
ADMINISTER _LOCK _FILE 4

ADMINISTER _LOCK _FILE 4-1
CLEAR_LOCK_FILE_CONNECTION 4-1
CREATE _LOCK _FILE .. 4-2
DELETE _LOCK _FILE .. 4-3
DISPLAY _LOCK _FILE .. 4-4
DISPLAY_LOCK_FILE_CONNECTION 4-4
ESTABLISH _LOCK _FILE _CONNECTION 4-5
HELP ... 4-6
QUIT ... 4-6
USE _LOCK _FILE .. 4-7

60464018 J

\ .. __ _

ADMINISTER _LOCK _FILE 4

ADMINISTER _LOCK _FILE
Command

Purpose

Format

Remarks

Begins an ADMINISTER _LOCK _FILE utility session.

ADMINISTER _LOCK _FILE or
ADMLF

STATUS =status variable

For more information, see the NOSNE Advanced File
Management manual.

CLEAR _LOCK _FILE _CONNECTION
ADMLF Subcommand

Purpose

Format

Deletes the connection between a lock file and a keyed
file.

CLEAR _LOCK _FILE _CONNECTION or
CLELFC

KEYED _FILE= file
STATUS= status variable

Parameters KEYED _FILE or KF

Remarks

60464018 J

Keyed file whose connection to the current lock file is to
be deleted.

This parameter is required.

o After using CLEAR_LOCK_FILE_CONNECTION,
you can connect the lock file to another keyed file.

o Use CLEAR_LOCK_FILE_CONNECTION to delete
all connections before you use DELETE _LOCK _FILE
to delete the lock file.

• After you clear the connection, the keyed file is
automatically connected to the default lock file
$SYSTEM.AAM.AAF$LOCK _FILE. You do not need to
clear this connection before creating another
connection.

ADMINISTER_LOCK_FILE 4-1

CREATE _LOCK_FILE

• For more information, see the NOSNE Advanced File
Management Usage manual.

CREATE _LOCK _FILE
ADMLF Subcommand

Purpose Creates a lock file.

Format CREATE _LOCK _FILE or
CR ELF

PRNATE ==boolean
FILE _CLASS =application
INITIAL_ VOLUME =name
STATUS= status variable

Parameters PRNATE or P

Specifies whether the lock file is used for more than one
keyed file. TRUE indicates the lock file is used for one
keyed file. FALSE indicates the lock file can be used for
more than one keyed file.

The default is TRUE.

FILE _CLASS or FC

Parameter Attributes: BY _NAME

Class of the file to be assigned. The file class specifies
the class of device on which the file will reside. Refer to
the REQUEST_MASS_STORAGE command in the
NOSNE System Performance and Maintenance manual,
Volume 2, for a complete description of this parameter.

The default is A.

INITIAL_VOLUME or N

Parameter Attributes: BY_NAME

Name specifying the volume serial number (vsn) of the
mass storage volume or volumes to which the file is to be
assigned. The name is a 1- to 6-character string. The
volume you specify must belong to the file class you
specified with the FILE~CLASS parameter. Refer to the
REQUEST_MASS_STORAGE command in the NOSNE
System Performance and Maintenance manual, volume 2,
for a complete description of this parameter.

If omitted, a volume with the appropriate file class is
chosen.

4-2 NOS/VE Commands and Functions 60464018 J

Remarks

DELETE_LOCK_FILE

• The lock file created by CREATE_LOCK_FILE is
specified by the USE _LOCK _FILE subcommand.

• You need CONTROL and CYCLE permission for the
lock file to use this subcommand.

• The lock file is given the same ring attributes at
which you are executing.

• The lock file created, by default, has PUBLIC
permission for READ and WRITE.

• You cannot use a file name of
AAF$DEPENDENCY _FILE for the lock file.

o If you do not own the catalog where the lock file will
reside, the lock file is created but the owner of the
catalog owns the lock file.

o For more information, see the N03NE Advanced File
Management Usage manual.

DELETE _LOCK _FILE
ADMLF Subcommand

Purpose

Format

Remarks

60464018 J

Deletes the current lock file.

DELETE _LOCK _FILE or
DELLF

STATUS= status variable

o To delete a lock file, you need CONTROL and CYCLE
permission for the lock file.

o You need to clear all connections to the lock file with
CLEAR_LOCK_FILE_CONNECTION before you
delete the lock file. Otherwise, you cannot access the
keyed file or files until you recreate the lock file or
connect them to a different lock file.

o For more information, see the NOSNE Advanced File
Management Usage manual.

ADMINISTER_LOCK_FILE 4-3

DISPLAY _LOCK_FILE

DISPLAY _LOCK FILE
ADMLF Subcommand

Purpose Lists the keyed file or files that are connected to the
current lock file.

Format DISPLAY _LOCK _FILE or
DISLF

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

File where DISPLAY_LOCK_FILE writes the display.

If omitted, the default is $OUTPUT.

For more information, see the NOSNE Advanced File
Management manual.

DISPLAY _LOCK_FILE _CONNECTION
ADMLF Subcommand

Purpose Displays the lock file that is connected to the specified
keyed file.

Format DISPLAY_LOCK_FILE_CONNECTION or
DISLFC

KEYED _FILE= file
OUTPUT=file
STATUS= status variable

Parameters KEYED _FILE or KF

Remarks

Keyed file whose lock file connection is displayed.

OUTPUT or 0

File where DISPLAY _LOCK _FILE _CONNECTION writes
the display.

If omitted, the default is $OUTPUT.

For more information, see the NOSNE Advanced File
Management manual.

4-4 NOS/VE Commands and Functions 60464018 J

ESTABLISH_LOCK_FILE_CONNECTION

ESTABLISH _LOCK _FILE _CONNECTION
ADMLF Subcommand

Purpose Establishes the connection between a lock file and a
keyed file.

Format ESTABLISH _LOCK _FILE _CONNECTION or
ESTLFC

KEYED _FILE= file
STATUS= status variable

Parameters KEYED _FILE or KF

Remarks

60464018 J

Keyed file to connect to the lock file specified on the
USE _LOCK _FILE subcommand.

This parameter is required.

o If the keyed file you specify does not exist, the
Administer _Lock _File utility creates it. However, you
need to set the file attributes of the keyed file before
you create it because the default file attributes are
sometimes inappropriate for keyed files. Set the file
attributes outside a Administer _Lock_File utility
session with the SET _FILE _ATTRIBUTES command.
For more information on the
SET _FILE _ATTRIBUTES command, see the manual
NOSNE Commands and Functions.

• You cannot establish a connection under these
circumstances:

The lock file is private and the keyed file is
temporary.

- The lock file is private and hrs an existing
connection.

- The keyed file has an existing connection.

• For more information, see the NOSNE Advanced File
Management Usage manual.

ADMINISTER_LOCK_FILE 4-5

HELP

HELP
ADMLF Subcommand

Purpose

Format

Provides online help from within the
Administer _Lock _File utility.

HELP or
HEL

SUBJECT= string
MANUAL=name
STATUS =status variable

Parameters SUBJECT or S

Remarks

QUIT

Topic to be located in the online manual index. The topic
must be enclosed in single quotes.

If omitted, HELP displays a list of the available
subcommands.

MANUAL or M

Online manual file whose index is searched.

AFM

The AFM online manual index is searched.

File

File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

For more information, see the NOSNE Advanced File
Management manual.

ADMLF Subcommand

Purpose

Format

Ends the Administer _Lock _File utility session.

QUIT or
QUI

STATUS =status variable

4-6 NOS/VE Commands and Functions 60464018 J

Remarks

USE _LOCK _FILE

For more information, see the NOSNE Advanced File
Management manual.

USE _LOCK _FILE
ADMLF Subcommand

Purpose Specifies the lock file that is used by any subsequent
subcommands until you specify another lock file with
USE _LOCK _FILE.

Format USE _LOCK _FILE or
USELF

LOCK _FILE= file
STATUS= status variable

Parameters LOCK _FILE or LF

Remarks

60464018 J

Lock file to be used by all subsequent subcommands. This
parameter is required.

o You must use the USE _LOCK _FILE subcommand
before any other subcommand, except for HELP, QUIT,
or DISPLAY_LOCK_FILE_CONNECTION.

• You can switch lock files during an
Administer _Lock _File session by using another
USE _LOCK _FILE subcommand.

• USE_LOCK_FILE attaches the lock file with
exclusive access.

e The lock file, if it exists, must be a permanent file
with a sequential file organization.

• If the lock file does not exist, you can create it with
the CREATE _LOCK _FILE subcommand.

• For more information, see the NOSNE Advanced File
Management Usage manual.

ADMINISTER_LOCK_FILE 4-7

ADMINISTER _RECOVERY _LOG 5

ADMINISTER_RECOVERY_LOG 5-1
BACKUP _LOG .. 5-1
CANCEL_LOG_CHANGES 5-2
CLEAR_PROBLEM_JOURNAL 5-3
CONFIGURE_LOG_BACKUP 5-4
CONFIGURE_LOG_RESIDENCE 5-7
DELETE _LOG ... 5-10
DISPLAY _LOG _CONFIGURATION 5-11
DISPLAY_PROBLEM_JOURNAL 5-12
HELP .. 5-13
QUIT .. 5-14
SET _LOG _BACKUP _ACCOUNT 5-15
SET_PERFORMANCE_OPTION 5-18
SET_ VERIFICATION _LEVEL 5-20
USE _LOG ... 5-21

60464018 J

I
i

ADMINISTER _RECOVERY _LOG 5

ADMINISTER _RECOVERY _LOG
Command

Purpose

Format

Remarks

Examples

Begins an ADMINISTER _RECOVERY _LOG utility
session.

ADMINISTER _RECOVERY _LOG or
ADMRL

STATUS =status variable

For more information, see the NOSNE Advanced File
Management manual.

The following is the minimal
ADMINISTER_RECOVERY_LOG session; it does nothing.

/administer_recovery_log
admrl/Quit

To see a list of available subcommands you can type
HELP while in this utility.

BACKUP_LOG
ADMRL Subcommand

Purpose

Format

Remarks

60464018 J

Initiates an immedi.ate backup of the log.

BACKUP _LOG or
BACL

STATUS= status variable

• This subcommand must be preceded in the session by
a USE _LOG subcommand to specify the log to be
backed up.

o This subcommand can be performed only on a log that
has been configured for log backups. (This is done
using the CONFIGURE _LOG _BACKUP subcommand.)

ADMINISTER_RECOVERY_LOG 5-1

I
itl

CANCEL_LOG_CHANGES

Examples

• You should use the BACKUP _LOG subcommand in
both of the following situations:

Log users are receiving the status
AAE$LOG_TEMPORARILY_ FULL, which
indicates that an immediate repository switch is
needed.

- A system failure seems imminent.

• For more information see the NOS/VE Advanced File
Management Usage manual.

The following session initiates an immediate repository
switch and backup for the existing log in
$USER.MY _LOG.

/admin1ster_recovery_Jog
a~r1/use_log,catalog=$user.my_log

admrl/backup_log
admrl/Quit
I

CANCEL_LOG_CHANGES
ADMRL Subcommand

Purpose

Format

Remarks

Discards the log specifications and any delete requests
accumulated in the session.

CANCEL_LOG_CHANGESor
CANLC

STATUS=status variable

e This subcommand discards the accumulated log
specifications and delete requests before they are put
into effect by the QUIT subcommand.

o The CANCEL_LOG_CHANGES subcommand is
appropriate only after a USE _LOG subcommand has
been entered.

o You can begin accumulating log specifications again
after the CANCEL _LOG _CHANGES subcommand. To
do so, you must begin with another USE _LOG
subcommand to specify the log to· be created or
changed.

5-2 NOSNE Commands and Functions 60464018 J

Examples

CLEAR_PROBLEM_JOURNAL

• For more information, see the NOS/VE Advanced File
Management Usage manual.

The following session enters a change for
$USER.MY _LOG, but then discards the change so the
session does nothing.

/administer_recovery_log
admrl/use_log, $user.my_log,
admrl .. /set_performance_option, emphasis=speed
admrl/cancel_log_changes
admr 1/Quit
I

CLEAR_PROBLEM_JOURNAL
ADMRL Subcommand

Purpose

Format

Remarks

60464018 J

Clears the problem journal for the log.

CLEAR_PROBLEM_JOURNALor
CLEPJ

STATUS= status variable

• The system maintains a problem journal in each log in
which it records any problems that occur while using
the log.

• You must display the problem journal before clearing
it. To do so, use the DISPLAY _PROBLEM _JOURNAL
subcommand.

• The log referenced by a
CLEAR_PROBLEM_JOURNAL subcommand is the
log specified on the USE _LOG subcommand earlier in
the session.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

ADMINISTER_RECOVERY _LOG 5·3

I
I

CONFIGURE_LOG _BACKUP

Examples The following session prints the contents of the problem
journal for $USER.MY _LOG before clearing the problem
journal.

/administer_recovery_log
admrl/use_log, $user.my_log
admrl/display_problem_journal, output=log_problems
admrl/print_file, log_problems
admrl/clear_problem_journal
admrl/Quit
I

CONFIGURE _LOG _BACKUP
ADMRL Subcommand

Purpose

Format

Parameters

Establishes the backup file pool for the log.

CONFIGURE _LOG _BACKUP or
CON LB .

ADD _FILE= file
REMOVE _FILE= file
MEDIA= keyword
EXTERNAL_ VSN =list of string
RECORDED_ VSN =list of string
TYPE=keyword
VERIFY= boolean
FILE _CLASS =application
INITIAL_ VOLUME =name
STATUS=status variable

ADD _FILE or AF

File to be added to the pool of backup files for the log. If
ADD _FILE is omitted, no backup file is added.

REMOVE _FILE or RF

File to be removed from the pool of backup files for the
log. If REMOVE _FILE is omitted, no backup file is
removed.

5-4 NOS/VE Commands and Functions 60464018 J

60464018 J

CONFIGURE_LOG _BACKUP

MEDIA or M

Device class of the file specified by the ADD _FILE
parameter.

MAGNETIC_TAPE_DEVICE or MTD

Indicates that the log files are backed up to a labeled
tape.

MASS_STORAGE_DEVICE or MSD

Indicates that the log files are backed up to disk. (The
next four parameters are not used.)

The default value is MAGNETIC _TAPE _DEVICE.

EXTERNAL_VSN or EVSN

List of external VSNs identifying the tape volumes that
compose the file specified by the ADD _FILE parameter.
The VSN s are specified as strings of from 1 througq 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to
MAGNETIC _TAPE _DEVICE.

RECORDED_ VSN or RVSN

List of recorded VSNs of the tape volumes that compose
the file specified by the ADD_FILE parameter. The
recorded VSN is in the ANSI VOLl label on the volume.
The VSN s are specified as strings of from 1 through 6
characters enclosed in apostrophes. This parameter must
be specified if MEDIA is set to
MAGNETIC _TAPE _DEVICE.

TYPE or T

Tape density written by a tape drive for the file specified
by the ADD _FILE parameter. This parameter is used
only if MEDIA is set to MAGNETIC _TAPE _DEVICE.

MT9$800

Indicates 800 cpi written by a nine-track tape drive.

MT9$1600

Indicates 1600 cpi written by a nine-track tape drive.

MT9$6250

Indicates 6250 qpi written by a nine-track tape drive.

ADMINISTER_RECOVERY _LOG 5.5

II
ii

CONFIGURE_LOG_BACKUP

Remarks

MT18$38000

Indicates 38000 cpi written by a 16-track tape drive.

The default value is MT18$38000.

VERIFY or V

Indicates whether the backup file specified by the
ADD _FILE parameter is verified. This parameter is used
only if MEDIA is set to MAGNETIC _TAPE _DEVICE.

TRUE or YES or ON

The magnetic tape is mounted; the backup file is
opened to verify that it exists and that it has read
and write capabilities.

FALSE or NO or OFF

The backup file is not verified.

The default value is TRUE.

FILE _CLASS or FC

Specifies the class of the file to be assigned. Refer to the
REQUEST_MASS_STORAGE command in the NOSNE
System Performance and Maintenance, Volume 2,
Maintenance manual for class assignments and a complete
description of this parameter. This parameter is used only
if MEDIA is set to MASS_STORAGE_DEVICE.

INITIAL_VOLUME or N

Name specifying the volume serial number (VSN) of the
mass storage volume to which the file is to be assigned.
The name is specified as a string of from 1 through 6
characters. Refer to the REQUEST_MASS_STORAGE
command in the NOSNE System Performance and
Maintenance, Volume 2, Maintenance manual for a
complete description of this parameter. This parameter is
used only if MEDIA is set to MASS _STORAGE _DEVICE.

o A mass storage backup file is specified by its file
path. However, any file cycle specification on the file
path is ignored. The backup is always written to cycle
1. (Cycle 1 is created if it does not exist and
overwritten if it does exist.)

5-6 NOS/VE Commands and Functions 60464018 J

CONFIGURE _LOG _RESIDENCE

• If any backup files are configured for the log, a
backup file must be configured for each log repository.
For example, if backup files are configured, a log with
five repositories must have five backup files.

• The FILE _CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance,
Volume 2, Maintenance manual.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

CONFIGURE _LOG _RESIDENCE
ADMRL Subcommand

Purpose

Format

Establishes configuration of the log.

CONFIGURE _LOG _RESIDENCE or
CONLR

REPOSITORIES= integer
REPOSITORY _SWITCHING _SIZE= integer
REPOSITORY _SWITCHING _TIME =integer
SWITCH _SUPPRESSION _SIZE =keyword or integer
SWITCH _SUPPRESSION _TIME=keyword or integer
REPOSITORY _SIZE _LIMIT=integer
FILE _CLASS =application
INITIAL_ VOLUME= name
STATUS= status variable

Parameters REPOSITORIES or R

60464018 J

Number of disk-resident repositories for the log (integer
from 2 through 4096). The default value is 5.

If a backup account or backup pool is specified for the
log, the log must have at least 3 repositories.

REPOSITORY _SWITCHING _SIZE or RSS

Repository size threshold for the log (in bytes, from
500,000 through 2,132,483,647 [(231 - 1) - 15,000,000]).
The default value is 70,000,000 bytes.

ADMINISTER_RECOVERY_LOG 5-7

I
I

Ii

CONFIGURE _LOG _RESIDENCE

REPOSITORY _SWITCHING _TIME or RST

Repository time threshold for the log (in minutes, from 1
through 525,600 [365 days]). The default value is 1440 (24
hours).

SWITCH _SUPPRESSION _SIZE or SSS

Specifies the minimum repository size before switching.
Options are:

Integer

Minimum repository size required before switching (in
bytes, from 500,000 through 2,132,483,647 [(231 - 1) -
15,000,000]).

NONE

No minimum repository size is required before
switching.

The default is NONE.

SWITCH _SUPPRESSION _TIME or SST

Specifies the minimum repository time before switching.
Options are:

Integer

Minimum repository time required before switching (in
minutes, from 1 through 525,600 [365 days]).

NONE

No minimum repository time is required before
switching.

The default is NONE.

REPOSITORY _SIZE _LIMIT or RSL

Absolute maximum repository size limit (in bytes, from
15,500,000 through 2,147,483,647 [231 - 1]). It must be at
least 15,000,000 bytes larger than the
REPOSITORY_SWITCHING_SIZE. The default value is
100,00IJ,OOO bytes.

5-8 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

CONFIGURE _LOG _RESIDENCE

FILE _CLASS or FC

Specifies the class of the file to be assigned. Refer to the
REQUEST_MASS_STORAGE command in the NOS/VE
System Performance and Maintenance, Volume 2,
Maintenance manual for class assignments and a complete
description of this parameter.

INITIAL_ VOLUME or N

Name specifying the volume serial number (VSN) of the
mass storage volume to which the file is to be assigned.
The name is specified as a string of from 1 through 6
characters. Refer to the REQUEST _MASS _STORAGE
command in the NOSNE System Performance and
Maintenance, Volume 2, Maintenance manual for a
complete description of this parameter.

• You cannot modify an existing log while any keyed
file that uses the log is being updated. The
subcommand notifies you when it cannot get exclusive
access to the log. You should then quit the session and
try again later.

• This subcommand can be specified only for a new log.
The configuration cannot be changed for an existing
log.

• During normal log activity, the active repository size
should never approach the

.. REPOSITORY _SIZE _LIMIT.

• The FILE _CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the

~~~~:~;:~::~:::1:~F::n;t::!:. I 
• ~:n:':!e~o~i::;:o::~~e NOSNE Advanced File II 

ADMINISTER_RECOVERY_LOG 5-9 



I 
II 

DELETE_LOG 

DELETE_LOG 
ADMRL Subcommand 

Purpose Requests deletion of an existing log. 

Format DELETE _LOG or 
DELL 

CATALOG= file 
RETAIN _CONFIGURATION= boolean 
STATUS=status variable 

Parameters CATALOG or C 

Remarks 

Catalog path of the log to be deleted. This parameter is 
required. 

RETAIN _CONFIGURATION or RC 

Indicates whether the log configuration is kept. 

TRUE or YES or ON 

Empty the repositories and the log journal, but keep 
the log configuration. 

FALSE or NO or OFF 

Delete all files composing the log, including the 
repositories, the log journal, and mass storage log 
backup files. 

This parameter is required. 

• The logs specified by DELETE _LOG subcommands are 
not deleted until the QUIT subcommand is entered for 
the session. A CANCEL_LOG_CHANGES 
subcommand clears any pending deletion requests. 

• If the log configuration is to be retained, the 
subcommand deletes all the log data, but the log data 
on the repositories continues to exist and can continue 
to be used. 

If the log configuration is not to be retained, the 
subcommand requests deletion of all files relating to 
the log in the catalog. The catalog will no longer be 
usable as a log until a new log is created in it. 

If the subcommand requests deletion of all files in the 
catalog, the catalog is deleted as well. 

5-10 NOS/VE Commands and Functions 60464018 J 



Examples 

DISPLAY _LOG _CONFIGURATION 

• The catalog used is specified on the DELETE _LOG 
subcommand. Therefore, the subcommand does not 
reference the log specified by the USE _LOG 
subcommand. More than one log can be deleted in a 
session. 

• For more information see the NOSNE Advanced File 
Management Usage manual. 

The following session requests deletion of log 
$USER.MY _LOG, but then cancels the request: 

/administer _recovery_ log 
admr 1/de lete_ log, $user. my_ log, retain_conf igurat ion=fa lse 
admr 1Icance1_1 og_changes 
admrl/quit 
I 

DISPLAY _LOG _CONFIGURATION 
ADMRL Subcommand 

Purpose Displays the current log specifications. 

Format DISPLAY _LOG _CONFIGURATION or 
DIS LC 

OUTPUT= file 
STATUS= status variable 

P.arameters OUTPUT or 0 

Remarks 

60464018 J 

File to which the display is written. 

The subcommand positions the file according to the file 
position ($BOI, $EOI) appended to the file reference or, if 
no position is specified, according to its OPEN _POSITION 
attribute value. 

If OUTPUT is omitted, the display is written to the 
standard output file, $OUTPUT. 

o This subcommand must be preceded in the session by 
a USE _LOG subcommand to specify the log whose 
configuration is displayed. 

• For more information see the NOSNE Advanced File 
Management Usage manual. 

ADMINISTER_RECOVERY_LOG 5·11 

I 
I 



I 
I 

DIS:PLAY _PROBLEM _JOURNAL 

DISPLAY _PROBLEM _JOURNAL 
ADMRL Subcommand 

Purpose Displays the problem journal for the log. 

Format DISPLAY _PROBLEM _JOURNAL or 
DISPJ 

OUTPUT=file 
STATUS= status variable 

Parameters OUTPUT or 0 

Remarks 

Examples 

File to which the display is written. 

The subcommand positions the file according to the file 
position ($BOI, $EOI) appended to the file reference or, if 
no position is specified, according to its OPEN _POSITION 
attribute value. 

If OUTPUT is omitted, the display is written to the 
standard output file, $OUTPUT. 

• The system records any problems that have occurred 
while using the log in the problem journal for the log. 

• The log referenced by a 
DISPLAY_PROBLEM_JOURNAL subcommand is the 
log specified on the USE _LOG subcommand earlier in 
the session. 

• For more information see the NOSNE Advanced File 
Management Usage manual. 

The following session writes the problem journal for 
$USER.MY _LOG to file LOG _PROBLEMS and prints it. 

/adm1n1ster_recovery_log 
admrl/use_log, Suser.my_log 
admr1/d1splay_problem_journa1, 
admrl .. /output=log_problems 
admr1/pr1nt_file, log_problems 
admrl/Quit 
I 

5-12 NOS/VE Commands and Functions 60464018 J 



HELP 

HELP 
ADMRL Subcommand 

Purpose Provides access to online information about the utility. 

Format HELP or 
HEL 

SUBJECT= string 
MANUAL=file 
STATUS= status variable 

Parameters SUBJECT or S 

Remarks 

60464018 J 

Topic to be found in the index of the online manual. The 
topic must be enclosed in apostrophes ('topic'). 

If you omit the SUBJECT parameter, HELP displays a 
list of the available subcommands and prompts for display 
of a subcommand description in the online manual. 

MANUAL or M 

Online manual file whose index is searched. 

AFM 

The AFM online manual index is searched. 

File 

File name of the online manual whose index is 
searched. 

If MANUAL is omitted, the default is AFM. The working 
catalog is searched for the file and then the 
$SYSTEM.MANUALS is searched. 

o If the SUBJECT parameter specifies a topic that is not 
in the manual index, a nonfatal error is returned 
notifying you that the topic could not be found. 

e The default manual file, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOS/VE Advanced 
File Management Usage manual, as provided with the 
NOS/VE system. 

o If your terminal is defined for screen applications, 
online manuals are displayed in screen mode. Help is 
available for reading the online. To leave the online 
manual and return to the utility, use QUIT. 

ADMINISTER_RECOVERY_LOG 5-13 



I 
I 

QUIT 

Examples 

QUIT 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

The following session shows the default display returned 
by the HELP subcommand. 

/administer _recovery_ log 
admrl/help 
The fol lowing Administer _Recovery_Log subcommands are available: 
BACKUP _LOG 
CANCEL_LOG_Cl-iANGES 
CLEAR_PROBLEM_JOURNAL 
COOFIGURE_LOO_BACKUP 
C().IF I GURE_LOO_RES IDENCE 
DELETE_ LOO 
DISPLAY_LOCLCOOFIGURATION 
DI SPLAY _PROBLEM_ JOURNAL 
HELP 
QUIT 
SET _LOO_BACKUP _ACCWNT 
SET_PERFORMAf.CE_OPTION 
SET _VERIFICATID'UEVEL 

For a description of a subcommand in the online manual, 
enter: HELP subject = '<subcommand>' 

To return from an online manual, enter: QUIT 

admrl/Quit 

I 

ADMRL Subcommand 

Purpose Executes the accumulated log specifications and ends the 
session. 

Format QUIT or 
QUI 

APPLY _LOG _CHANGES= boolean 
STATUS= status variable 

Parameters APPLY _LOG _CHANGES or ALC 

Indicates whether the log repositories are created or 
updated based upon the accumulated log specifications. 

TRUE or YES or ON 

The log is created or updated. Any logs specified on a 
DELETE _LOG subcommand during the session are 
deleted. 

5-14 NOS/VE Commands and Functions 60464018 J 



Remarks 

SET_LOG _BACKUP _ACCOUNT 

If a new log is being created, the log catalog is 
created if it does not exist. The log files are created 
and initialized. If the log catalog already exists, only 
the performance option and backup account information 
can be changed. 

FALSE or NO or OFF 

Log repositories are not created or updated; log 
specifications are discarded. Any logs specified on a 
DELETE _LOG subcommand during the session are 
kept. 

The default value is TRUE. 

• To discard the accumulated log specifications or delete 
requests before ending the session, enter a 
CANCEL _LOG _CHANGES subcommand before 
entering the QUIT subcommand. 

• The changes specified by the following subcommands 
do not take effect until the log changes are applied 
when the QUIT subcommand is entered: 

CONFIGURE _LOG _BACKUP 
CONFIGURE _LOG _RESIDENCE 
DELETE_LOG 
SET_LOG_BACKUP_ACCOUNT 
SET _PERFORMANCE _OPTION 
SET_ VERIFICATION _LEVEL 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

SET_LOG_BACKUP_ACCOUNT 
ADMRL Subcommand 

Purpose 

60464018 J 

Specifies the validation information used by backup jobs 
for the log. 

NOTE 

Each time the password is changed for the user name 
used as the backup account, the password must also be 
changed in the log configuration. Otherwise, all 
subsequent backup jobs fail to execute. 

ADMINISTER_RECOVERY _LOG 5-15 

I 
I 



SET_LOG _BACKUP _ACCOUNT 

Format SET _LOG _BACKUP _ACCOUNT or 
SETLBA 

USER=name 
PASSWORD= name 
FAMILY _NAME=name 
USER _JOB _NAME= name 
JOB _CLASS= name 
ACCOUNT=name 
PROJECT=name 
OUTPUT _DISPOSITION=keyword or file 
USER _INFORMATION= string 
STATUS =status variable 

Parameters USER or U 

User name under which backup jobs are run. This 
parameter is required. 

PASSWORD or PW 

Password for the user name specified by the USER 
parameter. This parameter is required. 

FAMILY _NAME or FN 

Optional family name under which backup jobs are run. If 
FAMILY_ NAME is omitted, backup jobs run under the 
family to which the specified user name belongs. 

USER _JOB _NAME or JOB _NAME or UJN or JN 

Optional name by which the backup jobs are identified in 
the system. If USER_JOB_NAME is omitted, the name 
assigned backup jobs is the user name. 

JOB _CLASS or JC 

Optional job class in which the backup jobs are run. If 
JOB_ CLASS is omitted, the jobs run in the default job 
class for the user name. 

ACCOUNT or A 

Account to which resource usage is charged for the 
backup jobs. If you omit this parameter for a user name 
that requires an account, the backup jobs will fail to 
execute. (See the Remarks.) 

5-16 NOS/VE Commands and Functions 60464018 J 



60464018 J 

SET_LOG _BACKUP _ACCOUNT 

PROJECT or P 

Project to which resource usage is charged for the backup 
jobs. If you omit this parameter for a user name that 
requires a project, the backup jobs will fail to execute. 
(See the Remarks.) 

OUTPUT _DISPOSITION or OD or ODI or 
STANDARD_OUTPUTorSO 

Specifies the default for how the backup job's standard 
output is to be disposed. If omitted, the attribute 
associated with this parameter does not change. 

File name 

The standard output is copied to the specified file 
name at job end. 

DISCARD_ALL_OUTPUT or DAO 

All output generated by the backup job is to be 
discarded at job end. 

DISCARD _STANDARD _OUTPUT or DSO 

Standard output is to be discarded at job end. 

LOCAL or L 

Any output generated by the backup job is printed at 
the destination system rather than being returned to 
the originating user's default output station. 

PRINTER or P 

Any output generated by the backup job is returned to 
the originating user's default output station. 

WAIT_QUEUE or WQ 

Any output generated by the backup job is returned to 
the originating user's $WAIT_QUEUE subcatalog on 
the originating system using the user's job name for 
the file name. If the $WAIT _QUEUE subcatalog does 
not exist at the time the output files are returned, it 
is created for the user. 

The default value is PRINTER. 

ADMINISTER_RECOVERY_LOG 5-17 



I 
II 

SET _PERFORMANCE _OPTION 

Remarks 

USER _INFORMATION or UI 

Specifies a user information string of up to 256 
characters. This string enables you to pass information 
(such as a file path) to a backup job. This string is also 
passed on to all output files generated by the backup job. 

If omitted, the user information string associated with the 
backup job is assumed. 

• If backup files are included in the log configuration, 
each repository switch for the log starts a job to back 
up the log. Each backup job uses the validation 
information specified on this subcommand. 

• To determine if the ACCOUNT and PROJECT 
parameters are required and the valid JOB_CLASS 
values, display the validation information for the user 
name. 

To display validation information for a user name, use 
the Administer _User utility with the DISPLAY_USER 
subcommand. If you are logged in as the family 
administrator, you can display information on any user 
in the family; otherwise, you can display information 
only for the user name you are using. 

For more information about family administration and 
user validation· see the NOSNE User Validation 
manual and the NOS/VE System Usage manual. 

o For more information see the NOS/VE Advanced File 
Management Usage manual. 

SET _PERFORMANCE _OPTION 
ADMRL Subcommand 

Purpose 

Format 

Specifies the performance emphasis (speed or reliability) 
for the log. 

SET _PERFORMANCE _OPTION or 
SETPO 

EMPHASIS= keyword 
LOG _ENTRY=keyword 
STATUS =status variable 

5-18 NOS/VE Commands and Functions 60464018 J 



SET_PERFORMANCE _OPTION 

Parameters EMPHASIS or E 

Remarks 

60464018 J 

Specifies whether speed or reliability is more important. 

SPEED or S 

Speed is more important than reliability. 

RELIABILITY or R 

Reliability is more important than than speed. 

BALANCED or B 

Both speed and reliability are important. 

This parameter is required. 

LOG _ENTRY or LOG _ENTRIES or LE 

Indicates the types of log entries to which the specified 
emphasis applies. 

RECORD or R 

Record entries, but not parcel entries. 

PARCEL or P 

For future implementation. 

ALL or A 

For future implementation. 

The default value is RECORD. 

• This subcommand determines how frequently log 
entries in memory are written to disk. (Its purpose is 
similar to that of the FORCED_ WRITE attribute for 
keyed files.) 

• If this subcommand is not specified, the default 
performance option is BALANCED. 

• The EMPHASIS values have the following meanings: 

SPEED 

The system memory manager determines when log 
entries are written to disk. 

ADMINISTER_RECOVERY _LOG 5-19 

I 
it 



I 
i 

SET_ VERIFICATION _LEVEL 

Examples 

RELIABILITY 

Each log entry is written to disk before the next 
log entry begins. 

BALANCED 

The system must begin writing a log entry to disk 
before the next log entry can begin. 

• Any value specified for parcels is recorded for future 
use, but is currently ignored. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

The following session changes the performance options for 
$USER.MY _LOG. 

/administer_recovery_log 
admrl/use_log, $user.my_log 
admrl/set_performance_option, 
admrl .. /emphasis=reliability 
admrl/Quit 
I 

SET_ VERIFICATION _LEVEL 
ADMRL Subcommand 

Purpose Indicates whether checksums should be performed for the 
header and trailer parts of log records. 

Format SET_ VERIFICATION _LEVEL or 
SETVL 

VERIFY _LOG _ENTRIES= boolean 
STATUS= status variable 

Parameters VERIFY _LOG _ENTRIES or VLE 

Indicates whether checksums are performed for the log. 

TRUE or YES or ON 

Checksums are performed. 

FALSE or NO or OFF 

Checksums are not performed. 

This parameter is required. 

5-20 NOS/VE Commands and Functions 60464018 J 



Remarks 

USE_LOG 

• This subcommand can be specified only for a new log. 
The verification level cannot be changed for an 
existing log. 

• This subcommand is optional. If it is omitted from a 
session that creates a new log, the default verification 
level is FALSE. 

• For more information see the NOSNE Advanced File 
Management Usage manual. 

USE_LOG 
ADMRL Subcommand 

Purpose 

Format 

Establishes the log to be created or changed by the 
session. 

USE_LOG or 
USEL 

CATALOG= file 
STATUS=status variable 

Parameters CATALOG or C 

Remarks 

60464018 J 

Catalog path for the log created or changed by the 
session. 

A session can create or change only one log; therefore, 
any subsequent USE _LOG subcommands are ignored. 

If the catalog does not exist, the subcommand creates it. 
If the catalog exists, but does not contain a log, a log is 
created in it. If a log exists in the catalog, the session 
verifies that the log contains -the proper characteristics. 

This parameter is required. 

• You must establish a catalog before any of the other 
subcommands (except QUIT, DELETE _LOG, HELP, or 
CANCEL _LOG _CHANGES (after DELETE _LOG)) 
can be entered. 

o Once established, the catalog can only be changed 
after using CANCEL_LOG_CHANGES. 

• For more information see the NOSNE Advanced File 
Management Usage manual. 

ADMINISTER_RECOVERY _LOG 5-21 



USE_LOG 

Examples The following session establishes $USER.MY _LOG as the 
log to be used. The performance options for 
$USER.MY _LOG are changed, but then the changes are 
canceled and another log is specified. 

/administer_recovery_log 
admrl/use_log, $user.my_log 
admrl/set_performance_option, emphasis=reliability 
admrl/cancel_log_changes 
admrl/use_log, $user.my_log_2 
admrl/ 

5-22 NOS/VE Commands and Functions 60464018 J 



ADMINISTER_ VALIDATIONS 6 

ADMINISTER_ VALIDATIONS ................................. 6-1 
CHANGE_DEFAULT_ACCOUNT_PROJECT ................... 6-1 
CHANGE_LINK_ATTRIBUTE_CHARGE ...................... 6-2 
CHANGE_LINK_ATTRIBUTE_FAMILY ....................... 6-3 
CHANGE _LINK _ATTRIBUTE _PASSWORD ................... 6-3 
CHANGE_LINK_ATTRIBUTE_PROJECT ..................... 6-4 
CHANGE_LINK_ATTRIBUTE_USER ......................... 6-5 
CHANGE _LOGIN _PASSWORD ................................ 6-5 
CHANGE_USER .............................................. 6-8 
CHANGE_USER_EPILOG .................................... 6-9 
CHANGE_USER_PROLOG ................................... 6-10 
DISPLAY_USER ............................................. 6-11 
QUIT ........................................................ 6-12 
END_CHANGE_USER ....................................... 6-12 

60464018 J 

I 
I 





ADMINISTER_ VALIDATIONS 6 

ADMINISTER_ VALIDATIONS 
Command 

Purpose 

Format 

Remarks 

Starts the ADMINISTER_ VALIDATIONS utility to change 
and display validations. 

ADMINISTER_ VALIDATIONS or 
ADMINISTER_ VALIDATION or 
ADMV 

STATUS= status variable 

For more information, see the NOSNE User Validation 
manual. 

CHANGE_DEFAULT_ACCOUNT_PROJECT 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the default account and project for the LOGIN 
and SUBMIT _JOB commands. 

CHANGE_DEFAULT_ACCOUNT_PROJECTor 
CHAD AP 

ACCOUNT=keyword or name 
PROJECT=keyword or name 
STATUS= status variable 

Parameters ACCOUNT or A 

60464018 J 

Specifies the account name. If the validation level is 
ACCOUNT or PROJECT and the account you specify does 
not exist, a warning message appears. You can specify a 
name or one of the following keywords: 

DEFAULT 

The account is set to the default value specified in the 
DEFAULT _ACCOUNT _PROJECT field description. 

CURRENT 

The account of the job executing this command is 
used. 

ADMINISTER_ VALIDATIONS 6-1 

., 
I 



CHANGE_LINK_ATTRIBUTE _CHARGE 

Remarks 

Examples 

NONE 

There is no default account for the user name. 

PROJECT or P 

Specifies the project name. If the validation level is 
PROJECT and the project you specify does not exist, a 
warning message appears. You can specify a name or one 
of the following keywords: 

DEFAULT 

The project is set to the default value specified in the 
DEFAULT _ACCOUNT _PROJECT field description. 

CURRENT 

The project of the job executing this command is used. 

NONE 

There is no default project for the user name. 

For more information, see the NOSNE User Validation 
manual. 

To change the default login account and project, enter: 

ADMV/change_user 
CHAU/change_default_account_project 
Changing user TERRY. 
CHAU .. /account=a project=b 
CHAU/Quit 

CHANGE _LINK _ATTRIBUTE _CHARGE 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the charge number needed to gain access to NOS 
or NOS/BE permanent files or to submit a job to NOS or 
NOS/BE. 

CHANGE _LINK _ATTRIBUTE _CHARGE or 
CHALAC 

VALUE= keyword or string 
STATUS= status variable 

6-2 NOSNE Commands and Fnnctions 60464018 J 



CHANGE_LINK_ATTRIBUTE_FAMILY 

Parameters VALUE or V 

Remarks 

Specifies a NOS or NOS/BE charge number. By default, 
the link attribute charge number is not changed. If you 
specify DEFAULT, the default is the value specified in the 
LINK _ATTRIBUTE _CHARGE field description. 

• You can override this value using the 
CHANGE _LINK _ATTRIBUTE command. 

• For more information, see the NOSNE User 
Validation manual. 

CHANGE _LINK _ATTRIBUTE _FAMILY 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the family name needed to gain access to NOS 
or NOS/BE permanent files or to submit a job to NOS or 
NOS/BE. 

CHANGE _LINK _ATTRIBUTE _FAMILY or 
CHALAF 

VALUE= keyword or string 
STATUS= status variable 

Parameters VALUE or V 

Remarks 

Specifies a NOS or NOS/BE family name. By default, the 
link attribute family is not changed. If you specify 
DEFAULT, the default is the value specified in the 
LINK _ATTRIBUTE _FAMILY field description. 

o You can override this value using the 
CHANGE _LINK _ATTRIBUTE command. 

o For more information, see the NOSNE User 
Validation manual. 

CHANGE _LINK _ATTRIBUTE _PASSWORD 
CREU and CHAU Subcommand 

Purpose 

60464018 J 

Changes the password needed to gain access to NOS or 
NOS/BE permanent files, or to submit a job to NOS or 
NOS/BE. 

ADMINISTER_ VALIDATIONS 6-3 



I 
i 

CHANGE _LINK_ATTRIBUTE _PROJECT 

Format CHANGE _LINK _ATTRIBUTE _PASSWORD or 
CHALAPW 

VALUE= keyword or string 
STATUS=status variable 

Parameters VALUE or V 

Remarks 

Parameter Attributes: SECURE 

Specifies a NOS or NOS/BE password. By default, the 
link attribute password is not changed. If you specify 
DEFAULT, the default is the value specified in the 
LINK _ATTRIBUTE _PASSWORD field description. 

G You can override this value using the 
CHANGE _LINK _ATTRIBUTE command. 

• For more information, see the NOSNE User 
Validation manual. 

CHANGE _LINK _ATTRIBUTE _PROJECT 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the project number needed to gain access to NOS 
or NOS/BE permanent files, or to submit a job to NOS or 
NOS/BE. 

CHANGE _LINK _ATTRIBUTE _PROJECT or 
CHALAP 

VALUE=keyword or string 
STATUS= status variable 

Parameters VALUE or V 

Remarks 

Specifies a project number needed to gain access to NOS 
and NOS/BE permanent files or to submit a job to NOS 
or NOS/BE. By default, the link attribute project is not 
changed. If you specify DEFAULT, the default is the value 
specified in the LINK _ATTRIBUTE _PROJECT field 
description. 

• You can override this value using the 
CHANGE_LINK_ATTRIBUTE command. 

G For more information, see the NOSNE User 
Validation manual. 

6-4 NOS/VE Commands and Functions 60464018 J 



'--

CHANGE_LINK_ATTRIBUTE_USER 

CHANGE _LINK _ATTRIBUTE _USER 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the user name needed to gain access to NOS or 
NOS/BE permanent files, or to submit a job to NOS or 
NOS/BE. 

CHANGE _LINK _ATTRIBUTE_ USER or 
CHALAU 

VALUE=keyword or string 
STATUS= status variable 

Parameters VALUE or V 

Specifies a NOS or NOS/BE user name. By default, the 
link attribute user is not changed. If you specify 
DEFAULT, the default is the value specified in the 
LINK _ATTRIBUTE _USER field description. 

Remarks . • You can override this value using the 
CHANGE _LINK _ATTRIBUTE command. 

• For more information, see the NOS/VE User 
Validation manual. 

CHANGE _LOGIN _PASSWORD 
CREU and CHAU Subcommand 

Purpose 

Format 

60464018 J 

Changes information about the user's login password. 

CHANGE _LOGIN _PASSWORD or 
CHALPW 

OLD _PASSWORD=name -
NEW _PASSWORD= name 
EXPIRATION _DATE= keyword or date _time 
EXPIRATION _INTERVAL=keyword or integer 
EXPIRATION _WARNING _INTERVAL=keyword or 

integer 
MAXIMUM _EXPIRATION _INTERVAL=keyword or 

integer 
ADD _ATTRIBUTES= keyword or list of name 
DELETE _ATTRIBUTES= keyword or list of name 
STATUS =status variable 

ADMINISTER_ VALIDATIONS 6-5 



CHANGE_LOGIN _PASSWORD 

Parameters OLD _PASSWORD or OPW 

Parameter Attributes: SECURE 

Specifies the current login password. To change a 
password, a user must specify the old password. 
Administrators need not specify the old password to 
change a password. 

NEW _PASSWORD or NPW 

Parameter Attributes: SECURE 

Specifies a new login password for the user. By default, 
the password is not changed. 

EXPIRATION _DATE or ED 

Parameter Attributes: BY _NAME 

Specifies the date and time the password expires. The 
number of days between the current date and the 
EXPIRATION _DATE cannot exceed the number of days 
specified by the MAXIMUM _EXPIRATION _INTERVAL 
parameter. 

The format is YYYY-MM-DD.HH:MM:SS. The hours, 
minutes, and seconds portion is optional, and the time 
defaults to midnight 00:00:00. 

The default expiration date for new passwords is the 
current date plus the value specified by the 
EXPIRATION _INTERVAL parameter. The default 
expiration date for an existing password is the current 
expiration date for that password. 

NONE 

The password does not have an expiration date. 

DEFAULT 

The expiration date is set to the default value 
specified in the LOGIN _PASSWORD field description. 

EXPIRATION _INTERVAL or EI 

Parameter Attributes: BY _NAME 

Specifies the number of days (1 to 365) until the password 
expires. The number of days specified by the 
EXPIRATION _INTERVAL parameter must not exceed the 
MAXIMUM_EXPIRATION _INTERVAL parameter. By 

6-6 NOS/VE Commands and Functions 60464018 J 



'-----

CHANGE_LOGIN _PASSWORD 

default, the current EXPIRATION _INTERVAL parameter 
value is not changed. You can also specify one of the 
following keywords: 

UNLIMITED 

The password will not expire unless a specific date is 
specified by the EXPIRATION _DATE parameter. 

DEFAULT 

The expiration interval is set to the default value 
specified in the LOGIN _PASSWORD field description. 

EXPIRATION _WARNING _INTERVAL or EWI 

Parameter Attributes: BY _NAME 

Specifies the number of days (0 to 365) before the 
password expiration date that warnings are sent to the 
user that the password will expire. If you specify zero, the 
user does not receive a warning. The default is that the 
current value is not changed. You can also specify one of 
the following keywords: 

UNLIMITED 

The user always receives a warning during each login. 

DEFAULT 

The expiration warning interval is set to the default 
value specified in the LOGIN _PASSWORD field 
description. 

MAXIMUM _EXPIRATION JNTERVAL or MAXEI 

Parameter Attributes: BY _NAME, ADVANCED 

Specifies the maximum value for the 
EXPIRATION _INTERVAL parameter. Only users with 
user administration capability can specify a value for this 
parameter. 

ADD _ATTRIBUTES or AA 

Parameter Attributes: BY _NAME, ADVANCED 

Specifies a list of site-defined password attributes to be 
added. Only users with user administration capabilities 
can specify a value for this parameter. 

60464018 J ADMINISTER_ VALIDATIONS 6-7 

11 
I 



I 
I 

CHANGE_USER 

Remarks 

Examples 

DELETE _ATTRIBUTES or DA 

Parameter Attributes: BY _NAME, ADVANCED 

Specifies a list of site-defined password attributes to be 
deleted. Only users with user administration capability 
can specify this parameter. 

• You can also change passwords using the 
CHANGE_LOGIN _PASSWORD command. 

• You can change your expiration date only when you 
change your password. 

• For more information, see the NOSNE User 
Validation manual. 

To change the password and set the expiration date, 
enter: 

ADMV/change_user 
Changing user ABC. 
CHAU/change_log1n_password 
CHAU .. /old_password=example 
CHAU .. /new_password=sample .. 
CHAU .. /exp1ration_date=1989-12-10 
CHAU .. /expirat1on_1nterva1=60 
CHAU/Quit 
ADMV/ 

This password expires in 60 days. 

CHANGE _USER 
ADMV Subcommand 

Purpose 

Format 

Starts the CHANGE_USER subutility to change 
validations for an existing user. 

CHANGE_USER or 
CHAU 

USER=name 
STATUS= status variable 

Parameters USER or U 

Specifies the user name to be changed. The default is the 
user name specified during login. 

6-8 NOSNE Commands and Functions 60464018 J 



Remarks 

Examples 

CHANGE _USER_EPILOG 

• A system or family administrator can change any user 
validations; account or project members with a user 
administration capability can change user validations 
only for users under their control; users can change 
only some of their own validations. 

• For more information, see the NOSNE User 
Validation manual. 

To change the default account and project for the LOGIN 
and SUBMIT _JOB commands, enter: 

ADMV/change_user user=ABC 
Changing user ABC. 
CHAU/change_default_account_project account=a .. 
CHAU .. /project=b 
CHAU/Quit 
ADMV/ 

CHANGE _USER _EPILOG 
CREU and CHAU Subcommand 

Purpose 

Format 

Changes the name of the user's epilog file. 

CHANGE_USER_EPILOG or 
CHAUE 

VALUE=keyword or file or string 
STATUS= status variable 

Parameters VALUE or V 

Specifies the new file reference. If you specify a file path, 
the system resolves the reference immediately. If you 
specify a string, the system resolves the string reference 
during epilog execution. 

DEFAULT 

The name of the user epilog is set to the default value 
defined by the administrator. 

NONE 

The file reference $NULL is used. 

Remarks For more information, see the NOSNE User Validation 
manual. 

60464018 J ADMINISTER_ VALIDATIONS 6-9 

I 
II 



CHANGE_USER_PROLOG 

Examples To change your epilog so that file ALL _DONE is used, 
enter: 

ADMV/change_user 
Changing user ABC. 
CHAU/change_user_epilog value=$user.all_done 
CHAU/quit 
ADMV/ 

CHANGE_USER_PROLOG 
CREU and CHAU Subcommand 

Purpose 

Format. 

Changes the name of the user's prolog file. 

CHANGE_USER_PROLOG or 
CHA UP 

VALUE=keyword or file or string 
STATUS= status variable 

Parameters VALUE or V 

Examples 

Specifies the new file reference. ff you specify a file path, 
the system resolves the file path immediately; if you 
specify a string, the system resolves the reference during 
prolog execution. 

DEFAULT 

The name of the user prolog is set to the default 
value defined by the administrator. 

NONE 

The file reference $NULL is used. 

To change your prolog so that file START_ UP is used, 
enter: 

ADMV/change_user 
Changing user ABC. 
CHAU/change_user_prolog value=$user.start_up 
CHAU/quit 
ADMV/ 

6-10 NOS/VE Commands and Functions 60464018 J 



DISPLAY_USER 

DISPLAY _USER 
ADMV Subcommand 

Purpose 

Format 

Displays your validations. 

DISPLAY _USER or 
DISPLAY _USERS or 
DISU 

USER= keyword or list of name 
OUTPUT=file 
DISPLAY _OPTION=keyword or list of name 
STATUS= status variable 

Parameters USER or USERS or U 

Remarks 

Examples 

Specifies the user names to be displayed. The default is 
the user name specified during login. 

OUTPUT or 0 

Specifies the file to which information is written. The 
default is $OUTPUT. 

DISPLAY _OPTION or DISPLAY _OPTIONS or DO 

Parameter Attributes: BY _NAME 

Specifies the names of the user validations to be 
displayed. You can specify a list of names or one of the 
following keywords; the default is ALL: 

ALL 

Displays the value of all user validations. 

NONE 

Displays only user names. 

For more information, see the NOS/VE User Validation 
manual. 

• To display all of the validations, enter: 

ADMV/display_user 

• To display the default login account and project, enter: 

ADMV/display_user all .. 
ADMV .. /display_option=default_account_project 

60464018 J ADMINISTER_ VALIDATIONS 6-11 

I 
I 



I 
i 

QUIT 

QUIT 
ADMV Subcommand 

Purpose Ends an ADMINISTER_ VALIDATIONS utility session. 

Format QUIT or 
ENDAV or 
END _ADMINISTER_ VALIDATIONS or 
QUI 

Parameters None. 

Remarks For more information, see the NOSNE User Validation 
manual. 

END _CHANGE _USER 
CHAU Subcommand 

Purpose Ends a CHANGE _USER subutility session. 

Format END_CHANGE_USER or 
ENDCU or 
QUIT or 
QUI 

WRITE _CHANGES= boolean 

Parameters WRITE _CHANGES or WC 

Specifies whether the changes made during the 
CHANGE _USER subutility session are written to the 
validation file. The default is TRUE. 

Remarks 

TRUE 

The changes are written to the validation file. 

FALSE 

The changes are not written to the validation file. 

For more information, see the NOSNE User Validation 
manual. 

6-12 NOS/VE Commands and Functions 60464018 J 



ANALYZE _OBJECT _LIBRARY 7 

ANALYZE_OBJECT_LIBRARY ................................ 7-1 
DISPLAY_LIBRARY_ANALYSIS ............................... 7-2 
DISPLAY_MODULE_ANALYSIS ............................... 7-4 
DISPLAY_PERFORMANCE_DATA ............................ 7-7 
DISPLAY_SECTION _ANALYSIS .............................. 7-10 
QUIT ........................ ." ............................... 7-13 
USE_LIBRARY .............................................. 7-14 

60464018 J 





ANALYZE _OBJECT _LIBRARY 7 

ANALYZE _OBJECT _LIBRARY 
Command 

Purpose Begins an ANALYZE_OBJECT_LIBRARY u~ility session. 
The subcommands for this object code utility ,display the 
internal characteristics of object modules, including: object 
record counts, section sizes, section attributes, and 
performance data for modules on an object library or 
object file. 

Format ANALYZE_ OBJECT _LIBRARY or 
AN AOL 

LIBRARY= /ile 
STATUS=status variable 

Parameters LIBRARY or L 

Remarks 

60464018 J 

Object library or object file to be analyzed. 

If LIBRARY is omitted, you must use the USE _LIBRARY 
subcommand to specify the object library or object file. 

• After entering the ANALYZE _OBJECT _LIBRARY 
command, you can enter any of the ANAOL 
subcommands. The ANAOL session ends when you 
enter the QUIT subcommand. 

• An object library or file must be specified on the 
ANALYZE_OBJECT_LIBRARY command or on the 
USE_LIBRARY subcommand before an ANAOL 
session can continue. 

• For more information, see the NOSNE Object Code 
Management manual. 

ANALYZE_OBJECT_LIBRARY 7-1 



DISPLAY _LIBRARY_ANALYSIS -

Examples The following is a sequence that enters the 
ANALYZE _OBJECT _LIBRARY utility, specifies LGO as 
the file to be analyzed, and displays the characteristics of 
library LGO. 

/analyze_object_library 190 
AOL/display_library_analysis 
Library Analysis of LGO 
Number of modules: 2 
Record Analysis 

Identification records: 2 
L1 braries: 2 - 1tems: 10 
Section definitions: 9 
Text records: 21 - items: 519 

Relocation records: 2 - items: 8 
Binding templates: 8 
Transfer symt>ols: 2 

Total records: 84 

AOL/quit 

DISPLAY _LIBRARY _ANALYSIS 
ANAOL Subcommand 

Purpose 

Format 

Displays the number of modules and/or the total number 
of each type of object record on the current object library 
or file. The current object library or file is specified by a 
previous USE _LIBRARY subcommand or 
ANALYZE _OBJECT _LIBRARY command. 

DISPLAY _LIBRARY _ANALYSIS or 
DISLA 

DISPLAY _OPTIONS= keyword or list of keyword 
OUTPUT=file 
STATUS =status variable 

7-2 NOS/VE Commands and Functions 60464018 J 



DISPLAY _LIBRARY_ANALYSIS 

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO 

,/ List of one or more keywords indicating the analysis 
information to be displayed. Options are: 

Remarks 

60464018 J 

NUMBER_OF_MODULES or NOM 

Number of modules on the object library or file. 

RECORD _ANALYSIS or RA 

Total number of each type of object record on the 
object library or file. 

ALL 

All of the previously listed options. 

IF DISPLAY _OPTION is omitted, all analysis information 
is displayed. 

OUTPUT or 0 

Output file. This file can be positioned. 

If OUTPUT is omitted, file $OUTPUT is used. 

• In a library analysis (see example), the record analysis 
contains the number of each type of object record in 
the library or file. The total number of adaptable 
items is also listed with the object records that have 
adaptable fields. 

• For more information, see the NOSNE Object Code 
Management manual. 

ANALYZE_OBJECT_LIBRARY 7-3 



DISPLAY_MODULE_ANALYSIS 

Examples The following ANAOL session lists the number of modules 
and the type and number of object records in the current 
library LGO. 

/ana lyze_object_ 1 ibrary lgo 
AOL/display_ 1 ibrary_analysis 

Library Analysis of LGO 

tt.imber of moeiJles: 2 

Record Ana 1 ys is 

I dent if icat ion records: 
Libraries: 
Section definitions: 
Text records: 
Address f ormu 1 at ion records : 
External 1 inkage records: 
Entry definitions: 
Relocation records: 
Binding templates: 
Transfer symbols: 

Total recordS: 

P!Jl/ 

2 
2 items: 10 
9 

21 items: 519 
31 items: 31 
5 items: 5 
2 
2 items: 8 
8 
2 

84 

DISPLAY _MODULE _ANALYSIS 
ANAOL Subcommand 

Purpose 

Format 

Displays analysis information about specified modules on 
the object library or file, such as: 

• Total number of each type of object record in the 
module. 

• Size, type, attributes initialized, addresses in, externals 
in, and addresses to each section in the module. 

The current object library or file is specified by a 
previous USE _LIBRARY subcommand or 
ANALYZE _OBJECT _LIBRARY command. 

DISPLAY _MODULE _ANALYSIS or 
DISMA 

MODULES= keyword or list of program _name or list 
of range of program _name 

DISPLAY _OPTIONS= keyword or list of keyword 
OUTPUT= file 
STATUS= status variable 

7-4 NOS/VE Commands and Functions 60464018 J 



Parameters 

DISPLAY _MODULE _ANALYSIS 

MODULES or MODULE or M 

List of modules whose analysis information is to be 
displayed. 

You use a string value for a module whose name is not 
an SCL name or a COBOL name. 

If MODULE is omitted or the keyword ALL is used, 
analysis information for all modules in the object library 
or file is displayed. 

DISPLAY _OPTIONS or DISPLAY _OPTION or DO 

List of one or more keywords indicating the analysis 
information to be displayed. Options are: 

RECORD _ANALYSIS or RA 

Total number of each type of object record in the 
module . 

. SECTION _ANALYSIS or SA 

Size, type, attributes, bytes initialized, addresses built 
in this section, and addresses built in other sections 
that the loader will build that point to this section. 

ALL 

All of the previously listed options. 

If DISPLAY _OPTION is omitted, all analysis information 
is displayed. 

OUTPUT or 0 

Output file. This file can be positioned. If OUTPUT is 
omitted, file $OUTPUT is used. 

Remarks o In a module analysis display, the record analysis 
contains the number of each type of object record in 
the module. The total number of adaptable items is 
also listed with the object records that have adaptable 
fields. The number of items contained in the next 
column lists the total size of the adaptable record 
types. 

60464018 J ANALYZE_OBJECT_LIBRARY 7-5 



DISPLAY_MODULE_ANALYSIS 

• The section analysis display includes the following: 

Total number of bytes in the section. 

Section type: code section, binding section, working 
storage section, common block, extensible working 
storage, and extensible common block. 

Attributes of the section: R =read, W =write, 
X=execute, and B=binding. 

Number of bytes initialized in the section by text 
and replication records or by allotted text. 

Number of internal addresses (Addresses in) the 
loader will build in this section. 

Number of addresses (Addresses to) in other 
sections the loader will build that point to this 
section. 

• For more information, see the NOSNE Object Code 
Management manual. 

7-6 NOS/VE Commands and Functions 60464018 J 



"-

Examples 

DISPLAY_PERFORMANCE _DATA 

The following subcommand lists the record analysis and 
section analysis of module TEST. 

AOL/d isp lay_modu le_ana lys is modu le=test 

Module Analysis of TEST 

Record Analysis 

Identification records: 1 
Libraries: 1 items: 5 
Sect ion definitions: 4 
Text records: 9 items: 233 
Address formulation records: 15 items: 15 
External 1 inl<age records: 2 items: 2 
Entry definitions: 1 
Re 1 oca t ion records : items: 4 
Binding templates: 
Transfer symbOls: 

Tota 1 records: 39 

Sect ion Analysis 

Sect ion: TEST 60 bytes CODE [ R x 1 
Bytes initialized: 60 Addresses to: 1 

Sect ion: 56 bytes BINDING [ B 1 
Externals in: 2 Addresses in: 3 Addresses to: 1 

Section: 207 bytes WJRKING STORAGE [ R 1 
Bytes initialized: 163 Addresses in: 6 Addresses to: 8 

Section: 104 bytes WJRKING STORAGE [ R w 1 
Bytes initialized: 10 Addresses in: 7 Addresses to: 5 

AOL/ 

DISPLAY _PERFORMANCE _DATA 
ANAOL Subcommand 

Purpose 

Format 

60464018 J 

Displays possible load and execution time performance 
problems that may exist in specified modules on the object 
library or file. The current object library or file is 
specified by a previous USE _LIBRARY subcommand or 
ANALYZE _OBJECT _LIBRARY command. 

DISPLAY _PERFORMANCE _DATA or 
DISPD 

MODULES= keyword or list of program _name or list 
of range of program _name 

PERFORMANCE_DATA=keyword or list of keyword 
DISPLAY _OPTION= keyword or list of keyword 
OUTPUT=file 
STATUS= status variable 

ANALYZE_OBJECT_LIBRARY 7-7 



DISPLAY _PERFORMANCE _DATA 

Parameters MODULES or MODULE or M 

List of modules whose performance data is to be 
displayed. 

You use a string value for a module whose name is not 
an SCL name or a COBOL name. 

If MODULE is omitted or keyword ALL is specified, 
performance data for all modules is displayed. 

PERFORMANCE _DATA or PD 

List of one or more keywords indicating the performance 
data to be displayed. Options are: 

BOUND_MODULESorBM 

Bound modules that have not been prelinked. 

LINE_TABLES or LT 

Modules that have debug line address tables. 

LOAD_MODULESorLM 

Load modules that have not been bound. 

MULTIPLE_ENTRY_POINTS or MEP 

Bound or prelinked modules that have multiple entry 
points. 

OBJECT_MODULES or OM 

Object modules that are not on an object library. 

OPT _DEBUG or OD 

Modules that are compiled with the parameter 
OPTIMIZATION _LEVEL=DEBUG. 

OPT _LOW or OL 

Modules that are compiled with the parameter 
OPTIMIZATION _LEVEL= LOW. 

PARAMETER_CHECKING or PC 

Modules that have parameter checking records. 

RUNTIME_CHECKING or RC 

Modules that have run-time range checking for 
variables, subscripts, and substring character 
expressions. 

7-8 NOSNE Commands and Functions 60464018 J 



"-, __ 

"--. .. 

60464018 J 

DISPLAY _PERFORMANCE _DATA 

RUNTIME _LIBRARIES or RL 

Modules that have text-embedded run-time library 
directives. 

RUNTIME_LIBRARY_CALLS or RLC 

Modules that have calls to local run-time libraries. 

SYMB~L_TABLES or ST 

Modules that have debug symbol tables. 

UNREFERENCED _SECTIONS or US 

Modules that have uninitialized and unreferenced 
sections. 

ALL 

Both DESCRIPTION and MODULE _NAMES display 
options. 

If PERFORMANCE _DATA is omitted, all performance 
data is displayed. 

DISPLAY _OPTION or DISPLAY _OPTIONS or DO 

List of one or more keywords indicating the information 
to be displayed. The number of modules with the possible 
performance problem is always displayed. Options are: 

NONE 

No information other than the number of modules with 
the possible performance problem. 

MODULE_NAMES or MN 

Names of modules with the possible performance 
problem. 

DESCRIPTION or D 

Brief description of the possible performance problem 
and recommended changes to correct the problem. 

ALL 

Both DESCRIPTION and MODULE _NAMES options. 

If DISPLAY_OPTION is omitted, the number of modules 
with the possible problem and the description of the 
problem (DESCRIPTION) are displayed. 

ANALYZE_OBJECT_LIBRARY 7-9 



DISPLAY _SECTION _ANALYSIS 

Remarks 

OUTPUT or 0 

Output file. This file can be positioned. 

If OUTPUT is omitted, file $OUTPUT is used. 

• The analysis performed is very general, and the 
recommendations may not be applicable to all 
programs. Each recommendation should be looked at to 
determine if any changes should be made to the 
program or its packaging. 

• The quality of analysis performed depends on the 
amount of information placed in the object modules by 
the compilers. Some modules may have performance 
problems that are not detected. 

• Some compilers put performance information in the 
comment string in the module header. If this string 
has been changed, the information will not be 
available to DISPLAY _PERFORMANCE _DATA. 

• Since binding and prelinking may hide some of a 
product's performance problems, analysis should also 
be done on the unbound product. 

• For more information, see the NOSNE Object Code 
Management manual. 

DISPLAY _SECTION _ANALYSIS 
ANAOL Subcommand 

Purpose 

Format 

Displays section usage information for specified modules 
on the object library or file. Information displayed 
includes size, attributes, bytes initialized, addresses in the 
section, and addresses to the section. The current object 
library or file is specified by a previous USE _LIBRARY 
subcommand or ANALYZE_OBJECT_LIBRARY command. 

DISPLAY _SECTION _ANALYSIS or 
DI SSA 

MODULES= keyword or list of program _name or list 
of range of program _name 

SECTION _KINDS= keyword or list of keyword 

7-10 NOS/VE Commands and Functions 60464018 J 



Parameters 
"· 

"----

"-._. 

60464018 J 

DISPLAY _SECTION _ANALYSIS 

SECTION _ACCESS _ATTRIBUTES= keyword or list 
of keyword 

SECTION _NAME=name 
OUTPUT=file 
STATUS= status variable 

MODULES or MODULE or M 

List of modules whose section usage information is to be 
displayed. 

Use a string value for a module whose name is not an 
SCL name or a COBOL name. 

If MODULE is omitted or the keyword ALL is used, 
section usage information for all modules in the object 
library or file is displayed. 

SECTION _KINDS or SK 

List of one or more keywords indicating the type of 
section to be displayed. Types are: 

CODE or C 

Code section. 

BINDING or B 

Binding section. 

WORKING_STORAGE or WS 

Working storage section. 

EXTENSIBLE_ WORKING _STORAGE or EWS 

Extensible working storage section. 

COMMON _BLOCK or CB 

Common block section. 

EXTENSIBLE_COMMON _BLOCK or ECB 

Extensible common block section. 

ALL 

All of the previously listed section types: 

If SECTION _KIND is omitted, all section types are 
displayed. 

ANALYZE _OBJECT_LIBRARY 7-11 



.DISPLAY_SECTION _ANALYSIS 

Remarks 

SECTION _ACCESS _ATTRIBUTES or SAA 

List of one or more keywords indicating the access 
attributes of the section to be displayed. The access 
attributes are: 

READ or R 

Read attributes. 

WRITE or W 

Write attributes. 

EXECUTE or E 

Execute attributes. 

BINDING or B 

Binding attributes. 

ALL 

Any of the listed attributes. 

If SECTION _ACCESS _ATI'RIBUTE is omitted, sections 
with any attributes are displayed. 

SECTION _NAME or SN 

The name of the section to be displayed. If 
SECTION _NAME is omitted, sections with any names are 
displayed. 

Use a string value for .a section whose name is not an 
SCL name. 

OUTPUT or 0 

Output file. This file can be positioned. 

If OUTPUT is omitted, file $OUTPUT is used. 

The section analysis display (see example) includes the 
following: 

• Name of section (if any). 

• Total number of bytes in the section. 

o Section type: code section, binding section, working 
storage section, common block, extensible working 
storage, and extensible common block. 

7-12 NOS/VE Commands and Functions 60464018 J 



Examples 

QUIT 

• Attributes of the section: R=read, W=write, 
X=execute, B=binding. 

QUIT 

• Number of bytes initialized in the section by text and 
replication records or by all'otted text. 

• Number of internal addresses (Addresses in) and 
external addresses (Externals in) the loader will build 
in this section. 

• Number of addresses (Addresses to) in other sections 
which the loader will build that point to this section. 

• For more information, see the NOSNE Object Code 
Management manual. 

The following subcommand lists the section definitions for 
module SUB. 

AOL/di sp 1 ay _sect i on_ana 1 ys is ·modu 1 e=sub 

Section Usage of SUB 
Section: SUB 50 bytes CODE [ R X ] 

Bytes initialized: 50 
Section: 24 bytes BINDING [ B ] 

Externals in: 1 Addresses in: 1 
Section: 125 bytes V!ORKING STORAGE [ R ] 

Bytes initialized: 101 Addresses in: 4 Addresses to: 2 
Section: 64 bytes V!ORKING STORAGE [ R w] 

Bytes initialized: 12 Addresses in: 2 Addresses to: 5 

AOL/ 

ANAOL Subcommand 

Purpose Ends the ANALYZE_OBJECT_LIBRARY session. 

Format QUIT or 
QUI 

Parameters None. 

Remarks For more information, see the NOSNE Object Code 
Management manual. 

60464018 J ANALYZE_OBJECT_LIBRARY 7-13 



USE _LIBRARY 

Examples The following sequence writes a library and a module 
analysis of LIBRARY _1 to file OUTl and writes a library 
analysis of OBJECT _FILE _2 to file OUT2. The output 
files are then printed. 

/analyze_object_library library_l 
AOL/display_library_analysis output=outl 
AOL/display_module_analysis display_option= .. 
AOL .. /section_analysis output=out1.$eoi 
AOL/use_library object_file_2 
AOL/display_library_analysis output=out2 
AOL/Quit 
/print_file outl 
/print_file out2 

USE LIBRARY 
ANAOL Subcommand 

Purpose Specifies the object library or object file to be analyzed. 

Format USE _LIBRARY or 
USEL 

LIBRARY= file 
STATUS= status variable 

Parameters LIBRARY or L 

Remarks 

Examples 

Object library or object file to be analyzed. This 
parameter is required. 

• If an object library or object file was not specified on 
the ANALYZE_OBJECT_LIBRARY command, you 
must specify the library or file with the 
USE _LIBRARY subcommand before you can analyze 
the library, its modules, or its sections. 

• You use this subcommand to specify a new object 
library or object file to analyze. 

• For more information, see the NOS/VE Object Code 
Management manual. 

The following subcommand selects object file LGO as the 
next library to be analyzed. 

AOL/use_library Igo 

7-14 NOS/VE Commands and Functions 60464018 J 



BACKUP _PERMANENT _FILES 8 

BACKUP _PERMANENT_FILES ............................... 8-1 
BACKUP _CATALOG .......................................... 8-2 
BACKUP _FILE ............................................... 8-3 
DELETE _CATALOG _CONTENTS ............................. 8-4 
DELETE_FILE_CONTENTS .................................. 8-6 
EXCLUDE_CATALOG ......................................... 8-7 
EXCLUDE_FILE .............................................. 8-7 
EXCLUDE _HIGHEST _CYCLES ............................... 8-8 
INCLUDE_CYCLES ........................................... 8-9 
INCLUDE_EMPTY_CATALOGS .............................. 8-10 
INCLUDE_LARGE_CYCLES ................................. 8-11 
INCLUDE_SMALL_CYCLES ................................. 8-12 
INCLUDE_ VOLUMES ........................................ 8-13 
QUIT ........................................................ 8-14 
SET_BACKUP _OPTIONS .................................... 8-15 
SET_LIST_OPTIONS ................................ ; ......... 8-17 

60464018 J 





, __ 
BACKUP_PERMANENT_FILES 8 

BACKUP _PERMANENT _FILES 
Command 

Purpose Initiates execution of the utility that backs up permanent 
files and catalogs. Further processing is directed by utility 
subcommands. 

Format BACKUP _PERMANENT _FILES or 
BACKUP _PERMANENT _FILE or 
BACPF 

BACKUP _FILE=file 
LIST=file 
STATUS= status variable 

Parameters BACKUP _FILE or BF 

Remarks 

Examples 

60464018 J 

Specifies the file to which backup information is copied. 
You can specify a file position of beginning-of-information 
or end-of-information if the file is a mass storage file or a 
labelled tape. If no file position is specified, or the file is 
an unlabelled tape, the file is initially positioned to 
beginning-of-information. This parameter is required. 

LIST or L 

Identifies the file to which a summary of th~ results of 
executing the backup utility is written and, optionally, 
specifies how the file is to be positioned prior to use. 
Omission causes $LIST to be used. 

• You can back up only the files for which you have 
read access. 

• For more information, see the NOSNE System Usage 
manual. 

The following command initiates a 
BACKUP _PERMANENT _FILE command utility session. 
The command specifies that the backed up files are to be 
written to file BACKED_ UP _FILES with the report 
listing written to file BACKUP _LISTING. 

/backup_permanent_files bf=backed_up_files 
.. /l=backup_listing 

BACKUP _PERMANENT_FILES 8-1 



BACKUP _CATALOG 

Following the entry of this command, 
BACKUP _PERMANENT _FILE subcommands can be 
entered in response to the following prompt. 

PUB/ 

BACKUP CATALOG 
BACPF Subcommand 

Purpose Creates a backup copy of each file cycle and catalog 
registered in a specified catalog. 

Format BACKUP _CATALOG or 
BACC 

CATALOG= file 
STATUS= status variable 

Parameters CATALOG or C 

Remarks 

Specifies the catalog to be backed up. This parameter is 
required. 

• Starting at the specified catalog, the complete catalog 
hierarchy is followed to obtain a backup copy of each 
file and its associated catalog information. 

• You must have READ access to the files in the 
catalog to be backed up and not be required to share 
the files for APPEND, MODIFY or SHORTEN access. 

• If you are not the owner of the catalog, back up copies 
for all file cycles (and their associated catalogs) to 
which you have read access and only for those files· 
that have null passwords are made. 

• BACKUP _CATALOG skips a file cycle if the file cycle 
is busy (that is, if it cannot access the file with an 
access mode of read and a share mode of read and 
execute). 

• Previous EXCLUDE_CATALOG and EXCLUDE_FILE 
subcommands enable you to exclude catalogs and files 
from the backup operation. 

8-2 NOS/VE Commands and Functions 60464018 J 



Examples 

BACKUP _FILE 

e Previous INCLUDE _CYCLES, INCLUDE_ VOLUME, 
INCLUDE _LARGE _CYCLES, and 
EXCLUDE _HIGHEST _CYCLE subcommands can limit 
the number of cycles actually backed up with the 
BACKUP _CATALOG subcommand. 

• For more information, see the NOS/VE System Usage 
manual. 

The following command and subcommands back up all 
files in the master catalog: 

/backup_permanent_files bf=back_up_files 
PUB .. /11st=backup_list1ng 
PUB/backup_catalog c=$user 
PUB/Quit 

BACKUP _FILE 
BACPF Subcommand 

Purpose 

Format 

Creates a backup copy of a specified permanent file. 

BACKUP _FILE or 
BACF 

FILE=file 
PASSWORD=keyword or name 
STATUS=status variable 

Parameters FILE or F 

60464018 J 

Specifies the permanent file or permanent file cycle for 
which a backup copy is to be made. This parameter is 
required. 

PASSWORD or PW 

Parameter Attributes: SECURE 

Specifies the password of the file to be backed up. If you 
omit this parameter or specify the keyword NONE, no 
password is used. 

BACKUP _PERMANENT_FILES 8-3 



DELETE_CATALOG_CONTENTS 

Remarks 

Examples 

• If the FILE parameter specifies a cycle reference, only 
that cycle is backed up. If a cycle reference is omitted, 
all cycles of the file are backed up. 

o You must have READ access to the files to be backed 
up and not be required to share the files for APPEND, 
MODIFY, or SHORTEN access. 

• BACKUP _FILE skips a file cycle if the file cycle is 
busy (that is, if it cannot access the file with an 
access mode of read and a share mode of read and 
execute). 

• A previous EXCLUDE_FILE subcommand can be used 
to exclude specific cycles from the backup operation. 

• Previous INCLUDE _CYCLES, INCLUDE_ VOLUME, 
INCLUDE_LARGE_CYCLES, and 
EXCLUDE _HIGHEST _CYCLE subcommands can limit 
the number of cycles actually backed up with the 
BACKUP _FILE subcommand. 

• For more information, see the NOS/VE System Usage 
manual. 

The following example backs up cycle number 87 of file 
DATA _FILE _O in subcatalog CATALOG _1 of the master 
catalog: 

/bacpf bf=copy_of_file 
PUB/backup_file $user.catalog_1.data_file_0.87 
PUB .. /pw=new_data_O_pw 
PUB/Quit 

DELETE_CATALOG_CONTENTS 
BACPF Subcommand 

Purpose 

Format 

Deletes all files and subcatalogs in a catalog. 

DELETE_CATALOG_CONTENTSor 
DELETE _CATALOG _CONTENT or 
DELCC 

CATALOG=file 
STATUS= status variable 

8-4 NOSNE Commands and Functions 60464018 J 



'------

DELETE_CATALOG_CONTENTS 

Parameters CATALOG or C 

Remarks 

Examples 

60464018 J 

Specifies the catalog whose contents is to be deleted. This 
parameter is required. 

• Only the owner of a catalog can use this subcommand 
to delete a catalog and to delete files that do not have 
passwords. 

• Alternate users can use this request to delete all files: 

To which they have control and read access 
permission. 

That they are not required to share for modify, 
shorten, and append access. 

- That have null passwords. 

• If a file cycle is in u~e at the time this subcommand 
is entered, the actual delete is not done until the last 
user detaches the file. 

o Previous EXCLUDE_CATALOG, EXCLUDE_FILE, 
EXCLUDE _HIGHEST _CYCLES, INCLUDE _CYCLES, 
INCLUDE _LARGE _CYCLES, INCLUDE_ VOLUME, 
and INCLUDE_EMPTY_CATALOGS subcommands can 
be used to specify a subset of the permanent files to 
be deleted. 

• DELETE _CATALOG _CONTENT skips a file cycle if 
the file cycle is busy (that is, if it cannot access the 
file with an access mode of read and a share mode of 
read and execute). 

• You can obtain the same results by specifying the 
keyword CAC on the DELETE _OPTION parameter of 
the SCL command DELETE_CATALOG. 

• For more information, see the NOSNE System Usage 
manual. 

The following example deletes the contents of catalog 
CATALOG _l for the current user: 

/backup_permanent_files bf=backup_of_files 
PUB/delcc $user.catalog_1 

BACKUP _PERMANENT_FILES 8-5 



I 
i 

DELETE _FILE_CONTENTS 

DELETE _FILE _CONTENTS 
BACPF Subcommand 

Purpose Deletes all cycles of a file. 

Format DELETE_FILE_CONTENTS or 
DELETE_FILE_CONTENT or 
DELFC . 

FILE=file 
PASSWORD=keyword or name 
STATUS= status variable 

Parameters FILE or F 

Remarks 

Specifies the file to be deleted. The cycle number is 
ignored. This parameter is required. 

PASSWORD or PW 

Parameter Attributes: SECURE .. 
Specifies the file password of the file to be deleted. This 
name must match the password registered with the file. 
Omission or specifying the keyword NONE causes no 
password to be used. 

• Only the owner of the file or a user with control and 
read access permission and a share mode permission 
that does not include modify, shorten, or append can 
delete a file. 

• DELETE _FILE _CONTENT skips a file cycle if the 
file cycle is busy (that is, if it cannot access the file 
with an access mode of read and a share mode of read 
and execute). 

• If a file cycle is in use at the time this subcommand 
is entered, the actual delete is not done until the last 
user detaches the file. 

• Previous EXCLUDE _FILE, 
EXCLUDE _HIGHEST _CYCLES, 
INCLUDE_ VOLUME, INCLUDE _LARGE _CYCLES, 
and INCLUDE _CYCLES subcommands can be used to 
specify a subset of the permanent file cycles to be 
deleted. 

• For more information, see the NOSNE System Usage 
manual. 

8-6 NOSNE Commands and Functions 60464018 J 



"'--·-

Examples 

EXCLUDE _CATALOG 

The following example deletes all cycles of permanent file 
DATA _FILE _1 for the current user: 

/bacpf backup_of_files 
PUB/delete_file_contents $user.data_file_1 

EXCLUDE _CATALOG 
BACPF Subcommand 

Purpose 

Format 

Excludes a catalog from subsequent backup and delete 
operations. 

EXCLUDE _CATALOG or 
EXCC 

CATALOG= file 
STATUS= status variable 

Parameters CATALOG or C 

Remarks 

Specifies the catalog that is to be excluded from 
subsequent backup and delete operations. This parameter 
is required. 

• This subcommand takes precedence over all INCLUDE 
subcommands. 

• The catalog is excluded only if the subsequent backup 
operation is at a higher level in the catalog hierarchy; 
thus, you can override this subcommand by explicitly 
backing up a catalog that is at a lower level in the 
catalog hierarchy. 

• For more information, see the NOSNE System Usage 
manual. 

EXCLUDE _FILE 
BACPF Subcommand 

Purpose 

Format 

60464018 J 

Excludes a file or cycle from subsequent backup and 
delete operations. 

EXCLUDE_FILE or 
EXCF 

FILE=file 
STATUS =status variable 

BACKUP _PERMANENT_FILES 8-7 



EXCLUDE_HIGHEST_CYCLES 

Parameters FILE or F 

Remarks 

Specifies the file or cycle that is to be excluded from 
subsequent backup and delete operations. This parameter 
is required. 

• This subcommand takes precedence over all INCLUDE 
subcommands. 

• The file or cycle is excluded only if the subsequent 
backup or delete operation is at a higher level in the 
catalog hierarchy; thus, you can override this 
subcommand by explicitly backing up the file or cycle. 

• For more information, see the NOSNE System Usage 
manual. 

EXCLUDE_HIGHEST_CYCLES 
BACPF Subcommand 

Purpose 

Format 

Causes the specified number of high (largest numbered) 
cycles of permanent files to be excluded from subsequent 
backup and delete operations. 

EXCLUDE _HIGHEST _CYCLES or 
EXCLUDE _HIGHEST _CYCLE or 
EXCHC 

NUMBER _OF _CYCLES= keyword or integer 
STATUS= status variable 

Parameters NUMBER _OF _CYCLES or NOC 

Remarks 

Specifies the number of high cycles to be excluded. The 
value must be an integer in the range from 0 through 
999. Omission causes 3 to be used. 

• This subcommand takes precedence over all INCLUDE 
subcommands. 

• For more information, see the NOSNE System Usage 
manual. 

8-8 NOS/VE Commands and Functions 60464018 J 



'-- ~ 

"-

-.......... _ 

Examples 

INCLUDE_CYCLES 

The following example excludes the highest cycle of each 
file in a user's catalog from a subsequent 
DELETE _CATALOG _CONTENTS command: 

/bacpf bf=backup_of_files 
PUB/exclude_highest_cycles noc=1 
PUB/delete_catalog_contents $user 

INCLUDE _CYCLES 
BACPF Subcommand 

Purpose Includes cycles in subsequent backup and delete operations 
based on the creation date and time, last access date and 
time, last modification date and time, or expiration date 
of the cycle. 

Format INCLUDE _CYCLES or 
INCLUDE_CYCLE or 
INCC 

SELECTION _CRITERIA=keyword 
AFTER= date _time 
BEFORE= date _time 
STATUS= status variable 

Parameters SELECTION _CRITERIA or SC 

Specifies the selection criteria to be used in determining 
which cycles will be backed up on subsequent backup and 
delete operations. Choose one of the following: 

ACCESSED (A) 

Selects files based on the date and time they were last 
accessed. 

CREATED (C) 

Selects files based on the date and time they were 
created. 

EXPIRED (E) 

Selects files based on their expiration dates and times. 

MODIFIED (M) 

Selects files based on the date and time they were last 
modified. 

60464018 J BACKUP _PERMANENT_FILES 8-9 



INCLUDE_EMPTY_CATALOGS 

Remarks 

IGNORE_DATE_TIME (IDT) 

Do not select files based on a date and time. This 
option turns off any criteria that may have been 
selected in previous INCLUDE _CYCLES commands. 

This parameter is required. 

AFTER or A 

Specifies the date and time after which the 
SELECTION _CRITERIA operation must have occurred in 
order for a file to be included in subsequent backup and 
delete operations. If omitted, 1980-01-01.00:00:00.000 is 
used. 

BEFORE or B 

Specifies the date and time before which the 
SELECTION _CRITERIA operation must have occurred in 
order for a file to be included in subsequent backup and 
delete operations. If omitted, ·$NOW is used. 

• The values specified on this command take precedence 
over any previous calls to INCLUDE _CYCLES. 

• For more information, see the NOSNE System Usage 
manual. 

INCLUDE_EMPTY_CATALOGS 
BACPF Subcommand 

Purpose Specifies whether or not subsequent 
DELETE _CATALOG _CONTENTS subcommands should 
delete empty catalogs. 

Format INCLUDE_EMPTY_CATALOGS or 
INCLUDE_.EMPTY_CATALOG or 
INCEC 

DELETE _CATALOGS =boolean 
STATUS= status variable 

Parameters DELETE _CATALOGS or DELETE _CATALOG or DC 

Specifies whether or not empty catalogs encountered 
during a subsequent DELETE _ALL _FILES or 
DELETE_CATALOG_CONTENTS subcommand should be 
deleted. Omission causes TRUE to used. 

8-10 NOS/VE Commands and Functions 60464018 J 



'-.._/ 

\.., ___ ___ 

Remarks 

Examples 

INCLUDE_LARGE_CYCLES 

• This subcommand must be entered during a 
BACKUP _PERMANENT _FILES command utility 
session. 

• If this subcommand is not issued prior to a 
DELETE_ALL_FILES or 
DELETE _CATALOG _CONTENTS subcommand, empty 
catalogs are not deleted when those subcommands are 
entered. 

• For more information, see the NOSNE System Usage 
manual. 

• The following example deletes all catalogs in 
subcatalog CATALOG _l of a user's master catalog: 

PUB/include_empty_catalogs 
PUB/delete_catalog_contents 
PUB .. /$user.catalog_1 

• The following example saves empty catalogs from 
being deleted for user DLH in family FAMILY!: 

PUB/include_empty_catalogs dc=false 
PUB/delete_catalog_contents :family1.dlh 

INCLUDE_LARGE_CYCLES 
BACPF Subcommand 

Purpose Specifies that subsequent backup and delete operations 
should include only permanent file cycles whose size is 
greater than or equal to a specified number of bytes. An 
excluded cycle is not backed up or deleted, regardless of 
its size. 

Format INCLUDE _LARGE _CYCLES or 
INCLUDE _LARGE _CYCLE or 
INC LC 

MINIMUM _SIZE =integer 
STATUS= status variable 

Parameters MINIMUM _SIZE or MS 

60464018 J 

Specifies the minimum size in bytes of cycles included on 
subsequent backup and delete operations. This parameter 
is required. 

BACKUP _PERMANENT_FILES 8-11 



INCLUDE_SMALL_CYCLES 

Remarks 

Examples 

For more information, see the NOSNE System Usage 
manual. 

The following example backs up and deletes all cycles 
greater than or equal to 1,000,000 bytes in size: 

PUB/include_large_cycles ms=1000000 
PUB/backup_catalog c=$user 
PUB/delete_all_files 

INCLUDE _SMALL _CYCLES 
BACPF Subcommand 

Purpose Specifies that subsequent backup and delete operations 
should include only permanent file cycles whose size is 
less than or equal to a specified number of bytes. An 
excluded cycle is not backed up or deleted, regardless of 
its size. 

Format INCLUDE_SMALL_CYCLES or 
INCLUDE_SMALL_CYCLE or 
INCSC 

MAXIMUM _SIZE= keyword or integer 
STATUS= status variable 

Parameters MAXIMUM _SIZE or MS 

Remarks 

Examples 

Specifies the maximum size in bytes of cycles included on 
subsequent backup and delete operations. The keyword 
MAXIMUM specifies that no limit is placed on the size of 
cycles included in subsequent backup commands. This 
parameter is· required. 

For more information, see the NOSNE System Usage 
manual. 

The following example backs up and deletes all cycles less 
than or equal to 1,000,000 bytes in size: 

PUB/include_small_cycles ms=1000000 
PUB/backup_catalog c=$user 
PUB/delete_all_files 

8-12 NOS/VE Commands and Functions 60464018 J 



INCLUDE_ VOLUMES 

INCLUDE_ VOLUMES 
BACPF Subcommand 

Purpose Specifies which permanent file cycles included in a 
specified volume are to be backed up or deleted by 
subsequent backup operations. 

Format INCLUDE_ VOLUMES or 
INCLUDE_ VOLUME or 
INCV 

RECORDED_ VSNS =list of: keyword or name 
CYCLE _SELECTION= keyword 
STATUS= status variable 

Parameters RECORDED_ VSNS or RECORDED_ VSN or RVSN 

Specifies the volumes to include; must be a name of from 
1 to 6 characters or the keyword ALL. The 
RECORDED_ VSN specified when the volume was 
initialized must be supplied. This parameter is· required. 

Remarks 

60464018 J 

CYCLE _SELECTION or CS 

Specifies which cycles on a volume should be backed up. 
Options are: 

INITIAL_ VOLUME (IV) 

Back up only the cycles whose beginning of 
information (BOI) is on the volume. Cycles whose BOI 
is on another volume are skipped. 

MULTIPLE_ VOLUMES (MV) 

Back up all cycles which reside either partially or 
completely on the volume. 

If CYCLE _SELECTION is omitted, 
MULTIPLE_ VOLUMES is used. 

• The CYCLE _SELECTION parameter is ignored when 
the keyword ALL is specified on the 
RECORDED_ VSN parameter. 

e If you select the MULTIPLE_ VOLUMES option and 
cycles resi.de on more than one volume and each 
volume is backed up by a different backup, then cycles 
will be redundantly backed up. If the system fails due 
to a permanent file device failure, you may reload the 

BACKUP _PERMANENT_FILES 8-13 



QUIT 

Examples 

QUIT 

lost cycles with the Permanent File Restore utility's 
RESTORE _EXCLUDED_ FILE _CYCLES subcommand 
on just the backup tapes containing the cycles of the 
failed device. 

• If you select the INITIAL_ VOLUME option, data will 
not be redundantly backed up. Hence, all volumes in a 
backup must be read when a restore operation is done 
after a device failure. 

• For more information, see the NOSNE System Usage 
manual. 

The following example backs up all files that reside on 
the disk volume VOL033 and then deletes and restores 
the files so that they are dispersed over all volumes in 
the permanent file system: 

/backup_permanent_f11es bf=temp_backup 
PUB/1nclude_volume rvsn=VOL033 cs=mv 
PUB/backup_catalog $user 
PUB/delete_catalog_contents $user 
PUB/Quit 
/restore_permanent_f11es 
PUR/restore_existing_catalOQ 
PUR .. /$user bf=temp_backup 
PUR/Quit 
I 

BACPF Subcommand 

Purpose Ends a BACKUP _PERMANENT _FILES utility session. 

Format QUIT or 
QUI 

Parameters None. 

Remarks For more information, see the NOS/VE System Usage 
manual. 

8-14 NOS/VE Commands and Functions 60464018 J 



SET_BACKUP _OPTIONS 

SET_BACKUP_OPTIONS 
BACPF Subcommand 

Purpose Specifies actions for the BACKUP _PERMANENT _FILE 
utility. 

Format SET _BACKUP _OPTIONS or 
SET _BACKUP_ OPTION or 
SETBO 

EXCLUDE _CATALOG _INFORMATION= boolean 
NULL_BACKUP _FILE _OPTION=keyword 
INCLUDE _ARCHNE _INFORMATION= boolean 
INCLUDE _DATA=list of keyword 
STATUS=status variable 

Parameters EXCLUDE _CATALOG _INFORMATION or ECI 

Reserved for the site administrator's use. For more 
information, see the NOSNE System Performance and 
Maintenance manual, Volunie 2. 

60464018 J 

NULL_BACKUP_FILE_OPTIONorNBFO 

Specifies whether to read file data backups to $NULL or 
to any file assigned to the NULL device class. This 
parameter has no effect unless $NULL is specified on the 
BACKUP _FILE parameter of the 
BACKUP _PERMANENT_FILES command. Specify one of 
the following values: 

READ _DATA or RD 

Reads all file data when backing up to $NULL. 

UNSPECIFIED 

Does not read all file data when backing up to 
$NULL, but generates a listing of the file base. 

The default is the previously specified value for this 
parameter. If none exists, the default is UNSPECIFIED. 

INCLUDE _ARCHNE _INFORMATION or IAI 

Reserved for site personnel. 

BACKUP _PERMANENT_FILES 8-15 



I 

SET_BACKUP _OPTIONS 

Remarks 

INCLUDE _DATA or ID 

Specifies the file cycle data to include in the backup 
based on archive status and storage location (disk or 
archive medium). Specify one or more of the following 
values: 

UNRELEASABLE _DATA or UD 

Includes data for file cycles never duplicated and for 
file cycles modified since they were last duplicated. 

RELEASABLE _DATA or RD 

Includes data for file cycles not modified since they 
were last duplicated. 

OFFLINE_DATA or OD 

Includes data for file cycles released from mass 
storage and residing on an archive medium. 

ALL 

Includes data for all file cycles making no distinctions 
based on archive status or storage location. 

The default is UNRELEASABLE _DATA and 
RELEASABLE _DATA. 

• We recommend that you specify parameters by name 
rather than by position (we anticipate adding 
parameters at a future date). 

o When you specify 
INCLUDE_DATA=OFFLINE_DATA, the system 
retrieves archived file cycle data as it is attached for 
the backup. The backup continues after the data is 
retrieved, and the retrieved data is released from mass 
storage immediately after it is backed up. 

• For more information, see the NOSNE System Usage 
manual. 

8-16 NOS/VE Commands and Functions 60464018 J 



SET_LIST_OPTIONS 

SET _LIST _OPTIONS 
BACPF Subcommand 

Purpose Specifies the information that is written to the list file by 
subsequent subcommands. 

Format SET _LIST_ OPTIONS or 
SET _LIST _OPTION or 
SETLO 

FILE _DISPLAY _OPTIONS= list of keyword 
CYCLE _DISPLAY _OPTIONS= list of keyword 
DISPLAY _EXCLUDED _ITEMS= boolean 
STATUS= status variable 

Parameters FILE _DISPLAY _OPTIONS or FILE _DISPLAY _OPTION 
or FDO 

60464018 J 

Selects the data to be displayed with the file name. 
Options are: 

ACCOUNT (A) 

Displays the account name. 

PROJECT (P) 

Displays the project name. 

NONE 

Displays only the file name. 

ALL 
Displays the account and project name. 

Omission causes NONE to be used. 

CYCLE _DISPLAY _OPTIONS or 
CYCLE _DISPLAY _OPTION or CDO 

Selects the data to be displayed for each cycle backed up. 
The cycle number and whether the cycle was excluded is 
also displayed. Options are: 

ALL 
Selects all of the following. 

ACCESS_COUNT (AC) 

Displays the number of accesses to the cycle. 

BACKUP _PERMANENT _FILES 8-17 



SET_LIST_OPTIONS 

ACCESS_DATE_TIME (ADT) 

Displays the date and time the cycle was last 
accessed. 

ALTERNATE _FILE _MEDIA _DESCRIPTOR (AFMD) 

Displays archive information. 

CREATION _DATE _TIME (CDT) 

Displays the date and time the cycle was created. 

EXPIRATION _DATE (ED) 

Displays the expiration date of the cycle. 

GLOBAL_FILE_NAME (GFN) 

Displays the internally generated global file name. 
This name is neither backed up nor restored. 

MODIFICATION _DATE _TIME (MDT) 

Displays the date and time the cycle was last 
modified. 

NONE 

Displays the cycle number. 

RECORDED_ VSN (RVSN) 

Displays all mass storage volumes on which the cycle 
resides. 

SIZE (S) 

Displays the size of the cycle in bytes. 

Omission causes (MODIFICATION _DATE _TIME, SIZE) to 
be used. 

DISPLAY _EXCLUDED _ITEMS or 
DISPLAY _EXCLUDED _ITEM or DEI 

Specifies whether excluded catalogs, files, and cycles are 
displayed on the list file. 

TRUE 

The identification of all excluded catalogs, files, and 
cycles is displayed. This is the default. 

8-18 NOS/VE Commands and Functions 60464018 J 



Remarks 

60464018 J 

SET_LIST _OPTIONS 

FALSE 

Excluded items are not displayed. 

For more information, see the NOSNE System Usage 
manual. 

BACKUP _PERMANENT _FILES 8-19 





Build Software Utility 9 

BUILD_SOFTWARE ........................................... 9-1 
$ALTERNATE_SOURCE_LIBRARIES ......................... 9-3 
$BASE _SOURCE _LIBRARY .................................. 9-4 
$BUILD _CATALOG ........................................... 9-4 
$BUILD_ TARGET ............................................. 9-5 
$BUILD_TARGET_KIND ...................................... 9-6 
$BUILD_TARGET_LAYERS ................................... 9-6 
$CHANGED_DECKS .......................................... 9-7 
$COMPOSITION ............................................... 9-7 
$COMPOSITION _MAP ........................................ 9-8 
DEFINE_BUILD_TARGET .................................... 9-9 
DEFINE_PARAMETER_LIST ................................ 9-11 
DEFINE _PROCESSOR ....................................... 9-13 
DEFINE _SOURCE _LIBRARIES .............................. 9-14 
$DEPENDENCES ............................................ 9-15 
$DISPLAY _OPTIONS ......................................... 9-16 
$ERRORS_FILE ............................................. 9-16 
$EXTERNAL_SOURCE_LIBRARIES ......................... 9-17 
$INTERNAL_SOURCE_LIBRARIES .......................... 9-18 
$LAYERS .................................................... 9-18 
$0UTPUT_FILE ............................................. 9-19 
$PARAMETER_LIST_VALUE ................................ 9-19 
$PROCESSOR_ATTRIBUTE .................................. 9-20 
QUIT _SAVE ................................................. 9-21 
SET_BUILD_CATALOG ...................................... 9-21 
$UNKNOWN _LIBRARY_ENTRIES ........................... 9-22 

'----··-

60464018 J 





Build Software Utility 9 

BUILD _SOFTWARE 
Command 

Purpose Initiates the Build Utility. 

Format BUILD _SOFTWARE or 
BUIS 

INPUT=file 
BUILD _TAR.GETS=keyword or list of file 
DECKS= keyword or list of name 
EXECUTE _TRANSFORMATIONS= boolean 
DISPLAY _OPTIONS =list of keyword or keyword 
OUTPUT= file 
ERRORS= file 
STATUS=status variable 

Parameters INPUT or I 

60464018 J 

Specifies a file that describes your file system or library 
to BU. This file may contain NOSNE commands and BU 
subcommands. 

BUILD_TAR.GETSorBUILD_TARGETorBT 

Specifies which build targets from the Input file should be 
analyzed. 

You can reference the build targets by name or use one 
of the following keywords: 

FIRST 

Specifies the first build target in the Input file. 

ALL 

Specifies all build targets in the Input file. 

DECKS or DECK or D 

Specifies the decks to build. 

You can specify a deck name, a list of deck names, or the 
keyword ALL. 

Build Software Utility 9-1 



BUILD _SOFTWARE 

ALL 

Specifies all decks. 

By default, BU determines which decks are out of date by 
comparing the date/time stamp on the source deck with 
the date/time stamp on the build target. 

There are only three occasions when you will want to 
specify this parameter. 

• When you want a full build. 

• When you know that a deck was changed in such a 
way that the object code will not be affected. For 
example, changing a comment in a program does not 
affect the execution of the object code. 

• When you know exactly which decks need to be built. 

EXECUTE _TRANSFORMATIONS or ET 

Specifies whether to execute the transformations for an 
out-of-date build target. 

This parameter accepts a boolean value. If you specify 
FALSE, the transformations are not made. Only the 
analysis phase of the build is executed. This allows you to 
determine which decks would be built without actually 
performing a build. 

The default value is TRUE. 

By specifying the DISPLAY_OPTIONS parameter, you can 
cause BU to display the out-of-date build targets and the 
reasons they were found to be out of date. 

DISPLAY _OPTIONS or DO 

Specifies the information to display about the build. BU 
writes this information to the file specified by the 
OUTPUT parameter. 

Specify one of the following keys. 

ANALYSIS_TRACE or AT 

Writes the steps taken by BU during the build. 

ANALYSIS_RESULTS or AR 

Writes the results of the build. 

9-2 NOS/VE Commands and Functions 60464018 J 



Remarks 

Examples 

$ALTERNATE _SOURCE _LIBRARIES • 

NONE 

Indicates that no information is written. 

The default value is NONE. 

OUTPUT or 0 

Specifies the name of the file to which the information 
generated by the DISPLAY _OPTIONS parameter is 
written. 

The default value is $OUTPUT. 

ERRORS or E 

Specifies the name of the file to which error messages are 
written. 

The default value is $ERRORS. 

This is the only BU command that can be entered directly 
from the command prompt. 

The following example uses the BUILD _SOFTWARE 
command to start BU. IFILE is the name of the BU Input 
file. 

/bui ld_software input= if i le display_opt ions=analysis_trace 

or abbreviated, 

/bu is if ile oo=at 

$ALTERNATE _SOURCE _LIBRARIES 
BUIS Function 

Purpose Returns a list of the internal and external source libraries 
excluding the first internal source library given. 

Format $ALTERNATE _SOURCE _LIBRARIES or 
$ASL 

Parameters None. 

Remarks If no alternate source libraries are specified, an empty list 
is returned. 

60464018 J Build Software Utility 9-3 



$BASE _SOURCE _LIBRARY 

Examples The following example uses the 
$alternate _source _libraries function. 

define_source_libraries .. 
internal_source_libraries=(lib1,1ib2) 

display_value $alternate_source_libraries 

The result is: 

:V01.kevin.1 ib2 

$BASE_SOURCE_LIBRARY 
BUIS ·Function 

Purpose Returns the name of the first internal source library 
defined in the DEFINE _SOURCE _LIBRARY command. 

Format. $BASE _SOURCE _LIBRARY or 
$BSL 

Parameters None. 

Examples The following example uses the $base _source _library 
function. 

define_source_11braries .. 
internal_source_11brar1es=(11b1, 11b2) 

display_value $base_source_11brary 

The result is: 

:V01.kev1n. 11b1 

$BUILD _CATALOG 
BUIS Function 

Purpose Returns the name of the catalog used during the build. 

Format $BUILD_CATALOG or 
$BC 

Parameters None. 

9-4 NOS/VE Commands and Functions 60464018 J 



Remarks 

Examples 

$BUILD _TARGET 

If the Input file does not specify the 
SET _BUILD _CATALOG command, this function returns 
the name of the working catalog established when BU 
was initiated. 

The following example uses the $build _catalog function. 

set_working_catalog .. 
working_catalog=$user.exmps 

display_value $build_catalog 

The result is: 

:V01.kevin.exmps 

$BUILD _TARGET 
BUIS Function 

Purpose 

Format 

Returns the name of the build target whose 
transformation is currently executing. 

$BUILD _TARGET or 
$BT 

Parameters None. 

Examples The following example uses the $build_target function. 

60464018 J 

define_bu1ld_target .. 
bu1ld_target=target1 .. 
bu1ld_target_kind=none .. 

display_value $bu1ld_target 

The result is: 

:V01.kev1n.target1 

Build Software Utility 9-5 



$BUILD _TARGET _KIND 

$BUILD _TARGET _KIND 
BUIS Function 

Purpose Returns the type of build target whose transformation is 
currently executing. 

Format $BUILD_TARGET_KIND or 
$BTK 

Parameters None. 

Examples The following example uses the $build_target_kind 
function. 

def1ne_build_target .. 
bu1ld_target=11b1 .. 
bu1ld_target_k1nd=object_11brary 

d1splay_value $bu11d_target_k1nd 

The result is: 

object_ library 

$BUILD _TARGET _LAYERS 
BUIS Function 

Purpose Returns the file reference for every layer of the specified 
build target. 

Format $BUILD_TARGET_LAYERS or 
$BTL 

(BUILD _TARGET: file) 

Parameters BUILD _TARGET 

Specifies the build target to use. 

If the specified file is not a build target, the function 
returns the file that was given. If no file is specified, the 
function returns the name of the build target whose 
transformation is currently executing. 

9-6 NOSNE Commands and Functions 60464018 J 



$CHANGED _DECKS 

$CHANGED _DECKS 
BUIS Function 

Purpose Returns the names of the expandable decks that compose 
the build target whose transformation is currently 
executing. 

Format $CHANGED _DECKS or 
$CD 

Parameters None. 

Remarks 

Examples 

The value returned depends on the value of the DECKS 
parameter of the BUILD _SOFTWARE command. If ALL 
was specified, the function returns a list of all decks in 
the current build target. If no value for the DECKS 
parameter was specified, the function returns a list of 
decks from the current build target that are out of date. 
If a deck name or list of decks was speGi.fied in the 
DECKS parameter, the function returns a list of these 
decks. 

The following example uses the $changed _decks function. 

build_software 1=infile d=(deck1 deck2 deck3) 

display_value $changed_decks 

The result is: 

deck1 
deck2 
deck3 

$COMPOSITION 
BUIS Function 

Purpose Returns a list of all decks that comprise the build target 
whose transformation is currently executing. 

Format $COMPOSITION or 
$C 

Parameters None. 

60464018 J Build Software Utility 9-7 

I 
I 



I 
I 

$COMPOSITION _MAP 

Remarks If the COMPOSITION parameter on the 
DEFINE _BUILD_ TARGET command was not specified, 
no value is returned. 

Examples The following example uses the $composition function. 

define_build_target .. 
build_target=target1 .. 
build_target_kind=OL .. 
composition='incd d=(deck1 deck.2)' .. 

display_value $composition 

The result is: 

deck.1 
deck.2 

$COMPOSITION _MAP 
BUIS Function 

Purpose Returns a list of the decks and their corresponding object 
library entries that comprise the build target whose 
transformation is currently executing. 

Format $COMPOSITION _MAP or 
$CM 

Parameters None. 

Remarks If the COMPOSITION _MAP parameter on the 
DEFINE _BUILD _TARGET command was not specified, 
an empty list is returned. 

Examples This example uses the following composition map file: 

deck.1 ent1 
deck.2 ent2 
deck.3 ent3 

display_value $composition_map 

The result is: 

9-8 NOS/VE Commands and Functions 60464018 J 



deck1 
ent1 
deck2 
ent2 
deck3 

DEFINE _BUILD _TARGET 

DEFINE _BUILD _TARGET 
BUIS Subcommand 

Purpose Defines a build target by specifying the files it depends 
on and the transformation to be performed when the 
target is found to be out of date. 

Format DEFINE _BUILD_ TARGET or 
DEFBT 

BUILD _TARGET=file 
BUILD _TARGET _KIND= keyword or name 
DEPENDENCES =list of file 
COMPOSITION= keyword or file or string 
COMPOSITION _MAP=file 
LAYERS= list of file 
TRANSFORMATION= keyword or file or string 
STATUS= status variable 

Parameters BUILD_ TARGET or BT 

60464018 J 

Specifies the build target name. A file name or library 
must be specified. 

BUILD _TARGET _KIND or BTK 

Specifies the type of the build target. 

Specify an appropriate name or one of the following 
keywords: 

OBJECT_LIBRARY or OL 

Indicates that the build target type is an object 
library. 

NONE 

No type is assigned to the build target. 

DEPENDENCES or D 

Specifies a list of files that the build target depends upon. 

Files that are specified in this parameter can also be 
build targets. 

Build Software Utility 9-9 



- DEFINE _BUILD _TARGET 

If omitted, BU assumes that the build target is dependent 
on decks rather than files and uses the COMPOSITION 
parameter to determine the decks. 

COMPOSITION or C 

Specifies the expandable decks that compose the build 
target. 

Specify a string or a file containing SCU selection criteria 
commands, or the following keyword: 

MAPPED_DECKS_ONLY or MDO 

Indicates that the build target is only dependent on 
the decks specified by the COMPOSITION _MAP 
parameter. 

If omitted, BU assumes that the build target is dependent 
on files rather than decks and uses the DEPENDENCES 
parameter to determine the files. 

COMPOSITION _MAP or CM 

Specifies a file containing a list of source decks mapped to 
object library entries. Each mapping has the following 
format: 

deck: name=$reQU ired object_ 1 i brary _entry: name=$requ 1 red 

If omitted, the name in the object library matches the 
name. of the deck. · 

LAYERS or L 

Specifies a list of files that comprise the layers of a 
system. These layers are searched in order starting with 
the build target itself to find the first occurrence of a 
module. BU uses this module as the basis for its analysis. 

TRANSFORMATION or T 

Specifies the transformation to perform when the build 
target is out of date. 

Specify a string or file which contains one or more SCL 
commands, or the following keyword: 

9-10 NOS/VE Commands and Functions 60464018 J 



Remarks 

Examples 

DEFINE _PARAMETER_LIST 

DEFAULT or D 

Specifies that transformation is determined by the 
BUILD_TARGET_KIND parameter. In order to use 
DEFAULT for the TRANSFORMATION parameter, the 
BUILD _TARGET _KIND must not be NONE. 

• This command can only be used in a BU Input file. 

• A build target can be any file, including an object 
library. 

o A build target can be dependent on other build 
targets. 

• You must specify either the DEPENDENCES 
parameter or the COMPOSITION parameter on this 
command. 

The following example. defines a build target named 
targetl as an object library. 

define_build_target .. 
build_target=target1 .. 
build_target_kind=object_library .. 
composition='incd d=(deck1 deck2 deck3)' .. 
transformation=default 

or abbreviated, 

defbt .. 
bt=target 1 ... 
btk=ol .. 
c='incd d=(deck1 deck2 deck3)' .. 
t=default 

DEFINE _PARAMETER _LIST 
BUIS Subcommand 

Purpose Defines the parameters to pass to the specified processor 
during a transformation. 

60464018 J Build Software Utility 9-11 

I 
I 



DEFINE _PARAMETER_LIST 

Format DEFINE _PARAMETER _LIST or 
DE FPL 

PARAMETER _LIST _NAME =name 
PARAMETER _LIST= string 
PROCESSOR= name 
STATUS =status variable 

Parameters PARAMETER _LIST _NAME or PLN 

Remarks 

Examples 

Specifies a name to associate with the parameter list. The 
name must be unique to this parameter list. 

The default value is the name DEFAULT. 

PARAMETER _LIST or PL 

Specifies a string containing the parameters to pass to a 
given processor. 

PROCESSOR or P 

Specifies a processor to associate with the parameter list. 
The processor specified in this parameter must be defined 
with a DEFINE _PROCESSOR command prior to being 
referenced by this parameter. 

• This command can only be used in a BU Input file. 

The following example defines a parameter list to pass to 
the COBOL processor: 

define_parameter_list .. 
parameter_list_name=plist1 .. 
parameter_list='i=compile bo=object_file' .. 
processor=cobol 

or abbreviated, 

defpl .. 
pln=pl ist 1 .. 
pl='i=compile bo=object_file' .. 
p=cobol 

9-12 NOS/VE Commands and Functions 60464018 J 



DEFINE _PROCESSOR 

DEFINE _PROCESSOR 
BUIS Subcommand 

Purpose Defines a processor to use during the execution of a 
transformation. 

Format DEFINE _PROCESSOR or 
DEFP 

PROCESSOR= name 
PREPROCESSOR= keyword or name 
DEFAULT _PAR.AMETER _LIST=name 
STATUS= status variable 

Parameters PROCESSOR or P 

Remarks 

Examples 

60464018 J 

Specifies the name of the processor to define. 

PREPROCESSOR or PP 

Specifies a preprocessor to use prior to executing the 
processor. A preprocessor prepares the source text for the 
main processor. An example of a preprocessor is DMFPC, 
which converts all the embedded DM commands in source 
code to FORTRAN code. 

The default is NONE. 

DEFAULT _PARAMETER _LIST or DPL 

Specifies the name of the default parameter list to use for 
the processor. BU uses this parameter list when the 
processor attribute of a deck header is not specified. 

The parameter list must be defined using the 
DEFINE _PARAMETER_LIST command. 

By default, BU uses the parameter list name DEFAULT. 

• This command can only be used in a BU Input file. 

• This command must be specified before specifying the 
DEFINE _PARAMETER _LIST command. 

The following example defines a COBOL processor and 
uses the default parameter list PLISTl: 

def1ne_processor .. 
processor=cobol .. 
default_parameter_l1st=plist1 

or abbreviated, 

Build Software Utility 9-13 

I 
ii 



l 
DEFINE _SOURCE _LIBRARIES 

defp .. 
p=cobol .. 
dpl=pl1st 

DEFINE _SOURCE _LIBRARIES 
BUIS Subcommand 

Purpose Specifies the internal and external source libraries to use 
during the build. 

Format DEFINE _SOURCE _LIBRARIES or 
DEFSL 

INTERNAL _SOURCE _LIBRARIES= list of file 
EXTERNAL_SOURCE_LIBRARIES=list of file 
ANALYZE _EXTERNAL _SOURCE =boolean 
DEFAULT _PROCESSOR =name 
STATUS=status variable 

Parameters INTERNAL _SOURCE _LIBRARIES or ISL 

Specifies one or more source libraries to use during the 
build. BU searched these libraries in the order they are 
specified. 

EXTERNAL_SOURCE_LIBRARIES or ESL 

Specifies one or .more source libraries containing decks 
that are external to the system being built, but are 
referenced by internal decks. BU searches these libraries 
in the order they are specified. 

ANALYZE_EXTERNAL_SOURCEorAES 

Specifies whether to include the external decks in the 
dependency analysis. 

The default is FALSE. 

DEFAULT _PROCESSOR or DP 

Specifies the processor to use during a build when the 
processor attribute in a deck header is undefined. 

The processor must be defined using the 
DEFINE _PROCESSOR command prior to being referenced 
by this parameter. 

If omitted, the processor is defined by each deck's 
PROCESSOR attribute. 

9-14 NOS/VE Commands and Functions 60464018 J 



Remarks 

Examples 

$DEPENDENCES 

• This command can only be used in a BU Input file. 

• This command is a required component of the Input 
file when any of the build targets are defined as object 
libraries. 

The following example defines a source library called 
source _lib and specifies COBOL as the default processor: 

define_source_libraries .. 
internal_source_libraries=source_lib .. 
default_processor=cobol 

or abbreviated, 

defsl .. 
isl =source_ 1 i b .. 
dp=cobol 

$DEPENDENCES 
BUIS Function 

Purpose Returns the list of files that the build target whose 
transformation is currently executing depends upon. 

Format $DEPENDENCES or 
$D 

(KIND: keyword ) 

Parameters KIND 

60464018 J 

Specifies the files to return. 

Specify one of the following keywords: 

YOUNGER_THAN_TARGETorYTT 

Returns only files that are younger than the target 
(the changed files). 

ALL 

Returns all files referenced in the DEPENDENCES 
parameter. 

The default is YOUNGER_THAN _TARGET. 

Build Software Utility 9-15 

I 
ii 



$DISPLAY_OPTIONS 

Examples The following example uses the $dependences function. 

def1ne_bu11d_target .. 
bu11d_target=target1 .. 
build_target_kind=none .. 
dependences=(file1 file2) 

display_value $dependences 

The result is: 

:V01.kev1n.f11e1 
:V01.kev1n.f11e2 

$DISPLAY _OPTIONS 
BUIS Function 

Purpose Returns the display option specified for the build. 

Format $DISPLAY_ OPTIONS or 
$DO 

Parameters None. 

Remarks If no display options were specified, an. empty list is 
returned. 

$ERRORS _FILE 
BUIS Function 

Purpose Returns the name of the file containing the error 
messages from the build. 

Format $ERRORS _FILE or 
$EF 

Parameters None. 

9-16 NOS/VE Commands and Functions 60464018 J 



Examples 

$EXTERNAL_SOURCE _LIBRARIES 

The following example assumes that no errors file was 
specified on the BUILD _SOFTWARE command. 

display_value $errors_file 

The result is: 

:$1ocal.$error.1 

$EXTERNAL _SOURCE _LIBRARIES 
BUIS Function 

Purpose Returns a list of external source libraries specified for the 
build. 

Format $EXTERNAL_SOURCE_LIBRARIES or 
$ESL 

Parameters None. 

Remarks If no external source libraries are specified, an empty list 
is returned. 

Examples 

60464018 J 

The following example uses the 
$external _source _libraries function. 

define_source_libraries .. 
internal_source_11braries=s11b .. 
external_source_libraries=(lib3 lib4) .. 

d1splay_value $external_source_11braries 

The result is: 

: VO 1 . kev 1 n . 1 i b3 
: VO 1 . kev 1 n . 1 i b4 

Build Software Utility 9-17 

I 
I 



$1NTERNAL_SOURCE _LIBRARIES 

$INTERNAL _SOURCE _LIBRARIES 
BUIS Function 

Purpose Returns a list of internal source libraries specified for the 
build. 

Format $INTERNAL _SOURCE _LIBRARIES or 
$ISL 

Parameters None. 

Examples The following example uses the $internal _source _libraries 
function. 

def1ne_source_11brar1es .. 
1nternal_source_11braries=slib .. 
external_source_libraries=(lib3 1ib4) .. 

display_value $1nternal_source_11braries 

The result is: 

:V01.kev1n.s11b 

$LAYERS 
BUIS Function 

Purpose Returns a list of files that comprise the layers of the 
build target whose transformation is currently executing. 

Format $LAYERS or 
$L 

Parameters None. 

Remarks If no layers are specified, an empty list is returned. 

Examples The following example uses the $layers function. 

define_build_target .. 
build_target=target1 .. 
build_target_k1nd=object_library .. 
1ayers=(file1 file2) 

9-18 NOS/VE Commands and Functions 60464018 J 



display_value $layers 

The result is: 

:V01.kevin.file1 
:V01.kevin.file2 

$OUTPUT _FILE 
BUIS Function 

$0UTPUT_FILE 

Purpose Returns the name of the output file specified for the 
build. 

Format $OUTPUT _FILE or 
$OF 

Parameters None. 

Remarks If no output file is specified, $OUTPUT is returned. 

Examples The following example assumes that no output file was 
specified on the BUILD _SOFTWARE command. 

display_value $output_file 

The result is: 

:$1ocal.$output.1 

$PARAMETER _LIST_ VALUE 
BUIS Function 

Purpose 

Format 

60464018 J 

Returns a string containing the list of parameters to pass 
to the processor. 

$PARAMETER_LIST _VALUE or 
$PLV 

(PROCESSOR: keyword or name 
PARAMETER _LIST _NAME: keyword or name ) 

Build Software Utility 9-19 



I 
I 

$PROCESSOR_ATTRIBUTE 

Parameters PROCESSOR 

Examples 

Specifies the name of the processor to use. To use the 
default processor established for this build, specify the 
keyword DEFAULT _PROCESSOR. 

PAR.AMETER _LIST _NAME 

Specifies the name of the parameter list. To use the 
default parameter list for the specified processor, specify 
the keyword DEFAULT_PARAMETER_LIST. 

The following example uses the $parameter _list_ value 
function: 

display_value $parameter_ l ist_value(expand_source default) 

The result is: 

d=Schanged_decks b=Sbase_source_ 1 i brary ab=Sa 1 ternate_source_ l ibrar i es 1 = 
Soutput_f i le e=Serrors_f i le 

$PROCESSOR _ATTRIBUTE 
BUIS Function 

Purpose Returns the name of the preprocessor or the default 
parameter list for the specified processor. 

Format $PROCESSOR_ATTRIBUTE or 
$PA 

(PROCESSOR: name 
ATTRIBUTE: keyword ) 

Parameters PROCESSOR 

Specifies the name of the processor. 

ATTRIBUTE 

Specifies the processor attribute. 

Enter one of the following keywords: 

PREPROCESSOR or PP 

Returns the name of the preprocessor associated with 
the specified processor. If the processor does not have 
a preprocessor assigned to it, NONE is returned. 

9-20 NOSNE Commands and Functions 60464018 J 



Examples 

QUIT_SAVE 

DEFAULT_PARAMETER_LIST or DPL 

Returns the name of the default parameter list for the 
specified processor. If no default parameter list is 
.specified, UNDEFINED is returned. 

The following example uses the $processor _attribute 
function. 

display_va lue $processor _at tr ibute(expand_source def au lt_parameter _ 1 ist) 

The result is: 

default 

QUIT_SAVE 
BUIS Subcommand 

Purpose 

Format 

Ends the BU session. 

QUIT _SAVE or 
QUI or 
QUIT or 
QUIS 

STATUS= status variable 

SET _BUILD _CATALOG 
BUIS Subcommand 

Purpose Specifies the catalog to use during the build. 

Format SET _BUILD_ CATALOG or 
SETBC 

BUILD _CATALOG= file 
STATUS= status variable 

Parameters BUILD _CATALOG or BC 

Remarks 

60464018 J 

Specifies the full path name of the catalog to use during 
the build. 

• If you omit this command, the catalog that was active 
when BU was initiated is used. 

• This command can only be used in a BU Input file. 

Build Software Utility 9-21 



$UNKNOWN _LIBRARY_ENTRIES 

$UNKNOWN _LIBRARY _ENTRIES 
BUIS Function 

Purpose Returns a list of all object library modules for which no 
source deck is present in the build target. 

Format $UNKNOWN _LIBRARY _ENTRIES or 
$ULE 

Parameters None. 

Remarks If no unknown library modules are found, an empty list is 
returned. 

9-22 NOS/VE Commands and Functions 60464018 J 



CHANGE _KEYED _FILE and 
CREATE _KEYED _FILE 10. 

CHANGE_KEYED_FILE ..................................... 10-1 
CREATE _KEYED _FILE ..................................... 10-2 
ADD_RECORDS ............................................. 10-4 
COMBINE _RECORDS ........................................ 10-6 
CREATE_ALTERNATE_INDEXES ............................ 10-8 
CREATE _NESTED _FILE .................................... 10-9 
DELETE _NESTED _FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14 
DELETE _RECORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 
DISPLAY_NESTED_FILE .................................. 10-17 
DISPLAY _RECORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19 
EXTRACT _RECORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22 
HELP ...................................................... 10-23 
QUIT ...................................................... 10-24 
REPLACE _RECORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25 
SELECT _NESTED _FILE . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-27 

60464018 J 





CHANGE _KEYED _FILE and 
CREATE _KEYED _FILE 10 

··cHANGE _KEYED _FILE 
Command 

Purpose Begins a CHANGE _KEYED _FILE utility session. 

Format CHANGE _KEYED _FILE or 
CHANGE _KEYED _FILES or 
CHAKF 

INPUT=file 
OUTPUT=file. 
STATUS= status variable 

Parameters INPUT or I 

Remarks 

60464018 J 

File path of an .existing keyed file. If an output file is 
specified, the input file is opened and copied to the output 
file and then closed. 

This parameter is required. 

OUTPUT or 0 

File path of the keyed file to which the input keyed file 
is copied. The output file must be a duplicate of the input 
file. If the output file does not exist, the command creates 
it. 

If an output file is specified, only the output file is 
changed. If OUTPUT is omitted, the input file is changed. 

• The command utility prompt is: 

chakf / 

In response to the chak f I prompt , you can enter SCL 
commands and any of these subcommands: 

ADD _RECORDS 
REPLACE _RECORDS 
COMBINE _RECORDS 
EXTRACT_RECORDS 
DELETE_RECORDS 
CREATE _NESTED _FILE 
SELECT _NESTED _FILE 
DELETE _NESTED _FILE 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-1 



CREATE _KEYED _FILE 

Examples 

DISPLAY _NESTED _FILE 
CREATE _ALTERNATE _INDEXES 
HELP 
QUIT 

• All subcommands in the session apply to the currently 
selected nested file. The initially selected nested file is 
$MAIN _FILE. The nested file selection can be 
changed by a CREATE _NESTED _FILE or 
SELECT _NESTED _FILE subcommand. 

o If the existing keyed file or a new nested file to be 
created uses a user-defined collation table, hashing 
procedure, or compression procedure, the object library 
containing the compiled table or procedure must be in 
the program library list before the 
CHANGE _KEYED _FILE session begins. 

To add one or more object libraries to the program 
library list, use the ADD _LIBRARIES parameter on .a 
SET _PROGRAM ATTRIBUTES command. For 
example: 

set_program_attributes. add_ l ibrary=$user. hash_ library 

o For more information, see the NOS/VE Advanced File 
Management Usage manual. 

The following session copies an existing keyed file and 
then e~.ds. 

/change_keyed_file, input=$user.existing_keyed_file, 
.. /output=$user.new_keyed_file 
chakf /quit 
I 

CREATE _KEYED _FILE 
Command 

Purpose 

Format 

Begins a CREATE _KEYED _FILE utility session. 

CREATE _KEYED _FILE or 
CREATE _KEYED _FILES or 
CREKF 

OUTPUT=file 
STATUS =status variable 

10-2 NOS/VE Commands and Functions 60464018 J 



CREATE _KEYED _FILE 

Parameters OUTPUT or 0 

Remarks 

60464018 J 

File path of the keyed file to be created. The keyed-file 
attributes must already be specified by 
SET _FILE _ATTRIBUTES commands. 

This parameter is required. 

The minimum attributes that must be defined are 
KEY_LENGTH and MAXIMUM_RECORD_LENGTH. If 
the FILE _ORGANIZATION is omitted, 
CREATE _KEYED _FILE creates an indexed-sequential 
file. 

• The command utility prompt is: 

crekf / 

In response to the crek f I prompt, you can enter SCL 
commands and any of these subcommands: 

ADD _RECORDS 
REPLACE_RECORDS 
COMBINE _RECORDS 
EXTRACT_RECORDS 
DISPLAY _RECORDS 
DELETE_RECORDS 
CREATE _NESTED _FILE 
SELECT _NESTED _FILE 
DELETE _NESTED _FILE 
DISPLAY _NESTED _FILE 
CREATE _ALTERNATE _INDEXES 
HELP 
QUIT 

• The new keyed file is created with one nested file, 
named $MAIN _FILE. It is the initially selected nested 
file and all subcommands apply to it until a 
CREATE _NESTED _FILE or SELECT _NESTED _FILE 
subcommand selects another nested file. 

o If any nested file in the new keyed file uses a 
user-defined collation table, hashing procedure, or 
compression procedure, the object library containing 
the compiled table or procedure must be in the 
program library list before the 
CREATE _KEYED _FILE session begins. 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-3 



ti 
I 

ADD_RECORDS 

Examples 

To add one or more object libraries to the program 
library list, use the ADD _LIBRARIES parameter on a 
SET _PROGRAM_ ATTRIBUTES command. For 
example: 

set_program_attr ibutes, add_ l 1brary=$user. hash_ library 

• If you specify DIRECT _ACCESS as . the 
· FILE _ORGANIZATION attribute on the 

SET _FILE _ATTRIBUTES command, but omit the 
INITIAL_HOME_BLOCK_COUNT attribute, 
CREATE _KEYED _FILE prompts you for calculation 
of the INITIAL_HOME_BLOCK_COUNT. 

• For more information, see the NOSNE Advanc-ed File 
Management Usage manual. 

This CREATE _KEYED _FILE example defines the file 
$USER.INDEXED _SEQUENTIAL _FILE with the 
SET _FILE _ATTRIBUTES command and then creates it. 

/set_f i le_attributes. f i le=$user. indexed_sequent ial_f i le .. 
. ./f i le_organizat ion=indexed_sequent ia l .. 
. . /max imum_record_ length=32, minimum_record_ length=14 .. 
. . /key_ length= 14 
/create_keyed_f i le, output=$user. indexed_sequent ial_f i le 
crekf I 

ADD_RECORDS 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Adds records to the currently selected nested file. 

ADD _RECORDS or 
ADD_RECORD or 
ADDR 

INPUT= list of record 
SORT= boolean 
ERROR _LIMIT=integer 
STATUS=status variable 

Parameters INPUT or I 

List of one or more files whose records are to be copied. 
You must have at least read access to the files. This 
parameter is required. 

To specify a nested file in a keyed file, enclose all 
elements of the list in parentheses. An element can be 
specified in one of the following ways: 

10-4 NOS/VE Commands and Functions 60464018 J 



Remarks 

60464018 J 

ADD _RECORDS 

• Enclose the file reference followed by the nested-file 
name in parentheses, or 

• Enclose a comma followed by the nested-file name in 
parentheses. In this case, the file reference is the 
keyed file specified on the command utility (CREKF or 
CHAKF). Or 

• Enclose a single comma in parentheses. In this case, 
the file reference is the keyed file specified on the 
command utility (CREKF or CHAKF), and the 
nested-file name specifies $MAIN _FILE. 

SORT or S 

Indicates whether the records are sorted before they are 
added to the file. (Sorting is recommended for better file 
performance.) 

TRUE, ON, or YES 

The records from the input file list are copied to a 
temporary file and sorted. Records for an 
indexed-sequential file are sorted by their primary-key 
value; records for a direct-access file are sorted by 
their hash value. 

FALSE, OFF, or NO 

The records are copied to a temporary file, but are not 
sorted. 

If SORT is omitted, the default is TRUE. 

ERROR _LIMIT or EL 

Number of nonfatal errors required to force termination of 
the add (O through 65535). A 0 sets an unlimited error j~~ 
limit. 

If ERROR _LIMIT is omitted, 0 is used. 

For more information, see the NOSNE Advanced File 
Management Usage manual. 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-5 



II 
I 

COMBINE _RECORDS 

Examples This Create _Keyed _File example creates the file 
$USER.INDEXED _SEQUENTIAL _FILE, adds the records 
of file $USER.ADD _RECORDS to it, and then displays 
the file. 

/set_f i le_attributes .. 
. . ff i le=$user. indexed_sequent ial_f i le .. 
. . /f i le_organizat ion= indexed_sequent ia 1 .. 
. . /max imum_record_ length=32 .. 
. . /minimum_record_length=14 .. 
. . /key_ length=14 

/create_keyed_f i le .. 
. . /output=Suser. indexed_sequent ia l_f 11e 
crekf /add_records input=$user. add_records 

crekf /display_records count=al l 
Display_Nested_Fi le 

NOS/VE Keyed Fi le Ut i1 it ies 1. 2 85357 
1986-02-17 

11: 19:36 
File = :NVE.USER99. INDEXED_SEQUENTIAL_FILE. 1 
Display of records in SMAIN_FILE 

Byte: 0 
Byte: 0 
Byte: 0 
Byte: 0 
Byte: 0 

crekf I 

ASCII: Everest 
ASCII: K2 
ASCII: Ki 1 imanjaro 
ASCII: Matterhorn 
ASCII: McKinley 

Asia 8848 
Asia 8611 
Africa 5895 
Europe 4478 
North America 6194 

COMBINE _RECORDS 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Combines additional records with the records in the 
currently selected nested file. 

COMBINE _RECORDS or 
COMBINE _RECORD or 
COMR 

INPUT= list of record 
SORT= boolean 
ERROR _LIMIT=integer 
STATUS =status variable 

Parameters INPUT or I 

List of one or more files whose records are to be copied. 
You must have at least read access to the files. This 
parameter is required. 

To specify a nested file in a keyed file, enclose all 
elements of the list in parentheses. An element can be 
specified in one of the following ways: 

o Enclose the file reference followed by the nested-file 
name in parentheses, or 

10-6 NOS/VE Commands and Functions 60464018 J 



'---. .. • 

Remarks 

'-

60464018 J 

COMBINE _RECORDS 

• Enclose a comma followed by the nested-file name in 
parentheses. In this case, the file reference is the 
keyed file specified on the command utility (CREKF or 
CHAKF). Or 

• Enclose a single comma in parentheses. In this case, 
the file reference is the keyed file specified on the 
command utility (CREKF or CHAKF), and th~ 
nested-file name specifies $MAIN _FILE. 

SORT or S 

Indicates whether the input records are sorted before they 
are combined. (Sorting is recommended for better file 
performance.) 

TRUE 

The records from the input file list are copied to a 
temporary file and sorted. Records for an 
indexed-sequential file are sorted by their primary-key 
value; records for a direct-access file are sorted by 
their hash value. 

FALSE 

The records are copied to a temporary file, but are not 
sorted. 

If SORT is omitted, the default is TRUE .. 

ERROR _LIMIT or EL 

Number of nonfatal errors required to force termination of 
the combine (O through 65535). A 0 sets an unlimited 
error limit. 

If ERROR _LIMIT is omitted, 0 is used. 

For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-7 



CREATE _ALTERNATE _INDEXES 

Examples This Create _Keyed _File example adds records that have 
a new primary key and replaces records that have an 
existing primary-key value. 

/copy_keyed_f i le_add_f i le 
Everest Africa 8800 
K2 Asia 8611 
Ki 1 imanjaro Africa 5895 

/copy_keyed_f i le combine_f i le 
Everest Asia 8848 
Matterhorn Europe 4478 
McKinley North America 6194 

/create_keyed_f i le ... 
. . /output=Suser. indexed_sequent ial_f i le 
crekf /add_records input-Suser. add_f i le 
crekf /combine_records input=Suser. combine_f i le 
crekf /display_records count=al l 

Display_Nested_Fi le 1986-02-17 
~S/VE Keyed File Utilities 1.2 85357 12:01:46 
Fi le =:NVE.USER99. INDEXED_SEQUENTIAL_FILE. 1 
Display of records in SMAIN_FILE 

Byte: 0 
Byte: 0 
Byte: 0 
Byte: 0 
Byte: 0 

crel(f/ 

ASCII: Everest 
ASCII: K2 
ASC 11 : K i1 i man jaro 
ASCII: Matterhorn 
ASCII: McKinley 

Asia 8848 
Asia 8611 
Africa 5895 
Europe 4478 
North America 6194 

CREATE_ALTERNATE_INDEXES 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Remarks 

Initiates execution of the 
CREATE _ALTERNATE _INDEXES command utility. 

CREATE_ALTERNATE_INDEXESor 
CHANGE _ALTERNATE _INDEX or 
CHANGE _ALTERNATE _INDEXES or 
CHANGE _ALTERNATE _INDICES or 
CREAi or 
CREATE _ALTERNATE _INDEX or 
CREATE _ALTERNATE _INDICES or 
CHAAI 

STATUS =status variable 

• The subutility prompt is: 

creai/ 

In response to the creai/ prompt, you can enter 
NOS/VE commands and any of these subcommands: · 

CREATE _KEY _DEFINITIONS 

10-8 NOSNE Commands and Functions 60464018 J 



Examples 

CREATE _NESTED _FILE 

DISPLAY _KEY _DEFINITIONS 
DELETE _KEY _DEFINITIONS 
CANCEL _KEY _DEFINITIONS 
APPLY _KEY _DEFINITIONS 
HELP 
QUIT 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

The following subutility session creates an alternate-key 
definition and then displays it. 

crekf /creat_a 1 ternate_ indexes 
creai/create_key_definitions .. 
crea i .. /key _name=a 1temate_key_1 .. 
crea i.. /key_posit ion=28 key_ length=4 
crea i/display_key_def init ions display_opt ions=a 11 
Display_Nested_Fi le 

NOS/VE Keyed F11e Utilities 1.2 86034 
Fi le = :NVE. INDEXED_SEOOENTIAL_FILE 
Nested_Fi le_Name 

KEY_NAME POSITION LENGTH TYPE 

1986-02-17 
12:20:26 

STATE 

AL TERNATE_KEY _ 1 
Duplicate_Key_Value 
Nu 11 _Suppression 

28 4 uncollated creation pending 
: not_a llowed 
: no 

RECORD 1 ... ( in asc i i ) : E v e r e s t A s i a 
( in hex ) :457665726573742020202020202041736961202020202020 

AL TERNA TE_KEY _ 1 

creai/ 

(inascii): 8848 
( in hex ) : 2020202038383438 

u_u_u_u_ 

CREATE _NESTED _FILE 
CHAKF and CREKF Subcommand 

Purpose 

Format 

60464018 J 

Creates and selects a new nested file. 

CREATE _NESTED _FILE or 
CRENF 

NAME=name 
KEY _LENGTH= integer 
KEY _POSITION= integer 
KEY _TYPE=keyword 
MAXIMUM _RECORD _LENGTH= integer 
COLLATE _TABLE _NAME= name 
COMPRESSION _PROCEDURE _NAME =keyword or 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-9 



CREATE_NESTED _FILE 

entry _point _reference 
DATA _PADDING=integer 
DYNAMIC _HOME _BLOCK _SPACE= boolean 
EMBEDDED _KEY= boolean 
FILE _ORGANIZATION= keyword 
HASHING _PROCEDURE _NAME=keyword or 

entry _point _reference 
INDEX _PADDING=integer 
INITIAL _HOME _BLOCK _COUNT =integer 
LOADING _FACTOR =integer 
MINIMUM _RECORD _LENGTH= integer 
RECORDS _PER _BLOCK= integer 
RECORD _TYPE =keyword 
STATUS= status variable 

Parameters NAME or N 

Name of the new nested file. It must be unique in the 
keyed file. 

This parameter is required. 

KEY _LENGTH or KL 

Primary-key length in bytes (for integer keys, 1 through 
8; for character keys from 1 through 255). 

This parameter is required. 

KEY _POSITION or KP 

Position of the leftmost byte of the primary key (specified 
only if the key is embedded). The byte positions in a 
record are nu~bered from the left, from 0 through 65535, 
beginning with 0. 

If KEY _POSITION is omitted, the default is 0. 

KEY _TYPE or KT 

Primary key type. 

UNCOLLATED or UC 

Key values ordered byte-by-byte according to the 
ASCII collating sequence. 

INTEGER or I 

Key values ordered numerically as integer values. 

10-10 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CREATE_NESTED _FILE 

COLLATED or C 

Key values ordered byte-by-byte according to the 
collating sequence specified by the 
COLLATE _TABLE _NAME parameter (invalid if 
FILE _ORGANIZATION= DIRECT _ACCESS). 

If KEY _TYPE is omitted, the default is UNCOLLATED. 

MAXIMUM _RECORD _LENGTH or MAXRL 

Maximum number of bytes of data in a record (1 through 
65497). 

This parameter is required. 

COLLATE _TABLE _NAME or CTN 

Name of the collating sequence used to sort the primary 
key (indexed-sequential files only). 

This parameter is required if the KEY_ TYPE is 
COLLATED. 

COMPRESSION _PROCEDURE _NAME or CPN 

Name 

Data compression or encryption procedure used with 
the nested file. The name can be either the name of 
the system-defined compression procedure 
(AMP$RECORD_ COMPRESSION or the name of an 
entry point in the current program library list. 

NONE 

No compression procedure is used with the nested file. 

If COMPRESSION _PROCEDURE _NAME is omitted, the 
nested file does not use a compression procedure. 

DATA _PADDING or DP 

Percentage of data block space left empty when the 
indexed-sequential file is created (integer from 0 through 
99). 

The percentage must allow for storage of at least one 
maximum-length record per block. 

If DATA_PADDING is omitted, the default is 0. 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-11 

I 
11 



I 
i 

CREATE _NESTED _FILE 

DYNAMIC _HOME _BLOCK _SPACE or DHBS 

This. parameter is reserved for future use. Its default 
value is FALSE. 

EMBEDDED _KEY or EK 

Indicates whether the primary-key value is embedded in 
the record data. 

TRUE, ON, or YES 

Primary-key value is embedded in the record data. 

FALSE, OFF, or NO 

Primary-key value is not part of the record data. 

If EMBEDDED _KEY is omitted, the default is TRUE. 

FILE_ORGANIZATIONorFO 

Keyed-file structure used. 

INDEXED _SEQUENTIAL or IS 

Data records accessed by searching for the primary-key 
value in a hierarchical index. 

DIRECT _ACCESS or DA 

Data record block accessed directly by hashed 
primary-key value. 

If FILE_ORGANIZATION is omitted, the default is 
INDEXED _SEQUENTIAL. 

HASHING _PROCEDURE _NAME or HPN 

Name 

Hashing procedure to be executed for the direct-access 
file. 

NONE 

No hashing procedure is executed with this 
direct-access file. 

If HASHING_PROCEDURE_NAME is omitted, the 
default is the system-provided hashing procedure (named 
AMP$SYSTEM _HASHING _PROCEDURE). 

10-12 NOS/VE Commands and Functions 604640~8 J 



60464018 J 

CREATE _NESTED _FILE 

INDEX _PADDING or IP 

Percentage of index block space left empty when the 
indexed-sequential file is created (integer from 0 through 
99). 

The percentage must allow for storage of at least one 
index record per block. (The length of an index record is 
the key length plus 4.) 

If INDEX_PADDING is omitted, the default is 0. 

INITIAL _HOME _BLOCK _COUNT or !HBC 

Number of home blocks to be created in the direct-access 
file (1 through 2**31-1). 

This parameter is required when 
FILE _ORGANIZATION= DIRECT_ 
FILE_ORGANIZATION ACCESS. 

LOADING _FACTOR or LF 

Percentage of file space used when the direct-access file is 
created (no more than 90%). 

If an initial home block count is specified, the loading 
factor is ignored. Otherwise, if LOADING _FACTOR is 
omitted, the default is 75%. 

MINIMUM_RECORD_LENGTHorMINRL 

Minimum number of bytes of data in a record (0 through 
65497). 

The minimum record length for a fixed-length record is 
the same as its maximum record length. The default 
minimum record length for variable-length records with 
an embedded key is the sum of the key _position and the 
key _length. Otherwise, the default minimum record 
length is 0. 

RECORDS_PER_BLOCKorRPB 

Reserved. 

RECORD _TYPE or RT 

Record type. 

FIXED or F 

Fixed-length records. 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-13 



I 
I 

DELETE_NESTED _FILE 

Remarks 

Examples 

VARIABLE or V 

Variable-length records. 

UNDEFINED or U 

Variable-length records. 

If RECORD_ TYPE is omitted, the default is 
UNDEFINED. 

For more information, see the NOSNE Advanced File 
Management Usage manual. 

This Create _Keyed _File example creates a new nested 
file NESTED _FILE _1 and then displays the newly 
created file. 

crekf /create_nested_f i le name=nested_f i le_ 1 .. 
crekf .. /max imum_record_ length=32, key_ length= 14 .. 
crekf .. /f i le_organizat ion=indexed_sequent ial 
crekf /display_nested_f i le 

Display_Nested_Fi le 1986-02-17 
NOS/VE Keyed File Utilities 1.2 85357 12:42:49 
Fi le = :NVE. INDEXED_SEQUENTIAL_FILE 

List of Nested Files for file INDEXED_SEQUENTIAL_FILE 
NESTED_FILE_l (currently selected nested file) 
SMAIN_FILE 

DELETE _NESTED FILE 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Deletes one or more nested files. 

DELETE _NESTED _FILE or 
DELNF 

NAMES=list of name 
STATUS= status variable 

Parameters NAMES or NAME or N 

Remarks 

List of one or more nested files to be deleted. 

This parameter is required. 

• You cannot delete the currently selected nested file or 
$MAIN _FILE. 

• To delete the currently selected nested file, select 
another nested file first using the 
SELECT _NESTED _FILE subcommand and then issue 
the DELETE _NESTED _FILE subcommand. 

10-14 NOSNE Commands and Functions 60464018 J 



Examples 

DELETE_RECORDS 

• To display the names of the nested files, enter a 
DISPLAY _NESTED _FILE subcommand. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

This Create _Keyed _File example displays the list of 
nested files and then deletes the nested file 
NESTED _FILE _2. 

crelcf /disp lay_nested_f i le 
Display_Nested_Fi le 
NOS/VE Keyed Fi le Ut i 1 it ies 1. 2 85357 
File = :NVE. INDEXED_SEQUENTIAL_FILE 

List of Nested Files for file INDEXED_SEQUENTIAL_FILE 

1986-02-17 
12:50: 12 

NESTED_FILE_ 1 (currently selected nested file) 
NESTED_FILE_2 
$MAIN_FILE 

crelcf/delete_nested_file name=nested_file_2 
crelcf/display_nested_file 

Display_Nested_Fi le 
~S/VE Keyed F i1 e Ut i 11t i es 1. 2 85357 
File =:NVE.Il'l>EXED_SEQUENTIAL_FILE 

List of Nested Files for file lflDEXED_SEQUENTIAL_FILE 

1986-02-17 
12:52:02 

SMAIN_FILE (currently selected nested file) 
NESTED_FILE_l 

DELETE _RECORDS 
CHAKF and CREKF Subcommand 

Purpose 

Format 

60464018 J 

Deletes records from the currently selected nested file. 

DELETE _RECORDS or 
DELETE _RECORD or 
DELR 

KEYS= range of: integer or keyword range of: string or 
keyword 

COUNT= keyword or integer 
VETO= boolean 
STATUS= status variable 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-15 



DELETE_RECORDS 

Parameters KEYS or KEY or K 

Optional range of primary-key values to be deleted. The 
range may be specified as either: 

1. Two primary-key values separated by two periods (..). 
(such as 'KEY1' .. 'KEY2'). The first key value must be 
less than the second. (Valid only for indexed-sequential 
files.) 

2. One primary-key value specifying the beginning of the 
range. The number of records in the range is specified 
by the COUNT parameter. 

The keywords $FIRST _KEY and $LAST _KEY can specify 
the lowest and highest key values, respectively, in an 
indexed-sequential file. 

If KEYS is omitted, the range of records to be deleted 
begins with the first record in the nested file. 

COUNT or C 

Number of records to be deleted (O through 
4,398,046,511,103 or, to delete all records, the keyword 
ALL or A). 

If a range is specified by the KEYS parameter, the 
COUNT value limits the number of records deleted. 

If COUNT is omitted, but KEYS is specified, the default 
count the number of records in the specified range. 
Otherwise, the default is 1. 

VETO or V 

Indicates whether the interactive user must confirm each 
deletion. 

TRUE 

Each record to be deleted is displayed with the prompt 
Okay to delete?==>. 

FALSE 

All specified records are deleted. 

If VETO is omitted, the default is FALSE. 

The possible responses to the veto prompt are: 

YES or Y 

Delete the record. 

10-16 NOS/VE Commands and Functions 60464018 J 



'--· -

Remarks 

Examples 

DISPLAY _NESTED _FILE 

NO or N 

Do not delete the record. 

ALL or A 

Delete the rest of the records without prompts. 

QUIT or Q 

Stop without deleting any more records. 

HEX or H 

Redisplays the record in hexadecimal and reissues the 
prompt. 

For more information, see the NOS/VE Advanced File 
Management Usage manual. 

This Create _Keyed _File example deletes a record in the 
currently selected nested file. 

creld/delete_records, Keys='Matterhorn' .. 'McKinley' .. 
creKf .. /count=2, veto=true 
Byte: O ASCII: Matterhorn Europe 4478 
OKay to delete: ==>Yes 
Byte: O ASCII: McKinley North America 6194 
OKay to delete: ==>No 
--INFffiMATIVE AA 501285-- As requested by the user. this record was not 
deleted. 
--INFffiMATIVE AA 501285-- The Delete_Records subcommand of 
CREATE_KEYED_FILE deleted 1 record from nested file $MAIN_FILE in file 
: NVE . INDEXED _SEQUENTIAL _FI LE . 
creKf/ 

DISPLAY NESTED _FILE 
CHAKF and CREKF Subcommand 

Purpose 

Format 

60464018 J 

Displays the nested file definitions and the alternate-key 
names and number of records in each nested file. 

DISPLAY _NESTED _FILE or 
DISNF 

NAMES=keyword or list of name 
OUTPUT=file 
DISPLAY _OPTIONS= keyword or list of keyword 
STATUS =status variable 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-17 



I 
I 

DISPLAY _NESTED _FILE 

Parameters NAMES or NAME or N 

Remarks 

List of one or more names of nested files to he displayed 
or the keyword ALL to display all nested files in the file. 

If NAMES ·is omitted, the default is ALL. 

OUTPUT or 0 

File to which the display is written. The file must he a 
sequential file. 

If OUTPUT is omitted, the default file is $OUTPUT. 

DISPLAY _OPTIONS or DISPLAY _OPTION or DO 

List of one or more keywords indicating the type of 
information to he displayed. 

DEFINITIONS or DEFINITION or D 

Nested-file definitions. 

KEY_NAMES or KEY_NAME or KN 

Names of the alternate keys in each nested file. 

NAMES or NAME or N 

Nested-file names. 

RECORD_COUNTS or RECORD_COUNT or RC 

Number of records in each nested file. 

ALL or A 

All of the above. 

If DISPLAY_OPTION is omitted, the default is NAMES. 

• The currently selected nested file is marked as such in 
the list of nested files. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

10-18 NOS/VE Commands and Functions 60464018 J 



Examples 

DISPLAY_RECORDS 

This Create _Keyed _File example displays the default 
nested file ($MAIN _FILE) with the DISPLAY_OPTIONS 
parameter set to ALL. No alternate keys have been 
defined. 

crekf /display_nested_f i le Display_opt ions=a 11 
Display_Nested_Fi le 
NOS/VE Keyed File Utilities 1.2 86034 
Fi le = :NVE. INDEXED_SEQUENTIAL_FILE 

1986-02-17 
12:59:58 

SMAIN_FILE 
Record_ Count 

(currently selected nested file) 
: 3 

Nested_Fi le_Def in it ions 
Compress ion_Procedure_Name 
Embedded_ Key 
Key-Position 
Key-Length 
Maximum_Record_Length 
Min imum_Record_Length 
Record_ Type 
File_Organization 
Key_ Type 
Collate_Table_Name 
Data_Padcling 
Index Padding 

: none 
: yes 
: 0 
: 14 
: 32 
: 32 
: undefined 
: indexed_sequential 
: uncollated 

: 0 
: 0 

DISPLAY _RECORDS 
CHAKF and CREKF Subcommand 

Purpose 

Format 

60464018 J 

Displays records in the currently selected nested file. 

DISPLAY _RECORDS or 
DISPLAY _RECORD or 
DISR 

OUTPUT=file 
KEYS= range of: integer or keyword range of: string or 

keyword 
COUNT=keyword or integer 
DISPLAY _OPTION=keyword 
STATUS =status variable 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-19 

I 
i 



DISPLAY_RECORDS 

Parameters OUTPUT or 0 

File to which the display is written. The file must be a 
sequential file for which you have append access. 

If OUTPUT is omitted, $OUTPUT is the default. 

KEYS or KEY or K 

Optional range of primary-key values to be displayed. The 
range may be specified as either: 

1. Two primary-key values separated by two periods (..). 
(such as 'KEY1' .. 'KEY2'). The first key value must be 
less than the second. (Valid only for indexed-sequential 
files.) 

2. One primary-key value specifying the beginning of the 
range. The number of records in the range is specified 
by the COUNT parameter. 

The keywords $FIRST _KEY and $LAST _KEY can specify. 
the lowest and highest key values, respectively, in an 
indexed-sequential file. 

If KEYS is omitted, the range of records to be displayed 
begins with the first record in the nested file. 

COUNT or C 

Number of records to be displayed (0 through 
4,398,046,511,103 or, to display all records, the keyword 
ALL or A). 

If a range is specified by the KEYS parameter, the 
COUNT value limits the number of records displayed. 

If COUNT is omitted, but KEYS is specified, the default 
count is the number of records in the specified range. 
Otherwise, the default is 1. 

DISPLAY _OPTION or DO 

List of one or more keywords indicating the 
representation used to display records. 

ASCII 

ASCII characters. 

HEX or H 

Hexadecimal digits. 

10-20 NOS/VE Commands and Functions 60464018 J 



Remarks 

Examples 

'--.__ 

60464018 J 

DISPLAY _RECORDS 

BOTH 

Both ASCII characters and hexadecimal digits. 

ALTERNATE_KEY_DEFINITION or AKD or ALL 

Both ASCII and hexadecimal representation with 
alternate-key values marked. 

If DISPLAY _OPTION is omitted, the default is ASCII. 

• The ALTERNATE _KEY _DEFINITION display shows 
the record contents in ASCII characters and 
hexadecimal digits with the alternate-key values 
underscored. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

The following session displays a range of records showing 
both ASCII and hexadecimal representations. 

crekf/display_records display_option=both .. 
crekf .. /keys='Everest' .. 'Ki 1 imanjaro' 
Display_Nested_Fi le 
NOS/VE Keyed File Utilities 1.2 86099 
File= :NVE.USER99.INDEXED_SEQUENTIAL_FILE. 1 
Display of records in SMAIN_FILE for: 

CClJNT: al 1 
FIRST _KEY: Everest 
LAST_KEY: Kilimanjaro 
Byte: 0 ASCII: Everest As i a 

1986-04-23 
15:08: 18 

Byte: 0(16) HEX: 45766572657374202020202020204173696120202020202020 
Byte: 25 ASCII: 8 8 4 8 
Byte: 19(16) HEX: 20202038303438 
Byte: 0 ASCII: K 2 As i a 
Byte: 0(16) HEX: 4B322020202020202020202020204173696120202020202020 
Byte: 25 ASCII: 8 6 1 1 
Byte: 19(16) HEX: 20202038363131 
Byte: 0 ASCII: K i 1 i man jar o A f r i ca 
Byte: (16) HEX: 4B696C696D616E6A61726F2020204166726963612020202020 
Byte: 25 ASCII: 5 8 9 5 
Byte: 19(16) HEX: 20202035383935 
crekf/ 

CHANGE_KEYED_FILE and CREATE_KEYED_FILE 10-21 



I 
i 

EXTRACT_RECORDS 

EXTRACT_RECORDS 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Copies records from the currently selected nested file. 

EXTRACT_RECORDSor 
EXTRACT_RECORDM 
EXTR 

OUTPUT=record 
KEYS= range of: integer or keyword range of: string or 

keyword 
COUNT= keyword or integer 
ERROR _LIMIT= integer 
STATUS= status variable 

Parameters OUTPUT or 0 

File to which records are copied. You must have at least 
append access to the file. If OUTPUT is omitted, the 
default is $OUTPUT. 

To specify a nested file in a keyed file, you can: 

o Enclose the file reference followed by the nested-file 
name in parentheses, or 

• Enclose a comma followed by the nested-file name in 
parentheses. In this case, the file reference is the 
keyed file specified on the command utility (CREKF or 
CHAKF). Or 

• Enclose a single comma in parentheses. In this case, 
the file reference is the keyed file specified on the 
command utility (CREKF or CHAKF), and the 
nested-file name specifies $MAIN _FILE. 

KEYS or KEY or K 

Optional range of primary-key values of the records to be 
copied. The range may be specified as either: 

1. Two primary-key values separated by two periods ( .. ) 
(such as 'KEY1' .. 'KEY2'). The first key value must be 
less than the second. (Valid only for indexed-sequential 
files.) 

10-22 NOS/VE Commands and Functions 60464018 J 



Remarks 

HELP 

HELP 

2. One primary-key value specifying the beginning of the 
range. The number of records in the range is specified 
by the COUNT parameter. 

The keywords $FIRST _KEY and $LAST _KEY can specify 
the lowest and highest key values, respectively, in an 
indexed-sequential file. 

If KEYS is omitted, the range of records to be copied 
begins with the first record in the nested file. 

COUNT or C 

Number of records to be copied (0 through 
4,398,046,511,103 or, to copy all records, the keyword ALL 
or A). 

If a range is specified by the KEYS parameter, the 
COUNT value limits the number of records copied. 

If COUNT is omitted, but KEYS is specified, the default 
count is the number of records in the specified range. 
Otherwise, the default is 1. 

ERROR _LIMIT or EL 

Number of nonfatal (trivial) errors allows for the 
EXTRACT _RECORDS operation (integer from 0 through 
65535). A 0 value indicates no limit; 0 is the default 
value. 

• Records are extracted only from the currently selected 
nested file. 

• For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CHAKF and CREKF Subcommand 

Purpose 

Format 

60464018 J 

Displays information about utility subcommands. 

HELP or 
HEL 

SUBJECT=string 
MANUAL= keyword or file 
STATUS=status variable 

CHANGE_KEYED _FILE and CREATE_KEYED _FILE 10-23 



~1 
I 

QUIT 

Parameters SUBJECT or S 

Remarks 

QUIT 

Index topic to be located in the online manual. 

If SUBJECT is omitted, the HELP subcommand lists the 
names of the utility subcommands. 

MANUAL or M 

Online manual whose index is searched. 

AFM 

The AFM online manual index is searched. 

File 

File name of the online manual whose index is 
searched. 

If MANUAL is omitted, the default is AFM. The working 
catalog is searched for the file and then the 
$SYSTEM.MANUALS is searched. 

• If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

• The' default manual, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOS/VE system. 

• If your terminal is defined for screen applications, the 
online manual is displayed in screen mode. 

To leave the online manual, use QUIT. To get help on 
reading the online manual, use HELP. 

• For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CHAKF and CREKF Subcommand 

Purpose 

Format 

Ends the utility session and closes the output file. 

QUIT or 
QUI 

STATUS= status variable 

10-24 NOSNE Commands and Functions 60464018 J 



REPLACE_RECORDS 

REPLACE_RECORDS 
CHAKF and CREKF Subcommand 

Purpose Replaces existing records in the currently selected nested 
file. 

Format REPLACE _RECORDS or 
REPLACE _RECORD or 
REPR 

INPUT= list of record 
SORT= boolean 
ERROR _LIMIT= integer 
STATUS= status variable 

Parameters INPUT or I 

60464018 J 

List of one or more files whose records are to replace the 
corresponding records already in the keyed file. You must 
have at least read access to the input files. This 
parameter is required. 

To specify a nested file in a keyed file, enclose all 
elements of the list in parentheses. An element can be 
specified in one of the following ways: 

• Enclose the file reference followed by the nested-file 
name in parentheses, or 

• Enclose a comma followed by the nested-file name in 
parentheses. In this case, the file reference is the 
keyed file specified on the command utility (CREKF or 
CHAKF). Or 

• Enclose a single comma in parentheses. In this case, 
the file reference is the keyed file specified on the 
command utility (CREKF or CHAKF), and the 
nested-file name specifies $MAIN _FILE. 

SORT or S 

Indicates whether the records are sorted before they are 
copied to the file. (Sorting is recommended for better file 
performance.) 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-25 

I 
i 



REPLACE_RECORDS 

Remarks 

Examples 

TRUE, ON, or YES 

The records from the input file list are copied to a 
temporary file and sorted. Records for an 
indexed-sequential file are sorted by their primary-key 
value; records for a direct-access file are sorted by 
their hash value. 

FALSE, OFF, or NO 

The records are copied to a temporary file, but are not 
sorted. 

If SORT is omitted, the default is TRUE. 

ERROR _LIMIT or EL 

Number of nonfatal errors required to force termination of 
the replace (0 through 65535). A 0 sets an unlimited error 
limit. 

If ERROR _LIMIT is omitted, 0 is used. 

For more information, see the NOSNE Advanced File 
Management Usage manual. 

This Create _Keyed _File example replaces records in file 
$USER.INDEXED _SEQUENTIAL _FILE that have the 
same primary key. 

/copy_keyed_fi le Suser.add_fi le 
Everest Africa 8800 
K2 Asia 8611 
Kilimanjaro Africa 5895 

/copy_keyed_file Suser.replace_file 
Everest Asia 8848 

/create_keyed_f 1 le .. 
. . /output=Suser. 1ndexed_secJ,Jent1al_f 1le 
crekf /add_records input=Suser. add_f i le 
crekf /rep lace_records input=Suser. rep lace_f i le 
crekf /display_records count=all 
Display_Nested_f ile 1986-02-17 
t{)S/VE Keyed Fi le Ut 11 it ies 1. 2 85357 
File = :NVE.USER99. UVEXED_SEQUENTIAL_FJLE. 1 
Display of records in SMAIN_FILE 

Byte: 0 
Byte: 0 
Byte: 0 

crekf/ 

ASCII: Everest Asia 
ASCII: K2 Asia 
ASCII: Kilimanjaro Africa 

13: 19:24 

8848 
8611 
5895 

10-26 NOS/VE Commands and Functions 60464018 J 



SELECT _NESTED _FILE 

SELECT _NESTED _FILE 
CHAKF and CREKF Subcommand 

Purpose 

Format 

Selects the nested file to which subsequent subcommands 
are to apply. 

SELECT _NESTED _FILE or 
SELNF . 

NAME=name 
STATUS= status variable 

Parameters NAME or N 

Remarks 

60464018 J 

Name of an existing nested file. To select the default 
nested file, specify $MAIN _FILE. 

This parameter is required. 

For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CHANGE _KEYED _FILE and CREATE _KEYED _FILE 10-27 





CREATE_ALTERNATE_INDEXES 11 

CREATE_ALTERNATE_INDEXES ............................ 11-1 
ADD_PIECE ................................................. 11-3 
APPLY_KEY_DEFINITIONS ................................. 11-5 
CANCEL _KEY _DEFINITIONS ............................... 11-9 
CREATE_KEY_DEFINITION ............................... 11-10 
DELETE _KEY _DEFINITION ......................... ·. . . . . . 11-16 
DISPLAY_KEY_DEFINITIONS ............................. 11-17 
HELP ...................................................... 11-20 
HELP ...................................................... 11-21 
QUIT ...................................................... 11-23 
QUIT ...................................................... 11-24 
SEPARATE_KEY_GROUPS ................................ 11-25 

60464018 J 





\..._ . ..__ . ./ 

CREATE_ALTERNATE_INDEXES 11 

CREATE_ALTERNATE_INDEXES 
Command 

Purpose 

Format 

Initiates execution of the 
CREATE _ALTERNATE _INDEXES command utility. The 
utility can create, delete, and display alternate-key 
definitions in a keyed file. 

CREATE_ALTERNATE_INDEXESor 
CREATE_ALTERNATE_INDEXor 
CREATE _ALTERNATE _INDICES or 
CREAi 

INPUT= record 
STATUS= status variable 

Parameters INPUT or I 
Keyed file to be processed by the utility. The file 
permissions required depend on the subcommands entered 
during the utility as described in the Remarks. This 
parameter is required. 

To specify a nested file, first specify the file reference and 
then the nested-file name, enclosed in parentheses. 

Remarks • The command utility prompt is: 

60464018 J 

creai/ 

• In response to the crea 1 I prompt, you can enter 
NOSNE commands and any of these subcommands: 

QUIT 
DISPLAY _KEY _DEFINITIONS 
CREATE _KEY _DEFINITION 
DELETE _KEY _DEFINITION 
CANCEL _KEY _DEFINITIONS 
APPLY _KEY _DEFINITIONS 

CREATE_ALTERNATE_INDEXES 11-1 



CREATE _ALTERNATE _INDEXES 

Examples 

• The CREATE _ALTERNATE _INDEXES utility creates 
the specified keyed file if: 

The file does not exist and, 

A SET _FILE _ATTRIBUTES command has 
specified the KEY _LENGTH and 
MAXIMUM _RECORD _LENGTH attributes for the 
file. 

If the SET _FILE _ATTRIBUTES command defining the 
new file omits an attribute, the default attribute value 
is used. However, if it omits the 
FILE _ORGANIZATION attribute, indexed-sequential 
organization is used. 

• The CREATE_ALTERNATE_INDEXES command does 
not check your file permissions. The subcommands you 
enter in the utility session check that you have the 
required permissions to do the operation. 

To display key definitions, you must have at least 
read permission. To create, delete, cancel, or apply key 
definitions, you must have at least three permissions: 
append, modify, and shorten. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

This command begins a utility session that displays the 
alternate key definitions of keyed file $USER.IS _FILE. 

/create_alternate_ indexes input=Suser. is_f i le 
creai/display_key_def init ions key_names=al 1 display_opt ions=brief 

Display_Key_Def init ions NOS/VE Keyed File Ut i1 ities 1. 1 
File = :NVE.USER99. IS_FILE 

KEY NAME POSITION LOOTH TYPE STATE 

ALTERNATE_KEY_l 0 10 uncollated Exists in file 
creai/QUit "The APPLY_KEY_DEFINITIONS parameter is not required here 

"because no creation or de let ion reQ.Jests are pending. 

11-2 NOS/VE Commands and Functions 60464018 J 



ADD_PIECE 

ADD_PIECE 
CREKD Subcommand 

Purpose Defines a piece of a concatenated key within a 
CREATE _KEY _DEFINITION utility session. 

Format ADD _PIECE or 
ADDP 

POSITION= integer 
LENGTH= integer 
TYPE=keyword 
STATUS= status variable 

Parameters POSITION or KEY _POSITION or P or KP 

60464018 J 

Byte position in the record at which the piece begins. The 
byte positions are numbered from the left, beginning with 
0. The maximum byte position is 65496. This parameter 
is required. 

LENGTH or KEY _LENGTH or L or KL 

Number of bytes in the piece. The maximum length is 
255 bytes. The piece must be within the minimum record 
length unless sparse-key control is used. This parameter 
is required. 

TYPE or KEY _TYPE or T or KT 

Type of the piece. 

INTEGER (I) 

Integer key ordered numerically. 

UNCOLLATED (UC or U) 

Character key ordered byte-by-byte according to the 
ASCII collating sequence. 

COLLATED (C) 

Character key ordered byte-by-byte according to the 
collation table specified by the 
COLLATE _TABLE _NAME parameter on the 
CREATE _KEY _DEFINITION command. 

The default key type is UNCOLLATED. 

CREATE_ALTERNATE_INDEXES 11-3 



ADD_PIECE 

Remarks • The utility is initiated in response to a 
CREATE_KEY_DEFINITION subcommand that 
specifies the CONCATENATED_PIECES=TRUE 
parameter. 

• To end concatenated-key specification, enter the QUIT 
subcommand for the CREATE _KEY _DEFINITION 
utility. 

• You must enter an ADD _PIECE subcommand for each 
piece to be concatenated to the first piece to define a 
concatenated key. The first piece is defined by the 
KEY_LENGTH, KEY_POSITION, and KEY_TYPE 
parameters on the CREATE _KEY _DEFINITION 
command. 

• A concatenated key can comprise from 2 through 64 
pieces. The pieces are concatenated in the order that 
you enter the ADD _PIECE subcommands that defi11:e 
the pieces. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

11-4 NOS/VE Commands and Functions 60464018 J 



"'-.....__ ·' 

Examples 

APPLY _KEY _DEFINITIONS 

This CREATE _ALTERNATE _INDEXES session defines 
an alternate key that concatenates the first, third and 
fifth bytes of the record in reverse order. It displays the 
definition and then cancels the request. 

/create_a l ternate_ index input=Suser. is_f i le 
creai/create_key_def in it ion key_name=a 1ternate_key_2 .. 
crea i .. /key_pos it ion=4 key_ length= 1 concatenated_pieces=yes 
crekd/add_piece key_position=2 key_length=l 
crekd/ addp kp=O k l = 1 
crekd/quit 
creai/disp lay_key_def in it ions 

Display_Key_Def in it ions NOS/VE Keyed Fi le Utilities 1. 1 
Fi le = .NVE.USER99. IS_FILE 
KEY NAME POSITICJ-J LENGTH TYPE STATE 

AL TERNATE_KEY _2 4 
piece b 2 
piece c O 

Dupl icate_Key_Values : not_al lowed 
Nul l_Suppression : no 

1 uncollated Creation pending 
1 unco 11 ated 
1 uncollated 

RECOOO 1 ....... (in asci i) : T h i s i s t h e f i r s t r e c o r-
d 

( in hex ) : 5468697320697320746865206669727374207265636F72 
ALTERNATE_KEY_2 : c_ b_ a_ 

(in asci i) : d . 
( in hex ) : 642E 

creai/QUit cancel 
I 

APPLY _KEY _DEFINITIONS 
CREAi Subcommand 

Purpose Applies the pending alternate-key definition and deletion 
requests within a CREATE _ALTERNATE _INDEXES 
utility session. 

Format APPLY _KEY _DEFINITIONS or 
APPLY _KEY _DEFINITION or 
APPKD 

ERROR _LIMIT=integer 
STATUS= status variable 

Parameters ERROR _LIMIT or EL 

Number of trivial (non.fatal) errors allowed for the apply 
operation (integer from 0 through 65535). ~[[ 

A 0 value indicates no limit; 0 is the default value. 

See Remarks for a description of apply error processing. 

60464018 J CREATE_ALTERNATE_INDEXES 11-5 



APPLY_KEY_DEFINITIONS 

Remarks • This CREATE_ALTERNATE_INDEXES subcommand 
applies all pending alternate-key creation and deletion 
requests to the file. It applies deletion requests first 
and then the creation requests. 

• The ERROR _LIMIT file attribute value has no effect 
on keyed-file utility processing. This is done so that 
nonfatal errors (such as typing errors during 
interactive use) do not terminate the utility session. 

However, you can specify an error limit that applies to 
the apply operation only by specifying the 
ERROR _LIMIT parameter. 

• The two nonfatal (trivial) errors that an apply 
operation can detect result from improper record data, 
as follows: 

Duplicate _Key_ Value 

The duplicate _key_ value attribute of the alternate 
index being built is NOT_ALLOWED, but the 
apply operation finds an alternate-key value 
matching an alternate-key value already in the 
alternate index. 

Sparse _Key _Beyond _EOR 

The apply operation is building an alternate index 
that uses sparse-key control and it finds a record 
for which an alternate-key value should be included 
in the index except that the record is too short to 
provide a complete alternate-key value. 

• APPLY _KEY _DEFINITIONS keeps a count of the 
number of times it detects a nonfatal (trivial) error. 
Each time it increments the count, it checks whether 
the count has reached the value specified on the 
ERROR _LIMIT parameter. 

If the error limit is not yet reached, 
APPLY _KEY _DEFINITIONS performs the 
correction processing. for the condition as described 
later. 

If the error limit is reached, 
APPLY _KEY _DEFINITIONS terminates with a 
fatal error. The fatal error returned depends on the 
last nonfatal error detected: 

11-6 NOSNE Commands and Functions 60464018 J 



60464018 J 

APPLY_KEY_DEFINITIONS 

For a Duplicate_Key _Value error, it returns 
AAE$DUPLICATE _KEY _LIMIT. 

For a Sparse _Key _Beyond _EOR error, it 
returns AAE$ERROR_LIMIT_EXCEEDED. 

• Before terminating, APPLY _KEY _DEFINITIONS 
discards all alternate indexes it has built. (Deleted 
alternate indexes are not restored.) 

• If APPLY_KEY_DEFINITIONS finds one or more 
nonfatal errors, but completes its processing before 
reaching the error limit, it returns a warning message. 

• As correction processing for a 
sparse _key _beyond _EOR error, 
APPLY _KEY _DEFINITIONS does not enter an 
alternate-key value for the record in the alternate 
index it is building, even though the sparse-key 
character indicates that a value should be entered for 
the record. 

• As correction processing for a Duplicate _Key_ Value 
error, APPLY_KEY_DEFINITIONS changes the 
duplicate _key_ values attribute of the alternate-key 
definition from NOT _ALLOWED to 
ORDERED_BY_PRIMARY_KEY. It then discards the 
partially-built index and begins building the index 
again, ordering duplicate alternate-key values by their 
primary-key value. 

o Entry of a pause-break character is ignored during 
application of alternate-key definitions. 

o Entry of a terminate _break _character during 
application of alternate-key definitions returns a 
prompt to the terminal user, asking for confirmation. 

• As described in the prompt, the terminal user should 
then enter a carriage return or any entry other than 
RUIN FILE (uppercase or lowercase) to continue the 
application of alternate-key definitions. Applied 
alternate-key definitions can be removed without harm 
to the file after the apply operation executes. 

CREATE _ALTERNATE _INDEXES 11-7 



APPLY _KEY _DEFINITIONS 

Examples 

• A request to ruin the file is not recommended. No file 
operation can be performed on a ruined file; therefore, 
no data can be retrieved from the file. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

This CREATE _ALTERNATE _INDEXES session attempts 
to create and apply .an alternate key. The attempt fails 
when it finds a duplicate alternate-key value because the 
alternate-key definition does not allow duplicate values 
and the error limit for the apply is 1. 

/create_a 1 ternate_ indexes input=Suser. is_f i le 
crea 1/create_key_def init ion key_name=alternate_key_6 .. 
creai . ./key_posit ion=5 key_ length=lO 
creai /apply_key_def init ion error_ 1 imit=l 
-- File :NVE.USER99. IS_FILE begin creating labels for 
alternate key definitions. 
-- Fi le :NVE.USER99. IS_FILE : finished creating labels for 
alternate key definitions. 
-- File :NVE.USER99. IS_FILE : begin collecting the alternate 
key values from the file. 
-- File : NVE. USER99. IS_FILE : AMP$APPL Y _KEY _DEFINITI()JS has 
reached a file boundary: EDI. 
-- Fi le :NVE.USER99. IS_FILE : collecting of the alternate key 
values completed. 
-- File :NVE.USER99.IS_FILE: begin sorting the alternate key 
values. 
-- Fi le :NVE.USER99. IS_FILE : sorting of the alternate key 
values completed. 
-- Fi le :NVE.USER99. IS_FILE : begin building alternate key 
indexes into the file. 
-- File : NVE. USER99. IS_FILE : the AL TERNATE_KEY _6 index 

is being built. 
-- Fi le : NVE. USER99. IS_FILE : Alternate key AL TERNATE_KEY _6 

has been deleted. 
--ERROR-- Fi le :NVE.USER99. IS_FILE : 

AMP$APPLY_KEY_DEFINITI()JS enc()(,Jntered a duplicate key 
and found that error 1 imit had been reached. Because 
ERROR_LIMIT was involved, any new indexes were removed 
(though deleted indexes are gone). Had ERROO_LIMIT not 
been reached, the key definition would have been 
modified to allow duplicates. The duplicate key values 
relate to alternate key name = ALTERNATE_KEY_6, primary 
key = 96070, alternate_key_value = John Smith. 
-- FATAL-- Fi le :NVE.USER99. IS_FILE : 

AMP$APPLY_KEY_DEFINITI()JS : the user-declared maximum 
number of trivial errors has been recorded since the 
last CPEN. 
creai/q..iit 
I 

11-8 NOS/VE Commands and Functions 60464018 J 



CANCEL_KEY _DEFINITIONS 

CANCEL _KEY _DEFINITIONS 
CREAi Subcommand 

Purpose 

Format 

Removes a pending request to create or delete an 
alternate key within a CREATE_ALTERNATE_INDEXES 
utility session. 

CANCEL _KEY _DEFINITIONS or 
CANCEL _KEY _DEFINITION or 
CANKD 

NAMES=keyword or list of name 
STATUS=status variable 

Parameters NAMES or KEY _NAME or KEY _NAMES or N or 
NAME or KN 

Remarks 

60464018 J 

Pending requests to be canceled. 

list of names 

Cancel the requests for the listed alternate-key names. 

ALL 

Cancel all requests. 

This parameter is required. 

• The CANCEL_KEY_DEFINITIONS subcommand can 
cancel creation and deletion requests only while they 
are pending. 

• After a creation or deletion request is applied, the 
CANCEL_KEY_DEFINITIONS subcommand has no 
effect. To reverse the action of an 
APPLY_KEY_DEFINITIONS subcommand, you must 
issue new requests to delete the created alternate key 
or recreate the deleted alternate key. 

o For more information, see the NOSNE Advanced File 
Management Usage manual. 

CREATE_ALTERNATE_INDEXES 11-9 



CREATE_KEY_DEFINITION 

Examples This CREATE _ALTERNATE _INDEXES session requests 
creation of an alternate key and deletion of another 
alternate key, cancels the creation request, and finally 
applies the deletion request. 

/create_a lternate_ indexes input=$user. is_f i le 
crea i /create_key _definition key _name=a lternate_key _4 .. 
creai.. /key_pos it ion=5 key_ length=2 
creai/delete_key_def in it ion key_name=a lternate_key_ 1 
creai/cancel_key_def init ion a lternate_key_4 
creai/quit apply · 
-- Fi le :NVE.USER99. IS_FILE : begin deleting alternate key 
def in it ions. 
-- Fi le :NVE.USER99. IS_FILE : Alternate key Al TERNATE_KEY_ 1 
has been deleted. 
-- Fi le :NVE.USER99. IS_FILE : end deleting alternate key 
def in it ions. 
I 

CREATE _KEY _DEFINITION 
CREAi Subcommand 

Purpose 

Format 

Creates a pending alternate-key definition within a 
CREATE _ALTERNATE _INDEXES utility session. 

CREATE _KEY _DEFINITION or 
CREKD 

NAME=name 
POSITION= integer 
LENGTH= integer 
TYPE=keyword 
COLLATE _TABLE _NAME =name 
DUPLICATE _KEY_ VALUES= keyword or boolean 
NULL _SUPPRESSION= boolean 
SPARSE _KEY _CONTROL _POSITION= integer 
SPARSE _KEY _CONTROL _CHARACTERS =string 
SPARSE _KEY _CONTROL _EFFECT =keyword 
REPEATING _GROUP _LENGTH=integer 
REPEATING _GROUP _COUNT=integer or keyword 
GROUP _NAME=name 
CONCATENATED _PIECES =boolean 
VARIABLE _LENGTH _KEY =string 
STATUS= status variable 

11-10 NOS/VE Commands and Functions 60464018 J 



CREATE _KEY _DEFINITION 

Parameters NAME or KEY _NAME or N or KN 

Name of the new alternate key. The name must follow 
the SCL naming rules. This parameter is required. 

POSITION or KEY _POSITION or P or KP 

Byte position within the record at which the alternate-key 
field begins. The byte positions are numbered from the 
left, beginning with 0. The maximum byte position is 
65496. This parameter is required. 

LENGTH or KEY _LENGTH or L or KL 

Number of bytes in the alternate-key field. The maximum 
length is 255 bytes. The key field must be within the 
minimum record length (unless sparse key control is 
used). This parameter is required. 

TYPE or KEY _TYPE or T or KT 

Type of the alternate key. 

INTEGER (I) 

Integer key ordered numerically. 

UNCOLLATED (UC or U) 

Character key ordered byte-by-byte according to the 
ASCII collating sequence. 

COLLATED (C) 

Character key ordered byte-by-byte according to the 
collation table specified by the 
COLLATE_TABLE_NAME parameter. 

If the KEY _TYPE parameter is omitted, the key type is 
UNCOLLATED. 

COLLATE _TABLE _NAME or CTN 

Name of the collation table used to order the alternate 
key if its key type is collated. The collation table can be 
for NOSNE predefined collating sequence or a 
user-defined collating sequence. 

If the file is an indexed-sequential file with a collated 
primary key, the collation table for the primary key is 
used as the default collation table for an alternate key. 

Otherwise, you must specify a collation table for a 
'- collated alternate key. 

60464018 J CREATE_ALTERNATE_INDEXES 11-11 



CREATE _KEY_DEFINITION 

DUPLICATE _KEY_ VALUES or DKV 

Keyword value indicating whether duplicate alternate-key 
values are allowed and, if so, how the duplicate values 
are ordered. 

NOT_ALLOWED (NA) 

No duplicate values are allowed for the alternate key. 

ORDERED _BY _PRIMARY _KEY (OBPK) 

Duplicate values are allowed. Duplicates are accessed 
in order by their primary key. 

FIRST_IN _FIRST_OUT (FIFO) 

Duplicate values are allowed. Duplicates are accessed 
in the order of their primary-key value. 

TRUE (ON or YES) 

Duplicate values are allowed. 

FALSE (OFF or NO) 

No duplicates are allowed for the alternate key 

If the DUPLICATE _KEY_ VALUES parameter is omitted, 
no duplicate values are allowed. 

NULL _SUPPRESSION or S 

Reserved. 

SPARSE _KEY _CONTROL _POSITION or SKCP 

Byte position of the sparse-key control character. The 
position must be within the minimum record length. The 
byte positions are numbered from the left, beginning with 
0. The maximum byte position is 65496. 

NOTE 

The two parameters, 
SPARSE _KEY _CONTROL _POSITION and 
SPARSE_KEY_CONTROL_CHARACTERS, work 
together; they must either both be specified or both be 
omitted. If they are omitted, sparse-key control is not 
used for the alternate key. 

11-12 NOS/VE Commands and Functions 60464018 J 



'---

60464018 J 

CREATE _KEY _DEFINITION 

SPARSE_KEY_CONTROL_CHARACTERSorSKCC 
String containing the set of characters with which the 
sparse-key control character in each record is compared. 

SPARSE_KEY_CONTROL_EFFECTorSKCE 
Indicates whether a sparse-key control character match 
causes the alternate-key value to be included in or 
excluded from the alternate index. 

INCLUDE _KEY_ VALUE (IKV) 

The alternate-key value is included in the alternate 
index. 

EXCLUDE _KEY_ VALUE (EKV) 

The alternate-key value is excluded from the alternate 
index. 

You can specify the SPARSE _KEY _EFFECT param.eter 
only if you specify. the SPARSE _KEY _POSITION and 
SPARSE _KEY _CHARACTERS parameters. 

If the SPARSE _KEY _CONTROL _EFFECT parameter is 
omitted, INCLUDE _KEY_ VALUE is used. 

REPEATING_GROUP_LENGTHorRGL 
Length, in bytes of the repeating group of fields. It is the 
distance from the beginning of an alternate-key value to 
the beginning of the next value for the same alternate 
key in the same record. 

The group length range is from 1 through 65497. 

If the REPEATING_GROUP _LENGTH parameter is 
omitted, the alternate key has no more than one value 
per record. 

REPEATING_GROUP_COUNTorRGC 
Indicates how many alternate-key values are in a record. 
(The alternate-key value is in a repeating group of fields.) 

integer (1 through 65497) 

Number of times the alternate key occurs in a record. 
The specified number of alternate-key values must 
occur within the minimum record length. 

CREATE_ALTERNATE_INDEXES 11-13 



CREATE _KEY _DEFINITION 

REPEAT _TO _END _OF _RECORD (RTEOR) 

The alternate key repeats until the record ends. (An 
incomplete key at the end of the record is not used.) 

You can specify the REPEATING _GROUP _COUNT 
parameter only if you specify the 
REPEATING _GROUP _LENGTH parameter. 

If the REPEATING _GROUP _COUNT parameter is 
omitted, the alternate key repeats until the end of the 
record. 

GROUP _NAME or GN or KEY _GROUP _NAME or KGN 

Name of the key group for this key. The key-grouping 
feature is not currently implemented. The default value 
for the key-group name is the key name. 

CONCATENATED _PIECES or CONCATENATED _PIECE 
or CP 

Indicates whether the alternate key is a concatenated key. 

TRUE (ON or YES) 

The key is a concatenated key. 

FALSE (OFF or NO) 

The key is not· a concatenated key. 

If you specify CONCATENATED_PIECES=TRUE, the 
CREATE _KEY _DEFINITION command initiates the 
CREATE _KEY _DEFINITION subcommand utility. The 
utility prompt is crekd/ and it processes ADD _PIECE, 
HELP, and QUIT subcommands. 

H the CONCATENATED _PIECES parameter is omitted, 
the key is not a concatenated key. 

VARIABLE _LENGTH _KEY or VLK 

Indicates that the key is a variable _length key by 
specifying its set of delimiter characters. The set is 
specified as a string (0 through 256 characters, enclosed 
in apostrophes). 

If the REPEATING _GROUP _LENGTH parameter is 
omitted, no more than one value for the key is taken 
from a record. The end of the value is marked by a 
delimiter character, by the end of the key field 
(KEY_LENGTH length), or by the end of the record, 
whichever occurs first after the KEY _POSITION. 

11-14 NOSNE Commands and Functions 60464018 J 



Remarks 

60464018 J 

CREATE _KEY _DEFINITION 

If the REPEATING _GROUP _LENGTH parameter is 
specified, the record can contain more than one value for 
the key. Multiple key values are separated by one or 
more delimiter characters. The 
REPEATING _GROUP _COUNT parameter indicates 
whether the sequence of values continues to the end of 
the record or is limited to a fixed number of characters. 

If VARIABLE _LENGTH _KEY is omitted, the alternate 
key has fixed-length values. 

o The CREATE _KEY _DEFINITION subcommand defines 
an alternate key but does not apply the definition to 
the file. The definition remains pending until it is 
either applied or canceled. 

o A definition is applied by either an 
APPLY _KEY _DEFINITIONS subcommand or an 
APPLY _KEY _DEFINITIONS= YES parameter on the 
QUIT subcommand. It is canceled by a 
CANCEL_KEY_DEFINITIONS subcommand or an 
APPLY_KEY_DEFINITIONS=NO parameter on the 
QUIT subcommand. 

• The REPEATING_GROUP _LENGTH and the 
VARIABLE _LENGTH _KEY parameters cannot be 
specified with either the CONCATENATED _PIECES 
parameter or the 
DUPLICATE ..:KEY_ VALUES=FIRST _IN _FIRST _OU
T parameter. 

o If the alternate-key definition defines a collated key, 
CREATE _KEY _DEFINITIONS searches for the 
collation-table name as an entry point in the object 
libraries in the program-library list. 

• You must set the program-library list before you enter 
the utility. You cannot change the object libraries 
searched from within the utility session. 

o The following command adds an object library to the 
program-library list: 

/set_program_attributes add_library=file_reference 

• For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CREATE_ALTERNATE_INDEXES 11-15 



DELETE _KEY_DEFINITION 

Examples This CREATE _ALTERNATE _INDEXES utility session 
creates and applies an alternate-key definition to file 
$USER.IS _FILE. 

/create_a lternate_ index input=Suser. is_f i le 
creai/create_key_def init ion key_name=a lternate_key_ 1 .. 
creai .. /key_pos it ion=O key_ length= 10 
creai/qu it apply 
-- File :NVE.USER99. IS_FILE : begin creating labels for 
alternate key definitions. · 
-- File :NVE.USER99. IS_FILE : finished creating labels for 
alternate key definitions. 
-- File :NVE.USER99.IS_FILE: begin collecting the alternate 
key values from the file. 
--File :NVE.USER99.IS_FILE: AMP$APPLY_KEY_DEFINITI(}JShas 
reached a f i 1 e boundary: EO I . 
-- File :NVE.USER99. IS_FILE : collecting of the alternate key 
values completed. 
-- Fi le :NVE.USER99. IS_FILE : begin sorting the alternate key 
values. 
-- Fi le :NVE.USER99. IS_FILE : sorting of the alternate key 
values completed. 
-- Fi le :NVE.USER99. IS_FILE : begin bui ldtng alternate key 
indexes into the file. 
-- File :NVE.USER99.IS_FILE: the ALTERNATE_KEY_l index is 
being built. 
-- Fi le : NYE. USER99. IS_FILE : MP$APPLY _KEY_DEFINITIOO 
completed building the alternate indexes into the file. 
I 

DELETE _KEY _DEFINITION 
CREAi Subcommand 

Purpose 

Format 

Requests the deletion of an existing alternate key within 
a CREATE _ALTERNATE _INDEXES utility session. 

DELETE _KEY _DEFINITION or 
DELKD 

NAME=name 
STATUS= status variable 

Parameters NAME or KEY_NAME or Nor KN 

Remarks 

Name of the alternate key to be deleted. This parameter 
is required. 

• The DELETE _KEY _DEFINITION subcommand 
requests deletion of an alternate key but does not 
actually delete the key from the file. The deletion 
remains pending until it is applied by either an 
APPLY_KEY_DEFINITIONS or QUIT subcommand or,. 
it is canceled by a CANCEL _KEY _DEFINITIONS 
subcommand. 

11-16 NOSNE Commands and Functions 60464018 J 



'"--_, 

'--

Examples 

DISPLAY _KEY _DEFINITIONS 

o For more information, see the NOSNE Advanced File 
Management Usage manual. 

This CREATE _ALTERNATE _INDEXES session deletes an 
alternate key named ALTERNATE _KEY _I. 

/create_a lternate_ indexes input=$user. is_f i le 
creai/delete_key_definition key_name=alternate_key_l 
crea i/qu it app ly_key_def in it ions=yes 
-- Fi le : NVE.USER99. IS_FILE : begin deleting alternate key 
def in it ions. 
-- File :NVE.USER99.IS_FILE: Alternate key ALTERNATE_KEY_l 
has been deleted. 
-- File :NVE.USERSS.IS_FILE: end deleting alternate key 
def in i t i ans . 
I 

DISPLAY _KEY _DEFINITIONS 
CREAi Subcommand 

Purpose 

Format 

Parameters 

60464018 J 

Displays alternate-key definitions within a 
CREATE _ALTERNATE _INDEXES utility session. 

DISPLAY _KEY _DEFINITIONS or 
DISPLAY _KEY _DEFINITION or 
DISKD 

NAMES=keyword or list of name 
DISPLAY _OPTION=keyword 
SAMPLE _RECORD _COUNT=integer or keyword 
OUTPUT=file 
STATUS= status variable 

NAMES or KEY _NAME or KEY _NAMES or N or 
NAME or KN 

Indicates the alternate key definitions displayed. 

list of names 

Displays the specified alternate-key definitions. 

PENDING 

Displays only the pending alternate-key creations and 
deletions. 

CREATE _ALTERNATE _INDEXES 11-17 



DISPLAY_KEY _DEFINITIONS 

ALL 

Displays both pending and existing alternate-key 
definitions. 

If the KEY _NAMES parameter is omitted, only the 
pending alternate-key creations and deletions are 
displayed. 

DISPLAY _OPTION or DO 

Indicates the contents of the display. 

BRIEF (B) 

Displays the key name, position, length, type, and 
state. 

FULL (F) 

Displays all information in the alternate-key definition. 

SAMPLE _RECORDS (SR) 

Displays only sample records with the alternate keys 
marked. 

BRIEF _SAMPLE _RECORDS (BSR) 

Displays the brief definition and the sample records. 

FULL _SAMPLE _RECORDS (FSR) 

Displays the full definition and the sample records. 

ALL (A) 

If the DISPLAY_OPTIONS parameter is omitted, the full 
definition and the sample records are displayed. 

SAMPLE _RECORD _COUNT or SRC 

Indicates the number of records displayed if the 
DISPLAY_OPTIONS parameter requests a sample record 
display. 

integer 

Displays the specified number of records. Values can 
be 0 through 4398046511103. 

11-18 NOS/VE Commands and Functions 60464018 J 



Remarks 

, ____ , 

Examples 

60464018 J 

DISPLAY _KEY _DEFINITIONS 

ALL 

Displays all records in the file. 

The default is a one-record display. 

OUTPUT or 0 

File to which the display is written. If the OUTPUT 
parameter is omitted, the display is written to file 
$OUTPUT. 

o A sample-record display shows the record contents in 
ASCII characters and hexadecimal digits with the 
alternate-key fields underscored. Each alternate key is 
shown separately by underscores as follows: 

If the concatenated-key or repeating-groups 
attributes are not defined for the key, the 
underscore characters indicate the alternate-key 
type (C for collated, I for integer, or U for 
uncollated). 

If the key is a concatenated key, the underscores 
for each key field include one or two letters 
indicating the order the fields are concatenated 
(a_, b _, and so forth up to z _ and then, aa, ha, 
ca, and so forth). 

If the alternate-key definition specifies repeating 
groups, the underscores for each alternate-key 
value in the record include a number (1, 2, and so 
forth). 

o For more information, see the NOSNE Advanced File 
Management Usage manual. 

This CREATE _ALTERNATE _INDEXES session writes a 
display to file LIST. The listing includes all records in the 
file, marked with the proposed alternate-key 
ALTERNATE _KEY _2. 

/create_a lternate_ indexes input=Suser. is_f i le 
creai/crekd key_name=alternate_key_2 .. 
crea i.. /key_pos 1t ion=O key_ length=2 .. 
crea i .. /repeat ing_group_ length=20 
crea1/display_key_def1n1t1ons .. 
crea l. . Id 1sp1 ay _opt i on=samp l e_records .. 
crea1 . ./sample_record_count=al l output=l ist 
crea 1/QU it app ly_key_def in 1 t ions=no 
I 

CREATE _ALTERNATE _INDEXES 11-19 



I 

HELP 

HELP 

The following CREATE _ALTERNATE _INDEXES session 
contains a DISPLAY_KEY_DEFINITIONS subcommand 
for a default display, that is, a full definition of all 
pending alternate-key creations and deletions and a single 
sample record. 

/create_alternate_indexes input=Suser.is_file 
creai/create_key_def in it ion key_name=alternate_key_ 1 .. 
creai. ./key_position=O key_length=2 .. 
crea i/disp lay_key_def in it ions 

Display_Key_Definitions NOS/VE Keyed File Utilities 1. 1 
Fi le = .NVE.USER99. IS_FILE 

KEY NAME POSITION LENGTH TYPE STATE 

AL TERNATE_KEY_ 1 0 2 uncollated Creation pending 
Dupl icate_Key_Va lues 
Nul l_Suppression 
Repeat ing_Groups_Specif ied 

Repeat ing_Group_Length 
Repeat ing_Group_Count 

: not_al lowed 
: no 

: 4 
: repeat_to_end_of_record 

RECOOD 1 ..•.. (in asc ii) : T h 1 s i s t h e f i r s t r e c o r d 
( in hex ) : 5468697320697320746865206669727374207265636F72 

ALTERNATE_KEY_l : 1_1_ 2_2_ 3_3_ 4_4_ 5_5_ 6_6_ 
(in asci

0

1) : d . 
( in hex ) : 642E 

crea i /QU; t app 1 y_key_def in it ions=no 
I 

CREAi Subcommand 

Purpose Displays information about utility subcommands. 

Format HELP or 
HEL 

SUBJECT =string 
MANUAL= keyword or file 
STATUS= status variable 

Parameters SUBJECT or S 

Index topic to be located in the online manual. 

If SUBJECT is omitted, the HELP subcommand lists the 
names of the utility subcommands. 

MANUAL or M 

Online manual file whose index is searched. 

AFM 

The AFM online manual index is searched. 

11-20 NOS/VE Commands and Functions 60464018 J 



'--·. 

Remarks 

HELP 

FILE 

File name of the online manual whose index is 
searched. 

HELP 

If MANUAL is omitted, the default is AFM. The working 
catalog is searched for the file and then the 
$SYSTEM.MANUALS is searched. 

o If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

o The default manual, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOS/VE Advanced 
File Management Usage manual, as provided with the 
NOS/VE system. 

o If your terminal is defined for screen applications, the 
online manual is displayed in screen mode. 

To leave the online manual, use QUIT. To get help on 
reading the online manual, use HELP. 

• For more information, see the NOS/VE Advanced File 
Management Usage manual. 

CREKD Subcommand 

Purpose 

Format 

60464018 J 

Displays information about utility subcommands. 

HELP or 
HEL 

SUBJECT=string 
MANUAL=file 
STATUS=status variable 

CREATE_ALTERNATE_INDEXES 11-21 



HELP 

Parameters SUBJECT or S 

Remarks 

Index topic to be located in the online manual. 

If SUBJECT is omitted, the HELP subcommand lists the 
names of the utility subcommands. 

MANUAL or M 

Online manual whose index is searched. 

AFM 

The AFM online manual index is searched. 

File 

File name of the online manual whose index is 
searched. 

If MANUAL is omitted, the default is AFM. The working 
catalog is searched for the file and then the 
$SYSTEM.MANUALS is searched. 

• If you enter a topic that is not in the manual index, a 
message appears telling you that the topic could not 
be found. 

• The default manual, $SYSTEM.MANUALS.AFM, 
contains the online version of the NOSNE Advanced 
File Management Usage manual, as provided with the 
NOSNE system. 

• If your terminal is defined for screen applications, the 
online manual is displayed in screen mode. 

To leave the online manual, use QUIT. To get help on 
reading the online manual, use HELP. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

11-22 NOS/VE Commands and Functions 60464018 J 



'"-..._ __ 

QUIT 

QUIT 
CREAi Subcommand 

Purpose Ends the CREATE _ALTERNATE _INDEXES utility 
session. 

Format QUIT or 
QUI 

APPLY _KEY _DEFINITIONS=boolean or keyword 
ERROR _LIMIT= integer 
STATUS= status variable 

Parameters APPLY _KEY _DEFINITIONS or APPLY _KEY 
DEFINITION or AKD 

Remarks 

60464018 J 

Indicates how pending alternate-key creation and deletion 
requests are processed. 

APPLY (A), TRUE (ON or YES) 

Apply all pending creation and deletion requests. 

CANCEL (C), FALSE (OFF or NO) 

Cancel all pending creation and deletion requests. 

This parameter is required if creation or deletion requests 
are pending. 

ERROR _LIMIT or EL 

Number of trivial (nonfatal) errors allowed for the apply 
operation (integer from 0 through 65535). 

0 is the default value and indicates no limit. 

See the APPLY _KEY _DEFINITIONS command description 
for a description of apply error processing. 

o The APPLY _KEY _DEFINITIONS parameter is 
required only if alternate-key creation or deletion 
requests are pending. In this case, you must specify 
whether to apply or cancel the pending requests. 

If you request application of the pending creations 
and deletions, the QUIT subcommand performs the 
same processing as the APPLY _KEY_ 
DEFINITIONS subcommand before exiting the 
utility. 

CREATE _ALTERNATE _INDEXES 11-23 



QUIT 

Examples 

QUIT 

If you request cancellation of the requests, the 
QUIT subcommand performs the same processing 
as the CANCEL _KEY _DEFINITIONS subcommand 
before exiting the utility. 

• For more information, see the APPLY _KEY_ 
DEFINITIONS and CANCEL_KEY_DEFINITIONS 
subcommand descriptions. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

This CREATE _ALTERNATE _INDEXES session requests 
an alternate-key deletion and an alternate-key creation, 
but then cancels the requests. 

/create_alternate_indexes file=$user.1sf11e 
creai/delete_key_def1nit1on alternate_key_1 
creai/create_key_definition alternate_key_1 
creai .. /key_position=O key_length=S key_type=integer 
creai/Quit apply_key_definitions=no 
I 

CREKD Subcommand 

Purpose 

Format 

Remarks 

Examples 

Exits the CREATE_KEY_DEFINITION utility, ending 
concatenated-key specification. 

QUIT or 
QUI 

STATUS= status variable 

• Entry of the QUIT subcommand returns you to the 
CREATE _ALTERNATE _INDEXES utility session. 
This is indicated by the prompt creai/. 

• For more information, see the NOSNE Advanced File 
Management Usage manual. 

This CREATE _ALTERNATE _INDEXES session defines a 
concatenated alternate key having two pieces. The first 
piece is the ten bytes beginning at byte 5. (Remember, 
bytes are numbered from the left beginning with zero.) 
The second piece is the five-byte integer at the beginning 
of the record. 

11-24 NOSNE Commands and Functions 60464018 J 



"-----, 

SEPARATE_KEY_GROUPS 

/create_a lternate_ indexes input=$user. is_f i le 
creai/create_key_def init ion alternate_key_3 .. 
crea i .. /key_pos it ion=5 key_ length= 1 O .. 
crea i .. /concatenated_pieces=yes 
crekd/add_piece key_position=O key_length=5 .. 
crekd .. /key_type=integer 
crekd/QU it "Ex its CREATE_KEY _DEFINITIONS. 
creai/Quit no "Exits CREATE_ALTERNATE_INDEXES without 
I "applying the alternate-key definition. 

SEPARATE_KEY_GROUPS 
CREAi Subcommand 

Remarks Reserved for site personnel, Control Data, or future use. 

60464018 J CREATE_ALTERNATE_INDEXES 11-25 





CREATE _INTERSTATE _CONNECTION 12 

CREATE_INTERSTATE_CONNECTION ...................... 12-1 
DELETE_INTERSTATE_CONNECTION ...................... 12-2 
EXECUTE_INTERSTATE_COMMAND ....................... 12-2 

'---

60464018 J 





"--. .. / 

CREATE _INTERSTATE _CONNECTION 12 

CREATE _INTERSTATE _CONNECTION 
Command 

Purpose Establishes a NOS batch control point on a dual state 
system. 

Format CREATE _INTERSTATE _CONNECTION or 
CREIC 

PARTNER _JOB _CARD==string 
STATUS =status variable 

Parameters PARTNER _JOB _CARD or PJC 

Remarks 

60464018 J 

Specifies the job statement parameters to be used for the 
NOS batch job. The parameter syntax must conform to 
N_OS job statement rules. 

Omission causes the NOS default job statement 
parameters to be used (an infinite time limit and no other 
parameters specified). 

o After you enter a CREATE _INTERSTATE_ 
CONNECTION command, prompts are issued until you 
enter QUIT (QUI) or DELETE _INTERSTATE_ 
CONNECTION (DELIC). 

o While the interstate connection is open, you can enter 
any NOSNE command (except another CREIC 
command). You can enter NOS commands to be 
executed on the NOS side of the dual state system 
through the EXECUTE _INTERSTATE _COMMAND 
command. The CREIC command is generally used in 
conjunction with the File Management Utility to 
migrate files between NOS and NOSNE. 

o For more information, see the NOSNE Advanced File 
Management Usage manual. 

CREATE_INTERSTATE_CONNECTION 12-1 



DELETE _INTERSTATE _CONNECTION 

Examples The following commands create an interstate connection, 
execute NOS commands (ATTACH, DEFINE, and COPY), 
and close the connection. FA is the CREATE_ 
INTERSTATE _CONNECTION prompt for user input. 

/create_interstate_connection partner_job_card= .. 
. ./'myjob, ,64.' 
FA/execute_interstate_c0f11Tland c0f11Tland='attach,oldf1.' 
FA/execute_interstate_c0f11Tland c0111nand='define,newfl .' 
FA/execute_interstate_command conrnand= .. 
FA .. /'copy,oldfl,newfl.' 
FA/delete_interstate_connection 
I 

DELETE _INTERSTATE _CONNECTION 
CREIC Subcommand 

Purpose Ends a CREATE _INTERSTATE _CONNECTION session. 

Format DELETE_INTERSTATE_CONNECTION or 
QUI or 
QUIT or 
DELIC 

Parameters None. 

Remarks For more information, see the NOSNE Advanced File 
Management manual. 

EXECUTE _INTERSTATE _COMMAND 
CREIC Subcommand 

Purpose Precedes all NOS commands when the interstate 
connection established by CREATE _INTERSTATE_ 
CONNECTION (CREIC) is in effect. 

Format EXECUTE_INTERSTATE_COMMAND or 
EXEIC 

COMMANDS= list of string 
STATUS= status variable 

Parameters COMMANDS or COMMAND or C 

A NOS command followed by a period. The command 
string can include up to 80 characters and must be 
enclosed in apostrophes. This command is required. 

12-2 NOS/VE Commands and Functions 60464018 J 



Remarks 

60464018 J 

EXECUTE_INTERSTATE_COMMAND 

For more information, see the Migration From NOS to 
NOS/VE manual. 

CREATE _INTERSTATE _CONNECTION 12-3 





-'---

CREATE _OBJECT _LIBRARY 13 

CREATE_OBJECT_LIBRARY ................................ 13-1 
ADD _BOX ................................................... 13-2 
ADD_CONSTANT_TEXT ..................................... 13-4 
ADD_CONSTANT_TEXT_BOX ............................... 13-6 
ADD _DISPLAY .............................................. 13-8 
ADD _EVENT . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10 
ADD _LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 
ADD_MODULE ............................................ 13-14 
ADD_STORED_TEXT ...................................... 13-16 
ADD_TABLE .............................................. 13-18 
ADD_VARIABLE ........................................... 13-19 
ADD_VARIABLE_TEXT ................................... 13-24 
ADD_VARIABLE_TEXT_BOX ............................. 13-26 
BIND _MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
CHANGE_COMMAND_DESCRIPTION ..................... 13-32 
CHANGE_FUNCTION _DESCRIPTION ..................... 13-36 
CHANGE_MODULE_ATTRIBUTE .......................... 13-38 
CHANGE_PROGRAM_DESCRIPTION ...................... 13-45 
COMBINE_MODULE ...................................... 13-56 
CREATE_APPLICATION _MENU ........................... 13-59 
CREATE_BRIEF _HELP _MESSAGE ........................ 13-59 
CREATE_COMMAND_DESCRIPTION ...................... 13-60 
CREATE_FORM_MODULE ................................ 13-66 
CREATE _FULL _HELP _MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . 13-67 
CREATE _FUNCTION _DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . 13-68 
CREATE_LINKED_MODULE .............................. 13-72 
·cREATE_MENU _CLASS .................................. 13-78 
CREATE_MENU _ITEM .................................... 13-78 
CREATE_MESSAGE_MODULE ............................ 13-81 
CREATE_MODULE ........................................ 13-83 
CREATE_PARAMETER_ASSIST_MESSAGE ................ 13-87 
CREATE _PARAMETER_HELP _MESSAGE . . . . . . . . . . . . . . . . . 13-88 
CREATE_PARAMETER_PROMPT_MESSAGE .............. 13-89 
CREATE_PROGRAM_DESCRIPTION ....................... 13-91 
CREATE_STATUS_MESSAGE ............................. 13-102 
DELETE _MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-105 
DISPLAY_NEW_LIBRARY ................................ 13-105 
END _APPLICATION _MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-108 
END_FORM_MODULE ................................... 13-109 
END_MESSAGE_MODULE ............................... 13-109 
GENERATE _LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-110 
QUIT ..................................................... 13-113 
REORDER_MODULE ..................................... 13-113 

60464018 J 



REPLACE_MODULE ...................................... 13-115 
SATISFY_EXTERNAL_REFERENCE ...................... 13-117 
SET_CHARACTER_INPUT ............................... 13-119 
SET_COBOL_DATA ....................................... 13-120 
SET_COBOL_OUTPUT ................................... 13-122 
SET _DISPLAY _OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-124 
SET_EXPONENT_OUTPUT ............................... 13-126 
SET _FLOAT _OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-128 
SET_FORM ............................................... 13-129 
SET_INTEGER_INPUT ................................... 13-133 
SET_INTEGER_OUTPUT ................................. 13-134 
SET_MONEY_INPUT ..................................... 13-135 
SET _MONEY _OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-137 
SET_REAL_INPUT ....................................... 13-138 

60464018 J 



,, 

CREATE _OBJECT _LIBRARY 13 

CREATE _OBJECT _LIBRARY 
Command 

Purpose 

Format 

Remarks 

60464018 J 

Begins a CREATE _OBJECT _LIBRARY utility session. 
The utility produces an object library or an object file and 
allows post-compilation manipulation of object or load 
modules. It can also produce a text version of certain 
kinds of modules on an object library. 

CREATE _OBJECT _LIBRARY or 
CREOL or 
ocu 

STATUS= status variable 

• The following files can be created by the 
GENERATE _LIBRARY subcommand of this utility. 
The utility issues a warning and does not process 
input files whose attributes do not conform to the 
attributes listed in the right-hand column of the table 
below. The utility sets the accompanying file attributes 
listed for output files it creates. You can override 
attributes with the SCL SET _FILE _ATTRIBUTE 
command. 

File Created Attributes Given to the File 

Form source FILE _CONTENT= LEGIBLE_ 
SCL_INCLUDE 

Form variable FILE _CONTENT= LEGIBLE 

Object library FILE _CONTENT= OBJECT_ 
LIBRARY 

Object file FILE _CONTENT= OBJECT_ 
DATA 

SCL procedure FILE _CONTENT= LEGIBLE_ 
file SCL_PROCEDURE 

Message module FILE _CONTENT= LEGIBLE_ 
file SCL_INCLUDE 

CREATE _OBJECT _LIBRARY 13-1 



-ADD_BOX 

Examples 

o The CREOL session ends when you enter the QUIT 
subcommand. 

o For more information, see the NOS/VE Object Code 
Management manual. 

Following is a sequence that removes an object library 
from the command list, creates a new version of the 
object library from the modules on file $LOCAL.LGO, and 
then adds the object library to the command list. 

/delete_corrrnand_list_entry entry=$1ocal.my_corrmands 
/create_object_library 
COL/add_module $local. 190 
COL/generate_ library $local .my_conmands 
COL/quit 
/create_conmand_list_entry entry=$1ocal.my_conmands 
I 

ADD_BOX 
CREFM Subcommand 

Purpose ADD _BOX adds a graphic box object to a form. 

Format ADD _BOX or 
ADDB 

COLUMN=integer 
LINE= integer 
WIDTH= integer 
HEIGHT= integer 
DISPLAY= list of keyword 
NAME= name or cobol _name 
OCCURRENCE= integer 
STATUS= status variable 

Parameters COLUMN or C 

The column position for the upper left corner of the 
graphic box object. Column 1 is the upper left corner of 
the form. The valid values are from 1 through 256. This 
parameter is required. 

13-2 NOS/VE Commands and Functions 60464018 J 



60464018 J 

ADD_BOX 

LINE or L 

The line position for the upper left corner of the graphic 
box object. Line 1 is the upper left corner of the form. 
The valid values are from 1 through 256. This parameter 
is required. 

WIDTH or W 

The number of columns the graphic box object occupies. 
The valid values are from 1 through 256. This parameter 
is required. 

HEIGHT or H 

The number of lines the graphic box object occupies. The 
valid values are from 1 through 256. This parameter is 
required. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the graphic box object. The 
following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
BLACK-_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE_FOREGROUND 
GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
FINE_LINE 
MEDIUM _LINE 
BOLD_LINE 

The defaults are the foreground and background colors of 
the form. 

CREATE_OBJECT_LIBRARY 13-3 



ADD_CONSTANT_TEXT 

Remarks 

NAME or N 

The name of the graphic box object. The default is spaces. 

OCCURRENCE or 0 

The occurrence of the name. The valid values are from 1 
through 1000. The default is 1. 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_CONSTANT_TEXT 
CREFM Subcommand 

Purpose ADD _CONSTANT _TEXT adds a constant text object to 
the form. A constant text object occupies a single line. In 
contrast, a constant text box object occupies more than 
one line (see ADD_CONSTANT_TEXT_BOX). 

Format ADD _CONSTANT _TEXT or 
ADDCT 

COLUMN=integer 
LINE= integer 
TEXT= string 
DISPLAY =list of keyword 
NAME= name or cobol _name 
OCCURRENCE =integer 
WIDTH= integer 
STATUS= status variable 

Parameters COLUMN or C 

The position for the first column of the constant text 
object. Column 1 is the upper left corner of the form. The 
valid values are from 1 through 256. This parameter is 
required. 

LINE or L 

The line position for the constant text object. Line 1 is 
the upper left corner of the form. The valid values are 
from 1 through 256. This parameter is required. 

13-4 NOS/VE Commands and Functions 60464018 J 



60464018 J 

ADD_CONSTANT_TEXT 

TEXT or T 

The constant text. Neither the application program nor 
the application user can change this text. You can enter a 
string of from 1 to 65,535 characters. This parameter is 
required. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the constant text object. 
The program can change these attributes. The following 
values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
HIDDEN 
UNDERLINE 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED _BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE _FOREGROUND 
GREEN _FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 
MESSAGE 
DISPLAY _LEFT _TO _RIGHT 
DISPLAY _RIGHT _TO _LEFT 

The defaults are the foreground and background colors of 
the form and DISPLAY_LEFT_TO_RIGHT. 

CREATE_OBJECT_LIBRARY 13-5 



ADD_CONSTANT_TEXT_BOX 

Remarks 

NAME or N 

The name of the constant text object. The default is 
spaces. 

OCCURRENCE or 0 

The occurrence of the name. The valid values are from 1 
through 1000. The default is 1. 

WIDTH or W 

The number of columns the constant text object occupies. 
The valid values are from 1 through 256. The default is 
the number of characters in the text. 

Use this parameter to specify a display attribute that 
occupies more space than the text. 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_CONSTANT_TEXT_BOX 
CREFM Subcommand 

Purpose ADD_CONSTANT_TEXT_BOX adds a constant text box 
object to a form. A constant text box object occupies more 
than one line. In contrast, a constant text object occupies 
only one line (see ADD_CONSTANT_TEXT). 

Format ADD_CONSTANT_TEXT_BOX or 
ADDCTB 

COLUMN=integer 
LINE= integer 
TEXT= string 
WIDTH= integer 
HEIGHT= integer 
DISPLAY=list of keyword 
NAME= name or cobol _name 
OCCURRENCE= integer 
TEXT _FORMAT= keyword 
STATUS =status variable 

Parameters COLUMN or C 

The column position of the upper left corner of the 
constant text box object. Column 1 is the upper left 
corner of the form. The valid values are from 1 through 
256. This parameter is required. 

13-6 NOSNE Commands and Functions 60464018 J 



60464018 J 

ADD_CONSTANT_TEXT_BOX 

LINE or L 

The line position for the upper left corner of the constant 
text box object. Line 1 is the upper left corner of the 
form. The valid values are from 1 through 256. This 
parameter is required. 

TEXT or T 

The constant text (neither the application program nor the 
application user can change this text). You can enter a 
string of from 1 through 65,535 characters. This 
parameter is required. 

WIDTH or W 

The number of columns the constant text box object 
occupies. The valid values are from 1 through 256. This 
parameter is required. 

HEIGHT or H 

The number of lines the constant text box object occupies. 
The valid values are from 1 through 256. This parameter 
is required. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the constant text box 
object. (The program can change these attributes.) The 
following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
HIDDEN 
UNDERLINE 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK ~FOREGROUND 
BLUE _FOREGROUND 
GREEN _FOREGROUND 
MAGENTA_FOREGROUND 

CREATE_OBJECT_LIBRARY 13-7 

Ill 



ADD _DISPLAY 

Remarks 

RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 
MESSAGE 
DISPLAY _LEFT _TO _RIGHT 
DISPLAY _RIGHT _TO _LEFT 

The defaults are the foreground and background colors of 
the form and DISPLAY_LEFT_TO_RIGHT. 

NAME or N 

The name of the constant text box object. The default is 
spaces. 

OCCURRENCE or 0 

The occurrence of the name. The valid values are from 1 
through 1000. The default is 1. 

TEXT _FORMAT or TF 

The format for breaking text between lines. The following 
values are valid: 

Value Meaning 

WRAP_WORDS Breaks text between words. 

WRAP _CHARACTERS Breaks text at any character. 

The default is WRAP _WORDS. 

For more information, see the NOS/VE Screen Formatting 
manual. 

ADD _DISPLAY 
CREFM Subcommand 

Purpose ADD_DISPLAY specifies a program name for a terminal 
display attribute. When the program interacts with the 
form to change a display attribute of an object, it uses 
the name specified by this subcommand. 

13-8 NOS/VE Commands and Functions 60464:018 J 



Format ADD _DISPLAY or 
ADDD 

NAME=name or cobol_name 
DISPLAY=list of keyword 
STATUS= status variable 

ADD_DISPLAY 

Parameters NAME or N 

60464018 J 

The name the program uses to change display attributes 
for objects on the form. This parameter is required. 

DISPLAY or DISPLAYS or D 

A list of display attributes. These attributes correspond to 
the attributes specified in the terminal definition input 
statement. (For more information, see the NOSNE 
Terminal Definitions manual.) This parameter is required. 

The following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
UNDERLINE 
PROTECT 
HIDDEN 
BLACK_BACKGROUND 
BLUE _BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE _FOREGROUND 
GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED_FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
FINE_LINE 
MEDIUM _LINE 
BOLD_LINE 
ITALIC 
TITLE 

CREATE_OBJECT_LIBRARY 13-9 



ADD_EVENT 

Remarks 

Format 

Parameters 

INPUT 
ERROR 
MESSAGE 
DISPLAY_LEFT_TO_RIGHT 
DISPLAY _RIGHT:__To _LEFT 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD _EVENT or 
ADDE 

PROGRAM_EVENT=name or cobol_name 
TERMINAL _EVENT= keyword 
ACTION=keyword 
LABEL= string 
STATUS= status variable 

PROGRAM_EVENTorPE 

The name the program uses for an event. This parameter 
is required. 

TERMINAL_EVENT or TE 

The key or keys that execute the event. The values 
correspond to the function keys specified in the terminal 
definition input statements (for information, see the 
NOSNE Terminal Definitions manual). For information on 
how Screen Formatting uses the value you specify to 
assign a key, see the NOSNE Screen Formatting manual. 
This parameter is required. 

The following values are valid: 

NEXT 
HELP 
STOP 
BACK 
UP 
DOWN 
FORWARD 
BACKWARD 
UNDO 

SHIFT_NEXT 
SHIFT_HELP 
SHIFT_STOP 
SHIFT_BACK 
SHIFT_UP 
SHIFT_DOWN 
SHIFT _FORWARD 
SHIFT _BACKWARD 

13-10 NOS/VE Commands and Functions 60464018 J 



REDO 
QUIT 
EXIT 
FIRST 
LAST 
EDIT 
DATA 
Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FlO 
Fll 
F12 
F13 
F14 
F15 
F16 
PICK 
INSERT _LINE 
DELETE _LINE 
HOME 

SHIFT_EDIT 
SHIFT_DATA 
SHIFT_Fl 
SHIFT_F2 
SHIFT_F3 
SHIFT_F4 
SHIFT_F5 
SHIFT_F6 
SHIFT_F7 
SHIFT_F8 
SHIFT_F9 
SHIFT_FlO 
SHIFT_Fll 
SHIFT_F12 
SHIFT_F13 
SHIFT_F14 
SHIFT_F15 
SHIFT_F16 

The following terminal events are equivalent: 

QUIT 
EXIT 
FIRST 
LAST 

STOP 
SHIFT_STOP 
SHIFT _BACKWARD 
SHIFT _FORWARD 

ADD_EVENT 

When Screen Formatting returns these events, it uses the 
second form in the list. 

ACTION or A 

Screen Formatting's action when the terminal event 
occurs. For descriptions of the values, see the NOSNE 
Screen Formatting manual. This parameter is required. 

The following values are valid: 

RETURN _NORMAL 
"-·. RETURN ABNORMAL 

60464018 J CREATE_OBJECT_LIBRARY 13-11 



ADD_LINE 

Remarks 

Format 

PAGE_TABLE_FORWARD 
PAGE_TABLE_BACKWARD 
SCROLL_TABLE_FORWARD 
SCROLL_TABLE_BACKWARD 
DISPLAY _HELP 
ERASE_HELP 
IGNORE 
TAB_NEXT 
TAB _PREVIOUS 
SCROLL_ VARIABLE _FORWARD 
SCROLL_ VARIABLE _BACKWARD 
PAGE_ VARIABLE _FORWARD 
PAGE_ VARIABLE _BACKWARD 
PAGE_ VARIABLE _FIRST 
PAGE_ VARIABLE _LAST 
PAGE _TABLE _FIRST 
PAGE_TABLE_LAST 

LABEL or L 

The label for the event (this label appears on the screen). 
The label is a 0- to 6-character string. The default is no 
label. 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_LINE or 
ADDL 

START_COLUMN=integer 
START_LINE=integer 
END _COLUMN =integer 
END _LINE= integer 
DISPLAY= list of keyword 
NAME=name or cobol_name 
OCCURRENCE= integer 
STATUS=status variable 

13-12 NOS/VE Commands and Functions 60464018 J 



ADD_LINE 

Parameters START_COLUMN or SC 

The column position for the start of the graphic line 
object. Column 1 is the upper left corner of the form. The 
valid values are from 1 through 256. This parameter is 
required. 

,,_ START _LINE or SL 

The line position for the start of the graphic line object. 
Line 1 is the upper left corner of the form. The valid 
values are from 1 through 256. This parameter is 
required. 

END_COLUMN or EC 

The column position for the end of the graphic line object. 
The valid values are from 1 through 256. This parameter 
is required. 

END _LINE or EL 

The line position for the end of the graphic line object. 
The valid values are from 1 through 256. This parameter 
is required. 

"-----
DISPLAY or DISPLAYS or D 

A list of display attributes for the graphic line object. The 
following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE _FOREGROUND 

''- GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 

60464018 J CREATE_OBJECT_LIBRARY 13-13 



I 

ADD_MODULE 

Remarks 

WHITE _FOREGROUND 
FINE_LINE 
MEDIUM _LINE 
BOLD_LINE 

The defaults are the foreground and background colors of 
the form. 

NAME or N 

The name of the graphic line object. The default is spaces. 

OCCURRENCE or 0 

The occurrence of the name. The valid values are from 1 
through 1000. The default is 1. 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_MODULE 
CREOL Subcommand 

Purpose 

Format 

Adds one or more modules to the module list. 

ADD _MODULE or 
ADD _MODULES or 
ADDM 

LIBRARY=list of file 
MODULE= list of program _name or list of range of 
program _name 

PLACEMENT=keyword 
DESTINATION =program _name 
STATUS =status variable 

Parameters LIBRARY or LIBRARIES or L 

Object files, SCL procedure files, or object library files 
containing the modules to be added. This parameter is 
required. 

MODULE or MODULES or M 

Modules to be added. 

You use a string value for a module whose name is not 
an SCL name or a COBOL name. An example of such a 
module name is a C function, where lowercase is 
significant. 

13-14 NOSNE Commands and Functions 60464018 J 



Remarks 

60464018 J 

ADD_MODULE 

If MODULE is omitted, all modules on the files specified 
on the LIBRARY parameter are added. 

PLACEMENT or P 

Indicates whether the added modules are placed before or 
after the module specified on the DESTINATION 
parameter. Options are: 

BEFORE (B) 

Modules added before the destination module. 

AFTER (A) 

Modules added after the destination module. 

If PLACEMENT is omitted, AFTER is used. 

DESTINATION or D 

Module before or after which the added modules are 
placed. 

If DESTINATION is omitted, the location depends on the 
PLACEMENT parameter value. If 
PLACEMENT=BEFORE, the modules are placed at the 
beginning of the module list; if PLACEMENT= AFTER, 
the modules are placed at the end of the module list. 

• The ADD _MODULE subcommand can specify object 
files, SCL procedure files, or object· libraries. The 
CREOL utility adds modules from files in the order 
you specify the files on the LIBRARY parameter. If 
you do not want to use all modules in the files, 
specify which modules to be added on the MODULE 
parameter. 

• The ADD_MODULE subcommand adds each module to 
the end of the module list unless otherwise specified 
by the PLACEMENT and DESTINATION 
PARAMETERS. If the module list already contains a 
module of the same name, a warning status message 
is returned and the module is not added. 

o The ADD _MODULE subcommand does not replace 
modules in the module list. To replace modules, enter 
a REPLACE_MODULES subcommand. To add and 
replace modules, enter a COMBINE _MODULES 
subcommand. 

CREATE_OBJECT_LIBRARY 13-15 



ADD _STORED _TEXT 

Examples 

• If you specify an SCL procedure whose header 
references a non-standard type, you must make the 
type definition available. For instance, if you want to 
add the following procedure: 

PROCEDURE show( 
p1: address_list $required 
status) 

PROCEND show 

then the type definition for ADDRESS _LIST must be 
created outside the procedure. This is accomplished by 
using the TYPE control statement, as in: 

TYPE 
address_11st list 1 .. 3 of string 

TYPE ND 

• For more information, see the NOS/VE Object Code 
Management manual. 

The following subcommand adds all modules on files 
BINARY! and BINARY2 to the beginning of the module 
list. 

COL/add_module (binary1,b1nary2) placement=before 

ADD _STORED _TEXT 
CREFM Subcommand 

Purpose 

Format 

ADD _STORED _TEXT adds an initial value for a table 
variable occurrence that does not initially appear on the 
form. 

ADD_STORED_TEXT or 
AD DST 

VARIABLE_NAME=name or cobol_name 
OCCURRENCE= integer 
TEXT= string 
DISPLAY=list of keyword 
STATUS= status variable 

13-16 NOS/VE Commands and Functions 60464018 J 



ADD _STORED _TEXT 

Parameters VARIABLE _NAME or VN 

The name of the stored object. This parameter is required. 

OCCURRENCE or 0 

The occurrence of the name. The value 1 is the first or 
only occurrence. The valid values are from 1 through 
1000. This parameter is required. 

TEXT or T 

The initial text for the stored object. You can enter a 
string of from 1 through 65,535 characters. The default is 
spaces. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the variable text object. 
The following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
UNDERLINE 
PROTECT 

'---- HIDDEN 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED _BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE _FOREGROUND 
GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 

-"-- MESSAGE 

60464018 J CREATE_OBJECT_LIBRA.RY 13-17 



ADD_TABLE 

Remarks 

DISPLAY _LEFT _TO _RIGHT 
DISPLAY _RIGHT _TO _LEFT 

The defaults are the foreground and background colors of 
the form and DISPLAY_LEFT_TO_RIGHT. 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_TABLE 
CREFM Subcommand 

Purpose 

Format 

ADD_TABLE adds a table (a group of one or more 
variables). The table may have one or more occurrences. 

ADD_TABLE or 
ADDT 

TABLE_NAME=name or cobol_name 
VARIABLE _NAME= list of: name or cobol _name 
STORED _OCCURRENCE=integer . 
VISIBLE _OCCURRENCE =integer 
STATUS =status variable 

Parameters TABLE _NAME or TN 

The name of the table. This parameter is required. 

VARIABLE _NAME or VARIABLE _NAMES or VN 

A list of the names of variables that belong to the table. 
This parameter is required. 

STORED_OCCURRENCEorSTORED_ 
OCCURRENCES or SO 

The maximum number of stored occurrences allowed in 
the table. The value must be greater than or equal to the 
value for the VISIBLE_OCCURRENCE parameter. The 
valid values are from 1 through 1000. This parameter is 
required. 

VISIBLE _OCCURRENCE or VISIBLE _OCCURRENCES 
or VO 

The number of occurrences visible to the user. You must 
add a variable text object for each visible occurrence. The 
valid values are from 1 through 1000. The default is the 
value specified for STORED_OCCURRENCE. 

13-18 NOS/VE Commands and Functions 60464018 J 



Remarks 

ADD_ VARIABLE 

For more information, see the NOSNE Screen Formatting 
manual. 

ADD_ VARIABLE 
CREFM Subcommand 

Purpose 

Format 

Parameters 

60464018 J 

ADD_ VARIABLE specifies general attributes for a 
variable. 

ADD_ VARIABLE or 
ADDV 

VARIABLE_NAME=name or cobol_name 
IO _MODE= keyword 
DATA _TYPE =keyword 
ERROR _PROCESSING= keyword or name or string 
ERROR _DISPLAY= list of keyword 
HELP _PROCESSING=keyword or name or string 
LENGTH= integer 
USER _ENTRY= list of keyword 
COMMENT=list of string 
STATUS= status variable 

VARIABLE _NAME or VN 

The name of the variable. This parameter is required. 

IO _MODE or IM 

The input and output performed on the variable. The 
following values are valid: 

Value 

INPUT 

INPUT_OUTPUT 

Meaning 

The user inputs data, which is 
blanked as soon as possible. 

The user inputs data, which 
remains visible. The program 
outputs data to this variable. 

CREATE_OBJECT_LIBRARY 13-19 



ADD_ VARIABLE 

OUTPUT 

PROGRAM 

The program outputs data to the 
terminal (the user cannot enter 
data). Any user modification to the 
variable is corrected as soon as 
possible. 

Programs save data from one 
terminal interaction to another. 
The terminal user does not see the 
variable . 

. The default is INPUT _OUTPUT. 

DATA _TYPE or DT 

The data type of the variable. The following values are 
valid: 

Value 

CHARACTER 

COBOL 

INTEGER 

REAL 

. UPPERCASE 

Meaning 

Passes user-entered characters to the 
program without converting them. 

Converts user-entered characters to a 
COBOL format. 

Converts user-entered characters to 
an integer. 

Converts user-entered characters to a 
real number. 

Converts both user-entered and 
program-supplied characters to 
uppercase. 

The default is CHARACTER. 

ERROR _PROCESSING or EP 

Error processing for the variable. Error processing occurs 
when: 

• The user enters data that cannot be converted to the 
specified program data type. 

• The data is not one of the valid values for the 
variable. 

13-20 NOSNE Commands and Functions 60464018 J 



60464018 J 

o The user did not enter required data. 

The following values are valid: 

Value Meaning 

ADD_ VARIABLE 

name When an error occurs, Screen Formatting 
displays a form with the specified name. 

string 

NONE 

SYSTEM 

When an error occurs, Screen Formatting 
displays the specified string. The string 
can be from 0 through 256 characters. 

Screen Formatting displays nothing on 
the screen, but returns the error in the 
VARIABLE _STATUS parameter of the 
application program call. 

When an error occurs, Screen Formatting 
displays a .default message. 

The default is NONE. 

ERROR _DISPLAY or ERROR _DISPLAYS or ED 

A list of attributes for displaying an error when a 
variable does not pass validation. The following values are 
valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
UNDERLINE 
PROTECT 
HIDDEN 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED _BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK _FOREGROUND 
BLUE _FOREGROUND 
GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 

CREATE_OBJECT_LIBRARY 13-21 



ADD_VARIABLE 

CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 
MESSAGE 

The defaults are INVERSE and UNDERLINE. 

HELP _PROCESSING or HP 

Help processing for the variable. Help processing occurs 
when the user executes a help event. The following values 
are valid: 

Value 

name 

string 

NONE 

SYSTEM 

Meaning 

Displays a form with the specified name. 

Displays the specified string. The string 
can be from 0 through 256 characters. 

Displays no help information. 

Displays a default message. 

The default is NONE. 

LENGTH or L 

The length of the variable in characters. This attribute 
applies only to variables with the data type CHARACTER 
or UPPERCASE. The user can execute scrolling 
commands to see all the data in the program variable. 
The valid values are from 1 through 65535. The default is 
the size of the text object for the variable. 

13-22 NOS/VE Commands and Functions 60464018 J 



Remarks 

60464018 J 

ADD_ VARIABLE 

USER _ENTRY or USER _ENTRIES or UE 

The user entry actions for the variable. The following 
values are valid: 

Value 

OPTIONAL 

MUST_ENTER 

Meaning 

The user does not need to enter data 
for the variable. 

The user must enter data for the 
variable. 

The initial value of the variable need 
not be in the list of valid values. For 
example, you can use this value to 
require the user to enter a password, 
although you do not want to let the 
user see a valid password. The list of 
valid values lists valid passwords. 
You specify spaces as the initial 
value. 

The default is OPTIONAL. 

COMMENT or COMMENTS or C 

A list of strings to be saved as comments with the 
variable definition. By default, no comments are saved. 

o When you use this subcommand, you must also use 
either the ADD_VARIABLE_TEXT or ADD_ 
VARIABLE _TEXT _BOX subcommand. 

o When you specify COBOL for the DATA_TYPE 
parameter, you can also use the following 
subcommands to specify the program format and the 
display format for a COBOL variable: 

SET_COBOL_DATA 
SET_COBOL_OUTPUT 

If you do not use these subcommands, Screen 
Formatting uses the following string for each 
subcommand: 

PIC X(n) 

(n represents the size of the variable text object.) 

CREATE_OBJECT_LIBRARY 13-23 



ADD_ VARIABLE _TEXT 

• If you want Screen Formatting to validate a COBOL 
variable, use the following subcommands: 

SET _INTEGER _INPUT 
SET _REAL _INPUT 
SET _CHARACTER_INPUT 

For more information on validating COBOL variables, 
see the NOS/VE Screen Formatting manual. 

e When you specify CHARACTER, INTEGER, REAL, or 
UPPERCASE for the DATA_TYPE parameter, you can 
also use the following subcommands to specify the user 
entry format, the valid values, and the display format 
for the variable: 

SET _CHARACTER _INPUT 
SET_EXPONENT_OUTPUT 
SET_FLOAT_OUTPUT 
SET _INTEGER_INPUT 
SET _INTEGER_OUTPUT 
SET _MONEY _INPUT 
SET_MONEY_OUTPUT 
SET _REAL_INPUT 

If you do not use the preceding subcommands, Screen 
Formatting uses the defaults appropriate to the data 
type of the variable. 

• For more information, see the NOS/VE Screen 
Formatting manual. 

ADD_ VARIABLE _TEXT 
CREFM Subcommand 

Purpose 

Format 

ADD_ VARIABLE _TEXT adds a variable text object to 
the form. A variable text object occupies a single line. In 
contrast, a variable text box object occupies more than 
one line (see ADD_ VARIABLE _TEXT _BOX). 

ADD_VARIABLE_TEXT or 
ADD VT 

COLUMN=integer 
LINE= integer 
TEXT= string 

13-24 NOS/VE Commands and Functions 60464018 J 



ADD_VARIABLE_TEXT 

VARIABLE_NAME=name or cobol_name 
OCCURRENCE= integer 
DISPLAY= list of keyword 
WIDTH= integer 
STATUS= status variable 

Parameters COLUMN or C 

The position for the first column of the variable text 
object. Column 1 is the upper left corner of the form. The 
valid values are from 1 through 256. This parameter is 
required. 

LINE or L 

The line position for the variable text object. Line 1 is 
the upper left corner of the form. The valid values are 
from 1 through 256. This parameter is required. 

TEXT or T 

The initial text for the variable text object. You can enter 
a string of from 0 through 65,535 characters. If you want 
the initial display to be blank space, specify a null string 
and the WIDTH parameter. This parameter is required. 

VARIABLE _NAME or VN 

The name of the variable text object. This parameter is 
required. 

OCCURRENCE or 0 

The occurrence· of the name. The valid values are from 1 
through 1000. The default is 1. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the variable text object. 
The following values are valid: 

INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
UNDERLINE 
PROTECT 
HIDDEN 
BLACK_BACKGROUND 
BLUE_BACKGROUND 

~ GREEN_BACKGROUND 

60464018 J CREATE_OBJECT_LIBRARY 13-25 



ADD_ VARIABLE _TEXT _BOX 

Remarks 

MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK _FOREGROUND 
BLUE _FOREGROUND 
GREEN _FOREGROUND 
MAGENTA_FOREGROUND 
RED_FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 
MESSAGE 
DISPLAY _LEFT_ TO _RIGHT 
DISPLAY _RIGHT_ TO _LEFT 

The defaults are the foreground and background colors of 
the form and DISPLAY_LEFT_TO_RIGHT. 

WIDTH or W 

The number of columns the variable text object occupies. 
The valid values are from 1 through 256. The default is 
the number of characters in the text. 

Use this parameter when you want a display attribute to 
occupy more space than the text. 

• When you use this subcommand, you must also use 
the ADD_ VARIABLE subcommand. 

• For more information, see the NOSNE Screen 
Formatting manual. 

ADD_ VARIABLE _TEXT _BOX 
CREFM Subcommand 

Purpose ADD_ VARIABLE _TEXT _BOX adds a variable text box 
object to a form. A variable text box object occupies more 
than one line. In contrast, variable text occupies only one 
line (see ADD_VARIABLE_TEXT). 

13-26 NOS/VE Commands and Functions 60464018 J 



'-- -

Format 

ADD_ VARIABLE _TEXT _BOX 

ADD_ VARIABLE _TEXT _BOX or 
ADD VTB 

COLUMN= integer 
LINE= integer 
TEXT= string 
WIDTH= integer 
HEIGHT=integer 
VARIABLE_NAME=name or cobol_name 
OCCURRENCE= integer 
DISPLAY= list of keyword 
TEXT _FORMAT=keyword 
STATUS=status variable 

Parameters COLUMN or C 

60464018 J 

The column position of the upper left corner of the 
variable text box object. Column 1 is the upper left corner 
of the form. The valid values are from 1 through 256. 
This parameter is required. 

LINE or L 

The line position of the upper left corner of the variable 
text box object. Line 1 is the upper left corner of the 
form. The valid values are from 1 through 256. This 
parameter is required. 

TEXT or T 

The initial text for the variable text box object. You can 
enter a string of from 0 through 65,535 characters. If you 
want the initial display to be blank space, specify a null 
string. This parameter is required. 

WIDTH or W 

The number of columns the variable text box object 
occupies. The valid values are from 1 through 256. This 
parameter is required. 

HEIGHT or H 

The number of lines the variable text box object occupies. 
The valid values are from 1 through 256. The parameter 
is required. 

VARIABLE _NAME or VN 

The name of the variable text box object. This parameter 
is required. 

CREATE _OBJECT_LIBRARY 13-27 

II 
I 



ADD_ VARIABLE _TEXT _BOX· 

OCCURRENCE or 0 

The occurrence of the name. The valid values are from 1 
through 1000. The default is 1. 

DISPLAY or DISPLAYS or D 

A list of display attributes for the variable text box 
object. The following values are valid: 

·INVERSE 
LOW _INTENSITY 
HIGH _INTENSITY 
BLINK 
UNDERLINE 
PROTECT 
HIDDEN 
BLACK_BACKGROUND 
BLUE_BACKGROUND 
GREEN_BACKGROUND 
MAGENTA_BACKGROUND 
RED_BACKGROUND 
CYAN _BACKGROUND 
YELLOW_BACKGROUND 
WHITE _BACKGROUND 
BLACK_FOREGROUND 
BLUE_FOREGROUND 
GREEN_FOREGROUND 
MAGENTA_FOREGROUND 
RED _FOREGROUND 
CYAN _FOREGROUND 
YELLOW_FOREGROUND 
WHITE _FOREGROUND 
ITALIC 
TITLE 
INPUT 
ERROR 
MESSAGE 
DISPLAY _LEFT _TO _RIGHT 
DISPLAY _RIGHT _TO _LEFT 

The defaults are the foreground and background colors of 
the form. 

13-28 NOS/VE Commands and Functions 60464018 J 



Remarks 

BIND _MODULE 

TEXT _FORMAT or TF 

The format for breaking text between lines. The following 
values are valid: 

Value Meaning 

WRAP_WORDS Breaks text between words. 

WRAP _CHARACTERS Breaks text at any character. 

The default is WRAP_ WORDS. 

• When you use this subcommand, you must also use 
the ADD_ VARIABLE subcommand. 

• For more information, see the NOSNE Screen 
Formatting manual. 

BIND _MODULE 
CREOL Subcommand 

Purpose Subcommand used in a restructuring procedure to bind 
component modules into a single load module. This 
subcommand is not recommended for your use. The 
subcommand description is provided only to help you 
interpret the commands in a restructuring procedure. To 
create a new module by binding component modules, you 
should use the subcommand CREATE _MODULE. 

Format BIND _MODULE or 
BINM 

MODE=keyword 
NAME= program _name 
FILE=file 
STARTING _PROCEDURE =program _name 
SECTION _ORDER= list of record 
PRESET _VALUE=keyword 
INCLUDE _BINARY _SECTION _MAPS= boolean 
OUTPUT=file 
STATUS=status variable 

60464018 J CREATE_OBJECT_LIBRARY 13-29 



I 
ii 

I 

BIND _MODULE 

Parameters MODE or M 

Indicates whether additional BIND _MODULE 
subcommands for the module follow this subcommand. 
Options are: 

CONTINUE 

More BIND _MODULE subcommands follow. 

QUIT 

This is the last BIND _MODULE subcommand for the 
module. 

This parameter is required. 

NAME or N 

Name of the new module. This parameter is required only 
on the first BIND _MODULE subcommand for the module. 

Use a string value for a module name which is not an 
SCL name or a COBOL name. 

FILE or F 

File containing the modules to be bound. This parameter 
is required only on the first BIND_MODULE 
subcommand for the module. 

STARTING _PROCEDURE or SP 

Name of the transfer 5ymbol for the new module. 

You use a string value for a transfer symbol whose name 
is not an SCL name. 

If STARTING _PROCEDURE is omitted, the last transfer 
symbol encountered is used. 

SECTION _ORDER or SO 

Parameter Attributes: BY _NAME 

Code section ordering for the component modules in the 
new module. Each record in the list contains a module 
name and its section ordinal. 

13-30 NOS/VE Commands and Functions 60464018 J 



Remarks 

60464018 J 

PRESET_ VALUE or PV 

Parameter Attributes: BY_NAME 

Specifies text record reduction as follows. 

ZERO (Z) 

BIND _MODULE. 

Reduces the number of individual text records in an 
object module. Reducing the number of records reduces 
the amount of time it takes to load the module. 

If PRESET_ VALUE is omitted, the number of text records 
is not reduced. 

INCLUDE _BINARY _SECTION _MAPS or IBSM 

Parameter Attributes: BY_NAME 

Indicates whether the binary section map is included in 
the information element for the bound module. 

OUTPUT or 0 

Parameter Attributes: BY _NAME 

File to which the section map for the new module is 
written. This file can be positioned. If OUTPUT is 
omitted, no section map is written. 

• The new module is not generated until you enter a 
GENERATE _LIBRARY subcommand. Therefore, the 
section map for the module is not written on the file 
specified on the OUTPUT parameter until the module 
is generated. 

o A restructuring procedure uses a sequence of BIND_ 
MODULE subcommands to direct the generation of the 
load module. The first subcommand in the sequence 
must specify the module name and the file containing 
the modules to be bound. Each subcommand except the 
last in the sequence for the module must specify 
MODE= CONTINUE. The last subcommand in the 
sequence must specify MODE=QUIT. Refer to the 
Application Efficiency chapter of the Object Code 
Management manual for more information on 
restructuring. 

• For more information, see the NOSNE Object Code 
Management manual. 

CREATE _OBJECT_LIBRARY 13-31 

I 
I 



CHANGE _COMMAND _DESCRIPTION 

Examples The following is a restructuring procedure generated for 
two object modules named EXAMP and N AND on file 
BIN3. 

PROCEDURE MY_PROC( 
target_text, tt: file=: $LOCAL .BJN3 
restructured_module,rm: f i le=$LOCAL. MY _FILE 
restructured_module_name,rmn:program_name='MY_FILE' 
status) 

create_object_ library 
bind_module name=Sstring(restructured_module_name) .. 

file=target_text mode=continue 
bind_module "EXAMP "section_order=(('EXAMP' 1)) .. 

mode=cont inue 
bind_module "NANO " sect ion_order=({ 'NANO' 1)) .. 

mode=QUit 
generate_ library l ibrary=restructured_module 

QUit 
PROCEtl> 

CHANGE _COMMAND _DESCRIPTION 
CREOL Subcommand 

Purpose Changes the command description for a command 
processor. 

Format CHANGE_COMMAND_DESCRIPTION or 
CHA CD 

NAME= list of name 
STAR.TING _PROCEDURE=program_name 
LIBRAR.Y =keyword or file or string 
SYSTEM _COMMAND _NAME=name 
AVAILABILITY= keyword 
SCOPE=keyword 
LOG _OPTION= keyword 
APPLICATION _lDENTIFIER=keyword or name 
STATUS =status variable 

Parameters NAME or NAMES or N 

The names of the command descriptions being changed. 
This parameter is required. 

STARTING _PROCEDURE or SP 

Parameter Attributes: BY _NAME 

Name of the command processor's starting procedure 
(entry point in the module). Specify a name which 
conforms to the type PROGRAM_NAME. For names that 
are not SCL or COBOL names, use a string value. An 
example is a C function name, in which lowercase is 
significant. 

13-32 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE_COMMAND _DESCRIPTION 

You may specify either this parameter or the SYSTEM_ 
COMMAND_NAME parameter, but not both. 

LIBRAR.Y or L 

Parameter Attributes: BY _NAME 

Designates the library containing the command processor's 
starting procedure. Enter the name of the library, or 
enter the file path to the library as a string value. File 
paths containing $FAMILY, $USER, or $SYSTEM 
elements or file variable names should be entered as 
strings. The string is then evaluated at the time the 
command description is used. 

The keyword OSF$CURRENT _LIBRARY specifies the 
library containing the command description. 

You may specify this parameter only if a STARTING_ 
PROCEDURE parameter is specified for the command 
description. 

SYSTEM _COMMAND _NAME or SCN 

Parameter Attributes: BY _NAME 

The name of a command in the $SYSTEM command list 
entry. This name need not be the same as the name 
specified on the NAME parameter. 

When this parameter is specified, the command is called 
by means of the library containing the command 
description and not actually via $SYSTEM. To the user, 
however, this distinction is transparent. 

You may specify either this parameter or the 
STARTING_PROCEDURE parameter, but not both. 

AVAILABILITY or A 

Parameter Attributes: BY _NAME 

Specifies whether the command is included in a display of 
the command list. Keyword options are: 

NORMAL_USAGE (NU) 

The command is included in displays of the command 
list as output on the DISPLAY _COMMAND _LIST_ 
ENTRY command and other similar situations. 

CREATE_OBJECT_LIBRARY 13-33 



CHANGE _COMMAND _DESCRIPTION 

ADVANCED_USAGE (AU) 

The command is included in displays of the user's 
command list but only if the user specifies the 
ADVANCED _USAGE display option for the DISPLAY_ 
COMMAND _LIST _ENTRY command. 

HIDDEN (H) 

The command is not included in displays of the user's 
command list. 

The default is NORMAL _USAGE. 

SCOPE or S 

Parameter Attributes: BY _NAME 

The manner in which the command processor may be 
called. The keyword options are: 

XDCL (X) 

The command is externally declared and may be called 
from outside the object library on which it resides. 

GATE (G) 

The command processor can be invoked from ring 
brackets that are less privileged than the command 
processor's execution ring brackets. The GATE 
attribute implies the XDCL attribute. 

LOCAL (L) 

Reserved. 

The default is XDCL. 

LOG _OPTION or LO 

Parameter Attributes: BY _NAME 

Determines the manner in which calls to the command 
are logged. The keyword options are: 

AUTOMATIC (A) 

The logging is performed by the SCL Interpreter. 

MANUAL (M) 

Logging is performed by the command processor. Use 
this option to suppress logging of secure information 
that should not be written to a log. 

13-34 NOSNE Commands and Functions 60464018 J 



Remarks 

Examples 

60464018 J 

CHANGE _COMMAND _DESCRIPTION 

The default is AUTOMATIC. 

APPLICATION _IDENTIFIER or AI 

Parameter Attributes: BY _NAME, ADVANCED 

Name of the application associated with the command. 
When the command is executed, accounting statistics for 
the application are gathered. 

Only a user with APPLICATION _ADMINISTRATION 
capability can specify an application identifier. 

If this parameter is not specified, no application is 
associated with the command. 

• This command changes values for an ·already existing 
command description. For more information about 
command descriptions, see the CREATE _COMMAND_ 
DESCRIPTION subcommand. 

o For more information, see the NOSATE Object Code 
Management manual. 

You use this subcommand to change an existing command 
description. The following example changes the command 
description for the command processor TAPE _FILE_ 
DUMP. The example shows the changing of the LIBRARY 
and STARTING_PROCEDURE for TAPE_FILE_DUMP. 

COL/change_conmand_description .. 
COL .. /name=tape_file_dump .. 
COL .. /starting_procedure=new_tape_prog 
COL .. /11brary=:nve.sm1th.program_11brary 

When the TAPE _FILE _DUMP command is called, the 
module containing starting procedure NEW _TAPE _PROG 
in library :NVE.SMITH.PROGRAM_LIBRARY will be 
loaded. 

CREATE _OBJECT_LIBRARY 13~35 

I 
I 



CHANGE _FUNCTION _DESCRIPTION 

CHANGE _FUNCTION _DESCRIPTION 
CREOL Subcommand 

Purpose 

Format 

Changes the function description parameters for a function 
processor. 

CHANGE _FUNCTION _DESCRIPTION or 
CHAFD 

NAME=data_narne or list of data_name 
STAR.TING _PROCEDURE=program_name 
LIBRAR.Y=keyword or file or string 
AVAILABILITY= keyword 
SCOPE= keyword 
STATUS= status variable 

Parameters NAME or NAMES or N 

The names of the function descriptions being changed. 

For more information about the DATA_NAME type, see 
the NOSNE System Usage manual. 

This parameter is required. 

STARTING _PROCEDURE or SP 

Parameter Attributes: BY _NAME 

Name of the function processor's starting procedure (entry 
point in the module). Specify a name which conforms to 
the type PROGRAM_NAME. For names other than SCL 
or COBOL names, use a string value. An example is a C 
function name, in which lowercase is significant. 

LIBRAR.Y or L 

Parameter Attributes: BY _NAME 

Designates the library containing the function processor's 
starting procedure. Enter the name of the library, or 
enter the file path to the library as a string value. File 
paths containing $FAMILY, $USER, or $SYSTEM 
elements or file variable names should be entered as 
strings. The string is then evaluated at the time the 
function description is added to the task from which the 
function is called. 

The keyword OSF$CURRENT _LIBRARY specifies the 
library containing the function description. 

13-36 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE _FUNCTION _DESCRIPTION 

AVAILABILITY or A 

Parameter Attributes: BY _NAME 

Specifies whether the function is included in a display of 
the command list. Keyword options are: 

NORMAL_USAGE (NU) 

The command is included in displays of the command 
list as output on the DISPLAY _COMMAND _LIST_ 
ENTRY command and other similar situations. 

ADVANCED_USAGE (AU) 

The command is included in displays of the user's 
command list but only if the user specifies the 
ADVANCED_USAGE display option for the DISPLAY_ 
COMMAND _LIST _ENTRY command. 

HIDDEN (H) 

The command is not included in displays of the user's 
command list. 

The default is NORMAL_USAGE. 

SCOPE or S 

Parameter Attributes: BY _NAME 

The manner in which the function processor may be 
called. The keyword options are: 

XDCL (X) 

The function is externally declared and may be called 
from outside the object library on which it resides. 

GATE (G) 

The function processor can be invoked from rings less 
privileged than the function processor's execution ring 
brackets. The GATE attribute implies the XDCL 
attribute. 

LOCAL (L) 

Reserved. 

The default is XDCL. 

CREATE_OBJECT_LIBRARY 13-37 



II 
I 

CHANGE _MODULE _ATTRIBUTE 

Remarks 

Examples 

o This command changes values for an already existing 
function description. For more information about 
function descriptions, see the CREATE_ FUNCTION_ 
DESCRIPTION subcommand. 

• For more information, see the NOSNE Object Code 
Management manual. 

You use this subcommand to change an existing function 
description. The following example changes the function 
description for the function processor $WH 0. 

COL /change_function_description name=$who 
COL .. /availability=advanced_usage 

CHANGE _MODULE _ATTRIBUTE 
CREOL Subcommand 

Purpose 

Format 

Changes one or more attributes of a module in the 
module list. 

CHANGE _MODULE _ATTRIBUTE or 
CHANGE _MODULE _ATTRIBUTES or 
CHAMA 

MODULE= keyword or list of program_name or 
list of range of program _name 

NEW _NAME= program _name 
SUBSTITUTE.=list of record 
OMIT=list of program_name 
GATE= keyword or list of program _name 
NOT _GATE= keyword or list of program _name 
STAR.TING _PROCEDURE=program_name 
OMIT _LIBRAR.Y=list of name 
ADD_LIBRAR.Y=list of name 
RETAIN= keyword or list of program _name 
NOT _RETAIN= keyword or list of program _name 
OMIT _NON _RETAINED _ENTRY _POINTS =boolean 
OMIT _DEBUG _TABLES=keyword or list of keyword 
COMMENT=string 
APPLICATION _lDENTIFIER=keyword or name 
CYBIL _PARAMETER _CHECKING= keyword 
STATUS=status variable 

13-38 NOS/VE Commands and Functions 60464018 J 



CHANGE _MODULE _ATTRIBUTE 

Parameters MODULE or MODULES or M 

Modules whose attributes are changed. 

60464018 J 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
a module name is a C function, where lowercase is 
significant. 

ALL may be specified to change the attributes of all 
modules. 

This parameter is required. 

NEW_NAME or NN 

New module name. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. Other kinds of 
module names must be specified as a string. 

If the keyword ALL is specified on the MODULE 
parameter, or more than one name is specified on the 
MODULE parameter, NEW_NAME should not be used. 

If NEW_NAME is omitted, the module name is not 
changed. 

SUBSTITUTE or SUBSTITUTES or S 

Parameter Attributes: BY_NAME 

List of name substitutions. Each record in the list 
specifies two names: the name to be replaced and the 
name to replace it. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
a name is in the C language where lowercase is 
significant. 

The name to be replaced can be an entry point name or 
the name of a CYBIL variable with the XDCL attribute. 
If SUBSTITUTE is omitted, no names are changed. 

OMIT or 0 

Parameter Attributes: BY _NAME 

List of names whose definitions are removed from the 
module. The name to be removed can be an entry point 
name or the name of a CYBIL variable with the XDCL 
attribute. 

CREATE_OBJECT_LIBRARY 13-39 



I 
Iii 

I 

CHANGE _MODULE_ATTRIBUTE 

You use a string value for an entry point whose name is 
not an SCL name. If OMIT is omitted, no name 
definitions are removed. 

GATE or GATES or G 

Parameter Attributes: BY _NAME 

List of entry points to which the gate attribute is added. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
an entry point is a name in the C language where 
lowercase is significant. 

If ALL is specified, the gate attribute is added to all 
entry points in the module. 

If GATE is omitted, the gate attribute is not added to any 
entry point name. 

NOT _GATE or NOT _GATES or NG 

Parameter Attributes: BY _NAME 

List of entry points from which the gate attribute is 
removed. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
an entry point is in the C a language where lowercase is 
significant. 

If ALL is specified, the gate attribute is removed from all 
entry points in the module. 

If NOT _GATE is omitted, the gate attribute is not 
removed from any entry point. 

STARTING _PROCEDURE or SP 

Parameter Attributes: BY _NAME 

Name of the entry point where execution begins. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
an entry point name is in the C language where 
lowercase is significant. 

If STARTING _PROCEDURE is omitted, the starting 
procedure is not changed. 

13-40 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE _MODULE_ATTRIBUTE 

OMIT _LIBRARY or OMIT _LIBRARIES or OL 

Parameter Attributes: BY _NAME 

List of local file names to be removed from the object text 
(text-embedded libraries). The local file names specify 
object libraries to be added to the program library list 
when the module is loaded. All specifications for these 
files are removed from the object text when the load 
module is written on the new object library. 

If OMIT _LIBRARY is omitted, no library specifications 
are removed. 

ADD _LIBRARY or ADD _LIBRAIUES or AL 

Parameter Attributes: BY_NAME 

List of local file names to be added to the object text 
(text-embedded libraries). The local file names specify 
object libraries to be added to the program library list 
when the module is loaded. The CREO~ utility adds the 
file specifications to each module when it writes the load 
module on the new object library. 

If ADD _LIBRARY is omitted, no library specifications are 
added. 

RETAIN or R 

Parameter Attributes: BY _NAME 

List of additional entry points to be given the retain 
attribute. An entry point with the retain attribute is kept 
in a new module created by combining this module with 
other. modules. 

You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
an entry point is in the C language, where lowercase is 
significant. 

If ALL is specified, the retain attribute is given to all 
entry points. 

If RETAIN is omitted, no additional entry points are 
given the retain attribute. 

NOT _RETAIN or NR 

Parameter Attributes: BY _NAME 

List of entry points from which the retain attribute is 
removed. Without the retain attribute, the entry point is 
removed from any new module created by combining this 

CREATE _OBJECT _LIBRARY 13-41 



CHANGE _MODULE _ATTRIBUTE 

module with other modules that reference the entry point. 
You use a string value for an entry point whose name is 
not an SCL name or a COBOL name. An example of such 
an entry point is in the C language where lowercase is 
significant. 

If ALL is specified, the retain attribute is removed from 
all entry points. 

If NOT _RETAIN is omitted, the retain attribute is not 
removed from any entry point. 

OMIT _NON _RETAINED _ENTRY _POINTS or ONREP 

Parameter Attributes: BY _NAME 

Specifies that all entry points are removed from the 
module unless they are explicitly retained. If OMIT_ 
NON _RETAINED _ENTRY _POINTS is omitted, all entry 
points are retained. 

OMIT_DEBUG_TABLESorOMIT_JJEBUG_TABLEor 
ODT 

Parameter Attributes: BY _NAME 

List of one or more keywords indicating the debug tables 
to be omitted when the module is loaded. Options are: 

LINE_ TABLE (LT) 

Omits the debug table containing line numbers that 
correspond to the module. 

SYMBOL _TABLE (ST) 

Omits the debug table containing the names and 
addresses of the program variables in the module. 

SUPPLEMENTAL _DEBUG _TABLE (SDT) 

Omits the debug table containing information used to 
debug the module in screen mode. 

PARAMETER_CHECKING (PC) 

Omits parameter checking records in the module. 

13-42 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE_MODULE _ATTRIBUTE 

ALL 

Omits all debug tables. 

Using the OMIT_DEBUG_TABLE parameter causes the 
module to load faster. If it is omitted, any debug tables in 
the module are included when the module is loaded. 
(Debug tables are generated during compilation, if 
requested by the compiler command.) 

COMMENT or C 

Parameter Attributes: BY _NAME 

Commentary stored in the module header (1 to 40 
characters). If COMMENT is omitted, the commentary is 
not changed. 

APPLICATION _IDENTIFIER or AI 

Parameter Attributes: BY _NAME, ADVANCED 

Name of the application associated with the module. 
When the module is executed, accounting statistics are 
gathered for the application. The application identifier is 
stored in the module header. You can associate application 
identifiers only with program description modules, 
command description modules, command procedure 
modules, and load modules. 

Only a user with APPLICATION _ADMINISTRATION 
capability can specify an application identifier. 

If the keyword $UNSPECIFIED is used, the application 
identifier is removed. 

If an application identifier is already assigned and this 
parameter is omitted, the application identifier is not 
changed. 

CYBIL _PARAMETER _CHECKING or CPC 

Parameter Attributes: BY _NAME 

Specifies the kind of parameter checking to be performed 
for each entry point in the module when the module is 
loaded, bound, or prelinked. This parameter affects only 
entry points in CYBIL modules. Options are: 

SOURCE (S) 

Perform parameter checking based on the source text 
of the entry point definition. This is a stronger 
type-checking algorithm. 

CREATE_OBJECT_LIBRARY 13-43 



I 
ii 

CHANGE _MODULE _ATTRIBUTE 

Remarks 

OBJECT (0) 

Perform parameter checking based on the object text 
of the entry point definition. 

When any change occurs in a type definition referenced 
by an entry point definition, source text parameter 
checking detects parameter verification errors in CYBIL 
programs that reference the entry point. To override the 
parameter verification errors, change the 
TERMINATION _ERROR_LEVEL to FATAL. To eliminate 
the errors, recompile the program with the correct type 
declarations. 

Parameter checking based on object text requires 
recompilation of programs when the structure of the 
interface changes. This type of parameter checking error 
always indicates an interface incompatibility. 
Recompilation is required. 

Parameter checking based on object text detects the 
following kinds of changes: 

The number of parameters. 
The order of parameters. 
The type (integer, record, pointer, etc.) of a parameter. 
The size of any field in the fixed part of a record. 
The number of fields in the fixed part of a record. 
The size of the largest variant of a variant record. 
A change from a fixed type to an adaptable type. 
A change from an adaptable type to a fixed type. 
Array bounds. 
Component type of an array. 

For example, assume a change is made to the upper or 
lower bound of a subrange of a type that does not affect 
the number of bytes in the type. Object parameter 
checking would not detect the change, but source 
parameter checking would detect the change. 

If CYBIL _PARAMETER _CHECKING is omitted, the kind 
of parameter checking is not changed. 

• The MODULE parameter specifies the module whose 
attributes are changed. The module must be in the 
current module list. 

• You specify an attribute parameter value for each 
attribute to be changed. If you omit an attribute 
parameter, the attribute value is not changed. 

13-44 NOS/VE Commands and Functions 60464018 J 



Examples 

CHANGE _PROGRAM _DESCRIPTION 

o The CHANGE_MODULE_ATTRIBUTES subcommand 
only changes the attributes of the module written by a 
subsequent GENERATE _LIBRARY subcommand. It 
does not change the attributes of the original module. 

o For more information, see the NOSNE Object Code 
Management manual. 

The following subcommand changes the name of entry 
point EXAMPLE in module MY _MODULE to 
EXAMPLE_!. 

COL/change_module_attributes my_module .. 
COL .. /subst1tute=((example,example_1)) 

CHANGE _PROGRAM _DESCRIPTION 
CREOL Subcommand 

Purpose 

Format 

60464018 J 

Changes the components of a program description. 

CHANGE _PROGRAM _DESCRIPTION or 
CHAPD 

NAME= list of program _name 
FILE= keyword or list of: file or string 
LIBRARY= keyword or list of: keyword or file or string 
MODULE= keyword or list of program _name 
STARTING _PROCEDURE=keyword or program_ 

name 
LOAD _MAP= keyword or file or string 
LOAD _MAP _OPTION= keyword or list of keyword 
TERMINATION _ERROR _LEVEL=keyword 
PRESET _VALUE=keyword 
STACK _SIZE=keyword or integer 
ABORT _FILE=keyword or file or string 
DEBUG _INPUT= keyword or file or string 
DEBUG _OUTPUT=keyword or file or string 
DEBUG _MODE= keyword or boolean 
AVAILABILITY= keyword 
SCOPE= keyword 
LOG _OPTION=keyword 
APPLICATION _IDENTIFIER=keyword or name 
ARITHMETIC _OVERFLOW= keyword or boolean 
ARITHMETIC _LOSS _OF _SIGNIFICANCE= keyword 

or boolean 
DNIDE _FAULT= keyword or boolean 
EXPONENT _OVERFLOW=keyword or boolean 

CREATE _OBJECT_LIBRARY 13-45 



II 
I 

CHANGE _PROGRAM_DESCRIPTION 

EXPONENT _UNDERFLOW=keyword or boolean 
FP _INDEFINITE= keyword or boolean 
FP _LOSS _OF _SIGNIFICANCE= keyword or boolean 
INVALID _BDP _DATA=keyword or boolean 
STATUS= status variable 

Parameters NAME or NAMES or N 

~!~ Specifies the names of the program descriptions being 
changed. This parameter is required. 

FILE or FILES or F 

List of object files or object libraries to be unconditionally 
loaded when the program is executed. 

Path values containing $FAMILY, $USER, or $SYSTEM 
elements can be supplied as strings to be evaluated when 
the program description is used. 

If the FILE parameter is omitted, the FILE parameter of 
the program description is not changed. If 
$UNSPECIFIED is used, the FILE parameter is removed 
from the program description. 

LIBRARYorLIBRARIESorL 

List of library files to be added to the program library 
list when the program is executed. A file value is 
evaluated when the object library is generated. Path 
values containing $FAMILY, $USER, or $SYSTEM 
elements can be supplied as strings to be evaluated when 
the program description is used. 

If $UNSPECIFIED is used, the LIBRARY parameter is 
removed from the program description. 

The keyword OSF$TASK _SERVICES _LIBRARY specifies 
the system table, and keyword OSF$CURRENT _LIBRARY 
represents the library that contains the program 
description being changed. 

If the LIBRARY parameter is omitted, the LIBRARY 
parameter of the program description is not changed. 

MODULE or MODULES or M 

List of modules to be loaded from the program library list 
when the program is executed. The modules are loaded in 
the order in which they are specified. 

13-46 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE _PROGRAM_DESCRIPTION 

For module names which are not SCL or COBOL names, 
use a string value. An example is a C function name, in 
which lowercase is significant. 

If the MODULE parameter is omitted, the MODULE 
parameter of the program description is not changed. If 
$UNSPECIFIED is used, the MODULE parameter is 
removed from the program description. 

STARTING _PROCEDURE or SP 

Name of the entry point at which program execution 
begins. 

You use a string value for an entry point whose name is 
not an SCL or COBOL name. An example is the name of 
a C function in which lowercase is significant. 

If the STARTING _PROCEDURE parameter is omitted, 
the STARTING _PROCEDURE parameter of the program 
description is not changed. If $UNSPECIFIED is used, the 
STARTING _PROCEDURE parameter is removed froin the 
program description. 

LOAD _MAP or LM 

Parameter Attributes: BY _NAME 

File on which the load map is written. A file value is 
evaluated when the object library is generated. 

Path values containing $FAMILY, $USER, or $SYSTEM 
elements can be supplied as strings to be evaluated when 
the program description is used. 

·If the LOAD _MAP parameter is omitted, the LOAD_ 
MAP parameter of the program description is not 
changed. If $UNSPECIFIED is used, the LOAD _MAP 
parameter is removed from the program description. 

LOAD _MAP _OPTION or LOAD _MAP _OPTIONS or 
LMO 

Parameter Attributes: BY _NAME 

List one or more keywords indicating the information to 
include in the load map. Options are: 

NONE 

No load map is written. 

CREATE_OBJECT_LIBRARY 13-47 



CHANGE _PROGRAM_DESCRIPTION 

SEGMENT (S) 

Segment map. 

BLOCK (B) 

Block map. 

ENTRY _POINT (EP) 

Entry point map. 

CROSS_REFERENCE (CR) 

Entry point cross-reference. 

ALL 

Selects SEGMENT, BLOCK, ENTRY _POINT, and 
CROSS_REFERENCE. 

$UNSPECIFIED 

The LOAD_MAP _OPTION parameter is removed from 
the program description. 

If the LOAD_MAP _OPTION parameter is omitted, the 
LOAD _MAP _OPTION parameter of the program 
description is not changed. 

TERMINATION _ERROR _LEVEL or TEL 

Parameter Attributes: BY _NAME 

Specifies the severity level of error that terminates 
program loading. Options are: 

WARNING (W) 

Warning, error, or fatal severity level errors. 

ERROR (E) 

Error or fatal severity level errors. 

FATAL (F) 

Fatal severity level errors. 

13-48 NOS/VE Commands and Functions 60464018 J 



'"---

60464018 J 

CHANGE _PROGRAM _DESCRIPTION 

$UNSPECIFIED 

The TERMINATION _ERROR_LEVEL parameter is 
removed from the program description. 

If·the TERMINATION _ERROR_LEVEL parameter is 
omitted, the TERMINATION _ERROR_LEVEL parameter 
of the program description is not changed. 

PRESET_ VALUE or PV 

Parameter Attributes: BY _NAME 

Value to store in all uninitialized data words. Options 
are: 

ZERO (Z) 

All zeroes. 

FLOATING _POINT _INDEFINITE (FPI) 

Floating-point indefinite value. 

INFINITY (I) 

Floating-point infinite value. 

ALTERNATE_ONES (AO) 

Alternating 0 and 1 bits; the leftmost (highest order) 
bit is 1. 

UNSPECIFIED 

The PRESET_ VALUE parameter is removed from the 
program description. 

If the PRESET_ VALUE parameter is omitted, the 
parameter of the program description is not changed. 

STACK _SIZE or SS 

Parameter Attributes: BY _NAME 

Maximum number of bytes in the run-time stack. The 
program uses the run-time stack for procedure call 
linkages and local variables. If STACK _SIZE is omitted, 
the system default value is used. You can display the 
default stack size by entering a DISPLAY_PROGRAM_ 
ATTRIBUTE command. If $UNSPECIFIED is used, the 
STACK _SIZE parameter is removed from the program 
description. 

CREATE _OBJECT_LIBRARY 13-49 

II 
i 



CHANGE _PROGRAM _DESCRIPTION 

ABORT _FILE or AF 

Parameter Attributes: BY _NAME 

File containing Debug commands to be processed if the 
program aborts. The commands are executed only if the 
program is not executed in Debug mode. A file value is 
evaluated when the object library is generated. 

Path values containing $FAMILY, $USER, $WORKING_ 
CATALOG, or $SYSTEM elements can be supplied as 
strings to be evaluated when the program description is 
used. 

If ABORT _FILE is omitted, the program description for 
the ABORT _FILE parameter is not changed. If 
$UNSPECIFIED is used, the ABORT _FILE parameter is 
removed from the program description. 

DEBUG _INPUT or DI 

Parameter Attributes: BY _NAME 

File containing Debug commands. The commands are read 
only if the program is executed under the control of 
Debug (refer to the DEBUG _MODE parameter). This file 
can be positioned. A file value is evaluated when the 
object library is generated. 

Path values containing $FAMILY, $USER, $WORKING_ 
CATALOG, or $SYSTEM elements can be supplied as 
strings to be evaluated when the program description is 
used. 

If DEBUG _INPUT is omitted, the DEBUG _INPUT 
parameter of the program description is not changed. If 
$UNSPECIFIED is used, the DEBUG _INPUT parameter 
is removed from the program description. 

DEBUG_OUTPUTorDO 

Parameter Attributes: BY _NAME 

File on which Debug output is written. Output is written 
only if the program is executed in Debug mode. This file 
can be positioned. A file valu~ is evaluated when the 
object library is generated. 

Path values containing $FAMILY, $USER, $WORKING_ 
CATALOG, or $SYSTEM elements can be supplied as 
strings to be evaluated when the program description is 
used. 

13-50 NOSNE Commands and Functions 60464018 J 



60464018 J 

CHANGE _PROGRAM_DESCRIPTION 

If DEBUG _OUTPUT is omitted, the DEBUG _OUTPUT 
parameter of the program description is not changed. If 
$UNSPECIFIED is used, the DEBUG _OUTPUT 
parameter is removed from the program description. 

DEBUG_MODE or DM 

Parameter Attributes: BY _NAME 

Indicates whether the program is to be run under the 
control of Debug. (For information on using Debug, refer 
to the program's specific source language manual.) Options 
are: 

ON 

Program executed under control of the Debug program. 

OFF 

Program executed without the Debug program. . . 
If the DEBUG _MODE parameter is omitted, the 
DEBUG _MODE parameter of the program description is 
not changed. If $UNSPECIFIED is used, the DEBUG_ 
MODE parameter is removed from the program 
description. 

AVAILABILITY or A 

Parameter Attributes: BY _NAME 

Specifies whether or not the program description is made 
known to users as a command. Options are: 

NORMAL_USAGE (ADVERTISED, A, or NU) 

Program description appears in the output produced by 
the DISPLAY_COMMAND_LIST_ENTRY command 
(and in similar situations). 

ADVANCED_USAGE (AU) 

The command is included in displays of the user's 
command list if the user specifies the ADVANCED_ 
USAGE display option for the DISPLAY_COMMAND_ 
LIST _ENTRY command. 

HIDDEN (H) 

Program description is suppressed from the output 
produced by DISPLAY_COMMAND_LIST_ENTRY 
command (and in similar situations). 

CREATE _OBJECT_LIBRARY 13-51 



CHANGE _PROGRAM _DESCRIPTION 

If this parameter is omitted, the AVAILABILITY 
parameter of the program description is not changed. 

SCOPE or S 

Parameter Attributes: BY _NAME 

The manner in which the command processor may be 
called. The keyword options are: 

XDCL (X) 

The command is externally declared and may be called 
from outside the object library on which it resides. 

GATE (G) 

The program can be invoked from rings less privileged 
than the program's execution ring brackets. The GATE 
attribute implies the XDCL attribute. 

LOCAL (L) 

Reserved. 

The default is XDCL. 

LOG _OPTION or LO 

Parameter Attributes: BY _NAME 

Determines the manner in which calls to the program are 
logged. The keyword options are: 

AUTOMATIC (A) 

The logging is performed by the SCL Interpreter. 

MANUAL (M) 

Logging is performed by the program. Use this option 
to suppress the logging of secure information that 
should not be written to a log. 

The default is AUTOMATIC. If you omit this parameter, 
the logging option for the program description is not 
changed. 

13-52 NOS/VE Commands and Functions 60464018 J 



60464018 J 

CHANGE _PROGRAM_DESCRIPTION 

APPLICATION _IDENTIFIER or AI 

Parameter Attributes: BY _NAME, ADVANCED 

Name of application associated with the program. When 
the program is executed, accounting statistics will be 
emitted for the application. The application identifier is 
stored in the module header. 

Only a user with APPLICATION _ADMINISTRATION 
capability can specify an application identifier. 

If the keyword $UNSPECIFIED is used, the application 
identifier is removed. If this parameter is omitted, the 
application identifier is not changed. 

ARITHMETIC _OVERFLOW or AO 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition ARITHMETIC_OVERFLOW causes an interrupt. 
Valid specifications are: 

ON 

ARITHMETIC _OVERFLOW is enabled. The condition 
causes an interrupt. 

OFF 

ARITHMETIC _OVERFLOW is disabled. The condition 
does not cause an interrupt. 

ARITHMETIC _LOSS _OF _SIGNIFICANCE or ALOS 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition ARITHMETIC_LOSS_OF _SIGNIFICANCE 
causes an interrupt. Valid specifications are: 

ON 

ARITHMETIC _LOSS _OF _SIGNIFICANCE is enabled. 
The condition causes an interrupt. 

OFF 

ARITHMETIC _LOSS _OF _SIGNIFICANCE is disabled. 
The condition does not cause an interrupt. 

CREATE _OBJECT_LIBRARY 13-53 



CHANGE _PROGRAM _DESCRIPTION 

DNIDE _FAULT or DF 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition DIVIDE _FAULT causes an interrupt. Valid 
specifications are: 

ON 

DIVIDE _FAULT is enabled. The condition causes an 
interrupt. 

OFF 

DIVIDE _FAULT is disabled. The condition does not 
cause an interrupt. 

EXPONENT _OVERFLOW or EO 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hat"dware 
condition EXPONENT_OVERFLOW causes an interrupt. 
Valid specifications are: 

ON 

EXPONENT _OVERFLOW is enabled. The condition 
causes an interrupt. 

OFF 

EXPONENT _OVERFLOW is disabled. The condition 
does not cause an interrupt. 

EXPONENT _UNDERFLOW or EU 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition EXPONENT_ UNDERFLOW causes an interrupt. 
Valid specifications are: 

ON 

EXPONENT _UNDERFLOW is enabled. The condition 
causes an interrupt. 

OFF 

EXPONENT_UNDERFLOW is disabled. The condition 
does not cause an interrupt. 

13-54 NOSNE Commands and Functions 60464018 J 



"----· . 

60464018 J 

CHANGE _PROGRAM _DESCRIPTION 

FP _INDEFINITE or FPI or FI 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition FP _INDEFINITE causes an interrupt. Valid 
specifications are: 

ON 

FP _INDEFINITE is enabled. The condition causes an 
interrupt. 

OFF 

FP _INDEFINITE is disabled. The condition does not 
cause an interrupt. 

FP_LOSS_OF_SIGNIFICANCEorFPLOSorFLOS 

Parameter Attributes: BY _NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition FP _LOSS_OF_SIGNIFICANCE causes an 
interrupt. Valid specifications are: 

ON 

FP _LOSS_OF _SIGNIFICANCE is enabled. The 
condition causes an interrupt. 

OFF 

FP _LOSS_OF _SIGNIFICANCE is disabled. The 
condition does not cause an interrupt. 

INVALID _BDP _DATA or IBDPD or IBD 

Parameter Attributes: BY __ NAME, ADVANCED 

This parameter specifies whether or not the hardware 
condition INVALID _BDP _DATA causes an interrupt. 
Valid specifications are: 

ON 

INVALID _BDP _DATA is enabled. The condition causes 
an interrupt. 

OFF 

INVALID _BDP _DATA is disabled. The condition does 
not cause an interrupt. 

CREATE_OBJECT_LIBRARY 13-55 



I 
II 

I 

COMBINE_MODULE 

Remarks 

Examples 

o To allow users the option of rescinding a previously 
specified value or of not including a given parameter 
in the CHAPD command, the keyword $UNSPECIFIED 
may be used for some parameters. This removes the 
parameter from the description. The result of using 
$UNSPECIFIED is the same as not supplying the 
parameter on the CREATE _PROGRAM_ 
DESCRIPTION subcommand. When the program is 
executed, the corresponding job default program 
attribute value is used. 

• For more information, see the NOSNE Object Code 
Management manual. 

See the NOSNE Object Code Management manual for a 
detailed example. 

COMBINE _MODULE 
CREOL Subcommand 

Purpose 

Format 

Adds new modules and replaces existing modules in the 
module list. 

COMBINE _MODULE or 
COMBINE _MODULES or 
COMM 

LIBRARY=list of file 
MODULE= list of program _name or list of range of 

program _name 
PLACEMENT= keyword 
DESTINATION= program _name 
STATUS =status variable 

Parameters LIBRARY or LIBRARIES or L 

Object files, SCL procedure files, or object library files 
containing the modules to be combined. This parameter is 
required. 

MODULE or MODULES or M 

Modules to be combined. 

You use a string value for a module whose name is not 
an SCL name or a COBOL name. An example of such a 
module name is in the C language where lowercase is 
significant. 

13-56 NOSNE Commands and Functions 60464018 J 



Remarks 

60464018 J 

COMBINE_MODULE 

If MODULE is omitted, all modules on the specified files 
or libraries are combined. 

PLACEMENT or P 

Indicates whether the added modules are placed before or 
after the module specified on the DESTINATION 
parameter. Options are: 

BEFORE (B) 

Modules added before the destination module. 

AFTER (A) 

Modules added after the destination module. 

If PLACEMENT is omitted, AFTER is used. 

DESTINATION or D 

Module before or after which the added modules are 
placed. 

This parameter does not affect the location of replacement 
modules. A replacement module is always placed in the 
same location as the module it replaces. 

If DESTINATION is omitted, added modules are placed 
according to the PLACEMENT parameter value. If the 
value of PLACEMENT is BEFORE, the modules are 
placed at the beginning of the library. If the value of 
PLACEMENT is AFTER, the modules are placed at the 
end of the library. 

e The COMBINE _MODULES subcommand can specify 
object files, SCL procedure files, or object libraries 
that are processed in the order you specify the files on 
the LIBRARY parameter. 

• The COMBINE_MODULES subcommand checks for 
duplicate modules in the specified files and reports an 
error if duplicates are found. 

You can, however, combine modules in libraries with 
duplicate modules. You add one of the libraries to the 
module list with an ADD _MODULES subcommand 
and then perform a COMBINE _MODULES of the 
second library. 

• If you do not want to use all modules in a file, specify 
the modules to be used on the MODULE parameter. 

CREATE _OBJECT_LIBRARY 13-57 



COMBINE_MODULE 

Examples 

e A module to be combined replaces an existing module 
with the same name in the module list. If the name is 
not already in the module list, the module to be 
combined is added to the module list. 

• A replacement module is placed in the same location 
as the module it replaces. An added module is added 
at the end of the list, unless you specify another 
location with the DESTINATION and PLACEMENT 
parameters. You can change the module order later 
with a REORDER_MODULES subcommand. 

• If you specify an SCL procedure whose header 
references a no11-standard type, you must make the 
type definition available. For instance, if you want to 
add the following procedure: 

PROCEDURE show( 
pl: adq~ess_l1st $reQu1red 
status) 

PROCEND 

then the type definition for ADDRESS _LIST must be 
created outside the procedure. This is accomplished by 
using the TYPE control statement, as in: 

TYPE 
address_11st 11st 1 .. 3 of str1ng 

TYPE ND 

• For more information, see the NOSNE Object Code 
Management manual. 

The following subcommand combines all modules in files 
MY_LIBRARY and YOUR_LIBRARY with the modules 
already in the module list. 

COL/combine_module (my_library,your_library) 

13-58 NOSNE Commands and Functions 60464018 J 



CREATE _APPLICATION _MENU 

CREATE _APPLICATION _MENU 
CREMM Subcommand 

Purpose 

Format 

Initiates the CREATE _APPLICATION -~ENU utility 
session. 

CREATE _APPLICATION _MENU or 
CREAM 

NAME=name 
STATUS =status variable 

Parameters NAME or N 

Remarks 

Specifies the name of the application menu. The NAME 
parameter is a string containing 1 through 31 characters. 
This parameter is required. 

For more information, see the NOSNE Object Code 
Management manual. 

CREATE _BRIEF _HELP _MESSAGE 
CREMM Subcommand 

Purpose Creates a brief description of a command. The complete 
description is generated by the CREATE _FULL _HELP_ 
MESSAGE subcommand. 

Format CREATE _BRIEF _HELP _MESSAGE or 
CREBHM 

COLLECT _TEMPLATE _UNTIL=string 
STATUS=status variable 

Parameters COLLECT _TEMPLATE _UNTIL or CTU 

Remarks 

60464018 J 

Specifies the termination string to use when collecting the 
template of the brief help message. If the COLLECT_ 
TEMPLATE_ UNTIL parameter is omitted, the string '**' 
is used. 

For more information, see the NOSNE Object Code 
Management manual. 

CREATE_OBJECT_LIBRARY 13-59 



CREATE _COMMAND _DESCRIPTION 

Examples The following example creates a brief help message. 

CMM/create_brief _help_message 
? The DISPLAY_FILE conrnand displays information 
? about the specified file. 
? •• 

CMM/ 

CREATE _COMMAND _DESCRIPTION 
CREOL Subcommand 

Purpose 

Format 

Defines the means of access to a command. This 
subcommand identifies either a program to be dynamically 
loaded or a system-supplied command. 

NOTE 

Do not create command descriptions for command 
processors written in languages other than CYBIL. The 
run-time library routines for other languages (such as 
FORTRAN) may depend on static initialization of data or 
may call the PMP$EXIT or PMP$ABORT procedures. 

CREATE _COMMAND _DESCRIPTION or 
CRECD 

NAME=record 
STAR.TING _PROCEDURE =program _name 
LIBRARY= keyword or file or string 
SYSTEM _COMMAND _NAME=name 
AVAILABILITY= keyword 
SCOPE= keyword 
LOG _OPTION= keyword 
MERGE _OPTION =keyword 
APPLICATION _IDENTIFIER =name 
STATUS= status variable 

Parameters NAME or NAMES or N 

The command name and its aliases; the name by which 
the user calls the command. Specify the names in a 
record with the following format: 

record 
name: name 
aliases: list rest of name $optional 

recend 

13-60 NOSNE Commands and Functions 60464018 J 



60464018 J 

CREATE _COMMAND _DESCRIPTION 

For example, specify this parameter as follows: 

name= (tape_file_dump, tapfd, tfd) 

The first name qualifies as the NAME field in the record 
followed by the names for the ALIASES field. 

This parameter is required. 

STARTING_PROCEDUREorSP 
Parameter Attributes: BY _NAME 

Name of the command processor's starting procedure 
(entry point in the module). Specify a name which 
conforms to the type PROGRAM_NAME. For names other 
than SCL or COBOL names, use a string value. An 
example is a C function name, in which lowercase is 
significant. 

You must specify either this parameter or the SYSTEM_ 
COMMAND _NAME parameter, but not both. 

LIBRARY or L 
Parameter Attributes: BY _NAME 

Designates the library containing the command processor's 
starting procedure. Enter the name of the library, or 
enter the file path to the library as a string value. File 
paths containing $FAMILY, $USER, or $SYSTEM 
elements or file variable names should be entered as 
strings. The string is then evaluated at the time the 
command description is used. 

The keyword, OSF$CURRENT _LIBRARY specifies the 
library containing the command description. 

You may specify this parameter only if you specify the 
STARTING_PROCEDURE parameter. 

SYSTEM _COMMAND _NAME or SCN 

Parameter Attributes: BY _NAME 

The name of a command in the $SYSTEM command list 
entry. This name need not be the same as the name 
specified on the NAME parameter. 

When this parameter is specified, the command is called 
by means of the library containing the command 
description and not actually via $SYSTEM. To the user, 
however, this distinction is transparent. 

CREATE_OBJECT_LIBRARY 13-61 



I 
I 

CREATE _COMMAND _DESCRIPTION 

You must specify either this parameter or the 
STARTING _PROCEDURE parameter, but not both. 

AVAILABILITY or A 

Parameter Attributes: BY _NAME 

Specifies whether the command is included in a display of 
the command list. Keyword options are: 

NORMAL_USAGE (NU) 

The command is included in displays of the command 
list as output on the DISPLAY_COMMAND_LIST_ 
ENTRY command and other similar situations. 

ADVANCED_USAGE (AU) 

'l'he command is included in displays of the user's 
command list if the user specifies the ADVANCED_ 
USAGE display option for the DISPLAY _COMMAND_ 
LIST _ENTRY command. 

HIDDEN (H) 

The command is not included in displays of the user's 
command list. 

The default is NORMAL_USAGE. 

SCOPE or S 

Parameter Attributes: BY _NAME 

The manner in which the command processor may be 
called. The keyword options are: 

XDCL (X) 

The command is externally declared and may be called 
from outside the object library on which it resides. 

GATE (G) 

The command processor can be invoked from rings less 
privileged than the command processor's execution ring 
brackets. The GATE attribute implies the XDCL 
attribute. 

LOCAL (L) 

Reserved. 

The default is XDCL. 

13-62 NOS/VE Commands and Functions 60464018 J 



"'--·· 

60464018 J 

CREATE _COMMAND _DESCRIPTION 

LOG _OPTION or LO 

Parameter Attributes: BY _NAME 

Determines the manner in which calls to the command 
are logged. The keyword options are: 

AUTOMATIC (A) 

The logging is performed by the SCL Interpreter. 

MANUAL (M) 

Logging is performed by the command processor. Use 
this option to suppress the logging of secure 
information that should not be written to a log. 

The default is AUTOMATIC. 

MERGE _OPTION or MO 

Parameter Attributes: BY_NAME 

Indicates whether the module containing the command 
description will be added or replaced within the module. 
The keyword options are: 

ADD (A) 

Adds the module to the end of the module list. 

REPLACE (R) 

Replaces the module in the current module list which 
has the same name. 

COMBINE (C) 

Adds the new module to the end of the module list 
unless a module of the same name already exists, in 
which case that module is replaced with the new 
module. 

The default is COMBINE. 

APPLICATION _IDENTIFIER or AI 

Parameter Attributes: BY _NAME, ADVANCED 

Name of the application associated with the command. 
When the command is executed, accounting statistics for 
the application are gathered. 

Only a user with APPLICATION _ADMINISTRATION 
capability can specify an application identifier. 

CREATE _OBJECT _LIBRARY 13-63 

ll 
I 



CREATE _COMMAND _DESCRIPTION 

Remarks 

If this parameter is not specified, no application is 
associated with the command. 

• This subcommand creates a command description 
similar to an abbreviated program description which is 
used to control access to the command. 

• Access to the command processor is by means of either 
a $SYSTEM command or by a starting procedure as 
established with the parameters on this command. 

• The command processor is loaded into the task from 
which the command is called. Because access to the 
command is through a command description, a 
separate task is not generated and the command 
processor has access to the data already in use in the 
current task. (Calls to commands defined within 
program descriptions always create new, separate 
tasks). 

• For command descriptions which name a command in 
$SYSTEM, the SCL Interpreter executes the command 
processor. However, if the command description names 
a starting procedure, the loader is called to execute 
the command. 

• For command descriptions naming a starting procedure 
and, optionally, an object library, the dynamic loading 
of the command processor occurs as follows: 

If the starting procedure is already loaded in the 
current task, no loading occurs; the process is 
complete. 

If a library was specified as part of the command 
description the library is the searched for the 
module containing the starting procedure. 

If no library is specified as part of the command 
description, the program library list of the current 
task is searched for a module containing the 
starting procedure. 

13-64 NOS/VE Commands and Functions 60464018 J 



Examples 

60464018 J 

CREATE _COMMAND _DESCRIPTION 

If you choose to have your command processor 
implemented using a command description, take 
care not to call the CYBIL procedures PMP$EXIT 
or PMP$ABORT in the code for the command 
processor. Both CYBIL procedures will cause task 
termination. 

To read about the loading process and satisfying of 
external references for these methods of loading, 
see The Loading Process in Detail in the N OSNE 
Object Code Management manual. 

For more information, see the NOSNE Object 
Code Management manual. 

The following examples show how to create command 
descriptions that access commands either through a 
starting procedure or by means of a system command. 
The first example defines access to a TAPE _F_ILE _DUMP 
command (and its aliases) through procedure TAPE_ 
FILE_PROG in library :NYE.SMITH.PROGRAM_ 
LIBRARY. 

COL/create_command_descript ion .. 
COL.. /name=(tape_f i le_dump, dump_ tape, tapfd) .. 
COL .. /start ing_procedure=tape_f i le_prog .. 
COL . ./ 1 ibrary=: nve. smith. program_ 1 ibrary .. 
COL.. /scope=xdcl avai labi 1 i ty=norma Lusage .. 
COL .. /mer~e_opt ion=add 

COL/generate_ library 1 ibrary=: nve. smith. tape_command_ 1 ibrary 

The next example shows how to create access to a 
DELETE _FILE command and its aliases through the 
system command, DELETE_FILE. 

COL/create_command_descript ion .. 
COL .. /name=(delete_file, delete, delf) .. 
COL .. /sys_tem_command_name=delete_f i le 

COL/generate_ library 1 ibrary=:nve. smith. delete_commands 

At the completion of the session, you add the generated 
library to the command list, and, if you want to restrict 
users to the use of just the commands in the library, you 
can delete the $SYSTEM command list entry for those 
users. 

For more information about command lists, see the 
NOSNE System Usage manual. 

CREATE _OBJECT_LIBRARY 13-65 

II 
ii 



CREATE_FORM_MODULE 

CREATE_FORM_MODULE 
CREOL Subcommand 

Purpose CREATE_FORM_MODULE starts the CREATE_FORM_ 
MODULE utility, which is subordinate to the CREOL 
utility. Using the subcommands of CREATE _FORM_ 
MODULE, you create a form. 

Format CREATE _FORM _MODULE or 
CREFM 

FORM_NAME=name 
MERGE _OPTION= keyword 
STATUS= status variable 

Parameters FORM_NAME or FN 

Remarks 

The name of the form. The application program uses this 
name to open the form. This parameter is required. 

MERGE _OPTION or MO 

Specifies how to merge the form module you are creating 
with existing modules on the object library. The following 
values are valid: 

ADD or A 

Adds the module to the object library. If a module 
with the same name already exists on the library, 
ADD does not replace it. (To replace an existing 
module, use REPLACE or COMBINE.) 

REPLACE or R 

Replaces a module on the library with the module you 
are creating, if they have the same names. REPLACE 
does not add a new module. (To add a new module, 
use either ADD or COMBINE.) 

COMBINE or C 

Adds a new module or replaces an existing module. 

The default is COMBINE. 

e The CREATE_FORM_MODULE subcommand 
establishes default attributes for the form. (For a list 
of the attributes and their defaults, see the description 
of the SET _FORM subcommand of the CREATE_ 
FORM_MODULE utility.) 

13-66 NOSNE Commands and Functions 60464018 J 



Examples 

CREATE_FULL_HELP_MESSAGE 

e The END_FORM_MODULE subcommand ends the 
creation of a form and quits the CREATE _FORM_ 
MODULE utility. 

• For information about screen formatting, form 
modules, and adding form modules to object libraries, 
see the NOSNE Screen Formatting manual. 

The following example shows how to create form 
SELECT _FORM for use with a COBOL program. 

COL/create_form_modu le form_name=se lect_f orm 
CFM/set_form form_processor=cobo l 
CFM/add_event program_event=compute .. 
CFM .. /terminal_event=next action=return_normal .. 
CFM .. /labe 1 ='COMP' 
CFM/ more create_form_module subcommands 

CFM/end_form_module 
COL/generate_ 1 ibrary 1 ibrary=: nve. bonnie. forms_ 1 ibrary 

CREATE_FULL_HELP_MESSAGE 
CREMM Subcommand 

Purpose Creates a message containing a complete description of 
the command. A brief description is generated with the 
CREATE _BRIEF _HELP _MESSAGE subcommand. 

Format CREATE_FULL_HELP _MESSAGE or 
CREFHM 

COLLECT _TEMPLATE _UNTIL=string 
STATUS =status variable · 

Parameters COLLECT _TEMPLATE _UNTIL or CTU 

Remarks 

60464018 J 

Specifies the termination string to use when collecting the 
template of the full help message. If the COLLECT_ 
TEMPLATE_ UNTIL parameter is omitted, the string '**' 
is used. 

For more information, see the NOSNE Object Code 
Management manual. 

CREATE_OBJECT_LIBRARY 13-67 

I 
ii 



::: 

~~~ 

CREATE _FUNCTION _DESCRIPTION

Examples The following example creates a full help message.

CMM/create_full_help_message
? The DISPLAY_FILE conmand displays information about
? the file onto your terminal screen. You can
? specify the level of detail by entering a value
? for the DISPLAY_OPTIONS parameter of this C011111and.
? **
CMM/

CREATE _FUNCTION _DESCRIPTION
CREOL Subcommand

Purpose

Format

Parameters

Creates a function description which is used to load the
program containing the function processor when the
function is called.

NOTE

Do not create function descriptions for function processors
written in languages other than CYBIL. The run-time
library routines ·for other languages (such as FORTRAN)
may depend on static initialization of data or may call the
PMP$EXIT or PMP$ABORT procedures.

CREATE _FUNCTION _DESCRIPTION or
CREFD

NAME= data _name or record
STARTING _PROCEDURE= program _name
LIBRARY=keyword or file or string
AVAILABILITY= keyword
SCOPE=keyword
MERGE _OPTION= keyword
STATUS =status variable

NAME or NAMES or N

The name and aliases by which the function is called. The
name you specify must conform to the type DATA_
NAME. SCL names are valid DATA_NAME types.

You can specify a single name or you can specify a
function name and aliases, using a record which has the
following format:

13-68 NOSNE Commands and Functions 60464018 J

60464018 J

CREATE_FUNCTION _DESCRIPTION

record
name: data_name
aliases: list rest of data_name $optional

recend

For example, the following shows how to specify the name
of a function and its aliases using this parameter:

name=($tape_dump_files, $tdf)

For more information about the DATA _NAME type, see
the NOSNE System Usage manual.

This parameter is required.

STARTING _PROCEDURE or SP

Parameter Attributes: BY _NAME

Name of the function processor's starting procedure (entry
point in the module). Specify a name which conforms to
the type PROGRAM_NAME. For names other than SCL
or COBOL names, use a string value. An example is a C
function name, in which lowercase is significant.

This parameter is required.

LIBRARY or L

Parameter Attributes: BY _NAME

Designates the library containing the function processor's
starting procedure. Enter the name of the library, or
enter the file path to the library as a string value. File
paths containing $FAMILY, $USER, or $SYSTEM
elements or file variable names should be entered as
strings. The string is then evaluated at the time the
function description used.

The keyword OSF$CURRENT _LIBRARY specifies the
library containing the function description.

AVAILABILITY or A

Parameter Attributes: BY _NAME

Specifies whether the function is included in a display of
the command list. Keyword options are:

CREATE _OBJECT_LIBRARY 13-69

CREATE _FUNCTION _DESCRIPTION

NORMAL_USAGE (NU)

The command is included in displays of the command
list as output on the DISPLAY _COMMAND _LIST_
ENTRY command and other similar situations.

ADVANCED_USAGE (AU)

The command is included in displays of the user's
command list but only if the user specifies the
ADVANCED_USAGE display option for the DISPLAY_
COMMAND _LIST _ENTRY command.

HIDDEN (H)

The command is not included in displays of the user's
command list.

The default is NORMAL_USAGE.

SCOPE or S

Parameter Attributes: BY _NAME

The manner in which the function processor may be
called. The keyword options are:

XDCL (X)

The function is externally declared and may be called
from outside the object library on which it resides.

GATE (G)

The function processor can be invoked from rings less
privileged than the processor's execution ring brackets.
The GATE attribute implies the XDCL attribute.

LOCAL (L)

Reserved.

The default is XDCL.

MERGE _OPTION or MO

Parameter Attributes: BY _NAME

Indicates whether the module containing the function
description will be added or replaced within the module
list. The keyword options are:

ADD (A)

Added to the end of the module list.

13-70 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

CREATE _FUNCTION _DESCRIPTION

REPLACE (R)

Replaces the module in the current module list which
has the same name.

COMBINE (C)

Added to the end of the module list if a module
having the same name does not exist. If a module
having the same name does exist, this option acts the
same as the REPLACE keyword option.

The default is COMBINE.

e This subcommand creates a function description
(similar to an abbreviated program description) which
is used to control access to the function.

• The function is loaded into the task from which it is
called. A separate task is not generated and the
function processor has access to the data already in
use in the current task.

o The dynamic loading of the function processor occurs
as follows:

If the starting procedure is already loaded in the
current task, no loading is required ..

If a library was specified as part of the function
description, the library is searched for the module
containing the starting procedure.

If no library is specified as part of the function
description, the current task's program library list
is searched for a module containing the starting
procedure.

• To read about the loading process and satisfying
external references for these methods of loading, see
the section titled The Loading Process in Detail in the
NOS/VE Object Code Management manual.

For more information, see the NOS/VE Object Code
Management manual.

CREATE ...;.OBJECT _LIBRARY 13-71

I
I

I

CREATE _LINKED _MODULE

Examples The following examples show how to create a function
description that accesses a function processor through a
starting procedure in a library. The description defines
access to the $LIST_TAPE_FILES function (and its
aliases) through procedure TAPE _FILE _FUNCTION in
library :NVE.SMITH.PROGRAM_LIBRARY.

COL/create_funct ion_descr ipt ion ..
COL .. /name=(Slist_tape_file, Sltf) ..
COL.. /start ing_procedure=tape_f i le_funct ion ..
COL .. /1 ibrary=: nve. smith. program_ I ibrary

COL/generate_ I ibrary 1 ibrary=:nve.smith. tape_command_ 1 ibrary

To make the function available to users, the library of
function descriptions must be added to the command list.

For more information about command lists, see the
NOSNE System Usage manual.

CREATE _LINKED _MODULE
CREOL Subcommand

Purpose

Format

Creates a prelinked module from an existing module and
adds it to the module list.

CREATE _LINKED _MODULE or
CR ELM

NAME= program _name
COMPONENT=list of record
RING _BRACKETS= record
RETAIN _COMMON _BLOCK=keyword or list_ of

program _name
IGNORE _SECTION _NAMES =boolean
STARTING _SEGMENT=integer
OUTPUT=file
DEBUG _TABLE=file
NEXT _AVAILABLE _SEGMENT=integer variable
APPLICATION _lDENTIFIER=name
DEFER _ENTRY _POINTS= keyword or record or list

of program _name
DEFER _COMMON _BLOCKS= keyword or record or

list of program _name
STATUS =status variable

13-72 NOS/VE Commands and Functions 60464018 J

·'----

CREATE_LINKED _MODULE

Parameters NAME or N

60464018 J

Name of the new prelinked module.

For modules with other than SCL or COBOL names, use
a string value. An example is a C function name, in
which lowercase is significant.

This parameter is required.

COMPONENT or COMPONENTS or C

Component modules of the new module. Each item in the
list is a record consisting of a file name followed by a
series of module names which are to be used. A range of
names may be specified. If no module names are specified
for a file, all modules on the file are used.

For modules with other than SCL or COBOL names, use
a string value. An example is a C function name, in
which lowercase is significant.

NOTE

A component module can be only an object, load, or bound
module.

This parameter is required. At least one file must be
specified.

RING_BRACKETSorRB

Specifies three integers representing the rl, r2, and r3
ring execution values for. the new module. The ring values
can be from 3 through 15. If RING_BRACKETS is
omitted, all three values will default to the current ring.

RETAIN _COMMON _BLOCK or RETAIN _COMMON_
BLOCKS or RCB

Parameter Attributes: BY _NAME, ADVANCED

Specifies which common block names are retained in the
new modules. The keyword ALL specifies that all common
blocks are retained.

For a common block with other than an SCL or COBOL
name, use a string value. An example is a C function
name, in which lowercase is significant.

If RETAIN _COMMON _BLOCK is omitted, no common
blocks are retained.

CREATE_OBJECT_LIBRARY 13-73

CREATE _LINKED _MODULE

IGNORE _SECTION _NAMES or ISN

Parameter Attributes: BY _NAME, ADVANCED

Specifies whether working storage sections with different
names should be placed in unique segments. If IGNORE_
SECTION _NAMES is omitted or IGNORE _SECTION_
NAMES=TRUE, sections with similar access attributes
(read and write) are placed in the same segments,
regardless of section name.

STARTING _SEGMENT or SS

Parameter Attributes: BY _NAME, ADVANCED

First segment number to use in prelinking this module.
The STARTING _SEGMENT parameter provides a unique
starting segment number. It is used only when creating
multiple prelinked modules that are loaded together.

Use the NEXT_AVAILABLE_SEGMENT parameter to
generate the integer value for the STARTING _SEGMENT
parameter on the next CREATE _LINKED _MODULE
subcommand.

Integer values are 0 through 4,095. The operating system
reserves segments 36 through 63 for prelinked programs.
Each program must fit into these segments. Do not use
segments 0 through 35, and 64 through 4,095.

If STARTING _SEGMENT is omitted, the integer value 36
is used as the starting segment number.

OUTPUT or 0

File to which the prelink information and diagnostics are
written. This file can be positioned.

If OUTPUT is omitted, information is written to file
$LOCAL.LINKMAP.

DEBUG _TABLE or DT

File to which the table containing binary debug
information is written. This parameter is for Control Data
internal use only.

If DEBUG _TABLE is omitted, no debug information is
written.

13-74 NOS/VE Commands and Functions 60464018 J

60464018 J

CREATE _LINKED _MODULE

NEXT_AVAILABLE_SEGMENTorNAS

Parameter Attributes: BY _NAME, ADVANCED

Integer variable which returns the address of the next
available segment number. Use this parameter only for
creating multiple prelinked modules which will be loaded
together. This parameter generates unique segment
numbers which will be used by the STARTING_
SEGMENT parameter on the next CREATE _LINKED_
MODULE subcommand.

If this parameter is omitted, no segment number is
returned.

APPLICATION _IDENTIFIER or Al

Parameter Attributes: BY _NAME, ADVANCED

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If an application identifier is placed on a load module, the
module is assumed to be a unit-measured application.

If APPLICATION _IDENTIFIER is omitted, no application
identifier ·is assigned to the module.

DEFER _ENTRY _POINTS or DEP

Parameter Attributes: BY _NAME, ADVANCED

Defers the loading of entry points in the module. Specify
the keywords ALL, NONE, or $NOT _RETAINED ($NR)
for this parameter, or specify one or more entry points
whose names conform to the type PROGRAM_NAME.

For example, to defer the loading of entry points EPl and
EP2, enter them as a list of names as follows:

defer_entry_points=(ep1, ep2)

Alternatively, you can defer loading of all except certain
specified entry points, using a record which has the
following format:

CREATE_OBJECT_LIBRARY 13-75

I
Ii

I

CREATE _LINKED _MODULE

record
action: key

($defer_all_except, $dae)
keyend

entry_points: list rest of program_name
recend

For example, to defer loading of all entry points except
EPl and EP2, enter the following:

defer_entry_points=($defer_all_except (ep1, ep2))

The default is NONE; all entry points in the module are
loaded.

DEFER _COMMON _BLOCKS or DCB

Parameter Attributes: BY _NAME, ADVANCED

Defers the loading of common blocks specified on this
parameter. You can specify the keywords ALL or NONE,
or you can provide a list of names that conform to the
type PROGRAM_NAME. For example, to defer the
loading of common blocks COMl and COM2, specify them
as a list of names as follows:

defer_conrnon_blocks=(com1, com2)

Alternatively, you can defer the loading of all common
blocks except those specified by using a record with the
following format:

record
action: key

($defer_all_except, $dae)
keyend
COlllTIOn_blocks: list rest of program_name

recend

For example, to defer loading of all common blocks except
COMl and COM2, enter the following:

defer_conrnon_blocks=($defer_all_except (com1,com2))

The default is NONE; all common blocks in the module
are loaded.

13-76 NOS/VE Commands and Functions 60464018 J

"--.. .. ·

Remarks

CREATE _LINKED _MODULE

For more information about using the DEFERRED_
ENTRY _POINTS and DEFERRED _COMMON _BLOCKS
parameters, see Deferred Loading of Entry Points and
Common Blocks in chapter 8.

• When building programs that consist of multiple
prelinked modules, all predefined segment numbers
must be unique for the entire load sequence.

• Use the STARTING _SEGMENT parameter on the
CREATE _LINKED _MODULE subcommand to specify
the first reserved segment number for a module. This
allows modules that are prelinked separately to be
used together at execution time.

o The system issues a warning diagnostic message for
all text-embedded libraries encountered during
prelinking. If the warning is ignored, the loader
attempts to satisfy text-embedded library references at
load time.

o During prelinking, an output file is generated that
contains diagnostics and information on how the
program was prelinked. This link map's default file
name is $LOCAL.LINKMAP.

• Do not prelink COBOL programs that use CALL and
CANCEL into a single module because CALL will try
to overlay a single component module that is no
longer available.

o Once you have prelinked modules, they can no longer
be debugged using the interactive debugger. The debug
information written to the file specified by the
DEBUG _TABLE parameter is not the same as the
debug tables used by the interactive debugger.

o For more information, see the NOS/VE Object Code
Management manual.

Examples The following sequence creates a prelinked module named
PRELINKED_MODULE from component BOUND_
PRODUCT with ring brackets of (11,11,11). The module is
then put in object library PRELINKED_PRODUCT and
executed.

60464018 J CREATE_OBJECT_LIBRARY 13-77

CREATE_MENU_CLASS

/create_object_library
COL/create_linked_module name=prelinked_module
COL .. /component=bound_product ..
COL .. /ring_brackets=(11,11,11)
COL/generate_library prelinked_product
COL/Quit
/execute_task ..
.. /starting_procedure=product_entry_point
.. /library=prelinked_product

CREATE _MENU _CLASS
CREAM Subcommand

Purpose Creates a class for an application menu. A class is
defined as a name for a submenu. This subcommand
allows you to identify a grouping of menu items. Up to 16
menu classes can be defined for a menu.

Format CREATE _MENU_ CLASS or
CREMC

NAME=string
STATUS= status variable

Parameters NAME or N

Remarks

Specifies the identification for the menu class being
defined. Menu class names must be unique within a
menu. The NAME parameter is a string containing 1
through 31 characters. This parameter is required.

For more information, see the NOSNE Object Code
Management manual.

CREATE _MENU _ITEM
CREAM Subcommand

Purpose Creates an item for an application menu. A menu
represents a particular action to be performed by the
application program, or a particular option for such an
action. Up to 20 menu items can be defined for each
menu class.

13-78 NOS/VE Commands and Functions 60464018 J

Format

Parameters

60464018 J

CREATE _MENU _ITEM or
CREMI

KEY== keyword
SHIFT== boolean
CLASS= string

CREATE_MENU _ITEM

SHORT _LABEL= string
ALTERNATE _SHORT _LABEL== string
LONG _LABEL== string
ALTERNATE _LONG _LABEL= string
PAIR_ WITH _PREVIOUS= boolean
STATUS ==status variable

KEY or K

Specifies the key on a terminal keyboard that is
associated with the menu item. The name of the key and
the associated SHIFT parameter must be unique within
the menu. Selectable keys are fl, f2, £3, f4, £5, f6, f7, f8,
f9, fl.O, fll, fl.2, fl.3, fl.4, fl.5, fl.6, next, help, stop, back,
up, down, forward, backward, edit, data, insert_line,
delete_line, home, clear, clear _eol_menu_item, delete_
char _menu _item, insert _char _menu _item, and undo.

Omission of the KEY parameter causes no assignment of
the menu item to a key. The menu item is automatically
assigned to a key, however, when the menu is used.

SHIFT

Indicates whether the menu item is associated with a
shifted key (YES) or an unshifted key (NO).

Omission of the SHIFT parameter assumes an unshifted
key. If the KEY parameter is omitted, the SHIFT
parameter is ignored.

CLASS or C

Specifies the menu class for this menu item. The CLASS
parameter is a string containing 1 through 31 characters.

Omission of the CLASS parameter causes the most
recently created menu class to be used. If no menu
classes have been defined, an error results.

CREATE _OBJECT_LIBRARY 13-79

CREATE _MENU _ITEM

Remarks

SHORT _LABEL or SL

Provides a short label to represent this menu item for the
application user. The SHORT_LABEL parameter is a
string containing 1 through 6 characters. this parameter
is required.

ALTERNATE_SHORT_LABELorASL

Provides a short label when the meaning of the menu
item is toggled. The ALTERNATE _SHORT _LABEL
parameter is a string containing 1 through 6 characters.

Omission of the ALTERNATE_SHORT_LABEL parameter
causes the value for the SHORT _LABEL parameter to be
used; the menu item's meaning does not toggle.

LONG _LABEL or LL

Provides a long label to represent this menu item for the
application user. The LONG _LABEL parameter is a
string containing 1 through 31 characters.

Omission of the LONG _LABEL parameter causes the
SHORT _LABEL parameter to be used.

ALTERNATE _LONG _LABEL or ALL

Provides a long label when the meaning of the menu item
is toggled. The ALTERNATE _LONG _LABEL parameter
is a string containing 1 through 31 characters.

Omission of the ALTERNATE _LONG _LABEL parameter
causes the value for the LONG_LABEL parameter to be
used; the menu item's meaning does not toggle.

PAIR _WITH _PREVIOUS or PWP

Indicates (YES) that this menu item is to be paired with
the most recently created menu item during automatic
assignment of menu items to keys.

Omission causes NO to be assumed; that is, there is no
assignment preference in pairing this menu item with
other menu items.

For more information, see the NOSNE Object Code
Management manual.

13-80 NOS/VE Commands and Functions 60464018 J

CREATE_MESSAGE_MODULE

CREATE_MESSAGE_MODULE
CREOL Subcommand

Purpose

Format

Starts the CREATE _MESSAGE _MODULE utility.

CREATE _MESSAGE _MODULE or
CREMM

NAME= program _name
MANUAL =program _name
NATURAL_LANGUAGE=keyword or name
MERGE _OPTION= keyword
STATUS=status variable

Parameters NAME or N.

60464018 J

Specifies the name of the message module to create. This
parameter is required.

For status messages, you can specify any name.

For help and prompt messages, the name references the
procedure or command for which the message module is
being created. It must be in the form:

name$language

name is the name of the message module specified on
either the parameter description table (PDT) or the
procedure header. language is the natural language used
to compose the messages in this module (it should be the
same as the language that is specified by the
NATURAL_LANGUAGE parameter).

Use a string value for a message module whose name is
not an SCL name or a COBOL name.

MANUAL or M

Specifies the name of the online manual that describes
the command or function for which this module contains
help information.

NATURAL _LANGUAGE or NL

Specifies the name of the natural language used to
compose the messages for the message module. Specify an
SCL name or one of the following keywords:

DANISH
ENGLISH
FLEMISH

DUTCH
FINNISH
FRENCH

CREATE_OBJECT_LIBRARY 13-81

I

CREATE _MESSAGE_MODULE

Remarks

Examples

GERMAN
NORWEGIAN
SPANISH
US_ENGLISH

ITALIAN
PORTUGUESE
SWEDISH

If NATURAL_LANGUAGE is omitted, US_ENGLISH is
used.

MERGE _OPTION or MO

Specifies whether to add, replace, or combine the message
module with the new object library. Options are:

ADD (A)

Message module is added to the new library.

REPLACE (R)

Message module replaces an existing module on the
library.

COMBINE (C)

Message module is placed in the new library whether
a module with the same name is present or not. If one
is present, it is replaced with the new module.

If MERGE _OPTION is omitted, COMBINE is used.

• CYBIL programmers can use GENERATE_
MESSAGE _TEMPLATE to create message modules for

·· status messages. This is described in the CYBIL
System Interface manual.

• For more information, see the NOSNE Object Code
Management manual.

The following example creates a message module
containing the status message: + P is not a command.

/create_object_library
COL/create_message_module name=a_message_module
CMM/create_status_message name=cle$unknown ..
CMM .. /_conmand code=790 severity=error
? +p is not a conmand.
? ••

CMM/end_message_module
COL/

13-82 NOS/VE Commands and Functions 60464018 J

CREATE_MODULE

CREATE _MODULE
CREOL Subcommand

Purpose

Format

Creates a new load module from existing modules and
adds it to the module list.

CREATE _MODULE or
CREM

NAME= program _name
COMPONENT= list of record
GATE= keyword or list of program _name
RETAIN= keyword or list of program _name
STARTING _PROCEDURE =program _name
PRESET _VALUE=keyword
INCLUDE _BINARY _SECTION _MAPS= boolean
OUTPUT=file
APPLICATION _IDENTIFIER =name
STATUS= status variable

Parameters NAME or N

60464018 J

Name of the new module.

You use a string value for a module whose name is not
an SCL name or a COBOL name. An example of such a
module name is the name of a C function, where
lowercase is significant.

This parameter is required.

COMPONENTorCOMPONENTSorC

Component modules of the new module. Each item in the
list is a record consisting of a file name followed by a
series of module names which are to be used. A range of
names may be specified. If no module names are specified
for a file, all modules on the file are used.

For modules with names which are not SCL or COBOL
names, use a string value. An example is a C function
name, in which lowercase is significant.

CREATE_OBJECT_LIBRARY 13-83

CREATE _MODULE

NOTE

A component module can only be a load or object module.

The component modules are combined within the new
module in the order you list them on the COMPONENT
parameter.

This parameter is required. At least one file must be
specified.

GATE or GATES or G

Parameter Attributes: BY _NAME

List of additional entry points to be given the gate
attribute in the new module.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name.

If GATE is omitted, the gated entry points ·m the new
module are the entry points gated in the component
modules.

RETAIN or R

Parameter Attributes: BY _NAME

List of additional entry points given the retain attribute.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name.

If RETAIN is omitted, the new module retains gated entry
points, entry points assigned the retain attribute in the
component modules, and entry points not referenced by
any other component module.

STAR.TING _PROCEDURE or SP

Parameter Attributes: BY _NAME

Starting procedure for the new module.

You use a string value for an entry point whose name is
not an SCL name or a COBOL name.

If STARTING _PROCEDURE is omitted, the starting
procedure is the last transfer symbol in the last module
specified in the COMPONENT parameter value list.

13-84 NOS/VE Commands and Functions 60464018 J

'--

Remarks

60464018 J

PRESET_ VALUE or PV

Parameter Attributes: BY_NAME

Specifies text record reduction.

ZERO (Z)

CREATE_MODULE

Reduces the number of individual text records in an
object module. Reducing the number of records reduces
the module loading time.

If PRESET_ VALUE is omitted, the number of text records
is not reduced.

INCLUDE _BINAR.Y _SECTION _MAPS or IBSM

Parameter Attributes: BY_NAME

Indicates whether the binary section map is included in
the information element for the bound module.

If INCLUDE _BINARY _SECTION _MAPS is omitted,
binary section maps are not included.

OUTPUT or 0

Parameter Attributes: BY _NAME

File to which the section map for· the new module is
written. This file can be positioned.

If OUTPUT is omitted, no section map is written.

APPLICATION _IDENTIFIER or AI

Parameter Attributes: BY _NAME, ADVANCED

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If an application identifier is placed on a load module, the
module is assumed to be a unit-measured application.

If APPLICATION _IDENTIFIER is omitted, no application
identifier is assigned to the module.

• The new module is not generated until you enter a
GENERATE _LIBRARY subcommand. Therefore, the
section map for the module is not written on the file
specified on the OUTPUT parameter until the module
is generated.

CREATE _OBJECT_LIBRARY 13-85

CREATE_MODULE

o The existing modules to be combined are referred to
as the component modules of the new module. The
module type of the new module is a bound module
because it is created by the combination of other
modules.

• If a component module contains an external reference
to another component module, CREOL links the
modules.

• Although the command adds the new module to the
module list, and stores information from the
component module headers in the bound module
header, it does not add the component modules to the
module list. You can display component module
information with the subcommand DISPLAY _NEW_
LIBRARY or the SCL command DISPLAY _OBJECT_
LIBRARY.

• The following entry points are kept in the bound
module.

- The starting procedure entry point for the bound
module.

- Entry points with the gate attribute. (The gate
attribute indicates that a procedure executing in a
ring within the call bracket of the module can call
the entry point.)

- Entry points with the retain attribute. (The retain
attribute indicates the entry point is to be kept in
a new module created by combining the module
with other modules.)

- Entry points not referenced by any other
component module.

• You can assign the gate and retain attributes with the
CREOL subcommands CREATE_MODULE or
CHANGE_MODULE_ATTRIBUTES. You can also
assign the gate attribute within the CYBIL source
code (the #GATE attribute on the declaration).

o Do not bind COBOL programs that use CALL and
CANCEL into a single module, because CALL will try
to overlay a single module that is no longer available.

13-86 NOS/VE Commands and Functions 60464018 J

Examples

CREATE _PARAMETER_ASSIST _MESSAGE

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand sequence creates a module,
displays the module information, then generates a new
object library. The new module is named NEW_MODULE
and combines modules EXAMPLE and NAND on file
OBJ!. When the new library is generated, it_ writes the
section map on file $OUTPUT.

COL/create _modu 1 e name=new _modu 1 e component= ..
COL .. /((objl ,example,nand)) ,output=$output
COL/display_new_ 1 ibrary module=new_rnodule ..
COL .. /display_opt ions=(header ,component)

NEW_MODULE - load module - 18:05:32 1988-03-28
kind: Ml_VIRTUAL_STATE generator: OBJECT _LIBRARY _GENERATOR
generator name version: OOJECT LIBRARY GENERATOR Vl. 1
components ----------

component: EXAMPLE
created: 18:05:32 1986-03-28
generator: FORTRAN
generator name version: FTN
commentary: VS FORTRAN - level 86063

component: NANO
created: 18:05:32 1986-03-28
generator: FORTRAN
generator name version: FTN
commentary: VS FORTRAN - level 86063

COL/generate_ 1 ibrary 1ibrary=my_new_1 ibrary
Section map for module NEW_MODULE created: 18:05:32 1988-03-28
kind: COOE length: BE

offset: 0 length: 54
offset: 58 length:· 16

kind: BINDING length: 50

kind: l'IORKING STORAGE length: 180

offset: 0 length: DEF
offset: OFO length: 90

kind: VtORKING STORAGE length: 88

offset: 0
offset: 78

length: 78
length: 10

module:. EXAMPLE
module: NANO

module: EXAMPLE
modu 1 e: NANO

modu 1 e: EXAMPLE
module: NANO

section: EXAMPLE
sect ion: NANO

CREATE _PARAMETER _ASSIST _MESSAGE
CREMM Subcommand

Purpose

60464018 J

Creates a help message that is displayed when a user
enters an incorrect value for the parameter specified by
this command.

CREATE_OBJECT_LIBRARY 13-87

CREATE _PARAMETER_HELP _MESSAGE

Format CREATE _PARAMETER _ASSIST _MESSAGE or
CREPAM

NAME=name
COLLECT _TEMPLATE _UNTIL=string
STATUS= status variable

Parameters NAME or N

Remarks

Examples

Name of the command parameter for which the assist
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROCEDURE header. This parameter is required.

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the parameter assist message. If the
COLLECT_TEMPLATE_UNTIL parameter is omitted, the
string '**' is used.

For more information, see the NOS/VE Object Code
Management manual.

The following example creates a parameter assist
message.

CMM/create_parameter_assist_message
CMM .. /name=d1splay_opt1ons
? The DISPLAY_OPTIONS parameter must specify
? one of the following keyword values:
? BRIEF or FULL.
? ••

CMM/

CREATE_PARAMETER_HELP_MESSAGE
CREMM Subcommand

Purpose

Format

Creates a help message for a parameter. The help
message is displayed when a user requests help for the
parameter specified by this command.

CREATE _PARAMETER _HELP _MESSAGE or
CREPHM

NAME=name
COLLECT _TEMPLATE _UNTIL=string
STATUS= status variable

13-88 NOSNE Commands and Functions 60464018 J

'----·

CREATE _PARAMETER_PROMPT_MESSAGE

Parameters NAME or N

Remarks

Examples

Name of the command parameter for which the help
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROCEDURE header. This parameter is required.

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the parameter help message. If the
COLLECT_TEMPLATE_UNTIL parameter is omitted, the
string '**' is used.

For more information, see the NOSNE Object Code
Management manual.

The following example creates a parameter help message.

CMM/create_parameter_help_message ..
CMM .. /name=display_options
? The DISPLAY_OPTIONS parameter determines the
? amount of information that is displayed for
? this file. Keyword values are BRIEF and FULL.
? **
CMM/

CREATE_PARAMETER_PROMPT_MESSAGE
CREMM Subcommand

Purpose

Format

Parameters

60464018 J

Creates the prompt message that appears for the
parameter specified by this command.

CREATE_PARAMETER_PROMPT_MESSAGEor
CREPPM

NAME=name
COLLECT _TEMPLATE_UNTIL=string
STATUS =status variable

NAME or N
Name of the command parameter for which the prompt
message is defined. If the command parameter has aliases,
you must specify the first name listed in the PDT or
PROCEDURE header. This parameter is required.

CREATE_OBJECT_LIBRARY 13-89

CREATE _PARAMETER_PROMPT _MESSAGE

Remarks

Examples

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the parameter prompt message. If the
COLLECT_TEMPLATE_UNTIL parameter is omitted, the
string '**' is used.

• NOS/VE allows you to name time zones, and to enter
names for months and days in any natural language.
Use the text of the parameter prompt message to
define the names.

o Once a MONTHS_AND_DAYS module for a
particular language has been referenced in a job,
modifying the module on the object library or adding a
different object library with a MONTHS_AND_DAYS
module for the same language to your command list
will have no effect on the current job.

• For more information, see the NOS/VE Object Code
Management manual.

The following example creates a parameter prompt
message.

CMM/create_parameter_prompt_message
CMM .. /name=display_options
? Display_options for the file?
? ••

CMM/

The following example creates a parameter prompt
template for time zones in US_ENGLISH.

/create_object_11brary
COL/create_message_module
COL .. /name=time_zones$us_eng11sh
CMM/create_parameter_prompt_message
CMM .. /name=standard_time$0
? Coordinated Universal Time
? ••

CMM/create_parameter_prompt_message
CMM .. /name=standard_time$_6
? Central Standard Time
? ••

CMM/create_parameter_prompt_message
CMM .. /name=daylight_sav1ng_time$_6

13-90 NOS/VE Commands and Functions 60464018 J

CREATE _PROGRAM_DESCRIPTION

? Central Daylight Saving T1me, CDT
? ••

CMM/end_message_module
COL/generate_l1brary library=my_tim~s
COL/Quit
I

The following example extracts the released French month
and day names.

/create_object_library
COL/add_module $system.osf$conmand_library ..
COL .. /module=months_and_days$french
COL/generate_11brary $1ocal.months_days$..
COL .. /french format=message_module
COL/Quit

The example DAYS_MONTHS_AND_TIME_ZONES in
the online NOSNE Examples manual demonstrates the
definition of message modules for time zones, month
names, and day names.

CREATE _PROGRAM _DESCRIPTION
CREOL Subcommand

Purpose

Format

60464018 J

Defines a program description module and adds it to the
module list.

CREATE _PROGRAM _DESCRIPTION or
CREPD

NAME=record
FILE= list of: file or string
LIBRARY=list of: keyword or file or string
MODULE= list of program _name
STARTING _PROCEDURE= program _name
LOAD _MAP= file or string
LOAD _MAP _OPTION= keyword or list of keyword
TERMINATION _ERROR _LEVEL=keyword
PRESET _VALUE=keyword
STACK _SIZE =integer
ABORT _FILE =file or string
DEBUG _INPUT=file or string
DEBUG _OUTPUT=file or string
DEBUG _MODE=boolean
AVAILABILITY= keyword
SCOPE=keyword

CREATE_OBJECT_LIBRARY 13-91

CREATE _PROGRAM_DESCRIPTION

I Pu~erers

I

LOG _OPTION=keyword
MERGE _OPTION=keyword
APPLICATION _IDENTIFIER =name
ARITHMETIC _OVERFLOW= boolean
ARITHMETIC _LOSS _OF _SIGNIFICANCE= boolean
DNIDE _FAULT=boolean
EXPONENT _OVERFLOW= boolean
EXPONENT _UNDERFLOW= boolean
FP _INDEFINITE= boolean
FP _LOSS _OF _SIGNIFICANCE= boolean
INVALID _BDP _DATA= boolean
STATUS= status variable

NAME or NAMES or N

The program name and its aliases. The first name is the
module name. Subsequent names are aliases. Specify the
names in a record with the following format:

record
name: program_name
aliases: list rest of program_name=$opt1onal

recend

This parameter is required.

FILE or FILES or F

List of object files or object library files to be
unconditionally loaded when the program is executed. A
file value is evaluated when the library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements, and file variable names can be supplied as
strings to be evaluated when the program description is
used.

LIBRARYorLIBRARIESorL

List of library files added to the program library list
when the program is executed. A file value is evaluated
when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements, and file variable names can be supplied as
strings to be evaluated when the program description is
used.

13-92 NOS/VE Commands and Functions 60464018 J

60464018 J

CREATE _PROGRAM _DESCRIPTION

The keyword OSF$TASK _SERVICES _LIBRARY specifies
the system table, and keyword OSF$CURRENT _LIBRARY
represents the library containing the program description.

MODULE or MODULES or M

List of modules loaded from the program library list when
the program is executed.

For modules with other than SCL or COBOL names, use
a string value. An example is a C function name, in
which lowercase is significant.

If MODULE is omitted, no additional modules are loaded
when the program is executed.

STAR.TING _PROCEDURE or SP

Name of the entry point where execution begins.

For an entry point whose name is other than an SCL or
COBOL name, use a string ·value. An example is a C
function name, in which. lowercase is significant.

If STARTING _PROCEDURE is omitted, the last transfer
symbol loaded is used.

LOAD _MAP or LM

Parameter Attributes: BY _NAME

File on which the load map is written. A file value is
evaluated when the library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

This file can be positioned.

LOAD _MAP _OPTION or LOAD _MAP _OPTIONS or
LMO

Parameter Attributes: BY_NAME

Set of one or more keywords indicating the information
included in the load map. Options are:

ALL

Segment map, block map, entry point map, and entry
point cross-reference.

NONE

No load map is written.

CREATE_OBJECT_LIBRARY 13-93

CREATE _PROGRAM_DESCRIPTION

SEGMENT (S)

Segment map.

BLOCK (B)

Block map.

ENTRY _POINT (EP)

Entry point map.

CROSS_REFERENCE (CR)

Entry point cross-reference.

TERMINATION _ERROR _LEVEL or TEL

Parameter Attributes: BY _NAME

Error level that terminates program loading. Options are:

WARNING (W)

Warning, error, or fatal error.

ERROR(E)

Error or fatal error only.

FATAL (F)

Fatal error only.

PRESET_ VALUE or PV

Parameter Attributes: BY _NAME

Value stored in all uninitialized words of program space.
Options are:

ZERO (Z)

All zeros.

FLOATING _POINT _INDEFINITE (FPI)

Floating-point indefinite value.

INFINITY (I)

Floating-point infinite value.

ALTERNATE_ONES (AO)

Alternating 0 and 1 bits. The leftmost (highest order)
bit is 1.

13-94 NOS/VE Commands and Functions 60464018 J

"-----

60464018 J

CREATE _PROGRAM_DESCRIPTION

STACK _SIZE or SS

Parameter Attributes: BY _NAME

Maximum number of bytes in the run-time stack. The
program uses the run-time stack for procedure call
linkages and local variables.

ABORT _FILE or AF

Parameter Attributes: BY _NAME

File containing Debug commands to be processed if the
program aborts. The commands are used only if the
program is not executed in Debug mode. A file value is
evaluated when the object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used. This file can be
positioned.

DEBUG _INPUT or DI

Parameter Attributes: BY _NAME

File containing Debug commands. The commands are read
only if the program is executed under control of Debug
(refer to DEBUG _MODE parameter). This file can be
positioned. A file value is evaluated when the object
library is generated.

Path values containing $FAMILY, $USER; or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

DEBUG _OUTPUT or DO

Parameter Attributes: BY _NAME

File on which Debug output is written. Output is written
only if the program is executed in Debug mode. This file
can be positioned. A file value is evaluated when the
object library is generated.

Path values containing $FAMILY, $USER, or $SYSTEM
elements can be supplied as strings to be evaluated when
the program description is used.

CREATE_OBJECT_LIBRARY 13-95

CREATE _PROGRAM _DESCRIPTION

DEBUG _MODE or DM

Parameter Attributes: BY _NAME

Indicates whether the program is to be run under the
control of Debug. (For information on using Debug, refer
to the program's specific source language manual). Options
are:

ON

Program executed under control of the Debug program.

OFF

Program executed without the Debug program.

AVAILABILITY or A

Parameter Attributes: BY _NAME

Specifies whether the program description is made known
to users as a command or not. Options are:

NORMAL_USAGE (ADVERTISED A NU)

The program description appears in the output
produced by the DISPLAY_COMMAND_LIST_ENTRY
command (and in other similar situations).

ADVANCED_USAGE (AU)

The command is included in displays of the user's
command list but only if the user specifies the
ADVANCED_USAGE display option for the DISPLAY_
~OMMAND _LIST _ENTRY command.

HIDDEN (H)

The program description is suppressed from the output
produced by DISPLAY_COMMAND_LIST_ENTRY
command (and in other similar situations).

Omission causes ADVERTISED to be used.

SCOPE or S

Parameter Attributes: BY_NAME

The manner in which the command processor may be
called. The keyword options are:

13-96 NOS/VE Commands and Functions 60464018 J

'---.

60464018 J

CREATE _PROGRAM _DESCRIPTION

XDCL (X)

The command is externally declared and may be called
from outside the object library on which it resides.

GATE (G)

The program can be called from rings less privileged
than the program's execution ring brackets. The GATE
attribute implies the XDCL attribute.

LOCAL (L)

Reserved.

The default is XDCL.

LOG _OPTION or LO

Parameter Attributes: BY _NAME

Determines the manner in which calls to the program are
logged. The keyword options are:

AUTOMATIC (A)

The logging is performed by the SCL Interpreter.

MANUAL (M)

Logging is performed by the program. Use this option
to suppress the logging of secure information that
should not be written to a log.

The default is AUTOMATIC.

MERGE _OPTION or MO

Parameter Attributes: BY_NAME

Indicates whether the program description module is
added or replaced within the module list. Keyword options
are:

ADD (A)

Added to the end of the module list.

REPLACE (R)

Replaces the module with the same name in the
module list, if one exists.

CREATE _OBJECT _LIBRARY 13-97

Ill
Ii

CREATE _PROGRAM_DESCRIPTION

COMBINE (C)

Added to the end of the module list if a module of the
same name does not exist; replaces the module if it
does exist.

If MERGE _OPTION is omitted, COMBINE is used.

APPLICATION _IDENTIFIER or AI

Parameter Attributes: BY _NAME, ADVANCED

Name of the application identifier stored in the module
header and included on the application accounting
statistics when the software is executed.

Only a user with APPLICATION _ADMINISTRATION
capability can specify an application identifier.

If APPLICATION _IDENTIFIER is omitted, no application
is identified with the program description.

ARITHMETIC _OVERFLOW or AO

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition ARITHMETIC _OVERFLOW causes an interrupt.
Valid specifications are:

ON

ARITHMETIC_OVERFLOW is enabled. The condition
causes an interrupt.

OFF

ARITHMETIC _OVERFLOW is disabled. The condition
does not cause an interrupt.

ARITHMETIC _LOSS _OF _SIGNIFICANCE or ALOS

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition ARITHMETIC _LOSS _OF _SIGNIFICANCE
causes an interrupt. Valid specifications are:

ON

ARITHMETIC_LOSS_OF _SIGNIFICANCE is enabled.
The condition causes an interrupt.

13-98 NOSNE Commands and Functions 60464018 J

'-..____

"-------

60464018 J

CREATE _PROGRAM _DESCRIPTION

OFF

ARITHMETIC _LOSS_ OF _SIGNIFICANCE is disabled.
The condition does not cause an interrupt.

DNlDE _FAULT or DF

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition DIVIDE _FAULT causes an interrupt. Valid
specifications are:

ON

DIVIDE _FAULT is enabled. The condition causes an
interrupt.

OFF

DIVIDE _FAULT is disabled. The condition does not
cause an interrupt.

EXPONENT _OVERFLOW or EO

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition EXPONENT _OVERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT _OVERFLOW is enabled. The condition
causes an interrupt.

OFF

EXPONENT_OVERFLOW is disabled. The condition
does not cause an interrupt.

EXPONENT _UNDERFLOW or EU

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition EXPONENT _UNDERFLOW causes an interrupt.
Valid specifications are:

ON

EXPONENT_ UNDERFLOW is enabled. The condition
causes an interrupt.

CREATE_OBJECT_LIBRARY 13-99

CREATE _PROGRAM _DESCRIPTION

OFF

EXPONENT_ UNDERFLOW is disabled. The condition
does not cause an interrupt.

FP _INDEFINITE or FPI or FI

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition FP _INDEFINITE causes an interrupt. Valid
specifications are:

ON

FP _INDEFINITE is enabled. The condition causes an
interrupt.

OFF

FP _INDEFINITE is disabled. The condition does not
cause an interrupt.

FP _LOSS _OF _SIGNIFICANCE or FPLOS or FLOS

Parameter Attributes: BY_NAME, ADVANCED

This parameter specifies whether or not the hardware
condition FP _LOSS _OF _SIGNIFICANCE causes an
interrupt. Valid specifications are:

ON

FP _LOSS_OF_SIGNIFICANCE is enabled. The
condition causes an interrupt.

OFF

FP _LOSS_OF _SIGNIFICANCE is disabled. The
condition does not cause an interrupt.

INVALID _BDP _JJATA or IBDPD or IBD

Parameter Attributes: BY _NAME, ADVANCED

This parameter specifies whether or not the hardware
condition INVALID_BDP _DATA causes an interrupt.
Valid specifications are:

ON

INVALID _BDP _DATA is enabled. The condition causes
an interrupt.

13-100 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

CREATE _PROGRAM _DESCRIPTION lt::fl

OFF

INVALID _BDP_DATA is disabled. The condition does
not cause an interrupt.

o You can execute the program described by the
program description module with a command reference
that specifies the module.

o Except where otherwise noted, omitting a parameter
from the CREATE_PROGRAM_DESCRIPTION
subcommand omits a corresponding attribute from the
program description. This causes the corresponding job
default program attribute value to be used when the
program is executed. You can display the job default
attributes by entering the DISPLAY_PROGRAM_
ATTRIBUTES command.

• For more information, see the NOSNE Object Code
Management manual.

o The following subcommand creates a program
description for a FORTRAN program.

COL/create_program_description ..
COL .. /name=fortran_program file=$1oca1 .190
COL .. /1ibrary='flf$1ibrary'
COL/generate_library library=.bjs.audit_library
COL/Quit
/.bjs.audit_library.fortran_program

The command reference, .BJS.AUDIT _
LIBRARY.FORTRAN _PROGRAM, loads all modules in
file $LOCAL.LGO, and uses the file variable
FLF$LIBRARY to add the object library
FLF$LIBRARY to the program library list.

The value FLF$LIBRARY is specified as a string
instead of a file reference or a variable name because
this results in the string FLF$LIBRARY being
evaluated each time the program description is
executed.

o The following sequence demonstrates using
OSF$CURRENT _LIBRARY in a program description.
The NAME parameter on the program description
defines SHOW _OFF and SHOO as two aliases for the

CREATE_OBJECT_LIBRARY 13-101

CREATE _STATUS_MESSAGE

FORTRAN program P9939. The LIBRARY parameter
specifies that the library on which this program
description resides is to be added to the program
library list when the program is executed.

Thus, if the object library is copied to another file, the
program description does not have to be updated. The
program description always specifies the library on
which it resides.

/collect_text ftn_pgm
ct? program p9939
ct? print •,'In P9939'
ct? end
ct?••
/fortran input=ftn_pgm
/create_object_11brary
COL/add_module 11brary=lgo
COL/create_program_description name= ..
COL .. /(show_off shoo) start1ng_procedure=p9939
COL .. /11brary=osf$current_11brary
COL/generate_library 1ibrary=my_11b
COL/Quit
/my_11b.show_off
In P9939
/copy_file input=my_lib output=diff_11b
/diff _lib.show_off
In P9939
I

CREATE _STATUS _MESSAGE
CREMM Subcommand

Purpose

Format

Creates a status message for the specified status condition
code.

CREATE _STATUS _MESSAGE or
CRESM

NAME=name
CODE =integer
IDENTIFIER= string
SEVERITY= keyword
COLLECT _TEMPLATE_UNTIL=string
STATUS= status variable

13-102 NOS/VE Commands and Functions 60464018 J

CREATE _STATUS _MESSAGE

Parameters NAME or N

"---- Specifies the condition identifier. This parameter is
required.

60464018 J

CODE or C

Specifies the status condition code. If the CODE
parameter is less than or equal to 16,777,215, the
IDENTIFIER parameter must be specified and is combined
with CODE to form the condition code. If CODE is
greater than 16,777,215, it represents the complete status
condition code. The IDENTIFIER parameter, if specified,
is ignored.

Codes 0 through 9,999 for every possible product identifier
are reserved for Control Data use. Codes 10,000 through
19,999 for every possible product identifier are for
user-developed products. The remainder of each range is
reserved for future use.

The CODE parameter is required.

IDENTIFIER or I

Specifies the two-character product identifier that is
combined with CODE to form the status condition code.

SEVERITY or S

Specifies the severity level of the status condition. Options
are:

NON _STANDARD (NS)

Non-standard condition. This flags non-standard
extensions to the language specification.

DEPENDENT (D)

Dependent condition. This flags machine dependent
usage in code. It is intended primarily for use by the
implementation language (CYBIL), but other products
with similar needs may also use it.

INFORMATIVE (I)

Information condition. These messages report
conditions encountered during command processing that
do not cause incorrect or incomplete operation of a
command.

CREATE_OBJECT_LIBRARY 13-103

CREATE _STATUS_MESSAGE

Remarks

Examples

WARNING (W)

Warning condition. These messages report conditions
encountered during command processing that may have
caused incorrect or incomplete operation of a command
or of subsequent commands.

ERROR (E)

Error condition. These messages report that the last
command was not completed correctly. By default, a
batch job is terminated. For an interactive session,
additional input is requested from the user to direct
continued job processing.

FATAL (F)

Fatal condition. These messages report that the last
command or subcommand was not completed correctly.
Subsequent processing is usually provided to discover
additional problems.

CATASTROPHIC (C)

Catastrophic condition. These messages report that the
last command or subcommand was not completed
correctly. No further processing for the requested
function is possible.

If SEVERITY is omitted, ERROR is used.

COLLECT _TEMPLATE _UNTIL or CTU

Specifies the termination string to use when collecting the
template of the status message. If the COLLECT_
TEMPLATE_ UNTIL parameter is omitted, the string '**'
is used.

For more information, see the NOSNE Object Code
Management manual.

See the NOS/VE Object Code Management manual for a
detailed example.

13-104 NOSNE Commands and Functions 60464018 J

DELETE _MODULE

DELETE _MODULE
CREOL Subcommand

Purpose

Format

Deletes one _or more modules from the module list.

DELETE _MODULE or
DELETE _MODULES or
DELM

MODULE=keyword or list of program_name or
list of range of program _name

STATUS =status variable

Parameters MODULE or MODULES or M

Remarks

Examples

Modules deleted. If ALL is specified, all modules in the
module list are deleted. This parameter is required.

For more information, see the NOSNE Object Code
Management manual.

The following session generates a new object library from
a subset of the modules in an existing object library.

/create_object_library
COL/add_modules library=old_library
COL/delete_module (sort4,merge5)
COL/generate_library library=new_library
COL/quit
I

The object library generated on file NEW _LIBRARY
contains all modules from file OLD _LIBRARY except
modules SORT4 and MERGE5.

DISPLAY _NEW _LIBRARY
CREOL Subcommand

Purpose

Format

60464018 J

Displays information about modules in the module list.

DISPLAY _NEW _LIBRARY or
DISNL

MODULE=list of program_name or list of range of
program _name

DISPLAY _OPTION=keyword or list of keyword
OUTPUT=file
ALPHABETICAL _ORDER= boolean
STATUS =status variable

CREATE_OBJECT_LIBRARY 13-105

DISPLAY _NEW _LIBRARY

Parameters MODULE or MODULES or M

List of modules for which information is displayed.

You use a string value for a module whose name is not
an SCL name or a COBOL name. An example of such a
module name is in the C language, where lowercase is
significant.

If MODULE is omitted, information for all modules in the
module list is displayed.

DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Set of keywords indicating the information displayed in
addition to the module type and name. Options are:

NONE

No information other than the module type and name.

DATE_TIME (DT)

Creation date and time.

ENTRY _POINT (EP)

Entry point names.

HEADER (H)

Module header information. This includes:

• Module type, name, creation date and time, kind,
generator, generator name version, and
commentary.

o Formal parameters, availability, scope, and log
option for SCL command procedures.

o Entire program description, its availability, scope,
log option, and application identifier for program
description modules.

c Entire command description, its availability, scope,
log option, and application identifier for command
description modules.

o Entire function description, its availability, and
scope for function description modules.

13-106 NOS/VE Commands and Functions 60464018 J

"-----

I

"---

60464018 J

DISPLAY _NEW _LIBRARY

o Natural language for online manuals and message
modules.

o The lowest and highest condition codes for message
modules that contain status message information.

LIBRARIES or LIBRARY (L)

Local file names within the object text of the modules
that are added to the program library list when the
module is loaded (i.e., text-embedded libraries).

REFERENCE (R)

External references.

COMPONENT (C)

Module headers of the component modules if the
module is a bound module.

ALL

All of the listed options.

If DISPLAY _OPTION is omitted, the default set by the
last SET_DISPLAY_OPTIONS subcommand is used. The
initial default is DATE _TIME.

OUTPUT or 0

Output file. This file can be positioned. If OUTPUT is
omitted, file $OUTPUT is used.

ALPHABETICAL _ORDER or AO

Indicates the display order for the module information.
Options are:

TRUE

Alphabetical order by module name.

FALSE

Order in which modules exist on the library or file.

If ALPHABETICAL_ORDER is omitted, FALSE is used.

CREATE_OBJECT_LIBRARY 13-107

END _APPLICATION _MENU

Remarks

Examples

• The DISPLAY _NEW _LIBRARY subcommand displays
the contents of the new library that would be
generated if the subcommand GENERATE _LIBRARY
were entered.

• To change and display the default display options for
subsequent DISPLAY _NEW _LIBRARY subcommands,
enter a SET _DISPLAY _OPTION subcommand.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand lists the module header and
entry point information for module EXAMPLE.

COL/display_new_ 1 ibrary example display_opt ions=(h, ep)
EXAMPLE - object module - 15:40:31 1986-04-09
lcind: Ml_VIRTUAL_STATE generator: CYBIL
generator name version: C 180 CYBIL/I I 1. 0 LEVEL 85302
commentary: DA=NONE RC=NONE OPT=LOW

:~!~~-e~~~!~
EXAMPLE

starting procedure: EXAMPLE

END _APPLICATION _MENU
CREAM Subcommand

Purpose Terminates creation of the application and ends the
CREATE _APPLICATION _MENU utility session.

Format END _APPLICATION _MENU or
QUIT or
END AM

Parameters None.

Remarks For more information, see the NOSNE Object Code
Management manual.

13-108 NOSNE Commands and Functions 60464018 J

'··~

END_FORM_MODULE :}}})

END _FORM _MODULE
CREFM Subcommand

Purpose

Format

END _FORM _MODULE ends the creation of a form and
quits the CREATE _FORM _MODULE utility.

END _FORM _MODULE or
QUI or
QUIT or
ENDFM

CREATE _MODULE= boolean
STATUS =status variable

Parameters CREATE _MODULE or CM

Remarks

A boolean value indicating whether Screen Formatting is
to create the form. The default is TRUE.

o After quitting the CREATE_FORM_MODULE utility,
you can write a form object definition and a form
variable definition to files.

o For more information, see the NOSNE Screen
Formatting manual.

END _MESSAGE _MODULE
CREMM Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Ends the CREATE _MESSAGE _MODULE utility session.

END _MESSAGE _MODULE or
QUI or
QUIT or
ENDMM

CREATE _MODULE= boolean
STATUS =status variable

CREATE _MODULE or CM

Specifies whether the message module should be created.
If CREATE_MODULE is omitted, YES is used and the
message module is created.

For more information, see the NOSNE Object Code
Management manual.

CREATE_OBJECT_LIBRARY 13-109

111:

ii

GENERATE _LIBRARY

GENERATE _LIBRARY
CREOL Subcommand

Purpose Generates a new object library using the information in
the module list. This subcommand can also write an
object file, SCL procedure text file, form source file, form
variable file, or CREATE _MESSAGE _MODULE
subcommands.

Format GENERATE _LIBRARY or
GENL

LIBRARY= file
FORMAT= keyword
STATUS= status variable

Parameters LIBRARY or L

File on which the modules are written. This parameter is
required.

FORMAT or F

Specifies the format written. Options are:

LIBRARY (L)

Object library. Dictionaries are generated, and each
object module in the module list is converted to the
load module format. A module dictionary is written on
the file.

FILE (F)

Object file. All modules in the module list must be
object or load modules. All load modules are converted
back to object modules. No dictionaries are generated.

FORM _SOURCE (FS)

Creates a file containing the CREATE _FORM_
MODULE subcommands used to establish form
modules in the module list. All form modules in the
module list are written to the file.

FORM_ VARIABLE (FV)

Creates a file containing the program variable
definitions for every form module in the module list.
The variable definitions are written in the language
that processes the form.

13-110 NOSNE Commands and Functions 60464018 J

''-....__

Remarks

60464018 J

GENERATE _LIBRARY

SCL _PROCEDURE (SCL _PROC, SP)

SCL procedure text file. All command procedure
modules in the module list are written to the file.
This option allows command procedures to be edited on
libraries.

MESSAGE _MODULE (MM)

Creates a file containing the CREOL subcommands for
building message template modules. When the
MESSAGE_MODULE parameter is specified, all
message modules in the module list are written to the
file. This option allows message module definitions to
be edited on libraries.

If FORMAT is omitted, LIBRARY is used.

o For a listing of the file contents, file processor, and
file structure attributes created for the various kinds
of object library files, see the CREATE _OBJECT_
LIBRARY command.

o GENERATE _LIBRARY always discards the contents of
the module list after it has used it.

o You can reference the library file written using GENL
within the same CREOL session using subsequent
CREOL subcommands.

o GENERATE _LIBRARY requires append and shorten
access to write an object library file. If this access
cannot be obtained, the file is written to a uniquely
named file, and the subcommand reports the file name.

When changing an object library that is already an
entry in the command list, keep in mind that all
object libraries in the command list are considered
open and can not be accessed for any kind of write
operation. Because GENL will not be able to write to
the library in the command list, you should create a
higher cycle of the same library and add that library
to the command list. An example which shows how to
do this is included in the examples section that
follows.

• For more information about form modules, see the
NOSNE Screen Formatting manual.

CREATE_OBJECT_LIBRARY 13-111

::~Irr: GENERATE _LIBRARY

II Examples

o For more information, see the NOSNE Object Code
Management manual.

o The following sequence generates an object library that
contains the modules from object files OBJl and OBJ2.

/create_object_library
COL/add_module (obj1,obj2)
COL/generate_ library $user. library_1
COL/quit

o The following sequence extracts the text in a command
procedure stored in the object library on file
$USER.MY_PROCED. The SCL command COPY_FILE
lists the contents of the text file.

/create_object_library
COL/add_module library=$user.my_proced
COL .. /module=proc1
COL/generate_library library=text_file
COL .. /format=scl_proc
COL/copy_file input=text_file
PROCEDURE proc1

attach_file $system. library
detach_file $system. 1ibrary2

PROCEND proc1
COL/quit
I

o The following sequence demonstrates how to update an
object library that is in a command list. It makes the
object library $USER.MY_PROCED.1 an entry in the
command list, extracts a procedure from the object
library, edits the procedure, puts the edited procedure
on the new object library $USER.MY _PROCED .2,
removes the command list entry for $USER.MY_
PROCED.l, and adds the command list entry for
$USER.MY _PROCED.2.

13-112 NOSNE Commands and Functions 60464018 J

"-...

'--..-"

/create_object_library
COL/add_module 1ibrary=$user.my_proced.1
COL .. /module=proc1
COL/generate_library library=proc1_source
COL .. /format=scl_proc
COL/edit_file file=proc1_source

"Use EDIT_FILE to make changes.

QUIT

COL/add_module 1ibrary=$user.my_proced.1
COL/replace_module 1ibrary=proc1_source
COL/generate_library library=$user.my_proced.2
COL/quit

QUIT

/delete_conmand_list_entry
.. /entry=$user.my_proced.1
/create_conmand_list_entry
.. /entry=$user.my_proced.2

CREOL Subcommand

Purpose Ends a CREATE _OBJECT _LIBRARY utility session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE Object Code
Management manual.

REORDER _MODULE
CREOL Subcommand

Purpose

60464018 J

Changes the order of one or more modules in the module
list.

CREATE _OBJECT _LIBRARY 13-113

REORDER_MODULE

Format REORDER _MODULE or
REORDER_MODULES or
REOM

MODULE= list of program _name or list of range
of program _name

PLACEMENT= keyword
DESTINATION= program _name
STATUS =status variable

Parameters MODULE or MODULES or M

List of modules in the order the modules are to appear in
the module list.

You use a string value for a module whose name is not
an SCL name or a COBOL name.

This parameter is required.

PLACEMENT or P

Indicates whether the ordered modules are placed before
or after the module specified on the DESTINATION
parameter. Options are:

BEFORE (B)

Modules placed before the destination module.

AFTER (A)

Modules placed after the destination module.

If PLACEMENT is omitted, AFTER is used.

DESTINATION or D

Module before or after which the ordered modules are
placed.

If DESTINATION is omitted, the location depends on the
PLACEMENT parameter value. If
PLACEMENT= BEFORE is specified, the modules are
placed at the beginning of the module list; if
PLACEMENT= AFTER is specified, the modules are
placed at the end of the. module list.

13-114 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

REPLACE _MODULE

o To reorder modules, list the modules on the MODULE
parameter of the subcommand in the order the
modules are to appear in the module list. Then specify
the location where CREOL is to insert the reordered
modules into the module list, using the DESTINATION
and PLACEMENT parameters.

For more information, see the NOS/VE Object Code
Management manual.

The following subcommand reorders the modules START,
MIDDLE, and END, and places them at the end of the
module list.

COL/reorder_module modules=(start,middle,end)

REPLACE _MODULE
CREOL Subcommand

Purpose

Format

Replaces one or more modules in the module list.

REPLACE _MODULE or
REPLACE _MODULES or
REPM

LIBRARY= list of file
MODULE=list of program_name or list of range of

program _name
STATUS= status variable

Parameters LIBRARY or LIBRARIES or L

60464018 J

Object files, SCL procedure files, or object library files
containing the replacement modules. This parameter is
required.

MODULE or MODULES or M

Replacement modules.

You use a string value for a module whose name is not
an SCL name or a COBOL name.

If MODULE is omitted, all modules contained in the files
specified on the library parameter are used.

CREATE _OBJECT _LIBRARY 13-115

REPLACE _MODULE

Remarks o The REPLACE _MODULES subcommand can specify
object files, SCL procedure files, or object library files.
The files are replaced in the order you specify them
on the LIBRARY parameter. If you do not want to use
all modules in the files, specify the modules to be used
on the MODULE parameter.

• If the name of a specified module matches a name in
the module list, the specified module replaces the
existing module. If no module exists with the same
name, a warning status is returned and the module is
not added to the module list.

o A replacement module is always placed in the module
list at the same location as the module it replaces.

• The REPLACE _MODULES subcommand does not add
modules to the module list. To add modules, enter an
.ADD _MODULES subcommand. To both add and
replace modules, enter a COMBINE _MODULES
subcommand.

o If you specify an SCL procedure whose header
references a non-standard type, you must make the
type definition available. For instance, if you want to
add the following procedure:

PROCEDURE show(
p1: address_list $required
status)

PROCEND show

then the type definition of ADDRESS_LIST must be
created outside the procedure. This is accomplished by
using the TYPE control statement, as in:

TYPE
address_ list

TYPE ND
list 1 .. 3 of string

• For more information, see the NOSNE Object Code
Management manual.

13-116 NOS/VE Commands and Functions 60464018 J

Examples

SATISFY _EXTERNAL_REFERENCE

The following subcommand uses all modules on file
BINARY to replace modules in the current module list.

COL/replace_module library=binary

SATISFY _EXTERNAL _REFERENCE
, CREOL Subcommand

Purpose

Format

Adds modules to the module list that satisfy external
references.

SATISFY_EXTERNAL_REFERENCE or
SATISFY _EXTERNAL _REFERENCES or
SATER

LIBRARY=list of file
STATUS= status variable

Parameters LIBRARY or LIBRARIES or L

Remarks

60464018 J

Object library files that are searched for modules
containing referenced entry points. The libraries are
searched in the order specified on the parameter. This
parameter is required.

• You should enter the SATISFY _EXTERN AL_
REFERENCES subcommand after you have entered
the ADD_MODULE, REPLACE_MODULE,
COMBINE_MODULE, and CREATE_MODULE
subcommands that specify the initial module list, so
that a single SATISFY _EXTERNAL _REFERENCES
subcommand is effective for the entire new object
library.

o If none of the procedures in the new object library
request that entry points be loaded dynamically, the
SATISFY _EXTERNAL _REFERENCES subcommand
ensures that the object library files specified on the
subcommand need not be specified in the program
library list when a module from the new object library
is loaded because all modules required from these
libraries are part of the new object library.

For example, if MODA in the module list references
FTNMODl and FTNMOD2 from -file FTNLIB, a
SATISFY _EXTERNAL _REFERENCES subcommand
that specifies FTNLIB adds FTNMODl and FTNMOD2
to the module list. Later, after the new object library

CREATE_OBJECT_LIBRARY 13-117

I
jj

SATISFY_EXTERNAL_REFERENCE

is generated, a subcommand to execute MODA need
not specify FTNLIB in the program library list. The
loader can load modules FTNMODl and FTNMOD2
from the same file as MODA.

e To process a SATISFY_EXTERNAL_REFERENCES
subcommand, the CREOL utility generates an external
reference list and an entry point list for all modules
currently in the module list. It then attempts to match
each external reference to an entry point. If the entry
point to satisfy an external reference is not in the
entry point list, CREOL searches the files specified on
the subcommand for a module containing the entry
point. The files are searched in the order listed on the
subcommand.

If, after searching each specified file, the CREOL
utility does not find the entry point, it continues with
the next external reference in the list. No abnormal
status is returned if an external reference is not
matched.

If the entry point is found, the module is added to the
end of the module list. When a module is added to the
module list, the entry points and external references
within the module are also added to the entry point
list and external reference list, respectively. Because
the external references of the added modules are added
to the external reference list, the SATISFY_
EXTERNAL_REFERENCES subcommand also
attempts to match the added external references.

The process of matching external references continues
until reaching the end of the external reference list,
when the entry point and external reference lists are
discarded.

• The NOS/VE task service library (0SF$TASK_
SERVICES _LIBRARY) should not be used on the
SATISFY_EXTERNAL_REFERENCES subcommand. If
it is, an error status is returned. There is no way to
bind the system entry points into a module such that
external references to program interfaces FSP$0PEN _
FILE, PMP$EXIT, or similar system routines, can be
eliminated from the loading process.

• For more information, see the NOS/VE Object Code
Management manual.

13-118 NOS/VE Commands and Functions 60464018 J

Examples

SET _CHARACTER_INPUT

The following sequence compiles a FORTRAN source
program and then generates an object library. The object
library contains the modules from file MY _LGO, and the
modules referenced from the FORTRAN run-time and
math libraries on files referenced by variables
FLF$LIBRARY and MLF$LIBRARY. File variables which
reference the run-time libraries for languages supported
by Control Data are automatically created in a job at job
initiation. No user intervention is required to access these
libraries.

/fortran input=source binary=my_lgo
/create_object_library
COL/add_module library=my_lgo
COL/satisfy_external_references
COL .. /1ibraries=(flf$1ibrary,mlf$1ibrary)
COL/generate_library 11brary=$user.my_library
COL/Quit
I

SET _CHARACTER _INPUT
CREFM Subcommand

Purpose

Format

SET_CHARACTER_INPUT specifies the user entry
format and valid values for a character variable.

SET_CHARACTER_INPUT or
SETCI

VARIABLE _NAME= name or cobol _name
VALID_ VALUE= list of string
COMPAR.E _TO _SUBSTRING= boolean
ENTRY _FORMAT=keyword
STATUS= status variable

Parameters VARIABLE _NAME or VN

60464018 J

The name of the variable. This parameter is required.

VALID _VALUE or VALID _VALUES or VV

A list of character strings valid for the user to enter. You
can specify a string of from 0 through 65,535 characters.
By default, all strings are valid.

CREATE_OBJECT_LIBRARY 13-119

SET _COBOL_DATA

Remarks

COMPARE _TO _SUBSTRING or CTS

A boolean value specifying whether the user can enter a
unique substring of one of the valid values. The default is
TRUE.

ENTRY_FORMATorEF

The data entry format for the user. The following values
are valid:

Value

CHARACTER

ALPHABETIC

DIGITS

SIGNED

Meaning

Allows any ASCII characters.

Allows only alphabetic characters
(a through z and A ·through Z).

Allows only unsigned numeric
characters (O through 9).

Allows numeric characters with or
without a leading sign.

The default is CHARACTER.

• You need to use this subcommand only to specify
values other than the defaults.

• You can use this subcommand only when the value
specified for the DATA_TYPE parameter of the ADD_
VARIABLE subcommand is CHARACTER or COBOL.

• For more information, see the NOS/VE Screen
Formatting manual.

SET _COBOL_DATA
CREFM Subcommand

Purpose

Format

SET_COBOL_DATA specifies the program format for a
COBOL variable.

SET_COBOL_DATA or
SETCD

VARIABLE_NAME=riame or cobol_name
USAGE= keyword
PICTURE= string
STATUS =status variable

13-120 NOS/VE Commands and Functions 60464018 J

SET _COBOL_DATA

Parameters VARIABLE _NAME or VN

60464018 J

The name of the variable. This parameter is required.

USAGE or U

The COBOL USAGE clause. The application program
cannot change the variable size set by this clause and the
PICTURE clause.

The following values are valid:

BINARY
COMPUTATIONAL
COMP
COMPUTATIONAL-I
COMP-1
COMPUTATIONAL-3
COMP-3
DISPLAY
PACKED-DECIMAL

The default is DISPLAY.

PICTURE or P

The symbols that represent the picture. The application
program cannot change the variable size set by this
clause and the USAGE clause. You can specify a string of
from 0 through 30 characters.

The default string is:

PIC X(n)

(n is the size of the variable text object.)

When you specify the string, the following rules apply:

o You cannot specify an edited numeric item or edited
alphanumeric item.

o For an alphabetic item, you cannot specify the editing
symbols B and P.

o You cannot specify the following combinations of items
in the PICTURE clause for this subcommand and for
the SET_COBOL_OUTPUT subcommand:

- A numeric item for SET_COBOL_OUTPUT and
an alphabetic or alphanumeric item for SET_
COBOL_DATA.

CREATE _OBJECT _LIBRARY 13-121

II
111

SET_COBOL_OUTPUT

Remarks

An alphabetic item or alphanumeric item for SET_
COBOL _OUTPUT and a numeric item or signed
numeric item for SET _COBOL _DATA.

Examples:

'999V99'
'X(13)'

• You can use this subcommand only when the value of
the PROCESSOR parameter of the SET _FORM
subcommand is COBOL (COBOL is the default).

• Specifying this subcommand automatically sets the
DATA_ TYPE parameter of the ADD_ VARIABLE
subcommand to COBOL.

• You need to use this subcommand only to specify
values other than the defaults.

e When the value specified for the DATA_ TYPE
parameter of the ADD_ VARIABLE subcommand is
CHARACTER, INTEGER, REAL, or UPPERCASE,
Screen Formatting ignores values specified on this
subcommand. The appropriate subcommands for these
data types are the following:

SET _CHARACTER _INPUT
SET _INTEGER _INPUT
SET _MONEY _INPUT
SET _REAL _INPUT

• For more information, see. the NOSNE Screen
Formatting manual.

SET_COBOL_OUTPUT
CREFM Subcommand

Purpose

Format

SET _COBOL _OUTPUT specifies the display format for a
COBOL variable.

SET_COBOL_OUTPUT or
SETCO

VARIABLE_NAME=name or cobol_name
PICTURE= string
STATUS =status variable

13-122 NOSNE Commands and Functions 60464018 J

SET_COBOL_OUTPUT

Parameters VARIABLE _NAME or VN

Remarks

60464018 J

The name of the variable. This parameter is required.

PICTURE or P

The symbols that represent the picture. The number of
characters required must be equal to or less than the
variable text object. You can specify a string of from 0
through 30 characters.

The default string is:

PIC X(n)

(n is the size of the variable text object.)

When you specify the string, the following rules apply:

• You cannot specify the following items:

- An edited alphanumeric item.

- A signed numeric item.

o For an alphabetic item, you cannot use the editing
symbols B and P.

e You cannot specify the following combinations of
PICTURE clauses on this subcommand and the SET_
COBOL_DATA subcommand:

- A numeric item for SET_COBOL_OUTPUT and
an alphabetic or alphanumeric item for SET_
COBOL_DATA.

- An alphabetic item or alphanumeric item for SET_
COBOL_OUTPUT and a numeric item or signed
numeric item for SET _COBOL _DATA.

Examples:

'$999.99'
'X(13)'

o You can use this subcommand only when the value of
the PROCESSOR parameter of the SET _FORM
subcommand is COBOL (COBOL is the default).

o Specifying this subcommand automatically sets the
DATA_TYPE parameter of the ADD_ VARIABLE
subcommand to COBOL.

CREATE_OBJECT_LIBRARY 13-123

SET _DISPLAY _OPTION

• You need to use this subcommand only to specify
values other than the default.

• When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
CHARACTER, INTEGER, REAL, or UPPERCASE,
Screen Formatting ignores values specified on this
subcommand. The appropriate subcommands for these
data types are the following:

SET_EXPONENT_OUTPUT
SET_FLOAT_OUTPUT
SET _INTEGER _OUTPUT
SET_MONEY_OUTPUT .

• For more information, see the NOS/VE Screen
Formatting manual.

SET _DISPLAY _OPTION
CREOL Subcommand

Purpose Changes and displays the default display options for
subsequent DISPLAY _NEW _LIBRARY subcommands
within the CREATE _OBJECT _LIBRARY session.

Format SET _DISPLAY _OPTION or
SET _DISPLAY _OPTIONS or
SETDO

DISPLAY _OPTION= keyword or list of keyword
STATUS= status variable

Parameters DISPLAY _OPTION or DISPLAY _OPTIONS or DO

List of one or more keywords indicating the new default
display options. The keywords indicate the information
displayed in addition to the module type and name.
Options are:

NONE

No information other than the module type and name.

DATE_TIME (DT)

Creation date and time.

ENTRY _POINT (EP)

Entry point names.

13-124 NOSNE Commands and Functions 60464018 J

SET _DISPLAY _OPTION

HEADER (H)

Module header information. This includes the
following:

• Module type, name, creation date and time, kind,
generator, generator name version, and
commentary.

• Formal parameters, availability, scope, and log
option for SCL command procedures.

• Entire command description, its availability, scope,
log option, and application identifier for command
description modules.

• Entire function description, its availability and
scope for function description modules.

o Entire program description, its availability, scope,
log option, and application identifier for program
description modules.

o Natural language for online manuals and message
modules.

• The lowest and highest condition codes for message
modules that contain status message information.

LIBRARIES (L)

Local file names within the object text of the modules
that are added to the program library list when the
module is loaded (for example, text-embedded
libraries).

REFERENCE (R)

External references.

COMPONENT (C)

Module headers of the component modules if the
module is a bound module.

ALL

All of the listed options.

If DISPLAY _OPTION is omitted, the default display
'-- options are displayed without change.

60464018 J CREATE_OBJECT_LIBRARY 13-125

SET_EXPONENT_OUTPUT

Remarks

Examples

• The initial default display option is DATE _TIME.

• For more information, see the NOS/VE Object Code
Management manual.

The following subcommand changes and displays the
default display option.

COL/set_display_options display_options= ..
COL .. /(date_time,header,entry_point)
-- display option = (OATE_TIME,HEAOER,ENTRY_POINT)
COL/

SET_EXPONENT_OUTPUT
CREFM Subcommand

Purpose

Format

SET _EXPONENT _OUTPUT specifies the display format
of the exponent for a real number variable. ·

SET_EXPONENT_OUTPUTor
SETEO

VARIABLE_NAME=name or cobol_name
FORMAT=keyword
WIDTH= integer
DIGITS _RIGHT _OF _DECIMAL= integer
DIGITS _IN _EXPONENT=integer
SIGN= keyword
SUPPRESS _ZERO= boolean
STATUS= status variable

Parameters VARIABLE _NAME or VN

The name of the real number variable. This parameter is
required.

FORMAT or F

The FORTRAN format descriptor for displaying the real
number. The valid values are EE and GE. This parameter
is required.

WIDTH or W

The number of columns the variable text object for
displaying the real number occupies. The valid values are
from 1 through 19. This parameter is required.

13-126 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

SET_EXPONENT_OUTPUT

DIGITS _RIGHT _OF _DECIMAL or DROD

The number of digits to display to the right of the
decimal marker. The valid values are from 0 through 19.
This parameter is required.

DIGITS _IN _EXPONENT or DIE

The number of digits in the exponent. The valid values
are from 0 through 19. This parameter is required. \\\

SIGN or S

The format of the sign for the real number. The following
values are valid:

Value Meaning

MINUS _IF _NEGATIVE Displays a sign when the real
number is negative.

ALWAYS _SIGNED Displays signs for both positive
and negative real numbers.

The default is MINUS _IF _NEGATIVE.

SUPPRESS _ZERO or SZ

Boolean value specifying how to display zero. TRUE
displays a zero value as spaces; FALSE displays the zeros.

The default is TRUE.

o When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
REAL, Screen Formatting accepts values specified on
this subcommand.

G For more information, see the NOSNE Screen
Formatting manual.

CREATE_OBJECT_LIBRARY 13-127

SET_FLOAT_OUTPUT

SET_FLOAT_OUTPUT
CREFM Subcommand

Pu~pose

Format

SET _FLOAT _OUTPUT specifies the floating format for
the display of a real number variable.

SET _FLOAT _OUTPUT or
SETFO

VARIABLE _NAME= name or cobol _name
FORMAT= keyword
WIDTH= integer
DIGITS _RIGHT _OF _DECIMAL=integer
SIGN= keyword
SUPPRESS _ZERO= boolean
STATUS= status variable

Parameters VARIABLE_NAME or VN

The name of the real number variable. This parameter is
required.

FORMAT or F

The FORTRAN format descriptor for displaying the real
number. The valid values are F, G, and E. This
parameter is required.

WIDTH or W

The number of columns the variable text object for
displaying the real number occupies. The vaiid values are
from 1 through 19. This parameter is required.

DIGITS_RIGHT_OF_DECIMAL or DROD

The number of digits to display to the right of the
decimal marker. The valid values are from 0 through 19.
This parameter is required.

13-128 NOS/VE Commands and Functions 60464018 J

"-----

Remarks

SET_FORM

SIGN or S

The format of the sign for the real number. The following
values are valid:

Value

MINUS _IF _NEGATIVE

ALWAYS_SIGNED

Meaning

Displays a sign when the
real number is negative.

Displays signs for both
positive and negative real
numbers.

The default is MINUS _IF _NEGATIVE.

SUPPRESS _ZERO or SZ

A boolean value specifying how to display zero. TRUE
displays a zero value as spaces; FALSE displays the zeros.
The default is TRUE.

• When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
REAL, Screen Formatting accepts values specified on
this subcommand.

• For more information, see the NOSNE Screen
Formatting manual.

SET_FORM
CREFM Subcommand

Purpose

Format

60464018 J

SET _FORM sets attributes that apply to the entire form.
When you enter the CREATE_FORM_MODULE
subcommand, Screen Formatting establishes a set of
default attributes for the form. These defaults are listed
with the parameter descriptions of the SET _FORM
subcommand. By specifying parameters on this
subcommand, you establish new attributes for the form.

SET_FORM or
SETF

PROCESSOR =keyword
COLUMN=integer
LINE= integer
WIDTH= integer
HEIGHT= integer

CREATE _OBJECT _LIBRARY 13-129

SET_FORM

DISPLAY= list of keyword
COMMENT=list of string
EVENT _FORM= keyword or name
HELP _PROCESSING= keyword or name or string
MESSAGE _FORM =name
VAR.IABLE _DECK _NAME =name
VAR.IABLE _RECORD _NAME =name
INVALID _DATA _CHAR.ACTER =keyword or string
STATUS= status variable

Parameters PROCESSOR or P

The name of the application programming language that
interacts with the user through the form. The following
values are valid: ·

ANSI _FORTRAN
CDC _FORTRAN
COBOL
CYBIL
PASCAL
SCL

The default is COBOL.

If you specify COBOL as the processor, Screen Formatting
converts underscores to hyphens for all names used by the
application program.

COLUMN or C

The column position for the upper left corner of the form.
Column 1 is the upper left corner of the screen. The valid
values are from 1 through 256. The default is 1.

LINE or L

The line position for the upper left corner of the form.
Line 1 is the upper left corner of the screen. The valid
values are from 1 through 256. The default is 1.

WIDTH or W

The number of columns the form occupies. The valid
values are from 1 through 256. If you specify this
parameter, you must also specify the HEIGHT parameter.
By default, the form occupies the entire screen.

13-130 NOS/VE Commands and Functions 60464018 J

60464018 J

SET_FORM

HEIGHT or H

The number of lines the form occupies. The valid values
are from 1 through 256. If you specify this parameter you
must also specify the WIDTH parameter. By default, the
form occupies the entire screen.

DISPLAY or DISPLAYS or D

A list of display attributes for areas of the form that have
no objects and for objects that have no attributes
specified. The following values are valid:

INVERSE
LOW _INTENSITY
HIGH _INTENSITY
BLINK
BLACK_BACKGROUND
BLUE_BACKGROUND
GREEN_BACKGROUND
MAGENTA_BACKGROUND
RED_BACKGROUND
CYAN _BACKGROUND
YELLOW_BACKGROUND
WHITE _BACKGROUND
BLACK_FOREGROUND
BLUE _FOREGROUND
GREEN_FOREGROUND
MAGENTA_FOREGROUND
RED_FOREGROUND
CYAN _FOREGROUND
YELLOW_FOREGROUND
WHITE _FOREGROUND
FINE ~BORDER
MEDIUM _BORDER
BOLD_BORDER
DISPLAY _LEFT _TO _RIGHT
DISPLAY_RIGHT_TO_LEFT

The defaults are BLACK_BACKGROUND and WHITE_
FOREGROUND.

COMMENT or COMMENTS

Parameter Attributes: BY _NAME

Comments to be saved with the form definition. By
default, no comments are saved.

CREATE_OBJECT_LIBRARY 13-131

SET_FORM

EVENT _FORM or EF

Parameter Attributes: BY _NAME

An associated event form to display the mapping of
program events to terminal keys. The following values are
valid:

Value

name

SYSTEM

NONE

Meaning

Displays a form with the specified name.

Displays the system event form
(generated by Screen Formatting).

Displays no event form.

The default is SYSTEM.

HELP _PROCESSING or HP

Parameter Attributes: BY _NAME

Help processing for the form. Help processing occurs when
the user executes a help event on an area that contains
no object. The following values are valid:

Value

name

string (O
through 256
characters)

SYSTEM

NONE

Meaning

Displays a form with the specified name.

Displays the specified string.

Displays the system help form generated
by Screen Formatting.

Displays no help information.

The default is SYSTEM.

MESSAGE _FORM or MF

Parameter Attributes: BY _NAME

The name of the form you designed for help error
messages. This form must be in an object library in the
user's command list. The default is a form created by
Screen Formatting. (For a description of the form, see
Using the Default Form for Error and Help Information
earlier in this ch.apter.)

13-132 NOSNE Commands and Functions 60464018 J

Remarks

VARIABLE _DECK _NAME or VDN

Parameter Attributes: BY _NAME

SET_INTEGER_INPUT

The SOURCE_CODE_UTILITY deck name for the form
variable. The default is the name of the form.

VARIABLE _RECORD _NAME or VRN

Parameter Attrib_utes: BY _NAME

The record name for the form variable. The default is the
value specified for the VARIABLE_DECK_NAME
parameter.

INVALID _DATA _CHARACTER or IDC

Parameter Attributes: BY_NAME

The character to display on the form when the program is
attempting to display invalid data. The valid value is
either a single-character string or the keyword NONE.
The default is NONE.

o If the user's terminal screen is not large enough to
display the entire form (as specified with the
COLUMN, LINE, WIDTH, and HEIGHT parameters),
the form is not displayed.

For more information, see the NOS/VE Screen Formatting
manual.

SET _INTEGER _INPUT
CREFM Subcommand

Purpose

Format

60464018 J

SET _INTEGER _INPUT specifies the user entry format
and valid values for an integer variable.

SET _INTEGER _INPUT or
SETH

VARIABLE_NAME=name or cobol_name
VALID_ VALUE= list of range of integer
ENTRY _FORMAT=keyword
STATUS =status variable

CREATE_OBJECT_LIBRARY 13-133

SET_INTEGER_OUTPUT

Parameters VARIABLE _NAME or VN

Remarks

The name of the variable. This parameter is required.

VALID_VALUE or VALID_VALUES or VV

A list of integer ranges valid for the user to enter. The
valid values are from 0 through 10000. By default, all
integers are valid.

ENTRY _FORMAT or EF

The data entry format for the user. The following values
are valid:

Value

DIGITS

SIGNED

Meaning

Allows only unsigned numeric characters (O
through 9).

Allows numeric characters with or without
leading signs.

The default is SIGNED.

• You need to use this subcommand only to specify
values other than the defaults.

• When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
INTEGER or COBOL, Screen Formatting accepts
values specified on this subcommand.

o For more information, see the NOSNE Screen
Formatting manual.

SET _INTEGER _OUTPUT
CREFM Subcommand

Purpose

Format

SET_INTEGER_OUTPUT specifies the display format for
an integer variable.

SET_INTEGER_OUTPUT or
SETIO

VARIABLE_NAME=name or cobol_name
WIDTH= integer
MINIMUM _})!GIT= integer
SIGN= keyword
STATUS= status variable

13-134 NOSNE Commands and Functions 60464018 J

SET_MONEY_INPUT

Parameters VARIABLE _NAME or VN

Remarks

The name of the variable. This parameter is required.

WIDTH or W

The number of columns the variable text object for
displaying the integer occupies. The valid values are from
1 through 19. This parameter is required:

MINIMUM _DIGIT or MINIMUM _DIGITS or MD

The minimum number of digits to display. The valid
values are from 0 through 19. The default is 0.

SIGN or S

The format of the sign for the integer. The following
values are valid:

Value Meaning

MINUS _IF _NEGATIVE Displays a sign when the
integer is negative.

ALWAYS_SIGNED Displays signs for both positive
and negative integers.

The default is MINUS _IF _NEGATIVE

• When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
INTEGER, Screen Formatting accepts values specified
on this subcommand.

• For more information, see the NOSNE Screen
Formatting manual.

SET _MONEY _INPUT.
CREFM Subcommand

Purpose

60464018 J

SET _MONEY _INPUT specifies the user entry format for
money variables.

CREATE_OBJECT_LIBRARY 13-135

SET _MONEY _INPUT

Format SET _MONEY _INPUT or
SETMI

VARIABLE_NAME=name or cobol_name
MONEY _SYMBOL=string
THOUSANDS _SEPAR.ATOR =string
DECIMAL _POINT= string
STATUS= status variable

Parameters VARIABLE _NAME or VN

Remarks

The name of the variable. This parameter is required.

MONEY_SYMBOLorMS

A character to use as the money symbol. Any single
ASCII character is valid. The default is the dollar sign
($).

THOUSANDS _SEPARATOR or TS

A character to s~parate thousands in the currency. Any
single ASCII character is valid. The default is the comma
(,).

DECIMAL _POINT or DP

A character to represent the decimal marker. Any single
ASCII character is valid. The default is the period (.).

• You need to use this subcommand only to specify
values other than the defaults.

• When the value specified for the DATA_ TYPE
parameter of the ADD_ VARIABLE subcommand is
INTEGER or REAL, Screen Formatting accepts values
specified on this subcommand.

• For more information, see the NOSNE Screen
Formatting manual.

13-136 NOS/VE Commands and Functions 60464018 J

'---

"'---

SET_MONEY_OUTPUT

SET_MONEY_OUTPUT
CREFM Subcommand

Purpose

Format

Parameters

60464018 J

SET _MONEY _OUTPUT specifies the display format for
money variables.

SET_MONEY_OUTPUT or
SETMO

VARIABLE_NAME=name or cobol_name
MONEY _SYMBOL=string
THOUSANDS _SEPARATOR =string
DECIMAL _POINT= string
SIGN= keyword
SUPPRESS _ZERO=boolean
STATUS= status variable

VARIABLE _NAME or VN

The name of the variable. This parameter is required.

MONEY_SYMBOLorMS

A character to use as the money symbol. Any single
ASCII character is valid. The default is the dollar sign
($).

THOUSANDS _SEPARATOR or TS

A character to separate thousands in the currency. Any
single ASCII character is valid. The default is the comma
(,).

DECIMAL _l'OINT or DP

A character to represent the decimal marker. Any single
ASCII character is valid. The default is the period (.).

SIGN or S

The format of the sign for the integer. The following
values are valid:

Value Meaning

MINUS _IF _NEGATIVE Displays a sign when the
integer is negative.

ALWAYS_SIGNED Displays signs for both positive
and negative integers.

The default is MINUS _IF _NEGATIVE.

CREATE_OBJECT_LIBRARY 13-137

SET_REAL_INPUT

Remarks

Purpose

Format

Parameters

Remarks

SUPPRESS _ZERO or SZ

A boolean value specifying how to display zero. If TRUE,
displays a zero value as spaces. If FALSE, displays the
zeros. The default is TRUE.

• You need to use this subcommand only to specify
values other than the defaults.

• When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
INTEGER or REAL, Screen Formatting accepts values
specified on this subcommand.

• For more information, see the NOSNE Screen
Formatting manual.

SET_REAL_INPUT specifies the values the user can
enter for a real variable.

SET _REAL _INPUT or
SETRI

VARIABLE _NAME= name or cobol _name
VALlD _VALUE=list of range of real
STATUS=status variable

VARIABLE_NAME or VN

The name of the real variable. This parameter is
required.

VALID_VALUE or VALlD_VALUES or VV

A list of real ranges valid for the user to enter. The list
can have from 0 through 10,000 values. By default, all
values the user enters are valid.

• You need to use this subcommand only to specify a
value other than the default.

e When the value specified for the DATA_TYPE
parameter of the ADD_ VARIABLE subcommand is
REAL or COBOL, Screen Formatting accepts the
values specified on this subcommand.

13-138 NOS/VE Commands and Functions 60464018 J

60464018 J

SET_REAL_INPUT

• For more information, see the NOSNE Screen
Formatting manual.

CREATE_OBJECT_LIBRARY 13-139

Debug 14

ACTIVATE_SCREEN ... 14-1
CHANGE_DEFAULT ... 14-2
CHANGE_MEMORY ... 14-3
CHANGE_PROGRAM_VALUE 14-5
CHANGE_REGISTER .. 14-7
CHANGE_USER_MASK 14-11
$CURRENT _LINE . 14-16
$CURRENT _MODULE . 14-16
$CURRENT_PROCEDURE 14-17
$CURRENT_PVA ... 14-17
DELETE_BREAK .. 14-17
DISPLAY_BREAK .. 14-18
DISPLAY _CALL . 14-19
DISPLAY_DEBUGGING_ENVIRONMENT 14-22
DISPLAY_DEBUG_TASK_STATUS 14-25
DISPLAY_MEMORY .. 14-26
DISPLAY _PROGRAM_ VALUE . 14-29
DISPLAY _REGISTER . 14-35
DISPLAY_STACK_FRAME 14-38
DISPLAY_USER_MASK 14-41
$MEMORY . 14-42
$PROGRAM_ VALUE 14-42
QUIT .. 14-44
$REGISTER ... 14-45
RUN" .. 14-45
SET _BREAK . 14-46
SET _FUNCTION _KEY . 14-53
SET_SCREEN _OPTIONS 14-55
SET_STEP _MODE ... 14-58

60464018 J

Debug 14

ACTIVATE _SCREEN
DEBUG Subcommand

Purpose Activates screen mode.

Format ACTIVATE _SCREEN or
ACTS

SOURCE_FILES:=list of file
STATUS:= status variable

Parameters SOURCE _FILES or SOURCE _FILE or SF

Remarks

60464018 J

Specifies the file or files containing the source text of the
compiled program to be debugged. If this parameter is
omitted, screen mode is initiated with the current file.

<> To use this command, the FILE _PROCESSOR
attribute of each file must contain the name of the
compiler that compiled the file. This is done with the
CHANGE _FILE _ATTRIBUTE command before you
begin the DEBUG session.

G You can enter ACTIVATE_SCREEN any time during
an interactive DEBUG session.

o When ACTIVATE _SCREEN is entered, step mode is
turned off. The Debug input and Debug output files
are changed to the files used by Debug for screen
mode.

o During a Debug session in screen mode, screen mode
functions, certain line mode commands, and NOS/VE
commands are available. To return to line mode, use
the DEACTIVATE _SCREEN (DEAS) screen function.

o ACTIVATE _SCREEN allows you to use screen
debugging without changing the interactive style for
the rest of your interactive terminal session.

o For more information, see the Debug for NOS/VE
Usage manual.

Debug 14-1

CHANGE_DEFAULT

Examples The following example changes the Debug session from
line mode to screen mode. The source program to be
debugged in screen mode is $USER.FORT.

DB/activate_screen sf=$user.fort

CHANGE _DEFAULT
DEBUG Subcommand

Purpose

Format

Changes one or more default Debug settings.

CHANGE _DEFAULT or
CHANGE _DEFAULTS or
CHAD

MODULE= keyword or application
PROCEDURE= keyword or application
DEBUG _INPUT=file
DEBUG _OUTPUT=file
STATUS= status variable

Parameters MODULE or M

New default name for the MODULE parameter on
subsequent Debug commands. If you specify $CURRENT,
the default module is reset to the module that was
executing when Debug gained control. If this parameter is
omitted, the current default module remains unchanged.

PROCEDURE or P

New default name for the PROCEDURE parameter on
subsequent Debug commands. If you specify $CURRENT,
the default procedure is reset to the procedure that was
executing when Debug gained control. If this parameter is
omitted, the current default procedure remains unchanged.

DEBUG _INPUT or DI

New default file from which Debug commands are read
when Debug next gains control. If this parameter is
omitted, the current DEBUG _INPUT file remains
unchanged. Unless otherwise specified, the initial
DEBUG _INPUT file is $COMMAND.

14-2 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

CHANGE_MEMORY

NOTE

Unless a file position is specified in the file reference, the
DEBUG _INPUT and DEBUG _OUTPUT files are
positioned at the beginning-of-information the first time it
is used. The file is not repositioned the next time it is
used. Commands are read from the file sequentially. If an
end-of-partition or an end-of-file is reached on the input
file, program execution resumes.

DEBUG_OUTPUTorDO
New default file on which Debug output is written. The
change takes effect immediately. Both break report
messages and command output are written to this file. If
this parameter is omitted, the current DEBUG _OUTPUT
file remains unchanged. Unless otherwise specified, the
initial DEBUG _OUTPUT file is $OUTPUT.

For more information, see the Debug for NOSNE Usage
manual.

Read commands from the file DBIN the next time Debug
gains control:

DB/change_default debug_input=dbin

Write output to file $LIST:

DB/change_default debug_output=$1ist

Specify the default module name:

DB/chad module=main

CHANGE MEMORY
DEBUG Subcommand

Purpose

60464018 J

Changes the contents of memory starting at the specified
address. You can only change values in memory locations
for which you have write permission.

Debug 14-3

CHANGE_MEMORY

Format CHANGE _MEMORY or
CHAM

ADDRESS =application
VALUE=any
TYPE= keyword
REPEAT _COUNT=keyword or integer
STATUS= status variable

Parameters ADDRESS or A

Remarks

Address of the first byte of memory to be changed.

The form of an address is rsssoooooooo(l 6) where r is the
ring number, sss is the segment number, and 00000000 is
the offset from the beginning of the segment. You can get
machine addresses from the cross-reference and load maps
for your program. This parameter is required.

VALUE or V

New memory value. An integer value completely replaces
the contents of eight bytes. A string value is interpreted
as a hexadecimal or ASCII string depending on the TYPE
parameter. This parameter is required.

TYPE or T

Type of data specified by the VALUE parameter. If this
parameter is omitted, a string value is assumed to be a
hexadecimal value.

ASCII (A)

ASCII string value.

HEX(H)

Hexadecimal string value.

INTEGER (I)

Integer value.

REPEAT _COUNT or RC

Number of times the value is to be repeated in memory.
If you specify ALL, it repeats the value until the end of
the data segment containing the address. If this
parameter is omitted, a value of 1 is used.

For more information, see the Debug for NOSNE Usage
manual.

14-4 NOSNE Commands and Functions 60464018 J

"----

Examples

CHANGE_PROGRAM_VALUE

Replace four bytes of memory beginning at location
B02200001112(16) with the hexadecimal string '1010aaab':

DB/change_memory address=b02200001112(16)
DB .. /value='1010aaabr

Replace six bytes of memory beginning at location
B02200000055(16) with the ASCII string 'STRING':

DB/change_memory address=b02200000055(16)
DB .. /value='string' type=ascii

Replace eight bytes of mei:µory beginning at location
B02300000223(16) with the integer value 44:

DB/change_memory address=b02300000223(16) value=44

CHANGE_PROGRAM_VALUE
DEBUG Subcommand ·

Purpose

Format

Changes the value of named program variables.
Replacement values are entered in the same format as
defined in your program, not as they are represented in
memory.

CHANGE_PROGRAM_VALUEor
CHAPV

NAME =application
VALUE= list of "value application
MODULE =application
PROCEDURE =application
RECURSION _LEVEL= integer
RECURSION _DIRECTION=keyword
STATUS= status variable

Parameters NAME or N

60464018 J

Name of the program variable in the source program
whose value is to be changed.

VALUE or V
New value for the variable. This parameter is required.

Debug 14-5

CHANGE_PROGRAM_VALUE

MODULE or M

Name of the module that contains the variable. If this
parameter is omitted, the default module (the module
executing when Debug gained control or the module
specified by the CHANGE _DEFAULTS command) is used.

PROCEDURE or P

Specifies the name of the procedure that contains the
variable. If this parameter is omitted, the default
procedure (the procedure executing when Debug gained
control or the procedure specified by the CHANGE_
DEFAULTS command) is used.

NOTE

The following two parameters, RECURSION _LEVEL and
RECURSION _DIRECTION, are applicable only when
debugging programs written in languages that support
recursion (such as CYBIL and PASCAL). The parameter
values are ignored for all other languages.

RECURSION _LEVEL or RL

Indicates the particular call of a recursive procedure to be
used. If RECURSION _DIRECTION specifies FORWARD,
the integer 1 specifies the first call, 2 the second call, and
so forth; if RECURSION _DIRECTION is omitted or
specifies BACKWARD, the integer 1 specifies the most
recent call, 2 its predecessor, and so forth;

Recursion applies only to stack variables; it does not ·
apply to variables stored in either a common block or the
$STATIC section.

The default value is 1.

RECURSION _DIRECTION or RD

Indicates the order in which calls are counted by the
RECURSION _LEVEL parameter. The default value is
BACKWARD.

FORWARD

The integer 1 specifies the first call, 2 the second call,
and so forth.

14-6 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

CHANGE _REGISTER

BACKWARD

The integer 1 specifies the most recent call, 2 its
predecessor, and so forth.

For more information, see the Debug for NOSNE Usage
manual.

The first example refers to the following definition:

COMMON /BLK/ OVAL, RVAL, IVAL, ZVAL
DATA OVAL, RVAL, !VAL, ZVAL /20.0D+O, 3.4SE+01, 30,
*(+20.0,20.3)/

Display initial value of variable DVAL:

DB/display_program_value name=dval
dval = 20.

Change the value of variable DVAL to .30.0:

DB/change_program_value name=dval value=+30.0d+O

Display the new value of DVAL:

DB/d1spv dval
dval = 30.

Change the value of variable INDEX:

DB/chapv name=index value=63 module=ff _pp

Change the value of logical variable VAR:

DB/change_program_value var value=true

CHANGE _REGISTER
DEBUG Subcommand

Purpose Changes the value of the P, A, or X or state registers.

60464018 J Debug 14-7

CHANGE _REGISTER

Format CHANGE _REGISTER or
CHANGE _REGISTERS or
CHAR

KIND= keyword
NUMBER= list of range of: keyword or integer
VALUE=any
TYPE=keyword
STATUS =status variable

Parameters KIND or K

Specifies the register to change. Options are:

Omitted

Same as KIND=P.

p

Changes the P register for the procedure or function
currently being executed. Changing the P register
changes the point in the program at which Debug
resumes execution.

A

Changes the A registers for the procedure or function
currently being executed.

x
Changes the X registers for the procedure or function
currently being executed.

s
Changes the state registers. If the state register
designates the P register, the user mask, the user
condition, or the monitor condition, the copy of the
register for the procedure or function currently being
executed is changed. For other state registers, the
current register is changed.

NUMBER or N

Indicates which A, X, or state registers specified by the
KIND parameter will change. This parameter is ignored if
KIND= P because there is only one P register.

14-8 NOSNE Commands and Functions 60464018 J

60464018 J

CHANGE_REGISTER

The A and X registers can be saved and changed when
Debug gains control. However, some registers are not
always saved; a message is issued for each register that
cannot be changed because is was not saved.

Access to some state registers is privileged; a message is
issued when you try to change a register for which you
are not privileged.

Options are:

Omitted

Changes the zero register.

Integer or range of integers

Changes a set of registers.

If KIND=A or X, integer can be 0 through 15.

If KIND=S, integer can be 0 through 255. Not all of
these numbers in the integer range are assigned to
state registers and the definition of some state
registers is machine-dependent. For a complete list of
state register numbers, see the Virtual State Hardware
reference manual.

ALL

Changes all A (if KIND= A), all X (if KIND= X), or
all state (if KIND=S) or all sets of (if KIND=ALL)
registers.

VALUE or V

Specifies the new value of the register. Options are:

Omitted

Same as integer or string allowed for KIND= P.

Integer

If KIND=P or A, integer must be in the range 0
through OFFFFFFFFFFF(l 6).

If KIND= X or S, integer must be in the range
-7FFFFFFFFFFFFFFF(l 6) through
7FFFFFFFFFFFFFFF(16).

The upper 4 bits are ignored when changing the P
register because the ring number in P cannot be
changed.

Debug 14-9

CHANGE_REGISTER

Remarks

The upper bits of the register are set to zero if an
integer is negative or to 1 if an integer is positive
when the value does not fill the register.

String

If KIND= P or A, string can be a hexadecimal string
containing a maximum of 12 hexadecimal digits
(spaces are ignored); each hexadecimal digit
corresponds to 4 bits.

If KIND= X, string can be a hexadecimal string
containing a maximum of 16 hexadecimal digits
(spaces are ignored); each hexadecimal digit
corresponds to 4 bits or an ASCII . string containing a
maximum of eight ASCII characters; each character
corresponds to one byte.

If KIND=S, a string cannot be specified for VALUE.

If a string value does not fill the register (it is less
than 16 hexadecimal digits or 8 ASCII characters), the
string value is left-justified with remaining bytes
unchanged.

TYPE or T

Type of data specified by the VALUE parameter. If this
parameter is omitted, a string value is assumed to be a
hexadecimal value and a numeric value is assumed to be
an integer.

ASCII (A)

ASCII string value.

HEX (H)

Hexadecimal string value.

INTEGER (I)

Integer value.

For more information, see the Debug for NOSNE Usage
manual.

14-10 NOS/VE Commands and Functions 60464018 J

Examples

CHANGE_USER_MASK

Change the current value of the P register to
OA02200004500(16). The upper 4 bits for the ring number
are ignored.

DB/change_register kind=p value=Oa02200004500(16)

Change the current value of the X7 register to
'ABCDEFGH':

DB/char kind=x number=7 value='abcdefgh' type=ascii

CHANGE_USER_MASK
DEBUG Subcommand

Purpose

Format

Enables or disables traps for certain system conditions
that terminate program execution.

CHANGE_USER_MASK or
CHAUM ..

ARITHMETIC _OVERFLOW= boolean
ARITHMETIC _LOSS _OF _SIGNIFICANCE= boolean
DEBUG= boolean
DNIDE _FAULT= boolean
EXPONENT _OVERFLOW= boolean
EXPONENT _UNDERFLOW= boolean
FP _INDEFINITE= boolean
FP _LOSS _OF _SIGNIFICANCE= boolean
INVALID _,BDP _JJATA =boolean
STATUS=status variable

Parameters ARITHMETIC _OVERFLOW or AO

60464018 J

Specifies the desired mode for the arithmetic overflow
condition mask flag (condition bit). Options are:

Omitted

The arithmetic overflow condition mask flag is left
unchanged.

ON

The arithmetic overflow condition mask flag is enabled
(masked ON) for traps.

OFF

The arithmetic overflow condition mask flag is
disabled (masked OFF) for traps.

Debug 14-11

CHANGE_USER_MASK

ARITHMETIC _LOSS _OF _SIGNIFICANCE or ALOS

Specifies the desired mode for the arithmetic loss of
significance condition mask flag (condition bit). Options
are:

Omitted

The arithmetic loss of significance condition mask flag
is left unchanged.

ON

The arithmetic loss of significance condition mask flag
is enabled (masked ON) for traps.

OFF

The arithmetic loss of significance condition mask flag
is disabled (masked OFF) for traps.

DEBUG or D

Specifies the desired mode for the debug condition mask
flag (condition bit). Options are:

Omitted

The debug condition mask flag is left unchanged.

ON

The debug condition mask flag is enabled (masked
ON) for traps. Break events that are detected by the
Debug hardware are reported.

OFF

The debug condition mask flag is disabled (masked
OFF) for traps. Break events that are detected by the
Debug hardware are not reported.

DNIDE Ji'AULT or DF

Specifies the desired mode for the divide fault condition
mask flag (condition bit). Options are:

Omitted

The divide fault condition mask flag is left unchanged.

14-12 NOSNE Commands and Functions 60464018 J

60464018 J

CHANGE_USER_MASK

ON

The divide fault condition mask flag is enabled
(masked ON) for traps.

OFF

The divide fault condition mask flag is disabled
(masked OFF) for traps.

EXPONENT _OVERFLOW or EO

Specifies the desired mode for the exponent overflow
condition mask flag (condition bit). Options are:

Omitted

The exponent overflow condition mask flag is left
unchanged.

ON

The exponent overflow condition mask flag is enabled
(masked ON) for traps.

OFF

The exponent overflow condition mask flag is disabled
(masked OFF) for traps.

EXPONENT _UNDERFLOW or EU

Specifies the desired mode for the exponent underflow
condition mask flag (condition bit). Options are:

Omitted

The exponent underflow condition mask flag is left
unchanged.

ON

The exponent underflow condition mask flag is enabled
(masked ON) for traps.

OFF

The exponent underflow condition mask flag is
disabled (masked OFF) for traps.

Debug 14-13

CHANGE_USER_MASK

FP _INDEFINITE or FPI or FI

Specifies the desired mode for the floating point indefinite
condition mask flag (condition bit). Options are:

Omitted

The floating point indefinite condition mask flag is left
unchanged.

ON

The floating point indefinite condition mask flag is
enabled (masked ON) for traps.

OFF

The floating point indefinite condition mask flag is
disabled (masked OFF) for traps.

FP _LOSS _OF _SIGNIFICANCE or FPLOS or FLOS

Specifies the desired mode for the floating point loss of
significance condition mask flag (condition bit). Options
are:

Omitted

The floating point loss of significance condition mask
flag is left unchanged.

ON

The floating point loss of significance condition mask
flag is enabled (masked ON) for traps.

OFF

The floating point loss of significance condition mask
flag is disabled (masked OFF) for traps.

INVALID _BDP _DATA or IBDPD or IBD

Specifies the desired mode for the invalid business data
processing data condition mask flag (condition bit).
Options are:

Omitted

The invalid business data processing data condition
mask flag is left unchanged.

14-14 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

'--

60464018 J

CHANGE_USER_MASK

ON

The invalid business data processing data condition
mask flag is enabled (masked ON) for traps.

OFF

The invalid business data processing data condition
mask flag is disabled (masked OFF) for traps.

For more information, see the Debug for NOSNE Usage
manual.

The following example disables the floating point
indefinite condition mask flag in the user mask register:

DB/change_user_mask fpi=off

The following command displays the new values in the
user mask register:

DB/di sum

privileged_instruction_fault true
unimplemented_ instruct ion true
free_f lag true
process_1nterval_timer true
inter_ring_pop true
crit1cal_frame_flag true
not_assigned true
d1vide_fault true
debug false
arithmetic_overflow false
exponent_overf low true
exponent_underf low true
fp_loss_of _significance false
fp_indefinite false
arithmetic_loss_of_significance true
invalid_bdp_data true

The following example disables the arithmetic overflow
and invalid business data processing data condition mask
flags:

DB/chaum ao=off ibdpd=off

Debug 14-15

$CURRENT_LINE

The following command displays the new values of the
user mask register:

DB/di sum

privileged_instruction_fault
unimplemented_ instruct ion
free_f lag
process_interval_timer
inter_ring_pop
critical_frame_flag
not_assigned
divide_fault
debug
arithmetic_overflow
exponent_overf low
exponent_underf low
fp_loss_of _significance
fp_indef1n1te
arithmetic_loss_of _signif1cance
1nvalid_bdp_data

$CURRENT _LINE
DEBUG Function

true
true
true
true
true
true
true
true
false
false
true
true
false
false
true
false

Purpose Returns an integer identifying the current line number in
the program where Debug has control.

Format $CURRENT _LINE or
$CL

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT _MODULE
DEBUG Function

Purpose Returns a string identifying the name of the module
where execution stopped.

Format $CURRENT _MODULE or
$CM

Parameters None.

14-16 NOSNE Commands and Functions 60464018 J

$CURRENT_PROCEDURE

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT_PROCEDURE
DEBUG Function

Purpose Returns a string identifying the name of the procedure
where execution is stopped.

Format $CURRENT _PROCEDURE or
$CP

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

$CURRENT _PVA
DEBUG Function

Purpose Returns an integer identifying the process virtual address
(PVA) where execution is stopped.

Format $CURRENT _PVA or
$CPVA

Parameters None.

Remarks For more information, see the Debug for NOSNE Usage
manual.

DELETE _BREAK
DEBUG Subcommand

Purpose

Format

60464018 J

Deletes one or more break definitions.

DELETE _BREAK or
DELETE _BREAKS or
DELB

BREAK= list of name
STATUS =status variable

Debug 14-17

DISPLAY _BREAK

Parameters BREAK or BREAKS or B

Remarks

Examples

Specifies the break definitions to be deleted. If the
keyword ALL appears in the list of names, all breaks are
deleted. This parameter is required.

For more information, see the Debug for NOSNE Usage
manual.

Delete break definitions Bl, B2, and B3:

DB/delete_breaks breaks=(b1,b2,b3)

Delete all break definitions:

DB/delete_breaks all

Delete break definition B4:

DB/delete_break b4

DISPLAY _BREAK
DEBUG Subcommand

Purpose Displays specified break definitions. The break name,
events, address, and any commands associated with the
break are displayed.

Format DISPLAY _BREAK or
DISPLAY _BREAKS or
DISB

BREAKS= list of name
OUTPUT=file
STATUS= status variable

Parameters BREAKS or BREAK or B

Remarks

Break definitions to be displayed. If the keyword ALL
appears in the list of names, all breaks are displayed. If
this parameter is omitted, all breaks are displayed.

OUTPUT or 0

File on which the break definitions are written. The
default file is the current default Debug output file.

For more information, see the Debug for NOSNE Usage
manual.

14-18 NOS/VE Commands and Functions 60464018 J

Examples .Display break definitions Bl, B3:

DB/display_breaks breaks=(b1,b3)

Break B1
event(s) = execution
location: M=TEST L=16

Break B3
event(s) = eu

DISPLAY_CALL

range: M=TEST L=18 to M=TEST L=19 B0=15

Display all break definitions:

DB/display_breaks

Break B1
event(s) = execution
location: M=TEST L=16

Break B2
event(s) = execution
range: M=TEST L=22 to M=test B0=39

Break B3
event(s) = eu
range: M=TEST L=18 to M=TEST L=19 B0=15

Break B4
event(s) = execution
location: M=TEST L=25

DISPLAY _CALL
DEBUG Subcommand

Purpose

Format

60464018 J

Displays information about the dynamic call chain.

DISPLAY _CALL or
DISPLAY_CALLS or
DISC

COUNT=keyword or integer
STAR.T=integer
DISPLAY _OPTION= list of keyword
OUTPUT=file
STATUS= status variable

Debug 14-19

DISPLAY_CALL

Parameters COUNT or C

Remarks

Number of calls to be displayed. If the keyword ALL is
specified or this parameter is omitted, all calls are
displayed.

START or S

Call in the chain to be displayed first. The integer 1
specifies the most recent call, 2 the predecessor to the
most recent call, and so forth. The default value is 1, the
most recent call.

DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Type of information to be displayed. If this parameter is
omitted, only calls which are in user code are displayed.

USER_CALLS (UC)

Displays only calls which are in user code.

SYSTEM_CALLS (SC)

Displays only calls which are not part of the user
code.

ALL_CALLS (AC)

Displays both user calls and system calls.

VARIABLE_ VALUES (VV)

Displays all variables known to the procedure.

OUTPQT or 0

File on which the call information is written. If this
parameter is omitted, the information is written to the
current DEBUG _OUTPUT file.

For more information, see the Debug for NOSNE Usage
manual.

14-20 NOS/VE Commands and Functions 60464018 J

Examples

60464018 J

DISPLAY_CALL

Display all the calls on the call chain beginning with the
second most recent call:

DB/display_calls start=2

Called from procedure 101 module 101 at line 16
byte offset 12
Called from procedure TEST module TEST at line 54
byte offset 12

Display system code calls on the call chain beginning with
the third most recent call:

DB/display_calls start=3 display_option=system_calls

Traceback from module MLM$0UTPUT_FLOATlNG_NUMBER
byte offset 14C(16)
Called from procedure FLP$SEQ_ACC_LST_OUT module
FLM$LlST_DIRECTED_lO byte offset 61E(16)

Debug 14-21

I
I

DISPLAY_DEBUGGING _ENVIRONMENT

Display all user code calls on the call chain, as well as
all variables known to the procedure:

DB/display_calls display_options=(user_call,
DB .. /variable_values)

-- Traceback from procedure TEST module TEST at
1 ine 42
DISPLAY OF ALL VARIABLES IN TEST

ARAY = 0(20 OCCURRENCES)
ARG = 0
BASE = 2.
OVAL = 20.
I = 0
IVAL = 30
LOG1 = FALSE
LOG2 = FALSE
LOG3 = FALSE
PINO = 70000000000000000(16)
RESLT = 0.
RVAL = 34.5
X1 = 0
XPWR = 4094.
Y1 = 0.
ZERO = 0.
ZVAL = (20.,20.3)

DISPLAY _DEBUGGING _ENVIRONMENT
DEBUG Subcommand

Purpose Displays the following:

• Current defaults for module, procedure, DEBUG_
INPUT, DEBUG_OUTPUT

• Total number of breaks you have set and Debug has
set

• STEP _MODE values

• Location in your program where execution has stopped

14-22 NOS/VE Commands and Functions 60464018 J

Format

DISPLAY _DEBUGGING _ENVIRONMENT

DISPLAY _DEBUGGING _ENVIRONMENT or
DISDE

DISPLAY _OPTION= list of keyword
OUTPUT= file
STATUS=status variable

Parameters DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Remarks

60464018 J

Type of information to be displayed. If this parameter is
omitted, defaults, breaks, STEP _MODE attributes, and
user addresses are displayed.

DEFAULTS (D)

Current default values for module, procedure,
DEBUG_INPUT, and DEBUG_OUTPUT.

Unless the CHANGE_DEFAULT subcommand has
been specified, the default module and procedure is
where execution has stopped in your task. The text
$CURRENT is output if module or procedure has not
been initialized.

BREAKS (B)

Number of breaks you have set, number of breaks
currently in use by Debug, and the maximum number
of allowed breaks.

STEP _MODE (SM)

Current STEP _MODE attributes.

USER_ADDRESS (UA)

Location where execution has stopped in your program.

ALL

Displays defaults, breaks, STEP _MODE attributes, and
the user address.

OUTPUT or 0

File where the debugging environment display is written.
If this parameter is omitted, the current default Debug
output file is written.

For more information, see the Debug for NOSNE Usage
manual.

Debug 14-23

DISPLAY_DEBUGGING _ENVIRONMENT

Examples Display the number of breaks set, the number of breaks
in use by Debug, the maximum number of allowed breaks,
and the location where execution has stopped:

DB/display_debugging_environment do=(b,ua)

-- The number of breaks set by the user 1s 1.
The number of breaks in use by DEBUG is 0.
The number of available breaks is 63.
Execution is currently stopped at B 02E 0000013C
which, in higher symbolic terms is M=TEST L=36
B0=12.

Write defaults, breaks, STEP _MODE attributes, and
location where execution has stopped to file FILEl and
returns the status to variable SS:

DB/disde do=all output=file1 status=ss

Write defaults, breaks, STEP _MODE attributes, and
location where execution has stopped to the current
default Debug output file:

DB/disde

Default module is $CURRENT.
Default procedure is $CURRENT.
Default debug_input file is OBIN.
Default debug_output file is $OUTPUT.
The number of breaks set by the user is 5.
The number of breaks in use by DEBUG is O.
The number of available breaks is 59.
Step_mode is OFF.
Execution is currently stopped at B 02E 0000013C
which, in higher symbolic terms is M=TEST L=36
B0=12

14-24 NOS/VE Commands and Functions 60464018 J

DISPLAY_DEBUG _TASK_STATUS

DISPLAY _DEBUG _TASK _STATUS
DEBUG Subcommand

Purpose

Format

Displays task information for each task of a single or
multi-task debugging session.

DISPLAY _DEBUG_ TASK _STATUS or
DISDTS

TASK _NUMBER =list of range of: keyword or integer
OUTPUT=file
STATUS =status variable

Parameters TASK _NUMBER or TASK _NUMBERS or TN

Specifies which tasks' information you want displayed.
Options are:

Omitted

Same as TASK_NUMBER=ALL.

List of integer

Specifies the tasks' information you want displayed.
Values can be a list of one or more positive integers
representing the task number or numbers assigned to
each task by Debug.

ALL

Information for all tasks is displayed.

OUTPUT or 0

Specifies the file on which the task information is to be
written. Options are:

Omitted

Writes to he current Debug output file.

File

Writes to the named file. You can position the file by
appending a position indicator to the file name (.$BOI,
.$ASIS, .$EOI).

Remarks For more information, see the Debug for NOSNE Usage
manual.

60464018 J Debug 14-25

DISPLAY_MEMORY

Examples The following example displays current task information
for all tasks of a multi-task debugging session. Task 1 is
in control; task 2 is suspended at line 186 of module
PASSED _PARAMETERS and is waiting for control.

DB/display_debug_task_status task_number=all

TASK 1: system id: 14
Status: Controlling Debug executing
Stopped for termination at an unknown address
Terminated by returning

The status at termination was: NORMAL.

TASK 2: system id: 16
Status: Waiting for control
Stopped before task start at

M=PASSED_PARAMETERS L=186

Style: debugging all tasks
Currently active task(s) - 2
Total task(s) activated - 2

DISPLAY _MEMORY
DEBUG Subcommand

Purpose

Format

Displays information located at a location to which you
have read access. The location can be specified by section
and module or by address.

DISPLAY _MEMORY or
DISM

ADDRESS =application
SECTION= keyword or name
MODULE =application
BYTE _OFFSET=application
BYTE _COUNT=integer
REPEAT _COUNT=keyword or integer
OUTPUT=file
STATUS =status variable

14-26 NOS/VE Commands and Functions 60464018 J

DISPLAY_MEMORY

Parameters ADDRESS or A

60464018 J

Address of the first byte of memory to be displayed. If the
ADDRESS parameter is omitted, the location must be
specified by the SECTION and MODULE parameters.

The address has the format rsssoooooooo(16) where r is
the ring number, sss is the segment number, and 00000000

is the offset from the beginning of the segment. You can
use the BYTE_OFFSET parameter to modify the starting
address of memory to be displayed. This parameter is
required.

SECTION or SEC

Memory section containing the data to be displayed.

$BLANK

Section that contains unnamed common.

$BINDING

Section that contains the links to external procedures
and the data for the module.

$LITERAL

Section containing the literal data (for example, long
constants) of the module.

$STATIC

Section containing the static (not on the run-time
stack) variables not explicitly allocated to a named
section of the module.

When you use SECTION to specify a location, you must
qualify it with the MODULE parameter. You can use the
BYTE _OFFSET parameter to modify the starting address
of memory to be displayed.

MODULE or M

Module containing the data to be displayed. The
MODULE parameter cannot be specified unless the
SECTION parameter is also specified. If MODULE and
SECTION are omitted, the location must be specified by
the ADDRESS parameter.

Debug 14-27

DISPLAY_MEMORY

Remarks

BYTE _OFFSET or BO

Offset to the location specified by the SECTION and
MODULE parameters or the ADDRESS parameter. If
BYTE _OFFSET is omitted, a zero offset is used.

The address generated by adding BYTE_OFFSET to the
base address must be within the memory block implied by
the base address. The block size is the length of the
section when the SECTION parameter is specified, and
the length of the segment containing the machine address
when the ADDRESS parameter is specified.

BYTE _COUNT or BC

Number of bytes in the item to be displayed. The default
value is eight bytes.

REPEAT_COUNTorRC

Number of items of length BYTE_COUNT to be
displayed. If REPEAT _COUNT is omitted, only one item
is displayed.

The maximum amount of memory that can be displayed is
limited to the block size implied by address (section
length for SECTION and segment length for ADDRESS).
A large integer causes all memory from the specified
address to the end of the memory block to be displayed.

The keyword ALL displays all memory from the specified
address to the end of the memory block.

OUTPUT or 0

File on which the displayed information is written. If
OUTPUT is omitted, the display is written to the current
Debug output file.

o This command allows you to debug your program even
when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display line
shows the memory contents in hexadecimal and ASCII
formats; the relative byte offset from the initial
address is also shown.

14-28 NOSNE Commands and Functions 60464018 J

Examples

DISPLAY_PROGRAM_ VALUE

o The compiler-generated attributes list shows the
section name and offset for all variables. To reference
static variables, specify the section name and byte
offset. To reference variables on the stack, specify the
machine address of the stack frame and byte offset.

o To get the address of the stack frame of the procedure
executing when Debug got control, display register Al
(see the DISPLAY _REGISTER command description).
To get the address of other stack frames, display the
save area of the wanted stack frame using the
DISPLAY _STACK _FRAME command and get the
value of register Al from that display.

• You can use the DISPLAY_PROGRAM_VALUE
command to display program variables when symbol
tables are available.

• For more information, see the Debug for NOS/VE
Usage manual.

Display the first three bytes of the literal memory section
for module MODl:

DB/display_memory section=$1itera1 module=modl ..
DB .. /byte_count=3

Display the first 32 bytes of the memory section DATAl
for module MOD2 as separate items:

DB/display_memory sec=datal module=mod2 rc=4

Display the first 200 bytes of memory starting from the
specified address:

DB/dism a=Ob02400000224(16) bo=B rc=25

DISPLAY _PROGRAM_ VALUE
DEBUG Subcommand

Purpose

Format

60464018 J

Displays the value of a program variable.

DISPLAY _PROGRAM_ VALUE or
DISPLAY _PROGRAM_ VALUES or
DISPV

NAME= list of ''variable application
MODULE =application

Debug 14-29

DISPLAY _PROGRAM_ VALUE

PROCEDURE =application
RECURSION _LEVEL= integer
RECURSION _DIRECTION= keyword
TYPE= keyword
VARIANT _SELECTION= list of: keyword or any
NAME _OPTION=list of keyword
SCOPE= keyword
SECTION= keyword or application
OUTPUT=file
STATUS= status variable

Parameters NAME or N

Name of the program variable in the source program
whose value is to be displayed, or the keyword $ALL to
display all variables in the procedure. This parameter is
required.

The program variable can be one of the following:

• Simple variable or constant name.

• Substring reference.

• Subscripted name.

• Field reference.

o Pointer reference or dereference.

Subscripts can be constants or variables but not
expressions. NAME cannot be a substring ..

SCL string variables can be used to name long program
names. To do this, assign a string containing the
identifier to the SCL variable. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

MODULE or M

Name of the module that contains the variable. The
default module is the module executing when Debug
gained control or the module specified by the CHANGE_
DEFAULT subcommand.

14-30 NOSNE Commands and Functions 60464018 J

"'-----···

60464018 J

DISPLAY_PROGRAM_ VALUE

PROCEDURE or P

Name of the procedure that contains the variable. The
default procedure is the procedure executing when Debug
gained control or the procedure specified by the
CHANGE_DEFAULTS command.

NOTE

The following two parameters, RECURSION _LEVEL and
RECURSION _DIRECTION, are applicable only when
debugging programs written in languages that support
recursion (such as CYBIL and PASCAL). The parameter
values are ignored for all other languages.

RECURSION _LEVEL or RL

Indicates the particular call of a recursive procedure to be
used. If RECURSION _DIRECTION specifies FORWARD,
the integer 1 specifies the first call, 2 the s·econd call, and
so forth. If RECURSION _DIRECTION is omitted or
specifies BACKWARD, the integer 1 specifies the most
recent call, 2 its predecessor, and so forth.

Recursion applies only to stack variables; it does not
apply to variables stored in either a common block or the
$STATIC section.

The default value is 1.

RECURSION _J)IRECTION or RD

Indicates the order in which calls are counted by the
RECURSION _LEVEL parameter. The default value is
BACKWARD.

FORWARD

The integer 1 specifies the first call, 2 the second call,
and so forth.

BACKWARD

The integer 1 specifies the most recent call, 2 its
predecessor, and so forth.

Debug 14-31

I
II

DISPLAY_PROGRAM_ VALUE

TYPE or T
Data representation used for the display.

HEX (H)

Hexadecimal dump. The display includes the variable
name, its starting address, and the data displayed as
hexadecimal digits and as ASCII characters.

INTEGER (I)

Decimal integer. The data length must be from 1
through 8 bytes. Each element of an array is displayed
as a separate integer.

REAL (R)

Floating-point. The dati length must be 8 bytes. Each
element of an array is displayed as a separate
floating-point number.

If TYPE is omitted, the data representation used
corresponds to the data type as defined in the program.

VARIANT _SELECTION or VS
Selector value specifying the tagless variant to be
displayed. The specified value can be an integer, boolean,
name or one-character string, but it cannot be a string
longer than one character. The value specifies the ordinal
of the variant to. be displayed.

Debug prompts the user when the VARIANT _SELECTION
parameter is required, but has not been supplied.

NAME_OPTIONorNAME_OPTIONSorNO
Qualifies the identifier(s) given for the NAME parameter.
Options are:

Omitted

There is no default for the NAME_OPTION parameter
when a single identifier is specified for the parameter.
If $ALL is specified for the NAME parameter, the
default for the NAME_OPTION parameter is
VARIABLES.

CONSTANTS (C)

The identifier in the source program must be a
constant.

14-32 NOSNE Commands and Functions 60464018 J

60464018 J

DISPLAY_PROGRAM_ VALUE

VARIABLES (V)

The identifier in the source program must be a
variable.

PARAMETERS (P)

The identifier in the source program must be a
variable that was passed as a parameter to the default
procedure or the procedure specified by the
PROCEDURE parameter.

ALL

The identifier in the source program can be either a
constant or a variable.

NOTE

NAME_OPTIONS=PARAMETERS cannot be used
with the SECTION parameter.

SCOPE or SCO

Determines the type of search for identifiers specified
by the NAME parameter. Options are:

GLOBAL (G)

The value of the NAME parameter must reference
identifier(s) known outside the defining module.
The Entry Point Table is searched to locate the
identifier(s).

NOTE

GLOBAL cannot be used with the MODULE,
PROCEDURE, RECURSION LEVEL, and
RECURSION _DIRECTION parameters or with the
NAME_OPTION =PARAMETERS.

MODULE (M)

The value of the NAME parameter must reference
identifiers(s) defined at the outermost level of the
module.

Debug 14-33

DISPLAY_PROGRAM_ VALUE

Remarks

Examples

LOCAL (L)

The identifier(s) referenced by the NAME
parameter must be defined in the procedure
specified by the PROCEDURE parameter or by
default.

SECTION or SEC

Displays a group of identifiers by specifying the
section where they are stored. This parameter is valid
only when the value of the NAME parameter is $ALL.

NOTE

The SECTION parameter cannot be used with the
RECURSION _LEVEL and RECURSION _DIRECTION
parameters or with NAME_OPTION=PARAMETERS
or SCOPE=GLOBAL.

OUTPUT or 0

File where the display information is written. The
default is the current Debug output file.

For more information, see the Debug for NOSNE Usage
manual.

The examples refer to the following definitions:

COMMON /BLK/ OVAL, RVAL, IVAL, ZVAL
DATA OVAL, RVAL, !VAL, ZVAL/20.0D+O, 3.45E•01, 30, (+20.0,20.3)/

Display the value of DVAL:

DB/d1splay_program_value name=dval
dval = 20.
DB/

Display the value of RVAL:

DB/dispv name=rval
rval = 34.5
DB/

Display the value of IVAL:

DB/display_program_value ival
i va 1 = 30
DB/

14-34 NOS/VE Commands and FWlctions 60464018 J

DISPLAY_REGISTER

DISPLAY _REGISTER
DEBUG Subcommand

Purpose

Format

Displays tpe contents of the P, A, X or state registers.

DISPLAY _REGISTER or
DISPLAY _REGISTERS or
DISR

KIND= list of keyword
NUMBER= list of range of: keyword or integer
TYPE= keyword
OUTPUT= file
STATUS= status variable

Parameters KIND or K

60464018 J

Specifies the register to be displayed. Options are one or
more of the following:

Omitted

Same as KIND=ALL_PROGRAM.

p

Displays the P register for the procedure or function
currently being executed.

A

Displays the A registers for the procedure or function
currently being executed.

x
Displays the X registers for the procedure or function
currently being executed.

ALL _STATE or AS or S

Displays all state registers. For state registers which
designate the P register, the user mask, the monitor
condition, and user condition, the value of the register
for the procedure or function currently being executed
is displayed. For other state registers, the current
values are displayed.

ALL _PROGRAM or AP

Displays all P, A, and X registers for the procedure or
function currently being executed.

Debug 14-35

DISPLAY _REGISTER

ALL

Displays all registers for the procedure or function
currently being displayed.

NUMBER or N

Indicates which A, X, or state registers specified by the
KIND parameter are displayed. This parameter is ignored
if KIND=P because there is only one P register.

The A and X registers can be saved and displayed when
Debug gains control. However, some registers are not
always saved; a message is issued for each register that
cannot be displayed because it was not saved.

Options are:

Omitted

Displays the zero register.

Integer or range of integers

Displays a set of registers.

If KIND=A or X, integer can be 0 through 15.

If KIND= S, integer can be 0 through 255. Not all of
these numbers in integer range define state registers
and access to some state registers is restricted. Debug
will attempt to display undefined state registers, but
will display a value of zero for restricted state
registers.

ALL

Displays all A (if KIND=A), all X (if KIND=X), all
state (if KIND=S), or all sets of (if KIND=ALL)
registers.

TYPE or T

Type of data to be displayed. If this parameter is omitted,
a string value is assumed to be a hexadecimal value and
a numeric value is assumed to be an integer.

Options are:

ASCII (A)

ASCII string value.

14-36 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

HEX (H)

Hexadecimal string value.

INTEGER (I)

Integer value.

OUTPUT or 0

DISPLAY_REGISTER

File where the display information is written. The default
file is the current Debug output file.

For more information, see the Debug for NOSNE Usage
manual.

Display the contents of the P register in hexadecimal:

DB/display_register p

P=B 031 00000040

Display the contents of the AS register in hexadecimal:

DB/display_register kind=a number=8 type=hex

A8=B 04E 000004A8

Display the contents of the X4, X5, X6, X7, XS, X9, and
Xl 0 registers in hexadecimal:

DB/disr kind=x number=4 .. 10

X4=70000000 0000000
X5=40019482 53FCOCD1
X6=0000B01B 0000253A
X7=00000000 00000001
X8=00000000 00000064
X9=00000000 00000273
XA=OOOOOOOO OOOOOOCA

Debug 14-37

Ii
II

DISPLAY _STACK_FRAME

DISPLAY _STACK _FRAME
DEBUG Subcommand

Purpose

Format

Displays the contents of one or more stac~ frames. Values
are displayed in hexadecimal.

DISPLAY _STACK _FRAME or
DISPLAY _STACK _FRAMES or
DIS SF

COUNT= keyword or integer
START=integer
DISPLAY _OPTION= list of keyword
OUTPUT= file
STATUS= status variable

Parameters COUNT or C

Number of stack frames to be displayed. The keyword
ALL displays all stack frames. The default is one stack
frame.

START or S

Frame on the stack to be displayed first. The integer 1
represents the most recent stack frame, 2 the predecessor
of the most recent stack frame, and so forth. By default,
the display begins with the most recent stack frame.

DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Area of the stack frames . .to be displayed. By default, it
displays both the automatic and save areas.

AUTO (A)

Displays the area that contains the automatic
(dynamically allocated) variables of_ the procedure.

SAVE (S)

Displays the area that contains a copy of the registers
of the procedure as they existed at the time of a call
or trap.

ALL

Displays both the automatic and save areas.

14-38 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

"-- -

''-- '

60464018 J

DISPLAY _STACK_FRAME

OUTPUT or 0

File on which the stack frame information is written. The
default file is the current DEBUG_OUTPUT file.

For more information, see the Debug for NOSNE Usage
manual.

Display the save area of the most recent stack frame:

OB/display_stack_frame display_option=save

SAVE AREA

P=B 035 00000026 VMID=O
UM=FFF7 UCR=0040 MCR=OOOO

AO=B 032 00000460 A1=B 032 00000408
A2=B 032 000003CO A3=B 030 00000000
A4=B 032 00000390 AS=B 02F 00000020
A6=B 02E 00000000 A7=B 02F 00000000
A8=B OOF 00000018 A9=B 032 00000630
AA=B 032 OOOOOA30 AB=F FFF 80000000
AC=F FFF 80000000 AO=B 032 00001058
AE=F FFF 80000000 AF=B 006 000557F8

XO=OOOOB010 00020060 X1=00000000 00000000
X2=0000FFFF 80000000 X3=000007FF FFFFFFFF

X4=00000000 10000000 XS=OOOOOOOO 00000008
X6=00000000 00000000 X7=00000000 00000010
X8=00000000 00000000 X9=00000000 00000008
XA=OOOOOOOO 00000300 XB=OOOOOOOO 00000000
XC=OOOOOOOO 00000001 XO=OOOOOOOO 00000022
XE=OOOOOOOO 00010040 Xf =00000000 0000004E

Display the automatic and save areas of the most recent
stack frame:

Debug 14-39

DISPLAY_STACK_FRAME

06/dissf count=1

STACK FRAME 001
00000000 00000000
00000008 00000000
00000010 30300000
00000018 80000000
00000020 60326031
00000028 00006010
00000030 00006032
00000038 00406032
00000040 FF776032
00000048 FFFC6016
00000050 00006032

SAVE AREA

P=B 035 00000026
UM=FFF7 UCR=0040

A0=6 032 00000460
A2=B 032 000003CO
A4=B 032 00000390
A6=B 02E 00000000
A8=B OOF 00000018
AA=B 032 OOOOOA30
AC=F FFF 80000000
AE=F FFF 80000000

X0=0000601D 00020060
X2=0000FFFF 80000000

X4=00000000 10000000
X6=00000000 00000000
X8=00000000 00000000
XA=OOOOOOOO 00000300
XC=OOOOOOOO 00000001
XE=OOOOOOOO 00010040

14-40 NOSNE Commands and Functions

SEGMENT=032
00000000
00000000
OOCOFFFF
00000000
00000000
00096346
00000430
00000400
000003CO
00020F78
00000390

VMID=O
MCR=OOOO

A1=B 032
A3=B 030
AS=B 02F
A7=6 02F
A9=6 032

00

2 1

2
@l 2
w 2

2

00000408
00000000
00000020
00000000
00000630

A6=F FFF 80000000
AD=B 032 00001058
AF=6 OOB 000557F8

X1=00000000
X3=000007FF

X5=00000000
X7=00000000
X9=00000000
XB=OOOOOOOO
XO=OOOOOOOO
XF=OOOOOOOO

F
0

x

00000000
FFFFFFFF

00000008
00000010
00000008
00000000
00000022
0000004E

60464018 J

'-~

DISPLAY _USER _MASK
DEBUG Subcommand

DISPLAY _USER_MASK

Purpose Symbolically displays the values of the condition mask
flags (condition bits) of the user mask register for the
procedure or function currently executing.

Format DISPLAY_USER_MASK or
DIS UM

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Specifies the file on which the user mask register
information is to be .written. Options are:

Omitted

Writes to the current Debug output file.

File

Writes to the named file. You can position the file by
appending a position indicator to the file name (.$BOI,
.$ASIS, .$EOI).

Remarks For more information, see the Debug for NOSNE Usage
manual.

Examples The following example displays the condition mask flag
values of the user mask register.

DB/di sum

privileged_instruction_fault true
unimplemented_ instruction true
free_f lag true
process_interval_timer true
inter_ring_pop true
critical_frame_flag true
not_assigned true
divide_fault true
debug false
arithmetic_overflow false
exponent_overf low true
exponent_underf low true

60464018 J Debug 14-41

$MEMORY

fp_loss_of _significance false
fp_indefinite true
arithmetic_loss_of _significance true
invalid_bdp_data =true

$MEMORY
DEBUG Function

Purpose Returns the contents of a memory area.

Format $MEMORY or
$MEM

(PARAMETER _1: application
PARAMETER _2: integer
PARAMETER _3: keyword)

Parameters PARAMETER _1

Remarks

Specifies the process virtual address. This parameter is
required.

PARAMETER _2

The number of bytes to return. If parameter _3 is an
integer, parameter _2 must be in the range of 1 through
8. If parameter _3 is a string, parameter _2 must be in
the range of 1 through 256. If you omit this parameter, 6
bytes are returned.

PARAMETER _3

The type of value to return. If you specify an integer
value, a hexadecimal integer with radix is returned. If
you specify a string, a string is returned. If you omit this
parameter, an integer is returned.

For more information, see the Debug for NOSNE Usage
manual.

$PROGRAM_ VALUE
DEBUG Function

Purpose Returns the value of the program element which is
specified as the name parameter. Additional parameters
for module, procedure, recursion level, and recursion
direction can be specified to fully identify the named
variable.

14-42 NOSNE Commands and Functions 60464018 J

$PROGRAM_ VALUE

The $PROGRAM_ VALUE function allows you to
incorporate the values of program variables in SCL
statements in order to enhance debugging capabilities.

Format $PROGRAM_ VALUE or
$PV

(PARAMETER _1: application
PAR.AMETER _2: application
PAR.AMETER _3: application
PAR.AMETER _4: integer
PAR.AMETER _5: keyword)

Parameters PARAMETER _1

60464018 J

Name of the program element whose value is to be
displayed. This parameter is required. Values can be one
of the following types:

• Simple variable

• Subscripted name

Q Field reference

• Pointer reference

The named variable must be used in your program.

Because names can be long, SCL string variables can be
used as aliases for them. To do this, assign the SCL
variable to a string containing the identifier. Then use
the SCL variable preceded by a question mark as the
~alue of the name parameter.

PAR.AMETER _2

Name of the module that contains the element specified
by the name parameter. Omission causes the module
executing when Debug gained control or the module
specified by the CHANGE _DEFAULT subcommand to be
used.

PAR.AMETER _3

Name of the procedure that contains the element specified
by the name parameter. If you specify a procedure that is
not in the active call chain, its automatic variables cannot
be used because it has no stack frame. Omission causes
the procedure executing when Debug gained control to be
used if a module name is not specified. Otherwise, there

Debug 14-43

QUIT

Remarks

Examples

QUIT

is no default procedure when a module name is specified
and a procedure name is not specified; the element
specified by the name parameter must exist at the module
level.

PARAMETER _4

The particular call of a recursive procedure to be used. It
must be a positive integer greater than zero. If the
recursion direction parameter specified the keyword
FORWARD, a value of 1 is the first call, 2 is the second
call (the one called by the first call), and so on. If the
recursion direction parameter is BACKWARD, 1 is the
most recent call, 2 is the predecessor, and so on.

Omission causes a value of 1 to be used.

PARAMETER _5

Order in which calls to a recursive procedure are
searched. It controls how the value of the recursion_level
parameter is interpreted. It can be one of the following
keywords:

FORWARD or F

If the RECURSION _LEVEL parameter specifies that
the first call to the procedure is used, a 2 specifies the
second. call, and so on.

BACKWARD or B

If the RECURSION _LEVEL parameter specifies that
the most recent call to the procedure is used, a 2
specifies its predecessor, and so on.

Omission causes BACKWARD to be used.

For more information, see the Debug for NOSNE Usage
manual.

DB/set_break name=b1 line=23 conmand= ..
DB .. /'if $program_value(index) <45 then; run; ifend'

DEBUG Subcommand

Purpose Ends the Debug session and returns control to NOSNE.
The session is terminated immediately; the program is not
executed to completion.

14-44 NOSNE Commands and Functions 60464018 J

Format

Remarks

QUIT or
QUI

STATUS= status variable

$REGISTER

For more information, see the Debug for NOSNE Usage
manual.

$REGISTER
DEBUG Function

Purpose Returns the contents of a specified register in hexadecimal
integer format, including radix. $REGISTER is useful
when specified for the ADDRESS parameter value on the
DISPLAY_MEMORY and CHANGE_MEMORY commands.

Format $REGISTER or
$REG

(PARAMETER _1: keyword
PARAMETER _2: integer)

Parameters PARAMETER _1

The type of register the value is returned from. P
specifies a P register, A specifies an A register, X

'- specifies an X register, and S specifies a state register.

Remarks

RUN

PARAMETER _2

Specifies the register number the value is returned from.

For more information, see the Debug for NOSNE Usage
manual.

DEBUG Subcommand

Purpose

Format

60464018 J

Begins or resumes program execution once Debug has
gained control. Execution continues until Debug again
gains control. If the program has run to completion,
entering the RUN command terminates program
execution.

RUN
STATUS= status variable

Debug 14-45

SET_BREAK

Remarks

Examples

o Execution begins at the instruction whose address is
stored in the P register of the program when the
event that caused Debug to gain control occurred.

o If the P register points to the instruction that caused
the event (such as division by zero), the same event
will occur immediately after entering the RUN
command. In this case, you must change the value in
the P register with the CHANGE _REGISTER
command or change the value of one of the operands
with the CHANGE _PROGRAM_ VALUE command
before entering the RUN command.

• When Debug processes the RUN command, all
previously created SCL blocks (except SET _BREAK
command information and the name of the current
DEBUG _INPUT and DEBUG _OUTPUT files) are lost.
This means that all information about SCL commands,
such as if-then blocks or while-for loops that span
RUN commands are lost. Global variables must be
recreated with XREF.

• For more information, see the Debug for NOSNE
Usage manual.

The following sequence recreates the variable COUNT:

DB/crev count kind=integer scope=job v=O
DB/setb b=one l=one
DB/run "BREAK ONE"

By specifying SCOPE=JOB, the variable COUNT will be
retained past the RUN command.

SET_BREAK
DEBUG Subcommand

Purpose

Format

Defines a break.

SET _BREAK or
SETB

BREAK=name
EVENT= list of name
LINE= integer
STATEMENT= integer
STATEMENT _LABEL =application

14-46 NOSNE Commands and Functions 60464018 J

NAME =application
SECTION= keyword or application
MODULE ==application
PROCEDURE =application
ENTRY _POINT=application
ADDRESS =application
BYTE _OFFSET ==application
BYTE _COUNT==integer
COMMANDS== string
STATUS== status variable

SET_BREAK

Parameters BREAK or B

60464018 J

Name of the break. By default, Debug assigns a unique
name and displays the name assignment to the user.

The name is used to reference the break definition in the
DISPLAY_BREAK and DELETE_BREAK commands. The
name is displayed in the break report message when the
break occurs.

A break cannot be named ALL. The break name must not
contain the character '$'. The form is:

EVENTorEVENTSorE

One or more events that will cause the break. If you
specify more than one event, the break occurs for any of
the events.

ARITHMETIC_OVERFLOW (AO)

Breaks when an arithmetic overflow occurs on an
instruction in the specified address range. The P
register points to the instruction that caused the
overflow.

ARITHMETIC _SIGNIFICANCE (AS)

Breaks when arithmetic significance is lost on an
instruction in the specified address range. The P
register points to the instruction that caused the loss
of significance.

BRANCH (B)

Breaks before either a branch to or a return from any
location in the specified address range occurs.

Debug 14-47

SET_BREAK

CALL (C)

Breaks before a subprogram call occurs to any address
in the specified address range.

DIVIDE _FAULT (DF)

Breaks when division by zero occurs in an instruction
in the specified address range. The P register points to
the instruction that caused the division by zero.

EXECUTION (E)

Breaks before the instruction in the specified address
range is executed.

If the address is specified by the line number, not
every line is usable. For example, breaks cannot be
set at ENDIF statements because it is not obvious
when control reaches them.

EXPONENT_OVERFLOW (EO)

Breaks when an exponent overflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the one that
caused the overflow.

EXPONENT_UNDERFLOW(EU)

Breaks when an exponent underflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the one that
caused the underflow.

FLOATING _POINT _INDEFINITE (FPI)

Breaks when the result of a floating-point operation is
indefinite in an instruction in the specified address
range. The P register points to the instruction
following the one that caused the results to be
indefinite.

FLOATING _POINT _SIGNIFICANCE (FPS)

Breaks when significance is lost during a floating-point
operation in an instruction in the specified address
range. The P register points to the instruction
following the one that caused the loss of significance.
This event will not occur unless your program sets the
floating-point loss-of-significance bit in the user mask
register.

14-48 NOS/VE Commands and Functions 60464018 J

60464018 J

SET_BREAK

INVALID _BDP _DATA (IBD)

Breaks when a business data processing (BDP)
instruction fault occurs in an instruction in the
specified address range. The P register points to the
instruction that caused the fault. The BDP instructions
are described in the Virtual State Hardware reference
manual.

READ (R)

Breaks before a read occurs from the specified address
range. The break occurs only if the first byte of the
item to be read is within the address range.

READ_NEXT_INSTRUCTION (RN!)

Breaks before the instruction in the specified address
range is executed.

WRITE (W)

Breaks before a write occurs into the specified address
range. The break occurs only if the first byte of the
item to be written is within the address range.

The default event is EXECUTION.

NOTE

The following optional parameters (up to the COMMAND
parameter) specify the location at which the break occurs.
For the break to occur, the specified event must occur
within the range defined by the address parameters. If all
of these parameters are omitted, an address range of one
byte is used.

LINE or L

Line number in the module. The module is specified by
the MODULE parameter.

STATEMENT or S

Statement in the multi-statement line specified by the
LINE parameter. The statements are numbered in
consecutive order beginning with 1.

If STATEMENT is omitted, the default is 1.

Debug 14-49

SET_BREAK

STATEMENT _LABEL or SL

Source statement label at which to set the break. The
module is specified by the MODULE parameter. The
procedure is specified by the PROCEDURE parameter.

The parameter value depends on the programming
language.

For FORTRAN, BASIC, and PASCAL, a statement label is
an integer.

For CYBIL, a statement label is a name enclosed in
slashes (/name/).

For COBOL, a statement label is a COBOL_
PARAGRAPH or COBOL _SECTION identifier.

NAME or N

Variable name on which a READ or WRITE break is set.
You must also specify EVENT= READ or
EVENT= WRITE. If NAME is omitted, the break is
specified by another parameter.

SECTION or SEC

Memory section.

$BINDING

Section containing the links to external procedures and
the data of the module.

$BLANK

Section containing unnamed common.

$LITERAL

Section containing the literal data (for example, long
constants) of the module.

$STATIC

Section containing the static (not on the run-time
stack) variables not explicitly allocated to a named
section of the module.

Unless the MODULE parameter is also specified, the
section must exist for the current default module.

The SECTION parameter cannot be specified for modules
that are components of a bound module unless the section
is a common block.

14-50 NOSNE Commands and Functions 60464018 J

60464018 J

SET_BREAK

MODULE or M

Module name. The module may qualify another address
parameter. Otherwise it specifies the first byte of the code
section of the module.

If this parameter is omitted, the current default module is
used. The default module can be specified by a
CHANGE _DEFAULTS command. If not specified, it is the
module executing when Debug gained control.

PROCEDURE or P

Procedure name specifies the first byte of the code section
· of the procedure. Unless the MODULE parameter is

specified, the procedure must exist in the current default
module.

You cannot specify the LINE or SECTION address
parameters with PROCEDURE.

ENTRY _POINT or EP

Entry point name.

You can use the BYTE_OFFSET and BYTE_COUNT
parameters to modify the ENTRY _POINT parameter. You
cannot use other address parameters with this parameter.

ADDRESS or A

Address of the first byte of memory to be changed.

Its format is rsssoooooooo(16) where r is the ring number,
sss is the segment number, and 00000000 is the offset
from the beginning of the segment. You can get machine
addresses from the cross-reference and load maps for your
program.

BYTE _OFFSET or BO

Offset to the base address established by one of the
address parameters. The default offset is zero.

The address generated by adding BYTE _OFFSET to the
base address must be within the memory block implied by
the base address. The block size is the length of the
section when the SECTION parameter is specified, and
the length of the segment containing the machine address
when the ADDRESS parameter is specified.

BYTE _COUNT or BC

Number of bytes in the item. The default byte count is 1.

Debug 14-51

SET_BREAK

Remarks

COMMANDS or COMMAND or C

Optional string of commands to be executed by Debug,
SCL, or any other active command processor when the
break is honored. After the commands in the string have
been executed, commands are read from the current
Debug input file unless the string contains a RUN
command.

If a command in the string includes a quoted string, that
string must be enclosed in two single apostrophes.

No break report message is issued before the commands
in the string are executed. If you want a message to be
displayed, include an SCL DISPLAY_ VALUE command in
the string.

If an error is detected in one of the commands in the
string, the break report message is issued, the error is
reported, and commands are read from the Debug input
file. The remaining commands in the string are not
executed.

• You specify one or more events and the location at
which Debug takes control. When a specified event
occurs, program execution is suspended and a message
informs you which break occurred. At this point, you
can enter another Debug command that can be
processed by the operating system command or other
active command utility (such as an SCL command).

o Debug gains control when the following events occur,
even if you do not set a break for them:

ARITHMETIC _OVERFLOW
ARITHMETIC _SIGNIFICANCE
DIVIDE _FAULT
EXPONENT_OVERFLOW
EXPONENT_UNDERFLOW
FLOATING _POINT _INDEFINITE
FLOATING _POINT _SIGNIFICANCE
INVALID _BDP _DATA

Specific breaks can be set for these events so that the
specified command string can be executed when Debug
gains control.

• For more information, see the Debug for NOS/VE
Usage manual.

14-52 NOS/VE Commands and Functions 60464018 J

Examples

SET_FUNCTION _KEY

Cause a break to occur when execution reaches line 10 of
module PROGl:

DB/set_break 1ine=10 module=prog1
-- Break name DBB$1 assigned to this break

Cause a break when a branch or return occurs to line 40
(of the module executing when Debug gained control):

DB/set_break break=b2 event=branch 1ine=40

SET _FUNCTION _KEY
DEBUG Subcommand

Purpose

Format

Parameters

60464018 J

Enables you to create your own set or sets of function
keys for screen debugging.

SET _FUNCTION _KEY or
SETFK

NUMBER=keyword or integer
COMMAND _STRING= any
SHIFT= boolean
LABEL= string
STATUS= status variable

NUMBER or N

Specifies the keys to be defined. Options are:

integer

Specifies the number of the key to be defined. Values
can be any integer from 1 through 16. These numbers
correspond to the highlighted boxes in the menu of
functions at the bottom of the screen. The numbers 1
through 8 correspond to the first row of boxes; 9
through 16 correspond to the second row of boxes.

If you specify a number that exceeds the maximum
function key defined for your terminal, the value of
the COMMAND _STRING is saved; to execute the
COMMAND _STRING, enter its LABEL on the home
line.

keyword

You can also specify one of the following keywords:
BACK, BKW, DATA, DOWN, EDIT, FWD, HELP,
STOP, UNDO, UP.

Debug 14-53

SET_FUNCTION _KEY

The keywords relate to keys on some terminals. If
your terminal has defined sequences that relate to
these keywords, you can create your own function keys
using these keywords.

COMMAND _STRING or CS

Specifies the function to be performed when the specified
key is pressed. Options are:

string

Specifies the command(s) to be executed when the
specified key is pressed. Va_lues can be any Debug or
NOSNE command or a null string if the key is to be
unassigned. When more than one command is
specified, separate them with semicolons.

keyword

Specifies the Debug screen function to be executed
when the specified key is pressed. Values can be any
Debug screen function label name.

SHIFT or S

For those terminals that have one key identifier next to
each highlighted box in the menu of functions, the SHIFT
parameter specifies whether the key to be used is shifted.
For those terminals that have two key identifiers next to
each highlighted box in the menu of functions, the SHIFT
parameter indicates which key you use. Options are:

Omitted

Same as SHIFT=FALSE.

TRUE

The key is used shifted or the key corresponds to the
top key identifier.

FALSE

The key is used unshifted or the key corresponds to
the bottom key identifier.

14-54 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

SET_SCREEN _OPTIONS

LABEL or L

Specifies the label that is to appear in the menu of
functions for the specified key. Options are:

Omitted

The first six characters of the COMMAND _STRING
value are used for the label.

string

The specified string is used for the label.

For more information, see the Debug for NOSNE Usage
manual.

The following SET _FUNCTION _KEY command defines
the shifted F5 key to display the date and time. The key
has a screen label of time.

DB/set_function_key number=S
.. DB/comnand_string='disv $date;disv $t1me(ampm)'
.. DB/shift=true label='time'

The following SET _FUNCTION _KEY command defines
the DATA key of the CDC 721 terminal to execute the
NOSNE DISPLAY_CATALOG command. The key has a
screen label of catlst.

DB/set¥k n=data cs='display_catalog' l='catlst'

The following SET _FUNCTION _KEY command defines
the unshifted F7 key to execute the Debug t§.¢.il~
function. The key has a screen label of locate.

DB/setfk n=7 cs=locate

SET _SCREEN _OPTIONS
DEBUG Subcommand

Purpose

60464018 J

Enables you to change the appearance of your screen for
a screen mode Debug session.

Debug 14-55

SET_SCREEN _OPTIONS

Format SET _SCREEN _OPTIONS or
SE TSO

MENU _ROWS=integer
COLUMNS =integer
SPLIT _SIZES= list of integer
STATUS= status variable

Parameters MENU _ROWS or MENU _ROW or MR

Specifies the number of rows of function key prompts to
display on your screen. Options are:

Omitted

The number of rows of function key prompts remains
the same. The default number of rows is one.

0

Displays no function key prompts.

1

Displays one row of function key prompts (functions 1
through 8).

2

Displays two rows of function key prompts (functions 1
through 16).

COLUMNS or C

Specifies the number of columns to be displayed for
terminals that support multiple screen sizes. Options are:

Omitted

The number of columns displayed remains the same.

Integer

Specifies the number of columns to be displayed.
Values can range from 40 to the maximum number
allowed for your terminal screen (up to 256). The
number you enter is compared to the screen sizes set
up in the terminal definition for your terminal. The
number of columns displayed is the closest number as
large or larger than the number you enter on the
COLUMNS parameter. When first entering Debug, it
assumes a value of 80 columns.

14-56 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

SET_SCREEN _OPTIONS

SPLIT _SIZES or SPLIT _SIZE or SS

Specifies the number of lines displayed in the Source and
Output windows. Options are:

Omitted

The number of lines displayed in the Source and
Output windows remains the same.

List of integer

Specifies the number of lines displayed in the Source
and Output windows. Values can be a list of at most
two integers in the range 1 to the maximum number
allowed for your terminal screen (up to 255). If two
values are specified, they must be enclosed in
parentheses and separated by commas or spaces. The
first value specifies the number of lines displayed in
the Source window and the second value specifies the
number of lines displayed in the Output window (not
including header information). Each window must
contain at least one line.

Because the Source window is allocated first with the
remainder of the screen allocated to the Output
window, the second value is not necessary.

When first entering Debug, the source window occupies
the top three-fourths of the screen and the Output
window occupies the bottom one-fourth of the screen.
The number of lines displayed is determined by the
size of your terminal screen.

o SET_SCREEN _OPTIONS, when entered in line mode,
determines the screen characteristics to be displayed
when screen mode Debug is activated with the
ACTIVATE _SCREEN command.

o When SET _SCREEN _OPTIONS is entered on the
home line while in screen mode, the screen is updated
immediately according to the parameters specified.

o For all omitted parameters, Debug assumes you want
the same value used the last time you entered the
SET _SCREEN _OPTIONS command in the current
Debug session. If SET _SCREEN _OPTIONS has not
been entered, Debug assumes the default values.

Debug 14-57

SET _STEP _MODE

Examples

• Screen characteristics remain in effect throughout the
Debug session until they are changed by another
SET _SCREEN _OPTIONS command or by the tailoring
functions of screen mode Debug. When you end the
Debug session, all screen characteristics return to
their default values.

• You can also include the SET_SCREEN _OPTIONS
command in the debug _input file so that your screen
characteristics are modified immediately when you
begin a Debug session.

• For more information, see the Debug for NOSNE
Usage manual.

The following example displays (when screen mode is
activated) two rows of function key prompts, 132 columns,
and a source window as large as possible.

DB/set_screen_options menu_rows=2 column=132 split_size=255

SET _STEP _MODE
DEBUG Subcommand

Purpose Activates or deactivates step mode. In step mode, control
is returned after a specified subset of a task is executed.

Format SET _STEP _MODE or
SETSM

MODE=keyword
UNIT=keyword
MODULE= list of: keyword or "module"
PROCEDURE= list of: keyword or ''procedure"
SPAN= integer
COMMAND=string
STATUS= status variable

Parameters MODE

Indicates whether to activate or deactivate step mode.
This parameter is required.

ON

Activates step mode.

14-58 NOSNE Commands and Functions 60464018 J

60464018 J

SET _STEP _MODE

OFF
Deactivates step mode. When step mode is off, any
remaining parameters are ignored.

If you specify MODE=ON and step mode is already on,
all previous values are replaced with the new parameter
values.

UNIT or U

Length of each step. The default value is LINE.

LINE (L)

The step is reported before the code is executed for
each line, except for the procedure lines.

PROCEDURE (P)

The step is reported each time a new procedure begins
and after any prolog code for the procedure has
executed.

COBOL _SECTION (CS)

The step is reported each time a section header is
reached (COBOL programs only).

COBOL_PARAGRAPH (CP)

The step is reported each time a paragraph is reached
(COBOL programs only).

MODULE or M

Used with the UNIT parameter to specify the modules
reported. If this parameter is omitted, the current default
module is used.

$ALL

A step is reported that is in any module.

$CURRENT

A step is reported only if the step occurs in the
module where the program is executing when step
mode is activated.

Debug 14-59

SET_STEP _MODE

list of names

A step is reported if the step occurs in any of the
named modules.

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET _STEP _MODE command.

PROCEDURE or P

Used with the UNIT parameter to specify the procedure
reported. If the parameter is omitted, the current default
procedure is used.

$ALL

A step is reported that is in any procedure.

$CURRENT

A step is reported only if the step occurs in the
procedure where the program is executing when step
mode is activated.

list of names

A step is reported if the step occurs in any of the
named procedures.

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET _STEP _MODE command.

SPAN or S

Number of steps to occur before execution stops and the
step is reported. By default, every step that occurs is
reported.

COMMAND or COMMANDS or C

Optional string of commands to be executed when the step
occurs.

If the string of commands includes a RUN command, the
task is resumed and the step is not reported.

If the string does not include a RUN command, command
input will be requested from the current DEBUG _INPUT
file after the string of commands has been executed.

14-60 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

SET_STEP _MODE

o. If step mode is activated, a RUN command causes
your program to execute for the specified unit. You
are then prompted for further command input.

o A string of commands can be associated with the step
and will be processed each time the step is completed.
Stepping with a unit of line or procedure is only
available if the source program was compiled with
OPT= DEBUG.

• Activating step mode is an effective debugging aid, but
it uses a lot of execution time.

e For more information, see the Debug for NOS/VE
Usage manual.

The following command sequence shows a command to
turn on step mode, two RUN commands to execute two
steps, and a command to turn off step mode. The value of
variable x is displayed at each step.

DB/set_step_mode,on,conmand='display_program_value,x'
DB/run
x = 2.00000000000000E+OOOO
-- DEBUG: step at M=$MAIN L=34 60=212

DB/run
x = 2.00000000000000E+OOOO
-- DEBUG: step at M=$MAIN L=35 60=6
DB/set_step_mod~ off

Debug 14-61

DISPLAY _STATION 15

DISPLAY _STATION .. 15-1
DISPLAY_BATCH_DEVICE_STATUS 15-1
DISPLAY_STATION _QUEUE_ENTRY 15-6
DISPLAY_STATION _QUEUE_STATUS 15-9
DISPLAY_STATION _STATUS 15-11
QUIT : . 15-12

60464018 J

DISPLAY _STATION 15

DISPLAY _STATION
Command

Purpose

Format

Starts the Display Station utility session and allows you
to display status information about a CDCNET batch 1/0
station. -

DISPLAY _STATION or
DISS

STATION _NAME=name
STATUS=status variable

Parameters STATION _NAME or SN

Specifies the name of the 1/0 station. If the 1/0 station
has no name, (for example, a private 1/0 station), use the
name of the Control Facility obtained from your site
administrator. This parameter is required.

Remarks o You may need validation to use this command utility.

Examples

See your site administrator for the appropriate
validation, if needed.

e For more information, see the CDCNET Batch Device
manual.

The following examples starts an Display Station Utility
session and specifies 1/0 station WORK!.

/display_station sn=work1
diss/

DISPLAY _BATCH _DEVICE _STATUS
DISS Subcommand

Purpose

60464018 J

Displays the attributes and status of an 1/0 station's
devices. However, when entered from within the DISS
utility, certain attributes and status information are
displayed only to the owner of the output queue file being
processed by the device.

DISPLAY_STATION 15-1

I
11

I
I

DISPLAY _BATCH _DEVICE _STATUS

Format DISPLAY _BATCH _DEVICE _STATUS or
DISBDS

DEVICE _NAME= list of: keyword or name
DISPLAY _OPTION= keyword
OUTPUT= file
STATUS= status variable

Parameters DEVICE _NAME or DN

Specifies a list of one or more names of the devices whose
status is to be displayed. You can also select the devices
by device type or select all devices associated with the 1/0
station. Options are:

Keyword

PRINTERS

ALL

Description

Displays the status of the 1/0 station's
printers.

When entered from within the OPES
utility, displays the status of all
devices associated with the 1/0 station.

This parameter is required.

15-2 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

DISPLAY _BATCH _DEVICE _STATUS

DISPLAY _OPTION or DO

Specifies the amount of information to be displayed.
Options are:

Keyword

ALL (A)

BRIEF (B)

Description

When used within OPES, displays all
items of information for the selected
devices. When used within DISS,
displays selected items of information
for the selected devices. See Remarks.

Displays only the following items of
information for the selected devices:

Device name

Device status

Transfer status

Percentage of the file transfer
complete

Last unsolicited message

The default is BRIEF.

OUTPUT or 0

Specifies the name of the output file where the status
information is to be displayed and, optionally, specifies
how the file is to be positioned prior to use. Refer to File
Reference in the NOSNE System Usage manual for a
description of file positioning prior to use.

The default is file $OUTPUT.

o The DISS utility displays the following information for
all devices.

Device name

Device status (active/stopped/not ready/down)

Device type

External device characteristic strings

DISPLAY_STATION 15-3

I
!

DISPLAY _BATCH_DEVICE _STATUS

File acknowledgement status (yes/no)

File transfer status (idle/busy/suspended)

Last unsolicited message concerning the device

- Page width

- Terminal model

• For output devices, the DISS utility displays the
following additional information. However, it displays
the information marked with an asterisk to only the
owner of the output queue file being processed by the
device.

Banner highlight field (comment:_banner/routing_
banner/site _banner/user _file _name/user _name)

Banner page count

Code set
(ASCil/ASCII128/ASCII95/ASCII64/ASCII48/EBCDIC)

Forms size

Forms code strings

Device alias

Maximum file size in bytes

Suppress carriage control (yes/no)

- Transmission block size in bytes

Undefined _FE _action (print _after _spacing/print_
before _spacing/discard _print _line)

Unsupported _FE _action (print _after_
spacing/print _before _spacing/discard _print _line)

Vertical print density (SIX_ONLY/EIGHT _
ONLY/SIX_ANY/EIGHT_ANY)

VFU image load option (init/oper/user/none)

VFU load procedure

15-4 NOSNE Commands and Functions 60464018 J

Examples

60464018 J

DISPLAY_BATCH_DEVICE_STATUS

Additional information about the file being
transferred to the device. However, the DISS utility
displays the information marked with an asterisk
to only the owner of the output queue file being
processed by the device.

* Family name of generating job

* Login user name of generating job

Percent complete

System-supplied file name

* System-supplied job name

* User-supplied file name

* User-supplied job name

o For input devices, the following additional information
is displayed:

Information about the file being transferred from
the device.

* Job destination name

input bytes transferred

The following example displays a brief status of all
devices associated with the 1/0 station:

diss/display_batch_device_status dn=all do=brief
Device-Name PRINT1

Device_Status active
File_Transfer_Status idle
Last-Unsolicited_Message

Device_Name
Device-Status
File_Transfer_Status
Last_Unsolicited_Message

diss/

finished

PRINT2
active
idle
finished

DISPLAY_STATION 15-5

DISPLAY_STATION_QUEUE_ENTRY

DISPLAY _STATION _QUEUE _ENTRY
DISS Subcommand

Purpose Displays status information about one or more files in the
1/0 station's output queue. When entered from within the
DISS utility, displays status information about only those
files in the output queue that you own.

Format DISPLAY _STATION_ QUEUE _ENTRY or
DISPLAY_STATION _QUEUE_ENTRIES or
DISSQE

NAME= list of: keyword or name
DISPLAY _OPTION=keyword
OUTPUT=file
STATUS= status variable

Parameters NAME or NAMES or N

Specifies a list of one or more file names for which
information is to be displayed. Either the system-supplied
or user-supplied name can be used. You can also request
the top 10 files or all files. If you are using this
subcommand within the DISS utility, you must be the
owner of the specified file(s). Options are:

Keyword

TOP_TEN

ALL

Description

Displays information about the 10 files
that are top candidates for transfer.

Displays information about all files in
the 1/0 station's output queue.

This parameter is required.

15-6 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

DISPLAY_STATION _QUEUE_ENTRY

DISPLAY _OPTION or DO

Specifies the amount of information to be displayed.
Options are:

Keyword

ALL (A)

BRIEF (B)

Description

Displays all items of information for
the selected files. See Remarks.

Displays only the following items of
information for the selected files:

System-supplied file name

User-supplied file name

File length

File owner identification

The default is BRIEF.

OUTPUT or 0

Specifies the name of the output file that the status
information is written to and, optionally, specifies how the
file is to be positioned prior to use. Refer to File
Reference in the NOSNE System Usage manual for a
descrip.tion. of file positioning prior to use.

The default is file $OUTPUT.

o The DISS utility only displays status information about
files that you own that are in the 1/0 station output
queue. you receive no display if you have no files in
the queue.

o The display includes the following items of information
for each file selected from the output queue:

System-supplied file name

Copies requested

Destination name (I/0 station name)

- Explicit device or alias name

Device type (printer/reader/plotter/punch)

DISPLAY_STATION 15-7

DISPLAY_STATION _QUEUE_ENTRY

External device characteristic strings

- Family name of generating job

File length in bytes

Forms code strings

Data mode (coded/transparent)

Output state

page format (continuous/burstable/nonburstable)

Page length

Page width

Current position in queue

Priority

System-supplied job name

Date and time the file was queued

User name of generating job

User-supplied file name

User-supplied job name

Vertical print density (SIX/EIGHT/NONE)

VFU load procedure name

• Each file owner is responsible for establishing file
attributes via the SET _FILE _ATTRIBUTES command
(see the NOSNE System Usage manual for more
information). This is not a function of an 110 station
operator.

15-8 NOSNE Commands and Functions 60464018 J

Examples

DISPLAY _STATION _QUEUE _STATUS

The following example displays the full status for file
ABC in the I/O station's output queue as requested by a
batch device user (the file owner) under the DISS utility.

diss/display_station_queue_entry n=all
System_Supplied_File_Name $0830_0631_AAA_0197

Copies
Destination_Name
Device_Name
Device-Type
External_Characteristics
Fami ly_Name
File_Length
Forms_ Code
Output_Data_Mode
Page_ Format
Page_Length
Page_Width
Position_In_Queue
Priority
System_Supplied_Job_Name
Ti me_Enqueued
User_Name
User_Supplied_File_Name
User_Supplied_Job_Name

URI
PRINT1
printer
NORMAL
NVE
16080
NORMAL
coded
burst able
60
132

116
$0830_0631_AAA_0195
yyyy-1T1TI-dd hh:rrm:ss
LC
ABC
LC

Vertical_Print_Density six
diss/

DISPLAY _STATION _QUEUE _STATUS
DISS Subcommand

Purpose

Format

60464018 J

Displays the status of the queue of output files destined
for the I/O station.

DISPLAY _STATION _QUEUE _STATUS or
DISSQS

DISPLAY _OPTION= keyword
OUTPUT=file
STATUS= status variable

DISPLAY_STATION 15-9

I
I

I
I

DISPLAY _STATION _QUEUE _STATUS

Parameters

Remarks

DISPLAY _OPTION or DO

Specifies the amount of information to be displayed.
Options are:

Keyword

ALL (A)

BRIEF (B)

Description

Displays all categories of information
for the 1/0 station's output queue. See
Remarks.

Displays all output queues.

The default is BRIEF

OUTPUT or 0

Specifies the name of the output file where the status
information is displayed and, optionally, specifies how the
file is to be positioned prior to use. Refer to File
Reference in the NOSNE System usage manual for a
description of file positioning prior to use.

The default is file $OUTPUT.

The following categories of information are displayed
when DO=ALL:

• Number of files in the queue

• Each destination name (110 station name) and the
number of files queued for each destination name

• Explicitly requested device names in the queue and
the number of files queued for each device

• Each device type and the number of files queued for
each device type

o Each of the external device characteristic strings in
the queue and the number of files queued for each
string

o Each of the forms code strings in the queue and the
number of files queued for each string

15-10 NOSNE Commands and Functions 60464018 J

Examples

DISPLAY _STATION _STATUS

The following example displays a brief status of all
categories of information for the 110 station's output
queue.

diss/display_station_queue_status do=brief
Station_Name URI
Number_Of_Files : 1

Age_Of_Oldest_File 127
Average_Age_Of_Files
File_Count
Total_File_Size

diss/

127
322
16080

DISPLAY _STATION _STATUS
DISS Subcommand

Purpose

Format

Displays the status of the 110 station that you are
operating.

DISPLAY_STATION _STATUS or
DISSS

OUTPUT= file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

60464018 J

Specifies the name of the output file where the status
information is displayed and, optionally, specifies how the
file is to be positioned prior to use. Refer to File
Reference in the NOSNE System Usage manual for a
description of file positioning prior to use.

The default is file $OUTPUT.

• The following items of information are displayed:

- 1/0 station name

Control facility name

Default job destination

Destination unavailable action

- File acknowledgement requested (yes/no)

- Number of files queued for this 110 station

DISPLAY_STATION 15-11

I
I

QUIT

Examples

QUIT

PM message action (printer/display/discard)

Required operator console name

1/0 station use (public/private)

Count of devices

List of devices showing device type, device status,
and file transfer status for each printer

The following example displays the status of an 1/0
station named IOSTATION _30009F0013

diss/display_stat ion_status
Stat ion_Name

Control_Faci 1 ity_Name
Destination_Unavailable_Action
Default_Job_Dest inat ion
Fi le_Acknowledgement
Number_Of_Files_Queued
PM_Message_Act ion
Required_Console_Device
Stat ion_Usage
Count_Of _Devices

Device_Name

CR!
PRINT2

di SS/

Type

reader
printer

: IOSTATION_30009F0013
: STATION_CCJNTROLLER_l
: stop input device
: NVE
: no
: 8
: print
: $CONSOLE_30009F _ 7000000000

: PRIVATE
: 2

Device_Status Fi le_Status

active
stopped

idle
suspended

DISS Subcommand

Purpose

Format

Ends operator control of an 1/0 station and terminates the
current execution of the Display Station utility.

QUIT or
QUI or
END

STATUS== status variable

15-12 NOS/VE Commands and Functions 60464018 J

EDIT _CATALOG 16

EDIT_CATALOG ... 16-1
$CURRENT _FILE : 16-3
SET_DISPLAY_OPTION 16-3
SET _SCREEN _OPTION 16-5

·'-....___ ...

60464018 J

rt
I

EDIT _CATALOG 16

EDIT _CATALOG
Command

Purpose Initiates the EDIT_CATALOG (EDIC) utility. You can use
this full screen application to create, move, copy, print,
view, edit, and execute files.

Format EDIT_CATALOG or
EDIC

CATALOG= file
DISPLAY _OPTIONS =keyword
KEEP _J)ISPLAY _CURRENT=boolean
NO _DOLLAR _FILES= boolean
STATUS=status variable

Parameters CATALOG or C

60464018 J

Specifies the catalog to display. The default is the
working catalog.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the file information to display. Specify one of the
following values:

ALL or A

Displays all file attributes.

BRIEF or B

Displays only the name and entry type (file or
catalog).

The default is BRIEF.

KEEP _DISPLAY _CURRENT or KDC

Specifies whether to update the catalog display after every
EDIT _CATALOG operation, including carriage returns.
Use this parameter only when a catalog is being accessed
by multiple tasks or jobs. When a single task is accessing
a catalog, the catalog display reflects the current state of
the catalog, regardless of this parameter's value. Specify
one of the following values:

EDIT_CATALOG 16-1

I
I

I
II

EDIT_CATALOG

Remarks

Examples

TRUE

Updates the catalog display after the execution of
every EDIT_CATALOG operation, carriage return, and
home line command. ., ·

FALSE

Updates the catalog display only after the execution of
home line commands and certain EDIT _CATALOG
operations.

The default is FALSE.

NO_DOLLAR_FILESorNDF
Specifies whether to omit file names containing a $
character from the display. (By convention, $ appears only
in CDC-defined file names.) Specify a boolean value. The
default is FALSE.

To access the EDIT _CATALOG online manual, enter the
following command either at the NOS/VE system prompt
or from the EDIC home line:

/help manual=edit_catalog

You can also access the online manual during an EDIC
session by pressing HELP.

• The following example produces a full display of the
$USER catalog:

/edit_catalog cataloQ=$user display_option=all

• The following example displays the default working
catalog, excluding file names containing a $ character:

/ed1t_catalog no_dollar_files=true

16-2 NOSNE Commands and Functions 60464018 J

$CURRENT_FILE

$CURRENT _FILE
EDIC Function

Purpose Specifies the current file. This function can be used
instead of explicitly naming a file within an SCL
command you enter from within EDIT_CATALOG. The
current file is considered to be the file at which the
cursor was positioned before you pressed HOME. If you
use this function within an SCL command and did not
previously position the cursor on a file name, an error
occurs.

Format $CURRENT _FILE or
$CF

Parameters None.

Remarks o Evaluation of the $CURRENT _FILE function must
occur within EDIT _CATALOG. Consequently, if you
enter a command which initiates the execution of
another task and specify the $CURRENT _FILE as a
parameter, the $CURRENT _FILE will not be
evaluated and you will receive an error message
regarding the filename $CURRENT _FILE.

If you execute a procedure and specify $CURRENT_
FILE as one of the parameters, the $CURRENT _FILE
will be evaluated.

o For more information, see the NOSNE System Usage
manual.

SET _DISPLAY _OPTION
EDIC Subcommand

Purpose

Format

60464018 J

Specifies the display option you wish to see while using
the EDIT_CATALOG command.

SET _DISPLAY_ OPTION or
SET_DISPLAY_OPTIONS or
SETDO

DISPLAY _OPTIONS=keyword
KEEP _DISPLAY _CURRENT=boolean
STATUS =status variable

EDIT_CATALOG 16-3

SET_DISPLAY_OPTION

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the amount of information that you want to have
displayed. The following are possible entries:

Remarks

BRIEF (B)

Selects a display in which file and catalog names are
displayed. The display also includes the notation
(catalog) indicating that a displayed name is a catalog.

ALL (A)

Selects a display showing all file and catalog
information.

If the DISPLAY_OPTION parameter is omitted, BRIEF is
used.

KEEP_J)ISPLAY_CURRENTorKDC

Specifies whether the catalog display is to be updated
after every EDIT _CATALOG operation, including carriage
returns. This parameter only has significance when a
catalog is being accessed by multiple tasks or jobs. In the
situation where a single task is accessing a catalog, the
catalog display will always reflect the current state of the
catalog, regardless of this parameter's value. Options are:

TRUE

Catalog display is updated after the execution of every
EDIT _CATALOG operation, carriage return, and home
line command.

FALSE

Catalog display is updated only after the execution of
home line commands and some EDIT _CATALOG
operations.

Omission causes FALSE to be used.

For more information, see the NOSNE System Usage
manual.

16-4 NOSNE Commands and Functions 60464018 J

SET_SCREEN _OPTION

SET _SCREEN _OPTION
EDIC Subcommand

Purpose

Format

Specifies the number of rows of keys to be displayed at
the bottom of your screen with the SET _SCREEN_
OPTION subcommand.

SET _SCREEN _OPTION or
SET _SCREEN _OPTIONS or
SETSO

MENU _ROWS=integer
STATUS= status variable

Parameters MENU _ROWS or MR

Remarks

60464018 J

Specifies the number of rows of keys to be displayed. You
may specify a value of zero, one, or two. If omitted, a
value of one is assumed.

For moo-e information, see the NOSNE System Usage
manual.

EDIT_CATALOG 16-5

11
I

EDIT_DECK 17

EDIT_DECK .. 17-1
EDIT _FIRST _DECK ... 17-1
EDIT_LAST_DECK .. 17-2
EDIT_NEXT_DECK .. 17-2
END_DECK ... 17-2
RESET_DECK · .. 17-3
SELECT _DECK .. 17-3
SELECT_FIRST_DECK 17-4
SELECT_LAST_DECK 17-4
SELECT_NEXT_DECK 17-5

60464018 J

EDIT_DECK 17

EDIT_DECK
EDID Subcommand

Purpose

Format

Opens the specified deck in the working library for
editing while maintaining your current position in other
decks.

EDIT _DECK or
EDID

DECK=name
STATUS= status variable

Parameters DECK or D

Remarks

Specifies the deck to be edited. If the deck does not exist,
it is created.

This parameter is required.

o To discard decks created unintentionally, enter:

end_deck write_deck=false

• The maximum deck size is 16,777,214 lines.

• For more information, see the NOSNE File Editor
manual.

EDIT _FIRST _DECK
EDID Subcommand

Purpose

Format

Remarks

60464018 J

Opens the first deck on the working library for editing
while maintaining your current position in other decks.

EDIT _FIRST _DECK or
EDIFD

STATUS =status variable

o Decks are always in alphabetical order in the working
library.

o For more information, see the NOSNE File Editor
manual.

EDIT_DECK 17-1

II
!!il:i!:illlllll

EDIT_LAST_DECK

EDIT _LAST _DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the last deck in the working library for editing
while maintaining your current position in other decks ..

EDIT _LAST _DECK or
EDILD

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE .File Editor
manual.

EDIT _NEXT _DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the next deck on the working library for editing
while maintaining your current position in other 'decks.

EDIT _NEXT _DECK or
ED IND

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOSNE File Editor
manual.

END_DECK
EDID Subcommand

Purpose

Format

Closes editing on the current deck.

END_DECK or
ENDD

WRITE _DECK= boolean
STATUS= status variable

17-2 NOSNE Commands and Functions 60464018 J

Parameters

Remarks

RESET_DECK

WRITE._DECK or WD or WRITE _FILE or WF

Specifies whether the changes made to the deck since it
was opened for editing are to be written to the working
library.

TRUE indicates that the deck is to be rewritten.

FALSE indicates that the deck remains unchanged (the
edited copy is discarded). FALSE also discards a deck that
has been created during the current editing session
provided that you have not closed the deck. This is the
easiest way to delete decks that were unintentionally
created.

If omitted, TRUE is assumed and the results are written
to the working library.

For more information, see the NOSNE File Editor
manual.

RESET DECK
EDID Subcommand

Purpose

Format

Remarks

Discards changes made to the current deck being edited.
All changes made since the last time the deck was opened
for editing are discarded. The editor obtains a new copy of
the deck from the working library.

RESET _DECK or.
RESD

STATUS= status variable

For more information, see the NOSNE File Editor
manual.

SELECT_DECK
EDID Subcommand

Purpose

Format

60464018 J

Opens the specified deck on the working library for
editing and closes the previous deck (if any).

SELECT _DECK or
SELD

DECK=name
STATUS=status variable

EDIT_DECK 17-3

SELECT _FIRST _DECK

Parameters DECK or D

Remarks

Specifies the name of the deck to be edited. If the deck
does not exist, it is created.

This parameter is required.

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOS/VE File Editor
manual.

SELECT_FIRST_DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the first deck on the working library for editing
and closes the previous deck (if any).

SELECT _FIRST _DECK or
SELFD

STATUS= status variable

• Decks are always in alphabetical order in the working
library.

• For more information, see the NOS/VE File Editor
manual.

SELECT_LAST_DECK
EDID Subcommand

Purpose

Format

Remarks

Opens the last deck on the working library for editing
and closes the previous deck (if any).

SELECT _LAST _DECK or
SE LLD

STATUS= status variable

o Decks are always in alphabetical order in the working
library.

o For more information, see the NOS/VE File Editor
manual.

17-4 NOSNE Commands and Functions 60464018 J

SELECT_NEXT_DECK

SELECT_NEXT_DECK
EDID Subcommand

Purpose

Format

Remarks

60464018 J

Opens the next deck on the working library for editing
and closes the previous deck (if any).

SELECT _NEXT _DECK or
SELND

STATUS= status variable

o Decks are always in alphabetical order in the working
library.

o For more information, see the NOSNE File Editor
manual.

EDIT_DECK 17-5

I
"-..__

EDIT_FILE 18

EDIT_FILE .. 18-1
ACTIVATE _SCREEN ... 18-3
$ACTIVE _IDENTIFIER 18-6
ALIGN _SCREEN .. 18-6
BREAK_TEXT ... 18-8
CENTER _LINES ... 18-9
CLEAR_TABS 18-10
COPY _TEXT . 18-10
$CURRENT _COLUMN . 18-14
$CURRENT_DECK_NAME 18-14
$CURRENT _LINE 18-14
$CURRENT_OBJECT 18-16
$CURRENT_OBJECT_TYPE 18-17
$CURRENT_ROW · 18-17
$CURRENT_SPLIT ... 18-17
$CURRENT_ WORD . 18-18
$CURRENT_WORD_COLUMN 18-19
DEACTIVATE _SCREEN . 18-19
DELETE _CHARACTERS . 18-20
DELETE_EMPTY_LINES 18-21
DELETE _LINES . 18-21
DELETE _TEXT . 18-23
DELETE_ WORD , . 18-26
DISPLAY _COLUMN _NUMBERS . 18-27
DISPLAY_EDITOR_STATUS 18-28
DISPLAY_POSITION 18-29
$DISPLAY _UNPRINTABLE _CHARACTERS 18-30
EDIT _FILE . 18-30
ENABLE_LINES ... 18-31
QUIT .. 18-32
END_FILE .. 18-32
ERASE_TEXT ... 18-33
EXCHANGE_POSITION 18-34
EXCHANGE _SCREEN_ WIDTH . 18-35
FORMAT _PARAGRAPHS . 18-35
$FUNCTION _ROW . 18-36
$FUNCTION _SIZE . 18-37
$HOME_ROW .. 18-37
INDENT_TEXT .. 18-38
INSERT_CHARACTERS 18-39
INSERT_EMPTY_LINES 18-40
INSERT _LINES . 18-41
INSERT_WORD .. 18-43

60464018 J

JOIN _TEXT -. 18-44
$LAST_COMMAND : 18-45
$LINES_ENABLED . 18-45
$LINE _IDENTIFIER 18~46
$LINE_TEXT : 18-46
LIST _BACKWARDS . 18-47
LIST_FORWARDS .. 18-48
LIST _LINES . 18-48
LOCATE_ALL ... 18-49
LOCATE _EMPTY _LINES . 18-50
LOCATE _NEXT . 18-52
LOCATE_STRING .. 18-52
LOCATE_TEXT · 18-53
LOCATE_ WIDE _LINES . 18-57
MARK_BOXES .. 18-59
MARK_CHARACTERS 18-60
$MARK_FIRST_COLUMN 18-62
$MARK _FIRST _LINE . 18-63
$MARK_LAST_COLUMN 18-63
$MARK_LAST_LINE 18-63
MARK_LINES ... 18-64
$MARK_OBJECT .. 18-65
$MARK_OBJECT_TYPE 18-65
$MARK_TYPE ... 18-66
$MARKED _STRING . 18-66
$MESSAGE_ROW .. 18-66

.$MOUSE_COLUMN .. 18-67
$MOUSE_ROW .. 18-67
MOVE_TEXT .. 18-68
$.NEW_TEXT .. 18-72
$NUMBER_OF_COLUMNS 18-72
$NUMBER_OF_LINES 18-73
$NUMBER_OF_MARKS 18-73
$NUMBER_OF_ROWS 18-73
$NUMBER_OF_SPLITS 18-74
$0BJECT_MODIFIED 18-74
$OFFSET . 18-75
OVERLAY_TEXT ... 18-75
$PARAGRAPH_MARGINS 18-78
POSITION _BACKWARDS . 18-79
POSITION_CURSOR 18-79
POSITION _FORWARDS . 18-83
PUT_ROW ... 18-84
READ _FILE . 18-85
REPLACE _LINES . 18-87

60464018 J

REPLACE_TEXT .. 18-90
RESET_FILE .. 18-94
RESTORE _POSITION . 18-95
$ROW _TEXT . 18-95
SAVE _POSITION . 18-95
$SCREEN _ACTIVE . 18-95
$SCREEN _INPUT . 18-96
$SEARCH_MARGINS 18-97
SET_EPILOG .. 18-97
SET _FUNCTION _KEY 18-98
SET_LINE_ WIDTH 18-100
SET _LIST _OPTIONS . 18-101
SET _MASK . 18-102
SET _PARAGRAPH _MARGINS . 18-104
SET _SCREEN _OPTIONS . 18-105
SET_SEARCH_MARGINS 18-109
SET_TAB_OPTIONS 18-110
SET_VERIFY_OPTION 18-111
SET_WORD_CHARACTERS: 18-112
$SPLIT_SIZE ... 18-114
$TEXT .. 18-114
$TITLE_ROW ... 18-114
UNDO .. 18-115
UNMARK ... 18-116
$UPPER_CASE 18-117
$VERIFY_OPTION .. 18-117
$WORD ... 18-117
WRITE_FILE ... 18-118

60464018 J

"------

'-----

'------

EDIT_FILE 18

EDIT _FILE
Command

Purpose

Format

Parameters

60464018 J

Starts a file editor (EDIT _FILE utility) session.

EDIT _FILE or
EDIF

'FILE=file
INPUT=file
OUTPUT=file
PROLOG=file
DISPLAY _UNPRINTABLE _CHARACTERS= boolean
STATUS= status variable

FILE or F

Specifies the name of the file you want to edit. If the file
you specify does not exist, a new file is created.

The file cannot be an object file.

This parameter is required.

INPUT or I

Specifies the file to be used as input to the editor. This
file can be positioned. This file contains optional editor
subcommands used to manipulate the working file. If
omitted, $COMMAND is assumed.

OUTPUT or 0

Specifies the file to which you want to write any output
that may result from your editing session. This file can
be positioned.

If OUTPUT is omitted, $OUTPUT is assumed. File
$OUTPUT is usually connected to the terminal.

PROLOG or P

File the system executes when you start an editing
session. If PROLOG is omitted, file
$USER.SCU _EDITOR _PROLOG is used. You can
establish a different default prolog file by using the
CREATE _DEFAULT_ VARIABLE command to set the
variable ESD$EDIF _PROLOG to the file you want to be
your default prolog.

EDIT_FILE 18-1

EDIT_FILE

Remarks

For more information on the
CREATE _DEFAULT_ VARIABLE command, refer to the
NOSNE System Usage manual.

DISPLAY _UNPRINTABLE _CHARACTERS or DUG

Specifies whether unprintable ASCII characters are
replaced by mnemonics when the file is displayed at the
terminal. Options are:

TRUE

Unprintable characters (ASCII values 127 and 0
through 31) are replaced by their respective mnemonic
values enclosed within the less than and greater than
characters, < >. The mnemonics are replaced by the
ASCII characters when the file is replaced.

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued. If the file is written
when you exit the editing session, the unprintable
characters are replaced by spaces.

If DISPLAY_UNPRINTABLE_CHARACTERS is omitted,
FALSE is used.

ASCII characters and their corresponding mnemonic
values are listed in appendix C.

• If you would like to specify a file containing editor
subcommands to be executed when you leave the
editor (an epilog file), use the SET _EPILOG
subcommand. If you want this done each time, include
the SET _EPILOG subcommand in the file you specify
for the PROLOG parameter.

G The following prompt appears for line editing:

ef /

• To edit a second file while in the editor, enter the
EDIT _FILE subcommand. The FILE and STATUS
parameters are the only parameters allowed on the
EDIT _FILE subcommand.

• Commands following the EDIT _FILE command on the
same physical line are processed in the context of the
editor.

18-2 NOSNE Commands and Functions 60464018 J

Examples

ACTIVATE _SCREEN

o The maximum file size is 16,777,214 lines.

• For more information, see the NOSNE File Editor
manual.

• The following command starts the EDIT _FILE utility
with file $USER.MY _FILE:

edit_file file=$user.my_file

G The following command calls the editor for file
ALPHA. The screen mode user will seen an initial
display with two data splits, the first being 16 lines
long:

edif f=alpha; setso s=2 ss=16

ACTIVATE SCREEN ·
EDIF Subcommand

Purpose

Format

Activates screen mode; specifies terminal type.

ACTIVATE _SCREEN or
ACTS

MODEL=name
STATUS=status variable

Parameters MODEL or M

60464018 J

Specifies the type of terminal you are using. Valid entries
are:

Entry

MAC_CONNECT_lO

MAC_CONNECT_ll

MAC _CONNECT _20

Terminal

Apple Macintosh running
version 1.0 or 1.0+ of Control
Data CONNECT for the
Macintosh

Apple Macintosh running
version 1.1 of Control Data
CONNECT for the Macintosh

Apple Macintosh running
version 2.0 of Control Data
CONNECT for the Macintosh

EDIT_FILE 18-3

ACTIVATE _SCREEN

MAC _CONNECT _21

MAC _CONNECT _22

PC _CONNECT _IO

PC_CONNECT_ll

PC_CONNECT_l2

PC_CONNECT_l3

PC _CONNECT _20

IBM_3270

IBM_3270_2

IBM_3270_3

IBM_3270_4

IBM_3270_5

DEC_VTlOO

DEC_ VTIOO_GOLD

DEC_VT220

18-4 NOSNE Commands and Functions

Apple Macintosh running
version 2.1 of Control Data
CONNECT for the Macintosh

Apple Macintosh running
version 2.2 of Control Data
CONNECT for the Macintosh

IBM PC or equivalent running
version 1.0 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.1 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.2 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.3 or 1.4 of Control
Data CONNECT for the
IBM PC

IBM PC or equivalent running
version 2.0 of Control Data
CONNECT for the IBM PC

IBM 3270 with 24 x 80 screen

IBM 3270 with 24 x 80 screen

IBM 3270 with 32 x 80 screen

IBM 3270 with 43 x 80 screen

IBM 3270 with 27 x 132 screen

Digital Equipment VTlOO with
18 function keys

Digital Equipment VTl 00 with
32 function keys

Digital Equipment VT220 for
users logging in through
CDCNET

60464018 J

Remarks

Examples

60464018 J

TV_955

TV_955_PROTECTED

ACTIVATE _SCREEN

Televideo 955 with full editing
capability

Televideo 955 with form entry
access only

If the terminal you are using is not on this list, use the
DISPLAY_TERMINAL_MODEL
TERMINAL_MODEL=ALL subcommand.

You must specify the MODEL parameter either on an
earlier ACTIVATE _SCREEN or SET _SCREEN _OPTIONS
subcommand or on the TERMINAL_MODEL parameter of
the CHANGE_TERMINAL_ATTRIBUTES command.

o The recommended method for preparing your session
for screen editing is to enter the
CHANGE_TERMINAL_ATTRIBUTES and
CHANGE _INTERACTION _STYLE commands,
described in the NOSNE System Usage manual, before
you start an editing session. To do this automatically,
include these commands in your user prolog.

o Inside procedures, you can use the
ACTIVATE _SCREEN subcommand to allow the user of
the procedure to enter editor subcommands.

o Executing this subcommand causes the firmware of
some terminals to be reinitialized. Refer to your
terminal's documentation for more information.

o Use the $SCREEN _ACTIVE function to determine
whether screen mode is active.

• For more information, see the NOSNE File Editor
manual.

To switch from line mode to screen mode in an editing
session, enter:

activate_screen

EDIT_FILE 18-5

$ACTIVE _IDENTIFIER

$ACTIVE _IDENTIFIER
EDIF Function

Purpose Returns a value of line type identifier unless a string is
expected in the context of the function call. The value
identifies the nearest active line to the line given as the
argument.

Format $ACTIVE _IDENTIFIER or
$AI

(LINE _IDENTIFIER: line _identifier or string)

Parameters LINE _IDENTIFIER

Identifies the line for which you want to find the status.
If the line you specify is active, the same line identifier

~l~ or string is returned. If the line is not active, the line
identifier for the nearest active line is returned. If no
lines are activ~, FIRST is returned.

Remarks

This parameter is required.

For more information, see the NOSNE File Editor
manual.

ALIGN _SCREEN
EDIF Subcommand

Purpose

Format

Enables you to change the alignment of your screen.

ALIGN _SCREEN or
ALIS or
A

MIDDLE= keyword or integer or line _identifier
TOP= keyword or integer or line _identifier
BOTTOM= keyword or integer or line _identifier
OFFSET= integer
STATUS =status variable

Parameters MIDDLE or M

Specifies a line to be centered vertically on the screen.
Values can be an integer, line identifier, or one of the
keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
You cannot use this parameter with the TOP and
BOTTOM parameters.

18-6 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

ALIGN _SCREEN

If you omit this parameter, CURRENT is assumed.

TOP or T

Specifies a line to be positioned at the top of the; screen.
The resulting middle line of the screen becomes the
current line. Values can be an integer, line identifier, or
one of the keywords: CURRENT, FIRST, FIRST _MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
You cannot use this parameter with the MIDDLE and
BOTTOM parameters.

If you omit this parameter, no value is supplied.

BOTTOM or B

Specifies a line to appear at the bottom of the screen. The
~esulting middle line of the screen becomes the current
line. Values can be an integer, line identifier, or one of
the keywords: CURRENT, FIRST, FIRST_MARK,
FIRST...:.SCREEN, LAST, LAST_MARK, LAST_SCREEN.
You cannot use this parameter with the TOP and
MIDDLE parameters.

If you omit this parameter, no value is supplied.

OFFSET or 0

Specifies the number of columns to offset your view of the
file on the screen. The number can be an integer from 0
through 216. The number you specify is added to column
1 and the last column displayed. For example, if the
rightmost column is 80 and you specify an OFFSET value
of 20, the leftmost column becomes 21 and the rightmost
column becomes 100. The offset value is displayed on the
title line of your screen when it is a non-zero value.

o You can use $OFFSET to return the current OFFSET
value.

o For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-7

11
ll

BREAK_TEXT

Examples o The following example moves the current line to the
bottom of the screen (same as the 4.~hilh operation):

align_screen bottom=current

o The following example displays column 51 as the
leftmost column:

al is o=SO

BREAK TEXT
EDIF Subcommand

Purpose

Format

Breaks a line at a specific point in the line to make one
line into two lines.

BREAK_ TEXT or
BRET or
B

LINES= keyword or integer or line _identifier
COLUMN=keyword or integer
STATUS= status variable

Parameters LINES or LINE or L

Remarks

Identifies the line to be broken. Values can be an integer,
line identifier, or one of the keywords: CURRENT, FIRST,
FIRST _MARK; FIRST _SCREEN, LAST, LAST _MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

COLUMN or C

Specifies the column before which the break is to occur.
In other words, the break occurs just before the column
specified. Values can be an integer from 1 through 256,
or one of the keywords: CURRENT, FIRST _MARK,
LAST_MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOS/VE File Editor
manual.

18-8 NOSNE Commands and Functions 60464018 J

CENTER_LINES

CENTER _LINES
EDIF Subcommand

Purpose

Format

Centers a line or lines between margins set with the
SET_ PARAGRAPH _MARGINS subcommand.

CENTER _LINES or
CENTER _LINE or
CENL

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
STATUS= status variable

Parameters NUMBER or N

Remarks

60464018 J

Specifies the number of lines to be centered.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

If NUMBER and LINES are both omitted, CURRENT is
assumed.

LINES or LINE or L

Specifies a range of lines to be centered.

If one line is specified, the centering is limited to that
line. Values can be an integer, line identifier, or one of
the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
MARK, SCREEN.

If LINES is omitted, the lines to be centered are
determined by the NUMBER parameter. If LINES and
NUMBER are both omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-9

CLEAR_TABS

Examples e The following example centers the next five lines.

center_lines number=5

• The following example centers all lines between lines
15 and 23.

cen 1 1 = 15 .. 23

CLEAR_TABS
EDIF Subcommand

Purpose

Format

Deletes all or some of the tab columns.

CLEAR_TABS or
CLEAR_TAB or
CLET

TAB _COLUMN=keyword or list of range of integer
STATUS= status variable

Parameters TAB _COLUMN or TAB _COLUMNS or TC

Remarks

Examples

Specifies the columns to delete as tab columns. Values
can be the keyword ALL or a list of a range of integers
from 1 through 256.

If TAB _COLUMN is omitted, all tabs are cleared.

For more information, see the NOSNE File Editor
manual.

The following CLEAR_TAB subcommand clears columns 7
and 65 as tab columns:

clear_tab tab_column=(7,65)

COPY_TEXT
EDIF Subcommand

Purpose

Format

Copies a block of text from one place to another within
your working files.

COPY_TEXT or
COPT or
c

TEXT= range of string
NUMBER= keyword or integer

18-10 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

COPY_TEXT

LINES= keyword or range of: keyword or integer or
line _identifier

COLUMNS= keyword or range of: keyword or integer
INSERTION _LOCATION= keyword or integer or

line _identifier
INSERTION _COLUMN= keyword or integer
PLACEMENT= keyword
BOUNDAR.Y =keyword
UPPER _CASE= boolean
WORD= boolean
REPEAT _SEARCH=boolean
STATUS =status variable

TEXT or T

Specifies strings of text in the first and last lines of a
block of text to be copied. If you enter only one string,
the block of text to be copied will contain only one line. If
you enter two strings, the search for the second begins
immediately after the first is found.

If TEXT is specified, the INSERTION _COLUMN and
BOUNDARY parameters are ignored and line boundaries
are used.

If omitted, the lines to be copied will be determined by
the NUMBER and LINES parameters or the
REPEAT _SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be copied. Values
for this parameter can be numbers or the keyword ALL
(A).

If omitted and a range is specified for the LINES
parameter, NUMBER assumes a value of ALL. Otherwise
the assumed value is 1.

LINES or LINE or L

Specifies the range of lines to be searched for the text to
be copied. If a single value is specified, only that line is
searched. Values can be an integer, line identifier, or one
of the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT .. LAST is assumed.

EDIT_FILE 18-11

COPY_TEXT

COLUMNS or COLUMN or C

Specifies the range of columns to be searched for text to
be copied. The integers can be from 1 through 256 or any
of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MARK, MAXIMUM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

INSERTION _LOCATION or IL

Specifie.s the line before or after which the text is to be
copied (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

INSERTION _COLUMN or IC

Specifies the column before or after which the text is to
be copied (depending on the value of the PLACEMENT
parameter). Values can be an integer from 1 through 256,
or any of the COLUMN keywords: CURRENT,
FIRST _MARK, LAST _MARK, MAXIMUM. Ranges are
not allowed.

If omitted, CURRENT is assumed.

If a value for TEXT is specified, INSERTION _COLUMN
is ignored.

PLACEMENT or P

Specifies if the copied lines are to appear BEFORE (B) or
AFTER (A) the location specified by the
INSERTION _LOCATION parameter.

If omitted, AFTER is assumed.

BOUNDARY or B

Specifies the type of boundary that will limit the search.
Values can be BOX, LINE, or STREAM.

If BOUNDARY and COLUMNS are both omitted, LINE is
assumed.

18-12 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

COPY_TEXT

If BOUNDARY is omitted but COLUMNS is specified,
STREAM is assumed.

If a value for TEXT is specified, BOUNDARY is ignored;
line boundaries are used.

UPPER _CASE or UC
Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEARCHorRS
Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-13

$CURRENT_COLUMN

ExaJ!1ples o The following copies lines 30 through 40 to
immediately after the current line:

capy_text line=30 .. 40

• The following copies the next occurrence of a block of
text beginning with the line containing one and ending
with the line containing five to immediately before
line 71:

capt t='ane' .. 'five' i1=71 p=b

o The following inserts a box of characters before
column 5 of lines starting with line 5:

capt 1=1 .. 3 c=3 .. 5 11=5 ic=5 b=bax

Before copy:

abcdefghijklmnop
abcdefghijklmnop
abcdefghijklmnap

abcdefghijklmnop
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890

After copy:

abcdefghijklmnop
abcdefghijklmnop

abcdefgh1jklmnop
abcdefghijklmnop

1234cde5678901234567890
1234bcd5678901234567890
1234abc5678901234567890
12345678901234567890

$CURRENT _COLUMN
EDIF Function

Purpose

Format

Returns the value of the current column number.

$CURRENT _COLUMN or
$CC

18-14 NOSNE Commands and Functions 60464018 J

'-...__

'----

$CURRENT_DECK_NAME

Parameters None.

Remarks o If the POSITION _CURSOR subcommand is used to
specify a column on a row that is not part of the file
text, the value returned is the column at which the
cursor was positioned before the POSITION _CURSOR
subcommand was entered.

• For more information, see the NOSNE File Editor
manual.

$CURRENT_DECK_NAME
EDIF Function

Purpose Returns the name of the current deck (for editing decks
only).

Format $CURRENT _DECK _NAME or
$CDN

Parameters None.

Remarks o You can also use the $CURRENT_OBJECT function
for this purpose.

• For more information, see the NOSNE File Editor
manual.

$CURRENT _LINE
EDIF Function

Purpose Returns an integer specifying the current line number.

Format $CURRENT _LINE or
$CL

Parameters None.

Remarks For more information, see the NOS/VE File Editor
manual.

60464018 J EDIT_FILE 18·15

$CURRENT_OBJECT

Examples The following statements assign variable LAST _LINE an
integer value reflecting the number of lines in a file or
deck:

position_cursor l=last
1ast_11ne = $current_line

$CURRENT_OBJECT
EDIF Function

Purpose Returns a string identifying the current file name or deck
name.

Format $CURRENT_ OBJECT or
$CO

Parameters None.

Remarks • You can use the $CURRENT_OBJECT_TYPE function

Examples

to determine if the string is a file name or a deck
name.

e For more information, see the NOSNE File Editor
manual.

The following procedure rewrites the current file, or if
you are editing a deck or a local file, the procedure places
a copy of the deck or file in the catalog
$USER.SAVE_EDITOR_FILES. This catalog must be
present in your $USER catalog.

PROCEDURE checkpoint_file, chef
status)

current_file=$fname($co)
IF $file(current_file, permanent) THEN

write_file file=current_f11e
ELSE

write_file f11e=$user.save_editor_f11es ..
//$name($path(current_f11e, last))

I FEND

PROCEND checkpoint_file

18-16 NOSNE Commands and Functions 60464018 J

$CURRENT_OBJECT_TYPE
EDIF Function

$CURRENT_OBJECT_TYPE

Purpose Returns a string identifying the current object being
edited. Possible values are FILE, DECK, or NULL.

Format $CURRENT _OBJECT _TYPE or
$COT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$CURRENT_ROW
EDIF Function

Purpose Returns an integer identifying the row on the screen
where the cursor is positioned (as opposed to the current
line number of a file).

Format $CURRENT _ROW or
$CR

Parameters None.

Remarks • Zero is returned if the current row is not within
screen boundaries or if you are in line mode.

• For more information, see the NOSNE File Editor
manual.

$CURRENT _SPLIT
EDIF Function

Purpose Returns an integer specifying the split of the screen in
which the cursor is positioned.

Format $CURRENT _SPLIT or
$CS

Parameters None.

60464018 J EDIT_FILE 18-17

$CURRENT_ WORD

Remarks • If you are in line mode, zero is returned.

• Values returned can be from 1 through 16. The top
split of the screen is 1, the next lower is 2, and so on.

• For more information, see the NOSNE File Editor
manual.

$CURRENT_WORD
EDIF Function

Purpose Returns the current word as a string.

Format $CURRENT_ WORD or
$CW

Parameters None.

Remarks o This function is particularly useful when supplied as

Examples

the value for the TEXT parameter for the
LOCATE_TEXT and REPLACE_TEXT subcommands.

o For more information, see the NOSNE .File Editor
manual.

o The following example converts the characters in the
current word to lowercase:

replace_text t=$cw ..
nt=$translate{upper_to_lower,$cw)

• If the current word is a deck name, you can edit that
deck by entering the following command:

edit_deck d=$name($cw)

e If the current word is a command name, you can
display information about that command by entering
the following command:

include_comnand ..
c='display_comnand_information c='//$cw

18-18 NOS/VE Commands and Functions 60464018 J

$CURRENT_WORD_COLUMN

$CURRENT_WORD_COLUMN
EDIF Function

Purpose Returns an integer specifying the column in which the
current word begins.

Format $CURRENT_ WORD _COLUMN or
$CWC

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

Examples The following marks the current word:

mark_character c=$cwc .. $strlen{$cw)+$cwc-1

DEACTIVATE _SCREEN
EDIF Subcommand

Purpose

Format

Remarks

60464018 J

Stops screen mode without stopping the editor.

DEACTIVATE_SCREEN or
DEAS

STATUS= status variable

o When you enter this subcommand, the screen is
cleared and the line mode prompt appears:

ef /

• Use DEACTIVATE _SCREEN to enter commands that
must be continued over more than one input line.

• For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-19

DELETE_CHARACTERS

DELETE_CHARACTERS
EDIF Subcommand

Purpose

Format

Enables you to delete characters.

DELETE_CHARACTERSor
DELC or
DELETE _CHARACTER or
DC

NUMBER= keyword or integer
LINES= keyword or integer or line _identifier
COLUMNS =range of: keyword or integer
STATUS =status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of characters to be deleted. Values
may be an integer or the keyword ALL.

If you omit this parameter without specifying LINE or
COLUMN, a value of 1 is assumed. ·

If you omit this parameter and specify a range for
COLUMN, ALL is assumed.

LINES or LINE or L

Specifies the line in which characters will be deleted.
Values can be an integer, line identifier, or any of the
keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
Ranges are not allowed.

If omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be deleted within the specified
line(s). Values can be an integer from 1 through 256, or
one of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

The following deletes the characters in columns 1 through
17 of the current line.

delete_characters columns=(1 .. 17)

18-20 NOSNE Commands and Functions 60464018 J

DELETE _EMPTY_LINES_

DELETE _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Deletes a block of blank lines until a nonblank line is
encountered.

DELETE _EMPTY _LINES or
DELETE _EMPTY _LINE or
DELEL

LINES= keyword or integer or line _identifier
STATUS =status variable

Parameters LINES or LINE or L

Remarks

Specifies the line at which the deletion of blank lines is
to begin. Values can be an integer, line identifier, or any
of the keywords: CURRENT, FIRST, FIRST _MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
Ranges are not allowed.

If the line you specify is not a blank line, nothing
happens.

If LINES is omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

DELETE _LINES
EDIF Subcommand

Purpose

Format

60464018 J

Enables you to delete a line or range of lines.

DELETE _LINES or
DELETE _LINE or
DELL

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of' keyword or integer or

line _identifier
UPPER _CASE= boolean
WORD=boolean
REPEAT _SEARCH=boolean
STATUS= status variable

EDIT_FILE 18-21

DELETE _LINES

Parameters TEXT or T

Specifies a block of text to be deleted, beginning with the
line containing the first string and ending with the line
containing the second string.

If TEXT is omitted, the editor does not supply a value
and the NUMBER and LINE parameters determine which
text will be deleted.

NUMBER or N

Specifies the number of lines to be deleted, or the number
of blocks of text to be deleted depending on the values
you specify for the LINES and TEXT parameter. Values
can be an integer or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If. you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be deleted. Values can be an
integer, line identifier, or any of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If a single integer or keyword is specified, only that line
is deleted.

If LINE=MARK is specified, marked lines are deleted in
their entirety (even if the boundary implied by the mark
is STREAM).

If LINE is omitted, CURRENT .. LAST is assumed.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

18-22 NOSNE Commands and Functions 60464018 J

Remarks

Examples

DELETE _TEXT

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

The following subcommand deletes marked lines.

delete_lines line=mark

DELETE TEXT
EDIF Subcommand

Purpose

Format

60464018 J

Deletes text delimited by the subcommand parameters.

DELETE_TEXT or
DELT or
D

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS= keyword or range of: keyword or integer

EDIT _FILE 18-23

DELETE _TEXT

BOUNDAR.Y =keyword
UPPER _CASE= boolean
WORD= boolean
REPEAT _SEAR.CH=boolean
STATUS= status variable

Parameters TEXT or T

Specifies strings of text in the first and last lines of a
block of text to be deleted. If you enter only one string,
the block of text to be deleted will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found.

If omitted, the lines to be deleted will be determined by
the NUMBER, BOUNDARY, COLUMNS, and LINES
parameters or the REPEAT _SEARCH parameter.

NUMBER or N

Specifies the number of lines to be deleted. Values can be
numbers or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a ·range of lines to be deleted.

If a single value is specified, only that line is deleted.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be deleted in a specified line.

If a range of lines is specified in the LINES parameter,
whole lines are deleted between the first and last lines.

If no text is specified and the REPEAT _SEARCH
parameter is FALSE, the specified columns are deleted. If
text is specified or the REPEAT _SEARCH parameter is
TRUE, whole lines are deleted.

If omitted, the entire line is deleted.

18-24 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

DELETE_TEXT

BOUNDAR.Y or B

Specifies the type of boundary that will limit the search.
Values can be BOX, LINE, or STREAM. If BOUNDARY
is omitted, LINE is assumed.

If COLUMN is specified, STREAM is assumed.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

·WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT_SEAR.CHorRS

Instructs the editor on how to use the values entered for
the last TEXT, UPPER_CASE, and WORD parameters.

TRUE instructs the editor to use the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them on any subcommand, unless you have
specified values for them on this subcommand.

FALSE instructs the editor to use the parameters entered
with the current DELETE _TEXT subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-25

DELETE_WORD

Examples o The following deletes all lines from the line containing
first to the line containing last:

delete_text text='first' .. 'last'

• The following deletes a box of characters in lines 1
through 3 and columns 3 through 5:

delt 1=1 .. 3 c=3 .. 5 b=box

Text before deletion:

abcdefghijklmnop
abcdefghijklmnop

abcdefghijklmnop
abcdefghijklmnop

Text after deletion:

abfghijklmnop
aefghijklmnop

defghijklmnop
abcdefghijklmnop

DELETE_ WORD
EDIF Subcommand

Purpose

Format

Deletes words, blanks, or characters, depending on the
position in the file you specify.

DELETE_ WORD or
DELW or
DW

LINES= keyword or integer or line _identifier
COLUMN=keyword or integer
STATUS =status variable

Parameters LINES or LINE or L

Specifies a line in which the deletion is to occur. Values
can be an integer, line identifier, or any of the keywords:
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN. Ranges are not
allowed.

If omitted, CURRENT is assumed.

18-26 NOSNE Commands and Functions 60464018 J

Remarks

Examples

DISPLAY_COLUMN _NUMBERS

COLUMN or C

Specifies the column to begin the deletion. Values can be
an integer or any of the keywords: CURRENT,
FIRST_MARK, LAST_MARK, MAXIMUM. Ranges are
not allowed.

If omitted, CURRENT is assumed.

o For the editor, a word is a string of letters, numbers,
or the special characters $, #, @, and _, surrounded
by any other characters. The end of a line or
beginning of a line is also considered a word
boundary.

o If you specify a position that is part of a word, the
entire word is deleted.

o If you specify a position that is a blank character, it
and all following blanks are deleted.

o If you specify a position that is not part of a word or
a blank character, only that character is deleted.

o For more information, see the NOSNE File Editor
manual.

The following deletes the first word in line 50:

delete_word 11ne=50 column=1

DISPLAY _COLUMN _NUMBERS
EDIF Subcommand

Purpose

Format

Enables you to list column numbers, which will
temporarily overwrite the specified line.

DISPLAY _COLUMN _NUMBERS or
DISCN

ROW= integer
STATUS= status variable

Parameters ROW or ROWS or R

60464018 J

Specifies which row on the screen is to show the column
numbers.

If omitted, the column numbers temporarily overwrite the
current line.

EDIT _FILE 18-27

DISPLAY_EDITOR_STATUS

Remarks

Examples

o The column numbers shown correspond to columns in
the file and not column numbers on the screen.

• If the offset is currently nonzero, it is set to zero.

• For more information, see the NOS/VE File Editor
manual.

In screen mode, to display the column numbers on the
third line, position the cursor on the third line, press
Home, and enter:

display_column_numbers

The following appears:

FIRST LINE
SECOND LINE
123456789A123456789B123456789C1234567890123
FOURTH LINE

DISPLAY _EDITOR _STATUS
EDIF Subcommand

Purpose

Format

I Parameters

Remarks

Enables you to check the status of a number of editor
variables including the current tab character, tab columns,
and function key definitions.

DISPLAY _EDITOR _STATUS or
DI SES

OUTPUT=file
STATUS=status variable

OUTPUT or 0

Specifies the file to which the status is written. If
omitted, the status is written to the output destination for
the session.

For more information, see the NOS/VE File Editor
manual.

18-28 NOS/VE Commands and Functions 60464018 J

Examples

DISPLAY_POSITION

The following example displays the first screen of editor
status. The user is editing in screen mode using a Digital
Equipment VT220 terminal.

dises
Press Next/Return for more
Displaying Editor Status

SCU Editor version is 88193
Modification name is EDIT_FILE
Current file is :NVE.SCU.TEACH
Line width is 0. Search margins are 1 to 256
Set verify option FALSE. State FALSE. No mask character. Tab character is \
Tab columns are: 1 7 72

Funct ion Keys:
Key Label

Fl Copy
Shift Fl Move

F2 Marie
Shift F2 Unmrlc

F3 MrlcCh
Shift F3 MrlcBx

F4 Locate
Shift F4 LocNxt

!r5 Undo
Shift F5

Commands
copy_text l=m p=b
move_text l=m p=b
marlc_ lines
unmarlc
mark _characters
marlc_boxes
locate_text t=Ssi('Enter search string')
locate_next
undo

DISPLAY _POSITION
EDIF Subcommand

Purpose

Format

Remarks

Examples

60464018 J

Displays the current line number, current column number,
size of the file, and, for screen mode, the line number of
the top and bottom line of the screen on the message line.

DISPLAY _POSITION or
DISP

STATUS= status variable

For more information, see the NOSNE File Editor
manual.

If, in screen mode, you enter:

di splay_posit ion

A display similar to the following appears:

Current Line:12 Column:10 S1ze:109 Top:10 Bottom:18

EDIT_FILE 18-29

I
I

$DISPLAY_UNPRINTABLE _CHARACTERS

$DISPLAY _UNPRINTABLE _CHARACTERS
EDIF Function

Purpose Returns a boolean value indicating whether unprintable
ASCII characters displayed 'at the terminal are replaced
by their corresponding mnemonic values (TRUE) or not
(FALSE).

Format $DISPLAY _UNPRINTABLE _CHARACTERS or
$DUC

Parameters None.

Remarks For more information, see the NOS/VE File Editor
manual.

EDIT_FILE
EDIF Subcommand

Purpose Enables you to edit multiple files within the editor.

Format EDIT _FILE or
EDIF

FILE=file
STATUS=status variable

l\l Parameters FILE or F

Remarks

Specifies the name of the file you want to edit. If the file
you specify does not exist, a new file is created.

The file must be a sequential file. By default, files
created by NOS/VE have this attribute.

The file cannot be an object file.

This parameter is required.

o Unlike the EDIT _FILE command, the EDIT _FILE
subcommand does not have INPUT, OUTPUT, or
PROLOG parameters. Once you are in the editor, you
can specify only another file to edit.

• To edit two files on the same screen, use the
SET _SCREEN _OPTIONS and EDIT _FILE
subcommands.

o The maximum file size is 16,777,214 lines.

18-30 NOSNE Commands and Functions 60464018 J

"-.._

Examples

ENABLE _LINES

• For more information, see the NOSNE File Editor
manual.

To edit file OMEGA, after editing another file, enter:

edit_file file=$user.omega

ENABLE _LINES
EDIF Subcommand

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Specifies whether active lines or all lines are accepted as
values for the LINES or INSERTION _LOCATION
parameters. These parameters are associated with the
DELETE _LINES, INSERT _LINES, and
REPLACE _LINES subcommands.

ENABLE _LINES or
ENAL

LINES= keyword
STATUS=status variable

LINES or LINE or L

Specifies whether all lines or only active lines associated
with a file or deck are accepted when either a
DELETE _LINES, INSERT _LINES, or REPLACE _LINES
command is entered.

Keyword values for this parameter are ACTIVE and ALL.
Unless you change the keyword value by using this
command, only active lines are accepted by the editor.

o You can use the $LINES _ENABLED function to
return the current value of the LINES parameter.

o EN ABLE _LINES may be used in the file generated
by the SCU EXTRACT_MODIFICATION subcommand.
Refer to the SCL Source Code Management manual for
more information on the EXTRACT _MODIFICATION
subcommand.

e For more information, see the NOSNE File Editor
manual.

Refer to the EN ABLE _LINES example in the online
Examples manual. You access this manual by entering:

help manual=examples

EDIT_FILE 18-31

I

QUIT

QUIT
EDIF Subcommand

Purpose

Format

Parameters

Remarks

Stops the processing of the current source of command
input to the editor.

QUIT or
END or
QUI

WRITE _FILE= boolean
STATUS= status variable

WRITE _FILE or WD or WRITE _DECK or WF

Specifies whether you want changes to all open files made
permanent. The initial value is TRUE.

If FALSE is specified, no changes are made.

If omitted, the previous selection remains in effect.

o Changes are made permanent after the QUIT
command executes.

• Any error that occurs while files are written is
reported in the status parameter of the command that
invoked the editor.

o For more information, see the NOSNE File Editor
manual.

END_FILE
EDIF Subcommand

Purpose Enables you to close the current file, and continue editing
other files.

Format END _FILE or
ENDF

WRITE _DECK= boolean
STATUS= status variable

Parameters WRITE _DECK or WD or WRITE _FILE or WF

Specifies whether to make changes to the curren~ file
permanent.

If FALSE is specified, changes are not made permanent.

If omitted, TRUE is assumed.

18-32 NOS/VE Commands and Functions 60464018 J

'-- -

ERASE_TEXT

Remarks , • The END _FILE and END _DECK subcommands can
be used interchangeably. (The editor decides on the
appropriate action based on the object type (FILE or
DECK).

• For more information, see the NOSNE File Editor
manual.

ERASE TEXT
EDIF Subcommand

Purpose

Format

Erases text at the specified location leaving blank
characters in its place.

ERASE _TEXT or
ERAT

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS=keyword or range of: keyword or integer
BO UNDAR.Y =keyword
STATUS= status variable

Parameters NUMBER or N

60464018 J

Specifies the number of lines to be erased. Values can be
integers or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

LINES or LINE or L

Specifies the range of lines affected by the erasure.
Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, the current line is erased.

COLUMNS or COLUMN or C

Specifies the range of columns. The integers can be from
1 through 256 or any of the keywords: CURRENT,
FIRST _MARK, LAST _MARK, MARK, MAXIMUM.

EDIT_FILE 18-33

EXCHANGE _POSITION

Remarks

Examples

When you specify a boundary of STREAM, erasing starts
at the beginning column on the beginning line, continues
through all columns of the next lines, and stops at the
end column of the ending line.

If COLUMN, BOUNDARY, and LINE are omitted and
NUMBER= ALL, erasing starts at the current line and
ends at the last line. If COLUMN is omitted and LINE is
specified, the specified lines are erased. If COLUMN,
BOUNDARY, LINE, and NUMBER are omitted, the
current line is erased.

BOUNDARY or B

Specifies the type of boundary that will limit the erasure.
Values can be LINE, STREAM, or BOX. If you omit this
parameter and do not specify a value for the COLUMN
parameter, LINE is assumed. If you omit this parameter
and specify values for both the LINE and COLUMN
parameters, STREAM is assumed.

For more information, see the NOS/VE File Editor
manual.

o The following example erases the first two lines of the
file:

erase_text lines=l .. 2

• The following example erases columns 1 through 3 on
all lines of the file:

erat l=all c=l .. 3 b=box

EXCHANGE _POSITION
EDIF Subcommand

Purpose

Format

Saves the current position in the file you are editing and
returns you to a previously saved position.

EXCHANGE _POSITION or
EXCP

STATUS= status variable

18-34 NOS/VE Commands and Functions 60464018 J

I

"'-·.

Remarks

EXCHANGE_SCREEN_WIDTH

• You must save a position with the SAVE_POSITION
subcommand before executing an
EXCHANGE _POSITION subcommand.

o For more information, see the NOSNE File Editor
manual.

EXCHANGE _SCREEN_ WIDTH
EDIF Subcommand

Purpose

Format

Remarks

Examples

Alternates between the 80- and 132-column screen
displays, for those terminals that support them.

EXCHANGE _SCREEN_ WIDTH or
EXCSW

STATUS= status variable

e To set your column width to a value other than 80 or
132, use the SET _SCREEN _OPTIONS subcommand.

o For more information, see the NOSNE File Editor
manual.

If you are using an 80-column screen, entering

excsw

changes it to a 132-column screen.

FORMAT_PARAGRAPHS
EDIF Subcommand

Purpose

Format

60464018 J

Adjusts words or sentences in a paragraph of text to
bring line lengths as close as possible to preset margins.

FORMAT_PARAGRAPHSor
FORMAT _PARAGRAPH or
FORP

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
STATUS= status variable

EDIT_FILE 18-35

$FUNCTION _ROW

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to format starting with
current line and moving forward. If LINE is omitted and
NUMBER is specified, the number of lines in the current
paragraph specified by the NUMBER parameter are
formatted. If both the NUMBER and LINE parameter are
omitted, the current paragraph is assumed.

LINES or LINE or L

Specifies a range of lines to format. If omitted, the
current paragraph is assumed.

• Using this subcommand adds two blanks after periods,
colons, exclamation marks, and question marks.

• A paragraph consists of any group of lines delimited
by empty lines.

o Margins· are set using the
SET _PARAGRAPH _MARGINS subcommand.

• If you have not entered the
SET _PARAGRAPH _MARGINS subcommand, the
paragraph margins are set at 1 and 65. The first line
is indented four characters.

• For more information, see the NOS/VE File Editor
manual.

The following example adjusts the current line and the 5
subsequent lines to conform to previously set margins.

format_paragraph number=6

$FUNCTION _ROW
EDIF Function

Purpose Returns an integer specifying the top row in which the
menu of operations is displayed.

Format $FUNCTION _ROW or
$FR

Parameters None.

18-36 NOSNE Commands and Functions 60464018 J

Remarks

$FUNCTION _SIZE

o If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

$FUNCTION _SIZE
EDIF Function

Purpose Returns an integer specifying the number of rows on the
screen used by the menu of operations.

Format $FUNCTION _SIZE or
$FS

Parameters None.

Remarks • If you are in line mode, zero is returned.

Examples

o For more information, see the NOSNE File Editor
manual.

o The following commands display the number of screen
rows required to display a single menu row.

set_screen_options mr=1
display_value $function_size
2

o The following command, executed repeatedly, will
display 0, 1, and 2 rows of the menu of operations.

setso mr=$mod($function_size/2+1,3)

$HOME_ROW
EDIF Function

Purpose

Format

Returns an integer specifying the row used for entering
subcommands and responses to the editor.

$HOME _ROW or
$HR

Parameters None.

60464018 J EDIT _FILE 18-37

INDENT _TEXT

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

INDENT _TEXT
EDIF Subcommand

Purpose

Format

·Inserts blank characters or deletes characters in front of
lines of text.

INDENT_TEXT or
INDT

OFFSET= integer
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
STATUS= status variable

Parameters OFFSET or 0

Remarks

Specifies the number of columns to indent the specified
block of text.

If positive, that number of blanks are added.

If negative, that number of characters are deleted.

If omitted, 1 is assumed.

NUMBER or N

Specifies the number of lines to be indented.

If you specify a range for the LINES parameter, the
NUMBER parameter assumes a value of ALL.

If no range is specified for the LINES parameter, the
NUMBER parameter assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be indented. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If no range is specified, range is the current line to the
last line.

For more information, see the NOSNE File Editor
manual.

18-38 NOS/VE Commands and Functions 60464018 J

"-------

Examples

INSERT_CHARACTERS

• The following example deletes the first 7 characters
from lines 25 through the last line:

1ndent_text o=-7 1=25 .. last

• The following example indents all lines five spaces:

i ndt o=S 1 =a 11

INSERT_CHARACTERS
EDIF Subcommand

Purpose

Format

Inserts a string of characters before a specified location.

INSERT_CHARACTERS or
INSC or
INSERT _CHARACTER or
IC

NEW _TEXT= string
INSERTION _LOCATION= keyword or range of:

keyword or integer or line _identifier
INSERTION _COLUMN=keyword or integer
NUMBER= keyword or integer
STATUS =status variable

Parameters NEW _TEXT or NT

60464018 J

Specifies the text to be inserted.

If omitted, one blank character is inserted.

INSERTION _LOCATION or INSERTION _LOCATIONS
or L or LINE or IL

Specifies the line or range of lines in which the text is =~=
inserted. Values can be an integer, line identifier, or one ~~~

~u~~~~t~~;;;;~~~~ ~~~I~S~~~:~EN, :i_==:: __ =i

LAST, LAST_MARK, LAST_SCREEN.

If omitted, the value is the current line.

INSERTION _COLUMN or C or COLUMN or IC

Specifies the column before which the insertion is to
occur. Values can be an integer from 1 through 256 or
any of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MAXIMUM. Ranges are not allowed.

If omitted, the current column is assumed.

EDIT_FILE 18-39

INSERT _EMPTY_LINES

Remarks

Examples

NUMBER or N

Specifies the number of lines to process. If omitted, 1 is
assumed. If the INSERTION _LOCATION parameter
provides an explicit range of lines, ALL is assumed.

For more information, see the NOSNE File Editor
manual.

• The following inserts the text Short Comment in front
of the current column on the current line:

insert_characters 'Short Comnent'

• Using an SCL string variable as the value for the
NEW_ TEXT parameter is an efficient way of inserting
the same text numerous places in a file. For example,
you could initialize a string variable as follows:

a = 'characters to be inserted'

When the cursor is positioned at a point where you
want to insert the text, enter the following command:

insc a

The following example inserts a dollar sign before
column 10 on each line in the marked region.

insc nt='$' c=10 l=mark

INSERT _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Enables you to insert empty lines.

INSERT _EMPTY _LINES or
INSERT _EMPTY _LINE or
INS EL

NUMBER= integer
INSERTION _LOCATION= keyword or integer or

line _identifier
PLACEMENT= keyword
STATUS=status variable

18-40 NOSNE Commands and Functions 60464018 J

Parameters

Remarks

Examples

INSERT_LINES

NUMBER or N

Specifies the number of empty lines to be inserted.

If omitted, 1 is assumed.

INSERTION _LOCATION or IL

Specifies the line before or after which the insertion is to
occur. Values can be an integer, line identifier, or one of
the keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
Ranges are not allowed.

If omitted, CURRENT is assumed.

PLACEMENT or P

Specifies whether the insertion is to occur BEFORE(B) or
AFTER(A) the line specified by the
INSERTION _LOCATION parameter.

If omitted, AFTER is assumed.

For more information, see the NOSNE File Editor
manual.

The following inserts 2 empty lines after line 50:

insel number=2 insertion_location=SO

INSERT _LINES
EDIF Subcommand

Purpose

Format

60464018 J

Inserts one or more lines of text.

INSERT _LINES or
INSERT _LINE or
INSL or
I

NEW _TEXT=string
PLACEMENT= keyword
INSERTION _LOCATION= keyword or integer or

line _identifier
UNTIL= string
STATUS=status variable

EDIT_FILE 18-41

INSERT_LINES

Parameters NEW _TEXT or NT

Remarks

Examples

Specifies the new line of text to be inserted.

If NEW _TEXT is omitted, the text to be inserted is taken
from the command input file.

PLACEMENT or P

Indicates whether the insertion is to occur aEFORE (B)
or AFTER (A) the location specified by the
INSERTION _LOCATION parameter.

If omitted, AFTER is assumed.

INSERTION _LOCATION or IL

Specifies the line after which or before which the
insertion is to occur. Values can be an integer, line
identifier, or one of the keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

UNTIL or U

In line mode, specifies a string that stops the insert.

If the NEW_ TEXT parameter is omitted, you are
prompted to enter input until the editor encounters the
string specified by this parameter at the end of a line.

If the UNTIL parameter is omitted, '** is assumed.

For more information, see the NOSNE File Editor
manual.

• The following inserts the line NEW LINE after the
current line.

insert_lines 'NEW LINE'

• The following inserts the line Insert before the current
line:

insl nt='Insert' p=b

• The following inserts the line First line before the first
line of the file.

insl nt='First line' il=first p=b

18-42 NOSNE Commands and Fnnctions 60464018 J

'---

INSERT_WORD

o The following inserts lines from the command input
file before line 45 until a # character is encountered
as the last character in a line.

i i1=45 p=b u='#'

INSERT_ WORD
EDIF Subcommand

Purpose

Format

Inserts a string or 32 blank characters.

INSERT_ WORD or
INSW or
IW

NEW _TEXT== string .
INSERTION _LOCATION= keyword or integer or

line _identifier
INSERTION _COLUMN=keyword or integer
STATUS= status variable

Parameters NEW _TEXT or NT

Remarks

60464018 J

Specifies the string to be inserted. The default is 32
blanks.

INSERTION _LOCATION or IL

Specifies the line in which the string is to be inserted.
Values can be an integer, line identifier, or one of the
keywords: CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN.
Ranges are not allowed.

If omitted, value is the current line.

INSERTION _COLUMN or IC

Specifies the column before which the insertion is to
occur. Values can be an integer from 1 through 256 or
any of the keywords: CURRENT, FIRST_MARK,
LAST _MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-43

JOIN_TEXT

Examples • The following inserts 32 blank characters before the
current column of the current line:

insert_word

• The following inserts the word LINE in front of line
10:

insw nt='LINE' il=10 ic=1

JOIN _TEXT
EDIF Subcommand

Purpose

Format

Joins a line with the next line by appending the second to
the first.

JOIN _TEXT or
JOIT or
J

LINES= keyword or integer or line _identifier
COLUMN= keyword or integer
STATUS =status variable

Parameters LINES or LINE or L

Specifies the first of two lines to be joined. The next line
is joined to the specified line. Values can be an integer,
line identifier, or one of the keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

COLUMN or C

Specifies the starting column to which the second line is
moved. The second line is al ways added after the end of
the first line. The columns parameter determines how far
after the first line the second line is added.

Values can be an integer from 1 through 256 or any of
the keywords: CURRENT, FIRST_MARK, LAST_MARK,
MAXIMUM. Ranges are not allowed.

If the value you specify is less than or equal to the
length of the first line, the line is added to the end of the
first line. If the value you specify is greater than the
length of the first line, the editor fills the columns in
between with blank characters.

18-44 NOSNE Commands and Functions 60464018 J

Remarks

$LAST_COMMAND

If COLUMN is omitted, CURRENT is assumed.

e> If the joined line is longer than 256 characters, the
subcommand is not performed and the editor displays
the following message:

Line length exceeded.

o For more information, see the NOSNE File Editor
manual.

$LAST _COMMAND
EDIF Function

Purpose

Format

Parameters

Remarks

Returns a string containing the last successfully completed
operation.

$LAST _COMMAND or
$LC

None.

An operation can be any of the following:

• A single subcommand.

o A sequence of subcommands entered on the home line
in screen mode or at the prompt in line mode.
Individual subcommands are separated by semicolons.

o A sequence of subcommands executed by pressing the
key(s) identified in your menu of operations or a
dedicated key.

o For more information, see the NOSNE File Editor
manual.

$LINES _ENABLED
EDIF Function

Purpose

60464018 J

Returns the current keyword value for the LINES
parameter of the EN ABLE _LINES subcommand. The
keywords ALL or ACTIVE indicate which type of lines
DELETE _LINES, INSERT _LINES, and
REPLACE _LINES accept as values for the LINES or
INSERTION _LOCATION parameters.

EDIT_FILE 18-45

$LINE _IDENTIFIER

Format $LINES _ENABLED or
$LE

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$LINE _IDENTIFIER
EDIF Function

Purpose Returns the line identifier of the current line (for editing
decks only). The value is of type line identifier unless the
context calls for a string.

Format $LINE _IDENTIFIER or
$LI

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$LINE_TEXT
EDIF Function

Purpose Returns the text of the current line as a string.

Format $LINE_ TEXT or
$LT

Parameters None.

Remarks o One of the uses for this function is in procedures that
operate on lines of a file. You can use the
POSITION _CURSOR subcommand to move to a line,
and then use the $LINE_ TEXT function to return the
value of the line.

• For more information, see the NOSNE File Editor
manual.

18-46 NOS/VE Commands and Functions 60464018 J

Examples

LIST_BACKWARDS

• The following adds the string 'append' to the end of
the current line:

replace_line nt=$lt//'append 1

• The following expression returns the length of the
current line:

$size($line_text)

• The following executes the current line:

include_conmand conmand=$lt

LIST _BACKWARDS
EDIF Subcommand

Purpose

Format

In line mode, displays a range of lines ending with the
current line. In effect, it enables you to view a number of
lines just before the current line and end up where you
started.

LIST _BACKWARDS or
LISB or
LIST _BACKWARD or
LB

NUMBER= keyword or integer
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

60464018 J

Specifies the number of lines to list. Values can be
integers or the keyword ALL. ALL lists all lines from the
beginning of the file to the current line.

If NUMBER is omitted, a value of 1 is assumed.

o This subcommand is typically only used in line mode.

o For more information, see the NOSNE File Editor
manual.

The following example lists 15 lines ending with the
current line.

list_backward n=15

EDIT _FILE 18-4 7

LIST _FORWARDS

LIST _FORWARDS
EDIF Subcommand

Purpose

Format

In line mode, displays a range of lines beginning with the
current line.

LIST _FORWARDS or
LISF or
LIST _FORWARD or
LF

NUMBER= keyword or integer
STATUS= status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to list. Values can be
integers or the keyword ALL. ALL lists all lines from the
current line to the end of the file.

If NUMBER is omitted,, a value of 1 is assumed.

• This subcommand is typically used only in line mode.

o For more information, see the NOS/VE File Editor
manual.

The following example lists 15 lines beginning with the
current line.

11st_forward n=15

LIST_LINES
EDIF Subcommand

Purpose

Format

In line mode, lists a specified line or range of lines. In
screen mode, the cursor is positioned at the specified line,
or the last line in the range.

LIST _LINES or
LISL or
LIST _LINE or
LL

LINES= keyword or range of: keyword or integer or
line _identifier

STATUS= status variable

18-48 NOS/VE Commands and Functions 60464018 J

Parameters

Remarks

Examples

LOCATE_ALL

LINES or LINE or L

Specifies the line or range of lines to list. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If LINE is omitted, CURRENT is assumed.

For more information, see the NOSNE File Editor
manual.

The following example lists lines 25 through 40.

list_lines 1=25 .. 40

LOCATE ALL
EDIF Subcommand

Purpose

Format

Searches the entire file to locate all occurrences of a
specified string. In screen mode, all occurrences are then
listed in a directory enabling you to either position the
cursor at a specific line or enter the desired line number.
In line mode, all occurrences are listed and you are
positioned at the last occurrence of the string.

LOCATE _ALL or
LOCA or
LA

TEXT= range of string
UPPER _CASE= boolean
WORD= boolean
STATUS= status variable

Parameters TEXT or T

60464018 J

Specifies the text string you want to find. If omitted, the
last text string specified is assumed, if any.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

EDIT_FILE 18-49

LOCATE _EMPTY_LINES

Remarks

Examples

If you omit UPPER_CASE, FALSE is assumed. If omitted
and no string is entered for the TEXT parameter, the last
value specified is assumed.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If you omit WORD, FALSE is assumed. If omitted and no
string is entered for the TEXT parameter, the last value
specified is assumed.

For more information, see the NOSNE File Editor
manual.

The following example locates all occurrences of the
string, find this text, in the file and lists them.

locate_all text='f1nd this text'

LOCATE _EMPTY _LINES
EDIF Subcommand

Purpose

Format

Finds empty lines. An empty line is a lin.e of all blank
characters. ·

LOCATE _EMPTY _LINES or
LOCATE _EMPTY _LINE or
LOCEL

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
DIRECTION= keyword
VETO= boolean
STATUS=status variable

Parameters NUMBER or N

Specifies the number of empty lines to find. Values can be
numbers or the keyword ALL.

If a LINE parameter is specified, NUMBER assumes a
value of ALL.

18-50 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

LOCATE _EMPTY _LINES

If no LINE parameter is specified, NUMBER assumes a
value of 1.

LINES or LINE or L

Specifies a range of lines to search.

Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If you specify a value of only one line,
the search is limited to that line.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If both LINE and DIRECTION are omitted,
CURRENT .. LAST is assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

VETO or V

Instructs the editor to turn the veto option on or off.

If TRUE is specified, the editor displays a directory of
located lines.

If VETO is omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

o The following positions the cursor to the fifth empty
line:

locate_empty_lines number=S

o The following positions the cursor to the last empty
line:

locel 1 =20 .. 40

• The following positions the cursor to the tenth empty
line in the marked text:

locel n=10 l=mark

EDIT_FILE 18-51

LOCATE_NEXT

LOCATE _NEXT
EDIF Subcommand

Purpose

Format

Remarks

Locates the next occurrence of a previously specified
string. Previously specified values for the UPPER _CASE
and WORD parameters also remain in effect. The search
begins one column after the current column.

LOCATE _NEXT or
LOCN or
LN

STATUS= status variable

For more information, see the NOSNE File Editor
manual.

LOCATE _STRING
. EDIF Subcommand

Purpose

Format

Beginning at the current line and column, it searches for
the specified string.

LOCATE _STRING or
LOCS or
LS

TEXT= range of string
UPPER _CASE= boolean
WORD= boolean
STATUS =;=status variable

Parameters TEXT or T

Specifies strings of text in the first and last lines of a
block of text to be located. If you enter only one string,
the block of text to be located will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found and the cursor is
positioned at the beginning of the first string.

If omitted, the last string parameter specified, if any, is
used.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the ~ditor searches the file as if all
characters were uppercase.

18-52 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

LOCATE _TEXT

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If you omit UPPER_CASE, FALSE is assumed. If omitted
and no string is entered for the TEXT parameter, the last
value specified is assumed.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If you omit WORD, FALSE is assumed. If omitted and no
string is entered for the TEXT parameter, the last value
specified is assumed.

o This subco~mand is typically only used in line mode.

o For more information, see the NOSNE File Editor
manual.

The following example locates the string work now:

locate_string 'work now'

LOCATE TEXT
EDIF Subcommand

Purpose Locates blocks of text.

Format LOCATE _TEXT or
LOCT or
L

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS= keyword or range of: keyword or integer
BOUNDARY =keyword

'--- DIRECTION= keyword
UPPER _CASE=boolean
WORD= boolean
REPEAT _SEARCH=boolean
VETO= boolean
STATUS= status variable

60464018 J EDIT_FILE 18-53

LOCATE _TEXT

Parameters TEXT or T

Specifies strings of text in the first and last lines of a
block of text to be located. If you enter only one string,
the block of text to be located will contain only one line.
If you enter two strings, the search for the second begins
immediately after the first is found and the cursor is
positioned at the beginning of the first string.

If TEXT is omitted, the lines to be located will be
determined by the NUMBER, LINE, and DIRECTION
parameters.

NUMBER or N

Specifies the number of blocks of text to be found. Values
for this parameter can be an integer or the keyword
ALL(A).

In line mode, use the NUMBER parameter to display a
range of lines.

If you specify a range of values for the LINE parameter,
NUMBER assumes a value of ALL.

If no range is specified for the LINE parameter,
NUMBER assumes a value of 1.

LINES or LINE or L

Specifies a range of lines to be searched.

Values can be an integer, line identifier, or any of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If one line is specified, the search is
limited to that line.

If you specify MARK for this parameter, the values
preserved in the mark are used for the COLUMNS and
BOUNDARY parameters. Specifying MARK also ensures
that the marked deck or file is made current.

In line mode, use the LINE parameter to specify which
lines to print.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If LINE and DIRECTION are both omitted,
CURRENT .. LAST is assumed.

18-54 NOS/VE Commands and Functions 60464018 J

60464018 J

LOCATE_TEXT

COLUMNS or COLUMN or C

Specifies the range of columns to search. Values can be
an integer from 1 through 256 or any of the keywords:
CURRENT, FIRST_MARK, LAST_MARK, MARK,
MAXIMUM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

BOUNDARY or B

Specifies the type of boundary that limits the search.
Values can be BOX, LINE, or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER _CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

EDIT_FILE 18-55

LOCATE _TEXT

Remarks

Examples

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters ·
entered with the current subcommand.

If omitted, FALSE is assumed.

VETO or V

Instructs the editor to turn the veto option on. or off.

If TRUE is specified, the editor displays a directory of
located lines.

If VETO is omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

e The following example locates the next occurrence of
PROCEND:

locate_text 'PROCEND'

• The following example locates the previous occurrence
of TITLE:

loct 'TITLE' d=b

• The following example positions the cursor on line 250
of the current file or deck:

loct l =250

o The following example locates the string you last
specified as a value for the TEXT parameter:

loct rs=true

18-56 NOSNE Commands and Functions 60464018 J

LOCATE_ WIDE _LINES

o The following example locates all occurrences of
PARAMETER from the current position to the end of
the file and displays the lines in a directory-type
display:

1 'PARAMETER' n=all v=true

G The following example locates the next block of text
beginning with one and ending with twenty:

1 'one' .. 'twenty'

o The following example prints the current line and four
subsequent lines in line mode. In screen mode, the
cursor is positioned four lines forward:

1 n=S

o The following example displays a directory of each
occurrence of the word MISPELL regardless of case:

1 'mispell' l=a uc=true v=true

o The following example locates all instances of the
string abc between columns 20 and 30 on any line in
the file.

1 'abc' l=all c=20 .. 30 b=box

LOCATE_ WIDE _LINES
EDIF Subcommand

Purpose

Format

60464018 J

Locates lines that are wider than the margins set by the
SET _LINE_ WIDTH subcommand.

LOCATE_ WIDE _LINES or
LOCATE_ WIDE _LINE or
LOCWL

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
DIRECTION =keyword
VETO= boolean
STATUS=status variable

EDIT_FILE 18-57

LOCATE_ WIDE _LINES

Parameters NUMBER or N

Remarks

Examples

Specifies the number of wide lines to be found. Values for
this parameter can be an integer or the keyword ALL(A).

If a LINES parameter is specified, NUMBER assumes a
value of ALL. Otherwise, the assumed value for NUMBER
is 1.

LINES or LINE or L

Specifies a range of lines to be searched. Values can be
an integer, line identifier, or one of the keywords: ALL,
CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN, MARK, SCREEN.
If you specify a value for only one line, the search is
limited to that line.

If LINE and DIRECTION are omitted, CURRENT .. LAST
is assumed. If you omit LINE and specify BACKWARD
for the DIRECTION parameter, CURRENT .. FIRST is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If omitted, FORWARD is assumed.

VETO or V

Instructs the editor to turn the veto option on or off.

If TRUE is specified, the editor displays a directory of
located lines.

If VETO is omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

• The following locates the first wide line in the file:

locate_wide_lines number=1 lines=all

• The following locates the next wide line starting at
the current line:

locwl

18-58 NOS/VE Commands and Functions 60464018 J

MARK_BOXES

o The following locates and displays a directory of all
wide lines between the top line of the current screen
and the last line of the file:

locwl 1=f1rst_screen .. last v=true

MARK_BOXES
EDIF Subcommand

Purpose

Format

Parameters

Remarks

60464018 J

Marks a rectangular area of text.

MARK _BOXES or
MARB or
MARK_BOX or
MB

LINES= keyword or integer or line _identifier or range
of: keyword or integer or line _identifier

COLUMNS=keyword or integer or range of: keyword
·or integer
STATUS =status variable

LINES or LINE or L

Specifies the lines in which the corners of the box reside.
Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns in which the corners of the box
reside. Values can be any integer from 1 through 256 or
any of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MARK, MAXIMUM.

If omitted, CURRENT is assumed.

For more information, see the NOS/VE File Editor
manual.

EDIT _FILE 18-59

MARK_CHARACTERS

Examples • The following example marks a box 5 lines by 1
column; the marked area will cover lines 4 through 8
at column 12:

mark_box 11 nes=4 .. 8 co 1umn=12

• To mark a box with dimensions 5 lines by 3 columns,
enter:

mb 1=2 .. 6 c=3 .. 5

The marked area covers lines 2, 3, 4, 5, and 6 at
columns 3, 4, and 5 in each line as illustrated below:

1 2 3 4 5 6 7 8

1 xxxxxxxx
2 x x ;::::«ti x x x
3 x x ~%%ti x x x
4 xx~t~ttxxx
5 x x ~()(\I x x x
6 x x ~\~Jt. x x x
7 xxxxxxxx

The same results can be achieved by positioning the
cursor to the upper left corner of the intended box
(line 2, column 3), entering the MARK_BOX
subcommand, then positioning the cursor to the lower
right corner of the intended box, (line 6, column 5)
and entering the MARK _BOX subcommand.

MARK _CHARACTERS
EDIF Subcommand

Purpose Marks specific characters. These marks specify the
boundary for text that is to be processed later by
subcommands that insert, delete, move, copy, and replace
text.

18-60 NOS/VE Commands and Functions 60464018 J

Format

Parameters

Remarks

MARK_CHARACTERSor
MARC or
MARK_CHARACTER or
MC

MARK_CHARACTERS

LINES= keyword or integer or line _identifier or range
of: keyword or integer or line _identifier

COLUMNS= keyword or integer or range of: keyword
or integer

STATUS =status variable

LINES or LINE or L

Specifies the lines in which the marked characters reside.

If LINES is omitted, CURRENT is assumed.

COLUMNS or COLUMN or C

Specifies the columns to be marked within the specified
line(s). Values can be any integer from 1 through 256 or
any of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MARK, MAXIMUM.

If COLUMN is omitted, CURRENT is assumed.

o If a character is specified, only that character is
marked. If a single character is specified and another
single character is already marked, the characters
between the two will become marked. If a range is
specified, the entire range is marked and any other
marks are unmarked.

o Even though you can mark a range of characters by
entering two MARK _CHARACTER subcommands, if
you mark one character and then reference the mark
in another editing operation such as inserting or
copying, the editor assumes the marking operation is
complete. Then, when you mark a second character,
the editor starts another marking operation; the first
character is unmarked, and the second marked.

o The following functions can be used to determine the
location and type of the marked region.

$MARK_FIRST _COLUMN
$MARK _FIRST _LINE
$MARK _LAST _COLUMN
$MARK _LAST _LINE
$MARK_TYPE (returns a value of STREAM)

60464018 J EDIT_FILE 18-61

I
I

$MARK_FIRST_COLUMN

Examples

• For more information, see the NOSNE File Editor
manual.

• The following marks column 30 of line 40 through
column 30 of line 50:

mark_character 1ine=40 .. 50 column=30

• The following marks columns 7 through 10 of the
current line:

me c=7 .. 10

• To mark column 5 of line 2 through column 3 of line
5, enter:

me 1=2 .. 5 c=S .. 3

The marked area covers column 5 of line 2 through
column 3 of line 5 as illustrated ·below:

12345678 ...

1 xxxxxxxx
2 x x x x itititi
3 ~:An¥::*-:rnK:JM*>t.
4 ~PK@tiI*->*-?*li
5 ~?Xtt. x x x x x
6 xxxxxxxx
7 xxxxxxxx

The same results can be achieved by positioning the
cursor to the first character to be marked (line 2,
column 5), entering the MARK _CHARACTER
subcommand, then positioning the cursor to the last
character to be marked (line 5, column 3) and entering
the MARK_CHARACTER subcommand.

$MARK _FIRST _COLUMN
EDIF Function

Purpose

Format

Returns an integer specifying the column number of the
first marked column.

$MARK_FIRST_COLUMN or
$MFC

18-62 NOS/VE Commands and Functions 60464018 J

$MARK_FIRST _LINE

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK _FIRST _LINE
EDIF Function

Purpose Returns an integer specifying the line number of the first
marked line.

Format $MARK _FIRST _LINE or
$MFL

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK_LAST_COLUMN
EDIF Function

Purpose Returns an integer specifying the column number of the
last marked column.

Format $MARK_LAST_COLUMN or
$MLC

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARK _LAST _LINE
EDIF Function

Purpose Returns an integer specifying the line number of the last
marked line.

Format $MARK _LAST _LINE or
$MLL

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

60464018 J EDIT_FILE 18-63

MARK_LINES

Examples The following statements write marked lines to file
$LOCAL.SCR1. If no lines (or one line) are marked, all
lines are written to the file.

lines_to_write =all
IF $mark_first_line<>$mark_last_line THEN

lines_to_write =mark
I FEND
write_f11e f=$local .scr1 l=lines_to_write

MARK_LINES
EDIF Subcommand

Purpose

Format

Marks a line to be processed later.

MARK _LINES or
MARK _LINE or
MARL or
ML

LINES= keyword or integer or line _identifier or range
of: keyword or integer or line _identifier

STATUS= status variable

Parameters LINES or LINE or L

Remarks

Specifies a line or range of lines to be marked. Marked
text can be processed by subcommands that insert, delete,
move, copy, and replace text. Values can be an integer,
line identifier, or one of the keywords: ALL, CURRENT,
FIRST, FIRST_MARK, FIRST_SCREEN, LAST,
LAST_MARK, LAST_SCREEN, MARK, SCREEN.

If LINE is omitted, the current line is assumed.

o If a line is specified, only that line is marked. If a
single line is specified and another single line is
already marked, the lines between the two will become
marked. If a range is specified, the entire range is
marked and any other marks are unmarked.

o Even though you can mark a range of lines by
entering two MARK _LINES subcommands, if you
mark one line and then reference the mark in another
editing operation such as inserting or copying, the

18-64 NOSNE Commands and Functions 60464018 J

$MARK_OBJECT

editor assumes the marking operation is complete.
Then, when you mark a second line, the editor starts
another marking operation; the first line is unmarked,
and the second marked.

G The following functions can be used to determine the
location and type of the marked region.

$MARK _FIRST _LINE
$MARK _LAST _LINE
$MARK_TYPE (returns a value of LINES)

• For more information, see the NOS/VE File Editor
manual.

$MARK _OBJECT
EDIF Function

Purpose

Format

Returns a string specifying the name of the current file
or de.ck containing the marked text.

$MARK_OBJECT or
$MO

,"----- Parameters None.

Remarks • Use the $MARK_OBJECT_TYPE function to
determine if the object is a file or a deck.

• For more information, see the NOS/VE File Editor
manual.

$MARK_OBJECT_TYPE
EDIF Function

Purpose

Format

Returns a string specifying if the marked text is in a file
or a deck. Values returned can be FILE, DECK, or
NULL.

$MARK_OBJECT_TYPE or
$MOT

Parameters None.

Remarks For more information, see the NOS/VE File Editor
manual.

60464018 J EDIT_FILE 18-65

$MARK_TYPE

$MARK_TYPE
EDIF Function

Purpose Returns a value indicating whether the marked region is
bounded by lines, bounded by characters, or is a box.
Values returned can be LINES (line boundary), STREAM
(character boundary), or BOX (marked zone boundary).

Format $MARK_ TYPE or
$MT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$MARKED _STRING
EDIF Function

Purpose Returns a list of strings containing marked characters.

Format $MARKED _STRING or
$MS

Parameters None.

Remarks • If no strings are marked, an empty list is returned.

• For more information, see the NOSNE File Editor
manual.

$MESSAGE _ROW
EDIF Function

Purpose Returns an integer specifying the number of the row on
the screen used to display messages.

Format $MESSAGE _ROW or
$MR

Parameters None.

18-66 NOSNE Commands and Functions 60464018 J

$MOUSE_COLUMN

Remarks • If you are in line mode, zero is returned.

e This function is often used as the value for the ROW
parameter on the PUT _ROW subcommand.

• For more information, see the NOSNE File Editor
manual.

$MOUSE _COLUMN
EDIF Function

Purpose Returns the column number of the mouse position for the
most recent mouse click. This is intended for CONNECT
VIEW users.

Format $MOUSE _COLUMN or
$MC

Parameters None.

Remarks For more information about CONNECT VIEW, see the
CONNECT VIEW for the IBM PC manual.

~ $MOUSE _ROW
EDIF Function

Purpose Returns the row number of the mouse position for the
most recent mouse click. This is intended for CONNECT
VIEW users.

Format $MOUSE _ROW

Parameters None.

Remarks For more information about CONNECT VIEW, see the
CONNECT VIEW for the IBM PC manual.

60464018 J EDIT_FILE 18-67

MOVE_TEXT

MOVE TEXT
EDIF Subcommand

Purpose

Format

Moves a block of text from one place to another in the
same file.

MOVE_TEXT or
MOVT or
M

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS=keyword or range of: keyword or integer
INSERTION _LOCATION= keyword or integer or

line _identifier
INSERTION _COLUMN=keyword or integer
PLACEMENT=keyword
BOUNDARY= keyword
UPPER _CASE=boolean
WORD= boolean
REPEAT _SEARCH=boolean
STATUS=status variable

Parameters TEXT or T

Specifies string(s) of text in the first and last lines of a
block of text to be moved. If you enter only one string,
the block of text to be moved will contain only one line.
If you enter two strings, the search for the second begins
im~ediately after the first is found.

If TEXT is specified, the INSERTION _COLUMNS and
BOUNDARY parameters are ignored and line boundaries
are used.

If omitted, the lines to be copied will be determined by
the NUMBER and LINES parameters or the
REPEAT _SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be moved.
Values for this parameter can be numbers or the keyword
ALL (A).

If omitted and a range is specified for the LINES
parameter, this parameter assumes a value of ALL.
Otherwise, the assumed value is 1.

18-68 NOS/VE Commands and Functions 60464018 J

60464018 J

MOVE_TEXT

LINES or LINE or L

Specifies the range of lines to be searched for the text to
be moved. If a single value is specified, only that line is
searched. Values can be an integer, line identifier, or one
of the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns to be searched for text to
be moved. The integers can be from 1 through 256 or any
of the keywords: CURRENT, FIRST_MARK,
LAST _MARK, MARK, MAXIMUM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE= MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

INSERTION _LOCATION or IL

Specifies the line before or after which the text is to be
moved (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE keywords: . CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

INSERTION _COLUMN or IC

Specifies the column before or after which the text is to
be moved (depending on the value of the PLACEMENT
parameter). Values can be an integer from 1 through 256,
or any of the COLUMN keywords: CURRENT,
FIRST _MARK, LAST _MARK, MAXIMUM. Ranges are
not allowed.

If omitted, CURRENT is assumed.

If a value for TEXT is specified, INSERTION _COLUMN
is ignored.

EDIT_FILE 18-69

I
I

MOVE_TEXT

PLACEMENT or P

Specifies if the moved lines are to appear BEFORE (B) or
AFTER (A) the location specified by the
INSERTION _LOCATION parameter.

If omitted, AFTER is assumed.

BOUNDAR.Y or B

Specifies the type of boundary that will limit the search.
Values can be BOX, LINE, or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

If a value for TEXT is specified, BOUNDARY is ignored;
line boundaries are used.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

18-70 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

MOVE_TEXT

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

o The following moves lines 30 through 40 to
immediately after the current line.

move_text 1ine=30 .. 40

o The following moves the next occurrence of a block of
text beginning with the line containing batch and
ending with the line containing interactive to
immediately before line 71:

movt t='batch' .. 'interactive' i1=71 p=b

e The following moves a box of characters from columns
4 through 6 in lines 2 through 4 to columns 5 through
7 of lines 5 through 7:

m 1=2 .. 4 c=4 .. 6 i1=5 1c=5 b=box

Before move:

abcdefghij
abcdefghij
abcdefghij
abcdefghij

1234567890
1234567890
1234567890
1234567890

After move:

EDIT_FILE 18-71

$NEW_TEXT

abcdefghij
abfghij
aefghij
defghij

1234cde567890
1234bcd567890
1234abc567890
1234567890

$NEW_TEXT
EDIF Function

Purpose Returns the last string entered in a NEW _TEXT
parameter.

Format $NEW_ TEXT or
$NT

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

Examples If you enter:

replace_text text='good' new_text='the best'

you can then use:

r t='better' nt=$nt

to replace better with the best.

$NUMBER_OF_COLUMNS
EDIF Function

Purpose Returns an integer specifying the number of columns
currently being used to display text on the screen.

Format $NUMBER_OF_COLUMNS or
$NUMBER_OF_COLUMN or
$NOC

Parameters None.

18-72 NOS/VE Commands and Functions 60464018 J

$NUMBER_OF _LINES

Remarks • If you are in line mode, zero is returned.

o For more information, see the NOS/VE File Editor
manual.

$NUMBER _OF _LINES
'- EDIF Function

Purpose Returns an integer specifying the number of active lines
in the current object.

Format $NUMBER _OF _LINES or
$NOL

Parameters None.

Remarks • If no object is selected, zero is returned.

• For more information, see the NOS/VE File Editor
manual.

$NUMBER _OF _MARKS
EDIF Function

Purpose Returns an integer value indicating whether nothing is
marked (0), one end of a region is marked (1), or both
ends of a region are marked (2).

Format $NUMBER_OF_MARKS or
$NOM

Parameters None.

Remarks For more information, see the NOS/VE File Editor
manual.

$NUMBER _OF _ROWS
EDIF Function

Purpose

Format

60464018 J

Returns an integer specifying the number of rows
currently displayed on the screen, including the menu of
operations, message line, home line, and file header.

$NUMBER_OF_ROWS or
$NUMBER_OF_ROW or
$NOR

EDIT_FILE 18-73

$NUMBER_OF _SPLITS

Parameters None.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOS/VE File Editor
manual.

$NUMBER _OF _SPLITS
EDIF Function

Purpose Returns an integer specifying the number of splits on the
screen.

Format $NUMBER_ OF _SPLITS or
$NUMBER _OF _SPLIT or
$NOS

Parameters None.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOS/VE File Editor
manual.

Examples The following alternates between 1 or 2 screens:

set_screen_option s=3-$number_of_splits

$OBJECT _MODIFIED
EDIF Function

Purpose Returns a boolean value indicating whether the object is
modified.

Format $OBJECT _MODIFIED or
$OM

Parameters None.

Remarks • If no object is selected, FALSE is returned.

• For more information, see the NOS/VE File Editor
manual.

18-74 NOS/VE Commands and Functions 60464018 J

$OFFSET

$OFFSET
EDIF Function

Purpose Returns an integer identifying the number specified on
the OFFSET parameter of the ALIGN _SCREEN
subcommand.

Format $OFFSET or
$0

Parameters None.

Remarks • If you have not specified the OFFSET parameter, or
are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

OVERLAY_TEXT
EDIF Subcommand

Purpose

Format

Parameters

60464018 J

Replaces text at the specified location with text
determined by the LINES and COLUMN parameters.

OVERLAY_TEXT or
OVET or
0

NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS= keyword or range of: keyword or integer
OVERLAY _LOCATION= keyword or range of: keyword
or integer or line _identifier

OVERLAY _COLUMNS= keyword or range of: keyword
or integer

BOUNDARY=keyword
STATUS= status variable

NUMBER or N

Specifies the maximum number of lines to be overlayed.
Values can be numbers or the keyword ALL.

If you omit this parameter and specify a range for the
LINE parameter, NUMBER assumes a value of ALL.

If you omit this parameter without specifying a range of
lines, NUMBER assumes a value of 1.

EDIT_FILE 18-75

I
I

OVERLAY_TEXT

Remarks

Examples

LINES or LINE or L

Specifies the range of lines to be copied. Values can be an
integer, line identifier, or one of the keywords: ALL,
.CURRENT, FIRST, FIRST_MARK, FIRST_SCREEN,
LAST, LAST_MARK, LAST_SCREEN,MARK, SCREEN.

If you enter a single value, only that line is copied.

If LINES and COLUMNS are omitted, CURRENT .. LAST
is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns used to form the text
address. The integers can be from 1 through 256 or any
of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MARK, MAXIMUM.

OVERLAY _LOCATION or OL

Specifies the line(s) to be replaced. The default is
CURRENT .. LAST.

OVERLAY _COLUMNS or OC

Specifies the column address for the block of text to be
replaced.

BOUNDARY or B

Specifies the type of boundary that will limit the erasure.
Values can be LINE, STREAM, or BOX. If you omit this
parameter and do not specify a value for the COLUMN
parameter, LINE is assumed. If you omit this parameter
and specify values for both the LINE and COLUMN
parameters, STREAM is assumed.

For more information, see the NOS/VE File Editor
manual.

• The following overlays the text on lines 2 and 3 over
the text on lines 6 and 7:

overlay_text 1=2 .. 3 o1=6 .. 7 b=line

Before overlay:

abcdefghijk
abcdefghijk
abcdefghijk
abcdefghijk

18-76 NOS/VE Commands and Functions 60464018 J

I

"----

60464018 J

0987654321
0987654321
0987654321
0987654321

After over lay:

abcdefghijk
abcdefghijk
abcdefghijk
abcdefghijk
0987654321
abcdefghijk
abcdefghijk
0987654321

OVERLAY_TEXT

• The following overlays the first three letters of line 2
through 5 on the first three numbers of lines 9
through 12:

0 1=2 .. 5 c=1 .. 3 o1=9 .. 12 oc=1 .. 3 b=box
Before overlay:

abcdefghijklmnopqrs
abcdefghijklmnopqrs
bcdefghijklmnopqrs
cdefghijklmnopqrs
abcdefghijklmnopqrs
abcdefghijklmnopqrs
abcdefghijklmnopqrs
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

Aft er over 1 ay:

abcdefghijklmnopqrs
abcdefghijklmnopqrs
bcdefghijklmnopqrs
cdefghijklmnopqrs
abcdefghijklmnopqrs
abcdefghijklmnopqrs
abcdefghijklmnopqrs

EDIT_FILE 18-77

$PARAGRAPH _MARGINS

1234567890
abc4567890
bcd4567890
cde4567890
abc4567890
1234567890

$PARAGRAPH _MARGINS
EDIF Function

Purpose Returns an integer specifying the current margin setting.
The keyword specified determines the value returned.

Format $PARAGRAPH _MARGINS or
$PARAGRAPH _MARGIN or
$PM

(PARAMETER _1: keyword)

Parameters PARAMETER _1

Remarks

Examples

Determines the current margin for which you want a
value returned. Values can be LEFT (for the left margin
setting), or RIGHT (for the right margin setting), or
OFFSET (for the current margin offset).

This parameter is required.

For more information, see the NOS/VE File Editor
manual.

The following example saves and then -restores the current
margin settings:

left_margin = $pm(left)
right_margin = $pm(right)
offset = $pm(offset)

"temporarily change the values"

set_paragraph_margins mc=left_margin .. right_margin
offset=offset

18-78 NOS/VE Commands and Functions 60464018 J

POSITION _BACKWARDS

POSITION _BACKWARDS
EDIF Subcommand

Purpose

Format

Moves your position in the file backward a specified
number of lines. ·

POSITION _BACKWARDS or
POSB or
POSITION _BACKWARD or
PB

NUMBER= keyword or integer
STATUS =status variable

Parameters NUMBER or N

Remarks

Examples

Specifies the number of lines to move backward. If you
specify ALL, the cursor will be positioned on the first line
of the file.

If omitted, 1 is assumed.

o This subcommand is typically only used in line mode.

o For more information, see the NOSNE File Editor
manual.

The following example moves the cursor backward 25
lines from the current line.

position_backward number=25

POSITION _CURSOR
EDIF Subcommand

Purpose

Format

60464018 J

Locates text and positions the cursor at the specified line
of text. Using this subcommand in screen mode, you can
move the cursor to a nontext line.

POSITION _CURSOR or
POSC or
p

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
COLUMNS= keyword or range of: keyword or integer
BOUNDARY ==keyword

EDIT_FILE 18-79

I
I

POSITION _CURSOR

DIRECTION= keyword
UPPER _CASE= boolean
WORD= boolean
REPEAT _SEARCH=boolean
ROW=integer
STATUS= status variable

Parameters TEXT or T

Specifies a text string at which to position the cursor. If
omitted, the new cursor position is determined by the
LINE, COLUMNS, and BOUNDARY parameters.

NUMBER or N

Specifies the number of times the search is to be
repeated. Values can be an integer or the keyword ALL
(A).

If NUMBER is omitted, and you have specified a range
for the LINES parameter, ALL is assumed.

If NUMBER is omitted and no range has been specified
for LINES, 1 is assumed.

LINES or LINE or L

Specifies one of two things:

o When a single line number is specified, the cursor is
positioned at that line.

o When a range of lines is specified, the editor searches
for the specified text string within that range of lines.

Values can be an integer, line identifier, or any of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN.

If you specify MARK for this parameter, the values
preserved in the mark are used for the COLUMNS and
BOUNDARY parameters. Specifying MARK also ensures
that the marked file or deck is made current.

If you omit LINE and specify BACKWARD for the
DIRECTION parameter, CURRENT .. FIRST is assumed.

If both LINE and DIRECTION are omitted,
CURRENT .. LAST is assumed.

18-80 NOSNE Commands and Functions 60464018 J

60464018 J

POSITION _CURSOR

COLUMNS or COLUMN or C

Specifies the range of columns to be searched to locate
the specified text or word. Values can be an integer from
1 through 256 or any of the keywords: CURRENT,
FIRST _MARK, LAST _MARK, MARK, MAXIMUM.

When you supply a value, the BOUNDARY parameter
assumes a value of STREAM.

If omitted, CURRENT is assumed. If omitted and you
have specified LINE::; MARK, the marked lines provide
the column boundaries. If COLUMN is omitted and you
have specified a LINE parameter other than MARK, all
columns will be searched.

BOUNDARY or B

Specifies the type of boundary that limits the search.
Values can be BOX, LINE, or STREAM.

If COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

If both BOUNDARY and COLUMNS are omitted, LINE is
assumed.

DIRECTION or D

Specifies whether to search FORWARD (F) or
BACKWARD (B) from the current line.

If no value is specified, FORWARD is assumed.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

EDIT_FILE 18-81

Ill
I

POSITION _CURSOR

Remarks

Examples

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEAR.CH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

ROW or R

Enables you to move the cursor in relation to the screen
instead of in relation to the file text.

For more information, see the NOSNE File Editor
manual.

• The following positions the cursor at line 500 of the
file:

position_eursor 1=500

• The following moves the current position backward
three lines from the current line:

pose n=3 d=b

• The following moves the cursor to the first column of
the next line:

pose l=eurrent .. last n=2 c=1

• The following moves the cursor to the second line of
the current screen:

pose r=2

18-82 NOSNE Commands and Functions 60464018 J

POSITION _FORWARDS

• The following moves the cursor to the first line in the
file:

p l=first

o The following moves the cursor to the last occurrence
of the string abc between columns 10 and 20 in lines
200 through the end of the file:

p t='abc' 1=200 .. last c=10 .. 20 b=box

POSITION FORWARDS
EDIF Subcommand

Purpose

Format

Moves your position in the file forward a specified number
of lines.

POSITION _FORWARDS or
POSF or
POSITION _FORWARD or
PF

NUMBER= keyword or integer
STATUS ==status variable

Parameters NUMBER or N

Remarks

Specifies the number of lines to move forward. If you
specify ALL, the cursor will be positioned on the last line
of the file.

If omitted, 1 is assumed.

e Using this subcommand, you cannot position past the
last line of the file.

• This subcommand is typically only used in line mode.

• For more information, see the NOSNE File Editor
manual.

Examples The following example moves the cursor forward 63 lines
from the current line.

position_forward number=63

60464018 J EDIT_FILE 18-83

II
Ill

PUT_ROW

PUT_ROW
EDIF Subcommand

Purpose

Format

Displays text string on a specified row of the screen.

PUT_ROW or
PUTR

TEXT= string
ROW=integer
STATUS =status variable

Parameters TEXT or T

Remarks

Specifies the text to be printed. This is a text string from
1 through 256 characters.

This parameter is required.

ROW or ROWS or R

Indicates the row in which the text will be written.
Values can be any integer from 1 through the number of
rows available on your screen.

If ROW is omitted, the current line number is assumed.

e PUT _ROW is used with procedures to print text on
any row on the screen. It enables you to display
messages on different lines on the screen.

o You can use the $MESSAGE _ROW function as the
value for the ROW parameter. This function causes
your text to be placed on the message line of the
screen.

e You can use the $HOME_ROW function as the value
for the ROW parameter. This function causes your text
to be placed on the home line of the screen. The text
you place on the home line can be changed before it is
executed. You can type over characters, insert
characters, and delete characters. Execute the contents
of the home line by pressing the return key.

• For more information, see the NOS/VE File Editor
manual.

18-84 NOSNE Commands and Functions 60464018 J

Examples

READ_FILE

• In a procedure which defines an alternate set of
function key definitions for the CDC721 terminal, you
might want to write the message

New 721 keys are set.

in the message row. To do this, include the following
subcommand in the procedure:

put_row text='New 721 keys are set.' row=$mr

o The following example defines the fifth key in your
menu of operations to execute a PUT _ROW
subcommand. The subcommand places the string you
executed as the last operatio"n on the home line. The
last operation is returned by using the
$LAST_COMMAND function. The label for the
operation in the menu of operations becomes R~P.e~t.

ef/set_function_key number=S conmand_strinQ= ..
ef/'put_row text=$last_conmand row=$home_row' ..
ef /label='Repeat'

The PUT _ROW subcommand as shown in the
preceding example does not become the last command.
This allows you to repeat the last operation more than
once.

READ FILE
EDIF Subcommand

Purpose

Format

60464018 J

Inserts the text of another file into the current file.

READ _FILE or
REAF

FILE=file
INSERTION _LOCATION= keyword or integer or

line _identifier
PLACEMENT= keyword
MULTI _PARTITION= boolean
STATUS= status variable

EDIT _FILE 18-85

READ_FILE

Parameters FILE or F

Remarks

Specifies the name of the file from which the text is to be
inserted. The entire file will be inserted. This parameter
is required.

INSERTION _LOCATION or IL

Specifies the line before or after which the text is to be
inserted (depending on the value of the PLACEMENT
parameter). Values can be an integer, line identifier, or
one of the LINE keywords: CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST _SCREEN. Ranges are not allowed.

If omitted, CURRENT is assumed.

PLACEMENT or P

Specifies whether the insertion is to occur BEFORE (B) or
AFTER (A) the line specified by the
INSERTION _LOCATION parameter.

If omitted, AFTER is assumed.

MULTI _PARTITION or MP

Specifies whether the editor is to change end-of-partition
delimiters to WEOP directives when an external file is
copied to the current working file.

If you specify TRUE, the editor changes end-of-partition
delimiters to WEOP directives and reads the entire file.

If you specify FALSE, no change takes place and the
editor stops reading at the first partition.

If omitted, FALSE is assumed.

o The READ _FILE subcommand reads the external copy
of the specified file. If you have been editing a file
within the editor and have not made the changes
permanent using the WRITE _FILE subcommand and
then specify that file on a READ _FILE subcommand,
an external copy is inserted, not the changed working
copy.

• For more information, see the NOSNE File Editor
manual.

18-86 NOSNE Commands and Functions 60464018 J

Examples

REPLACE _LINES

• The following inserts the contents of file ALPHA into
the current file immediately after line 320:

read_file file=alpha insertion_location=320

• The following inserts the contents of file BETA into
the c1:1rrent file immediately before the last marked
line:

reaf f=beta il=last_mark p=b

REPLACE LINES
EDIF Subcommand

Purpose Replaces lines of text by deleting the old text and
replacing it with the text you specify.

Format REPLACE _LINES or
REPLACE _LINE or
REPL

TEXT=range of string
NEW _TEXT=string

,,,.- NUMBER=keyword or integer
~ _ LINES= keyword or range of: keyword or integer or

line _identifier
UNTIL= string
UPPER _CASE= boolean
WORD= boolean
REPEAT _SEARCH=boolean
STATUS =status variable

Parameters TEXT or T

60464018 J

Specifies the text you want to replace.

If a range of text is specified, the lines containing the
entire range are replaced with the string supplied in the
NEW_TEXT parameter.

If TEXT is omitted, the LINE and NUMBER parameters
determine the lines to be replaced.

EDIT_FILE 18-87

REPLACE _LINES

NEW _TEXT or NT

Specifies the new line of text that is to replace the
specified line.

If this parameter is omitted, you are prompted to enter
text line by line until the editor encounters the
character(s) specified by the UNTIL parameter.

NUMBER or N -

Specifies the number of lines to replace. Values can be a
number or the keyword ALL.

If a range of text is specified, NUMBER indicates the
number of blocks of text to replace.

If you omit this parameter and specify a range for the
LINE parameter, the assumed value is ALL.

If you omit this parameter and do not specify a range for
the LINE parameter, the assumed value is 1.

LINES or LINE or L

Specifies a range of lines in which the replacement is to
occur. Values can be an integer, line identifier, or one of
the keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If a single value is specified, only that
line is replaced.

If omitted, CURRENT .. LAST is assumed.

UNTIL or U

In line mode, specifies a string that stops the replacement
text.

If NEW _TEXT is omitted, you are prompted to enter
input until the editor encounters the character(s) you
specify with the UNTIL parameter.

If the UNTIL parameter is omitted, ** is assumed.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

18-88 NOSNE Commands and Functions 60464018 J

'-....__ __

Remarks

Examples

60464018 J

REPLACE_LINES

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER _CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

o The following replaces lines 30 to the end of the file
with a line that says text:

replace_line new_text='text' line=30 .. last

• The following replaces the current line with text you
are prompted to enter until the editor encounters ** at
the end of one of the replacement lines.

repl

EDIT _FILE 18-89

REPLACE_TEXT

REPLACE TEXT
EDIF Subcommand

Purpose

Format

Replaces blocks of text.

REPLACE_TEXT or
REPT or
R

TEXT= string
NEW _TEXT= string
NUMBER= keyword or integer
LINES= keyword or range of" keyword or integer or

line _identifier
COLUMNS= keyword or range of: keyword or integer
BOUND.AR.¥= keyword
UPPER _CASE= boolean
WORD= boolean
REPEAT _SEARCH=boolean
VETO= boolean
STATUS =status variable

Parameters TEXT or T

Specifies the text string to replace in the specified block
of text.

If omitted, you must specify TRUE for the
REPEAT _SEARCH parameter.

NEW _TEXT or NT

Specifies the replacement text for the string specified in
the TEXT parameter.

If omitted, the string specified in the TEXT parameter is
deleted.

NUMBER or N

Specifies the number of times the original text is to be
replaced within the block of text. Values can be any
integer or the keyword ALL (A).

If you omit this parameter and specify a range of values
for the LINE parameter, the assumed value is ALL.

If you omit this parameter and do not specify a range for
the LINE parameter, the assumed value is 1.

18-90 NOSNE Commands and Functions 60464018 J

60464018 J

REPLACE_TEXT

LINES or LINE or L

Specifies the range of lines affected by the replacement.
Values can be an integer, line identifier, or one of the
keywords: ALL, CURRENT, FIRST, FIRST_MARK,
FIRST_SCREEN, LAST, LAST_MARK, LAST_SCREEN,
MARK, SCREEN. If a single value is specified, only the
number of occurrences of text are replaced in that line.

If you specify MARK for this parameter, the values
preserved in the mark are used for the COLUMNS and
BOUNDARY parameters. Specifying MARK also ensures
that the marked deck or file is made current.

If omitted, CURRENT .. LAST is assumed.

COLUMNS or COLUMN or C

Specifies the range of columns affected by the
replacement. The integers can be from 1 through 256 or
any of the keywords: CURRENT, FIRST _MARK,
LAST _MARK, MARK, MAXIMUM.

With the COLUMN parameter you can specify a
beginning and ending column for the replacement. When
you specify a boundary of STREAM, the search for
replacement starts at the beginning column on the
beginning line, continues through all columns of the next
lines, and stops at the end column of the ending line.

If COLUMN, BOUNDARY, and LINE are omitted and .
NUMBER=ALL, the replacement search starts at the
current column of the current line and ends at the last
column of the last line. If COLUMN is omitted and LINE
is specified, the replacement search uses all columns of
the lines specified. If COLUMN, BOUNDARY, LINE, and
NUMBER are omitted, the current column is assumed.

BOUNDARY or B

Specifies the type of boundary that will limit the
replacement. Values can be BOX, LINE, or STREAM. lll

If BOUNDARY and COLUMNS are both omitted, LINE is
assumed.

If BOUNDARY is omitted but COLUMNS is specified,
STREAM is assumed.

EDIT_FILE 18-91

REPLACE_TEXT

Remarks

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If you specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it doesn't.

If omitted, FALSE is assumed unless you sp·ecify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER_CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
NEW_TEXT, UPPER_CASE, and WORD parameters as
the last time you entered them for any subcommand
(unless you have specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand.

If omitted, FALSE is assumed.

VETO or V

Enables you to display a directory of replaced lines
allowing you to choose a line at which you want the
cursor to be positioned. Allows you to veto any of the
displayed lines affected by the subcommand.

For more information, see the NOSNE File Editor
manual.

18-92 NOSNE Commands and Functions 60464018 J

Examples

\"'-----

60464018 J

REPLACE_TEXT

o The following changes the first occurrence of ALPHA
to BETA from the current line and column to the last
line and column:

replace_text t='alpha' nt='beta'

o The following uses the same values for TEXT,
NEW_TEXT, UPPER_CASE, and WORD parameters
specified on a previous subcommand:

rept rs=true

o The following replaces all occurrences of BETA with
ALPHA from line 50 to the end of the file:

r t='BETA' nt='ALPHA' 1=50 .. last

e The following replaces the first occurrence of $ with #
from the current line and column to the last line and
column:

rept t='$' nt='#'

o The following deletes the text CHI in all lines of the
file:

r t ='chi ' 1 =a

o The following changes r to t starting at line 2 column
5, and ending at line 4 column 3.

rept 'r' 't ' l =2 .. 4 c=S .. 3

The following occurs:

Before replacement:

rrrrrrr
rrrrrrr
rrrrrrr
rrrrrrr

After replacement:

rrrrrrr
rrrrttt
ttttttt
ttt rrrr

EDIT _FILE 18-93

RESET_FILE

• The following changes r to t in columns 3 to 5 of lines
2 through 4.

r 'r' 't ' 1 =2 .. 4 c=3 .. 5 b=box

The following occurs:

Before replacement:

rrrrrrr
rrrrrrr
rrrrrrr
rrrrrrr

After replacement:

rrrrrrr
rrtttrr
rrtttrr
rrtttrr

• Use the SET _MASK subcommand to leave characters
unaltered between those that are being replaced. When
the specified number of characters has been masked,
any additional characters are displayed as blank.

The following sets the mask character as '#' and then
replaces FUN with FUN & PROFIT:

set_mask c='#'
rept t='FUN' nt='F###&#PROFIT'

RESET_FILE
EDIF Subcommand

Purpose

Format

Remarks

Cancels all the changes you have made to your current
file since you last accessed the file using the EDIT _FILE
command.

RESET _FILE or
RESF

STATUS=status variable

• The RESET _DECK subcommand discards changes to
decks.

• For more information, see the NOSNE File Editor
manual.

18-94 NOSNE Commands and Functions 60464018 J

\
'-·

RESTORE _POSITION

RESTORE _POSITION
EDIF Subcommand

Purpose

Format

Remarks

Enables you to return to the position saved by the
SAVE _POSITION subcommand.

RESTORE _POSITION or
RESP

STATUS= status variable

For more information, see the NOSNE File Editor
manual.

$ROW_TEXT
EDIF Function

Remarks Reserved for site personnel, Control Data, or future use.

SAVE _POSITION
EDIF Subcommand

Purpose

Format

Remarks

Enables you to save the current column, line, and file
name for reference later.

SAVE _POSITION or
SAVP

STATUS =status variable

• To return to this position later, use the
RESTORE _POSITION subcommand.

• For more information, see the NOSNE File Editor
manual.

$SCREEN _ACTIVE
EDIF Function

Purpose Returns a boolean value. It is TRUE if screen mode is
active, and FALSE if it is not.

Format $SCREEN _ACTIVE or
$SA

Parameters None.

60464018 J EDIT_FILE 18-95

I
It

$SCREEN _INPUT

Remarks For more information, see the NOSNE File Editor
manual.

$SCREEN _INPUT
EDIF Function

Purpose Returns the text you enter on the subcommand line as
the string.

Format $SCREEN _INPUT or
$SI

(PARAMETER _1: string)

Parameters PARAMETER _1

Remarks

Examples

The text you want displayed on the message row as a
prompt for input. If omitted, ENTER TEXT is used as the
prompt.

• This function allows an SCL procedure to pause and
request input.

• When the LOCATE_ TEXT subcommand is executed,
the user provides the text normally, without concern
that it will become a string. The user does not put
apostrophes around the text or use double apostrophes
within the text.

• Trailing blanks are not truncated.

o For more information, see the NOSNE File Editor
manual.

• The following subcommand locates whatever text the
user provides in response to $SI.

locate_text t=$s1('What do you want to locate?')

o The following subcommand programs key 7 to insert
whatever characters are specified:

set_function_key number=7 ..
c001T1and_string='insc '//$quote($SI(..
'characters to be inserted by key 7'))

18-96 NOSNE Commands and Functions 60464018 J

$SEARCH _MARGINS
EDIF Function

$SEARCH _MARGINS

Purpose Returns an integer specifying the column number of
either the right or left margin. The keyword specified
determines the value returned.

Format $SEARCH_MARGINS or
$SEARCH _MARGIN or
$SM

(PARAMETER _1: keyword)

Parameters PARAMETER _1

Remarks

Specifies the margin for which you want a value returned.
Values can be LOW (for the left margin) or HIGH (for
the right margin).

This parameter is required.

o The function can be used to save the values for the
current search margins so they can be temporarily
altered.

• For more information, see the NOSNE File Editor
manual.

SET_EPILOG
EDIF Subcommand

Purpose Specifies a file containing editor subcommands you want
executed each time you· leave the editor.

Format SET _EPILOG or
SETE

FILE==file
STATUS ==status variable

Parameters FILE or F

Specifies the file to contain the editor subcommands. If
omitted, $USER.SCU _EDITOR_EPILOG is assumed.

60464018 J EDIT_FILE 18-97

SET _FUNCTION _KEY

Remarks

Examples

• If you do not enter a SET _EPILOG subcommand
within your editing session, no epilog file is executed.

• You can enter this command anytime within your
editing session.

• If you want epilog file processing to occur
automatically, put the SET_EPILOG subcommand into
your prolog file.

• For more information, see the NOSNE File Editor
manual.

The following process always leaves your screen display at
132 columns after stopping the editor:

1. Place the following in file
$USER.SCU _EDITOR_EPILOG.

if $screen_active then;setso c=132;ifend

2. Include the following subcommand in your prolog file.

set_epilog

SET _FUNCTION _KEY
EDIF Subcommand

Purpose

Format

Enables you to create your own set or sets of function
keys.

SET _FUNCTION _KEY or
SETFK

NUMBER= keyword or integer
COMMAND _STRING= string
SHIFT= boolean
LABEL= string
STATUS =status variable

Parameters NUMBER or N

Specifies the number of the key to be defined. Values can
be any integer from 1 through 16. These numbers
correspond to the highlighted boxes in the menu of
operations at the bottom of the screen. The numbers 1
through 8 correspond to the first row of boxes; 9 through
16 correspond to the second row of boxes.

18-98 NOS/VE Commands and Functions 60464018 J

SET_FUNCTION _KEY

You can also specify one of the following keywords:
DOWN(D), EDIT(E), FWD(F), BKW(B), BACK, HELP(H)
STOP(S), UNDO, UP(U).

The keywords relate to keys on some terminals. If your
terminal has defined sequences that relate to these
keywords, you can create your own function keys using
these keywords.

This parameter is required.

COMMAND _STRING or CS

Specifies the subcommand(s) to be executed when the
specified key is pressed. Values can be any editor or SCL
command. When more than one subcommand is specified,
separate them with semicolons.

This parameter is required.

SHIFT or S

For those terminals that have one key identifier next to
each highlighted box in the menu of operations, the
SHIFT parameter indicates whether the key to be used is
shifted. Specify TRUE for the shifted key and FALSE for
the nonshifted key.

For those terminals that have two key identifiers next to
each highlighted box in the menu of operations, the
SHIFT parameter indicates which key you use.

Specify TRUE to use the key corresponding to the top key
identifier. Specify FALSE to use the key corresponding to
the bottom key identifier.

If SHIFT is omitted, FALSE is assumed.

LABEL or L

Specifies a string as the label that is to appear in the
menu of operations for the specified key.

If LABEL is omitted, current label remains the same.

Remarks For more information, see the NOS/VE File Editor
manual.

60464018 J · EDIT_FILE 18-99

I
ll

SET _LINE_ WIDTH

Examples • The following SET _FUNCTION _KEY subcommand
defines the shifted F5 key to execute the HELP
subcommand. The key has a screen label of help:

set_function_key n=S cs='help' s=true l='help'

• The online Examples manual lists a number of useful
function key definitions.

SET _LINE _WIDTH
EDIF Subcommand

Purpose

Format

Specifies the maximum line length. When a line exceeds
this limit, a warning message is displayed.

SET _LINE _WIDTH or
SETLW

WIDTH= integer
STATUS =status variable

Parameters WIDTH or W

Remarks

Specifies the number of characters you can have on one
line before the editor sends you a message. Values can be
an integer from 0 through 256. Specifying 0 eliminates
the message and adds no trailing blanks to lines. When
you create a file, an initial width value of 0 is assumed.
For decks the value is taken from the deck header
information.

This parameter is required.

o Each time you edit a file, you must enter the
SET _LINE_ WIDTH subcommand to be warned when
lines exceed a given length.

o Once this command is entered, the editor adds trailing
spaces to lines with a character count less than the
limit when making string comparisons.

• You can locate long lines using the
LOCATE_ WIDE _LINES subcommand.

o For more information, see the NOSNE File Editor
manual.

18-100 NOSNE Commands and Functions 60464018 J

SET _LIST _OPTIONS

Examples The following subcommand sets the line width limit at 80:

set_line_width width=80

SET _LIST _OPTIONS
EDIF Subcommand

Purpose Provides you with the options in line mode of either
displaying the line identifier on the same line as the text,
on a separate line from the text, or not at all.

Format SET _LIST_ OPTIONS or
SET _LIST _OPTION or
SETLO

LINE _IDENTIFIER== keyword
STATE== boolean
STATUS== status variable

Parameters LINE .:_IDENTIFIER or LI

Remarks

60464018 J

Specifies where or if the identifier is to be displayed.
Values can be LEFT (L), SEPARATE (S), or NONE.

If LINE _IDENTIFIER is omitted, NONE is assumed.

STATE or S

Specifies whether the state of the modification associated
with the line's introduction is to be displayed.

If TRUE, the state is displayed.

If omitted, FALSE is assumed. ·

o This subcommand is usually entered when you are line
editing decks and want to see the line identifiers.

o Modification states are described in the NOSNE
Source Code Management manual.

e For more information, see the NOSNE File Editor
manual.

EDIT_FILE 18-101

SET_MASK

SET_MASK
EDIF Subcommand

Purpose Defines a special character to match any other character.
The character you define' serves as' a wild card character.
You can use it when specifying a value for any TEXT
parameter on file editor subcommands.

Format SET _MASK or
SETM

CHARACTER= keyword or string
STATUS= status variable

Parameters CHARACTER or C

Remarks

Examples

Specifies the mask character. Values can be any
alphanumeric character or the keyword NONE. If NONE
is specified, the mask feature is turned off.

This parameter is . required.

For more information, see the NOSNE File Editor
manual.

c This example uses a mask character to replace the
following strings:

Ford Fred Food Find Fund

Specify the mask character and the REPLACE_ TEXT
subcommand as follows:

set_mask character='#'
rept t='F##d' nt='Feed' l=all

The following occurs:

Before replacement:

Ford
Fred
Food
Find
Fund

After replacement:

Feed
Feed
Feed
Feed
Feed

18-102 NOS/VE Commands and Functions 60464018 J

60464018 J

SET_MASK

o This example uses a mask character to replace the
following strings:

Ford Find Fund

Specify the mask character and the REPLACE_ TEXT
subcommand as follows:

set_mask character='#'
rept t='F##d' nt='P##t' l=all

The following occurs:

Before replacement: After replacement:

Ford
Find
Fund

Port
Pint
Punt

o Depending on its position in the new text string, you
can use the mask character to shorten or lengthen
text strings, replace characters, or insert spaces in a
text string. For example, if you specified # as the
mask character, you can use it in the NEW _TEXT
parameter with the following results:

rept t='fund' nt='f##'

Replaces fund with fun.

rept t='fund' nt='f##k'

Replaces fund with funk.

rept t='fund' nt='f###amental'

Replaces fund with fundamental.

• When you use the SET _MASK subcommand with
REPLACE_TEXT, the system substitutes the mask
characters in the new text until it reaches the end of
the old text. Additional mask characters in the new
text display as blanks. The following (in which the
mask character is '#') replaces FUN with FUN &
PROFIT:

rept t='FUN' nt='F###&#PROFIT'

EDIT_FILE 18-103

ll!
II

SET _PARAGRAPH _MARGINS

SET _PARAGRAPH _MARGINS
EDIF Subcommand

Purpose

Changes the paragraph margins. In any subsequent
FORMAT_ PARAGRAPH or CENTER_LINE
subcommands, the margins set with
SET _PARAGRAPH _MARGINS are used.

Format SET _PARAGRAPH _MARGINS or
SET_PARAGRAPH_MARGIN or
SETPM

MAR.GIN _COLUMNS= range of integer
OFFSET= integer
STATUS= status variable

Parameters MAR.GIN _COLUMNS or MAR.GIN _COLUMN or MC

Specifies the left and right margins. If 'just one column
number is specified, the left margin is set to that number.

Remarks

If omitted and you have not specified this subcommand
previously in your editing session, columns 1 and 65 are
used. If you have specified the subcommand previously,
any parameter not specified is not changed.

OFFSET or 0

Specifies the number of columns the first line in the
paragraph is to be offset from the rest of the lines in the
paragraph. If the number specified is a positive number,
the first .line of the paragraph is indented the number of
columns specified. If zero is specified, the first line is not
indented. If a negative value is given, the first line begins
to the left of the rest of the paragraph.

If omitted and you have specified this subcommand during
this terminal session, the previous value is used. If you
have not entered this subcommand previously and omit
the OFFSET parameter, 4 is assumed.

o You can use the $PARAGRAPH _MARGINS function to
return paragraph margin values.

e For more information, see the NOSNE File· Editor
manual.

18-104 NOSNE Commands and Functions 60464018 J

Examples

SET_SCREEN _OPTIONS

o To set the paragraph margins to columns 7 and 72,
with an offset of 4, enter:

set_paragraph_margins margin_columns=7 .. 72

• To set the margins to 10 and 70 and also specify that
you want the first line of the paragraph indented 5
columns, enter:

setpm mc=10 .. 70 o=S

SET _SCREEN _OPTIONS
EDIF Subcommand

Purpose

Format

Enables you to change the way the screen appears.
Among other things, you can change the number of lines
that are listed on your screen, the number of rows in the
menu of operations that is displayed, the number of files
displayed at one time, and the number of columns
displayed.

SET _SCREEN _OPTIONS or
SET_SCREEN _OPTION or
SETSO

MODEL=name
COLUMNS =integer
MENU _ROWS=integer
ROWS= integer
SPLITS= integer
SPLIT _SIZES= list of integer
STATUS =status variable

Parameters MODEL or M

60464018 J

Specifies the type of terminal you are using. Valid entries
are:

Entry

MAC _CONNECT _10

MAC_CONNECT_ll

Terminal

Apple Macintosh running
version 1.0 or 1.0+ of Control
Data CONNECT for the
Macintosh

Apple Macintosh running
version 1.1 of Control Data
CONNECT for the Macintosh

EDIT_FILE 18-105

SET_SCREEN _OPTIONS

MAC _CONNECT _20

MAC _CONNECT _21

MAC _CONNECT _22

PC _CONNECT _10

PC_CONNECT_ll

PC _CONNECT _12

PC _CONNECT _13

PC_CONNECT_20

IBM_3270

IBM_3270_2

IBM_3270_3

IBM_3270_4

IBM_3270_5

DEC_VTlOO

DEC_ VTlOO _GOLD

18-106 NOS/VE Commands and Functions

Apple Macintosh running
version 2.0 of Control Data
CONNECT for the Macintosh

Apple Macintosh running
version 2.1 of Control Data
CONNECT for the Macintosh

Apple Macintosh running
version 2.2 of Control Data .
CONNECT for the Macintosh

IBM PC or equivalent running
version 1.0 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.1 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.2 of Control Data
CONNECT for the IBM PC

IBM PC or equivalent running
version 1.3 or 1.4 of Control
Data CONNECT for the
IBM PC

IBM PC or equivalent running
version 2.0 of Control Data
CONNECT for the IBM PC

IBM 3270 with 24 x 80 screen

IBM 3270 with 24 x 80 screen

IBM 3270 with 32 x 80 screen

IBM 3270 with 43 x 80 screen

IBM 3270 with 27 x 132 screen

Digital Equipment VTlOO with
18 function keys

Digital Equipment VTlOO with
32 function keys

60464018 J

60464018 J

DEC_VT220

TV_955

TV_955_PROTECTED

SET_SCREEN _OPTIONS

Digital Equipment VT220 for
users logging in through
CDCNET

Televideo 955 with full editing
capability

Televideo 955 with form entry
access only

If the MODEL parameter has not been specified on an
earlier subcommand of the editing session, or by a
CHANGE_TERMINAL_ ATTRIBUTES TM=name
command previous to the editing session, it is required.

This parameter is effective in identifying your terminal
only when you enter the SET _SCREEN _OPTIONS
subcommand in line mode. If you are editing in screen
mode, enter the DEACTIVATE _SCREEN subcommand
first and then enter the SET_SCREEN _OPTIONS
subcommand. To resume screen editing, enter the
ACTIVATE _SCREEN subcommand.

COLUMNS or COLUMN or C

Specifies the number of columns to be displayed. Values
range from 1 to the maximum number allowed on your
terminal. The number you enter is compared to the screen
sizes set up in the terminal definition for your terminal.
The number of columns displayed is the closest number as
large or larger than the number you enter on the
COLUMNS parameter.

Each time the editor is entered, a value of 80 columns is
assumed.

If COLUMN is omitted, the number of columns displayed
remains the same.

MENU _ROWS or MENU ~ROW or MR

Specifies the number of rows of the menu of operations
prompts to display. Values can be:

0 Does not display the menu of operations.

1 Displays 1 row of highlighted boxes from the
menu of operations.

2 Displays 2 rows of the menu.

EDIT_FILE 18-107

SET _SCREEN _OPTIONS

Remarks

If MENU _ROW is omitted, the number of rows displayed
remains the same. When starting the editor, 1 row is
displayed.

ROWS or ROW or R

Specifies the number of rows to display for terminals that
support multiple screen sizes. Values can be from 10 to
the maximum number allowed for your terminal. The
number you enter is compared to the screen sizes set up
in the terminal definition for your terminal. The number
of rows displayed is the closest number as large or larger
than the number you enter on the ROWS parameter.

When you _first enter the editor, it assumes a value of 32.

Not all terminals support multiple screen sizes.

SPLITS or SPLIT or S

Specifies the number of areas of text (splits) you want
displayed ·on the screen when the screen is divided
horizontally to show more than one file. This number
determines how many files you can display at the same
time. Values are 1 through 16.

Each time the editor is entered, a value of 1 is assumed.

If SPLIT is omitted, the number of splits remains the
same.

SPLIT _SIZES or SPLIT _SIZE or SS

Specifies the number of lines you want displayed within a
particular area of text (split). The value(s) you specify
correspond positionally to the splits displayed; the first
value you specify corresponds to the topmost split, the
second value to the next lowest split and so on. Values
are 2 through 255.

If SPLIT _SIZE is omitted, each split contains an equal
number of lines.

o For all omitted parameters, the editor assumes you
want the same value used the last time you entered
the SET _SCREEN _OPTIONS subcommand.

o For more information, see the NOSNE File Editor
manual.

18-108 NOSNE Commands and Functions 60464018 J

Examples

SET_SEARCH _MARGINS

o The following example displays an additional file onto
a screen. The new screen contains two split areas with
a different file in each area.

1. Press Home and enter:·

set_screen_options split=2

2. Move the cursor to the split in which you want the
new file (ZETA) to appear.

3. Press Home and enter:

edif zeta

File ZETA appears in the split area the cursor was
last in.

o The following example displays all of your menu of
operations:

setso mr=2

SET _SEARCH _MARGINS
"----- EDIF Subcommand

Purpose

Format

Parameters

60464018 J

Limits the number of columns to be searched in
subsequent subcommands that use string searches.

SET _SEARCH _MARGINS or
SET _SEARCH _MARGIN or
SETSM

MARGIN _COLUMNS=range of integer
STATUS= status variable

MARGIN _COLUMNS or MC

Specifies the column(s) in which to perform the search.
Values can be any number or any of the COLUMN
keywords: CURRENT, FIRST_MARK, LAST_MARK,
MARK, MAXIMUM. If you specify two values, the search
is done from the first column through the last column
specified. If you specify a single integer, only that column
is searched.

If MARGIN _COLUMN is omitted, columns 1 through 256
are assumed.

EDIT_FILE 18-109

SET_TAB_OPTIONS

Remarks

Examples

e The $SEARCH _MARGINS function can be used to
return the MARGIN _COLUMNS values.

• This subcommand can be used with the
REPLACE _TEXT subcommand to change a string
within a limited range of columns for many lines.

• For more information, see the NOSNE File Editor
manual.

To set the search margins to columns 1 and 7, enter:

set_search_marg1ns margin_columns=1 .. 7

SET _TAB _OPTIONS
EDIF Subcommand

Purpose Sets a tab character and the columns in which you want
tabs set.

Format SET_ TAB_ OPTIONS or
SET_TAB_OPTION or
SETTO

CHARACTER =string
TAB _COLUMN=list of integer
STATUS= status variable

Parameters CHARACTER or C

Specifies the tab character. Values can be any character.
The horizontal tab character, $char(9), works well as a
value.

When you enter a tab character within text typed from
your terminal, the tab character moves any text from the
current position to the next tab setting.

If you enter a tab character after the last tab column, the
tab character is included as part of the file text.

When you start editing a file, the tab character is set to
the reverse slant. When you start editing a deck, the tab
character is set as specified in the deck header (refer to
the CREATE _DECK SCU subcommand in the NOSNE
Source Code Management manual).

If CHARACTER is omitted, the tab character is not
changed.

18-110 NOSNE Commands and Functions 60464018 J

Remarks

Examples

SET_ VERIFY _OPTION

TAB _COLUMN or TAB _COLUMNS or TC

Specifies tab columns to be added to those already
selected.

A maximum of 256 columns can be specified as tab
columns. Values can be any integer from 1 through 256
and must be enclosed in parentheses. When you start
editing a ~le, the tabs are set at columns 1, 7, and 72.

When you start editing a deck, the tab columns selected
are those specified in the deck header (refer to the
CREATE _DECK SCU subcommand in the NOSNE Source
Code Management manual).

If TAB_COLUMN is omitted, the tab settings are not
changed.

For more information, see the NOSNE File Editor
manual.

o The following sets the tab character to] and adds · ·
columns 11, 18, 41 and 53 as tab columns:

set_tab_options character=']'
tab_column=(11,18,41,53)

o The following sets the tab character to ! and adds
column 3 as a tab column:

setto c='!' tc=(3)

o The following sets the tab character to \ and inserts
the text 'line 1' preceded by six blank spaces:

set_tab_options c='\' tc=(7 10)
insert_ line
\ l ine1**

SET_ VERIFY _OPTION
EDIF Subcommand

Purpose

60464018 J

Displays lines that have been changed using the
REPLACE_ TEXT subcommand and displays the first and
last lines of a block of text located with the
LOCATE _TEXT subcommand.

EDIT_FILE 18-111

SET_WORD_CHARACTERS

Format SET_ VERIFY _OPTION or
SETVO

ECHO= boolean
STATUS= status variable

Parameters ECHO or E

Remarks

Specifies whether you want the verify option on or off.

This parameter is required.

o In screen mode the verify option is always off.

o Inside your editor prolog, the value for the ECHO
parameter is FALSE. The verify option is off while
your editor prolog is processed unless you specifically
turn it on. When you turn the verify option on, the
editor displays changed lines.

Outside your editor prolog, the default value for the
ECHO parameter is TRUE. The verify option is on in
line mode unless you specifically turn it off. You can
set the verify option in your editor prolog or while you
are editing a file.

o The function $VERIFY _OPTION returns the current
value of the verify option.

o For more information, see the NOSNE File Editor
manual.

SET_WORD_CHARACTERS
EDIF Subcommand

Purpose

Format

Enables you to add or delete allowable characters (within
words) for use with the WORD parameter.

SET_ WORD _CHARACTERS or
SET_WORD_CHARACTER or
SETWC

ADD= list of string
DELETE= list of string
STATUS= status variable

18-112 NOSNE Commands and Functions 60464018 J

SET_WORD_CHARACTERS

Parameters ADD or A

Remarks

Examples

60464018 J

Specifies the characters to add as allowable characters.
Values can be any printable character. The space
character cannot be specified as an allowable character.

Enclose each character in quotes and all inside
parentheses.

If ADD is omitted, no characters are added.

DELETE or D

Specifies the characters to delete as allowable characters
in a word. In other words, characters specified by this
parameter will be treated as punctuation marks. Values
can be any printable character. The space character is not
allowed.

Enclose each character in quotes and all inside
parentheses.

If DELETE is omitted, no characters are deleted.

o The initial word characters consist of the
alphanumerics plus the underscore (_), dollar-sign ($),
number-sign (#), and at-sign (@).

o If you specify more than one character, separate them
with commas or spaces.

o For more information, see the NOSNE File Editor
manual.

o The following adds % as an allowable word character
and deletes x as an allowable word character:

set_word_characters add=('%') delete=('x')

o The following changes the characters allowed in words
to those used in the NOS/VE COBOL compiler:

setwc a=('-') d=('$' '#' '@')

EDIT_FILE 18-113

:rt
II

$SPLIT _SIZE

$SPLIT _SIZE
EDIF Function

Purpose Returns an integer specifying the number of available text
lines for the specified split of the screen.

Format $SPLIT _SIZE or
$SS

(PARAMETER _1: integer)

Parameters PARAMETER _1

Specifies the split of the screen for which you want a
value returned. If omitted, the current split is assumed.

Remarks • If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

$TEXT
EDIF Function

Purpose Returns a string specifying the last text you specified for
a TEXT parameter.

Format $TEXT or
$T

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$TITLE_ROW
EDIF Function

Purpose Returns an integer specifying the row number of the title
row (file header) used for the specified split of the screen.

Format $TITLE _ROW or
$TR

(PARAMETER _1: integer)

18-114 NOSNE Commands and Functions 60464018 J

Parameters

Remarks

UNDO

UNDO

PARAMETER _1

Specifies the split of the screen for which you want a
value returned. If omitted, the current split is assumed.

o If you are in line mode, zero is returned.

• For more information, see the NOSNE File Editor
manual.

EDIF Subcommand

Purpose

Format

Remarks

60464018 J

Cancels changes in reverse chronological order. Entire
transactions are undone until one that included a change
is reached.

UNDO or
UND

STATUS= status variable

o A transaction consists of all changes made between
two presses of the return key.

o The following terminals include an automatic return
when you press keys that perform editing operations:

IBM PC
Apple Macintosh

At these terminals, pressing keys that perform editing
operations marks the end of a transaction. At other
terminals, you press return· to end transactions that
include editing operations.

o Use the UNMARK subcommand to cancel marks.

o For each UNDO subcommand, all changes made since
the last time you pressed the return key are canceled.

o You can undo only changes made to the current file.
You can, however, make any file that was edited
during this session the current file if it has not been
closed with END _FILE, END _DECK, or a
SELECT _DECK subcommand. You can do this by
entering the EDIT _FILE or EDIT _DECK
subcommand, or, if your screen is split, by positioning
the cursor in the file you want to be the current file.

EDIT_FILE 18-115

ll
ll'

UNMARK

Examples

• To undo all changes you have made since opening the
current file, use the RESET _FILE subcommand.

e> For more information, see the NOSNE File Editor
manual.

The following changes were made to a file in the order
given:

1. Five lines in the file were deleted using one
DELETE _LINES subcommand.

2. The next three lines are displayed using the
LOCATE _TEXT subcommand.

3. A new line is entered using the INSERT_LINES
subcommand.

Each time UNDO is entered, the following changes are
undone:

1. The first time UNDO is entered, the new line inserted
is deleted.

2. The second time, the five lines deleted are returned.

UNMARK
EDIF Subcommand

Purpose

Format

Remarks

Explicitly cancels the marks on any lines or characters
you previously marked.

UNMARK or
UNM

STATUS =status variable

o You implicitly unmark text by marking a new region
of text, by deleting marked text, or by entering the
l)°@q operation (or UNDO subcommand), which undoes
the most recent change as well as undoing any current
marks.

o When you enter the END _FILE subcommand you can
close a file containing the marked text.

o For more information, see the NOSNE File Editor
manual.

18-116 NOSNE Commands and Functions 60464018 J

$UPPER _CASE
EDIF Function

$UPPER_CASE

Purpose Returns a boolean value specifying the most recent value
supplied for an UPPER_CASE parameter.

Format $UPPER_ CASE or
$UC

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$VERIFY _OPTION
EDIF Function

Purpose Returns a boolean value indicating whether the VERIFY
option has been activated (TRUE) or not (FALSE).

Format $VERIFY_OPTION or
$VO

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

$WORD
EDIF Function

Purpose Returns a boolean value indicating whether the word
search feature is active (TRUE) or not (FALSE).

Format $WORD or
$W

Parameters None.

Remarks For more information, see the NOSNE File Editor
manual.

60464018 J EDIT_FILE 18-117

WRITE_FILE

WRITE_FILE
EDIF Subcommand

Purpose

Format

Copies text from the current working file to the external
copy of a file.

WRITE _FILE or
WRIF

TEXT= range of string
NUMBER= keyword or integer
LINES= keyword or range of: keyword or integer or

line _identifier
FILE=file
UPPER _CASE=boolean
WORD= boolean
REPEAT _SEARCH=boolean
MULTI _PARTITION= boolean
STATUS =status variable

Parameters TEXT or T

Specifies string(s) of text in the first and last lines of a
block of text to be written.

If you enter only one string, the block of text to be
written will contain only one line. If you enter two
strings, the search for the second begins immediately after
the first is found and the curso·r is positioned at the
beginning of the first string.

If omitted, the lines to be written are determined by the
NUMBER, LINE, and DIRECTION parameters or by the
REPEAT _SEARCH parameter.

NUMBER or N

Specifies the number of blocks of text to be copied. Values
for this parameter can be an integer or the keyword ALL
(A).

If NUMBER is omitted, ALL is assumed.

LINES or LINE or L

Specifies a range of lines to be searched to locate the text
to be copied. Values can be an integer, line identifier, or
one of the keywords: ALL, CURRENT, FIRST,
FIRST_MARK, FIRST_SCREEN, LAST, LAST_MARK,
LAST_SCREEN, MARK, SCREEN.

If a single value is specified, only that line is searched.

18-118 NOSNE Commands and Functions 60464018 J

WRITE_FILE

If LINE is omitted, ALL is assumed.

FILE or F

Specifies the file to which the text is to be copied.

If the object you are editing is a file and FILE is omitted,
the editor writes the file to the external file from which
the working file was made.

If the object you are editing is a deck, this parameter is
required.

UPPER _CASE or UC

Determines the significance of capitalization in the search.

If you specify TRUE, the editor searches the file as if it
were all uppercase.

If you specify FALSE, the editor searches for the text
exactly as it was entered.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT_SEARCH. In this case, your last value for
UPPER_CASE is used.

WORD or W

Determines whether the editor searches for the specified
text string as a word (the text you want to search for is
surrounded by nonalphanumeric characters).

If "you ·specify TRUE, the editor searches for the text as a
word. If you specify FALSE, it does not.

If omitted, FALSE is assumed unless you specify TRUE
for REPEAT _SEARCH. In this case, your last value for
WORD is used.

REPEAT _SEARCH or RS

Instructs the editor how to use the values entered for the
last TEXT, UPPER _CASE, and WORD parameters.

If you specify TRUE, the editor uses the same TEXT,
UPPER_CASE, and WORD parameters as the last time
you entered them for any subcommand (unless you have
specified values for this subcommand).

If you specify FALSE, the editor uses the parameters
entered with the current subcommand. If omitted, FALSE
is assumed.

60464018 J EDIT_FILE 18-119

I
I

WRITE_FILE

Remarks

Examples

MULTI _PARTITION or MP

Specifies whether the editor is to change WEOP directives
to end-of-partition delimiters when the current working
file is copied to an external file.

If TRUE, the editor changes WEOP directives to end-of
partition delimiters. If FALSE, no substitution takes place.
If omitted, FALSE is assumed.

For more information, see the NOSNE File Editor
manual.

o The following copies 3 blocks of text beginning with
the line containing even and ending with the line
containing odd to the file BOTH:

write_file text='even' .. 'odd' number=3 file=both

CD The following copies all lines from the current file to
the external copy of file ALPHA:

wrif l=all f=alpha

o The following copies all of the current working file to
the end of file BETA:

wrif f=BETA.$EOI

o The following copies the working copy of the current
file to the external copy. In other words, it makes
your changes permanent without closing the current
file and leaving the editor:

wrif

18-120 NOSNE Commands and Functions 60464018 J

'"--.

File Manager 19

ENTER_FILE_MANAGER 19-1
ACTIVATE_SCREEN ... 19-2
ALIGN _SCREEN .. 19-2
BEEP _TERMINAL_BELL 19-3
$CURRENT_CATALOG 19-3
$CURRENT_FILE .. 19-4
DEACTIVATE _SCREEN 19-5
EDIT_PATH .. 19-5
EXTEND _CATALOG _ENTRY _MARK 19-6
$FUNCTION _KEYS .. 19-6
$FUNCTION _SIZE ... 19-7
HELP .. 19-7
HOME ... 19-8
$MAIN _TITLE ... 19-8
MARK _CATALOG _ENTRY 19-9
$MARKED_CATALOG_ENTRIES 19-11
$MARKED_CATALOG_ENTRIES_SIZE 19-11
$NUMBER_OF_ROWS 19-11
POSITION _CURSOR . 19-12
QUIT .. 19-12
REFRESH _SCREEN . 19-13
$SCREEN _OUTPUT . 19-13
SET _FUNCTION _KEY . 19-14
SET_LINE_MODE_PROMPT 19-17
SET_MAIN _TITLE .. 19-17
SET _SCREEN _OPTIONS . 19-20
SET;_ VARIABLES . 19-21
UP _CATALOG . 19-21

60464018 J

II
i

File Manager 19

ENTER _FILE _MANAGER
Command

Purpose Starts a File Manager utility session.

Format ENTER _FILE _MANAGER or
ENTFM

CATALOG=file
PROLOG=file
STATUS =status variable

Parameters CATALOG or C or FILE or F

Remarks

60464018 J

Specifies the catalog to be displayed as the main display
in File Manager. The default is $WORKING _CATALOG.

PROLOG or P

Specifies the file to be used as your prolog for File
Manager. This file includes commands you want executed
every time you enter File Manager. If omitted,
$USER.$FILE _MANAGER.PROLOG is used.

You can establish a different default pro log file. Using the
CREATE _DEFAULT_ VARIABLE command, define the
EUD$ENTFM _PRO LOG variable to point to the File
Manager prolog you want to use. For example:

create_default_variable name=eud$entfm_prolog ..
default='$user.$file_manager.prolog_filename'

In any prolog file you define, include the system
commands and File Manager subcommands you want
executed.

The catalog under which you entered File Manager is
restored as your working catalog when you quit the
session even if you switch to a different working catalog
during the session. You can change this through the
KEEP _CURRENT_ WORKING _CATALOG parameter of
the QUIT subcommand.

File Manager 19-1

I
ii

ACTIVATE _SCREEN

ACTIVATE _SCREEN
File Manager Subcommand

Purpose Switches from line mode to screen mode.

Format ACTIVATE _SCREEN or
ACTS

Parameters None.

Remarks By default, the catalog displayed when you enter
ACTIVATE _SCREEN becomes your working catalog. To
prevent this, set the UPDATE_ WORKING _CATALOG
parameter of the SET _SCREEN _OPTIONS subcommand
to FALSE.

ALIGN _SCREEN
File Manager Subcommand

Purpose Scrolls the contents of the display.

Format ALIGN _SCREEN or
ALIS

FUNCTION= keyword

Parameters FUNCTION or F

Specifies the scrolling action. This parameter is required.
Keyword options are described next.

NOTE

The BKW, FWD, FIRST, LAST, UP, and DOWN keywords
perform the same action as the BKW, FWD, FIRST,
LAST, UP, and DOWN function keys.

BKW

Moves backward to the previous screen of the display.

FWD

Moves forward to the next screen of the display.

FIRST

Positions the first line of the catalog to the top of the
screen.

19-2 NOS/VE Commands and Functions 60464018 J

BEEP_TERMINAL_BELL

LAST

Positions the last line of the catalog to the bottom of
the screen.

UP

Positions the line at the cursor position to the top of
the screen.

DOWN

Positions the line at the cursor position to the bottom
of the screen.

BEEP_TERMINAL_BELL
File Manager Subcommand

Purpose

Format

Remarks

Causes the bell on the terminal to beep.

BEEP _TERMINAL_BELL or
BEETB

STATUS=status variable

The terminal bell acknowledgement sequence sent to the
terminal is defined in the terminal definition. For details,
see the NOSNE Terminal Definition manual.

$CURRENT _CATALOG
File Manager Function

Purpose Returns the catalog path of the currently displayed
catalog.

Format $CURRENT_CATALOG or
$CC

Parameters None.

Remarks • The $CURRENT _CATALOG function is only available

60464018 J

in the File Manager task. It can be used in SCL
procedures but not in other tasks or commands that
initiate other tasks. An alternative to
$CURRENT _CATALOG is the File Manager variable
VCC, which you can use anywhere to specify the
current catalog.

File Manager 19-3

II
I

$CURRENT_FILE

In the following example, you cannot use
$CURRENT _CATALOG:

release_mass_storage;exclude_catalog
catalog=$current_catalog;Qu1t

You can, however, use the VCC variable:

release_mass_storage;exclude_catalog
catalog=vcc;quit

NOTE

VCC is the default variable name; you can change it
using the SET_ VARIABLES subcommand.

o For further information about functions, see the
NOSNE System Usage manual.

$CURRENT _FILE
File Manager Function

Purpose Returns a file reference naming the file or subcatalog to
which the cursor is currently positioned.

Format $CURRENT _FILE or
$CF

Parameters None.

Remarks • The $CURRENT _FILE function is only available in
the File Manager task. It can be used in SCL
procedures but not in other tasks or commands that
invoke other tasks. An alternative to
$CURRENT _FILE is the File Manager variable VCF,
which you can use anywhere to specify the current
file.

In the following example, you cannot use
$CURRENT _FILE in the following command:

create_object_library;add_module
1ibrary=$current_f11e:quit

You can, however, use the VCF variable:

19-4 NOSNE Commands and Functions 60464018 J

DEACTIVATE _SCREEN

create_object_library;add_module
1 i brary=vcf; QU it

NOTE

VCF is the default variable name; you can change it
using the SET_ VARIABLES subcommand.

o For further information about functions, see the
NOSNE System Usage manual.

DEACTIVATE _SCREEN
File Manager Subcommand

Purpose Switches from screen mode to line mode.

Format DEACTIVATE _SCREEN or
DEAS

Parameters None.

Remarks e The default prompt in line mode is your login family
name. You can change this using the
SET _LINE _MODE _PROMPT subcommand.

e Return to screen mode by entering
ACTIVATE _SCREEN.

EDIT_PATH
File Manager Subcommand

Purpose Displays the current catalog path in a window. While
viewing the window, you can change the entry to switch
to a different path.

Format EDIT _PATH or
EDIP

Parameters None.

60464018 J File Manager 19-5

EXTEND_CATALOG_ENTRY_MARK

Remarks o If you specify a nonexisting catalog, then the catalog
last displayed is selected, and the cursor is positioned
to the first file or catalog that is at the same level or
a level above what you specify.

e By default, your working catalog is changed to the
catalog you specify. You can prevent this by setting
the UPDATE_ WORKING _CATALOG parameter of the
SET _SCREEN _OPTIONS subcommand to FALSE.

EXTEND_CATALOG_ENTRY_MARK
File Manager Subcommand

Purpose

Format

Remarks

Examples

Marks catalog entries from a preceding mark to the
current cursor position.

EXTEND _CATALOG _ENTRY _MARK or
EXTCEM

STATUS= status variable

Use the MARK_CATALOG_ENTRY subcommand to mark
the initial entry.

To mark rows 3 through 15 of a catalog display: Position
the cursor to row 3 and enter
MARK_CATALOG_ENTRY; then, move the cursor to row
15 and enter EXTEND_CATALOG_ENTRY_MARK.

$FUNCTION _KEYS
File Manager Function

Purpose Returns a list of records containing the current function
key settings.

Format $FUNCTION _KEYS

Parameters None.

19-6 NOS/VE Commands and Functions 60464018 J

Remarks

$FUNCTION _SIZE

o The list of function key records is returned in the
following format:

list of record
number: integer 1 .. 16
shift : boo 1 ean
cOJT111and~string: string
label: string 1 .. 6 =$optional

recend

• For further information about functions, see the
NOSNE System Usage manual.

$FUNCTION _SIZE
File Manager Function

Purpose Returns an integer specifying the number of rows on the
screen used by the function key menu.

Format $FUNCTION _SIZE

Parameters None.

Remarks

HELP

e You can use the values returned for
$NUMBER_OF _ROWS and $FUNCTION _SIZE to
determine the number of screen rows available for
displaying windows.

o One row of highlighted boxes in the function key
menu uses 2 rows on the screen. Two function key
menu rows use 5 rows on the screen.

o For further information about functions, see the
NOSNE System Usage manual.

File Manager Subcommand

Purpose Displays help information on File Manager.

Format HELP
STATUS= status variable

60464018 J File Manager 19-7

HOME

Remarks

HOME

o This subcommand is provided for terminals that do not
have a predefined Help key.

e In screen mode, entering HELP displays a brief
description of the currently displayed screen and
associated function keys. The help window indicates
whether to enter HELP again for more detailed
information.

In line mode, entering HELP takes you to the online
NOSNE Commands and Functions manual, which
includes descriptions of the File Manager commands
and functions.

File Manager Subcommand

Purpose

Format

Remarks

Positions the cursor to the home line, allowing you to
enter commands and utility subcommands.

HOME
STATUS =status variable

• This subcommand is provided for those terminals that
do not have a predefined Home key.

o The home line is inactive when a window is displayed
on the screen.

$MAIN _TITLE
File Manager Function

Purpose Returns the File Manager main display title line
template.

Format $MAIN_ TITLE

Parameters None.

Remarks e The default File Manager title line template is:

CATALOG:$C:31$B:23$T Page $S:2of $L:2

See the SET _MAIN_ TITLE subcommand for
information on interpreting and changing the content
of the title line template.

19-8 NOSNE Commands and Functions 60464018 J

MARK_CATALOG_ENTRY

• For further information about functions, see the
NOS/VE System Usage manual.

MARK_CATALOG_ENTRY
File Manager Subcommand

Purpose

Format

Marks ·or unmarks one or more entries in the currently
displayed catalog.

MARK_CATALOG_ENTRY or
MAR CE

ENTRY=string or keyword
STATUS= status variable

Parameters ENTRY or E

60464018 J

Specifies the entry or entries to be marked or unmarked.
Use a keyword or· string to specify the entries to be
marked. By default, the entry at which the cursor was
last positioned is marked. If the specified entry is already
marked, it is unmarked.

Keyword options are:

CURRENT or C

Marks or unmarks the entry at which the cursor was
last positioned. This is the default.

ALL

Marks or unmarks all entries in the catalog.

MARK_ALL

Marks all entries in the catalog.

UNMARK_ALL

Unmarks all entries in the catalog.

If you use a string instead of a keyword, you can specify
a search string to mark entries that match it. Include any
of the following wild card characters in the search string:

?

Matches any single character. For example, a?a
matches aza but not aa.

File Manager 19-9

I
I

MARK_CATALOG_ENTRY

Remarks

*
Matches zero or more characters. For example, az•az
matches azaz and azxxxaz but not az i z.

'c'

Matches the characters within the apostrophes. These
·can be any characters except the apostrophe. This
entry is tjpically used to specify the asterisk, question
mark, right bracket, or left bracket characters. For
example, a'['* matches a[z and a[22.

[group]

Matches any single character within the brackets.
Specify the characters as a list [aei l, a range [a-zl,
or a combination [a-zA-Z$1-9l. To represent the
apostrophe character in the group use ''. Example,
[AEI l * matches entries beginning with A, E, or I.

c·1
Identifies a group of single characters to exclude from
matching. The group consists of the characters
following the caret. Specify the characters as a list
c·aei], a range c·a-f], or a combination
c·a-fA-F$1-9]. To represent the apostrophe character
in the group use ''. Example, [• AEI l * matches all
entries that do not begin with A, E or I.

{patterns}

Matches any one of several patterns within the braces.
Separate individual patterns from one another using a
vertical line (j). For example, { [ac l *I *report} matches
entries beginning with the letters a or c and entries
ending with the word report.

Use the EXTEND_CATALOG_ENTRY_MARK
subcommand to mark a range of entries from a preceding
mark to the current cursor position.

19-10 NOSNE Commands and Functions 60464018 J

$MARKED _CATALOG _ENTRIES

$MARKED _CATALOG _ENTRIES
File Manager Function

Purpose Returns the marked catalog entries.

Format $MARKED _CATALOG _ENTRIES or
$MCE

Parameters None.

Remarks • The marked catalog entries (catalogs and/or files) are
returned as a list of file values.

o For further information about functions, see the
NOSNE System Usage manual.

$MARKED _CATALOG _ENTRIES _SIZE
File Manager Function

Purpose

Format

Returns an integer specifying the number of marked
catalog entries.

$MARKED _CATALOG _ENTRIES _SIZE

Parameters None.

Remarks o Using the $MARKED_CATALOG_ENTRIES_SIZE
function is a faster alternative to
$SIZE($MARKED _CATALOG _ENTRIES).

o .For further information about functions, see the
NOSNE System Usage manual.

$NUMBER _OF _ROWS
File Manager Function

Purpose Returns the number of rows available on the screen.

Format $NUMBER _OF _ROWS

Parameters None.

60464018 J File Manager 19-11

I
I

POSITION _CURSOR

Remarks • Typically, the value returned by
$NUMBER_OF_ROWS is 24 or 30.

• For more information about functions, see the NOSNE
System Usage manual.

POSITION _CURSOR
File Manager Subcommand

Purpose Displays the catalog specified by name or cursor position
as the File Manager main display.

Format POSITION _CURSOR or
POSC or
VIEW or
VIE

CATALOG= file
STATUS =status variable

Parameters CATALOG or C

Remarks

QUIT

Specifies the catalog to be displayed as the main display.
If you position the cursor to a catalog before you use
POSITION _CURSOR, that catalog is used as the main
display. The default is the currently displayed catalog.

By default, your working catalog is changed to the new
catalog. You can prevent this by setting the
UPDATE_WORKING_CATALOG parameter of the
SET _SCREEN _OPTIONS subcommand to FALSE.

File Manager Subcommand

Purpose

Format

Ends a File Manager session.

QUIT or
QUI

KEEP _CURRENT _WORKING _CATALOG= boolean
STATUS =status variable

19-12 NOSNE Commands and Functions 60464018 J

Parameters

REFRESH _SCREEN

KEEP_CURRENT_WORKING_CATALOGorKCWC
Tells File Manager whether you want the working catalog
to be the current catalog or or restored to the catalog
under which you entered File Manager.

Specify YES to make your current catalog the working
catalog. The default is NO, which means your working
catalog is restored to the catalog under which you entered
File Manager.

REFRESH _SCREEN
File Manager Subcommand

Purpose

Format

Remarks

Clears and repaints the terminal screen.

REFRESH_SCREENM
REFS

STATUS=status variable

REFRESH _SCREEN can be used to clear any extraneous
characters from the screen.

$SCREEN _OUTPUT
File Manager Function

Purpose Returns the path of the file reserved for output generated
within the utility session.

Output directed to this file by commands executed either
on the home line or by function keys is displayed in a
window after command completion.

Format $SCREEN _OUTPUT or
$SO

Parameters None.

Remarks

60464018 J

o Only one file is used for an entire utility session.
Before completing the execution of a command, the file
is emptied then new output is added.

o The file is checked each time a command is executed
while in screen mode within the utility session. If the
file contains command output, it is displayed in a
window. Otherwise, the file remains empty.

File Manager 19-13

SET_FUNCTION _KEY

o The contents of the file is displayed in a window with
the same characteristics as the window generated by
the SHOW _FILE command.

SET _FUNCTION _KEY
File Manager Subcommand

Purpose

Format

Defines one or more function keys.

SET _FUNCTION _KEY or
SETFK

NUMBER= integer
COMMAND _STRING= string
SHIFT= boolean
LABEL= string
KEY _DEFINITIONS= list of record
STATUS =status variable

Parameters NUMBER or N

Specifies the number of the function key to be defined.
Enter an integer from 1 to 16. These numbers correspond
to the numbers in the function key menu displayed on the
screen. Numbers 1 to 8 correspond to the top row in the
menu; numbers 9 through 16 correspond to the bottom
row.

If you omit this parameter, the subcommand is ignored.

COMMAND _STRING or CS

Specifies the statement(s) to be exe.cuted when the
specified key is pressed. The string can contain any
available, executable statement. Separate multiple
statements with semicolons.

If you omit this parameter, a single blank character is
used.

SHIFT or S

Parameter Attributes: BY _NAME

For those terminals that have one key identifier next to
each highlighted box in the function key menu, the
SHIFT parameter indicates whether the key to be used is
shifted. Specify TRUE for the shifted key and FALSE for
the nonshifted key.

19-14 NOS/VE Commands and Functions 60464018 J

60464018 J

SET _FUNCTION _KEY

For those terminals that have two key identifiers next to
each highlighted box in the function key menu, the
SHIFT parameter indicates which key you use. Specify
TRUE to use the key corresponding to the top key
identifier. Specify FALSE to use the key corresponding to
the bottom key identifier.

If you omit this parameter, FALSE is used.

LABEL or L

Parameter Attributes: BY _NAME

Specifies the function key label displayed in the function
key menu on the screen. Enter the label as a string of 1
to 6 characters.

Use leading blanks to position the label within the
6-character label field. For example, enter ' Help' to
center the Help label in its field.

If you omit this parameter, a s~ring of 6 blank characters
is used.

KEY _DEFINITIONS or KD or KEY _DEFINITION

Parameter Attributes: BY _NAME

Specifies a list of one or more records containing function
key definitions. The value you specify must have the
following data structure:

list of record
number: integer 1 .. 16
shift: boolean
cOrTITland_string: string
label: string 1 .. 6 =$optional

recend

You can use this parameter rather than specifying
individual subcommands for each key definition.

See the NUMBER, SHIFT, COMMAND_STRING, and
LABEL parameter descriptions for information on the
values you can specify.

File Manager 19-15

SET _FUNCTION _KEY

Remarks

Examples

o You can define function keys one at a time through
the NUMBER, SHIFT, COMMAND_STRING, and
LABEL parameters or by entering a list of definitions
through the KEY _DEFINITIONS parameter. If you
have more than one key definition to specify, you will
probably save time using the KEY _DEFINITIONS
parameter.

o By default in File Manager, 2- and 4-character labels
are centered; 3- and 5-character labels are indented 1
character.

o The following example uses the KEY _DEFINITIONS
parameter to specify more than one function key
definition:

set_function_key key_def1nitions=(
(1 yes 'help' ' Help') (2 no 'email' 'Email'))

o You can use the $FUNCTION _KEYS function to store
the current function key settings in a variable for
later use. The value returned by this function has the
same ,structure as the value required by the
KEY _DEFINITIONS parameter.

The following example creates an environment variable
named KEYS that is accessible throughout a utility.
The current function key settings are stored in the
variable.

VAR
keys : (UTILITY) ·1 i st of record

number : integer 1 .. 16
shift : boolean
comnand_str1ng string
1 abe 1 : st r 1 ng

recend
VAREND

keys = $function_keys

If you want to restore these settings after making
changes to the current settings, use the variable
KEYS in conjunction with the SET _FUNCTION _KEY
subcommand:

set_function_key key_definitions keys

19-16 NOS/VE Commands and Functions 60464018 J

SET_LINE_MODE_PROMPT

SET _LINE _MODE PROMPT
File Manager Subcommand

Purpose Defines the prompt that precedes the slash when you are
using File Manager in line mode.

Format SET _LINE _MODE _PROMPT or
SETLMP

PROMPT _STRING= string
STATUS= status variable

Parameters PROMPT _STRING or PS

Examples

Specifies the content of the prompt. Enter a string of 1 to
27 characters. This parameter is required. The default
line mode prompt is the login family name.

The following example sets the prompt string to your
login user name:

set_line_mode_prornpt
prompt_string=$string{$job(login_user))

SET _MAIN TITLE
'"----· File Manager Subcommand

Purpose Defines the title line of the File Manager main catalog
display.

Format SET _MAIN_ TITLE or
SETMT

MAIN_ TITLE= string
STATUS =status variable

Parameters MAIN_ TITLE or MT

60464018 J

Specifies the content of the title line. Enter a string of 1
to 256 characters. This parameter is required.

The line you specify can include special character strings,
called metastrings, to represent variable items such as the
date and time.

Metastring descriptions:

The following metastrings ·are available for use in the
title line:

File Manager 19-17

II
1111

SET _MAIN _TITLE

Metastring Description

$B For users of CONNECT VIEW. The button
functions UpCtlg, PgDn, and PgUp are
positioned in this space, right-justified.

$C

$D

$F

$L

$P

$8

$T

$U

$V

$:

$$

$0

$9

Name of the currently displayed catalog.

Current date in the site-defined default
format.

Login family name.

Last screen of the File Manager main
display.

The family name of the current catalog.

The current screen of the File Manager
main display.

Time in H24:MM format.

Login user name.

Value of a specified 8CL string variable.
Format: $Vvariable_name: f ield_wi dth

For details on specifying field width for
metastring values, see the field width
section following the list of metastrings.

Colon.

Dollar sign.

Integers 0 to 9.

Specifying field width in the title line:

You can specify a field width for the values that replace
the $B, $C, $D, $F, $L, $P, $8, $T, and $U metastrings.
If you do not specify a field width, the values replacing
the metastrings begin where you position them in relation

19-18 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

SET _MAIN _TITLE

to other elements in the title line. For the metastrings $:,
$$, and $0 through $9, the field width is 1. For $V, you
must specify a field width.

To specify the field width, enter the metastring, a colon
(:), and then an integer specifying the number of
characters to reserve for the field. For example, $F:10
reserves 10 characters in the title line for the login
family name. The substituted value is always left-justified
within the field. You can, however, use spaces to position
the metastrings and other characters within the template.
For example, the template:

My user name is $u:20 $t Page $s:2of $1:2

produces the title line:

My user name 1s JIMBO 09:04 Page 1 of 2

NOTE

For CONNECT VIEW users:

The labels for the mouse button functions U pCtlg, PgDn,
and PgUp require 23 columns. The default File Manager
title line template is:

CATALOG:$C:31$B:23$T Page $S:2of $L:2

The labels UpCtlg, PgDn, and PgUp are positioned in the
$B field to be sensitive to mouse clicks.

o Use the $MAIN _TITLE function to display the
template for the current title line.

• For more information about CONNECT VIEW, see the
CONNECT VIEW for the IBM PC manual.

File Manager 19-19

SET_SCREEN _OPTIONS

Examples The following example uses deferred evaluation of
variables to have a variable updated by SCL. The $V
metastring is used to display the task's job mode CPU
time in the title line:

VAR
cpu_time:(job defer) string= ..

$substring ($integer _string (..
$substring($integer_string(

$cpu_time(tjm)) 1 10)
VAR END

set_main_title ..
main_title='CPU time is $vcpu_time:10'

SET _SCREEN _OPTIONS
File Manager Subcommand

Purpose Specifies the number of function key menu rows displayed.
It also specifies whether the working catalog is updated
when the display is changed to view a different catalog.

Format SET _SCREEN _OPTIONS or
SETSO

MENU _ROW=integer
UPDATE _WORKING _CATALOG= boolean
STATUS= status variable

Parameters MENU _ROW or MENU _ROWS or MR

Specifies the number of function key menu rows. The
value can be 0, 1, or 2. The default is 1.

UPDATE_ WORKING _CATALOG or UWC

Specifies whether the working catalog is changed when
the display is changed to view a different catalog. TRUE
specifies that the working catalog will be updated. FALSE
specifies that the working catalog will not be updated.
The default is TRUE.

19-20 NOSNE Commands and Functions 60464018 J

Remarks

SET_ VARIABLES

o Use the $FUNCTION _SIZE function to list the
number of screen rows used by the function key menu
rows. There can be 0, 1, or 2 menu rows
corresponding to 0, 2, or 5 screen rows.

e Use the value returned by $FUNCTION _SIZE and
that returned by $NUMBER_ OF _ROWS to determine
the number of screen rows available for displaying
windows.

SET_ VARIABLES
File Manager Subcommand

Purpose Specifies the SCL variables used to store the current
catalog and current file.

Format SET_ VARIABLES or
SETV

CURRENT _CATALOG_ VARIABLE= data _name
CURRENT _FILE_ VARIABLE= data _name
STATUS =status variable

Parameters CURRENT _CATALOG _VARIABLE or CCV

'-- Specifies the variable used to store the current catalog,
which is the catalog last displayed. The default variable
name is VCC.

CURRENT_FILE_VARIABLEorCFV

Specifies the variable used to store the current file, which
is the file to which the cursor was last positioned. The
default variable name is VCF.

UP_CATALOG
File Manager Subcommand

Purpose

Format

60464018 J

Displays the previous catalog in the catalog hierarchy.

UP _CATALOG or
UPC

STATUS =status variable

File Manager 19-21

ll
111!

UP_CATALOG

Remarks • This subcommand is ignored if you are in your master
catalog ($USER) or in the $LOCAL catalog.

• By default, your working catalog is changed to the
catalog displayed when you enter UP _CATALOG. You
can prevent this by setting the
UPDATE_WORKING_CATALOG parameter of the
SET _SCREEN _OPTIONS subcommand to FALSE.

19-22 NOSNE Commands and Functions 60464018 J

FTAMNE 20

ENTER_FTAM_UTILITY 20-1
APPEND _FILE .. 20-5
CHANGE_FTAM_ATTRIBUTES 20-10

~~if ~~?o~~f~::::i~~:::::::::::::: . : . : : : : : : : : : : : . ~~~~! 111

~f ~~;~~?~f~~~~~!~~~~:::::::: ·:::::::::::.::.::::. ~~~~~ II
DISPLAY_TRACE_FILE 20-29
DISPLAY_USER_VALIDATIONS 20-30
GET_FILE ... 20-31
QUIT .. 20-34
REPLACE _FILE ·. 20-34

60464018 J

FTAMNE 20

ENTER _FTAM _UTILITY
Command

Purpose

Format

Initiates FTAM/VE. This command establishes a NOS/VE
FTAM initiator utility that allows you to perform the file
tr an sf er and file management functions. When you initiate
FTAM/VE you control execution by specifying parameters.
Most of the options you specify on parameters can be
changed with subcommands.

ENTER _FTAM _UTILITY or
ENTFU or
FTAM

HOST= application
USER_ VALIDATION =application
PASSWORD =application
ACCOUNT =application
BELL _MODE= boolean
TRACE _MODE= boolean
VERBOSE _MODE= boolean
EXPRESSION _EVALUATION= boolean
REALSTORE =keyword
INPUT=file
OUTPUT=file
PROLOG=file
TRACE _FILE= file
STATUS= status variable

Parameters HOST or H

60464018 J

Specifies the remote host with which the FTAMNE
initiator attempts to establish a connection.

If the HOST parameter is specified, the
USER_ VALIDATION and the PASSWORD parameters are
required. If you omit the USER_ VALIDATION or
PASSWORD parameter when you are running
interactively, the system prompts you for the information.

If this parameter is omitted, you can establish a
connection with a remote host later using the
CREATE _HOST _CONNECTION subcommand.

FTAMNE 20-1

ENTER_Fl'AM _UTILITY

USER_VALlDATION or USER or UV or. U

Specifies the identity of the calling user.

If the remote host is a NOS/VE host, this parameter must
follow the rules of the FTAM/VE responder. For
information on the rules used by the responder for
processing of this parameter, refer to chapter 1 in the
FTAM/VE manual.

If the remote host is a foreign host, this parameter must
follow the rules and conventions dictated by the
responding system implementation.

To indicate that you wish anonymous access to the
responding system, specify an empty string.

This parameter is required when you specify the HOST
parameter.

PASSWORD or PW

Parameter Attributes: SECURE

Specifies a password, which the FTAM/VE responder uses
to validate you. This parameter may be used to
authenticate the USER_ VALIDATION parameter. It is
required when the HOST parameter is specified.

ACCOUNT or A

Parameter Attributes: SECURE

Specifies the account to be charged for costs incurred
during FTAM operations. This release of the FTAM/VE
initiator and responder does not provide accounting.

This parameter may be essential for connecting to some
foreign hosts.

BELL _MODE or BM

Specifies whether or not an ASCII BEL character is sent
to interactive terminals with an input prompt.

This parameter can be used for long file transfers when
you want to attend to other matters and be notified when
the transfer is complete.

If this parameter is omitted, the default is OFF.

20-2 NOS/VE Commands and Functions 60464018 J

60464018 J

ENTER_FTAM_UTILITY

TRACE _MODE or TM

Specifies whether or not FTAM protocol data units (PDU s)
are written to a trace file.

If this parameter is omitted, the default is OFF.

NOTE

This feature is provided to aid experienced FTAM network
system analysts in resolving FTAMNE problems.

VERBOSE _MODE or VM

Specifies whether or not information indicating the
amount of data transferred and informative diagnostic
messages are written to an output file.

If this parameter is omitted, the default is OFF.

NOTE

Diagnostic messages indicating an error or warning are
al ways supplied.

EXPRESSION _EVALUATION or EE

Specifies the mode of evaluation for parameters of type
application. Parameters are evaluated as type application
if the EXPRESSION _EVALUATION option is OFF and as
type string if the EXPRESSION _EVALUATION option is
ON. Both types preserve case, which is significant for
certain operating systems, and allow most remote host file
names, as well as other values to be specified without
quotation marks.

If EXPRESSION _EVALUATION is OFF, function
expressions within an SCL procedure used as parameters
to an FTAM/VE subcommand are not evaluated.

If this parameter is omitted, the default is OFF.

REALSTORE or R

Specifies the remote host type. The keywords are:

NOSVE (N)

Identifies the remote host as a NOSNE system. This
option may be useful for file transfers between
NOSNE systems. See subcommands APPEND_FILE,
REPLACE _FILE, and GET _FILE for additional

FTAMNE 20-3

ENTER_FTAM _UTILITY

information. Exercise care when using this parameter.
Setting the REALSTORE option to NOSVE when the
remote system is not a NOSNE system running
FTAMNE may cause the connection attempt to fail.

UNKNOWN (U)

Indicates that the remote host type is not NOSNE.

The default is UNKNOWN (U).

INPUT or I

Specifies a file from which FTAMNE subcommands are
read.

If FTAMNE is initiated from within an SCL procedure,
FTAM/VE subcommands are not read from the default file
$INPUT; they are read from the $COMMAND file.

If this parameter is omitted, the default is $INPUT.

OUTPUT or O·

Specifies a file to which responses to some FTAMNE
subcommands and all verbose information is written.

If this parameter is omitted, the default is $OUTPUT.

PROLOG or P

Specifies a prolog file to be processed when FTAM/VE is
invoked. The prolog file is useful for establishing
FTAMNE options different from the· default. FTAMNE
options set in the prolog file take precedence over those
specified with the ENTER_FTAM_UTILITY command.

If this parameter is omitted, the default is
$USER.FTAM _PROLOG.

TRACE _FILE or TF

Specifies a file on the local host to which trace
information is to be written. The option TRACE _MODE
controls whether tracing information is written to this
file.

If this parameter is omitted, the default is
$USER.FTAM _BINARY _TRACE.

This option is allowed to be specified only with the
ENTER _FTAM _UTILITY command. It cannot be changed
after the FTAM/VE utility is initiated.

20-4 NOSNE Commands and Functions 60464018 J

Remarks

Examples

APPEND _FILE

• The FTAMNE user prompt for user input is ftam/.

e The FTAMNE user prompt for additional input is
ftam . ./.

o FTAMNE ignores a pause break condition entered
during .an FTAMNE subcommand.

• FTAM/VE processes a terminal break condition ending
the current operation, if possible.

The following command initiates the FTAMNE utility.

/enter_ftam_utility
ft am/

The following command creates a connection upon
entering the utility.

/enter_ftam_utility host=hosta uv=evol pw=evolpw
ft am/

The following command sets options at startup for the
session.

/enter_ftam_utility tm=on ee=on
ft am/

APPEND _FILE
FTAMNE Subcommand

Purpose

Format

60464018 J

Appends data from the local host file to the remote host
file. If the remote host file exists, the local file is
appended to the end of the remote host file. If the remote
host file does not exist, it is created by the remote host.

If the VERBOSE _MODE option is currently ON,
information about the type of file transfer and the amount
of data transferred is written to the local output file.

APPEND _FILE or
APPF or
APPEND

LOCAL _FILE= file
REMOTE _FILE =application
ACCESS _PASSWORDS= list of record

FTAMNE 20-5

I
Ill

APPEND _FILE

CONCURRENCY _CONTROL= list of record
CREATE _PASSWORD==application
LOCAL _FILE _PASSWORD== name
PERMITTED _ACTIONS= list of keyword
STATUS ==status variable

Parameters LOCAL _FILE or LF

Specifies the name of the local host file.

REMOTE _FILE or RF

Specifies the name of the remote host file. The actual
parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY
command or the CHANGE_FTAM_OPTIONS
subcommand.

If the. REMOTE _FILE parameter is omitted, the
APPEND _FILE subcommand uses the file name portion
of the value supplied on the LOCAL _FILE parameter as
the remote host file name, stripping off the family name,
master catalog, and any subcatalogs.

ACCESS_PASSWORDSorAP

Parameter Attributes: SECURE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed values

EXTEND (EX)

INSERT (IN)

READ _ATTRIBUTE (RA)

REPLACE (RP)

See File Attributes in chapter 4 of the FTAMNE
Usage manual for information on how these values
map into NOSNE values.

20-6 NOS/VE Commands and Functions 60464018 J

60464018 J

APPEND _FILE

PASSWORD_ VALUE

Indicates the password that corresponds to the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION
parameter. For additional information refer to the
EXPRESSION _EV....\LUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE_FTAM_OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the locks that are required for the requested
access. The locks define the access available to you and to
any other user.

REQUESTED_ACCESS

Specifies the access that the lock corresponds with.
The access values are:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

CHANGE _ATTRIBUTE (CA)

DELETE _FILE (DF)

See Concurrency Control in chapter 4 of the FTAMNE
Usage manual for information on how these values
map to NOS/VE values.

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
but others may.

SHARED (S)

Indicates that you may perform the operation and
so may others.

FTAM/VE 20-7

1~20
::::::::::::::::

APPEND _FILE

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO _ACCESS (NA)

Indicates that no one may perform the operation.

CREATE _PASSWORD or CP

Parameter Attributes: SECURE

Specifies the password that may be required by the
responding system to verify that you have permission to
create files in the remote filestore.

The actual parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER_FTAM_UTILITY
command or the CHANGE_FTAM_OPTIONS
subcommand.

LOCAL _FILE _PASSWORD or LFP

Parameter Attributes: SECURE _

Specifies the file password. It must match the file
password stored with the catalog entry. If the password
does not match, an abnormal status is returned.

PERMITTED _ACTIONS or PERMITTED ~CTION or
PA

Specifies the FTAM actions that will be allowed on the
file:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ_ATTRIBUTE (CA)

DELETE _FILE (DF)

TRAVERSAL (T)

20-8 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

REVERSE _TRAVERSAL (RT)

RANDOM ORDER (RO)

APPEND _FILE

See File Attributes in chapter 4 of the FTAMNE Usage
manual for information on how FTAM values map to
NOSNE attributes.

If this parameter is not specified and the file is
transferred as an FTAMl or FTAM3 file, the permitted
actions specified by the initiator are: READ, INSERT,
REPLACE, EXTEND, ERASE, READ_ATTRIBUTE,
CHANGE_ATTRIBUTE, and DELETE_FILE.

If this parameter is not specified and the file is
transferred as an FTAM2 or FTAM4 file, the permitted.
a_ctions specified by the initiator are: READ, INSERT,
REPLACE, EXTEND, ERASE, READ _ATTRIBUTE,
CHANGE_ATTRIBUTE, DELETE_FILE, and
TRAVERSAL.

If the remote file does not exist prior to performing an
APPEND _FILE operation, the permitted actions are
assigned to the file.

o The reverse operation may be accomplished by doing a
GET _FILE and specifying the $EOI file position on
the local file.

o If the remote system is a NOSNE host, and the value
of the REALSTORE option is NOSNE, and a remote
file is created, the remote file inherits the attributes
of the local file.

The following command appends a local host file to the
remote host file.

ftam/append_file 1ocal_file=$user.text1
ftam .. /remote_file=a:\dir1\remote_file

The following command appends a local host file to the
remote host file, specifying passwords for the remote file
access.

ftam/append_file 1ocal_file=$user.text1 ..
ftam .. /remote_file=a:\dir1\remote_file ap=((extend p
w1) (replace pw1))

FTAMNE 20-9

ll
Ill

Ill
ii

CHANGE _FTAM_ATTRIBUTES

CHANGE _FTAM _ATTRIBUTES
FTAMNE Subcommand

Purpose

Format

Changes one or more of the FTAMNE attributes for the
specified remote file, provided the change operation is
allowed by the remote system.

CHANGE _FTAM _ATTRIBUTES or
CHANGE _FTAM _ATTRIBUTE or
CHAFA

REMOTE _FILE= application
NEW _FILE _NAME= application
STORAGE _ACCOUNT= application
FILE _AVAILABILITY= keyword
FUTURE _FILE _SIZE= integer
ACCESS _PASSWORDS= record
CONCURRENCY _CONTROL=list of record
STATUS= status variable

Parameters REMOTE _FILE or RF

Specifies the name of the remote host file whose
attributes are to be changed. The actual parameter value
depends on the value of the EXPRESSION _EVALUATION
parameter. For additional information refer to the
EXPRESSION _EVALUATION parameter description for
the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

NEW_FILE_NAMEorNFN

Specifies the new name for the remote host file. The
actual parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY
command or the CHANGE_FTAM_OPTIONS
subcommand.

STORAGE _ACCOUNT or SA

Specifies the storage account attribute value. This
parameter may be implemented optionally by FTAM
responder implementations. The actual parameter value
depends on the value of the EXPRESSION _EVALUATION
parameter. For additional information, refer to the

20-10 NOSNE Commands and Functions 60464018 J

60464018 J

CHANGE _FTAM _ATTRIBUTES

EXPRESSION _EVALUATION parameter description for
the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

See File Attributes in chapter 4 of the FTAM/VE Usage
manual for information on FTAMNE responder
implementation.

FILE _AVAILABILITY or FA

Specifies the availability of the remote file.

IMMEDIATE (I)

Indicates that the file is stored on a fixed media
device and no significant delay is encountered when
accessing this file.

DEFERRED (D)

Indicates that the file may be stored on a removable
media device.

If the value for a file is changed from DEFERRED to
IMMEDIATE, this may indicate to a responder to move
the file to an immediately available device. However, the
actual use of this attribute is implementation- dependent.

See File Attributes in chapter 4 of the FTAM/VE Usage
manual for information on FTAMNE implementation.

FUTURE _FILE _SIZE or FFS

Specifies the largest size that the file may grow to (in
octets) as a result of file operations. The maximum value
allowed for this attribute depends on each responder
implementation.

ACCESS_PASSWORDSorAP

Parameter Attributes: SECURE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed value is CHANGE _ATTRIBUTE
(CA).

FTAM/VE 20-11

I
III

CHANGE _FTAM _ATTRIBUTES

PASSWORD_ VALUE

Indicates the password that corresponds with the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION
parameter. For additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the locks that are required for the requested
access. The locks define the access available to you and to
any other user.

REQUESTED_ACCESS

Specifies the access that the lock corresponds with.
The allowed values are:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

CHANGE_ATTRIBUTE (CA)

DELETE _FILE (DF)

See Concurrency Control in chapter 4 of the FTAMNE
Usage manual for information on how these values
map to NOSNE values.

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
but others may.

SHARED (S)

Indicates that you may perform the operation and
so may others.

20-12 NOSNE Commands and Functions 60464018 J

\'----

Examples

CHANGE_FTAM_OPTIONS

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO _ACCESS (NA)

Indicates that no one may perform the operation.

The following command changes two FTAMNE attributes.

ftam/change_ftam_attributes rf=:rust.userl.filea ffs
=10000 ..

ftam .. /fa=irrmediate

CHANGE _FTAM _OPTIONS
FTAMNE Subcommand

Purpose

Format

Parameters

60464018 J

Changes one or more of the default FTAMNE options to
the specified value(s).

CHANGE _FTAM _OPTIONS or
CHANGE_FTAM_OPTION or
CHAFO

BELL _MODE= boolean
DEBUG _MODE=boolean
EXPRESSION _EVALUATION= boolean
OUTPUT=file
TRACE _MODE= boolean
VERBOSE _MODE=boolean
STATUS= status variable

BELL _MODE or BM

Specifies whether or not an ASCII BEL character is sent
to interactive terminals with the prompt. This option is
useful for long file transfers when you may want to
attend to other matters and be notified when the transfer
is complete.

DEBUG _MODE or DM

Reserved.

EXPRESSION _EVALUATION or EE

Specifies the mode of evaluation for parameters of type
application. Parameters are evaluated as type application
if the EXPRESSION _EVALUATION option is OFF, and

FTAM/VE 20-13

CHANGE_FTAM_OPTIONS

Examples

as type string if the EXPRESSION EVALUATION option
is ON. Both types preserve case, which is significant for
certain operating systems, and allow most remote host file
names as well as other values to be specified without
quotation marks.

If EXPRESSION _EVALUATION is OFF, expressions
within an SCL application type procedure are NOT
evaluated when used as a parameter to an FTAMNE
subcommand.

OUTPUT or 0

Specifies the file to which information generated by
several of the FTAMNE subcommands is written, as well
as the file to which all verbose information is written.

TRACE _MODE or TM

Specifies whether or not FTAM PDU s are written to the
trace file.

NOTE

This feature is provided to aid experienced FTAM network
system analysts in resolving FTAMNE problems.

VERBOSE _MODE or VM

Specifies whether or not information indicating the
amount of data transferred and informative diagnostic
messages are written to the output file.

NOTE

Diagnostic messages indicating an error or warning are
always supplied.

The following command changes an FTAMNE option
setting.

ftam/change_ftam_option trace_mode=on

20-14 NOSNE Commands and Functions 60464018 J

CHANGE _USER~ VALIDATION

CHANGE _USER_ VALIDATION
FTAMNE Subcommand

Purpose

Format

Changes the user validation information for the specified
remote host. This information is used if you request that
a connection be established with that remote host.

CHANGE_USER_VALIDATION or
CHA UV

HOST= application
USER_ VALIDATION= application
PASSWORD= application
ACCOUNT =application
REALSTORE =keyword
STATUS= status variable

Parameters HOST or H

60464018 J

Specifies the remote host with which the FTAMNE
initiator attempts to establish a connection.

USER_ VALIDATION or USER or UV or U

Specifies the identity of the calling user.

If the remote host is a NOSNE host, this parameter must
follow the rules of the FTAMNE responder. For
information on the rules used by the FTAMNE responder
for processing this parameter refer to chapter 1 of the
FTAMNE manual.

If the remote host is a foreign host, this parameter must
follow the rules and conventions dictated by the
responding system implementation.

To indicate that you wish anonymous access to the
responding system, you may specify an empty string.

PASSWORD or PW

Parameter Attributes: SECURE

Specifies a password which the FTAMNE responder uses
to validate you. This parameter may be used to
authenticate the USER_ VALIDATION parameter.

FTAM/VE 20-15

CHANGE_USER_ VALIDATION

Remarks

Examples

ACCOUNT or A

Parameter Attributes: SECURE

Specifies the account to be charged for costs incurred
during FTAM operations. This release of the FTAMNE
responder does not provide accounting.

This parameter may be essential for connecting to a
foreign host.

REALSTORE or R

Specifies the remote host type.

NOSVE (N)

Indicates that the remote host is a NOSNE system.
This option is useful for file transfers between
NOSNE systems. See subcommands APPEND_FILE,
REPLACE _FILE, and GET _FILE for additional
information. Exercise care when using this parameter.
Setting the REALSTORE option to NOSVE when the
remote system is not a NOSNE system running
FTAMNE may cause the connection to fail.

UNKNOWN (U)

Indicates that the remote host type is not NOSNE.

e The actual value of the ACCOUNT, HOST,
USER_VALIDATION, or PASSWORD parameter
depends on the value of the
EXPRESSION _EVALUATION parameter. For
additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

The following subcommand changes the user validation for
remote host FTAM _ VE2.

ftam/change_user_validation host=ftam_ve2 ..
ftam .. /user='login un=bjj fn=nosve' pw=bjjpw

20-16 NOSNE Commands and Functions 60464018 J

CLEAR_TRACE _FILE

CLEAR _TRACE _FILE
FTAMNE Subcommand

Purpose

Format

Remarks

Examples

Deletes the current contents of the FTAMNE trace file.

CLEAR_TRACE_FILE&
CLETF or
CLEAR

STATUS= status variable

o A subsequent DISPLAY _TRACE _FILE would not
contain any protocol trace information.

The following command deletes the current contents of the
FTAMNE trace file.

ftam/clear_trace_file

CREATE _HOST _CONNECTION
FTAMNE Subcommand

Purpose

Format

60464018 J

Establishes an association with a remote host. Any
existing remote host connection must be deleted using the
DELETE _HOST _CONNECTION subcommand prior to
establishing another host connection.

CRE_ATE_HOST_CONNECTION or
CREHC or
OPEN

HOST= application
USER_ VALIDATION =application
PASSWORD= application
ACCOUNT =application
REALS TORE= keyword
STATUS= status variable

FTAMNE 20-17

11~11

CREATE _HOST _CONNECTION

Parameters HOST or H

Specifies the remote host with which the FTAMNE
initiator attempts to establish a connection.

USER_ VALIDATION or USER or UV or U

Parameter Attributes: SECURE

Specifies the identity of the calling user.

If the remote host is a NOS/VE host, this parameter must
follow the rules of the FTAM/VE responder. For
information on the rules used by the FTAM/VE responder
for processing this parameter, refer to chapter 1 in the
FTAM/VE manual.

If the remote host is a foreign host, this parameter must
follow the rules and conventions dictated by the
responding system implementation.

To indicate that you wish anonymous access to the
responding system, you may specify an empty string.

PASSWORD or PW

Parameter Attributes: SECURE

Specifies a password which the FTAM/VE responder uses
to validate you. The remote responder may use this
parameter to authenticate the USER_ VALIDATION
parameter.

ACCOUNT or A

Parameter Attributes: SECURE

Specifies the account to be charged for costs incurred
during FTAM operations. This release of FTAMNE does
not provide accounting.

REALSTORE or R

Specifies the remote host type.

NOSVE (N)

Indicates that the remote host is a NOS/VE system.
This option may be useful for file transfers between
NOS/VE systems. See subcommands APPEND _FILE,
REPLACE _FILE, and GET _FILE for additional
information. Exercise care when using this parameter.

20-18 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

CREATE _HOST_CONNECTION

Setting the REALSTORE option to NOSVE when the
remote system is not a NOS/VE system running
FTAM/VE may cause the connection attempt to fail.

UNKNOWN (U)

Indicates that the remote host type is not NOSNE.

o Parameter values specified on
CREATE _HOST _CONNECTION take precedence over
values established by a previous
CHANGE _USER_ VALIDATION for the same host.

o If the HOST parameter is specified and there is no
user validation defined for the specified host, then the
USER_ VALIDATION and the PASSWORD parameters
are required. Entering an empty string for the
USER_ VALIDATION parameter specifies an
anonymous user. PASSWORD parameters are required.
If the USER_ VALIDATION parameter or the
PASSWORD parameter have been omitted and you are
running interactively, you are prompted for the
information.

o The actual value of the ACCOUNT, HOST,
USER_ VALIDATION, or PASSWORD parameter
depends on the value of the
EXPRESSION _EVALUATION parameter. For
additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE_FTAM_OPTIONS subcommand.

The following subcommand establishes a connection with
the remote host FTAM _HOST _1, with no existing user
validation information. The example shows subsystem
prompts when the USER_ VALIDATION and PASSWORD
parameters are omitted.

ftam/create_host_connection host=ftam_host_1
User_Validation (Remote_Host: ftam_host_1)
? user1, family2
Password (Remote_Host: ftam_host_1)
? user1pw

FTAMNE 20-19

I
Ill

DELETE_FILE

The following subcommands establish a connection with
the remote host FTAM _HOST _1, after setting up the
user validation.

ftam/change_user_validation host=ftam_host_l user='u
serl, fami 1y2' ..
ftam .. /password=userlpw
ftam/create_host_connection host=ftam_host_l

DELETE _FILE
FTAMNE Subcommand

Purpose Deletes a file on the remote host.

When the FTAM/VE responder receives a DELETE _FILE
request, it first selects the file, using the highest cycle of
the file, unless the user requests a specific cycle number
in the DELETE _FILE subcommand. If no cycle is
specified, the highest cycle of the file is deleted.
Therefore, if more than one cycle of the file exists, you
should specify a cycle of $low or a specific cycle number.

NOTE

To delete a file on the local host, use the NOSNE
command $SYSTEM.DELETE _FILE.

Format DELETE _FILE or
DELF or
DELETE

REMOTE _FILE= application
ACCESS _PASSWORDS =record
CONCURRENCY _CONTROL=record
STATUS =status variable

Parameters REMOTE _FILE or RF

Specifies the name of the remote host file. The actual
parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY
command or the CHANGE_FTAM_OPTIONS
subcommand.

20-20 NOSNE Commands and Functions 60464018 J

60464018 J

ACCESS_PASSWORDSorAP
Parameter Attributes: SECURE

DELETE _FILE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed value is DELETE_FILE (DF).

PASSWORD_ VALUE

Indicates the password that corresponds to the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION
parameter. For additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the access locks that are required for the
requested access. The locks define the access available to
you and to any other user.

REQUESTED _ACCESS

Specifies the access that the lock corresponds with.
The allowed values are:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

CHANGE _ATTRIBUTE (CA)

FTAM/VE 20-21

DELETE _HOST _CONNECTION

Examples

DELETE _FILE (DF)

See Concurrency Control in chapter 4 of the FTAMNE
Usage manual for information on how these values
map to NOSNE values.

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
but others may.

SHARED (S)

Indicates that you may perform the operation and
so may others.

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO_ACCESS (NA)

Indicates that no one may perform the operation.

The following subcommand deletes a file on the remote
host.

ftam/delete_file remote_file=a:\main\filea

DELETE _HOST_CONNECTION
FTAMNE Subcommand

Purpose

Format

Examples

Terminates an existing connection to a remote host
without terminating FTAMNE.

DELETE _HOST_ CONNECTION. or
DELHC or .
CLOSE

STATUS= status variable

The following subcommand terminates the connection with
a remote host.

ftam/delete_host_connection

20-22 NOSNE Commands and Functions 60464018 J

DISPLAY _FTAM _ATTRIBUTES

DISPLAY _FTAM _ATTRIBUTES
FTAMNE Subcommand

Purpose

Format

Parameters

60464018 J

Writes the current FTAM attributes for the specified
remote file to the output file. The amount of information
available depends on the responding implementation.

DISPLAY _FTAM _ATTRIBUTES or
DISFA or
DISPLAY _FTAM _ATTRIBUTE or
STATUS

REMOTE _FILE= application
DISPLAY _OPTION= keyword or list of keyword
ACCESS _PASSWORDS= list of record
CONCURRENCY _CONTROL=list of record
OUTPUT=file
STATUS= status variable

REMOTE _FILE or RF

Specifies the name of the remote host file whose
attributes are to be displayed. The actual parameter value
depends on the value of the EXPRESSION _EVALUATION
parameter. For additional information refer to the
EXPRESSION _EVALUATION parameter description for
the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Specifies the FTAM remote file attributes that are to be
written to the output file.

ALL

Display all FTAM attributes available.

PERMITTED _ACTIONS (PA)

Displays the permitted actions attribute: read, insert,
replace, extend, erase, read _attribute,
change_attribute, and delete_file.

CONTENTS_TYPE (CT)

Displays the contents type of the remote file; generally
a document type name: FTAMl, FTAM2, FTAM3,
FTAM4, and so on.

FTAM/VE 20-23

DISPLAY _FTAM _ATTRIBUTES

STORAGE _ACCOUNT (SA)

Displays the storage account attribute.

DATE _TIME _OF _CREATION (DTOC)

Displays the date and time the remote file was
created.

DATE_ TIME _OF _MODIFICATION (DTOM)

Displays the date and time the remote file was last
modified.

DATE_TIME_OF_READ (DTOR)

Displays the date and time the remote file was last
read.

DATE _TIME _OF _ATTR _MODIFICATION (DTOAM)

Displays the date and time an attribute of the remote
file was last modified.

IDENTITY _OF _CREATOR (IOC)

Displays the identity of the user who created the
remote file.

IDENTITY OF MODIFIER (IOM)

Displays the identity of the user who last modified the
remote file .

. IDENTITY _OF _READER (IOR)

Displays the identity of the user who last ·read the
remote file.

IDENTITY _OF _ATTR_MODIFIER (IOAM)

Displays the identity of the user who last modified an
attribute of the remote file.

FILE _AVAILABILITY (FA)

Displays the availability of the remote file:
DEFERRED or IMMEDIATE.

FILE _SIZE (FS)

Displays the file size of the remote file in octets.

20-24 NOSNE Commands and Functions 60464018 J

60464018 J

DISPLAY_FTAM _ATTRIBUTES

FUTURE _FILE _SIZE (FFS)

Displays the largest size to which the remote file may
grow, in octets.

If this parameter is omitted, the default is ALL.

ACCESS_PASSWORDSorAP
Parameter Attributes: SECURE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed value is READ_ATTRIBUTE (RA).

PASSWORD_ VALUE

Indicates the password that corresponds with the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION
parameter. For additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the access locks that are required for the
requested access. The locks define the access available to
you and to any other user.

REQUESTED _ACCESS

Specifies the access that the lock corresponds with.
The allowed values are:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

FTAMNE 20-25

DISPLAY _FTAM _ATTRIBUTES

Examples

CHANGE _ATTRIBUTE (CA)

DELETE _FILE (DF)

See chapter 4 of the FTAMNE Usage manual for
information on how these values map to NOSNE
values.

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
but others may.

SHARED {S)

Indicates that you may perform the operation and
so may others.

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO _ACCESS (NA)

Indicates that no one may perform the operation.

OUTPUT or 0

Specifies the file to which the attributes of the remote file
are written. If this parameter is omitted, the output file
specified on the ENTER _FTAM _UTILITY command or
the CHANGE_FTAM_OPTIONS subcommand is used.

The following example illustrates the display of FTAM
attributes for a remote file.

ftam/display_ftam_attributes prolog

Remote_Fi le
Contents_ Type

Universal _Class
Maxi mum_St r i ng_Length
String_Signif icance

Fi le_Avai labi 1 ity
Perm i tted_Act ions

e,

lete)
Fi le_Size
Future_Fi le_Size
Date_ Time_of _Great ion
Date_ Time_of _Mod if icat ion
Date_Time_of _Read
Date_ Time_of _Attr _Mod if icat ion

: prolog
FTAM2
IA5 string
134
not significant
immediate
(read, insert, replace, extend, eras-

read_attribute, change_attribute, de-

1415
100000000
1988-02-17 14:53:03:360
1989-08-21 15:28:54:400
1989-08-22 15:31:53:090

: no value available

20-26 NOS/VE Commands and Functions 60464018 J

''----·

I dent ity_of _Creator
I dent ity_of _Modifier
Identity_of_Reader
I dent ity_of _Attribute_Modif ier
Storage_Account

DISPLAY_FTAM_OPTIONS

: no value available
: no value available
: no value available
: no value available
: no value available

DISPLAY _FTAM _OPTIONS
FTAMNE Subcommand

Purpose

Format

Writes current information about the FTAMNE connection
to the output file. This information includes the option
settings that determine the behavior of FTAMNE and
connection status information, if a connection is currently
active. The connection information includes the service
class, functional units, attribute groups, and document
types that have been negotiated during connection
establishment.

DISPLAY_FTAM_OPTIONS or
DISFO or
DISPLAY_FTAM_OPTION or
STATUS

DISPLAY _OPTION=keyword or list of keyword
OUTPUT=file
STATUS=status variable

Parameters DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Specifies the FTAMNE option. values that are to be
written to the output file.

ALL

Displays all FTAMNE options.

BELL_MODE (BM)

Displays the bell mode, ON or OFF.

EXPRESSION _EVALUATION (EE)

Displays the expression evaluation mode, ON or OFF.

OUTPUT (0)

Displays the output file name.

TRACE_MODE (TM)

Displays the trace mode, ON or OFF.

60464018 J FTAMNE 20-27

II
Ill

DISPLAY _FTAM _OPTIONS

Examples

VERBOSE _MODE (VM)

Displays the verbose mode, ON or OFF.

CONNECTION _STATUS (CS)

Displays information about the present connection, if
one exists. This information includes the service class,
functional units, attribute groups, and document types
that may be used for this association. If no connection
with a remote host is currently established, you are
informed that no connection exists.

If this parameter is omitted, the default is ALL.

OUTPUT or 0

Specifies the file to which the FTAMNE options are
written. If the parameter is omitted, the file specified on
the ENTER _FTAM _UTILITY command or the
CHANGE_FTAM_OPTIONS command is used.

The following example illustrates the display of FTAMNE
options when no connection exists.

ftam/display_ftam_opt1ons
Bel l_Mode
Expression_Evaluation
Output
Trace_Mode
Verbose_Mode
Connect1on_Status

off
off
$LOCAL.$0UTPUT.1
off
off
closed

The following example illustrates the display of FTAMNE
options when a connection exists.

ftam/display_ftam_options
Bel l_Mode
Expression_Evaluation
Output
Trace_Mode
Verbose_Mode
Connection_Status
Attribute_Groups
Functional_Units

mt, enhanced

Service_Class

off
off
$LOCAL.$0UTPUT.1
off
off
open
(kernel, storage)
(read, write, lim. file mg-

file mgmt, grouping)
transfer & mgmt

20-28 NOS/VE Commands and Functions 60464018 J

DISPLAY_TRACE _FILE

DISPLAY _TRACE _FILE
FTAMNE Subcommand

Purpose Writes a legible version of the FTAM/VE trace file to the
output file. This information includes the FTAM service
primitives (requests, indications, responses, confirmations),
and the protocol data units (PDU s) containing the FTAM
primitives.

NOTE

This feature is provided to aid experienced FTAM network
system analysts in resolving FTAMNE problems.

Format DISPLAY_ TRACE _FILE or
DISTF

DISPLAY _OPTION= keyword or integer
OUTPUT=file
STATUS=status variable

Parameters DISPLAY _OPTION or DO

60464018 J

Specifies the number of lines to be written to the output
file.

Selecting ALL displays all lines in the trace log. Selecting
an integer value displays that number of lines from the
end of the trace log.

If this parameter is omitted, the default is ALL.

OUTPUT or 0

Specifies the file to which the legible trace is written. If
omitted, the output file specified on the
ENTER_FTAM_UTILITY command or the
CHANGE_FTAM_OPTIONS subcommand is used.

FTAMNE 20-29

DISPLAY _USER_ VALIDATIONS

Examples The following example illustrates the display of an
FTAMNE trace file.

ftam/open brown_osi3 ftama ftamax
ftam/djsplay_trace_fi le

Cyber _Osiam[9913] Xfer EVN=2100, CHN=l, Sap=15
Cyber _Os iam [9909] EVN=2100, CHN= 1, CTX=O, Layer=70
[Intcb] F-INITIALIZE-Req, Bufferl is Titled,titling,ctn,ioi,accnt,fpas
[Intcb] Sap=OOOOOOOf, Chl<pt window=OOOOOOO 1, Remote addr=Ol 15, .. =O 116
[Intcb] .. =0205e6, .. = 150039840f01bb7b00000000000605080025c4c25d01
[Intcb] Service Class=70, FU=3700, Att Grp=80, FTAM qos=OO, Comm qos=OO
[Intcb] Buf glf=010101010001
[Buf 1 OS_, 13] 4f312d332d393939392d312d37
[BuflOS_, 13] 4f312d332d393939392d312d37
[Buf 1 OS_, 12] 000001000002000003000004
[BuflOS_,5] 6674616d61
[Buf 10 __ , 7] 016674616d6178
Cyber _Osiam [9913] Xfer EVN=2100, CHN=l, Sap=16
Cyber _Os i am [9909] EVN=2100' CHN= 1 ' CTX=O' Layer=50
[Intcb] S-CONNECT-Request, Buffer1 is Session Id, Buffer2 is User Data
[Intcb] Sap=OOOOOO 10, Mode=OOOOOOOO, I nit Ser ia 1 number=00000001
[Intcb] !nit ti< pos=OO, Service=80, Functional Units=c002, SSAP Addr=0116
[Intcb] .. =0205e6, .. = 150039840f01bb7b00000000000605080025c4c25d01
[Intcb] Capab i 1 i ty=OO
[Buf20_ T, 238] 3181eba003800101a281e380020780810115
[Buf21_ T, 238] 820115
[Buf 22_ T. 238] a45930100201O1060528c27b0201
[Buf 23_ T, 238] 300406025101
[Buf24_ T, 238] 3010020102060528c27b0203
[Buf25_ T, 238] 300406025101
[Buf 26_ T, 238] 3010020105060528c27b0204
[Buf27_T,238] 300406025101
[Buf28_ T, 238] 3010020107060528c27b0202
[Buf29_T,238] 300406025101
[Buf30_ T, 238] 300f020109060452010001
[Buf31_ t, 238] 300406025101
[Buf32_T,238] 617c307a020109a075607380020780a1
Cyber_Osiam[9913] Xfer EVN=1201, CHN=l, Sap=16
Cyber _Os iam [9909] EVN= 1201, CHN= 1, CTX= 1, Layer=70
[Intcb] S-CONNECT-Conf irmat ion, Buffer 1 is Session Id, Buffer2 is User D

ata
[Intcb] Size=00002ff9, !nit Serial number=OOOOOOOO, !nit ti< pos=OO, Serv

ice=OO
[Intcb] Please tl<=OO, Functional Units=0002, Capability=OlOO
[Buf20_ T, 183] 3818b4a003800101a281ac80020780830115a52d300780010081025101-

300780
[Buf20_ T, 183] 0100810251013007800100810251013007800100810251013007800100-

810251
[Buf20_ T, 183] O 161743072020109a06d616b80020780a 107060528c27b01O1a2030201-

00a3056
[Buf20_ T, 183] a 103020100a40706052bce0f O 107be472845020101a040a 13e55010045-

010080
Cyber_Osiam[9913] Xfer EVN=1201, CHN=l, Sap=15
Cyber_Osiam[9909] EVN=1201, CHN=l, CTX=l, Layer=80
[lntcb] F-INITIALIZE-Cnf (Positive), Bufferl is Ctn, Buffer2 is Diag
[Intcb] Chl<pt window=OOOOOOOOl, Action Result=OO, Service Class=lO, FU=3-

700
[Buf 1 o __ , 12] 000001000002000003000004
int confirm - positive

DISPLAY _USER_ VALIDATIONS
FTAMNE Subcommand

20-30 NOSNE Commands and Functions 60464018 J

Purpose

GET_FILE

Displays the current validations defined for the various
hosts.

Format DISPLAY _USER_ VALIDATIONS or
DISPLAY_ USER_ VALIDATION or
DIS UV

DISPLAY _OPTION= keyword or list of name
OUTPUT=file
STATUS= status variable

Parameters DISPLAY _OPTION or DISPLAY _OPTIONS or DO

Specifies the host validations to be written to the output
file. Specifying ALL causes all host validations you have
defined to be displayed.

Examples

If this parameter is omitted, the default is ALL.

OUTPUT or 0

Specifies the file to which the host validations are
written. If omitted, the output file specified on the
ENTER_FTAM_UTILITY command or the
CHANGE_FTAM_OPTIONS subcommand is used.

The following command displays the host validations.

ftam/display_user_validations

Host
User_Validation
Account
Real store
Host
User_Validation
Account
Real store

FTAM_HOST1
'u=user1 fn=family1'
A127873
nosve
FTAM_HOST2
'u=user2 fn=family2'
A127878
nosve

GET_FILE
FTAMNE Subcommand

Purpose

60464018 J

Retrieves a file from the remote host. If the
VERBOSE _MODE option is ON, information about the
type of file transfer and the amount of data transferred is
written to the output file.

FTAMNE 20-31

GET_FILE

Format GET _FILE or
GET or
GETF or
RECV or
RETR

REMOTE _FILE= application
LOCAL _FILE= file
ACCESS _PASSWORDS= record
CONCURRENCY _CONTROL=list of record
LOCAL _FILE _PASSWORD= name
STATUS= status variable

Parameters REMOTE _FILE or RF

Specified the name of the remote host file. The actual
parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY
command or the CHANGE_FT.AM_OPTIONS
subcommand.

LOCAL _FILE or LF

Specifies the name of the local host file.

If the LOCAL _FILE parameter is omitted, the
subcommand uses the value supplied in the
REMOTE_FILE parameter as the LOCAL_HOST file
name. If it is unable to do this, the GET _FILE
subcommand aborts with an error.

ACCESS_PASSWORDSorAP

Parameter Attributes: SECURE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed value is: READ (RE).

PASSWORD_ VALUE

Indicates the password that corresponds with the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION

20-32 NOSNE Commands and Functions 60464018 J

GET_FILE

parameter. For additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the access locks that are required for the
requested access. The access locks define the access
available to you and to any other user.

REQUESTED _ACCESS

Specifies the access that the lock corresponds with.
The allowed value is: READ (RE).

See Concurrency Control in chapter 4 of the FTAMNE
Usage manual for information on how these values
map to NOS/VE values.

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
hut others may.

SHARED (S)

Indicates that you may perform the operation and
so may others.

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO_ACCESS (NA)

Indicates that no one may perform the operation.

LOCAL _FILE _PASSWORD or LFP
Parameter Attributes: SECURE

Specifies the file password. The password must match the
file password stored with the catalog entry. If the
password does not match, an abnormal status is returned.

Remarks o If the remote system is a NOS/VE system and the
REALSTORE option is set to NOS/VE, the file
attributes of the source file are preserved.

60464018 J FTAM/VE 20-33

QUIT

Examples

QUIT

The following subcommand gets a file from the remote
host.

ftam/get_file remote_file=:family1.user1.filea local
_file=fileb

FTAMNE Subcommand

Purpose

Format

Terminates execution of the FTAMNE utility.

QUIT or
Q or
QUI or
BYE

ABORT= boolean
STATUS= status variable

Parameters ABORT or A

Examples

Specifies whether to abort the current connection before
terminating the FTAMNE utility.

Setting the ABORT parameter to ON, TRUE, or YES
causes FTAMNE to abort the current connection before
terminating; setting the ABORT parameter to OFF,
FALSE, or NO causes FTAMNE to close any existing
connection before terminating.

If this parameter is omitted, FTAMNE tries to close any
existing connection before terminating.

The following subcommand terminates the execution of
FTAMNE and closes any existing connection in an
orderly fashion.

ftam/qui t
I

REPLACE FILE
FTAMNE Subcommand

Purpose Sends data from a file on the local host to a file on the
remote host. If the remote host file exists, the remote
host file is replaced with the local file. If the remote host
file does not exist, it is created and the data from the
local file is copied into it.

20-34 NOSNE Commands and Functions 60464018 J

Format

REPLACE _FILE

If the VERBOSE _MODE option is ON, information about
the type of file transfer and the amount of data
transferred is written to the output file.

REPLACE _FILE or
PUT or
REPF or
SEND or
STOR

LOCAL _FILE= file
REMOTE _FILE =application
OVERRIDE= keyword
TRANSPARENT= boolean
ACCESS _PASSWORDS= list of record
CONCURRENCY _CONTROL=list of record
CREATE _PASSWORD =application
LOCAL _FILE _PASSWORD= name
PERMITTED _ACTIONS= list of keyword
STATUS =status variable

Parameters LOCAL _FILE or LF

60464018 J

Specifies the name of the local host file.

REMOTE _FILE or RF

Specifies the name of the remote host file. The actual
parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY
command or the CHANGE_FTAM_OPTIONS
subcommand.

If the REMOTE _FILE parameter is omitted, the
subcommand uses the file name portion of the value
supplied on the LOCAL _FILE parameter as the
REMOTE_FILE parameter, stripping off the family name,
master catalog, and any subcatalogs.

FTAMNE 20-35

I
i1

REPLACE _FILE

OVERRIDE or 0

Specifies the action to be taken by the responding system
if the remote file exists.

WRITE (W)

Replaces the contents of the remote file with the
contents of the local file, retaining the file attributes
of the remote file. This is the default value, which
should be specified when performing a normal
REPLACE _FILE operation.

DELETE (D)

Deletes the remote file and creates a new file with
new attributes.

SELECT (S)

Uses the current file as is. Do not use this option for
a normal REPLACE _FILE operation.

FAIL (F)

Causes the action to fail if the file already exists. You
should not specify this option when performing a
normal REPLACE _FILE operation.

TRANSPARENT or T

Specifies whether or not the file is to be transmitted
transparently. If this parameter is TRUE, FTAMNE
attempts a binary transfer of the file.

See Initiator File Selection in chapter 4 of the FTAMNE
Usage manual for additional information on the rules for
the FTAMNE initiator.

ACCESS_PASSWORDSorAP

Parameter Attributes: SECURE

Specifies the passwords associated with the actions you
are requesting to be performed. These values may be used
by the responding system to verify you are allowed the
requested access.

20-36 NOSNE Commands and Functions 60464018 J

"--··

60464018 J

REPLACE _FILE

PASSWORD _TYPE

Specifies the access that the password corresponds
with. The allowed values are:

EXTEND (EX)

INSERT (IN)

REPLACE (RP)

PASSWORD_ VALUE

Indicates the password that corresponds with the
password type. The actual parameter value depends on
the value of the EXPRESSION _EVALUATION
parameter. For additional information, refer to the
EXPRESSION _EVALUATION parameter description
for the ENTER _FTAM _UTILITY command or the
CHANGE _FTAM _OPTIONS subcommand.

CONCURRENCY_CONTROLorCC
Specifies the access locks that are required for the
requested access. The access locks define the access
available to you and to any other user.

REQUESTED _ACCESS

Specifies the access that the lock corresponds with.
The allowed values are:

READ (RE)

INSERT (IN)

REPLACE (RP)

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

CHANGE_ATTRIBUTE (CA)

DELETE _FILE (DF)

See Concurrency Control in chapter 4 of the FTAMNE
Usage manual for information on how these values
map to NOSNE values.

FTAMNE 20-37

REPLACE _FILE

LOCK

NOT REQUIRED (NR)

Indicates that you will not perform the operation,
but others may.

SHARED (S)

Indicates that you may perform the operation and
so may others.

EXCLUSIVE (E)

Indicates that you may perform the operation, but
others may not.

NO _ACCESS (NA)

Indicates that no one may perform the operation.

CREATE _PASSWORD or CP

Parameter Attributes: SECURE

Specifies the password that the responding system might
require to verify your permission to create files in the
remote filestore.

The actual parameter value depends on the value of the
EXPRESSION _EVALUATION parameter. For additional
information, refer to the EXPRESSION _EVALUATION
parameter description for the ENTER _FTAM _UTILITY .
command or the CHANGE_FTAM_OPTIONS
subcommand.

LOCAL _FILE _PASSWORD or LFP

Parameter Attributes: SECURE

Specifies the file password. The password must match the
file password stored with the catalog entry. If the
password does not match, an abnormal status is returned.

PERMITTED _ACTIONS or PERMITTED _ACTION or
PA

Specifies the FTAM actions to be allowed on the file:

READ (RE)

INSERT (IN)

REPLACE (RP)

20-38 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

ERASE (ER)

EXTEND (EX)

READ _ATTRIBUTE (RA)

DELETE _FILE (DF)

TRAVERSAL (T)

REVERSE_TRAVERSAL (RT)

RANDOM_ORDER (RO)

REPLACE_FILE

See File Attributes in chapter 4 of the FTAMNE Usage
manual for information on how VTAM values map to
FTAMNE attributes.

If this parameter is not specified and the file is
transferred as an FTAMl or FTAM3 file, the permitted
actions specified by the initiator are: READ, INSERT,
REPLACE, EXTEND, ERASE, READ _ATTRIBUTE,
CHANGE_ATTRIBUTE, and DELETE_FILE.

If this parameter is not specified and the file is
transferred as an FTAM2 or FTAM4 file, the permitted
actions specified by the initiator are: READ, INSERT,
REPLACE, EXTEND, ERASE, READ _ATTRIBUTE,
CHANGE_ATTRIBUTE, DELETE_FILE, and
TRAVERSAL.

If the remote file does not exist prior to performing the
REPLACE _FILE operation, the permitted actions are
assigned to the file.

If the remote file exists prior to performing the
REPLACE _FILE operation, the actions are assigned to
the file only when the OVERRIDE parameter is set to
DELETE.

o If the remote system is a NOSNE system and the
value of the REALSTORE option is set to NOSNE,
and a file is created, the file attributes of the source
file are preserved.

FTAMNE 20-39

II
II~

REPLACE _FILE

Examples The following subcommand sends a local host file to a
remote host file.

ftam/replace_file 1ocal_file=.user1.cat1.filea remot
e_fi le=fi lexx

20-40 NOSNE Commands and Functions 60464018 J

Generic Utility Interface 21

ACTIVATE _SCREEN ... 21-1
ALIGN _SCREEN .. 21-1
BEEP _TERMINAL_BELL 21-2
$CURRENT_LINE ... 21-2
$CURRENT_NAME .. 21-3
$CURRENT_WORD .. 21-3
DEACTIVATE _SCREEN 21-4
$FUNCTION _KEYS .. 21-4
$FUNCTION _SIZE ... 21-5
HELP .. 21-6
HOME ... 21-6
$LINE_MARKING ... 21-6
$LINE_TEXT .. 21-7
$MARKED_LINES ... 21-8
MARK_SCREEN ... 21-8
$MOST_RECENTLY_MARKED_LINE 21-9
$NUMBER_OF _ROWS . 21-10
POSITION _CURSOR 21-10
REFRESH _SCREEN 21-11
$SCREEN _OUTPUT 21-11
$SELECT _LINES . 21-12
SET_FUNCTION _KEY 21-13
SET_SCREEN _CONTENTS 21-15
SET _SCREEN _OPTIONS . 21-18

60464018 J

Generic Utility Interface

ACTIVATE _SCREEN
Generic Utility Interface Subcommand

Purpose Reestablishes screen mode interaction if line mode
interaction has been initiated with the
DEACTIVATE _SCREEN subcommand.

Format ACTIVATE _SCREEN or
ACTS

Parameters None.

Remarks For more information, see the NOSNE System Usage
manual.

ALIGN _SCREEN
Generic Utility Interface Subcommand

Purpose

Format

Scrolls the contents of the display.

ALIGN _SCREEN or
ALIS

FUNCTION= keyword

Parameters FUNCTION or F

21

Specifies the scrolling action. This parameter is required.
Keyword options are described next.

60464018 J

NOTE

The BKW, FWD, FIRST, LAST, UP, and DOWN keywords
perform the same action as the BKW, FWD, FIRST,
LAST, UP, and DOWN function keys.

BKW

Moves backward to the previous screen of the display.

FWD

Moves forward to the next screen of the display.

Generic Utility Interface 21-1

II
Ill

BEEP_TERMINAL_BELL

FIRST

Positions the first line of the display to the top of the
screen.

LAST

Positions the last line of the display to the bottom of
the screen.

UP

Positions the line at the cursor position to the top of
the screen.

DOWN

Positions the line at the cursor position to the bottom
of the screen.

BEEP_TERMINAL_BELL
Generic Utility Interface Subcommand

Purpose

Format

Causes the bell on the terminal to beep.

BEEP _TERMINAL_BELL or
BEE TB

STATUS= status variable

Remarks The terminal bell acknowledgement sequence sent to the
terminal is defined in the terminal definition. For details,
see the NOSNE Terminal Definition manual.

$CURRENT _LINE
Generic Utility Interface Function

Purpose Returns the line number of the line on which the cursor
is positioned.

Format $CURRENT _LINE or
$CL

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

21-2 NOSNE Commands and Functions 60464018 J

$CURRENT_NAME

$CURRENT _NAME
Generic Utility Interface Function

Purpose Returns the word on which the cursor is positioned. The
value is returned as a name.

Format $CURRENT _NAME or
$CN

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

Examples The following example shows a portion of a procedure.
The example sets the screen content to a list of file
names and sets a function key to display the file on
which the cursor is positioned using the SHOW _FILE
command.·

VAR
path file $working_catalog

VAREND

set_screen_content ..
c=$catalog_contents(path,include_files,names)

set_function_key 4 ..
cs='show_file f=path//$current_name' l=' View '

$CURRENT_WORD
Generic Utility Interface Function

Purpose Returns the word on which the cursor is positioned. The
value is returned as a string.

Format $CURRENT_ WORD or
$CW

Parameters None.

Remarks For further information about functions, see the NOSNE
System Usage manual.

60464018 J Generic Utility Interface 21-3

DEACTIVATE _SCREEN

Examples The following example shows a portion of a procedure.
The example sets the screen content to a list of utility
subcommands and sets a function key to execute the
subcommand on which the cursor is positioned.

set_screen_content ..
c=$c01T1Tiand_list_entry($utility(name))

set_function_key 4 ..
cs='include_cOITITiand $current_word' l=' Run '

DEACTIVATE _SCREEN
Generic Utility Interface Subcommand

Purpose Switches from screen mode to line mode.

Format DEACTIVATE _SCREEN or
DEAS

Parameters None.

Remarks Return to screen mode by entering ACTIVATE _SCREEN.

$FUNCTION _KEYS
Generic Utility Interface Function

Purpose Returns a list of records containing the current function
key settings.

Format $FUNCTION _KEYS

Parameters None.

Remarks • The returned value has the following data structure:

list of record
number: integer 1 .. 16
shift: boolean
cOITITiand_string: string
label: string 1 .. 6

recend

21-4 NOSNE Commands and Functions 60464018 J

Examples

$FUNCTION _SIZE

o The returned value includes only those function key
settings defined using the SET _FUNCTION _KEY
subcommand.

• For further information about functions, see the
NOSNE System Usage manual.

• The following example creates an environment variable
named KEYS that is accessible throughout a utility.
The current function key settings are stored in the
variable.

VAR
keys : (UTILITY) list of record

number : integer 1 .. 16
shift : boolean
comnand_string string
1abe1 : st r i ng

recend
VAREND

keys = $function_keys

o If you want to restore these settings after making
changes to the current settings, use the variable
KEYS in conjunction with the SET_FUNCTION _KEY
subcommand:

set_function_key key_definitions = keys

The following example assigns the current setting for
the fifth function key to the variable F5:

all_keys = $function_keys
f5 = $select(a11_keys,x.number=5)

$FUNCTION _SIZE
Generic Utility Interface Function

Purpose Returns an integer specifying the number of rows on the
screen used by the function key menu.

Format $FUNCTION _SIZE

Parameters None.

60464018 J Generic Utility Interface 21-5

HELP

Remarks

HELP

• One row of highlighted boxes in the function key
menu uses 2 rows on the screen. Two function key
menu rows use 5 rows on the screen.

e For further information about functions, see the
NOSNE System Usage manual.

Generic Utility Interface Subcommand

Purpose

Format

Remarks

HOME

Displays help for the current utility or operation.

HELP
STATUS= status variable

o This command is provided for those terminals that do
not provide a predefined Help key.

o The help text is stored in the help module
EUM$SH_GENSU. Procedure writers can provide
more help via the HELP _MODULE parameter of the
SET_SCREEN _OPTIONS subcommand.

Generic Utility Interface Subcommand

Purpose

Format

Remarks

Positions the cursor on the home line, allowing you to
enter commands and utility subcommands.

HOME
STATUS =status variable

This command is provided for those terminals that do not
provide a predefined Home key.

$LINE _MARKING
Generic Utility Interface Function

Purpose

Format

Returns a boolean value or a list of boolean values
indicating whether the specified line or lines have been
marked.

$LINE _MARKING
(LINES: keyword or list of integer)

21-6 NOSNE Commands and Functions 60464018 J

Parameters

Remarks

$LINE_TEXT

LINES

Specifies the lines to check for marking. You can specify
a list of integers or the keyword ALL. If you omit this
parameter, the value represented by the
$CURRENT _LINE function is used.

• If you specify a single line, the function returns a
single boolean value. If you specify multiple lines, the
function returns a list of boolean values.

• For further information about functions, see the
NOSNE System Usage manual.

$LINE_TEXT
Generic Utility Interface Function

Purpose

Format

Returns the text of the specified line or lines as a string
or a list of strings.

$LINE _TEXT or
$LT

(LINES: keyword or list of integer)

Parameters LINES

Remarks

Examples

60464018 J

Specifies the lines to return. You can specify a list of
integers or the keyword ALL. If you omit this parameter,
the value represented by the $CURRENT _LINE function
is used.

• If you specify a single line, the function returns a
single string. If you specify multiple lines, the function
returns a list of strings.

• For further information about functions, see the
NOSNE System Usage manual.

The following example assigns all lines in a display to a
variable as a list of strings:

display_contents = $1ine_text(al1)

Generic Utility Interface 21-7

$MARKED LINES

$MARKED _LINES
Generic Utility Interface Function

Purpose Returns the text of marked lines as a list of strings.

Format $MARKED _LINES or
$ML

Parameters None.

Remarks • If no lines are marked, an empty list is returned.

Examples

o For further information about functions, see the
NOSNE System Usage manual.

The following example changes the contents of the screen
display to those lines selected from the current display:

set_screen_contents c=$marked_lines

MARK _SCREEN
Generic Utility Interface Subcommand

Purpose

Format

Marks or unmarks lines in the display.

MARK _SCREEN or
MARS

LINF!_S =keyword or list of integer or list of range of
integer

MARK= boolean
STATUS= status variable

Parameters LINES or LINE or L

Specifies the line or lines to mark or unmark. You can
specify an integer, a list of integers, a range of integers
or the keyword ALL. If you omit this parameter, the
current line is used.

MAR,K or M

Specifies whether the lines are to be marked (TRUE) or
unmarked (FALSE). If you omit this parameter, TRUE is
used.

21-8 NOSNE Commands and Functions 60464018 J

Remarks

Examples

$MOST_RECENTLY _MARKED _LINE

• You can specify multiple, noncontiguous lines.

• You can specify lines not currently displayed.

o For more information, see the NOSNE System Usage
manual.

The following example defines two function keys: the first
function key marks or unmarks the current line based on
its current status, and the second function key extends
the marking (or unmarking) from the last altered line to
the current line:

set_function_key 4
cs='mark_screen m=$not($1ine_marking}'
1=' Mark '

set_function_key 4 cs='mark_screen 'II ..
'1=$most_recent1y_marked_11 ne .. $current_ 11 ne '11 . ..
'm=$11ne_mark1ng($m0st_recently_marked_11ne}'

l='ExtMrk' s=true

$MOST _RECENTLY _MARKED _LINE
Generic Utility Interface Function

Purpose Returns the line number of the most recently marked
line.

Format $MOST _RECENTLY _MARKED _LINE

Parameters None.

Remarks o If no lines are marked, the line number of the current

60464018 J

line is returned.

• For further information about functions, see the
NOS/VE System Usage manual.

Generic Utility Interface 21-9

$NUMBER_OF _ROWS

$NUMBER _OF _ROWS
Generic Utility Interface Function

Purpose Returns the number of rows on the screen.

Format $NUMBER _OF _ROWS

Parameters None.

Remarks • Typically, the value returned by
$NUMBER_OF_ROWS is 24 or 30.

• For further information about functions, see the
NOSNE System Usage manual.

POSITION _CURSOR
Generic Utility Interface Subcommand

Purpose

Format

Positions the cursor on a specified line in the display.

POSITION _CURSOR or
POSC

LINE= keyword or integer
STATUS= status variable

Parameters LINE or L

Remarks

Specifies the line on which to position the cursor. You can
specify an integer or one of the following keywords:

FIRST

Positions the cursor on the first line of the display.

LAST

Positions the cursor on the last line of the display.

This parameter is required.

o If you specify a line number outside the bounds of the
display content, an error occurs.

• For more information, see the NOSNE System Usage
manual.

21-10 NOSNE Commands and Functions 60464018 J

REFRESH _SCREEN

REFRESH _SCREEN
Generic Utility Interface Subcommand

Purpose

Format

Remarks

C.lears and repaints the terminal screen.

REFRESH_SCREEN m
REFS

STATUS =status variable

REFRESH _SCREEN can be used to clear any extraneous
characters from the screen.

$SCREEN _OUTPUT
Generic Utility lnterf ace Function

Purpose Returns the path of the file reserved for output generated
within the utility session.

Output directed to this file by commands executed either
on the home line or by function keys is displayed in a
window after command completion.

Format $SCREEN _OUTPUT or
$SO

Parameters None.

Remarks

Examples

60464018 J

• Only one file is used for an entire utility session. .
Before completing the execution of a command, the file
is emptied then new output is added.

o The file is checked each time a command is executed
while in screen mode within the utility session. If the
file contains command output, it is displayed in a
window. Otherwise, the file remains empty.

o The contents of the file is displayed in a window with
the same characteristics as the window generated by
the SHOW _FILE command.

The following example defines a function key to display
command information about a subcommand. The
subcommand used is determined by the cursor position.
The example assumes the content of the display is a list
of utility subcommands.

Generic Utility Interface 21-11

$SELECT _LINES

Output written to the file represented by
$SCREEN _OUTPUT is displayed in a window.

set_function_key n=4 cs='include_c011111and '// ..
'''display_conmand_information ''// ..
$1ine_text//'' o=$screen_output''' l='DisCI'

$SELECT _LINES
Generic Utility Interface Function

Purpose Returns, as a list, the line numbers of the lines where
text matches the specified text pattern.

Format $SELECT _LINES
(PATTERN: string)

Parameters PATTERN

Remarks

Examples

Specifies the text pattern to match. The value you specify
must be a string and can contain wild card characters.

For more information about wild card characters or
functions, see the NOSNE System Usage manual.

o The following example uses $SELECT _LINES in
conjunction with the MARK _SCREEN subcommand to
mark lines in the display that match the specified text
pattern:

mark_screen 1=$select_lines('MOD4*')

• The following example assigns the result of the
$SELECT _LINES function to the variable LINES. The
POSITION _CURSOR subcommand then positions the
cursor to the first of the selected lines:

lines= $select_lines('*11:10.•'}
position_cursor 1=$first(lines)

• The following example returns the text of the lines
that match the specified pattern:

text_lines = $line_text(Sselect_lines('MOD[345)•'))

21-12 NOSNE Commands and Functions 60464018 J

SET_FUNCTION _KEY

SET _FUNCTION _KEY
Generic Utility Interface Subcommand

Purpose

Format

Defines one or more function key settings.

SET _FUNCTION _KEY or
SET _FUNCTION _KEYS or
SETFK

NUMBER= integer
COMMAND _STRING=string
SHIFT= boolean
LABEL= string
KEY _DEFINITIONS= list of record
STATUS= status variable

Parameters NUMBER or N

60464018 J

Specifies the number of the function key to be defined.
Enter an integer from 1 to 16. These numbers correspond
to the numbers in the function key menu displayed on the
screen. Numbers 1 to 8 correspond to the top row in the
menu; numbers 9 through 16 correspond to the bottom
row.

If you omit this parameter, the command is ignored.

COMMAND _STRING or CS

Specifies the statement(s) to be executed when the
specified key is pressed. The string can contain any
available, executable statement. Separate multiple
statements with semicolons.

If you omit this parameter, a single blank character is
used.

SHIFT or S

Parameter Attributes: BY _NAME

For those terminals that have one key identifier next to
each highlighted box in the function key menu, the
SHIFT parameter indicates whether the key to be used is
shifted. Specify TRUE for the shifted key and FALSE for
the nonshifted key.

For those terminals that have two key identifiers next to
each highlighted box in the function key menu, the
SHIFT parameter indicates which key you use. Specify

Generic Utility Interface 21-13

~1
Ill

SET _FUNCTION _KEY

Remarks

Examples

TRUE to use the key corresponding to the top key
identifier. Specify FALSE to use the key corresponding to
the bottom key identifier.

If you omit this parameter, FALSE is used.

LABEL or L

Parameter Attributes: BY _NAME

Specifies the function key label displayed in the function
key menu on the screen. Enter the label as a string of 1
to 6 characters.

Use leading blanks to position the label within the
6-character label field. For example, enter ' Help' to
center the Help label in its field.

If you omit this parameter, a string of 6 blank characters
is used.

KEY _DEFINITIONS or KD or KEY _DEFINITION

Parameter Attributes: BY_NAME

Specifies a list ()f one or more records containing function
key definitions. The value you specify must have the
following data structure:

list of record
number: integer 1 .. 16
shift: boolean
c01T111and_string: string
label: string 1 .. 6

recend

You can use this parameter rather than specifying
individual subcommands for each key definition.

See the NUMBER, SHIFT, COMMAND_STRING, and
LABEL parameter descriptions for information on the
values you can specify.

For more information, see the NOSNE System Usage
manual.

o You can use the $FUNCTION _KEYS function to store
the current function key settings in a variable for
later use. The value returned by this function has the
same structure as the value required by the
KEY _DEFINITIONS parameter.

21-14 NOSNE Commands and Functions 60464018 J

''---

-..._ __ .

SET_SCREEN_CONTENTS

The following example creates an environment variable
named KEYS that is accessible throughout a utility.
The current function key settings are stored in the
variable.

VAR
keys : (UTILITY) list of record

number : integer 1 .. 16
shift : boolean·
corrmand_string string
label string

recend
VAREND

keys = $function_keys

If you want to restore these settings after making
changes to the current settings, use the variable
KEYS in conjunction with the SET _FUNCTION _KEY
subcommand:

set_function_key key_definitions keys

SET_SCREEN_CONTENTS
Generic Utility Interface Subcommand

Purpose

Format

Parameters

60464018 J

Sets or changes the contents and title of the display.

SET_SCREEN _CONTENTS or
SET _SCREEN _CONTENT or
SETSC

CONTENT=any
FILE=file
NEW _DISPLAY=boolean
REPRESENTATION= keyword
TITLE= string
STATUS= status variable

CONTENT or C

Specifies the value to display. You can specify a value of
any type. The presentation of structured values, such as
lists or arrays, is determined by the REPRESENTATION
parameter.

To specify the contents of a file rather than a value, use
the FILE parameter.

Generic Utility Interface 21-15

SET _SCREEN _CONTENTS

If you specify values for ·both the CONTENT and FILE
parameters, the value specified for CONTENT is used. If
you omit both the CONTENT and FILE parameters, the
current or default display is maintained.

FILE or F

Specifies a file to display. The contents of the file are
displayed as- they appear in the file.

To specify a value rather than the contents of a file, use
the CONTENT parameter.

If you specify values for both the FILE and CONTENT
parameters, the value specified for CONTENT is used. If
you omit both the FILE and CONTENT parameters, the
current or default display is maintained.

NEW _DISPLAY or ND

Parameter Attributes: BY_NAME

Specifies whether the display is a new display (TRUE) or
a reiteration of the existing display (FALSE).

If the display is new, the cursor is positioned at the top
of the display. If the display is a refreshed version of the
existing display, the current cursor position is maintained.

If you omit this parameter, TRUE is used.

REP.RESENTATION or R

Parameter Attributes: BY _NAME

Specifies how a structured value specified for the
CONTENTS parameter is presented in the display. You
can specify one of the following keywords:

COMPRESSED _LABELED _ELEMENTS, CLE

Each element in the value is prefixed by its field
name or subscript, if applicable, and is separated from
the label by a colon. The value is displayed in a
condensed format. Alphabetic characters in elements of
type FILE or NAME are displayed as lowercase
characters.

ELEMENTS, ELEMENT, E

Each element in the value is displayed on a separate
line. Status values can require more than one line.

21-16 NOSNE Commands and Functions 60464018 J

,_

Remarks

Examples

'~-

60464018 J

SET _SCREEN _CONTENTS

LABELED_ELEMENTS, LE

Each element in the value is displayed on a separate
line and is prefixed by its field name or subscript, if
applicable. A colon separates the label from the
element. Alphabetic characters in elements of type
FILE or NAME are displayed as lowercase characters.

All options display values of the following structured
types as a single value on a single line:

COMMAND_REFERENCE
DATE_TIME
ENTRY_POINT_REFERENCE
LINE _IDENTIFIER
TIME _INCREMENT
TIME_ZQNE

If you omit this parameter, ELEMENTS is used.

TITLE or T

Parameter Attributes: BY _NAME

Specifies the text that appears on the title line of the
display. If the string you specify exceeds the available
space on the title line, excess characters are truncated.

If you omit this parameter, the title is not altered. If you
have not previously set the display title using this
parameter, the name of the utility is used.

For more information, see the NOSNE System Usage
manual.

The following example sets the display to include a list of
the files in the current working catalog and an
appropriate title:

catalog = $working_catalog
set_screen_content ..

c=$catalog_contents(catalog,include_files)
t='Contents of '//catalog

Generic Utility Interface 21-17

I
I

SET _SCREEN _OPTIONS

SET _SCREEN _OPTIONS
Generic Utility Interface Subcommand

Purpose Sets or changes certain characteristics of the display.

Format SET _SCREEN_ OPTIONS or
SET _SCREEN_ OPTION or
SE TSO

HELP _MODULE=name
MENU _ROW=integer
MOUSE _COMMAND=string
REFRESH _RATE= keyword or time _increment
UPDATE _COMMAND=string
STATUS= status variable

Parameters HELP _MODULE or HM

Parameter Attributes: BY _NAME

Specifies the name of the help module that contains brief
and full help text. Help text is displayed when you enter
the HELP subcommand or press the Help function key.

If you omit this parameter, no help is available.

MENU_ROWorMENU_ROWSorMR

Parameter Attributes: BY _NAME

Specifies the number of function key menu rows. The
value can be 0, 1, or 2. The default is 1.

MOUSE _COMMAND or MC

Parameter Attributes: BY _NAME

Specifies the statement(s) to be executed when a
CONNECT VIEW user presses the left mouse button
while positioned on a line in the display.

The string can be between 1 and 127 characters in length
and can contain any available, executable statement.
Separate multiple statements with semicolons.

If you omit this parameter, the mouse command is not
altered. If you have not previously set the mouse
command using this parameter, the mouse command is
the QUIT subcommand.

21-18 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

REFRESH _RATE or RR

Parameter Attributes: BY _NAME

SET_SCREEN _OPTIONS

Specifies how often the statement(s) on the
UPDATE _COMMAND parameter are called. You can
specify a time increment or the keyword STATIC.

If you specify STATIC, the statement(s) specified on the
UPDATE _COMMAND parameter are executed each time
statement(s) are executed on the home line or from a
function key.

If you specify a value of type TIME _INCREMENT, the
statement(s) specified on the UPDATE _COMMAND
parameter are executed under the following circumstances:

o Each time statement(s) are executed on the home line
or from a function key.

o Each time the specified interval elapses following the
last statement executed-.

If you omit this parameter, the refresh rate is not altered.
If you have not previously set the refresh rate using this
parameter, the static refresh rate is used.

UPDATE _COMMAND or UC

Parameter Attributes: BY _NAME

Specifies the statement(s) to be executed each time .the
screen is refreshed. The string can be from 1 to 127
characters in length and can contain any available,
executable statement. Separate multiple statements with
semicolons.

If you omit this parameter, the update command is not
altered. If you have not previously set the update
command using this parameter, the update command is
undefined.

o For more information about CONNECT VIEW, see the
CONNECT VIEW for the IBM PC manual.

o For more information, see the NOSNE System Usage
manual.

Generic Utility Interface 21-19

SET _SCREEN _OPTIONS

Examples The following example uses the UPDATE _COMMAND
parameter to set the content of the display within a
SOURCE_CODE_UTILITY session to show the decks on
the current library:

set_screen_options
uc='set_screen_content $deck_name_list nd=false'

Using the SET _SCREEN _CONTENT command in this
way ensures that the contents of the display are current.
In addition, the contents of the display cannot be
overwritten except by reassigning the value of the
UPDATE_COMMAND parameter.

21-20 NOS/VE Commands and Functions 60464018 J

MAIL 22

EMAIL ... 22-1
ACTIVATE_AUTO_FORWARDING 22-3
ACTIVATE_SCREEN ... 22-7
ADD _ADDRESS ... 22-8
ADD_BLIND_COURTESY_COPY 22-12
ADD_COURTESY_COPY 22-18
ADD_LETTER_PARTS 22-24
ADD _PERMISSION 22-26
ADD _TO . 22-29
$ANY _MAIL . 22-36
CHANGE _DISTRIBUTION _LIST . 22-39
CHANGE_MAILBOX 22-41
COPY_LETTER_PARTS 22-44
CREATE_DISTRIBUTION _LIST 22-47
CREATE _MAILBOX . 22-48
DEACTIVATE _AUTO _FORWARDING . 22-50
DEACTIVATE _SCREEN . 22-50
$DEFAULT_MAILBOX 22-51
DELETE_ADDRESS .. 22-53
DELETE_BLIND_COURTESY_COPY 22-56
DELETE_COURTESY_COPY 22-60
DELETE _DISTRIBUTION _LIST . 22-64
DELETE _LETTER . 22-65
DELETE_LETTER_PARTS 22-66
DELETE _MAILBOX 22-67
DELETE _PERMISSION . 22-69
DELETE_TO ... 22-71
DISPLAY_ATTRIBUTES 22-75
DISPLAY_ATTRIBUTES 22-76
DISPLAY_ADDRESS_LIST 22-76
DISPLAY_BLIND_COURTESY_COPY 22-78
DISPLAY_COURTESY_COPY 22-79
DISPLAY _DELIVERY _OPTIONS . 22-81
DISPLAY_DISTRIBUTION _LISTS 22-83
DISPLAY_DOMAINS 22-86
DISPLAY_LETTER_PARTS 22-87
DISPLAY _RECIPIENT_ OPTIONS . 22-87
DISPLAY _MAILBOXES . 22-88
DISPLAY_ORGANIZATIONS 22-91
DISPLAY_PERMISSIONS 22-93
DISPLAY_PERMISSIONS 22-94
DISPLAY _SUBJECT " . 22-95
DISPLAY_TO .. 22-96

60464018 J

$DISTRIBUTION _LIST _ATTRIBUTE . 22-98
END _CHANGE _DISTRIBUTION _LIST . 22-101
END_CHANGE_MAILBOX 22-102
END _CREATE _DISTRIBUTION _LIST . 22-103
END_CREATE_MAILBOX 22-103
END _EMAIL . 22-104
END_FORWARD_LETTER 22-105
END_ WRITE _LETTER . 22-105
END_WRITE_REPLY 22-106
EXPAND_DISTRIBUTION _LIST 22-107
FORWARD_LETTER 22-109
$IDENTITY . 22-112
$LETTER ... 22-114
$LETTER_ATTRIBUTE 22-114
$LETTER _LIST . 22-117
LIST _MAIL . 22-118
LOOKUP _ADDRESS . 22-123
$MAILBOX . 22-127
$MAILBOX_ATTRIBUTE . 22-128
$OWNED _DISTRIBUTION _LISTS . 22-131
$0WNED_MAILBOXES 22-132
READ_LETTERS ... 22-133
RETAIN _LETTER .. 22-138
SELECT_IDENTITY 22-140
SELECT_LETTER ... 22-142
SET_ATTRIBUTES .. 22-143
SET_ATTRIBUTES .. 22-147
SET _DELIVERY _OPTIONS . 22-150
SET _RECIPIENT _OPTIONS . 22-154
SET_DEFAULT_MAILBOX 22-156
SET_SUBJECT" 22-158
WRITE_LETTER .. 22-159
WRITE _REPLY . 22-161

60464018 J

MAIL 22

EMAIL
Command

Purpose Begins a MailNE session in either screen or line mode
depending on the interaction style in effect at the time
the command is entered.

In screen mode, the screen you specify on the
OPERATION parameter of the EMAIL command is
displayed.

In line mode, the system executes the operation you
specify on the OPERATION parameter. By default, the
system displays the following prompt:

Mail/

Format EMAIL or
EMA

OPERATION== keyword
OUTPUT=file
ERROR== file
PROLOG=file
STATUS= status variable

Parameters OPERATION or OP

60464018 J

Specifies the operation initiated by Mail/VE after it
executes any commands specified on the PROLOG
parameter. Specify one of the following keywords:

CHECK or C

Checks mailboxes you own for mail.

Specify CHECK in screen mode to display the Mail
List screen, from which you can select a letter to read.

Specify CHECK in line mode and Mail/VE displays a
list of all your mailboxes that have mail, followed by
the Mai 1 I prompt. You can then enter MailNE
subcommands.

MAIL 22-1

ll

EMAIL

Remarks

READ or R

Specify READ in screen mode to display the Mail List
screen, from which you can select a letter to read.

Specify READ in line mode to display the letter list
from your default mailbox along with a one-line
description of each letter. If there is no mail to
display, an informative message is displayed.

WRITE or W

Specify WRITE in screen mode to display the Write
Letter screen, where you can compose and send a
letter.

Specify WRITE in line mode to enter the
WRITE_LETTER subutility, where you can compose
and send a letter. The prompt displayed is Wri 1/.

If the OPERATION parameter is omitted in screen mode,
the system displays the Mail List screen. If omitted in
line mode, the system displays the · Mai 1 I prompt.

OUTPUT or 0

Specifies the file to which the mail session output is
written. If omitted, output is displayed on your terminal
screen.

ERROR or E

Specifies the file to which errors are written. If omitted,
errors are written to $ERRORS.

PROLOG or P

Specifies the file containing MailNE subcommands or SCL
commands. When you enter EMAIL to begin a mail
session, the commands in this file are executed before
processing what you specify on the OPERATION
parameter.

If omitted, $NULL is used.

You can override the $NULL default by creating an SCL
default variable called MVD$MAIL_PROLOG and setting
its value to the name of a prolog file. Specify the name
value as a string.

For more information, see the MailNE Version 2 Usage
manual.

22·2 NOSNE Commands and Functions 60464018 J

-......_ __ _

ACTIVATE_AUTO _FORWARDING

ACTIVATE _AUTO _FORWARDING
CHAM and CREM Subcommand

Purpose

Format

Enables automatic forwarding of mail from the mailbox
being created or changed.

ACTIVATE _AUTO _FORWARDING or
ACTAF

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRNATE _DOMAIN=string
ADMINISTRATNE _DOMAIN= string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS= string
DOMAIN _DEFINED _ATTRIBUTE=list of record
POSTAL _ADDRESS= list of string ·
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string
STATUS =status variable

Parameters PERSONAL_NAME or PN

60464018 J

Specifies the name of the mailbox to which mail will be
automatically forwarded. Enter the name as a 1- to
256-character string or a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual if you need more information on specifying a
mailbox name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox to which mail will be automatically forwarded.
Enter a list of one to four strings of 1 to 32 characters
each.

MAIL 22-3

ACTIVATE _AUTO _FORWARDING

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
mailbox to which mail will be automatically forwarded.
Enter a 1- to 64-character string.

PRNATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the mailbox
to which mail will be automatically forwarded. Enter a 1-
to 16-character string.

ADMINISTRATNE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
mailbox to which mail will be automatically forwarded.
Enter a 1- to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the mailbox to which
mail will be automatically forwarded. Enter a 1- to
3-character string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to which mail will be
automatically forwarded. Enter the identifier as a 1- to
32-character string.

TERMINALJDENTWIERorTI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of the telematic
terminal to which mail will be automatically forwarded
for reading. Enter the identifier as a 1- to 24-character
string.

22-4 NOS/VE Commands and Functions 60464018 J

60464018 J

ACTIVATE _AUTO _FORWARDING

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to which
mail will be automatically forwarded. For example, an
X.121 address might reference a fax machine or telex
location. Enter the address as a 1- to 15-character string
of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to which mail will be automatically
forwarded. Enter the attributes as a list of one to four
records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to which mail
will be automatically forwarded. Enter the address as a
list of two to six strings of 1 to 30 characters each.

POSTAL_ADDRESS_COUNTRY_NAMEorPACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to which mail will be automatically forwarded.
Enter the country name as a 1- to 30-character string.

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to which mail will be automatically forwarded. Enter the
code as a 1- to 128-character string.

MAIL 22-5

ACTIVATE _AUTO _FORWARDING

Remarks • Nondelivery notices as a result of the forwarding are
returned to the mailbox to which mail is sent
originally, not the mailbox of the sender.

• If automatic forwarding is enabled for a mailbox, the
system forwards letters from that mailbox to the
mailbox you specify. Letters that were previously
autoforwarded from another mailbox and receipts and
notices are not autoforwarded. To disable
autoforwarding, use the
DEACTIVATE _AUTO _FORWARDING subcommand.

e In processing the ACTIVATE _AUTO _FORWARDING
subcommand, MailNE validates your permission to
send mail to the specified address if either of the
following is true.

The specified address is on the same host as your
address.

Your site supports a domain-wide directory, and
the address is on a remote host in the same
domain as your Mail/VE mail service. If this is not
true, MailNE accepts the address and issues a
warning message.

o If you activate automatic forwarding to a BITNet or
Internet address, use the PERSONAL_NAME
parameter to specify the address with a commercial at
sign (@): ·

personal_name='jdsmith~arhops.cdc.com'

The commercial at sign distinguishes a BITN et or
Internet address from a MailNE address.

o Mail is delivered to the specified mailbox only if the
address to which you are forwarding mail is unique
and is defined at the time mail is forwarded.

o Organization names and units must be defined by the
Mail/VE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

22-6 NOSNE Commands and Functions 60464018 J

Examples

ACTIVATE _SCREEN

• The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME,and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery.

• For more information, see the MaiWE Version 2
Usage manual.

In the following example, automatic forwarding is enabled
for the mailbox named on the CHANGE _MAILBOX
subcommand to the mailbox uniquely identified by the
personal name and organization unit address attributes:

Mail/change_mailbox
Cham/personal_name='Sticky_Feedback'
Cham/activate_auto_forwarding ..
Cham .. /personal_name='Thomas Jensen'

. Cham . ./organization_unit=(..
Cham .. /'Research and Development'
Cham .. /'Adhesive Products' ..
Cham .. /'Chemicals Division')

ACTIVATE _SCREEN
MAIL Subcommand

Purpose

Format

Remarks

60464018 J

Activates screen mode of MaiWE.

ACTIVATE _SCREEN or
ACTS

STATUS =status variable

o Use the ACTIVATE _SCREEN subcommand and its
counterpart the DEACTIVATE _SCREEN subcommand
to move between screen and line mode in the mail
system.

o If you enter ACTIVATE _SCREEN from within a mail
subutility, such as WRITE _LETTER, you lose any
entries you made within that subutility. Entering
ACTIVATE _SCREEN within a subutility is equivalent
to quitting the subutility.

MAIL 22-7

ADD _ADDRESS

e ACTIVATE _SCREEN applies only to the current
operation; it does not permanently change your
interaction style to screen mode. For example, if you
are working in line mode and enter
ACTIVATE _SCRE.EN, Mail/VE switches you to screen
mode. When you select another function by pressing
Write, for example, Mail/VE will return you to line
mode. Your mode of interaction with MailNE is
determined by whether the STYLE parameter on the
NOS/VE CHANGE _INTERACTION _STYLE command
is set to LINE or SCREEN.

For more information, see the Mail/VE Version 2 Usage

manual.

ADD _ADDRESS
CHADL and CREDL Subcommand

Purpose

Format

Adds an address to a distribution list.

ADD _ADDRESS or
ADDA

PERSONAL _NAME =string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRNATE _DOMAIN= string
ADMINISTRATNE _DOMAIN =string
COUNTRY= string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER =string
X121 _ADDRESS= string
DOMAIN _DEFINED _ATTRIBUTE=list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string
STATUS =status variable

22-8 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

ADD _ADDRESS

PERSONAL _NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the mailbox or distribution list name of the
address you want to add to the distribution list. Enter the
name as a string of 1 to 256 characters, or a record in
the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need details on specifying a mailbox name
or distribution list name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the unit(s) within the organization of the address
to be added to the distribution list. Enter a list of one to
four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

oµGANIZATION_NAMEorON

Specifies an organization name associated with the
address to be added to the distribution list. Enter a 1- to
64-character string.

PRIVATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be added to the distribution list. Enter a 1- to
16-character string.

ADMINISTRATIVE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be added to the distribution list. Enter a 1- to
16-character string.

MAIL 22-9

ADD _ADDRESS

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
added to the distribution list. Enter a 1- to 3-character
string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be added to the distribution
list. Enter the identifier as a 1- to 32-character string.

TERMINALJDENTIFIBRorTI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of the telematic
terminal from which mail will be read to be added to the
distribution list. Enter the identifier as a 1- to
24-character string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be added
to the distribution list. For example, an X.121 address
might reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be added to the distribution list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL_ADDRESSorPA

Parameter Attributes: BY _NAME, ADVAN:CED

Specifies the physical postal service address to be added
to the distribution list. Enter the address as a list of two
to six strings of 1 to 30 characters each.

22-10 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

ADD _ADDRESS

POSTAL_ADDRESS_COUNTRY_NAMEorPACN
Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be added to the distribution list. Enter the
country name as a 1- to 30-character string.

POSTAL_ADDRESS_CODEorPAC
Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be added to the distribution list. Enter the code as a 1-
to 128-character string.

• Addresses are added to a distribution list exactly as
they are entered. No verification or validation of any
form occurs.

o If you add a BITN et or Internet address to a
distribution list, use the PERSONAL _NAME
parameter with a commercial at sign (~):

personal_name='jdsmith@arhops.cdc.com'

The commercial at sign distinguishes a BITN et or
Internet address from a Mail/VE address.

o You cannot use the wildcard character * in addresses
you specify.

o The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL_ADDRESS_CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery.

o Organization names and units must be defined by the
MaiWE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the Mail/VE Version 2
Usage manual.

MAIL 22-11

ADD _BLIND _COURTESY _COPY

Examples The following example adds two addresses to an existing
distribution list:

Mail/change_distribut1on_list ..
Mail .. /'Technical_Review_Board'
Chadl/add_address 'Ellen Gray'
Chadl/add_address 'Malcolm Boswell'
Chadl/end_change_distribution_list

ADD _BLIND _COURTESY _COPY
FORL, WRIL, and WRIR Subcommand

Purpose

Format

Adds an address to the blind courtesy copy address list.

ADD _BLIND_ COURTESY_ COPY or
ADDBCC or
BCC

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME= string
PRIVATE _DOMAIN= string
ADMINISTRATIVE _DOMAIN= string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER =string
X121 _ADDRESS=string
DOMAIN _DEFINED _ATTRIBUTE =list of record
POSTAL _ADDRESS =list of slring
POSTAL _ADDRESS _COUNTRY _NAME= string
POST AL _ADDRESS _CODE= string
RECIPIENT _OPTIONS= keyword or list of keyword
STATUS= status variable

Parameters PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the name associated with the address to be
added to the blind courtesy copy list. Enter the name as a
string of 1 to 256 characters or as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

22-12 NOS/VE Commands and Functions 60464018 J

60464018 J

ADD _BLIND _COURTESY_COPY

See Address Names in the MailNE Version 2 Usage
manual if you need help on specifying names.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be added to the address list. Enter a list of
one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be added to the address list. Enter a 1- to
64-character string.

PRNATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be added to the blind courtesy copy address list. Enter
a 1- to 16-character string.

ADMINISTRATNE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be added to the blind courtesy copy address
list. Enter a 1- to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
added to the blind courtesy copy address list. Enter a 1-
to 3-character string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be added to the address list.
Enter the identifier as a 1- to 32-character string.

MAIL 22-13

II
lfi

ADD _BLIND _COURTESY _COPY

TERMINALJDENTIFIBRorTI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of the telematic
terminal from which mail is read to be added to the
address list. Enter the identifier as a 1- to 24-character
string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be added
to the address list. For example, an X.121 address might
reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be added to the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL _ADDRESS or PA

Parameter Attributes: BY_NAME, ADVANCED

Specifies the physical postal service address to be added.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL_ADDRESS_COUNTRY_NAMEorPACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be added. Enter the country name as a 1- to
30-character string.

22-14 NOSNE Commands and Functions 60464018 J

60464018 J

ADD _BLIND _COURTESY _COPY

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be added. Enter the code as a 1- to 128-character
string.

RECIPIENT _OPTIONS or RECIPIENT _OPTION or RO

Parameter Attributes: BY _NAME

Specifies the message attributes for the address you are
adding to the blind courtesy copy list. This parameter
does not apply to distribution lists that cannot be
expanded.

Specify ALL, NONE, or one or more of. the following
keywords. ALL means the letter is certified for receipt or
nonreceipt notification and indicates in the header
information that a reply is requested. NONE means no
letter attributes are set for the specified address.

CERTIFY _RECEIPT or CR

The originator receives a message when the recipient
has seen the letter. The letter is considered seen if the
recipient displays the letter or copies the letter to a
file.

CERTIFY_NON _RECEIPT or CNR

The originator receives a message if the letter is
deleted without having been seen or is autoforwarded.
The mail system generates the nonreceipt notice if the
letter is unseen at the time of a deletion or expiration.

REPLY_REQUESTED or RR

The letter indicates in the header information that the
originator is expecting a reply. The system does not
require the recipient to reply.

If omitted, NONE is used.

MAIL 22-15

ADD _BLIND _COURTESY _COPY

Remarks • Recipients of blind courtesy copies are not displayed to
the courtesy copy and primary recipients of the letter.

o When you enter the ADD _BLIND _COURTESY _COPY
subcommand, the mail system performs the following
address verification:

If you enter an ADD _BLIND _COURTESY _COPY
subcommand without any address parameters, the
subcommand terminates with an error message.

If you enter an address that is in the directory, the
system accepts the address.

If you enter an ambiguous address, the system
displays a message to let you know and does not
add the address to the recipient list.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify the local host, the system displays
an informative message.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify a remote host, the system accepts
the address. However, the address is not verified
until the remote host attempts to deliver it.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address have not been specified by the Mail/VE
administrator, the subcommand terminates with a
warning message.

o There are three methods of adding a BITN et or
Internet address to a blind courtesy copy recipient list.
How your Mail/VE administrator configured your mail
network determines which methods work. Select the
one your Mail/VE administrator recommends.

22-16 NOSNE Commands and Functions 60464018 J

60464018 J

ADD _BLIND _COURTESY _COPY

Enter the PERSONAL_NAME parameter with a
commercial at sign:

personal_name='jdsmith@arhops.cdc.com'

You can use this method any time. Because the
commercial at sign indicates a BITNet or Internet
address, the system automatically sends it to the

- gateway for routing.

Enter the address the same way you do a Mail/VE
address. For example, enter jdsmith@arhops.cdc.com
as follows:

personal_name='jdsmith'
organization_unit='arhops'
organization_name='cdc'

This method works only if your Mail/VE
administrator has configured the Mail/VE gateway
to map the organization name and/or organization
units to a BITN et or Internet address of
arhops. cdc. com.

Enter the DOMAIN _DEFINED _ATTRIBUTES
parameter to specify the address. The characters (a)
replace the commercial at sign in this format.

domain_defined_attributes=(..
('RFC-822','jdsm1th(a)arhops.cdc.com'))

If you use this method, you must also enter the
organization name and/or organization units, private
domain, administrative domain, and country of the
Mail/VE gateway.

o If you enter a BITN et or Internet address, the
CERTIFY _RECEIPT and CERTIFY _NON _RECEIPT
options on the RECIPIENT _OPTIONS parameter do
not apply.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o You cannot use the wildcard * character in the
addresses you specify.

MAIL 22-17

I
I

ADD_COURTESY_COPY

Examples

• The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery.

• For more information, see the MailNE Version 2
Usage manual.

In the following example a blind courtesy copy list is
added to a forwarded letter:

Mail/forward_letter current
Forl/add_letter_part $local.note
Forl/set_subject 'Jury Analysis'
Forl/addbcc 'Harold Spooner'
Forl/addbcc 'Joseph Cheswick'
Forl/addbcc 'Karen Garnet'
Forl/end_forward_letter

ADD_COURTESY_COPY
FORL, WRIL, and WRIR Subcommand

Purpose

Format

Adds addresses to the courtesy copy address list.

ADD_COURTESY_COPY or
ADDCC or
cc

PERSONAL_NAME=string or record ··
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRIVATE _DOMAIN= string
ADMINISTRATIVE _DOMAIN= string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS=string
DOMAIN _DEFINED _ATTRIBUTE=list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE= string
RECIPIENT _OPTIONS= keyword or list of keyword
STATUS= status variable

22-18 NOSNE Commands and Functions 60464018 J

I

\.....___

ADD_COURTESY_COPY

Parameters PERSONAL _NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

60464018 J

Specifies the mailbox or distribution list name to be added
to the courtesy copy list. Enter the name as a string of 1
to 256 characters or as a record in the format:

record
surname: str1ng 1 .. 40
g1ven_name: str1ng 0 .. 16
1n1t1als: string 0 .. 5
generat1on_oualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need more information on specifying names.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be added to the courtesy copy list. Enter a list
of one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be added to the courtesy copy list. Enter a 1-
to 64-character string.

PRNATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be added to the courtesy copy address list. Enter a 1-
to 16-character string.

ADMINISTRATNE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be added to the courtesy copy address list.
Enter a 1- to 16-character string.

MAIL 22-19

~iii

I

ADD_COURTESY_COPY

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
added to the courtesy copy address list. Enter a 1- to
3-character string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be added to the address list.
Enter the identifier as a 1- to 32-character string.

TERMINALJDENTIFIBRorTl

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of the telematic
terminal from which mail is read to be added to the
address list. Enter the identifier as a 1- to 24-character
string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be added
to the list. For example, an X.121 address might reference
a fax machine or telex location. Enter the address as a 1-
to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be added to the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be added.
Enter the address as a list of two to six strings of 1 to
30 characters each.

22-20 NOSNE Commands and Functions 60464018 J

60464018 J

ADD_COURTESY_COPY

POSTAL _ADDRESS _COUNTRY _NAME or PACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be added. Enter the country name as a 1- to
30-character string.

POSTAL_ADDRESS_CODEorPAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be added. Enter the code as a 1- to 128-character
string.

RECIPIENT _OPTIONS or RECIPIEN.T _OPTION or RO

Parameter Attributes: BY_NAME

Specifies the message attributes for the address you are
adding to the courtesy copy list. This parameter does not
apply to distribution lists that cannot be expanded.

Specify ALL, NONE, or one or more of the following
keywords. ALL means the letter is certified for receipt or
nonreceipt notification and indicates in the header
information that a reply is requested. NONE means no
letter attributes are set for the specified address.

CERTIFY _RECEIPT or CR

The originator receives a message when the recipient
has seen the letter. The letter is considered seen if the
recipient displays or copies the letter to a file.

CERTIFY_NON _RECEIPT or CNR

The originator receives a message if the letter is
deleted without having been seen or is autoforwarded.
The mail system generates a nonreceipt notice if the
letter is unseen at the time of a deletion or the letter
is autoforwarded.

REPLY _REQUESTED or RR

The letter indicates in the header information that the
originator is expecting a reply. The system does not
require the recipient to reply.

If omitted, NONE is used.

MAIL 22-21

ADD_COURTESY_COPY

Remarks • When you enter the ADD _COURTESY _COPY
subcommand, the mail system performs the following
address verification:

0

If you enter an ADD _COURTESY _COPY
subcommand without any address parameters, the
subcommand terminates with an error message.

If you enter an address that is in the directory, the
system accepts the address.

If you enter an ambiguous address, the system
displays a message to let you know and does not
add the address to the recipient list.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify the local host, the system displays
an informative message.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify a remote host, the system accepts
the address. However, the address is not verified
until the remote host attempts to deliver it.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address have not been specified by the MaiWE
administrator, the subcommand terminates with a
warning message.

There are three methods of adding a BITN et or
Internet address to a courtesy copy recipient list. How
your MaiWE administrator configured your mail
network determines which methods work. Select the
one your MaiWE administrator recommends.

Use the PERSON AL _NAME parameter with a
commercial at sign (@):

personal_name='jdsm1th@arhops.cdc.com'

You can use this method any time. Because the
commercial at sign indicates a BITNet or Internet
address, the system automatically sends it to the
gateway for routing.

22-22 NOSNE Commands and Functions 60464018 J

,, __

'----

60464018 J

ADD _COURTESY_COPY

Enter the address the same way you do a MaiWE
address. For example, enter jdsmith@arhops.cdc.com
as follows:

personal_name='jdsmith'
organization_unit='arhops'
organization_name='cdc'

This method works only if your MailNE
administrator has configured the MailNE gateway
to map the organization name and/or organization
units to a BITN et or Internet address of
arhops. cdc. com.

Enter the DOMAIN _DEFINED _ATTRIBUTES
parameter to specify the address. The characters (a)
replace the commercial at sign in this format.

domain_defined_attributes=(..
('RFC-822','jdsmith(a)arhops.cdc.com'))

If you use this method, you must also enter the
organization name and/or organization units, private
domain, administrative domain, and country of the
MailNE gateway.

o If you enter a BITN et or Internet address, the
CERTIFY_RECEIPT and CERTIFY_NON _RECEIPT
options on the RECIPIENT _OPTIONS parameter do
not apply.

o You cannot use the wildcard character * in mailbox or
distribution list addresses you specify.

o The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY _NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery that regulates
your mail system.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

MAIL 22-23

II
II

ADD_LETTER_PARTS

Examples In the following example, a courtesy copy list is added to
a reply:

Mail/write_reply
Wrir/add_letter_part $local.note
Wrir/cc 'Charlie Cantnor'
Wrir/cc 'Beryl Nelson'
Wrir/end_write_reply

ADD _LETTER _PARTS
FORL, WRIL, and WRIR Subcommand

Purpose

Format

Adds a file to the list of parts that make up the body of
a letter.

ADD _LETTER _PARTS or
ADD _LETTER _PART or
ADD LP

LETTER _PARTS= list of file
LETTER _PART _TYPE= keyword
PLACEMENT= keyword
DESTINATION=keyword
STATUS= status variable

Parameters LETTER _PARTS or LETTER _PART or LP

Specifies a list of file names to add to the list of letter
parts.

This parameter is required.

LETTER _PART _TYPE or LPT

Specifies the kind of data contained in the letter parts.
Keyword options:

NONTEXT or UNKNOWN

The letter parts contain non-ASCII characters. These
parts are delivered as letter part type UNDEFINED.

TEXT

The letter files contain ASCII text. The NOS/VE
FILE _CONTENT attribute of the file must be either
LIST or LEGIBLE _DATA.

If LETTER _PART_ TYPE is omitted, TEXT is used.

22-24 NOSNE Commands and Functions 60464018 J

ADD_LETTER_PARTS

PLACEMENT or P

Parameter Attributes: BY _NAME

Specifies whether the letter parts are added before or
after the letter part specified on the DESTINATION
parameter. Options:

BEFORE or B

Places the letter parts before the destination.

AFTER or A

Places the letter parts after the destination.

If DESTINATION is omitted, AFTER is used.

DESTINATION or D

Parameter Attributes: BY _NAME

Specifies a letter part in the letter part list before or
after which the added parts are placed. Options:

FIRST or F

Selects the first letter in the letter list.

LAST or L

Selects the last letter in the letter list.

If omitted, LAST is used.

Remarks O

60464018 J

If a file specified does not exist, MailNE issues an
error message and does not send the letter.

- The MailNE gateway only accepts text files. If the
Mail/VE gateway receives a nontext letter part for
transmission to BITN et or Internet, the sender
receives a notice. The letter is not delivered. For
more information on letter parts, see chapter 4.

- If a letter part is added from a prolog to the
FORWARD _LETTER subutility, then the added
part must have the PLACEMENT parameter set to
BEFORE and the DESTINATION parameter set to
FIRST.

MAIL 22-25

II
I,

ADD _PERMISSION

Examples

Use the NOS/VE CHANGE_FILE_ATTRIBUTES
command ·to change the FILE _CONTENT attribute
as needed.

• For more information, see the MaiWE Version 2
Usage manual.

The following example specifies and positions a list of
files to make up the body of a letter:

Mail/write_ letter
Wril/to 'Randall McDonald'
Wril/addlp (. ltr.process.timecard_entry
Wril .. /. ltr.process.status_reports ..
Wril .. /. ltr.process. load_charts ..
Wril .. /. ltr.process.monthly_review)
Wril/collect_text $local.note
Colt/These process descriptions are reconmended
Colt/reading for new members of the project.
Colt/**
Wril/addlp $local.note p=before d=first
Wril/add_subject 'Reporting Procedures'
Wril/end_write_letter

ADD _PERMISSION
CHADL, CHAM, CREDL, and CREM Subcommand

Purpose

Format

Adds an address to the list of permitted addresses for
group mailboxes or group distribution lists.

ADD _PERMISSION or
ADDP

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRNATE _DOMAIN= string
ADMINISTRATNE _DOMAIN =string
COUNTRY=string
PERMISSIONS= keyword or list of keyword
STATUS =status variable

22-26 NOSNE Commands and Functions 60464018 J

ADD _PERMISSION

Parameters PERSONAL _NAME or PN

60464018 J

Specifies the name of the mailbox or distribution list to
he added to the permitted list. Enter the name as a
string of 1 to 256 characters or a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need further information on specifying a
mailbox or distribution list name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be added to the permit list. Enter a list of one
to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be added to the permitted list. Enter a 1- to
64-character string.

PRNATE _,DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be added to the permitted list. Enter a 1- to
16-character string.

ADMINISTRATNE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to he added to the permitted list. Enter a 1- to
16-character string.

MAIL 22-27

ADD _PERMISSION

Remarks

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
added to the permitted list. Enter a 1- to 3-character
string.

PERMISSIONS or PERMISSION or P

Parameter Attributes: BY _NAME

Specifies the list of permissions to be granted to the
specified mailbox. Choose ALL or one or more of the
following options. For mailboxes, ALL gives READ and
WRITE permissions. For distribution lists, ALL gives
READ and USE permissions.

READ or R

For mailboxes on the local host, letters can be read.
For distribution lists, the addresses in the list can be
displayed.

WRITE or W

For mailboxes only. Letters can be sent to the
mailbox.

USE or U

For distribution lists only. The. list can be included in
a recipient list. However, without READ access, the
addresses in the list cannot be displayed.

If PERMISSIONS is omitted, ALL is used.

• Specify primary mailbox names on the
PERSONAL_NAME parameter, not aliases. When
another user attempts to access the mailbox or
distribution list, the system will use their primary
personal name to validate their access permission.

• Addresses are added to the permitted mailbox list
exactly as they are ·entered. No verification or
validation occurs.

• The wildcard character * is allowed in the address
attributes. By using the * in your address, you can
permit more than one mailbox with a single
permission description.

22-28 NOSNE Commands and Functions 60464018 J

Examples

ADD_TO

ADD_TO

o You can permit BITN et and Internet addresses to
access group mailboxes or distribution lists. To do this,
grant permission to the X.400 address of the MailNE
gateway or to one of the address attributes, such as
country.

In the following example, the ADD _PERMISSION
subcommand grants permission to all addresses within
the country represented by country code DE to use a
specified group mailbox.

add_permission country='de' permission=all

In other words, it adds all addresses in West Germany
to the permitted list for the specified group mailbox.
Since the converted address in this example contains
DE as the COUNTRY parameter, the address is
included in the permitted list.

G Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ ORGANIZATIONS subcommand to list the
defined organization names/units.

• For more information, see the MailNE Version 2
Usage manual.

The following example permits anyone in the organization
unit named ENGINEERING to read or use the specified
distribution list:

Mail/change_distribution_list
Mail .. / 'technical_review_board'
Chadl/add_permission ou='engineering'
Chadl/end_change_distribution_list

FORL, WRIL, and WRIR Subcommand

Purpose

Format

60464018 J

Adds an address to the primary (To) address list.

ADD_TO or
ADDT or
TO

PERSONAL _NAME =string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME= string

MAIL 22-29

ADD_TO

PRIVATE _DOMAIN= string
ADMINISTRATNE _DOMAIN =string
COUNTRY =string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS= string
DOMAIN _DEFINED_ATTRIBUTE=list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string
RECIPIENT _OPTIONS= keyword or list of keyword
STATUS= status variable

Parameters PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the mailbox or distribution list name you are
adding to the To address list. Enter the name as a string
of 1 to 256 characters or as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

See Address Names in the MaiWE Version 2 Usage
manual if you need more information on specifying names.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be added to the To address list. Enter a list of
one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be added to the To address list. Enter a 1- to
64-character string.

22-30 NOSNE Commands and Functions 60464018 J

60464018 J

ADD_TO

PRNATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be added to· the To address list. Enter a 1- to
16-character string.

ADMINISTRATNE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be added to the To address list. Enter a 1- to
16-character str~ng.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
added to the To address list. Enter a 1- to 3-character
string. ·

UA_IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be added to the address list.
Enter the identifier as a 1- to 32-character string.

TERMINAL _IDENTIFIER or TI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of the telematic
terminal from which mail is read to be added to the
address list. Enter the identifier as a 1- to 24-character
string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be added
to the address list. For example, an X.121 address might
reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

MAIL 22-31

I
I

ADD_TO

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be added to the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL_ADDRESSorPA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be added.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL _ADDRESS _COUNTRY _NAME or PACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be added. Enter the country name as a 1- to
30-character string.

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be added. Enter the code as a 1- to 128-character
string.

RECIPIENT _OPTIONS or RECIPIENT _OPTION or RO

Parameter Attributes: BY_NAME

Specifies the message attributes for the address you are
adding to the To address list. This parameter does not
apply to distribution lists that cannot be expanded.

Specify ALL, NONE, or one or more of the following
keywords. ALL means the letter is certified for receipt or
nonreceipt notification and indicates in the header
information that a reply is requested. NONE means no
letter attributes are set for the specified address.

22-32 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

ADD_TO

CERTIFY _RECEIPT or CR

The originator receives a message when the recipient
has seen the letter. The letter is considered seen if the
recipient displays or copies the letter to a file.

CERTIFY _NON _RECEIPT or CNR

The originator receives a message if the letter is
deleted without having been seen or is autoforwarded.
The mail system generates the nonreceipt notice if the
letter is unseen at the time of a deletion or the letter
is autoforwarded.

REPLY _REQUESTED or RR

The letter header information indicates that the
originator is expecting a reply. The system does not
require the recipient to reply.

If omitted, NONE is assumed.

o When you enter the ADD_TO subcommand, the mail
system performs the following address verification:

When deleting an address, you must specify the
same parameters used to create that address, or
the subcommand terminates with an error message.

If you enter an address that is in the directory, the
system accepts the address.

If you enter an ambiguous address, the system·
displays a message to let you know and does not
add the address to the recipient list.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify the local host, the system displays
an informative message.

If you enter an address that is not in the directory
and if the organization attributes you give for that
address specify a remote host, the system accepts
the address. However, the address is not verified
until the remote host attempts to deliver it.

MAIL 22-33

ADD_TO

If you enter an address that is not in the directory
and if the organization attributes you give for that
address have not been specified by the MaiWE
administrator, the subcommand termina~es with a
warning message.

• There are three methods of adding a BITN et or
Internet address to the primary address list. How your
MailNE administrator configured your mail network
determines which methods work. Select the one your
MailNE administrator recommends.

Enter the PERSONAL _NAME parameter- with a
commercial at sign (lt):

personal_name='jdsmith@arhops.cdc.com'

You can use this method any time. Because the
commercial at sign indicates a BITN et or Internet
address, the system automatically sends it to the
gateway for routing.

Enter the address the same way you do a MaiWE
address. For example, enter jdsm1th@arhops.cdc.com
as follows:

personal_name='jdsmith'
organizat1on_un1t='arhops'
organization_name='cdc'

This method works only if your MailNE
administrator has configured the MaiWE gateway
to map the organization name and/or organization
units to a BITN et or Internet address of
arhops. cdc. com.

Enter the DOMAIN _DEFINED _ATTRIBUTES
parameter to specify the address. The characters (a)
replace the commercial at sign in this format.

domain_defined_attributes=(..
('RCF-822','jdsmith(a)arhops.cdc.com'))

If you use this method, you must also enter the
organization name and/or organization units, private
domain, administrative domain, and country of the
MaiWE gateway.

22-34 NOSNE Commands and Functions 60464018 J

Examples

60464018 J

ADD_TO

• If you enter a BITN et or Internet address, the
CERTIFY _RECEIPT and CERTIFY _NON _RECEIPT
options of the RECIPIENT_ OPTIONS parameter do
not apply.

• Distribution lists that cannot be expanded (that is,
lists created with the EXPAND attribute set to
FALSE), will ignore any values specified for the
RECIPIENT_ OPTIONS parameter.

e Local addresses are verified as entered. Entry of an
ambiguous address results in an informative message.
The address is not added to the recipient list. Entry of
a nonexistent address also results in an informative
message.

Nonlocal addresses are not verified until delivery is
attempted.

o The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery.

o You cannot use the wildcard character * in the
addresses you specify.

o Organization names and. units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

The following example creates a To address list made up
of distribution lists:

Mail/write_ letter
Wril/addlp ($local .note, .HR.Study)
Wril/subject 'Results of Employee Survey'
Wril/add_to 'Engineering_Department'
Wril/add_to 'Quality_Assurance'
Wril/add_to 'Test_Group'
Wril/end_write_letter

MAIL 22-35

$ANY_MAIL

$ANY_MAIL
MAIL Function

Purpose Returns a boolean value telling you whether there is mail
that meets the criteria you specify on the parameters.

Format $ANY _MAIL
(ADDRESS: string or record
MAIL _OPTIONS: keyword or list of keyword)

Parameters ADDRESS

Specifies the mailbox to be checked for mail. Only the
personal name is required. Specify the organization unit(s)
and organization name associated with the mailbox to
further define the address. Enter the address as a string
or as a record in the format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_Qua11f1er: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

See Address Names in the MailNE Version 2 Usage
manual if you need more information on specifying
mailbox names.

If omitted, the value returned by the $IDENTITY function
is used.

MAIL _OPTIONS

Specifies the types of letters to be included in the letter
list from the mailbox checked for mail. You can specify
one or more options for each option type.

If you select more than one option for each type, each
selection applies. Selecting all options for any type has
the same effect as selecting none of the options for that
type.

Letter types:

22-36 NOSNE Commands and Functions 60464018 J

60464018 J

LETTER or L

Lists all letters.

RECEIPTS or R

$ANY_MAIL

Displays letters generated upon receipt or nonreceipt
of a letter.

Read Status types:

These options apply only to owned mailboxes.

SEEN or S

Lists letters that have been displayed.

UNSEEN or US

Lists letters that have not been displayed.

Sensitivity types:

PRIVATE or PR

Lists private letters.

PERSONAL or PE

Lists personal letters.

CONFIDENTIAL or CO

Lists confidential letters.

Receipt Certification types:

CERTIFIED or C

Lists certified letters.

UNCERTIFIED or UC

Lists letters not classified as certified.

Importance types:

LOW _IMPORTANCE or LI

Lists letters the sender assigned low importance.

NORMAL_IMPORTANCE or NI

Lists letters the sender assigned normal importance.

MAIL 22-37

I
I

$ANY_MAIL

Remarks

Examples

HIGH_IMPORTANCE or HI

Lists letters the sender assigned high importance.

Delivery Priority types:

NORMAL_PRIORITY or NP

Lists letters the sender assigned normal delivery
priority.

URGENT _PRIORITY or UP

Lists letters the sender assigned urgent delivery
priority.

NON _URGENT _PRIORITY or NUP

Lists letters the sender assigned nonurgent delivery
priority.

Other types:

REPLY _REQUEST or RR

Lists letters for which the sender requested a reply.

AUTOFORWARDED or A

Lists letters that have been automatically forwarded
from another mailbox.

ALL

Lists all mail.

If MAIL_OPTIONS is omitted, ALL is used.

• The $ANY _MAIL function returns TRUE if any mail
is found that satisfies the criteria specified by the
function parameters.

• For more information, see the MaiWE Version 2
Usage manual.

In the following example, $ANY _MAIL is used to check
for mail prior to executing LIST _MAIL:

Mail/if $any_mail(((('olson' 'jane') 'umb')),
reply_request) then
Mai 1/1ist_mai1
Mai 1/ifend

22-38 NOSNE Commands and Functions 60464018 J

I

'"---

CHANGE _DISTRIBUTION _LIST

CHANGE _DISTRIBUTION _LIST
MAIL Subcommand

Purpose Initiates the CHANGE _DISTRIBUTION _LIST subutility
through which you can change the definition of any
distribution list you own. When you enter the
CHANGE _DISTRIBUTION _LIST subcommand, the
system displays the prompt Chad l I.

Format CHANGE _DISTRIBUTION _LIST or
CHADL

DISTRIBUTION _LIST _NAME= string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS =status variable

Parameters DISTRIBUTION _LIST _NAME or DLN

60464018 J

Specifies the name of the distribution list to be changed.
Enter the name as a 1- to 64-character string or as a
record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

Refer to the MailNE Version 2 manual for further
information on specifying a distribution list name.

This parameter is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
distribution list to be changed. Enter a list of one to four
strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
distribution list. Enter the name as a 1- to 64-character
string.

MAIL 22-39

II
11

CHANGE _DISTRIBUTION _LIST

Remarks • Use the CHANGE _DISTRIBUTION _LIST subutility
subcommands, listed next, to specify new distribution
list attributes, edit the address list, and edit the
access permission list of a group distribution list.

ADD _ADDRESS
ADD _PERMISSION
DELETE _ADDRESS
DELETE _PERMISSION
DISPLAY _ADDRESS _LIST
DISPLAY _ATTRIBUTES
DISPLAY _PERMISSIONS
END _CHANGE _DISTRIBUTION _LIST
SET _ATTRIBUTES

These subcommands are described under the Mailbox
and Distribution List Subutility Subcommands section
of the MailNE Version 2 manual.

• Only the owner of a distriln1tion list (that is, the user
who created the list) or the MailNE administrator can
change the list.

o You cannot use the wildcard character * in address
parameters.

• If the addressing parameters do not uniquely identify
a distribution list you own, the
CHANGE _DISTRIBUTION _LIST subutility terminates
and displays an error message.

• The ORGANIZATION _UNIT and
ORGANIZATION _NAME parameters are used to
distinguish distribution lists with the same name and
to facilitate transfer within a multihost network.

• Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY _ORGANIZATIONS subcommand to list
defined organization names/units.

• For more information, see the MailNE Version 2
Usage manual.

22-40 NOSNE Commands and Functions 60464018 J

"----

Examples

CHANGE_MAILBOX

The following example adds an address to an existing
distribution list.

Ma11/change_distribution_11st
Mail .. /dln='project_members'
Chadl/add_address personal_name='Janet Strong'
Chadl/end_change_distribution_list

The following example changes a private distribution list
to a group distribution list.

Mail/change_distribution_list
Chadl/distribution_list_name='tiger_team'
Chadl/set_attr1butes permit_type=group
Chadl/add_permission ..
Chadl .. /organization_name='Qa department'
Chadl/add_permission ..
Chad1 .. /organ1zation_name= ..
Chadl .. /'Continuous Improvement Task Force'
Chadl/end_change_distribution_list

CHANGE _MAILBOX
MAIL Subcommand

Purpose

Format

60464018 J

Initiates the CHANGE_MAILBOX subutility, through
which you change the definition of an existing mailbox.
When you enter the CHANGE _MAILBOX subcommand,
the system displays the prompt Cham/.

CHANGE _MAILBOX or
CHAM

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS =status variable

MAIL 22-41

II
I

CHANGE _MAILBOX

Parameters PERSONAL _NAME or PN

Remarks

Specifies the name of the mailbox to be changed. Enter
the name as a 1- to 64-character string or a record in the
format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualif1er: string 0 .. 3

recend

Refer to Address Names in the MailNE Version 2 Usage
manual if you need further information on specifying a
mailbox name.

This parameter is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox to be changed. Enter a list of one to four strings
of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
mailbox to be changed. Enter a string of 1 to 64
characters.

o Use the CHANGE _MAILBOX subutility subcommands,
listed next, to define or change the mailbox attributes
and edit the list of permissions that define a group
mailbox.

ADD _PERMISSION
ACTIVATE _AUTO _FORWARDING
DEACTIVATE _AUTO _FORWARDING
DELETE _PERMISSION
DISPLAY _ATTRIBUTES
DISPLAY _PERMISSIONS
END _CHANGE _MAILBOX

22-42 NOS/VE Commands and Functions 60464018 J

I

'------··

Examples

"---·

60464018 J

CHANGE _MAILBOX

SET _ATTRIBUTES

These subcommands are described under the Mailbox
and Distribution List Subutility Subcommands section
of the MailNE Version 2 manual.

o Only the owner of a mailbox or the MailVE
administrator can change the list.

G Changing a group mailbox to private or public deletes
the list of permissions that define the group.

o If the addressing parameters do not specify a mailbox
you own, the CHANGE _MAILBOX subutility
terminates and the system displays an error message
to let you know the problem.

• You cannot use the wildcard character * in address
parameters.

o If you are not validated for self-administration, you
cannot alter any of the mailbox address attributes or
the mailbox retention period using the
SET _ATTRIBUTE subcommand of the
CHANGE _MAILBOX subutility. See your MailNE
administrator if you have questions.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY _ORGANIZATIONS subcommand to list
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

The following example adds a permission to a group
mailbox permission list:

Mail/change_mailbox personal_name='Project_Status'
Cham/add_permission personal_name='Janet Strong' ..
Cham .. /ou=('Field Support' 'Operations')
Cham/end_change_mailbox

MAIL 22-43

COPY_LETTER_PARTS

COPY_LETTER_PARTS
MAIL Subcommand

Purpose

Format

Copies parts of a letter body to a file.

COPY _LETTER _PARTS or
COPY _LETTER _PART or
COP LP

LETTER= keyword or integer or string
PARTS= keyword or list of range of integer
OUTPUT= file
STATUS =status variable

Parameters LETTER or L

Specifies the letter to be copied. The value specified can
be a keyword, letter number, or letter identifier.

Keyword options:

CURRENT or C

Copies letter parts from the current letter in the letter
list. The current letter is the letter most recently
displayed.

FIRST or F

Copies letter parts from the first letter in the letter
list.

LAST or L

Cqpies letter parts from the last letter in the letter
list.

NEXT or N

Copies letter parts from the letter following the
current letter in the letter list.

PREVIOUS or P

Copies letter parts from the letter preceding the
current letter in the letter list.

The letter number is the number assigned to the letter on
the letter list. It can change every time you enter the
LIST _MAIL subcommand. The letter identifier is
permanently assigned to the letter by Mail/VE when it is
delivered to the mailbox.

22-44 NOS/VE Commands and Functions 60464018 J

60464018 J

COPY_LETTER_PARTS

If LETTER is omitted, CURRENT is used.

PARTS or PART or P

Parameter Attributes: BY _NAME

Specifies the letter parts to be copied. The value specified
can be a list of letter part ordinals, a range of letter part
ordinals, or a keyword. Integer values can range from 1 ·
to the number of parts that make up the letter body.

You can determine the number of letter parts by
executing the LIST _MAIL subcommand with the
DISPLAY _OPTIONS parameter set to FULL or by
displaying the value of the $LETTER_ATTRIBUTE
function with the OPTION parameter set to
NUMBER _OF _LETTER_PARTS.

The following keyword options correspond to possible
letter part types displayed when you read a letter using
the READ _LETTER subcommand.

TEXT or T

Copies ASCII text type letter parts from the letter and
writes them to the output file.

ENCRYPTED or E

X.400 data type.

GROUP _3 _FACSIMILE or G3FAX

X.400 data type.

NATIONALLY_DEFINED or ND

X.400 data type.

SIMPLE _FORMATTABLE _DOCUMENT or SFD

X.400 data type.

TELEX or TLX

X.400 data type.

TELETEX or TTX

X.400 data type.

TEXT_INTERCHANGE_FORMAT_O or TIFO

X.400 data type.

MAIL 22-45

COPY_LETTER_PARTS

Remarks

TEXT_INTERCHANGE_FORMAT_l or TIFl

X.400 data type.

UNDEFINED or U

Copies the non-ASCII type letter parts from the letter
and writes them to the file specified on the OUTPUT
parameter.

VIDEOTEX or V

X.400 data type.

VOICE_DATA or VD

X.400 data type.

This parameter is required.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the letter parts
are written. This parameter is required.

o MailNE displays a message to tell you if the letter
identifier does not exist, if no letter list exists, or if
the letter number is not in the letter list.

o Only TEXT and NONTEXT letter part types can be
created using MailNE. Other letter types can be
relayed to an X.400 system that provides a service for
processing the data (such as a fax machine).

o If you want to use letter numbers to specify letters to
be copied, first enter the LIST _MAIL subcommand to
create a numbered letter list.

o The $LETTER function returns the letter identifier of
the letter that is copied.

o For more information, see the MailNE Version 2
Usage manual.

22-46 NOSNE Commands and Functions 60464018 J

\..... __

"----

'----·

Examples

CREATE _DISTRIBUTION _LIST

The following example copies parts 1, 3, and 5 through 9
of the current letter into a file named
LETTER_BODY _FILE:

Mail/copy_letter_parts current
Mai1../parts=(1, 3, 5 .. 9) ..
Mail .. /output=letter_body_file

CREATE _DISTRIBUTION _LIST
MAIL Subcommand

Purpose

Format

Remarks

60464018 J

Initiates the CREATE _DISTRIBUTION _LIST subutility,
through which you create a distribution list. When you
enter the CREATE _DISTRIBUTION _LIST subcommand,
the system displays the prompt Cred 1 I.

CREATE _DISTRIBUTION _LIST or
CREDL

STATUS= status variable

o Use the CREATE _DISTRIBUTION _LIST
subcommands, listed next, to define the distribution
list.

ADD _ADDRESS
ADD _PERMISSION
DELETE _ADDRESS
DELETE _PERMISSION
DISPLAY _ADDRESS _LIST
DISPLAY _ATTRIBUTES
DISPLAY _PERMISSIONS
END _CREATE _DISTRIBUTION _LIST
SET _ATTRIBUTES

These subcommands are described under the Mailbox
and Distribution List Subutility Subcommands chapter
of the Mail/VE Version 2 Usage manual.

o The address attributes you specify for the distribution
list through the SET _ATTRIBUTES subcommand must
uniquely identify the list you are creating. If the
address is not unique when you enter the
END _CREATE _DISTRIBUTION _LIST subcommand,
the distribution list is not created and the subutility
terminates with an error message.

MAIL 22-47

I
II

CREATE _MAILBOX

Examples

• Your distribution list can be made up of the addresses
of mailboxes and/or other distribution lists.

e Your MaiWE validation specifies the maximum
number of distribution lists you can have. If you
attempt to exceed that number, MailNE returns an
error message.

• For more information, see the MailNE Version 2
Usage manual.

The following example creates a distribution list made up
of two addresses:

Mail/create_distribution_list
Credl/set_attribute ..
Credl .. /distribution_list_name=(
Credl . ./'Fellow_ Trainees' 'dlft') ..
Credl .. /description='owned by Ben Churchill'
Credl .. /expand=true
Credl/add_address personal_name='Jim Rivers'
Credl/add_address ..
Credl .. /personal_name='Joan C Lohn-Cho'
Credl/end_create_distribution_list true

CREATE _MAILBOX
MAIL Subcommand

Purpose

Format

Remarks

Initiates the CREATE _MAILBOX subutility, through
which you can create a mailbox. When you enter the
CREATE _MAILBOX subcommand, the system displays the
prompt Cr em/.

CREATE _MAILBOX or
CREM

STATUS =status variable

o Use the CREATE _MAILBOX subutility subcommands,
listed next, to define the mailbox.

ACTIVATE _AUTO _FORWARDING
ADD _PERMISSION
DEACTIVATE _AUTO _FORWARDING
DELETE _PERMISSION
DISPLAY _ATTRIBUTES
DISPLAY _PERMISSIONS
END _CREATE _MAILBOX

22-48 NOSNE Commands and Functions 60464018 J

60464018 J

CREATE _MAILBOX

SET _ATTRIBUTES

These subcommands are described under the Mailbox
and Distribution List Subutility Subcommands section
of the Mail/VE Version 2 Usage manual.

o Your MailNE validation set by the mail system
administrator specifies the maximum number of
mailboxes you can have. If you attempt to exceed that
number, MailNE returns an error message.

o You can create a mailbox at any time during a
Mail/VE session if your NOSNE system administrator
has validated you for self-administration. If you are
not validated for self-administration, the mail
administrator at your site will create mailboxes for
you; if you try to create a mailbox, the
CREATE _MAILBOX subutility terminates with an
error status.

o Use the CHANGE_MAILBOX subcommand to change
an existing mailbox definition.

o The address values assigned to the mailbox through
the SET_ ATTRIBUTES subcommand must uniquely
define the mailbox you want to create. If the mailbox
address is not unique in the mail directory at the time
you enter the END _CREATE _MAILBOX subcommand,
the mailbox is not created and the subutility
terminates with an error message.

• For more information, see the Mail/VE Version 2
Usage manual.

MAIL 22-49

DEACTIVATE_AUTO _FORWARDING

Examples The following example creates a mailbox:

Mail/create_ma11box
Crem/set_attr1butes
Crem .. /personal_name = (..
Crem .. / 'Allison J McGinty'
Crem .. / 'Ali McGinty' ..
Crem .. / 'AJM') ..
Crem .. /organization_unit = (..
Crem . ./ 'Site A' ..
Crem .. / 'Customer Support' ..
Crem .. / 'Engineering Department'
Crem .. / 'Advanced Products Division')
Crem .. /organization_name ='Computer Services'
Crem .. /description='owned by Allison McGinty'
Crem/end_create_mailbox

DEACTIVATE _AUTO _FORWARDING
CHAM and CREM Subcommand

Purpose

Format

Remarks

Disables automatic forwarding of mail from the mailbox
being created or changed.

DEACTIVATE _AUTO _FORWARDING or
DEAAF

STATUS =status variable

o If automatic forwarding is not enabled for the mailbox
being created or changed, this command has no effect.

o For more information, see the MaiWE Version 2
Usage manual.

DEACTIVATE _SCREEN
MAIL Subcommand

Purpose

Format

Changes the interaction style with MailNE from screen
mode to line mode.

DEACTIVATE _SCREEN or
DEAS

STATUS=status variable ·

22-50 NOSNE Commands and Functions 60464018 J

Remarks

$DEFAULT_MAILBOX

o You can use this subcommand from any screen that
has an active home line.

o When you enter the DEACTIVATE _SCREEN
subcommand, the line mode prompt Mai 1 I appears. Use
the ACTIVATE _SCREEN subcommand to return to
screen mode.

• If you enter DEACTIVATE _SCREEN from a primary
screen, such as the Write Letter screen, the
information entered on the screen is preserved. If you
enter DEACTIVATE _SCREEN from a subscreen that
has an active home line, such as the Primary
Addresses subscreen accessed from the Write Letter
screen, you lose any entries made on that subscreen
prior to entering DEACTIVA'rE _ SCREEN. Entering
DEACTIVATE _SCREEN from a subscreen is
equivalent to pressing Cance 1.

o DEACTIVATE _SCREEN applies only to the current
operation; it does not permanently change your
interaction style to line mode. For example, if you are
working in screen mode and enter
DEACTIVATE _SCREEN, MailNE switches you to line
mode. When you specify another operation, by entering
WRITE _LETTER for example, MailNE returns to
screen mode. Your mode of interaction with Mail/VE is
determined by whether the STYLE parameter on the
NOSNE CHANGE _INTERACTION _STYLE command
is set to SCREEN or LINE.

o For more information, see the MailNE Version 2
Usage manual.

$DEFAULT _MAILBOX
MAIL Function

Purpose Returns a record containing the local address of the
mailbox that is designated as your default mailbox. The
default mailbox is automatically used as your identity to
the mail system when you begin a MailNE session.

Format $DEFAULT _MAILBOX

Parameters None.

60464018 J MAIL 22-51

ti
II

$DEFAULT_MAILBOX

Remarks

Examples

• The first mailbox created by or for a user serves as
the default mailbox until changed. Use the
SET _DEFAULT _MAILBOX subcommand to change the
default mailbox.

• The $DEFAULT _MAILBOX function returns the local
address record in the format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string O .. 3

recend
organization_un1ts: 11st of 0 .. 4 of string 0 .. 32
organization_name: string O .. 64

recend

o For more information, see the MailNE Version 2
Usage manual.

This example uses the NOSNE command
DISPLAY_ VALUE to display the default mailbox data
structure:

Mail/display_value $default_mailbox
Mail .. /display_option=data_structure

"RECORD"
PERSONAL_NAME: "RECORD"

SURNAME: 0 STRING 11 'Jones'
GIVEN_NAME: 0 STRING" I John'
INITIALS: "STRING" 'J'
GENERATION_QUALIFIER: "STRING"

"RECORD END•
ORGANIZATION_UNITS: "LIST"

1: •STRING" 'CDCNET'
"LIST END"

ORGANIZATION_NAME: 11 STRING 11
' '

"RECORD END•

The following example uses the NOSNE command
DISPLAY_ VALUE to display the default mailbox source:

22-52 NOSNE Commands and Functions 60464018 J

Mail/display_value $default_mailbox ..
Mail .. /display_option=source

DELETE _ADDRESS

(('Jones', 'John', 'J', ''), 'CDCNET', '')

DELETE _ADDRESS
'- CHADL and CREDL Subcommand

Purpose

Format

Parameters

60464018 J

Deletes an address from a specified distribution list.

DELETE _ADDRESS or
DELA

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRNATE _DOMAIN =string
ADMINISTRATNE _DOMAIN= string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS= string
DOMAIN _DEFINED _ATTRIBUTE=list of record
POSTAL_ADDRESS=list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string
STATUS =status variable

PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the name of the mailbox or distribution list to
be deleted from the distribution list you are changing or
creating. Enter the name as a string of 1 to 256
characters or a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need more information on specifying
addresses.

MAIL 22-53

I
I

DELETE _ADDRESS

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be deleted. Enter a list of one to four strings
of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be deleted. Enter a 1- to 64-character string.

PRIVATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be deleted from the distribution list. Enter a 1- to
16-character string.

ADMINISTRATIVE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be deleted from the distribution list. Enter a 1-
to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
deleted from the distribution list. Enter a 1- to
3-character string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be deleted from the
distribution list. Enter the identifier as a 1- to
32-character string.

TERMINAL_IDENTIFIER or TI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of a telematic
terminal to be deleted from the distribution list. Enter the
identifier as a 1- to 24-character string.

22-54 NOSNE Commands and Functions 60464018 J

60464018 J

DELETE _ADDRESS

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be deleted
from the distribution list. For example, an X.121 address
might reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be deleted from the distribution list. Enter
the attributes as a list of one to four records in the
format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be deleted.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL _ADDRESS _COUNTRY _NAME. or PACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be deleted. Enter the country name as a 1- to
30-character string.

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be deleted. Enter the code as a 1- to 128-character
string.

MAIL 22-55

I
I

DELETE _BLIND _COURTESY _COPY

Remarks

Examples

• You cannot use the wildcard character * in the
addresses you specify.

• Addresses are processed exactly as they are entered. If
a matching address is not found in the distribution
list, the command terminates and the system displays
an error message.

• The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They are used
to send mail via physical postal delivery.

o Organization names and units must be defined by the
MaiWE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names and units.

• For more information, see the MaiWE Version 2
Usage manual.

The following example deletes an address from an existing
distribution list:

Mail/change_distribution_list 'Photo_Club_News'
Chadl/delete_address 'Carol Parker' ..
Chadl .. /organization_name='Public_Relations'
Chadl/end_change_distribution_list

DELETE _BLIND _COURTESY _COPY
FORL, WRIL, and WRIR Subcommand

Purpose

Format

Deletes an address from the blind courtesy copy address
list.

DELETE _BLIND _COURTESY _COPY or
DE LB CC

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
PRNATE _DOMAIN=string
ADMINISTRATNE _DOMAIN= string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string

22-56 NOS/VE Commands and Functions 60464018 J

Parameters

60464018 J

DELETE _BLIND _COURTESY_COPY

X121 _ADDRESS=string
DOMAIN _DEFINED _ATTRIBUTE =list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string'
STATUS =status variable

PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the mailbox or distribution list name you want
to delete from the blind courtesy copy list. Enter the
name as a string of 1 to 256 characters or as a record in
the format: ·

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual if you need more information on specifying a
name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be deleted from the blind courtesy copy list.
Enter a list of one to four strings of 1 to 32 characters
each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be deleted from the blind courtesy copy list.
Enter a 1- to 64-character string.

PRNATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain address associated with the
address. Enter a 1- to 16-character string.

MAIL 22-57

DELETE _BLIND _COURTESY _COPY

ADMINISTRATIVE _J)OMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address. Enter a 1- to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address. Enter a
1- to 3-character string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be deleted. Enter the
identifier as a 1- to 32-character string.

TERMINAL _IDENTIFIER or TI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of a telematic
terminal to be deleted. Enter the identifier as a 1- to
24-character string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifi.es an X.121 standard network address to be deleted.
For example, an X.121 address might reference a fax
machine or telex location. Enter the address as a 1- to
15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be deleted from the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 •. 128

recend

22-58 NOSNE Commands and Functions 60464018 J

Remarks

"------''

60464018 J

DELETE _BLIND _~OURTESY_COPY

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be deleted.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL _ADDRESS _COUNTRY _NAME or PACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be deleted. Enter the country name as a 1- to
30-character string.

POSTAL_ADDRESS_CODEorPAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be deleted. Enter the code as a 1- to 128-character·
string.

o You cannot use the wildcard character * in addresses
you specify.

o When deleting an address, you must specify the same
parameters used to create that address, or the
subcommand terminates with a warning message.

o The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They identify
the physical postal delivery address to be deleted.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY _ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

MAIL 22-59

I
I

DELETE_COURTESY_COPY

Examples The following example deletes an address from the blind
courtesy copy address list:

Wril/display_blind_courtesy_copy
Personal name: Ben Krantz

Organization units: PERSONNEL

Personal name: Alan Wescott
Organ1zat1on units: PERSONNEL

Personal name: Carrie Young
Organization units: LEGAL

Wril/delete_blind_courtesy_copy ..
Wril .. /personal_name='Ben Krantz'

DELETE_COURTESY_COPY
FORL, WRIL, and WRIR Subcommand

Purpose

Format

Deletes an address from the courtesy copy address list.

DELETE_COURTESY_COPY or
DELCC

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME= string
PRIVATE _JJOMAIN=string
ADMINISTRATIVE _DOMAIN =string
COUNTRY=string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS= string
DOMAIN _DEFINED _ATTRIBUTE=list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME= string
POSTAL _ADDRESS _CODE =string
STATUS=status variable

Parameters PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

Specifies the mailbox or distribution list you want to
delete from the courtesy copy address list. Enter the name
as a string of 1 to 256 characters or as a record in the
format:

22-60 NOSNE Commands and Functions 60464018 J

/

'"-....__

60464018 J

DELETE_COURTESY_COPY

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generat1on_qualif1er: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 manual if
you need more information on specifying Usage an
address.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be deleted from the courtesy copy address list.
Enter a list of one to four strings of 1 to 32 characters
each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be deleted from the courtesy copy list. Enter a
1- to 64-character string.

PRNATE _DOMAIN or PD

Parameter Attributes: BY_NAME, ADVANCED

Specifies the private domain associated with the address
to be deleted from the courtesy copy address list. Enter a
1- to 16-character string.

ADMINISTRATIVE _DOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be deleted from the courtesy copy address list.
Enter a 1- to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
deleted from the courtesy copy address list. Enter a 1- to
3-character string.

MAIL 22-61

I
I

I
I

DELETE_COURTESY_COPY

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent (UA) address identifier relative to
an administrative domain to be deleted. Enter the
identifier as a 1- to 32-character string,

TERMINAL_lDENTIFIER or TI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of a telematic
terminal to be deleted. Enter the identifier as a 1- to
24-character string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be deleted
from the address list. For example, an X.121 address
might reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be deleted from the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recend

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be deleted.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL_ADDRESS_COUNTRY_NAMEorPACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical service
address to be deleted. Enter the country name as a 1- to
30-character string.

22-62 NOSNE Commands and Functions 60464018 J

Remarks

I "'-- ..

Examples

60464018 J

DELETE_COURTESY_COPY

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be deleted. Enter the code as a 1- to 128-character
string.

o You cannot use the wildcard characters * in addresses
you specify.

• When deleting an address, you must specify the same
parameters used to create that address, or the
subcommand terminates with a warning message.

o The POSTAL_ADDRESS,
POSTAL_ADDRESS_COUNTRY_NAME, and
POSTAL _ADDRESS _CODE parameters do not define
a mailbox address in the mail directory. They identify
the physical postal delivery address to be deleted.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

• For more information, see the MailNE Version 2
Usage manual.

The following example deletes an address from the
courtesy copy address list:

Wr11/display_courtesy_copy
Personal name: Cris Fede

Organization units: SALES

Personal name: Glen Kalin
Organization units: SALES

Personal name: Melanie H Hart
Organization units: SALES

Wril/delete_courtesy_copy ..
Wril .. /personal_name='Chris Fedo'

MAIL 22-63

DELETE _DISTRIBUTION _LIST

DELETE _DISTRIBUTION _LIST
MAIL Subcommand

Purpose

Format

Removes a distribution list fro~ the MaiWE directory.

DELETE _DISTRIBUTION _LIST or
DELDL

DISTRIBUTION _LIST _NAME= string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS =status variable

Parameters DISTRIBUTION _LIST_NAME or DLN

Specifies the name of the distribution list to be deleted .
. Enter the name as a 1- to 64-character string or as a
record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MaiWE Version 2 Usage
manual if you need more information on specifying a
distribution list name.

This paramete~ is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
distribution list to be deleted. Enter a list of one to four
strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
distribution list to be deleted. Enter a string of 1 to 64
characters.

22-64 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

DELETE _LETTER

o The name of the distribution list is not deleted from
other distribution lists that contain it.

o Only the owner of a distribution list or the MailNE
administrator can delete the list.

• ff the address specified by the addressing attribute
values does not uniquely identify a distribution list
you own, .the command terminates with an error
message.

• For more information, see the MailNE Version 2
Usage manual.

The following example deletes the
AD_HOC_COMMITTEE distribution list from the
MailNE directory:

Mail/delete_distribution_list
Mail .. /dln='ad_hoc_conm1ttee'

DELETE _LETTER
MAIL Subcommand

Purpose

Format

Deletes a letter from a mailbox.

DELETE _LETTER or
DELL

LETTER= integer or string
STATUS= status variable

Parameters LETTER or L

60464018 J

Specifies the letter to be deleted. Identify the letter by
letter number or letter identifier.

The letter number is the number assigned to the letter on
the letter list displayed when you enter the LIST _MAIL
subcommand. It can change each time you use
LIST _MAIL. The letter identifier is permanently assigned
to the letter by MailNE when it is delivered to the
mailbox.

MAIL 22-65

DELETE_LETTER_PARTS

Remarks

Examples

• Only the owner of a mailbox or the MailNE
administrator can delete letters from a mailbox.

• If no letter corresponds to the letter number or letter
identifier, MailNE writes a message to the error file.

• For more information, see the Mail/VE Version 2
Usage !Danual.

The following example deletes letter number 1 in the
letter list:

Mail/delete_letters letter=1

In the following example, the letter to be deleted is
specified using the letter identifier:

Mail/delete_letters letter='GW14'

DELETE_LETTER_PARTS
FORL, WRIL, and WRIR Subcommand

Purpose Deletes an entry from the list of parts that make up the
body of a letter.

Format DELETE _LETTER _PARTS or
DELETE_LETTER_PARTor
DELLP

LETTER _PARTS= list of file
STATUS= status variable

Parameters LETTER _PARTS or LETTER _PART or LP

Remarks

List of letter parts to he deleted from the letter body.
This parameter is required.

• If the letter part to be deleted is not in the letter
body, the command terminates with an error status.

• For more information, see the MailNE Version 2
Usage manual.

22-66 NOS/VE Commands and Functions 60464018 J

Examples

DELETE _MAILBOX

The following example deletes a letter part from the list
of parts that make up the letter body:

Wr11/display_letter_parts
:NVE.LTR.PROCESS.MONTHLY_REVIEW (TEXT)
:NVE.Jt&V.EXAMPLES.P0527 (TEXT)
:NVE.JMW.EXAMPLES.P0531 (TEXT)
:NVE.JMW.EXAMPLES.P0533 (TEXT)
:NVE.Jt.M.EXAMPLES.P05116 (TEXT)

Wril/delete_letter_part ..
Wril/letter_part=.ltr.process.monthly_review

DELETE _MAILBOX
MAIL Subcommand

Purpose Deletes a mailbox and all letters in the mailbox from the
MailNE directory.

Format DELETE _MAILBOX or
DELM

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS= status variable

Parameters PERSONAL_NAME or PN

60464018 J

Specifies the name of the mailbox to be deleted. Enter the
name as a 1- to 64-character string or as a record in the
format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need details on naming the mailbox.

This parameter is required.

MAIL 22-67

I
I

DELETE _MAILBOX

Remarks

Examples

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox to be deleted. Enter a list of one to four strings
of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
mailbox to be deleted. Enter a string of 1 to 64
characters.

• You can only delete a mailbox if you have been
validated for self-administration by the NOSNE
system administrator.

• If you delete the mailbox that is your default mailbox
identity, you must select a new default and identity
mailbox to continue your mail session. Use the
SET _DEFAULT _MAILBOX and SELECT _IDENTITY
subcommands to specify a default and identity mailbox.
(See also the Examples section, below.)

• A mailbox can only be deleted by its owner (that is,
the user who created it). The deleted mailbox address
is not deleted from distribution lists that contain it.

• If the address specified by the addressing parameters
does not uniquely identify a mailbox you own, the
command terminates with an error message.

• For more information, see the MailNE Version 2
Usage manual.

The following example deletes a mailbox:

Mail/delete_mailbox ..
Mail .. /personal_name='Program_News'
Mail .. /organization_unit=(
Mai1 .. /'SL410C' ..
Mail .. /'Purchasing' ..
Mail .. /'Consumer Products')

22-68 NOSNE Commands and Functions 60464018 J

DELETE_PERMISSION

In the following example, the user deletes the mailbox
serving as the identity to MailNE. After the system
displays an informative message, the user then specifies a
new identity using SELECT _IDENTITY and
SET _DEFAULT _MAILBOX.

Mail/delete_mailbox ..
Ma11 .. /personal_name='Lonnie Mason'
--You do not have a mailbox selected.

Mail/select_identity ..
Ma11 .. /personal_name='ProJect_Coordinator'
Mail/set_default_mailbox ..
Mail .. /personal_name='Project_Coordinator'

DELETE _PERMISSION
CHADL, CHAM, CREDL, and CREM Subcommand

Purpose

Format

Deletes a mailbox address from the list of permitted
mailboxes for the distribution list or mailbox you are
changing or creating. This subcommand applies only to
GROUP mailboxes and distribution lists.

DELETE _PERMISSION or
DELP

PERSONAL_NAME=string or record
ORGANIZATION _UNITS =list of string
ORGANIZATION _NAME =string
PRNATE_DOMAIN=string .
ADMINISTRATNE _JJOMAIN =string
COUNTRY =string
STATUS =status variable

Parameters PERSONAL _NAME or PN

60464018 J

Specifies the name of the mailbox to be deleted from a
group definition. Enter the name as a 1- to 256-character
string or as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string o .. 3

recend

MAIL 22-69

I
I

DELETE_PERMISSION

Remarks

See Address Names in the Mail/VE Version 2 Usage
manual if you need more information on specifying a
mailbox name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be deleted from the permitted group of
addresses. Enter a list of one to four strings of 1 to 32
characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated ·with the
address to be deleted from the permitted group. Enter a
1- to 64-character string.

PRIVATE _DOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be deleted. Enter a 1- to 16-character string.

ADMINISTRATIVE _DOMAIN or AD

. Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be deleted from the permitted group. Enter a
1- to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
deleted from the permitted group. Enter a 1- to
3-character string.

o You can use the wildcard character * in the address
attributes.

o Addresses are processed exactly as they are entered.

o Organization names and units must be defined by the
Mail/VE administrator. Use the
DISPLAY _ORGANIZATIONS subcommand to list the
defined organization names/units.

22-70 NOSNE Commands and Functions 60464018 J

Examples

DELETE_TO

• For more information, see the MailNE Version 2
Usage manual.

In the following example, two mailboxes are deleted from
the list of permissions for a group mailbox:

Mail/change_mailbox 'Demo_Log'
Cham/delete_permission 'Jack Holland'
Cham/delete_permission 'Laura Phillips'
Cham/end_change_mailbox

DELETE_TO
FORL, WRIL, and WRIR Subcommand

Purpose Deletes an address from the To (primary) address list.

Format DELETE_TO or
DELT

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME= string
PRNATE __JJOMAIN=string
ADMINISTRATNE __JJOMAIN =string
COUNTRY =string
UA _IDENTIFIER= string
TERMINAL _IDENTIFIER= string
X121 _ADDRESS= string
DOMAIN _DEFINED _ATTRIBUTE =list of record
POSTAL _ADDRESS= list of string
POSTAL _ADDRESS _COUNTRY _NAME =string
POSTAL _ADDRESS _CODE =string
STATUS==status variable

Parameters PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

60464018 J

Specifies the mailbox or distribution list name you want
to delete from the To address list. Enter the name as a
string of 1 to 256 characters or as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

MAIL 22-71

DELETE_TO

See Address Names in the MaiWE Version 2 Usage
manual if you need information on specifying a mailbox
or distribution list name.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address to be deleted from the To address list. Enter a
list of one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address to be deleted from the To address list. Enter a 1-
to 64-character string.

PRIVATE _JJOMAIN or PD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the private domain associated with the address
to be deleted from the To address list. Enter a 1- to
16-character string.

ADMINISTRATNE _JJOMAIN or AD

Parameter Attributes: BY _NAME, ADVANCED

Specifies the administrative domain associated with the
address to be deleted from the To address list. Enter a 1-
to 16-character string.

COUNTRY or C

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country associated with the address to be
deleted from the To address list. Enter a 1- to 3-character
string.

UA _IDENTIFIER or UI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the user agent CUA) address identifier relative to
an administrative domain to be deleted from the address
list. Enter the identifier as a 1- to 32-character string.

22-72 NOS/VE Commands and Functions 60464018 J

60464018 J

DELETE_TO

TERMINAL _IDENTIFIER or TI

Parameter Attributes: BY _NAME, ADVANCED

Specifies the terminal address identifier of a telematic
terminal to be deleted from the address list. Enter the
identifier as a 1- to 24-character string.

X121 _ADDRESS or XA

Parameter Attributes: BY _NAME, ADVANCED

Specifies an X.121 standard network address to be deleted
from the address list. For example, an X.121 address
might reference a fax machine or telex location. Enter the
address as a 1- to 15-character string of integers 0 to 9.

DOMAIN _DEFINED _ATTRIBUTE or DDA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the non-X.400 address attributes defined for a
mail system to be deleted from the address list. Enter the
attributes as a list of one to four records in the format:

record
name: string 1 .. 8
value: string 1 .. 128

recer.d

POSTAL _ADDRESS or PA

Parameter Attributes: BY _NAME, ADVANCED

Specifies the physical postal service address to be deleted.
Enter the address as a list of two to six strings of 1 to
30 characters each.

POSTAL _ADDRESS _COUNTRY _NAME or PACN

Parameter Attributes: BY _NAME, ADVANCED

Specifies the country name for the physical postal service
address to be deleted. Enter the country name as a 1- to
30-character string.

POSTAL _ADDRESS _CODE or PAC

Parameter Attributes: BY _NAME, ADVANCED

Specifies the national code designation (for example, the
zip code in the U.S.) of the physical postal service address
to be deleted. Enter the code as a 1- to 128-character
string.

MAIL 22-73

I
I

DELETE_TO

Remarks

Examples

E> You cannot use the wildcard characters * in addresses.

• When deleting an address, you must specify the same
parameters used to create that address, or the
subcommand terminates with a warning message.

• Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

• For more information, see the MailNE Version 2
Usage manual.

The following example deletes an address from the To
address list:

Wril/display_to
Personal name: Karen McDonald

Organization units: PRODUCT RESEARCH
Organization name: MARKETING

Personal name: Cecil Pfeiffer
Organization units: US SALES

MIDWEST DISTRICT
Organization name: MARKETING

Personal name: Michael Carpenter
Organization units: US SALES

NORTHEAST DISTRICT
·Organization name: MARKETING

Personal name: Nancy A. Reed
Organization units: US SALES

NORTHEAST DISTRICT
Organization name: MARKETING

Wril/delete_to ..
Wril .. /personal_name='Cecil Pfeiffer'

22-74 NOSNE Commands and Functions 60464018 J

'-

DISPLAY_ATTRIBUTES

DISPLAY _ATTRIBUTES
CHADL, CHAM, CREDL, and CREM Subcommand

Purpose Displays mailbox or distribution list attributes.

Format DISPLAY _ATTRIBUTES or
DISPLAY _ATTRIBUTE or
DISA

OUTPUT=file
STATUS =status variable

Parameters OUTPUT or 0

Examples

60464018 J

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
.file that you specified on the EMAIL command or, by
default, to your terminal screen.

The following example creates a mailbox and then
requests a display of the attributes of the new mailbox:

Mail/create_mailbox
Crem/set_attributes
Crem .. /personal_name={
Crem .. / 'Terence Johnson'
Crem .. / 'Terry Johnson' ..
Crem .. / 'TJJ') ..
Crem .. /organization_name='music group
Crem .. /description='owned by Terry Johnson'
Crem/display_attributes

MAIL 22-75

DISPLAY _ATTRIBUTES

DISPLAY _ATTRIBUTES
CHAM and CREM Subcommand

Purpose Displays mailbox or distribution list attributes.

Format DISPLAY _ATTRIBUTES or
DISPLAY _ATTRIBUTE or
DISA

OUTPUT= file
STATUS =status variable

Parameters OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

Remarks For more information, see the MailNE Version 2 Usage
manual.

DISPLAY _ADDRESS LIST
CHADL and CREDL Subcommand

Purpose Displays the addresses that make up a distribution list.

Format DISPLAY _ADDRESS _LIST or
DI SAL

DISPLAY _OPTIONS= keyword
OUTPUT= file
STATUS =status variable

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information displayed. Options:

BRIEF or B

Displays local address attributes.

FULL or F

Displays all address attributes.

If omitted, BRIEF is used.

22-76 NOSNE Commands and Functions 60464018 J

Remarks

Examples

\'-..__ .

60464018 J

DISPLAY _ADDRESS _LIST

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

• If there are no addresses in the distribution list, the
command terminates and the system displays an
informative message.

• For more information, see the MailNE Version 2
Usage manual.

The following example produces a brief version of an
address list display.

Mail/change_distribution_list 'photo club dl'
Chadl/display_address_list

Personal name: Trevor Porter
Organization units: EDUCATION
Organization name: MASTER ENTERPRISE

Personal name: Mary Stockman
Organization units: EDUCATION
Organization name: MASTER ENTERPRISE

Personal name: Brad Col 1 ins
Organization units: EDUCATION
Organization name: MASTER ENTERPRISE

Personal name: Raymond Ellerbee
Organization units: ACCOUNTING
Organization name: MASTER ENTERPRISE

Personal name: Denise Jones
Organization units: ACCOUNTING
Organization name: MASTER ENTERPRISE

Personal name: Kate Martin
Organization units: ACCOUNTING
Organization name: MASTER ENTERPRISE

MAIL 22-77

DISPLAY_BLIND_COURTESY_COPY

DISPLAY _BLIND _COURTESY _COPY
FORL, WRIL, and WRIR Subcommand

Purpose Displays the blind courtesy copy address list.

Format DISPLAY _BLIND _COURTESY _COPY or
DISBCC

DISPLAY _OPTIONS=keyword
OUTPUT=file
STATUS= status variable

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information that is to appear in the display.
Options are:

Remarks

BRIEF or B

Displays local address attributes.

FULL or F

Displays address attributes and recipient options for
each recipient.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

• If there are no addresses in the blind courtesy copy
list, the command terminates with an informative
message.

• For more information, see the MailNE Version 2
Usage manual.

22-78 NOS/VE Commands and Functions 60464018 J

Examples

DISPLAY _COURTESY _COPY

The following example produces the brief version of the
address list display:

Wril/display_blind_courtesy_copy
Personal name: Alan Wescott

Or.ganization units: PERSONNEL

Personal name: Carrie Young
Organization units: LEGAL

The following example produces the full version of the
address list display:

Wril/display_blind_courtesy_copy
Wril .. /display_option=full

Personal name: Alan Wescott
Organization units: PERSONNEL

Private domain: TBN INC.
Administrative domain: ATTMAIL

Country: US

Personal name: Carrie Young
Organization units: LEGAL

Private domain: TBN INC.
Administrative domain: ATTMAIL

Country: US

DISPLAY_COURTESY_COPY
FORL, WRIL, and WRIR Subcommand

Purpose Displays the courtesy copy address list.

Format DISPLAY_COURTESY_COPY or
DISCC

DISPLAY _OPTIONS= keyword
OUTPUT= file
STATUS= status variable

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information that is to appear in the display.
Options are:

BRIEF or B

Displays local address attributes.

60464018 J MAIL 22-79

DISPLAY _COURTESY_COPY

Remarks

Examples

FULL or F

Displays address attributes and recipient options for
each recipient.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your ter~inal screen.

• If there are no addresses in the courtesy copy list, the
command terminates with an informative message.

• For more information, see the MailNE Version 2
Usage manual.

The following example produces the brief version of an
address list display.

Wril/display_courtesy_copy
Personal name: Cris Fedo

Organization units: SALES

Personal name: Glen Kalin
Organization units: SALES

Personal name: Melanie H Hart
Organization units: SALES

The following example produces the full version of an
address list display.

22-80 NOS/VE Commands and Functions 60464.018 J

DISPLAY_DELIVERY_OPTIONS

Wril/display_courtesy_copy do=full
Personal name: Cris Fede

Organization units: SALES
Private domain: TANNER GROUP

Administrative domain: ATTMAIL
Country: US

Personal name: Glen Kalin
Organization units: SALES

Private domain: TANNER GROUP
Administrative domain: ATTMAIL

Country: US

Personal name: Melanie H Hart
Organization units: SALES

Private domain: TANNER GROUP
Administrative domain: ATTMAIL

Country: US

DISPLAY _DELIVERY _OPTIONS
FORL, WRIL, and WRIR Subcommand

Purpose Displays the delivery options of the letter in progress.

Format DISPLAY_DELIVERY_OPTIONS or
DISDO or
DISPLAY _ATTRIBUTE or
DISPLAY _ATTRIBUTES or
DISPLAY _DELIVERY _OPTION or
DISA

OUTPUT==file
STATUS ==status variable

Parameters 0 UTP UT or 0

Remarks

60464018 J

Specifies the name of the file to which the output is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

The delivery options you can specify for a letter are:

IMPORTANCE
SENSITIVITY
DELIVERY _PRIORITY
CONVERSION _PROHIBITED

MAIL 22-81

I!
Ill

DISPLAY_DELIVERY_OPTIONS

Examples

RETURN _CONTENTS
ALTERNATE _RECIPIENT _ALLOWED
DISCLOSE _OTHER _RECIPIENTS
DELIVERY _CONFIRMATION

You set these options on the SET _DELIVERY _OPTIONS
subcommand. See the description of that subcommand for
details on each option.

For more information, see the MailNE Version 2 Usage
manual.

The following example displays the delivery options of a
letter sent from the mailbox with personal name Sarah
Lofquist.

Mail/write_ letter
Wril/set_subject 'Question about schedule.'
Wril/collect_text $local.note
ct? Please clarify the milestone labeled
ct? design review. Does the corresponding
ct? date indicate completion?
ct?**
Wril/add_letter_part lp=$1ocal.note
Wr i 1 /add_ to ..
Wril .. /personal_name='Jean Beinert'
Wril/set_delivery_options
Wril .. /delivery_confirmation=delivery
Wril/display_delivery_options

Message id: 580B090E2A31004A-PINK
Personal name: Sarah Lofquist
Organization units: SYSTEM A
Importance: NORMAL IMPORTANCE
Sensitivity: NOT SENSITIVE
Delivery priority: NORMAL PRIORITY
Conversion prohibited: FALSE
Content return requested: FALSE
Alternate recipient allowed: FALSE
Disclose other recipients: FALSE
Delivery confirmation: DELIVERY

22-82 NOSNE Commands and Functions 60464018 J

DISPLAY _DISTRIBUTION _LISTS

DISPLAY _DISTRIBUTION _LISTS
MAIL Subcommand

Purpose Displays information about one or more of your
distribution lists.

Format DISPLAY _DISTRIBUTION _LISTS or
DISPLAY _DISTRIBUTION _LIST or
DISDL

DISTRIBUTION _LIST _NAME= keyword or string
or record

ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
DISPLAY _OPTIONS =keyword
OUTPUT =file
STATUS=status variable

Parameters DISTRIBUTION _LIST_NAME or DLN

60464018 J

Specifies the name of the distribution list to be displayed.
Specify the keyword ALL to display information about all
of the distribution lists you own. Otherwise, enter the
distribution list name as a 1- to 64-character string or as
a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual if you need further information on specifying a
distribution list name.

This parameter is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
distribution list to be displayed. Enter a list of one to
four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

MAIL 22-83

I
I

I

DISPLAY _DISTRIBUTION.:._LISTS

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
distribution list to be displayed. Specify a string of 1 to
64 characters.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY _NAME

Specifies the information to be displayed. Options are:

BRIEF or B

Displays the local address attributes of the distribution
list, the distribution list type, and the expand
attribute.

FULL or F

Displays all distribution list attributes.

PERMITS or PERMIT or P

Displays the distribution list type and, if it is a group
distribution list, the permission list entries.

CONTENTS or C

Displays the addresses contained in the distribution
list.

If omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the file to which the display is written. If
omitted, the display is written to the output file you
specified on the EMAIL command or, by default, to your
terminal screen.

22-84 NOSNE Commands and Functions 60464018 J

Remarks

Examples

"---

'---

DISPLAY_DISTRIBUTION _LISTS

• Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined names/units.

• To list the contents of distribution lists you do not
own but are permitted to display (that is, to which
you have READ permission), use the
EXPAND _DISTRIBUTION _LIST subcommand
described in the MailNE Commands, Subcommands,
and Functions chapter of the MailNE Usage manual.

• For more information, see the MailNE Version 2
Usage manual.

This example requests a display of the contents of a
distribution list:

Mail/display_distribution_list
Mail .. /dln='process_review_task_force'
Mail .. /display_options=contents

1. Personal name: Tyler Ross
Organization units:

Organization name:
2. Personal name:

Organization units:

Organization name:
3. Personal name:

Organization units:

Organization name:
4. Personal name:

Organization units:

Organization name:

EMAIL PROJECT
SYSTEMS DEPARTMENT
PROGRAMMING DIVISION
MICRO SOLUTIONS
Mary Landon
NETWORK CONTROL
SYSTEMS DEPARTMENT
PROGRAMMING DIVISION
MICRO SOLUTIONS
Harry Jenson
AI TOOLS
SYSTEMS DEPARTMENT
PROGRAMMING DIVISION
MICRO SOLUTIONS
Rene Walters
AI TOOLS
SYSTEMS DEPARTMENT
PROGRAMMING DIVISION
MICRO SOLUTIONS

The order of organization units in the example is from
least inclusive to most inclusive. For example, Tyler Ross
is on the EMAIL Project in the Systems Department in

'---- the Programming Di vision.

60464018 J MAIL 22-85

DISPLAY _DOMAINS

DISPLAY _DOMAINS
MAIL Subcommand

Purpose Displays the private and administrative domains and
countries registered in the mail directory.

Format DISPLAY _DOMAINS or
DISPLAY _DOMAIN or
DISD

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

Examples

Parameter Attributes: BY _NAME

Specifies the name of the file to which the output is
written. If omitted, output is written to the output file
you specified on the EMAIL command or, by default, to
yo~r terminal screen.

• Use the list of domains as a reference in determining
active interdomain routes for sending mail.

• For more information, see the MaiWE Version 2
Usage manual.

The following example displays the domain information for
a mail system:

Mail/display_domain
Country: US
Administrative domain: ATTMAIL

22-86 NOS/VE Commands and Functions 60464018 J

DISPLAY_LETTER_PARTS

DISPLAY _LETTER _PARTS
FORL, WRIL, and WRIR Subcommand

Purpose Displays the list of parts. that make up the letter body.

Format DISPLAY _LETTER _PARTS or
DISPLAY _LETTER _PART or
DIS LP

OUTPUT=file
STATUS= status variable

Parameters OUTPUT or 0

Remarks

Examples

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

o If the letter file list is empty, the command terminates
with an informative message.

o For more information, see the MailNE Version 2
Usage manual.

The following example shows the format of the display:

Wril/display_letter_parts
:$LOCAL.NOTE (TEXT)
:NVE.JMW.EXAMPLES.P0533 (TEXT)
: NVE. .. JMW. EXAMPLES. P0531 (TEXT)

DISPLAY _RECIPIENT _OPTIONS
FORL, WRIL, and WRIR Subcommand

Purpose Displays the current value of the recipient options.

Format DISPLAY _RECIPIENT _OPTIONS or
DISPLAY _RECIPIENT _OPTION or
DISRO

OUTPUT= file
STATUS= status variable

Parameters OUTPUT or 0

60464018 J

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

MAIL 22-87

DISPLAY _MAILBOXES

Remarks The recipient options you can specify when composing a
letter are:

CERTIFY _RECEIPT
CERTIFY _N ONRECEIPT
REPLY _REQUESTED

You set these options on the SET _RECIPIENT _OPTIONS
subcommand. See the description of that subcommand for
details on each option.

For more information, see the Mail/VE Version 2 Usage
manual.

DISPLAY _MAILBOXES
MAIL Subcommand

Purpose

Format

Displays information about any mailbox you own.

DISPLAY _MAILBOXES or
DISPLAY _MAILBOX or
DISM

PERSONAL_NAME=keyword or string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
DISPLAY _OPTIONS= keyword
OUTPUT= file
STATUS =status variable

Parameters PERSONAL _NAME or PN

Specifies the name of the mailbox to be displayed. Specify
the keyword ALL to display information about all of the
mailboxes you own. Otherwise, enter the mailbox name as
a 1- to 64-character string or a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual if you need more information on specifying
mailbox names.

22-88 NOSNE Commands and Functions 60464018 J

"--

60464018 J

DISPLAY_MAILBOXES

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox to be displayed. Enter a list of one to four
strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the_order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
mailbox to be displayed. Enter a string of 1 to 64
characters.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY_NAME

Specifies the information to be displayed. Options:

BRIEF or B

Displays the local address attributes of the mailbox,
the letter retention period, and the mailbox type.

FULL or F

Displays all mailbox address attributes.

PERMITS, PERMIT, or P

Displays the mailbox type and, if it is a group
mailbox, the permission list entries.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

MAIL 22-89

DISPLAY_MAILBOXES

Remarks

Examples

o The wildcard character * is not permitted in mailbox
addresses.

• The addressing parameters are PERSONAL_NAME,
ORGANIZATION _UNITS, and
ORGANIZATION _NAME.

If you do not specify any of the addressing
parameters, your identity mailbox is displayed.

If the addressing parameters do not uniquely
specify a mailbox you own, the command
terminates with an error message.

• You can use the mailbox alias name(s) to reference a
mailbox.

• Organization names and units must be defined by the
Mail/VE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

The following example specifies that the display include
the list of permissions that define a group mailbox:

Mail/display_mailbox 'Project_Notes' do=permits
1. Persona 1 name: Mincher, A lex ··

Permissions: WRITE READ

2. Organization name: RESEARCH GROUP
Permissions: WRITE READ

22-90 NOSNE Commands and Functions 60464018 J

DISPLAY _ORGANIZATIONS

DISPLAY _ORGANIZATIONS
MAIL Subcommand

Purpose

Format

Parameters

60464018 J

Displays the organization names and units registered in
the mail directory.

DISPLAY_ORGANIZATIONS or
DISPLAY _ORGANIZATION or
DISO

ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
DISPLAY _OPTIONS= keyword
OUTPUT=file
STATUS= status variable

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) used to determine the
display content. The display will include only those
registered organization names/units that include the value
specified. Enter a list of one to four strings of 1 to 32
characters each.

Address lookup procedures determine a match based on
the order specified. ·

ORGANIZATION_NAMEorON

Specifies the organization name used to determine display
content. Enter a string of 1 to 64 characters.

The display will include only those registered organization
names/units that include the value specified.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY_NAME

Specifies the display content. Options are:

LOCAL or L

Lists registered organizations residing on this host.

NON _LOCAL or NL

Lists registered organizations not on this host.

MAIL 22-91

DISPLAY_ORGANIZATIONS

Remarks

Examples

ALL

Lists local and nonlocal organizations.

If omitted, LOCAL is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the output is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

• Organizations are defined by the MaiWE
administrator. Entries are defined using units (one to
four), a name, or both.

• The display lists organization unit/name combinations
that are valid for mailbox definition or mail transfer.

o For more information, see the MaiWE Version 2
Usage manual.

The following example displays the organizations
registered on the local host for local mailbox definition
and local mail transfer:

Mail/display_organizations do=local
Organization units: PROGRAMMING

Organization units: ACCOUNTING

Organization units: PURCHASING

22-92 NOS/VE Commands and Functions 60464018 J

DISPLAY _PERMISSIONS

DISPLAY _PERMISSIONS
CHADL, CHAM, CREDL, and CREM Subcommand

Purpose Displays the list of permitted mailboxes for a group
mailbox or distribution list.

Format DISPLAY _PERMISSIONS or
DISPLAY _PERMISSION or
DISP

DISPLAY _OPTIONS= keyword
0 UT PUT= file
STATUS=status variable

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies what information is displayed. Options:

BRIEF or B

Displays the address attributes for each permission
entry. ·

FULL or F

Displays all of the address attributes and permissions
granted.

If omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY_NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

Remarks For more information, see the Mail/VE Version 2 Usage
manual.

60464018 J MAIL 22-93

DISPLAY_PERMISSIONS

Examples The following example produces a brief display of the
permitted mailbox list:

Mail/change_mailbox 'mvedev'
Cham/display_permissions

1. Personal name: Akers, Ben
Organization units: SALES

2. Personal name: Post, Linda
Organization units: SALES

3. Organization name: MARKETING

The following example produces a full display of the
permitted mailbox list:

Mail/change_mailbox 'mvedev'
Cham/display_permissions do=full

1. Personal name: Akers, Ben
Organization units: SALES
Permissions: READ WRITE

2. Personal name: Post, Linda
Organization units: SALES
Permissions: READ WRITE

3. Organization name: MARKETING
Permissions: READ WRITE

DISPLAY _PERMISSIONS
CHAM and CREM Subcommand

Purpose

Format

Displays the list of permitted mailboxes for a group
mailbox or distribution list.

DISPLAY _PERMISSIONS or
DISPLAY _PERMISSION or
DISP

DISPLAY _OPTIONS =keyword
OUTPUT=file
STATUS= status variable

22-94 NOS/VE Commands and Functions 60464018 J

,_

DISPLAY _SUBJECT

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies what information is displayed. Options:

Remarks

BRIEF or B

Displays the address attributes for each permission
entry.

FULL or F

Displays all of the address attributes and permissions
granted.

If omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or,_ by
default, to your terminal screen.

For more information, see the MailNE Version 2 Usage
manual.

DISPLAY _SUBJECT
FORL, WRIL, and WRIR Subcommand

Purpose Displays the subject of the letter being composed.

Format DISPLAY _SUBJECT or
DISS

OUTPUT=file
STATUS =status variable

Parameters OUTPUT or 0

Specifies the name of the file to which the output is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

Remarks For more information, see the MailNE Version 2 Usage
manual.

60464018 J MAIL 22-95

II
II

DISPLAY_TO

Examples The following example displays the subject of the letter
currently being composed:

Wril/display_subject
Subject: Question about schedule.

DISPLAY_TO
FORL, WRIL, and WRIR Subcommand

Purpose Displays the primary (To) address list.

Format DISPLAY_TO or
DIST

DISPLAY _OPTIONS=keyword
OUTPUT=file
STATUS= status variable

Parameters DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the display content. Options:

Remarks

BRIEF or B

Displays local address attributes.

FULL or F

Displays address attributes and recipient options for
each recipient.

If omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY_NAME

Specifies the name of the file to which the output is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

o If there are no addresses in the To address list, the
command terminates with an informative message.

• For more information, see the MailNE Version 2
Usage manual.

22-96 NOSNE Commands and Functions 60464018 J

Examples

60464018 J

DISPLAY_TO

The following example produces the brief version of the
address list display.

Wril/display_to
Personal name: Karen McDonald

Organization units: PRODUCT RESEARCH
Organization name: MARKETING

Personal name: Jerry Pfeiffer
Organization units: US SALES

MIDWEST DISTRICT
Organization name: MARKETING

Personal name: Michael Carpenter
Organization units: US SALES

NORTHEAST DISTRICT
Organization name: MARKETING

Personal name: Nancy A. Reed
Organization units: US SALES

NORTHEAST DISTRICT
Organization name: MARKETING

The following example produces the full version of the
address list display.

MAIL 22-97

$DISTRIBUTION _LIST _ATTRIBUTE

Wril/d1splay_to do=full
Personal name: Karen McDonald

Organization units: PRODUCT RESEARCH
Organization name: MARKETING

Private domain: CARTER ELECTRONICS
Administrative domain: ATTMAIL

Country: US

Personal name: Jerry Pfeiffer
Organization units: US SALES

MIDWEST DISTRICT
Organization name: MARKETING

Private domain: CARTER ELECTRONICS
Administrative domain: ATTMAIL

Country: US

Personal name: Michael Carpenter
Organization units: US SALES

NORTHEAST DISTRICT
Organization name: MARKETING

Private domain: CARTER ELECTRONICS
Administrative domain: ATTMAIL

Country: US

Personal name: Nancy A. Reed
Organization units: US SALES

NORTHEAST DISTRICT
Organization name: MARKETING

Private domain: CARTER ELECTRONICS
Administrative domain: ATTMAIL

Country: US

$DISTRIBUTION _LIST _ATTRIBUTE
MAIL Function

Purpose Returns the value of a specified distribution list attribute.

Format $DISTRIBUTION _LIST _ATTRIBUTE
(ADDRESS: string or record
OPTION: keyword)

22-98 NOSNE Commands and Functions 60464018 J

'-...___

$DISTRIBUTION _LIST_ATTRIBUTE

Parameters ADDRESS

60464018 J

Specifies a distribution list address.

You must own the distribution list you specify or a null
string will be returned when you use this function.

Only the distribution list name is required. Specify the
organization unit(s) and organization name associated with
the distribution list to further define the address. Enter
the address as a string or as a record in the format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_Qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

See chapter 2, MailNE Addresses, in the MailNE Version
2 Usage manual if you need more information on
specifying an address.

This parameter is required.

OPTION

Specifies the attribute whose value is to be returned.
Keyword options:

ADDRESS or A

Returns the local address record.

ADDRESS_LIST or AL

Returns the list of addresses that make up the
distribution list. The value is returned as a list of
global address records.

ADDRESS _LIST _SIZE or ALS

Returns an integer specifying the number of entries in
the distribution list.

EXPAND or E

Returns a boolean value that indicates whether the
distribution list will be expanded in the letter header.

MAIL 22-99

I
i

$DISTRIBUTION _LIST_ATTRIBUTE

Remarks

PERMISSION _LIST or PL

Returns the permission list entries that define a group
distribution list. The value is returned as a list of
global address records.

PERMISSION _LIST _SIZE or PLS

Returns an integer specifying the number of entries in
the permission list for a group distribution list.

PERMIT_TYPE or PT

Returns a string containing PRIVATE, PUBLIC, or
GROUP.

DESCRIPTION or D

Returns a string of 1 to 64 characters that describes
the distribution list.

TELEPHONE_NUMBER or TN

Returns a string of up to 32 characters that contains
the telephone number associated with the distribution
list. ·

This parameter is required.

Ci> Distribution list attributes that have not been defined
return a null value.

o This function returns address records in the following
formats.

Local address records:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string o .. 64

recend

Global address records:

22-100 NOSNE Commands and Functions 60464018 J

Examples

END _CHANGE _DISTRIBUTION _LIST

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64
private_domain: string 0 .. 16
administrative_domain: string 0 .. 16
country: string 0 .. 3
x121_address: string 0 .. 15
terminal_identifier: string 0 .. 24
ua_identifier: string 0 .. 32
domain_defined_attributes: list 0 .. 4

record
name: string 1 .. 8
value: string 1 .. 128

recend
recend

o For more information, see the Mail/VE Version 2
Usage manual.

The following example uses the
$DISTRIBUTION _LIST_ATTRIBUTE function to test the
size of a distribution list, which determines whether or
not the list is displayed:

Mail/if $distribution_list_attribute('mrd1' als) < 5 then
if /display_distribut ion_ 1 ist 'mrdl'
if I if end

END _CHANGE _DISTRIBUTION _LIST
CHADL Subcommand

Purpose Ends a CHANGE_DIS'rRIBUTION _LIST subutility
session.

Format END _CHANGE _DISTRIBUTION _LIST or
ENDCDL or
QUI or
QUIT or
END

SAVE= boolean
STATUS=status variable

60464018 J MAIL 22-101

END _CHANGE_MAILBOX

Parameters SAVE or S

Remarks

Specifies whether or not the changed distribution list
definition should be saved. Options:

TRUE

Saves the changed distribution list definition.

FALSE

Makes no changes to the existing distribution list
definition.

If SAVE is omitted, TRUE is used.

For more information, see the MailNE Version 2 Usage
manual.

END _CHANGE _MAILBOX
CHAM Subcommand

Purpose

Format

Ends a CHANGE _MAILBOX subutility session.

END_CHANGE_MAILBOX or
ENDCM or
QUI or
QUIT or
END

SAVE= boolean
STATUS= status variable

Parameters SAVE or S

Remarks

Specifies whether or not the changed mailbox definition
will be saved. Options:

TRUE

Saves the changed mailbox definition.

FALSE

Makes no changes to the existing mailbox definition.

If SAVE is omitted, TRUE is used.

For more information, see the MailNE Version 2 Usage
manual.

22-102 NOSNE Commands and Functions 60464018 J

END _CREATE _DISTRIBUTION _LIST

END _CREATE _DISTRIBUTION _LIST
CREDL Subcommand

Purpose

Format

Ends a CREATE _DISTRIBUTION _LIST subutility
session.

END _CREATE _DISTRIBUTION _LIST or
ENDCDL or
QUI or
QUIT or
END

SAVE= boolean
STATUS =·status variable

Parameters SAVE or S

Remarks

Specifies whether or not the new distribution list
definition will be saved. Options:

TRUE

Saves the new distribution list.

FALSE

The new distribution list is not saved.

If SAVE is omitted, TRUE is used.

For more information, see the MailNE Version 2 Usage
manual.

END _CREATE _MAILBOX
CREM Subcommand

Purpose Ends a CREATE _MAILBOX subutility session.

Format END _CREATE _MAILBOX or
ENDCM or
QUI or
QUIT or
END

SAVE= boolean
STATUS= status variable

60464018 J MAIL 22-103

I
I

END_EMAIL

Parameters SAVE or S

Remarks

Specifies whether or not the new distribution list
definition will be saved.

Options:

TRUE

Saves the mailbox definition.

FALSE

Does not save the mailbox definition.

If SAVE is omitted, TRUE is used.

For more information, see the MailNE Version 2 Usage
manual.

END EMAIL
MAIL Subcommand

Purpose

Format

Remarks

Terminates a MailNE session.

END _EMAIL or
ENDE or
QUI or
QUIT or
END

STATUS =status variable

o Each subutility includes an END subcommand that
terminates the subutility and returns you to the
previous command level.

To terminate a MailNE session, enter the END
subcommand following the Mai l I prompt.

o If you enter END _EMAIL or ENDE from within a
subutility, you terminate the mail session.

o For more information, see the MailNE Version 2
Usage manual.

22-104 NOS/VE Commands and Functions 60464018 J

"---

END _FORWARD _LETTER

END_FORWARD LETTER
FORL Subcommand

Purpose

Format

Ends the FORWARD _LETTER subutility session.

END _FORWARD _LETTER or
ENDFL or
QUI or
QUIT or
END

SEND= boolean
STATUS =status variable

Parameters SEND or S

Remarks

Specifies whether the letter being composed will be
forwarded. Options:

TRUE

The letter will be forwarded.

FALSE

The letter in progress will not be forwarded.

If SEND is omitted, TRUE is used.

For more information, see the Mail/VE Version 2 Usage
manual.

END_ WRITE _LETTER
WRIL Subcommand

Purpose

Format

60464018 J

Ends the WRITE _LETTER subutility session.

END_ WRITE _LETTER or
ENDWL or
QUI or
QUIT or
END

SEND= boolean
STATUS= status variable

MAIL 22-105

END_ WRITE _REPLY

Parameters SEND or S

Specifies whether the letter being composed will be sent.
Options:

TRUE

The letter being composed will be sent.

FALSE

The letter being composed will not be sent.

If SEND is omitted, TRUE is used.

Remarks For more information, see the Mail/VE Version 2 Usage
manual.

END WRITE REPLY
WRIR Subcommand

Purpose Ends the WRITE _REPLY subutility session.

Format END _WRITE _REPLY or
ENDWR or
QUI or
QUIT or
END

SEND= boolean
STATUS= status variable

Parameters SEND or S

Specifies whether the reply in progress will be sent.
Options:

Remarks

TRUE

The reply letter will be sent.

FALSE

The reply letter will not be sent.

If SEND is omitted, TRUE is used.

For more information, see the Mail/VE Version 2 Usage
manual.

22-106 NOSNE Commands and Functions 60464018 J

EXPAND _DISTRIBUTION _LIST

EXPAND _DISTRIBUTION _LIST
MAIL Subcommand

Purpose Displays the list of addresses in a distribution list and
the content of any distribution lists contained within that
list.

Format EXPAND _DISTRIBUTION _LIST or
EXPDL

DISTRIBUTION _LIST _NAME= string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
OUTPUT= file
STATUS= status variable

Parameters DISTRIBUTION _LIST _NAME or DLN

60464018 J

Specifies the name of the distribution list to be expanded.
Enter the name as a 1- to 64-character string or as a
record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
1nit1als: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual if you need details on specifying a distribution list
name.

This parameter is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
distribution list to be expanded. Enter a list of one to
four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION _NAME or ON

Specifies the organization name associated with the
distribution list to be expanded. Enter a string of 1 to 64
characters.

MAIL 22-107

I
I

EXPAND _DISTRIBUTION _LIST

Remarks

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file on which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

• Distribution lists are expanded only if the user has
READ permission to the list.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

22-108 NOS/VE Commands and Functions 60464018 J

Examples

FORWARD _LETTER

The following example expands a distribution list to show
its contents:

Ma11/expand_distribution_list
Mail .. /distribution_list_name='process_task_force'

Personal name: Tyler Ross
Organization unit: EMAIL PROJECT

SYSTEMS DEPARTMENT
PROGRAMMING DIVISION

Organization name: MICRO SOLUTIONS

Personal name: Mary Landon
Organization unit: NETWORK CONTROL

SYSTEMS DEPARTMENT
PROGRAMMING DIVISION

Organization name: MICRO SOLUTIONS

Personal name: Harry Jenson
Organization unit: AI TOOLS

SYSTEMS DEPARTMENT
PROGRAMMING DIVISION

Organization name: MICRO SOLUTIONS

FORWARD _LETTER
MAIL Subcommand

Purpose

Format

60464018 J

Initiates the FORWARD _LETTER subutility, through
which you can forward a letter including optional
comments to other addresses. When you enter
FORWARD_ LETTER, the system displays the prompt
For 1 /.

FORWARD _LETTER or
FORL

LETTER= keyword or integer or string
PROLOG=file
STATUS=status variable

MAIL 22-109

FORWARD _LETTER

Parameters LETTER or L

Identifies the letter to be forwarded. Specify a letter
number, letter identifier, or a keyword.

The· letter number is the number assigned to the letter on
the letter list. It can change each time you enter the
LIST _MAIL subcommand. The letter identifier is
permanently assigned to the letter by MaiWE.

Keyword options:

CURRENT or C

Selects the current letter in the letter list. (The
current letter is the letter most recently displayed.)

FIRST or F

Selects the first letter in the letter list.

LAST or L

Selects the last letter in the letter list.

NEXT or N

Selects the letter following the current letter in the
letter list.

PREVIOUS or P

Selects the letter preceding the current letter in the
letter list.

If LETTER is omitted, CURRENT is used.

PROLOG or P

Parameter Attributes: BY _NAME

Specifies the name of the file from which commands are
read before giving control to the FORWARD _LETTER
subutility. If omitted, $NULL is used.

The $NULL default can be overridden by creating an SCL
variable called MVD$MAIL _WRITE _PRO LOG and setting
its value to the name of the prolog file; specify this value
as a string.

22-110 NOSNE Commands and Functions 60464018 J

Remarks

"--

60464018 J

FORWARD _LETTER

• Use the FORWARD _LETTER subutility subcommands,
listed next, to add comments, specify letter attributes,
define the address list, and forward the letter.

ADD _BLIND _COURTESY _COPY
ADD_COURTESY_COPY
ADD_LETTER_PARTS
ADD_TO
DELETE _BLIND _COURTESY _COPY
DELETE_COURTESY_COPY
DELETE_LETTER_PARTS
DELETE_TO
DISPLAY _BLIND _COURTESY _COPY
DISPLAY _COURTESY _COPY
DISPLAY _DELIVERY _OPTIONS
DISPLAY _LETTER_PARTS
DISPLAY _RECIPIENT _OPTIONS
DISPLAY _SUBJECT
DISPLAY_TO
END_FORWARD_LETTER
SET _DELIVERY _OPTIONS
SET _RECIPIENT _OPTIONS
SET _SUBJECT

These subcommands are described in the Letter
Posting Subutility Subcommands section of the
MaiWE Version 2 Usage manual.

• If you list an address more than once in the address
list, only one copy of the letter is sent to the address.

o The address in the From field is set to the value
returned by the $IDENTITY function.

o If an address is repeated, only one copy of the letter is
sent to the address. This is true regardless of the form
of the address or whether the address is included in
more than one distribution list.

e Receipts are generated by the system when certified
letters are read, copied, or printed.

o Notices are generated by the system, unless suppressed
by the sender, if delivery confirmation is requested or
when the mail system determines the letter cannot be
delivered to an address.

MAIL 22-111

$IDENTITY

Examples

• Nondelivery notices are not generated for incorrect
local addresses in a distribution list or for any
addresses in a distribution list whose EXPAND
attribute is set to FALSE. Local addresses are
validated when the distribution list name is entered in
the recipient list and incorrect addresses are simply
ignored.

However, nondelivery notices are generated for
incorrect nonlocal addresses in a local distribution list
whose EXPAND attribute is set to TRUE. These
addresses are not validated when they are added to
the distribution list; they are validated when Mail/VE
attempts to deliver mail to them.

o For more information, see the Mail/VE Version 2
Usage manual.

This example forwards the current letter with comments
to another mailbox:

Ma11/forward_letter
Forl/add_to 'Glen Johnson'
Forl/set_subject 'Request for Conments'
Forl/collect_text $local.notes
Colt/Please review the attached document
Colt/by Wednesday and return conments
Colt/to Art Pehler.
Col ti**
Forl/add_letter_part $local.notes
Forl/end_forward_letter

$IDENTITY
MAIL Function

Purpose Returns a record that contains the address by which you
are known to the mail system.

Format $IDENTITY

Parameters None.

22-112 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

$IDENTITY

o The $IDENTITY function returns a local address·
record in the format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16

initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend
organization_units: list of 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

ca The address of the default mailbox is automatically
used as your identity when you enter the mail system.

Identity is used within MailNE:

- As the From address for any WRITE _LETTER,
WRITE_REPLY, or FORWARD_ LETTER
subcommand you enter.

- To determine which mailboxes you can access for
reading mail, which mailboxes can be delivered
mail, and which distribution lists are available.

• For more information, see the Mail/VE Version 2
Usage manual.

The following example uses the NOSNE command
DISPLAY_ VALUE to display $IDENTITY. It shows Ken
Nordquist as the personal name and purchasing as the
organization unit.

Mail/display_value $identity
Nordquist
Ken

PURCHASING

Mail/

MAIL 22-113

$LETTER

$LETTER
MAIL Function

Purpose Returns a string containing the letter identifier of the
current letter (that is, the most recently displayed letter).

Format $LETTER

Parameters None.

Remarks • Use LIST _MAIL to establish a letter list in the

Examples

mailbox before you use the $LETTER function. If a
letter list does not exist, a null string is returned.

• For more information, see the MailNE Version 2
Usage manual.

This example uses the NOSNE command
DISPLAY_ VALUE to display $LETTER:

Ma11/display_value $letter
JA27

$LETTER _ATTRIBUTE
MAIL Function

Purpose Returns the value of a selected letter attribute.

Format $LETTER _ATTRIBUTE
(OPTION: keyword
LETTER: keyword or integer or string)

Parameters OPTION

The attribute whose value is to be returned. Options:

SEEN

Returns a boolean value specifying whether the letter
has been displayed. Applies only to owned mailboxes.

SUBJECT

Returns the subject of the letter in a string of up to
128 characters.

22-114 NOSNE Commands and Functions 60464018 J

60464018 J

$LETTER_ATTRIBUTE

ORIGINATOR

Returns the sender's address in a global address
record.

MESSAGE _IDENTIFIER

Returns the X.400 message identifier in a string of 0
to 64 characters.

IMPORTANCE

Returns a string specifying the sender's rating of the
the importance of the letter as NORMAL, LOW, or
HIGH.

SENSITIVITY

Returns a string specifying the sender's rating of the
sensitivity of the letter as PERSONAL, PRIVATE, or
CONFIDENTIAL.

REPLY _REQUEST

Returns the boolean value TRUE if the sender
requested a reply; otherwise, returns FALSE.

DELIVERY _PRIORITY

Returns a string that specifies the sender's rating of
the urgency of the letter as URGENT or
NON _URGENT.

CERTIFIED

Returns the boolean value TRUE if the sender
requested certified delivery; otherwise, returns FALSE.

DATE_TIME_SENT ·

Returns a record containing the date and time the
letter was sent.

DATE _TIME _RECEIVED

Returns a record containing the date and time the
letter was received.

DATE_ TIME _EXPIRES

Returns a record containing the date and time that
the sender specifies as the expiration of the letter.

MAIL 22-115

I

$LETTER_ATTRIBUTE

RETAIN _UNTIL

Returns the date and time until which the letter is
retained in the system.

MESSAGE _SIZE

Returns the· size of the message (in bytes) as an
integer.

AUTO_FORWARDED

Returns the boolean value TRUE if the letter was
automatically forwarded from another mailbox;
otherwise, returns FALSE.

NUMBER_OF _LETTER_PARTS

Returns an ·integer specifying the number of parts in
the letter body. The number can be zero if the subject
is the entire letter body.

LETTER_PARTS

Returns a list of one or more strings specifying the
type(s) of information contained in the message.

MESSAGE_TYPE

Returns a string containing LETTER or RECEIPT.

LETTER

Specifies the letter for which an attribute is returned.
Specify the letter by letter number (integer), identifier (a
string of 1 to 6 characters), or keyword.

The letter number is the number from the previous letter
list. It can change each time you enter the LIST _MAIL
subcommand. ·

The letter identifier is permanently assigned to the letter
and is not related to previous execution of any command.

Keyword options:

FIRST or F

Displays an attribute value from the first letter in the
list.

NEXT or N

Displays an attribute value from the next letter in the
list.

22-116 NOSNE Commands and Functions 60464018 J

Remarks

Examples

$LETTER_LIST

PREVIOUS or P

Displays an attribute value from the previous letter in
the list.

LAST or L

Displays an attribute value from the last letter in the
list.

CURRENT or C

Displays a value from the current letter in the letter
list. (The current letter is the letter most recently
displayed.)

If omitted, $LETTER is used.

• If a letter list does not exist, a null string is returned.

e The $LETTER function returns the value of the
current letter from the letter list (that is, the letter
most recently displayed).

o For more information, see the MaiWE Version 2
Usage manual.

In the following example the subject of the current letter
is displayed:

Mail/letter_subject=$letter_attribute(subject)
Mail/display_value letter_subject
Reply to How about lunch on Monday?

$LETTER _LIST
MAIL Function

Purpose Returns the letter list as a list of strings containing letter
identifiers.

Format $LETTER _LIST

Parameters None.

60464018 J MAIL 22-117

I

LIST_MAIL

Remarks

Examples

• Use LIST _MAIL to establish a letter list in the
mailbox before using the $LETTER _LIST function. If
a letter list does not exist, an empty list is returned.

• For more information, see the Mail/VE Version 2
Usage manual.

The following example searches a letter list for a specific
date to begin reading.

Mail/date_to_find=$now
Mail/if date_to_find.month > 1 then
if/date_to_find.month = date_to_find.month -1

if /else
if/date_to_find.month = 12
if /ifend
Mail/list_mail 'newswire' output =$null
Mail/for each ltr in $letter_11st do
for/date= $letter_attr1~ute(..
for .. /date_time_received ltr)
for/if date.month = date_to_find.month then
if/read_letter ltr o=new_letters.$eoi
if /1 fend
for/forend
Mai 1/

LIST_MAIL
MAIL Subcommand

Purpose

Format

Displays the number of letters in one or more mailboxes,
and a numbered list of letters for the first mailbox in the
list. Displays the letters from a specified mailbox. The
letters are shown in a numbered list.

LIST _MAIL or
LISM or
LIST or
READ _MAIL or
REAM

PERSON AL _NAME= string or record or keyword
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
MAIL _OPTIONS= keyword or list of keyword
DISPLAY _OPTIONS= keyword
OUTPUT=file
STATUS= status variable

22-118 NOSNE Commands and Functions 60464018 J

LIST_MAIL

Parameters PERSONAL _NAME or PN

60464018 J

Specifies the name of the mailbox for which you want to
display a letter list. Enter the name as the keyword OW-X
or as a 1- to 64-character string.

record
surname: string 1 .. 40
g i ven_name: string 0 .. 16
in i t i a 1 s : string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address ~am es in the Mail/VE Version 2 L sage
manual a mailbox name.

ORGANIZATION _UNITS or ORGANIZATION UNIT or
OU

Specifies the names of from one to four organization
unit(s) defined in the mailbox address. Enter each unit as
a 1- to 32-character string.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION _NAME or ON

Specifies the name of the organization associated with the
mailbox address. Enter the name as a string of 1 to 64
characters.

MAIL _OPTIONS or MAIL _OPTION or MO

Specifies the type(s) of letters to be included in the letter
list. You can specify ALL or one or more keyword options
for each type.

If you select more than one option for a type, all of your
selections apply. If you select all of the options for any
type, the effect is the same as if you had selected none of
the options for that type.

Letter types:

If you do not select any letter type options, all letters are
listed.

LETIER or L

Includes letters.

MAIL 22-119

LIST_MAIL

RECEIPT or R

Includes letters generated upon receipt or nonreceipt of
a letter.

Read Status types:

These options apply only to owned mailboxes.

SEEN or S

Includes letters that were previously displayed using
READ _LETTER.

UNSEEN or US

Includes letters that have not been displayed.

Sensitivity options:

PRIVATE or PR

Includes letters that the sender classified as private.

PERSONAL or PE

Includes letters that the sender classified as personal.

CONFIDENTIAL or CO

Includes letters that the sender classified as
confidential.

Receipt Certification types:

CERTIFIED or C

Includes letters that the sender classified as certified.

UNCERTIFIED or UC

Includes letters that are not classified as certified.

Importance types:

LOW _IMPORTANCE or LI

Includes letters that the sender classified low
importance.

NORMAL_IMPORTANCE or NI

Includes letters that the sender classified normal
importance.

22-120 NOSNE Commands and Functions 60464018 J

60464018 J

LIST_MAIL

HIGH _IMPORTANCE or HI

Includes letters that the sender classified high
importance.

Delivery Priority types:

NORMAL_PRIORITY or NP

Includes letters that the sender classified for normal
delivery.

URGENT _PRIORITY or UP

Includes letters that the sender classified for urgent
delivery.

NON_URGENT_PRIORITY or NUP

Includes letters that the sender classified for
nonurgent delivery.

Other types:

REPLY_REQUEST or RR

Includes letters for which the sender requested a reply.

AUTOFORWARDED or A

Includes letters that were autoforwarded to the
mailbox for which the letter list is being produced.

If you do not specify any options and you own the
mailbox, UNSEEN is used.

If the mailbox is not owned by the caller of the
LIST _MAIL subcommand, ALL is used. ·

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY _NAME

Specifies the amount of information that appears in the
letter list display. Options:

BRIEF or B

Displays a one-line description of each letter that
specifies the date/time received, the sender's mailbox
name (truncated when necessary), the subject
(truncated when necessary), the length in bytes, and a
flag if the letter has high importance or a reply is
requested.

MAIL 22-121

I
II

LIST_MAIL

Remarks

FULL or F

Displays a multiline description of each letter that
specifies the letter identifier, the date/time received,
the sender's mailbox name and organization, the
subject, the length of the letter in bytes, and a flag if
the letter has high importance or a reply is requested.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

• If you do not specify any of the addressing parameters
(PERSONAL_NAME, ORGANIZATION _UNITS, or
ORGANIZATION _NAME), all of your mailboxes are
checked for mail.

• The LIST _MAIL subcommand produces an ordered list
of letters that satisfies the options you specify on the
MAIL_OPTIONS parameter. You can then use the
letter number or letter identifier from this list in
subsequent READ _LETTER subcommands.

o The mailbox whose letters you want to list must be
one of the mailboxes you own or are permitted to
read.

• If the mailbox specified does not contain any mail that
meets the mail options criteria, the letter list is
empty. An informative message is displayed.

o The $MAILBOX function returns the local address of
the mailbox for which a letter list is created. If the
letter list is empty, $MAILBOX returns a null record.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

• For more information, see the MailNE Version 2
Usage manual.

22-122 NOSNE Commands and Functions 60464018 J

Examples

LOOKUP _ADDRESS

The following example checks a mailbox for unseen mail:

Mai 1I1 is t _ma i 1 personal _name=' Ty 1 er Hanson'
-- The letter selection criteria found no letters to display.

The following example displays a brief listing of receipts
in a mailbox:

Mail/list_mail pn='Tyler Hanson' mo=receipt do=brief
Hanson, Tyler contains the following letters:

1. May 20, 1989.8:23 PM Bradley, Jan RECEIPT 219

LOOKUP _ADDRESS
MAIL Subcommand

Purpose

Format

Displays information about one or more addresses.

LOOKUP _ADDRESS or
LOOA

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
ADDRESS _OPTIONS= keyword or list of keyword
DISPLAY _OPTIONS= keyword or list of keyword
OUTPUT=file
STATUS =status variable

Parameters PERSONAL_NAME or DISTRIBUTION _LIST _NAME or
PN or DLN

60464018 J

Specifies the mailbox or distribution list name of the
address for which you are searching. Enter the name as a
string of 1 to 64 characters or- as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual for details on specifying a mailbox or distribution
list name.

MAIL 22-123

LOOKUP _ADDRESS

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
address(es) for which you are searching. Enter a list of
one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
address(es) for which you are searching. Enter a string of
1 to 64 characters.

ADDRESS _OPTIONS or ADDRESS _OPTION or AO

Parameter Attributes: BY _NAME

Specifies the criteria used to search for the address.
Specify ALL or one or more of the followi~g keyword
options. ALL means the address search is not limited by
address type (that is, mailbox versus distribution list) or
by permit type (that is, private, group, or public).

MAILBOX or M

Limits the search to mailbox addresses.

DISTRIBUTION _LIST or DL

Limits the search to distribution list addresses.

PRIVATE or PR

Limits the search. to private addresses.

GROUP or G

Limits the search to group addresses.

PUBLIC or PU

Limits the search to public addresses.

If ADDRESS _OPTIONS is omitted, ALL is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY_NAME

Specifies the information to include in the address display.
Specify ALL or one or more of the following keyword
options:

22-124 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

LOOKUP _ADDRESS

PERSONAL_NAME or PN

Displays the primary mailbox or distribution list name
for each address.

ALIAS_NAME or AN

Displays the alias name or names of the mailbox or
distribution list, if any, for each address.

ORGANIZATION _UNITS, ORGANIZATION _UNIT, or
OU

Displays the organization units, if any, for each
address.

ORGANIZATION _NAME or ON

Displays the organization name, if any, for each
address.

TELEPHONE_NUMBER or TN

Displays the telephone number, if any, for each
address.

DESCRIPTION or D

Displays the description, if any, for each address.

If omitted, PERSON AL _NAME is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file on which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

o If your MailNE administrator has established a
domain-wide directory, you can look up addresses on
remote hosts as well as on your own host.

o You need to specify at least one of the addressing
parameters (PERSONAL _NAME,
ORGANIZATION _UNITS, or
ORGANIZATION _NAME).

MAIL 22-125

I
I

LOOKUP _ADDRESS

Examples

• You can use the wildcard character * to indicate parts
of the address not specified.

If a wildcard lookup finds more than 500 addresses,
Mail/VE will request that you enter more restrictive
lookup criteria.

• The search is not case-sensitive. That is, searching for
'Ziggy' will find 'ziggy', 'ZIGGY', 'Ziggy', and so on.

• Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

• For more information, see the Mail/VE Version 2
Usage manual.

The following example lists all mailboxes with the
surname Jackson.

Mail/lookup_address '*Jackson' ..
Mail .. /address_options=(mailbox)

1. Mailbox: Personal name: Jackson, John B.
2. Mailbox: Personal name: Jackson, Ken

The following example lists all mailbox names whose
given name begins with the letter J and whose surname
is Hanson:

Mail/lookup_address 'J* Hanson' ..
Mail .. /address_options=(mailbox)

1. Mailbox: Personal name: Hanson, John A.
2. Mailbox: Personal name: Hanson, Jonathon

The following example lists all public mailboxes:

Mail/lookup_address '*' ao=(public mailbox)
1. Mailbox: Personal name: EMAIL_NEWS
2. Mailbox: Personal name: SDS_NEWS

22-126 NOS/VE Commands and Functions 60464018 J

$MAILBOX

$MAILBOX
MAIL Function

Purpose Returns a local address record containing the address of
the mailbox selected for read operations.

Format $MAILBOX

Parameters None.

Remarks • Use LIST _MAIL to establish a letter list before using
the $MAILBOX function. $MAILBOX returns the local
address of the mailbox for which a letter list is
created. If a letter list does not exist, $MAILBOX
returns a null value.

• The format of the local address record:

record
personal_name: record

surname: string 1 .. 40
given_name: string o .. 16

initials: string 0 .. 5
generation_qualifier: string 0 .. 3

~-/ recend

Examples

60464018 J

organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

• For more information, see the MailNE Version 2
Usage manual.

In the following example, the name associated with the
mailbox selected for read operations is displayed:

Mail/display_value $ma11box.personal_name
Jones
Walter

MAIL 22-127

I
II

$MAILBQX_ATTRIBUTE

$MAILBOX _ATTRIBUTE
MAIL Function

Purpose Returns the value of a specified mailbox attribute.

Format $MAILBOX _ATTRIBUTE
(ADDRESS: string or record
OPTION: keyword)

Parameters ADDRESS

Specifies the address of the mailbox for which an
attribute value is to be returned. Only the personal name
is required. Specify organization unit(s) and organization
name to further define the address.

The mailbox must be owned by the caller or a null string
is returned.

Enter the address as a 1- to 64-character string or as a
record in the format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

See chapter 2, MailNE Addresses, in the MailNE Version
2 Usage manual if you need more information on
addressing.

This parameter is required.

OPTION

Specifies the name of the attribute value to be returned.
Options are:

ADDRESS or A

Returns the mailbox address. If the mailbox is not
owned by the caller, a null string is returned. The
address is returned as a list of local address records in
the following format:

22-128 NOSNE Commands and Functions 60464018 J

60464018 J

$MAILBOX_ATTRIBUTE

record
personal_name: record

surname: string 1 .. 40
given_name: str1ng 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend
organization_units: list of 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

PERMISSION _LIST or PL

Returns the permission list entries. The value is
returned as a list of access permission records.

PERMISSION _LIST _SIZE or PLS

Returns an integer specifying the number of entries in
the permission list.

PERMIT_TYPE or PT

Returns a string containing PRIVATE, PUBLIC, or
GROUP.

DESCRIPTION or D

Returns a string of 1 to 64 characters that describes
the mailbox.

RETENTION _PERIOD or RP

Returns an integer (from 1 to 365) specifying how long
a letter that has been displayed remains in the
mailbox to which it was sent before being deleted from
the system.

TELEPHONE_NUMBER of TN

Returns the phone number associated with the mailbox
in a string of up to 32 characters.

This parameter is required.

MAIL 22-129

I
I

I
II

$MAILBOX_ATTRIBUTE

Remarks • Mailbox attributes that have not been defined return a
null string.

• This function returns address records in the following
formats.

Local address records:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .• 16

initials: string 0 .. 5
generation_Qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

Global address records:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_Qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64
private_domain: string 0 .. 16
administrat1ve_domain: string 0 .. 16
country: string 0 .. 3
x121_address: string 0 .. 15
terminal_identifier: string 0 .. 24
ua_ident1fier: string 0 .. 32
domain_defined_attributes: list 0 .. 4

record
name: string 1 .. 8
value: string 1 .. 128

recend
recend

• For more information, see the MaiWE Version 2
Usage manual.

22-130 NOS/VE Commands and Functions 60464018 J

Examples

$0WNED _DISTRIBUTION _LISTS

The following example displays the description for each
owned mailbox:

Mail/mailbox_list=$owned_mailboxes
Mail/for each box 1n mailbox_list do
for/disv $mailbox_attr1bute(box d)
for/forend

$OWNED _DISTRIBUTION _LISTS
MAIL Function

Purpose Returns a list of records containing the addresses of the
distribution lists you own.

Format $OWNED _DISTRIBUTION _LISTS

Parameters None.

Remarks

60464018 J

o The local address record is returned in the following
format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string O .. 32
organization_name: string 0 .. 64

recend

o If you do not own any distribution lists, an empty list
is returned.

• For more information, see the MailNE Version 2
Usage manual.

MAIL 22-131

I
I

$OWNED MAILBOXES

Examples The following example shows the number of addresses in
each of your distribution lists:

Mail/for each dl in $owned_distribution_list
for/display_value dl .distribution_list_name//
for .. /' contains'// ..
for .. /$strrep(..
for .. /$distribution_list_attribute
for .. / (dl,address_list_size)//
for .. /' addresses'
for/forend
DTEAM contains 6 addresses
DEPT_LIST contains 9 addresses
Mail/

$OWNED _MAILBOXES
MAIL Function

Purpose Returns a list of records containing the local address of
all of the mailboxes you own.

Format $OWNED _MAILBOXES

Parameters None.

Remarks • The local address record is returned in the following
format:

record
personal_name: record

surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend
organization_units: list 0 .. 4 of string 0 .. 32
organization_name: string 0 .. 64

recend

• If you have no mailboxes, an empty list is returned.

• For more information, see the MailNE Version 2
Usage manual.

22-132 NOSNE Commands and Functions 60464018 J

Examples

READ _LETTERS

The following example uses MailNE functions to check
owned mailboxes for mail:

Mai1/ma11box_list = $owned_mailboxes
Mail/for each box in mailbox_list do
for/read_mail personal_name = ..
for .. /box.personal_name mail_options =all
for/forend
Mai 1/

READ _LETTERS
MAIL Subcommand

Purpose

Format

Displays one or more letters, receipts, or notices from the
letter list.

READ _LETTERS or
READ _LETTER or
REAL or
READ

LETTERS= list of range of: keyword or integer or
string

PAR.TS= keyword or list of range of integer
RECIPIENTS= keyword or list of keyword
DISPLAY _OPTIONS=keyword
OUTPUT=file
STATUS =status variable

Parameters LETTERS or LETTER or L

60464018 J

Specifies the letter to be displayed. Specify a letter
number, letter identifier, or keyword.

The letter number is the number assigned to the letter on
the letter list. It can change each time you enter the
LIST _MAIL subcommand. The letter identifier is
permanently assigned to the letter by MailNE when it is
delivered to the mailbox.

Keyword options:

CURRENT or C

Selects the current letter from the letter list. (The
current letter is the one most recently displayed.)

FIRST or F

Selects the first letter in the letter list.

MAIL 22-133

READ _LETTERS

LAST or L

Selects the last letter in the letter list.

NEXT or N

Selects the letter following the current letter in the
letter list.

PREVIOUS or P

Selects the letter preceding the current letter in the
letter list.

If LETTER is omitted, CURRENT is used.

PAR.TS or PAR.T or P

Parameter Attributes: BY_NAME

Specifies a list of letter part ordinals, a range of letter
part ordinals, or a keyword. Integer values can range
from 1 to the number of parts that make up the letter
body.

Determine the number of letter parts by executing the
LIST _MAIL subcommand with the DISPLAY _OPTIONS
parameter set to FULL, or by displaying the value of the
$LETTER_ATTRIBUTE function with the OPTION
parameter set to NUMBER_ OF _LETTER _PARTS.

Options:

TEXT

Includes letter parts containing text.

FORWARD

Includes forwarded letter parts.

NONE

Displays no letter parts. The letter header is displayed
depending on the display option specified.

If omitted, TEXT and FORWARD are used. Letter parts of
other types are represented in the display with a header
line.

22-134 NOS/VE Commands and Functions 60464018 J

60464018 J

RECIPIENTS or RECIPIENT or R

Parameter Attributes: BY _NAME

READ _LETTERS

Specifies the recipient lists to include in the display.
Specify ALL, NONE, or one or more of the following
keyword options:

TO

Includes the primary recipient list.

cc
Includes the courtesy copy recipient list.

BCC

Includes the blind courtesy copy recipient list. The
BCC list can be displayed only by members of the list.

If omitted, ALL is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Parameter Attributes: BY _NAME

Specifies the information from the letter header to
display. Options:

BRIEF or B

Includes the letter identifier, subject, date/time sent,
letter attributes, and local information about the
originator and recipients.

FULL or F

Includes all information contained in the letter header.

NONE

Includes no letter header information.

If DISPLAY _OPTION is omitted, BRIEF is used.

OUTPUT or 0

Parameter Attributes: BY _NAME

Specifies the name of the file to which the display is
written. If omitted, the display is written to the output
file that you specified on the EMAIL command or, by
default, to your terminal screen.

MAIL 22-135

READ _LETTERS

Remarks • Only TEXT and FORWARD letter parts can be
displayed using this subcommand. See the
COPY _LETTER _PARTS subcommand for processing
other letter part types.

• If no letter list exists, or if the letter you specify is
not in the current letter list, MailNE displays an
error message.

• The $LETTER function always returns the value of
the letter last displayed.

• If execution of a LIST _MAIL subcommand results in
an empty letter list, there is no letter available for
display using the READ _LETTER subcommand.

• REPLY REQUESTED is the only recipient/delivery
option displayed when you set the DISPLAY _OPTIONS
parameter to BRIEF.

• All mail system messages are preceded and followed
with double asterisks.

• For more information, see the MaiWE Version 2
Usage manual.

22-136 NOSNE Commands and Functions 60464018 J

Examples

60464018 J

READ _LETTERS

The following example displays the full letter header and
the primary recipient list along with the letter:

Mail/read_letter ..
Mail .. /display_option=full
Mail .. /recipients=to

Letter id: KI2
Date/time sent: May 1, 1989.12:02 PM

Date/time received: May 1, 1989.12:03 PM
Retain until: May 9, 1989.12:02 PM

Date/time expires: May 9, 1989.12:02 PM
Delivery priority: NORMAL PRIORITY

Conversion: ALLOWED
Message is: UNCERTIFIED UNSEEN LETTER

Message size: 277 {bytes)
Message id: 580B90B52B27-MTA

Personal name: Jan Banks
Organization units: STAFF

Administrative domain: ATTMAIL
Country: US

Importance: NORMAL IMPORTANCE

To: Personal name: John Watercott
Organization units: COMMUNICATIONS

Administrative domain: ATTMAIL
Country: US

From: Personal name: Jan Banks
Organization units: STAFF

Administrative domain: ATTMAIL
Country: US

Subject: Automobile Leasing

------------- Letter Body Part 1 - Text -------------

Please notify employees of the new auto leasing
program available through Crystal Motors.
See file Al Crystal for details.

** END OF MESSAGE **

The following example displays only the letter header in
brief mode.

MAIL 22-137

RETAIN _LETTER

Mail/read_letter ..
Mail .. /parts=none ..
Mail .. /recipients=none
Date: May 1, 1989.12:02 PM Msg-ID: 580B90B52B27-MTA

Jan Banks OU=STAFF

To: John Watchcott
From: Jan Banks
Subj: Automobile Leasing

** END OF MESSAGE **

OU=COMMUNICATIONS
OU=STAFF

RETAIN _LETTER
MAIL Subcommand

Purpose

Format

Changes the length of time before a letter in the current
letter list is deleted from the mail system. The length of
time is called the retention period.

RETAIN _LETTER or
RETL

LETTER =keyword or integer or string
DAYS= keyword or integer
STATUS= status variable

Parameters LETTER or L

Specifies the letter for which the retention period is to be
changed. Identify the letter by letter identifier, letter
number, or keyword.

The letter number is the number assigned to the letter on
the letter list generated when you enter the LIST_MAIL
subcommand. This number is subj_ect to change each time
you use LIST _MAIL. The letter identifier is permanently
assigned to the letter by Mail/VE when it is delivered to
the mailbox.

Keyword options:

CURRENT or C

Selects the current letter from the letter list. (The
current letter is the letter most recently displayed.)

FIRST or F

Selects the first letter in the letter list.

22-138 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

RETAIN _LETI'ER

NEXT or N

Selects the letter following the current letter in the
letter list.

LAST or L

Selects the last letter in the letter list.

PREVIOUS or P

Selects the letter preceding the current letter in the
letter list.

If LETTER is omitted, CURRENT is used.

DAYS or DAY or D

Parameter Attributes: BY _NAME

Specifies the number of days from today that the letter is
to be retained in the mailbox.

Specify an integer (1 to 365) or the keyword MAXIMUM.
MAXIMUM means the letter is kept in the mailbox for
the maximum retention period for which you are
validated. If you specify a value greater than your
validated limit, the value of your MAXIMUM retention
period is used.

If omitted, MAXIMUM is used.

o Only the owner of a mailbox or the Mail/VE
administrator can change the retention period of
letters in a mailbox. They can also delete the letters.

o If the letter you specify on the LE'ITER parameter is
not in the letter list or has been deleted, MaiWE
displays an error message.

o If a letter list does not exist, the subcommand
terminates and the system displays a message.

o The $LETTER function always returns the value of
the letter last displayed (called the current letter).

o Your NOSNE system administrator sets retention
period limits for each user, and users cannot set
retention periods longer than the limit.

o For more information, see the Mail/VE Version 2
Usage manual.

MAIL 22-139

SELECT _IDENTITY

Examples The following example changes the retention period of
letter number 7 in the current letter list to 14 days from
today:

Mail/retain_letter 1etter=7 days=14

The following example changes the retention period of the
current letter in the letter list to 10 days from today:

Mail/retain_letter days=10

The following example changes the retention period of the
letter with letter identifier JA42 to the maximum number
of days the user is allowed to retain letters:

Mail/retain_letter 1etter='ja42'

SELECT IDENTITY
MAIL Subcommand

Purpose Selects the mailbox you want to use as your identity
within MailNE for the current mail session.

Format SELECT _IDENTITY or
SELi

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS =status variable

Parameters PERSONAL_NAME or PN

Specifies the name of the mailbox you are selecting as
your identity. Enter the name as a 1- to 64-character
string or a record in the format:

record
surname: string 1 .. 40
given_name: string o .. 16
initials: string 0 .. 5
generation_oualifier: string 0 .. 3

recend

See Address Names in the MailNE Version 2 Usage
manual for details on specifying a mailbox name.

This parameter is required.

22-140 NOSNE Commands and Functions ·60464018 J

Remarks

60464018 J

SELECT_IDENTITY

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox address. Enter a list of one to four strings of 1 to
32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION _NAME or ON

Specifies the organization name associated with the
mailbox address. Enter a string of 1 to 64 characters.

o The first mailbox created by or for you is
automatically selected as your identity and as your
default mailbox.

0

Your identity is used:

To verify your access to group mailboxes and
distribution lists.

As the From address when you send a letter.

Your default mailbox is the identity under which you
begin each mail session. Use the
SET _DEFAULT _MAILBOX subcommand described
later in this chapter to change your default mailbox.

See the chapter 1 of the MaiWE Version 2· Usage
manual, under MaiWE Identity, if you need further
information on identity and default mailboxes.

If the address parameters do not specify a mailbox you
own, the command terminates and the system displays
an error message. To list your mailboxes, enter:

display_mailboxes personal_name=all
display_options=full

o The value returned for the $IDENTITY function is the
local address of the mailbox you select using the
SELECT _IDENTITY subcommand. To display your
MailNE identity, enter DISPLAY_ VALUE $IDENTITY.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

MAIL 22-141

SELECT _LETTER

Examples

e For more information, see the MailNE Version 2
Usage manual.

The following example shows selection of a new identity
mailbox, which is then automatically used as the From
address for the letters sent by this user during the
current mail session:

Mail/select_identity 'Test_Coordinator'
Mail/write_ letter
Wril/set_subject 'Test_Update'
Wril/add_letter_part $local .note
Wril/add_to 'Test_Distribution'
Wril/end_write_letter

SELECT_LETTER
MAIL Subcommand

Purpose

Format

Specifies the value returned when you use the $LETTER
function.

SELECT _LETTER or
SELL

LETTER= keyword or integer or string
STATUS= status variable

Parameters LETTER or L

Specifies the letter to be selected and makes it the
current letter. The value returned when you use the
$LETTER function is set to the letter identifier of the
letter selected. Specify a letter number, letter identifier,
or keyword.

The letter number is the number assigned to the letter on
the letter list. It can change each time you enter the
LIST _MAIL subcommand. The letter identifier is
permanently assigned to the letter by MailNE when it is
delivered to the mailbox.

Keyword options:

CURRENT or C

Selects the current letter from the letter list. (The
current letter is the one most recently displayed.)

22-142 NOS/VE Commands and Functions 60464018 J

Remarks

SET_ATTRIBUTES

FIRST or F

Selects the first letter in the letter list.

LAST or L

Selects the last letter in the letter list.

NEXT or N

Selects the letter following the current letter in the
letter list.

PREVIOUS or P

Selects the letter preceding the current letter in the
letter list.

If LETTER is omitted, $LETTER is used.

o If no letter list exists or the specified letter is not
included in the letter list, an informative status is
returned.

o If no letter is selected, a null string is returned when
you use the $LETTER function.

o For more information, see the MailNE Version 2
Usage manual.

SET _ATTRIBUTES
CHADL and CREDL Subcommand

Purpose

Format

60464018 J

Defines or changes distribution list attributes.

SET _ATTRIBUTES or
SET _ATTRIBUTE or
SETA

DISTRIBUTION _LIST _NAME= list of: keyword or
string or record

ORGANIZATION _UNITS= list of: keyword or string
ORGANIZATION _NAME=string
DESCRIPTION= string
TELEPHONE _NUMBER= string
EXPAND= boolean
PERMIT _TYPE=keyword
STATUS=status variable

MAIL 22-143

I
r1

SET _ATTRIBUTES

Parameters DISTRIBUTION _LIST _NAME or DLN

Specifies the name of the distribution list to be defined or
changed.

For a new distribution list, specify a list of one to three
names. The first name is the primary name, used when
information on the list is displayed. The second and third
names are aliases. Use the NO _CHANGE keyword as a
place holder in the list if you want to change an alias.
For an example, see the Examples section under the
description of the SET _ATTRIBUTES subcommand in the
MailNE Version 2 Usage manual.

Enter each name as either a 1- to 64-character string or
as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the MaiINE Version 2 manual if
you need help on naming distribution lists.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) to be associated with the
distribution list being created or changed. Enter a list of
one to four strings of 1 to 32 characters each.

Address lookup procedures determine a match based on
the order specified. Use the NO_CHANGE keyword as a
place holder if you want to change the organization unit
list. For an example, see the Examples section under the
description of the SET _ATTRIBUTES subcommand in the
MaiINE Version 2 Usage manual.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
distribution list. Enter a 1- to 64-character string.

DESCRIPTION or D

Parameter Attributes: BY _NAME

Specifies a 1- to 64-character string describing the
distribution list.

22-144 NOSNE Commands and Functions 60464018 J

60464018 J

TELEPHONE _NUMBER or TN

Parameter Attributes: BY _NAME

SET_ATTRIBUTES

Specifies a 1- to 32-character phone number to be
associated with the distribution list.

EXPAND or E

Parameter Attributes: BY _NAME

Indicates whether or not the distribution list will be
expanded when used. The EXPAND parameter applies
only to distribution lists residing on the same host as the
sender. Otherwise, no expansion can occur regardless of
the value of the EXPAND attribute.

TRUE

The distribution list name does not appear in the
letter header but is replaced by the addresses
contained in the distribution list.

FALSE

The distribution list name is retained in the letter
header but the addresses contained in the distribution
list are not in the header.

If EXPAND is omitted, this attribute remains unchanged.

PERMIT _TYPE or PT

Parameter Attributes: BY _NAME

Specifies the type of distribution list permissions allowed.
Keyword options are:

PRIVATE or PR

Only the owner of the distribution list can display the
addresses in the list and use the list to address
letters.

PUBLIC or PU

The distribution list is available for anyone to use. No
further permissions are required.

GROUP or G

A group of mailboxes is permitted to use the
distribution list and/or display the addresses in the
distribution list.

MAIL 22-145

I
II

SET _ATTRIBUTES

Remarks

Examples

Use the ADD _PERMISSION and
DELETE _PERMISSION subcommands to edit the
permissions. Use the DISPLAY_PERMISSION
subcommand to display the list of mailboxes permitted
to use a group distribution list.

If omitted when creating a distribution list, PRIVATE is
used. If omitted when changing a distribution list, the
attribute remains unchanged.

• The DESCRIPTION and TELEPHONE _NUMBER
attributes are informative only. They are not
considered in address lookup procedures.

• If a group distribution list is changed to a public or
private distribution list, the permission list associated
with the distribution list is deleted.

• Organization names and units must be defined by the
mail administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

e For more information, see the Mail/VE Version 2
Usage manual.

The following example creates a distribution list:

Mail/create_distribution_list
Cred1/set_attr1butes ..
Credl .. /dln=('Market_Research' 'MRDL')
Credl .. /ou=('Consumer Surveys'
Credl .. /'Interior Products') ..
Credl .. /description='owned by Jerry Bystrom'
Credl .. /telephone_number='402-981-6743'
Credl .. /expand=false permit_type=public
Credl/add_address 'Barry Fisher'
Credl/add_address 'Lonnie Merrill'
Credl/add_address 'Shirley Dreckman'
Credl/end_create_distribution_list

In the following example, the third organization unit
associated with a distribution list is changed. Notice the
use of the NO _CHANGE (NC) keyword as a place holder.

22-146 NOS/VE Commands and Functions 60464018 J

SET _ATTRIBUTES

Mail/change_distribution_list 'Market_Research'
Chadl/set_attribute ..
Chadl .. /ou=(nc,nc,'Home Furnishings')
Chadl/end_change_distribution_list

SET _ATTRIBUTES
CHAM and CREM Subcommand

Purpose

Format

Defines or changes mailbox attributes.

SET _ATTRIBUTES or
SET _ATTRIBUTE or
SETA

PERSONAL_NAME=list of: keyword or string or
record

ORGANIZATION _UNITS= list of: keyword or string
ORGANIZATION _NAME=string
DESCRIPTION= string
TELEPHONE _NUMBER= string
RETENTION _PERIOD=keyword or integer
PERMIT _TYPE=keyword
STATUS= status variable

Parameters PERSONAL_NAME or PN

60464018 J

Specifies the personal name address attribute of the
mailbox.

To define a new mailbox, specify a list of one to three
names. The first name is the primary name used when
information is displayed about the address. The second
and third names are aliases. Use the NO_CHANGE
keyword as a place holder in the list if you want to
change an alias. For an example, see the Examples
section under the description of SET _ATTRIBUTES in the
Mail/VE Version 2 Usage manual. Enter each name as a
1- to 64-character string or as a record in the format:

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual for further information on mailbox names.

MAIL 22-147

ti
Ill

SET _ATTRIBUTES

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) to be associated with the
mailbox. Enter a list of one to four strings of 1 to 32
characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies an organization name to be used in addressing
the mailbox. Enter a 1- to 64-character string.

DESCRIPTION or D

Parameter Attributes: BY _NAME

Specifies a string of 1 to 64 characters describing the
mailbox.

TELEPHONE _NUMBER or TN

Parameter Attributes: BY _NAME

Specifies a 1- to 32-character telephone number to be
associated with the mailbox.

RETENTION _PERIOD or RP

Parameter Attributes: BY _NAME

Specifies the number of days a letter is retained in the
mailbox after it is displayed. Enter an integer (1 to 365)
or the keyword MAXIMUM. If you specify MAXIMUM,
the letter retention is the maximum as defined by your
NOSNE user validation.

If omitted when creating a mailbox, MAXIMUM is used.

PERMIT _TYPE or PT

Parameter Attributes: BY_NAME

Specifies the type of mailbox permissions allowed. Options:

PRIVATE or PR

Only the owner of the mailbox can read the contents
and originate letters from it.

PUBLIC or PU

The mailbox is available for anyone to read from or
send to. No further permissions are required.

22-148 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

SET _ATTRIBUTES

GROUP or G

A group of mailboxes is permitted to read the contents
of the mailbox and/or write letters to it.

Use the ADD_PERMISSION and
DELETE _PERMISSION subcommands to edit the
permissions. Use DISPLAY _PERMISSION to display
the permission list that defines a group mailbox.

If omitted when creating a mailbox, PRIVATE is used. If
omitted when changing a mailbox, the attribute remains
unchanged.

o The RETENTION _PERIOD parameter specifies the
retention period of new letters arriving in this
mailbox. The retention period of letters already in the
mailbox is not changed.

o The DESCRIPTION and TELEPHONE_NUMBER
parameters specify documentary information that is not
considered when evaluating a mailbox address in
lookup procedures.

o If a group mailbox is changed to a public or private
mailbox, the permission list associated with the
mailbox is deleted.

o Organization names and units must be defined by the
MailNE administrator. Use the
DISPLAY_ORGANIZATIONS subcommand to list the
defined organization names/units.

o For more information, see the MailNE Version 2
Usage manual.

The following example creates a new mailbox:

Mail/create_mailbox
Crem/set_attributes
Crem .. /personal_name=(
Crem .. /'David M Watkins' ..
Crem . ./'DMW' ..
Crem .. /'Dave Watkins') ..
Crem .. /description='owned by Dave Watkins'
Crem .. /telephone_number='239-816-5903'
Crem/end_create_mailbox

MAIL 22-149

SET _DELIVERY _OPTIONS

The following example changes the third alias of the
mailbox name. Notice the use of the NO _CHANGE (NC)
keyword as a place holder.

Mail/change_mailbox 'LPR'
Cham/set_attribute ..
Cham .. /pn=(nc,nc,'Lana Roche')
Cham/end_change_mailbox

SET _DELIVERY _OPTIONS
FORL, WRIL, and WRIR Subcommand

Purpose Defines or changes the delivery options of the letter being
composed.

Format SET _DELIVERY_ OPTIONS or
SETDO or
SET _ATTRIBUTE or
SET _ATTRIBUTES or
SET _DELIVERY _OPTION or
SETA

IMPORTANCE= keyword
SENSITNITY =keyword
DELNERY _PRIORITY=keyword
CONVERSION _PROHIBITED= boolean
DISCLOSE _OTHER _RECIPIENTS= boolean
ALTERNATE _RECIPIENT _ALLOWED=boolean
RETURN _CONTENTS=boolean
DELNERY _CONFIRMATION= keyword
STATUS =status variable

Parameters IMPORTANCE or I

Specifies the importance of the letter. This attribute is
informative only, and does not imply special handling by
Mail/VE or any other receiving mail system. Keyword
options are:

LOW or L

The letter is of minor importance.

NORMAL or N

The letter is of routine importance.

22-150 NOSNE Commands and Functions 60464018 J

I
\...____.,

60464018 J

SET_DELIVERY_OPTIONS

HIGH or H

The letter is important.

NONE

The letter does not include an importance rating.

If omitted, NONE is used.

SENSITIVITY or SE

Specifies the sensitivity of the letter. Keyword options:

PERSONAL or PE

The letter is personal.

PRIVATE or PR

The letter content should be kept private.

CONFIDENTIAL or C

The letter content should be kept confidential.

NONE

The letter does not include a sensitivity marking.

If omitted, NONE is used.

DELIVERY _PRIORITY or DP

Specifies how the mail system should handle delivery of
the letter through the network. This attribute implies no
special handling by MailNE but may have significance for
other X.400 mail systems. Keyword options:

URGENT or U

The letter should be delivered using the fastest
network route available.

NON _URGENT or NU

The letter should be delivered using the slowest
network route available.

NONE

The letter should be delivered within the default
tinieframe for the mail network at a site.

If omitted, NONE is assumed.

MAIL 22-151

I
I

SET _DELIVERY _OPTIONS

CONVERSION _PROHIBITED or CP

Specifies whether the letter can be converted to a
different encoding for delivery. MaiWE does not convert
letters to a different encoding. This parameter applies to
other X.400 mail systems. Options are:

TRUE

The letter cannot be converted. You may want to set
this parameter to TRUE if a faulty conversion would
result in a significant loss of information.

FALSE

The letter can be converted.

If omitted, FALSE is used.

DISCLOSE _OTHER _RECIPIENTS or
DISCLOS~ _OTHER _RECIPIENT or DOR

Specifies whether the names in the delivery address list
should be displayed to letter recipients. This attribute
implies no special handling by MaiWE but may be used
by other mail systems. The delivery list may be all or
part of the primary, courtesy copy, and blind courtesy
copy lists, plus any distribution list expansions. The
delivery address list may not contain addresses for which
the local mail system does not have delivery
responsibility. Keyword options are:

TRUE

The names in the delivery address list will be
disclosed to letter recipients.

FALSE

The names in the delivery address list will not be
disclosed to letter recipients.

If omitted, FALSE is used.

ALTERNATE _RECIPIENT _ALLOWED or ARA

Specifies whether the letter can be delivered to an
alternate recipient. This attribute implies no special
handling by MailNE but may have significance for other
X.400 mail systems. Keyword options are:

22-152 NOSNE Commands and Functions 60464018 J

I
__

60464018 J

SET _DELIVERY_OPTIONS

TRUE

The letter will be delivered to an alternate recipient if
it cannot be delivered to one of the recipients named
in the primary, courtesy copy, or blind courtesy copy
list.

FALSE

If delivery cannot be made to recipients identified in
the primary, courtesy copy, or blind courtesy copy
lists, it will not be delivered to an alternate recipient.

If omitted, FALSE is used.

RETURN_CONTENTSorRETURN_CONTENTorRC
Specifies whether the letter contents are to be returned if
nondelivery occurs. Mail/VE does not provide a way to
display or resend the returned contents. Mail/VE does not
return the contents of a message with a nondelivery
message. This parameter applies to message transfers to
other mail systems that do return the contents. Keyword
options are:

TRUE

The letter contents are returned in a notice.

FALSE

The letter is not returned.

If omitted, FALSE is used.

DELNERY _CONFIRMATION or DC
Specifies what delivery notices, if any, are to be returned.
Keyword options:

DELIVERY or D

Returns a delivery notice for every delivery and
nondelivery. For BITNet and Internet addresses, a
delivery notice means the message has been
transferred by Mail/VE; the notice does not mean that
the intended recipient actually received it.

NON _DELIVERY or ND

Returns a delivery notice for every nondelivery. For
BITN et and Internet addresses, the Mail/VE gateway
returns a nondelivery if the transfer does not occur.

MAIL 22-153

SET _RECIPIENT _OPTIONS

Remarks

NONE

Does not return any delivery notices. This option does
not apply to BITN et and Internet addresses.

If omitted, NON _DELIVERY is used.

• When preparing a letter, if you enter more than one
SET _DELIVERY _OPTIONS subcommand with the
same options, the value specified on the last
subcommand is used.

o The options you select on SET _DELIVERY _OPTIONS
apply to all recipients of the letter. You cannot set
these delivery options on an individual basis.

• For more information, see the Mail/VE Version 2
Usage manual.

SET _RECIPIENT _OPTIONS
FORL, WRIL, and WRIR Subcommand

Purpose Defines a set of recipient options that apply to all
members of recipient address lists. When issued, this
subcommand sets defaults that are used only if
subsequent calls to the ADD _TO,
ADD_COURTESY_COPY, and ADD_BLIND_
COURTESY _COPY subcommands do not include the
RECIPIENT _OPTIONS parameter.

Format SET _RECIPIENT _OPTIONS or
SET _RECIPIENT _OPTION or
SETRO

RECIPIENT _LISTS= keyword or list of keyword
RECIPIENT _OPTIONS= keyword or list of keyword
CHANGE _RECIPIENTS _IN _LISTS= boolean
STATUS= status variable

Parameters RECIPIENT _LISTS or RECIPIENT _LIST or RL

Specifies the recipient list for which options are set.
Choose ALL or one or more of the following keyword
options:

TO

Sets the recipient options for the To address list.

22-154 NOSNE Commands and Functions 60464018 J

60464018 J

SET_RECIPIENT_OPTIONS

BLIND _COURTESY _COPY or BCC

Sets the recipient options for the blind courtesy copy
address list.

COURTESY _COPY or CC

Sets the recipient options for the courtesy copy address
list.

This parameter is required.

RECIPIENT _OPTIONS or RECIPIENT _OPTION or RO

Specifies the recipient options. The values specified are
used as the default recipient options for subsequent
ADD_TO, ADD_BLIND_COURTESY_COPY, and
ADD _COURTESY _COPY subcommands.

Specify ALL, NONE, or one or more of the following
keywords. ALL means the letter is certified for receipt or
nonreceipt notification and indicates in the header
information that a reply is requested. NONE means no
letter attributes are set for the specified address.

CERTIFY _RECEIPT or CR

The originator receives a message when the recipient
has seen the letter. The letter is considered seen if the
recipient displays or copies the letter to a ·me.

CERTIFY _NON _RECEIPT or CNR

The originator receives a message if the letter is
deleted without having been seen. The mail system
generates a nonreceipt notice if the letter is unseen at
the time of a deletion or the letter is autoforwarded.

REPLY_REQUESTED or RR

The letter header information indicates that the
originator is expecting a reply. The system does not
require a reply.

If omitted, NONE is assumed.

CHANGE _RECIPIENTS _IN _LISTS or CRIL

Specifies a boolean value to indicate whether or not the
recipient options are to be applied to existing recipient
address lists.

MAIL 22-155

SET _DEFAULT _MAILBOX

Remarks

TRUE

The recipient options value(s) are applied to existing
recipient lists.

FALSE

The recipient options are not applied to existing
recipient lists. The recipient options will only be used
as default values for the RECIPIENT _OPTIONS
parameter of subsequent ADD _TO,
ADD _BLIND _COURTESY _COPY, and
ADD _COURTESY _COPY subcommands.

If omitted, FALSE is used.

SET_RECIPIENT_OPTIONS does not apply to
distribution lists that cannot be expanded (that is, lists
created with the EXPAND parameter on the
SET _ATTRIBUTES subcommand set to FALSE) or to lists
not locat~d on the same system as the sender.

For more information, see the MailNE Version 2 Usage
manual.

SET _DEFAULT _MAILBOX
MAIL Subcommand

Purp~se

Format

Establishes the mailbox address that will be used as the
identity under which you begin a MailNE session.

SET _DEFAULT _MAILBOX or
SETDM

PERSONAL_NAME=string or record
ORGANIZATION _UNITS= list of string
ORGANIZATION _NAME=string
STATUS =status variable

22-156 NOSNE Commands and Functions 60464018 J

SET_DEFAULT_MAILBOX

Parameters PERSONAL_NAME or PN

"--- -- Specifies the name of the mailbox to be used as your
identity. Enter the name as a 1- to 64-character string or
a record in the format:

Remarks

'"--'

60464018 J

record
surname: string 1 .. 40
given_name: string 0 .. 16
initials: string 0 .. 5
generation_qualifier: string 0 .. 3

recend

See Address Names in the Mail/VE Version 2 Usage
manual for details on specifying a mailbox name.

This parameter is required.

ORGANIZATION _UNITS or ORGANIZATION _UNIT or
OU

Specifies the organization unit(s) associated with the
mailbox address. Enter a list of one to four strings of 1 to
32 characters each.

Address lookup procedures determine a match based on
the order specified.

ORGANIZATION_NAMEorON

Specifies the organization name associated with the
specified mailbox. Enter a string of 1 to 64 characters.

o To display your default mailbox, enter
DISPLAY_ VALUE $DEFAULT _MAILBOX.

o If the addressing parameters do not specify a mailbox
you own, the command terminates and the system
displays an error message. To list mailboxes you own,
enter:

display_mailboxes personal_name=all
display_options=full

o The first mailbox created by or for you is
automatically selected as your Mail/VE identity and
becomes your default mailbox. Your identity is used:

To verify your access to group mailboxes and
distribution lists.

MAIL 22-157

SET_SUBJECT

Examples

As the From address when you send a letter.

Use the SELECT _IDENTITY subcommand, described
earlier in this chapter to change your identity.

o Use the $IDENTITY function to display the local
address of the mailbox used as your identity. To
display your MailNE identity, enter DISPLAY_ VALUE
$IDENTITY.

See chapter 1 of the MailNE Version 2 Usage
manual, under MailNE Identity, for further
information on identity and default mailboxes.

o For more information, see the MailNE Version 2
·Usage manual.

The following example establishes an identity and default
mailbox within MailNE and then ·displays the name of
the identity mailbox.

Mail/select_identity pn='Rose Mendoza'
Mail/set_default_mailbox pn='Rose Mendoza'
Mai 1 /end_ema i 1
/emai 1
Mail/display_value $identity
Rose Mendoza

SET _SUBJECT
FORL, WRIL, and WRIR Subcommand

Purpose Defines a subject for the letter being composed.

Format SET _SUBJECT or
SETS or
SUBJECT

SUBJECT= string
STATUS= status variable

Parameters SUBJECT

Specifies the subject of the letter. Enter a string of 1 to
128 characters. This parameter is required.

Remarks For more information, see the MailNE Version 2 Usage
manual.

22-158 NOSNE Commands and Functions 60464018 J

I

"-----

WRITE _LETTER

WRITE _LETTER
MAIL Subcommand

Purpose Initiates the WRITE _L~TTER subutility, through which
you can compose and send a letter to one or more
addresses. When you enter WRITE _LETTER, the system
displays the prompt Wril/.

Format WRITE _LETTER or
WRIL

PROLOG=file
STATUS =status variable

Parameters PROLOG or P

Remarks

60464018 J

Parameter Attributes: BY _NAME

Specifies the name of the file from which SCL or MaiWE
commands are read before giving control to the
WRITE _LETTER subutility. If omitted, $NULL is used.

The $NULL default can be overridden by creating an SCL
default variable called MVD$MAIL _WRITE _PROLOG and
setting its value to the name of the prolog file. Specify
the value of the name as a string.

o The WRITE _LETTER subutility subcommands, listed
next, allow you to add the letter body, specify letter
attributes, define the recipient list, and send the
letter.

ADD _BLIND _COURTESY _COPY
ADD_COURTESY_COPY
ADD_LETTER_PARTS
ADD_TO
DELETE _BLIND _COURTESY _COPY
DELETE_COURTESY_COPY
DELETE_LETTER_PARTS
DELETE_TO
DISPLAY _BLIND_ COURTESY_ COPY
DISPLAY _COURTESY _COPY
DISPLAY _DELIVERY _OPTIONS
DISPLAY _LETTER _PARTS
DISPLAY _RECIPIENT _OPTIONS
DISPLAY _SUBJECT
DISPLAY_TO
END_ WRITE _LETTER
SET _DELIVERY _OPTIONS

MAIL 22-159

WRITE _LETTER

SET _RECIPIENT _OPTIONS
SET _SUBJECT

These subcommands are described under the Letter
Posting Subutility Subcommands section of the
MailNE Version 2 Usage manual.

e The address in the From field is set to the value
returned by the $IDENTITY function.

• If an address is repeated, only one copy of the letter is
sent to the address. This is true regardless of the form
of the address or whether the address is included in
more than one distribution list.

G Receipts are generated by the system when certified
letters are read, copied, or printed.

o Notices are generated by the system, unless suppressed
by the sender, if delivery confirmation is requested or
when the mail system determines the letter cannot be
delivered to an address.

o Nondelivery notices are not generated for incorrect
local addresses in a distribution list or for any
addresses in a distribution list whose EXPAND
attribute is set to FALSE. Local addresses are
validated when the distribution list name is entered in
the recipient list and incorrect addresses are simply
ignored.

However, nondelivery notices are generated for
incorrect nonlocal addresses in a local distribution list
whose EXPAND attribute is set to TRUE. These
addresses are not validated when they are added to
the distribution list; they are validated when MailNE
attempts to deliver mail to them.

o For more information, see the MailNE Version 2
Usage manual.

22-160 NOSNE Commands and Functions 60464018 J

Examples

WRITE _REPLY

In the following example the letter text is written on a
file and sent to the members of a distribution list:

Mail/write_ letter
Wril/collect_text $local. letter
Colt/The project meeting scheduled for
Colt/Wednesday has been cancelled.
Colt/**
Wril/add_letter_part $local. letter
Wril/set_subject 'Project Meeting Notice'
Wril/add_to 'Recreation_Unit' ..
Wril .. /recipient_options=certify_receipt
Wril/end_write_letter

WRITE _REPLY
MAIL Subcommand

Purpose

Format

Initiates the WRITE _REPLY subutility, through which
you can compose and send a reply letter to the. sender of
a letter. When you enter WRITE_REPLY, the system
displays the prompt Wr i r I.

WRITE _REPLY or
WRIR

LETTER= keyword or integer or string
PROLOG=file
STATUS= status variable

Parameters LETTER or L

60464018 J

Specifies the letter for which a reply is to be sent. Enter
a letter number, letter identifier, or keyword value.

The letter number is from the letter list established when
you enter the LIST _MAIL subcommand. Letter numbers
can change each time you enter LIST _MAIL. The letter
identifier is permanently assigned to the letter by
MailNE when it is delivered to the mailbox.

Keyword options:

CURRENT or C

Selects the current letter from the letter list. (The
current letter is the letter most recently displayed.)

FIRST or F

Selects the first letter in the list.

MAIL 22-161

WRITE _REPLY

NEXT or N

Selects the letter following the current letter in the
list.

PREVIOUS or P

Selects the letter preceding the current letter in the
list.

LAST or L

Selects the last letter in the list.

If LETTER is omitted, CURRENT is used.

PROLOG or P

Remarks

Parameter Attributes: BY_NAME

Specifies the name of the file from which commands are
read before giving control to the WRITE _REPLY
subutility.

If omitted, $NULL is used.

You can override the $NULL default by creating an SCL
default variable called MVD$MAIL _WRITE _PRO LOG and
setting its value to the name of the prolog file. Specify
the value of the name as a string.

o Use the WRITE _REPLY subutility subcommands,
listed next, to add the letter body, specify letter
attributes, define recipient lists, and send a reply.

ADD _BLIND _COURTESY _COPY
ADD_COURTESY_COPY
ADD _LETTER_PARTS
ADD_TO
DELETE _BLIND _COURTESY _COPY
DELETE_COURTESY_COPY
DELETE_LETTER_PARTS
DELETE_TO
DISPLAY _BLIND _COURTESY _COPY
DISPLAY _COURTESY _COPY
DISPLAY _DELIVERY _OPTIONS
DISPLAY _LETTER _PARTS
DISPLAY _RECIPIENT _OPTIONS
DISPLAY _SUBJECT
DISPLAY_TO
END_ WRITE _REPLY
SET _DELIVERY _OPTIONS

22-162 NOSNE Commands and Functions 60464018 J

60464018 J

SET _RECIPIENT _OPTIONS
SET _SUBJECT

WRITE _REPLY

These subcommands are described in the Letter
Posting Subutility Subcommands section of the
Mail/VE Version 2 Usage manual.

o The From field is set to the value of $IDENTITY and
cannot be changed from within the WRITE _REPLY
subutility.

o When the same mailbox is addressed more than once
on the COURTESY _COPY or
BLIND _COURTESY _COPY parameters, only one copy
of the letter is sent to the address. The address,
however, will appear in both the blind courtesy copy
and courtesy copy address lists if you enter the
address in both lists.

o The subject of the reply is set to the original subject
preceded by Reply to. You can change the subject
through the SET _SUBJECT subcommand.

o The address of the sender to whom you are writing a
reply is automatically added to the primary recipient
list (the addresses listed in the To field).

o Receipt letters are generated by the system when
certified letters are read, copied, or printed.

o If an address is repeated, only one copy of the letter is
sent to the address. This is true regardless of the form
of the address or whether the address is included in
more than one distribution list.

o Receipts are generated by the system when certified
letters are read, copied, or printed.

o Notices are generated by the system, unless suppressed
by the sender, if delivery confirmation is requested or
when the mail system determines the letter cannot be
delivered to an address.

MAIL 22-163

WRITE _:REPLY

Examples

• Nondelivery notices are not generated for incorrect
local addresses in a distribution list or for any
addresses in a distribution list whose EXPAND
attribute is set to FALSE. Local addresses are
validated when the distribution list name is entered in
the recipient list .and incorrect addresses are simply
ignored.

However, nondelivery notices are generated for
incorrect nonlocal addresses in a local distribution list
whose EXPAND attribute is set to TRUE. These
addresses are not validated when they are added to
the distribution list; they are validated when MailNE
attempts to deliver mail to them.

For more information, see the MailNE Version 2
Usage manual.

This example sends a reply to the letter most recently
displayed from a file:

Mail/write_reply
Wrir/add_letter_part $local.note
Wrir/end_write_reply

22-164 NOSNE Commands and Functions 60464018 J

MANAGE_FORM 23

MANAGE_FORM .. 23-1
ADD_FORM ... 23-2
CHANGE_TABLE_SIZE 23-3
CLOSE _FORM ... 23-5
COMBINE _FORM .. 23-5
DELETE_FORM ... 23-7
$EVENT_NAME ... 23-7
$EVENT _NORMAL .. 23-8
$EVENT _POSITION ... 23-8
GET_FORM_VARIABLE 23-11
OPEN _FORM . 23-12
POP _FORM . 23-13
POSITION _FORM : 23-13
PUSH _FORM 23-15
QUIT .. 23-15
READ_FORM ... 23-16
REPLACE_FORM_VARIABLE 23-17
RESET _FORM . 23-18
SET _CURSOR_POSITION . 23-18
SET_OBJECT_ATTRIBUTE 23-20
SHOW _FORM . 23-22

60464018 J

MANAGE _FORM 23

MANAGE_FORM
Command

Purpose MANAGE _FORM begins the MANAGE _FORMS utility.
This utility allows you to display and manage forms. A
form is a related group of objects shown on a user's
terminal screen. Using the MANAGE_FORMS utility, you
can display any form created through Screen Formatting.

Format MANAGE _FORM or
MANAGE _FORMS or
MANF

VARIABLE _CREATION= keyword
VARIABLE _EVALUATION= keyword
STATUS= status variable

Parameters VARIABLE _CREATION or VC

60464018 J

The keyword indicating how the utility is to create
variables when a form is opened. Use one of the following
keywords:

FORM_VARIABLE

Create one variable for each form that is opened. The
variable is an SCL record that contains a field for
each variable text object on the form. The name of the
form becomes the name of the variable.
FORM_ VARIABLE is the default.

SINGLE

Create one variable for each variable defined on the
form. The type of the variable depends on the
definition of the variable on the form.

NONE

Create no variables. You are responsible for defining
all variables used on the forms you open.

MANAGE_FORM 23-1

ADD_FORM

Remarks

VARIABLE _EVALUATION or VE

The keyword indicating how the utility is to evaluate
variables. Use one of the following keywords:

AUTOMATIC

Automatic evaluation of variables. Screen Formatting
updates all variables from added or combined forms
when you execute either READ _FORMS or
SHOW _FORMS. You do not need to enter the
GET _FORM_ VARIABLE and
REPLACE _FORM_ VARIABLE subcommands.

MANUAL

Manual evaluation of variables. Screen Formatting
does not update variables automatically. You must
update them using GET _FORM_ VARIABLE and
REPLACE _FORM_ VARIABLE subcommands.

The default is MANUAL.

o The forms used with the MANAGE_FORMS utility
can be created through the Screen Design Facility
(SDF) or with a CYBIL program that makes calls to
Screen Formatting procedures.

• When executing the utility interactively, the mf/
prompt is displayed.

o For more information, see the NOSNE Screen
Formatting manual.

ADD_FORM
MANF Subcommand

Purpose

Format

ADD _FORM schedules a form for display on the
application user's screen.

ADD_FORM or
ADDF

FORM _NAME= data _name
STATUS= status variable

Parameters FORM_NAME or FN

The name established when the form was opened. This
parameter is required.

23-2 NOSNE Commands and Functions 60464018 J

Remarks

CHANGE_TABLE_SIZE

o When you enter either the READ _FORMS or
SHOW _FORMS subcommand, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

o When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event.

To have forms share events, use the
COMBINE _FORM subcommand.

o Before you add a form, you must open it.

o You cannot add a pushed form.

o For more information, see the NOSNE Screen
Formatting manual.

CHANGE TABLE SIZE
MANF Subcommand

Purpose

Format

CHANGE_TABLE_SIZE changes the size of the table
during application execution.

CHANGE_TABLE_SIZE or
CHATS

FORM _NAME= data _name
TABLE _NAME= data _name
TABLE _SIZE= integer
STATUS= status variable

Parameters FORM_NAME or FN

60464018 J

The name established when the form was opened. This
parameter is required.

TABLE_NAME or TN

The name of the table to change in size. This parameter
is required.

MANAGE_FORM 23-3

I
Iii

CHANGE _TABLE _SIZE

Remarks

Examples

TABLE _SIZE or TS

The size of the table. While this subcommand is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

o The table must be present in an open form.

'o The size limitation remains in effect until the next
time you enter the CHANGE_TABLE_SIZE
subcommand.

o The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message
(FDE$INVALID _TABLE _SIZE).

o When you are evaluating variables manually, all
entries of the table must have valid values. It is not
sufficient to supply values for just those entries
available after the execution of this subcommand.

o For more information, see the NOSNE Screen
Formatting manual.

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

o If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

o If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

23-4 NOSNE Commands and Functions 60464018 J

CLOSE_FORM

CLOSE_FORM
''- MANF Subcommand

Purpose CLOSE _FORM releases resources used to process a form
and deletes the form from the list scheduled for display.

Format CLOSE _FORM or
CLOF

FORM _NAME= data _name
STATUS =status variable

Parameters FORM _NAME or FN

Remarks

The name established when the form was opened. This
parameter is required.

o When you enter either the READ _FORMS or
SHOW _FORMS subcommand, Screen Formatting
removes the closed form from the terminal screen as a
result of entering this subcommand.

o Before you can close a form, you must open it.

o You cannot close a pushed form.

o For more information, see the NOSNE Screen
Formatting manual.

COMBINE _FORM
MANF Subcommand

Purpose

Format

60464018 J

COMBINE _FORM combines a form with a previously
added form and schedules the combined form for display
on the terminal screen.

COMBINE _FORM or
COMBINE _FORMS or
COMF

ADDED _FORM _NAME= data _name
COMBINE _FORM _NAME= data _name
STATUS =status variable

MANAGE_FORM 23-5

I
I

COMBINE_FORM

Parameters ADDED_FORM_NAME or AFN

Remarks

The name of the previously added form. This parameter is
required.

COMBINE_FORM_NAME or CFN

The name of the form you are combining with the
previously added form. This parameter is required.

Cl> You cannot combine a pushed form.

e The combined form inherits the event definitions of
the previously added form.

o Before you combine a form with a previously added
form, you must open both forms.

o When you enter either the READ_FORMS or
SHOW _FORMS subcommand, Screen Formatting
displays the combined form. The combined form is
placed on top of other forms occupying the same area
on the screen.

o When you start the MANAGE _FORMS utility
specifying VARIABLE _EVALUATION= AUTOMATIC
and the application user executes an event to return to
the utility normally, Screen Formatting updates all
SCL variables associate~ wi.th both the added and
combined forms.

o When you start the MANAGE_FORMS utility
specifying VARIABLE _EVALUATION= MANUAL and
you enter the REPLACE _FORM_ VARIABLE
subcommand, Screen Formatting updates the variable
on both the added and combined forms.

o To combine several forms with a previously added
form, execute this subcommand more than once.

o For more information, see the NOSNE Screen
Formatting manual.

23-6 NOSNE Commands and Functions 60464018 J

"-...__

DELETE_FORM

DELETE _FORM
MANF Subcommand

Purpose DELETE _FORM deletes the for~ from the list of forms
scheduled for display.

Format DELETE _FORM or
DELF

FORM _NAME= data _name
STATUS= status variable

Parameters FORM_NAME or FN

Remarks

The name established when the form was opened. This
parameter is required.

o When you enter either the READ_FORMS or
SHOW _FORMS subcommand, Screen Formatting
removes the deleted form from the terminal screen and
replots any forms uncovered by the deleted form.

o When you add a form (ADD _FORM) again that you
previously deleted, the data in the form is retained.

o Before you delete a form, you must open it.

o You cannot delete a pushed form.

o If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

o When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

o For more information, see the NOSNE Screen
Formatting manual.

$EVENT _NAME
MANF Function

Purpose

Format

60464018 J

$EVENT_NAME returns the name of the event the
application user executed to complete his or her
interaction with a form.

$EVENT_NAME

MANAGE_FORM 23-7

I
11

$EVENT_NORMAL

Parameters None.

Remarks • An event is usually executed when the user presses
the return key or a function key.

• For more information, see the NOSNE Screen
Formatting manual.

$EVENT _NORMAL
MANF Function

Purpose $EVENT _NORMAL returns a boolean value specifying
whether the event the user executed is defined as normal.
The type of each event is defined when the form is
created. The value of $EVENT _NORMAL is TRUE when
the event is a normal event; it is FALSE when the event
is not a normal event.

Format $EVENT _NORMAL

Parameters None.

Remarks o When an event is normal, variables are validated and
updated.

o When an event is abnormal, variables are not
validated or updated.

o For more information, see the NOSNE Screen
·Formatting manual.

$EVENT _POSITION
MANF Function

Purpose

Format

$EVENT _POSITION returns information about the
position of the event executed by the application user to
complete interaction with a form. The information
returned is determined by the keyword you specify in the
parameter.

$EVENT _POSITION
(OPTION: keyword)

23-8 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

$EVENT _POSITION

OPTION

The keyword that specifies the type of information to be
returned about an event position. Use one of the following
keywords:.

CHARACTER_POSITION (CP)

Returns the character position within the object where
the event occurred. The value returned is an integer;
the first character position is 1. The
CHARACTER_POSITION value is valid only if
$EVENT _POSITION (OBJECT _EVENT) returns a
TRUE value.

FORM_NAME (FN)

Returns the name of the form where the event
occurred.

FORM_X_POSITION (FXP)

Returns the x position of the event on the form. The x
position is an integer; 1 indicates the upper left corner
of the form. The x position increases by 1 for each
character, counting from left to right.

FORM_ Y _POSITION (FYP)

Returns the y position of the event on the form. The y
position is an integer; 1 indicates the upper left corner
of the form. The y position increases by 1 for each
character, counting from top to bottom.

OBJECT_EVENT (OE)

Returns a boolean value specifying whether the event
occurred in an object on the form. The value returned
is TRUE when the event occurred in an object and
FALSE when it did not.

OBJECT_NAME (ON)

Returns the name of the object where the event
occurred. The OBJECT _NAME value is valid only if
$EVENT _POSITION (OBJECT _EVENT) returns a
TRUE value.

MANAGE _FORM 23-9

$EVENT _POSITION

OCCURRENCE (0)

Returns an integer indicating in which occurrence of
the object the event occurred. The OCCURRENCE
value is valid only if $EVENT _POSITION
(OBJECT _EVENT) returns a TRUE value.

OBJECT _TYPE (OT)

Returns a keyword that indicates the type of object in
which the event occurred. One of the following
keywords is returned:

BOX
CONSTANT _TEXT
CONSTANT_TEXT_BOX
LINE
VARIABLE_TEXT
VARIABLE _TEXT _BOX

OBJECT _X _POSITION (OXP)

Returns the x position of the object on the form. The x
position is an integer; 1 indicates the upper left corner
of the form. The x position increases by 1 for each
character, counting from left to right. The
OBJECT_X_POSITION value is valid only if
$EVENT _POSITION (OBJECT _EVENT) returns a
TRUE value.

OBJECT_ Y _POSITION (OYP)

Returns the y position of the object on the form. The y
position is an integer; 1 indicates the upper left corner
of the form. The y position increases by 1 for each
character, counting from top to bottom. The
OBJECT_ Y _POSITION value is valid only if
$EVENT _POSITION (OBJECT _EVENT) returns a
TRUE value.

SCREEN _X _POSITION (SXP)

Returns the x position of the event on the screen. The
x position is an integer; 1 indicates the upper left
corner of the screen. The x position increases by 1 for
each character, counting from left to right.

23-10 NOSNE Commands and Functions 60464018 J

·"---·

Remarks

GET_FORM_ VARIABLE

SCREEN_ Y _POSITION (SYP)

Returns the y position of the event on the screen. The
y position is an integer; 1 indicates the upper left
corner of the screen. The y position increases by 1 for
each character, counting from top to bottom.

For more information, see the NOSNE Screen Formatting
manual.

GET FORM VARIABLE
MANF Subcommand

Purpose

Format

GET_FORM_ VARIABLE gets the value the user entered
on the form for a variable and transfers it to SCL.

GET _FORM_ VARIABLE or
GET _FORM_ VARIABLES or
GETFV

FORM _NAME= data _name
VARIABLE _NAME= data _name
VALUE= any variable
OCCURRENCE =integer
STATUS= status variable

Parameters FORM_NAME or FN

60464018 J

The name of the form where the variable resides. This
parameter is required.

VARIABLE _NAME or VN

The name of the variable on the form to get and transfer
to SCL. This name was defined when the form was
created. This parameter is required.

VALUE or V

The variable that is to hold the value Screen Formatting
gets from the form. This variable is either created
automatically when the form is opened or created
manually. This parameter is required.

See the VARIABLE _CREATION parameter on the
MANAGE _FORM command for more information.

MANAGE_FORM 23-11

OPEN_FORM

Remarks

OCCURRENCE or 0

The occurrence of the variable name. The values allowed
are 1 through 1000. Use 1 for the first or only
occurrence. The default is 1.

o Before you get a variable, you must open its form. If
you get the variable after opening the form and before
reading or replacing the variable on the form, the
utility returns the initial value specified by the form
designer.

o If the form designer specifies data validation rules and
error processing to display an error message or form,
you do not need to look at the STATUS parameter.

If the form designer specifies data validation rules and
no error processing, you must look at the STATUS
parameter.

If the form designer specifies no ·data validation rules,
you must look at the STATUS parameter to determine
if the subcommand executed properly.

o For more information, see the NOSNE Screen
Formatting manual.

OPEN_FORM
MANF Subcommand

Purpose OPEN _FORM locates a form and prepares it for use by
the utility.

Format OPEN _FORM or
OPEF

FORM _NAME= data _name
STATUS =status variable

Parameters FORM _NAME or FN

Remarks

The name of the form you want to open. This parameter
is required.

o When you open forms, Screen Formatting creates SCL
variables for form variables. The scope of the variables
is LOCAL. Before creating a variable, Screen
Formatting checks to see if the variable already exists.
If it does, Screen Formatting does not try to create it
again.

23-12 NOSNE Commands and Functions 60464018 J

POP_FORM

o Screen Formatting locates a form by searching the
command library list to find the form name on the
object libraries. (You specify the order in which Screen
Formatting searches the list using the NOSNE
command CREATE _COMMAND _LIST _ENTRY).

o Executing OPEN _FORM does not display the form on
the screen. (See ADD_FORM, READ_FORMS, or
SHOW _FORMS.)

o For more information, see the NOSNE Screen
Formatting manual.

POP_FORM
MANF Subcommand

Purpose

Format

Remarks

POP _FORMS deletes forms scheduled (added or combined)
since the last PUSH _FORMS call.

POP_FORM or
POP _FORMS or
POPF

STATUS= status variable

o Events associated with the last list of pushed forms
become active.

o For more informatiQn, see the NOSNE Screen
Formatting manual.

POSITION _FORM
MANF Subcommand

Purpose

Format

60464018 J

POSITION _FORM schedules moving a form to a new
location. Using this subcommand, you can define a form
at one location and display it at another location, or you
can move a form from where it is currently displayed to a
new location.

POSITION _FORM or
POSF

FORM _NAME= data _name
X ~POSITION= integer
Y _POSITION= integer
STATUS =status variable

MANAGE_FORM 23-13

I
ll

POSITION _FORM

Parameters FORM _NAME or FN

Remarks

The form name established when the form was opened.
This parameter is required.

X _POSITION or XP

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character counting from left to
right. The default is 1.

Y _POSITION or YP

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character counting from top to
bottom. The default is 1.

o When you enter either the READ _FORMS or
SH OW _FORMS subcommand, Screen Formatting
displays the form on the screen at the position
specified in the POSITION _FORM subcommand.

o If you enter this subcommand while the form is
displayed, the form is deleted from its current location
and added at the new location. The added form is
displayed on top of any other form occupying the same
area on the screen.

o If you enter this subcommand before the form is
displayed, the form is displayed at the specified
location.

o Before you position a form, you must open it.

o You cannot position a pushed form.

• For more information, see the NOSNE Screen
Formatting manual.

23-14 NOSNE Commands and Functions 60464018 J

PUSH_FORM

PUSH_FORM
MANF Subcommand

Purpose

Format

Remarks

QUIT

PUSH _FORMS causes Screen Formatting to record added
and combined forms so you can return to them later.

PUSH _FORM or
PUSH _FORMS or
PUSF

STATUS= status variable

o Events associated with these forms are not passed to
you.

o You cannot change or close a pushed form.

~ Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

o This subcommand deactivates the events associated
with forms scheduled for display (added or combined)
since the last PUSH _FORMS subcommand.

o For more information, see the NOSNE Screen
Formatting manual.

MANF Subcommand

Purpose

Format

Remarks

60464018 J

QUIT ends the MANAGE _FORMS utility session.

QUIT or
QUI

STATUS =status variable

o All open forms are closed and the resources used by
Screen Formatting are returned to NOSNE.

o For more information, see the NOSNE Screen
Formatting manual.

MANAGE_FORM 23-15

I
I

READ_FORM

READ_FORM
MANF Subcommand

Purpose

Format

Remarks

R~AD _FORMS updates the terminal screen and accepts
input from the application user.

READ _FORM or
READ _FORMS or
REAF

STATUS =status variable

o Executing READ _FORMS:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last READ _FORMS or
SHOW _FORMS subcommand, it displays them for
the first time.

Removes from the screen the forms you deleted
since the last READ_FORMS or SHOW_FORMS
subcommand.

Updates on the screen the variables replaced since
the last READ_FORMS or SHOW_FORMS call
subcommand.

Updates on the screen the objects for which display
attributes were set or reset since the last
READ _FORMS or SHOW _FORMS subcommand.

o Events not retrieved with the $EVENT _NAME
function are deleted before any input is accepted from
the user.

o The READ _FORMS subcommand does not execute
unless the forms scheduled for display contain at least
one active event.

o After issuing this request, you do not regain control
until the user issues a normal event and Screen
Formatting validates all the data, or the user issues
an abnormal event.

• For more information, see the NOSNE Screen
Formatting manual.

23-16 NOSNE Commands and Functions 60464018 J

REPLACE _FORM_ VARIABLE

REPLACE _FORM_ VARIABLE
MANF Subcommand

Purpose

Format

REPLACE _FORM_ VARIABLE transfers an SCL variable
to Screen Formatting.

REPLACE _FORM_ VARIABLE or
REPLACE _FORM_ VARIABLES or
REPFV

FORM _NAME= data _name
VARIABLE _NAME= data _name
VALUE=any
OCCURRENCE =integer
STATUS =status variable

Parameters FORM_NAME or FN

Remarks

60464018 J

The name of the form where the variable resides. This
parameter is required.

VARIABLE _NAME or VN

The name of the variable to replace. This name was
defined when the form was created. This parameter is
required.

VALUE or V

The value Screen Formatting will replace on the form.
This parameter is required.

For more information, see the VARIABLE _CREATION
parameter on the MANAGE_FORM command.

OCCURRENCE or 0

The occurrence of the variable name. The values allowed
are 1 through 1000. Use 1 for the first or only
occurrence.

o When you execute either the READ _FORMS or
SHOW _FORMS subcommand, Screen Formatting
replaces the variable on the terminal screen.

o Before you replace a variable, you must open the form
on which it is replaced.

o You cannot replace a variable for a pushed form.

o If the value is not valid, it is not replaced.

MANAGE _FORM 23-17

RESET_FORM

• For more information, see the NOSNE Screen
Formatting manual.

RESET_FORM
MANF Subcommand

Purpose RESET _FORM resets the form to the state specified by
the form definition.

Format RESET _FORM or
RESF

FORM _NAME= data _name
STATUS =status variable

Parameters FORM _NAME or FN

Remarks

The name of the form to reset. This parameter is
required.

o When you execute either the READ _FORMS or
SHOW _FORMS subcommand, Screen Formatting
displays the form on the terminal screen with the
reset specifications.

o All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

o Before you reset a form, you must open it.

o You cannot reset a pushed form.

• For more information, see the NOSNE Screen
Formatting manual.

SET _CURSOR _POSITION
MANF Subcommand

Purpose SET _CURSOR _POSITION sets the cursor to a selected
position for later display.

23-18 NOSNE Commands and Functions 60464018 J

Format SET _CURSOR _POSITION or
SE TCP

SET_CURSOR_POSITION

FORM _NAME= data _name
OBJECT _NAME= data _name
OCCURRENCE =integer
CHARACTER _POSITION= integer
STATUS= status variable

Parameters FORM_NAME or FN

Remarks

60464018 J

The name established when the form was opened. This
parameter is required.

OBJECT _NAME or ON

The name of the object on which you want to set the
cursor. This name was defined when the form was
created. This parameter is required.

OCCURRENCE or 0

The integer specifying the occurrence of the object name.
Use 1 for the first occurrence. The default is 1.

CHARACTER _POSITION or CP

The character position to which you want to set the
cursor. Use 1 for the first character position. The default
is 1.

o One use of this subcommand is to alter the default
sequence of the application user's entry of variables. In
the default sequence, Screen Formatting places the
cursor on the first input variable of the highest
priority form. The highest priority form is the form
last added, combined, or positioned.

At terminals with protected fields, the user then tabs
from one variable text object to the next. The cursor
starts at the top line of the form. It moves from left
to right on each line. When no variable text object
appears on a line, the cursor moves down to the next
line. At terminals without protected fields, the user
must move the cursor using the arrow keys or use the
tab and return keys.

MANAGE _FORM 23-19

SET _OBJECT _ATTRIBUTE

o When you execute either the READ _FORMS or
SH OW _FORMS subcommand, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

o The cursor position is in effect only for the next
screen update from reading or showing forms.

o Before you set the cursor position on a form, you must
open the form and either add or combine it.

0 YOU cannot set the cursor position in a pushed form.

e For more information, see the NOSNE Screen
Formatting manual.

SET_OBJECT_ATTRIBUTE
MANF Subcommand

Purpose SET _OBJECT _ATTRIBUTE changes a display attribute
for an object.

Format SET_ OBJECT _ATTRIBUTE or
SET_ OBJECT _ATTRIBUTES or
SETO A

FORM _NAME= data _name
OBJECT _NAME= data _name
ATTRIBUTE= keyword or data _name
OCCURRENCE= integer
STATUS= status variable

Parameters FORM _NAME or FN

The name of the form containing the object. This
parameter is required.

OBJECT _NAME or ON

The name of the object whose display attribute is being
reset. This parameter is required.

23-20 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

SET_OBJECT_ATTRIBUTE

ATTRIBUTE or A

The name given the display attribute being set when the
attribute was defined on the form. The attribute used here
is defined for the form and not for a specific object. When
using Screen Design Facility, screen attributes are defined
through the ATTRIB function key. When using a CYBIL
program, the ADD _DISPLAY _DEFINITION attribute
record defines form attributes.

Specifying the keyword INITIAL, resets the object to the
attribute defined in the form definition. The default is
INITIAL.

OCCURRENCE or 0

The occurrence of the object. For the first or only
occurrence, use 1. The default is 1.

o You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

o Changed attributes replace existing attributes.

o When you execute either the READ _FORMS or
SHOW _FORMS subcommand, Screen Formatting
displays the object using the set attributes.

o If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

o Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

o You cannot set attributes of objects on a pushed form.

o For more information, see the NOSNE Screen
Formatting manual.

MANAGE_FORM 23-21

I
I

SHOW ;__FORM

SHOW_FORM
MANF Subcommand

Purpose

Format

Remarks

SHOW _FORMS updates the terminal screen.

SHOW _FORM or
SHOW _FORMS or
SHOF

STATUS= status variable

o When none of the forms scheduled for display has an
event or input variable defined, use this subcommand
instead of READ _FORMS.

o When you do not want any input from the terminal
user, use this subcommand.

e Executing SHOW_FORMS:

Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last READ _FORMS or
SHOW _FORMS subcommand, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last READ _FORMS or SHOW _FORMS
subcommand.

Displays variables replaced since the last
READ _FORMS or SHOW _FORMS subcommand.

Displays objects with attributes set or reset since
the last READ _FORMS or SHOW _FORMS
subcommand.

• For more information, see the NOSNE Screen
Formatting manual.

23-22 NOSNE Commands and Functions 60464018 J

MANAGE_JOB 24

MANAGE_JOB .. 24-1
QUIT .. 24-1
SELECT_JOB .. 24-1

60464018 J

MANAGE_JOB

MANAGE_JOB
Command

24

Purpose Initiates the utility that manages the selection and control
of one or more jobs.

Format

Remarks

QUIT

MANAGE _JOB or
MANAGE _JOBS or
MANJ

STATUS= status variable

For more information, see the NOSNE System Usage
manual.

MANJ Subcommand

Purpose

_____.· Format

Ends a MANAGE_JOB utility session.

QUIT or
QUI

STATUS =status variable

SELECT_JOB
MANJ Subcommand

Purpose

Format

60464018 J

Selects one or more jobs matching criteria specified on
this subcommand.

SELECT _JOB or
SELECT _JOBS or
SELJ

CONTROL _FAMILY= list of name
CONTROL_USER=list of name
JOB _CATEGORY _NAME =list of name
JOB _CLASS= list of name
JOB _DEFERRED _BY _OPERATOR= boolean
JOB _DEFERRED _BY _USER= boolean
JOB _QUALIFIER=list of name
JOB _STATE=keyword or list of keyword
LOGIN _ACCOUNT=list of name
LOGIN _FAMILY=list of name

MANAGE_JOB 24-1

SELECT_JOB

LOGIN _PROJECT= list of name
LOGIN _USER= list of name
NAME= list of name
SITE _INFORMATION= list of string
USER _INFORMATION= list of string
MAXIMUM _SELECTION= keyword or integer
JOB _SELECTION _LIST= list of name variable
STATUS= status variable

Parameters CONTROL _FAMILY or CONTROL _FAMILIES or CF

Specifies the control family names of the jobs to be
selected. If omitted, this parameter is ignored.

CONTROL_USER or CONTROL_USERS or CU

Specifies the control user names of the jobs to be selected.
If omitted, this parameter is ignored.

JOB_CATEGORY_NAMEorJOB_CATEGORY_NAMES
or JCN

Specifies the categories to which the selected jobs must
belong. See your site personnel for information on the
categories defined at your site. If omitted, this parameter
is ignored.

JOB _CLASS or JOB _CLASSES or JC

Specifies the job classes to which the selected jobs must
belong. See your site personnel for information on the job
classes defined at your site. If omitted, this parameter is
ignored.

JOB_DEFERRED_BY_OPERATOR orJDBO

Specifies the operator-controlled scheduling state that the
selected jobs must have. Options are:

TRUE

The operator has deferred the execution of the job.

FALSE

The operator has not deferred execution of the job.

If omitted, this parameter is ignored.

24-2 NOSNE Commands and Functions 60464018 J

60464018 J

SELECT_JOB

JOB _DEFERRED _BY _USER or JDBU

Specifies the user controlled scheduling state that the
selected jobs must have. Options are:

TRUE

Execution of the job has been deferred by the user.

FALSE

Execution of the job has not been deferred by the
user.

If omitted, this parameter is ignored.

JOB _QUALIFIER or JOB _QUALIFIERS or JQ

Specifies the job qualifiers the selected jobs must have.
See your site personnel for a list of the job qualifiers at
your site. If omitted, this parameter is ignored.

JOB _STATE or JOB _STATES or JS

Specifies the state the selected jobs must have. Options
are:

ALL

Uses all of the following keyword values.

DEFERRED (D)

Specifies jobs not yet eligible to be initiated.

QUEUED (Q)

Specifies jobs waiting to be initiated:

INITIATED (I)

Specifies jobs that have been initiated.

TERMINATED (T)

Specifies jobs that are terminating.

If omitted, this parameter is ignored.

LOGIN_ACCOUNTorLOGIN_ACCOUNTSorLA

Specifies the login accounts of the jobs to be selected. If
omitted, this parameter is ignored.

MANAGE_JOB 24-3

SELECT_JOB

Remarks

LOGIN _FAMILY or LOGIN _FAMILIES or LF

Specifies the login families of the jobs to be selected. If
omitted, this parameter is ignored.

LOGIN _PROJECT or LOGIN _PROJECTS or LP

Specifies the login projects of the jobs to be selected. If
omitted, this parameter is ignored.

LOGIN _USER or LOGIN _USERS or LU

Specifies the login users of the jobs to be selected. If
omitted, this parameter is ignored.

NAME or NAMES or N

Specifies the names of the jobs to be selected. The names
may be either the system-supplied or the user-supplied job
names. If omitted, this parameter is ignored.

SITE _INFORMATION or SI

Specifies the site information strings of the jobs to be
selected. If omitted, this parameter is ignored.

USER _INFORMATION or UI

Specifies the user information strings of the jobs to be
selected. If omitted, this parameter is ignored.

MAXIMUM _SELECTION or MS

Specifies the maximum number of jobs that can be
selected. If omitted, the number of jobs meeting the
criteria specified on this subcommand is used.

JOB _SELECTION _LIST or JSL

Specifies the variable that will contain the system job
names of the selected jobs. This variable has a LOCAL
scope. If omitted, JMV$SELECTED _JOBS is used.

o If all selection parameters are omitted, all jobs for
which you are login user, control user, or parent job
will be returned. The system operator can select all
jobs.

o For more information,· see the NOSNE System Usage
manual.

24-4 NOSNE Commands and Functions 60464018 J

MANAGE_OUTPUT 25

MANAGE_OUTPUT ... 25-1
QUIT .. 25-1
SELECT._OUTPUT ... 25-1

60464018 J

MANAGE_OUTPUT

MANAGE_OUTPUT
Command

25

Purpose Initiates the utility that manages the selection and control
of one or more o.utput files in the system.

Format

Remarks

QUIT

MANAGE _OUTPUT or
MANO

STATUS= status variable

For more information, see the NOS/VE System Usage
manual.

MANO Subcommand

Purpose

Format

Ends a MANAGE_OUTPUT utility session.

QUIT or
QUI

STATUS =status variable

SELECT_OUTPUT
MANO Subcommand

Purpose

Format

60464018 J

Selects one or more output files matching criteria
specified on this subcommand.

SELECT _OUTPUT or
SELO

COMMENT _BANNER=list of string
CONTROL_FAMILY=list of name
CONTROL_USER=list of name
DATA_MODE=list of keyword
DEVICE= list of: keyword or name
EXTERN AL _CHARACTERISTICS= list of: keyword or

string
FORMS _CODE= list of· keyword or string
LOGIN _ACCOUNT=list of name
LOGIN J'AMILY=list of name
LOGIN _PROJECT=list of name
LOGIN _USER= list of name

MANAGE _OUTPUT 25-1

1111

I
SELECT _OUTPUT

NAME =list of name
OPERATOR _FAMILY=list of name
OPERATOR_USER=list of name
OUTPUT _CLASS=list of name
OUTPUT _DEFERRED _BY _OPERATOR= boolean
OUTPUT _DEFERRED _BY _USER= boolean
OUTPUT _DESTINATION=list of: name or string
OUTPUT _DESTINATION _USAGE=list of: keyword

or name
OUTPUT _PRIORITY=list of name
OUTPUT _STATE=keyword or list of keyword
REMOTE _HOST _DIRECTNE =list of string
ROUTING _BANNER=list of string
SITE _INFORMATION= list of string
STATION=list of: keyword or name
SYSTEM _JOB _NAME= list of name
USER _INFORMATION= list of string
VERTICAL_PRINT _DENSITY=list of keyword
VFU _LOAD _PROCEDURE= list of: keyword or name
MAXIMUM _SELECTION= keyword or integer
OUTPUT _SELECTION _LIST= list of name variable
STATUS =status variable

Parameters COMMENT _BANNER or COMMENT _BANNERS or CB

Specifies the comment banner strings of the output files
to be selected. If omitted, this parameter is ignored.

CONTROL _FAMILY or CONTROL _FAMILIES or CF

Specifies the control family names of the output files to
be selected. If omitted, this parameter is ignored.

CONTROL _USER or CONTROL _USERS or CU

Specifies the control user names of the output files to be
selected. If omitted, this parameter is ignored.

DATA_MODE or DM

Specifies the data modes of the output files to be selected.
Options are:

CODED (C)

Specifies that the output files with a DATA_MODE
attribute value of CODED are to be selected.

25-2 NOSNE Commands and Functions 60464018 J

60464018 J

SELECT _OUTPUT

TRANSPARENT (T)

Specifies that the output files with a DATA _MODE
attribute value of TRANSPARENT are to be selected.

If omitted, this parameter is ignored.

DEVICE or DEVICES or D

Specifies the device names of the output files to be
selected. The keyword AUTOMATIC selects the output
files given the DEVICE attribute value of AUTOMATIC.
If omitted, this parameter is ignored.

EXTERNAL_CHARACTERISTICS or EC

Specifies the external characteristic strings of the output
files to be selected. If the keyword NORMAL is specified,
the output files with a EXTERNAL _CHARACTERISTICS
attribute value of NORMAL are selected. If omitted, this
parameter is ignored.

FORMS _CODE or FORMS _CODES or FC

Specifies the forms code strings of the output files to be
selected. If the keyword NORMAL is specified, the output
files with a FORMS _CODE attribute value of NORMAL
are selected. If omitted, this parameter is ignored.

LOGIN _ACCOUNT or LOGIN _ACCOUNTS or LA

Specifies the login accounts of the output files to be
selected. If omitted, this parameter is ignored.

LOGIN _FAMILY or LOGIN _FAMILIES or LF

Specifies the login families of the output files to be
selected. If omitted, this parameter is ignored.

LOGIN_PROJECTorLOGIN_PROJECTS or LP

Specifies the login projects of the output files to be
selected. If omitted, this parameter is ignored.

LOGIN _USER or LOGIN _USERS or LU

Specifies the login users of the output files to be selected.
If omitted, this parameter is ignored.

MANAGE _OUTPUT 25-3

I
ti

SELEGT_OUTPUT

NAME or NAMES or N

Specifies the names of the output files to be selected. The
names may be either the system-supplied or the
user-supplied file names. If omitted, this parameter is
ignored.

OPERATOR _FAMILY or OPERATOR _FAMILIES or OF

Specifies the default private stations or remote system
operator family names for the output files to be selected.
If omitted, this parameter is ignored.

OPERATOR _USER or OPERATOR _USERS or OU

Specifies the operator user names of the output files to be
selected. If omitted, this parameter is ignored.

OUTPUT _CLASS or OUTPUT _CLASSES or OC

Specifies the output classes of the files to be selected. If
omitted, this parameter is ignored. ·

OUTPUT _DEFERRED _BY _OPERATOR or ODBO

Specifies the operator controlled scheduling state that the
selected output files must have. Options are:

TRUE

The operator has deferred the printing of the files.

FALSE

The operator has not deferred the printing of the files.

If omitted, this parameter is ignored.

OUTPUT _DEFERRED _BY _USER or ODB U

Specifies the user controlled scheduling state that the
selected output files must have. Options are:

TRUE

Printing of the files has been deferred by the user.

FALSE

Printing of the files has not been deferred by the user.

If omitted, this parameter is ignored.

25-4 NOS/VE Commands and Functions 60464018 J

"'----

\..___ _____ _

60464018 J

SELECT_OUTPUT IIIt

OUTPUT _DESTINATION or OUTPUT _DESTINATIONS
or ODE

Specifies the output destinations of the output files to be
selected. If omitted, this parameter is ignored.

OUTPUT _DESTINATION _USAGE or ODU

Specifies the OUTPUT_DESTINATION _USAGE attribute
values of the output files to be selected. Options are:

PUBLIC

Indicates that the file is to be printed at a public
CDCNET batch UO station.

PRIVATE

Indicates that the file is to be printed at a private
CDCNET batch UO station when the designated
station operator is controlling the station.

DUAL_STATE

Indicates that the file is to be printed under control of
the NOS or NOS/BE system that shares the
mainframe.

QTF

Indicates that the file is to be forwarded to a remote
RHF system for printing by that system.

NTF

Indicates that the file is to be forwarded to a remote
NTF system for printing by that system.

If omitted, this parameter is ignored.

OUTPUT _PRIORITY or OUTPUT _PRIORITIES or OP

Specifies the default increments that is added to the
initial priority (defined by the output class) of the output
files to be selected. Options are:

Keyword Increment

-LOW 0

MEDIUM 1500

HIGH 3000

MANAGE _OUTPUT 25-5

I

SELECT _OUTPUT

If omitted, this parameter is ignored.

OUTPUT _STATE or OUTPUT _STATES or OS

Specifies the state the selected output files must have.
Options are:

ALL

Uses all of the following keyword values.

DEFERRED (D)

Output files not yet eligible to be printed.

QUEUED (Q)

Output files waiting to be printed.

INITIATED (I)

Output files that have been printed.

TERMINATED (T)

Output files that are terminating.

COMPLETED (C)

Output files that have finished printing and are
waiting for their purge delay to expire.

If omitted, this parameter is ignored.

REMOTE _HOST _DIRECTNE or
REMOTE _HOST _DIRECTNES or RHD

Specifies the remote host directive strings of the output
files to be selected. If omitted, this parameter is ignored.

ROUTING_BANNERorROUTING_BANNERSorRB

Specifies the routing banner strings of the output files to
be selected. If omitted, this parameter is ignored.

SITE _INFORMATION or SI

Specifies the site information strings of the output files to
be selected. If omitted, this. parameter is ignored.

STATION or STATIONS or S

Specifies the I/O station names (or the control facility
names in the case of a private station or NTF remote
system) of the output files to be selected. If specified, the

25-6 NOSNE Commands and Functions 60464018 J

'---·-

60464018 J

SELECT _OUTPUT

keyword AUTOMATIC causes the output files with a
STATION attribute value of AUTOMATIC to be selected.
If omitted, this parameter is ignored.

SYSTEM _JOB _NAME or SYSTEM _JOB _NAMES or
SJN

Specifies the system job names of the jobs that created
the output files to be selected. If omitted, this parameter
is ignored.

USER _INFORMATION or UI

Specifies the user information strings of the jobs that
created the output files to be selected. If omitted, this
parameter is ignored.

VERTICAL _PRINT _DENSITY or
VERTICAL _PRINT _DENSITIES or VPD

Specifies the vertical print densities of the output .files to
be selected. Options are:

SIX

Selects a printer to print at six lines-per-inch.

EIGHT

Selects a printer to print at eight lines-per-inch.

NONE

Vertical print density is not used to select a printer.

If omitted, this parameter is ignored.

VFU _LOAD _PROCEDURE or
VFU_LOAD_PROCEDURESorVLP

Specifies the vfu load procedure files of the output files to
be selected. If specified, the keyword value NONE causes
the output files with the VFU _LOAD _PROCEDURE
attribute value of NONE to be selected. If omitted, this
parameter is ignored.

MAXIMUM _SELECTION or MS

Specifies the maximum number of output files that can be
selected. If omitted, the number of output files meeting ·
the criteria specified on this subcommand is used.

MANAGE _OUTPUT 25-7

SELECT_OUTPUT

Remarks

OUTPUT _SELECTION _LIST or OSL

Specifies the variable that will contain the system output
file names of the selected output files. This variable has a
LOCAL scope. If omitted, JMV$SELECTED_OUTPUT is
used.

• If no selection parameters are supplied, all output files
for which the caller of this command is the login user
or control user are returned.

• For more information, see the NOSNE System Usage
manual.

25-8 NOSNE Commands and Functions 60464018 J

MANAGE _REMOTE _FILES 26

MANAGE_REMOTE_FILE 26-1
RECEIVE _FILE .. 26-4
SEND _FILE ... 26-5

60464018 J

MANAGE _REMOTE _FILES 26

MANAGE_REMOTE_~LE
Command

Purpose

Format

Delimits a set of commands to be executed on the
specified remote system.

MANAGE _REMOTE _FILE or
MANAGE_REMOTE_FILES or
MANRF or
MFLINK

LOCATION= string or name
FILE=file
DATA _DECLAR.ATION =keyword
UNTIL= string
SUBSTITUTION _MAR.K=string or keyword
IGNORE _REMOTE_ VALIDATION= boolean
STATUS=status variable

Parameters LOCATION or L

60464018 J

Specifies the name of the remote location to be accessed.
This is a name associated with a remote system, such as
a family name or a logical identifier. (Location names are
determined by your network application administrator.)

This parameter must be a string or name value.

You cannot specify a variable name for this parameter. If
you want to use a variable that has a name value, you
can use the $NAME function instead.

This parameter is required.

FILE or F

Specifies the name of a file on the local NOS/VE system
to be used as the input or output file during a file
transfer. This parameter is required even when you are
not performing a file transfer.

MANAGE _REMOTE _FILES 26-1

MANAGE _REMOTE _FILE

DATA _DECLARATION or DD

Specifies the data format of a file to be transferred.

If the remote location is another NOSNE host, this
parameter is ignored. The rules for copying NOSNE files
based on the local and remote file attributes apply. For a
discussion of rules for copying NOSNE files, see the
NOSNE System Usage manual.

If the remote location is a non-NOSNE host, the following
data descriptions are available. The meaning of each
varies among the various remote host types. Refer to the
Remote Host Facility Usage manual for system specific
information.

• C6
Use this format when you transfer files to hosts
using a 6-bit code set. This format indicates the
file contains character data from a character set
with 64 or fewer character codes.

The effect of this format is that each machine sees
the file in its native character set. Thus, if you
transfer the file from NOSNE to NOS, NOSNE
sends the file in ASCII and NOS receives it in
display code. Transfers to other systems result in
full ASCII transfers as if DD=C8 was used.

• CB

This· format has the following meanings depending
upon which system the file is being transferred to:

NOS

Transfer results in a NOS 8/12 ASCII file.
Use the NOS FCOPY command to convert
the file to NOS 6/12 format.

NOS/BE

Same as for NOS.

Any other ASCII system

Transfer results in an ASCII file.

IBM/MVS

Transfer results in an EBCDIC file.

26-2 NOSNE Commands and Functions 60464018 J

''-.

60464018 J

MANAGE_REMOTE_FILE

0 uu
Use this format to transfer binary files to remote
systems. Object and source libraries should be
transferred using this format. Files transferred to
NOS or NOS/BE will be padded unless they end on
a 120-bit boundary (this is because NOS and
NOS/BE store their files in 60-bit format).
Similarly, files transferred from NOS or NOS/BE
to. NOSNE and that have a file length that is an
odd multiple of 60 bits will be padded to the next
full byte (8-bit) length.

UNTIL or U
Specifies the string indicating the end of commands in the
list. The string must appear on a separate line. If this
parameter is omitted, a string of two asterisks (**) is
assumed.

SUBSTITUTION_MARKorSM
Specifies a character used to delimit text to be substituted
within the command text following the
MANAGE_REMOTE_FILES command. Values can be any
character or the keyword NONE. NONE specifies that no
substitution mark is to be used. If this parameter is
omitted, NONE is assumed.

IGNORE _REMOTE_ VALIDATION or IRV

Specifies whether to use validation information provided
on a previous CREATE _REMOTE_ VALIDATION
command. Options are:

TRUE

Ignores the validation information provided on a
previous CREATE _REMOTE_ VALIDATION command.
You must provide new validation information for the
remote system in the command text following the
MANAGE _REMOTE _FILE command.

FALSE

Uses the validation information provided on a previous
CREATE _REMOTE_ VALIDATION command on the
current command.

If omitted, FALSE is assumed.

MANAGE _REMOTE _FILES 26-3

RECEIVE _FILE

Remarks G You must provide validation information required by
the remote system. As an alternative, you can issue a
CREATE_REMOTE_ VALIDATION command prior to
using the MANAGE _REMOTE _FILES command. If
this remote system is NOSNE, the first command in
the list of commands must be a LOGIN command.

• The names and parameters of commands accepted by
each remote system type are described in the Remote
Host Facility Usage manual.

The MANAGE_REMOTE_FILES command passes the
command text you supply to the remote system for
execution. If the remote system is NOSNE, the
command text is a set of SCL commands to be
executed as a batch job.

o You can include at most one remote command in the
command text which causes an explicit file transfer.
For remote NOS/VE systems, use the SEND _FILE or
RECEIVE _FILE commands to explicitly transfer a
file.

o For more information, see the NOSNE System Usage
manual.

RECEIVE FILE
MANRF ·Subcommand

Purpose

Format

When used within the list of commands delimited by the
MANAGE _REMOTE _FILES command, transfers a file
from your local system to a remote system.

RECEIVE _FILE or
RECF

FILE=file
STATUS= status variable

Parameters FILE or F

Specifies the name of the file on the remote system that
is to receive the file from your local system.

26~4 NOSNE Commands and Functions 60464018 J

Remarks

SEND_FILE

o You can use the RECEIVE _FILE command only with
the MANAGE_REMOTE_FILES command. (Refer to
the MANAGE_REMOTE_FILES command.)

G Refer to the SEND _FILE command for information
about transferring files from a remote system to your
local system.

o For more information, see the NOSNE System Usage
manual.

SEND_FILE
MANRF Subcommand

Purpose

Format

When .used within the list of commands delimited by the
MANAGE _REMOTE _FILES command, sends a file from
a remote system to your local system.

SEND _FILE or
SENF

FILE=file
STATUS ==status variable

'-----/ Parameters FILE or F

Remarks

60464018 J

Specifies the name of the file on the remote system that
is to be sent to your local system.

o You can use the SEND _FILE command only with the
MANAGE_REMOTE_FILES command. (Refer to the ..
MANAGE _REMOTE _FILES command.)

G Refer to the RECEIVE _FILE command for information
about transferring files from your local system to a
remote system.

• For more information, see the NOSNE System Usage
manual.

MANAGE _REMOTE _FILES 26-5

MEASURE _PROGRAM _EXECUTION 27

MEASURE_PROGRAM_EXECUTION 27-1
CREATE_RESTRUCTURED_MODULE 27-1
CREATE_RESTRUCTURING_COMMANDS 27-2
DISPLAY_PROGRAM_PROFILE 27-3
EXECUTE_INSTRUMENTED_TASK 27-5
QUIT ... -. 27-6
RESTORE_PROGRAM_MEASURES 27-6
SAVE_PROGRAM_MEASURES 27-7
SET_PROGRAM_DESCRIPTION 27-9

60464018 J

'-...._,

MEASURE _PROGRAM _EXECUTION 27

MEASURE_PROGRAM_EXECUTION
Command

Purpose

Format

Remarks

Examples

Starts a program measurement utility session.

MEASURE _PROGRAM _EXECUTION or
ME APE

STATUS =status variable

o The session ends when you enter the subcommand
QUIT. The descriptions of each program measurement
subcommand follow this description.

o For more information, see the NOSNE Object Code
Management manual.

The following utility session specifies the program ·as the
modules on file LGO, executes the program, and saves the
program profile on file MY _FILE.

/measure_program_execution
MPE/set_program_description target_text=lgo
MPE/execute_instrumented_task
MPE/display_program_profile output=my_file
MPE/Quit
I

CREATE_RESTRUCTURED_MODULE
MEAPE Subcommand

Purpose

Format

60464018 J

Generates a restructuring procedure and executes the
procedure to create a restructured load module on an.
object library. It can also save the restructuring
procedure.

CREATE _RESTRUCTURED _MODULE or
CRERM

RESTRUCTURED_MODULE=file
RESTRUCTURED_MODULE_NAME=any
RESTRUCTURING _COMMANDS =file
STATUS= status variable

MEASURE _PROGRAM _EXECUTION 27 -1

CREATE _RESTRUCTURING _COMMANDS

Parameters RESTRUCTURED _MODULE or RM

Remarks

File to which the object library containing the new load
module is written. This parameter is required.

RESTRUCTURED _MODULE _NAME or RMN
Name given the new load module. If
RESTRUCTURED_MODULE_NAME is omitted, the
module name is the same as the file name.

RESTRUCTURING_COMMANDSorRC
File on which the restructuring procedure is saved. If
RESTRUCTURING _COMMANDS is omitted, the
restructuring procedure is discarded.

For more information, see the NOS/VE Object Code
Management manual.

· CREATE _RESTRUCTURING _COMMANDS
MEAPE Subcommand

Purpose Generates and saves a restructuring procedure.

Format CREATE _RESTRUCTURING _COMMANDS or
CRERC

RESTRUCTURING _COMMANDS=file
RESTRUCTURED_MODULE=file
RESTRUCTURED_MODULE_NAME=any
STATUS =status-variable

Parameters RESTRUCTURING _COMMANDS or RC

File to which the procedure is written. The procedure
name is the same as the file name. This parameter is
required.

RESTRUCTURED _MODULE or RM

Object library file to which the restructured module is
written after the restructuring procedure is executed. This
parameter is required.

RESTRUCTURED_MODULE_NAMEorRMN
Name to be given the module created when the
restructuring procedure is executed. If the
RESTRUCTURED_MODULE_NAME parameter is
omitted, the module name is the same as the file name.

27 -2 NOSNE Commands and Functions 60464018 J

\,.____

'---

'-------

Remarks

Examples

DISPLAY _PROGRAM _PROFILE

o The CREATE_RESTRUCTURING_COMMANDS
subcommand uses the information accumulated in the
connectivity matrix to generate the restructuring
procedure.

o The CREATE _RESTRUCTURING _COMMANDS
subcommand does not execute the restructuring
procedure. To generate a restructured module, either
enter a CREATE _RESTRUCTURED _MODULE
subcommand during the session or execute the saved
restructuring procedure.

o For more information, see the NOSNE Object Code
Management manual.

The following subcommand writes a restructuring
procedure on file MODULE ~RESTRUCTURE. If the
procedure is executed, it creates a module named
NEWLGO on object library file $USER.NEWLGO.

MPE/create_restructuring_cOITITlands restructuring_ ..
MPE .. /conmands=module_restructure restructured_ ..
MPE .. /module=$user.newlgo

For an example of a restructuring procedure, refer to the
BIND _MODULE subcommand description.

DISPLAY _PROGRAM _PROFILE
MEAPE Subcommand

Purpose

Format

60464018 J

Generates and displays a program profile. The program
profile uses the execution time totals accumulated by
previous EXECUTE _INSTRUMENTED _TASK
subcommands.

DISPLAY _PROGRAM _PROFILE or
DIS PP

PROFILE _ORDER =keyword
PROGRAM _UNIT _CLASS= keyword
NUMBER= keyword or integer
OUTPUT=file
STATUS=status variable

MEASURE _PROGRAM_EXECUTION 27-3

DISPLAY _PROGRAM _PROFILE

Parameters PROFILE _ORDER or PO

Order in which the program profile is displayed. Options
are:

TIME (T)

By percentage of the total execution time ordered
greatest to least.

PROGRAM_UNIT (PU)

By program unit name ordered alphabetically.

MODULE_PROGRAM_UNIT (MPU)

By module name ordered alphabetically.

If PROFILE_ORDER is omitted, TIME is used.

PROGRAM _UNIT _CLASS or PUC

Class of program units whose statistics are displayed.
Options are:

ALL

All program units measured, both local and remote.

LOCAL

Only program units that are part of the target text.

REMOTE

Only program units that are called by target text
program units, but are not part of the target text.
These program units provide the remote block
statistics in the program profile.

If PROGRAM_UNIT_CLASS is omitted, ALL is used.

NUMBER or N

Number of program unit statistics displayed. The statistics
are sorted as specified by the PROFILE_ORDER
parameter and then displayed in order until the specified
number of statistics have been displayed. If NUMBER is
omitted, the entire program profile is displayed.

OUTPUT or 0

File to which the display is written. This file can be
positioned. If OUTPUT is omitted, file $OUTPUT is used.

27-4 NOSNE Commands and Functions 60464018 J

Remarks

EXECUTE _INSTRUMENTED _TASK

For more information, see the NOSNE Object Code
Management manual.

EXECUTE _INSTRUMENTED _TASK
MEAPE Subcommand

Purpose

Format

Executes and measures the performance of the last
program specified by a SAVE _PROGRAM _MEASURES or
SET _PROGRAM _DESCRIPTION subcommand.

EXECUTE_INSTRUMENTED_TASK or
EXE IT

PARAMETER =string
NO _CONNECTNITY _MATRIX=boolean
WORKING _SET _INTERVAL=integer
STATUS= status variable

Parameters PARAMETER or P

60464018 J

Parameter string passed to the program.

NO _CONNECTNITY _MATRIX or NCM

Indicates whether a connectivity matrix is generated.

NOTE

Specify NO _CONNECTIVITY _MATRIX= TRUE if you do
not intend to generate a restructuring procedure for the
program. Omitting generation of a connectivity matrix
saves time and system resources.

TRUE

No connectivity matrix is generated.

FALSE

A connectivity matrix is generated.

If NO _CONNECTIVITY _MATRIX is omitted, FALSE is
assumed and a connectivity matrix is generated.

WORKING _SET JNTERVAL or WSI

Reserved.

MEASURE_PROGRAM_EXECUTION 27-5

QUIT

Remarks

Examples

QUIT

o The program is executed once for each
EXECUTE_INSTRUMENTED_TASK subcommand you
enter. You can specify a different parameter list for
each execution. Cumulative statistics for all executions
are kept.

o For more information, see the NOS/VE Object Code
Management manual.

The following sequence executes the modules ·on file LGO
twice; cumulative statistics are kept for the program
executions. The program profile is saved on file
$USER.PROFILE _LIST.

/measure_program_execut1on
MPE/set_program_descr1pt1on target_text=lgo
MPE/execute_1nstrumented_task parameter='s1ze=40'
MPE .. /no_connect1vity_matr1x=true
MPE/execute_1nstrumented_task parameter='s1ze=400' ..
MPE .. /no_connect1v1ty_matr1x=true
MPE/display_program_profile output=$user.prof11e_list
MPE/QUit
I

MEAPE Subcommand

Purpose Ends a MEASURE_PROGRAM_EXECUTION utility
session.

Format QUIT or
QUI

Parameters None.

Remarks For more information, see the NOS/VE Object Code
Management manual.

RESTORE_PROGRAM_MEASURES
MEAPE Subcommand

Purpose Restores the program measurement environment using the
information saved by a SAVE _PROGRAM _MEASURES
subcommand.

27-6 NOS/VE Commands and Functions 60464018 J

Format

SAVE_PROGRAM_MEASURES

RESTORE _PROGRAM _MEASURES or
RES PM

MEASURES= file
STATUS =status variable

Parameters MEASURES or M

Remarks

Examples

File containing a saved program measurement
environment. This parameter is required.

o The RESTORE_PROGRAM_MEASURES subcommand
always restores the program description. It also
restores the execution time statistics and connectivity
matrix if that information was saved on the file.

o For more information, see the NOSNE Object Code
Management manual.

The following sequence begins a program measurement
session and restores the program measurement
environment saved on file SAVED_MEASUREMENT.

/measure_program_execution
MPE/restore_program_measures measures= ..
MPE .. /saved_measurement
MPE/

SAVE_PROGRAM_MEASURES
MEAPE Subcommand

Purpose

Format

60464018 J

Saves the current program measurement environment on
a file.

SAVE _PROGRAM _MEASURES or
SAVPM

MEASURES= file
AMOUNT=list of keyword
STATUS= status variable

MEASURE_PROGRAM_EXECUTION 27-7

SAVE_PROGRAM_MEASURES

Parameters MEASURES or M

Remarks

File on which the program measurement environment is
saved. This parameter is required.

AMOUNT or A

Information to be saved. Options are:

ALL

Program description, connectivity matrix, and
execution time totals.

CONNECTIVITY _MATRIX (CM)

Program description and connectivity matrix only.

EXECUTION _TIME _TOTALS (ET!')

Program description and execution time totals only.

If AMOUNT is omitted, ALL is used.

o By default, the SAVE_PROGRAM_MEASURES
subcommand saves the execution time totals and the
connectivity matrix. If the session that uses the saved
program measurement environment will not use the
execution time totals or connectivity matrix, you can
direct the subcommand not to save that information
with the AMOUNT parameter.

o The SAVE_PROGRAM_MEASURES subcommand does
not discard the program measurement statistics. The
statistics . are discarded when you specify another
program description . or end the session.

o To use the saved program environment in another
session, enter a RESTORE _PROGRAM _MEASURES
subcommand that specifies the file containing the
saved program environment.

• The MEASURES file is written as a sequential data
file. It is not intended to be listed; its only intended
use is to resume a
MEASURE _PROGRAM _EXECUTION session.

• For more information, see the NOSNE Object Code
Management manual.

27 -8 NOSNE Commands and Functions 60464018 J

''-----·

Examples

SET_PROGRAM_DESCRIPTION

The following subcommand copies the program description
and any accumulated statistics to file
SAVED _MEASUREMENT.

MPE/save_program_measure measures=saved_measurement

SET _PROGRAM _DESCRIPTION
MEAPE Subcommand

Purpose

Format

Parameters

60464018 J

Specifies the program whose performance is to be
measured.

SET _PROGRAM _DESCRIPTION or
SETPD

TARGET_ TEXT= file
FILE= list of file
LIBRARY=list of file
MODULE= list of any .
STARTING _PROCEDURE =any
STACK _SIZE =integer
STATUS= status variable

TARGET_TEXT or TT

Object file or object library containing the modules to be
measured. This parameter is required.

FILE or FILES or F

Object list for. the program. Each module in the specified
object files and object libraries is unconditionally included
in the program. The list must include the target text file.
If FILE is omitted, the object list for the program consists
of only the file specified on the TARGET_TEXT
parameter.

LIBRARY or LIBRARIES or L

List of object libraries added to the program library list.

MODULE or MODULES or M

Module list.

You use a string value for a module whose name is not
an SCL name.

Each module is unconditionally loaded from the object
libraries in the program library list.

MEASURE_PROGRAM_EXECUTION 27-9

SET _PROGRAM _DESCRIPTION

Remarks

Examples

STARTING _PROCEDURE or SP

Name of the entry point where execution begins.

You use a string value for an entry point whose name is
not an SCL name.

If STARTING _PROCEDURE is omitted, the last transfer
symbol encountered during loading is used.

STACK _SIZE or SS

Upper size limit in bytes of the run-time stack used for
procedure call linkages and local variables. If
STACK _SIZE is_ omitted, a 2-million byte limit is used.

e The program to be measured should be debugged and
ready for use in a production environment. The
program description specified on the subcommand
should be the same program description used to
exec~te the program in a production environment.

• When you execute the
SET _PROGRAM _DESCRIPTION subcommand, any
program description previously in effect and any
program measurement statistics accumulated for that
program are discarded.

• For more information, see the NOSNE Object Code
Management manual.

The following subcommand specifies that program modules
are on files LGO and SUBLGO but only the module on
file LGO is to be measured.

MPE/set_program_description target_text=lgo
MPE .. /file=(lgo,sublgo)

27-10 NOS/VE Commands and Functions 60464018 J

RECOVER _KEYED _FILE 28

RECOVER_KEYED_FILE 28-1
HELP .. 28-2
QUIT .. 28-4
RECOVER_FILE_MEDIA 28-4
VOID_LOG_FOR_RESTORED_FILE 28-6

60464018 J

RECOVER _KEYED _FILE 28

RECOVER _KEYED _FILE
Command

Purpose

Format

Begins a keyed-file recovery attempt.

RECOVER _KEYED _FILE or
RECKF

FILE=file
PASSWORD=name
STATUS= status variable

Parameters FILE or F

Remarks

60464018 J

File path to the damaged keyed file to be recovered. This
parameter is required.

If the damaged file does not currently exist, its cycle ·
number cannot be determined by default. Therefore, the
file path must explicitly specify the file cycle number so
that the utility can reload the correct backup copy.

PASSWORD or PW

File password specified when
BACKUP _PERMANENT _FILE wrote the backup copy of
the file. A file password is optional, but, if a password
exists for the file, it is required on this command. If no
password exists for the file, NONE can be specified.

The file password in effect when the backup copy was
written must be the same password in effect when the file
was damaged. Otherwise, the backup copy cannot replace
the damaged file.

o The LOG _RESIDENCE attribute of the file specified
on the command must match the LOG _RESIDENCE
attribute of the backup copy to be reloaded.
RECOVER _KEYED _FILE cannot use a backup copy
that was written before the LOG _RESIDENCE
attribute of the file was changed.

RECOVER_KEYED _FILE 28-1

HELP

Examples

HELP

• If the file does not currently exist and the
LOG _RESIDENCE of its backup copy is not the
default log, you must enter a SET _FILE _ATTRIBUTE
command for the file. The command must specify the
same file cycle specified on the RECOVER _KEYED_
FILE command and the same LOG _RESIDENCE as
that of the backup copy to be used. (See the Example.)

a Similarly, if the file does not currently exist, but the
file had a password when the backup copy was
written, you must create the file with the same
password. To do so, enter a CREATE _FILE command
specifying the file path (including its cycle number)
and the PASSWORD parameter.

o For more information, see the NOSNE Advanced File
Management Usage manual.

The following session attempts to restore a keyed file that
no longer exists using its latest backup copy. When the
latest backup copy was written, the file passwotd was
HUSH _HUSH and the LOG _RESIDENCE attribute was
$USER.MY _LOG. Therefore, those values must be
reestablished for the file cycle.

/recover_keyed_file, $user.keyed_file.1
reckf/create_file, $user.keyed_file.1, ..
reckf .. /password=hush_hush
reckf/set_file_attribute~ $user.keyed_file.1,
reckf .. /log_residence=$user.my_log
reckf/recover_file_media

RECKF Subcommand

Purpose

Format

Provides access to online information about the utility.

HELP or
HEL

SUBJECT=string
MANUAL=file
STATUS =status variable

28-2 NOS/VE Commands and Functions 60464018 J

Parameters

Remarks

Examples

60464018 J

HELP

SUBJECT or S

Topic to be found in the index of the online manual. The
topic title must be enclosed in apostrophes ('topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

MANUAL or M

Online manual file to be read. If you omit the MANUAL
parameter, the default is AFM. The working catalog is
searched for the AFM file and then the
$SYSTEM.MANUALS catalog.

o If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

o The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manual, as provided with the
NOSNE system.

o If your terminal is defined for full-screen applications,
the online manual is displayed in screen mode. Help is
available for reading the online manual. To leave the
online manual and return to the utility, use QUIT.

The following session shows the default display returned
by the HELP subcommand.

/recover_Keyed_file, $user.Keyed_file. 1
recKf/help
The fol lowing Recover _Keyed_Fi le subcommands are available:
RECOVER_F I LE_MED I A
VOID_LOG_FOR_RESTORED_FILE
HELP
QUIT

For a description of a subcommand in the online manual, enter:
HELP subject = '<subcommand>'

To return from an online manual, enter: QUIT
recKf /quit
I

RECOVER_KEYED _FILE 28-3

I
i

I
II

QUIT

QUIT
RECKF Subcommand

Purpose

Format

Remarks

Ends the RECOVER _KEYED _FILE session.

QUIT or
QUI

STATUS =status variable

• The QUIT command is required to end a session.

• A recovery attempt that returns a fatal error ends the
session.

RECOVER _FILE _MEDIA
RECKF Subcommand

Purpose Reloads a backup of the file and then updates it using an
· ·update recovery log for the file.

Format RECOVER _FILE _MEDIA or
REC FM

DAYS _SINCE _LAST _GOOD=integer
HOURS _SINCE _LAST _GOOD=integer
MINUTES _SINCE _LAST _GOOD=integer
FILE _CLASS =application
INITIAL_ VOLUME= name
STATUS =status variable

Parameters DAYS _SINCE _LAST _GOOD or DSLG

Number of days since the damaged file was intact (any
integer not less than 0). It is used with the next two
parameters to determine the backup copy to be reloaded.

If the first three parameters are omitted, the default
value for each is 0, causing the latest backup copy to be
reloaded.

HOURS _SINCE _LAST _GOOD or HSLG

Number of hours (added to the days specified by the first
parameter) since the damaged file was intact (an integer
from 0 through 23).

If the first three parameters are omitted, the latest
backup copy is reloaded.

28-4 NOSNE Commands and Functions 60464018 J

Remarks

RECOVER_FILE _MEDIA

MINUTES _SINCE _LAST _GOOD or MSLG

Number of minutes (added to the days and hours specified
by the first two parameters) since the damaged file was
intact (an integer from 0 through 59).

If the first three parameters are omitted, the latest
backup copy is reloaded.

FILE _CLASS or FC

Specifies the class of the file to be assigned. Refer to the
REQUEST_MASS_STORAGE command in the NOS/VE
System Performance and Maintenance manual, Volume 2,
for class assignments and a complete description of this
parameter.

INITIAL_ VOLUME or N

Name specifying the volume serial number (VSN) of the
mass storage volume to which the file is to be assigned.
The name is specified as a string of from 1 through 6
characters. Refer to the REQUEST _MASS _STORAGE
command in the NOSNE System Performance and
Maintenance manual, Volume 2, for a complete description
of this parameter.

e This subcommand is effective only if both a backup
copy and an update recovery log are available for the
file.

e An update recovery log is maintained for the file only
if its LOGGING _OPTIONS attribute includes the
option ENABLE_MEDIA_RECOVERY.

o The subcommand can only reload backup copies
created by the BACKUP _PERMANENT _FILE utility
because those backup copies are recorded in the update
recovery log for the file. (The
ENABLE_MEDIA_RECOVERY logging option must be
set before the backup.)

o For a backup copy to be used, the file password (if
"----- any), the LOG _RESIDENCE attribute, and the

LOGGING _OPTIONS attribute for the file must not
have changed since the backup copy was written.

60464018 J RECOVER_KEYED _FILE 28-5

I
I

VOID _LOG _FOR_RESTORED _FILE

Examples

o The FILE _CLASS and INITIAL_ VOLUME parameters
are described in detail as parameters of the
REQUEST_MASS_STORAGE command in the
NOS/VE System Performance and Maintenance
manual, Volume 2.

• Once a keyed file is recovered using
RECOVER _FILE _MEDIA, it must be backed up
(using the BACKUP _PERMANENT_FILE utility)
before it can be updated.

o The subcommand issues progress messages as it
proceeds. Be sure to read the messages as they
appear.

• For more information, see the NOS/VE Advanced File
Management Usage manual.

The following session recovers the file using the last
backup copy.

/recover_keyed_file, $user.my_keyed_file
reckf/recover_file_media
I

VOID _LOG _FOR _RESTORED _FILE
RECKF Subcommand

Purpose

Format

Remarks

Discards the update recovery log associated with a file
that has been restored using the
RESTORE _PERMANENT _FILE utility.

VOID _LOG _FOR _RESTORED _FILE or
VOILFRF

STATUS= status variable

o This subcommand is provided for situations in which
an older version of the file is restored using the
RESTORE _PERMANENT _FILE utility, and the user,
content with this version, does not want to try to
recover lost updates from the log.

28-6 NOSNE Commands and Functions 60464018 J

60464018 J

VOID _LOG _FOR_RESTORED _FILE

o Updates cannot be recorded on a log associated with a
restored file because the updates on the log do not
correspond to the restored version of the file. (The
restored file is an older version.) As a result, this
subcommand is used to discard all past logged updates
for the restored file.

o After the update recovery log is discarded, a backup
copy of the file must be created by the
BACKUP _PERMANENT _FILE utility if subsequent
updates are to be recorded on the log.

• For more information, see the NOSNE Advanced File
Management Usage manual.

RECOVER_KEYED _FILE 28-7

RELEASE_MASS_STORAGE 29

RELEASE_MASS_STORAGE 29-1
CHANGE _FILE _SIZE .. 29-1
CHANGE_ WEIGHTS , 29-2
DISPLAY_COPIES_NEEDED 29-4
DISPLAY _FILE _SIZE .. 29-4
DISPLAY_RELEASE_OPTIONS 29-5
DISPLAY_WEIGHTS ... 29-5
EXCLUDE _CATALOG .. 29-6
EXCLUDE_FILE ... 29-7
EXCLUDE_HIGHEST_CYCLES 29-7
INCLUDE _CYCLES .. 29-8
INCLUDE_ VOLUMES 29-12
QUIT .. 29-13
RELEASE_ALL_FILES 29-13
RELEASE_CATALOG 29-14
RELEASE_FILE ... 29-15
SET_LIST_OPTIONS 29-17
SET_RELEASE_OPTIONS 29-19

60464018 J

I
I

RELEASE_MASS_STORAGE 29

RELEASE_MASS_STORAGE
Command

Purpose Starts the RELEASE_MASS_STORAGE utility session
and specifies the file to receive the report on file cycles
that are selected during the utility session.

Format RELEASE _MASS _STORAGE or
RELMS

LIST=file
STATUS =status variable

Parameters LIST or L

Remarks

Examples

Specifies the name of the file that receives a list of the
file cycles that are released from mass storage during the
utility session. The default ·is $LIST.

o The SET _RELEASE _OPTIONS subcommand specifies
whether the utility session releases the selected file
cycles, reports on which file cycles were selected, or
performs both options.

o For more information, see the NOS/VE File Archiving
manual.

To start the utility session and save the summary report
in file RESULTS, en~er:

/release_mass_storage list=results
rel ms/

CHANGE _FILE _SIZE
RELMS Subcommand

Purpose

Format

60464018 J

Specifies the file size restrictions for release candidates.

CHANGE_FILE_SIZE or
CHAFS

SIZE= range of integer
STATUS= status variable

RELEASE_MASS_STORAGE 29-1

I
11

I
11

CHANGE_ WEIGHTS

Parameters SIZE or S

Remarks

Examples

Specifies the minimum file size in bytes, a range in file
size in bytes, or all file sizes with the keyword ALL.
Specifying the keyword ALL indicates that file size is not
a factor when selecting files to release. The default is
ALL.

• If you enter multiple CHANGE _FILE _SIZE
subcommands, the most recent entry takes precedence.

• If you omit this subcommand, file size is not a
consideration when selecting file cycles for release.

• For more information, see the NOSNE File Archiving
manual.

To release the mass storage copies of archived file cycles
that are 10 megabytes or larger and are in subcatalog
TEST _DATA, enter:

relms/change_file_size 10000000
relms/display_file_size
INCLUDING CYCLES OF LENGTH AT LEAST: 10000000
INCLUDING CYCLES OF LENGTH AT MOST: 4398046511103
relms/release_catalog $user.test_data
rel ms/quit

To specify a file size range of 250,000 bytes to 6,000,000
bytes, enter:

relms/change_file_size 250000 .. 6000000
relms/display_file_size
INCLUDING CYCLES OF LENGTH AT LEAST:
INCLUDING CYCLES OF LENGTH AT MOST:

250000
6000000

CHANGE_ WEIGHTS
RELMS Subcommand

Purpose Specifies the multipliers used to influence the priority
assigned to a file cycle in the release candidate list.

29-2 NOSNE Commands and Functions 60464018 J

Format CHANGE_ WEIGHTS or
CHANGE_WEIGHT or
CHAW

AGE _MULTIPLIER =integer
SIZE _MULTIPLIER= integer
STATUS= status variable

CHANGE_ WEIGHTS

Parameters AGE _MULTIPLIER or AM

Remarks

Examples

60464018 J

Specifies the multiplier for the file cycle age. A file cycle
age is the number of minutes since the file cycle was last
accessed. The default age multiplier is 1.

SIZE _MULTIPLIER or SM

Specifies the multipliers for the file cycle size. The size is
the length of the file cycle in bytes. The default size
multiplier is 1.

o Before the system releases file cycle data, it prioritizes
the release candidates using the following algorithm:

priority = (age * age _multiplier) + (size *
size _multiplier) where age is the number of
minutes since the file cycle was modified, and size
is the length of the file in bytes.

e For more information, see the NOS/VE File Archiving
manual.

To double the weight assigned to a file's size, enter:

relms/change_weights size_multiplier=2

To have files prioritized by only the file's size, enter:

relms/change_weights age_multiplier=O

To have files prioritized so that the smallest file has the
highest priority and age does not matter, enter:

relms/change_weights age_multiplier=O
relms .. /size_multiplier=-1

RELEASE _MASS_STORAGE 29-3

DISPLAY_COPIES_NEEDED

DISPLAY _COPIES _NEEDED
RELMS Subcommand

Purpose

Format

Remarks

Examples

Displays the minimum number of current archive copies
that must exist before a file cycle can be released.

DISPLAY_COPIES_NEEDED or
DISCN

STATUS=status variable

For more information, see the NOSNE File Archiving
manual.

To display the minimum number of current archive copies
that must exist before a file cycle can be released, enter:

relms/display~copies_needed

THE NUMBER OF COPIES REQUESTED ARE:
TAPE

In this example, only one archive copy must be made by
the tape processor before a file cycle can be released from
mass storage.

DISPLAY _FILE _SIZE
RELMS Subcommand

Purpose

Format

Remarks

Examples

Displays the file size criteria used to select release
candidates.

DISPLAY _FILE _SIZE or
DISFS

STATUS= status variable

• Use the CHANGE _FILE _SIZE subcommand to set the
file size criteria.

o For more information, see the NOSNE File Archiving
manual.

To display the current file size restrictions for releasing
mass storage space, enter:

relms/display_file_size
INCLUDING CYCLES OF LENGTH AT LEAST:
INCLUDING CYCLES OF LENGTH AT MOST:

250000
6000000

29-4 NOSNE Commands and Functions 60464018 J

DISPLAY _RELEASE _OPTIONS

This shows that only archived files with a length between
250,000 and 6,000,000 bytes can be released from mass
storage.

DISPLAY _RELEASE _OPTIONS
RELMS Subcommand

Purpose

Format

Remarks

Examples

Displays information on whether the
RELEASE _MASS _STORAGE utility session releases
archived file cycles, writes a report that lists the selected
archived file cycles, or performs both options.

DISPLAY _RELEASE _OPTIONS or
DISRO

STATUS= status variable

o Use the SET_RELEASE_OPTIONS subcommand to
set the processing option.

o For more information, see the NOSNE File Archiving
manual.

To display the current release processing options, enter:

relms/display_release_options
RELEASE_PROCESSING_OPTION: ALL

The option ALL specifies that the utility session will
release mass storage space and generate a report that
lists the archived file cycles that were released.

DISPLAY_ WEIGHTS
RELMS Subcommand

Purpose

Format

60464018 J

Displays the multipliers used to influence the priority
assigned to a file cycle in the release candidate list.

DISPLAY_ WEIGHTS or
DISW

STATUS =status variable

RELEASE_MASS_STORAGE 29-5

II
li

EXCLUDE _CATALOG

Remarks

Examples

• The factors used to determine weights are the age
multiplier and the size multiplier.

• To set the weights, use the CHANGE_ WEIGHTS
subcommand.

• For more information, see the NOSNE File Archiving
manual.

To display the weights assigned to the current processors,
enter:

relms/display_weights
PRIORITY, FILE AGE (MINUTES) MULTIPLIED BY: 1
PRIORITY, FILE SIZE (BYTES) MULTIPLIED BY: 1

EXCLUDE _CATALOG
RELMS Subcommand

Purpose Excludes a catalog from subsequent releasing or reporting.
A catalog needs to be excluded only if it is a subcatalog
of a catalog that is being released.

Format EXCLUDE _CATALOG or
EXCC

CATALOG= file
STATUS =status variable

Parameters CATALOG or C

Remarks

Examples

Specifies the catalog to exclude from subsequent releasing
or reporting. This parameter is required.

o This subcommand takes precedence over all INCLUDE
subcommand entries.

o For more information, see the NOSNE File Archiving
manual.

This example excludes subcatalog CATALOG _I from the
releasing of master catalog TKWS87:

/release_mass_storage
relms/exclude_catalog catalog=.tkws87.catalog_1
relms/release_catalog catalog=.tkws87
relms/quit

29-6 NOSNE Commands and Functions 60464018 J

"---- -

EXCLUDE_FILE

EXCLUDE _FILE
RELMS Subcommand

Purpose

Format

Prevents an archived file or cycle from being released
from mass storage.

EXCLUDE_FILE or
EXCF

FILE=file
STATUS =status variable

Parameters FILE or F

Remarks

Examples

Specifies the archived file or cycle to keep on mass
storage. This parameter is required.

o This subcommand takes precedence over all INCLUDE
subcommands.

o For more information, see the NOSNE File Archiving
manual.

This example releases all archived file cycles in master
catalog TKWS87, except for file CATALOG_l.REGISTER:

/release_mass_storage
relms/exclude_file file=.tkws87.catalog_1.register
relms/release_catalog catalog=.tkws87
relms/quit

EXCLUDE_HIGHEST_CYCLES
RELMS Subcommand

Purpose

Format

60464018 J

Excludes a specified number of high (highest numbered)
file cycles from subsequent releasing of mass storage
space.

EXCLUDE_HIGHEST_CYCLES or
EXCLUDE_HIGHEST_CYCLEfil
EXCHC

NUMBER _OF _CYCLES =keyword or integer
STATUS =status variable

RELEASE_MASS_STORAGE 29-7

INCLUDE _CYCLES

Parameters NUMBER _OF _CYCLES or NOC

Remarks

Examples

Specifies the number of high cycles to exclude. The value
must be an integer in the range from 0 to 999 or the
keyword ALL. The keyword ALL specifies that all file
cycles are excluded. The default is 3.

• This subcommand takes precedence over all· INCLUDE
subcommands.

o For more information, see the NOSNE File Archiving
manual.

This example releases all archived file cycles, except the
highest numbered cycle, in the TKWS87 master catalog:

/release_mass_storage
relms/exclude_highest_cycles number_of_cycles=1
relms/release_catalog catalog=.tkws87
rel ms/quit

INCLUDE _CYCLES
RELMS Subcommand

Purpose

Format

Selects archived file cycles for subsequent release from
mass storage based on the creation date and time, the
last access date and time, the last modification date and
time, or the expiration date -of the cycle.

INCLUDE _CYCLES or
INCLUDE _CYCLE or
INCC

SELECTION_ CRITERIA= keyword
MONTH= keyword or integer
DAY= integer
YEAR= integer
HOUR =integer
MINUTE= integer
SECOND= integer
MILLISECOND= integer
STATUS= status variable

29-8 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

INCLUDE _CYCLES

SELECTION _CRITERIA or SC

Specifies the archived file cycles that are candidates for
release from mass storage space, or should appear in the
reports. File cycles are selected based on a cutoff date and
time specified by the MONTH, DAY, YEAR, MINUTE,
HOUR, SECOND, and MILLISECOND parameters. This
parameter is required. You must specify one of the
following keywords:

ACCESSED _BEFORE

Selects cycles that were accessed before the specified
date and time.

ACCESSED _AFTER

Selects cycles that were accessed after the specified
date and time.

CREATED _BEFORE

Selects cycles created before the specified date and
time.

CREATED _AFTER

Selects cycles created after the specified date and time.

EXPIRED _BEFORE

Selects cycles that expire before the specified date. The
default is the current date.

EXPIRED _AFTER

Selects cycles that expire after the specified date.

MODIFIED _BEFORE

Selects cycles that were modified before the specified
date and time.

MODIFIED _AFTER

Selects cycles that were modified after the specified
date and time.

RELEASE_MASS_STORAGE 29-9

INCLUDE _CYCLES

ALL

Removes the effect of any previous
INCLUDE _CYCLES subcommand. Do not specify
values for the parameters MONTH, DAY, YEAR,
HOUR, MINUTE, SECOND, and MILLISECOND when
using this value.

MONTH or M

Specifies the month of the cutoff date applied by the
SELECTION _CRITERIA parameter. This value must be
an integer from 1 to 12 (corresponding to the months of
January to December), or the name of the month. This
parameter is required unless SELECTION _CRITERIA
specifies EXPIRED _BEFORE, in which case the default is
the current month.

DAY or D

Specifies the day of the cutoff date. applied by the
SELECTION _CRITERIA parameter. This value must be
an integer from 1 to 31. This parameter is required
unless SELECTION _CRITERIA specifies
EXPIRED _BEFORE, in which case the default is the
current day.

YEAR or Y

Specifies the year of the cutoff date applied by the
SELECTION _CRITERIA parameter. This parameter must
b_e an integer from 1900 to 1999. This parameter is
required unless SELECTION _CRITERIA specifies
EXPIRED _BEFORE, in which case the default is the
current year.

HOUR or HR

Specifies the hour of the cutoff time applied by the
SELECTION _CRITERIA parameter. This value must be
an integer from 0 to 23 corresponding to the hour on a
24-hour clock. The default is 0.

MINUTE or MIN

Specifies the minute of the cutoff time applied by the
SELECTION _CRITERIA parameter. This value must be
an integer in the range from 0 to 59. The default is 0.

29-10 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

INCLUDE _CYCLES

SECOND or SEC

Specifies the second of the cutoff time applied by the
SELECTION _CRITERIA parameter. This parameter must
be an integer in the range from 0 to 59. The default is 0.

MILLISECOND or MSEC

Specifies the millisecond of the cutoff time applied by the
SELECTION _CRITERIA parameter. This parameter must
be an integer from 0 to 999. The default is 0.

o By entering the INCLUDE _CYCLES subcommand
twice ~ith different values for the
SELECTION _CRITERIA parameter, you can create a
time window the file cycles must meet in order to be
included in the releasing of mass storage. The
following values for the SELECTION _CRITERIA
parameter can be used together:

ACCESSED _AFTER and ACCESSED _BEFORE
CREATED _AFTER and CREATED _BEFORE
EXPIRED _AFTER and EXPIRED _BEFORE
MODIFIED _AFTER and MODIFIED _BEFORE

o To release mass storage space for archived file cycles
that have not been accessed since the cutoff date and
time, enter the INCLUDE _CYCLES subcommand with
SELECTION _CRITERIA specifying
ACCESSED _BEFORE.

o The EXCLUDE_CATALOG, EXCLUDE_FILE, and
EXCLUDE _HIGHEST _CYCLES subcommands take
precedence over the INCLUDE _FILES subcommand.

o For more information, see the NOSNE File Archiving
manual.

To release all archived file cycles that were modified on
or after June 2, 1988, enter:

/release_mass_storage
relms/include_cycles ..
relms .. /selection_criteria=modified_after
relms .. /month=6 day=2 year=1988
relms/release_all_files
relms/quit

RELEASE_MASS_STORAGE 29-11

INCLUDE_ VOLUMES

To release all archived files that were modified on or
after June 1 and before June 6 of 1988, enter:

/release_mass_storage
relms/include_cycles selection_criteria= ..
relms .. /modified_after ..
relms .. /month=june day=1 year=1988
relms/include_cycles selection_criteria= ..
relms .. /modified_before ..
relms .. /month=june day=6 year=1988
relms/release_all_files
relms/quit

INCLUDE_ VOLUMES
RELMS Subcommand

Purpose

Format

Specifies to release archived file cycles from the specified
mass storage disk volumes.

INCLUDE_ VOLUMES or
INCLUDE_ VOLUME or
INCV

RECORDED_ VSNS =list of: keyword or name
CYCLE _SELECTION= keyword
STATUS= status variable

Parameters RECORDED_ VSNS or RECORDED_ VSN or RVSN

Specifies the recorded VSN of the disk volumes to include.
This value can be a VSN or the keyword ALL, which
means the archived file cycles on all disk volumes are
release candidates. This parameter is required.

CYCLE _SELECTION or CS

Specifies which cycles on a disk volume to include. You
can specify the following keywords; the default is
MULTIPLE_ VOLUMES:

INITIAL_ VOLUME (IV)

Selects cycles with the beginning-of-information (BO!)
on the volume specified by RECORDED_ VSN. Cycles
with the BOI on another volume are skipped.

MULTIPLE_ VOLUMES (MV)

Selects all cycles residing either partially or
completely on the volume.

29-12 NOSNE Commands and Functions 60464018 J

Remarks

Examples

QUIT

• The system ignores values for the
CYCLE _SELECTION parameter when
RECORDED_ VSN specifies ALL.

QUIT

• For more information, see the NOSNE File Archiving
manual.

This example releases the archived file cycles for user
TKWS87 that reside on the disk volume VOL033:

/release_mass_storage
relms/include_volume recorded_vsn=VOL033
relms .. /cycle_selection=multiple_volumes
relms/release_catalog catalog=.tkws87
relms/quit

RELMS Subcommand

Purpose

Format

Ends the utility session.

QUIT or
QUI

Parameters None.

Remarks For more information, see the NOSNE File Archiving
manual.

RELEASE ALL FILES
RELMS Subcommand

Purpose

Format

Either releases the mass storage copies of all archived file
cycles or lists the archived file cycles. This option is
determined by the SET _RELEASE _OPTIONS
subcommand.

RELEASE _ALL _FILES or
RELAF

'-- - Parameters None.

60464018 J RELEASE_MASS_8TORAGE 29-13

I
I

RELEASE _CATALOG

Remarks

Examples

o To use this subcommand, you must have system
administration capabilities, or be at the system
console.

• Archived file cycles in the $SYSTEM' catalog cannot be
released.

• The RELEASE _ALL _FILES subcommand skips file
cycles that are attached to a job.

• Previous INCLUDE and EXCLUDE subcommands
restrict the file cycles that are selected.

• A previous CHANGE _FILE _SIZE subcommand
determines the size requirements for a release
candidate.

• A previous CHANGE_ WEIGHTS subcommand
determines the priority for file. cycle candidates based
on file age and size.

• For more information, see the NOS/VE File Archiving
manual.

To release space on disk volume DISK02 and DISK03 for
all file cycles that have been archived, enter:

/release_mass_storage
relms/include_volumes rvsn=(disk02, disk03)
relms/release_all_files
relms/Quit

RELEASE _CATALOG
RELMS Subcommand

Purpose

Format

Either releases the mass storage copies of the archived
file cycles in the specified catalog or family, or lists the
archived file cycles in the specified catalog or family. This
option is determined by the SET _RELEASE _OPTIONS
subcommand.

RELEASE_CATALOG or
RELC

CATALOG= file
STATUS =status variable

29-14 NOSNE Commands and Functions 60464018 J

RELEASE _FILE

Parameters CATALOG or C

Remarks

Examples

Specifies the catalog or family from which the archived
file cycle data is released. This parameter is required.

o Archived file cycles in the $SYSTEM catalog cannot be
released.

o The release of mass storage and/or report starts with
the file cycles in the specified catalog and continues
with the file cycles in all catalogs subordinate to the
specified catalog.

o The RELEASE _CATALOG subcommand skips file
cycles that are attached to a job.

o Previous INCLUDE and EXCLUDE subcommands
restrict the file cycles that are selected.

o A previous CHANGE _FILE _SIZE subcommand
determines the size requirements for a release
candidate.

o A previous CHANGE_ WEIGHTS subcommand
determines the priority for file cycle candidates based
on file age and size.

o For more information, see the NOSNE File Archiving
manual.

To release the mass storage space for archived file cycles
in subcatalog TEST _DATA, enter:

/release_mass_storage list= ..
relms .. /release_catalog_test_data
relms/release_catalog catalog=$user.test_data
relms/Quit

RELEASE FILE
RELMS Subcommand

Purpose

60464018 J

Either releases the mass storage copy of the specified
archived file, or lists the specified archived file. This
option is determined by the SET _RELEASE _OPTidNS
subcommand.

RELEASE_MASS_STORAGE 29-15

I
ii

RELEASE _FILE

Format RELEASE _FILE or
RELF

FILE=file
PASSWORD= keyword or name
STATUS= status variable

Parameters FILE or F

Remarks

Examples

Specifies the permanent file or permanent file cycle to
release. Specifying a permanent file causes the releasing
of all of its archived copies. This parameter is required.

PASSWORD or PW

Specifies either the password for the permanent file or the
keyword NONE (if the permanent file does not have a
password). The default is the keyword NONE.

• Archived file cycles in the $SYSTEM catalog cannot be
released.

• The RELEASE _FILE subcommand skips file cycles
that are attached to a job.

• Previous INCLUDE and EXCLUDE subcommands
restrict the file cycles that are selected.

• A previous CHANGE _FILE _SIZE subcommand
determines the size requirements for a release
candidate.

o A previous CHANGE_ WEIGHTS subcommand
determines the priority for file cycle candidates based
on file age and size.

• For more information, see the NOSNE File Archiving
manual.

To release the mass storage space for the archived file
$USER.TEST _DATA.CASE _100, enter:

/release_mass_storage list= ..
.. /released_test_data_case_100
relms/release_file file=$user.test_data.case_100
relms/quit

29-16 NOSNE Commands and Functions 60464018 J

SET_LIST_OPTIONS

SET _LIST _OPTIONS
RELMS Subcommand

Purpose Specifies the information that is written in the list file for
the utility session. The list file is specified by the LIST
parameter of the RELEASE _MASS _STORAGE command.

Format SET _LIST _OPTIONS or
SET _LIST_ OPTION or
SETLO

FILE _DISPLAY _OPTIONS= list of keyword
CYCLE _DISPLAY _OPTIONS= list of keyword
DISPLAY _EXCLUDED _ITEMS= boolean
STATUS= status variable

Parameters FILE _DISPLAY _OPTIONS or FILE _DISPLAY _OPTION
or FDO

60464018 J

Selects the type of file information to record in the list
file. You can specify the following keywords; the default is
NONE:

ACCOUNT (A)

Records the account name.

PROJECT (P)

Records the project name.

NONE

Records only the file name.

ALL

Records the account and project name.

CYCLE _])!SPLAY _OPTIONS or
CYCLE _DISPLAY _OPTION or CDO

Selects the type of cycle information to record in the list
file. The cycle number and whether the cycles as excluded
are always recorded, unless you specify NONE. You can
specify the following keywords; the default is
MODIFICATION _DATE _TIME and SIZE:

ACCESS_COUNT (AC)

Records the number of times the cycle has been
accessed.

RELEASE_MASS_STORAGE 29-17

I
i1

I
II

SET_LIST_OPTIONS

ACCESS _DATE_ TIME (ADT)

Records the date and time the cycle was last accessed.

CREATION _DATE_TIME (CDT)

Records the date and time the cycle was created.

EXPIRATION _DATE (ED)

Records the expiration date of the cycle.

GLOBAL_FILE_NAME (GFN)

Records the internally generated global file name. This
name is not released.

MODIFICATION _DATE _TIME (MDT)

Records the date and time the cycle was last modified.

RECORDED_ VSN (RVSN)

Records all mass storage volumes on which the cycle
resides.

SIZE (S)

Records the size of the cycle in bytes.

NONE

Records only the cycle number.

ALL

Selects all of the display options.

DISPLAY _EXCLUDED _ITEMS or
DISPLAY _EXCLUDED _ITEM or DE!

Specifies whether excluded catalogs, files, and cycles are
included in the list file. The default is FALSE.

TRUE

Writes all excluded catalogs, files, and cycles in the
list file.

FALSE

Does not write excluded catalogs, files, and cycles in
the list file.

29-18 NOS/VE Commands and Functions 60464018 J

Remarks

SET_RELEASE_OPTIONS

For more information, see the NOSNE File Archiving
manual.

SET RELEASE _OPTIONS
RELMS Subcommand

Purpose Specifies whether the RELEASE_MASS_STORAGE utility
session is to release archived file cycles, to write a report
listing the selected archived file cycles, or to perform both
options.

Format SET _RELEASE_ OPTIONS or
SET_RELEASE_OPTION &
SETRO

PROCESSING _OPTION= keyword
STATUS =status variable

Parameters PROCESSING _OPTION or PO

Specifies whether to release the selected file cycles from
mass storage, to write a report specifying which file
cycles were selected, or to perform both options. If you
specify ALL or REPORT, the report is written on the list

'"---- . . file specified by the LIST parameter of the

Remarks

'-. ..

60464018 J

RELEASE _MASS _STORAGE command. The default is
ALL. The keyword options are:

ALL

Release the selected file cycles from mass storage and
write a report.

RELEASE

Release the selected file cycles from mass storage.

REPORT

Report on the archive file cycles that were selected
during the utility session.

e If you omit this subcommand, the utility session
releases the mass storage space and writes a list of
the file cycles that were released.

• For more information, see the NOSNE File Archiving
manual.

RELEASE_MASS_STORAGE 29-19

SET _RELEASE _OPTIONS

Examples To produce a report of the archived file cycles in
subcatalog TEST _DATA that are candidates for release,
enter:

/release_mass_storage list=
.. /files_selected_from_test_data
relms/set_release_options process1ng_option=report
relms/release_catalog catalog=$user.test_data
relms/qu1t

29-20 NOSNE Commands and Functions 60464018 J

RESTORE _FOREIGN _FILES 30

RESTORE _FOREIGN _FILES 30-1
CREATE_TAPE_CATALOG : 30-1
DISPLAY _TAPE _CATALOG _ENTRY 30-2
EDIT_TAPE_CATALOG 30-4
QUIT .. 30-5
RESTORE _SELECTED _FILES 30-5

60464018 J

RESTORE _FOREIGN _FILES 30

RESTORE _FOREIGN _FILES
Command

Purpose This command invokes a command utility that is capable
of migrating NOS files from tape to NOSNE.

Format RESTORE _FOREIGN _FILES or
RES FF

LIST=file
STATUS =status variable

Parameters LIST or L or OUTPUT or 0

Remarks

This is the default file to contain displays written during
the utility session. Display-generating subcommands are
able to override this specification. The default file is
$OUTPUT.

For more information, see the Migration From NOS to
NOSNE manual.

CREATE_TAPE_CATALOG
RESFF Subcommand

Purpose

Format

60464018 J

This command reads a foreign backup tape and creates a
NOSNE file containing a tape catalog of the content of
one or more tapes. This tape catalog is used to select files
for restoration from tape to NOSNE.

CREATE_TAPE_CATALOG or
CRETC

BACKUP _FILE= file
NEW _TAPE _CATALOG=file
BACKUP _FILE _SYSTEM= keyword
STATUS= status variable

RESTORE_FOREIGN _FILES 30-1

DISPLAY_TAPE_CATALOG_ENTRY

Parameters BACKUP _FILE or BF

This is the tape file. It can be standard labelled or
unlabelled.

NEW _TAPE _CATALOG or NTC or TAPE _CATALOG or
TC

The NOSNE file to contain the tape catalog of the
backup file contents. In the case of an unlabelled tape all
files will be included in the tape catalog. In the case of a
labelled tape, only one member of a multi-file set will be
included. The default file name is
FOREIGN _TAPE _CATALOG.

BACKUP _FILE _SYSTEM or BFS

This specifies the system that was used to write the
archive tapes from which files will be restored. NONE
indicates a non-archive tape. If this parameter is not
specified, the utility will determine the correct value by
reading the tape. An abnormal status will be issued
where recognition fails. The following values can be used:

NONE

NOS (N)

PFDUMP (P)

RECLAIM (R)

DISPLAY _TAPE _CATALOG _ENTRY
RESFF Subcommand

Purpose

Format

This command displays the entries in the tape catalog.

DISPLAY _TAPE _CATALOG _ENTRY or
DISPLAY_TAPE_CATALOG_ENTRIES or
DISTCE

WHERE _CASE= boolean
DISPLAY _OPTION= list of keyword
LIST=file
OLD _TAPE _CATALOG= file
STATUS= status variable

30-2 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

DISPLAY _TAPE _CATALOG _ENTRY

WHERE _CASE or WC

This specifies the catalog entries to display. The value is
an NOS/VE boolean expression that can reference any of
the variables that pertain to the backup file system for
the tape catalog. The default displays only selected
entries. Note: String comparisons are case sensitive.

DISPLAY _OPTION or DO

This selects what variables, or fields, of each entry are to
be displayed. The order of specification determines the
order in the display. Each field displayed has a sort key
to determine the ordering of display lines. Ascending or
descending order is applied depending on the field. The
ALL option will display all variables that will fit on a
line of the display. In this case, the ordering of fields on
a line is based on estimated importance and field size.
The list heading contains the variable names being
displayed, in long or short format depending on available
space. See LIST description for more information. Any
options that are specified, but not supported by the type
of tape catalog, will be diagnosed. If more options are
specified than will fit on a display line, the condition will
be diagnosed. The default is ALL.

ALL (A)

FULL (F)

CREATION _DATE (CD)

CYCLE _NUMBER (CN)

DATA_CONVERSION (DC)

DUMP _NUMBER (DN)

ENTRY _NUMBER (EN)

EXTERNAL_VSN (EV)

FILE _NUMBER (FN)

FOREIGN_FILE_NAME (FFN)

MODIFICATION _DATE (MD)

NATIVE_CATALOG_NAME (NCN)

RESTORE_FOREIGN _FILES 30-3

I
l1

EDIT _TAPE _CATALOG

NATIVE_FILE_NAME (NFN)

OWNER _ID (OI)

RECORD _ID (RI)

RECORD _NUMBER (RN)

RECORD_TYPE (RT)

SELECTED (S)

TEXT _FILE _TERMINATION (TFT)

TEXT _RECORD _TERMINATION (TRT)

USER _INDEX (UI)

LIST or Lor OUTPUT or 0

This specifies the file to receive the display output. The
default is determined by the LIST parameter specified
when invoking the RESTORE _FOREIGN _FILES utility.
Two listing widths are supported depending on the
PAGE_ WIDTH file attribute of the list file. If the
PAGE_ WIDTH is less than 132 characters, the narrow
width of 80 characters is used, else 132 is used.

OLD _TAPE _CATALOG or OTC or. TAPE _CAT~OG or
TC

This specifies the foreign tape catalog to be displayed.
The default file is FOREIGN _TAPE _CATALOG.

EDIT_TAPE_CATALOG
RESFF Subcommand

Purpose This command makes a tape catalog available for editing
by a subutility. It is by means of this editing process that
subset members of a tape catalog can be selected for
migration. The tape catalog can be saved for use later in
case the same files need to be accessed from the tape
again.

30-4 NOSNE Commands and Functions 60464018 J

"-----· /

Format EDIT_TAPE_CATALOG or
ED ITC

OLD _TAPE _CATALOG= file
NEW _TAPE _CATALOG=file
STATUS =status variable

QUIT

Parameters OLD _TAPE _CATALOG or OTC or TAPE _CATALOG or
TC

QUIT

The file that contains the tape catalog to be edited. The
default file is FOREIGN _TAPE _CATALOG.

NEW _TAPE _CATALOG or NTC

The file to contain the tape catalog that results from the
editing session. If this parameter is omitted, the resulting
tape catalog will overwrite the tape catalog to be edited. ·

RESFF Subcommand

Purpose

Format

This command terminates the
RESTORE _FOREIGN _FILES utility session. It has no
parameters.

QUIT or
QUI

Parameters None.

RESTORE _SELECTED _FILES
RESFF Subcommand

Purpose This command creates a tape request (if the
BACKUP _FILE is not specified) and restores the entries
to the native file names and native catalogs specified in
the selected tape catalog entries.

Format RESTORE _SELECTED _FILES or
RESTORE _SELECTED _FILE or
RES SF

BACKUP _FILE=file
OLD _TAPE _CATALOG=file
STATUS= status variable

60464018 J RESTORE_FOREIGN_FILES 30-5

I
I

RESTORE _SELECTED _FILES

Parameters BACKUP _FILE or BF

By default, the backup file is automatically requested and
returned during command execution. If you expect to use
this tape several times during a session, you can use the
CREATE _170 _REQUEST command and specify the file
name for the tape. In this case the tape will not be
returned when the command terminates. Specify the
CREATE _170 _REQUEST command and, if this is a
labelled tape, use the FILE _SET _POSITION parameter to
specify the set member.

OLD _TAPE _CATALOG or OTC or TAPE _CATALOG or
TC

The file containing the tape catalog to use in restoring
the files from tape. The default file name is
FOREIGN _TAPE_CATALOG.

30-6 NOSNE Commands and Functions 60464018 J

RESTORE _LOG 31

RESTORE _LOG .. 31-1
DELETE_LOG_CONTROL_FILE 31-1
DELETE _REPOSITORIES 31-2
ENABLE _LOG ... 31-3
HELP .. 31-3
QUIT .. 31-5
RESTORE_LOG_CONTROL_FILE 31-6
RESTORE _REPOSITORIES 31-8
VALIDATE _LOG ... 31-9

''--

60464018 J

RESTORE _LOG 31

RESTORE _LOG
Command

Purpose

Format

Begins a RESTORE _LOG utility session.

RESTORE _LOG or
RESL

LOG _RESIDENCE= file
STATUS =status variable

Parameters LOG _RESIDENCE or LR

Remarks

Catalog path containing the files comprising the log to be
restored. This parameter is required.

o Immediately after entering the RESTORE _LOG
session, you should use the VALIDATE _LOG or
RESTORE _REPOSITORIES subcommands to determine
the type and extent of log damage, if any.

o For more information, see the NOSNE Advanced File
Management Usage manual.

DELETE _LOG _CONTROL _FILE
RESL Subcommand

Purpose

Format

Remarks

60464018 J

Deletes the log control file.

DELETE _LOG_ CONTROL _FILE or
DELLCF

STATUS= status variable

o The log control file should be deleted only if it is
damaged or if you want to force the log control file to
be restored from the backup file. Damage to the log
control file can be detected by the VALIDATE_LOG,
RESTORE _REPOSITORIES, or
RESTORE _LOG _CONTROL_FILE subcommands.

o For more information, see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 31-1

DELETE _REPOSITORIES

DELETE _REPOSITORIES
RESL Subcommand

Purpose

Format

Deletes log repositories.

DELETE _REPOSITORIES or
DELETE _REPOSITORY or
DELR

REPOSITORIES= list of range of: keyword or
integer

STATUS= status variable

Parameters REPOSITORIES or REPOSITORY or R

Remarks

Specifies which repositories in the log are to be deleted.
This parameter is required.

List of integer

Specifies the repositories to be deleted. Values can be
a list of repository numbers specified in the repository
name. Repositories have names in the format
AAF$REPOSITORY _n where n is the integer value
specified; that is, AAF$REPOSITORY _l, starting at
one for the first repository, and incremented
sequentially and contiguously. The last repository is
specified as AAF$REPOSITORY _O. You can specify as
many values as there are repositories to be deleted. If
more than one value is specified, the values must be
enclosed in parentheses and separated by commas or
spaces.

ALL or A

All repositories in the log are deleted.

o Repositories should be deleted only if they are
damaged or if you want to force the repositories to be
restored from the backup files. Damage to repositories
can be detected by the VALIDATE _LOG or
RESTORE _REPOSITORIES subcommands.

• For more information, see the NOSNE Advanced File
Management Usage manual.

31-2 NOSNE Commands and Functions 60464018 J

ENABLE_LOG

ENABLE_LOG
RESL Subcommand

Purpose

Format

Remarks

HELP

Enables a disabled log; that is, makes the log available
for general use.

ENABLE_LOG or
ENAL

STATUS =-status variable

o If the log is disabled and it is usable; that is, the log
is undamaged, EN ABLE _LOG enables it. This makes
the log available for general use.

o If the log is disabled but not usable, an error is
displayed and the log remains disabled. Damage can
be detected on the log control file and/or the
repositories.

o A log must be enabled and usable before you can use
it to recover keyed files.

o For more information, see the NOSNE Advanced File
Management Usage manual.

RESL Subcommand

Purpose

Format

Parameters

60464018 J

Provides access to online information about the utility.

HELP or
HEL

SUBJECT= string
MANUAL==file
STATUS ==status variable

SUBJECT or S

Topic to be found in the index of the online manual. The
topic must be enclosed in apostrophes ('topic').

If you omit the SUBJECT parameter, HELP displays a
list of the available subcommands and prompts for display
of a subcommand description in the online manual.

RESTORE_LOG 31-3

I
I

HELP

Remarks

MANUAL or M

Online manual whose index is searched.

AFM

The AFM online manual index is searched.

File

File name of the online manual whose index is
searched.

If MANUAL is omitted, the default is AFM. The working
catalog is searched for the file and then the
$SYSTEM.MANUALS is searched.

• If the SUBJECT parameter specifies a topic that is not
in the manual index, a nonfatal error is returned
notifying you that the topic could not be found.

e The default manual file, $SYSTEM.MANUALS.AFM,
contains the online version of the NOSNE Advanced
File Management Usage manu.

• If your terminal is defined for full-screen applications,
online manuals are displayed in screen mode. Help on
reading online manuals is available in the online
manual. To leave the online manual and return to the
utility, use QUIT.

• For more information, see the NOSNE Advanced File
Management Usage manual.

31-4 NOSNE Commands and Functions 60464018 J

/

Examples

QUIT

QUIT

The following session shows the default display returned
by the HELP subcommand.

/restore_ log
resl/help

The following RESTORE_LOG subcormiands are available:

VALIDATE_LOG
RESTORE_REPOSITORIES
RESTORE_LOG_CONTROL_FILE
DELETE_REPOSITORIES
DELETE_LOG_CONTROL_FILE
ENABLE_LOG
HELP
QUIT

For the description of a subcOlllTland in the online
manual, enter: HELP subject = '<subcomnand>'

To return from an online manual, enter: QUIT
resl/Quit
I

RESL Subcommand

Purpose

Format

Remarks

60464018 J

Ends the RESTORE _LOG session.

QUIT or
QUI

STATUS= status variable

G The QUIT command is required to end a session.

o For more information, see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 31-5

RESTORE _LOG _CONTROL_FILE

RESTORE _LOG _CONTROL _FILE
RESL Subcommand

Purpose

Format

Restores the log control file from the specified log backup
file.

RESTORE _LOG _CONTROL _FILE or
RESLCF

MEDIA=keyword
BACKUP _FILE=file
EXTERNAL_VSN=list of string
RECORDED_ VSN =list of string
TYPE=keyword
STATUS= status variable

Parameters MEDIA or M

Device class of the log backup file to be restored. This
~arameter is required.

MAGNETIC_TAPE_DEVICE or MTD

Indicates that the log backup file is stored on a
labeled tape. (In this case, the BACKUP _FILE
parameter is not used.)

MASS_STORAGE_DEVICE or MSD

Indicates that the log backup file specified by the
BACKUP _FILE parameter is stored on disk. (In this
case, the RECORDED_VSN, EXTERNAL_VSN, and
TYPE parameters are not used.)

BACKUP _FILE or BF

The file path name of one of the backup files in the log
(previously established by the
CONFIGURE _LOG _BACKUP subcommand of the
ADMINISTER _RECOVERY _LOG utility) to be used for
restoring the log control file. This parameter must be
specified if MEDIA is set to MASS _STORAGE _DEVICE.

EXTERNAL_VSN or EVSN

List of external VSN s identifying the tape volumes that
compose .the log backup file. The VSNs are specified as
strings of from 1 through 6 characters enclosed in
apostrophes.

31-6 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

RESTORE _LOG _CONTROL_FILE

RECORDED _VSN or RVSN

List of recorded VSN s of the tape volumes that compose
the log backup file. The recorded VSN is in the ANSI
VOLl label on the volume. The VSNs are specified as
strings of from 1 through 6 characters enclosed in
apostrophes. This parameter must be specified if MEDIA
is set to MAGNETIC_ TAPE _DEVICE.

TYPE or T

Tape density of the tape drive on which the log backup ~[[
file was written.

MT9$800

Indicates 800 cpi written by a nine-track tape drive.

MT9$1600

Indicates 1600 cpi written by a nine-track tape drive.

MT9$6250

Indicates 6250 cpi written by a nine-track tape drive.

MT18$38000

Indicates 38000 cpi written by a 16-track tape drive.

The default value is MT18$38000.

o In general, the backup file that was written to most
recently is the best one to specify first as the log
backup file. If RESTORE_LOG_CONTROL_FILE
fails, try again specifying the next most recent backup
file, and so on.

o The log control file can be restored only if the log was
configured for log backups (see the
CONFIGURE _LOG _BACKUP subcommand of the
ADMINISTER_RECOVERY_LOG utility). A copy of
the log control file exists at the front of each log
backup file, having been written there as part of the
ongoing process of backing up the log.

e If the log control file is not already disabled,
RESTORE _LOG _CONTROL_FILE immediately
disables it. This is to ensure the log is not used while
it is being restored. The log can be enabled using
ENABLE _LOG (described later in this chapter).

RESTORE_LOG 31-7

RESTORE _REPOSITORIES

o RESTORE _LOG _CONTROL _FILE restores a log
control file only if it detects damage to the log control
file. Damage to the log control file can also be
detected by the RESTORE _REPOSITORIES or
VALIDATE_LOG subcommands.

e Once a damaged log control file is restored, the log is
no longer available for logging entries. The log is
available only for recovering keyed files. To begin
logging entries again, you must switch to a different
log, or you must delete the log whose log control file
has been restored, then recreate it.

o For more information, see the NOS/VE Advanced File
Management Usage manual.

RESTORE _REPOSITORIES
RESL Subcommand

Purpose

Format

Remarks

Restores damaged repository log files from the log backup
files.

RESTORE _REPOSITORIES or
RESR

STATUS=status variable

o Older repositories can be restored only if the log was
configured for automatic backups (see
CONFIGURE_LOG_BACKUPS of the
ADMINISTER_RECOVERY_LOG utility). If the active
repository is to be replaced, backups are not required.

e If the log is not already disabled,
RESTORE _REPOSITORIES immediately disables it;
this ensures that the log is not used while it is being
restored. Once the log is restored, it can be enabled
using ENABLE_LOG.

• Initially, RESTORE _REPOSITORIES determines the
usability of the log; that is, the type and extent of log
damage, if any.

31-8 NOS/VE Commands and Functions 60464018 J

'"-----

VALIDATE _LOG

• Once the log is restored, if recovery information is lost
(for example, the active repository is lost, which had
not yet been backed up), or if the log control file has
been restored, the log is available only for recovery
operations. To begin recording log entries again, you
must switch to a different log, or you must delete the
log, then recreate it.

• For more information, see the NOSNE Advanced File
Management Usage manual.

VALIDATE _LOG
RESL Subcommand

Purpose

Format

Remarks

60464018 J

Determines the usability of the log; that is, the type and
extent of log damage, if any.

VALIDATE _LOG or
VALL

STATUS= status variable

o If damage to the log is detected and if the log is not
already disabled, VALIDATE _LOG immediately
disables it. This is to ensure that the log is not used
while it is being restored. Once the log is restored, it
can be enabled using ENABLE_LOG. If no damage to
the log is detected, the log is not disabled.

o For more information, see the NOSNE Advanced File
Management Usage manual.

RESTORE_LOG 31-9

''--'

RESTORE _PERMANENT _FILES 32

RESTORE_PERMANENT_FILES 32-1
$BACKUP _FILE ... 32-2
DISPLAY _BACKUP _FILE 32-3
INCLUDE _CYCLES .. 32-5
QUIT .. 32-6
RESTORE _ALL _FILES 32-7
RESTORE _CATALOG .. 32-8
RESTORE _EXCLUDED _FILE _CYCLES 32-9
RESTORE _EXISTING _CATALOG . 32-11
RESTORE_EXISTING_FILE 32-12
RESTORE_FILE ... 32-14
SET _LIST _OPTIONS . 32-16
SET _RESTORE _OPTIONS . 32-18

60464018 J

'---·

RESTORE _PERMANENT _FILES 32

RESTORE _PERMANENT _FILES
Command

Purpose

Format

Parameters

Remarks

Examples

60464018 J

Initiates the utility that restores permanent files and
catalogs from backup copies created by the
BACKUP _PERMANENT _FILE utility. The restore
operations are directed by
RESTORE _PERMANENT _FILE subcommands.

RESTORE _PERMANENT _FILES or
RESTORE _PERMANENT _FILE or
RE SPF

LIST=file
STATUS= status variable

LIST or L

Identifies the file to which a summary of the results of
the restore utility are written and, optionally, specifies
how the file is to be positioned prior to use. Omission
causes $LIST to be used.

o The content of the list file can be specified using the
SET _LIST _OPTION subcommand prior to using a
RESTORE _PERMANENT _FILE subcommand. If the
SET _LIST _OPTION subcommand is omitted, the
modification date and time and size of the file are
displayed for each permanent file cycle.

o For more information, see the NOSNE System Usage
manual.

The following subcommand initiates a
RESTORE _PERMANENT _FILE subcommand utility
session. The subcommand specifies that the report listing
be written to file RESTORE _LISTING.

/restore_permanent_files list=restore_listing

Following entry of this subcommand,
RESTORE _PERMANENT _FILE subcommands can be
entered in response to the following prompt:

PURI

RESTORE_PERMANENT_FILES 32-1

i~I

t1

$BACKUP _FILE

$BACKUP _FILE
RESPF Function

Purpose

Format

Returns a string containil)g information on a backup file
produced by the BACKUP _PERMANENT _FILE utility.
Because this function causes the file to be rewound, only
the first item of information found on the file can be
queried and returned to you. When the string value is
returned, all letters within the string are converted to
uppercase. This function is valid only within the
RESTORE _PERMANENT _FILE utility.

$BACKUP _FILE or
$BF

(PARAMETER _1: file
PARAMETER _2: keyword)

Parameters PARAMETER _1

Specifies the name of the backup file to be queried. This
parameter is required.

PARAMETER _2

Specifies the particular attribute that is being queried.
The following are valid keywords:

IDENTIFIER (I)

Returns a string containing the path name of the first
name .. on the backup file.

IDENTIFIER_ TYPE (IT)

Returns a string containing a name that indicates the
type of the first item on the backup file. One of the
following names is returned.

SET, CATALOG, FILE, CYCLE

If you do not specify a keyword, IDENTIFIER is assumed.

32-2 NOSNE Commands and Functions 60464018 J

,......__ --

Remarks

Examples

DISPLAY_BACKUP _FILE

o This function is especially useful when attempting to
restore from a backup file for which the destination is
known but the name of the file or catalog is unknown.

o The $BACKUP _FILE function always returns a string.
The $FNAME function is included in the
RESTORE _CATALOG command to convert this string
to a file name. Once the string has been converted to
a file name, you can use the file name in any
subsequent RESTORE _FILE or RESTORE _CATALOG
subcommands.

o For more information, see the NOSNE System Usage
manual.

For the following example, assume that you receive a
backup tape produced by the BACKUP _CATALOG
command and you wish to restore the catalog to your own
$USER.MY _CATALOG. To do this, enter the following
commands:

/restore_permanent_files l=list_file
PUR/restore_catalog $fname($backup_file(backup_file ..
PUR .. /,ident1fier)) backup_file=backup_file
PUR .. /new_catalog_name=$user.my_catalog
PUR/qu1t

DISPLAY _BACKUP _FILE
RESPF Subcommand

Purpose

Format

60464018 J

Displays the contents of a backup file.

DISPLAY _BACKUP _FILE or
DISBF

BACKUP _FILE= file
DISPLAY _OPTION=keyword
NUMBER= keyword or integer
STATUS= status variable

RESTORE _PERMANENT _FILES 32-3

ll

DISPLAY_BACKUP _FILE

Parameters BACKUP _FILE or BF

Specifies the file that contains the backup copies of the
files and catalogs previously backed up by a
BACKUP _PERMANENT _FILE utility session.

DISPLAY _OPTION or DO

Specifies the level of information to be displayed. Options
are:

CATALOG _INFO

Displays information on archived files.

IDENTIFIER (I)

Displays the name and type (file or catalog) of each
entry on the backup file.

DESCRIPTOR (D)

Displays the following information:

• Record headers maintained on the backup file.

• Version of the backup utility that produced the
backup file.

• Date and time the backup file was written.

• Backup utility subcommand that produced the
backup file.

o Cycle number of each file cycle.

• Usage count of each file cycle.

• Creation date and time of each file cycle.

• Last access date and time of each file cycle.

• Date and time of the last modification of each file
cycle.

• Expiration date of each file cycle.

• Size of each file cycle.

32-4 NOSNE Commands and Functions 60464018 J

Remarks

INCLUDE _CYCLES

READ _DATA (RD)

Displays the information described for the
DESCRIPTOR parameter and also attempts to read all
data for each cycle on the backup file. The listing
reports whether or not the data is read without error.
No attempt is made to verify the data with the
original file backed up.

If omitted, IDENTIFIER is assumed.

NUMBER or N

Selects the number of catalogs, files, or cycles from the
beginning of the backup file for which information is to
be displayed. If this parameter is omitted or if the
keyword value ALL is specified, all entries on the backup
file are displayed.

For more information, see the NOSNE System Usage
.manual.

INCLUDE CYCLES
RESPF Subcommand

Purpose

Format

Parameters

60464018 J

Includes cycles in subsequent restore operations based on
the creation date and time, last access date and time, last
modification date and time, or expiration date of the
cycle.

INCLUDE_CYCLES or
INCLUDE_CYCLE or
INCC

SELECTION _CRITERIA= keyword
AFTER= date _time
BEFORE= date _time
STATUS =status variable

SELECTION _CRITERIA or SC

Specifies the selection criteria to be used in determining
which cycles will be restored on subsequent restore
operations. Choose one of the following:

ACCESSED (A)

Select files based on the date and time they were last
accessed.

RESTORE_PERMANENT_FILES 32-5

QUIT

Remarks

QUIT

CREATED (C)

Select files based on the date and time they were
created.

EXPIRED (E)

Select files based on their expiration dates and times.

MODIFIED (M)

Select files based on the date and time they were last
modified.

IGNORE_DATE_TIME (IDT)

Do not select files based on a date and time. This
option turns off any criteria that may have been
selected in previous INCLUDE _CYCLES commands.

This parameter is required.

AFTER or A

Specifies the date and time after which the
SELECTION _CRITERIA operation must have occurred in
order for a file to be included in subsequent restore
operations. If omitted, 1980-01-01.00:00:00.000 is used.

BEFORE or B

Specifies the date and time before which the
SELECTION _CRITERIA operation must have occurred in
order for a file to be included in subsequent restore
operations. If omitted, $NOW is used.

o The values specified on this command take precedence
over any previous calls to INCLUDE _CYCLES.

o For more information, see the NOS/VE System Usage
manual.

RESPF Subcommand

Purpose Ends a RESTORE _PERMANENT _FILES utility session.

Format QUIT or
QUI

Parameters None.

32-6 NOS/VE Commands and Functions 60464018 J

Remarks

RESTORE _ALL_FILES

For more information, see the NOSNE System Usage
manual.

RESTORE _ALL _FILES
RESPF Subcommand

Purpose Enables a system operator to restore all catalogs and all
permanent files for a NOSNE system (those written to
the backup file with the BACKUP _ALL_FILES
subcommand). Other users can restore all catalogs which
they own and all files and cycles for which they have
cycle permission.

Format RESTORE _ALL _FILES or
RES AF

BACKUP _FILE= file
STATUS ==status variable

Parameters BACKUP _FILE or BF

Remarks

60464018 J

Specifies the file that contains the backup copies of the
files and catalogs to be restored. This parameter is
required.

o Backup copies of catalogs and files that do not already
exist in the permanent file system are restored.

o Catalogs and files that already exist are not altered.

o The file specified by the BACKUP _FILE parameter is
initially positioned to beginning-~f-information.

o To restore permanent files when partial backups have
been taken, the RESTORE _ALL _FILES subcommand
is used to restore the last partial backup first. This
has the effect of restoring the catalog structure as it
was at the time of the last partial backup. File cycle
data that is not contained on the last partial back is
restored using the
RESTORE _EXCLUDED _FILE _CYCLES subcommand.

o For more information, see the NOSNE System Usage
manual.

RESTORE_PERMANENT_FILES 32-7

RESTORE_CATALOG

Examples The following job restores all files in the system that
were previously backed up with a BACKUP _ALL _FILES
subcommand:

/job
job/request_magnetic_tape file=pf_tape_file
job .. /evsn='pfb001' type=mt9$6250
job/restore_permanent_files
job/restore_a11_f11es backup_file=pf_tape_file
job/quit
job/jobend

RESTORE _CATALOG
RESPF Subcommand

Purpose Restores a catalog that does not currently exist as a
catalog.

Format RESTORE _CATALOG or
RESC

CATALOG=file
BACKUP _FILE=file
NEW _CATALOG _NAME=file
STATUS =status variable

Parameters CATALOG or C

Specifies the catalog that is to be restored from the
backup file. This parameter is required.

BACKUP _FILE or BF .

Specifies the file that contains the backup copy of the
catalog and its associated files and subcatalogs. This
parameter is required.

NEW _CATALOG _NAME or NCN

Specifies the catalog into which the files and subcatalogs
on the backup file are restored. Omission causes the name
as it exists on the backup file to be used.

32-8 NOSNE Commands and Functions 60464018 J

Remarks

Examples

RESTORE _EXCLUDED _FILE _CYCLES

o Backup copies of files and subcatalogs are restored.

• You must be the owner of the catalog.

• This command cannot be used to restore your master
catalog.

• The catalog being restored must not currently exist.

• The file specified by the BACKUP _FILE parameter
must have been created by the
BACKUP _PERMANENT _FILE utility.

• The backup file is initially positioned at
beginning-of-information.

o For more information, see the NOS/VE System Usage
manual.

The following example restores the master catalog to a
new subcatalog in the master catalog:

/restore_permanent_files list=restore_listing
PUR/restore_catalog catalog=$user new_catalog_name= ..
PUR .. /$user.catalog_2 backup_file=backed_up_files
PUR/qu1t

RESTORE _EXCLUDED _FILE _CYCLES
RESPF Subcommand

Purpose

Format

60464018 J

Restores cycles to files that currently exist in the
permanent file system but do not have data defined for
them.

RESTORE _EXCLUDED _FILE _CYCLES or
RESTORE _EXCLUDED _FILE _CYCLE or
RESEFC

FILE=file
CATALOG= file
BACKUP _FILE= file
NEW_NAME=file
RESTORE _OPTIONS= list of keyword
STATUS= status variable

RESTORE _PERMANENT _FILES 32-9

II
I

I
Ill

RESTORE _EXCLUDED _FILE _CYCLES

Parameters FILE or F

Remarks

The FILE parameter specifies the file or cycle for which
data is to be restored (as identified on the backup file). If
no cycle number is specified, data for all cycles of the file
is restored. If specified, a cycle number must be a specific
cycle (not $HIGH or $LOW).

CATALOG or C

The CATALOG parameter specifies the catalog for which
data is to be restored (as identified on the backup file).
Data for all cycles in the catalog is restored.

BACKUP _FILE or BF

Specifies the file containing the backup information. This
file is positioned at the beginning-of-information. This
parameter is required.

NEW_NAME or NCN or NEW_CATALOG_NAME. or
NEW_FILE_NAMEorNNorNFN

Specifies a new name for the catalog, file, or cycle for
which the data is being restored. This parameter can be
used if the name on the backup file is different than that
in the current permanent file system. Omission causes the
name as it exists on the backup file to be used. If a cycle
reference was included on the FILE parameter but not on
the NEW _NAME parameter, $HIGH is used.

RESTORE _OPTIONS or RESTORE _OPTION or RO

Reserved for site_ personnel.

e This subcommand is used to restore cycle data when
partial backups have been performed. If the permanent
file system is backed up by a full backup followed by
daily partial backups, then the last partial backup is
restored with the RESTORE _ALL _FILES
subcommand. All other backups are restored in reverse
order using this subcommand.

o The modification date on the backup file must match
the modification date in the current permanent file
catalog, unless otherwise specified by a
SET _RESTORE _OPTIONS subcommand.

o If a cycle already has data defined for it, the cycle is
not altered.

32-10 NOSNE Commands and Functions 60464018 J

Examples

RESTORE _EXISTING _CATALOG

• You may specify either the file or catalog parameter,
but not both. Omission of both parameters causes all
data to be restored, in which case the NEW _NAME
parameter cannot be used.

o For more information, see the NOSNE System Usage
manual.

The following example restores files from a previous
partial dump and a previous full dump.

/restore_permanent_files
PUR/restore_all_files bf=partial_dump
PUR/restore_excluded_file_cycles bf=full_dump

The following example restores all cycles of a file from a
partial and full dump.

PUR/restore_f11e $user.data_file_1 bf=partial_dump
PUR/resefc file=$user.data_file_1 bf=full_dump

RESTORE _EXISTING _CATALOG
RESPF Subcommand

Purpose Restores the contents of a currently existing catalog.

Format RESTORE _EXISTING _CATALOG or
RES EC

CATALOG= file
BACKUP _FILE= file
NEW _CATALOG _NAME=file
STATUS= status variable

Parameters CATALOG or C

60464018 J

Specifies the catalog that is to be restored from the
backup file. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the
catalog and its associated files and subcatalogs. The file is
initially positioned at beginning-of-information. This
parameter is required.

RESTORE_PERMANENT_FILES 32-11

RESTORE _EXISTING _FILE

Remarks

NEW _CATALOG _NAME or NCN

Specifies the existing catalog into which the files and
subcatalogs on the backup file are restored. Omission
causes the name as it exists on the backup file to be
used.

• Backup copies of files and subcatalogs that do not
already exist in the specified catalog are restored.

• Any cycle that already exists is not altered.

• Cycle permission is required to restore any file cycle
within an existing catalog.

• You must be the owner of the catalog to restore any
subcatalogs.

• The file specified by the BACKUP _FILE parameter
must have been created by the
BACKUP _PERMANENT_FILE utility.

• The backup file is initially positioned at
beginning-of-information.

• For more information, see the NOSNE System Usage
manual.

Examples . The following commands restore the master catalog that
was backed up with the BACKUP _CATALOG
subcommand:

/restore_permanent_files list=restore_list
PUR/restore_existing_catalog ..
PUR .. /catalog=$user backup_file=backed_up_files
PUR/QUit

RESTORE _EXISTING _FILE
RESPF Subcommand

Purpose Restores the file cycles of an existing file.

32-12 NOSNE Commands and Functions 60464018 J

Format RESTORE _EXISTING _FILE or
RESEF

FILE=file
BACKUP _FILE= file
PASSWORD=keyword or name
NEW _FILE _NAME= file
STATUS= status variable

RESTORE _EXISTING _FILE

Parameters FILE or F

Remarks

60464018 J

Specifies the file whose file cycles are to be restored from
the backup file. If a cycle reference is included the cycle
reference is ignored. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the file.
This parameter is required.

PASSWORD or PW

Parameter Attributes: SECURE

Specifies the file password. This parameter must match
the password of the existing file. Omission or specifying
the keyword NONE causes no password to be used.

NEW_FILE_NAME or NFN

Specifies the existing file to be restored. Omission causes
the name as it exists on the backup file to be used.

o All file cycles that exist on the backup file but do not
exist as a permanent file are restored.

o Cycles that currently exist as permanent files are not
altered.

o You must have CYCLE permission to restore an
existing file.

o The file specified by the BACKUP _FILE parameter
must have been created during by
BACKUP _PERMANENT_FILE utility.

o The backup file is initially positioned at
beginning-of-information.

o For more information, see the NOSNE System Usage
manual.

RESTORE_PERMANENT_FILES 32-13

II
i

RESTORE _FILE

Examples The following example restores cycle number 87 of file
DATA _FILE _O in subcatalog CATALOG _l of the master
catalog that was previously backed up:

/delete_file $user.catalog_1.data_file_0.87
.. /pw=new_data_O_pw
/respf
PUR/restore_existing_file
PUR .. /$user.catalog_1.data_file_O
PUR .. /bf=copy_of_file pw=new_data_O_pw
PUR/quit

RESTORE _FILE
RESPF Subcommand

Purpose Restores the file cycles of a file that does not currently
exist as a permanent file.

Format RESTORE _FILE or
RESF

FILE=file
BACKUP _FILE=file
PASSWORD=keyword or name
NEW _FILE _NAME= file
STATUS= status variable

Parameters FILE or F

Specifies the file whose file cycles are to be restored from
the backup file. This parameter is required.

BACKUP _FILE or BF

Specifies the file that contains the backup copy of the file.
This parameter is required.

PASSWORD or PW

Parameter Attributes: SECURE

Specifies the file password. It must match the existing file
password. This parameter is used only if a specific cycle
of an existing file is being restored. Omission or
specifying the keyword NONE causes no password to be
used.

32-14 NOSNE Commands and Functions 60464018 J

'"--

Remarks

Examples

60464018 J

RESTORE _FILE

NEW_FILE_NAMEorNFN
Specifies a new name for the file being restored. Omission
causes the name as it exists on the backup file to be
used.

o If the file name includes a cycle reference, only that
cycle is restored (at least one file cycle must already
exist).

• If a cycle reference is omitted, all file cycles are
restored (the file must not already exist).

• If a cycle reference is included on the FILE parameter,
it must be a specific cycle number; the keywords
$HIGH and $LOW cannot be used.

• If a cycle reference is not specified on the
NEW _FILE _NAME parameter, $NEXT is used.

o If a cycle reference is specified on the
NEW_FILE_NAME parameter, the file specified with
the FILE parameter must also include a cycle
reference.

• You must have CYCLE permission to the file in order
to restore all file cycles or an additional file cycle.

• The file specified by the BACKUP _FILE parameter
must have been created by the
BACKUP _PERMANENT_FILE utility.

o The backup file is initially positioned at
beginning-of-information.

o For more information, see the NOS/VE System Usage
manual.

The following subcommands restore cycle number 87 of
file DATA _FILE _O in subcatalog CATALOG _1. The file
is restored as cycle number 1 of file DATA _FILE _2 in
CATALOG _2 of the master catalog.

/respf
PUR/restore_file $user.catalog_1.data_file_0.87
PUR .. /bf=copy_of_file pw=new_data_O_pw
PUR .. /nfn=$user.catalog_2.data_ftle_2
PUR/quit

RESTORE _PERMANENT _FILES 32-15

II
!i1

SET _LIST _OPTIONS

SET _LIST _OPTIONS
RESPF Subcommand

Purpose

Format

Specifies the information that is written to the list file by
subsequent subcommands.

SET _LIST_ OPTIONS or
SET _LIST_ OPTION or
SETLO

FILE _DISPLAY _OPTIONS= list of keyword
CYCLE _DISPLAY _OPTIONS= list of keyword
DISPLAY _EXCLUDED _ITEMS= boolean
STATUS= status variable

Parameters FILE _DISPLAY _OPTIONS or FILE _DISPLAY _OPTION
or FDO

Selects the data to be displayed with the file name.
Options are:

ACCOUNT (A)

Displays the account name.

PROJECT (P)

Displays the project name.

NONE

Displays only the file name.

ALL
Displays the account and project name.

Omission causes NONE to be used.

CYCLE _DISPLAY _OPTIONS or
CYCLE _DISPLAY _OPTION or CDO

Selects the data to be displayed for each cycle backed up.
The cycle number and whether the cycle was excluded is
also displayed. Options are:

ALL
Selects all of the following.

ACCESS_COUNT (AC)

Displays the number of accesses to the cycle.

32-16 NOS/VE Commands and Functions 60464018 J

60464018 J

SET_LIST_OPTIONS

ACCESS_DATE_TIME (ADT)

Displays the date and time the cycle was last
accessed.

ALTERNATE _FILE _MEDIA _DESCRIPTOR (AFMD)

Displays archive information.

CREATION _DATE _TIME (CDT)

Displays the date and time the cycle was created.

EXPIRATION _DATE (ED)

Displays the expiration date of the cycle.

GLOBAL_FILE_NAME (GFN)

Displays the internally generated global file name.
This name is neither backed up nor restored.

MODIFICATION _DATE:...TIME (MDT)

Displays the date and time the cycle was last
modified.

NONE

Displays the cycle number.

RECORDED_ VSN (RVSN)

Displays all mass storage volumes on which the cycle
resides.

SIZE (S)

Displays the size of the cycle in bytes.

Omission causes (MODIFICATION _DATE _TIME, SIZE) to
be used.

DISPLAY _EXCLUDED _ITEMS or
DISPLAY _EXCLUDED _ITEM or DEI

Specifies whether excluded catalogs, files, and cycles are
displayed on the list file.

TRUE

The identification of all excluded catalogs, files, and
cycles is displayed. This is the default.

RESTORE_PERMANENT_FILES 32-17

SET _RESTORE _OPTIONS

Remarks

FALSE

Excluded items are not displayed.

For more inf9rmation, see the NOS/VE System Usage
manual.

SET _RESTORE _OPTIONS
RESPF Subcommand

Purpose Specifies the options to be used in subsequent restore
operations.

Format SET _RESTORE_ OPTIONS or
SET _RESTORE_ OPTION or
SETRO

REQUIRE _MATCHING _MODIFICATION= keyword or
boolean

ALLOCATION _SIZE= keyword or integer
FILE _CLASS= keyword or name
INITIAL_VOLUME=keyword or name
UPDATE _CYCLE _STATISTICS =keyword or boolean
VOLUME _OVERFLOW _ALLOWED=keyword or

boolean
RESTORE _AR.CHNE _INFORMATION=keyword or

boolean
STATUS =status variable

Parameters REQUIRE _MATCHING _MODIFICATION or RMM

Specifies whether or not the
RESTORE _EXCLUDED _FILE _CYCLES subcommand
will restore a cycle whose modification date and time
recorded in the backup file does not match the file's
catalog information. Values can be:

TRUE

A file cycle is restored only if the last modification
date and time in the catalog matches the one in the
backup file.

FALSE

A file cycle is restored regardless of the last
modi.flea ti on.

32-18 NOSNE Commands and Functions 60464018 J

"'-------

Remarks

'---

60464018 J

SET _RESTORE _OPTIONS

$UNSPECIFIED

Acts as if no SET _RESTORE _OPTIONS were issued
for this parameter.

If this parameter is omitted, TRUE is assumed.

ALLOCATION _SIZE or AS

Reserved for site personnel.

FILE _CLASS or FC

Reserved.

INITIAL_ VOLUME or IV

Reserved for site personnel.

UPDATE _CYCLE _STATISTICS or UCS

Reserved.

VOLUME _OVERFLOW _ALLOWED or VOA

Reserved for site personnel.

RESTORE _ARCHIVE _INFORMATION or RAJ

Reserved for site personnel.

o Once you enter this subcommand, the options selected
remain in effect for the rest of the session or until
you enter this subcommand again.

o For more information, see the NOSNE System Usage
manual.

RESTORE_PERMANENT_FILES 32-19

"'---··

SOURCE _CODE _UTILITY 33

SOURCE_CODE_UTILITY 33-1
ADD _LIBRARY .. 33-2 ·
CHANGE _DECK ... 33-3
CHANGE_DECK_NAME 33-8
CHANGE_DECK_REFERENCES 33-10
CHANGE _LIBRARY . 33-11
CHANGE_MODIFICATION 33-13
COMBINE _LIBRARY . 33-15
CREATE _DECK . 33-18
CREATE _LIBRARY 33-23 -
CREATE_MODIFICATION 33-25
$BASE . 33-27
$DECK . 33-27
$DECK_ATTRIBUTES 33-28
$DECK_NAME_LIST 33-29
$DECK_NAME_LIST ·33-30
DELETE_DECK ... 33-31
DELETE_FEATURE 33-32
DELETE_GROUP .. 33-33
DELETE_MODIFICATION 33-34
DISPLAY_DECK ... 33-35
DISPLAY _DECK _LIST . 33-38
DISPLAY_DECK_REFERENCES ~ 33-39
DISPLAY_FEATURE 33-42
DISPLAY_FEATURE_LIST 33-43
DISPLAY_GROUP .. 33-44
DISPLAY_GROUP _LIST 33-46
DISPLAY _LIBRARY . 33-47
DISPLAY_MODIFICATION 33;.49
DISPLAY _MODIFICATION _LIST . 33-51
EDIT _DECK ... 33-5
END _LIBRARY . 33-55
$ERRORS _FILE . 33-56
EXCLUDE _DECK . 33-57
EXCLUDE_FEATURE 33-58
EXCLUDE _GROUP . 33-59
EXCLUDE_LIBRARY 33-60
EXCLUDE _MODIFICATION . 33-61
EXCLUDE_STATE ... 33-62
EXPAND _DECK . 33-62
EXPAND _FILE . 33-67
EXTRACT_DECK .. 33-71
EXTRACT_MODIFICATION 33-75

60464018 J

II
ti

$FEATURE . 33-79
$FEATURE_MEMBER_NAMES 33-79
$FEATURE_NAME_LIST 33-80
$FEATURE_NAME_LIST 33-80
$FIRST_DECK_NAME 33-81
$FIRST _MODIFICATION _NAME . 33-81
$GROUP . 33-81
$GROUP _MEMBER_NAMES . 33-82
$GROUP _NAME _LIST . 33-82
$GROUP _NAME _LIST . 33-83
INCLUDE_COPYING_DECKS 33-83
INCLUDE _DECK ·. 33-85
INCLUDE_FEATURE 33-85
INCLUDE _GROUP -~ 33.;.35
INCLUDE _MODIFICATION . 33-87
INCLUDE_MODIFIED_DECKS 33-88
INCLUDE _STATE . 33-89
$LAST_DECK_NAME 33-89
$LAST _MODIF.ICATION _NAME . 33-90
$LIBRARY_ATTRIBUTES 33-90
$LIBRARY _MODIFIED . 33-91
$LIST _FILE . 33-92
$MODIFICATION ... 33-92
$MODIFICATION _ATTRIBUTES . 33-93
$MODIFICATION _NAME_LIST 33-94
$MODIFICATION _NAME_LIST 33-94
$MODIFIED_DECK_NAMES 33-95
$NEXT_DECK_NAME · 33-96
$NEXT _MODIFICATION _NAME . 33-96
$PREVIOUS_DECK_NAME 33-96
$PREVIOUS_MODIFICATION _NAME . 33-97
QUIT .. 33-97
QUIT .. 33-98
REPLACE _LIBRARY . 33-99
$RESULT . 33-101
RETAIN _GROUP . 33-102
SEQUENCE _DECK . 33-103
SEQUENCE_MODIFICATION 33-104
SET_LIST_OPTIONS 33-105
USE _LIBRARY . 33-106
WRITE_LIBRARY .. 33-108

60464018 J

'----

SOURCE _CODE _UTILITY 33

SOURCE _CODE _UTILITY
Command

Purpose

Format

Remarks

Examples

60464018 J

Begins an SCU command utility session.

SOURCE_ CODE_ UTILITY or
SCU or
sou cu

STATUS= status variable

o Entering a CREATE _LIBRARY or USE _LIBRARY
subcommand initializes the working library for the
SCU command utility session. If neither subcommand
is issued, file SOURCE _LIBRARY is used for the base
and result libraries. If file SOURCE _LIBRARY does
not exist, it is created.

• For more information, see the NOSNE Source Code
Management manual.

The following sequence begins an SCU session and
initializes the working library from file OLDPL in your
working catalog, assumed not to be $LOCAL. The base
file, OLDPL, is a source file whose file structure is a
library. Entering the QUIT subcommand causes the
working library to be written on the next cycle of file
OLD PL.

/source_code_utility
sc/use_library b=oldpl r=oldp1.$next
SC/Quit

The next example does not use the USE _LIBRARY
subcommand, but rather initializes the working library
from file SOURCE _LIBRARY in your working catalog.

/source_code_utility
sc/create_deck d=deck1 m=version1
SC/Quit

SOURCE_CODE_UTILITY 33-1

ti
i

ADD _LIBRARY

ADD _LIBRARY
SCU Subcommand

Purpose

Format

Parameters

Remarks

Adds decks from one or more source libraries to the
working library.

ADD _LIBRARY or
ADD _LIBRARIES or
ADDL

SOURCE _LIBRARY= list of file
LIST=file
DISPLAY _OPTIONS=keyword
STATUS=status variable

SOURCE _LIBRARY or SOURCE _LIBRARIES or SL

List of one or more source library files. This parameter is
required.

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. Within an SCU session, if
you omit LIST, the listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

DISPLAY _OPTIONS or DO

Specifies the ·level of information listed. Currently, both
keyword values produce the same listing.

BRIEF or B
FULL or F

If DISPLAY _OPTIONS is omitted, BRIEF is used. ALL is
an alias for FULL.

• ADD _LIBRARIES only adds decks that are not
already in the working library. It reads the deck list
for each source library in the order you specify the
libraries on the command. When it reads a deck name
that is not currently in the working library, it adds
the deck to the library. When it reads a deck name
that is already in the working library, it sends a
message describing the duplication, but it does not add
the deck to the working library.

33-2 NOS/VE Commands and Functions 60464018 J

Examples

CHANGE_DECK

o If a modification is in more than one source library
modification list and the creation times do not match,
ADD _LIBRARY reports an error and does not add
any decks to th~ working library.

o If no decks could be merged because an exception
occurred in each deck, an error status is returned and
ADD_LIBRARY makes no change to the library.

o Decks, features, groups, and modifications are ordered
alphabetically on the ADD _LIBRARIES result library.

o Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

o For more information, see the NOSNE Source Code
Management manual.

The following command adds the decks from the source
library on file $USER.NEWLIB to the working library.
The contents of the working library are then displayed.

sc/add_library sl=$user.newlib l=output
DECKA :NVE.PAT.BASE
DECKB
DECKC
DECKD

:NVE.PAT.BASE
: NVE. PAT. NEWLIB
:NVE.PAT.BASE

CHANGE DECK
SCU Subcommand

Purpose

Format

60464018 J

Changes the content of one or more deck header fields.

CHANGE _DECK or
CHANGE _DECKS or
CHAD

DECK= keyword or list of: name or range of name
AUTHOR =string
CLEAR. _ORIGIN AL JNTERLOCK =boolean
CLEAR. _SUB _INTERLOCK= boolean
DECK _DESCRIPTION= list of string
PROCESSOR =string
GROUP=list of name
DELETE _GROUP=list of name

SOURCE_CODE_UTILITY 33-3

II
Iii~

CHANGE_DECK

CHAR.ACTER =keyword or string
TAB _COLUMN=list of integer
DELETE _COLUMN= list of: integer or range of

integer
WIDTH= integer
LINE _IDENTIFIER =keyword
EXPAND= boolean
STATUS= status variable

Parameters DECK or DECKS or D

Decks whose headers are changed. You can specify a list
of one or more names, a list of one or more ranges, or
the keyword ALL. ALL specifies all decks in the library.
The default is the name of the most recently used deck.

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

CLEAR_ORIGINAL_INTERLOCK or COI

Indicates whether the original interlock for an extracted
deck should be cleared. Options are:

TRUE
Clears the original interlock field of the extracted deck
by erasing the name and time stamp that were
recorded in this deck.

FALSE

Leaves the original interlock field of the extracted
deck unchanged.

If CLEAR_ORIGINAL_INTERLOCK is omitted, FALSE is
used.

CLEAR _SUB _INTERLOCK or CI or
CLEAR _INTERLOCK or CSI

Indicates whether the subinterlock field of the original
deck should be cleared. Options are:

TRUE
Clears the subinterlock field of the original deck.

33-4 NOSNE Commands and Functions 60464018 J

'-......_

60464018 J

CHANGE_DECK

FALSE

Leaves the subinterlock field of the original deck
unchanged.

If CLEAR_SUB_INTERLOCK or CLEAR_INTERLOCK
is omitted, FALSE is used.

NOTE

You must have authority 4 for the file to clear a deck
subinterlock or original interlock field.

DECK _DESCRIPTION or DD

List of strings containing the new deck description. If
DECK _DESCRIPTION is omitted, the description field is
not changed.

PROCESSOR or P

New processor. If PROCESSOR is omitted, the processor
field is not changed.

GROUP or GROUPS or G

Additional groups to which the deck is to belong. The
subcommand deletes any groups specified on the
DELETE_GROUP parameter before adding groups to the
group list. If GROUP is omitted, the deck is not
associated with additional groups.

DELETE_GROUPorDELETE_GROUPSorDG

Groups to which the deck should no longer belong. The
subcommand deletes groups specified before adding any
groups specified on the GROUP parameter. If
DELETE _GROUP is omitted, the deck continues to
belong to the same groups it did previously.

CHAR.ACTER or C

Either a 1-character string containing the new default tab
character or the keyword NONE to disable tabbing. If
CHARACTER is omitted, the tabbing status and default
tab character are not changed.

SOURCE _CODE _UTILITY 33.5

CHANGE_DECK

TAB _COLUMN or TAB _COLUMNS or TC

List of from 1 to 256 additional default tab columns. SCU
deletes the tab columns on the DELETE _COLUMN
parameter before it adds the new tab columns. If .
TAB _COLUMN is omitted, no new tab columns are
added.

DELETE _COLUMN or DELETE _COLUMNS or DC

List of default tab columns or tab column ranges to be
removed. SCU deletes the specified tab columns before it
adds the tab columns on the TAB _COLUMN parameter.
If DELETE _COLUMN is omitted, no tab columns are
removed.

WIDTH or W

New default line width. If WIDTH is omitted, the default
line width is not changed.

LINE _IDENTIFIER or LI

New default line identifier placement. Options are:

RIGHT (R)

Place line identifiers to the right of the text.

LEFT (L)

Place line identifiers to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE _IDENTIFIER is omitted, the default line
identifier placement is not changed.

EXPAND or E

New expand attribute value. Options are:

TRUE

An EXPAND _DECK subcommand expands the deck.
(The deck can also be expanded by a COPY or COPYC
directive.)

33-6 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

CHANGE_DECK

FALSE

An EXPAND _DECK subcommand does not expand the
deck; it skips the deck and continues processing at the
next deck. Only a COPY or COPYC directive can
expand the deck.

If EXPAND is omitted,. the expand attribute is not
changed.

o The DECK parameter specifies each deck to which the
changes should apply. The other parameters (except
STATUS) specify the deck header fields to be changed.

o To display a deck header, enter a DISPLAY _DECK
subcommand. You can reference individual deck header
attributes with the SCU function
$DECK _ATTRIBUTES.

o If you have access authority 4 for the file, you can
enter a CHANGE _DECK subcommand to clear a
subinterlock that was set when a user extracted a
deck from the library.

o You can remove unused groups from a library
explicitly using the DELETE _GROUP subcommand or
implicitly using the EXTRACT _SOURCE _LIBRARY
subcommand. Specifying DECKS= ALL and
INTERLOCK=NONE on the
EXTRACT _SOURCE _LIBRARY subcommand copies
all decks to a new RESULT file, saving only groups,
modifications, and features belonging to those decks.

o Changes to a deck header are not part of any
modification. When you include or exclude
modifications, you must make any associated deck
header changes separately by entering the
CHANGE_DECK subcommand.

o For more information, see the NOS/VE Source Code
Management manual.

SOURCE _CODE _UTILITY 33.7

II
iil

CHANGE_DECK_NAME

Examples The following subcommand adds default tab column 35
and deletes default tab column 30 for DECKl.

sc/change_deck d=deck1 tc=35 dc=30

The following subcommand clears the subinterlock fields
of all deck headers in the working library if you have
access authority 4 for the file._

sc/change_deck d=all csi=true

CHANGE_DECK_NAME
SCU Subcommand

Purpose

Format

Substitutes new names for existing deck names.

CHANGE_DECK_NAME or
CHANGE_DECK_NAMESor
CHADN

NAME _LIST= file
LIST=file
CHANGE _DECK _REFERENCES =boolean
MODIFICATION= name
STATUS =status variable

Parameters NAME _LIST or NL

Name substitution file., This parameter is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET _LIST _OPTIONS subcommand.
Otherwise, the default is file $LIST.

CHANGE _DECK _REFERENCES or CDR

Indicates whether the command substitutes deck names on
COPY and COPYC directives. Options are:

TRUE

COPY and COPYC names are substituted.

33-8 NOSNE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

CHANGE_DECK_NAME

FALSE

COPY and COPYC names are not substituted.

If CHANGE _DECK _REFERENCES is omitted, FALSE is
used.

MODIFICATION or M

Modification to which the changed lines belong. If
MODIFICATION is omitted, SCU$ALTER is used.

• A deck name can occur in two places within a source
library: within its deck header, and on COPY and
COPYC directives in the source text. To list the COPY
and COPYC references to the deck, enter a
DISPLAY_DECK_REFERENCES command.

o You store the name substitutions on a separate file
and specify the file on the NAME_LIST parameter.
Each name substitutio.n is specified as a line
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD _NAME (ON)

Existing name.

NEW _NAME (NN)

Substituted name. NEW _NAME must be different
from ALL.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand changes deck names as
specified in file NEW _DECK _NAMES. The changed lines
belong to modification RENAME. lll

sc/change_deck_names nl=new_deck_names m=rename
sc .. /cdr=true

The contents of file NEW _DECK _NAMES are:

my_deck.deck465

The command replaces each occurrence of the deck name
MY _DECK with the new name DECK465. Because the
command specifies that the

SOURCE_CODE_UTILITY 33-9

CHANGE_DECK_REFERENCES

CHANGE _DECK _REFERENCES parameter is TRUE, it
replaces the deck name both in the deck header and on
COPY and COPYC directives throughout the library.

CHANGE_DECK_REFERENCES
SCU Subcommand

Purpose

Format

Changes the deck names of COPY and COPYC directives
that are located in the specified decks.

CHANGE_DECK_REFERENCESor
CHADR

DECK= keyword or list of: name or range of name
MODIFICATION= name
NAME _LIST= file
LIST=file
STATUS ==status variable

Parameters DECK or DECKS or D

Remarks

Decks in which substitutions are performed. The keyword
ALL specifies all decks in the library. If DECK is
omitted, ALL is used.

MODIFICATION or M

Modification to which the changed lines belong. If
MODIFICATION is omitted, SCU$ALTER is used.

NAME _LIST or NL

Name substitution file. This parameter is required.

LIST or L

Listing file. You can specify a file position as part of the
file name. If LIST is omitted, the listing file is the file
specified on the SET _LIST _OPTIONS subcommand.
Otherwise, the default is file $LIST.

• The CHANGE_DECK_REFERENCES subcommand
only changes deck names on COPY and COPYC
directives, not in deck headers. To change a deck
name in its deck header, enter the
CHANGE _DECK _NAMES command.

33-10 NOSNE Commands and Functions 60464018 J

', __

'-----

Examples

CHANGE_LIBRARY

o You use CHANGE _DECK _REFERENCES to replace
references to one deck with references to another deck.
To list the COPY and COPYC references to a deck,
enter a DISPLAY_DECK_REFERENCES command.

o You store the name substitutions on a separate file
and specify the file on the NAME _LIST parameter.
Each name substitution is specified as a line
containing an SCL parameter list. The parameter list
must have the following parameters:

OLD_NAME (ON)

Existing name.

NEW _NAME CNN)

Substituted name. NEW _NAME should be different
from ALL.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand changes references as specified
in file NEW _NAMES. The changes belong to modification
RENAME.

sc/change_deck_references nl=new_names m=rename

The following lists the contents of file NEW _NAMES.

deck44,deck45

The command changes each COPY or COPYC reference to
DECK44 so that it references DECK45.

CHANGE _LIBRARY
SCU Subcommand

Purpose

60464018 J

Changes the content of one or more fields in the working
library header.

SOURCE _CODE _UTILITY 33-11

CHANGE_LIBRARY

Format CHANGE _LIBRARY or
CHAL

LIBRAR.Y =name
LIBRAR.Y _DESCRIPTION= list of string
VERSION= string
LAST _USED _DECK=name
LAST _USED _MODIFICATION=name
STATUS= status variable

Parameters LIBRAR.Y or L

New library name. If LIBRARY is omitted, the library
name is not changed.

LIBRAR.Y _DESCRIPTION or LD

Strings used to describe the source code that is
maintained on this library. If LIBRARY_DESCRIPTION is
omitted, the description field is not changed.

VERSION or V

New library version. If VERSION is omitted, the version
field is not changed.

LAST_USED_DECKorLUD

Default deck name that is stored in the library header.
The deck name is 12sed as the default value for the deck
parameter on most subcommands. Specifying NONE clears
the last used deck name. If a name is explicitly stated for
a DECK parameter on an SCU subcommand,
LAST_ USED _DECK is automatically changed.

LAST _USED _MODIFICATION or LUM

Default modification name that is stored in the library
header. The modification name is used as the default
value for the modification parameter on most
subcommands. Specifying NONE clears the last used
modification name. If a name is explicitly stated for a
MODIFICATION parameter on an SCU subcommand,
LAST _USED _MODIFICATION is automatically changed
to that name.

33-12 NOS/VE. Commands and Functions 60464018 J

Remarks

Examples

CHANGE _MODIFICATION

o To display the contents of the library header, enter a
DISPLAY _LIBRARY command.

o You can reference individual library header attributes
with the SCU function $LIBRARY _ATTRIBUTES.

o For more information, see the NOSNE Source Code
Management manual.

The following command changes the content of the library
version field.

sc/change_library v='Version 1.1'

CHANGE _MODIFICATION
SCU Subcommand

Purpose

Format

Changes information in one or more modification
descriptions.

CHANGE _MODIFICATION or
CHANGE _MODIFICATIONS or
CHAM

MODIFICATION= keyword or list of: name or range of
"--·· name

FEATURE= keyword or name
AUTHOR =string
MODIFICATION _DESCRIPTION= list of string
STATE=integer
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

60464018 J

Modification descriptions to be changed. You can specify a
list of one or more names (from 1 to 9 characters each), a
list of one or more ranges, or the keyword ALL. ALL
specifies all modifications in the library. If
MODIFICATION is omitted, the information for the
description of the last used modification is changed. ·

FEATURE or F

New feature name or keyword NONE. Specifying NONE
clears the current feature association. If FEATURE is
omitted, the feature field is not changed.

SOURCE_CODE:.._UTILITY 33-13

I
I

CHANGE_MODIFICATION

Remarks

AUTHOR or A

New author. If AUTHOR is omitted, the author field is
not changed.

MODIFICATION _DESCRIPTION or MD

Strings used to describe the modifications. If
MODIFICATION _DESCRIPTION is omitted, the
description field is not changed.

STATE or S

New modification state. The following are the states and
their descriptions.

State Description

0
1
2
3
4

Experimental
Developmental
Stable
Verified
Released

If STATE is omitted, the state is not changed.

NOTE

You cannot raise the modification state above your
authority for the file.

• The CHANGE_MODIFICATIONS subcommand can
only change the headers of modifications within the
modification list of the working library.

• To raise the value in the state field of the
modification header, your authority for the library file
must be the same or greater than the new state. For
example, to raise the state to 2, your authority must
be 2, 3, or 4.

You can only lower a state to 0. To lower the state to
0, your authority for the library file must be the same
or greater than the current state. For exampJe, to
lower a modification that is currently in state 2, your
authority must be 2, 3, or 4.

33-14 NOS/VE Commands and Functions 60464018 J

Examples

COMBINE _LIBRARY

o To display a modification header, enter a
DISPLAY _MODIFICATION command. You can
reference individual modification header attributes with
the SCU function $MODIFICATION _ATTRIBUTES.

o You can remove unused features from a library
explicitly using the DELETE _FEATURE subcommand
or implicitly using the
EXTRACT _SOURCE _LIBRARY subcommand.
Specifying DECKS= ALL and INTERLOCK= NONE on
the EXTRACT _SOURCE _LIBRARY subcommand
copies all decks to a new RESULT file, saving only
groups, modifications, and features that belong to those
decks.

o The feature should not be named ALL or NONE.

o For more information, see the NOSNE Source Code
Management manual.

The following command clears the feature associations of
all modifications in the working library.

sc/change_modification m=all f=none

The following command raises the state of MOD_ 4 to
state 1 (developmental). You must have at least authority
1 for the file to raise the modification state to 1.

sc/change_modification m=mod_4 s=1

COMBINE _LIBRARY
SCU Subcommand

Purpose

Format

60464018 J

Combines the decks from one or more source libraries
with those in the working library.

COMBINE _LIBRARY or
COMBINE _LIBRARIES or
COML

SOURCE _LIBRARY= list of file
LIST==file
DISPLAY _OPTIONS==keyword
ENFORCE _INTERLOCKS== boolean
STATUS= status variable

SOURCE _CODE _UTILITY 33-15

COMBINE _LIBRARY

Parameters SOURCE _LIBRARY or SOURCE _LIBRARIES or SL

List of one or more source library names. This parameter
is required.

Remarks

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. If LIST is omitted, the
listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

DISPLAY _OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY _OPTIONS is omitted, BRIEF is used. ALL is
an alias for FULL.

ENFORCE _INTERLOCKS or EI

Indicates whether the original interlock field of a source
library deck must match the subinterlock field of the
working library deck it is to replace. Options are:

TRUE

Interlocks must match.

FALSE

Interlocks need not match.

If ENFORCE _INTERLOCKS is omitted, FALSE is used.

o COMBINE _LIBRARY reads the source library deck
lists in the order you specify the libraries on the
command.

o After reading a deck name, COMBINE_LIBRARY
determines if the deck name is already in the working
library deck list. If the name is not in the list, it adds
the deck to the working library. If the name is
already in the list, it replaces the deck in the working

33-16 NOS/VE Commands and Functions 60464018 J

60464018 J

0

COMBINE _LIBRARY

library with the deck from the source library. The
combining process is continued until each successive
source library in the list has been combined with the
working library.

If no decks could be merged because an exception
occurred in each deck, an error status is returned and
no change is made to the library.

If the creation times of modifications that occur on
both libraries do not match, COMBINE _LIBRARY
issues an error and does not alter the working library.

o COMBINE _LIBRARY lists the source library origin of
each deck in the working library on the listing file.

o Decks, features, groups, and modifications are ordered
alphabetically on the COMBINE _LIBRARY result
library.

o You can enter a COMBINE _LIBRARY subcommand to
merge decks from an extracted library with the decks
in the library from which it was extracted to form a
new library. It adds new decks and replaces existing
decks.

o If you set interlocks when you extract the library,
entering COMBINE_LIBRARY enforces the interlock
if you specify that the interlocks should be enforced.
COMBINE _LIBRARY checks whether the original
interlock value in the extracted deck header matches
the subinterlock value in the working library header.
If the values match, the working library deck is
replaced with the extracted deck. Otherwise, it issues
a warning message, does not replace the working
library, and then attempts to combine any remaining
decks in the list.

o Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

o For more information, see the NOS/VE Source Code
Management manual.

SOURCE _CODE _UTILITY 33-17

CREATE_DECK

Examples The following subcommand combines the decks in the
source library NEWLIB with the decks in the working
library.

sc/combine_library sl=newlib l=output
DECKA :NVE.PAT.BASE
DECKB
DECKC
DECKD
DE CKE

CREATE DECK
SCU Subcommand

Purpose Creates one or more decks.

Format CREATE _DECK or
CREA~E _DECKS or
CRED

DECK= list of name
MODIFICATION= name
SOURCE= list of file
AUTHOR =string

:NVE.PAT.BASE
: NVE. PAT. NEWLIB
:NVE.PAT.BASE
: NVE. PAT. NEWLIB

DECK _DESCRIPTION= list of string
PROCESSOR= string
GROUP=list of name
CHARACTER= keyword or string
TAB _COLUMN= list of integer
WIDTH= integer
LINE _IDENTIFIER= keyword
EXPAND=boolean
DECK _DIRECTNES _INCLUDED= boolean
MULTI _PARTITION= boolean
SAME _AS= name
STATUS =status variable

Parameters DECK or DECKS or D

List of one or more deck names. Each name must be
unique to the library. If DECK is omitted, you must
specify the SOURCE parameter and
DECK_DIRECTIVES_INCLUDED=TRUE.

33-18 NOSNE Commands and Functions 60464018 J

60464018 J

CREATE _DECK

MODIFICATION or M

Modification name (1 to 9 characters). The modification
must be in state 0 (zero). The default is the last used
modification.

SOURCE or SOURCES or S

List of one or more files containing the source text for
the decks. You can specify a file position as part of the
file name. The SOURCE parameter is required when you
specify DECK _DIRECTIVES _INCLUDED= TRUE.

AUTHOfi or A

Optional author identification.

DECK _DESCRIPTION or DD

List of strings containing the optional deck description. If
DECK _DESCRIPTION is omitted, a description is not
·saved.

PROCESSOR or P

Optional identification of the processor to which the deck
text is input.

GROUP or GROUPS or G

Optional list of groups to which the deck is to belong. If
any of the group names are not in the group list, SCU
adds the names to the list.

CHARACTER or C

Either a I-character string containing the tab character or
the keyword NONE to disable tabbing. If CHARACTER is
omitted, tabbing is disabled.

TAB _COLUMN or TAB _COLUMNS or TC

Optional list of 1 through 256 default tab columns. The
column numbers range from 1 through 256.

WIDTH or W

Default line width. If WIDTH is omitted or specified as 0
(zero), deck lines can be up to 256 characters and the
lines are not padded with trailing blanks when the deck
is expanded.

SOURCE _CODE _UTILITY 33-19

CREATE_DECK

LINE _IDENTIFIER or LI

Default line identifier placement.

RIGHT (R)

Identifiers are placed to the right of the text.

LEFT (L)

Identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE_IDENTIFIER is omitted, NONE is used.

EXPAND or E

Specifies the expand attribute for the decks created.
Applicable only if the subcommand names decks on its
DECK parameter, not if DECK directives name the decks.
(A DECK directive specifies the expand attribute for its
deck.)

TRUE

An EXPAND _DECK subcommand expands the deck.
(COPY and COPYC directives can also expand the
deck.)

FALSE

An EXPAND _DECK subcommand skips the deck and
continues its processing with the next specified deck.
(Only COPY and COPYC directives can expand the
deck.)

If EXPAND is omitted, TRUE is used.

DECK _DIRECTNES _INCLUDED or DDI

Indicates whether the deck names are specified on DECK
directives embedded in the source text or as the DECK
parameter of this subcommand.

TRUE

The deck names are on DECK directives in the source
text on the source file. CREATE_DECK only reads
text from the first source file specified when DECK
directives are included.

33-20 NOSNE Commands and Functions 60464018 J

Remarks

60464018 J

CREATE _DECK

FALSE

The deck names shown in the DECK parameter.

If DECK _DIRECTIVES _INCLUDED is omitted, FALSE is
used and the DECK parameter must be specified.

MULTI _PAR.TIT/ON or MP

Indicates whether the deck text can be more than one
partition of data.

TRUE

The subcommand can copy more than one partition of
data to each deck. ·

FALSE

The subcommand can copy only one partition of data
to each deck.

If MULTI _PARTITION is omitted, FALSE is used.

SAME _AS or SA

Optional deck name. If a name is specified, the
subcommand copies deck header fields not specified on the
CREATE _DECK subcommand from the deck header of
this deck. If SAME _AS is omitted, unspecified header
fields are left blank.

o CREATE _DECK provides a header for each deck. The
minimum content of the deck header is the deck name
and the creation modification. You can specify
additional values for deck header fields with
parameters on the subcommand. You can also specify
the SAME _AS parameter to copy deck header fields
from another deck header; CREATE _DECK only
copies those deck header fields not explicitly specified.

o Each deck created is given a name (from 1 through 31
characters). By default, the subcommand uses the deck
names specified on the DECK parameter. However, if
you specify DECK_DIRECTIVES_INCLUDED=TRUE
on the subcommand, it uses the deck names specified
on DECK directives in the source text. You can
specify the expand attribute for a deck on its DECK
directive.

SOURCE_CODE_UTILITY 33-21

ll

CREATE_DECK

• The subcommand can specify the creation modification
for the deck. A modification name is from 1 through 9
characters, and it can be an existing modification
within the library or a new modification. Any source
text that the subcommand copies to a deck belongs to
the creation modification. The default is the last used
modification.

• To copy source text to the newly created decks, you
must specify the SOURCE parameter. If you specify
the SOURCE parameter and the DECK parameter, you
must specify a file name for each deck name on the
DECK parameter. The subcommand copies text to each
deck from its corresponding file on the SOURCE
parameter; that is, it copies the text from the first file
to the first deck created, the text from the second file
to the second deck created, and so forth. If you specify
the file $NULL for a deck, the subcommand copies no
text and the deck remains einpty.

o By default, the subcommand copies only the first
partition of text from a source text file. To copy more
than one partition of text, specify
MULTI_PARTITION=TRUE on the subcommand. This
indicates that if the subcommand reads an
end-of-partition delimiter when copying text, it
converts the delimiter to a WEOP text-embedded
directive and continues copying text.

o If you specify
DECK_DIRECTIVES_INCLUDED=TRUE and omit
the DECK parameter, the subcommand creates a deck
header for each DECK directive it reads on the source
text file.

o If you specify
DECK_DIRECTIVES_INCLUDED=TRUE and errors
are encountered in the source file, CREATE _DECK
attempts to skip ahead to the next DECK directive.
The working library will contain the decks that were
processed without errors.

o The subcommand places the created decks within the
library so that the alphabetic sequence of names in
the deck list is maintained.

33-22 NOSNE Commands and Functions 60464018 J

'---· -

"--- ..

Examples

CREATE _LIBRARY

• The maximum number of lines in one deck is
16,777,214.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand creates two decks. First, it
creates a deck named DECK2 and copies one partition of
text to the deck from file FILE2. It then creates a deck
named DECK3 and copies one partition of text to the
deck from file FILE3. The deck headers contain the same
information as the DECKl header, except for their
description fields.

sc/create_deck d=(deck2,deck3) rn=original
sc .. /s=(fi 1e2,fi 1e3) sa=deck1 ..
sc .. /dd='Second version of INIT_ARRAY'

The following subcommand creates decks using the text on
· file FILE4. SCU generates a deck header for each DECK

directive embedded in the file text. The deck headers are
the same as the DECKl header, except for the name and
expand attribute fields. The DECK directive specifies the
deck name and expand attribute.

sc/create_deck rn=original s=file4 sa=deck1 ddi=true

CREATE LIBRARY
SCU Subcommand

Purpose

Format

60464018 J

Creates an empty source library and specifies the result
library to be used.

CREATE _LIBRARY or
CREL

RESULT= file
LIBRAR.Y=name
LIBRAR.Y _DESCRIPTION= list of string
KEY=string
VERSION= string
STATUS= status variable

SOURCE _CODE _UTILITY 33-23

I
II

CREATE _LIBRARY

Parameters RESULT or R

Remarks

Name of the file to be used as the result library file. If
RESULT is omitted, the file SOURCE _LIBRARY in your
working catalog is used as the result library file.

LIBRARY or L

Library name. If LIBRARY is omitted, the name specified
by the RESULT parameter is used as the library name.

LIBRARY _DESCRIPTION or LD

String or strings that describe the source code maintained
on this library. If LIBRARY _DESCRIPTION is omitted,
the null string is used.

KEY or K

One-character string containing the key character. The
key character is the first character of a text-embedded
directive. If KEY is omitted, * is used.

VERSION or V

String used to describe the version of the library. If
VERSION is omitted, the null string is used.

o Using the CREATE _LIBRARY subcommand, you can
specify a key character other than the default
character *. The key character is the character SCU
recognizes as the prefix for all text-embedded
directives in the library.

o CREATE_LIBRARY creates a source library
containing only a library header, which you can
display with the DISPLAY_LIBRARY subcommand. To
change library header information, enter a
CHANGE _LIBRARY subcommand. To reference a
library header field, use the SCU function
$LIBRARY _ATTRIBUTES.

o The library created by this subcommand becomes the
base library and cannot be changed unless you enter
the END _LIBRARY subcommand, then specify another
library with either the CREATE _LIBRARY or
USE _LIBRARY subcommand.

33-24 NOSNE Commands and Functions 60464018 J

Examples

CREATE _MODIFICATION

• During an SCU session, if neither a
CREATE _LIBRARY nor a USE _LIBRARY
subcommand is issued before other subcommands, file
SOURCE _LIBRARY in your working catalog is used
for the base and result libraries.

o For more information, see the NOSNE Source Code
Management manual.

The following sequence creates an empty source library
named SOURCE_LIBRARY. The key character for the
library is *.

/source_code_utility
sc/create_11brary
sc/quit

CREATE _MODIFICATION
SCU Subcommand

Purpose

Format

Creates one or more modifications in the library
modification list.

CREATE _MODIFICATION or
CREATE _MODIFICATIONS or
CREM

MODIFICATION= list of name
FEATURE= name
AUTHOR =string
MODIFICATION _DESCRIPTION= list of string
STATUS= status variable .

Parameters MODIFICATION or MODIFICATIONS or M

60464018 J

List of one or more modification names (from 1 through 9
characters each). This parameter is required.

FEATURE or F

Optional name of the feature to which the modification
belongs. If the feature name is not in the feature list,
SCU adds the name to the list.

AUTHOR or A

Optional modification author.

SOURCE _CODE _UTILITY 33-25

Ii
11

CREATE _MODIFICATION •

Remarks

Examples

MODIFICATION _DESCRIPTION or MD

Optional list of strings containing the modification
description.

ct A modification created by a CREATE _MODIFICATION
subcommand contains only the modification header; no
lines belong to the modification. The modification is
defined for specification on subsequent commands.

• Modifications are placed on the library in alphabetical
order.

o If CREATE_MODIFICATIONS creates more than one
header, the headers are identical except for their
names.

o To display the modifications defined within the
working library, enter a
DISPLAY _MODIFICATION _LIST command. To
determine within an expression whether a modification
exists, use the SCU function $MODIFICATION.

o FEATURE name should not be ALL or NONE.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand creates a description for
modification MOD_4 for feature SYNTAX_CHECK. The
author of the modification is K. Riley. The text in the
SCL variables LINEl and LINE2 is the modification
description.

sc/1ine1='This is a very long title for
sc .. /a modification to show that'
sc/line2='a list of strings may be used for
sc .. /the description.'
sc/create_modification m=mod_4 f=syntax_check
sc .. /a='K. Riley' md=(line1, line2)

33-26 NOS/VE Commands and Functions 60464018 J

$BASE
SCU Function

Purpose Returns the base library file.

Format $BASE

Parameters None.

Remarks For more information, see the NOSNE Source Code
Management manual.

$BASE

Examples The following command displays the current value of the
base file.

$DECK

/source_code_utility
sc/use_11brary b=$user.fortran_lib
sc/display_value v=$base
:NVE.PAT.FORTRAN_LIB

SCU Function

Purpose Returns a boolean value indicating whether the specified
deck is in the working library.

Format $DECK
(DECK: name)

Parameters DECK

Remarks

Examples

60464018 J

Name of the deck to be found. This parameter is required.

For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable DECK_EXISTS, depending on whether
DECK! is in the working library.

sc/deck_exists=$deck(deck1)

SOURCE _CODE _UTILITY 33-27

$DECK_ATTRIBUTES

$DECK _ATTRIBUTES
SCU Function

Purpose Returns the content of an SCU deck header. The value is
returned as a record.

Format $DECK _ATTRIBUTES
(DECK: name)

Parameters DECK

Remarks

Name of the deck for which the header content is
returned. If DECK is omitted, the last used deck name is
assumed.

o The attributes have the following types:

ACTIVE _LINE _COUNT: integer
AUTHOR: string
CHARACTER: string
CREATION _DATE_TIME: date_time
DECK_DESCRIPTION: list of string
EXPAND: boolean
GROUP: list of name
INACTIVE _LINE _COUNT: integer
LINE _IDENTIFIER: name
MODIFICATION: list of name
MODIFICATION _DATE _TIME: date _time
NAME: name
ORIGINAL_INTERLOCK: record

USER_NAME: name
DATE_TIME: date_time

PROCESSOR: string
SUB _INTERLOCK: record

USER_NAME: name
DATE_ TIME: date _time

TAB _COLUMNS: list of integer
WIDTH: integer

• To use the contents of the header returned, it is best
to create a variable implicitly, for example,
DAI= $DECK _ATTRIBUTES(DECK1).

33-28 NOS/VE Commands and Functions 60464018 J

Examples

$DECK_NAME _LIST

o If you use the $DECK _ATTRIBUTES function to
assign attributes to a variable in an iterative process,
you must delete and re-create the variable for each
iteration. The existing variable cannot be re-assigned
the attributes of a different deck. ·

o If the deck has not been modified, the creation values
are returned in the MODIFICATION _DATE_ TIME
field.

o For more information, see the NOSNE Source Code
Management manual.

The following command displays the modification headers
for those modifications that apply to deck FTN _DECK.

sc/display_modifications ..
sc .. /m=$deck_attributes(ftn_deck).modification

$DECK _NAME _LIST
Selection Criteria Function

Purpose Returns a list of deck names currently selected to be
written to the result file.

Format $DECK _NAME _LIST

Parameters None.

Remarks

60464018 J

o The order of names is the same as on the working
library.

o When used in selection criteria subcommand
processing, $DECK _NAME _LIST reflects the current
deck list to be written to the compile, result, or source
file being produced.

o The function $DECK _NAME _LIST returns a list of
names for ease in processing with the FOR EACH/
FOREND command.

o For more information, see the NOSNE Source Code
Management manual.

SOURCE_CODE_UTILITY 33-29

$DECK_NAME _LIST

Examples This example shows the data structure of
$DECK_NAME_LIST as an empty list.

/scu
sc/use_library
sc .. /b=$system.cyb11.osf$program_1nterface r=$nu11
sc/extract_deck d=none sc=c0f'll11and
scc/display_value v=$deck_name_list
scc .. /do=data_structure
display option: DATA_STRUCTURE

II EMPTY LI ST II

This example displays names of decks common to QYBIL
and terminal definition groups:

sc/extract_deck d=none sc=$corrmand s=$1oca1 .source1
scc/include_group g=(cybi1,tug$define_termina1)
sec . ./c=a 11
scc/display_value v=$deck_name_11st ..
scc .. /do=data_structure
1: "NAME" TUC$CURSOR_NUMBER_OF_DIGITS
2: "NAME" TUT$APPLICATION_NAME

34: "NAME" TUT$SUBTABLE_POINTERS

This example performs operations on each deck that is
currently selected.

FOR EACH deck in $DECK_NAME_LIST DO

FORE ND

$DECK _NAME _LIST
SCU Function

Purpose Returns a list of deck names on the working library.

Format $DECK_NAME_LIST

Parameters None.

33-30 NOSNE Commands and Functions 60464018 J

Remarks

Examples

DELETE_DECK

o The names are listed alphabetically.

e When used in selection criteria subcommand
processing, $DECK _NAME _LIST returns the names
of currently selected decks.

G The function $DECK _NAME _LIST returns a list of
names for ease in processing with the FOR EACH/
FOREND command. -

• For more information, see the NOSNE Source Code
Management manual.

This example performs operations on each deck on the
working library.

FOR EACH deck in $DECK_NAME_LIST DO

FORE ND

DELETE _DECK
SCU Subcommand

Purpose

Format

Deletes one or more decks from the working library.

DELETE _DECK or
DELETE _DECKS or
DELD

DECK= list of: name or range of name
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

60464018 J

Decks to be deleted. This parameter is required.

• You cannot delete a deck if the creation modification
of the deck is in a state greater than your authority
for the file.

o The DELETE _DECK subcommand removes the deck
name from the deck list of the working library (as
opposed to being deactivated like the EDIT_DECK
DELETE _LINE subcommand).

SOURCE_CODE_UTILITY 33-31

I
I

I
i

DELETE _FEATURE

Examples

o When you specify a range of decks, DELETE _DECK
deletes each deck in the deck list, beginning with the
first deck specified through the last deck specified.
Before specifying a range of decks to be deleted, you
should display the deck list with a
DISPLAY _DECK _LIST subcommand to determine the
decks included in the range.

o If a deck to be deleted has a conflicting subinterlock
set, SCU sends a warning message, observing that
another user extracted the deck using an
EXTRACT _SOURCE _LIBRARY command. The deck is
deleted. SCU then attempts to delete any remaining
decks.

• For niore information, see the NOSNE Source Code
Management manual.

The .following command deletes deck DECKA and decks
DECKC through DECKF.

sc/delete_decks d=(decka,deckc .. deckf}

DELETE_FEATURE
SCU Subcommand

Purpose

Format

Deletes one or more features from a source library.

DELETE _FEATURE or
DELETE _FEATURES or
DELF

FEATURE= list of: name or range of name
STATUS= status variable

Parameters FEATURE or FEATURES or F

Remarks

Feature to be deleted. This parameter is required.

• If modifications are still associated with the feature, a
warning message is issued and the feature is retained.
Modifications can be disassociated with a feature using
the CHANGE_MODIFICATION subcommand or
deleted using the DELETE _MODIFICATION
subcommand.

• For more information, see the NOSNE Source Code
Management manual.

33-32 NOSNE Commands and Functions 60464018 J

Examples

DELETE_GROUP

In the following example, the CHANGE _MODIFICATION
subcommand changes modifications that were associated
with the feature TRIAL to the feature FILE _LIMITS. The
DELETE _FEATURE subcommand then deletes the now
unused feature name TRIAL from the library feature list.

sc/change_modification ..
sc .. /m=$feature_member_names(trial) f=file_limits
sc/delete_feature f=trial

DELETE_GROUP
SCU Subcommand

Purpose Deletes one or more groups from a source library.

Format DELETE_GROUP or
DELETE _GROUPS or
DELG

GROUP=list of: name or range of name
STATUS =status variable

Parameters GROUP or GROUPS or G

Remarks

Examples

60464018 J

Group to be deleted. This parameter is required.

o If decks still belong to the group, a warning message
is issued and the group is retained. Decks can be
moved from a group using the CHANGE _DECK
subcommand or deleted using the DELETE _DECK
subcommand.

o For more information, see the NOSNE Source Code
Management manual.

The following example assumes a group name for decks
on a source library was misspelled. The CHANGE _DECK
subcommand substitutes the correct group name for the
incorrect name and the DELETE _GROUP subcommand
deletes the incorrect group name from the library group
list.

sc/change_deck d=$Qroup_member_names(dybil)
sc .. /dg=dybil g=cybil
sc/delete_group g=dybil

SOURCE_CODE_UTILITY 33-33

11
i

II
I

DELETE_MODIFICATION

DELETE _MODIFICATION
SCU Subcommand

Purpose

Format

Deletes one or more modifications. Deleting a modification
reverses all text changes that were introduced by the
modification. All insertions are deleted, all replacements
are removed, and all deletions are reactivated.

DELETE _MODIFICATION or
DELETE _MODIFICATIONS or
DELM

MODIFICATION= list of: name or range of name
DECK= keyword or list of: name or range of name
STATUS= status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be deleted. This parameter is required.

Remarks

DECK or DECKS or D·

Either one or more deck names or the keyword ALL. ALL
specifies all decks in the working library. If DECK is
specified, SCU deletes only the modification changes
within the specified decks. If DECK is omitted, ALL is
used.

• You cannot delete the creation modification of a deck
directly: you must first delete each deck for .which the
modification is the creation modification. You can then
delete the modification from the modification list.

• You cannot delete a modification whose state is
greater than your authority for the file.

• If a deck affected by a deleted modification has its
subinterlock set, SCU sends a warning message,
stating that a user has extracted the deck with an
EXTRACT _SOURCE _LIBRARY command. The
modification is deleted. SCU then attempts deletion of
modification changes on any remaining decks in the
deck list.

• You can use this subcommand to create a new library
without the modification. To temporarily reverse
modification changes when expanding text, use the
selection criteria subcommand
EXCLUDE_MODIFICATION.

33-34 NOSNE Commands and Functions 60464018 J

Examples

DISPLAY_DECK

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand deletes modification MOD5.

sc/delete_modification m=mod5

DISPLAY _DECK
SCU Subcommand

Purpose

Format

Displays one or more deck headers.

DISPLAY _DECK or
DISPLAY _DECKS or
DISD

DECK= keyword or list of: name or range of name
OUTPUT=file
DISPLAY _OPTIONS= keyword
TEXT= keyword
STATUS =status variable

Parameters DECK or DECKS or D

60464018 J

Decks whose headers are to be displayed. You can specify
a list of one or more deck names, a list of one or more
deck ranges, or the keyword ALL. ALL specifies all decks
in the working library. If DECK is omitted, the last used
deck is displayed.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only deck header information.

FULL (F)

Lists deck header information, modifications to which
deck lines belong, and the groups to which the deck
belongs. ALL is an alias for FULL.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

SOURCE_CODE_UTILITY 33-35

DISPLAY_DECK

Remarks

Examples

TEXT or T

Specifies deck text to be displayed. Options are:

IN ACTIVE (I)

Active and inactive lines.

ACTIVE (A)

Active lines only.

NONE

Deck text is not displayed.

If TEXT is omitted, NONE is used.

• You can display deck text with the DISPLAY_DECK
subcommand. You can display either the active lines
or both the active and inactive lines. Inactive lines are
lines that have been deleted; only active lines appear
in expanded deck text.

• The DISPLAY _DECK subcommand is valid within an
editing session started by an EDIT _DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character
{/DISPLAY _DECK).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand displays the deck header of
deck DECKl. The subcommand specifies full information
level (DO= F) so the modifications in the deck and the
groups to which the deck belong are also displayed. The
subcommand also specifies a listing of both the inactive
and active lines in the deck (T=I).

33-36 NOSNE Commands and Functions 60464018 J

"---· .

60464018 J

sc/display_deck d=deck1 do=f t=i

Deck Information

DECK: DECK1
EXPAND: FALSE
AUTHOR: M.J.Perreten
PROCESSOR: Fortran
ORIGINAL_INTERLOCK:
SUB_INTERLOCK:
WIDTH: 80
LINE IDENTIFIER: none
TAB ACTIVE : TRUE
CHARACTER: #

DISPLAY_DECK

TAB_COLUMNS: 5, 7, 9, 11, 13 15, 17
CREATION_DATE - TIME: 12/02/81 - 10:41:51
MODIFICATION_DATE -TIME: 03/24/82 - 13:37:19.
DECK_DESCRIPTION: First example deck

"COUNTS
MODS:2 GROUPS:1 LINES ACTIVE:6 INACTIVE:1

MODS AND SEQUENCE NUMBERS
ORIGINAL 6
FIRST_MOD 1

GROUP LIST
LOOPS

Active(A)/Inactive(I) text lines for deck DECK1

A ORIGINAL 1
A ORIGINAL 2 DO 10 I=1, 100
I ORIGINAL 3 10 I= 1+1

I FIRST _r.':OD
A FIRST_MOD 10 I= I+1
A ORIGINAL 4
A ORIGINAL 5 *COPYC COMMON1
A ORIGINAL 6

Each line of the text listing contains a letter indicating
whether the line is active or inactive (A or I), the line
identifier, and the line text. If the line is inactive, the
succeeding line names the modification that deactivated
the line.

SOURCE_CODE_UTILITY 33-37

I
I

ii
ii

DISPLAY _DECK_LIST

DISPLAY _DECK _LIST
SCU Subcommand

Purpose

Format

Parameters

Remarks

Lists the decks found in the working library in
alphabetical order by deck name.

DISPLAY _DECK _LIST or
DISDL

ALTERNATE _BASE= list of file
OUTPUT=file
DISPLAY _OPTIONS= keyword
STATUS =status variable

ALTERNATE _BASE or ALTERNATE _BASES or AB

Optional list of one or more source libraries whose deck
lists are combined with the working library deck list. If
ALTERNATE _BASE is omitted, the decks on the current
working library will be displayed.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used. ALL is
an alias for FULL.

• If you specify one or more alternate base libraries,
DISPLAY _DECK _LIST combines their deck lists with
the working library deck list for the duration of the
subcommand. You can use this option to display the
deck list that would be used if you specified the
alternate base libraries on an EXPAND _DECKS or
EXTRACT _DECKS subcommand.

• For more information, see the NOS/VE Source Code
Management manual.

33-38 NOSNE Commands and Functions 60464018 J

Examples

DISPLAY _DECK_REFERENCES

The following subcommand displays a combined deck list
of the decks on source library MY _LIB and the working
library.

sc/display_deck_list ab=my_lib
FORTRAN_ TEXT FORTRAN_TEXT_II
MY_TEXT

The listing does not indicate which source library contains
the deck.

DISPLAY _DECK _REFERENCES
SCU Subcommand

Purpose

Format

Displays a cross-reference listing for one or more decks. A
reference to a deck is a COPY or COPYC directive that
names the deck.

DISPLAY _DECK _REFERENCES or
DISDR

DECK= keyword or list of: name or range of name
EXTERN AL _DECK= keyword or list of name
OUTPUT= file
DECK _RESIDENCE= keyword
REFERENCE _DIRECTION=keyword
REFERENCE _TYPE= keyword
STATUS= status :variable

Parameters DECK or DECKS or D

60464018 J

Decks to be cross-referenced. You can specify a list of
names, a list of ranges, or the keyword ALL or NONE.
ALL specifies all decks in the working library. If DECK
is omitted, the name of the last deck is used. If you
specify NONE, you prevent the last deck from being
cross-referenced.

EXTERNAL_DECKorEXTERNAL_DECKSorED

Decks to be cross-referenced that are not on the working
library. You can specify a list of names or the keyword
ALL. ALL specifies all decks not in the working library
that are referenced by decks in the working library. If
EXTERN AL _DECK is omitted, you must specify the
DECK parameter.

SOURCE_CODE_UTILITY 33-39

DISPLAY _DECK_REFERENCES

OUTPUT or 0

File on which the cross-reference is written. You can
specify a file position as part of the file name. If
OUTPUT is omitted, file $OUTPUT is used.

DECK _RESIDENCE or DR

Specifies the references to list. Options are:

EXTERNAL

List only references to decks not in the working
library.

INTERNAL

List only references to decks in the working library.

ALL

List references to decks both in the working library
and not in the working library. ·

If DECK _RESIDENCE is omitted, ALL is used.

REFERENCE _DIRECTION or RD

Specifies the direction the references are traced. Options
are:

TO

References to the decks.

FROM

References from the decks.

ALL

References to and from the decks.

If REFERENCE _DIRECTION is omitted, TO is used.

REFERENCE_TYPEorRT

Specifies the reference type to be listed. Options are:

DIRECT

Lists only direct references.

INDIRECT

Lists only indirect references.

33-40 NOS/VE Commands and Functions 60464018 J

Remarks

Examples

60464018 J

DISPLAY_DECK_REFERENCES

ALL

Lists both direct and indirect references.

If REFERENCE_TYPE is omitted, ALL is used.

o The REFERENCE_TYPE parameter indicates whether
DISPLAY _DECK_REFERENCES lists direct
references or indirect references or both.

o Direct references involve only two decks; indirect
references involve three or more decks. For example, if
DECKA contains a COPY directive that copies
DECKB, DECKA directly references DECKB. If
DECKB contains a COPY directive that copies
DECKC, DECKA indirectly references DECKC.

o The DECK _RESIDENCE parameter indicates whether
this subcommand lists references to decks within the
working library, decks not in the working library, or
both.

o This subcommand is valid within an editing session
started by an EDIT _DECK subcommand. It is also
valid within a selection criteria file if prefixed with
the slant character
(!DISPLAY _DECK _REFERENCES).

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand produces a cross-reference for
deck SUBl on the working library. It traces direct and
indirect references both to and from the deck, including
references to decks not resident on the working library.

sc/display_deck_references d=sub1 rd=all
References FROM deck
(e = external deck, i = indirect reference)

SUB1
e SUB2

References TO internal deck
(1 = indirect reference)

SUB1
PROGRAM1

references

is referenced by

SOURCE _CODE _UTILITY 33-41

I
it

DISPLAY _FEATURE

DISPLAY _FEATURE
SCU Subcommand

Purpose

Format

Displays the modifications belonging to a feature.

DISPLAY _FEATURE or
DISF

FEATURE= name
OUTPUT= file
DISPLAY _OPTIONS= keyword
STATUS =status variable

- Parameters FEATURE or F

Remarks

Feature name. This parameter is required.

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information displayed. Options are:

BRIEF (B)

Lists only the modification names.

FULL (F)

Lists the modification names and the modification
descriptions. ALL is an alias for FULL.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• You can change the feature to which a modification
belongs with the CHANGE _MODIFICATION
subcommand.

• The DISPLAY _FEATURE subcommand is valid within
an editing session started by an EDIT _DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character
(!DISPLAY _FEATURE).

o For more information, see the NOSNE Source Code
Management manual.

33-42 NOS/VE Commands and Functions 60464018 J

Examples

DISPLAY_FEATURE _LIST

The following subcommand displays the names and
modification descriptions for all modifications belonging to
the feature NEW _PROMPTS.

sc/display_feature f=new_prompts do=f
Descriptions of modifications associated with the feature

NEW_PROMPTS

MOOIFICATION: PROMPT_ 1
STATE: 0
FEATURE: NEW_PROMPTS
AUTHOR: Jane Doe
CREATION_DATE - TIME: 10/31/83 - 08.24.54
MOOIFICATION_DATE - TIME: 10/31/83 - 08.24.54
MOOIFICATION_DESCRIPTION: This adds a prompt for parameter

MOOIFICATION: PRQMPT_2
STATE: 0
FEATURE: NEW_PROMPTS
AUTHOR: Jane Doe

NEW_DECK.

CREATION_DATE - TIME: 11/05/83 - 13. 29. 04
MOOIFICATION_DATE - TIME: 11/06/83 - 09.46.15
MODIFICATION_DESCRIPTION: This adds a prompt for parameter

OLD_DECK.

Number of modifications associated with this feature: 2

DISPLAY _FEATURE _LIST
SCU Subcommand

Purpose Lists the features in the source library.

Format DISPLAY _FEATURE _LIST or
DISFL

OUTPUT=file
DISPLAY _OPTIONS =keyword
STATUS=status variable

Parameters OUTPUT or 0

60464018 J

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the feature names.

SOURCE_CODE_UTILITY 33-43

DISPLAY_GROUP

Remarks

Examples

FULL (F)

Lists the feature names and the names of the
modifications that belong to each feature. ALL is an
alias for FULL.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

• Features are listed alphabetically.

• To add a feature, create a modification that belongs to
the feature. If the feature list contains an unused
feature name, you can enter an
EXTRACT _SOURCE _LIBRARY command to remove
all unused feature names from the result library. The
feature list of the new library includes only those
features with which modifications in the new library
are associated and which have not been explicitly
excluded by selection criteria commands.

• The DISPLAY _FEATURE _LIST subcommand is valid
within an editing session started by an EDIT _DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character
(!DISPLAY _FEATURE _LIST).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand lists the features in the
working library.

sc/display_feature_list
NE\•l_PROMPTS NEW_RESPONSE

DISPLAY _GROUP
SCU Subcommand

Purpose

Format

Lists the decks belonging to a group.

DISPLAY_GROUP or
DISG

GROUP=name
ALTERNATE _BASE= list of file
OUTPUT=file
DISPLAY _OPTIONS =keyword
STATUS =status variable

33-44 NOSNE Commands and Functions 60464018 J

DISPLAY _GROUP

Parameters GROUP or G

Remarks

60464018 J

Group name. This parameter is required.

ALTERNATE_BASEorALTER~ATE_BASESorAB

Optional list of one or more additional source libraries
from which decks are listed if they belong to the group.

OUTPUT or 0

File on which output is written. You can specify a file
position as part of the file name. If OUTPUT is omitted,
file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the deck na_mes.

FULL (F)

Lists the deck names and the information in each deck
header. ALL is an alias for FULL.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

o If you specify one or more alternate base libraries,
DISPLAY _GROUP combines their group and deck lists
with the working library group and deck lists f~ the
duration of the subcommand.

1

o You can change the group to which a deck belongs
with the CHANGE _DECK subcommand.

o The DISPLAY_GROUP subcommand is valid within an
editing session started by an EDIT _DECK
subcommand.

o For more information, see the NOS/VE Source Code
Management manual.

SOURCE_CODE_UTILITY 33-45

I
~I

DISPLAY_GROUP _LIST

Examples The following subcommand lists the decks in the group
SECTION!.

sc/display_group g=section1
Decks associated with group SECTION1

FORTRAN_ TEXT
FORTRAN_TEXT_III

FORTRAN_TEXT_II

DISPLAY _GROUP _LIST
SCU Subcommand

Purpose Lists the groups in the library.

Format DISPLAY _GROUP _LIST or
DISGL

ALTERNATE _BASE= list of file
OUTPUT= file
DISPLAY _OPTIONS=keyword
STATUS= status variable

Parameters ALTERNATE _BASE or ALTERNATE _BASES or AB

Optional list of one or more libraries whose groups are
listed with those of the base library.

OUTPUT or 0

. File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only the group names.

FULL (F)

Lists the group names and the decks in each group.
ALL is an alias for FULL.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

33-46 NOSNE Commands and Functions 60464018 J

''---- /

Remarks

Examples

DISPLAY_LIBRARY

o Groups are listed alphabetically.

o If you specify one or more alternate base libraries,
DISPLAY_GROUP _LIST combines their group and
deck lists with the working library group and deck
lists for the duration of the subcommand.

o To add a group, create a deck that belongs to the
group by including the group name on the
CREATE _DECK subcommand. If the group list
contains an unused group name, you can enter an
EXTRACT _SOURCE _LIBRARY command to remove
all unused group names from the result library. The
group list of the new library includes only those
groups to which decks in the new library belong and
which have not been explicitly excluded by selection
criteria commands.

o The DISPLAY_GROUP _LIST subcommand.is valid
within an editing session started by an EDIT _DECK
subcommand.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand lists the groups on the
working library and on library MY _LIB.

sc/display_group_list ab=my_lib
SECTION1 SECTION2
SECTION3

DISPLAY _LIBRARY
SCU Subcommand

Purpose

Format

60464018 J

Displays the library header of the working library.

DISPLAY _LIBRARY or
DISL

OUTPUT=file
DISPLAY _OPTIONS =:keyword
STATUS =status variable

SOURCE_CODE_UTILITY 33-47

I
i

DISPLAY _LIBRARY

Parameters OUTPUT or 0

Remarks

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed. Options are:

BRIEF (B)

Lists only library header information.

FULL (F)

Lists library header information and the names of the
decks, groups, modifications, and features in the
working library. ALL is an alias for FULL.

If DISPLAY_OPTIONS is omitted, BRIEF is used.

• Besides the library header fields, DISPLAY _LIBRARY
can also display the deck list, group list, modification
list, and feature list of the working library.

o You can change the content of fields in the working
library header with a CHANGE _LIBRARY
subcommand. To reference a field in the liprary
header, use the SCU function
$LIBRARY _ATTRIBUTES.

• The DISPLAY_LIBRARY subcommand is valid within
an editing session started by an EDIT _DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character
(/DISPLAY _LIBRARY).

e For more information, see the NOSNE Source Code
Management manual.

33-48 NOSNE Commands and Functions 60464018 J

'"----- /

Examples

DISPLAY _MODIFICATION

The following subcommand displays the contents of the
working library header.

sc/display_library
LIBRARY: SOURCE_CODE_U TI L !TY
VERSI()-.1: BUILD_12609
SCU_VERSION: 86133
LIBRARY_FORMAT_VERSl()-.1: Vl. 1
CHANGE_COUNTER: 394
LIBRARY_DESCRIPTION: This library contains the source for
SOURCE_CODE_UTIL!TY (SCU) and associated SCL procedures.
CREATION_DATE - TIME: 07/31/81 - 13: 15:43
MODIFICATION_DATE - TIM!:: 06110/86 - 22:33: 17
KEY: a

LAST_USEC_DECK: SCP$GET_DEFAULT_RESOJRCES
LAST _USEC_MOD!FICATION: SCB6134
COUNTS

DECKS: 1237 MODS: 719 GROUPS: 41 FEATURES: 246

DISPLAY _MODIFICATION
SCU Subcommand

Purpose

Format

Parameters

60464018 J

Displays one or more modification headers.

DISPLAY _MODIFICATION or
DISPLAY _MODIFICATIONS or
DISM

MODIFICATION= keyword or list of' name or range of
name

DECK= keyword or list of' name or range of name
OUTPUT=file
DISPLAY _OPTIONS= keyword
STATUS =status variable

MODIFICATION or MODIFICATIONS or M

Modifications to be displayed. You can specify a list of
one or more names, a list of one or more ranges, or the
keyword ALL. ALL specifies all modification descriptions
in the working library. If MODIFICATION is omitted, the
last used modification is displayed.

DECK or D

Indicates whether the displayed information should apply
to only the specified deck or to all decks. ALL specifies
all decks in the working library. If DECK is omitted,
ALL is used.

SOURCE_CODE_UTILITY 33-49

DISPLAY_MODIFICATION

Remarks

Examples

OUTPUT or 0

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information displayed. Options are:

BRIEF (B)

Displays the modification header only.

FULL (F)

Displays the modification header and the sequence of
editing commands and inserted text that would
produce the modification changes. ALL is an alias for
FULL.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

• The DISPLAY_MODIFICATION subcommand is valid
within an editor session started by an EDIT _DECK
subcommand. It is also valid within a selection criteria
file if prefixed with the slant character
(/DISPLAY _MODIFICATION).

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand displays the modification
MOD_ 4 description and changes.

sc/display_modification m=mod_4 do=f
MODIFICATION: MOD_4
STATE: 0
FEATURE:
AUTHOR: Sam Spade
CREATION_DATE - TIME: 02/23/83 - 13:09:26
MODIFICATION_DATE - TIME: 02/24/83 - 08:14:01
MODIFICATION_DESCRIPTION: Fourth example modification
Text lines altered by modification MOD_4
SELECT_DECK X
INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'

do 10 i=1,10
10 i = i +1

///END\\\
INSERT_LINES P=AFTER IL=MOD_3.2 UNTIL='///END\\\'

33-50 NOS/VE Commands and Functions · 60464018 J

100 1 = 1+100
///END\\\
SELECT_DECK Y

DISPLAY_MODIFICATION _LIST

INSERT_LINES P=BEFORE IL=FIRST UNTIL='///END\\\'
*copyc z
///END\\\

DISPLAY _MODIFICATION _LIST
SCU Subcommand

Purpose Lists all modifications in the working library.

Format DISPLAY _MODIFICATION _LIST or
DISML

OUTPUT= file
DISPLAY _OPTIONS =keyword
STATUS =status variable

Parameters OUTPUT or 0 · ·

Remarks

60464018 J

File on which the display is written. You can specify a
file position as part of the file name. If OUTPUT is
omitted, file $OUTPUT is used.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Specifies the information listed.

ALPHABETIC (A)

Modifications are in alphabetical order.

CHRONOLOGICAL (C)

Modifications are ordered by date and time with the
oldest modification first.

If DISPLAY _OPTIONS is omitted, ALPHABETIC is used.

• To add a modification to the list, enter a
CREATE _MODIFICATION subcommand. To remove a
modification from the list, enter a
DELETE _MODIFICATION subcommand.

e The DISPLAY _MODIFICATION _LIST subcommand is
valid within an editing session started by an
EDIT _DECK subcommand. It is also valid within a
selection criteria file if prefixed with the slant
character {!DISPLAY _MODIFICATION _LIST).

SOURCE_CODE_UTILITY 33-51

I
I

Ill
Ill

EDIT_DECK

Examples

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand lists all modifications in the
working library.

sc/display_modification_list
MOD_1 MOD_2 MOD_3 MOD_4

EDIT_DECK
SCU Subcommand

Purpose

Format

Begins an editing session within an SCU session.

EDIT _DECK or
EDID or
EDIT _LIBRARY or
EDIL

DECK= keyword or name
MODIFICATION =name
INPUT=file
OUTPUT= file
PROLOG=file
DISPLAY _UNPRINTABLE _CHARACTERS= boolean
STATUS= status variable

Parameters DECK or D

Deck to be edited first.

NOTE

If the deck does not exist, it is created. If you have never
entered a deck name on a DECK parameter, this
parameter is required.

If DECK is omitted, the editing session begins with the
last deck used.

To begin the editing session without selecting a deck,
specify NONE on the DECK parameter.

33-52 NOSNE Commands and Functions 60464018 J

60464018 J

EDIT_DECK

MODIFICATION or M

Modification to which changes made during the editing
session belong. For you to edit a deck using an existing
modification, the modification must be in its initial state,
state 0. If the modification does not already exist, it is
created.

If MODIFICATION is omitted, the last modification is
used: If you have never created a modification, this
parameter is required.

INPUT or I

File from which commands are read. If INPUT is omitted,
$COMMAND is used.

OUTPUT or 0

File to which the display is written. If OUTPUT is
omitted, file $OUTPUT is used. ($OUTPUT is usually
connected to the terminal.)

PROLOG or P

File the system executes when you start an editing
session. If PROLOG is omitted, file
$USER.SCU _EDITOR_PROLOG is used. You can
establish a different default prolog file by using the
CREATE _DEFAULT_ VARIABLE command to set the
variable ESD$EDIF _PROLOG to the file you want to be
your default prolog. For more information on the
CREATE _DEFAULT_ VARIABLE command, refer to the
NOS/VE System Usage manual.

DISPLAY _UNPRINTABLE _CHARACTERS or DUG

Specifies whether unprintable ASCII characters in the
range 0 to 31 and 127 are replaced by mnemonics in the
file. Options are:

TRUE

Unprintable characters are replaced by mnemonics,
preceded by a less tha~ symbol and followed by a
greater than symbol, according to the ASCII character
set.

SOURCE _CODE _UTILITY 33-53

EDIT_DECK

Remarks

FALSE

Unprintable characters are replaced by a single space
and a warning message is issued if they are
encountered. If the file is written when you exit the
editing session, the mapping to spaces is written to
the file.

If TRUE is specified, the mnemonics are replaced by the
ASCII characters when the file is replaced. If
DISPLAY _UNPRINTABLE_ CHARACTERS is omitted,
FALSE is used.

o You can specify the deck to be edited with the DECK
parameter. If you specify NONE on the DECK
parameter, you must enter a deck selection ·
subcommand before entering subcommands to change
text.

• Commands that follow the EDIT _DECK subcommand
on the same line are processed as editor subcommands.

o This subcommand adds an entry containing the
EDIT _FILE utility subcommands to the NOSNE
subcommand list; the name of the entry is
SCU_EDIT.

• If the interaction style you selected is SCREEN, the
session occurs in full screen mode. The command
CHANGE _INTERACTION _STYLE selects interaction
modes.

• All editing subcommands and the deck selection
subcommands that are available within the
EDIT _FILE utility are described in the NOSNE File
Editor manual.

• The EDIT _FILE utility uses the tab columns specified
in the deck header.

• Once you have started an editing session with an
EDIT _DECK subcommand, you can then use an
EDIT _FILE subcommand to edit a file.

• To discard decks that were created unintentionally,
enter:

end_deck write_deck=false

33-54 NOS/VE Commands and Functions 60464018 J

Examples

END _LIBRARY

o Once you have entered the SCU EDIT _DECK
subcommand, you can enter the EDIT _DECK
subcommand to edit other decks. This subcommand has
only a DECK parameter.

o To change modifications, you must stop editing and
enter the EDIT _DECK SCU subcommand specifying a
different modification.

o The mnemonics that appear when
DISPLAY _UNPRINTABLE _CHARACTERS= TRUE
will be enclosed in less than and greater than
symbols. For example, the mnemonic for the ASCII
character 0 is NUL. This mnemonic appears on the
terminal screen as follows: < NUL >

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand begins an editing session in
line mode. All text changes belong to the new
modification MOD _1.

sc/edit_deck m=mod_1
see/

The following is the header written on the output file if
the EDIT _DECK subcommand is entered in batch mode.

EDITOR 08: 39: 10 PAGE 1
1986-07-09 NOS/VE SOURCE CODE UTILITY Vl. 1 86163
BASE=:nve.pat.my_library.3
Begin editing declc DECK10

Including the LOCATE _TEXT (L) editor subcommand
after the following EDIT _DECK subcommand causes the
editor to start with the cursor positioned at the first
occurrence of an XDCL procedure in deck PROCl.

sc/edit_deck d=proc1 m=x; l 'PROCEDURE [XOCL]'

END _LIBRARY
'--- SCU Subcommand

Purpose Ends the interaction with the current working library.
Another library can then be specified as the working
library.

60464018 J SOURCE_CODE_UTILITY 33-55

ll
I

$ERRORS_FILE

Format END _LIBRARY or
ENDL

WRITE _LIBRARY= boolean
STATUS =status variable

Parameters WRITE _LIBRARY or WL

Remarks

Examples

Specifies whether the working library should be written to
the result file. The result file is spec;ified in the
CREATE_LIBRARY or USE_LIBRARY subcommand. If
no result file was specified and you indicate that the
working library should be written to the result file, then
the library is written to file SOURCE _LIBRARY. If
WRITE _LIBRARY is omitted, TRUE is used.

• After entering the END _LIBRARY subcommand, you
can work on another library by specifying either the
USE _LIBRARY or CREATE _LIBRARY subcommand.

• For more information, see the NOSNE Source Code
Management manual.

The following example ends the association with the
current working library. The library is written if changes
have been detected by the $LIBRARY _MODIFIED
function. Another library is then accessed by the
USE _LIBRARY subcommand.

sc/end_library w1=$1ibrary_mod1fied
sc/use_library b=my_library r=new_library

$ERRORS _FILE
SCU Function

Purpose Returns the file to which intermediate diagnostic
messages are written.

Format $ERRORS _FILE

Parameters None.

Remarks For more information, see the NOSNE Source Code
Management manual.

33-56 NOS/VE Commands and Functions 60464018 J

Examples

EXCLUDE_DECK

The following command displays the current value of the
file to which intermediate diagnostic messages are
written.

/source_code_uti11ty
sc/set_list_options e=$user.my_error_f11e
sc/display_value v=$errors_f11e
:NVE.PAT.MY_ERROR_FILE

EXCLUDE_DECK
Selection Criteria Subcommand

Purpose Explicitly excludes one or more decks.

Format EXCLUDE _DECK or
EXCLUDE _DECKS or
EXCD

DECK= list of: name or range of name
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Examples

60464018 J

Decks to be excluded. This parameter is required.

For more information, see the NOSNE Source Code
Management manual.

The following sequence extracts modules from base library
$USER.MY _LIBRARY using selection criteria commands.
The extracted modules are then written to
$USER.PART _OF _MY _LIBRARY.

/extract_source_11brary b=$user.my_library
.. /r=$user.part_of_my_11brary i=none sc=corrmand
scc/include_group g=group1
scc/exclude_deck d=unwanted
sec/quit

The command sequence extracts all decks belonging to
group GROUPl except deck UNWANTED. When selection
criteria entry has ended, the result is written on
$USER.PART _OF _MY _LIBRARY.

SOURCE _CODE _UTILITY 33-57

II
II

EXCLUDE_FEATURE

EXCLUDE _FEATURE
Selection Criteria Subcommand

Purpose Explicitly excludes modifications belonging to one or more
features.

Format EXCLUDE _FEATURE or
EXCLUDE _FEATURES or
EXCF

FEATURE= list of name
STATE= integer
STATUS =status variable

Parameters FEATURE or FEATURES or F

Remarks

Examples

Features to be excluded. This para11leter is required.

STATE or S

Maximum state (from 0 through 4) of modifications
excluded. All modifications whose state is less than or
equal to this value are excluded. If STATE is omitted, all
modifications belonging to the feature are excluded.

• This command is not valid for an
EXTRACT _SOURCE _LIBRARY subcommand that sets
an interlock.

• For more information, see the NOSNE Source Code
Management manual.

The following sequence extracts new source library
$USER.MY _RESULT from the library on file
$USER.MY _LIBRARY.

/extract_source_library decks=all
.. /base=$user.my_library ..
.. /result=$user.my_result ..
.. /interlock=none selection_criteria=conmand
scc/exclude_feature new_prompts
sec/Quit
I

The sequence extracts all decks from the source library.
However, it omits all lines of text belonging to
modifications associated with the feature
NEW _PROMPTS. It omits the feature NEW _PROMPTS

33-58 NOS/VE Commands and Functions 60464018 J

"---

EXCLUDE_GROUP

from the feature list of the new library and the
modifications associated with NEW _PROMPTS from the
modification list.

EXCLUDE_GROUP
Selection Criteria Subcommand

Purpose Explicitly excludes the decks belonging to one or more
groups.

Format EXCLUDE _GROUP or
EXCLUDE _GROUPS or
EXCG

GROUP=list of name
COMBINATION= keyword
STATUS =status variable

Parameters GROUP or GROUPS or G

Remarks

Examples

60464018 J

Groups to be excluded. This parameter is required.

COMBINATION or C

Indicates whether the decks excluded must belong to one
or all specified groups. Options are:

ANY

Excluded decks must belong to at least one of the
specified groups.

ALL

Excluded decks must belong to all the specified groups.

If COMBINATION is omitted, ANY is used.

For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence expands all decks on
the working library except those belonging to group
SECTION_l.

sc/expand_deck decks=all selection_criteria=command
scc/exclude_group group=section_l
sec/quit

SOURCE_CODE_UTILITY 33-59

EXCLUDE _LIBRARY

EXCLUDE LIBRARY
Selection Criteria Subcommand

Purpose Excludes decks found on one or more alternate base
libraries. Although the command prevents you from
selecting decks from specified libraries, COPY and
COPYC directives processed by an EXPAND _DECK
subcommand can still copy decks from the specified
libraries.

Format EXCLUDE_LIBRARY or
EXCLUDE _LIBRARIES or
EXCL

ALTERNATE _BASE= list of file
STATUS= status variable

Parameters ALTERNATE_BASE or ALTERNATE_BASES or AB

Source library files whose decks are excluded. The files
must be a subset of the libraries specified on the
ALTERNATE _BASE parameter of the subcommand. This
parameter is required.

Remarks

Examples

• The EXCLUDE _LIBRARIES subcommand allows you
to specify source libraries on the ALTERNATE _BASE
parameter of the EXPAND _DECK subcommand that
are to be used only for decks copied by COPY and
COPYC directives. No other decks on the excluded
library are expanded.

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence expands all decks on
the working library. Decks are copied from the library on
file COMMON _LIBRARY if referenced by COPY or
COPYC directives in the text.

sc/expand_decks decks=all alternate_base= ..
sc .. /conmon_library selection_criteria=conmand
scc/exclude_11brary alternate_base=conrnon_11brary
SCC/QU1 t

33-60 NOS/VE Commands and Functions 60464018 J

EXCLUDE _MODIFICATION

EXCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose Explicitly excludes one or more modifications.

Format EXCLUDE _MODIFICATION or
EXCLUDE _MODIFICATIONS or
EXCM

MODIFICATION= list of name
STATUS ==status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be excluded. This parameter is required.

Remarks

Examples

60464018 J

o This subcommand is not valid for an
EXTRACT _SOURCE _LIBRARY subcommand that sets
an interlock.

o If several modifications of the same line exist, it is
possible for an expanded deck to contain two versions
of the same line if the modification deactivating the
original line is excluded from the expanded deck.

For example, assume Line 1 Version 1 is introduced
by modification A. Modification B deactivates and
replaces that line with Line 1 Version 2. Then
modification C deactivates and replaces Line 1 Version
2 with Line 1 Version 3. If the deck is expanded with
modification B excluded, both the Line 1 Version 1
and Line 1 Version 3 will appear in the compile file
because Line 1 Version 1 is no longer activated.

o For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence expands all text in
decks DECKl through DECK3 except those lines
belonging to modifications MOD2 and MOD4.

sc/expand_decks decks=(deck1 .. deck3)
sc .. /selection_cr1teria=c01111land
scc/exclude_modif1cation (mod2,mod4)
sec/Quit

SOURCE_CODE_UTILITY 33-61

EXCLUDE _STATE

EXCLUDE _STATE
Selection Criteria Subcommand

Purpose Explicitly excludes all modifications whose state is not
greater than that specified.

Format EXCLUDE _STATE or
EXCS

STATE =integer
STATUS= status variable

Parameters STATE or S

Remarks

Examples

Maximum state (from 0 through 3) of the modifications
excluded. This parameter is required.

• This command is not valid for an
EXTRACT _SOURCE _LIBRARY subcommand that sets
an interlock.

• For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence extracts all text in
deck DECK! except those lines belonging to modifications
with a 0 (zero) or 1 state.

sc/extract_decks deck=deckl
sc .. /selection_criteria=conmand
scc/exclude_state 1
sec/Quit

EXPAND _DECK
SCU Subcommand

Purpose

Format

Expands one or more decks. When the SCU expands a
deck, it processes directives embedded in the source text
and copies the expanded text to a separate compile file.

EXPAND _DECK or
EXPAND _DECKS or
EXPD

DECK= keyword or list of: name or range of name
COMPILE =file
DEBUG _AIDS=keyword
OUTPUT _SOURCE _MAP=file
SELECTION _CRITERIA= file

33-62 NOSNE Commands and Functions 60464018 J

Parameters

60464018 J

WIDTH= integer
LINE _IDENTIFIER =keyword
ALTERNATE _BASE= list of file
LIST=file
EXPANSION _DEPTH= integer
DISPLAY _OPTIONS= keyword
ORDER=keyword
STATUS =status variable

DECK or DECKS or D

EXPAND _DECK

Decks to be expanded. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the
last deck used is expanded. To prevent the last used deck
from being expanded, specify NONE on the DECK
parameter. In that case, SCU determines the decks
expanded by the subcommands entered via the selection
criteria file.

COMPILE or C

File on which the expanded text is written. You can
specify a file position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

DEBUG _AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT_SOURCE_MAP parameter. If DEBUG_AIDS is
set to NONE or is omitted, no debugging information is
produced.

OUTPUT _SOURCE _MAP or OSM

Names a file to receive screen debugging information
specified by the DEBUG _AIDS parameter. If the file is
not named, the screen debugging information is written to
a file named OUTPUT_SOURCE_MAP.

SELECTION _CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name.
To enter selection criteria commands interactively, specify

SOURCE_CODE_UTILITY 33-63

I
I

EXPAND _DECK

COMMAND. If SELECTION _CRITERIA is omitted, no
selection criteria processing is performed and the DECK
parameter specifies which decks will be expanded.

WIDTH or W

Length of the expanded lines excluding line identifiers. If
WIDTH is omitted, SCU uses the default line width from
the header of each deck.

LINE _IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE _IDENTIFIER is omitted, SCU uses the default
line identifier placement from the header of each deck.

ALTERNATE _BASE or ALTERNATE _BASES or AB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION _DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

33-64 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

EXPAND _DECK

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded. Options are:

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used. ALL is an alias for FULL. [\[

If DISPLAY _OPTIONS is omitted, BRIEF is used.

ORDER or 0

Indicates whether the decks are expanded in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are expanded in the order specified on the
DECK parameter and by selection criteria commands.

LIBRARY (L)

Decks are expanded in alphabetical order.

If ORDER is omitted, LIBRARY is used.

o For each deck specified by the DECK par8;meter, the
EXPAND _DECK subcommand checks the expand
attribute to determine if it expands the deck. If the
expand attribute is TRUE, it expands the deck. If the
expand attribute is FALSE, it skips the deck and
continues processing with the next specified deck.

o To expand a text file, use the EXPAND _FILE
subcommand and the EXPAND _SOURCE _FILE
command.

o In order for OUTPUT _SOURCE _MAP to correctly ~[~
reflect the origin of the text of each deck, the deck
must either be unmodified or have been written to a
result library. If a deck is encountered whose only
current source is on the working library and the result
library is currently scheduled for an actual file, then
the currently scheduled result library is logged in the

SOURCE_CODE_UTILITY 33-65

I
I

EXPAND _DECK

output source map as the origin and an error status is
issued. A WRITE _LIBRARY subcommand must be
entered to copy all decks from the working library to
an actual file.

If $NULL was specified as the result library, an error
status is issued and the attempt aborts. A
WRITE _LIBRARY subcommand must be entered,
naming the result library. Then the EXPAND_DECK
subcommand can be reissued.

o You can specify the decks to be expanded by name on
the DECK parameter or by selection criteria
commands in the selection criteria file or both. SCU
begins with the decks specified on the DECK
parameter and then adds and removes decks as
specified by selection criteria commands. It omits any
decks whose expand attribute is FALSE.

o You can specify alternate base libraries with the
ALTERNATE _BASE parameter. SCU begins searching
for a deck in the working library. If the deck is not
found, SCU searches the ALTERNATE _BASE libraries
in the order that they appear in the specified list.

e The EXPANSION _DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level
processed, it expands the directive as text.

o The LINE _IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on
the compile file. The LINE _IDENTIFIER and WIDTH
parameters can override the default values in the deck
headers. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file. If
LINE _IDENTIFIER is explicitly stated in the
EXPAND _DECK command, then the file attribute
STATEMENT _IDENTIFIER is set. If
LINE _IDENTIFIER is not explicitly stated, the system
assumes that the file contents of the decks are not
homogeneous and does not set
STATEMENT _IDENTIFIER.

33-66 NOSNE Commands and Functions 60464018 J

I

~

Examples

EXPAND _FILE

o The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXPAND _DECKS writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If
the line width for a deck is nonzero,
EXPAND _DECKS writes each line using that width.
Lines shorter than the width are padded with trailing
blanks; lines longer than the width are truncated.

o SCU issues a warning message for those decks that
cannot be expanded.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand expands the text of deck
FORTRAN_ TEXT and writes the expanded text on file
FORTRAN _INPUT.

sc/expand_deck d=fortran_text c=fortran_input
sc .. /do=full ab=ftnlib l=output
*=Deck was copied

FORTRAN_ TEXT
*FTN_IO
*FTN_FORM

:NVE.PAT.FTNLIB
:NVE.PAT.FTNLIB

EXPAND FILE
SCU Subcommand

Purpose

Format

60464018 J

Expands a text file. When the system expands a file, it
processes the directives embedded in the source text and
copies the expanded text to a separate compile file.

EXPAND _FILE or
EXPF

FILE=file
COMPILE =file
DEBUG _AIDS= keyword
INPUT _SOURCE _MAP=file
OUTPUT _SOURCE _MAP=file
SELECTION _CRITERIA= file
WIDTH= integer
LINE _IDENTIFIER= keyword

SOURCE_CODE_UTILITY 33-67

11
I

I
i1

EXPAND _FILE

ALTERNATE _BASE= list of file
LIST=file
EXPANSION _DEPTH= integer
DISPLAY _OPTIONS=keyword
STATUS= status variable

Parameters FILE or F

File to be expanded. This parameter is required.

COMPILE or C

File on which the expanded text is written. You can
specify a file_ position as part of the file name. If
COMPILE is omitted, file COMPILE is used.

DEBUG _AIDS or DA

If this parameter is set to DT, screen debugging
information is written to the file named by the
OUTPUT _SOURCE _MAP parameter. If DEBUG _AIDS is
set to NONE or is omitted, no debugging information is
produced.

INPUT _SOURCE _MAP or ISM

Names a file from which screen debugging information is
copied for the file specified by the FILE parameter. The
content of the input source map is the output source map
that was generated when the content of the FILE was
produced. If INPUT _SOURCE _MAP is omitted, the
screen debugging information describes lines read from
FILE as having that origin.

OUTPUT _SOURCE _MAP or OSM

Names a file to receive screen debugging information
specified by the DEBUG _AIDS parameter. If
OUTPUT _SOURCE _MAP is omitted, the screen
debugging information is written to a file named
OUTPUT _SOURCE _MAP.

SELECTION _CRITERIA or SC

File from which selection criteria subcommands are read.
You can specify a file position as part of the file name.
To enter selection criteria subcommands interactively,
specify COMMAND. If SELECTION _CRITERIA is
omitted, no selection criteria processing is performed.

33-68 NOSNE Commands and Functions 60464018 J

60464018 J

EXPAND _FILE

WIDTH or W

Length of the expanded lines, excluding line identifiers. If
WIDTH is omitted, SCU uses 0 (zero) for the default line
width. A line width of 0 (zero) means that lines can be
up to 256 characters (with no trailing blanks) when the
file is expanded.

LINE _IDENTIFIER or LI

Line identifier placement.

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE _IDENTIFIER is omitted, NONE is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

EXPANSION _DEPTH or ED

Number of levels of COPY and COPYC directives to
process. COPY and COPYC directives beyond the
maximum expansion depth are expanded as text. If
EXPANSION _DEPTH is omitted, COPY and COPYC
directives are processed whenever they are encountered.

SOURCE _CODE _UTILITY 33-69

EXPAND _FILE

Remarks

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Indicates whether the listing includes the library for each
deck from which the deck was expanded.

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used. ALL is an alias for FULL.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

• To expand a deck, use the EXPAND _DECK
subcommand.

• To expand a file while not in an SCU session, use the
EXPAND _SOURCE _FILE command.

• You can specify alternate base libraries with the
ALTERNATE _BASE parameter. When SCU processes
a COPY or COPYC directive, it first searches the deck
list of the working library for the deck specified on
the directive and then it searches the deck lists of the
alternate base libraries in the order the libraries are
listed on the ALTERNATE _BASE parameter.

• The EXPANSION _DEPTH parameter can limit the
levels of nested directives processed. If SCU reads a
directive at a level beyond the maximum level·
processed, it expands it as text.

e The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the expanded text is written on
the compile file.

• The line width can be specified by the WIDTH
parameter. If the line width for a file or deck is 0
(zero), EXPAND _FILE writes each line as it is stored
in the file or deck (no trailing blanks or truncation); a
blank line, therefore, is written as a zero-length V
record. If the line width for a file or a deck is
nonzero, EXPAND _FILE writes each line using that
width. Lines shorter than the width are padded with
trailing blanks; lines longer than the width are
truncated.

33-70 NOSNE Commands and Functions 60464018 J

Examples

EXTRACT_DECK

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand expands the text of file
NEW _TEXT and writes the expanded text on file
COMPILE. The unique name given to the temporary deck
created from file NEW_TEXT is $82 .. 17.

sc/expand_file f=new_text do=full l=output
*=Deck was copied
$821497P3S0002D19860305T110817 Working Library

EXTRACT_DECK
SCU Subcommand

Purpose

Format

Extracts one or more decks. Extracting a deck copies the
deck text to another file without processing directives
embedded in the text. No delimiter is written between
extracted decks.

EXTRACT _DECK or
EXTRACT _DECKS or
EXTD

''--- DECK= keyword or list of: name or range of name
SOURCE=file
SELECTION _CRITERIA=file
WIDTH= integer
LINE _IDENTIFIER= keyword
ALTERNATE _BASE= list of file
LIST=file
DISPLAY _OPTIONS =keyword
ORDER= keyword
EXPAND= keyword or boolean
DECK _DIRECTNES _INCLUDED= boolean
STATUS=status variable

Parameters DECK or DECKS or D

60464018 J

Decks to be extracted. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library and
in any alternate base libraries specified on the
ALTERNATE_BASE parameter. If DECK is omitted, the
last used deck is extracted. To prevent the last used deck
from being extracted, specify NONE on the DECK

SOURCE _CODE _UTILITY 33-71

ll
I

EXTRACT_DECK

parameter. In that case, SCU determines the decks
extracted by the subcommands entered via the selection
criteria file.

SOURCE or S

File on which the extracted text is written. You can
specify a file position as part of the file name. If
SOURCE is omitted, file SOURCE is used.

SELECTION _CRITERIA or SC

File from which selection criteria commands are read.
You can specify a file position as part of the file name. If
SELECTION _CRITERIA is omitted, no selection criteria
processing is performed, and the decks extracted are
determined by the DECK parameter.

WIDTH or W

Length of the extracted lines, excluding line identifiers. If
WIDTH is omitted, the default line width for each deck is
used.

LINE _IDENTIFIER or LI

Line identifier placement. Options are:

RIGHT (R)

Line identifiers are placed to the right of the text.

LEFT (L)

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed on output lines.

If LINE _IDENTIFIER is omitted, the default line
identifier placement for each deck is used.

ALTERNATE_BASEorALTERNATE_BASESorAB

Optional list of one or more additional libraries to be
searched for decks.

33-72 NOS/VE Commands and Functions 60464018 J

60464018 J

EXTRACT_DECK

LIST or L

Listing file. You can specify a file position as part of the
file name. Within an SCU session, if LIST is omitted, the
listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

DISPLAY _OPTIONS or DISPLAY _OPTION or DO

Indicates whether the listing includes the library for each
deck from which the deck was extracted. Options are:

BRIEF (B)

Does not list the decks or their library origins.

FULL (F)

Lists the library origin when more than one library is
used. ALL is an alias for FULL.

If DISPLAY _OPTIONS is omitted, BRIEF is used.

ORDER or 0

Indicates whether the decks are extracted in the order
specified or in alphabetical order. Options are:

COMMAND (C)

Decks are extracted in the order specified on the
subcommand.

LIBRARY (L)

Decks are extracted in alphabetical order.

If ORDER is omitted, LIBRARY is used.

EXPAND or E

Indicates the required expand attribute for each deck
extracted. Options are:

TRUE

Expand attribute must be TRUE.

FALSE

Expand attribute must be FALSE.

SOURCE_CODE_UTILITY 33.73

EXTRACT_DECK

Remarks

ALL

Expand attribute can be either TRUE or FALSE.

If EXPAND is omitted, ALL is used.

DECK _DIRECTNES _INCLUDED or DDI

Indicates whether a DECK directive precedes each
extracted deck on the source file. Options are:

TRUE

A DECK directive is written before each deck.

FALSE

No DECK directives are written.

If DECK_DIRECTIVES_INCLUDED is omitted, FALSE is
used.

o The EXTRACT _DECK subcommand has the same
deck selection options as the EXPAND _DECK
subcommand. You can select the decks extracted by
name, by selection criteria, or by both. However,
unlike the EXPAND _DECK subcommand, you can also
choose whether to use the expand deck attribute to
select the decks to be extracted. With the EXPAND
parameter, you can choose to extract decks whose
expand attribute is TRUE, FALSE, or either TRUE or
FALSE.

o You can use the extracted text as the source text
when creating new decks. To include a DECK directive
before the source text of each deck, specify
DECK_DIRECTIVES_INCLUDED=TRUE on the
subcommand. Using the embedded DECK directives,

·the decks created using the source text file will have
the same names and expand attributes as the original
decks.

• The EXTRACT _DECK subcommand does not save any
of the deck header information such as
DECK _DESCRIPTION. You must re-enter this
information manually when you add the deck to the
new library.

33-74 NOSNE Commands and Functions 60464018 J

Examples

EXTRACT _MODIFICATION

o You can specify alternate base libraries with the
ALTERNATE _BASE parameter. SCU first searches
the deck list of the working library for the deck and
then searches the deck lists of the alternate base
libraries in the order the libraries are listed on the
ALTERNATE _BASE parameter.

o The LINE_IDENTIFIER, WIDTH, and ORDER
parameters affect how the extracted text is written on
the source file. The LINE _IDENTIFIER and WIDTH
parameters can override the default values in the deck
headers. The ORDER parameter allows you to specify
the order that SCU writes the decks on the file.

o The line width can be specified by the WIDTH
parameter. If the line width for a deck is 0 (zero),
EXTRACT _DECK writes each line as it is stored in
the deck (no trailing blanks or truncation); a blank
line, therefore, is written as a zero-length V record. If
the line width for a deck is nonzero, ·
EXTRACT _DECKS writes each line using that width.
Lines shorter than the width are padded with trailing
blanks; lines longer than the width' are truncated.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand extracts the text of deck
FORTRAN _TEXT and writes the text on file SOURCE.

sc/extract_deck d=fortran_text do=full l=output
FORTRAN_ TEXT :NVE.PAT.MY_LIBRARY

EXTRACT _MODIFICATION
SCU Subcommand

Purpose

60464018 J

Generates a sequence of EDIT _FILE utility subcommands
(INSERT _LINES, DELETE _LINES, and
REPLACE _LINES subcommands) that, if processed, would
introduce the modification changes.

SOURCE_CODE_UTILITY 33.75

EXTRACT _MODIFICATION

Format EXTRACT _MODIFICATION or
EXTRACT _MODIFICATIONS or
EXTM

MODIFICATION= list of: name or range of name
EDIT _COMMANDS=file
DECK= keyword or list of: name or range of name
TERMINATING _JJELIMITER =string
LINES= keyword
STATUS =status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be extracted. If MODIFICATION is
omitted, the last used modification is extracted.

EDIT _COMMANDS or EC

File to which the text and editing commands are written.
You can specify a file position as part of the file name.
This parameter is required.

DECK or D

Indicates the deck or decks to which the extracted
modification lines should apply. ALL specifies all all
decks. If DECK is omitted, ALL is used.

TERMINATING _DELIMITER or TD

Delimiter string used to mark the end of inserted text
(from 1 to 31 characters). If TERMINATING _DELIMITER
is omitted, '///END\\\' is used.

LINES or LINE or L

Indicates whether the editor subcommands reference only
active lines or all lines. If LINES is omitted, ACTIVE is
used.

ACTIVE

Limits processing of the generated sequence of
subcommands to only active lines. When the generated
file is processed, an error occurs if an inactive line is
referenced.

ALL

Allows the processing to reference inactive lines.

33-76 NOS/VE Commands and Functions 60464018 J

Remarks

60464018 J

EXTRACT_MODIFICATION

o The EXTRACT _MODIFICATION subcommand writes
the editing commands and inserted text that make up
a modification on a file. EXTM does not save any of
the modification header information such as the author
name or feature name. You must re-enter this
information when you add the modification to the new
library.

o You can process another deck using the editing
commands saved on a file by the EDIT_COMMANDS
parameter of the EXTRACT _MODIFICATION
subcommand. After editing the deck, you execute an
INCLUDE_FILE command using the file name of the
file containing the editing commands.

o Before deleting a modification, you can use the
EXTRACT _MODIFICATION subcommand to save the
modification changes on a separate file. You could
then reintroduce the modification by pr.ocessing the
editing commands on the file.

o If you extract a modification and delete it, then
re-apply it using the extracted editing commands, you
will get an equivalent deck only if the extracted
modification was not inter-related with another
modification. For example, if two modifications each
delete lines introduced by the other, re-applying the
editing commands extracted from one modification will
not reproduce the same deck.

You can extract, delete, and re-apply the last
modification applied to a deck only if no other
modifications have deleted lines introduced under that
name. You can repeatedly extract and delete the last
modification made to a deck, then re-apply them in
the order of the deck's modification list if no
modification deletes lines introduced by a modification
later in the deck's list. Therefore, you should always
alter a deck with the last modification name. More
modifications ~an be altered only if they are
independent of one another.

If it is important that lines continue to have the same
sequence numbers, use the
SEQUENCE _MODIFICATION subcommand before
re-applying each set of extracted editing commands.

SOURCE_CODE_UTILITY 33-77

EXTRACT_MODIFICATION

Examples

• The subcommands can also extract only the
modification changes that apply to one or more decks
in the working library. To do so, specify the decks on
the DECK parameter.

• If more than one modification is specified on the
EXTRACT _MODIFICATION subcommand, the
sequence of subcommands generated, if executed, would
produce the combined modification changes.

e The EXTRACT _MODIFICATION subcommand is valid
within an editing session started by an EDIT _DECK
subcommand, but the modification changes extracted
do not include any changes made since you last
started editing the deck.

• The LINES parameter can specify ACTIVE or ALL. If
ALL is specified, the generated file automatically
contains the following lines at its beginning:

ESV$INITIAL_LINES_ENABLED=$LINES_ENABLED
ENABLE_LINES LINES=ALL

When the file is executed, the first line saves the
user's current setting for enabling lines (by default,
only active lines are enabled.) The second line enables
all active and inactive lines. The generated file also
automatically contains the following line at its end:

ENABLE_LINES LINES=ESV$INITIAL_LINES_ENABLED

Executing this subcommand returns the editing session
to the value for the LINES parameter that was
enabled before the file was executed.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand extracts modification MODI
onto file SAVE_MODl.

sc/extract_modification m=mod1 ec=save_mod1

33-78 NOS/VE Commands and Functions 60464018 J

$FEATURE

$FEATURE
SCU Function

Purpose Returns a boolean value indicating whether the specified
name is recognized as a feature on the working library.

Format $FEATURE
(FEATURE: name)

Parameters FEATURE

Remarks

Examples

Name of the feature to be found. This parameter is
required.

For more information, see the NOS/VE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable FEATURE _EXISTS, depending on whether
FEATUREl is recognized as a feature in the working
library.

sc/feature_exists=$feature(feature1)

$FEATURE _MEMBER _NAMES
SCU Function

Purpose Returns a list of names of modifications on the working
library that belong to the specified feature.

Format $FEATURE _MEMBER _NAMES
(FEATURE: name)

Parameters FEATURE

Remarks

60464018 J

Name of the feature. This parameter is required.

• The names in the list appear in the same order as the
names in the modification list on the working library.

o For more information, see the NOS/VE Source Code
Management manual.

SOURCE_CODE_UTILITY 33-79

II
Ii

$FEATURE_NAME _LIST

$FEATURE _NAME _LIST
Selection Criteria Function

Purpose Returns a list of feature names on the working library for
those decks currently selected to be written to the result
file .

• Format $FEATURE_NAME_LIST_

Parameters None.

Remarks • The list of feature names is ordered the same as it is

Examples

on the working library.

• When used in selection criteria subcommand
processing, $FEATURE _NAME _LIST reflects the
current feature list to be written to the compile,
result, or source file being produced.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns a list of names of features
currently selected to the variable FEATURE _LIST.

scc/feature_list=$feature_name_list

$FEATURE _NAME _LIST
SCU Function

Purpose Returns a list of feature names on the working library.

Format $FEATURE _NAME _LIST

Parameters None.

Remarks • The list of feature names is ordered the same as it is
on the working library.

e When used in selection criteria subcommand
processing, $FEATURE _NAME _LIST returns the
names of currently selected features.

• For more information, see the NOSNE Source Code
Management manual.

33-80 NOSNE Commands and Functions 60464018 J

Examples

$FIRST_DECK_NAME

The following command assigns a list of names of features
on the working library to the variable FEATURE _LIST.

sc/feature_list=$feature_name_list

$FIRST _DECK _NAME
SCU Function

Purpose Returns the name of the first deck in the working library.

Format $FIRST _DECK _NAME

Parameters None.

Remarks • For more information, see the NOSNE Source Code
Management manual.

$FIRST _MODIFICATION _NAME
SCU Function

Purpose

Format

Returns the name of the first modification in the library
modification list.

$FIRST _MODIFICATION _NAME

Parameters None.

Remarks e The modification list is in alphabetical order.

$GROUP

• For more information, see the NOSNE Source Code
Management manual.

SCU Function

Purpose

Format

Returns a boolean value indicating whether a name is
recognized as a group in the working library.

$GROUP
(GROUP: name)

Parameters GROUP

60464018 J

Name of the group to be searched for on the working
library. This parameter is required.

SOURCE_CODE_UTILITY 33-81

I
i

$GROUP_MEMBER_NAMES

Remarks

Examples

For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
variable GROUP _EXISTS, indicating whether the group
TEST exists on the working library.

sc/group_exists=$group(test)

$GROUP_MEMBER_NAMES
SCU Function

Purpose Returns a list of the names of decks on the working
library that belong to the specified group.

Format $GROUP _MEMBER _NAMES
(GROUP: name)

Parameters GROUP

Name of the group. This parameter is required.

Remarks • The order of names is the same as on the working

Examples

library.

• For more information, see the NOSNE Source Code
Management manual.

The following command expands those decks on the
current library that were changed by a particular
modification and are members of the group CYBIL.

sc/expand_decks ..
sc .. /d=$intersection($group_member_names(cybil), ..
sc .. /$modified_deck_names(sc8a751_3))

$GROUP _NAME _LIST
Selection Criteria Function

Purpose Returns a list of group names on the working library for
those decks currently selected to be written to the result
file.

Format $GROUP _NAME _LIST

Parameters None.

33-82 NOSNE Commands and Functions 60464018 J

Remarks

Examples

$GROUP _NAME_LIST

o The list of group names is ordered the same as it is
on the working library.

o When used in selection criteria subcommand
processing, $GROUP _NAME_LIST reflects the current
group list to be written to the compile, result, or
source file being produced.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns a list of names of groups
currently selected to the variable GROUP _LIST.

scc/group_list=$group_name_list

$GROUP _NAME _LIST
SCU Function

Purpose Returns a list of group names on the working library.

Format $GROUP _NAME_LIST

Parameters None.

Remarks

Examples

• The list of group names is ordered the same as it is
on the working library.

o When used in selection criteria subcommand
processing, $GROUP _NAME _LIST returns the names
of c~rrently selected groups.

o For more information, see the NOSNE Source Code
Management manual.

The following command assigns a list of names of groups
on the working library to the variable GROUP _LIST.

sc/group_list=$group_name_list

INCLUDE _COPYING _DECKS
Selection Criteria Subcommand

Purpose

60464018 J

Explicitly includes all decks that contain a COPY or
COPYC directive that directly or indirectly copies one of
the specified decks.

SOURCE _CODE _UTILITY 33··83

it

I

INCLUDE _COPYING _DECKS

Format INCLUDE _COPYING _DECKS or
INCCD

DECK=list of: name or range of name
DECK _RESIDENCE= keyword
STATUS= status variable

Parameters DECK or DECKS or D

Remarks

Examples

Decks copied by the included decks. This parameter is
required.

DECK _RESIDENCE or DR

Specifies whether the decks specified on the DECK
parameter reside either on the working library or on
alternate base libraries used by the subcommand. Options
are:

EXTERNAL

The decks do not reside on the libraries.

INTERNAL

The decks reside on the libraries.

If DECK_RESIDENCE is omitted, INTERNAL is used.

• The INCLUDE_COPYING_DECKS subcommand
allows you to expand or extract only those decks that
reference the specified decks.

• For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence expands all decks
that copy deck COMMON!.

sc/expand_decks selection_criteria=conmand
scc/include_copying_decks deck=conmon1
sec/Quit

33-84 NOSNE Commands and Functions 60464018 J

INCLUDE_DECK

INCLUDE _DECK
Selection Criteria Subcommand

Purpose

Format

Explicitly includes one or more decks.

INCLUDE _DECK or
INCLUDE _DECKS or
INCD

DECK= list of: name or range of name
STATUS =status variable

Parameters DECK or DECKS or D

Remarks

Examples

Decks to be included. This parameter is required.

o If a deck name in a deck list is in error, the
subcommand is not executed.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequence excludes all decks in
group GROUPl, but includes deck WANTED even if it
belongs to GROUPl.

sc/expand_decks decks=all selection_criteria=cOITITland
scc/exclude_group group1
scc/include_deck wanted
sec/quit

INCLUDE _FEATURE
Selection Criteria Subcommand

Purpose

Format

60464018 J

Includes all modifications belonging to one or more
features.

INCLUDE _FEATURE or
INCLUDE _FEATURES or
INCF

FEATURE =list of name
STATE= integer
STATUS= status variable

SOURCE_CODE_UTILITY 33-85

INCLUDE _GROUP

Parameters FEATURE or FEATURES or F

Remarks

Examples

Features to be included. This parameter is required.

STATE or S

Minimum state (O through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified state are included. If STATE is
omitted, all modifications belonging to the feature are
included.

For more information, see the NOS/VE Source Code
Management manual.

The following subcommand sequence expands DECKl
through DECK5. It includes all modifications belonging to
feature NEW _PROMPTS that have a state of 2, 3, or 4.

sc/expd decks=deck1 .. deck5 select1on_cr1teria=conmand
scc/include_feature feature=new_prompts state=2
sec/quit

INCLUDE _GROUP
Selection Criteria Subcommand

Purpose Explicitly includes decks belonging to one or more groups.

Format INCLUDE _GROUP or
INCLUDE_GROUPS or
INCG

GROUP= list of name
COMBINATION= keyword
STATUS= status variable

Parameters GROUP or GROUPS or G

Groups to be included. This parameter is required.

COMBINATION or C

Indicates whether the decks included must belong to any
or all specified groups. Options are:

ANY

Included decks must belong to at least one of the
specified groups.

33-86 NOSNE Commands and Functions 60464018 J

Remarks

Examples

INCLUDE _MODIFICATION

ALL

Included decks must belong to all of the specified
groups.

If COMBINATION is omitted, ANY is used.

For more information, see the NOSNE Source Code
Management manual.

The following command sequence extracts all decks
belonging to group SECTION _1.

sc/extract_decks selection_criteria=conmand
scc/include_group group=section_1
sec/quit

INCLUDE _MODIFICATION
Selection Criteria Subcommand

Purpose

Format

Explicitly includes one or more modifications.

INCLUDE _MODIFICATION or
INCLUDE _MODIFICATIONS or
INCM

MODIFICATION= list of name
STATUS== status variable

Parameters MODIFICATION or MODIFICATIONS or M

Modifications to be included. This parameter is required.

Remarks

Examples

60464018 J

For more information, see the NOSNE Source Code
Management manual.

The following command sequence expands all text on deck
DECK5 except those lines belonging to feature
MY _CHANGES. However, lines belonging to modifications
MOD2 and MOD5 are expanded even if the modifications
are associated with feature MY _CHANGES.

sc/expand_deck deck=deck5 selection_criteria=cornnand
scc/exclude_feature my_changes
scc/include_modifications (mod2,mod5)
sec/Quit

SOURCE_CODE_UTILITY 33-87

INCLUDE _MODIFIED _DECKS

INCLUDE _MODIFIED _DECKS
Selection Criteria Subcommand

Purpose

Format

Explicitly includes all decks that are modified by a
specified feature or modification. Decks directly modified
are always included. Decks which copy modified decks
(directly or indirectly through chains of indirect
references) can also be optionally included.

INCLUDE _MODIFIED _DECKS or
INCLUDE _MODIFIED _DECK or
INC MD

FEATURES= list of: name or range of name
MODIFICATIONS=list of: name or range of name
INCLUDE _COPYING _DECKS= boolean
STATUS= status variable

Parameters FEATURES or FEATURE or F

Remarks

Examples

Name of features to be included. If FEATURE is omitted,
MODIFICATION must be specified.

MODIFICATIONS or MODIFICATION or M

Names of modifications to be included. If MODIFICATION
is omitted, FEATURE must be specified.

INCLUDE _COPYING _DECKS or ICD

Specifies whether decks that copy modified decks should
be included. If INCLUDE _COPYING _DECKS is omitted,
decks that copy modified decks are not included.

For more information, see the NOSNE Source Code
Management manual.

The following example includes all of the decks modified
by the modification ACCOUNTING_FIXES and all the
decks that copy modified decks.

scc/include_modified_decks ..
scc .. /feature=accounting_fixes
scc .. /include_copying_decks=true

33-88 NOS/VE Commands and Functions 60464018 J

INCLUDE _STATE

INCLUDE _STATE
Selection Criteria Subcommand

Purpose

Format

Includes all modifications whose state is greater than or
equal to that specified.

INCLUDE _STATE or
INCS

STATE= integer
STATUS= status variable

Parameters STATE or S

Remarks

Examples

Minimum state (from 0 through 4) of the modifications
included. All modifications whose state is greater than or
equal to the specified value are included. This parameter
is required.

For more information, see the NOSNE Source Code
Management manual.

The following command sequence extracts all lines in
DECK5 belonging to modifications whose state is 2, 3, or
4.

sc/extract_deck deck=deck5 selection_criteria=conmand
scc/include_state 2
sec/Quit

$LAST _DECK _NAME
SCU Function

Purpose Returns the name of the last deck on the working library.

Format $LAST _DECK _NAME

Parameters None.

Remarks

60464018 J

o For more information, see the NOSNE Source Code
Management manual.

SOURCE _CODE _UTILITY 33·89

$LAST_MODIFICATION _NAME

$LAST _MODIFICATION _NAME
SCU Function

Purpose Returns the name of the last modification in the library
modification list.

Format $LAST _MODIFICATION _NAME

·Parameters None.

Remarks • The modification list is in alphabetical order.

• For more information, see the NOSNE Source Code
Management manual.

$LIBRARY _ATTRIBUTES
SCU Function

Purpose Returns the content of a source library header. The value
is returned as a record.

Format $LIBRARY _ATTRIBUTES

Parameters None.

Remarks • The attributes have the following types:

CHANGE_COUNTER: integer
CREATION _DATE _TIME: date _time
DECK_COUNT: integer
FEATURE _COUNT: integer
FILE: file
GROUP _COUNT: integer
KEY: string
LAST_USED_DECK: name
LAST_USED_MODIFICATION: name
LIBRARY: name
LIBRARY _DESCRIPTION: list of string
LIBRARY _FORMAT_ VERSION: string
MODIFICATION _COUNT: integer
MODIFICATION _DATE_TIME: date_time
SCU _VERSION: string
VERSION: string

• To use the contents of the header returned, it is best
to create a variable implicitly, for example,
LA= $LIBRARY _ATTRIBUTES.

33-90 NOSNE Commands and Functions 60464018 J

Examples

$LIBRARY_MODIFIED

• If the library has not been modified, the creation
values are returned in the
MODIFICATION _DATE _TIME field.

o For more information, see the NOS/VE Source Code
Management manual.

The following example uses the $LIBRARY _ATTRIBUTES
function to determine which of two libraries has been
modified most recently.

sc/use_library b=intve.scu.source_library r=$null
sc/scu_header=$library_attributes
sc/end_library wl=no
sc/use_library b=$system.cybil .osf$program_interface
sc/interface_header=$1ibrary_attributes
sc/scu_is_more_recent= ..
sc .. /scu_header.modification_date_time >

sc .. /interface_header.modification_date_time

$LIBRARY _MODIFIED
SCU Function

Purpose Returns a boolean value indicating whether the current
working library has been modified.

Format $LIBRARY _MODIFIED

Parameters None.

Remarks

Examples

60464018 J

o The value of $LIBRARY_MODIFIED is set to FALSE
when you enter one of the subcommands
WRITE_LIBRARY, END_LIBRARY, or
USE_LIBRARY. The value is set to TRUE when you
make a change to the current working library that is
not recorded on an external file.

o For more information, see the NOS/VE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable LIBRARY _CHANGED, depending on
whether the current working library has been modified.

sc/11brary_changed=$11brary_modified

SOURCE _CODE _UTILITY 33-91

I

$LIST_FILE

$LIST _FILE
SCU Function

Purpose Returns the default listing file for the LIST parameter on
SCU subcommands.

Format $LIST _FILE

0

Parameters None.

Remarks For more information, see the NOSNE Source Code
Management manual.

Examples The following command displays the current value of the
default listing file.

/scu
sc/set_list_options 1=$user.fortran_list_file
sc/display_value v=$1ist_file
:NVE.PAT.FORTRAN_LIST_FILE

$MODIFICATION
SCU Function

Purpose Returns a boolean value indicating whether the specified
modification is in the working library.

Format $MODIFICATION
(MODIFICATION: name)

Parameters MODIFICATION

Remarks

Examples

Name of the modification to be found. This parameter is
required.

• If you exclude the specified modification using a
selection criteria command, SCU evaluates the
$MODIFICATION function as FALSE.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns a boolean value to the
SCL variable MOD _EXISTS, depending on whether MODl
is in the working library.

sc/mod_exists=$modification(mod1)

33-92 NOS/VE Commands and Functions 60464018 J

$MODIFICATION _ATTRIBUTES

$MODIFICATION _ATTRIBUTES
SCU Function

Purpose Returns the content of an SCU modification header. The
value is returned as a record.

Format $MODIFICATION _ATTRIBUTES
(MODIFICATION: name)

Parameters MODIFICATION

Remarks

60464018 J

Name of the modification for which the header content is
returned. If MODIFICATION is omitted, the last used
modification is assumed.

o The attributes have the following types:

AUTHOR: string
CREATION _DATE_TIME: date_time
FEATURE: . name
MODIFICATION _DESCRIPTION: list of name
MODIFICATION _DATE_TIME: date_time
NAME: name
STATE: integer

o To use the contents of the header returned, it is best
to create a variable implicitly, for example,
MAl =$MODIFICATION _ATTRIBUTES(MODl).

o If you use the $MODIFICATION _ATTRIBUTES
function to assign attributes to a variabie in an
iterative process, you must delete and re-create the
variable for each iteration. The existing variable
cannot be re-assigned the attributes of a different
modification.

o If the modification has not been modified, the creation
values are returned in the
MODIFICATION _DATE_ TIME field.

o For more information, see the NOS/VE Source Code
Management manual.

SOURCE_CODE_UTILITY 33-93

I

I
I

$MODIFICATION _NAME _LIST

$MODIFICATION _NAME _LIST
Selection Criteria Function

Purpose

.Format

Parameters

Remarks

Examples

Returns a list of names of modifications on the working
library for those decks currently selected to go to the
result file.

$MODIFICATION _NAME _LIST or
$MNL

None.

• The list of modification names is ordered
alphabetically, as it is on the working library.

• When used in selection criteria subcommand
processing, $MODIFICATION _NAME _LIST reflects
the current modification list to be written to the
compile, result, or source file being produced.

• For more information, see the NOSNE Source Code
Management manual.

The following command assigns a list of modifications
currently selected to the variable MODIFICATION _LIST.

scc/mod1f1cat1on_11st=$modificat1on_name_list

$MODIFICATION _NAME _LIST
SCU Function

Purpose Returns a list of names of modifications on the working
library.

Format $MODIFICATION _NAME _LIST

Parameters None.

Remarks • The list of modification names is ordered the same as
it is on the working library.

• When used in selection criteria subcommand
processing, $MODIFICATION _NAME_LIST returns
the names of currently selected modifications.

33-94 NOSNE Commands and Functions 60464018 J

Examples

$MODIFIED _DECK_NAMES

• For more information, see the NOSNE Source Code
Management manual.

The following example returns a list of all modifications
on a library which have changed since the beginning of
1989.

sc/VAR
var/mnl: list of name
var/start_of _1989: date=1989-1-1
var/VAREND

sc/mn1=$modification_name_list

sc/mods_in_89=$select(mn1, ..
sc .. /($modification_attributes(x).modification_ ..
sc .. /date_time > start_of_1989))

$MODIFIED _DECK _NAMES
SCU Function

Purpose Returns a list of names of decks on the working library
affected by the specified modification.

Format $MODIFIED _DECK _NAMES
(MODIFICATION: name)

Parameters MODIFICATION

Remarks

Examples

60464018 J

Name of the modification. This parameter is required.

o The order of names is the same as on the working
library.

o For more information, see the NOSNE Source Code
Management manual.

The following example displays active and inactive text
for all decks affected by the specified modification.

sc/display_decks d=$modif ied_deck_names(sc8a751)
sc . ./ do=a 1 l t = i

SOURCE_CODE_UTILITY 33.95

I~
I

$NEXT_DECK_NAME

$NEXT _DECK _NAME
SCU Function

Purpose Returns the name of the next deck.

Format $NEXT_DECK_NAME
(DECK: name)

Parameters DECK

Name of the deck whose successor is to be found. This
parameter is required.

Remarks • For more information, see the NOSNE Source Code
Management manual.

$NEXT _MODIFICATION _NAME
SCU Function

Purpose

Format

Returns the name of the next modification in the library
modification list.

$NEXT _MODIFICATION _NAME
(MODIFICATION: name)

Parameters MODIFICATION

Name of the modification whose successor is to be found.
This parameter is required.

Remarks G For more information, see the NOSNE Source Code
Management manual.

$PREVIOUS _DECK _NAME
SCU Function

Purpose Returns the name of the previous deck.

Format $PREVIOUS _DECK _NAME
(DECK: name)

Parameters DECK

Name of the deck whose predecessor is to be found. This
parameter is required.

33-96 NOS/VE Commands and Functions 60464018 J

Remarks

$PREVIOUS_MODIFICATION _NAME

• The returned name is uppercase, even when the
original entry was lowercase.

• For more information, see the NOSNE Source Code
Management manual.

$PREVIOUS _MODIFICATION _NAME
SCU Function

Purpose

Format

Returns the name of the previous modification in the
library modification list.

$PREVIOUS _MODIFICATION _NAME
(MODIFICATION: name)

Parameters MODIFICATION

Name of the modification whose predecessor is to be
found. This parameter is required.

Remarks o The returned name is uppercase, even when the

QUIT

original entry was lowercase.

o For more information, see the NOSNE Source Code
Management manual.

Selection Criteria Subcommand

Purpose

Format

Remarks

6()464018 J

Ends SELECTION _CRITERIA_COMMAND command
processing.

QUIT or
END or
QUI

STATUS= status variable

For more information, see the NOSNE Source Code
Management manual.

SOURCE_CODE_UTILITY 33-97

QUIT

QUIT
SCU Subcommand

Purpose.

Format

Parameters

Remarks

Ends an SCU session and optionally writes the working
library to the result source library.

QUIT or
END or
QUI

WRITE _LIBRARY=boolean
STATUS =status variable

WRITE _LIBRARY or WL

Indicates whether SCU should generate a result library
from the working library.

TRUE

SCU generates a result library.

FALSE

SCU does not generate a result library.

If WRITE_LIBRARY is omitted, TRUE is used.

• The QUIT subcommand indicates whether SCU should
generate a result library from the working library. If
a library is to be generated, SCU writes the result
library on the result library file specified on a
CREATE _LIBRARY or USE _LIBRARY subcommand
at the beginning of the session. If a

· WRITE _LIBRARY subcommand specifies a different
result library, SCU writes the result library on the
file specified by the last WRITE _LIBRARY
subcommand. If none of these subcommands are
specified, the result library is written on file
SOURCE _LIBRARY in your working catalog.

• If the result file is the same as the file named on the
BASE parameter of the USE _LIBRARY subcommand,
it is rewritten only when the result library has been
modified.

e Refer to WRITE _LIBRARY and END _LIBRARY for
other subcommands that write a result library.

33-98 NOSNE Commands and Functions 60464018 J

Examples

REPLACE _LIBRARY

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand ends an SCU session and
generates a result library.

sc/Quit wl=true

The following sequence changes and rewrites the source
library and then ends the SCU session.

/source_code_utility
sc/use_library b=$user.my_library
sc/change_deck d=deck1 a='roger'
SC/Quit

REPLACE LIBRARY
SCU Subcommand

Purpose

Format

Replaces decks on the working library with decks from
one or more source libraries.

REPLACE _LIBRARY or
REPLACE _LIBRARIES or
REPL

SOURCE _LIBRARY= list of tile
LIST=file
DISPLAY _OPTIONS =keyword
ENFORCE _INTERLOCKS= boolean
STATUS= status variable

Parameters SOURCE _LIBRARY or SOURCE _LIBRARIES or SL

List of one or more source library names. This parameter
is required.

60464018 J

LIST or L

Listing file. You can specify a file position as part of the
file name. SCU lists the source library origin of each
deck in the working library. If LIST is omitted, the
listing file is the file specified on the
SET _LIST _OPTIONS subcommand. Otherwise, the default
is file $LIST.

SOURCE_CODE_UTILITY 33.99

It

REPLACE_LIBRARY

Remarks

DISPLAY _OPTIONS or DO

Specifies the information listed. Currently, both of the
following keywords produce the same listing.

BRIEF or B
FULL or F

If DISPLAY_OPTIONS is omitted, BRIEF is used. ALL is
an alias for FULL.

ENFORCE _INTERLOCKS or EI

Indicates whether the interlocks must match before a deck
can replace a base library deck. Options are:

TRUE

Interlocks must match.

FALSE

Interlocks need 11qt match.

If ENFORCE _INTERLOCKS is omitted, FALSE is used.

o REPLACE _LIBRARIES reads the source library deck
lists in the order you specify the libraries on the
command.

o After reading a deck name, REPLACE_LIBRARIES
determines if the deck name is in the working library
deck list. If the name is in the list, it replaces the
deck in the working library with the deck from the
source library. If the name is not in the list, the
command does not add the deck to the working
library, but it sends a warning message, stating that
the deck cannot be replaced because it is not in the
working library.

• If no decks could be merged because an exception
occurred in each deck, an error status is returned and
REPLACE _LIBRARY makes no change to the library.

• REPLACE _LIBRARIES lists the source library origin
of each deck in the working library on the listing file.

• Decks, features, groups, and modifications are ordered
alphabetically on the REPLACE _LIBRARIES result
library.

33-100 NOSNE Commands and Functions 60464018 J

Examples

$RESULT

G You can use this subcommand to merge decks from an
extracted library with decks from the original library
from which it was extracted to form a new library.
You use this command if you do not want to add any
new decks to the new library. ·

If you set interlocks when you extracted the library,
REPLACE _LIBRARY enforces the interlock if you
specify ENFORCE _INTERLOCKS= TRUE in the
subcommand. Interlock enforcement means that
REPLACE _LIBRARY checks whether the original
interlock value in the header of the extracted deck
copy matches the subinterlock value in the header of
the working library copy. If the values match,
REPLACE _LIBRARY replaces the working library
deck with the extracted deck; otherwise, it does not
replace the working library deck.

o Key characters in source libraries that are added to
the working library must match the key character in
the working library. If the key characters do not
match, SCU generates an error message.

o For more information, see the NOS/VE Source Code
Management manual.

The following subcommand replaces decks on the working
library with decks from source library NEWLIB.

sc/replace_library sl=newlib l=output
DECKA :NVE.PAT.SOURCE_LIBRARY
DECKB
DECKC
DECKD

: NVE. PAT. NEWLIB
:NVE.PAT.NEWLIB
:NVE.PAT.SOURCE_LIBRARY

$RESULT
SCU Function

Purpose Returns the result library file.

Format $RESULT

Parameters None.

60464018 J SOURCE_CODE_UTILITY 33-101

I
:-:····: ,,

;

it
ll

RETAIN _GROUP

Remarks

Examples

• The value of $RESULT is updated when a
WRITE _LIBRARY subcommand is entered that
specifies a result file.

• For more information, see the NOSNE Source Code
Management manual.

The following command displays the current value of the
result file.

/source_code_utility
sc/use_library b=$user.fortran_lib
sc .. /r=$user.new_fortran_lib
sc/display_value v=$result
:NVE.PAT.NEW_FORTRAN_LIB

RETAIN _GROUP
Selection Criteria Subcommand

Purpose

Format

Retains from the list of decks currently selected only
those decks that are members of the specified group.

RETAIN _GROUP or
RETAIN _GROUPS or
RETG

GROUP=list of name
COMBINATION== keyword
STATUS== status variable

Parameters GROUP or GROUPS or G

Names of the groups to be retained. This parameter is
required.

COMBINATION or C

Decks to be retained. Options are:

ANY

Decks will be retained if they are members of any of
the groups specified by the GROUP parameter.

ALL

Decks will be retained if they are members of all of
the groups specified by the GROUP parameter.

If COMBINATION is omitted, ANY is used.

33-102 NOSNE Commands and Functions 60464018 J

Remarks

Examples

SEQUENCE_DECK

For more information, see the NOS/VE Source Code
Management manual.

The following example retains the decks which are at the
same time members of group CYBIL and group
SCF$UNBOUND _UTILITY.

scc/retain_groups g=(cybil,scf$unbound_utility)
sec .. /c=al 1

SEQUENCE _DECK
SCU Subcommand

Purpose Sequences deck lines in released state (state 4).

Format SEQUENCE _DECK or
SEQUENCE _DECKS or
SEQD

DECK= list of: name or range of name
MODIFICATION= keyword or name
STATUS= status variable

Parameters DECK or DECKS or D

60464018 J

Decks to be sequenced. You can specify a list of one or
more names, a list of one or more ranges, or the keyword
ALL. ALL specifies all decks in the working library. This
parameter is :required.

MODIFICATION or M

Modification name that is used in the line identifiers for
resequenced lines. If the modification already exists, it
must be in state 4.

You specify that the creation modification is to be used
for each deck by specifying the keyword
CREATION _MODIFICATION.

If MODIFICATION is omitted, the creation modification
for each deck is used.

SOURCE _CODE _UTILITY 33-103

I
f ·:-:-:-:-:.:.

:::-:.-:::-
~{\({:

SEQUENCE _MODIFICATION

Remarks

Examples

• To sequence a deck, you must have authority 4 for the
file. The creation modification for each sequenced deck
must be in state 4.

• The subcommand only sequences lines belonging to
modifications in state 4. Each sequenced line is
assigned a new line identifier. The line identifier
consists of the name of the specified modification and
a sequence number. The sequence numbers are
assigned in the order the lines appear within the
source library.

o After sequencing, all sequenced lines belong to the
specified modification. The maximum sequence number
is 16,777,214.

• If a sequenced deck has its subinterlock set, SCU
reports a warning message.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequences all decks in the
working library.

sc/sequence_deck d=all

SEQUENCE _MODIFICATION
SCU Subcommand

Purpose·

Format

Sequences modification lines.

SEQUENCE _MODIFICATION or
SEQUENCE _MODIFICATIONS or
SEQM

MODIFICATION=list of: name or range of name
DECK= keyword or list of: name or range of name
STATUS=status variable

33-104 NOSNE Commands and Functions 60464018 J

Parameters

Remarks

Examples

SET_LIST_OPTIONS

MODIFICATION or MODIFICATIONS or M

Modifications to be resequenced. This parameter is
required.

DECK or DECKS or D

One or more decks. You can specify a list of one or more
names, a list of one or more ranges, or the ke.yword ALL.
ALL specifies all decks in the working library. If DEC}\
is specified, only the modification lines that apply to the
specified decks are sequenced. If DECK is omitted, ALL is
used.

o The sequenced modifications must be in state 0 (zero).

• Before sequencing, the sequence numbers in the line
identifiers of a modification are ordered as the lines
were added to the modification. After sequencing, the
sequence numbers in the line identifiers are ordered as
the lines appear in the deck. The maximum sequence
number is 16,777,214.

o If a sequenced deck has its interlock set, SCU sends a
warning message.

o You can specify the DECK parameter to limit
sequencing to lines in the specified decks.

o For more information, see the NOSNE Source Code
Management manual.

The following subcommand sequences modification MODS.

sc/seQuence_modification m=modS

SET _LIST _OPTIONS
SCU Subcommand

Purpose

Format

60464018 J

Establishes a default for the LIST parameters on SCU
subcommands. It also specifies the file to which
intermediate diagnostic messages are written.

SET _LIST _OPTIONS or
SET LO

LIST=file
ERRORS =file
STATUS= status variable

SOURCE _CODE _UTILITY 33-105

I

USE _LIBRARY

Parameters LIST or L

Remarks

Default listing file for the LIST parameter used on
subsequent subcommands in an SCU session. You can
specify a file position as part of the file name. If LIST is
omitted, file $LIST is used.

ERRORS or E

Name of the file on which intermediate error messages
are written. If ERRORS is omitted, file $ERRORS is used.

• This subcommand specifies the default value for the
LIST parameter on SCU subcommands. A file specified
for a LIST parameter overrides this value.

• The functions $ERRORS _FILE and $LIST _FILE
return the values specified for these files.

I Examples

e For more information, see the NOS/VE Source Code
Management manual.

The following subcommand causes file SCU _LIST to be
used as the default value for the LIST parameter on
subsequent subcommands. Intermediate error messages are
written on file SCU _ERRORS.

sc/set_list_options l=scu_list e=scu_errors

USE _LIBRARY
SCU Subcommand

Purpose

Format

Specifies the base and result libraries for an SCU utility
session. This subcommand also specifies where the QUIT,
END_LIBRARY, and WRITE_LIBRARY subcommands
write their results.

USE _LIBRARY or
USEL

BASE=file
RESULT= file
STATUS= status variable

33-106 NOSNE Commands and Functions 60464018 J

USE _LIBRARY

Parameters BASE or B

"--- Name of the source library copied as the initial working
library for the session. The files specified by the BASE
and RESULT parameters can be the same. If BASE is
omitted, file SOURCE _LIBRARY in your working catalog
is used.

(
\...___

Remarks

Examples

60464018 J

RESULT or R

Name of the file on which the new source library is
written by subsequent END _LIBRARY,
WRITE _LIBRARY, or QUIT subcommands. The new
source library can be written when either a QUIT,
END_LIBRARY, or WRITE_LIBRARY subcommand is
entered. The WRITE _LIBRARY subcommand can specify
a different source library than that specified by the ·
USE _LIBRARY subcommand. The files specified by the
BASE and RESULT parameters can be the same. If
RESULT is omitted, the file specified by the BA$E
parameter is used.

o All subcommands in the session affect the same
working library. The working library is initially a
duplicate of the base library specified on the BASE
parameter.

o If no USE _LIBRARY or CREATE _LIBRARY
subcommand is issued before other subcommands
during an SCU session, file SOURCE _LIBRARY is
used for the base and result libraries.

o You must have read permission on the base library. l~l
You must have read and write permission on the
result library. If you only want to read the base
library, specify $NULL as the result library.

o For more information, see the NOSNE Source Code
Management manual.

The following sequence begins an SCU session and
initializes the working library from file FSEWORK in
your working catalog, assumed not to be $LOCAL. In this
example, source libraries are written on the next cycle of
file FSEWORK by subsequent END _LIBRARY,
WRITE_LIBRARY, or QUIT subcommands.

SOURCE _CODE _UTILITY 33-107

WRITE _LIBRARY

/source_code_utility
sc/use_library b=fsework r=fsework.$next

The following sequence specifies $NULL as the result
library. You can use this example to look at a source
library, but not to change it.

/source_code_utility
sc/use_library ..
sc .. /b=$system.cybi1.osf$program_interface r=$nu11

WRITE _LIBRARY
SCU Subcommand

Purpose Generates a result library from the current state of the
working library. It writes the result library on the file
specified by the RESULT parameter.

Format WRITE _LIBRARY or
WRIL

RESULT= file
STATUS= status variable

Parameters RESULT or R

Remarks

File to which the result library is written. If RESULT is
omitted, the file used is specified by the RESULT
parameter of the CREATE _LIBRARY, previous
WRITE_LIBRARY, or USE_LIBRARY subcommand. If
RESULT is specified, that file name becomes the default
for subsequent QUIT or WRITE _LIBRARY subcommands.

o This subcommand allows you to generate more than
one source library in an SCU session. This is done if
you specify a file on the RESULT parameter. To create
an empty library, refer to the CREATE _LIBRARY
subcommand.

• The subcommand can save the contents of the working
library at an intermediate state in case the system
fails during the session. In this case, you can omit the
RESULT parameter and use the result file you
specified when you began the session. When you end
the session, you can overwrite the intermediate library
with the final result library.

33-108 NOSNE Commands and Functions 60464018 J

Examples

60464018 J

WRITE _LIBRARY

G If the result file is the same as the file named on the
BASE parameter of the USE _LIBRARY subcommand,
the file is rewritten only if the working library has
been modified.

• The END _LIBRARY and QUIT subcommands also
generate a result library.

o Specifying RESULT changes the value of the $RESULT
function to reflect the new file name.

e For more information, see the NOSNE Source Code
Management manual.

The following subcommand writes an intermediate library
to the result library file.

sc/write_11brary

SOURCE_CODE_UTILITY 33-109

Related Manuals

This appendix lists the manuals which describe NOSNE. Also
included is information for ordering printed manuals and the way to
access online manuals.

A

Ordering Printed Manuals A-1

Accessing Online Manuals A-1

Table A-1. Related Manuals A-2
NOSNE Site Manuals .. A-2
NOSNE User Manuals A-4
CYBIL Manuals .. A-6
FORTRAN Manuals . A-7
COBOL Manuals ... A-7
Other Compiler Manuals A-8
VXJ\TE Manuals . A-9
Data Management Manuals A-11
Information Management Manuals A-12
CDCNET Manuals ... A-13
Migration Manuals .. A-14
Miscellaneous Manuals A-14
Hardware Manuals .. A-17

60464018 J

Related Manuals A

All NOSNE manuals and related hardware manuals are listed in
table A-1. If your site has installed the online manuals, you can find
an abstract for each NOSNE manual in the online System
Information manual. To access this manual, enter:

/help manual=nos_ve

Ordering Printed Manuals
To order a printed Control Data manual, send an order form to:

Control Data
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103-2495

To obtain an order form or to get more information about ordering
Control Data manuals, write to the above address or call (612)
292-2101. If you are a Control Data employee, call (612) 292-2100.

Accessing Online Manuals

To access the online version of a printed manual, log in to NOSNE
and enter the online title on the HELP command (table A-1 supplies
the online titles). For example, to see the NOSNE Commands and
Functions manual, enter:

/help manual=scl

or, because SCL is the default for the MANUAL parameter, simply
enter

/help

An online Examples manual contains examples that reside in printed
manuals. From within the online Examples manual, you can copy,
print, and execute the examples it contains. To access this manual,

'-- enter:

/help manual=examples

When EXAMPLES is listed in the Online Manuals column in table
'- A-1, that manual is represented in the online Examples manual.

60464018 J Related Manuals A-1

Related Manuals

Table A-1. Related Manuals

Publication Online
Manual Title Number Manualsl

NOS/VE Site Manuals:

CYBER 930 Computer System 60469560
Guide to Operations
Usage

CYBER Initialization Package (CIP) 60000417
CYBER 180 Model 810, 830, 815, 825;
CYBER 810A, 830A Computer
Systems Reference Manual

CYBER Initialization Package (CIP) 60000418
CYBER 180 Model 835, 845, 855;
CYBER 840, 850, 860 Computer
Systems with IOU AB115A
Reference Manual

CYBER Initialization Package (CIP) 60000419
CYBER 180 Model 845, 855;
CYBER 840, 850, 860 with IOU
AT478/AT481A; CYBER 840A, 850A,
860A, 870A, 990, 990E, 995E
Computer Systems Reference Manual

CYBER Initialization Package (CIP) 60000420
CYBER 960, 994 Computer Systems
Reference Manual

CYBER Initialization Package (CIP) 60000421
CYBER 962, 992 Computer Systems
Reference Manual

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-2 NOSNE Commands and Functions 60464018 J

,_

'-.

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

NOS/VE Site Manuals (Continued):

CYBER Initialization Package (CIP) 60000422
CYBER 170 Model 865, 875;
Non-Model 8XX/9XX Series
Computer Systems Reference Manual

DesktopNE Host Utilities 60463918
Usage

MaiWE Version 2 60464515 MAILVE_
Administration ADMINISTRA-

TION

MAINTAIN _MAIL (Version 1)2 MAIM
Usage

NOSNE Accounting Analysis System 60463923
Usage

NOSNE Accounting and Validation 60458910
Utilities for Dual State
Usage

NOSNE File Server 60000190
for STORNET and ESM-11
Usage

NOSNE 60463917
LCN Configuration and Network
Management
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

2. To access this manual, you must be the administrator for MailNE
Version 1.

(Continued)

60464018 J Related Manuals A-3

• Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Site Manuals (Continued):

NOS/VE Network Management
Usage

NOS/VE Operations
Usage

NOS/VE
System Performance and Maintenance
Volume 1: Performance
Usage

NOS/VE
System Performance and Maintenance
Volume 2: Maintenance
Usage

NOS/VE Security Administration
Usage

NOS/VE User Validation
Usage

NOSNE User Manuals:

EDIT_CATALOG
Usage

EDIT_CATALOG for NOS/VE
Summary

Introduction to NOS/VE
Tutorial

Publication Online
Number Manualsl

60463916

60463914

60463915

60463925

60463945

60464513

60487719

60464012

EDIT_
CATALOG

EXAMPLES

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-4 NOSNE Commands and Functions 60464018 J

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

NOS/VE User Manuals (Continued):

NOS/VE 60486412 AFM_T
Advanced File Management
Tutorial

NOS/VE 60486413 AFM
Advanced File Management
Usage

NOS/VE 60464018 SCL
Commands and Functions
Quick Reference

NOS/VE File Editor 60464015 EXAMPLES
Tutorial/Usage

NOS/VE 60464413 OCM and
Object Code Management EXAMPLES

\..._ __ Usage

NOS/VE Screen Formatting 60488813 EXAMPLES
Usage

NOS/VE 60464313 SCM and
Source Code Management .. EXAMPLES
Usage

NOS/VE System Usage 60464014 EXAMPLES

NOS/VE Terminal Definition 60464016
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)
'---

60464018 J Related Manuals A-5

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manualsl

NOS/VE User Manuals (Continued):

Screen Design Facility/Screen
Formatting
Usage

Screen Design Facility/Data
Management
Usage

CYBIL Manuals:

CYBIL for NOS/VE
File Management
Usage

CYBIL for NOS/VE
Keyed-File and Sort/Merge Interfaces
Usage

60488613

60488618

60464114

60464117

CYBIL for NOS/VE 60464113
Language Definition
Usage

CYBIL for NOS/VE 60464116
Sequential and Byte-Addressable Files
Usage

CYBIL for NOS/VE 60464115
System Interface
Usage

SDF

EXAMPLES

EXAMPLES

CYBIL and
EXAMPLES

EXAMPLES

EXAMPLES

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-6 NOS/VE Commands and Functions 60464018 J

Related Manuals

Table A-1. Related Manuals (Continued)

'---
Publication Online

Manual Title Number Manualsl

FORTRAN Manuals:

FORTRAN Version 1 for NOSNE 60485913
Language Definition
Usage

FORTRAN Version 1 for NOSNE FORTRAN
Quick Reference

FORTRAN Version 2 for NOSNE 60487113
Language Definition
Usage

FORTRAN Version 2 for NOSNE VFORTRAN
Quick Reference

FORTRAN for NOSNE 60485912 FORTRAN_T
Tutorial

"'--- FORTRAN for NOSNE 60485916
Topics for FORTRAN Programmers
Usage

FORTRAN for NOSNE 60485919
Summary

FORTRAN Keyed-File 60485917 FORTRAN
and Sort/Merge Interfaces
Usage

COBOL Manuals:

COBOL for NOSNE 60486019
Summary

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

"---

60464018 J Related Manuals A-7

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

COBOL Manuals (Continued):

COBOL for NOSNE
Tutorial

COBOL for NOSNE
Usage

Other Compiler Manuals:

Ada for NOSNE
Usage

Ada for NOS/VE
Reference Manual

APL for NOSNE
File Utilities
Usage

APL for NOSNE
Language Definition
Usage

BASIC for NOSNE
Summary Card

BASIC for NOSNE
Usage

LISP for NOSNE
Usage Supplement

Pascal for NOSNE
Summary Card

Publication Online
Number Manualsl

60486012

60486013

60498113

60498118

60485814

60485813

60486319

60486313

60486213

60485619

COBOL_T

COBOL and
EXAMPLES

ADA

EXAMPLES

BASIC

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-8 NOSNE Commands and Functions 60464018 J

'"

'--

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Other Compiler Manuals
(Continued):

Pascal for N OSNE 60485618 PASCAL and
Usage EXAMPLES

Prolog for NOSNE 60486713 PRO LOG
Usage

VX/VE Manuals:

CNE for NOSNE c
Quick Reference

CNE for NOSNE 60469830
Usage

DWBNX 60469890
Introduction and User Reference
Tutorial/Usage

DWBNX 60469910
Macro Packages Guide
Usage

DWBNX 60469920
Preprocessors Guide
Usage

DWBNX 60469900
Text Formatters Guide
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

60464018 J Related Manuals A-9

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

VX/VE Manuals (Continued):

VX/VE
Administrator Guide and Reference
Tutorial/Usage

VX/VE
An Introduction for UNIX Users
Tutorial/Usage

VX/VE
Programmer Guide
Tutorial

VX/VE
Programmer Reference
Usage

VXNE.
Support Tools Guide
Tutorial

VX/VE
User Guide
Tutorial

VX/VE
User Reference
Usage

Publication Online
Number Manuals1

60469770

60469980

60469790

60469820

60469800

60469780

60469810

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-10 NOS/VE Commands and Functions 60464018 J

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Data Management Manuals:

DM Command Procedures
Reference Manual

DM Concepts and Facilities
Manual

DM Error Message Summary
for DM on CDC NOSNE

DM Fundamental Query and
Manipulation Manual

DM Report Writer
Reference Manual

DM System Administrator's
Reference Manual
for DM on CDC NOSNE

DM Utilities
Reference Manual
for DM on CDC NOSNE

IM/DM for NOSNE
Installation and User Guide

Publication Online
Number Manualsl

60487905

60487900

60487906

60487903

60487904

60487902

60487901

60487907

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

60464018 J Related Manuals A-11

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Information Management Manuals:

IM/Control for NOSNE
Quick Reference

IM/Control for NOSNE
Usage

IM/Fast for NOSNE
Administration Usage

IM/Fast for NOSNE
Programming Usage

IM/Quick for NOSNE
Tutorial

IM/Quick for NOSNE
Summary

IM/Quick for NOSNE
Online Help

IM/Smart for NOSNE
Usage

Publication Online
Number Manualsl

L60488918 CONTROL

60488913

60487513

60487514

60485712

60485714

QUICK

60488513

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-12 NOSNE Commands and Functions 60464018 J

Related Manuals

Table A-1. Related Manuals (Continued)

'-.__ Publication Online
Manual Title Number Manuals I

CDCNET Manuals:

CDCNET Access Guide CDCNET_
ACCESS

CDCNET Batch Device 60463863 CDCNET_
User Guide BATCH

CDCNET Commands Reference 60000414

CDCNET Conceptual Overview 60461540

CDCNET Configuration Guide 60461550

CDCNET DI Dump Analyzer ANA CD

CDCNET Diagnostic Messages 60461600 CDCNET_
MSGS

CDCNET Network Configuration NETCU

"----'
Utility

CDCNET Network Operations 60461520
and Analysis

CDCNET Product Descriptions 60460590

CDCNET Terminal Interface 60463850

CDCNET TCP/IP Applications 60000214

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

60464018 J Related Manuals A-13

I
lll

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Migration from IBM to NOSNE
Tutorial/Usage

Migration from NOS to NOSNE
Tutorial/Usage

Migration from NOS/BE to NOSNE
Tutorial/Usage

Migration from NOS/BE to
NOSNE Standalone
Tutorial/Usage

Publication
Number

60489507

60489503

60489505

60489506

Migration from VAX/VMS to NOSNE 60489508
Tutorial/Usage

Miscellaneous Manuals:

ANALYZE_DUMP Utility

Applications Directory

Control Data CONNECT
User's Guide

Control Data CONNECT Plus for the
IBM Personal Computer (Version 1.0)
User's Guide

Control Data CONNECT VIEW for
the IBM Personal Computer
Version 2.0
User's Guide

60455370

60462560

60000388

60463946

Online
Manuals1

ANALYZE_D
UMP

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-14 NOSNE Commands and Functions 60464018 J

Related Manuals

Table A-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manualsl

Miscellaneous Manuals (Continued):

Debug for NOS/VE 60488218 DEBUG
Quick Reference

Debug for NOS/VE 60488213
Usage

Desktop/VE for Macintosh 60464503
Usage

FTAM/VE 60000455
Usage

Mai~ (Version 1) 60464519
Summary Card

Mail/VE (Version 1) MAIL_ VE
Usage

"--- ,
Mail/VE Version 2 60464514 MAILVE_V2
Usage

Math Library for NOS/VE 60486513
Usage

NOS/VE Build Utility 60487413
Usage

NOS/VE Diagnostic Messages 60464613 MESSAGES
Usage

NOS/VE Examples EXAMPLES
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

'--- - (Continued)

60464018 J Related Manuals A-15

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Miscellaneous Manuals (Continued):

NOSNE Global Index
Reference

NOSNE Online Manual Systems

NOSNE System Information

Programming Environment
for NOSNE
Usage

Programming Environment
for NOS/VE
Summary

Professional Programming
Environment for NOSNE
Quick Reference

Professional Programming
Environment for NOSNE
Usage

Remote Host Facility
Usage

Publication Online
Number Manualsl

60464010

60488403

60486819

60486618

60486613

60460620

TOPICS_
CONTEXT

NOS_ VE

ENVIRON
MENT

PPE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

A-16 NOS/VE Commands and Functions 60464018 J

'·-...._

Related Manuals

Table A-1. Related Manuals (Continued)

Manual Title

Hardware Manuals:

CYBER 170 Computer Systems
Models 825, 835, and 855
General Description
Hardware Reference

HPAJVE Reference

Virtual State Volume II
Hardware Reference

Publication
Number

60459960

60461930

60458890

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual. .

60464018 J Related Manuals A-17

Date/Time Formats B

Datefrime Form Strings ... B-1

Datetrime Strings . B-5

60464018 J

Date/Time Formats

This appendix describes date/time string values and the form strings
used to interpret them.

Date/Time Form Strings

The following functions allow you to specify the format in which the
value returned by the function is presented:

$DATE
$DATE_TIME
$DATE _TIME _STRING
$DAY
$TIME
$TIME _ZONE _IDENTIFIER or $TIME _ZONE _ID

B

In these cases, the format of the value is determined by a form string.
A form string is a string containing keyword values corresponding to
the elements of a date/time value. These keywords specify how each of
the date/time elements is presented.

, Table B-1 lists and describes the keyword elements you can use to "-.._,

specify form strings for the functions listed above. Tables B-2 and B-3
list and describe both the date/time strings provided by NOS/VE and
form strings used to represent them.

When specifying form strings, you can use the following delimiters to
separate keywords:

period (.)
comma (,)
slant (/)
hyphen (-)
space ()

60464018 J Dateffime Formats B-1

Datefl'ime Form Strings

Table B-1. Form String Elements

Keyword

Y2

Y4

M2

MN(language)l

MA(language)l

D2

J3

DN(language)l

DA(language)l

MONTH

MDY

DMY

ISOD

ORDINAL

H24

H12

Description

A two-digit year (00 .. 99)

A four-digit year (1900 .. 2155)

A two-digit month (01..12)

The name of the month in the specified
language.

The abbreviated name of the month in the
specified language.

A two-digit day of the month (01..31)

A three-digit day of the year (001..366)

The name of the day in the specified
language.

The abbreviated name of the day in the
specified language.

The equivalent of the form string 'MN D2,
Y4'

The equivalent of the form string 'M2/D2/Y2'

The equivalent of the form string 'D2.M2.Y2'

The equivalent of the form string
'Y4-M2-D2'

The equivalent of the form string 'Y4J3'

A two-digit hour using the 24-hour clock
(00 .. 23)

A two-digit hour using the 12-hour clock
(1..12)

(Continued)

B-2 NOS/VE Commands and Functions 60464018 J

Datetrime Form Strings

Table B-1. Form String Elements (Continued)

Keyword

AMO RPM

MM

SS

SlO

SlOO

SlOOO

AMPM

HMS

MILLISECOND, MS

ISOT

TZ(language) 1

TZA(language)l

Description

A two-character day or evening indicator
(AM or PM)

A two-digit minute (00 .. 59)

A two-digit second (00 .. 59)

A one-digit tenth of a second (0 .. 9)

A two-digit hundredth of a second (00 .. 99)

A three-digit thousandth of a second
(000 .. 999)

The equivalent of the form string 'H12:MM
AMO RPM' .

The equivalent of the form string
'H24:MM:SS'

The equivalent of the form string
'H24:MM:SS.S1000'

The equivalent of the form string
'H24:MM:SS,S100'

The identifier of the system's time zone in
the specified language.

The abbreviated identifier of the system's
time zone in the specified language.

1. If the language portion of the keyword is not specified, the
currently selected natural language is used. Message modules can be
defined to provide month and day names and time zone identifiers in
languages other than English. For more information on creating
message modules, see the Object Code Management manual.

60464018 J Datetrime Formats B-3

I

Date/rime Form Strings

The following considerations apply to the use of form strings:

o When a date is converted to its string representation, leading zeros
are omitted from the day value in any format using MN or MA
followed by a space or a hyphen.

• Multiple spaces in form strings are treated as a single space and
spaces on either side of a comma are ignored.

• If a format string is omitted from the call to the function, the
specified date is interpreted according to the default format chosen
by your site from those listed in the next section.

B-4 NOSNE Commands and Functions 60464018 J

Datetrime Strings

Date/Time Strings
You can specify a date/time value in a number of different formats,
provided that the value is specified as a string and that its contents
match a recognized date/time format. Tables B-2 and B-3 list and
describe the different date and time formats supplied by NOSNE.

The following considerations apply to strings supplied as date/time
values.

o You can specify a string containing individual date or time
components or both. If you specify both, you must separate them
from each other using one of the following delimiters:

period (.)
comma (,)
slant (/)
hyphen (-)
space ()

o You can omit leading zeros within a date/time string if they are
the first character in the string or if they are preceded by a letter
or a delimiter such as a colon.

o Multiple spaces are treated as a single space and spaces on either
side of a comma are ignored.

60464018 J Datefrime Formats B-5

Datefl'ime Strings

Table B-2. Date Strings

Form

'MN D2, Y4'
or
'MONTH'

'MA D2, Y4'

'D2 MN Y4'

'D2 MA Y4'

'D2 MN Y2'

'D2 MA Y2'

'D2-MN-Y4'

'D2-MA-Y4'

'D2-MN-Y2'

Example

'November 1, 1988'

'Nov 1, 1988'

'1 November 1988'

'1 Nov 1988'

'1 November 88'

'1 Nov 88'

'1-November-1988'

'1-Nov-1988'

'1-November-88'

B-6 NOSNE Commands and Functions

Description

The name of a month, a
two-digit day, a comma, and
a four-digit year.

The abbreviated name of a
month, a two-digit day, a
comma, and a four-digit
year.

A two-digit day, the name of
a month, and a four-digit
year separated by spaces.

A two-digit day, the
abbreviated name of a
month, and a four-digit year
separated by spaces.

A two-digit day, the name of
a month, and a two-digit
year separated by spaces.

A two-digit day, the
abbreviated name of a
month, and a two-digit year
separated by spaces.

A two-digit day, the name of
a month, and a four-digit
year separated by hyphens.

A two-digit day, the
abbreviated name of a
month, and a four-digit year
separated by hyphens.

A two-digit day, the name of
a month, and a two-digit
year separated by hyphens.

(Continued)

60464018 J

Table B-2. Date Strings (Continued)

Form

'D2-MA-Y2'

'D2MNY4'

'D2MAY4'

'D2MNY2'

'D2MAY2'

'M2/D2N4'

'M2/D2N2'
or
'DMY'

'Y4-J3'

'Y4J3'
or
'ORDINAL'

60464018 J

Example

'1-Nov-88'

'01November1988'

'OlN ov1988'

'OlN ovember88'

'01Nov88'

'11/01/1988'

'11/01/88' .

'1988-306'

'1988306'

Datefl'ime Strings

Description

A two-digit day, the
abbreviated name of a
month, and a two-digit year
separated by hyphens.

A two-"digit day, the name of
a month, and a four-digit
year.

A two-digit day, the
abbreviated name of a
month, and a four-digit year.

A two-digit day, the name of
a month, and a two-digit
year.

A two-digit day, the
abbreviated name of a
month, and a two-digit year.

A two-digit month, a
two-digit day, and a
four-digit year separated by
slants.

A two-digit month, a
two-digit day, and a
two-digit year separated by
slants.

A four-digit year and a
three-digit day separated by
a hyphen.

A four-digit year and a
three-digit day.

(Continued)

Datetrime Formats B-7

Datetrime Strings

Table B-2. Date Strings (Continued)

Form

'Y2-J3'

'Y2J3'

'Y4-M2-D2'
or
'ISOD'

'Y4M2D2'

'Y2-M2-D2'

'Y2M2D2'

'D2.M2.Y4'

'D2.M2.Y2'
or
'DMY'

Example

'88,306'

'88306'

'1988-11-01'

'19881101'

'88-11-01'

'881101'

'01.11.1988'

'01.11.88'

B-8 NOSNE Commands and Functions

Description

A two-digit year and a
three-digit day separated by
a hyphen.

A two-digit year and a
three-digit day.

A four-digit year, a two-digit
month, and a two-digit day
separated by hyphens.

A four-digit year, a two-digit
month, and a two-digit day.

A two-digit year, a two-digit
month, and a two-digit day
separated by hyphens.

A two-digit year, a two-digit
month, and a two-digit day.

A two-digit day, a two-digit
month, and a four-digit year
separated by periods.

A two-digit day, a two-digit
month, and a two-digit year
separated by periods.

60464018 J

Date/I'ime Strings

Table B-3. Time Strings

"--- Form Example Description

'H12:MM AMORPM' '2:41 PM' A two-digit hour (12-hour
or clock), a colon, a two-digit
'AMPM' minute, a space, and a

two-character day or
evening indicator.

'H24:MM:SS' '14:41:38' A two-digit hour (24-hour
or clock), a two-digit minute,
'HMS' and a two-digit second

separated by colons.

'H24:MM:SS.Sl000' '14:41:38.629' A two-digit hour (24-hour
or clock), a two-digit minute,
'MILLISECOND', 'MS' and a two-digit second

separated by colons
followed by a period and a
three-digit thousandth of a
second.

'H24:MM:SS,S100' '14:41:38,62' A two-digit hour (24-hour

"------
or clock), a two-digit minute,
ISOT and a two-digit second

separated by colons
followed by a comma and
a two-digit hundredth of a
second.

60464018 J Datetrime Format.s B-9

Replacements for Old NOSNE Commands
and Functions C

'---

60464018 J

\\,___ , ,

Replacements for Old NOSNE Commands
and Functions c
The following table lists old commands from previous versions of
NOS/VE and the preferred command or replacement command. Some
of the preferred commands may have parameters that differ from an
old command. Commands listed more than once were replaced by more
than one command.

Old Command Preferred/Replacement Command

ACCEPT _LINE GET _LINE

ADMINISTER_USER ADMINISTER_ VALIDATIONS

CHANGE _TERM _CONN_ CHANGE _CONNECTION_
ATTRIBUTES ATTRIBUTES

CONVERT _SCUlO _TO _SCUl 1 Obsolete

CREATE_ VARIABLE VAR/VAREND

DISPLAY _170 _REQUEST

DISPLAY_ 7600 _REQUEST

DISPLAY_COMMAND_
PARAMETERS

DISPLAY _IBM _REQUEST

DISPLAY _JOB _STATUS

DISPLAY _PRINT _STATUS

DISPLAY_TERM_CONN _
ATTRIBUTES

DISPLAY_ VAX_REQUEST

EDIT _LIBRARY (SCU
subcommand)

DISPLAY_ TAPE _LABEL_
ATTRIBUTES

DISPLAY_TAPE_LABEL_
ATTRIBUTES

DISPLAY_COMMAND_
INFORMATION

DISPLAY_TAPE_LABEL_
ATTRIBUTES

DISPLAY _INPUT _STATUS

DISPLAY _OUTPUT _STATUS

DISPLAY_CONNECTION _
ATTRIBUTES

DISPLAY _TAPE _LABEL_
·ATTRIBUTES

EDIT _DECK (SCU Subcommand)

60464018 J Replacements for Old NOSNE Commands and Functions C-1

Replacements for Old NOSNE Commands and Functions

Old Command

EXIT_PROC

FORMAT _SCL _PROC

REQUEST_OPERATOR_
ACTION

SET _COMMAND _LIST

SET _COMMAND _LIST

SET _COMMAND _LIST

SET _COMMAND _MODE

SET _COMMAND _MODE

SET _JOB _LIMIT

SET _LINK _ATTRIBUTES

SET _MESSAGE _MODE

SET _PASSWORD

Preferred/Replacement Command

EXIT

FORMAT_SCL_PROCEDURE

SEND _OPERATOR_MESSAGE

CREATE _COMMAND _LIST_
ENTRY

DELETE _COMMAND _LIST_
ENTRY

CHANGE _COMMAND _SEARCH_
MODE

CHANGE _INTERACTION _STYLE

CHANGE_SCL_OPTIONS

CHANGE_JOB_LIMIT

CHANGE _LINK _ATTRIBUTES

CHANGE _MESSAGE _LEVEL

CHANGE_LOGIN _PASSWORD

SET _TERMINAL _ATTRIBUTES CHANGE _TERMINAL_
ATTRIBUTES

SET_ WORKING _CATALOG CHANGE_ WORKING _CATALOG

TERMINATE _JOB TERMINATE _INPUT

TERMINATE _PRINT TERMINATE _OUTPUT

TRANSFER_FILE_XMODEM XMODEM_SEND

TRANSFER_FILE_XMODEM XMODEM_RECEIVE

C-2 NOS/VE Commands and Functions 60464018 J

Replacements for Old NOSNE Commands and Functions

The following table lists old functions from previous versions of
NOSNE and the preferred function or replacement function. Some of
the preferred functions may have parameters that differ from an old
function. Functions listed more than once were replaced by more than
one function.

Old Function Preferred/Replacement Function

$CATALO<;} $WORKING _CATALOG

$COMMAND _SOURCE $SOURCE

$CONDITION _CODE(a) $STATUS_CODE

$CONDITION _CODE(a,numeric) $STATUS _CODE

$CONDITION_
CODE(a,symbolic)

$CONDITION _NAME

$DECK _HEADER

$DECK_LIST

$FEATURE _LIST

$FEATURE _MEMBERS

$FIRST _DECK

$FIRST _MODIFICATION

$GROUP _LIST

$GROUP _MEMBERS

$LAST_DECK

$LAST _MODIFICATION

$LIBRARY _HEADER

$MAX_ VALUES

$MAX_ VALUE _SETS

$STATUS _CODE _STRING

$STATUS _CODE _NAME

$DECK _ATTRIBUTES

$DECK_NAME_LIST

$FEATURE _NAME _LIST

$FEATURE _MEMBER_NAMES

$FIRST _DECK _NAME

$FIRST_MODIFICATION _NAME

$GROUP _NAME _LIST

$GROUP_MEMBER_NAMES

$LAST _DECK _NAME

$LAST _MODIFICATION _NAME

$LIBRARY _ATTRIBUTES

$MAX_LIST

$MAX_LIST

60464018 J Replacements for Old NOSNE Commands and Functions C-3

Replacements for Old NOSNE Commands and Functions

Old Function

$MODIFICATION _HEADER

$MODIFICATION _LIST

$MODIFIED _DECKS

$NEXT_DECK

$NEXT _MODIFICATION

$PARAMETER

$PARAMETER_LIST

$RANGE

$SET_COUNT

$SEVERITY

$STRLEN

$SUBSTR

$VALUE

$VALUE_COUNT

$VALUE_KIND

C-4 NOS/VE Commands and Functions

Preferred/Replacement Function

$MODIFICATION _ATTRIBUTES

$MODIFICATION _NAME_LIST

$MODIFIED_DECK_NAMES

$NEXT _DECK _NAME

$NEXT _MODIFICATION _NAME

Obsolete

Obsolete

$RANGE _SPECIFIED

$SIZE

$STATUS _SEVERITY

$SIZE

$SUBSTRING

$PARAMETER_ VALUE

$SIZE

$GENERIC _TYPE

60464018 J

(

Comments (continued from other side)

Please fold on dotted line;
seal edges with tape only.
, -- ------------

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technical Publications
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-9983

1.1.1 .. 1.1 •••• 11 •• 1.1.11 •• 1.1 •• 1.1 .. 1 •• 1 ... 11 ... 1.11

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

M 1WJ5'

ti·MMMM"SifiWMPP·J

NOSNE Commands and Functions 60464018 J

We would like your comments on this manual to help us improve it. Please take a few
minutes to fill out this form. ·

Who are you?

0 Manager
0 Systems analyst or programmer
0 Applications programmer
0 Operator

0 Other------------

How do you use this manual?

0 As an overview
O To learn the product or system
0 For comprehensive reference
0 For quick look-up
OOther ____________ _

What programming languages do you use? -----------------

How do you like this manual? Answer the questions that apply.

Yes Somewhat No
0 0 0 Does it tell you what you need to know about the topic?
0 0 0 Is the technical information accurate?
0 0 0 Is it easy to understand?
0 0 0 Is the order of topics logical?
0 0 0 Can you easily find what you want?
0 0 0 Are there enough examples?
O O O Are the examples helpful? <O Too simple? 0 Too complex?)
0 0 0 Do the illustrations help you?
O O O Is the manual easy to read (print size, page layout, and so on)?
0 0 0 Do you use this manual frequently?

Comments? If applicable, note page and paragraph. Use other side ifneeded.

Check here if you want a reply: 0

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

0

0

0

0

~ ~ CONT~OL DATA

