointer.

The type of the object pointed to by the returned pointer is the same as the
type of the object pointed to by the relative pointer. If the type of the parent
variable associated with the specified relative pointer is not equivalent to the
type of the specified parent variable, an error occurs. e
For further information on relative pointers, refer to Pointer Types in chapter
4.

6-8 CYBIL Language Definition Revision A

$REAL

$REAL Function

The $REAL function returns the real number equivalent of a given integer
expression. e The format of the $REAL function call is:

$REAL(expression)

expression

An integer expression.

Revision A Functions 6·9

#REL

#REL Function

The #REL function returns a relative pointer.

The format of the #REL function call is:

#REL(pointer_name {,parent_name})

pointer_name
Name of the direct pointer variable.

parent_ name

Name of the variable that contains the components being designated by
relative pointers. If omitted, the default heap is used. The variable can be
a string, array, record, heap, or sequence type (either fixed or adaptable).

The type of the relative pointer's object is the same as the type of the given
direct pointer's object. (This type was specified in the VAR declaration of the
relative pointer variable.) The parent type of the relative pointer's object is
the same as the type of the specified parent variable.

If the pointer specified in the function call does not designate an element of
the parent variable, the result is undefined.

Relative pointer values can be generated solely through this function. For A
further information on relative pointers, refer to Pointer Types in chapter 4. W'

6-10 CYBIL Language Definition Revision A

#SIZE

#SIZE Function

The #SIZE function returns the number of cells required to contain a given
variable or a variable of a specified type. e The format of the #SIZE function call is:

#SIZE(name)

name

Name of a variable, fixed record type, or bound variant record type.

If the name of a bound variant record type is specified, the variant that
requires the largest size is used.

Revision A Functions 6-11

STRLENGTH

STRLENGTH Function

The STRLENGTH function returns the length of a given string.

The format of the STRLENGTH function call is:

STRLENGTH(string)

string
A string variable, name of a string type, or adaptable string reference.

For a fixed string, the allocated length is returned as an integer subrange.
For an adaptable string, the current length is returned.

6-12 CYBIL Language Definition Revision A

succ

SUCC Function

The SUCC function returns the successor of a given expression.

The format of the SUCC function call is:

SU CC(expression)

expression

A scalar expression.

If the successor of the expression does not exist, the program is in error.

Example:

The following example declares two variables, HOT and COOL, each of
which can take on ordinal values of the type SEASONS. The variable HOT
is assigned the value SUMMER while the variable COOL is assigned the
value FALL.

TYPE
seasons = (winter, spring, summer, fall);

VAR
hot : seasons,
cool : seasons;

hot := summer;
cool := SUCC(hot);

Revision B Functions 6-rn •

UPPERBOUND

UPPERBOUND Function

The UPPERBOUND function returns the upper bound of an array's
subscript bounds.

The format of the UPPERBOUND function call is:

UPPERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array's subscript
bounds.

Examples:

Assuming the following declaration has been made

VAR
x array [1 •• 100] of boolean,
y array ['a' •• 't'J of integer;

the value of UPPERBOUND(X) is 100; the value of UPPERBOUND(Y) is 'T'.

In the following example, the value of UPPERBOUND(TABLE) is 50.

VAR
table : • array [1 .• *] of cell;

allocate table : [1 •• SOJ;

6-14 CYBIL Language Definition Revision B

UPPERVALUE

UPPERVALUE Function

The UPPERV ALUE function returns the largest possible value that a given
variable or type can have.

The format of the UPPERV ALUE function call is:

UPPERV ALUE(name)

name

A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Examples:

Assuming the following declaration has been made

VAR
dozen : 1 •• 12;

the value of UPPERV ALUE(DOZEN) is 12.

After the declarations

TYPE
t = (first, second, third);

VAR
v : t;

the value of UPPERV ALUE(V) is THIRD and the value of
UPPERV ALUE(T) is THIRD.

Revision B Functions 6-15

#ADDRESS

System-Dependent Functions

The functions described here can be used with CYBIL only on NOS/VE.
Keep in mind that programs using these functions cannot be transported to
other operating systems and run on variations of CYBIL.

To use these functions properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetic order according to the first
alphabetic character.

#ADDRESS Function

The #ADDRESS function accepts a ring number, segment number, and byte
offset and returns a value that is of type pointer to cell.

The format of the #ADDRESS function call is:

#ADDRESS(ring, segment, offset)

ring

Ring number, ranging from 1through15.

segment

Segment number, ranging from 0 through 4,095.

offset

Byte offset, ranging from -80000000 hexadecimal through 7FFFFFFF
hexadecimal.

6-16 CYBIL Language Definition Revision A

#FREE _RUNNING_ CLOCK

#FREE_RUNNING_ CLOCK Function

The #FREE_RUNNING_ CLOCK function returns the value of the free
running microsecond clock.

The format of the #FREE_RUNNING CLOCK function call is:

#FREE_RUNNING _ CLOCK(port)

port

An integer expression whose value is 0 or 1. It specifies the memory port
to be used for reading the clock.

The integer value returned is that of the free running clock that is
maintained within the memory connected to the specified processor
memory port.

For further information on the free running microsecond clock and memory
ports, refer to volume II of the virtual state hardware reference manual.

Revision A Functions 6-1 7

#OFFSET

#OFFSET Functi~n

The #OFFSET function accepts a direct pointer and returns the integer value
of the signed offset (byte number) contained in the pointer.

The format of the #OFFSET function call is:

#OFFSET(pointer)

pointer

Name of a direct pointer expression.

A pointer consists in part of the process virtual address (PV A) of the first
byte of the object to which it is pointing. An element of the PV A is the byte
number. This byte number is the signed offset returned.

For further information on PV As, refer to volume II of the virtual state
hardware reference manual.

6-18 CYBIL Language Definition Revision A

#PREVIOUS_SAVE_AREA

#PREVIOUS_SAVE_AREA Function

The #PREVIOUS_SAVE_AREA function returns a pointer to the first cell
of the previous save area.

The format of the #PREVIOUS SAVE_AREA function call is:

#PREVIOUS_SAVE_AREA

A procedure uses an area called a stack frame to store its dynamic variables.
If another procedure is called, hardware saves certain registers of the calling
procedure and puts them in a stack frame save area. These registers contain
the information required for the calling procedure to resume normal
execution when control is returned by the called procedure.

If procedure calls are nested, each subsequent call creates its own stack
frame save area and the last save area becomes the "previous save area."
Pointers are kept to link the previous save areas so that as procedures
complete and return, the system works back through the previous save areas
using the information contained in them to resume each procedure.

The formats of the stack frame save area and previous save area are shown
in the CYBIL System Interface manual. For further information on the stack
frame save area and previous save area, refer to volume II of the virtual state
hardware reference manual.

Revision A Functions 6-19

#READ _REGISTER

#READ_REGISTER Function

The #READ _REGISTER function performs actions equivalent to the copy
from state register (CPYSX) hardware instruction. It allows a program to
read the contents of a process or processor register. e
The format of the #READ_REGISTER function call is:

#READ_ REGISTER(register_ id)

register_ id

An integer expression from 0 through 255 that identifies the number of
the register to be read. Register numbers are given in the executive state
hardware reference manual.

An integer value is returned.

The #WRITE_REGISTER procedure described in chapter 7 allows a
program to change the contents of a process or processor register.

For further information on process and processor registers, and the CPYSX
instruction, refer to volume II of the virtual state hardware reference manual.

6-20 CYBIL Language Definition Revision A

#RING

#RING Function

The #RING function accepts a pointer and returns the integer value of the
ring number contained in the pointer. e The format of the #RING function call is:

#RING(pointer)

pointer

Name of a direct pointer expression.

Revision A Functions 6-21

#SEGMENT

#SEGMENT Function

The #SEGMENT function accepts a pointer and returns the integer value of
the segment number contained in the pointer.

The format of the #SEGMENT function call is:

#SEGMENT(pointer)

pointer

Name of a direct pointer expression.

6-22 CYBIL Language Definition Revision A

USER-DEFINED FUNCTIONS

9 User-Defined Functions
Function Declaration

You define your own functions with function declarations.

The format used for specifying a function is:

FUNCTION {[attributes]} name {(formal_parameters)}: result_type;t
{declaration_ list)
statement_list

FUNCEND {name} ;

attributes

One or more of the following attributes. If more than one are specified,
they are separated by commas.

XREF

The function has been compiled in a different module. In this case, the
function declaration can contain the name and formal parameters, but
no declaration list or statement list. In the other module, the function
must have been declared with the XDCL attribute and an identical
parameter list. If omitted, the function must be defined within the
module where it is referenced.

XDCL

The function can be referenced from outside of the module in which it
is located. This attribute can be included only in a function declared at
the outermost level of a module; it cannot be contained in a program,
procedure, or another function. Other modules that reference this
function must contain the same function declaration with the XREF
attribute specified.

#GATEtt

Scope attribute that allows the function to be accessed by a procedure
at a higher ring level. If #GATE is specified, the XDCL attribute is
required also.

If no attributes are specified, the function is assumed to be in the same
module in which it is called.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a function declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

tt This attribute is not supported on variations of CYBIL available on other
operating systems.

Revision A Functions 6-2:3

I

USER-DEFINED FTJNCTIONS

name
Name of the function. The function name is optional following
FUNCEND.

formal _parameters

One or more parameters in the form:

VAR name {,name} ... : type
{,name {,name}- .. : type) ...

and/or:

name {,name} ... : type
{,name {,name} ... : type} ...

The first form is called a reference parameter; the second form is called a
value parameter. There is essentially no difference between them in the
context of a function. However, procedures (and programs) do treat them
differently. Both kinds of parameters can appear in the formal parameter
list; if so, they are separated by semicolons (for example, I: INTEGER;
VAR A: CHAR). Reference and value parameters are discussed in more
detail later in this chapter under Parameter List.

result_type
The type of the result to be returned. It can be any fixed scalar, floating
point, pointer, or cell type.

declaration_ list

Zero or more declarations.

statement_list
One or more statements.

In an assignment statement within a function, the lefthand side of the
statement (the variable to receive the value) cannot be:

• A nonlocal variable.

• A formal parameter of the function.

• The object of a pointer variable.

User-defined functions cannot contain:

• Procedure call statements that call user-defined procedures or NOS/VE
procedures.

• Parameters of type pointer to procedure.

• ALLOCATE, FREE, PUSH, or NEXT statements that have parameters A
that are not local variables. W

6-24 CYBIL Language Definition Revision B

USER-DEFINED FUNCTIONS

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the function declaration. In the function declaration
format shown earlier, they are shown as "formal_ parameters". Declarations
for formal parameters must appear in that first statement; they cannot
appear in the declaration list in the body of the function.

A parameter list allows you to pass values from the calling program to the
function. When a call is made to a function, parameters called actual
parameters are included with the function name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the function, the values
of the corresponding actual parameters are substituted. For every formal
parameter in a function declaration, there must be a corresponding actual
parameter in the function call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {,name) ... : type
{,name {,name) ... : type) ...

A value parameter has the form:

name {,name) ... : type
{,name {,name) ... : type) ...

Procedures make a distinction between the two types of parameters, but
functions do not. (In a procedure, the value of a reference parameter can
change during execution of the procedure; a value parameter cannot change.)
In a function, neither reference parameters nor value parameters can change
in value. A formal reference parameter can be any fixed or adaptable type. A
formal value parameter can be any fixed or adaptable type, except a heap or
an array or record that contains a heap.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameters lists are valid.

• VAR i, j : integer; a, b : char; e • VAR i : integer; VAR integer; a : char; b char;

• a : char; VAR i, integer; b : char;

• VAR i : integer, real; a : char, b : boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

Revision A Functions 6-25

USERDEFINED FUNCTIONS

Referencing a Function

The call to the function is usually contained in an expression. The call
consists of the function name (as given in the function declaration) and any
parameters to be passed to the function in the following format:

name ({actual_parameters))

name

Name of the function.

actual _parameters

Zero or more expressions or variables to be substituted for formal
parameters defined in the function declaration. If two or more are
specified, they are separated by commas. They are substituted one-for-one
based on their position within the list; that is, the first actual parameter
replaces the first formal parameter, the second actual parameter replaces
the second formal parameter, and so on. For every formal parameter in a
function declaration, there must be a corresponding actual parameter in
the function call.

If there were no formal parameters specified in the function declaration,
there can be no actual parameters included in the function call. However,
left and right parentheses are required to indicate the absence of
parameters. In this case, the call is:

name()

The function can be anywhere that a variable of the same type could be. The
value returned by a function is the last value assigned to it. If control is
returned to the calling point before an assignment is made, results are
undefined.

The only types that can be returned as values of functions are the basic
types: scalar, floating point, pointer, and cell.

6-26 CYBIL Language Definition Revision A

USER-DEFINED FUNCTIONS

Example:

The following function finds the smaller of two integer values represented by
formal value parameters A and B. The smaller value is assigned to MIN, the
name of the function, and that integer value is returned.

FUNCTION min (a, b : integer) : integer;
IF a > b THEN

min := b;
ELSE

min .- a;
!FEND;

FUNCEND min;

This function could be called using the following reference.

smaller := min(first,second);

The value of the variable FIRST is substituted for the formal parameter A;
the value of SECOND is substituted for B. The value returned, the smaller
value, replaces the entire function reference; the variable SMALLER is
assigned the smaller value.

Revision A Functions 6-27

9 Procedures 7

This chapter descibes the procedures that are predefined in CYBIL and tells e how you can define your own procedures.

Standard Procedures .. 7-1

System-Dependent Procedures ... 7-9

User-Defined Procedures .. 7-21

9 Procedures 7

A procedure is one or more statements that perform a specific action and can
be called by a single statement. A procedure allows you to associate a name
with the statement list so that by specifying the name itself as if it were a
statement, you cause the list to be executed. Declarations can be included
and take effect when the procedure is called. A procedure call can optionally
cause actual parameters included in the call to be substituted for the formal
parameters in the procedure declaration before the procedure's statements
are executed.

A procedure differs from a function in that:

• A procedure can, but does not always, return a value.

• The call to a procedure is the procedure's name itself; a function call by
contrast must be part of an expression in a statement.

• There can be no value assigned to the procedure name as there is to a
function name.

You can call procedures that are already defined in the language or you can
define your own procedures. This chapter describes both.

Standard Procedures

The STRINGREP procedure described here is a standard CYBIL procedure.
It can be used safely in variations of CYBIL available on other operating
systems. The next section in this chapter, System-Dependent Procedures,
describes procedures that may not always be available or that are unique to
CYBIL on NOS/VE.

Revision A Procedures 7.1

STRING REP

STRINGREP Procedure

The STRINGREP procedure converts one or more elements to a string of
characters, then returns that string and the length of the string.

The format of the STRINGREP procedure call is:

STRINGREP(string_name, length, element {,element} ...)

string_name

Name of a string type variable. (It can be specified as a substring.) The
result is returned here. It will contain the character representations of the
named element(s).

length

Name of an integer variable. Its value will be the length in characters of
the resulting string variable, string_name. It will be less than or equal to
the declared length of the string variable.

element

Name of the element to be converted. The element can be a scalar,
floating-point, pointer, or string type. Formats for specifying particular
types and rules for conversion of those types are discussed in more detail
later in this chapter.

The named elements are converted to strings of characters. Those strings are
then concatenated and returned left-justified in the named string variable.
The length of the string variable is also returned. If the result of
concatenating the string representations is longer than the length of the
string variable, the result is truncated on the right; the length that will be
returned is the length of the string variable.

Each individual element is converted and placed in a temporary field before
concatenation with other elements. The length of the temporary field can be
specified as part of the element parameter that is described in the following
sections. Generally, numeric values are written right-justified in the
temporary field with spaces added on the left to fill the field, if necessary.
String or character values are written left-justified in the temporary field
with spaces added on the right to fill the field, if necessary. For both numeric
and alphabetic values, the field is filled with asterisk characters if it is too
short to hold the resulting value. The value of the field length, when
specified, must be greater than or equal to zero; otherwise, an error occurs.

The following paragraphs describe how the STRINGREP procedure converts
specific types and how they appear in the temporary fields.

7-2 CYBIL Language Definition Revision B

Integer Element

The format for specifying an integer element is:

expression { : length) { : #(radix)) e expression

An integer expression to be converted.

length

STRING REP

A positive integer expression specifying the length of the temporary field.
The length must be greater than or equal to 2. If omitted, the temporary
field is the minimum size required to hold the integer value and the
leading sign character.

radix

Radix of expression. Possible values are 2, 8, 10, and 16. If omitted, 10
(decimal) is assumed.

The value of the integer expression is converted into a string representation
in the desired radix. The resulting string representation is right-justified in
the temporary field. If the expression is positive, a space precedes the
leftmost significant digit. If the integer expression is negative, a minus sign
precedes the leftmost significant digit. The leading space or hyphen must be
considered a part of the length. (Thus, the length must be greater than or
equal to 2 in order to hold the sign character and at least one digit.)

If a field length larger than necessary is specified, spaces are added on the
left to fill the field. If the field length is not long enough to contain all digits
and the sign character, the field is filled with a string of asterisk characters.
If the field length is less than or equal to zero, an error occurs.

Character Element

The format for specifying a character element is:

expression { : length)

expression

A character expression to be converted.

length

A positive integer expression specifying the length of the temporary field.
If omitted, a length of 1 is assumed.

A single character is left-justified in the temporary field. If a field length
larger than necessary is specified, spaces are appended to the right to fill the
field. Including a radix for a character element causes a compilation error.

Revision A Procedures 7 .3

STRING REP

Boolean Element

The format for specifying a boolean element is:

expression { : length }

expression

A boolean expression to be converted.

length

A positive integer expression specifying the length of the temporary field.
If omitted, a length of 5 is assumed.

Either of the five-character strings ' TRUE' or 'FALSE' is left-justified in
the temporary field. If a field length larger than necessary is specified,
spaces are appended on the right to fill the field. If the field length is not long
enough to contain all five characters, the temporary field is filled with
asterisk characters. Including a radix for a boolean element causes a
compilation error to occur.

Ordinal Element

The integer value of an ordinal expression is handled the same way as an
integer element. Refer to the discussion under Integer Element earlier in this
chapter.

Subrange Element

A subrange element is handled the same way as the element of which it is a
subrange.

7-4 CYBIL Language Definition Revision A

Floating-Point Element

The format for specifying a floating-point element is:

expression { : length (: fraction))

expression

A real expression to be converted. If the value is INFINITE or
INDEFINITE, an error occurs.

length

STRING REP

A positive integer expression specifying the length of the temporary field.
If omitted, the temporary field is the minimum size required to hold the
integer value and the necessary leading character.

fraction

Positive integer expression specifying the number of fractional digits to be
included in a fixed-point format. Its value must be less than or equal to
"length - 2". If omitted, conversion to floating-point format is assumed.

A floating-point expression can be converted into either a fixed-point format
or a floating-point format depending on the fraction parameter. If it is
included, the expression is converted to fixed-point format; if omitted, the
expression is converted to floating-point format.

Revision A Procedures 7-5

STRING REP

Fixed-Point Format

The form

expression{: length{: fraction})

causes the specified expression to be converted to a string in fixed-point
format. The string will have the specified length with the specified number of
fractional digits to the right of the decimal place. The expression is rounded
off so that the specified number of fractional digits are present. If no positive
digit appears to the left of the decimal point, a 0 (zero) is inserted. When
figuring the length required to hold the expression, the compiler counts all
digits to the left of the decimal point (including 0 if it appears alone), the
decimal point, and the specified number of fractional digits appearing to the
right of the decimal point. If the expression is negative, an extra space is
required for the minus sign. If a field length larger than necessary is
specified, spaces are added on the left to fill the field. If the field length
specified is not long enough to contain all digits, the sign character, and the
decimal point, the field is filled with a string of asterisk characters.

Examples:

Value of Expression E

1.23456
-1.23456
0

7-6 CYBIL Language Definition

Format of Element

E:6:2
E:6:3
E:5:2

Resulting String

1.23'
'-1.235'
I 0.00'

Revision A

Floating-Point Format

The form

expression{: length}

STRING REP

causes the specified expression to be converted to a string in floating-point
format.

The length of the temporary field is determined somewhat differently from
the other elements. The system defines a maximum number of digits that
can be contained in the mantissa of a real number and the number of digits
that can be in the exponent. When the compiler :figures the number of digits
that will be in the mantissa, it first determines the number of spaces that
must be present in the string. The number of digits in the exponent is
required as are four additional spaces: one for the sign of the expression (a
space if positive, - if negative), one for the decimal point in the mantissa, one
for the exponent character (E), and one for the sign of the exponent (+ or -).
The total number of required spaces is subtracted from the specified field
length. The compiler then compares the result (field length minus required
spaces) and the maximum number of digits allowed in the mantissa, and
takes the smaller of the two. That number is used for the number of digits to
be in the mantissa when the compiler rounds the floating-point expression.

If a field length larger than necessary is specified, spaces are added on the
left to fill the field. If the fixed size of the exponent is larger than necessary,
zeroes are filled in on the left. If the number that results from the subtraction
of required spaces from the field length is less than 1, the field is filled with a
string of asterisk characters.

Examples:

Value of Expression E

123.456
-123.456

Revision A

Format of Element

E:lO
E:ll

Resulting String

I 1.23E+002'
'-1.235E+002'

Procedures 7-7

STRING REP

Pointer Element

The format for specifying a pointer element is:

pointer { : length } { : #(radix) }

pointer

A pointer reference to be converted.

length

A positive integer expression specifying the length of the temporary field.
If the field length is omitted, the temporary field is the minimum size
required to contain the pointer value.

radix

Radix of the pointer value. Possible values are 2, 8, 10, and 16. For
NOS/VE, the default radix is 16.

The value of the pointer expression is converted into a string representation
in the specified radix. It is right-justified in the temporary field. If a field
length larger than necessary is specified, spaces are added on the left to fill
the field. If the field length is not long enough to contain all the digits, the
field is filled with a string of asterisk characters.

String Element

The format for specifying a string element is:

expression { : length }

expression

A string variable, string constant, or substring to be converted.

length

A positive integer expression specifying the length of the temporary field.
If omitted, the field is the minimum size required to contain the string
expression.

A string expression is left-justified in the temporary field. If a field length
larger than necessary is specified, spaces are appended on the right to fill the
field. If the field length is shorter than the length of the string, the temporary
field is filled with a string of asterisk characters.

7-8 CYBIL Language Definition Revision A

#CALLER_ID

9 System-Dependent Procedures

Of the procedures described here, some can be used only with NOS/VE;
others may be available in variations of CYBIL on other operating systems, e but they are not guaranteed to be. Keep in mind that programs using these
procedures may not be transportable to other systems.

To use these procedures properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetic order according to the first
alphabetic character.

#CALLER_ID Procedure

The #CALLER_ID procedure returns the identification (caller id) of the
caller of a function or procedure. This procedure can be used only with
NOS/VE.

The format of the #CALLER_ID procedure call is:

#CALLER_ID(id_record)

id_record

Name of the record that will contain the caller id information. It must be
four bytes long.

The caller id is a record that contains the global/local key, ring number, and
segment number of the caller. When a function or procedure is called, the
caller id is placed in the leftmost 32 bi ts of the XO register as a result of a call
relative (CALLREL) or call indirect (CALLSEG) hardware instruction. The
#CALLER_ID procedure accesses XO while this information is there.

No special scope attributes (XDCL or XREF) are required in the calling
function or procedure to use this procedure.

For further information on the caller id record and the CALLREL and
CALLSEG instructions, refer to volume II of the virtual state hardware
reference manual.

Revision A Procedures 7-9

#COMPARE_SWAP

#COMPARE_SWAP Procedure

The #COMPARE_SWAP procedure performs actions equivalent to the
compare swap (CMPXA) hardware instruction. It compares the contents of a
variable with an expression. If the variable is unlocked and equal to the
expression, the variable is swapped with a new expression. This procedure
can be used only with NOS/VE.

The format of the #COMPARE_SWAP procedure call is:

#COMPARE_SWAP(lock_ variable, initial_ expression,
new _expression, actual_ variable, result_ variable)

lock_ variable

Name of the variable on which the compare swap operation is to be
performed.

initial_ expression

Expression that is compared to the lock variable. They must be equal for
the swap operation to occur.

new_ expression

Expression that specifies the value to be stored in the lock variable if the
swap is successful (that is, the contents of lock_ variable equals
initial_ expression).

actual_ variable

Name of the variable into which the initial contents of the lock variable is
returned. If the lock variable is locked, this field is not changed.

result_ variable

Name of the variable into which the result of the compare swap
instruction is returned. It must be a subrange from 0 through 2 where
each value has the following significance.

Value

0

2

Significance

Swap operation was successful.

Swap operation failed because the initial expression was not
equal to the contents of the lock variable.

Swap operation failed because the lock variable was locked.

The types of the lock variable, initial expression, new expression, and actual
variable must be equivalent and have a size of eight bytes.

7-10 CYBIL Language Definition Revision A

#COMPARE_SWAP

The lock variable is said to be locked if the leftmost 32 bits are ones. If it is
locked, no action occurs. If it is unlocked, the contents of the lock variable is
assigned to the actual variable. Then the lock variable is compared to an
initial expression. If they are equal, a new expression is assigned to the lock
variable. Otherwise, no swap occurs.

This procedure essentially performs the following statements.

IF (left half of lock_ variable)= OFFFFFFFF(16) THEN
result_ variable:= 2;

ELSE
actual_ variable:= lock variable:
IF lock_ variable= initial_expression THEN

lock_ variable:= new _expression;
result_ variable:= O;

ELSE
result_ variable : = 1;

IFEND
IFEND

These statements are executed by the hardware as a noninterruptable
sequence. Access to the lock_ variable from other sources, such as another
processor or peripheral processor (PP), is prevented while these statements
are being executed.

For further information on the CMPXA instruction, refer to volume II of the
virtual state hardware reference manual.

Revision A Procedures 7-11

#CONVERT _POINTER_ TO _PROCEDURE

#CONVERT _POINTER_ TO _PROCEDURE
Procedure

The #CONVERT _POINTER_ TO _PROCEDURE procedure converts a
variable of the type pointer to procedure that has no parameters to a variable e
of the type pointer to procedure that can have parameters. This procedure
may not be available on variations of CYBIL that execute on other operating
systems.

The format of the #CONVERT _POINTER_ TO _PROCEDURE procedure
call is:

#CONVERT _POINTER_ TO_PROCEDURE(pointer _1, pointer _2)

pointer_!

Name of a pointer to procedure variable with no parameters.

pointer_2

Name of a pointer to procedure variable with an arbitrary parameter list.

7-12 CYBIL Language Definition Revision A

#HASH_SVA

#HASH_SVA Procedure

The #HASH_SVA procedure performs actions equivalent to the load page
table index (LP AGE) hardware instruction. This instruction searches the
system page table (SPT) for a given system virtual address (SV A). This
procedure can be used only with NOS/VE.

The format of the #HASH_SVA procedure call is:

#HASH_SVA(sva_ variable, index, count, result_ variable)

sva_ variable

Name of the variable that contains the SV A for which the instruction will
search.

index

Name of an integer variable that will contain a word index into the SPT.
If the SV A is found, this index points to the SPT entry for the SV A. If the
SV A is not found, it points to the last entry searched.

count

Name of an integer variable that will contain the number of SPT entries
searched. e result_ variable

Name of a boolean variable that is set to TRUE if the SVA is found.

The procedure returns either an index within the table if the SV A is found, or
an index of the last entry searched if the SV A is not found. It also returns
the number of entries searched and a boolean value indicating whether the
entry was found.

For further information on the SV A, addressing in general, and the LP AGE
instruction, refer to volume II of the virtual state hardware reference manual.

Revision A Procedures 7-13

#KEYPOINT

#KEYPOINT Procedure

The #KEYPOINT procedure generates an inline keypoint hardware
instruction based on parameters supplied in the call. It allows
performance monitoring of programs using keypoint instructions as trap
interrupts. This procedure can be used only with NOS/VE.

The format of the #KEYPOINT procedure call is:

#KEYPOINT(class, data, identifier)

class

A constant integer expession from 0 through 15 that specifies the keypoint
class. This value is placed in the j field of the hardware instruction.

data

A constant or variable expression from 0 through OFFFFFFFF
hexadecimal that specifies optional data to be collected with the keypoint.
If it is the constant 0, a 0 is placed in the k field of the hardware
instruction. If it is not 0, the value is placed in an X register and that
register is placed in the k field of the hardware instruction.

identifier

A constant expression from 0 through OFFFF hexadecimal that specifies
a keypoint identifier. It is placed in the Q field of the hardware
instruction.

For further information on the KEYPOINT instruction, refer to volume II of
the virtual state hardware r2ference manual.

7-14 CYBIL Language Definition Revision A

e

#PURGE_BUFFER

#PURGE_BUFFER Procedure

The #PURGE _BUFFER procedure performs actions equivalent to the purge
hardware instruction. It purges the contents of cache or the map buffer. This
procedure can be used only with NOS/VE. However, not all computer
systems that support NOS/VE have cache and map buffers. If executed on a
model without cache or map buffers, no action occurs.

The format of the #PURGE_BUFFER procedure call is:

#PURGE_BUFFER(option_ value, address)

option_ value
A constant integer expression from 0 through 15 that specifies one of the
following purge options.

Value

0

1

2

3

4-7

8

Revision A

Purge Option

Purge all entries in cache that are included in the 512-byte
block defined by the system virtual address (SV A) in Xj.

Purge all entries in cache that are included in the active
segment identifier (ASID) defined by the SVA in Xj.

Purge all entries in cache.

Purge all entries in cache that are included in the 512-byte
block defined by the process virtual address (PV A) in Xj.

Purge all entries in cache that are included in the segment
number defined by the PVA in Xj.

Purge all entries in the map (page table map if entries are
kept in separate maps) relating to the page table entry
defined by the SV A in Xj.

(Continued)

Procedures 7-15

#PURGE_ BUFFER

(Continued)

Value

9

lOor
A(16)

11 or
B(16)

12-15 or
C(16)-F(16)

address

Purge Option

Purge all entries in the map (page table map if entries are
kept in separate maps) relating to the page table entries that e
are included in the segment defined by the SV A in Xj.

Purge all entries in the map (page table map if entries
are kept in separate maps) relating to the page table entry
defined by the PV A in Xj.

Purge all entries in the map (both the page table and
segment map) relating to the segment table entry defined by
the PV A in Xj, and to all page table entries included within
that segment.

Purge all entries in the map.

Name of a six-byte variable that specifies the PVA or SVA of the data to
be purged.

For further information on addressing, cache and map buffers, and the purge
instruction, refer to volume II of the virtual state hardware reference manual.

7-16 CYBIL Language Definition Revision A

#SCAN

#SCAN Procedure

The #SCAN procedure scans a string from left to right until one of a
specified set of characters is found or the entire string has been searched.
This procedure may not be available on variations of CYBIL that execute on
other operating systems.

The format of the #SCAN procedure call is:

#SCAN(scan_ variable, string, index, result_ variable)

scan_ variable

Name of the variable that indicates the character values for which the
string is scanned. The variable must be 256 bits long. Each bit of the
variable represents the character in the corresponding position of the
ASCII character set. If a bit is set, the corresponding character is one for
which the procedure scans.

string

String or substring to be scanned.

index

Name of an integer variable. If a character is found during scanning, the
index of that character is returned in this variable. The index of a
character is that character's position in the string; for example, the index
value of the first character is l. If no matching values are found, the
variable contains the string length plus l.

result_ variable

Name of a boolean variable, which is set to TRUE if the scan finds one of
the selected characters.

The procedure looks for any one character from a set of characters specified
in a 256-bit variable. Bits are set in the variable to correspond to the
characters in the same positions in the ASCII character set collating
sequence. A set bit indicates that the procedure scans the string for the
corresponding character. The procedure stops ifit finds one of the characters
specified. It returns the position of the character that caused termination and
the boolean variable that indicates whether a character was found.

Revision A Procedures 7-1 7

#TRANSLATE

#TRANSLATE Procedure

The #TRANSLATE procedure translates each character in a source field
according to a translation table, and transfers the result to a destination
field. This procedure may not be available on variations of CYBIL that
execute on other operating systems.

The format of the #TRANSLATE procedure call is:

#TRANSLATE(table, source, destination)

table

Name of a string variable whose length is 256 characters. This variable
defines the translation table.

source

String to be translated.

destination

Name of a string variable into which the translated string is transferred.

Translation of the string occurs from left to right with each source byte used
as an index into the translation table. Translated bytes from the table are
stored in the destination field.

If the length of the source field is less than the length of the destination field,
translated spaces fill the destination field. If the source field is larger than
the destination field, the rightmost characters of the source field are
truncated.

7-18 CYBIL Language Definition Revision A

#UNCHECKED_ CONVERSION

#UNCHECKED_ CONVERSION Procedure

The #UNCHECKED_ CONVERSION procedure copies directly from a
source field to a destination field. This procedure may not be available on e variations of CYBIL that execute on other operating systems.

The format of the #UNCHECKED_ CONVERSION procedure call is:

#UNCHECKED_ CONVERSION(source, destination)

source

Name of a variable from which the copy is made.

destination

Name of a variable to which the copy is made.

The source and destination fields must have the same length in bits. Neither
the source nor the destination field can be a pointer or contain a pointer. If
either the source or destination field is the object of a pointer reference
(pointer"), the pointer cannot be a pointer to a procedure.

The destination field must satisfy the same restrictions as the target of an
assignment statement. This means that the destination field cannot be: e • A read-only variable.

• A formal value parameter of the procedure that calls the
#UNCHECKED_ CONVERSION procedure.

• A bound variant record.

• The tag field name of a bound variant record.

• A heap.

• An array or record that contains a heap.

Revision A Procedures 7-19

#WRITE_ REGISTER

#WRITE_REGISTER Procedure

The #WRITE_REGISTER procedure performs actions equivalent to the copy
to state register (CPYXS) hardware instruction. It allows a program to
change the contents of a process or processor register. This procedure can be
used only with NOS/VE.

The format of the #WRITE _REGISTER procedure call is:

#WRITE_REGISTER(register _id, data)

register _id

An integer expression from 0 through 255 that identifies the number of
the register to be written. Register numbers are given in the executive
state hardware reference manual.

data

Integer expression that contains the data to be written to the register.

The #READ _REGISTER function described in chapter 6 allows a program
to read the contents of a process or processor register.

Writing to certain registers requires special privileges. For further
information on process and processor registers, and the CPYXS instruction,
refer to volume II of the virtual state hardware reference manual. e

7-20 CYBIL Language Definition Revision A

USER-DEFINED PROCEDURES

9 User-Defined Procedures

Procedure Declaration e You define your own procedures with procedure declarations.

The format used for specifying a procedure is:

PROCEDURE {[attributes]) name {(formal__parameters)};t
{declaration_ list)
{statement_ list}

PROCEND {name};

attributes

One or more of the following attributes. If more than one are specified,
they are separated by commas.

XREF

The procedure has been compiled in a different module. In this case,
the procedure declaration can contain the name and formal
parameters, but no declaration list or statement list. In the other
module, the procedure must have been declared with the XDCL
attribute and an identical parameter list. If omitted, the procedure
must be defined within the module where it is called.

XDCL

The procedure can be called from outside of the module in which it is
located. This attribute can be included only in a procedure declared at
the outermost level of a module; it cannot be contained in a program,
function, or another procedure. Other modules that call this procedure
must contain the same procedure declaration with the XREF attribute
specified.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a procedure declaration. If included
in a CYBIL program run on NOS/VE, this parameter is ignored.

Revision A Procedures 7-21

USER-DEFINED PROCEDURES

INLINE

Instead of calling the procedure, the compiler inserts the actual
procedure statements at the point in the code where the procedure call
is made.

#GATEt

Scope attribute that allows the procedure to be accessed by a procedure
at a higher ring level. If #GATE is specified, the XDCL attribute is
required also.

If no attributes are specified, the procedure is assumed to be in the same
module in which it is called.

name

Name of the procedure. The procedure name is optional following
PROCEND.

formal _parameters

One or more parameters in the form:

VAR name (,name} ... : type
{,name {,name) ... : type) ...

and/or:

name (,name} ... : type
{,name {,name} ... : type} ...

The first form is called a reference parameter; its value can be changed
during execution of the procedure. The second form is called a value
parameter; its value cannot be changed by the procedure. Both kinds of
parameters can appear in the formal parameter list; if so, they are
separated by semicolons (for example, I: INTEGER; VAR A: CHAR).
Reference and value parameters are discussed in more detail later in this
chapter under Parameter List.

declaration_ list

Zero or more declarations.

statement_ list

Zero or more statements.

t This attribute is not supported on variations of CYBIL available on other
operating systems.

7-22 CYBIL Language Definition Revision A

USER-DEFINED PROCEDURES

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the procedure declaration. In the procedure declaration
format shown earlier, they are shown as "formal_parameters". Declarations
for formal parameters must appear in that first statement; they cannot .
appear in the declaration list in the body of the procedure.

A parameter list allows you to pass values from the calling program to the
procedure. When a call is made to a procedure, parameters called actual
parameters are included with the procedure name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the procedure, the
values of the corresponding actual parameters are substituted. For every
formal parameter in a procedure declaration, there must be a corresponding
actual parameter in the procedure call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {,name) ... : type
{,name (,name) ... : type) ...

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the procedure. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter corresponding
to a formal reference parameter must be addressable. A formal reference
parameter can be any fixed or adaptable type. If the formal parameter is a
fixed type, the actual parameter must be a variable or substring of an
equivalent type. If the formal parameter is an adaptable type, the actual
parameter must be a variable or substring whose type is potentially
equivalent. (For further information on potentially equivalent types, refer to
Equivalent Types in chapter 4.)

Revision A Procedures 7-23

USER-DEFINED PROCEDURES

A value parameter has the form:

name {,name} ... : type
{,name {,name) ... : type) ...

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the procedure cannot change
a value parameter by assigning a value to it or using it as an actual
reference parameter to another procedure or function. A formal value
parameter can be any fixed or adaptable type except a type that cannot have
a value assigned, that is, a heap, or an array or record that contains a heap.
If the formal parameter is a fixed type, the actual parameter can be any
expression that could be assigned to a variable of that type. Strings must be
of equal length. If the formal parameter is an adaptable type, the current
type of the actual parameter must be one to which the formal parameter can
adapt. If the formal parameter is an adaptable pointer, the actual parameter
can be any pointer expression that could be assigned to the formal
parameter. Both the value and the current type of the actual parameter are
assigned to the formal parameter.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameter lists are valid.

• VAR i, j : integer; a, b : char;

• VAR i : integer; VAR j integer; a : char; b char;

• a : char; VAR i, j integer; b : char;

• VAR i : integer, real; a : char, b : boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

7-24 CYBIL Language Definition Revision A

USER-DEFINED PROCEDURES

Calling a Procedure

A call to a procedure consists of the procedure name (as given in the
procedure declaration) and any parameters to be passed to the procedure in
the following format:

name {(actual_parameters)};

name

Name of the procedure or a pointer to a procedure.

actual _parameters

One or more expressions or variables to be substituted for formal
parameters defined in the procedure declaration. If two or more are
specified, they are separated by commas. They are substituted one-for-one
based on their position within the list; that is, the first actual parameter
replaces the first formal parameter, the second actual parameter replaces
the second formal parameter, and so on. For every formal parameter in a
procedure declaration, there must be a corresponding actual parameter in
the procedure call.

A procedure is a type, like the types described in chapter 3. Procedure types
are used for declaration of pointers to procedures; there are no procedure
variables.

The lifetime of a formal parameter is the lifetime of the procedure in which it
is a part. Storage space for the parameter is allocated when the procedure is
entered and released when the procedure is left.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage (with the ALLOCATE statement) and the release of storage (with the
FREE statement).

Two procedure types are equivalent if corresponding parameter segments
have the same number of formal parameters, the same methods of passing
parameters (reference or value), and equivalent types.

Revision A Procedures 7-25

I

I

USER-DEFINED PROCEDURES

Example:

This example calculates the greatest common divisor X of Mand N. M and N
are passed as value parameters; that is, their values are used but Mand N
themselves are not changed. X, Y, and Z are reference parameters (preceded
by the VAR keyword). Their original values have no meaning in the
procedure; they are assigned new values in the procedure that destroy their
previous values.

PROCEDURE gcd(m,n : integer; VAR x, y, z : integer);
{Extended Euclid's Algorithm}
VAR a1, a2, b1, b2, c, d, q, r : integer;

a1 := O;
a2 := 1 . ,
b1 := 1;
b2 := O· ,
c := m;
d := n· ,

WHILE d < > 0 DO
{a1 * m + b1 * n = d, a2 * m + b2 * n = c}
{gcd Cc,d) = gcd Cm,n)}
q := c DIV d;
r := c MOD d;
a2 := a2 - q * a1;
b2 := b2 - q * b1;
c := d;
d := r;
r := a1;
a1 := a2;
a2 := r;
r := b1;
b1 := b2;
b2 := r;

WHILEND;

x := c;
y .- a2;
z := b2;
{x = gcd Cm,n), y * m + z * n = gcd Cm,n,)}

PROCEND gcd;

7-26 CYBIL Language Definition Revision B

9 The CYBIL Command and
Other Compilation Facilities 8

This chapter describes the CYBIL command used to call the compiler, and
the declarations, statements, and directives that can be used at compilation
time.

CYBIL Command ... 8-1

Compilation Declarations and Statements 8-7

Compile-Time Variables .. 8-7
Compile-Time Expressions .. 8-8
Compile-Time Assignment Statement 8-9
Compile-Time IF Statement .. 8-10

Compile-Time Directives .. 8-11

Toggle Control .. 8-12
Layout Control .. 8-18
Maintenance Control .. 8-25
Comment Control ... 8-27

9 The CYBIL Command and
Other Compilation Facilities 8

e This chapter describes the CYBIL command and the declarations,
statements, and directives that can be used at compilation time. The CYBIL
command is used to compile one or more CYBIL modules. The compilation
statements and directives are used to construct the unit to be compiled and to
control that process. If a compiler command and a directive specify
conflicting options, the option encountered most recently is used.

For further information on program execution, refer to the SCL Object Code
Management manual.

CYBIL Command

This command is a standard system command and uses the syntax and
language elements for parameters described in the SCL Language Definition
manual.

Purpose

Format

The CYBIL command calls the compiler, specifies the files to
be used for input and output, and indicates the type of output
to be produced.

CYBIL
INPUT=file reference
LIST=file reference
BIN ARY_ OBJECT=file reference
LIST_ OPTIONS=list of keyword value
DEBUG=list of keyword value
ERROR_LEVEL=keyword value
OPTIMIZATION=keyword value
P AD=integer
RUNTIME_CHECKS=list of keyword value
STATUS=status variable

Parameters INPUT (I)

Revision A

Specifies the file that contains the source text to be read.
Source input ends when an end-of-partition or an end-of
information is encountered on the source input file. If omitted,
$INPUT is assumed.

LIST (L)

Specifies the file on which the compilation listing is to be
written. If $NULL is specified, all compile-time output is
discarded. If omitted, $LIST is assumed.

CYBIL Command/Other Facilities 8-1

CYBIL COMMAND

BINARY_ OBJECT (B)

Specifies the file on which object code is to be written. If
$NULL is specified, the compiler performs a syntactic and
semantic scan of the program but does not generate object
code. If omitted, $LOCAL.LGO is assumed. e
LIST_ OPTIONS (LO)

Specifies a combination of the following list options. IfNONE
is specified, no list options are selected. If omitted, option S
(list the source input file) is assumed.

Option Description

A Produces an attribute list of source input block
structure and relative stack. The attribute listing is
produced following the source listing on the file
specified by the LIST parameter or, if the LIST
parameter is omitted, on file $LIST.

F Produces a full listing. In effect, this option selects
options A, S, and R.

0 Lists compiler-generated object code. When
selected, this listing includes an assembly-like a
listing of the generated object code. This option •
has no effect if the BINARY_ OBJECT parameter
is set to $NULL.

R Produces a symbolic cross-reference listing
showing the location of a program entity definition
and its use within a program.

RA Produces a symbolic cross-reference listing of all
program entities whether referenced or not.

S Lists the source input file.

x Used in conjunction with the compile-time
directive LISTEXT so that listings can be
externally controlled using the CYBIL command.
The LISTEXT toggle must be ON. For further
information, refer to Toggle Control under
Compile-Time Directives later in this chapter.

8-2 CYBIL Language Definition Revision A

Revision A

CYBIL COMMAND

DEBUG(D)

Specifies a combination of the following debug options. If
omitted, symbol and line tables are generated.

Option Description

DS Compiles all debugging statements. A debugging
statement is a statement in the source text that is
ignored unless this option is specified. These
statements are enclosed by the compile-time
directives COMPILE and NOCOMPILE. (For
further information, refer to Maintenance Control
under Compile-Time Directives later in this
chapter.) The symbol table and line table for
interactive debugging are also generated.

NT Symbol table and line table are not generated with
the object code.

ERROR_LEVEL (EL)

Specifies one of the following error list options. If omitted, W
(list warning and fatal diagnostics) is assumed.

Option Description

F Lists fatal diagnostics. If selected, only fatal
diagnostics are listed.

W Lists warning (informative) diagnostics as well as
fatal diagnostics.

CYBIL Command/Other Facilities 8-3

CYBIL COMMAND

OPTIMIZATION (OPT)

Specifies one of the following optimization options. If omitted,
DEBUG is assumed.

Option Description

DEBUG Object code is stylized to facilitate debugging.

LOW

HIGH

PAD

Stylized code contains a separate packet of
instructions for each executable source statement;
it carries no variable values across statement
boundaries in registers, and it notifies Debug each
time the beginning of a statement or procedure is
reached.

Provides for keeping constant values in registers.

Provides for keeping local variables in registers,
passing parameters to local procedures in registers,
and eliminating redundant memory references,
common subexpressions, and jumps to jumps.

Generates the specified number of no-op {no operation)
instructions between instructions that actually perform a
operations. If omitted, zero is assumed; no-op instructions are W
not generated.

8-4 CYBIL Language Definition Revision A

Revision A

CYBIL COMMAND

RUNTIME_CHECKS (RC)

Specifies a combination of the following run-time checking
options. If NONE is specified, no run-time checks are selected.
If omitted, R (check ranges) and S (test array subscripts) are
assumed.

Option

N

NONE

R

s

STATUS

Description

Produces compiler-generated code that checks for a
NIL value when a reference is made to the object of
a pointer.

No run-time checks are produced.

Produces compiler-generated code to check ranges.
Range checking code is generated for assignment
to integer subranges, ordinal subranges, and
character variables. All CASE statements are
checked to ensure that the selection expression
corresponds to one of the variant values specified if
no ELSE clause is provided. All references to
substrings are verified. If an offset (variable
pointer) is specified on a RESET statement, it is
checked to ensure that it is valid for the specified
sequence.

Produces compiler-generated code to test the
subscripting of arrays.

Specifies that SCL will pass the compilation status to the
specified variable. The compiler always returns a status
variable indicating whether any fatal errors were found
during the compilation that was just completed. You can test
this status variable and take special action if fatal
compilation errors occurred. If omitted and the status returned
from the compiler is abnormal, SCL terminates the current
command sequence.

CYBIL Command/Other Facilities 8-5

CYBIL COMMAND

Remarks

Example

If the compiler command specifies an option that differs from
a directive, the latest occurrence of either the command or the
directive takes precedence.

This command reads source code from a file named
COMPILE, writes the compilation file on file LIST, and writes
the object code on file BINI. The listing includes source code,
compiler-generated object code, and a symbolic cross-reference
listing.

cybil i;compile L;List b;bin1 Lo;(o,r)

8-6 CYBIL Language Definition Revision A

COMPILE-TIME VARIABLES

Compilation Declarations and
Statements

Many program elements defined in CYBIL have counterparts that can be
used to control the compilation process. They include variable declarations,
expressions, and the assignment and IF statements. The IF statement is
used to specify certain areas of code to be compiled. The IF statement
requires the use of expressions, which in turn require variables. Assignment
statements are used to change the value of variables and, thus, expressions.

Compile-Time Variables

Only boolean type variables can be declared.

The format used to specify a boolean type compile-time variable is:

? VAR name {,name) ... : BOOLEAN:= expression
{,name {,name) ... : BOOLEAN:= expression) ... ?;

name

Name of the compile-time variable. This name must be unique among all
other names in the program.

expression

A compile-time expression that specifies the initial value of the variable.

A compile-time declaration must appear before any compile-time variables
are used. The scope of such a variable extends from the point at which it is
declared to the end of the module. Compile-time variables can be used only in
compile-time expressions and compile-time assignment statements.

Revision A CYBIL Command/Other Facilities 8-7

COMPILE-TIME EXPRESSIONS

Compile-Time Expressions

Compile-time expressions are composed of operands and operators like
CYBIL-defined expressions. An operand can be:

• Either of the constants TRUE or FALSE.

• A compile-time variable.

• Another compile-time expression.

The operators are NOT, AND, OR, and XOR. Their order of evaluation from
highest to lowest is:

• NOT

• AND

• ORandXOR

These operators have their usual meanings, as described under Operators in
chapter 5.

8-8 CYBIL Language Definition Revision A

COMPlLE-'l'IME ASSIGNMENT

e Compile-Time Assignment Statement

A compile-time assignment statement assigns a value to a compile-time
variable. e The format of the compile-time assignment statement is:

? name : = expression ?;

name

Name of a compile-time variable.

expression

A compile-time expression.

Revision A CYBIL Command/Other Facilities 8-9

COMPILE-TIME IF

Compile-Time IF Statement

The compile-time IF statement compiles or skips a certain area of code
depending on whether a given expression is true or false.

The format of the compile-time IF statement is:

? IF expression THEN
code

{?ELSE
code}

?IFEND

expression

A boolean compile-time expression.

code

An area of CYBIL code or text.

When the expression is evaluated as true, the code following the reserved
word THEN is compiled. When compilation of that code is completed,
compilation continues with the first statement following IFEND. When the
expression is false, compilation continues following the ELSE phrase, if it is
included, or following IFEND.

The ELSE clause is optional. If included, the ELSE clause designates an
area of code that is compiled when the preceding expression is false.

Example:

The following example shows the declaration of a compile-time variable
named SMALL_SIZE that is initialized to the value TRUE. A line of CYBIL
code declaring an array named TABLE is compiled. Then a compile-time IF
statement checks the value of SMALL_SIZE. If it is TRUE, the line of
CYBIL code calling a procedure named BUBBLESORT is compiled in the
program. Ifit is FALSE, the CYBIL line calling procedure QUICKSORT is
inserted instead. Because SMALL_SIZE was initialized to TRUE, the call to
BUBBLESORT is included in the compiled program.

? VAR small_size : boolean := TRUE ?;

VAR table : array [1 •• 50] of integer;

? IF small_size = TRUE THEN

bubblesort (table>;

? ELSE

quicksort (table);

? !FEND

8-10 CYBIL Language Definition Revision A

COMPILE-TIME DIRECTIVES

9 Compile-Time Directives

Compile-time directives allow you to perform the following activities during
compilation. e • Set toggles that turn on or off listing options such as source code listing

and object code listing (SET, PUSH, POP, and RESET directives when
they contain one or more of the listing options).

• Set toggles that turn on or off run-time options such as range checking
and array subscript checking (SET, PUSH, POP, and RESET directives
when they contain one or more of the run-time checking options).

• Specify the layout of the source text to be used (LEFT and RIGHT margin
directives).

• Specify the layout of the resulting listing (EJECT, SP ACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE directives).

• Specify what code to compile (COMPILE and NOCOMPILE directives).

• Include comments in the object module (COMMENT directive).

You can specify one or more directives with the format: e ?? directive (,directive) ... ??

directive

One of the directives discussed in the remainder of this chapter. They can
be broken down into four categories:

• Toggle control (SET, PUSH, POP, and RESET)

• Layout control (LEFT, RIGHT, EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE)

• Maintenance control (COMPILE and NOCOMPILE)

• Object code comment control (COMMENT)

Directives must be bounded by a pair of consecutive question marks. These
delimiters are not shown in the following formats for individual directives,
but they are required around one or more directives.

If a directive differs from an option specified on a compiler command, the
latest occurrence of either the directive or the command takes precedence.

Revision A CYBIL Command/Other Facilities 8-11

SET

Toggle Control

Toggle controls can set the values of individual toggles, save and restore
preceding toggle values in a last in-first out manner, and reset all toggles to
their initial values.

SET Directive

The SET directive specifies the setting of one or more toggles.

The format of the SET directive is:

SET (toggle_name :=condition {,toggle_name :=condition) ...)

toggle_name
Name of the toggle being set. Listing toggles are described in table 8-1.
Run-time checking toggles are described in table 8-2. The names of toggles
can be used freely outside of directives.

condition
ON or OFF. If a toggle is ON, the activity associated with it is performed
during compilation; if it is OFF, the activity is not performed.

All settings specified in the SET directive are performed together. If the
directive list contains more than one setting for a single toggle, the rightmost
setting in the list is used.

8-12 CYBIL Language Definition Revision A

PUSH

PUSH Directive

The PUSH directive specifies the setting of one or more toggles like the SET
directive, but before the settings are put into effect, a record of the current
state of all toggles is saved for later use.

The format of the PUSH directive is:

PUSH (toggle_name :=condition {,toggle_name :=condition) ...)

toggle_name

Name of the toggle being set. Listing toggles are described in table 8-1.
Run-time checking toggles are described in table 8-2. The names of toggles
can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is performed
during compilation; ifit is OFF, the activity is not performed.

Settings in the PUSH list are performed in the same manner as a SET list. If
the directive list contains more than one setting for a single toggle, the
rightmost setting in the list is used.

The POP directive, described later in this chapter, restores the original toggle
settings in a last in-first out manner (that is, the last record to be saved is
the first to be restored).

Example:

This example turns off listing temporarily, that is, until the POP directive is
encountered.

?? PUSH (LIST := OFF) ??

?? POP ??

Revision B CYBIL Command/Other Facilities 8-13

LISTING TOGGLES

Table 8-1 describes the listing toggles and gives their initial settings.

Table 8-1. Listing Toggles

Initial e Toggle Value Description

LIST ON Determines whether other listing toggles are read.
When ON, a source listing is produced and the
other listing toggles are used to control other
aspects of listing. When OFF, no listing is
produced; the other listing toggles are ignored.

LISTOBJ OFF Controls the listing of generated object code.
When ON, object code is interspersed with source
code following the corresponding source code line.

LISTCTS OFF Controls the listing of the listing toggle directives
and layout directives.

LIS TEXT OFF When ON, the listing of source statements is
controlled by a list option on the CYBIL compiler
command.

LIST ALL Not This option represents all of the listing toggles. e applicable When ON, all other listing toggles are ON; when
OFF, all other listing toggles are OFF.

8-14 CYBIL Language Definition Revision A

RUN-TIME CHECKING TOGGLES

Table 8-2 describes the run-time checking toggles and gives their initial
settings.

Table 8-2. Run-Time Checking Toggles

Initial
Toggle Value Description

CHKRNG ON Controls the generation of object code that
performs range checking of scalar subrange
assignments and case variables.

CHKSUB

CHKNIL

CHKALL

Revision A

ON

OFF

Controls the generation of object code that checks
array subscripts (indexes) and substring
selections to verify that they are valid.

Controls the generation of object code that checks
for a NIL value when a reference is made to the
object of a pointer.

Not This option represents all run-time checking
applicable toggles. When ON, all other run-time checking

toggles are ON; when OFF, all other run-time
checking toggles are OFF.

CYBIL Command/Other FacilitieR 8-lli

POP

POP Directive

The POP directive restores the last toggle settings that were saved by the
PUSH directive.

The format of the POP directive is:

POP

If no record was kept (such as when a SET directive is performed), the initial
settings are restored.

Example:

This example shows a PUSH directive that temporarily turns off listing. The
POP directive restores listing.

?? PUSH (LIST := OFF) ??

?? POP ??

8-16 CYBIL Language Definition Revision B

RESET

RESET Directive

The RESET directive restores the initial toggle settings.

The format of the RESET directive is:

RESET

When the RESET directive is performed, any record of previous settings is
destroyed.

Revision A CYBIL Command/Other Facilities 8-17

I .EFT AND RIGHT

Layout Control

Layout controls are used to specify the margins of the source text and to
control the layout of the listing.

LEFT and RIGHT Directives

The LEFT and RIGHT directives specify the column number of the left and
right margins of the source text, respectively.

The formats of the LEFT and RIGHT directives are:

LEFT : = integer

RIGHT:= integer

integer

An integer value that represents the column number of the left and right
margins, respectively.

The left margin must be greater than zero; that is,

left margin > 0

The right margin must be greater than or equal to the left margin plus 10, A
and less than or equal to 110; that is, W
left margin + 10 <= right margin <= 110

All source text left of the left margin and right of the right margin is ignored.

If the margin directives are not used, the left margin is assumed to begin in
column 1 with the right margin in column 79.

Example:

This example sets the left margin at column 1 and the right margin at
column 110.

?? LEFT := 1, RIGHT := 110 ??

8-18 CYBIL Language Definition Revision A

EJECT

EJECT Directive

The EJECT directive causes the paper to be advanced to the top of the next
page. e The format for specifying the EJECT directive is:

EJECT

Revision A CYBIL Command/Other Facilities 8-19

SPACING

SPACING Directive

The SPACING directive specifies the number of blank lines between
individual lines of the listing.

The format of the SPACING directive is:

SPACING:= spacing

spacing

One of the values 1, 2, or 3 specifying single, double, and triple spacing,
respectively.

An undefined value has no effect on spacing, but an error message is issued.

If the SP ACING directive is not used, single spacing (no intervening blank
lines) is assumed.

8-20 CYBIL Language Definition Revision A

SKIP

SKIP Directive

The SKIP directive specifies that a given number of lines is to be skipped.

The format of the SKIP directive is:

SKIP : = lines

lines

Integer value specifying the number of lines to skip. It must be greater
than or equal to 1.

If the number of lines specified is larger than the number of lines on the
page, or if it would cause the paper to skip past the bottom of the current
page, the paper is advanced to the top of the next page.

Revision A CYBIL Command/Other Facilities 8-21

NEWTITLE

NEWTITLE Directive

The NEWTITLE directive specifies a new, additional title to be used on a
page while saving the current title.

The format of the NEWTITLE directive is:

NEWTITLE :='character _string'

character _string

A character string specifying the title to be used. A single quote mark is
indicated by two consecutive quote marks enclosed by quote marks
(that is, "").

The current title is saved and the given character string becomes the current
title. A standard page header is always the first title printed on a page,
followed by user-defined titles in the order in which they were saved. This
means that titles are saved and restored in a last in-first out order, but they
are printed in a first in-first out order. There is always a single empty line
between the standard page header and any user-defined titles. There is
always at least one empty line between the last title and the text.

The maximum number of titles that can be specified is 10. Any attempts to
add more titles is ignored.

Titling does not take effect until the top of the next printed page.

8-22 CYBIL Language Definition Revision A

TITLE

TITLE Directive

The TITLE directive replaces the current user-defined title with the given
character string. e The format of the TITLE directive is:

TITLE : = 'character_ string'

character_ string

A character string specifying the title to be used. A single quote mark is
indicated by two consecutive quote marks enclosed by quote marks
(that is, "").

If there is no user-defined title currently, the character string becomes the
current title.

A standard page header is always the first title printed on a page. There is
always a single empty line between the standard page header and any user
defined titles. There is always at least one empty line between the last title
and the text.

Titling does not take effect until the top of the next printed page.

Revision A CYBIL Command/Other Facilities 8-23

OLDTITLE

OLDTITLE Directive

The OLDTITLE directive restores the last user-defined title that was saved,
making it the current title.

The format of the OLDTITLE directive is:

OLDTITLE

If there is no saved title, no action occurs.

8-24 CYBIL Language Definition Revision A

COMPILE

Maintenance Control

COMPILE Directive

The COMPILE directive causes compilation to occur, or to resume after the
occurrence of a NOCOMPILE directive.

The format of the COMPILE directive is:

COMPILE

If neither the COMPILE nor NOCOMPILE directive is used, the COMPILE
directive is assumed; source code is compiled.

When the CYBIL command includes the Debug parameter with DS specified,
debugging statements enclosed by the COMPILE and NOCOMPILE
directives are compiled.

Revision B CYBIL Command/Other Facilities 8-25

I

I

NOCOMPILE

NOCOMPILE Directive

The NOCOMPILE directive causes compilation to stop until the occurrence
of a COMPILE directive or the end of the module.

The format of the NOCOMPILE directive is:

NOCOMPILE

NOCOMPILE continues listing source code and text according to the listing
toggles and layout directives, interpreting and obeying directives, but source
code is not compiled until a COMPILE directive is encountered or a
MOD END statement is encountered.

When the CYBIL command includes the Debug parameter with DS specified,
debugging statements enclosed by the COMPILE and NOCOMPILE
directives are compiled.

8-26 CYBIL Language Definition Revision B

COMMENT

Comment Control

COMMENT Directive

The COMMENT directive causes the compiler to include the given character
string in the commentary portion of the object module generated by the
compilation process.

The format of the COMMENT directive is:

COMMENT:= 'character_string'

character _string

A character string of up to 40 characters that specifies a compile-time
comment.

This directive allows you to include comments in object modules so that the
comments appear in the load maps. Any number of comments can be
included, but only the last comment encountered appears.

Example:

?? COMMENT := 'Copyright 1983 by Control Data Corporation' ??

Revision A CYBIL Command/Other Facilities 8-27

9 The Debug Utility

This chapter describes the Debug utility, which aids in debugging CYBIL e programs.

9

Introduction .. 9-1

Accessing Debug .. _ 9-2

Accessing Debug During Program Execution 9-3
Accessing Debug When Program Failure Occurs 9-4

Debug Concepts ... _ 9-5

Debug Input/Output .. 9-5
Status Variable .. 9-7
Breaks ... 9-8
Addressing ... 9-8
Debugging Optimized Code .. 9-13
Debugging With Condition Handlers 9-14
Interrupt Processing While Debugging 9-14
Debug Ring ... 9-16

Debug Commands .. 9-18 e Debug Functions ... 9-72

Using Debug ... 9-80

Sample Debug Sessions .. 9-80

The Debug Utility 9

Introduction

The Debug utility provides source code level symbolic debugging for
programs written in COBOL, CYBIL, and FORTRAN, and machine code
level debugging for object modules. Using Debug does not require source
level program modifications, a knowledge of assembly language, or the
ability to interpret extensive memory dumps. Debugging can be done at the
source language level.

Debug enables you to monitor and control the execution of programs in
interactive and batch mode. Debug allows program conditions to be modified
and tested during execution. With Debug, you can:

• Suspend program execution at specified locations, such as line 398 of
module MAIN _PROGRAM.

• Suspend program execution when a selected event occurs, such as writing
to a specified location.

• Display and change the values of program variables, memory locations,
and registers while execution is suspended.

• Display the procedure calls that led to the current location (call traceback
information).

• Display the environment that you are currently debugging under.

• Resume program execution at the location where execution was
suspended or at another location.

• Step through a program by lines or procedures.

Revision B The Debug Utility 9-1 e

ACCESSING DEBUG

Because Debug is a command utility, SCL features are available while
Debug is in control. With SCL, you can:

• Temporarily read commands from a file other than the Debug input file
using the SCL command INCLUDE_FILE.

• Enter multiple commands, separated by semicolons, on one line.

• Continue a single command on one or more continuation lines.

• Evaluate and display SCL expressions using the SCL command
DISPLAY_ VALUE.

• Echo Debug commands to one or more files, and write Debug output to
several files using the SCL command CREATE_FILE_ CONNECTION.

• Include Debug commands in SCL procedures.

• Enter commands for processing by another active command processor,
such as an editor to examine your source listing.

Accessing Debug

y OU can access Debug explicitly when executing your program. y OU can also a
access Debug when your program aborts unexpectedly. W

e 9-2 CYBIL Language Definition Revision B

ACCESSING DEBUG

Accessing Debug During Program Execution

Every program has various attributes that control its execution. Among
these are the Debug attributes DEBUG_MODE, DEBUG_INPUT, and
DEBUG_ OUTPUT. These attributes are defined as follows:

DEBUG_MODE=ONorOFF

A keyword value that determines whether or not the program is to be
executed under control of Debug.

DEBUG_INPUT =file

The file from which Debug initially reads commands when
DEBUG_MODE=ON.

DEBUG_ OUTPUT= file

The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs that do not explicitly specify values at
the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE_ TASK or on the SCL CREATE_ 0 EJECT_ LIBRARY
utility's subcommand CREATE_ PROGRAM_ DESCRIPTION. Job level
specifications are set as parameter values of the SCL command SET_
PROGRAM_ ATTRIBUTES. (Refer to the SCL Language Definition manual
and the SCL Object Code Management manual for complete descriptions of
these commands.)

For example, if you issue

set_program_attributes debug_mode=on

just after logging in, all program executions will be under control of Debug
unless you specify DEBUG_MODE=OFF on the EXECUTE_ TASK
command or in a previously created program description. You can
change job level attributes at any time by issuing another SET_
PROGRAM_ATTRIBUTf~S command.

Initially, the values of the job level Debug attributes are DEBUG_
MODE=OFF, DEBUG_INPUT=COMMAND, and DEBUG_
OUTPUT=$0UTPUT. For interactive jobs, COMMAND and $OUTPUT are
assigned to the terminal by default.

Individual sites and individual users at a site can change these initial
defaults by including a SET _PROGRAM_ATTRIBUTES command in the
system or user prologue file.

Revision B The Debug Utility 9-3

I

ACCJ<:SSING DEBUG

Accessing Debug When Program Failure Occurs

Once you have a working program, you generally want to access Debug only
if the program unexpectedly fails. The program attributes that control Debug
when a working program fails are ABORT _FILE and DEBUG_ OUTPUT.
These attributes are defined as follows:

ABORT _FILE= file

The file from which Debug initially reads commands if the program
aborts when DEBUG _MODE=OFF.

DEBUG_OUTPUT =file

The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs that do not explicitly specify values at
the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE_ TASK or on the SCL CREATE_ OBJECT _LIBRARY
utility's subcommand CREATE_PROGRAM_DESCRIPTION. Job level
specifications are set as parameter values of the SCL command SET_
PROGRAM_ATTRIBUTES. (Refer to the SCL Language Definition manual
and the SCL Object Code Management manual for complete descriptions of
these SCL commands.)

For example, if you issue

set_program_attributes debug_mode=off, abort_file=abortfile

just after logging in, Debug will not gain control unless the program fails.
Programs will not execute under the control of Debug unless you specify
DEBUG_MODE=ON on the EXECUTE_ TASK command or in a previously
created program description. You can change job level attributes at any time
by issuing another SET _PROGRAM_ATTRIBUTES command.

The initial value of ABORT_ FILE is $NULL, the special system file with no
data in it. DEBUG _MODE must be off and ABORT _FILE must be a file
other than $NULL.

9-4 CYBIL Language Definition Revision B

DEBUG CONCEPTS

9 Debug Concepts

This section contains miscellaneous information that applies to Debug
usage. This information includes Debug input/output, status variable,
breaks, and addressing.

Debug Input/Output

Although Debug input/output takes place automatically, you can, by
manipulating the Debug input/ output files, expand the capabilities of Debug.

Debug Input

Debug commands are initially read from the file specified by the DEBUG_
INPUT parameter or the ABORT _FILE parameter of the SCL commands
EXECUTE_ TASK, CREATE_PROGRAM_DESCRIPTION, or SET_
PROGRAM_ ATTRIBUTES commands. For interactive jobs, the default
input file COMMAND is the terminal. For batch jobs, COMMAND is the
stream of lines being read. You cannot use COMMAND as the source of
Debug input for a batch job because COMMAND is positioned at
beginning-of-information, which is your login. Instead, you must copy the
Debug input to another file and use that as the Debug input.

You can change the input file temporarily by entering an SCL INCLUDE_
FILE command. As soon as the command is entered, commands are read
from the specified file until an end-of-partition, an end-of-information, or a
RUN command is encountered. If an end-of-partition or an end-of-file is
encountered, commands are again read from the file that contained the
INCLUDE_FILE command. If a RUN command is encountered, program
execution is resumed; any remaining commands in the file that was included
are not processed. When Debug again gains control, commands are read
from the current Debug input file.

Revision B The Debug Utility 9-5 •

DEBUG CONCEPTS

The Debug command CHANGE_ DEFAULT (described in detail later in this
chapter) can also be used to change the Debug command source. The
DEBUG_INPUT parameter of the CHANGE_DEFAULT command
changes the command source so that Debug commands are read from the
specified file when Debug gains control after program execution has been
resumed. Unlike the INCLUDE_FILE command, the CHANGE_DEFAULT
command has no effect on the current command source.

The default Debug input file is COMMAND. In interactive jobs, COMMAND
is the terminal. In batch jobs, it is the normal command stream. If Debug is
activated from within an SCL procedure, commands are read from
COMMAND when Debug gains control, not from the procedure. To force
Debug to read commands from the procedure, specify

debug_input = $command

in the program description or on the EXECUTE_ TASK command.

Debug Output

Debug output (messages and information produced by Debug display
commands) is initially written to the file specified by the DEBUG_ OUTPUT
parameter (default output file is $OUTPUT) of the SCL commands
EXECUTE_ TASK, CREATE_PROGRAM_DESCRIPTION, or SET_ e
PROGRAM_ATTRIBUTES. The OUTPUT parameter of the Debug display
commands can be used to divert display output to another file; the diversion
applies only to the command that contains the OUTPUT parameter.

The Debug command CHANGE_DEFAULT (described in detail later in this
chapter) can be used to change the current Debug output file. The DE RUG_
OUTPUT parameter of the CHANGE_DEFAULT command causes Debug
to write all output to the specified file; the change takes place as soon as the
command is executed.

The default Debug output file is $OUTPUT. $OUTPUT is the terminal for
interactive jobs and the listing file for batch jobs. Initially, $OUTPUT is
connected to the actual file OUTPUT. You can connect $OUTPUT to other
files by using the SCL command CREATE_FILE_CONNNECTION. If the
standard files $ECHO, $RESPONSE, and $ERRORS are also connected to
one of the actual output files, a complete record of a Debug session can be
created.

e 9-6 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Status Variable

All Debug commands have an optional parameter called STATUS. When
you specify this parameter, a previously declared SCL variable of kind
STATUS must be supplied as its value. (Refer to the SCL Language
Definition manual for a discussion of SCL variables.) This variable contains
the completion status of the command.

A status variable is a record that contains the following fields:

NORMAL

A boolean that has a value of FALSE if the command could not be
processed correctly and a value of TRUE if the command was processed
correctly.

IDENTIFIER

A string with a length of 2 that contains the product identifier of the
processor in which the error was detected. The product identifier for
Debug is DB. This field is undefined when the command is processed
correctly.

CONDITION

An integer code that identifies the detected error. The two leftmost digits
in a Debug condition code are 64. This field is undefined when the
command is processed correctly.

TEXT

A string with a length of 256 that contains the error message text. This
field is undefined when the command is processed correctly.

The presence of the STATUS parameter on a command causes the next
command to be processed even if an error condition was encountered. After
checking the contents of the status variable, you can use succeeding
commands to alter the flow of control based upon the occurrence of error
conditions.

Revision B The Debug Utility 9-7

I

DEBUG CONCEPTS

Breaks

The primary mechanism for Debug to gain control from an executing
program is the user-defined break. A user-defined break specifies one or more
events and an address range such that when a specified event occurs within
the address range, program execution is interrupted and Debug takes control.
Many events can be specified, for example, when execution reaches a specific
place, before a branch to a specific address range occurs, or before a write
into memory. Address ranges also can be specified in many forms. You
cannot set two breaks for the same event at the same address range or
overlapping address ranges. Once set, a break stays set until it is explicitly
deleted or implicitly deleted with the DELETE_BREAK ALL command. The
SET _BREAK, DELETE_BREAK, and DISPLAY _BREAK commands are
used to set, delete, and display break definitions. (These commands are
described in detail later in this chapter.)

The maximum number of breaks that the Debug utility can handle is 64. Of
these 64 breaks, 32 can be the type of break that is detected by Debug
hardware (read, write, call, branch, execution, and read next instruction).
Some breaks that you set cause Debug to set one or more internal breaks.
Thus, the actual maximum number of breaks that are available to you is not
a fixed number. A message is issued when another break cannot be set.

Addressing

Debug uses source level addresses when addresses are reported in Debug
command output, such as when DISPLAY_ CALL or DISPLAY_ BREAK is
executed and when Debug gains control. Debug also uses source level
addresses when addresses are referenced in Debug commands, such as SET_
BREAK and DISPLAY _MEMORY.

e 9-8 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Reported Addresses

The level of reported addresses is determined by the information available.
For CYBIL programs, the following are available by default:

• Module address tables indicating where modules are located.

• Line address tables indicating where code for each line is located.

• Symbol tables indicating where the value of each program name is
located.

If you specify DEBUG= NT on the CYBIL command, however, line address
and symbol table addresses are suppressed. In this case, only module and
machine level addressing are possible.

Addresses in the message issued when Debug gains control (the break report
message) are formatted as follows depending on the information available.

When line and module tables are available (symbolic addressing):

If the address corresponds to the beginning of a line, then

M=module_name L=line_number

otherwise, if the address is somewhere within the line, then

M=module_name L=line_number BO=byte_offset_from_
start_ of_line

When only the module table is available (module addressing):

If the module is not bound (refer to the discussion of bound modules later
in this chapter), then

M=source_module_name P=procedure_name BO=byte_
offset_from_ start_ of _procedure

otherwise, if the module is bound, then

M=source _module_ name BO= byte_ offset_ from_
start_ of_ bound_module

When line and module tables are not available (machine addressing"):

A=machine _address

ltevision B The Debug Utility 9-9

DEBUG CONCEPTS

Within the address formats:

• module_name and procedure_name correspond to the source program
module and procedure names.

• line_number corresponds to a line number on the source listing.

• byte_ offset is a decimal number corresponding to the number of bytes
beyond the beginning of a line or a hexadecimal number corresponding to
the number of bytes beyond the start of a procedure or bound module.

• machine_address is a set of three hexadecimal numbers representing the
ring number, segment number, and segment offset of a machine address.

Addresses reported in command output also provide the highest address level
possible, but they are not always formatted the same as in break report
messages. Addresses shown in DISPLAY _BREAK output are very similar,
but addresses shown in DISPLAY_ CALL output contain both the procedure
name and line number. Typical DISPLAY_ CALL output might look like the
following:

Traceback from procedure PROC2 module MOD2 at Line 34
Called from procedure PROC1 module MOD2 at Line 55 byte
offset 4
Called from procedure BEGIN_PROCESS module MOD1 byte
offset 1A3(16)

Addresses shown in DISPLAY _REGISTER output are formatted only as
hexadecimal addresses in the form

r SSS 00000000

where r is the ring number, sss is the segment number, and 00000000

is the offset from the start of the segment. Pointer addresses displayed by
DISPLAY _PROGRAM_ VALUE are also formatted as hexadecimal
machine addresses except for pointers to procedures; dereferenced pointers to
procedures are displayed as the procedure name if possible.

9-10 CYBIL Language Definition Revision A

DEBUG CONCEPTS

Referenced Addresses

Several Debug commands reference program code and data addresses. For
example, SET _BREAK designates an address or address range for break
events, DISPLAY _MEMORY specifies the address of memory to be
displayed, and DISPLAY _PROGRAM VALUE names a program identifier
whose value is to be displayed.

Just as for reporting addresses, the capabilities available when referencing
program addresses depend on the information available:

• Symbolic addressing (source level addressing) is available if line and
symbol tables exist (they exist unless line number and symbol table
generation is specifically turned off at compile time).

• Module/procedure offset addressing is available if module tables exist
(they always do for user programs).

• Machine-level addressing is always available.

Addresses can be referenced in many more forms than the form in which
they are reported. For example, entry point names, section names, and
program names can be referenced, but addresses are never reported in these
terms. Machine level addresses can be referenced only as a single integer (a
12-digit hexadecimal value); they are reported, however, either as a 12-digit
hexadecimal integer or as three separate integers corresponding to ring
number, segment number, and byte offset from the start of the segment.

Revision B The Debug Utility 9-11

DEBUG CONCEPTS

Not all address forms, however, are used by all commands. For example, the
DISPLAY _PROGRAM_ VALUE command allows a program name to be
referenced by name, including all of the subscripting and qualification
syntax. But, the DISPLAY _PROGRAM_ VALUE command does not allow
machine level addressing. The DISPLAY _MEMORY command, on the other
hand, allows machine and module addressing but almost no symbolic level
addressing. The SET _BREAK command allows all forms except names
defined in a source program.

The different forms of addresses are specified by different parameters. LINE,
MODULE, PROCEDURE, NAME, ENTRY _POINT, SECTION, and
ADDRESS are typical address parameter names. Many of these address
parameters can be used in combination to specify an address. For example,
LINE and MODULE together specify a particular line of a particular
module. NAME, MODULE, and PROCEDURE together specify a particular
name of a particular procedure in a particular module. Similarly, SECTION
can be used in conjunction with MODULE. ENTRY _POINT and
ADDRESS, however, cannot be used in conjunction with MODULE or with
each other because they specify addresses independent of any module. Debug
issues an error message if an invalid combination of address parameters is
used.

The BYTE_ 0 FFSET parameter can be used to modify the address
parameters. For example, the MODULE parameter without the BYTE_ A
OFFSET parameter specifies the first byte of the module; the MODULE W
parameter modified with BYTE_ OFFSET=4, on the other hand, specifies the
fifth byte of the module.

Another parameter, BYTE_ COUNT, can be used to establish the block size
(address range) associated with a referenced address. The BYTE_ COUNT
parameter indicates how many memory bytes are to be included in the block.
For example,

section=trap, byte_count=3

identifies a three-byte block that begins at section TRAP. BYTE __ COUNT
and BYTE_ OFFSET can be used to modify any referenced address except a
program name (NAME parameter).

9-12 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Addressing Bound Modules

Individual modules can be bound (combined) to form a new load module that
loads and executes faster than the original separate modules. (For further
information, refer to the CREATE_ OBJECT _LIBRARY command in the
SCL Object Code Management manual.) Binding modules together has no
effect on address reporting or address referencing at the symbolic level; you
can debug bound modules in terms of their component module names, line
numbers, and identifier names.

Binding does, however, have an effect on module/procedure and
module/section offset addressing. After binding, original module and
procedure names are not available when the tables that support symbolic
addressing are not available; addresses are reported and must be referenced
in terms of the new bound module name and byte offsets from the beginning
of the module. Code from all original component modules is combined into
one code section, static data from all original modules are combined into one
static data memory section, and so forth, such that the original component
portions of each section cannot be distinguished by Debug. You can deduce
where each component portion is by inspecting the section map produced by
the GENERATE_LIBRARY subcommand (described in the SCL Object
Code Management manual).

e Debugging Optimized Code

Most compilers can generate more than one level of object code. The
OPTIMIZATION parameter on the compiler call controls the level of object
code optimization. The default value is OPTIMIZATION= DEBUG, which
generates the most debuggable object code possible. This level of object code
contains a separate packet of machine instructions for each executable
source statement, carries no altered variable values across statement
boundaries in registers without also updating their values in memory,
enables Debug to recognize that start of execution of each new line or
procedure, and ensures that Debug can always find actual parameter lists.

If some higher level of optimization is selected, Debug can still function, but
with restricted capabilities. For example, you cannot display program
identifier values that are permanently allocated to machine registers. When
values are temporarily carried in registers between statements, or when code
for several source statements is mixed together, displayed values may not be
the most recent values. Break report locations may not be as precise either.

Revision B The Debug Utility 9-13

DEBUG CONCEPTS

Debugging With Condition Handlers

Condition handlers are special procedures whose purpose is to process
conditions, or exceptions, when they arise. They are automatically activated
by NOS/VE when the conditions for which they have been established
occur. Condition handlers can be established for one or more classes of
conditions. Refer to the CYBIL System Interface manual for a complete
discussion of how to write condition handlers.

When executing with DEBUG_MODE=ON, Debug first gains control when
any condition occurs, except job resource conditions, detected uncorrected
error conditions, and block exit conditions. The condition handler of the
program, if one exists, is not executed until a Debug RUN command is
executed.

The condition handler of the program can be debugged using Debug, but the
program will not execute until you have had a chance to respond to the
condition. For conditions for which breaks can be set, a RUN command can
be associated with the break so that the command is automatically executed
when the break occurs. (Refer to the COMMAND parameter of the SET_
BREAK command later in this chapter.) This mechanism makes it possible
to effectively circumvent the preemptive control of Debug. It appears as
though Debug did not get control since the RUN command automatically
executes the instant the condition arises.

Interrupt Processing While Debugging

Three external events can interrupt an executing user program or the Debug
utility. These events are pause break, terminate break, and nearly exhausted
resource. Table 9-1 shows the effects of these interrupts.

9-14 CYBIL Language Definition Revision A

DEBUG CONCEPTS

Table 9-1. Effects oflnterrupts While Debugging

Interrupt

Pause
Break

Terminate
Break

Nearly
Exhausted
Resource

Revision A

User Program Executing

Debug gains control, reports
where the program was executing
when the interrupt occurred, and
prompts for commands.

Debug gains control, reports
where the program was executing
when the interrupt occurred, and
prompts for commands.

Debug does not get control. The
user-defined handler gains
control if there is one; otherwise,
the system default handler
processes the condition.

Debug Executing

Default system action
occurs. If you have
established a handler for
this condition, that
handler gains control.
Debug does not gain
control unless the
handler returns with
normal status.

If a Debug command is
executing, that command
is terminated and you are
prompted for a new
command. If Debug is
already waiting for a
command, the terminate
break is ignored.

Debug does not process
this condition. The user
defined handler gains
control if there is one;
otherwise, the system
default handler processes
the condition. Debug does
not gain control unless a
user-defined handler
returns with normal
status.

The Debug Utility 9-15

DEBUG CONCEPTS

Debug Ring

Debug normally runs in the same ring as the program being debugged. You
can, however, control the ring in which Debug executes. The SCL command
SET_ DEBUG_ RING specifies the ring in which Debug executes. The Debug
ring cannot be set to a ring more privileged than the lowest ring for which
you are validated.

You are responsible for ensuring that the program being executed runs in the
same ring set for Debug on the SET _DEBUG_RING command. (The ring
attributes of the program can be changed using the SCL CHANGE_FILE_
ATTRIBUTES command.)

If your program runs entirely in one ring, you need not be concerned with the
Debug ring except to understand deferred breaks and multiple breaks.

Deferred Breaks

Breaks that occur in a lower numbered ring than the Debug ring are
deferred, or delayed, until execution again reaches the Debug ring. The break
is deferred so that you do not get control in a ring more privileged than your
own. If you were able to get control at a lower ring, you could view or change
data that you normally do not have access to, thereby compromising system A
security. W
Deferred breaks can occur even when your program runs in a single ring.
Many of the operating system services used by the program execute in more
privileged rings. For example, if you set a read or write break on a status
variable used in some NOS/VE request and that variable is accessed in a
lower ring, the break is delayed until NOS/VE returns control to your
program.

When a break is deferred, Debug issues a special break report message. The
break is reported as having happened at the line after the line that made the
call, and a second line indicating the actual address of the event is output.
The second line is formatted as follows:

Trap deferred from <address>

where address is where the event actually occurred.

9-16 CYBIL Language Definition Revision B

•
DEBUG CONCEPTS

Multiple Breaks

Because breaks below the Debug ring are deferred until control returns to the
Debug ring, several breaks can be stacked up before Debug gains control.
When this happens, Debug must process multiple breaks.

If there are several unprocessed breaks outstanding when Debug gains
control, Debug reports each one in the usual way but honors only the first
one to occur. No commands are processed for the most recent breaks, not
even commands associated with the break definition, since execution of the
commands could destroy the environment that existed when the first break
occurred.

Multiple breaks can also occur when execution is not below the Debug ring.
For example, two terminal breaks or an execution break and a terminal
break could occur before Debug gets control. If this ever occurs, Debug
honors only the first break.

Multiring Environment

The ability of Debug to function in a multiring environment is limited. If a
break event occurs in a lower ring than the Debug ring, Debug gains control,
but your options are limited. You can only resume execution of the
interrupted procedure or terminate the Debug session. Any program
condition handlers established for that event are not processed.

Revision A The Debug Utility 9-17

DEBUG COMMANDS

Debug Commands

This section describes the Debug commands in alphabetical order. The
Debug commands follow the syntax and conventions for SCL commands, as
described in the SCL Language Definition manual. The language elements
used as parameters are standard SCL elements as defined in that manual,
except for source program names used in the CHANGE_PROGRAM_
VALUE and DISPLAY _PROGRAM_ VALUE command.

The Debug commands are summarized below.

Command

CHANGE_DEFAULT or
CHANGE_DEFAULTS (CHAD)

MODULE= name or keyword value
PROCEDURE= name or keyword value
DEBUG_INPUT= file reference
DEBUG_ 0 UT PUT= file reference
STATUS= status variable

CHANGE_MEMORY (CHAM)
ADDRESS = integer
VALUE = string or integer
TYPE= keyword value
REPEAT_ COUNT= integer or keyword value
STATUS= status variable

CHANGE_PROGRAM_ VALUE (CHAPV)
NAME=name
VALUE=name
MODULE= name
PROCEDURE= name
RECURSION_LEVEL =integer
RECURSION _DIRECTION= keyword value
STATUS= status variable

CHANGE_REGISTER or CHANGE
REGISTERS (CHAR)

KIND= keyword value
NUMBER = keyword value or list of integer
VALUE = integer or string
TYPE = keyword value
ST A TUS = status variable

• 9-18 CYBIL Language Definition

Description

Changes the default
Debug input/output
files and procedure
and module names.

Changes the
contents of
memory.

Changes the value
of a program
variable.

Changes the
contents of the
P, A, or X registers.

(Continued)

Revision B

•

(Continued)

Command

A DELETE BREAK or
- DELETE_BREAKS (DELB)

BREAK = keyword value or list of name
ST A TUS = status variable

DISPLAY _BREAK or
DISPLAY _BREAKS (DISB)

BREAK= keyword value or list of name
OUTPUT= file reference
STATUS= status variable

DISPLAY_ CALL or
DISPLAY_ CALLS (DISC)

COUNT= integer or keyword value
START= integer
OUTPUT= file reference
STATUS= status variable

DISPLAY _DEBUGGING
ENVIRONMENT (DISDE)

DISPLAY_ OPTIONS= list of keyword value
OUTPUT= file reference
STATUS= status variable

DISPLAY _MEMORY (DISM)
address
BYTE_ ffF'FSET = integer
BYTE_ COUNT= integer
REPEAT_ COUNT= integer or keyword value
0 UT PUT= file reference
ST A TUS = status variable

Revision B

DEBUG COMMANDS

Description

Deletes one or more
break definitions.

Displays specified
break definitions.

Displays
information about
the dynamic call
chain.

Displays the
debugging
environment of your
sess10n.

Displays the
contents
of memory.

(Continued)

The Debug Utility 9-19 e

DEBUG COMMANDS

(Continued)

Command

DISPLAY _PROGRAM_ VALUE (DISPV)
NAME= program name
MODULE= name
PROCEDURE= name
RECURSION _LEVEL= integer
RECURSION_DIRECTION= keyword value
OUTPUT= file reference
STATUS= status variable

DISPLAY _REGISTER or DISPLAY
REGISTERS (DISR)

KIND= list of keyword values
NUMBER = keyword value or list of integer
TYPE= keyword value
OUTPUT= file reference
STATUS= status variable

DISPLAY _STACK_FRAME or
DISPLAY _STACK_ FRAMES
(DISSF)

COUNT= integer or keyword value
START= integer
DISPLAY_ OPTION= list of keyword value
OUTPUT= file reference
STATUS= status variable

QUIT (QUI)
STATUS= status variable

RUN
STATUS= status variable

e 9-20 CYBIL Language Definition

Description

Displays the value of A
a program value. W

Displays the contents
of the P, A, or X
registers.

Displays the contents
of one or more stack
frames.

Terminates the
Debug session.

Initiates or resumes
program execution.

(Continued)

Revision B

(Continued)

Command

A SET _BREAK or SET _BREAKS (SETH)
W BREAK= name

EVENT= list of keyword value
address
BYTE_ OFFSET= integer
BYTE_ COUNT= integer
COMMAND= string
STATUS= status variable

SET _STEP _MODE (SETSM)
MODE= keyword value
UNIT= keyword value
MODULE= keyword value
PROCEDURE= keyword value
COMMAND = string
STATUS= status variable

Revision B

DEBUG COMMANDS

Description

Defines the break.

Defines a subset of a
task to be executed
in one step.

The Debug Utility 9-21 e

CHANGE_DEFAULT (CHAD)

CHANGE_DEFAUL T (CHAD)

Purpose Changes the default module, default procedure, default Debug
input file, and default Debug output file. The change remains
in effect until altered by another CHANGE_DEFAULT
command.

Format CHANGE_DEFAULT or CHANGE_DEFAULTS
MODULE=name or keyword value
PROCEDURE=name or keyword value
DEBUG_INPUT= file reference
DEBUG_OUTPUT= file reference
STATUS= status variable

Parameters MODULE (M)

Name of the module to be used if the module parameter is not
specified in Debug commands that must refer to a module.
Specifying the keyword $CURRENT causes the default
module to be reset to the module that was executing when
Debug gained control.

Omission causes the current default module to remain
unchanged.

Debug commands that must refer to a module are:

CHANGE_PROGRAM_VALUE
DISPLAY _PROGRAM_ VALUE
SET_BREAK
SET _STEP _MODE

PROCEDURE (P)

Name of the procedure to be used if the procedure parameter is
not specified in Debug commands that must refer to a
procedure. Specifying the keyword $CURRENT causes the
default procedure to be reset to the procedure that was
executing when Debug gained control.

Omission causes the current default procedure to remain
unchanged.

Debug commands that must refer to a procedure are:

CHANGE_PROGRAM_VALUE
DISPLAY _PROGRAM_ VALUE
SET_BREAK
SET _STEP _MODE

e 9-22 CYBIL Language Definition Revision B

Revision B

CHANGE_ DEFAULT (CHAD)

DEBUG _INPUT (DI)

File from which Debug commands are read when Debug next
gains control. Unless a file position is specified in the file
reference, the file is initially positioned at the beginning-of
information; the file is not repositioned in subsequent
accesses. Commands are read from the file sequentially. If an
end-of-partition or an end-of-file is reached on the input file,
program execution resumes.

Omission causes the current Debug input file to remain
unchanged. Unless specified otherwise, the initial Debug
input file is COMMAND.

DEBUG_ OUTPUT (DO)

File on which Debug output is written. The change takes
effect immediately. Break report messages and command
output are written to this file. Unless a file position is specified
in the file reference, the file is initially positioned at the
beginning-of-information; the file is repositioned to the
beginning-of-information in subsequent accesses.

Omission causes the current Debug output file to remain
unchanged. Unless specified otherwise, the initial Debug
output file is $OUTPUT.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The Debug Utility 9·28 e

I

CHANGE_DEFAULT (CHAD)

Examples The following command specifies that Debug is to read
commands from the file DBIN the next time Debug gains
control.

change_default debug_ input = dbin

The following command specifies that Debug is to write its
output to the file $LIST.

change_default debug_output =$List

The following command specifies the default module name.

change_default module = main

9-24 CYBIL Language Definition Revision B

CHANGE_MEMORY (CHAM)

~ CHANGE_MEMORY(CHAM)

Purpose

Format

Parameters

Revision A

Changes the contents of memory starting at a specific
address. You can change the value of any memory location for
which you have write permission.

CHANGE_MEMORY
ADDRESS= integer
VALUE= string or integer
TYPE= keyword value
REPEAT_ COUNT= integer or keyword value
ST A TUS = status variable

ADDRESS (A)

Address of the first byte of memory to be changed in the form

rsssoooooooo(16)

where r is the ring number, sss is the segment number, and
00000000 is the offset from the beginning of the segment. You
can obtain machine addresses by using the cross-reference
and load maps for your program.

This parameter is required.

VALUE (V)

New memory value. A string value can be interpreted as a
hexadecimal or ASCII string, depending on the value of the
TYPE parameter.

A hexadecimal string consists of the hexadecimal digits 0
through 9 and A through F and spaces. Spaces are ignored,
but they can be used to improve legibility. Each hexadecimal
digit corresponds to 4 bits of memory. The first two digits
replace the first byte of memory at the specified address, the
second two digits replace the second byte, and so on. If there
is an odd number of hexadecimal digits, only the first half of
the corresponding byte is changed.

An ASCII string consists of a string of ASCII characters.
Each ASCII character corresponds to one byte of memory.
The first character replaces the first byte of memory at the
specified address, the second character replaces the second
byte, and so on.

An integer value completely replaces the contents of eight
bytes. A diagnostic message is issued if the integer does not fit
into eight bytes.

This parameter is required.

The Debug Utility 9-25

I

I

CHANGE_MEMORY (CHAM)

TYPE(T)

Type of data defined by the VALUE parameter. It is one of
the following keywords:

ASCII (A)

VALUE is an ASCII string.

HEX(H)

VALUE is a hexadecimal string.

INTEGER(!)

VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

REPEAT_COUNT(RC)

Number of times VALUE is repeated in memory. It must be a
positive integer greater than zero. The address is incremented
by the value size each time the value is repeated. The memory
change is limited to the end of the data segment containing
the specified address. Specifying a value that is too large or
specifying the keyword ALL changes all the memory that can
be changed.

Omission causes a value of 1 to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

If the CHANGE_MEMORY command contains an error
before the STATUS parameter, the remainder of the
command is skipped. Therefore, the contents of the STATUS
parameter does not reflect the status of the command.

9-26 CYBIL Language Definition Revision B

e
Examples

Revision A

CHANGE_MEMORY(CHAM)

The following command replaces four bytes of memory
beginning at location Ob02200001112 hexadecimal with the
hexadecimal string '1010aaab'.

change_memory address=Ob02200001112C16)
value = '1010aaab'

The following command replaces six bytes of memory
beginning at location Ob02200000055 hexadecimal with the
ASCII string 'STRING'.

change_memory address=Ob022000000SSC16)
value= 'string' type=ascii

The following command replaces eight bytes of memory
beginning at location Ob02300000223 hexadecimal with the
integer value 44.

change_memory address Ob02300000223C16) ••
value = 44

The Debug Utility 9-27

CHANGE_PROGRAM_ VALUE (CHAPV)

CHANGE_PROGRAM_ VALUE (CHAPV)

Purpose

Format

Parameters

Changes the value of the specified program variable.
Replacement values are entered in the same format as defined
in your program, not as they are represented in memory. e
CHANGE_PROGRAM_VALUE

NAME=name
VALUE=name
MODULE= name
PROCEDURE= name
RECURSION _LEVEL = integer
RECURSION _DIRECTION= keyword value
STATUS= status variable

NAME(N)

Name of the program variable in the source program whose
value is to be changed. It can be one of the following:

• Simple variable name.

• Subscripted name.

• Field reference.

• Pointer dereference.

Subscripts can be constants or variables, but not expressions.
Substring references are not allowed.

Because names can be long, SCL string variables can be used
as aliases for them. To do this, assign a string that contains
the identifier to the SCL variable. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

e 9-28 CYBIL Language Definition Revision B

Revision B

CHANGE_PROGRAM_ VALUE (CHAPV)

VALUE(V)

New value for the NAME parameter variable. The named
VALUE parameter variable must be of the same type as the
NAME parameter variable. Combinations allowed for the
NAME and VALUE parameters are:

NAME Type

Integer

Character

Boolean

Ordinal

Cell

Pointer

String

Array, record,
set, or sequence

VALUE Type

Integer constant or
variable reference.

Character constant or
variable reference.

Boolean constant or
variable reference.

Ordinal name or
variable reference.

Integer constant or
variable reference.

Integer constant or
variable reference.

String constant or
variable reference.

Variable reference
(byte-aligned and unpacked).

This parameter is required.

The Debug Utility 9-29 e

CHANGE_PROGRAM_ VALUE (CHAPV)

MODULE(M)

Name of the module that contains the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE_DEFAULT
command to be used.

PROCEDURE (P)

Name of the procedure that contains the NAME parameter
variable. If the PROCEDURE parameter is specified, the
NAME parameter variable must exist in this procedure or
exist in the containing procedure or module. If an inactive
procedure is specified, the automatic variables cannot be
changed.

Omission causes the procedure executing when Debug gained
control or the procedure specified by the CHANGE_
DEFAULT command to be used.

RECURSION_LEVEL (RL)

The particular call of a recursive procedure to be used. It must
be a positive integer greater than zero. If RECURSION_
DIRECTION=FORWARD, a value of 1 is the first call, 2 is the A
second call (the one called by the first call), and so on. If W
RECURSION_DIRECTION=BACKWARD, 1 is the most
recent call, 2 is the predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes a value of 1 to be used.

• 9-30 CYBIL Language Definition Revision B

Examples

Revision B

CHANGE_PROGRAM_VALUE (CHAPV)

RECURSION _DIRECTION (RD)

Order in which calls to a recursive procedure are searched. It
controls how the value of the RECURSION _LEVEL
parameter is interpreted. It can be one of the following
keywords:

FORWARD

A RECURSION _LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD

A RECURSION _LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes BACKWARD to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command changes the value of V ARIABLEl.

change_program_value name = variable1 value = 3

The following command changes the value of INDEX.

change_program_value name= index value= 63 ••
module = ff _pp procedure = gg_pg

The Debug Utility 9~31 e

CHANGE_REGISTER (CHAR)

CHANGE_REGISTER (CHAR)

Purpose

Format

Changes the value of the P, A, or X registers that are
associated with the procedure executing when Debug gained
control.

CHANGE REGISTER or CHANGE_REGISTERS
KIND = keyword value
NUMBER = keyword value or list of integer
VALUE= integer or string
TYPE = keyword value
STATUS= status variable

Parameters KIND (K)

Register to change. It can be one of the following keywords:

p

The P register.

A

The A registers.

x
The X registers.

Omission causes P to be used.

NUMBER(N)

Which of the register types to change. Its value is a set of one
or more integers or ranges of integers from 0 through 15, or
the keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be changed. ThiS
parameter is ignored if KIND=P since there is only one P
register.

Omission causes zero to be used.

VALUE (V)

New value of the register. If KIND is P or A, VALUE can be:

• An integer in the range 0 through OFFFFFFFFFFFF
hexadecimal.

• A hexadecimal string containing a maximum of 12
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

9-32 CYBIL Language Definition Revision B

Revision B

CHANGE_REGISTER (CHAR)

The upper 4 bits are ignored when changing the P register
since the ring number in P cannot be changed.

IfKIND is X, VALUE can be:

• An integer in the range - 7FFFFFFFFFFFFFFF
hexadecimal through 7FFFFFFFFFFFFFFF hexadecimal.

• A hexadecimal string containing a maximum of 16
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

• An ASCII string containing a maximum of eight ASCII
characters; each character corresponds to one byte.

The upper bits of the register are set to zero if an integer is
positive or to 1 if an integer is negative and the value does not
fill the register. A string value is left-justified with remaining
bytes unchanged.

This parameter is required.

TYPE(T)

Type of data specified by the VALUE parameter. It is one of
the following keywords:

ASCII (A)

VALUE is an ASCII string.

HEX(H)

VALUE is a hexadecimal string.

INTEGER(!)

VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

The Debug Utility 9-33

CHANGE_REGISTER (CHAR)

Examples

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to e
that file. This file is normally connected during interactive
debugging.

If the CHANGE_REGISTER command contains an error
before the STATUS parameter, the remainder of the
command is skipped. Therefore, the contents of the STATUS
parameter does not reflect the status of the command.

The following command changes the current value of the P
register to OA02200004500 hexadecimal. The upper 4 bits for
the ring number are ignored.

change_register kind = p,
value = Oa02200004500C16)

The following command changes the current value of the X7
register to 'ABCDEFGH'.

change_register kind= x, number= 7, ••
value= 'abcdefgh' type = ascii

9.34 CYBIL Language Definition Revision B

DELETE_BREAK (DELB)

DELETE_BREAK(DELB)

Purpose

Format

Parameters

Examples

Revision B

Deletes one or more break definitions.

DELETE_BREAKorDELETE_BREAKS
BREAK = keyword value or list of name
STATUS= status variable

BREAK or BREAKS (B)

Break definitions to be deleted. If the keyword ALL appears in
the list of break names, all breaks are deleted. An informative
message is issued if a specified break name does not exist;
however, all subsequent breaks in the list are processed.

This parameter is required.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

If the DELETE_BREAK command contains an error before
the STATUS parameter, the remainder of the command is
skipped. Therefore, the contents of the STATUS parameter
does not reflect the status of the command.

The following command deletes break definitions Bl, B2, and
B3.

delete_breaks breaks = (b1,b2,b3)

The following command deletes all break definitions.

delete_breaks all

The following command deletes break definition B4.

delete_break b4

The Debu~ Utility 9-:if>

I

DISPLAY_BREAK (DISB)

DISPLAY _BREAK (DISH)

Purpose

Format

Displays specified break definitions. The break name, events,
address, and any commands associated with the break are
displayed.

DISPLAY BREAK or DISPLAY_ BREAKS
BREAK= keyword value or list of name
OUTPUT= file reference
STATUS= status variable

Parameters BREAK or BREAKS (B)

Examples

Break definitions to be displayed. If the keyword ALL appears
in the list of break names, all break definitions are displayed.
An informative message is issued if a specified break name
does not exist; however, all subsequent breaks in the list are
processed.

Omission causes all break definitions to be displayed.

OUTPUT(O)

File on which the break definitions are written.

Omission causes the current default Debug output file to be
used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command displays break definitions Bl, B2,
and B5.

display_breaks breaks = (b1,b2,b5)

The following command displays all break definitions.

display_breaks

9-36 CYBIL Language Definition Revision B

DISPLAY _BREAK (DISB)

Debug displays the following:

-- Break B1
-- event(s) = execution
-- Location: M=moduLe_main L=26

-- Break B2
-- event(s) = execution
-- Location: M=m L=13 B0=16

-- Break B3
-- event(s) = execution
-- Location: M=m L=16

-- Break B4
-- event(s) = execution
-- Location: M=perform_integer_muLtipLications L=7

Revision B The Debug Utility 9-37 e

DISPLAY_ CALL (DISC)

DISPLAY_ CALL (DISC)

Purpose

Format

Parameters

Displays information about the dynamic call chain. Usually
the procedure name, module name, and line number of each
call are shown. Only the procedure or module name and byte
offset from the beginning of the procedure or module are
shown if you inhibit Debug tables when compiling your
program. Only machine addresses are shown for internal
NOS/VE calls.

DISPLAY_ CALL or DISPLAY CALLS
COUNT= integer or keyword value
START= integer
OUTPUT= file reference
STATUS= status variable

COUNT(C)

Number of calls to be displayed. It must be a positive integer
greater than zero or the keyword ALL. If the value specified is
greater than the number of existing calls, all calls are
displayed.

Omission causes all calls to be displayed.

START(S)

Call on the chain to be displayed first. Thus, it is possible to
skip the most recent calls. It must be a positive integer greater
than zero. The value 1 represents the most recent call, 2
represents the predecessor of the most recent call, and so
forth.

Omission causes the value 1 to be used.

An informative message is issued if the specified number of
calls is greater than the actual number of calls.

9-38 CYBIL Language Definition Revision B

Examples

Revision A

DISPLAY _CALL (DISC)

OUTPUT(O)

File on which the call information is written.

Omission causes the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command displays the first four calls on the
call chain.

display_calls count = 4

The following command displays all the calls on the call
chain beginning with the second most recent call.

display_calls start = 2

The Debug Utility 9-39

LJ.lUr LI.M..l _LJl.' .. dJUUUlJ.'IU_r..11"4 v l.l\.Vl'llV1Ll'l l \LJ.lULJLJ

DISPLAY _DEBUGGING_ENVIRONMENT
(DISDE)

Purpose

Format

Displays the following information about the environment of
your debugging session: current defaults for module,
procedure, Debug input file, and Debug output file; the total
number of breaks you have set; information about step mode;
and the location in your program where execution stopped.

DISPLAY _DEBUGGING_ENVIRONMENT
DISPLAY_ OPTIONS= list of keyword value
OUTPUT= file reference
STATUS= status variable

Parameters DISPLAY_OPTIONS (DO)

Type of information to be displayed. It is one or more of the
following keywords:

ALL

Defaults, breaks, step mode attributes, and user addresses
are displayed.

BREAKS(B)

The number of breaks you have set, the number of breaks A
currently in use by Debug, and the number of unused •
breaks are displayed.

DEFAULTS (D)

The current default values for module, procedure, Debug
input file, and Debug output file are displayed.

Unless the CHANGE_DEFAULTcommand has been
specified, the default module and procedure is where
execution has stopped in your task. The text $CURRENT
is output if module or procedure has not been initialized.

STEP _MODE (SM)

Thecurrent step mode attributes are displayed.

USER_ADDRESS (UA)

The location where execution has stopped in your program
is displayed.

Omission causes ALL to be used.

e 9-40 CYBIL Language Definition Revision B

Examples

Revision B

DISPLAY _DEBUGGING_ENVIRONMENT (DlSDE)

OUTPUT(O)

File on which the call information is written. Omission causes
the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command writes defaults, breaks, step mode
attributes, and location where execution stopped to the current
default Debug output file.

display_debugging_environment

The following command displays the number of breaks set,
the number of unused breaks, and the location where
execution stopped.

display_debugging_environment
display_options = Cb,ua)

The following command writes defaults, breaks, step mode
attributes, and location where execution stopped to file FILEl
and returns the command status to variable SS.

display_debugging_environment ••
display_options =all output= file1 status ss

The Debug Utility 9·41 e

DISPLAY _MEMORY (DISM)

DISPLAY _MEMORY (DISM)

Purpose

Format

Displays information located at any address to which you
have read access. This command allows you to debug your
program even when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display line shows
the memory contents in hexadecimal and ASCII formats; the
relative byte offset from the initial address is also shown.

The compiler-generated attributes list shows the section name
and offset for all variables. You can reference static variables
by specifying section name and byte offset. You can reference
variables on the stack by specifying the machine address of
the stack frame and byte offset. You can obtain the address of
the stack frame of the procedure executing when Debug got
control by displaying register Al. You can obtain the address
of other stack frames by displaying the save area of the
wanted stack frame using the DISPLAY _STACK_FRAME
command and obtaining the value of register Al from that
stack frame. You can also use the DISPLAY_PROGRAM
VALUE command to display program variables when symbol
tables are available.

DISPLAY _MEMORY
address
BYTE_ OFFSET= integer
BYTE_ COUNT= integer
REPEAT_ COUNT= integer or keyword value
OUTPUT= file reference
STATUS= status variable

Parameters address

Memory location to be displayed. The memory location is
specified by one or more of the following address parameters:

SECTION = name or keyword value
MODULE = name
ADDRESS= integer

9-42 CYBIL Language Definition Revision A

Revision B

UISPLA Y _MEMORY (DISM)

SECTION (SEC)

Memory section containing the data to be displayed. It can
be one of the following:

• Working storage section name of a CYBIL program.

• A common block name.

• $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

• $LITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

• $STATIC, which is the memory section containing the
static (not on the run-time stack) variables not explicitly
allocated to a named section of the module.

• CYB$DEFAULT _HEAP, which is the memory section
containing the default heap of CYBIL.

When you use SECTION to specify an address, you must
qualify it with the MODULE parameter. You can use the
BYTE_ OFFSET parameter to modify the starting address
of memory to be displayed.

Omission indicates that the memory address is specified by
the ADDRESS parameter.

MODULE (M)

Module containing the data to be displayed. The MODULE
parameter cannot be specified unless the SECTION
parameter is specified.

Omission indicates that the memory address is specified by
the ADDRESS parameter.

The Debug Utility 9-43

DISPLAY _MEMORY (DISM)

ADDRESS (A)

Address of the first byte of memory to be displayed. Its
value is expressed in the form

rsssoooooooo(16)

where r is the ring number, sss is the segment number, and
00000000 is the offset from the beginning of the segment.
You can use the BYTE_ OFFSET parameter to modify the
starting address of memory to be displayed.

Omission indicates that the address is specified by the
SECTION and MODULE parameters.

BYTE_OFFSET(BO)

Offset to the base address established by one of the address
parameters. It must be a positive integer. Its value is added to
the base address to form a new address.

The address generated by adding BYTE_ OFFSET to the base
address must be within the memory block implied by the base
address. The block size is the length of the section when the
SECTION parameter is specified, and the length of the
segment containing the machine address when the
ADDRESS parameter is specified.

Omission causes a value of 0 (zero) to be used.

BYTE_COUNT(BC)

Number of bytes in the item to be displayed. It must be a
positive integer greater than zero.

Omission causes a value of 1 to be used.

REPEAT_COUNT(RC)

Number of memory areas (items) of length BYTE_ COUNT to
be displayed. It must be a positive integer. The maximum
amount of memory that can be displayed is limited to the
block size implied by address (section length for SECTION
and segment length for ADDRESS). The keyword ALL or a
large integer causes all memory from the specified address to
the end of the memory block to be displayed.

Omission causes a value of 1 to be used.

9-44 CYBIL Language Definition Revision B

Examples

Revision B

DISPLAY _MEMORY (DISM)

OUTPUT{O)

File on which the displayed information is written.

Omission causes the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
.an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command displays the first three bytes of the
literal memory section for module MODI.

display_memory section= $Literal module mod1 ••
byte_count = 3

The following command displays the first four bytes of the
memory section DAT Al for module MOD2 as separate items.

display_memory section = data1 module = mod2 ••
repeat_count = 4

The following command displays the first 25 bytes of memory
starting from the specified address.

display_memory address = 0602400000224(16)
byte_count = 8 repeat_count = 25

The Debug Utility 9-45

DISPLAY]ROGRAM_ VALUE (DISPV)

DISPLAY _PROGRAM_ VALUE (DISPV)

Purpose

Format

Parameters

Displays the value of the specified program variable (except
boolean values) as they appear in the source program, not in
hexadecimal format.

DISPLAY _PROGRAM VALUE
NAME= program name
MODULE= name
PROCEDURE= name
RECURSION _LEVEL = integer
RECURSION _DIRECTION= keyword value
OUTPUT= file reference
STATUS= status variable

NAME(N)

Name of the program element whose value is to be displayed.
It can be one of the following:

• Simple variable or constant name.

• Subscripted name.

• Field reference.

• Pointer reference.

Subscripts can be constants or variables but not expressions.
NAME cannot be a substring.

The variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do so, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

MODULE(M)

Name of the module containing the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE_DEFAULT
command to be used.

9-46 CYBIL Language Definition Revision B

Revision B

DISPLAY _PROGRAM_ VALUE (DISPV)

PROCEDURE (P)

Name of the procedure containing the program name. If you
specify a procedure that is not in the active call chain, its
automatic variables cannot be displayed because it has no
stack frame.

Omission causes the procedure executing when Debug gained
control to be used if MODULE is also omitted. Otherwise,
there is no default procedure when MODULE is specified and
PROCEDURE is not; the program name must exist at the
module level.

RECURSION _LEVEL (RL)

The particular call of a recursive procedure to be used. It must
be a positive integer greater than zero. If RECURSION_
DIRECTION=FORWARD, a value of 1 is the first call, 2 is the
second call (the one called by the first call), and so on. If
RECURSION _DIRECTION= BACKWARD, 1 is the most
recent call, 2 is the predecessor, and so on.

Omission causes a value of 1 to be used.

RECURSION _DIRECTION (RD)

Order in which calls to a recursive procedure are searched. It
controls how the value of the RECURSION_LEVEL
parameter is interpreted. It can be one of the following
keywords:

FORWARD (F)

A RECURSION _LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD (B)

A RECURSION _LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Omission causes BACKWARD to be used.

The Debug Utility 9-47

DISPLAY]ROGRAM_ VALUE (DISPV)

Examples

OUTPUT(O)

File where the display information is written.

Omission causes the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command displays the value of I from the
current module.

display_program_value name

Debug displays the following:

i = 879609302207

The following command displays the value of DAY from
procedure FIRST in the current module.

display_program_value name= day ••
procedure = first

9-48 CYBIL Language Definition Revision B

DISPLAY _REGISTER (DISR)

DISPLAY _REGISTER (DISH)

Purpose

Format

Parameters

Revision B

Displays the contents of the P, A, or X registers that are
associated with the procedure executing when Debug gained
control.

DISPLAY REGISTER or DISPLAY _REGISTERS
KIND= list of keyword value
NUMBER = keyword value or list of integer
TYPE= keyword value
OUTPUT= file reference
ST A TVS= status variable

KIND (K)

Kind of register. It can be one of the following keywords:

p

The P register.

A

The A registers.

x
The X registers.

Omission causes P to be used.

NUMBER(N)

Which of the registers to display. Its value is a set of one or
more integers or ranges of integers from 0 through 15, or the
keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be displayed. This
parameter is ignored if KIND= P since there is only one P
register.

Omission causes zero to be used.

The Debug Utility 9-49

DISPLAY ~REGISTER (DISR)

TYPE (T)

Type of the displayed register values. It can be one of the
following keywords:

ASCII (A)

Displays ASCII string values.

HEX (H)

Displays hexadecimal string values.

INTEGER(!)

Displays integer values.

Omission causes HEX to be used for string values and
INTEGER for numeric values.

OUTPUT(O)

File on which the register contents are written.

Omission causes the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and A
an error occurs, the status value is returned to $RESPONSE W
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

9-50 CYBIL Language Definition Revision B

Examples

Revision B

DISPLAY _REGISTER (DISR)

The following command displays the contents of the P
register in hexadecimal.

display_register p

Debugs displays the following:

p = b 031 00000040

The following command displays the contents of the A8
register in hexadecimal.

display_register kind= a number = 8 type = hex

The following command displays the contents of the X4, X5,
X6, X7, X8, X9, and XlO registers in hexadecimal.

display_register kind= x number= 4 •. 10

The Debug Utility 9-51

DISPLAY _STACK_FRAME (DISSF)

DISPLAY _STACK_FRAME (DISSF)

Purpose

Format

Parameters

Displays the contents of one or more stack frames. Values are
displayed in hexadecimal.

DISPLAY _STACK_FRAME or
DISPLAY _STACK_FRAMES

COUNT= integer or keyword value
START= integer
DISPLAY_ OPTION= list of keyword value
OUTPUT= fik reference
STATUS= status variable

COUNT(C)

Number of stack frames to be displayed. It must be a positive
integer. An integer value greater than the number of existing
stack frames or the keyword ALL causes all stack frames to
be displayed.

Omission causes all stack frames to be displayed.

START(S)

Stack frame to be displayed first. It must be a positive integer
greater than zero. The value 1 represents the most recent A
stack frame, 2 represents its predecessor, and so on. W
Omission causes a value of 1 to be used.

DI.SPLAY_ OPTION or DISPLAY_ OPTIONS (DO)

Area of the stack frames to be displayed. It can be one or more
of the following keywords:

AUTO(A)

Area containing the automatic (dynamically allocated)
variables of the procedure.

SAVE (S)

Area containing a copy of the registers of the procedure as
they existed at the time of a call or trap.

ALL

Both the automatic and save areas.

Omission causes ALL to be used.

9-52 CYBIL Language Definition RevisionB

Examples

Revision A

DISPLAY _STACK_FRAME (DISSF)

OUTPUT(O)

File on which the stack frame values are written.

Omission causes the current Debug output file to be used.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following command displays the save area of the most
recent stack frame.

display_stack_frame display_option = save

The following command displays the automatic and save
areas of three stack frames beginning with the second most
recent one.

display_stack_frames count = 3 start = 2

The Debug Utility 9-53

DISPLAY _STACK_FRAME (DISSF)

The following command displays the automatic and save
areas of the most recent stack frame.

display_stack_frame count;1

STACK FRAME 001 SEGMENT;032
00000000 00000000 00000000
00000008 00000000 00000000
00000010 30300000 OOCOFFFF 00
00000018 80000000 00000000
00000020 80328031 00000000 2 1
00000028 00008010 00098346 F
00000030 00008032 00000430 2 0
00000038 00408032 00000400 @ 2
00000040 FF778032 000003CO w 2
00000048 FFFC8018 00020F78 x
00000050 00008032 00000390 2

SAVE AREA

p;9 035 00000026 VMID;O
UM;FFF7 UCR;0040 MCR;0000

A0;8 032 00000460 A1;8 032 00000408
A2;8 032 000003CO A3;8 030 00000000
A4;8 032 00000390 A5;8 02F 00000020
A6;8 02E 00000000 A7;8 02F 00000000
A8;8 OOF 00000018 A9;8 032 00000630
AA;8 032 OOOOOA30 A8;F FFF 80000000
AC;F FFF 80000000 A0;8 032 00001058
AE;F FFF 80000000 AF;8 008 000557F8

X0;00008010 00020060 X1;00000000 00000000
X2;0000FFFF 80000000 X3;000007FF FFFFFFFF

X4;00000000 10000000 X5;00000000 00000008
X6;00000000 00000000 X?;OOOOOOOO 00000010
X8;00000000 00000000 X9;00000000 00000008
XA;OOOOOOOO 00000300 X8;00000000 00000000
XC;OOOOOOOO 00000001 XO;OOOOOOOO 00000022
XE;OOOOOOOO 00010040 XF;OOOOOOOO 0000004E

e 9.54 CYBIL Language Definition Revision B

QUIT (QUI)

QUIT (QUI)

Purpose

Format

Parameter

Revision B

Terminates the Debug session and returns control to the
NOS/VE operating system. The session is terminated
immediately; the program is not executed to completion.

QUIT
STATUS= status variable

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The Debug Utility 9-55

RUN

RUN
Purpose Initiates or resumes program execution once Debug has

gained control. Execution continues until Debug again gains
control. If the program has run to completion, entering the e
RUN command terminates the program and returns control to
the NOS/VE operating system.

Execution begins at the instruction whose address is
contained in the P register or at the condition handler (if there
is one) of the program for the event that caused Debug to gain
control. (Refer to the SCL Language Definition manual for a
discussion of condition handlers.) If the P register points to
the instruction that caused the event (such as division by
zero), the same event will occur immediately after entering the
RUN command. In this case, you must change the value in
the P register (use the CHANGE_REGISTER command) or
change the value of one of the operands (use the CHANGE_
PROGRAM_ VALUE command) before entering the RUN
command.

When Debug processes the RUN command, all previously
created SCL blocks (except SET _BREAK command
information and the name of the current Debug input file) are A
lost. This means that all information about SCL commands, W'
such as IF/THEN blocks or WHILE/FOR loops that span
RUN commands are lost. Global variables must be recreated
with XREF. For example, the following sequence recreates the
variable COUNT:

DB/create_variable name= count
DB •• /kind = integer scope= job value= 0
DB/set_break break= one Line= one
DB •• / run "BREAK ONE"
DB/create_variable name= count
DB •• /kind = integer scope= xref

9-56 CYBIL Language Definition Revision B

Format

Parameter

Revision A

RUN

RUN
STATUS= status variable

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The Debug Utility 9-57

I

SET _BREAK (SETB)

SET_BREAK (SETB)

Purpose

Format

Parameters

Defines the break. You can specify one or more events and the
location at which Debug is to take control. When the specified
event occurs, program execution is suspended and a message A
informs you which break occurred. At this point, you can W
enter another Debug command, or any command that can be
processed by the operating system or an active command
utility.

SET_BREAKorSET_BREAKS
BREAK=name
EVENT= list of keyword value
address
BYTE_ OFFSET= integer
BYTE_ COUNT= integer
COMMAND= string
STATUS= status variable

BREAK(B)

Name of the break definition. This name is used to reference
the break definition in the DISPLAY _BREAK and
DELETE_BREAK commands. This name is displayed in the A
break report message when the break occurs. A break cannot W
be named ALL because ALL is used as a keyword in other
Debug commands.

This parameter is required.

EVENTor EVENTS (E)

Events that must occur for the break to occur. If you specify
more than one event, the break is honored if only one of the
events occurs. Possible events can be any of the following
keywords:

ARITHMETIC_ OVERFLOW (AO)

Break when an arithmetic overflow occurs on an
instruction in the specified address range. The P register
points to the instruction that caused the overflow.

ARITHMETIC_SIGNIFICANCE (AS)

Break when arithmetic significance is lost on an
instruction in the specified address range. The P register
points to the instruction that caused the loss of
significance.

9-58 CYBIL Language Definition Revision B

Revision B

SET_ BREAK (SETB)

BRANCH(B)

Break before a branch to or a return from any location in
the specified address range occurs.

CALL(C)

Break before a subprogram call occurs to any address in
the specified address range.

DIVIDE_FAULT (DF)

Break when division by zero occurs in an instruction in the
specified address range. The P register points to the
instruction that caused the division by zero.

EXECUTION (E)

Break before the instruction in the specified address range
is executed.

If the address is specified by the line number, not every line
is usable. For example, breaks cannot be set at IFEND
statements because it is not obvious when contol reaches
them.

EXPONENT_ OVERFLOW (EO)

Break when an exponent overflow occurs in an instruction
in the specified address range. The P register points to the
instruction following the one that caused the overflow.

EXPONENT_ UNDERFLOW (EU)

Break when an exponent underflow occurs in an
instruction in the specified address range. The P register
points to the instruction following the one that caused the
underflow.

FLOATING_POINT _INDEFINITE (FPI)

Break when the result of a floating-point operation is
indefinite in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the results to be indefinite.

The Debug Utility 9-59 •

SET_ BREAK (SETB)

FLOATING _POINT _SIGNIFICANCE (FPS)

Break when significance is lost during a floating-point
operation in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the loss of significance. This event will not e
occur unless your program sets the floating-point loss-of
significance bit in the user mask register.

INVALID _BDP _DATA (IBD)

Break when a business data processing (BDP) instruction
fault occurs in an instruction in the specified address
range. The P register points to the instruction that caused
the fault. The BDP instructions are described in volume II
of the virtual state hardware reference manual.

READ(R)

Break before a read occurs from the specified address
range. The break occurs only if the first byte of the item to
be read is within the address range.

READ _NEXT _INSTRUCTION (RNI)

Break before the instruction in the specified address range
is executed.

WRITE (W)

Break before a write occurs into the specified address
range. The break occurs only if the first byte of the item to
be written is within the address range.

Omission causes EXECUTION to be used.

e 9-60 CYBIL Language Definition Revision B

Revision B

SET _BREAK (SETB)

Debug gains control when the following events occur even if
you do not set a break for them:

ARITHMETIC_ OVERFLOW
ARITHMETIC _SIGNIFICANCE
DIVIDE_FAULT
EXPONENT_OVERFLOW
EXPONENT_UNDERFLOW
FWATING _POINT _INDEFINITE
FLOATING _POINT _SIGNIFICANCE
INVALID_BDP_DATA

Specific breaks can be set for these events, however, so that a
predefined set of commands can be executed when Debug
gains control.

address

Location at which the break occurs. For the break to occur, the I
specified event must occur within the range defined by the
address parameters. All address parameters are interpreted as
a single address. You can use the BYTE_ COUNT and
BYTE_ OFFSET parameters to specify an address range. The
address parameters are:

LINE = integer
SECTION= name or keyword value
MODULE = name
PROCEDURE = name
ENTRY _POINT= name
ADDRESS = integer

The Debug Utility 9-61

I

SET _BREAK (SETB)

LINE (L)

Line at which Debug gains control. Unless the MODULE
parameter is also specified, the line number must exist in
the module that was executing when Debug gained control
or the default module set with the CHANGE_DEFAULT
command.

You can use BYTE_ OFFSET and BYTE_ COUNT to
modify this parameter.

Not all lines of a program can be referenced. Only
executable statements that begin on a separate line can be
referenced. A second or third statement on a line or a line
containing the continuation of a statement cannot be
referenced. In addition, IFEND lines cannot be referenced.

Omission indicates that the break address is specified by
another parameter.

SECTION (SEC)

A memory section. It can be one of the following:

• Name of the working storage section as declared in the
source program.

• Name of a common block.

• $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

• CYB$DEFAULT_HEAP, which is the memory section
containing the default heap for CYBIL.

• $LITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

• $STATIC, which is the memory section containing the
static (not on the run-time stack) variables that are not
allocated to an explicitly named section of the module.

9-62 CYBIL Language Definition Revision B

Re0sion B

SET _BREAK (SETB)

Unless the MODULE parameter is also specified, the
section must exist for the module that was executing when
Debug gained control or the default module set with the
CHANGE_DEFAULT command. The SECTION
parameter cannot be specified for modules that are
components of a bound module unless the section is a
common block (refer to the discussion under Addressing
Bound Modules earlier in this chapter). You can use the
BYTE_ OFFSET and BYTE_COUNT parameters to
modify this parameter.

Omission indicates that the break address is specified by
another parameter.

MODULE(M)

An address or qualification of another address specifier. If
used alone, the MODULE parameter specifies an address
(the first byte of the first code section of the module).
Module represents only the first code section. MODULE
cannot reference the code section of a component module of
a bound module (refer to the discussion under Addressing
Bound Modules earlier in this chapter). If used with the
LINE, SECTION, or PROCEDURE address parameters,
the MODULE parameter identifies the module containing
the line, section, or procedure. If used to specify an address,
the BYTE_ OFFSET and BYTE_ COUNT parameters can
be used to modify the MODULE parameter.

Omission causes the module executing when Debug gained
control or the default module set with the CHANGE
DEFAULT command to be used.

The Debug Utility 9-63

SET _BREAK (SETB)

PROCEDURE (P)

An address (the first byte of the code section of the
procedure). Unless the MODULE parameter is also
specified, the procedure must exist in the module that was
executing when Debug gained control or the default
module set with the CHANGE_ DEFAULT command. You
can use the BYTE_ OFFSET and BYTE_ COUNT
parameters to modify the PROCEDURE parameter. You
cannot specify the LINE or SECTION address parameters
with the PROCEDURE parameter.

When a name is specified, it indicates the procedure to be
used. The name must be a procedure, function, or program.

Omission indicates that the break address is specified by
another parameter.

ENTRY _POINT (EP)

An entry point expressed as a name known to the loader. It
must be a procedure or data name with an XDCL attribute
subject to certain restrictions. (Refer to Attributes in
chapter 3 for a description of the.XDCL attribute. Also,
refer to the SCL Object Code Management manual for
further information on restrictions.) You can use the
BYTE_ OFFSET and BYTE_ COUNT parameters to
modify the ENTRY _POINT parameter. You cannot use
other address parameters with this parameter.

Omission indicates that the break address is specified by
another parameter.

9 9-64 CYBIL Language Definition Revision B

Revision B

SET _BREAK (SETB)

ADDRESS(A)

Address of the break event in the form

rsssoooooooo(l 6)

where r is the ring number, sss is the segment number, and
00000000 is the offset within the segment. You can obtain
machine addresses from the cross-reference and load maps
for your program. You can use the BYTE_ OFFSET and
BYTE_ COUNT parameters to modify the ADDRESS
parameter. You cannot use other address parameters with
this parameter:

Omission indicates that the break address is specified by
another parameter.

The address parameter is required.

BYTE_ OFFSET (BO)

Offset to the base address established by one of the address
parameters. It must be a positive integer. Its value is added to
the base address to form a new address. The break is then set
for this new address.

Omission causes a value of zero to be used.

BYTE_ COUNT (BC)

Number of bytes in an address range. It must be a positive
integer greater than zero.

Omission causes a value of 1 to be used.

The Debug Utility 9-65

I

I

SET _BREAK (SETB)

COMMAND 1orCOMMANDS (C)

String of commands to be executed when the break is
honored. These commands can be processed by Debug, the
operating system, or other active command processor. If a A
command in the string includes a quoted string, that string 9
must be enclosed in two single quotes. After the commands in
the string have been executed, commands are read from the
current Debug input file unless the string contains a RUN
command.

No break report message is issued before the commands in the
string are executed. If you want a message to be displayed,
include an SCL DISPLAY_ VALUE command in the string.

If an error is detected in one of the commands in the string,
the break report message is issued, the error is reported, and
commands are read from the Debug input file. The remaining
commands in the string are not executed.

Omission indicates that no commands are associated with the
break. Commands are read from the Debug input file.

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

If the SET _BREAK command contains an error before the
STATUS parameter, the remainder of the command is
skipped. Therefore, the contents of the STATUS parameter
does not reflect the status of the command.

9-66 CYBIL Language Definition Revision B

Examples

Revision B

SET_ BREAK (SETB)

The following command causes a break when execution
reaches line 10 of module PROGL

set_break break= b1 Line= 10 module= prog1

I
The following command causes a break when a branch or I
return occurs to line 40 of the module executing when Debug
gained control.

set_break break= b2 event= branch Line= 40

The Debug Utility 9-67

SET _STEP _MODE (SETSM)

SET _STEP _MODE (SETSM)

Purpose

Format

Enables you to execute a specified subset of a task and receive
control.

If step mode is activated, a RUN command causes your
program to execute for the specified unit. You are then
prompted for further command input. A string of commands
can be associated with the step and will be processed each
time the step is completed. Stepping with a unit of line or
procedure is only available if the source program was
compiled with the Debug optimization option
(OPI'IMIZATION=DEBUG).

Activating step mode is an effective debugging aid but is
expensive in terms of execution time.

SET _STEP _MODE
MODE =keyword value
UNIT= keyword value
MODULE= keyword value
PROCEDURE= keyword value
COMMAND= string
STATUS= status variable

Parameters MODE
Activates or deactivates step mode. It can be one of the
following keywords:

ON

Activates step mode. When step mode is on, a RUN
command causes one step to be executed. A step is defined
by the UNIT parameter.

OFF

Deactivates step mode. When step mode is off, any
remaining parameters are ignored.

If you specify ON and step mode is already on, all previous
values are replaced with the new values.

This parameter is required.

• 9-68 CYBIL Language Definition RevisionB

Revision B

SET _STEP _MODE (SETSM)

UNIT(U)

Length of the step. It can be one of the following keywords:

PROCEDURE (P)

The step is reported each time a new procedure begins and
after any prologue code for the procedure has executed.

LINE (L)

The step is reported before the code is executed for each line
except for the procedure lines.

Omission causes LINE to be used.

MODULE(M)

The modules reported. This parameter is used with the UNIT
parameter. It can be one of the following keywords:

$ALL

Reports a step that is in any module.

$CURRENT

Reports a step only if the step occurs in the module where
the program is executing when step mode is activated.

You cannot specify both the MODULE and the PROCEDURE
parameters in the same SET _STEP _MODE command.

Omission causes the current value for the default module to be
used.

The Debug Utility 9-69 e

SET _STEP _MODE (SETSM)

PROCEDURE (P)

The procedures reported. This parameter is used with the
UNIT parameter. It can be one of the following keywords:

$ALL

Reports a step that is in any procedure.

$CURRENT

Reports a step only if the step occurs in the procedure
where the program is executing when step mode is
activated.

You cannot specify both the PROCEDURE and MODULE
parameters in the same SET _STEP _MODE command.

Omission causes $ALL to be used.

COMMAND orCOMMANDS (C)

String of commands that will be executed when the step
occurs. If the command string includes a RUN command, the
task is resumed and the step is not reported. If the string does
not include a RUN command, command input is requested
from the current Debug input file.

• 9-70 CYBIL Language Definition Revision B

Example

Revision B

SET _STEP _MODE \SETSM)

STATUS

Return status of the command. If omitted and an error does
not occur, Debug processes the next command. If omitted and
an error occurs, the status value is returned to $RESPONSE
and to the Debug output file if $RESPONSE is connected to
that file. This file is normally connected during interactive
debugging.

The following commands activate step mode with a unit of
line in the current module, execute the entire program
automatically, display each line executed, and then deactivate
step mode.

set_step_mode mode= on ••
command= 'display_debugging_environment
display_options = ua; RUN'

run
set_step_mode mode = off
quit

The Debug Utility 9-71 e

DEBUG FUNCTIONS

Debug Functions

Debug functions are intended for use with SCL during a Debug session.
These functions are only available while Debug has control. They are not
known when your program is executing or after the Debug session has been
terminated.

e 9-72 CYBIL Language Definition Revision B

$CURRENT _LINE

$CURRENT _LINE

Purpose

e Format

Example

Revision B

Returns the current line number value from the program at
the point where Debug has control.

$CURRENT _LINE

if Scurrent_Line < 100 then
display_calls

if end

The Debug Utility 9-73 e

$CURRENT MODULE

$CURRENT _MODULE

Purpose Returns the name of the module where execution is stopped.

Format

Example

$CURRENT MODULE

if $current_module = main then
set_break name= break1 Line= 234

ifend

e 9-74 CYBIL Language Definition Revision B

$CURRENT PROCEDURE

e $CURRENT _PROCEDURE

Purpose e Format

Example

Revision B

Returns the name of the procedure where execution is stopped.

$CURRENT_PROCEDURE

set_step_mode mode = on unit = procedure
command ='if Scurrent_procedure = sub2 then;

set_step_mode mode= on unit= Line; ••
else; run; ifend'

The Debug Utility 9-75 •

$CURRENT PV A

$CURRENT _PV A

Purpose Returns an integer value for the process virtual address (PV A)
where execution is stopped.

Format

Example

$CURRENT _PY A

if $current_pva > Ob03500000026(16) then
display_calls

ifend

• 9·76 CYBIL Language Definition Revision B

$PROGRAM_ VALUE

e $PROGRAM_VALUE

Purpose

Format

Parameters

Revision B

Returns the value of a program value (specified as the name
positional value). Input positional values for module,
procedure, recursion_level, and recursion_ direction can be
specified to fully identify the named variable.

The $PROGRAM_ VALUE function allows you to incorporate
the values of program variables in SCL statements in order to
enhance debugging capabilities both in interactive and batch
sessions.

$PROGRAM_ V ALVE(name,module,procedure,
recursion_ level,recursion _direction)

name

Name of the program element whose value is to be displayed.
It can be one of the following:

• Simple variable.

• Subscripted name.

• Field reference.

• Pointer reference.

The named variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do this, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the name
parameter.

This parameter is required.

The Debug Utility 9-77 e

$PROGRAM VALUE

module

Name of the module that contains the name parameter
variable. Omission causes the module executing when Debug
gained control or the module specified by the CHANGE_
DEFAULT command to be used.

procedure

Name of the procedure that contains the name parameter
variable. If you specify a procedure that is not in the active
call chain, its automatic variables cannot be used because it
has no stack frame. Omission causes the procedure executing
when Debug gained control to be used if a module name is not
specified. Otherwise, there is no default procedure when a
module name is specified and a procedure name is not
specified; the name parameter variable must exist at the
module level.

recursion_ level

The particular call of a recursive procedure to be used. It must
be a positive integer greater than zero. If recursion_
direction=FORW ARD, a value of 1 is the first call, 2 is the
second call (the one called by the first call), and so on. If
recursion_ direction= BACKWARD, 1 is the most recent call, 2 A
is the predecessor, and so on. W
Omission causes a value of 1 to be used.

e 9-78 CYBIL Language Definition Revision B

Example

Revision B

$PROGRAM_ VALUE

recursion direction

Order in which calls to a recursive procedure are searched. It
controls how the value of the recursion_level parameter is
interpreted. It can be one of the following keywords:

FORWARD (F)

A recursion_level of 1 specifies that the first call to the
procedure is used, a 2 specifies the second call, and so on.

BACKWARD (B)

A recursion_ level of 1 specifies that the most recent call to
the procedure is used, a 2 specifies its predecessor, and so
on.

Omission causes BACKWARD to be used.

set_break name= b1 Line= 23 command
'if $program_value(index) < 45 then; run; ifend'

The Debug Utility 9-79 e

USING DEBUG

Using Debug

This section illustrates the use of Debug. Major Debug commands are
illustrated in the sample Debug sessions.

Sample Debug Sessions

Debug can be used in interactive or batch mode. Two Debug sessions follow.
The first session illustrates using Debug interactively. The second session
illustrates using Debug in batch mode.

Interactive Debug Session

The source listing of the CYBIL program used in this interactive Debug
session is shown in figure 9-1.

9-80 CYBIL Language Definition Revision B

INTERACTIVE SESSION

SOURCE LIST OF module_main

0 1 MODULE module_main;
0 2
0 3 PROCEDURE [XREF] p Coperand1,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR status: boolean>;
0 7
0 B PROGRAM main;
0 9
0 10 VAR
4 11 i,
4 12 j,
4 13 k: [STATIC] integer,
4 14 x,
4 15 y,
4 16 z: integer,
4 17 b: boolean;
4 1B
4 19 := 7ffffffffffffff(16);

14 20 j := 10000000(16>;
1C 21 k := i * j;
2A 22 k := i DIV j;
3B 23 FOR x := 0 TO 100 DO
42 24 y := x * x - 500;
54 25 p Cx, y, z, b);
BO 26 IF b THEN
88 27 EXIT main;
BA 2B I FEND;
BA 29 FOREND;
BE 30 PROCEND main;
0 31 MODEND module_main;

Figure 9-1. Source Listing for Interactive Debug Session

(Continued)

Revision A The Debug Utility 9-81

INTERACTIVE SESSION

(Continued)

SOURCE LIST OF m

0 1 MODULE m;
0 2
0 3 PROCEDURE [XDCLJ p Coperand1,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR b: boolean);
0 7
0 8 PROCEDURE [XREFJ mult Ca,
4 9 b: integer;
4 10 VAR c: integer);
4 11
4 12 IF operand1 < operand2 THEN

10 13 mult Coperand1, operand2, result);
34 14 b := TRUE;
3E 15 ELSE
42 16 b := FALSE;
4C 17 IFEND;
4C 18 PROCEND p;
0 19 MODEND m;

SOURCE LIST OF perform_integer_multiplications

0 1 MODULE perform_integer_multiplications;
0 2
0 3 PROCEDURE [XDCLJ mult Ca,
0 4 b: integer;
0 5 VAR c: integer);
0 6
0 7 c := a * b;

16 8 PROCEND mult;
0 9 MODEND perform_integer_multiplications;

Figure 9-1. Source Listing for Interactive Debug Session

9-82 CYBIL Language Definition Revision A

INTERACTIVE SESSION

The following command compiles the CYBIL program:

cybil i=sample, L=List, b=Lgo

The name of the file containing the object code of the program is LGO. The
following command initiates a Debug session:

execute~task file=Lgo debug_mode=on

Debug issues a banner and the Debug prompt, DB/, indicating that Debug
has control. Entering the RUN command initiates program execution:

DEBUG
DB/ run

DEBUG: arithmetic_overf Low at M=module_main L=21 B0=8
DB/

By looking at the source listing for MODULE_MAIN, line 21, you can see
that the overflow occurred during a multiplication operation. Entering the
following commands allows you to view the values of the variables I and J:

DB/ display_program_value name=i
i = 281474976710655
DB/ display_program_value name=j
j = 268435456

When I and J are multiplied, the result exceeds the maximun value allowed;
therefore, arithmetic overflow occurs. Since the P register points to the
instruction that caused the overflow, entering the RUN command would
cause the overflow to reoccur. Changing the P register allows program
execution to continue. The following commands accomplish this:

DB/ display_register kind=p
P=B 035 00000024
DB/ change_register kind=p value=Ob03500000026(16)

Revision B The Debug Utility 9-83

I

INTERACTIVE SESSION

Since the value in the P register begins with a letter, a leading zero is
required for the value parameter. Because the value parameter is in
hexadecimal, the radix is required. The following command shows that the P
register is indeed changed:

DB/ display_register kind=p
P=B 035 00000026

Setting the following breaks allows you to follow program execution:

DB/ set_break break=prog_main module=module_main Line=26
DB/ set_break break=proc_p1 module=m procedure=p
DB •• /byte_offset=34(16)
DB/ set_break break=proc_p2 Line=16 module=m
DB/ set_break break=proc_mult Line=? ••
DB .• /module=perform_integer_multiplications

The first break set, PROG_MAIN, does not require the module/procedure
parameters because it is for the module/procedure executing when Debug
gained control. The address for the second break set, PROC_Pl, is specified
in terms of module/procedure offset addressing; the hexadecimal offset is
obtained from the first column of numbers on the source listing. (Since line
numbers are available, the break address is reported as a line number.) The
third and fourth breaks set, PROC_P2 and PROC_MULT, require the
module and procedure parameters since they are not set for the current e
module/procedure.

Entering the RUN command causes the program to execute until the first
break is reached. The DISPLAY_ CALLS command allows you to trace
program execution:

DB/ run
DEBUG: break PROC_P2, execution at M=m L=16

DB/ display_calls
Traceback from procedure P module Mat Line 16
Called from procedure MAIN module MODULE_MAIN at Line 25

byte offset 40
DB/ run

DEBUG: break PROG_MAIN, execution at M=module_main L=26
DB/ display_calls

Traceback from procedure MAIN module MODULE_MAIN at
Line 26

9-84 CYBIL Language Definition Revision A

e

e

INTERACTIVE SESSION

At this point, you could enter any other command. For example, you could
enter the DISPLAY _STACK_ FRAME command and then the RUN
command:

DB/ display_stack_frame
STACK FRAME 001 SEGMENT=036
00000000 00000000 00000000
00000008 00000000 00000000
00000010 00008035 00000000 5
00000018 00000000 00000000
00000020 FFFFFFFF FFFFFEOC
00000028 00008036 00000398 6
00000030 00000000 00000000
00000038 00000000 00000000
00000040 FFFFFFFF FFFFFEOC
00000048 80360000 04084834 6 H4
00000050 80360000 04170428 6 (

SAVE AREA

P=B 035 00000080 VMID=O
UM=FFF7 UCR=0080 MCR=OOOO

AO=B 036 00000438 A1=B 036 000003EO
A2=B 036 00000398 A3=B 034 00000000
A4=B 036 00000370 A5=B 036 00000417
A6=B 036 00000417 A7=B 036 00000250
A8=B 034 00000080 A9=B 011 00000408
AA=B 011 00000168 AB=B 011 00000608
AC=B OOB 00021A10 AD=B 006 00002C40
AE=F FFF 80000000 AF=B 036 00000398

XO=OOOOB035 00040243 X1=00008036 00000398
X2=00000000 00000000 X3=00000000 00000064
X4=FFFFFFFF FFFFFEOC X5=00000000 00000000
X6=00000000 OOOOOOOF X7=00000000 00989680
X8=00000000 00000022 X9=00000000 00000012
XA=OOOOOOOO 0000004E XB=OOOOOOOO 00000000
XC=OOOOOOOO 0000015E XD=OOOOOOOO 00000003
XE=OOOOOOOO 00000751 XF=OOOOOOOO 00000001
DB/ run
-- DEBUG: break PROC_P2, execution at M=m L=16

Revision A The Debug Utility 9-85

INTERACTIVE SESSION

Since CYBIL variable names can be long, you can assign an SCL variable to
that name and then use the SCL variable prefixed by ? in a Debug
command. For example, the variable OPERANDI in procedure P can be
shortened to OPI as follows:

DB/ op1='operand1'
DB/ dispLay_program_vaLue name=?op1
operand1 = 1

By looking at the source listing, you can see that the program is in a loop
that executes 100 times. To avoid encountering the two breaks that are in the
loop, you can delete them. First, you can display the break definitions to
obtain the break names. Then delete them. Displaying the breaks again
shows that two breaks were eliminated:

DB/ dispLay_breaks

Break PROG_MAIN
event(s) = execution
Location: M=moduLe_main L=26

Break PROC_P1
event(s) = execution
Location: M=m L=14

Break PROC_P2
event(s) = execution
Location: M=m L=16

Break PROC_MULT
event(s) = execution
Location: M=perform_integer_muLtipLications L=7

DB/ deLete_breaks break=(prog_main,proc_p2)
DB/ dispLay_breaks

Break PROC_P1
event(s) = execution
Location: M=m L=14

Break PROC_MULT
event(s) = execution
Location: M=perform_integer_muLtipLications L=7

Instead of entering two DELETE_BREAK commands, both breaks are
specified in the same DELETE_ BREAK command.

9-86 CYBIL Language Definition Revision A

INTERACTIVE SESSION

When displaying the call chain, you can skip one or more of the most recent
calls. Note the difference in address reporting when the first call is skipped:

DB/ run
-- DEBUG: break PROC_MULT, execution at

M=perform_integer_multiplications L=7
DB/ display_calls
-- Traceback from procedure MULT module

PERFORM_INTEGER_MULTIPLICATIONS at line 7
Called from procedure P module M at

Line 13 byte offset BC=10(16)
Called from procedure MAIN module MODULE_MAIN at Line 25

byte offset 40
DB/ display_calls start=2

Traceback from procedure P module Mat Line 13
Called from procedure MAIN module MODULE_MAIN at Line 25

byte off set 40

Revision B The Debug Utility 9-87

I

INTERACTIVE SESSION

Displaying program names is an important aspect of debugging. You can
display the value of program names in other procedures/modules as well as
in the current ones. All static names can be displayed. Only automatic
names in the active call chain, however, can be displayed. To obtain the
active call chain, enter the DISPLAY_ CALLS command:

DB/ run
DEBUG: break PROC_P1, execution at M=m L=14

DB/ display_calls
Traceback from procedure P module Mat line 14
Called from procedure MAIN module MODULE_MAIN at line 25

byte offset 40

Procedures MAIN and P are active. You can, therefore, display the value of
any variable within these procedures. To display the value of B in procedure
P, enter the following command:

DB/ display_program_value name=b module=module_main
•• DB/procedure=main
b = FALSE

To display the value of Bin procedure MAIN, enter the following command:

DB/ display_program_value name=b module=module_main procedure=main
b = FALSE ~
Since module MODULE_MAIN and procedure MAIN are not the current
module and procedure, the MODULE and PROCEDURE parameters are
required.

Entering the RUN command one more time causes the program to terminate.
To terminate the Debug session, enter the QUIT command:

DB/ run
DEBUG: program terminated by returning

DB/ quit
DEBUG: QUIT terminated task

At this point, the operating system prompt,/, appears and you can enter any
SCL command.

9-88 CYBIL Language Definition Revision B

BATCH SESSION

Batch Debug Session

The source listing of the CYBIL program used in this batch Debug session is
shown in figure 9-2. The name of the file containing the object code of the
program is SAMPLE2. SAMPLE2 is essentially the same as the program
used in the interactive session. The command stream used for the batch
session is shown in figure 9-3. The Debug commands used are the same as
those used in the interactive session.

SOURCE LIST OF module_main

0 1 MODULE module_main;
0 2
0 3 PROCEDURE [XREFJ p Coperand1,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR status: boolean>;
0 7
0 8 PROGRAM main;
0 9
0 10 VAR
4 11 x,
4 12 y,
4 13 z: integer,
4 14 b: boolean;
4 15
4 16 FOR x := 0 TO 100 DO
E 17 y := x * x - 500;

20 18 p Cx, y, z, b>;
4C 19 IF b THEN
54 20 EXIT main;
56 21 I FEND;
56 22 FOREND;
SA 23 PROCEND main;
0 24 MODEND module_main;

Figure 9-2. Source Listing for Batch Debug Session

(Continued)

Revision A The Debug Utility 9-89

BATCH SESSION

(Continued)

SOURCE LIST OF m

0 1 MODULE m;
0 2
0 3 PROCEDURE [XDCL] p Coperand1,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR b: boolean>;
0 7
0 8 PROCEDURE [XREF] mult Ca,
4 9 b: integer;
4 10 VAR c: integer>;
4 11
4 12 IF operand1 < operand2 THEN

10 13 mult Coperand1, operand2, result);
34 14 b := TRUE;
3E 15 ELSE
42 16 b := FALSE;
4C 17 IFEND;
4C 18 PROCEND p;
0 19 MODEND m;

SOURCE LIST OF perform_integer_multiplications

0 1 MODULE perform_integer_multiplications;
0 2
0 3 PROCEDURE [XDCL] mult Ca,
0 4 b: integer;
0 5 VAR c: integer>;
0 6
O 7 c := a * b;

16 8 PROCEND mult;
0 9 MODEND perform_integer_multiplications;

Figure 9-2. Source Listing for Batch Debug Session

9-90 CYBIL Language Definition Revision A

BATCH SESSION

The following numbered paragraphs correspond to the numbers in figure 9-3.

CD The COLLECT_ TEXT command collects the Debug commands on the
file named BATCH_ SESSION. All commands are placed on BATCH_
SESSION until the double asterisks are encountered.

® The CREATE_ VARIABLE command creates an SCL variable of type
STATUS to be used on the Debug SET _BREAK commands.

@ The IF /!FEND command is used to check the status variable. If the
status variable is not provided and the command is in error, the
session will be terminated.

@ Indicates that commands are no longer collected on the file
BATCH_ SESSION.

@ The four CREATE_ FILE_ CONNECTION commands cause a
complete record of the Debug session to be recorded on file SESSION.

@ The EXECUTE_ TASK command initiates the Debug session. Notice
that the Debug input file is BATCH_SESSION.

<J) The standard file $OUTPUT must be disconnected from SESSION
before that file can be copied.

@ The COPY _FILE command causes the file SESSION to be copied to
file $OUTPUT, which is printed at the end of the job. The contents of
this file are shown in figure 9-4. Notice that the Debug prompt, DB/, is
replaced by CI or CS because of the file connections.

Revision B The Debug Utility 9-91

BATCH SESSION

login family_name= ••• user= ••. password= ••• job_class=batch
collect_text output=batch_session
create_variable name=stat kind=status
set_break break=prog_main line=19 module=module_main status=stat
if stat.normal = false then;
display_value 'break prog_main failed'
ifend
set_break break=proc_p1 line=14 module=m status=stat
if stat.normal= false then; display_value 'break proc_p1 failed'
ifend
set_break break=proc_p2 line=16 module=m status=stat
if stat.normal =false then; display_value 'break proc_p2 failed'
ifend
set_break break=proc_mult line=? ••
module=perform_integer_multiplications status=stat
if stat.normal = false then;
display_value 'break proc_mult failed'
i fend
run
display_calls
run
display_calls
display_stack_frame
run
display_breaks
delete_breaks break=(prog_main,proc_p2)
display_breaks
run
display_calls
display_calls start=2
run
display_calls
display_program_value name=b
display_program_value name=b module=module_main procedure=main
run
quit

© **
attach_file file=sample2

~ create_file_connection $output session
create_file_connection $response session
create_file_connection $errors session
create_file_connection $echo session
execute_task file=sample2 debug_input=batch_session
debug_output=session debug_mode=on
delete_file_connection $output session
copy_file session
logout

Figure 9-3. Command Stream for Batch Debug Session

9-92 CYBIL Language Definition Revision A

BATCH SESSION

CI execute_task file=sample2 debug_input=batch_session
debug_output=session debug_mode=on
DEBUG

CI create_variable name=stat kind=status
CI set_break break=prog_main Line=19 module=module_main status=stat
CI if stat.normal = false then
CS display_value 'break prog_main failed'
CS ifend
CI set_break break=proc_p1 Line=14 module=m status=stat
CI if stat.normal = false then
CS display_value 'break proc_p1 failed'
CS ifend
CI set_break break=proc_p2 Line=16 module=m status=stat
CI if stat.normal = false then
CS display_value 'break proc_p2 failed'
CS ifend
CI set_break break=proc_mult Line=7
module=perform_integer_multiplications status=stat
CI if stat.normal = false then
CS display_value 'break proc_mult failed'
CS ifend
CI run

DEBUG: break PROC_P2, execution at M=m L=16
CI display_calls

Traceback from procedure P module Mat Line 16
Called from procedure MAIN module MODULE_MAIN at Line 18 byte

offset 40
CI run

DEBUG: break PROG_MAIN, execution at M=module_main L=19
CI display_calls

Traceback from procedure MAIN module MODULE_MAIN at Line 19

Figure 9-4. Batch Debug Session

(Continued)

Revision A The Debug Utility 9-93

BATCH SESSION

(Continued)

CI display_stack_frame
STACK FRAME 001 SEGMENT=035
00000000 00000000 00000000
00000008 00000000 00000000
00000010 00008034 00000000 4
00000018 00000000 00000000
00000020 FFFFFFFF FFFFFEOC
00000028 00008035 00000398 5
00000030 00000000 00000000
00000038 00000000 00000000
00000040 FFFFFFFF FFFFFEOC
00000048 80350000 04084834 5 H4
00000050 80350000 04170428 5 (

SAVE AREA

P=B 034 0000004C
UM=FFF7 UCR=0080

AO=B 035 00000438
A2=B 035 00000398
A4=B 035 00000370
A6=B 035 00000417
A8=B 033 00000080
AA=B 011 00000168
AC=B 008 00021A10
AE=F FFF 80000000

VMID=O
MCR=OOOO

A1=B 035 000003EO
A3=B 033 00000000
A5=B 035 00000417
A7=B 035 00000250
A9=B 011 00000408
AB=B 011 00000608
AD=B 006 000029AO
AF=B 035 00000398

Figure 9-4. Batch Debug Session

9-94 CYBIL Language Definition

(Continued)

Revision A

e

e
(Continued)

XO=OOOOB034 00040243 X1=00008035 00000398
X2=00000000 00000000 X3=00000000 00000064
X4=FFFFFFFF FFFFFEOC XS=OOOOOOOO 00000000
X6=00000000 OOOOOOOF X7=00000000 00989680
X8=00000000 00000022 X9=00000000 00000012
XA=OOOOOOOO 0000004E XB=OOOOOOOO 00000000
XC=OOOOOOOO 000004CC XD=OOOOOOOO 00000003
XE=OOOOOOOO 00000751 XF=OOOOOOOO 00000000

CI run
-- DEBUG: break PROC_P2, execution at M=m L=16
CI dispLay_breaks

Break PROG_MAIN
event(s) = execution
Location: M=moduLe_main L=19
Break PROC_P1
event(s) = execution
Location: M=m L=14
Break PROC_P2
event(s) = execution
Location: M=m L=16
Break PROC_MULT
event(s) = execution

BATCH SESSION

Location: M=perform_integer_muLtipLications L=7
CI deLete_breaks break=(prog_main,proc_p2)
CI dispLay_breaks

Break PROC_P1
eventCs) = execution
Location: M=m L=14
Break PROC_MULT
event(s) = execution
Location: M=perform_integer_mu~tipLications L=7

Figure 9-4. Batch Debug Session

(Continued)

Revision A The Debug Utility 9-95

BATCH SESSION

(Continued)

CI run
DEBUG: break PROC_MULT, execution at

M=perform_integer_multiplications L=7
CI display_calls
-- Traceback from procedure MULT module

PERFORM_INTEGER_MULTIPLICATIONS at line 7
Called from procedure P module Mat Line 13 byte offset 32
Called from procedure MAIN module MODULE_MAIN at Line 18 byte

offset 40
CI display_calls start=2
-- Traceback from procedure P module Mat Line 14

Called from procedure MAIN module MODULE_MAIN at Line 18 byte
off set 40

CI run
DEBUG: break PROC_P1, execution at M=m L=14

CI display_calls
Traceback from procedure P module Mat Line 14
Called from procedure MAIN module MODULE_MAIN at Line 18 byte

offset 40
CI display_program_value name=b

b = FALSE
CI display_program_value name=b module=module_main procedure=main

b = FALSE
CI run

DEBUG: program terminated by returning
CI quit

DEBUG: QUIT terminated task
CI delete_file_connection $output session
CI copy_file session
EOI ENCOUNTERED.

Figure 9-4. Batch Debug Session

9-96 CYBIL Language Definition Revision A

9 Appendixes

Glossary ... A-1

e
Character Set .. B-1

Reserved Words ... C-1

Data Representation in Memory D-1

9 Glossary A

A e Access Attribute

Characteristic of a variable that determines whether the variable can be
both read and written. Specifying the access attribute READ makes the
variable a read-only variable.

Active Call Chain

List of calls that led to the current procedure.

Alphabetic Character

One of the following letters:

A toZ

a to z

See Character and Alphanumeric Character.

Alphanumeric Character

Alphabetic character or a digit. See Character, Alphabetic Character, and
Digit.

Assignment Statement

Statement that assigns a value to a variable.

Revision A Glossary A-1

GLOSSARY

B

Batch Debugging

Debugging when the user has no direct control of debugging during
program execution. Contrast with Interactive Debugging.

Bit

Binary digit. A bit has the value 0 or 1. See Byte.

Boolean

Kind of value that is evaluated as TRUE or FALSE.

Break

The primary mechanism for Debug to gain control from an executing
program. A break specifies an event and an address range such that when
the event occurs within the address range, Debug takes control.

Byte

Group of bits. For NOS/VE, one byte is equal to 8 bits. An ASCII
character code uses the rightmost 7 bits of one byte.

Byte Offset

A number corresponding to the number of bytes beyond the beginning of A
a line, procedure, module, or section. W

A-2 CYBIL Language Definition Revision A

GLOSSARY

ec
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Character 

Letter, digit, space, or symbol that is represented by a code in one or more 
of the standard character sets. 

It is also referred to as a byte when used as a unit of measure to specify 
block length, record length, and so forth. 

A character can be a graphic character or a control character. A graphic 
character is printable; a control character is nonprintable and is used to 
control an input or output operation. 

Character Constant 

Fixed value that represents a single character. 

Comment 

Any character or sequence of characters that is preceded by an opening 
brace and terminated by a closing brace or an end of line. A comment is 
treated exactly as a space. 

Compilation Time 

Time at which a source program is translated by the compiler to an object 
program that can be loaded and executed. Contrast with Execution Time. 

Compiler 

A processor that accepts source code as input and generates object code as 
output. 

Condition Handler 

Procedure called when an exception condition occurs. Condition handler 
processing occurs after Debug processing if Debug mode is on. The 
procedure is called only ifit has been established as the condition handler 
for the condition type and the condition occurs within its scope. 

Revision B 
Glossary A-3 



GLOSSARY 

D 

Delimiter 

Indicator that separates and organizes data. 

Digit 

One of the following characters: 

0123456789 

E 

Entry Point 

Point in a module at which execution of the module can begin. 

Event 

Condition, such as division by zero, that causes Debug to gain control. 

Execution Time 

The time at which a compiled source program is executed. Also known as 
Run Time. 

Expression 

Notation that represents a value. A constant or variable appearing alone, 
or combinations of constants, variables, and operators. 

External Reference 

Call to an entry point in another module. 

F 

Field 

Subdivision of a record that is referenced by name. For example, the 
field NORMAL in a record named OLD_STATUS is referenced as 
follows: 

OLD _STATUS.NORMAL 

A-4 CYBIL Language Definition Revision A 



GLOSSARY 

e. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Integer Constant

One or more digits and, for hexadecimal integer constants, the following
characters:

ABCDEFabcdef

A hexadecimal integer constant must begin with a digit. A preceding sign
and subsequent radix are optional.

Interactive Debugging

L

Debugging when the user has direct control of the debugging process.
Contrast with Batch Debugging.

Load Module

Module reformatted for code sharing and efficient loading. When the user
generates an object library, each object module in the module list is
reformatted and written as a load module on the object library.

Machine Addressing

Use of actual machine addresses. Contrast with Module Addressing and
Symbolic Addressing.

Machine-Level Debugging

Debugging using machine-level terms such as machine addresses. A
knowledge of machine architecture is required. Contrast with Symbolic
Debugging.

Module

Unit of text accepted as input by the loader, linker, or object library
generator. See Object Module and Load Module.

Module Addressing

Use of addresses in terms of module and procedure names and an offset.
Contrast with Machine Addressing and Symbolic Addressing.

Revision A Glossary A-5

GLOSSARY

N

Name

0

Combination of from 1 through 31 characters chosen from the following
set.

• Alphabetic characters (A through Z and a through z).

• Digits (0 through 9).

• Special characters(#, @,$,and _).

The first character of a name cannot be a digit.

Object Code

Executable code produced by a compiler.

Object Module

Compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader and
the object library generator.

A·6 CYBIL Language Definition Revision A

GLOSSARY

p

Page

Allocatable unit of real memory. e Pointer

Virtual address of a value.

R

Range

Value represented as two values separated by an ellipsis. The element is
associated with the values from the first value through the second value.
The first value must be less than the second value. For example:

value .. value

Reserved Word

Word having a predefined meaning in a language. The user cannot define
a new meaning or use for a reserved word.

Ring

Level of hardware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings.

Run Time

See Execution Time.

Revision A Glossary A-7

GLOSSARY

s
Segment

One or more pages assigned to a file. The segment has the ring attributes
of the file.

Source Code

Statements written for input to a compiler.

Statement List

One or more statements separated by delimiters.

String Constant

Sequence of characters delimited by apostrophes ('). An apostrophe can be
included in the string by specifying two consecutive apostrophes.

Symbolic Addressing

Use of addresses in source program terms such as program names and
line numbers. Contrast with Machine Addressing and Module
Addressing.

Symbolic Debugging

Debugging using source program terms such as line numbers and
program names. Contrast with Machine-Level Debugging.

T

Traceback

List of procedure names within a program, beginning with the currently
executing procedure, proceeding backward through the sequence of called
procedures, and ending with the main program.

v
Variable

Represents a data value.

Variable Attribute

Characteristic of a variable.

See Access Attribute.

A-8 CYBIL Language Definition Revision A

9 Character Set B

This appendix lists the ASCII character set. e NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7- I
bit ASCII code in an 8-bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the leftmost bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the leftmost
bit in an 8-bit byte for 256 characters. The use and interpretation of the
additional 128 characters is user-defined.

RevisionB Character Set B· 1

CHARACTER SET

Table B-1. ASCII Character Set

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA OI2 LF Linefeed
011 OB OI3 VT Vertical tabulation

OI2 oc 014 FF Form feed
013 OD OI5 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in

016 IO 020 OLE Data link escape
017 11 021 DCI Device control I
OI8 12 022 DC2 Device control 2
019 I3 023 DC3 Device control 3

020 14 024 DC4 Device control 4
02I I5 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block

024 18 030 CAN Cancel
025 19 03I EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape

028 lC 034 FS File separator
029 lD 035 GS Group separator
o3o IE 036 RS Record separator
Oql IF 037 us Unit separator

032 20 040 SP Space
033 21 041 Exclamation point
034 22 042 Quotation marks
035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 Opening parenthesis
04I 29 05I Closing parenthesis
042 2A 052 Asterisk
043 2B 053 + Plus

044 2C 054 Comma
045 20 055 Hyphen
046 2E 056 Period
047 2F 057 I Slant

(Continued)

e
B-2 CYBIL Language Definition Revision A

CHARACTER SET

e
Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

e Decimal Hexadecimal Octal Mnemonic Name or Meaning

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 3D 075 Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 D Uppercase D

e 069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 llO H Uppercase H
073 49 lll I Uppercase I
074 4A 112 J UppercaseJ
075 4B 113 K Uppercase K

076 4C 114 L UppercaseL
077 4D 115 M UppercaseM
078 4E 116 N UppercaseN
079 4F 117 0 Uppercase 0

080 50 120 p UppercaseP
081 51 121 Q Uppercase Q
082 52 122 R UppercaseR
083 53 123 s Uppercases

084 54 124 T UppercaseT
085 55 125 u Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W

088 58 130 x UppercaseX
089 59 131 y Uppercase Y
090 5A 132 z UppercaseZ
091 5B 133 [Opening bracket e (Continued)

Revision A Character Set B-3

CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

092 5C 134 \ Reverse slant
093 5D 135 l Closing bracket
094 5E 136 Circumflex
095 5F 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercased
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

104 68 150 h Lowercaseh
105 69 151 Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 Lowercase 1
109 6D 155 m Lowercasem
110 6E 156 n Lowercase n
111 6F 157 0 Lowercase o

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 Lowercase r
115 7:3 163 Lowercases

116 74 164 Lowercase t
117 75 165 u Lowercase u
ll8 76 166 v Lowercase v
!El 77 167 w I ... owercase w

120 78 170 x Lowercase x
121 79 171 y Lowercase y
122 7A 172 Lowercase z
123 7B 173 I Opening brace

124 7C 174 I Vertical line
125 7D 175 I Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

B-4 CYBIL Language Definition Revision A

Reserved Words c
e

The following are reserved words in CYBIL.

ALIAS LIST STRING

e ALIGNED LIST ALL STRLENGTH
ALLOCATE LISTCTS succ
AND LISTEXT THEN
ARRAY LIS TO BJ TITLE
BEGIN LOWERBOUND TO
BOOLEAN LOWERVALUE TRUE
BOUND MOD TYPE
CASE MOD END UNTIL
CASE ND MODULE UPPERBOUND
CAT NEWTITLE UPPERVALUE
CELL NEXT VAR
CHAR NIL WHILE
CHKALL NOCOMPILE WHILE ND
CHKNIL NOT WRITE
CHKRNG OF XDCL
CHKSUB OFF XOR
CHKTAG OLDTITLE XREF
CHR ON #ADDRESS
COMMENT OR #CALLER_ID

e COMPILE ORD #COMPARE_SWAP
CONST PACKED #CONVERT_POINTER_TO_PROCEDURE
CYCLE POP #FREE _RUNNING_ CLOCK
DIV PRED #GATE
DO PROCEDURE #HASH_SVA
DOWNTO PROCEND #INLINE
EJECT PROGRAM #KEYPOINT
ELSE PUSH #LOC
ELSE IF READ #OFFSET
END REAL #PREVIOUS SAVE_AREA
EXIT REC END #PTR
FALSE RECORD #PURGE _BUFFER
FOR REL #READ _REGISTER
FORE ND REP #REL
FREE REPEAT #RING
FUNCEND RESET #SCAN
FUNCTION RETURN #SEGMENT
HEAP RIGHT #SIZE e IF SECTION #TRANSLATE
IFEND SEQ #UNCHECKED CONVERSION
IN SET #WRITE _REGISTER
INLINE SKIP $CHAR
INTEGER SPACING $INTEGER

e LEFT STATIC $REAL

Revision A Reserved Words C-1

9 Data Representation in Memory D

e

e

e

Memory is made up of 8-bit addressable bytes with eight bytes to one 64-bit
word. (An 8-bit byte is synonymous with a cell.) Table D-1 summarizes how
different data types are represented in memory. The alignment column
indicates how a variable of the data type is stored in packed and unpacked
format. The word "byte" means it is stored in the first available byte; "bit"
means it is stored in the first available bit.

Table D-1. Data Representation in Memory

Alignment

Type Size Unpacked Packed

Integer 8 bytes Byte Byte

Character 1 byte Byte Bit

Boolean 1 bit Right-justified Bit
in a byte

Ordinal As needed Right-justified Bit
for components in a byte

Subrange As needed Right-justified Bit
for components in a byte

Real 8 bytes Byte Byte

Cell Byte Byte Byte

Fixed 6 bytes Byte Byte
pointer

Fixed 4 bytes Byte Byte
relative
pointer

String 1 byte for Byte Byte
each character

Array Depends on Byte Components are
type of unaligned
components

Set As needed Right-justified Bit if< 57
for components in a byte components;

byte if> 57
components

Revision A Data Representation D-1

DATA REPRESENTATION IN MEMORY

The following examples show how a record would look in memory in various
formats: first unpacked, then packed, packed with some positioning changes,
and finally aligned. The memory shown here is in eight-byte words, but
because bytes can be addressed individually, it's possible the record could
start at any byte (if it is not aligned otherwise).

The unpacked record is:

TYPE
table = RECORD

name string(7),
file (bi, di, Lg, pr),
number_of_accesses : integer,
users : 0 •• 100,
ptr_iotype : ftiotype,
b : boolean,

REC END;

This record would appear in memory as follows (slashes indicate unused
memory):

FILE

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
NAME

Character Character Character Character Character Character Character

NUMBER_OF _ACCESSES

PTR IOTYPE
B

D-2 CYBIL Language Definition Revision B

DATA REPRESENTATION IN MEMORY

The packed record is:

TYPE
table PACKED RECORD

name
file

string(?),
(bi, di, Lg, pr),

number_of_accesses : integer,
users : 0 •• 100,
ptr_iotype : "iotype,
b : boolean,

RECEND;

This ret:ord would appear in memory as follows (slashes indicate unused
memory):

FILE

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
NAME

Character Character Character Character Character Character Character

NUMBER OF _ACCESSES

PTR IOTYPE
USERS

Revision B Data Representation D-3

I

DATA REPRESENTATION IN MEMORY

The record, as follows, is now rearranged slightly to make more efficient use
of the space.

TYPE
table PACKED RECORD

name string(?),
file (bi, di, Lg, pr),
number_of_accesses : integer,
users : 0 •• 100,
b : boolean,
ptr_iotype : "iotype,

REC END;

This record would appear in memory as follows (slashes indicate unused
memory):

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
NAME

Character Character Character Character Character Character Character

NUMBER_OF ACCESSES

PTR IOTYPE

D-4 CYBIL Language Definition Revision B

DATA REPRESENTATION IN MEMORY

The following record declares the pointer field to be aligned at byte zero (the
first byte) of a word.

TYPE
table PACKED RECORD

name
file

string (7),

Cbi, di, Lg, pr),
number_of_accesses : integer,
users : 0 •• 100,
b : boolean,
ptr_iotype : ALIGNED [0 MOD 8] "iotype,

REC END;

This record would appear in memory as follows (slashes indicate unused
memory):

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
NAME

Character Character Character Character Character Character

USERS B

Revision B Data Representation D·5

9Index

9 Index

A

A registers
Change 9-32
Display 9-49

ABORT_FILE attribute 9-4
Access attribute 3-6; A-1
Accessing Debug

During program execution 9-3
When a program fails 9-4

Active call chain A-1
Active segment identifier 7-15
Actual parameters

Function 6-25,26
Procedure 7-23,25
Program 2-12

Adaptable array
Definition 4-42
Example 5-34
Format 4-42
Size 5-33

Adaptable heap
Definition 4-46
Format 4-46
Size 5-33

Adaptable pointer size 5-33
Adaptable record

Definition 4-43
Format 4-43
Size 5-33

Adaptable sequence
Definition 4-45
Format 4-45
Size 5-33

Adaptable string
Definition 4-41
Format 4-41
Size 5-33

Adaptable types
Definition 4-41
Equivalent 4-2
Example 5-34

Addition operation 5-5
Addition operators 5-4

Revision B

#ADDRESS function 6-16
Addressing

Bound modules 9-13
Debug 9-8

Advance page directive 8-19
Alias name 2-9,11; 3-3; 6-23; 7-21
ALIGNED

parameter 4-28,30,36,43
Alignment

Examples D-2
Of elements in memory D-1
Parameter 4-28,30,36,43

ALLOCATE statement
Definition 5-38
Example 5-34
Format 5-38

Alphabetic character A-1
Alphanumeric character A-1
AND operator 5-3
ARITHMETIC_ OVERFLOW

break 9-58
ARITHMETIC_STGNIFICANCE

break 9-58
Array

Adaptable 4-42
Definition 4-24
Elements 4-26
Examples 4-26
Format 4-24
Initializing elements 4-25
LOWERBOUND function 6-5
Referencing elements 4-25
Size 4-24
Subscript bounds 4-24
Two-dimensional 4-26
UPPERBOUND function 6-14

ASCII character set B-1
ASID (active segment

identifier) 7-15
Assigning

Elements 4-37
Strings 4-23

Assignment operator 5-15
Assignment, set 4-37

CYBIL Language Definition Index-I

INDEX

Assignment statement
Compile-time 8-9
Definition 5-13; A-1

Attribute(s)
Access 3-6
Debug 9-3,4
Effect on initialization by 3-13
Function 6-23
#GATE 3-3,8
List 8-2
Procedure 7-21
READ 3-3,6
Scope 3-7
Section name 3-4,11
STATIC 2-8; 3-4,9
Storage 3-9
XDCL 2-8; 3-3,7
XREF 3-3,7

Automatic variable 2-8; 3-9

B

Batch Debug
Definition A-2
Example 9-89

BEGIN statement
Definition 5-16
Format 5-16

Binary object code, listing 8-2
Bit A-2
Blanks in syntax 2-5
Blocks 2-7
Boolean

Constant 2-4
Definition 4-6; A-2
Difference 5-5
Example 4-6
Format 4-6

Bound module addressing 9-13
BOUND parameter 4-30
Bound variant record

Definition 4-30,32
Equivalent 4-2
Tag field size 5-33

BRANCH break 9-59
Break report message 9-9

lndex-2 CYBIL Language Definition

Breaks, Debug
Definition 9-8; A-2
Delete 9-35
Display 9-36
Set 9-58

Byte A-2
Byte offset 6-16; A-2

c
Cache, purging 7-15
CALL break 9-59
Call chain, Debug 9-38
Caller id 7-9
#CALLER_ID procedure 7-9
Calling

Function 6-26
Procedure 7-25

CALLREL instruction 7-9
CALLSEG instruction 7-9
CASE statement

Definition 5-26
Examples 5-27
Format 5-26

CASEND 5-26
CAT 2-4
Cell

Definition 4-12
Format of type 4-12
Pointer to 4-17
Type 4-12

CHAD command 9-22
CHAM command 9-25
CHANGE_DEFAULT

command 9-22
CHANGE_MEMORY

command 9-25
CHANGE_PROGRAM VALUE

command 9-28
CHANGE_REGISTER

command 9-32
CHAPV command 9-28
CHAR command 9-32
$CHAR function 6-2
Character

Constant 2-3; A-3

Revision B

Definition 4-5; A-3
Example 4-5
Format 4-5
Valid 2-1

Character set B-1
CHKALL toggle 8-15
CHKNIL toggle 8-15
CHKRNG toggle 8-15
CHKSUB toggle 8-15
CMPXA instruction 7-10
Coefficient 2-4
COMMAND file 9-5
Comment control directive 8-27
COMMENT directive 8-27
Comments 2-6; A-3
#COMPARE_ SWAP

procedure 7-10
Comparing strings 4-23
Compilation

Call 8-1
Declarations 8-7
Listing 8-1
Statements 8-7
Time A-3

COMPILE directive 8-25
Compile-time

Assignment statement 8-9
Directives 8-11
Expressions 8-8
IF statement 8-10
Variables 8-7

Compiler
Checking of subranges 4-9
Definition A-3

Complement operation 5-11
Component type 4-18
Concatenation 2-4
Condition code, Debug 9-7
CONDITION field 9-7
Condition handler

Debugging 9-14
Definition A-3

CONST format 3-1
Constant

Boolean 2-4
Character 2-3
Declaration 3-1

Revision B

Definition 2-3
Examples 3-2
Expression 2-5
Floating-point 2-4
Format 3-1
Integer 2-3
Ordinal 2-4
Pointer 2-4
Real 2-4
String 2-4

Control statements
CASE 5-26
CYCLE 5-28
EXIT 5-30
IF 5-24
Overview 5-23
RETURN 5-31

Conventions 8
#CONVERT _POINTER TO

INDEX

PROCEDURE procedure 7-12
CPYSX instruction 6-20
CPYXS instruction 7-20
$CURRENT LINE function 9-73
$CURRENT MODULE

function 9-74
$CURRENT PROCEDURE

function 9-75
$CURRENT PV A function 9-76
CYBIL command

BINARY_ OBJECT
parameter 8-2

DEBUG parameter 8-3
ERROR_LEVEL parameter 8-3
Example 8-6
Format 8-1
INPUT parameter 8-1
LIST parameter 8-1
LIST_ OPTIONS parameter 8-2
OPTIMIZATION

parameter 8-4; 9-13
PAD parameter 8-4
RUNTIME_ CHECKS

parameter 8-5
STATUS parameter 8-5

CYBIL-defined elements 2-1
CYBIL reserved words C-1
CYBIL syntax 2-5

CYBIL Language Definition lndex-3

INDEX

CYCLE statement
Definition 5-28
Example 5-29
Format 5-28

D

Data in memory
Alignment D-1
Examples D-2
Size requirements D-1

Debug commands
CHAD 9-22
CHAM 9-25
CHANGE_DEFAULT 9-22
CHANGE_MEMORY 9-25
CHANGE_ PROGRAM

VALUE 9-28
CHANGE_REGISTER 9-32
CHAPV 9-28
CHAR 9-32
DELB 9-35
DELETE_BREAK 9-35
DISB 9-36
DISC 9-38
DISDE 9-40
DISM 9-42
DISPLAY_ BREAK 9-36
DISPLAY_ CALL 9-38
DISPLAY _DEBUGGING

ENVIRONMENT 9-40
DISPLAY _MEMORY 9-42
DISPLAY_ PROGRAM

VALUE 9-46
DISPLAY _REGISTER 9-49
DISPLAY _STACK

FRAME 9-52
DISPV 9-46
DISR 9-49
DISSF 9-52
QUI 9-55
QUIT 9-55
RUN 9-56
SETB 9-58
SET _BREAK 9-58
SETSM 9-68
SET _STEP _MODE 9-68
Summary 9-18

Index-4 CYBIL Language Definition

Debug compiler options 8-3,4
Debug functions

$CURRENT _LINE 9-73
$CURRENT MODULE 9-74
$CURRENT

PROCEDURE 9-75
$CURRENT_PVA 9-76
$PROGRAM VALUE 9-77

Debug utility
Accessing 9-2
Addressing 9-8
Attributes 9-3,4
Bound modules 9-13
Break report message 9-9
Breaks 9-8,35,36,58
Call chain 9-38
Commands, see separate entry
Condition code 9-7
Condition handlers 9-14
Defaults 9-22
Deferred breaks 9-16
Ending a session 9-55
Environment 9-40
Example of batch session 9-89
Example of interactive

session 9-80
Functions, see separate entry
Input file 9-5,23
Interrupt processing 9-14
Multiple breaks 9-17
M ultiring environment 9-1 7
Optimized code 9-13
Output file 9-6,23
Overview 9-1
Product identifier 9-7
Program addresses 9-8
Resuming a session 9-56
Ring 9-16
Starting a session 9-56
Status variable 9-7
Step mode 9-68
Use 9-80

Debugging programs, see Debug
utility

DEBUG_INPUT attribute 9-3
DEBUG_MODE attribute 9-3
DEBUG_ OUTPUT attribute 9-3,4
Decimal notation 2-4

Revision B

Declarations
Compilation 8-7
Overview 1-1

Defaults, Debug 9-22
Deferred breaks 9-16
DELB command 9-35
Delete Debug breaks 9-35
DELETE_ BREAK command 9-35
Delimiter A-4
Dereference, pointer 4-13
Diagnostics, listing 8-3
Digit A-4
Direct pointer

Byte number 6-18
Converting from a relative

pointer 4-18
#OFFSET function 6-18
Return ring number 6-21
Return segment number 6-22
Ring 6-21
Segment 6-22
Signed offset (byte

number) 6-18
Directives, compile-time

COMMENT 8-27
Comment control 8-27
COMPILE 8-25
Definition 8-11
E.JECT 8-19
General format 8-11
Layout control 8-18
LEFT 8-18
Maintenance control 8-25
NEWTITLE 8-22
NOCOMPILE 8-26
OLDTITLE 8-24
POP 8-16
PUSH 8-13
RESET 8-17
RIGHT 8-18
SET 8-12
SKIP 8-21
SPACING 8-20
TITLE 8-23
Toggle control 8-12

DISB command 9<36
DISC command 9-c38

Revision R

DISDE command 9-40
DISM command 9-42
Display Debug breaks 9-36
DISPLAY _BREAK

command 9-36

INDEX

DIS PT ,A Y _CALL command 9-38
DISPLAY _DEBUGGING

ENVIRONMENT command 9-40
DISPLAY _MEMORY

command 9-42
DISPLAY_PROGRAM VALUE

command 9-46
DISPLAY_ REGISTER

command 9-49
DISPLAY_ ST ACK_ FRAME

command 9-52
DISPV command 9-46
DISR command 9-49
DISSF command 9-52
DIV operator 5-3
DIVIDE_FAULT break 9-59

E

EJECT directive 8-19
Elements

CYBIL-defined 2-1
Scope of 2-7
Syntax of 2-5
User-defined 2-2

ELSE 5-24
ELSEIF 5-24
Empty statement 2-6; 5-13
END 5-16
Entry point A-4
Equal to operator 5-6,9
Equivalent types 4-2
Error checking of subranges 4-9
Error list compiler options 8-3
Event A-4
Exclusive OR operation 5-5
Execution 8-1
EXECUTION break 9-59
Execution time A-4
EXIT statement

Definition 5-30
Format 5-30

CYBIL Language Definition Index-5

INDEX

Exponent 2-4
EXPONENT_OVERFLOW

break 9-59
EXPONENT_UNDERFLOW

break 9-59
Expression

Compile-time 8-8
Constant 2-5
Definition 5-1; A-4
Operands 5-1
Operators 5-2

External reference A-4
Externally declared

variable 2-8; 3-3
Externally referenced variable 3-3

F

FALSE 4-6
Fatal diagnostics, listing 8-3
Field 4-27; A-4
Floating-point

Constant 2-4
Type 4-11

FLOATING POINT
INDEFINITE break 9-59

FLOATING POINT
SIGNIFICANCE break 9-60

FOR statement
Definition 5-17
Examples 5-18,19
Format 5-17

FOREND 5-17
Formal parameters

Function 6-23,25
Procedure 7-22,23
Program 2-11
Reference 2-11
Value 2-11

Format 8
Free running microsecond

clock 6-17
FREE statement

Definition 5-39

Index-6 CYBIL Language Definition

Format 5-39
#FREE_RUNNING CLOCK

function 6-17
Functions, see also User-defined

functions
#ADDRESS 6-16
Calling 6-26
$CHAR 6-2
$CURRENT _LINE 9-73
$CURRENT _MODULE 9-74
$CURRENT

PROCEDURE 9-75
$CURRENT _PVA 9-76
Definition 6-1
Format 6-23
#FREE_RUNNING

CLOCK 6-17
$INTEGER 6-3
#LOC 6-4
LOWERBOUND 6-5
LOWERY ALUE 6-6
#OFFSET 6-18
Parameters 6-23
PRED 6-7
#PREVIOUS_SAVE

AREA 6-19
$PROGRAM_ VALUE 9-77
#PTR 6-8
#READ_REGISTER 6-20
$REAL 6-9
Recursive 6-1
#REL 6-10
#RING 6-21
#SEGMENT 6-22
#SIZE 6-11
Standard 6-1
STRLENGTH 6-12
succ 6-13
System-dependent 6-16
UPPERBOUND 6-14
UPPERV ALUE 6-15
User-defined 6-23

Revision B

G

#GATE attribute 3-3,8
Global key 7-9
Global variable 2-7
Glossary A-1
Greater than operator 5-6,9
Greater than or equal to

operator 5-6,9

H

#HASH_SVAprocedure 7-13
Heap

I

Adaptable 4-46
Definition 4-40
Example 5-34
Format 4-40
Management 5-32

IDENTIFIER field 9-7
Identity operation 5-4
IF statement

Compile-time 8-10
Definition 5-24
Examples 5-25
Format 5-24

IFEND 5-24
Improper subrange type 4-9
IN operator 5-6,9,12
Indefinite value constructor 3-12;

4-25,34,37
Informative diagnostics,

listing 8-3
Initializing

Array 4-25
Effect of attribute on 3-13
Record 4-34
Set 4-37
Variable 3-12

Input
Compiler parameter 8-1
To programs 1-3

Input file, Debug 9-5,23
Input/output 7; 1-3

Revision B

Integer
Constant 2-3; A-5
Definition 4-4
Example 4-4
Format 4-4
Quotient division 5-3
Range 4-4

$INTEGER function 6-3
Interactive Debug

Definition A-5
Example 9-80

INDEX

Interrupt processing, Debug 9-14
Intersection operation 5-11
INVALID_BDP _DATA

break 9-60
Invariant record

Definition 4-27
Example 4-29
Format 4-27

J

Job level specifications 9-3,4

K

Keypoint instruction 7-14
#KEYPOINT procedure 7-14

L

Label, statement 5-16,17,20,21,28
Language syntax 2-5
Layout control directives 8-18
LEFT directive 8-18
Less than operator 5-6,9
Less than or equal to

operator 5-6,9
Lifetime of a variable 3-10
Line tables 8-3
LIST toggle 8-14
LIST ALL toggle 8-14
LISTCTS toggle 8-14
LISTEXT toggle 8-14
Listing compiler

Options 8-2
Parameter 8-1

CYBIL Language Definition Index-7

INDEX

Listing toggles 8-14
LISTOBJ toggle 8-14
Load module A-5
Load page table index 7-13
#LOC function 6-4
Local

Key 7-9
Variable 2-7

Lock variable 7-10
Logical AND operation 5-3
Logical OR operation 5-5
LOWERBOUND function 6-5
Lowerbounds 4-9
LOWERV ALUE function 6-6
LPAGE instruction 7-13

M

Machine addressing A-5
Machine code debugging, see

Debug utility
Machine-level debugging A-5
Maintenance control

directives 8-25
Manuals, related 2,9
Map buffer, purging 7-15
Margins, set 8-18
Memory

Alignment of elements D-1
Cell D-1
Change contents during

debugging 9-25
Display during debugging 9-42
Examples of representation D-2
Size requirements for

elements D-1
MOD operator 5-3
MODEND format 2-9
Module A-5

Addressing A-5
Declaration 2-9
Definition 2-7
Examples 2-9
Format 2-9
Level 2-7
Name 2-9
Structure 2-7

Index-8 CYBIL Language Definition

MODULE format 2-9
Multiple breaks 9-17
Multiplication operation 5-3
Multiplication operators 5-2
Multiring environment 9-17

N

Name
Definition A-6
Examples 2-3
Rules for forming 2-2

Nearly exhausted resources 9-14
Negation operation 5-11
Negation operators 5-2
NEWTITLE directive 8-22
NEXT statement

Definition 5-37
Format 5-37

NIL pointer constant 2-4; 4-15
No-op instructions 8-4
NOCOMPILE directive 8-26
NORMAL field 9-7
NOT operator 5-2
Not equal to operator 5-6,9
Null string 2-4

0

Object code
Definition A-6
Listing 8-2,14

Object module A-6
Object of a pointer 4-13
#OFFSET function 6-18
OLDTITLE directive 8-24
Operands 5-1
Operators

Addition 5-4
Definition 5-2
Multiplication 5-2
Negation 5-2
Order of evaluation 5-2
Relational 5-6
Set 5-10
Sign 5-4

Revision B

Optimization compiler
options 8-4; 9-13

Optimized code, debugging 9-13
OR operator 5-5
Ordinal

Constant 2-4
Definition 4-7
Example 4-8
Format 4-7

$OUTPUT file 9-6
Output from programs 1-3
Output file, Debug 9-6,23
Overview oflanguage 1-1

p

P register
Change 9-32
Display 9-49

Packed elements in memory D-1
PACKED

parameter 4-24,27,30,42,43
Packing

parameter 4-24,27,30,42,43
Padding compiler parameter 8-4
Page A-7
Page advance directive 8-19
Page table map 7-15,16
Page table, see system page table
Parameter list 2-11; 6-25; 7-23
Parent name 4-18; 6-8,10
Pa use break 9-14
Performance monitoring 7-14
Pointer

Adaptable types 4-15
Constant 2-4
Definition 4-13; A-7
Dereference 4-13
Example 4-16
Format 4-13
NIL 4-15
Object 4-13
Pointer to cell 4-17
Reference 4-13
Relative 4-18

Revision B

INDEX

Pointer to cell
#ADDRESS function 6-16
Definition 4-17

Pointer-to-procedure conversion
procedure 7-12

POP directive 8-16
Potentially equivalent types 4-2
PRED function 6-7
Predecessor of an expression 6-7
Previous save area 6-19
#PREVIOUS_SAVE_AREA

function 6-19
Procedures, see also User-defined

procedures
Calling 7-25
#CALLER_ID 7-9
#COMPARE_SWAP 7-10
#CONVERT_POINTER_TO

PROCEDURE 7-12
Definition 7-1
Format 7-21
#HASH_SVA 7-13
#KEYPOINT 7-14
Parameters 7-21
#PURGE_BUFFER 7-15
#SCAN 7-17
Standard 7-1
STRINGREP 7-2
System-dependent 7-9
#TRANSLATE 7-18
#UNCHECKED

CONVERSION 7-19
User-defined 7-21
#WRITE_REGISTER 7-20

PROCEND format 2-12
Process register

Read 6-20
Write 7-20

Process virtual address 6-18; 9-76
Processor register

Read 6-20
Write 7-20

Product identifier, Debug 9-7
Program

Addresses in Debug 9-8

CYBIL Language Definition Index-9

INDEX

Declaration 2-11
Elements 2-1
Example 2-12
Execution 8-1
Format 2-11
Input 1-3
Name 2-11
Output 1-3
Structure 2-7
Syntax 2-5
Value, change 9-28
Value, display 9-46,77

PROGRAM format 2-11
Program level specifications 9-3,4
$PROGRAM VALUE

function 9-77
#PTR function 4-18; 6-8
Punctuation 2-6
Purge

Cache 7-15
Instruction 7-15
Map buffer 7-15

#PURGE_BUFFER
procedure 7-15

PUSH directive 8-13
PUSH statement

Definition 5-40
Example 5-40
Format 5-40

PVA 6-18; 9-76

Q

QUI command 9-55
QUIT command 9-55

R

Radix 2-3
Range A-7
Range checking

Compiler options 8-5
Toggles 8-15

READ attribute 3-3,6
READ break 9-60

Index-10 CYBIL Language Definition

READ _NEXT _INSTRUCTION
break 9-60

#READ_REGISTER
function 6-20

Real
Constant 2-4
Definition 4-11
Format 4-11
Quotient division 5-3
Range 4-11

$REAL function 6-9
Record

Adaptable 4-43
Alignment 4-28,30,36,43
Bound variant 4-30,32
Definition 4-27
Examples 4-29,33,34,35
Fields 4-27
Format 4-27,30
Initializing elements 4-34
Invariant 4-27
Referencing elements 4-35
Variant 4-30

Reference parameters
Function 6-24,25
Procedure 7-22,23
Program 2-11

Reference, pointer 4-13
Referenced addresses 9-11
Registers

Change contents of 9-32
Display 9-49
Read 6-20
Write 7-20

#REL function 4-18; 6-10
Related manuals 2,9
Relational operators 5-6
Relative pointer

Access object of 6-8
Converting to direct

pointer 4-18
Definition 4-18
Direct pointer 4-18
Format 4-18
#PTR function 6-8

Revision B

#REL function 6-10
Return 6-10

Remainder division operation 5-3
REP format 3-12; 4-25
REPEAT statement

Definition 5-20
Example 5-20
Format 5-20

Reported addresses 9-9
Reserved words 2-1; A-7; C-1
RESET directive 8-17
RESET statement

Definition 5-35
Example 5-34
Format for a heap 5-36
Format for a sequence 5-35

RETURN statement
Definition 5-31
Format 5-31

RIGHT directive 8-18
Ring

Debug 9-16
Definition A-7
Level 3-3,8
Number 6-16; 7-9
Return number in pointer 6-21

#RING function 6-21
RUN command 9-56
Run-time checking

Compiler options 8-5
Toggles 8-15

Run time, see execution time
Run-time stack

management 5-32,40

s
Save area 6-19
Scalar types 4-3
#SCANprocedure 7-17
Scientific notation 2-4
Scope attributes 3-7
Scope of elements 2-7
Section

Attribute 3-4,11
Declaration 3-17
Definition 3-11,17

Revision B

Example 3-18
Format 3-17
Map 9-13
Name 3-4,11

SECTION format 3-17
Segment

Definition A-8
Number 6-16; 7-9

INDEX

Return number in pointer 6-22
#SEGMENT function 6-22
Segment table map 7-16
Semicolon 2-6
Sequence

Adaptable 4-45
Definition 4-39
Format 4-39
Management 5-32

Set
Complement 5-4,11
Containment 5-12
Difference 5-5,11
Identity 5-6,9,12
Inclusion 5-12
Inequality 5-6,9,12
Intersection 5-3,11
Membership 5-6,9,12
Negation 5-11
Operations 5-10
Subset 5-6,9
Superset 5-6,9
Union 5-5,11

SET directive 8-12
Set type

Assigning elements 4-37
Definition 4-37
Example 4-38
Format 4-37
Initializing elements 4-37

Set value constructor
Definition 4-37
Format 4-38

SETB command 9-58
SET _BREAK command 9-58
SETSM command 9-68
SET _STEP _MODE

command 9-68
Sign in version 5-4

CYBIL Language Definition Index-11

INDEX

Sign operators 5-4
#SIZE function 6-11
SKIP directive 8-21
Source

Code A-8
Listing 8-2
Text input 8-1

Source code debugging, see Debug
utility

Spaces in syntax 2-5
Spacing 2-6
SPACING directive 8-20
SPT (system page table) 7-13
Stack frame 6-19
Stack frame, display 9-52
Stack frame save area 6-19
Stack, see run-time stack

management
Standard functions 6-1
Standard procedures 7-1
Statement(s)

ALLOCATE 5-38
Assignment 5-13
BEGIN 5-16
CASE 5-26
Compilation 8-7
Control 5-23
CYCLE 5-28
Definition 5-13
Empty 2-6; 5-13
EXIT 5-30
FOR 5-17
FREE 5-39
IF 5-24
Label 5-16,17,20,21,28
List 5-13,16; A-8
NEXT 5-37
Overview 1-1,2
PUSH 5-40
REPEAT 5-20
RESET 5-35
RETURN 5-31
Storage management 5-32
Structured 5-16
WHILE 5-21

STATIC attribute 2-8; 3-4,9

Index-12 CYBIL Language Definition

Static variable 2-8; 3-9
Status variable

Compiler call 8-5
Debug 9-7

Step mode, Debug 9-68
Storage allocation 2-8
Storage attributes 3-9
Storage management statements

ALLOCATE 5-38
Example 5-34
FREE 5-39
NEXT 5-37
Overview 5-32
PUSH 5-40
RESET 5-35

Storage types 4-39
String

Adaptable 4-41
Assigning 4-23
Comparing 4-23
Constant 2-4; A-8
Definition 4-19
Examples 4-22,23
Format 4-19
Length 6-12
STRLENGTH function 6-12
Substring 2-4; 4-20

STRINGREP procedure
Boolean element 7-4
Character element 7-3
Definition 7-2
Floating-point element 7-5
Format 7-2
Integer element 7-3
Ordinal element 7-4
Pointer element 7-8
String element 7-8
Subrange element 7-4

STRLENGTH function 6-12
Structured statements

BEGIN 5-16
FOR 5-17
Overview 5-16
REPEAT 5-20
WHILE 5-21

Structured types 4-19

Revision B

Subrange
Definition 4-9
Error checking 4-9
Example 4-10
Format 4-9

Subscript bounds 4-24
Subset of a set 5-6,9
Substring

Definition 4-20
Examples 4-22
Format 4-20
Of string constant 2-4

Subtraction operation 5-5
SUCC function 6-13
Successor of an expression 6-13
Superset of a set 5-6,9
SVA (system virtual address) 7-13
Symbol tables 8-3
Symbolic

Addressing A-8
Cross-reference listing 8-2
Debugging A-8

Symmetric difference
operation 5-11

Syntax 2-5
System-dependent

Functions 6-16
Procedures 7-9

System page table 7-13
System virtual address 7-1:3

T

Tag field
Definition 4-30,31
Size 5-33

Terminate break 9-14
TEXT field 9-7
TITLE directive 8-23
Titles 8-22,23,24
Toggle control directives

Definition 8-12
Listing toggles 8-14
Run-t;me checking toggles 8-15

Traceback A-8
#TRANSLATE procedure 7-18
Translation table 7-18

Revision B

Trap interrupts 7-14
TRUE 4-6
Type

Declaration 3-15
Example 3-15
Format 3-15

TYPE format :3-15
Types 4-1

Adaptable 4-41
Adaptable array 4-42
Adaptable heap 4-46
Adaptable record 4-4:3
Adaptable sequence 4-45
Adaptable string 4-41
Array 4-24
Boolean 4-6
Cell 4-12
Character 4-5
Equivalent 4-2
Floating-point 4-11
Formats for using 4-2
Heap 4-40
Integer 4-4
Ordinal 4-7
Overview 1-1
Pointer 4-13

INDEX

Pointer to cell 4-17
Potentially equivalent 4-2
Real 4-11

u

Record 4-27
Relative pointer 4-18
Scalar 4-3
Sequence 4-39
Set 4-37
Storage 4-39
String 4-19
Structured 4-19
Subrange 4-9

#UNCHECKED CONVERSION
procedure 7-19

Union operation 5-11
Unpacked elements in

memory D-1
UNTIL 5-20

CYBIL Language Definition lndex-rn

INDEX

UPPERBOUND function 6-14
U pperbounds 4-9
UPPERVALUE function 6-15
User-defined elements

Constants 2-3
Definition 2-2

User-defined functions
Actual parameters 6-25,26
Attributes 6-23
Calling 6-26
Examples 6-25,27
Formal parameters 6-23,25
Format 6-23
Parameters 6-23,25
Reference parameters 6-24,25
Value parameters 6-24,25

User-defined procedures
Actual parameters 7-23,25
Attributes 7-21

v

Calling 7-25
Examples 7-24,26
Formal parameters 7-22,23
Format 7-21
Parameters 7-21,23
Reference parameters 7-22,23
Value parameters 7-22,24

Value constructor, see indefinite
value constructor

Value parameters
Function 6-24,25
Procedure 7-22,24
Program 2-11

VAR format 3-3
Variable A-8

Attributes 3-3; A-8
Automatic 2-8
Compile-time 8-7

Index-14 CYBIL Language Definition

Declaration 3-3
Definition 3-3
Examples 3-5,7,8,10,11,14
Format 3-3
Global 2-7
Ini tializa ti on 3-12
Lifetime 3-10
Local 2-7
Read-only 3-3,6
Static 2-8
Types 4-1

Variant record
Bound 4-30,32
Definition 4-29
Example 4-33
Format 4-29

w
Warning diagnostics, listing 8-3
WHILE statement

Definition 5-21
Example l}-22
Format 5-21

WHILEND 5-21
WRITE break 9-60
#WRITE~REGISTER

procedure 7-20

x
X registers

Change 9-32
Display 9-49

XDCL attribute 2-8; 3-3,7
XOR operator 5-5
XREF attribute 3-3,7

Revision B

CYBIL for NOS/VE Language Definition 60464113 R

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be usPd. Your comments will help us improve thi;,; rnanual. Please taktc a few minute;; to reply.

Who Are You'? How Do You Use This Manual? Which Do You Also Have?

D :'vlanagPr

Ll Sys:1Rrns Analyst or Programmer

C Applications ProgTarnnwr

C Operator

C Other ______________ _

0 As an Overview

'::J To Learn the Product System

1·1 For Comprehensive Reference

D For Quick Louk-up

What programming languages do you use?

::J Any SCL Manuals

D CYBIL File Interface

0 CYB II. System Interface

Which are helpful to you? D Procedures In<l(•X (inside covers) 0 Glossary [J !{elated Manuals page

D Character Set ::::J Other: ----~---------·----- .. -----····----·--

How Do You Like This Manual'! Check those that apply.

Yes SomC\vhat No
D n c Ts the manual f!<1Sy tu read (print size, page layout, and so on)'!

n D lJ Is it easy to undnstand?

c [J Is the order of topics logical'!

D D c Are there f-'nough examples'?

D 0 0 Are the examples helpful? (:::l Too simple ·D Too complex)
[J D c Is the technical information accurate'?
[] lJ D Cm :-:ou easily find what you \Vant?

11 c Do thr illustrations help you?
rJ [J D Does the manual tell you what you nrcd to knO\\-" ahout tht-> topic?

Comments? If applicable, note page number and paragraph.

Would you like a reply? D Yes D No Continue on other side

From:

Name_ Company

Address __ Date _____ _

Phone Nu. __________ _

Plea8(~ send program listing and output if applicable to your comment.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8'14 I MINNEAPOLIS, MINN

FOLD

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219

4201 North Lexington Avenue

Saint Paul, Minnesota 55112

Comments (continued from other side)

NO POSTAGE

NECESSARY

IF MAILED

IN THE
UNITED STATES

FOLD

•

(Continued from inside front cover)

Procedure Index

#CALLER_ID 7-9 #PURGE_BUFFER 7-15
#COMPARE_SWAP 7-10 #SCAN 7-17
#CONVERT_POINTER_TO STRINGREP 7-2

PROCEDURE 7-12 #TRANSLATE 7-18
#HASH_SVA 7-13 #UNCHECKED
#KEYPOINT 7-14 CONVERSION 7-19
PROCEDURE 7-21 User-defined procedures 7-21
PROCEND 7-21 #WRITE_REGISTER 7-20

Compilation Index

COMMENT directive 8-27 POP directive 8-16
COMPILE directive 8-25 PUSH directive 8-13
CYBIL command 8-1 RESET directive 8-17
EJECT directive 8-19 RIGHT directive 8-18
LEFT directive 8-18 SET directive 8-12
NEWTITLE directive 8-22 SKIP directive 8-21
NOCOMPILE directive 8-26 SPACING directive 8-20
OLDTITLE directive 8-24 TITLE directive 8-23

Debug Command and Function Index

CHAD 9-22
CHAM 9-2'1
CHANGE DEFAULT 9-22
CHANGE MEMORY 9-2:)
<:HANGE_ PH.OGRAM

VALUE !:J-28
CHANGE l{EGfSTEH !:J-:l2
CHAP\' ~!-28
CHAR 9-:l2
$Ct:Rl{ENT LINE \)7:l
$CUl{l{ENT MOllUIJ•: (1-71
$Cl'lrn.ENT
PllOCETH~IU: !l-7:'i

$<'t.:JmENT l'VA !J.76
I >El .B 9.:l:i
Dl·:LETE .!WEAK \J.;;,-,
DISH H-:lli
I HSC !J.:\8
ll!SJ>I·:..... . ~J .. I()
I)[;-; '.\I

I ll:-:1'.L\ Y BHl·:M.:: ..
' ~!-12

. ... \1.:H;

DISPLAY CALL 9-38
DISPLAY _DEBUGGING

ENVIRONMENT fl-40
DISPLAY .. MEMORY 9-42
IHSPLA Y _pmJGRAM

VALUE 9-46
DISPLAY_ RE<HSTEH 9-49
ll!Sl'LA Y. STACK ...

FHAME 9-52
DISPV 9-46
msH 9.49
D!SSF 9·52
$PIWGf{AM \'ALllE 9.77
qlTIT 9-55
q lJl ' . ' 9-55
RUN !l-56
SETH ~l-58
SET BHl·:AK 9-58
SETSM 9-68
SET STEP MO!ll·~ %8

