
Terminal Definition for NOS/VE
Usage

60t64016
~2)CONTIP- DATA

NOSNE Terminal Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464016

Manual History

Revision System Version PSR Level Date

A 1.1.2 630 March 1985

B 1.2.1 664 September 1986

c 1.2.2 678 April 1987

D 1.3.1 700 April 1988

Revision D of this manual reflects NOSNE Version 1.3.1 at PSR level
700. New for this release:

• The INITIALIZE_ TERMINAL command.

• Support for terminals with IBM 3270 synchronous communications
and block mode operations.

• APPLICATION_STRING statements you can use to maximize
system performance.

• Additional terminal definitions.

©1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 Terminal Definition Revision D

e Contents

About This Manual 5 Defining Functions and

Audience 5
Key Labels for
Applications other than e The NOSNE User EDIT_FILE 2-39

Manual Set 6 APPLICATION _STRING
Conventions 8 Statements 2-40
Submitting Comments 9 Initializing Terminals 2-44
CYBER Software Support Screen Mode Application

Hotline 9 Statements 2-46
Input/Output Statements 2-40

Defining Your Terminal 1-1 Input Statements . 2-60

Terminal Capabilities 1-2
Output Statements 2-74

Using Existing Compiled
Glossary A-1 Definitions 1-4

Creating a New
Terminal Definition . 1-5 Related Manuals . B-1

Compiling a Terminal
Ordering Printed Definition File 1-10

Downloading a Terminal Manuals B-1

Definition 1-13 Accessing Online

Using Your Terminal Manuals ... B-1

Definition 1-14
Character Set C-1

Terminal Definition ASCII Character Set C-1
Statements 2-1

General Format of VT220 Terminal
Terminal Definition Definition File D-1
Statements 2-2

Required Terminal
Index Index-I Definition Statements . 2-5

Attribute Statements . . 2-6
Cursor Position

Information Statements 2-17
Cursor Behavior

Statements 2-25
Screen Size Specification 2-33
Defining Functions and

Key Labels for EDIT_
FILE 2-36

Revision D Contents 3

Figures

2-1. Function Key
Operation Labels and Key
Identifiers 2-60.3

Tables

1-1. Terminal Definitions . . 1-7
2-1. EDIT_FILE Defaults

for Function Keys. . . . 2-36.1

4 Terminal Definition

B-1. Related Manuals . . .
C-1. ASCII Character Set

B-2
C-2

Revision D

About This Manual

This manual describes terminal definition procedures for the
CONTROL DATA® Network Operating SystemNirtual Environment
(NOSNE). The terminal definition statements described in this
manual allow you to set up terminals for screen mode applications
such as the EDIT_FILE utility.

A Terminal Definition Statements Index follows the last page of this
manual. The Index lists all statements alphabetically, along with the
page on which each is described.

This manual is part of a set of manuals that describe SCL. If you are
not certain this manual includes the information you need, refer to
the NOSNE User Manual Set in this section for abstracts of the
other manuals.

Audience
This manual is written for application programmers who want to use
existing terminal definition files or create their own. Knowledge of the 1~
System Command Language (SCL) as described in the NOSNE ~ .. 1._!·_,~
System Usage manual is assumed. .

Revision D About This Manual 5

The NOSNE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOSNE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOSNE and SCL to users. who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOSNE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOSNE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOSNE.

NOS/VE System Usage

Describes the command interface to NOSNE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOSNE File Editor

Describes the EDIT_FILE utility used to edit NOSNE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

6 Terminal Definition Revision D

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOSNE. Program
execution is described in detail. Topics include loading a program,
program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOSNE Terminal Definition

Describes the DEFINE_ TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOSNE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision D About This Manual 7

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

8 Terminal Definition

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

Revision D

Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or fmd the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision D About This Manual 9

Defining Your Terminal 1

Before you can use NOS/VE applications in screen mode you need to
specify your terminal's capabilities in a terminal definition. This
chapter describes how to:

• Use terminal definitions that are already created and compiled by
the system.

• Create a new terminal definition by:

- Copying and modifying a terminal definition deck found in a
source library and then compiling it with the DEFINE_
TERMINAL command.

- Copying and editing a sample deck from a source library and
then compiling it with the DEFINE_ TERMINAL command.

- Entering the appropriate terminal definition statements in a
text file.

• Download a terminal definition.

• Use terminal definitions in your job.

The terminal definition acts as an interface between screen mode
applications, NOS/VE, and your terminal. For everything to work
properly, the definition must correctly specify the capabilities of your
terminal. Any capability you do not specify is not used. If the
definition contains statements that specify the wrong information,
either the intended capability will not exist or it will not work
properly.

Revision D Defining Your Terminal 1-1

Terminal Capabilities

Terminal Capabilities

Your terminal must have certain capabilities to operate in screen
mode. These capabilities fall into three categories: required attributes,
desired attributes, and optimum attributes.

Required Attributes

To be used in screen mode, your terminal must:

• Use asynchronous or IBM 3270 synchronous communications.

• Operate in character mode or IBM 3270 block mode.

• Have keys that move the cursor on the screen and transmit
characters to NOSNE so that the terminal knows the cursor
moved.

• Support direct cursor addressing.

• Provide a screen clear operation.

Desired Attributes

In addition to required attributes, your terminal should also:

• Have a clear-to-end-of-line function.

• Provide at least 16 definable function keys.

1-2 Terminal Definition Revision D

Terminal Capabilities

Optimum Attributes

Your terminal can achieve optimum performance, if in addition to the
required and desired attributes, it also:

• Has up to 32 definable function keys.

• Provides function keys that transmit a unique, identifying
character sequence followed by a RETURN character. The
RETURN character at the end of function key sequences provides
added usability and is a feature of the Control Data 721, the
Control Data 722-30, the CONNECT software packages for
IBM-compatible PCs and the Apple Macintosh, and other terminals.

Functions keys on terminals with programmable function keys
must be loaded using a unique character sequence that includes
the character designated as the RETURN key. The Digital
Equipment Corporation VT220 (hereafter referred to as the VT220)
is an example of a terminal whose function keys are loaded this
way. Refer to appendix D for further information.

• Includes host-definable tab stops for use with the EDIT_FILE
utility.

e • Includes protected fields on the screen and tabbing between
unprotected fields for use with screen formatting. The tab key
must transmit characters to the host so that the system knows
when the tab key is pressed.

• Has graphic characters for drawing lines.

• Does not use a character position on the screen to enable/disable
such attributes as bright, dim, underlined or blinking characters,
inverse video, or protected fields.

There are other terminal attributes used by various screen mode
applications. However, the first four categories described here are the
attributes most frequently used.

Revision D Defining Your Terminal 1-3

Using Existing Compiled Definitions

Using Existing Compiled Definitions
Each NOSNE release includes compiled terminal definitions. Your
installation probably has the released compiled definitions plus those
defined by your site personnel in the file
$SYSTEM.TDU.TERMINAL_DEFINITIONS. To get a list of terminal
definitions already created and compiled, enter:

/display_object_library library=$system.tdu.terminal_definitions

Each terminal definition is in a load module in an object library. The
load module name is the terminal model name prefixed with CSM$. If
your terminal's name is in one of the module names, you can access
that module for use with a screen mode application. A list of terminal
models for which terminal definitions have been released is included
in the Modifying a Terminal Definition Deck section later in this
chapter.

Suppose you want to use the EDIT_FILE utility in screen mode at a
Zenith Z19 terminal; you would:

1. Check the module list for a name similar to Zenith Zl9. Control
Data's convention for specifying a model name is to use a
three-character abbreviation for the terminal manufacturer's name
followed by the model number, as in ZEN _Z19.

2. Once you locate the model name, which in this example is
CSM$ZEN_Z19, enter:

/change_terminal_attribute terminal_model=zen_z19
/change_interaction_style style=screen

You can enter these commands after you log in or as part of your
user prolog.

An example of a terminal definition for the VT220 terminal is shown
in appendix D.

1-4 Terminal Definition Revision D

Creating a New Terminal Definition

Creating a New Terminal Definition

You can create a new terminal definition by:

• Entering the appropriate terminal definition statements in a text
file.

• Copying and modifying terminal definition decks found in a source
library and then compiling them with the DEFINE_ TERMINAL
command.

• Copying and editing a sample deck from a source library and then
compiling it with the DEFINE_ TERMINAL command.

Entering Terminal Definition Statements

To create a new terminal definition file, enter the appropriate
terminal definition statements in a text file and compile the file using
the DEFINE_TERMINAL command. (See Compiling a Terminal
Definition File later in this chapter.) Each terminal model must be
defined on a separate file.

These terminal definition statements are easy to read, but they can be
tedious to type. Check to see if someone has already defined your
terminal before you create your own file. Also see the next section,
which describes how to set up your terminal definition by copying and
modifying existing terminal definition decks.

Revision D Defining Your Terminal 1-5

I ,,
~

ill

I x

I
<· x

ili
$

i
~:

ll

I
~ :-:

II

I :::

I ;::

* ~

Creating a New Terminal Definition

Modifying a Terminal Definition Deck

You can create a new terminal definition by copying and modifying
one of the terminal defmition decks provided in source library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. The terminal models
defmed in the source library for this release are listed in table 1-1.

To copy the deck you have selected, use the SCU subcommand
EXTRACT_DECK. This subcommand produces a source file that you
can modify in your catalog.

Example

If you want to create a terminal definition for a Lear Siegler ADM51,
make a copy of the deck containing the statements for the Zenith Z19
by entering:

/scu
sc/use_library base=$system.cybi1.osf$program_interface
sc . ./ resu 1t =$nu 1 I
sc/extract_deck deck=csm$zen_z19 source=$user. 1si_adm5
sc/Qu it fa 1 se

A copy of deck CSM$ZEN _Z19 is now on file $USER.LSI_ADM5
ready for modification. After you modify the file, you need to compile
it. (See Compiling a Terminal Definition File later in this chapter.)

To modify your copy of any of the decks, refer to the hardware
reference manual for your terminal. The manual should list the
available keys and attributes and the character sequence your
terminal accepts or generates for each key or attribute. You need this
information to fill in statement parameters in the file you copy.

Refer to Defining Functions and Key Labels for EDIT_FILE in
chapter 2 for information on defining function keys for that utility.
Refer also to the NOSNE File Editor manual.

The example at the end of this chapter shows how to use the
CSM$SAMPLE deck to create a new terminal definition.

1. Control Data's convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer's name followed by the model number; for
example, you might use LSI_ADM5 for the Lear Siegler ADM5.

1-6 Terminal Definition Revision D

Creating a New Terminal Definition

e Table 1-1. Terminal Definitions

Terminal Deck Name

Apple Macintosh CSM$MAC_CONNECT_ 10

e (running CONNECT Version 1.0)

Apple Macintosh CSM$MAC_CONNECT_ l l
(running CONNECT Version 1.1)

CDC 721 CSM$CDC_ 721

CDC 722 CSM$CDC_ 722

CDC 722-30 CSM$CDC_ 722_30

CYBER 910-300 CSM$CDC_910

Digital Equipment Corporation VTlOO CSM$DEC_ VTlOO
(18 function keys) or
CSM$DEC_ VTlOO_GOLD
(32 function keys)

e Digital Equipment Corporation VT220 CSM$DEC_ VT220

IBM 3270 CSM$IBM_32701

IBM 3270 model 2 CSM$IBM_3270_21

IBM 3270 model 3 CSM$IBM_3270_31

IBM 3270 model 4 CSM$1BM_3270_41

IBM 3270 model 5 CSM$IBM_3270_51

IBM PC CSM$PC_CONNECT_ 10
(running CONNECT Version 1.0)

IBM PC CSM$PC_ CONNECT_ ll
(running CONNECT Version 1.1)

e IBM PC CSM$PC_CONNECT_l2
(running CONNECT Version 1.2)

1. If you have an Intercom network, this terminal definition is not

e supported.

(Continued)

Revision D Defining Your Terminal 1-7

Creating a New Terminal Definition

Table 1-1. Terminal Definitions (Continued)

Terminal

IBM PC
(running CONNECT Version 1.3)

Sun Microsystems 3/160

Tektronix 4109

Tektronix 4115

Tektronix 4125

Tele Video 950

Tele Video 955

Tele Video 950

Tele Video 955

Zenith Z19 or Heathkit H19

Zenith Z29 or Heathkit H29

Deck Name

CSM$PC_CONNECT_l3

CSM$SUN _ l 60

CSM$TEK_ 4109

CSM$TEK_4115

CSM$TEK_4125

CSM$TV_9502

CSM$TV_9552

CSM$TV_950_
PROTECTED3

CSM$TV_955_
PROTECTED3

CSM$ZEN_Z19

CSM$ZEN _Z29

2. This terminal definition defines the insert and delete keys. If you
use the EDIT_FILE utility often, you will probably need these keys.
This definition does not provide automatic positioning of the cursor
when filling in fields in a screen mode form.

3. This terminal definition makes filling in fields on forms easier to
do. After you fill in a field on a form, the cursor automatically
positions to the next field. This terminal definition does not define the
insert and delete keys, which are of use in the EDIT_FILE utility.

1-8 Terminal Definition Revision D

Creating a New Terminal Definition

Modifying the Sample Deck

To create a new file, copy and edit deck CSM$SAMPLE in source
library $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. This deck
contains all the terminal definition statements, formatted correctly,
with directions for filling in the parameters to describe your terminal.

If you copy deck CSM$SAMPLE, carefully follow the directions for
filling in statement parameters (the directions are enclosed in
quotation marks before each statement). Deck CSM$SAMPLE lists
statements for all possible attributes and keys that can be supported
by screen mode applications. Not all attribute and key statements may
apply to your terminal. Leave those that do not apply blank. (Decks
other than CSM$SAMPLE contain only those statements needed to
define the specified terminal.)

Refer to Defining Functions and Key Labels for EDIT_FILE in
chapter 2 for information on defining function keys for that utility.
Refer also to the NOS/VE File Editor manual.

The example at the end of this chapter shows how to use the
CSM$SAMPLE deck to create a new terminal definition.

Revision D Defining Your Terminal 1-9

l

Compiling a Terminal Definition File

Compiling a Terminal Definition File
The DEFINE_ TERMINAL command compiles your terminal definition,
and creates an object library file of terminal definition modules that
can be used by the EDIT_FILE utility and other screen mode
applications. Subsequent executions of DEFINE_ TERMINAL will
merge the new terminal definition with previously compiled definitions
(assuming you use the same object library file.) Therefore, one object
library can contain all your compiled terminal definitions, even though
each definition originates from its own file.

DEFINE_TERMINAL Command Format

The format of the DEFINE_ TERMINAL command is:

DEFINE_ TERMINAL or DEFT
INPUT=file
BINARY =file
LIST=file

The INPUT (I) parameter specifies the terminal definition file you
want to compile. Each input file can contain only one terminal A
definition. This parameter is required. W

The BINARY (B) parameter specifies the object library file that is to
contain the compiled module (the description of the object library
precedes the command format). If you omit the BINARY parameter,
object library TERMINAL_DEFINITIONS under your working catalog
is assumed.

The LIST (L) parameter specifies the file you want to contain
intermediate output from the compilation process (CYBIL code). Most
users do not need to see this file. If omitted, $LIST is assumed.

1-10 Terminal Definition Revision D

Compiling a Terminal Definition File

Object Library Characteristics

In the object library file or in the terminal definition file, the
terminal definition module is identified by the name you enter on the
MODEL_NAME statement. You enter the name on the VALUE
parameter prefixed with the characters CSM$. If a module with the
same name is already in the object library, the new module replaces
the one in the library.

To delete modules from the object library, use the CREATE_
OBJECT_LIBRARY subcommand DELETE_MODULE (refer to the
NOS/VE Object Code Management manual).

To save your terminal definition, keep your object library on a
permanent file.

Example

If you want to set up your own terminal definition for the Lear
Siegler ADM52 terminal, copy sample deck CSM$SAMPLE from source
library $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE to your own
file by entering:

/scu
sc/use_library base=$system.cybil .osf$program_interface
sc . ./result =$nu 11
sc/extract_deck deck=csm$sample source=lsi_adm5
sc/quit false

2. Control Data's convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer's name followed by the model nwnber; in
this example, the Lear Siegler ADM5 is abbreviated LSI_ADM5.

Revision D Defining Your Terminal 1-11

Compiling a Terminal Definition File

::: Edit the source file with the correct information for the Lear Siegler
!.! ADM5 terminal, using the following model name:

rnodel_name value='ls1_adm5'

::: Compile the file as follows:

II

/define_terminal 1nput=ls1_adm5 ..
.. /binary=$user.terminal_defin1t1ons

The terminal definition for the Lear Siegler ADM5 terminal is merged
into file $USER.TERMINAL_DEFINITIONS. The entry in the
DISPLAY_OBJECT_LIBRARY listing of $USER.TERMINAL_
DEFINITIONS is CSM$LSLADM5 and the model name is LSI_
ADM5.

1-12 Terminal Definition Revision D

Downloading a Terminal Definition

Downloading a Terminal Definition
If you have access to SOLVER (Control Data's online database for
reporting problems), you can download terminal definition files set up
for terminals other than the one you are using. These files are under
the special product code CSF. You can use either the XMODEM or
CONNECT/RMF protocols to download the files with a microcomputer.

A one-line description for each file describes the terminal definition
contained in that file. Enter the SOLVER search request

product=csf,text=o

to produce a short description of each terminal definition file that is
available.

Please have your site analyst contact CDC CYBER Software Support
if you want to place any locally developed terminal definitions on
SOLVER for other sites to access.

Revision D Defining Your Terminal 1-13

Using Your Terminal Definition

Using Your Terminal Definition

To use your own terminal definition for a screen mode application,
you must add the library containing your terminal definitions to your
job library list. This is done with the SET_PROGRAM_ATTRIBUTE
command. The format for adding libraries is:

SET_PROGRAM_ATTRIBUTE or SETPA
ADD_ LIBRARY= list of file

The complete format is described in the NOSNE Object Code
Management manual.

Example:

To add object library TERMINAL_DEFINITIONS to your job
library list, enter:

/set_program_attribute add_library=$user.terminal_definitions

To set up your own terminal definition for the Lear Siegler
ADM5,3 enter:

/change_terminal_attributes terminal_model=lsi_admS
/change_interaction_style style=screen

You may want to add the SET_PROGRAM_ATTRIBUTE, CHANGE_
TERMINAL_ATTRIBUTES, and CHANGE_INTERACTION_STYLE
commands to your user prolog. Then, each time you log in, your
library of terminal definitions will be added to the job library list
automatically as will your terminal model and interaction style.

If you want to share your definitions with others at your site, either
make your object library public and have others add it to their job
library list or talk to site personnel about adding your definitions to
the $SYSTEM. TDU. TERMINAL_ DEFINITIONS file.

3. Control Data's convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer's name followed by the model number; in
this example, the Lear Siegler ADM5 is abbreviated LSI_ADM5.

1-14 Terminal Definition Revision D

Terminal Definition Statements

Terminal definition statements describe the capabilities of a specific
terminal and the system with which it interacts.

e This chapter:

• Describes the general format of terminal definition statements.

• Lists the statements required for proper functioning of any screen
mode application.

• Lists and describes all supported terminal definition statements.

The statement types:

• Attribute statements

• Cursor positioning information statements

• Cursor behavior statements

• Screen size specification statements

• Statements that define functions and labels for applications

• A command that initializes the terminal for line or screen mode
interaction style

• Screen mode application statements

• Input/output statements

• Input statements

• Output statements

2

Revision D Terminal Definition Statements 2-1

I

f:

General Format of Terminal Definition Statements

General Format of Terminal Definition
Statements
The format of a terminal definition statement conforms to the SCL
naming conventions with the following exceptions.

• The statement name BACKSPACE has no abbreviation.

• The parameter name INOUT is abbreviated to IO, rather than I,
to distinguish it from the abbreviation for IN.

• The OUT parameter of the APPLICATION _STRING statement can
be continued on more than one line under the following conditions:

Strings that would extend over more than one line must be
broken into substrings that the system concatenates. Each
substring must be complete on a single line.

- Variables must be complete on each line.

~:_!,!·_,i Refer to the NOSNE System Usage manual for more information
about naming conventions.

All terminal definition statements have the same general format.

statement_name or
abbreviated_statement_name

parameter name= value list
parameter name=value list

parameter name=value list

Most frequently, value list is a character string you can find in the
hardware reference manual for your terminal. Often these tables
represent a character in different ways; for example:

Representation Meaning

'A' The ASCII character A. Enter printable ASCII
characters as strings. (See appendix C for a
complete list of ASCII characters.)

101(8) The character A as an octal number.

41(16) The character A as a hexadecimal number.

2·2 Terminal Definition Revision D

General Format of Terminal Definition Statements

Representation Meaning

65 The character A as a decimal number.

33(8)

ESC

The ASCII ESC character as an octal number.

The ASCII ESC character indicated by its
standard designation. Enter nonprintable ASCII
characters as keywords. (See the Graphic or
Mnemonic column of table C-1 in appendix C for a
list of standard designations for ASCII characters).

When you have more than one item in the value list, put the list in
parentheses with each item separated by a blank or comma.

Example:

The following are valid terminal definition statements.

model_name value='CDC721'
blink_begin out=(esc 12(16) 'a')

These statements show values in different ways:

• As ASCII character strings:

'CDC721' and 'a'

• As an ASCII character mnemonic:

ESC

• As a hexadecimal number:

12(16)

If you intend to use a character string more than once, you may want
to define a variable name to have the value of that string. You can
do this by equating the variable name to its value at the beginning of
the terminal definition, before any of the statements. The format is:

variable _name= list of character string

Revision D Terminal Definition Statements 2-3

General Format of Terminal Definition Statements

The variable name can be any string of alphanumeric characters and
the underscore, beginning with an alphabetic character. It can be up
to 256 characters. The value of the string is the sequence listed in i your terminal hardware reference manual for a particular attribute.

;: The separator between each item in list of character string can be
i either a comma or one or more spaces.

Example:

Assume that the hardware reference manual for your terminal
specifies the following sequence be used to enable a protected field:

rs dc2 'K'

You then defme a variable name to have that value by entering

enable_protect=(rs dc2 'K')

at the beginning of the terminal definition. Throughout the
remainder of the defmition, you then use ENABLE_PROTECT as
a value in place of the character string.

2-4 Terminal Definition Revision D

Required Terminal Definition Statements

Required Terminal Definition Statements

Some statements are required in order for full screen applications to
work correctly. These are:

CHAR_PAST _LAST _POSITION
CHAR_ PAST _LEFT
CHAR_PAST_RIGHT
COMMUNICATIONS
CURSOR_ DOWN

CURSOR_ LEFT
CURSOR_POS_BEGIN
CURSOR_POS_ENCODING
CURSOR_POS_SECOND (if applicable)

CURSOR_POS_ THIRD (if applicable)
CURSOR_ RIGHT
CURSOR_ UP
ERASE_PAGE_STAY or ERASE_PAGE_HOME
FUNCTION_ KEY _LEA VES_MARK

MODEL_NAME or TERMINAL_MODEL
MOVE_PAST_BOTTOM
MOVE_PAST _LEFT
MOVE_PAST _RIGHT
MOVE_PAST_TOP

There must also be a subset of the application function keys available
and defined (a minimum of 16).

The ERASE_END_OF _LINE statement is not required, but it is
highly recommended.

NOTE

In the brief descriptions later in this chapter, all required statements
are in bold type. Also, the format description of each required
statement states that it is required.

Revision B Terminal Definition Statements 2-5

Attribute Statements

Attribute Statements

Overview

Attribute statements describe or determine general characteristics of
the terminal. A brief description of each attribute follows. Required
statements are in boldface type. (See the next section for statement
formats and detailed descriptions.)

Statement

AUTOMATIC_ TABBING

CLEARS_ WHEN_
CHANGE_SIZE

COMMUNICATIONS

FIXED_ TAB_POSITIONS

FUNCTION _KEY_
LEAVES_MARK

2-6 Terminal Definition

Description

Indicates whether the terminal
supports tabbing from one completely
filled, unprotected input field to the
next, without requiring that a tab key
be pressed.

Determines whether the screen clears
when the screen size changes.

Identifies the type of terminal
communication. The only type of
communication supported is
asynchronous (TYPE=ASYNCH). This
statement is required.

Indicates the position of the fixed tab
stops.

Specifies the number of characters
that must be repainted when you
press a function key. This statement
is required.

Revision B

Statement

HAS_HIDDEN

HAS_PROTECT

HOME_AT _TOP

MODEL_NAME

e MULTIPLE_SIZES

PROGRAMMABLE_ TAB_
STOPS

TABS_ TO_HOME

Revision B

Attribute Statements

Description

Allows you to define areas on the
screen in which something typed will
not be displayed.

Allows you to use the PROTECT_
BEGIN and PROTECT _END
statements to define protected areas
on the screen.

Determines where the CURSOR_
HOME statement sends the cursor, to
the top left of the screen or to the
bottom.

Identifies the type of terminal being
defined. Either this statement or the
TERMINAL_MODEL statement is
required.

Indicates whether your terminal
supports more than one screen size.

Identifies the number of programmable
tab stops.

Determines whether the TAB key
moves the cursor to the cursor home
position or wraps around to the first
unprotected field when the cursor is at
the last unprotected field.

Terminal Definition Statements 2-7

Attribute Statements

Statement Description

TABS_ TO_ TAB_STOPS Specifies whether the terminal
supports tabbing to settable or
predefined tab stops (like typewriter
tabs).

TABS_ TO_ UNPROTECTED Specifies whether the terminal
supports tabbing forward and
backward to the start of unprotected
fields.

TERMINAL_MODEL Identifies the type of terminal being
defined. Either this statement or the
MODEL_NAME statement is
required.

TYPE_AHEAD

2-8 Terminal Definition

Allows a full screen application to
execute in type ahead mode.

Revision B

Attribute Statements

Format Descriptions

All attribute statements except COMMUNICATIONS and
PROGRAMMABLE_TAB_STOPS have a VALUE parameter. This
parameter is used in different ways depending on the statement (refer
to individual descriptions for complete information).

AUTOMATIC_ TABBING

The AUTOMATIC_ TABBING statement indicates whether the
terminal supports tabbing from one completely filled, unprotected
input field to the next, without requiring that a tab key be pressed. If
omitted, it is assumed that the terminal does not have this capability.

The format is:

AUTOMATIC_ TABBING or AUTT
VALUE= boolean

The VALUE (V) parameter indicates whether the terminal supports
tabbing from one input field to the next. Specify TRUE if the
terminal supports both tabbing and protected areas. Specify FALSE if
it does not support both tabbing and protected areas. This parameter
is required.

CLEARS_ WHEN_ CHANGE_ SIZE

The CLEARS_ WHEN_CHANGE_SIZE statement determines whether
the screen clears when the screen size changes. If omitted, the screen
does not clear.

The format is:

CLEARS_ WHEN_CHANGE_SIZE or CLEWCS
VALUE= boolean

The VALUE (V) parameter determines whether the screen clears.
Specify TRUE to clear the screen. Specify FALSE if you do not want
the screen to clear, or if your terminal supports only one screen size. e This parameter is required.

Revision D Terminal Definition Statements 2-9

Attribute Statements

COMMUNICATIONS

The COMMUNICATIONS statement identifies the type of
communication your terminal uses. This statement is required.

The format is:

COMMUNICATIONS or COM
TYPE= keyword

The TYPE (T) parameter identifies the terminal protocol. Specify
ASYNCH, SYNCH, or SNA. This parameter is required.

FIXED_ TAB POSITIONS

The FIXED_ TAB_POSITIONS statement identifies the locations of
the fixed tab positions on the terminal.

The format is:

FIXED_TAB_POSITIONS or FIXTP
POSITIONS=list of integer

The POSITIONS (P) parameter specifies the tab positions (list of
integers) that are set for the terminal. This parameter is required.

2·10 Terminal Definition Revision D

Attribute Statements

FUNCTION _KEY_LEAVES_MARK

The FUNCTION _KEY_LEAVES_MARK statement is needed for full
screen products to repaint the valid characters after a function key
press. Use this statement if the following applies:

e • Pressing a function key causes characters to appear on the screen.

• Function keys require escape or control sequences that include a
character to complete the sequence.

This statement is required.

The format is:

FUNCTION _KEY _LEAVES_ MARK or FUNKLM
VALUE=integer

The VALUE (V) parameter specifies the number of characters that
must be erased from the screen (in order for the original characters to
be repainted) after a function key is pressed. If your terminal does not
write characters when a function key is pressed, enter a value of 0.
This parameter is required.

HAS HIDDEN

The HAS_HIDDEN statement allows you to use the HIDDEN _BEGIN
and HIDDEN _END statements. If your terminal has the capability,
these statements define areas on the screen in which something typed
will not be displayed. If the statement is omitted, no hidden areas can
be defined.

The format is:

HAS_HIDDEN or HASH
VALUE= boolean

The VALUE (V) parameter specifies whether the HIDDEN _BEGIN
and HIDDEN _END statements can be used. Specify TRUE if your
terminal is capable of having areas hidden. Specify FALSE if the
capability does not exist on your terminal or if the terminal uses a
character position on the screen to provide this capability. This
parameter is required.

Revision C Terminal Definition Statements 2-11

Attribute Statements

HAS PROTECT

The HAS_PROTECT statement allows you to use the PROTECT_
BEGIN and PROTECT_END statements. If your terminal has the
capability, these statements define protected areas on the screen. If
omitted, no protected areas can be defined.

The format is:

HAS_ PROTECT or HASP
VALUE= boolean

The VALUE (V) parameter specifies whether the PROTECT_BEGIN
and PROTECT_END statements can be used. Specify TRUE if your
terminal is capable of having areas protected. Specify FALSE if the
capability does not exist on your terminal or if the terminal uses a
character position on the screen to provide this capability. This
parameter is required.

HOME _AT_ TOP

The HOME_AT_ TOP statement determines whether the CURSOR_
HOME statement sends the cursor to the top left of the screen or to
the bottom. To ensure the proper functioning of the EDIT_FILE
utility, include this statement with VALUE=TRUE. If omitted, the
cursor home position is at the bottom left of the screen.

The format is:

HOME_AT_TOP or HOMAT
VALUE= boolean

The VALUE (V) parameter determines the home position of the
cursor. Specify TRUE for the cursor home position to be at the top
left of the screen. Specify FALSE for the cursor home position to be at
the bottom left of the screen. This parameter is required.

2-12 Terminal Definition Revision C

Attribute Statements

MODEL_NAME

The MODEL_NAME statement identifies the type of terminal being
defined. This statement is required.

The format is:

MODEL_NAME or MODN
VALUE= string

The VALUE (V) parameter specifies the model name to he used:

• As the TERMINAL_MODEL on the CHANGE_ TERMINAL_
ATTRIBUTES command.

• On the subcommand that activates screen mode for an application.

• As the name of the compiled terminal definition file on an object
library (the model name is prefixed by CSM$).

The terminal model name you specify for the VALUE parameter is a
string that consists of 1 through 25 alphanumeric characters and the
underscore character, and starts with an alphabetic character. The
system does not distinguish between uppercase and lowercase
characters. CDC_ 721 and cdc_ 721 are both interpreted as CDC_ 721.
Control Data's convention for specifying a model name is to use a
three-character abbreviation for the terminal manufacturer's name
followed by the model number; for example, DEC_ VTlOO.

The VALUE parameter is required.

MULTIPLE _SIZES

The MULTIPLE_SIZES statement specifies whether your terminal can
support more than one screen size. You must include the MULTIPLE_
SIZES statement with the SET_SIZE statement. (See the Screen Size
Specification section later in this chapter.)

The format is:

MULTIPLE_SIZES or MULS
VALUE= boolean

The VALUE (V) parameter specifies whether more than one SET_
SIZE statement can be used. If your terminal can have more than one
screen size within a screen mode application, specify TRUE. If it can
have only one screen size, specify FALSE. This parameter is required.

Revision D Terminal Definition Statements 2-13

I

Attribute Statements

PROGRAMMABLE_ TAB_STOPS

The PROGRAMMABLE_ TAB_STOPS statement identifies the number
of programmable tab stops.

The format is:

PROGRAMMABLE_TAB_STOPS or PROTS
NUMBER= integer

·ii The NUMBER (N) parameter identifies the number of programmable
::= tab stops. This parameter is required.

TABS_TO_HOME

The TABS_ TO_HOME statement determines whether the TAB key
moves the cursor to the cursor home position or wraps around to the
first unprotected field, when the cursor is at the last unprotected field.
(The reverse happens when you tab backward.) If omitted, the TAB
key tabs to the first unprotected field.

The format is:

TABS_TO_HOME or TABTH
VALUE= boolean

The VALUE (V) parameter determines whether the TAB key moves
the cursor to the cursor home position or wraps around to the first
unprotected field. Specify TRUE if you want the cursor to go to the
home position. Specify FALSE if you want the cursor to wrap around
to the first unprotected field, or if the terminal does not have
protected areas. This parameter is required.

2-14 Terminal Definition Revision D

Attribute Statements

TABS_TO_TAB_STOPS

The TABS_ TO_ TAB_STOPS statement specifies whether the terminal
supports tabbing to settable or predefined tab stops (like typewriter
tabs). If omitted, it is assumed the terminal does not have tab stops.

The format is:

TABS_TO_TAB_STOPSorTABTTS
VALUE= boolean

The VALUE (V) parameter specifies whether the terminal has tab
stops. Specify TRUE if the terminal has tab stops. Specify FALSE if it
does not have tab stops. This parameter is required.

TABS_TO_UNPROTECTED

The TABS_ TO_ UNPROTECTED statement specifies whether the
terminal supports tabbing forward and backward to the start of
unprotected fields. If omitted, it is assumed the terminal does not
support this type of tabbing.

The format is:

TABS_ TO_ UNPROTECTED or TABTU
VALUE= boolean

The VALUE (V) parameter specifies whether the terminal supports
tabbing forward and backward to the start of unprotected fields.
Specify TRUE if the terminal supports this type of tabbing. Specify
FALSE if the terminal does not support it or if the terminal does not
have protected areas. This parameter is required.

Revision D Terminal Definition Statements 2-15

Attribute Statements

TERMINAL_MODEL

The TERMINAL_MODEL statement identifies the type of terminal
being defined. Either this statement or the MODEL_NAME statement
is required.

The format is:

TERMINAL_MODEL or TERM
VALUE= string

The VALUE (V) parameter specifies the terminal model name to be
used:

• As the TERMINAL_MODEL on the CHANGE_ TERMINAL_
ATTRIBUTES command.

• On the subcommand that activates screen mode in a screen mode
application.

• As the name of the compiled terminal definition file on an object
library (the model name is prefixed by CSM$).

The terminal model name you specify for the VALUE parameter is a
string that consists of 1 through 25 alphanumeric characters and the
underscore character; it must begin with an alphabetic character. The
system does not distinguish between uppercase and lowercase
characters. CDC_ 721 and cdc_ 721 are both interpreted as CDC_ 721.
Control Data's convention for specifying the model name is to use a

'.:: three-character abbreviation for the terminal manufacturer's name

;i,.fi,', followed by the mOOel number; for example, DEC_ VTlOO.

The VALUE parameter is required.

2-16 Terminal Definition Revision D

Attribute Statements

TYPE AHEAD

The TYPE_AHEAD statement allows a screen mode application to
execute in type ahead mode. In type ahead mode you can enter
additional input without waiting for the system to respond to previous
input. This statement is included for compatibility with NOS terminal
definitions. NOSNE executes applications in type ahead mode no
matter what you specify here. If omitted, type ahead mode is assumed.

The format is:

TYPE_AHEAD or TYPA
VALUE= boolean

The VALUE (V) parameter specifies type ahead mode. Enter either
TRUE or FALSE. This parameter is required.

Revision D Terminal Definition Statements 2-16.1

Cursor Position Information Statements

Cursor Position Information Statements
The cursor position information statements define the terminal
attributes of the cursor position. A brief description of each statement
follows. Required statements are in boldface type. (See the next
section for statement formats and detailed descriptions.)

Statement

CURSOR_POS_BEGIN

CURSOR_POS_COLUMN _
FIRST

CURSOR_POS_COLUMN _
LENGTH

CURSOR_POS_
ENCODING

CURSOR_POS_ROW_
LENGTH

CURSOR_POS_SECOND

CURSOR_POS_THIRD

Revision D

Description

Specifies the first character string of
the cursor position sequence. This
statement is required.

Indicates the column versus row
cursor position sequence.

For ANSI type terminals, indicates the
number of bytes your terminal sends
for column values.

Indicates how your terminal encodes
the cursor position output sequence.
This statement is required.

For ANSI type terminals, indicates the
number of bytes your terminal sends
for row values.

Specifies the second character string of
the cursor position sequence. This is a
required statement if applicable to
your terminal.

Specifies the third character string of
the cursor position sequence. This is a
required statement if applicable to
your terminal.

Terminal Definition Statements 2·17

Cursor Position Information Statements

Format Descriptions

Each cursor position information statement description follows.

CURSOR_POS_BEGIN

I The CURSOR_POS_BEGIN statement specifies the first character to e
ii which the cursor is positioned. For example, in the encoding sequence
ili axbyc, the first character the cursor is positioned to is a. (The

Ii
I
'j

description of the CURSOR_POS_ENCODING statement later in this
chapter provides more information).

The CURSOR_POS_BEGIN statement is required. It can be split into
two statements (an input and an output statement) if the character
sequence sent to the terminal differs from the sequence sent from the
terminal. Refer to Input/Output Statements - Format Descriptions later
in this chapter for more information.

For IBM 3270-compatible terminals, include the following two
CURSOR_POS_BEGIN statements:

cursor_pos_begin in=11(16)
cursor_pos_begin out=(11(16), 7E(16), 7E(16))

The format is:

CURSOR_POS_BEGIN or CURPB
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to and from the terminal. This value is included in the hardware
reference manual for your terminal. This parameter is required.

The LABEL (L) parameter indicates if a cursor position transmitted
from the terminal requires a response from the application to
reposition the cursor, or if the terminal repositions the cursor. If the
string is nonblank, cursor positioning requires output from an
application. (This is advisable for input devices such as touch panels.)
If the string is blank, or you omit the parameter, the terminal A
positions the cursor. W

2-18 Terminal Definition Revision D

Cursor Position Information Statements

CURSOR_POS_COLUMN_FIRST

The CURSOR_POS_COLUMN _FIRST statement indicates the column
versus row cursor position sequence of your terminal. This statement
applies only to terminals for which you specify either BINARY_
CURSOR or ANSI_CURSOR on the CURSOR_POS_ENCODING
statement. If omitted, it is assumed that the terminal outputs the row
first.

The format is:

CURSOR_POS_COLUMN_FIRST or CURPCF
VALUE= boolean

The VALUE (V) parameter indicates whether your terminal outputs
the column or row first.

Specify TRUE if your terminal has a cursor position sequence that
outputs the column before the row.

Specify FALSE if your terminal outputs the row before the column.

If VALUE is omitted, FALSE is assumed.

Revision D Terminal Definition Statements 2-19

Cursor Position Information Statements

CURSOR_POS_COLUMN_LENGTH

The CURSOR_POS_COLUMN_LENGTH statement indicates the
number of bytes your terminal sends for column values. This
statement applies only to terminals for which you specify ANSI_
CURSOR on the CURSOR_POS_ENCODING statement. If omitted, it
is assumed that the terminal sends a variable number of bytes.

The format is:

CURSOR_POS_COLUMN_LENGTH or CURPCL
VALUE= integer

The VALUE (V) parameter indicates the number of bytes your
terminal sends for column values.

Enter a number other than 0 only if your terminal is an ANSI
terminal and sends a set number of bytes for column values.

If your terminal is not ANSI or if it sends a variable number of
bytes, set the value to 0.

If VALUE is omitted, it is assumed that the terminal sends a variable
number of bytes. e
CURSOR_POS_ENCODING

The CURSOR_POS_ENCODING statement indicates the manner in

.

.. f:~·:,1 which your terminal encodes the cursor position. Most terminals use
one of the following four types of cursor position encoding.

• ANSLCURSOR

• BINARY_CURSOR

• CDC72l_CURSOR

!! • IBM3720_CURSOR

These types are described later as values for the TYPE parameter.

2-20 Terminal Definition Revision D

Cursor Position Information Statements

If your terminal does not use one of these encoding types, you cannot
define the terminal for use with screen mode applications. The
CURSOR_POS_ENCODING statement is required.

The format is:

CURSOR_POS_ENCODING or CURPE
TYPE= keyword
BIAS=integer

The TYPE (T) specifies the type of encoding used by your terminal.
This parameter is required. Which keyword you select for TYPE
depends on encoding variables. These variables are used in a sequence
that has a general format:

axbyc

Variable

a

b

c

x

y

Description

The first character string of the cursor position sequence.
The value of a is defined in the CURSOR_POS_BEGIN
statement.

The second character string of the cursor position
sequence. The value of b is defined in the CURSOR_
POS_SECOND statement.

The third character string of the cursor position sequence.
The value of c is defined in the CURSOR_POS_ THIRD
statement.

The horizontal position of the cursor.

The vertical position of the cursor.

All terminals will have at least an a, x, and y.

Revision D Terminal Definition Statements 2·21

Cursor Position Information Statements

Select a keyword value for TYPE from the encoding descriptions that
follow:

Keyword

ANSI_CURSOR

BINARY_CURSOR

CDC721_ CURSOR

IBM3270_CURSOR

2-22 Terminal Definition

Description

Specify this value if your terminal
generates the horizontal (x) and vertical
(y) cursor positions as decimal graphic
characters rather than hexadecimal
numbers [12 rather than OC(16)] in one of
the sequences:

axby or aybxc

Specify this value if your terminal's cursor
position sequence includes a bias
(described with the BIAS parameter) as
follows:

a (x +bias) b (y+ bias) c

or

a (y +bias) b (x +bias) c

Specify this value if your terminal's cursor
position sequence includes a bias
(described with the BIAS parameter) and
varies depending on the value of the
horizontal position of the cursor (x). If x is
less than 81, the sequence is:

a (x +bias) (y +bias)

If x is greater than 80, the sequence is:

ab (x + bias-80) (y +bias)

Specify this value for all 3270-compatible
terminals.

Revision D

Cursor Position Information Statements

The BIAS (B) parameter specifies an integer, which is added to the x
and y values. The usual number is 32, which is the value of the
ASCII space character. The purpose of a bias is to prevent the x and
y values from falling in the range of 0 through 31, which has special
meaning in communications. The BIAS parameter is required.

Examples:

The Zenith Zl9 terminal CURSOR_POS_ENCODING statement is:

cursor_pos_encod1ng b;as=(1) type=ans;_cursor

The CDC 722 terminal CURSOR_POS_ENCODING statement is:

cursor_pos_encod;ng b;as=(32) type=b;nary_cursor

CURSOR_POS_ROW_LENGTH

The CURSOR_POS_ROW_LENGTH statement indicates the number
of bytes your terminal sends for row values. This statement applies
only to terminals for which you specify ANSI_CURSOR on the
CURSOR_POS_ENCODING statement. If omitted, it is assumed that
the terminal sends a variable number of bytes.

The format is:

CURSOR_POS_ROW_LENGTH or CURPRL
VALUE=integer

The VALUE (V) parameter indicates the number of bytes your
terminal sends for row values.

Specify a number other than 0 only if your terminal is an ANSI
terminal and sends a set number of bytes for row values.

If your terminal is not ANSI, or if it sends a variable number of
bytes, set the value to 0.

If VALUE is omitted, it is assumed that the terminal sends a variable
number of bytes.

Revision D Terminal Definition Statements 2·23

Cursor Position Information Statements

CURSOR_POS_SECOND

The CURSOR_POS_SECOND statement specifies the second character
string of the cursor position sequence. In the general encoding
sequence axbyc, this is the variable b (the description of the
CURSOR_POS_ENCODING statement provides more information).
This statement is required if your terminal uses it.

The format is:

CURSOR_POS_SECOND or CURPS
OUT=list of integer, keyword, or string

..
:

....

:

[······'i __ .=: __ .=: The OUT (0) parameter specifies a character sequence transmitted to
. the terminal. This value is listed in the hardware reference manual

for your terminal. This parameter is required.

CURSOR_POS_THIRD

The CURSOR_POS_ THIRD statement specifies the third character
string of the cursor position sequence. In the general encoding
sequence axbyc, this is the variable c (the CURSOR_POS_
ENCODING statement provides more information). This statement is
required if your terminal uses it.

The format is:

CURSOR_POS_THIRD or CURPT
OUT=list of integer, keyword, or string

........

:

: .. ·····'I __ ... ···'· The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This value is listed in the hardware reference manual
for your terminal. This parameter is required.

2-24 Terminal Definition Revision D

Cursor Behavior Statements

Cursor Behavior Statements

Cursor behavior statements specify how you want the terminal to
respond when you move the cursor past the edge of the screen. A
brief description of each statement follows. All cursor behavior
statements are required. (See the next section for statement formats
and detailed descriptions.)

Statement

CHAR_ PAST _LAST_
POSITION

CHAR PAST _LEFT/
CHAR_PAST_RIGHT

MOVE_PAST _BOTTOM/
MOVE_PAST _TOP

MOVE_PAST_LEFT/
MOVE PAST_RIGHT

Revision C

Description

Determines cursor movement past the
last position on the bottom line of the
screen (not using cursor movement
keys). This is a required statement.

Determine cursor movement past the
left or right edge of the screen (not
using cursor movement keys). These
are required statements.

Determines cursor movement past the
bottom or top edge of the screen by
using the cursor movement keys.
These are required statements.

Determines cursor movement past the
left or right edge of the screen using
the cursor movement keys. These are
required statements.

Terminal Definition Statements 2-25

Cursor Behavior Statements

Format Descriptions

Each cursor behavior statement has a required TYPE parameter, that
determines the cursor movement.

CHAR _PAST _LAST _POSITION

The CHAR_PAST_LAST_POSITION statement determines how the
terminal behaves when you move the cursor past the last position on
the bottom line of the screen (using keys other than the cursor
movement keys). This is a required statement.

The format is:

CHAR PAST_LAST_POSITION or CHAPLP
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

HOME_NEXT

SCROLL_ NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

2-26 Terminal Definition

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
bottom edge of the screen.

The cursor wraps around to the first
column of the top row (home position).

The cursor wraps around to the
opposite (left) side of the screen and
remains on the same line.

Revision C

Cursor Behavior Statements

CHAR_PAST _LEFT

The CHAR_PAST_LEFT statement determines how the terminal
behaves when you move the cursor past the left edge of the screen
(using keys other than cursor movement keys). This is a required
statement.

The format is:

CHAR_PAST_LEFT or CHAPL
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Value

HOME_NEXT

SCROLL_ NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_ NEXT

Revision B

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
left edge of the screen.

The cursor reappears at the opposite
(right) side on the next line down.

The cursor wraps around to the
opposite (right) side of the screen and
remains on the same line.

Terminal Definition Statements 2-27

Cursor Behavior Statements

CHAR_PAST _RIGHT

The CHAR_PAST_RIGHT statement determines how the terminal
behaves when you move the cursor past the right edge of the screen
by typing more characters than are allowed on a row. This is a
required statement.

The format is:

CHAR_PAST_RIGHT or CHAPR
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

HOME_NEXT

SCROLL_ NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

2-28 Terminal Definition

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
right edge of the screen.

The cursor reappears at the opposite
(left) side of the screen on the next
line down.

The cursor wraps around to the
opposite (left) side of the screen and
remains in the same line.

Revision B

Cursor Behavior Statements

MOVE_PAST_BOTTOM

The MOVE_PAST_BOTTOM statement determines how the terminal
behaves when you move the cursor past the bottom edge of the screen
using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST _BOTTOM or MOVPB
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

HOME_NEXT

SCROLL_ NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

Revision B

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
bottom edge of the screen.

The cursor wraps around to the top
row on the screen and moves one
column to the right.

The cursor wraps around to the top
row on the screen and remains in the
same column.

Terminal Definition Statements 2-29

Cursor Behavior Statements

MOVE_PAST _LEFT

The MOVE_PAST_LEFT statement determines how the terminal
behaves when you move the cursor past the left edge of the screen by
using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST _LEFT or MOVPL
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

HOME_ NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

2-30 Terminal Definition

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
left edge of the screen.

The cursor reappears at the opposite
(right) side of the screen on the next
line down.

The cursor wraps around to the
opposite (right) side of the screen and
remains on the same line.

Revision B

Cursor Behavior Statements

MOVE PAST RIGHT

The MOVE_PAST_RIGHT statement determines how the terminal
behaves when you move the cursor past the right edge of the screen
by using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST _RIGHT or MOVPR
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Value

HOME_NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

Revision B

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
right edge of the screen.

The cursor reappears at the opposite
(left) side of the screen on the next
line down.

The cursor wraps around to the
opposite (left) side of the screen and
remains on the same line.

Terminal Definition Statements 2-31

Cursor Behavior Statements

MOVE_PAST _TOP

The MOVE_PAST _TOP statement determines how the terminal
behaves when you move the cursor past the top edge of the screen
using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST_TOP or MOVPT
TYPE= keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

HOME_NEXT

SCROLL_ NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP _SAME_NEXT

2-32 Terminal Definition

Description

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
top edge of the screen.

The cursor wraps around to the
bottom row of the screen and moves
one column to the right.

The cursor wraps around to the
bottom row of the screen and remains
in the same column.

Revision B

Screen Size Specification

Screen Size Specification

The SET_SIZE statement describes the screen size or sizes supported
by your terminal and allows you to specify a pick/locate device. Refer .'f.,!,i

to the hardware reference manual for your terminal.

You must specify at least one screen size using the SET_SIZE
statement. You can specify up through four screen sizes, one size per
SET_SIZE statement.

If your terminal supports more than one screen size, you must set the
MULTIPLE_SIZES statement to TRUE; otherwise, set the statement
to FALSE.

SET_SIZE

The format is:

SET_ SIZE or SETS
ROWS= integer
COLUMNS= integer
OUT=list of integer, keyword or string
CHARACTER_SPECIFICATION=list of integer
CHARACTER_POSITIONS=list of integer
LINE_SPECIFICATION=list of integer
LINE_POSITIONS=list of integer
DEVICE= string

The ROWS (R) parameter indicates the number of rows (lines) that
your terminal supports. This parameter is required.

The COLUMNS (C) parameter indicates the number of columns
(characters) that your terminal supports. This parameter is required.

The OUT (0) parameter specifies a character sequence to be
transmitted to the terminal. You obtain this sequence from the
hardware reference manual for your terminal. For terminals that can
support more than one screen size, this parameter specifies the
sequence that is sent to the terminal to switch to the indicated size.
Do not specify this parameter if your terminal supports only one
screen size.

Revision D Terminal Definition Statements 2-33

Screen Size Specification

NOTE

The following five parameters allow you to specify the name and
accuracy of a pick/locate device such as a touch panel or mouse.
(These parameters are optional.)

The CHARACTER_SPECIFICATION (CS) parameter indicates the
starting column, ending column, and character increment for
horizontal accuracy.

The CHARACTER_POSITION (CP) parameter indicates the cursor
character positions for each pick/locate operation. Use this parameter
if the character increment is not consistent between the pick/locate
positions.

The LINE_SPECIFICATION (LS) parameter indicates the starting
row, ending row, and line increment for vertical accuracy.

The LINE_POSITION (LP) parameter gives the cursor line positions
for each pick/locate operation. Use this parameter if the character
increment is inconsistent between pick/locate positions.

The DEVICE (D) parameter names the pick/locate device. If omitted,
no name is assigned.

2-34 Terminal Definition Revision D

Screen Size Specification

Examples

Enter the statements in order of increasing size, giving columns
preference over rows. For example, you might enter:

set_size rows=24 columns=80 out=(rs dc2 'H' rs dc2 •"•)
set_size rows=30 columns=80 out=(rs dc2 'H' rs dc2 •"•)
set_size rows=24 columns=132 out=(rs dc2 'G' rs dc2 •"•)
set_size rows=30 columns=132 out=(rs dc2 'G' rs dc2 •"•)

The following example shows how you can specify the SET_SIZE
parameters for 80 column mode on a CDC 721 touch panel device.
Since this terminal has consistent character increments in 80 column
mode, you can use the CHARACTER_SPECIFICATION and LINE_
SPECIFICATION parameters. This example specifies a four character
increment between columns 11 and 70, and a two line increment
between rows 1 and 29.

set_size rows=30 columns=80 out=(rs dc2 'H' rs dc2 •"•) ..
character_specification=(11,70,4)
line_specification=(1,29,2)
device='TOUCH_PANEL'

e The next example shows how you can specify the SET_SIZE
parameters for 132 column mode on a CDC 721 touchpanel device.
Since this terminal does not have consistent column character
increments in 132 column mode (the increment is either 6 or 7
characters), you must use the CHARACTER_POSITIONS parameter.
The example specifies each column character increment, and a two
line increment between rows 1 and 29.

set_size rows=30 columns=132 out=(rs dc2 'G' rs dc2 •"•) ..
character_positions=(20,26,33,39,45,51,57,64,70,76,82,88,

95,101,107,113) ..
line_specification=(l,29,2)
device='TOUCH_PANEL'

Revision D Terminal Definition Statements 2-35

Defining Functions and Key Labels for EDIT_FILE

Defining Functions and Key Labels for
EDIT_FILE

You have three options for defining the programmable function keys
for the EDIT_FILE utility:

1. Let EDIT_FILE default to assigning the subcommands and labels
associated with the programmable function keys. The defaults used
are listed in table 2-1.

2. Use a separate APPLICATION_STRING statement to define each
programmable function key. (See the section APPLICATION_
STRING Statements for details.)

3. Use the SET_FUNCTION _KEY subcommand in the editor prolog
file to define each programmable function key.

Using the APPLICATION _STRING statement is more efficient than
using the SET_FUNCTION_KEY subcommand in an editor prolog.
However, not all function keys used by EDIT_FILE can be assigned
with the APPLICATION_STRING statement. In particular, the shifted
and unshifted definitions for the DATA, DOWN, EDIT, FWD, BKW,
BACK, HELP, STOP, UNDO, and UP keys must be defined through e
the SET_FUNCTION_KEY subcommand. If you defined any of these
keys for the terminal and want to override the default definition
assigned by EDIT_FILE for these keys, follow this procedure:

1. Define the programmable function keys (function keys 1 through
16) through APPLICATION _STRING statements.

2. Create an editor prolog for the definition of these keys by the
SET_FUNCTION _KEY subcommand.

2-36 Terminal Definition Revision D

e

e
e

Defining Functions and Key Labels for EDIT_FILE

Table 2-1. EDIT_FILE Defaults for Function Keys l
I

Cap/Op

Ins Ch

Del Ch

Bkw

First

Fwd

Last

Back

Help

Undo

Redo

Quit

Exit

InsLn

Revision D

Value Used from Terminal Definition

INSERT_CHAR with nonblank LABEL, or INSERT_
MODE_BEGIN and INSERT_MODE_END with
nonblank LABEL

DELETE_CHAR with nonblank LABEL

BKW with nonblank LABEL, or Fl, or F-key with IN
the same as BKW IN

BKW_S with nonblank LABEL, or Fl_S, or F-key
with IN the same as BKW_S IN

FWD with nonblank LABEL, or F2, or F-key with IN
the same as FWD IN

FWD_S with nonblank LABEL, or F2_S, or F-key
with IN the same as FWD_S IN

BACK with nonblank LABEL, or F3, or F-key with IN
the same as BACK IN

HELP with nonblank LABEL, or F4, or F-key with IN
the same as HELP IN

UNDO with nonblank LABEL, or F5, or F-key with IN
the same as UNDO IN

UNDO_S with nonblank LABEL, or F5_S, or F-key
with IN the same as UNDO_S IN (redo is not
currently supported by EDIT_FILE)

STOP with nonblank LABEL, or F6, or F-key with IN
the same as STOP IN

STOP_S with nonblank LABEL, or F6_S, or F-key
with IN the same as STOP _S IN

~

,,
~~
~~

~
<·

:.;;;~:;!'k~E-LBOL or INSERT_LINE_STA:
0
::uedJ I

Terminal Definition Statements 2-36.1

Defining Functions and Key Labels for EDIT_FILE

Table 2-1. EDIT _FILE Defaults for Function Keys (Continued)

Cap/Op

DelLn

Home

OPS

ClrEL

Middle

Refrsh

Lin Up

LinDn

OPS

Value Used from Terminal Definition

DELETE_LINE_BOL or DELETE_LINE_STAY with
nonblank LABEL

CURSOR_HOME with nonblank LABEL

The operations Copy, Move, Mark, Unmrk, MrkCh,
MrkBx, Locate, LocNxt, LocAll, Width, Break, Join,
and SkpEL cannot be defined through a TDU
statement; they are always assigned programmable
function keys

ERASE_END_OF_LINE with nonblank LABEL

This operation cannot be defined through a TDU
statement; it is always assigned a programmable
function key

ERASE_PAGE_HOME or ERASE_PAGE_STAY with
nonblank LABEL

UP with nonblank LABEL

DOWN with nonblank LABEL

The operations Format, Center, InsWd, DelWd, InsBk,
DelBk, Indent, and Dedent cannot be defined through a
TDU statement; they are always assigned
programmable function keys

2-36.2 Terminal Definition Revision D

Defining Functions and Key Labels for Applications other than EDIT_FILE

Defining Functions and Key Labels for
Applications other than EDIT _FILE
Screen mode applications such as Debug, EDIT_CATALOG, EXPLAIN,
IM/Quick, and Programming Environments define both the functions
performed and labels assigned to programmable function keys through
application menus. You can change the application menu if you want
to change either the function key or the label used by these
applications. Application menus are described in the NOSNE Object
Code Management manual.

Revision D Terminal Definition Statements 2-36.3

APPLICATION_STRING Statements
,, I APPLICATION _STRING Statements
,. These statements are primarily used:
~
f, • To deime the function of each key in the EDIT_FILE utility. (See
!i Defming Functions and Key Labels for EDIT_FILE.)
~

~ • To improve system performance (see the next section, Application
:::
£i Strings for Maximizing System Performance).
~=
~

·,.=f_.=r.. __ ,: • To initialize a terminal (see Initializing Terminals).

The format of the APPLICATION _STRING statement is:

I
~

I

APPLICATION_STRING or APPS
NAME= string
OUT=string

The NAME (N) parameter specifies the character string that the
application associates with the programmable function key. This
parameter is required. Values for user-defmed applications are listed
in the manual that describes the application. Values for the EDIT_
FILE utility follow.

l' On a statement defming the function of a key in the EDIT_FILE
II utility, determine the value for the NAME parameter as follows.

• For an unshifted key, enter:

fse_function_

followed by the number of the key. For example, the name of the
function of unshifted programmable function key F8 is:

fse_function_S

2-36.4 Terminal Definition Revision D

APPLICATION_STRING Statements

• For a shifted programmable function key, enter:

fse_function_ shift_

followed by the number of the key. For example, the name
associated with shifted programmable function key F8 is:

fse_function_ shift_ 8

On a statement defining the label of a key, the entry is the name
of the function of the key (as just described) followed by _LABEL.

• For the unshifted FS key label, enter:

FSE_FUNCTION _8_LABEL

• For the shifted FS key label, enter:

FSE_FUNCTION _SHIFT_S_LABEL

The OUT (0) parameter specifies the string associated with the value
in the NAME parameter. It is sent to the application, which can use
it any way it wants. This parameter is required. The OUT parameter
can be continued on more than one line under the following
conditions:

• Strings that would extend over more than one line must be broken
into substrings that the system concatenates. Each substring must
be complete on a single line.

• Variables must be complete on each line.

You can use variable names to define lengthy subcommands, as in the
following example.

f4a='write_fi1e f=$1ocal.t$.$boi, l=m'
f4b='format_cybil_source i=$1oca1.t$.$boi o=$1oca1 .t1$.$boi'
f4c='delete_lines l=m'
f4d='read_file f=$1oca1.t1$ p=b'
application_string name=('fse_function_4') ..
out=(f4a ';' f4b ';' f4c ';' f4d)

For user-defined applications, refer to the manual that describes the
application. Information for the EDIT_FILE utility follows.

Revision D Terminal Definition Statements 2-36.5

APPLICATION_STRING Statements

~ When defining the function of a key, the string for the OUT
<-

~~
<·

~

,,

parameter is the subcommand executed when the key is pressed.
When you define the label of a key, the string is the label that
appears on the screen. Refer to the NOS/VE File Editor manual listed
in appendix B for both values.

Application Strings for Maximizing System
Performance

There are three application string statements that you can use with
any application to maximize the performance of your system.

• The first statement maximizes the speed and efficiency with which
your terminal repaints the screen. Without this statement, the
terminal repaints screen rows across their entire width when any
part of a row needs repainting. If you specify this statement, you
use extra CPU resources but the terminal works more efficiently,
repainting only those columns that are actually affected.

The format is:

application_string name='optimizat1on' out='true'

• The second statement is applicable for these terminal defmitions:

CDC_722_30
DEC_VTlOO
DEC_ VTlOO_ GOLD
DEC_VT220
PC_CONNECT_l2
PC_CONNECT_ 13
MAC_CONNECT_ll

It allows you to use the DEC VTlOO scrolling regions feature,
which makes it possible to scroll vertically through just a portion
of screen text. This scrolling regions feature sets up top and
bottom margins and issues commands that cause the terminal to
scroll up or down within the screen margins.

To use this feature, specify:

application_str1ng name='vt100_scro11ing' out='true'

This statement is particularly valuable for terminals without insert
and delete keys, such as the VTlOO, because it allows the EDIT_
FILE utility to scroll then repaint only one row instead of
repainting all rows below the cursor.

2-36.6 Terminal Definition Revision D

APPLICATION_STRING Statements

• The third statement allows you to use line insertion and deletion
commands to scroll the screen. Use this statement with terminals
that provide insert and delete capabilities, but lack the VTlOO
scrolling regions feature described for the preceding statement.

The format of this statement is:

application_string name='insert_delete_scrolling' out='true'

Revision D Terminal Definition Statements 2-36.7

Initializing Terminals

I Initializing Terminals

j
,,

,,

Most terminals need to be initialized to specify hardware settings for
the desired mode of system interaction (screen or line). During
initialization, control characters are sent to the terminal through the
application statements you specify in your terminal definition to define
these settings.

Cursor wraparound is an example of a setting for which your terminal
needs to be initialized. In screen mode, you need to suppress cursor
wraparound at the edge of the screen for many terminals to prevent
unintentional scrolling of the entire screen. In line mode, you need to
enable cursor wraparound for many terminals so that you can scroll
the entire screen.

Initialization control characters are sent to the terminal to specify the
proper settings each time you enter and leave a screen mode
application. (For system performance reasons, some users require that
control characters be sent to the terminal just once per login; those
users should use the INITIALIZE_ TERMINAL command which is
described in the next section.) The control characters are sent through
the following application statements, which you specify in the terminal
definition:

•
•
•

SCREEN _!NIT
SET_SCREEN _MODE
LINE_INIT
SET_LINE_MODE

All of these statements are used when you enter and leave each
screen mode application.

Each statement lets you define up to 256 characters. You can use
additional SCREEN _!NIT and LINE_INIT statements if you need to
specify more characters. (See the section Screen Mode Application
Statements for details on these statements.)

2-36.8 Terminal Definition Revision D

Initializing Terminals

Using the INITIALIZE_ TERMINAL Command

For most users, initialization control characters are sent to the
terminal every time they enter and exit a screen mode application.
Some users have special system performance concerns requiring that
initialization control characters be sent to the terminal just once per
login. The INITIALIZE_ TERMINAL command is designed to handle
terminal initialization for these users.

The format of the INITIALIZE_ TERMINAL command is:

INITIALIZE_ TERMINAL or INIT
STATUS= status variable

You can include INITIALIZE_TERMINAL in your user prolog if you
choose. Be sure to enter it after you name your terminal model with
the CHANGE_ TERMINAL_ATTRIBUTES command and select screen
or line mode through the CHANGE_INTERACTION_STYLE
command. For example:

change_terminal_attributes
terminal_model=name of your terminal definition

change_interaction_style style=line or screen
initialize_terminal

INITIALIZE_ TERMINAL searches the terminal definition for
application string statements you set up to initialize the terminal for
screen or line mode. It then sends the control characters from these
strings to the terminal to change the settings according to the current
mode of system interaction.

To initialize the terminal for screen mode, specify control characters
through one or more application strings of the following format:

application_string name='screen_init' ..
out='characters sent to the terminal'

To initialize the terminal for line mode, specify control characters
through one or more application strings of the following format:

application_string name='line_init' ..
out='characters sent to the terminal'

Revision D Terminal Definition Statements 2-36.9

Screen Mode Application Statements

Each APPLICATION_STRING statement is limited to 256 characters.
If you need to enter more characters, you can use multiple application
strings. They will be processed in the order that they appear in your
terminal definition. (See the next section for details on the application
string statements.)

Screen Mode Application Statements

The statements described in this section apply when you use an
application in screen mode; they are ignored for line mode.

A brief description of each statement follows. None of the statements
is required. (See the next section for statement formats and detailed
descriptions.)

Statement

INITIALIZE_ TERMINAL

LINE_INIT

SCREEN _!NIT

SET_LINE_MODE

SET_ SCREEN _MODE

2-36.10 Terminal Definition

Description

Causes the specified command to be
executed each time an application is set
to screen mode.

Specifies the sequence sent when a
terminal user leaves screen mode of an
application.

Specifies the sequence sent when a
terminal user enters an application in
screen mode.

Specifies the string sent when a terminal
user leaves screen mode of an
application.

Specifies the string sent when a terminal
user enters an application in screen
mode.

Revision D

Screen Mode Application Statements

When you enter an application in screen mode:

• The command specified by an INITIALIZE_ TERMINAL statement
executes.

• The SET_SCREEN _MODE and SCREEN _!NIT statements send
character strings to set and clear terminal settings.

When you leave screen mode, the SET_LINE_MODE and LINE_INIT
statements send character strings to reset the terminal to the default
line mode settings.

The SET_LINE_MODE and LINE_INIT statements are functionally
equivalent; however, you can use multiple LINE_INIT statements in a
terminal definition but only one SET_LINE_MODE statement. The
same is true for the SET_SCREEN _MODE and SCREEN _!NIT
statements; they are functionally equivalent. You can use multiple
SCREEN_INIT statements, but only one SET_SCREEN_MODE
statement.

Revision D Terminal Definition Statements 2-36.11

Screen Mode Application Statements

The following example shows the application strings executed during
an EDIT_FILE utility session in screen mode.

User Enters:

edit_file file=presto

display_value 'hello'

deactivate_screen

activate_screen

QUit

2-36.12 Terminal Definition

Statements Executed:

• SCREEN_INIT
• SET_SCREEN _MODE

• SET_LINE_MODE
hello

- Press RETURN/NEXT to continue I
• SCREEN_ !NIT
• SET_SCREEN _MODE

• SET_LINE_MODE
• LINE_INIT

• SCREEN_INIT
• SET_SCREEN _MODE

• SET_LINE_MODE
• LINE_INIT

Revision D

Screen Mode Application Statements

Format Descriptions

All screen mode application statements (except INITIALIZE_
TERMINAL) include a required OUT parameter, which specifies the
character sequence for your terminal from the terminal hardware
reference manual.

Statements can contain a maximum of 256 characters. If any
statement does not fit on one line, you can use continuation lines. If
you need to use more than 256 characters in a statement, you can
enter as many LINE_INIT and SCREEN _INIT statements in a
terminal definition as you need.

INITIALIZE_ TERMINAL

The INITIALIZE_TERMINAL statement causes the specified NOSNE
command (for example a CHANGE_ TERMINAL_ATTRIBUTES
command) to execute automatically when you enter an application in
screen mode. The statement can contain a maximum of 256
characters.

The format is:

INITIALIZE_ TERMINAL or INIT
SETTA_ COMMAND= string

The SETTA_ COMMAND (SC) parameter specifies the character string
containing the NOS/VE command. For example, if you specified the
CHANGE_ TERMINAL_ATTRIBUTES command, it would
automatically set the default terminal attributes.

Revision D Terminal Definition Statements 2-37

Screen Mode Application Statements

,. LINE_INIT

~l

l
:i-:

~

~~
I

The LINE_INIT statement specifies the sequence sent when a
terminal user leaves the screen mode of an application. This
statement works the same as SET_LINE_MODE, but it can be
specified multiple times in a terminal definition to overcome the 256
character limit on the statement line. If omitted, no special
initialization sequence is sent for your terminal.

The format is:

LINE_ INIT or LINI
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

SCREEN _INIT

The SCREEN _!NIT statement specifies the sequence sent when a
terminal user enters an application in screen mode. This statement
works the same as SET_SCREEN_MODE, but it can be specified
multiple times in a terminal definition to overcome the 256 character
limit on the statement line. If omitted, no special initialization
sequence is sent for your terminal.

The format is:

SCREEN _INIT or SCRI
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2·38 Terminal Definition Revision D

Screen Mode Application Statements

SET _LINE _MODE

The SET_LINE_MODE statement specifies the sequence sent when a
terminal user leaves the screen mode of an application.

For example, if you enter the DEACTIVATE_SCREEN subcommand
from an EDIT_FILE utility session you move from screen mode to
line mode in EDIT_FILE.

If you omit this statement, no special initialization sequence is sent.
This statement can appear only once in a terminal deimition and can
contain a maximum of 256 characters.

The format is:

SET_LINE_MODE or SETLM
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

SET_ SCREEN _MODE

e The SET_SCREEN _MODE statement specifies the sequence sent
when a terminal user enters an application in screen mode.

For example, if you enter the ACTIVATE_SCREEN subcommand from
an EDIT_FILE utility session you move from line mode to screen
mode in EDIT_FILE.

If you omit this statement, no special initialization sequence is sent.
This statement can appear only once in a terminal definition and can
include a maximum of 256 characters.

The format is:

SET_SCREEN_MODE or SETSM
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision D Terminal Definition Statements 2·39

Input/Output Statements

Input/Output Statements

Input/output statements specify character sequences to be sent and/or
received by either the terminal or NOSNE.

A brief description of each statement follows. Required statements are A
in boldface type. (See the next section for statement formats and W'
detailed descriptions.)

Statement

BACKSPACE

CURSOR_DOWN

CURSOR_ HOME

CURSOR_LEFT

CURSOR_RI(}HT

CURSOR UP

DELETE_ CHAR

2-40 Terminal Definition

Description

Moves the cursor left one position.

Moves the cursor down one line. This
statement is required.

Moves the cursor to the home position.

Moves the cursor left one column. This
statement is required.

Moves the cursor right one column. This
statement is required.

Moves the cursor up one line. This
statement is required.

Deletes the current character and shifts
the text remaining on the current line to
the left one column.

Revision D

Statement

DELETE_LINE_BOL

DELETE_LINE_STAY

ERASE_CHAR

ERASE_END_OF_
FIELD

ERASE_END_OF_LINE

ERASE_END_OF _ e PAGE

ERASE_FIELD_BOF

Revision C

Input/Output Statements

Description

Deletes the current line, shifts the
remaining text up, and moves the cursor
to the beginning of the line.

Deletes the current line, shifts the
remaining text up, and leaves the cursor
where it is.

Replaces the current character with a
space and moves the cursor one column to
the left.

Erases an unprotected field from the
cursor position to its end and leaves the
cursor where it is.

Erases from the cursor position to the end
of the line and leaves the cursor where it
is.

Erases everything from the cursor position
to the bottom of the screen.

Erases the current unprotected field and
moves the cursor to the beginning of that
unprotected field.

Terminal Definition Statements 2-41

Input/Output Statements

Statement

ERASE_FIELD_STAY

ERASE_LINE_BOL

ERASE_LINE_STAY

Description

Erases the current unprotected field and
leaves the cursor where it is.

Erases the current line and moves the
cursor to the beginning of the blank line.

Erases the current line and leaves the
cursor where it is.

ERASE PAGE HOME Clears the screen and moves the cursor to
the home position. This statement is
required unless ERASE_PAGE_STAY is
used.

ERASE_PAGE_STAY Clears the screen and leaves the cursor
where it is. This statement is required
only if ERASE_PAGE_HOME is not used.

ERASE_ UNPROTECTED Erases all the unprotected character
positions on the screen.

INSERT_ CHAR

2·42 Terminal Definition

Inserts a single blank character at the
cursor position and shifts the text
remaining on the current line to the right
one column.

Revision C

Statement

INSERT_LINE_BOL

INSERT_LINE_STAY

INSERT_MODE_BEGIN

INSERT_MODE_END

INSERT_MODE_
TOGGLE

RESET

TAB_BACKWARD

TAB_CLEAR

TAB_CLEAR_ALL

TAB_FORWARD

TAB_SET

Revision D

Input/Output Statements

Description

Inserts a blank line before the current
line (subsequent lines are moved down)
and moves the cursor to the start of the
line.

Inserts a blank line before the current
line and leaves the cursor where it is.

Inserts characters the user enters at the
cursor position and shifts existing
characters to the right.

Overwrites existing characters with the
characters the user enters.

Enables switching between insert and
overwrite modes.

Resets the terminal hardware.

Moves the cursor to the previous tab stop
or unprotected field.

Clears the tab stop at the cursor position.

Clears all tab stops.

Moves the cursor to the next tab stop or
unprotected field.

Sets a tab stop at the cursor position.

Terminal Definition Statements 2-43

Input/Output Statements

Format Descriptions

All input/output statements, except BACKSPACE, have an INOUT
i~ parameter. BACKSPACE has a required IN parameter. The character

.:~.':.,: sequences for these parameters are listed in the hardware reference
manual for your terminal.

Use the IN and OUT parameters (rather than IN OUT) if you want to
specify input and output sequences separately. For example, you could
use an IN or OUT parameter alone in a statement if your terminal
sends a character sequence different from the one it receives.

A LABEL parameter, which names the keyboard key, is optional for
each statement.

Labels on Specific Editing Keys

The information in this subsection applies to the following
input/output statements:

CURSOR_ HOME

DELETE_CHAR

DELETE_LIN _BOL and DELETE_LINE_STAY (whichever you
choose)

ERASE_END_OF_LINE

ERASE_PAGE_HOME and ERASE_PAGE_STAY (whichever you
choose)

INSERT_CHAR and INSERT_MODE_BEGIN (whichever you
choose)

INSERT_LINE_BOL and INSERT_LINE_STAY (whichever you
choose)

If you define the key with an IN or INOUT parameter, the system
can respond correctly when the key is pressed. If the LABEL
parameter is blank or omitted, the EDIT_FILE application considers
the key to be optional and will honor it if it is used. However, EDIT_
FILE also offers similar editing operations on a programmable
function key. The CDC-supplied definition for the VTlOO uses this
technique since most VTlOOs lack these specific keys, although some
enhanced VTl OOs have them.

2-44 Terminal Definition Revision D

lnputJOutput Statements

If the LABEL parameter is present and nonblank, the system assumes
that the key is guaranteed to actually exist and does not off er similar
editing operations on the programmable function key menu. This
allows all available space on the menu to be used for other
operations. This technique is used with most CDC-supplied definitions
other than the VTlOO.

Revision C Terminal Definition Statements 2-44.1

lnpuUOutput Statements

BACKSPACE

The BACKSPACE statement specifies the sequence that moves the
cursor left one position. This statement is provided for terminals with
a backspace key that is different from the CURSOR_LEFT key. If
omitted, the terminal does not have this capability.

The format is:

BACKSPACE
IN= list of integer, keyword, or string
LABEL=string

The BACKSPACE statement has no abbreviation.

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

CURSOR_DOWN

The CURSOR_DOWN statement specifies the sequence that moves the
cursor down one line. This is a required statement.

The format is:

CURSOR_DOWN or CURD
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-44.2 Terminal Definition Revision C

InputJOutput Statements

CURSOR_HOME

The CURSOR_HOME statement specifies the sequence that moves the
cursor to the home position. This statement is required.

The format is:

CURSOR_HOME or CURH
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. The output portion of this parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

CURSOR_LEFT

The CURSOR_LEFT statement specifies the sequence that moves the
cursor left one column. This is a required statement.

The format is:

CURSOR_LEFT or CURL
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-45

Input/Output Statements

CURSOR_RIGHT

The CURSOR_RIGHT statement specifies the sequence that moves the
cursor right one column. This is a required statement.

The format is:

CURSOR_RIGHT or CURR
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

CURSOR_ UP

The CURSOR_ UP statement specifies the sequence that moves the
cursor up one line. This is a required statement.

The format is:

CURSOR_UP or CURU
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-46 Terminal Definition Revision C

lnputJOutput Statements

DELETE_CHAR

The DELETE_CHAR statement specifies the sequence that deletes the
current character and shifts the text remaining on the current line to
the left one column. If omitted, the terminal does not have this
capability.

The format is:

DELETE_ CHAR or DELC
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

DELETE LINE BOL

e The DELETE_LINE_BOL statement specifies the sequence that
deletes the current line, shifts the remaining text up, and moves the
cursor to the start of the line. You can use only one of the DELETE_
LINE_STAY and DELETE_LINE_BOL statem~nts. If you specify
neither statement, the terminal does not have this capability.

The format is:

DELETE_LINE_BOL or DELLB
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision C Terminal Definition Statements 2-47

InpuUOutput Statements

DELETE_LINE_STAY

The DELETE_LINE_STAY statement specifies the sequence that
deletes the current line, shifts the remaining text up, and leaves the
cursor where it is. You can use only one of the DELETE_LINE_
STAY and DELETE_LINE_BOL statements. If you specify neither
statement, the terminal does not have this capability.

The format is:

DELETE_LINE_STAY or DELLS
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

ERASE_CHAR

The ERASE_CHAR statement specifies the sequence that replaces the
current character with a space and moves the cursor one column to
the left. If omitted, the terminal does not have this capability.

The format is:

ERASE_ CHAR or ERAC
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-48 Terminal Definition Revision C

InpuUOutput Statements

ERASE END_ OF_ FIELD

The ERASE_END_OF_FIELD statement specifies the sequence that
erases an unprotected field from the cursor position to its end and
leaves the cursor where it is. If omitted, the terminal does not have
this capability.

The format is:

ERASE_END_OF_FIELD or ERAEOF
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE END OF_ LINE

The ERASE_END_OF_LINE statement specifies the sequence that
erases from the cursor position to the end of the line and leaves the
cursor where it is. If omitted, the terminal does not have this
capability.

The format is:

ERASE_END_OF_LINE or ERAEOL
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision C Terminal Definition Statements 2-49

Input/Output Statements

ERASE_END_OF_PAGE

The ERASE_END_OF_PAGE statement specifies the sequence that
erases everything from the cursor position to the bottom of the screen.
If omitted, the terminal does not have this capability.

The format is:

ERASE_END_OF_PAGEorERAEOP
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from N OSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_FIELD_BOF

The ERASE_FIELD_BOF statement specifies the sequence that
erases the current unprotected field and moves the cursor to the a
beginning of that unprotected field. You can specify only one of the W
ERASE_FIELD_BOF and ERASE_FIELD_STAY statements. If you
specify neither statement, the terminal does not have this capability.

The format is:

ERASE_FIELD_BOF or ERAFB
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-50 Terminal Definition Revision C

Input/Output Statements

ERASE_FIELD_STAY

The ERASE_FIELD_STAY statement specifies the sequence that
erases the current unprotected field and leaves the cursor where it is.
You can use only one of the ERASE_FIELD_BOF and ERASE_
FIELD_STAY statements. If you specify neither statement, the
terminal does not have this capability.

The format is:

ERASE_FIELD_STAY or ERAFS
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_LINE_BOL

e The ERASE_LINE_BOL statement specifies the sequence that erases
the current line and moves the cursor to the beginning of the blank
line. You can use only one of the ERASE_LINE_STAY and ERASE_
LINE_BOL statements. If you specify neither statement, the terminal
does not have this capability.

The format is:

ERASE_LINE_BOL or ERALB
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-51

Input/Output Statements

ERASE _LINE _STAY

The ERASE_LINE_STAY statement specifies the sequence that erases
the current line and leaves the cursor where it is. You can use only
one of the ERASE_LINE_STAY and ERASE_LINE_BOL statements.
If you specify neither statement, the terminal does not have this
capability.

The format is:

ERASE_ LINE_ STAY or ERALS
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_PAGE_HOME

The ERASE_PAGE_HOME statement specifies the sequence that e
clears the screen and moves the cursor to the home position. You can
use only one of the ERASE_PAGE_STAY and ERASE_PAGE_HOME
statements; one of the two statements is required.

The format is:

ERASE_PAGE_HOMEorERAPH
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; ref er to Labels on Specific Editing Keys for further
information. e

2-52 Terminal Definition Revision C

lnpuUOutput Statements

ERASE_PAGE_STAY

The ERASE_PAGE_STAY statement specifies the sequence that clears
the screen and leaves the cursor where it is. You can use only one of
the ERASE_PAGE_STAY and ERASE_PAGE_HOME statements; one
of the two statements is required.

The format is:

ERASE_PAGE_STAY or ERAPS
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

ERASE UNPROTECTED

e The ERASE_ UNPROTECTED statement specifies the sequence that
erases all the unprotected character positions on the screen. If
omitted, the terminal does not have this capability.

The format is:

ERASE_ UNPROTECTED or ERAU
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-53

Input/Output Statements

INSERT_ CHAR

The INSERT_ CHAR statement specifies the sequence that inserts a
single blank character at the cursor position and shifts the text
remaining on the current line to the right one column. If omitted, the
terminal does not have this capability.

The format is:

INSERT_ CHAR or INSC
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
::: that labels the corresponding keyboard key. If omitted, no label is

.. :

1_,! __ ,i assigned; ref er to Labels on Specific Editing Keys for further
information.

INSERT_LINE BOL

The INSERT_LINE_BOL statement specifies the sequence that inserts e
a blank line before the current line (subsequent lines are moved
down) and moves the cursor to the start of the line. You can use only
one of the INSERT_LINE_STAY and INSERT_LINE_BOL
statements. If you specify neither statement, the terminal does not
have this capability.

The format is:

INSERT_LINE_BOL or INSLB
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
::: that labels the corresponding keyboard key. If omitted, no label is e
.. :

1_,: __ ,1 assigned; refer to Labels on Specific Editing Keys for further
information.

2-54 Terminal Definition Revision C

InputJOutput Statements

INSERT_LINE_STAY

The INSERT_LINE_STAY statement specifies the sequence that
inserts a blank line before the current line (subsequent lines are
moved down) and leaves the cursor where it is. You can use only one
of the INSERT_LINE_STAY and INSERT_LINE_BOL statements. If
you specify neither statement, the terminal does not have this
capability._

The format is:

INSERT_LINE_STAY or INSLS
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

e INSERT_MODE_BEGIN

The INSERT_MODE_BEGIN statement specifies the sequence that
initiates insert mode, in which characters the users enters are :::
inserted at the cursor position and the existing characters are shifted l,_1

to the right, rather than being overwritten. If omitted, the terminal ;
does not have this capability.

The format is:

INSERT_MODE_BEGIN or INSMB
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision D Terminal Definition Statements 2-55

Input/Output Statements

INSERT_MODE_END

The INSERT_MODE_END statement specifies the sequence that ends

-~_:_,!,! insert mode. The graphic characters the user enters after this
sequence overwrite existing characters. If omitted, the terminal does
not have this capability.

The format is:

INSERT_MODE_END or INSME
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

INSERT_MODE TOGGLE

The INSERT_MODE_ TOGGLE statement specifies the sequence that A
enables switching between insert and overwrite modes. If omitted, the •
terminal does not have this capability.

The format is:

INSERT_MODE_TOGGLE or INSMT
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-56 Terminal Definition Revision D

Input/Output Statements

RESET

The RESET statement specifies the sequence that resets the terminal
hardware. After this sequence is transmitted, the terminal must be
reinitialized. If omitted, the terminal does not have this capability.

The format is:

RESET or RES
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB BACKWARD

The TAB_BACKWARD statement specifies the sequence that moves
the cursor to the previous tab stop or unprotected field. If omitted, the
terminal does not have this capability.

The format is:

TAB_BACKWARD or TABB
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision B Terminal Definition Statements 2-57

Input/Output Statements

TAB_CLEAR

The TAB_CLEAR statement specifies the sequence that clears the tab
stop at the cursor position. If omitted, the terminal does not have this
capability.

The format is:

TAB_CLEAR or TABC
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB_ CLEAR _ALL

The TAB_CLEAR_ALL statement specifies the sequence that clears
all tab stops. If omitted, the terminal does not have this capability.

The format is:

TAB_CLEAR_ALLorTABCA
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-58 Terminal Definition Revision B

lnpuUOutput Statements

TAB_FORWARD

The TAB_FORWARD statement specifies the sequence that moves the
cursor to the next tab stop or unprotected field. If omitted, the
terminal does not have this capability.

The format is:

TAB_FORWARD or TABF
INOUT=list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB_SET

The TAB_SET statement specifies the sequence that sets a tab stop
at the cursor position. If omitted, the terminal does not have this
capability.

The format is:

TAB_ SET or TABS
IN OUT= list of integer, keyword, or string
LABEL= string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-59

I

Input Statements

Input Statements

Input statements specify character sequences sent by the terminal to
NOSNE.

These statements include:

• CDC standard function key statements

• Programmable function key statements

All input statements have a required IN parameter, with values
obtained from the hardware reference manual for your terminal.

CDC Standard Function Key Statements - Definition

CDC standard function keys are keys that, on the CDC 721, have the
function written directly on the key. For terminals that lack dedicated
standard keys, programmable function keys can be assigned to perform
the functions provided by the standard function keys. CDC supports
standard function keys in its full screen applications such as EDIT_

': .. =.·_.·'.i_:.=· ~~R~~~~~TALOG, and ENTER_PROGRAMMING_

Escape or control sequences, such as ESC H for HELP, can be a good
::: way to define CDC standard function keys. Take care, however, that I =u:~;;,t :: :~u~::.:-:.:.i::;i~;1!:":;;:~ ::;,~~are

CDC standard function key statements are:

Performs Performs
Standard Standard

Unshifted Operation Shifted Operation

BACK Yes BACK_S No
BKW Yes BKW_S Yes
DATA No DATA_S No
DOWN No DOWN_S No
EDIT No EDIT_S No

2-60 Terminal Definition Revision C

e
e

Input Statements

Performs Performs
Standard Standard

Unshifted Operation Shifted Operation

FWD Yes FWD_S Yes
HELP Yes HELP_S No
NEXT No NEXT_S No
STOP Yes STOP_S Yes
UNDO Yes UNDO_S Yes
UP No UP_S No

Control Data supports standardized function keys for its screen mode
applications. A standardized function key is one designated to always
perform a specific operation. For example, the QUIT key is assigned
the same function key in all Control Data-supported screen mode
applications.

Standard functions are assigned in the following order:

1. The application must use the standard function.

2. If a dedicated key exists for a particular terminal, the standard
function is assigned to that key. Because the key is considered
self-explanatory, it is not displayed in a menu.

3. If the dedicated key does not exist, a specific programmable
function key is used. The menu of operations displayed at the
bottom of each screen shows which programmable function key to
press for each function.

The following table lists information about the standard functions. The
Operation Label column specifies the name of the operation displayed
for each programmable function key on the menu of operations at the
bottom of a screen. (Figure 2-1 shows examples of the operation labels
on function keys.)

Dedicated Programmable Operation Description of
Key Key Label Standard Function

BKW Fl Bkw Display previous screen
FWD F2 Fwd Display next screen
BKW_S Shift Fl First Display first line
FWD_S Shift F2 Last Display last line
BACK F3 Back Switch to a previously

shown display
HELP F4 Help Display help

Revision D Terminal Definition Statements 2-60.1

Input Statements

Dedicated Programmable Operation Description of
Key Key Label Standard Function

UNDO F5 Undo Correct a user error
UNDO_S Shift F5 Redo Restore a user

operation that was
undone

STOP F6 Quit Normal termination of
the application

STOP_S Shift F6 Exit Alternate termination
of the application

The function key identifier specifies the key you press to execute the
function key. For some terminals, two identifiers (representing shifted
and unshifted) are displayed for each menu box. (Figure 2-1 shows
examples of function key identifiers.)

Each key identifier is two characters in the following format:

Key
Identifier

blanks

f n

kx

sx

Description

Used for shifted function keys that are considered
self-explanatory. The LABEL parameter consists of two
leading blanks plus at least one nonblank character.

n is the function key number.

x is the numeric keypad symbol. For example, kl refers
to the numeric keypad key 1.

x is the shifted numeric keypad symbol. For example,
s2 refers to the shifted key 2 on the numeric keypad.

2-60.2 Terminal Definition Revision D

e

e

e

Key
Identifier

px

Cn

An

Ox

Input Statements

Description

x is the number of the PF key on the numeric keypad
for the VTlOO and VT220.

For PC CONNECT, n is the function key used in
conjunction with the CTRL key.

For PC CONNECT, n is the key on the
numeric/punctuation row of the keyboard used in
conjunction with the ALT key.

For DEC_ VTlOO_GOLD terminals, lets you specify
more function key combinations in addition to the
default key definitions. Press the 0 key first and then
the desired keypad key.

VT220 Terminal IBM PC Terminal

.. :·A··
MQ\,le tltll11r"I<

f 1 (:l:)py< f2 ~~k·
~·············

Key Identifiers

Figure 2-1. Function Key Operation Labels and Key Identifiers

Revision D Terminal Definition Statements 2-60.3

e

Input Statements

Performs Performs
Standard Standard

Unshifted Operation Shifted Operation

FWD Yes FWD_S Yes
HELP Yes HELP_S No
NEXT No NEXT_S No
STOP Yes STOP_S Yes
UNDO Yes UNDO_S Yes
UP No UP_S No

CDC supports standardized function keys in its full screen
applications. A standardized function key is one that has been
designated to always perform a specific operation. For example, the
QUIT key is assigned the same function key in all CDC-supported full
screen applications.

Standard functions are assigned in the following order:

1. The application must use the standard function.

2. If a dedicated key exists for a particular terminal, the standard
function is assigned to that key. Because the key is considered
self-explanatory, it is not displayed in a menu.

3. If the dedicated key does not exist, a specific programmable
function key is used. Menus displayed on the screen show which
programmable function key to use for the standard function

The following table lists information about the standard functions. The
Menu Prompt column indicates the menu label used when the
programmable function key is displayed.

Dedicated Programmable Menu Description of
Key Key Prompt Standard Function

BKW Fl Bkw Display previous screen
FWD F2 Fwd Display next screen
BKW_S Shift Fl First Display first line
FWD_S Shift F2 Last Display last line
BACK F3 Back Switch to a previously

shown display
HELP F4 Help Display help

Revision C Terminal Definition Statements 2-60.1

Input Statements

Dedicated Programmable Menu Description of
Key Key Prompt Standard Function

UNDO F5 Undo Correct a user error
UNDO_S Shift F5 Redo Restore a user operation

that was undone
STOP F6 Quit Normal termination of

the application
STOP_S Shift F6 Exit Alternate termination of

the application

The function key labels indicate the keyboard location of the function
key. For some terminals, two labels (nominally representing shifted
and unshifted) are displayed for each menu box. Each label is two
characters in the following format:

Key
Identifier

blanks

fn

kx

sx

px

Cn

An

Description

Used for shifted function keys that are considered
self-explanatory. The LABEL parameter consists of two
leading blanks plus at least one nonblank character.

n is the function key number

x is the numeric keypad symbol. For example, kl refers
to the numeric keypad key 1.

x is the shifted numeric keypad symbol. For example,
s2 refers to the shifted key 2 on the numeric keypad.

x is the number of the PF key on the numeric keypad
for the VTlOO and VT220.

For PC Connect, n is the function key used in
conjunction with the CTRL key.

For PC Connect, n is the key on the
numeric/punctuation row of the keyboard used in
conjunction with the ALT key.

2-60.2 Terminal Definition Revision C

Input Statements

CDC Standard Function Key Statements · Formats

The CDC standard function key statements are input statements and
all require an IN parameter with a value obtained from the hardware
reference manual for your terminal.

A LABEL parameter, which names the keyboard key, is optional for
each statement.

NOTE

The label can be a maximum of 31 characters. The first two
characters are used for key identification in menus for function keys 1
through 16; the remainder of the label should be descriptive and
readable. If you do not define a CDC standard key, or if you define it
with an IN parameter that matches the IN parameter for one of the
programmable function key statements in the CDC-supplied definition,
the system assumes that the standard key does not exist as a
separate key and substitutes the system-assigned programmable
function key.

If you define a CDC standard key with a unique IN parameter and a
nonblank LABEL parameter, the system assumes that a separate key
exists, and does not assign a programmable function key to perform
the operation. The LABEL parameter should be descriptive because
some applications may display the label to remind you which keys to
press. However, many applications assume that the keyboard is
self-explanatory and do not display the LABEL string.

Examples

The following three examples demonstrate the effect of different
BACK definitions.

back in=(value) label='Back'

No programmable function key will be used for the BACK
function. Since the LABEL value is nonblank, a dedicated key
(which sends the specified value when pressed) is assumed to exist
for the BACK function.

back in=()

Since the LABEL value is blank, a standard programmable
function key is used. The standard function key for the BACK
operation is F3.

Revision C Terminal Definition Statements 2-61

Input Statements

bkw in=(bkw-value)

f10 in=(bkw-value) label='10'

Since the two IN values are the same, FlO is used instead of the
standard F3 for the BACK function.

2-62 Terminal Definition Revision C

Input Statements

BACK

The BACK statement specifies the sequence transmitted when you
press the BACK key. If omitted, a full screen application cannot
define a function for the key.

The format is:

BACK or BAC
IN=list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

BACK_S

The BACK_S statement specifies the sequence transmitted when you
press the shifted BACK key. If omitted, a full screen application
cannot define a function for the key.

The format is:

BACK_S or BACS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2·62.1

Input Statements

BKW

The BKW statement specifies the sequence transmitted when you
press the BKW key. If omitted, a full screen application cannot define
a function for the key.

The format is:

BKW
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

BKW_S

The BKW _S statement specifies the sequence transmitted when you
press the shifted BKW key. If omitted, a full screen application
cannot define a function for the key.

The format is:

BKW _s or BKWS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision B Terminal Definition Statements 2-63

Input Statements

DATA

The DATA statement specifies the sequence transmitted when you
press the DATA key. If omitted, a full screen application cannot
define a function for the key.

The format is:

DATA or DAT
IN= list of integer, keyword value, or string
LABEL =string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

DATA_S

The DATA_S statement specifies the sequence transmitted when you
press the shifted DATA key. If omitted, a full screen application
cannot define a function for the key.

The format is:

DATA_S or DATS
IN= list of integer, keyword value, or string
LABEL=string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-64 Terminal Definition Revision B

Input Statements

DOWN

The DOWN statement specifies the sequence transmitted when you
press the DOWN key. If omitted, a full screen application cannot
define a function for the key.

The format is:

DOWN or DOW
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

DOWN_S

The DOWN _S statement specifies the sequence transmitted when you
press the shifted DOWN key. If omitted, a full screen application
cannot define a function for the key.

The format is:

DOWN_S or DOWS
IN=list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision B Terminal Definition Statements 2-65

Input Statements

EDIT

The EDIT statement specifies the sequence transmitted when you
press the EDIT key. If omitted, a full screen application cannot define
a function for the key.

The format is:

EDIT or EDI
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

EDIT_S

The EDIT_S statement specifies the sequence transmitted when you
press the shifted EDIT key. If omitted, a full screen application cannot
define a function for the key.

The format is:

EDIT _S or EDIS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-66 Terminal Definition Revision B

Input Statements

FWD

The FWD statement specifies the sequence transmitted when you
press the FWD key. If omitted, a full screen application cannot define
a function for the key.

The format is:

FWD
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

FWD_S

The FWD_S statement specifies the sequence transmitted when you
press the shifted FWD key. If omitted, a full screen application cannot
define a function for the key.

The format is:

FWD_ S or FWDS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision B Terminal Definition Statements 2-67

Input Statements

HELP

The HELP statement specifies the sequence transmitted when you
press the HELP key. If omitted, a full screen application cannot
define a function for the key.

The format is:

HELP or HEL
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

HELP_S

The HELP _S statement specifies the sequence transmitted when you
press the shifted HELP key. If omitted, a full screen application
cannot define a function for the key.

The format is:

HELP _s or HELS
IN= list of integer, keyword value, or string
LABEL =string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-68 Terminal Definition Revision B

Input Statements

NEXT

The NEXT statement specifies the sequence transmitted when you
press the NEXT key. If omitted, a screen mode application cannot
define a function for the key. This statement is useful only through
the LABEL parameter; otherwise, some applications may assign one of
the programmable function keys with the Next label.

This statement does not specify the character used to transmit text,
since CDCNET uses the Transparent Forwarding Character connection
attribute to determine that character.

The format is:

NEXT or NEX
IN= 13 (ASCII carriage return)
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required, but ignored.

If you have an asynchronous terminal that uses some character other
than the ASCII carriage return code, add these commands to your
user prolog:

change_terminal_attributes end_line_character=value
change_connection_attributes terminal_file_name=1nput

transparent_forward_character=value
change_term_conn_defaults tfc=value

You do not need to use these commands if you have an IBM 3270 and
are using CDCNET.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision D Terminal Definition Statements 2-69

Input Statements

NEXT_S

The NEXT_S statement specifies the sequence transmitted when you
press the shifted NEXT key. If omitted, a screen mode application
cannot define a function for the key. This statement is not required
for any CDC-supplied applications, but user-written applications might
make use of it.

The format is:

NEXT _S or NEXS
IN= list of integer, keyword value, or string
LABEL =string

The IN (I) parameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-70 Terminal Definition Revision D

Input Statements

STOP

The STOP statement specifies the sequence transmitted when you
press the STOP key. Sequences for terminating operations are
specified in the NOSNE System Usage manual. If omitted, a screen
mode application cannot define a function for the key.

The format is:

STOP or STO
IN= list of integer, keyword value, or string
LABEL=string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

STOP_S

The STOP _S statement specifies the sequence transmitted when you
press the shifted STOP key. Sequences for terminating operations are
specified in the NOSNE System Usage manual. If omitted, a screen
mode application cannot define a function for the key.

The format is:

STOP _Sor STOS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision D Terminal Definition Statements 2-70.1

Input Statements

UNDO

The UNDO statement specifies the sequence transmitted when you
press the UNDO key. If omitted, a full screen application cannot
define a function for the key.

The format is:

UNDO or UND
IN=list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

UNDO_S

The UNDO_S statement specifies the sequence transmitted when you
press the shifted UNDO key. If omitted, a full screen application A
cannot define a function for the key. W

The format is:

UNDO _S or UNDS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-70.2 Terminal Definition Revision D

Input Statements

UP

The UP statement specifies the sequence transmitted when you press
the UP key. If omitted, a full screen application cannot define a
function for the key.

The format is:

UP
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

UP_S

The UP_S statement specifies the sequence transmitted when you
press the shifted UP key. If omitted, a full screen application cannot
define a function for the key.

The format is:

UP_S or UPS
IN= list of integer, keyword value, or string
LABEL= string

The IN (I) parameter specifies a character sequence transmitted to
NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision D Terminal Definition Statements 2-70.3

e

Input Statements

Programmable Function Key Statements - Deimition

All system-defined screen mode applications use programmable
function keys that tell the application what to do next. For example,
programmable function keys in the EDIT_FILE utility allow you to
execute frequently used subcommands by pressing a function key (or a
sequence of keys specific to the terminal).

You define what input sequence the terminal sends upline to be
recognized as a programmable function key. You must define 16
programmable function keys (any combination of shifted and unshifted
keys). You should define all possible key presses for your terminal.

If your terminal is not an IBM 3270-compatible device and does not
have programmable function keys, you can define function keys using
a control sequence, such as the ESCAPE (ESC) key, in combination
with the number keys.

For example:

Unshifted Shifted

ESC 1 ESC shifted 1
ESC 2 ESC shifted 2

ESC 9 ESC shifted 9

This definition scheme gives you a maximum of 18 programmable
function keys. Be sure not to use any sequences that conflict with
terminal hardware sequences.

If local screen formatting applications use programmable function keys
to drive menus, these keys must be defined in the terminal definition
for your terminal.

Special Considerations for the IBM 3270 Function Keys

The design of the IBM 3270 terminal hardware does not allow you to
use the control sequence definition scheme described previously. You
can use only the 12 or 24 function keys that are physically on the
terminal. The released terminal definitions for the 3270 terminals
assume there are 24 function keys. If your terminal has only 12
function keys, they will be defined as keys Fl through F12; the
shifted function keys (F13 through F24) will not be available. Some
software applications may assign vital operations to shifted function
keys. Look at the applications you will be using to determine whether
you need to redefine the 12 function keys.

Revision D Terminal Definition Statements 2-71

~~

I
I

!

Input Statements

Programmable Function Key Statements - Formats

There are two format types for programmable function key statements:

• Fn statements for unshifted function keys Fl through Fl6.

• Fn_S for shifted function keys Fl through Fl6.

These statements are input statements that require an IN parameter
including the sequence listed in the hardware reference manual for
your terminal.

A LABEL parameter, which names the keyboard key, is optional for
each statement.

NOTE

The LABEL parameter can be a maximum of 31 characters telling the
system that the key is available. Most applications use the first two
characters of the LABEL parameter as a key identifier in the function
key menu displayed at the bottom of a screen to help the terminal
operator recognize which key to press (see the description of key
identifiers under CDC Standard Function Key Statements earlier in
this chapter). If you do not want a LABEL parameter to be displayed,
use two leading blanks followed by at least one nonblank character.

2-'12 Terminal Definition Revision D

Input Statements

Fn Statements

The Fn statements specify the sequence transmitted when you press
an unshifted Fn programmable function key. If omitted, a full screen
application cannot define a function for the key.

The format is:

Fn
IN= list of integer, keyword, or string
LABEL= string

n can be from 1 through 16.

The IN (I) parameter specifies a character sequence to be transmitted
to NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that names the corresponding keyboard key. Most screen applications
use the presence or absence of a nonblank label to determine which
keys can be assigned functions.

Fn_S Statements

The Fn_ S statements specify the character sequence to be transmitted
when you press a shifted Fn programmable function key. If omitted, a
full screen application cannot define a function for the key.

The format is:

Fn_S or FnS
IN= list of integer, keyword, or string
LABEL= string

n can be from 1 through 16.

The IN (I) parameter specifies a character sequence to be transmitted
to NOSNE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that names the corresponding keyboard key. Most screen applications
use the presence or absence of a nonblank label to determine which
keys can be assigned functions.

Revision D Terminal Definition Statements 2-73

Output Statements

Output Statements

Output statements specify character sequences to be sent from
NOSNE to the terminal. They are divided into four types: send
statements, physical terminal attribute statements, logical terminal
attribute statements, and line drawing statements.

• Send statements specify sequences sent to the terminal.

• Physical terminal attribute statements define the physical
attributes of the terminal, such as blinking and inverse video.

• Logical terminal attribute statements define various types of fields
on the screen.

• Line drawing statements specify line weights and characters for
drawing lines.

2-74 Terminal Definition Revision D

Output Statements

Send Statements - Overview

The send statements specify sequences sent to the terminal by
NOSNE.

A brief description of each statement follows. None of these
statements is required. (See the next section for statement formats
and detailed descriptions.)

Statement Description

BELL_ACK Rings the alternate bell.

BELL_NAK Rings the bell on an error.

DISPLAY_BEGIN Enables the display (characters received show on
the screen).

DISPLAY_END Disables the display (characters received do not
show on the screen).

OUTPUT_BEGIN Allows output to begin. NOSNE sends this
sequence before starting output (after receiving
input).

OUTPUT_END

PRINT_BEGIN

PRINT_ END

PROTECT_ALL

RETURN

Revision D

Ends output. NOSNE sends this sequence after
ending output (before receiving input).

Enables the printer (characters received are
printed).

Disables the printer (characters received are not
printed).

Protects all character positions on the screen.

Moves the cursor to the beginning of the current
line.

Terminal Definition Statements 2-75

Output Statements

Send Statements - Format Descriptions

The send statements are output statements. Each has a required OUT
parameter that specifies a character string you obtain from the
hardware reference manual for your terminal.

BELL_ACK

The BELL_ACK statement specifies the sequence that rings the
alternate bell. If omitted, the alternate bell is disabled.

The format is:

BELL_ACK or BELA
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies specifies a character sequence
transmitted to the terminal. This parameter is required.

BELL NAK

The BELL_NAK statement specifies the sequence that rings the bell
on an error. If omitted, the ASCII BEL character (7) is transmitted.

The format is:

BELL_NAK or BELN
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies specifies a character sequence
transmitted to the terminal. This parameter is required.

2-76 Terminal Definition Revision D

Output Statements

DISPLAY_BEGIN

The DISPLAY_BEGIN statement specifies the sequence that enables
the display (characters received show on the screen). If omitted, no
sequence needs to be sent for the terminal to display characters.

NOTE

DISPLAY_BEGIN is not used by NOS/VE, but is accepted for
compatibility with terminal definitions converted from NOS.

The format is:

DISPLAY_BEGIN or DISB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

DISPLAY_END

The DISPLAY_END statement specifies the sequence that disables the
display (characters received do not show on the screen). If omitted, no
sequence needs to be sent to disable displaying characters.

NOTE

DISPLAY_END is not used by NOS/VE, but is accepted for
compatibility with terminal definitions converted from NOS.

The format is:

DISPLAY_END or DISE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision D Terminal Definition Statements 2·77

Output Statements

OUTPUT_BEGIN

The OUTPUT_BEGIN statement specifies the sequence that allows
output to begin. NOSNE sends the specified sequence before starting
output (after receiving input). The statement should include the
sequence to disable protected areas if it is supported by the terminal.
If omitted, no sequence needs to be sent to begin output.

The format is:

OUTPUT _BEGIN or OUTB
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

OUTPUT_END

The OUTPUT_END statement specifies the sequence that ends output.
NOSNE sends the sequence specified after ending output (before
receiving input). It should include the sequence to enable protected
areas if the terminal supports protected areas. If omitted, no sequence
needs to be sent to end output.

The format is:

OUTPUT_END or OUTE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2-78 Terminal Definition Revision D

Output Statements

PRINT _BEGIN

The PRINT _BEGIN statement specifies the sequence that enables the
printer (it prints received characters). If omitted, no sequence needs to
be sent to print characters.

The format is:

PRINT _BEGIN or PRIB
OUT=list of integer, keyword, or .string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

PRINT_END

The PRINT _END statement specifies the sequence that disables the
printer (it does not print received characters). If omitted, no sequence
needs to be sent to disable the printer.

The format is:

PRINT _END or PRIE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision B Terminal Definition Statements 2·79

Output Statements

PROTECT_ALL

The PROTECT _ALL statement specifies the sequence that protects
character positions on the screen. If omitted, the terminal does not
have this capability.

The format is:

PROTECT _ALL or PROA
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

RETURN

The RETURN statement specifies the sequence that moves the cursor
to the beginning of the line it is at. If omitted, the terminal does not
have this capability.

The format is:

RETURN or RET
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2-80 Terminal Definition Revision B

Output Statements

Physical Terminal Attribute Statements · Overview

The physical terminal attribute statements define physical attributes
of the terminal. Some terminals, however, use a character position on
the screen to enable/disable these attributes. If this is the case with
your terminal, do not use these statements.

A brief description of each statement follows. None of the statements
are required. (See the next section for statement formats and detailed
descriptions.)

Statement

ALT_BEGIN

ALT_END

BLINK_ BEGIN

BLINK_ END

HIDDEN _BEGIN

HIDDEN_END

HIGH_
INTENSITY_
BEGIN

HIGH_
INTENSITY _END

INVERSE_BEGIN

Revision B

Description

Displays characters in the alternate intensity
(bright or dim).

Stops the display of characters in the alternate
intensity (bright or dim).

Blinks characters.

Stops the blinking of characters.

Stops the display of characters (sets up hidden
fields, as for passwords).

Starts the display of characters.

Indicates the character sequence that begins the
high intensity highlighting style.

Indicates the character sequence which ends the
high intensity highlighting style.

Displays characters in inverse video.

Terminal Definition Statements 2-81

Output Statements

Statement

INVERSE_END

LOW_
INTENSITY_
BEGIN

LOW_
INTENSITY _END

PROTECT _BEGIN

PROTECT_END

UNDERLINE_
BEGIN

UNDERLINE_END

2-82 Terminal Definition

Description

Stops the display of characters in inverse video.

Indicates the character sequence that begins the A
low intensity highlighting style. W

Indicates the character sequence that ends the
low intensity highlighting style.

Protects character positions written to.

Stops the protection of character positions
written to.

Underlines characters.

Stops the underlining of characters.

Revision B

Output Statements

Physical Terminal Attribute Statements - Format
Descriptions

The physical terminal attribute statements are output statements.
Each has a required OUT parameter that specifies a character string
you obtain from the hardware reference manual for your terminal.

ALT_BEGIN

The ALT_BEGIN statement specifies the sequence that displays
characters in the alternate intensity (either bright or dim). If omitted,
no sequence can be sent to display characters in an alternate
intensity.

The format is:

ALT_BEGIN or ALTB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

e ALT_END

The ALT_END statement specifies the sequence that stops the display
of characters in the alternate intensity (either bright or dim). If
omitted, no sequence can be sent to stop displaying characters in the
alternate intensity.

The format is:

ALT _END or ALTE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision D Terminal Definition Statements 2-83

Output Statements

BLINK_BEGIN

The BLINK_BEGIN statement specifies the sequence that blinks
characters. If omitted, no sequence can be sent to blink characters.

The format is:

BLINK_BEGIN or BLIB
OUT= list -of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

BLINK_END

The BLINK_END statement specifies the sequence that stops the
blinking of characters. If omitted, no sequence can be sent to stop the
blinking of characters.

The format is:

BLINK_END or BLIE
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2·84 Terminal Definition Revision D

Output Statements

HIDDEN _BEGIN

The HIDDEN _BEGIN statement specifies the sequence that stops the
display of characters (sets up hidden fields, as for passwords). The
HAS_HIDDEN statement must also be specified to set up hidden
fields. If HIDDEN _BEGIN is omitted, no sequence can be sent to
start hidden fields.

The format is:

HIDDEN _BEGIN or HIDB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

HIDDEN_END

The HIDDEN _END statement specifies the sequence that starts the
display of characters. The HAS_HIDDEN statement must also be
specified to set up hidden fields. If HIDDEN _END is omitted, no
sequence can be sent to end hidden fields.

e The format is:

HIDDEN_END or HIDE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision B Terminal Definition Statements 2-85

Output Statements

HIGH_INTENSITY _BEGIN

The HIGH_ INTENSITY _BEGIN statement indicates the character
sequence that begins the high intensity highlighting on the terminal
screen.

The format is:

HIGH_INTENSITY _BEGIN or HIGIB
OUT= list of integer, keyword

The OUT (0) parameter specfies a character sequence transmitted to
the terminal to begin high intensity.

HIGH_INTENSITY _END

The HIGH_ INTENSITY _END statement indicates the character
sequence that ends the high intensity highlighting on the terminal
screen.

The format is:

HIGH_INTENSITY _END or HIGIE
OUT=list of integer, keyword

The OUT (0) parameter specfies a character sequence transmitted to
the terminal to end high intensity.

2-86 Terminal Definition Revision B

Output Statements

INVERSE_BEGIN

The INVERSE_BEGIN statement specifies the sequence that displays
characters in inverse video. If omitted, no sequence can be sent to
start inverse video. The last example in the following section on
Logical Terminal Attributes explains how to produce marking in
inverse video in the EDIT_FILE utility.

The format is:

INVERSE_BEGIN or INVB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

INVERSE _END

The INVERSE_END statement specifies the sequence that stops the
display of characters in inverse video. If omitted, no sequence can be
sent to end inverse video.

The format is:

INVERSE_END or INVE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision C Terminal Definition Statements 2-87

Output Statements

LOW_ INTENSITY_ BEGIN

The LOW_INTENSITY_BEGIN statement indicates the character
sequence that begins the low intensity highlighting on the terminal
screen.

The format is:

LOW_INTENSITY_BEGIN or LOWIB
OUT= list of integer, keyword

The OUT (0) parameter specifies a character sequence transmitted to
the terminal to begin low intensity.

LOW _INTENSITY _END

The LOW_INTENSITY_END statement indicates the character
sequence that ends the low intensity highlighting on the terminal
screen.

The format is:

LOW_INTENSITY_END or LOWIE
OUT= list of integer, keyword

The OUT (0) parameter specifies a character sequence transmitted to
the terminal to end low intensity.

2·88 Terminal Definition Revision C

Output Statements

PROTECT _BEGIN

The PROTECT _BEGIN statement specifies the sequence that protects
character positions written to. To set up protected fields, you must
also specify the HAS_PROTECT statement. If PROTECT _BEGIN is
omitted, no sequence can be sent to start a protected field.

The format is:

PROTECT _BEGIN or PROB
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

PROTECT_END

The PROTECT _END statement specifies the sequence that ends
protection of character positions written to. If omitted, no sequence
can be sent to end a protected field.

The format is:

PROTECT _END or PROE
0 UT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision B Terminal Definition Statements 2-89

Output Statements

UNDERLINE _BEGIN

The UNDERLINE_BEGIN statement specifies the sequence that
underlines characters. If omitted, no sequence can be sent to start
underlining.

The format is:

UNDERLINE_BEGIN or UNDB
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

UNDERLINE _END

The UNDERLINE_END statement specifies the sequence that stops
under lining of characters. If omitted, no sequence can be sent to stop
under lining.

The format is:

UNDERLINE_END or UNDE
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2-90 Terminal Definition Revision B

Output Statements

Logical Terminal Attribute Statements - Overview

Logical attributes are used mainly by full screen applications to define
various types of fields on the screen. You can define a logical
attribute as a physical attribute or as a combination of physical
attributes.

The 12 logical terminal attribute statements are:

ERROR_ BEGIN
ERROR_ END
INPUT_ TEXT_BEGIN
INPUT_ TEXT_END
ITALIC_BEGIN
ITALIC_END

MESSAGE_BEGIN
MESSAGE_END
OUTPUT_ TEXT_BEGIN
OUTPUT_ TEXT_END
TITLE_BEGIN
TITLE_END

None of these statements is required.

The logical terminal attribute statements allow you to uniquely
identify errors, input, italics, messages, output, and titles for each
terminal. All applications using terminal definitions for these
attributes will (when the user uses the same terminal) look alike in
these areas. Usability is improved when the user can transfer this
type of knowledge from one application to another. If you do not
specify sequences for these attributes and the application does not
define its own, text output prints normally.

Examples:

• A full screen application defines all input parameters as the
logical type INPUT_ TEXT. Then in the terminal definition, you
specify that the INPUT_ TEXT_BEGIN statement has the physical
characteristic of underlining. When an application uses the
sequence assigned to INPUT_ TEXT_BEGIN for input fields, it
gets underlined input fields. (The file also contains the INPUT_
TEXT_END statement to define the stopping of underlining.)

Revision C Terminal Definition Statements 2-91

Output Statements

• The applications available on NOSNE do not always use the
logical attributes you set up. Some applications have special needs, e
for which they define logical attributes that override those you
defined. This happens with the use of INPUT_ TEXT in the EDIT_
FILE utility. If you set up all input to be underlined in the
terminal definition, in the editor your screen would often be filled A
with underlines. Since this is not acceptable, the editor overrides -
any sequences specified for INPUT_TEXT_BEGIN and INPUT_
TEXT_ END.

• Most terminals do not have italics, but you can assign physical
characteristics to the italic statements, so that when an application
uses italics the terminal will respond. The EDIT_FILE utility uses
this capability to produce marking in inverse video. If you want to
use marking in the editor, you should include the ITALIC_BEGIN
and ITALIC_END statements in the terminal definition. On the
OUT parameter of these statements, specify the character
sequences that start and stop a clearly visible video attribute (such
as inverse video) for your terminal.

For the CDC 721 terminal, the following statements are included.

italic_begin out=(start_inverse)
italic_end out=(stop_inverse)

The variable name START_INVERSE is defined at the beginning
of the definition as rs 'D' and the variable name STOP _INVERSE
is defined as rs 'E'.

2-92 Terminal Definition Revision C

Output Statements

Logical Terminal Attribute Statements · Format
Descriptions

The logical terminal attribute statements are output statements. Each
has a required OUT parameter that specifies a character sequence
that represents physical characteristics. You obtain this sequence from
the hardware reference manual for your terminal.

ERROR_BEGIN

The ERROR_BEGIN statement specifies the sequence sent to begin an
error field. If omitted, any text output in this field prints normally.

The format is:

ERROR_BEGIN or ERRB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

ERROR_END

The ERROR_END statement specifies the sequence sent to end an
error field. If omitted, text output continues as specified by the
ERROR_BEGIN statement.

The format is:

ERROR_END or ERRE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

Revision D Terminal Definition Statements 2·93

~=

11

Output Statements

INPUT_ TEXT_ BEGIN

The INPUT_ TEXT_BEGIN statement specifies the sequence sent to
begin an input field. Your terminal may support protected fields by
using a video attribute (such as alternate intensity) for unprotected
areas of the screen. If it does, you should define INPUT_ TEXT_
BEGIN and INPUT_ TEXT_END so that screen formatting
applications display the input fields correctly as unprotected areas. If
omitted, any text output in this field prints normally.

The format is:

INPUT_ TEXT _BEGIN or INPTB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

INPUT_ TEXT _END

The INPUT_ TEXT_ END statement specifies the sequence sent to end
an input field. If omitted, text output continues as specified by the
INPUT_ TEXT_BEGIN statement.

The format is:

INPUT_ TEXT_ END or INPTE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

2-94 Terminal Definition Revision D

Output Statements

ITALIC _BEGIN

The ITALIC_BEGIN statement specifies the sequence sent to begin
italics. If your terminal supports an alternate character set, here is
where you can make use of it with screen formatting applications. To
use marking in the EDIT_FILE utility, italics must be set to some
clearly visible video attribute, such as inverse video. If omitted, any
text output in this field prints normally.

The format is:

ITALIC _BEGIN or ITAB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

ITALIC END

The ITALIC_END statement specifies what sequence is transmitted to
end italics. If omitted, text output continues as specified by the
ITALIC_BEGIN statement.

e The format is:

ITALIC_END or ITAE
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

Revision C Terminal Definition Statements 2-95

Output Statements

MESSAGE_BEGIN

The MESSAGE_BEGIN statement specifies what sequence is
transmitted to begin a message field. The display attributes specified
here are used when printing help and similar information. If omitted,
any text output in this field prints normally.

The format is:

MESSAGE_BEGIN or MESB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

MESSAGE END

The MESSAGE_END statement specifies what sequence is transmitted
to end a message field. If omitted, text output continues as specified
by the MESSAGE_BEGIN statement.

The format is:

MESSAGE_END or MESE
OUT=list of integer or keyword

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

2-96 Terminal Definition Revision C

Output Statements

OUTPUT_TEXT_BEGIN

The OUTPUT_ TEXT _BEGIN statement specifies what sequence is
transmitted to begin an output field. If omitted, any text output in
this field prints normally.

The format is:

OUTPUT_ TEXT _B.EGIN or OUTTB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

OUTPUT TEXT_END

The OUTPUT_ TEXT_END statement specifies what sequence is
transmitted to end an output field. If omitted, text output continues as
specified by the OUTPUT_ TEXT _BEGIN statement.

The format is:

OUTPUT_TEXT_END or OUTTE
0 UT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

Revision B Terminal Definition Statements 2-97

Output Statements

TITLE _BEGIN

The TITLE_BEGIN statement specifies what sequence is transmitted
to begin a title field. If omitted, any text output in this field prints
normally.

The format is:

TITLE_BEGIN or TITB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

TITLE_END

The TITLE_END statement specifies the sequence sent to end a title
field. If omitted, text output continues as specified by the TITLE_
BEGIN statement.

The format is:

TITLE _END or TITE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

2-98 Terminal Definition Revision B

Output Statements

Line Drawing Statements - Overview

Screen formatting applications allow you to specify:

• Three weights of line drawing (fine, medium, and bold).

e • Output sequences for each weight (on and off).

• Characters for horizontal lines, vertical lines, box corners, and box
intersections.

The following statements can be used to specify line drawings for the
three line weights. Different statements specify the beginning and end
of a line weight, horizontal and vertical lines, the four box corners,
and intersection characters.

Weight

Fine

Revision B

Line Drawing Statement

LD_FINE_BEGIN
LD_FINE_ CROSS
LD_FINE_DOWN_T
LD_FINE_END
LD_FINE_HORIZONTAL
LD_FINE_LEFT _ T
LD_FINE_LOWER_ LEFT
LD_FINE_LOWER_RIGHT
LD_FINE_RIGHT_T
LD_FINE_ UP_ T
LD_FINE_ UPPER_ LEFT
LD_FINE_ UPPER_ RIGHT
LD_FINE_ VERTICAL

Terminal Definition Statements 2-99

Output Statements

Weight

Medium

Bold

2·100 Terminal Definition

Line Drawing Statement

LD_MEDIUM_BEGIN
LD_MEDIUM_ CROSS
LD_MEDIUM_DOWN_ T
LD_MEDIUM_END
LD_MEDIUM_HORIZONTAL
LD_MEDIUM_LEFT_T
LD_MEDIUM_LOWER_LEFT
LD_MEDIUM_LOWER_RIGHT
LD_MEDIUM_RIGHT _ T
LD_MEDIUM_ UP_ T
LD_MEDIUM_ UPPER_ LEFT
LD_MEDIUM_ UPPER_ RIGHT
LD_MEDIUM_ VERTICAL

LD _BOLD_BEGIN
LD_BOLD_CROSS
LD_BOLD_DOWN_ T
LD_BOLD_END
LD_BOLD_HORIZONTAL
LD_BOLD_LEFT_T
LD_BOLD_LOWER_LEFT
LD_BOLD_LOWER_RIGHT
LD_BOLD_RIGHT_ T
LD_BOLD_UP_T
LD_BOLD_UPPER_LEFT
LD_BOLD_ UPPER_RIGHT
LD_BOLD_ VERTICAL

Revision B

Output Statements

Line Drawing Statements - Format Descriptions

If you can actually draw lines on your terminal (rather than
improvising lines using such characters as the hyphen), place the
sequences to turn the line drawing on and off in the BEGIN and END
statements. You can specify the same sequences for all three line
weights, if your terminal has only one line weight. If your terminal
has only two line weights, you can specify the same sequences for two
of the sets of statements.

If your terminal has no bold lines, you can improvise a bold line
drawing character set. Define all characters as blanks (' ') and use the
sequences defined in the INVERSE_BEGIN and INVERSE_END
statements as the LD_BOLD_BEGIN and LD_BOLD_END character
sequences (INVERSE_BEGIN and INVERSE_END are physical
terminal attribute statements).

If you cannot actually draw lines on your terminal, use:

• The hyphen character for a horizontal line.

• The colon or a similar character for a vertical line.

e • Either the asterisk or plus character for corners and intersections.

Since the BEGIN and END statements would be blank, you could
equate them to a terminal attribute such as blinking (use the
character sequence set up in the BLINK_BEGIN and BLINK_END
statements).

The line drawing statements are output statements. Each has an OUT I,.!

parameter that specifies a character sequence listed in the hardware ,.
reference manual for your terminal. ~~

Revision D Terminal Definition Statements 2-101

Output Statements

LD FINE BEGIN

The LD_FINE_BEGIN statement specifies the sequence sent to start
a fine line. If omitted, no sequence needs to be sent to start a fine
line.

The format is:

LD_FINE_BEGIN or LDFB
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _FINE_ CROSS

The LD_FINE_CROSS statement defines the character drawn for fine
lines at the point where the lines cross. If omitted, the terminal does
not have this capability.

The format is:

LD_FINE_CROSS or LDFC
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-102 Terminal Definition Revision D

Output Statements

LD_FINE_DOWN_T

The LD_FINE_DOWN_T statement specifies the sequence that
defines the character drawn for fine lines at the meeting point of the
horizontal line and a line that originates at the horizontal line and
goes upward. The following character appears on the screen:

J_

If omitted, the terminal does not have this capability.

The format is:

LD_FINE_DOWN_T or LDFDT
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _FINE _END

The LD_FINE_END statement specifies the sequence sent to end a
fine line. If omitted, no sequence needs to be sent to end a fine line.

The format is:

LD_FINE_END or LDFE
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-103

Output Statements

LD_FINE_HORIZONTAL

The LD_FINE_HORIZONTAL statement defines the character for
drawing fine horizontal lines. If omitted, the terminal does not have
this capability.

The format is:

LD_FINE_HORIZONTAL or LDFH
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_FINE_LEFT _ T

The LD_FINE_LEFT_T statement specifies the sequence that defines
the character drawn for fine lines at the meeting point of the vertical
line and a line that originates at the vertical line and goes to the
right. The following character appears on the screen:

If omitted, the terminal does not have this capability.

The format is:

LD_FINE_LEFT _Tor LDFLT
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-104 Terminal Definition Revision B

Output Statements

LD _FINE _LOWER_LEFT

The LD_FINE_LOWER_LEFT statement defines the character drawn
for fine lines at the lower left corner <>fa rectangle. If omitted, the
terminal does not have this capability.

The format is:

LD_FINE_LOWER_LEFT or LDFLL
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_FINE_LOWER_RIGHT

The LD_FINE_LOWER_RIGHT statement defines the character
drawn for fine lines at the lower right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_FINE_LOWER_RIGHT or LDFLR
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_FINE_RIGHT _ T

The LD_FINE_RIGHT _ T statement specifies the sequence that
defines the character drawn for fine lines at the meeting point of the
vertical line and a line that originates at the vertical line and goes to
the left. The following character appears on the screen:

If omitted, the terminal does not have this capability.

e The format is:

LD_FINE_RIGHT_T or LDFRT
OUT=list of integer, keyword, or string

e The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-105

Output Statements

LD_FINE_UP _T

The LD_FINE_ UP_ T statement specifies the sequence that defines
the character drawn for fine lines at the meeting point of the
horizontal line and a line that originates at the horizontal line and
goes down. The following character appears on the screen:

T
If omitted, the terminal does not have this capability.

The format is:

LD_FINE_UP _Tor LDFUT
0 UT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2·106 Terminal Definition Revision B

Output Statements

LD _FINE_ UPPER_LEFT

The LD_FINE_UPPER_LEFT statement defines the character drawn
for fine lines at the upper left corner of a rectangle. If omitted, the
terminal does not have this capability.

The format is:

LD_FINE_UPPER_LEFT or LDFUL
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _FINE_ UPPER _RIGHT

The LD_FINE_ UPPER_RIGHT statement defines the character
drawn for fine lines at the upper right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_FINE_UPPER_RIGHT or LDFUR
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _FINE VERTICAL

The LD_FINE_ VERTICAL statement defines the character drawn for
fine vertical lines. If omitted, the terminal does not have this
capability.

The format is:

LD_FINE_ VERTICAL or LDFV
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-107

Output Statements

LD _MEDIUM_BEGIN

The LD_MEDIUM_BEGIN statement specifies the sequence sent to
start a medium line. If omitted, no sequence needs to be sent to start
a medium line.

The format is:

LD_MEDIUM_BEGIN or LDMB
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _MEDIUM_ CROSS

The LD_MEDIUM_CROSS statement defmes the character drawn for
medium lines at the point where the lines cross. If omitted, the
terminal does not have this capability.

The format is:

LD_MEDIUM_CROSS or LDMC
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-108 Terminal Definition Revision B

Output Statements

LD_MEDIUM_DOWN_T

The LD_MEDIUM_DOWN _ T statement specifies the sequence that
defines the character drawn for medium lines at the meeting point of
a horizontal line and a line that originates at the horizontal line and·
goes upward. The following character appears on the screen:

J_
If omitted, the terminal does not have this capability.

The format is:

LD_MEDIUM_DOWN_T or LDMDT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_MEDIUM_END

The LD_MEDIUM_END statement specifies the sequence sent to end
a medium line. If omitted, no sequence needs to be sent to end a
medium line.

The format is:

LD_MEDIUM_END or LDME
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_MEDIUM_HORIZONTAL

The LD_MEDIUM_HORIZONTAL statement defmes the character
drawn for medium horizontal lines. If omitted, the terminal does not
have this capability.

e The format is:

LD_MEDIUM_HORIZONTAL or LDMH
OUT=list of integer, keyword, or string

e The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-109

Output Statements

LD_MEDIUM_LEFT T

The LD_MEDIUM_LEFT_T statement specifies the sequence that
defines the character drawn for medium lines at the meeting point of
a vertical line and a line that originates at the vertical line and goes
to the right. The following character appears on the screen:

If omitted, the terminal does not have this capability.

The format is:

LD_MEDIUM_LEFT_T or LDMLT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _MEDIUM_LOWER_LEFT

The LD_MEDIUM_LOWER_LEFT statement defines the character
drawn for medium lines at the lower left corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_MEDIUM_LOWER_LEFT or LDMLL
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD _MEDIUM_LOWER_RIGHT

The LD_MEDIUM_LOWER_RIGHT statement defines the character
drawn for medium lines at the lower right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD _MEDIUM_LOWER_RIGHT or LDMLR
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-110 Terminal Definition Revision B

Output Statements

LD _MEDIUM_RIGHT _ T

The LD_MEDIUM_RIGHT _ T statement specifies the sequence that
defines the character drawn for medium lines at the meeting point of
the vertical line and a line that originates at the vertical line and
goes to the left. The following character appears on the screen:

If omitted, the terminal does not have this capability.

The format is:

LD_MEDIUM_RIGHT_T or LDMRT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_MEDIUM_UP _T

The LD_MEDIUM_ UP_ T statement specifies the sequence that
defines the character drawn for medium lines at the meeting point of
the horizontal line and a line that originates at the horizontal line
and goes downward. The following character appears on the screen:

T
If omitted, the terminal does not have this capability.

The format is:

LD _MEDIUM_ UP_ T or LDMUT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-111

Output Statements

LD_MEDIUM_ UPPER_LEFT

The LD_MEDIUM_UPPER_LEFT statement defines the character
drawn for medium lines at the upper left corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is as follows:

LD_MEDIUM_UPPER_LEFT or LDMUL
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LO _MEDIUM_ UPPER _RIGHT

The LD_MEDIUM_ UPPER_RIGHT statement defines the character
drawn for medium lines at the upper right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_MEDIUM_UPPER_RIGHT or LDMUR
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LO _MEDIUM_ VERTICAL

The LD_MEDIUM_ VERTICAL statement defines the character drawn
for medium vertical lines. If omitted, the terminal does not have this
capability.

The format is:

LD_MEDIUM_ VERTICAL or LDMV
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-112 Terminal Definition Revision B

Output Statements

LD_BOLD_BEGIN

The LD_BOLD_BEGIN statement specifies the sequence sent to start
a bold line. If omitted, no sequence needs to be sent to start a bold
line.

The format is:

LD_BOLD_BEGIN or LDBB
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_CROSS

The LD_BOLD_CROSS statement defines the character drawn for
bold lines at the point where the lines cross. If omitted, the terminal
does' not have this capability.

The format is:

LD_BOLD_CROSSorLDBC
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-113

Output Statements

LD_BOLD_DOWN_T

The LD_BOLD_DOWN_ T statement specifies the sequence that
defines the character drawn for bold lines at the meeting point of the
horizontal line and a line that originates at the horizontal line and
goes upward. The following character appears on the screen:

J_
If omitted, the terminal does not have this capability.

The format is:

LD_BOLD_DOWN_T or LDBDT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_END

The LD_BOLD_END statement specifies the sequence sent to end a
bold line. If omitted, no sequence needs to be sent to end a bold line. e
The format is:

LD_BOLD_END or LDBE
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-114 Terminal Definition Revision B

Output Statements

LD BOLD_HORIZONTAL

The LD_BOLD_HORIZONTAL statement defines the character drawn
for horizontal bold lines. If omitted, the terminal does1 not have this
capability. ,

The format is:

LD_BOLD_HORIZONTAL or LDBH
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_LEFT_T

The LD_BOLD_LEFT_ T statement specifies the sequence that
defines the character drawn for bold lines at the meeting point of the
vertical line and a line that originates at the vertical line and goes to
the right. The following character appears on the screen:

If omitted, the terminal does not have this capability.

The format is:

LO _BOLD _LEFT_ T or LDBLT
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD LOWER LEFT

The LD_BOLD_LOWER_LEFT statement defines the character
drawn for bold lines at the lower left corner of a rectangle. If omitted,
the terminal does not have this capability.

e The format is:

LD_BOLD_LOWER_LEFT or LDBLL
OUT= list of integer, keyword, or string

e The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-115

Output Statements

LD _BOLD_ LOWER_RIGHT

The LD_BOLD_LOWER_RIGHT statement defines the character
drawn for bold lines at the lower right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_BOLD_LOWER_RIGHT or LDBLR
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_RIGHT_T

The LD_BOLD_RIGHT _ T statement specifies the sequence that
defines the character drawn for bold lines at the meeting point of the
vertical line and a line that originates at the vertical line and goes to
the left. The following character appears on the screen:

If omitted, the terminal does not have this capability.

The format is:

LD_BOLD_RIGHT_T or LDBRT
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2-116 Terminal Definition Revision B

Output Statements

LD_BOLD_UP_T

The LD_BOLD_ UP_ T statement specifies the sequence that defines
the character drawn for bold lines at the meeting point of the
horizontal line and a line that originates at the horizontal line and
goes downward. The following character appears on the screen:

T
If omitted, the terminal does not have this capability.

The format is:

LD_BOLD_UP_TorLDBUT
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_UPPER_LEFT

The LD_BOLD_UPPER_LEFT statement defines the character drawn
for bold lines at the upper left corner of a rectangle. If omitted, the
terminal does not have this capability.

The format is:

LD_BOLD_UPPER_LEFTorLDBUL
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

Revision B Terminal Definition Statements 2-117

Output Statements

LD_BOLD_UPPER_RIGHT

The LD_BOLD_UPPER_RIGHT statement defines the character
drawn for bold lines at the upper right corner of a rectangle. If
omitted, the terminal does not have this capability.

The format is:

LD_BOLD_UPPER_RIGHT or LDBUR
OUT=list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

LD_BOLD_ VERTICAL

The LD_BOLD_ VERTICAL statement defines the character drawn for
vertical bold lines. If omitted, the terminal does not have this
capability.

The format is:

LD_BOLD_ VERTICAL or LDBV
OUT= list of integer, keyword, or string

The OUT (0) parameter specifies the character sequence sent to the
terminal. This parameter is required.

2·118 Terminal Definition Revision B

Defining Functions and Key Labels for EDIT_FILE

a Defining Functions and Key Labels for
W' EDIT_FILE

You have the following choices for defining the programmable function
keys for the EDIT_FILE utility:

1. Let EDIT_FILE default to assigning the subcommands and labels
associated with the programmable function keys. The defaults used
are listed in table 2-1.

2. Use a separate APPLICATION_STRING statement to define each
programmable function key.

3. Use the SET_FUNCTION_KEY subcommand in the editor prolog
file to define each programmable function key.

Using the APPLICATION_STRING statement is more efficient than
using the SET_FUNCTION _KEY subcommand in an editor prolog.
However, not all function keys used by EDIT_FILE can be assigned
with the APPLICATION_STRING statement. In particular, the shifted
and unshifted definitions for the DATA, DOWN, EDIT, FWD, BKW,
BACK, HELP, STOP, UNDO, and UP keys must be defined through
the SET_FUNCTION _KEY subcommand. If you have defined any of
these keys for the terminal and you want to override the default
definition assigned by EDIT_FILE for these keys, do the following:

1. Define the programmable function keys (function keys 1 through
16) through APPLICATION_STRING statements.

2. Create an editor prolog for the definition of these keys by the
SET_FUNCTION_KEY subcommand.

Revision C Terminal Definition Statements 2-119

Defining Functions and Key Labels for EDIT_FILE

Table 2-1. EDIT_FILE Defaults for Function Keys

Cap/Op

Ins Ch

Del Ch

Bkw

First

Fwd

Last

Back

Help

Undo

Redo

Quit

Exit

InsLn

Value Used from Terminal Definition

INSERT_CHAR with nonblank LABEL, or INSERT_
MODE_BEGIN and INSERT_MODE_END with
nonblank LABEL

DELETE_CHAR with nonblank LABEL

BKW with nonblank LABEL, or Fl, or F-key with IN
the same as BKW IN

BKW_S with nonblank LABEL, or Fl_S, or F-key
with IN the same as BKW_S IN

FWD with nonblank LABEL, or F2, or F-key with IN
the same as FWD IN

FWD_S with nonblank LABEL, or F2_S, or F-key
with IN the same as FWD_S IN

BACK with nonblank LABEL, or F3, or F-key with IN
the same as BACK IN

HELP with nonblank LABEL, or F4, or F-key with IN
the same as HELP IN

UNDO with nonblank LABEL, or F5, or F-key with IN
the same as UNDO IN

UNDO_S with nonblank LABEL, or F5_S, or F-key
with IN the same as UNDO_S IN. (Redo is not
currently supported by EDIT_FILE.)

STOP with nonblank LABEL, or F6, or F-key with IN
the same as STOP IN

STOP _S with nonblank LABEL, or F6_S, or F-key
with IN the same as STOP_ S IN

INSERT_LINE_BOL or INSERT_LINE_STAY with
nonblank LABEL

(Continued)

2-120 Terminal Definition Revision C

Defining Functions and Key Labels for EDIT_FILE

Table 2-1. EDIT_FILE Defaults for Function Keys (Continued)

Cap/Op

DelLn

Home

OPS

ClrEL

Middle

Refrsh

e LinUp

LinDn

OPS

Value Used from Terminal Definition

DELETE_LINE_BOL or DELETE_LINE_STAY with
nonblank LABEL

CURSOR_HOME with nonblank LABEL

The operations Copy, Move, Mark, Unmrk, MrkCh,
MrkBx, Locate, LocNxt, LocAll, Width, Break, Join,
and SkpEL cannot be defined through a TDU
statement; they are always assigned programmable
function keys.

ERASE_END_OF_LINE with nonblank LABEL

This operation cannot be defined through a TDU
statement; it is always assigned a programmable
function key.

ERASE_PAGE_HOME or ERASE_PAGE_STAY with
nonblank LABEL

UP with nonblank LABEL

DOWN with nonblank LABEL

The operations Format, Center, lnsWd, DelWd, lnsBk,
DelBk, Indent, and Dedent cannot be defined through a
TDU statement; they are always assigned
programmable function keys.

APPLICATION _STRING

The format of the APPLICATION_STRING statement is:

APPLICATION _STRING or APPS
NAME= string
OUT=string

The NAME (N) parameter specifies the character string that the
application associates with the programmable function key. This
parameter is required. NAME parameter values for user-defined
applications must be in the document that describes the application.
Values for the EDIT_FILE utility follow.

Revision C Terminal Definition Statements 2·121

Defining Functions and Key Labels for EDIT_FILE

On a statement defining the function of a key, use the following rules A
to determine the value for the NAME parameter. W

• For an unshifted key use:

FSE_FUNCTION _

followed by the number of the key. For example, the name of the
function of unshifted programmable function key F8 is:

FSE_FUNCTION_8

• For a shifted programmable function key use:

FSE_FUNCTION _SHIFT_

followed by the number of the key. For example, the name
associated with shifted programmable function key F8 is:

FSE_FUNCTION_SHIFT_8

On a statement defining the label of a key, the entry is the name
of the function of the key (as just described) followed by _LABEL.

• For the unshifted F8 key label use:

FSE_FUNCTION _8_LABEL

• For the shifted F8 key label use:

FSE_FUNCTION _SHIFT_8_LABEL

The OUT (0) parameter specifies the string associated with the value
in the NAME parameter. It is sent to the application, which can use
it any way it wants. This parameter is required. The OUT parameter
can be continued on more than one line under the following
conditions:

• Strings that would extend over more than one line must be broken
into substrings that the system concatenates. Each substring must
be complete on a single line.

2-122 Terminal Definition Revision C

Defining Functions and Key Labels for EDIT_FILE

• Variables must be complete on each line.

You can use variable names to define lengthy subcommands, as in the
following example.

f4a='write_file f=$1ocal .t$.$boi, l=m'
f4b='format_cybil_source i=$1ocal .t$.$boi o=$1ocal.t1$.$boi'
f4c='delete_lines l=m'
f4d='read_f11e f=$1ocal.t1$ p=b'
application_string name=('FSE_FUNCTION_4') ..
out=(f4a ';' f4b ';' f4c ';' f4d)

For user-defined applications, refer to the document that describes the
application. Information for the EDIT_FILE utility follows.

When defining the function of a key, the string for the OUT
parameter is the subcommand executed when the key is pressed.
When you define the label of a key, the string is the label that
appears on the screen. Refer to the NOSNE File Editor manual listed
in appendix B for both values.

Revision C Terminal Definition Statements 2-123

Defining Functions and Key Labels for Applications Other Than EDIT_FILE

Defining Functions and Key Labels for a
Applications Other Than EDIT _FILE W

The full screen applications Debug, EDIT_CATALOG, EXPLAIN,
IM/Quick, and Programming Environments define both the functions
performed and labels assigned to programmable function keys through a
application menus. You can change the application menu if you wish W
to change either the function key or the label used by these
applications. Application menus are described in the NOSNE Object
Code Management manual.

2-124 Terminal Definition Revision C

Glossary A

A

e ANSI

American National Standards Institute.

ASCII

American Standard Code for Information Interchange.

Asynchronous

A type of terminal that has successive bits, characters, or events
transmitted at variable intervals. In data transmission this is usually
limited to a variable time interval between characters and is often
known as start-stop transmission. Contrast with Synchronous.

B

Boolean

A kind of value that is evaluated as TRUE or FALSE.

Boolean Constant

A constant that represents a boolean (logical) value of TRUE or
FALSE. One of the following names can be used to specify a boolean
constant:

c

TRUE

YES

ON

Character

FALSE

NO

OFF

A letter, digit, space, or symbol that is represented by a code in one
or more of the standard character sets.

It is also referred to as a byte when used as a unit of measure to
specify block length, record length, and so forth.

Revision C Glossary A-1

Command File

A character can be a graphic character or a control character. A
graphic character is printable; a control character is nonprintable and e
is used to control an input or output operation.

Command

A statement that initiates a specific operation on NOSNE. A
command name is recognized by the SCL interpreter if it appears as
an entry in the command list.

Comment

A line or sequence of characters that is not interpreted or compiled
and is for documentary purposes only.

Cycle Reference

The cycle of a permanent file to be accessed. A cycle reference can be
either an unsigned integer or one of the following designators:

D

$HIGH

$LOW

$NEXT

Direct Cursor Addressing

The ability of the terminal to place the cursor immediately at any set
of coordinates on the screen.

E

EDIT_FILE Utility

A NOSNE command utility that provides an editor which enables you
to edit files either by page in full screem mode or line by line.

F

File

An SCL element that specifies a temporary or permanent file,
including its path and, optionally, a cycle reference (for permanent
files). See also Path and Cycle Reference.

A-2 Terminal Definition Revision C

File Organization

File Organization

Defines the way records are stored in a file. The available file
organizations are sequential, byte-addressable, direct-access, and
indexed-sequential.

File Position

Job

The location in the file at which the next read or write operation will
begin. A file that can be positioned is identified by specifying a path,
an optional cycle reference (for permanent files), and an optional file
position as follows:

path.cycle reference.file position

The file position designators are:

$ASIS Leave the file in its current position.

$BOI Position the file at the beginning-of-information.

$EOI Position the file at the end-of-information.

See also Path and Cycle Reference.

FMU

File Management Utility

Function Key

A key on the terminal that, when pressed, performs a specified
operation. The operation can be either defined by the software or built
into the terminal.

I

Integer

A value representing one of the numbers 0, + 1, -1, + 2, -2, and so
forth.

-~J~~~~~~~~~~~~

Job

A set of tasks executed for a user name. NOSNE accepts interactive
and batch jobs. In interactive mode, a job is usually the same as a
terminal session.

Revision C Glossary A-3

Job Library List Object Library

Job Library List

Object libraries included in the program library list for each program
executed in the job.

K

Keyword

A parameter value that has special meaning in the context of a
particular parameter. For example, a parameter called COUNT might
normally expect an integer but could be given the keyword ALL.

L

Load Module

A module reformatted for code sharing and efficient loading. When the
user generates an object library, each object module in the module list
is reformatted and written as a load module on the object library.

M

Module

A unit of text accepted as input by the loader, linker, or object
library generator. See also Object Module and Load Module.

N

NOS/VE

Network Operating System, Virtual Environment.

0

Object Library

A file containing one or more load, SCL procedures, program
description, message, and/or application modules and a dictionary to
each module.

A-4 Terminal Definition Revision C

Object Module Range

Object Module

A compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader
and the CREATE_OBJECT_LIBRARY utility.

Parameter

A value list optionally preceded by and equated to a parameter name.
For example:

parameter name = value list

or

value list

Parameter Name

A name that uniquely identifies a parameter.

Path e In NOSNE, a path specifies the location of a file in a catalog
hierarchy. A general example of a path, from highest to lowest level
in its hierarchy, is family name, user name (or master catalog name),
subcatalog name(s), and file name. See also File, File Cycle, and Cycle
Reference.

Permanent File

A mass storage file preserved by NOSNE across job executions and
system deadstarts. A permanent file has an entry in a permanent
catalog. See also File.

Pro log

The SCL statement list that is executed at the beginning of each job.

R

Range

Value represented as two values separated by an ellipsis. The element
is associated with the values from the first value through the second
value. The first value must be less than or equal to the second value.
For example:

Revision C Glossary A-5

SCL System Command Language (SCL)

value .. value

s

SCL

See System Command Language.

scu
See Source Code Utility.

Source Code Utility (SCU)

A NOSNE command utility that stores, organizes, manipulates, and
extracts units of text. It is a development tool for large systems or
application development groups.

Source Library

A collection of decks on a file, with a header describing the collection,
generated and manipulated by the Source Code Utility (SCU).

Statement

A combination of words and symbols.

String

A value that represents a sequence of characters.

Synchronous

A type of terminal that has successive bits, characters, or events
transmitted at constant intervals. In data transmission this is usually
limited to a constant time interval between characters. Contrast with
Asynchronous.

System Command Language (SCL)

The block-structured interpretive language that provides the interface
to the features and capabilities of NOSNE. All commands and
statements are interpreted by SCL before being processed by the
system.

A-6 Terminal Definition Revision C

TDU Value List

T

TDU

Terminal Definition Utility.

e Terminal Definition File

The source file used in defining a terminal for use with a full-screen
application.

v

Value

An expression or application value specified in a parameter list. Each
value must match the defined kind of value for the parameter.
Keywords, constants, and variable references are all values.

Value Element

A single value or a range of values represented by two values
separated by an ellipsis. For example:

e value

or

value .. value

See also Value, Value List, and Value Set.

Value List

A series of value sets separated by spaces or commas and enclosed in
parentheses. If only one value set is given in the list, the parentheses
can be omitted. For example:

(value set,value set,value set)

or

value set

See also Value, Value Element, and Value Set.

Revision C Glossary A-7

Value Set Working Catalog

Value Set

A series of value elements separated by spaces or commas and
enclosed in parentheses. If only one value element is given in the set,
the parentheses can be omitted. For example:

(value element,value element,value element)

or

value element

See also Value, Value Element, and Value List.

w

Working Catalog

The catalog used if no other catalog is specified on a file reference.
The initial working catalog within a job is the $LOCAL catalog.

A-8 Terminal Definition Revision C

Related Manuals B

All NOSNE manuals and related hardware manuals are listed in
table B-1. If your site has installed the online manuals, you can find
an abstract for each NOSNE manual in the online System
Information manual. To access this manual, enter:

/explain

Ordering Printed Manuals

To order a printed Control Data manual, send an order form to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

To obtain an order form or to get more information about ordering
Control Data manuals, write to the above address or call (612)
292-2101. If you are a Control Data employee, call (612) 292-2100.

Accessing Online Manuals

To access the online version of a printed manual, log in to NOSNE
and enter the online title on the EXPLAIN command (table B-1
supplies the online titles). For example, to see the NOSNE Commands
and Functions manual, enter:

/help manual=scl

The examples in some printed manuals exist also in the online
Examples manual. To access this manual, enter:

/help manual=examples

When EXAMPLES is listed in the Online Manuals column in table
B-1, that manual is represented in the online Examples manual.

Revision D Related Manuals B-1

Related Manuals

Table B-1. Related Manuals

Manual Title

NOS/VE Site Manuals:

CYBER 930 Computer System
Guide to Operations
Usage

CYBER Initialization Package (CIP)
Reference Manual

DesktopNE Host Utilities
Usage

MAINTAIN _MAIL2
Usage

NOSNE Accounting Analysis System
Usage

NOSNE Accounting and Validation
Utilities for Dual State
Usage

NOSNE
LCN Configuration and Network
Management
Usage

NOSNE
Network Management
Usage

NOSNE Operations
Usage

Publication Online
Number Manuals1

60469560

60457180

60463918

MAIM

60463923

60458910

60463917

60463916

60463914

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

2. To access this manual, you must be the administrator for
MAILNE.

(Continued)

B-2 Terminal Definition Revision D

Related Manuals

e Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

e Site Manuals (Continued):

NOSNE 60463915
System Performance and Maintenance
Volume 1: Performance
Usage

NOSNE 60463925
System Performance and Maintenance
Volume 2: Maintenance
Usage

NOSNE 60464513
User Validation
Usage

NOSNE User Manuals:

e EDIT_ CATALOG EDIT_
Usage CATALOG

EDIT_CATALOG for NOSNE 60487719
Summary

Introduction to NOSNE 60464012
Tutorial

NOSNE 60486412 AFM_T
Advanced File Management
Tutorial

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Exam;eles manual.

(Continued)

e

Revision D Related Manuals B-3

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

NOS/VE User Manuals (Continued):

NOS/VE 60486413 AFM
Advanced File Management
Usage

NOS/VE 60486419
Advanced File Management
Summary

NOS/VE 60464018 SCL
Commands and Functions
Quick Reference

NOS/VE File Editor 60464015 EXAMPLES
Tutorial/Usage

NOS/VE 60464413 OCM
Object Code Management
Usage

NOS/VE Screen Formatting 60488813 EXAMPLES
Usage

NOS/VE 60464313 SCM and
Source Code Management EXAMPLES
Usage

NOS/VE System Usage 60464014 EXAMPLES

NOS/VE 60464016
Terminal Definition
Usage

Screen Design Facility for NOS/VE 60488613 SDF
Usa e

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued) e
B-4 Terminal Definition Revision D

Related Manuals

Table B-1. Related Manuals (Continued) e Publication Online
Manual Title Number Manuals1

CYBIL Manuals:

e CYBIL for NOSNE 60464114 EXAMPLES
File Management
Usage

CYBIL for NOSNE 60464117 EXAMPLES
Keyed-File and Sort/Merge Interfaces
Usage

CYBIL for NOSNE 60464113 CYBIL and
Language Definition EXAMPLES
Usage

CYBIL for NOSNE 60464116 EXAMPLES
Sequential and Byte-Addressable Files
Usage

e CYBIL for NOSNE 60464115 EXAMPLES
System Interface
Usage

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision D Related Manuals B-5

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

FORTRAN Manuals:

FORTRAN Version 1 for NOSNE
Language Definition
Usage

FORTRAN Version 1 for NOSNE
Quick Reference

FORTRAN Version 2 for NOSNE
Language Definition
Usage

FORTRAN Version 2 for NOSNE
Quick Reference

FORTRAN for NOSNE
Tutorial

FORTRAN for NOSNE
Topics for FORTRAN Programmers
Usage

FORTRAN for NOSNE
Summary

COBOL Manuals:

COBOL for NOSNE
Summary

Publication
Number

60485913

60487113

60485912

60485916

60485919

60486019

Online
Manuals1

EXAMPLES

FORTRAN

EXAMPLES

VFORTRAN

FORTRAN_T

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-6 Terminal Definition Revision D

Related Manuals

Table B-1. Related Manuals (Continued) e Publication Online
Manual Title Number Manuals1

COBOL Manuals (Continued):

e COBOL for NOSNE 60486012 COBOL_T
Tutorial

COBOL for NOSNE 60486013 COBOL and
Usage EXAMPLES

Other Compiler Manuals:

ADA for NOSNE 60498113 ADA
Usage

ADA for NOSNE 60498118 EXAMPLES
Reference Manual

APL for NOSNE 60485814
File Utilities

e Usage

APL for NOSNE 60485813
Language Definition
Usage

BASIC for NOSNE 60486319
Summary Card

BASIC for NOSNE 60486313 BASIC
Usage

LISP for NOSNE 60486213
Usage Supplement

Pascal for NOSNE 60485619
Summary Card

e 1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Exam:f!les manual.

(Continued)

e
Revision D Related Manuals B-7

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Other Compiler Manuals
(Continued):

Pascal for NOS/VE
Usage

Prolog for NOS/VE
Quick Reference

Prolog for NOS/VE
Usage

VX/VE Manuals:

C/VE for NOS/VE
Quick Reference

C/VE for NOS/VE
Usage

DWB/VX
Introduction and User Reference
Tutorial!U sage

DWB/VX
Macro Packages Guide
Usage

DWB/VX
Preprocessors Guide
Usage

DWB/VX
Text Formatters Guide
Usage

Publication
Number

60485613

60486718

60486713

60469830

60469890

60469910

60469920

60469900

Online
Manualsl

PASCAL and
EXAMPLES

PRO LOG

c

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-8 Terminal Definition Revision D

Table B-1. Related Manuals (Continued)

Manual Title

VX/VE Manuals (Continued):

VXNE
Administrator Guide and Reference
Tutorial/Usage

VXNE
An Introduction for UNIX Users
Tutorial/Usage

VXNE
Programmer Guide
Tutorial

VXNE
Programmer Reference
Usage

VXNE
Support Tools Guide
Tutorial

VXNE
User Guide
Tutorial

VXNE
User Reference
Usa e

Publication
Number

60469770

60469980

60469790

60469820

60469800

60469780

60469810

Related Manuals

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision D Related Manuals B-9

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Data Management Manuals:

DM Command Procedures
Reference Manual

DM Concepts and Facilities
Manual

DM Error Message Summary
for DM on CDC NOSNE

DM Fundamental Query and
Manipulation Manual

DM Report Writer
Reference Manual

DM System Administrator's
Reference Manual
for DM on CDC NOSNE

DM Utilities
Reference Manual
for DM on CDC NOSNE

Publication Online
Number Manuals1

60487905

60487900

60487906

60487903

60487904

60487902

60487901

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-10 Terminal Definition Revision D

Related Manuals

Table B-1. Related Manuals (Continued) e Publication Online
Manual Title Number Manuals1

Information Management Manuals:

e IM/Control for NOSNE L60488918 CONTROL
Quick Reference

IM/Control for NOSNE 60488913
Usage

IM/Quick for NOSNE 60485712
Tutorial

IM/Quick for NOSNE 60485714
Summary

IM/Quick for NOSNE QUICK
Usage

CDCNET Manuals:

e CDCNET Access Guide 60463830 CDCNET_
ACCESS

CDCNET Batch Device 60463863 CDCNET_
User Guide BATCH

CDCNET Commands 60000020
Quick Reference

CDCNET Configuration and Site 60461550
Administration Guide

CDCNET Diagnostic Messages 60461600

CDCNET Conceptual Overview 60461540

1. This column lists the title of the online version of the manual and

e indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision D Related Manuals B-11

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

CDCNET Manuals (Continued):

CDCNET Network Analysis

CDC NET Network Configuration
Utility

CDCNET Network Configuration
Utility
Summary Card

CDCNET Network Operations

CDCNET Network Performance
Analyzer

CDCNET Product Descriptions

CDCNET Systems Programmer's
Reference Manual Volume 1
Base System Software

CDCNET Systems Programmer's
Reference Manual Volume 2
Network Management Entities and
Layer Interfaces

CDCNET Systems Programmer's
Reference Manual Volume 3
Network Protocols

CDCNET Terminal Interface
Usage

CDCNET TCP/IP
Usage

Publication Online
Number Manuals1

60461590

60000269

60461520

60461510

60460590

60462410

60462420

60462430

60463850

60000214

NETCU

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-12 Terminal Definition Revision D

Related Manuals

e Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

e Migration Manuals:

Migration from IBM to NOSNE 60489507
Tutorial/Usage

Migration from NOS to NOSNE 60489503
Tutorial/Usage

Migration from NOS to 60489504
NOSNE Standalone
Tutorial/Usage

Migration from NOS/BE to NOSNE 60489505
Tutorial/Usage

Migration from NOS/BE to 60489506
NOSNE Standalone
Tutorial/Usage

e Migration from VAXNMS to NOSNE 60489508
Tutorial/Usage

Miscellaneous Manuals:

Applications Directory 60455370

CONTEXT 60488419
Summary Card

CYBER Online Text for NOSNE 60488403 CONTEXT
Usage

Control Data CONNECT 60462560
User's Guide

1. This column lists the title of the online version of the manual and

e indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision D Related Manuals B-13

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Miscellaneous Manuals (Continued):

Debug for NOS/VE DEBUG
Quick Reference

Debug for NOS/VE 60488213
Usage

Desktop/VE for Macintosh 60464502
Tutorial

Desktop/VE for Macintosh 60464503
Usage

NOS/VE Diagnostic Messages 60464613 MESSAGES
Usage

MAIUVE 60464519
Summary Card

MAIL/VE MAIL_ VE
Usage

Math Library for NOS/VE 60486513
Usage

NOS/VE Examples EXAMPLES
Usage

NOS/VE System Information NOS_ VE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-14 Terminal Definition Revision D

e

e

e

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Miscellaneous Manuals (Continued):

Programming Environment ENVIRON-
for NOS/VE MENT
Usage

Programming Environment 60486819
for NOS/VE
Summary

Professional Programming PPE
Environment
for NOS/VE
Quick Reference

Professional Programming 60486613
Environment
for NOS/VE
Usage

Remote Host Facility 60460620
Usage

Hardware Manuals:

CYBER 170 Computer Systems 60459960
Models 825, 835, and 855
General Description
Hardware Reference

CYBER 170 Computer Systems, 60458100
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Codes Booklet

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision D Related Manuals B-15

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Hardware Manuals (Continued):

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Maintenance Register
Codes Booklet

HPAIVE Reference

Virtual State Volume II
Hardware Reference

7021-31/32 Advanced Tape Subsystem
Reference

7221-1 Intelligent Small
Magnetic Tape Subsystem
Reference

Publication
Number

60458110

60461930

60458890

60449600

60461090

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

B-16 Terminal Definition Revision D

Character Set c

ASCII Character Set

e This appendix lists the ASCII character set (refer to table C-1).

NOSNE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOSNE represents
each 7-bit ASCII code in an 8-bit byte. These 7 bits are right justified
in each byte. For ASCII characters, the eighth or leftmost bit is
always zero. However, in NOSNE the leftmost bit can also be used to
define an additional 128 characters.

If you want to define additional non-ASCII characters, be certain that
the leftmost bit is available in your current working environment. The
full screen applications (such as the EDIT_FILE utility, the EDIT_
CATALOG utility, and the programming language environments)
already use this bit for special purposes. Therefore, these applications
accept only the standard ASCII characters. In applications in which
the leftmost bit is not used, however, you are free to use it to define
the interpretation of each character as you wish.

Revision C Character Set C-1

ASCII Character Set

Table C-1. ASCil Character Set

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation

012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in

016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3

020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 lB 033 ESC Escape

028 lC 034 FS File separator
029 1D 035 GS Group separator
030 lE 036 RS Record separator
031 lF 037 us Unit separator

032 20 040 SP Space
033 21 041 Exclamation point
034 22 042 Quotation marks
035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign e 038 26 046 & Ampersand
039 27 047 Apostrophe

(Continued)

e
C-2 Terminal Definition Revision C

Table C-1. ASCll Character Set (Continued)

e Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

040 28 050 Opening parenthesis e 041 29 051 Closing parenthesis
042 2A 052 • Asterisk
043 2B 053 + Plus

044 2C 054 Comma
045 20 055 Hyphen
046 2E 056 Period
047 2F 057 Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon

e 059 3B 073 Semicolon

060 3C 074 < Less than
061 30 075 = Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 0 Uppercase 0
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K

076 4C 114 L Uppercase L

e 077 40 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

(Continued)

Revision B Character Set C-3

Table C-1. ASCII Character Set (Continued)

Hexa·
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

080 50 120 p Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 s Uppercase S

084 54 124 T Uppercase T
085 55 125 u Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W

088 58 130 x Uppercase X
089 59 131 y Uppercase Y
090 5A 132 z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 50 135 l Closing bracket
094 5E 136 Circumflex
095 5F 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

104 68 150 h Lowercase h
105 69 151 Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 Lowercase l
109 60 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 0 Lowercase o

112 70. 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s

116 74 164 t Lowercase t
117 75 165 u Lowercase u e 118 76 166 v Lowercase v
119 77 167 w Lowercase w

(Continued)

e
C-4 Terminal Definition Revision B

Table C-1. ASCil Character Set (Continued) e Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

120 78 170 x Lowercase x e 121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 { Opening brace

124 7C 174 I Vertical line
125 7D 175 } Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

Revision B Character Set C-5

:~:::::~~1ex:p~:t:o:~edefudtion fM fue VT2~i .=··:11.=

terminal. The example shows how terminal definitions are set up.
Comments within the file are in quotation marks. This example is for
reference only. To obtain released versions of actual terminal :::
~=.!_••, refer to Creating a Terminal Defudtion in chapter 1 of I
The VT220 definition uses the following characteristics:

• The VT220 does not provide all three CDC line drawing densities.
The VT220 line drawing set is used for fine density, and with
alternate intensity for medium density. Blanks with inverse video
are used for bold density.

• The VT220 has physical function keys named F6 through F20,
which are translated into terminal definition keys Fl through F15.
The LABEL parameters use the F6 through F20 notation to tell
the keyboard user which keys to press.

• Protected fields are not used.

• The keypad keys can be converted into a type of function key.

• The shifted function keys F6 through F20 can be dynamically
loaded. The CDC-supplied terminal definition uses this capability
to provide keys for local editing functions of insertion and deletion,
plus a few high-frequency standard functions, as shown in the
following table. The keyboard user does not need to press the
Return key to use these shifted keys.

VT220 Key

Shifted F6
Shifted F7
Shifted F8
Shifted F9
Shifted FlO
Shifted Fll
Shifted F12
Shifted F13
Shifted F14
Shifted Help (F15)

Revision C

CDC Terminal Definition Statement

INSERT_LINE_BOL
DELETE_LINE_BOL
INSERT_ CHAR
DELETE_CHAR
INSERT_MQDE_BEGIN
INSERT_MODE_END
ERASE_END_OF_LINE
ERASE_PAGE_HOME
BACK
HELP

VT220 Terminal Definition File D-1

I

VT220 Key

Shifted Do (Fl6)
Shifted Fl7
Shifted FIS
Shifted Fl9
Shifted F20

CDC Terminal Definition Statement

CURSOR_ HOME
BKW_S
BKW
FWD
FWD_S

• The CDC programmable function keys all require the user to press
the physical Return key to get a response, and are mapped as
shown in the following table.

VT220 Key

F6 through F20
Keypad Enter
Keypad I through
9
Keypad 0
Keypad PFI
through PF4
Keypad Dash
Keypad Comma

D-2 Terminal Definition

CDC Terminal Definition Statement

Fl through Fl5
Fl6
Fl_S through F9_S

FIO_S
Fll_S through Fl4_S

Fl5_S
Fl6_S

Revision C

VT220 Terminal Definition File

TERMINAL DEFINITION FILE FOR DIGITAL VT220 TERMINAL

VARIABLES
prefix (lB(16) 5B(16))
fkey (lB(16) 4F(16))
escape (lB(16))
clear _hOme (pref ix 32(16) 4A(16))
clear_all_tabs (prefix '3g')
ansi_mode (escape '<')

vt lOO_mode (prefix '61"p')
vt220_mode (prefix '62; l"p')
designate_asci i_gO (escape , (B')
designate_graph_gl (escape ')0')
select_gO (OF(16))
application_keypad (escape'=')
numer i c _keypad (escape '>')

autowrap_off (pref ix '?71')
autowrap_on (prefix '?7h')
set_to_24x80 (pref 1x 3F(16) 33(16) 6C(16))
set_ to_24x 132 (pref ix 3F(16) 33(16) 68(16))
start_a 1 ternate (pref ix 31(16) 60(16))
start inverse (pref ix '7' 6D(16))
start_under 1 ine (pref 1x 34(16) 6D(16))
norma l_attributes (pref ix 'm')
stop_a l ternate (pref ix '22m')
stop_ inverse (pref ix '27m')
stop_under 1 ine (pref ix '24m')

start_keyload (esc 'PO;ll')
stop_keyload (esc '\')
load_f6 ('17/lb5b4c') insert line"
load_f7 ('18/lb5b4d') delete line"
load_f8 (' 19/1b5b40') insert blank character
load_f9 ('20/1b5b50') delete character"
load_flO ('21/1b5b3468') start insert mode"
load_f 11 ('23/ 1b5b346c') stop insert mode "
load_f12 ('24/1b5b4b') clear to end of line
load_f13 ('25/1b5b324a0d') clear screen
load_f14 < '26/105b3939397e0d') Back "
load_help ('28/105b32387e0d') Help "
load_do ('29/ 105048') Do=home "
load_f17 ('31/lb5b3939387e0d') First "
load_f18 ('32/105b357e0d') Bkw duplicates PrevScreen
load_f19 ('33/1b5b367e0d') Fwd duplicates NextScreen
load_f20 ('34/ 105o3939377eOd') Last "
load_all_keys (start_keyload load_f6 ';' load_f7 ';' load_f8 ';'

load_f9 ';' load_flO ';' load_fll ';' load_f12 ';' load_f13 ';' load_f14
';' load_help ';' load_do '·' load_f17 load_f18 '·' load_f19 '·'
1oad_f20 stop_t(eyload)

MODEL NAME AND COMMUNICATION TYPE
model_name value = 'dec_vt220'
commun i cat i ans type = asynch
appl ication_string name = 'vt lOO_scroll ing' out 'true'

END OF INFORMATION SPECIFICATION
end_of_information in = (0)

CURSOR POSITIONING INFORMATION
cursor_pos_encoding bias (1) type= ansi_cursor
cursor _pos_column_first value = FALSE
cursor _pos_column_ length value = (0)
cursor_pos_row_length value (0)
cursor_pos_begin out (prefix)
cursor_pos_second out (3B(16))
cursor_pos_third out (48(16))

Revision D VT220 Terminal Definition File D-3

I
<·

I

VT220 Terminal Definition File

CURSOR MOVEMENT INFORMATION
cursor_home
cursor_up
cursor_down
cursor_left
cursor_right

CURSOR BEHAVIOR
move_past_r ight
move_past_left
move_past_top
move_past_bottom

CURSOR BEHAVIOR

inout (pref ix 48(16))
inout (pref ix 41(16))
inout (pref ix 42(16))
inout (pref ix 44(16))
inout (pref ix 43(16))

(for cursor movement keys)
type = stop_next
type = stop_next
type = stop_next
type = stop_next

(for character keys)
type = stop_next
type = stop_next
type = stop_next

char _past_r ight
Char_past_left
char_past_last_position

TERMINAL ATTRIBUTES
clears_when_Change_size value = TRUE
function_key_leaves_mark value = 1
has_hidden
has_protect
heme_at_top
multiple_sizes
tabs_to_hOme
tabs_to_tab_stops
tabs_to_unprotected

SCREEN SIZES

value = FALSE
value = FALSE
value = TRUE
value = TRUE
value = FALSE
value = TRUE
value = FALSE

label='shift-do'

set_size
set_size

rows = 24 columns = 80 out (set_to_24x80)
rows = 24 columns = 132 out (set_to_24x132)

SCREEN ANO LINE MOOE TRANSITION
set screen_mode out= (ansi_mode vt220_mode clear_all_tabs ..

designate_ascii_gO designate_graph_gl select_gO autowrap_off
load_all_keys application_keypad)

set_line_mode out = (vtlOO_mode ansi_mode clear_all_tabs
designate_asci i_gO designate_graph_gl select_gO numeric_keypad ..
autowrap_on)

"et_screen_mode out = (1B(16) 3C(16) clear _all_tabs ..
1B(16) 28(16) 42(16) 1B(16) 29(16) 30(16) OF(16) 18(16)
30(16) prefix ''71' vt220_mode)

"et_ 1 me_mode out = (lB(16) 3C(16) clear _all_tabs ..
1B(16) 28(16) 42(16) 1B(16) 29(16) 30(16) OF(16) lB(16)
3E(16) prefix '?7h')

TERMINAL CAPABILITIES
delete_char inout
delete_ 1 ine_bol inout
erase_end_of_ 1 ine inout
erase_line_stay inout
erase_page_home inout
insert_char inout
insert _1 ine_bol inout
insert_mode_begin inout
insert_mode_end inout
tab_forward inout
tab_clear _a 11 inout
tab_set inout

(prefix 50(16)) label='shift-f9'
(prefix 40(16)) label='shift-f7'
(prefix 4B(16)) label='shift-f12'
(prefix 32(16) 4B(16))
(clear_hOme) label='shift-f13'
(prefix 40(16)) label='shift-f8'
(prefix 4C(16)) label='shift-f6'
(pref ix 34(16) 68(16)) label='shift-f 10'
(prefix 34(16) 6C(16)) label='shift-fll'
(09(16))
(clear _al l_tabs)
(lB(16) 48(16))

MISCELLANEOUS TERMINAL SEQUENCES
bell_nak out= (bel)
backspace in = bs

D-4 Terminal Definition Revision D

e

e

e

PROGRAMMABLE FUNCTION KEY Ifll'UT INFORMATION
fl in = (prefix ·1r'> 1abel='f6'
f2 in = (prefix '18-') 1abel='f7'
f3 in = (pref ix '19-') 1abel='f8'
f4 in = (pref ix ·20-·) 1abel='f9'
f5 in = (pref ix '21-') label=' 10'
f6 in = (pref ix '23-') label=' 11'
f7 in = (pref ix '24-') label=' 12'
f8 in = (prefix '25-') label=' 13'
f9 in = (prefix '26-') label=' 14'
f10 in = (prefix '28-') label='He'
f11 in = (prefix '29-') label='Do'
f12 in = (pref ix '31-') label=' 17'
f13 in = (prefix '32-') label=' 18'
f14 in = (prefix '3a-') label='19'
f15 in = (prefix ·34-·) label='20'

f16 in = (fkey 'M') label='ke'

fl_s in = (fkey 'q') label=' kl'
f2_s in = (fkey 'r') label='k2'
f3_s in = (fkey 's') label='k3'
f4_s in = (fkey 't') label='k4'
f5_s in = Cf key 'u') label='k5'
f6_s in = (fkey 'v') label='k6'
f7_s in = (fkey 'w') label='k7'
f8_s in = (fkey 'x') label='k8'
f9_s in = (fkey 'y') label='k9'
flO_s in = (fkey 'p') label='kO'

fl l_s in = (fkey 'P') label='pl'
f12_s in = (fkey 'Q') label='p2'
f13_s in = (fkey 'R') label='p3'
f14_s in = (fkey 'S') label='p4'

f15_s in = (fkey 'm') label='k-'
f16_s in = (fkey '1') label='k,'

in = (pref x ·2-·i label=' IH'
in = (pref x • 1-·) label=' Fi'
in = (pref x ·3-·) label='Re'
in = (pref x •4-·) label='Se'

CDC STANDARD FUNCTION KEY INPUT INFORMATION
next
next_s
bkw
fwd
back
undo
help
stop
bkw_s
fwd_s
undo_s
stop_s
down
down_s
up
up_s
edit
edit_s
data
data_s

in = 13 label = 'RETURN'
in = ()
in = (prefix ·5-·) label='PS'
in = (pref ix ·s-·) label='NS'
in = (prefix •999-·) label='shift-f14'
in = (prefix '21-') label=' 10'
in= (prefix '28-') label='shift-help'
in= (prefix '23-') label='F6'
in= (prefix '998-') label=' Shift-F17'
in = (prefix '997-') label=' Shift-F20'
in = (fkey 'u') label=' Shift-F5'
in = (fkey 'v') label=' Shift-F6'
in = ()
in = ()
in = ()
in = ()
in = ()
in = ()
in = ()
in = ()

Revision D

VT220 Terminal Definition File

VT220 Terminal Definition File D-5

VT220 Terminal Definition File

TERMINAL VIDEO ATTRIBUTES
alt_begin out (start_a 1 ternate)
alt_end out (stop_a lternate)
bl ink_begin out (pref ix 35(16) 6D(16))

~~~ bl ink_end out (pref ix '25m') 
inverse_begin out (start_ inverse) 
inverse_end out (stop_ inverse) 
under 1 ine_begin out (start_underl ine) 
under 1 i ne _end out (stop_underl ine) 

LOGICAL ATTRIBUTE SPECIFICATIONS 
error_begin out (start_ inverse) 
error_end out (stop_ inverse) 
input_text_begin out (start_underline) 
input_text_end out (stop_underl ine) 
i ta 1 ic_begin out (start_ inverse) 
ital ic_end out (stop_ inverse) 

LINE DRAWING CHARACTER SPECIFICATION 
ld_fine_begin out OE( 16) 
ld_fine_end out OF( 16) 
ld_fine_horizontal out 71( 16) 
ld_f ine_vert ica 1 out 78( 16) 
ld_f ine_upper _left out = 6C( 16) 
ld_f me_upper _right out = 6B( 16) 
ld_fine_lower_left out = 6D( 16) 
ld_fine_lower_right out = 6A( 16) 
ld_f ine_up_t out 77( 16) 
ld_fine_down_t out 76( 16) 
ld_f ine_left_t out 74( 16) 
ld_f me_r ight_t out 75( 16) 
ld_fme_cross out = 6E( 16) 
ld_medium_begin out (0E(16) start_alternate) 
ld_medium_end out (0F(16) stop_alternate) 
ld_medium_horizontal out 71( 16) 
ld_medium_vert 1ca 1 out 78( 16) 
ld_medium_upper _ left out = 6C( 16) 
ld_medium_upper _right out = 6B( 16) 
ld_medium_lower _ left out = 6D( 16) 
ld_medium_lower_right out = 6A( 16) 
ld_medium_up_t out 77( 16) 
ld_medium_down_t out 76( 16) 
ld_medium_ left_t out 74( 16) 
ld_medium_right_t out 75( 16) 
ld_medium_cross out = 6E( 16) 
1d_bo1 d_beg in out (OE( 16) start_ inverse) 
ld_bold_end out (OF( 16) stop_ inverse) 
ld_bold_horizontal out 71( 16) 
ld_bold_vert ica 1 out 78( 16) 
1d_bo1 d_upper _left out = 6C( 16) 
ld_bold_upper _right out = 68( 16) 
ld_bold_lower_left out = 6D( 16) 
ld_bold_lower_right out = 6A( 16) 
ld_bold_up_t out 77(16) 
ld_bold_down_t out 76( 16) 
ld_bold_left_t out 74( 16) 
ld_bold_right_t out 75( 16) 
ld_bold_cross out = 6E( 16) 

DEFAULT KEY DEFINITIONS FOR THE FULL SCREEN EDITOR 

END OF TERMINAL DEFINITION FILE FOR DIGITAL VT220 TERMINAL 

D-6 Terminal Definition Revision D 







Index 

A 
ALT_BEGIN 2-83 
ALT_END 2-83 
ALTB 2-83 
ALTE 2-83 
Alternate bell 2-76 
ANSI A-1 
Application menus 2-36.3 
Application-related 

statements 2-36.10 
APPLICATION _STRING 

statements 2-2, 36.4, 36.6, 
36.8, 36.9 

For maximizing system 
performance 2-36.6 

APPS 2-36.4 
ASCII A-1 
Asynchronous 2-10; A-1 
Attribute statements 

Format descriptions 2-9 
Overview 2-6 

AUTOMATIC_ TABBING 2-9 
AUTT 2-9 

B 
BAC 2-62.1 
BACK 2-62.1 
BACK_S 2-62.1 
BACKSPACE 2-44.2 
BACS 2-62.1 
Begin 

Blinking 2-84 
Bold line 2-113 
Error field 2-93 
Fine line 2-102 
Input field 2-94 
Italics 2-95 
Medium line 2-108 
Message field 2-96 
Output 2-78 
Output field 2-97 
Title field 2-98 
Underlining 2-90 

BELA 2-76 

Revision D 

Bell 2-76 
BELL_ACK 2-76 
BELL_NAK 2-76 
BELN 2-76 
Bias 2-22 
BKW 2-63 
BKW_S 2-63 
BKWS 2-63 
BLIB 2-84 
BLINK_BEGIN 2-84 
BLINK_END 2-84 
Bold horizontal line 2-115 
Bold line 

Begin 2-113 
Cross 2-113 
End 2-114 
Lower left corner 2-115 
Lower right comer 2-116 
Upper left corner 2-117 
Upper right corner 2-118 

Bold vertical line 2-118 
Boolean A-1 
Boolean constant A-1 
Bright characters 2-83 
Bytes sent for column 

value 2-20 
Bytes terminal sends for row 

values 2-23 

c 
CDC standard function key 

statements 
Definition 2-60 
Formats 2-61 

CDC standardized 
functions 2-60 

CHANGE_INTERACTIVE_ 
STYLE command 1-4, 15 

CHANGE_ TERMINAL_ 
ATTRIBUTES command 1-4, 
14; 2-37 

CHAPL 2-27 
CHAPLP 2-26 
CHAPR 2-28 

Terminal Definition Index·l 



CHAR_PAST_LAST_POSITION 

CHAR_PAST_LAST_ 
POSITION 2-26 

CHAR_PAST_LEFT 2-27 
CHAR_PAST_RIGHT 2-28 
Character A-1 

Insert a blank 2-54 
Replace with space 2-48 

CHARACTER_ POSITION 
parameter 2-34 

CHARACTER_ SPECIFICATION 
parameter 2-34 

Characters 
Alternate intensity 2-83 
Not displayed 2-11 
Protected 2-12 

Clear screen 2-9, 52 
Clear tab stop 2-58 
CLEARS_WHEN_CHANGE_ 

SIZE 2-9 
CLEWCS 2-9 
Column values 2-20 
Columns that terminal 

supports 2-33 
COM 2-10 
Command A-2 
Comment A-2 
COMMUNICATIONS 2-10 
Compiling a terminal definition 

file 1-10 
Copying a terminal definition 

deck 1-6 
Creating a new terminal 

definition 1-5 
Creating a new terminal 

definition file 1-1 
Crossing bold lines 2-113 
Crossing fine lines 2-102 
Crossing medium lines 2-108 
CSM$SAMPLE deck 1-10, 12 
CURD 2-44.2 
CURH 2-45 
CURL 2-45 
CURPB 2-18 
CURPCF 2-19 
CURPCL 2-20 
CURPE 2-20 
CURPRL 2-23 
CURPS 2-24 
CURPT 2-24 
CURR 2-46 

lndex-2 Terminal Definition 

DEFINE_ TERMINAL command 

Cursor 2-17 
Move down one line 2-44.2 
Move left one columnm 2-45 
Move past bottom edge of 

screen 2-29 
Move right one column 2-46 
Move to Home position 2-45 
Move up one line 2-46 

Cursor behavior statements 
Format descriptions 2-26 
Overview 2-25 

CURSOR_DOWN 2-44.2 
CURSOR_HOME 2-45 
Cursor Home position 2-12 
CURSOR_LEFT 2-45 
Cursor movement 2-25 
CURSOR_POS_BEGIN 2-18 
CURSOR_POS_COLUMN _ 

FIRST 2-19 
CURSOR_POS_COLUMN _ 

LENGTH 2-20 
CURSOR_POS_ 

ENCODING 2-20 
CURSOR_POS_ROW_ 

LENGTH 2-23 
CURSOR_POS_SECOND 2-24 
CURSOR_POS_ THIRD 2-24 
Cursor position 2-1 7 
Cursor position encoding 2-20 
Cursor position information 

statements 
Format descriptions 2-18 
Overview 2-17 

Cursor position sequence 2-18 
CURSOR_RIGHT 2-46 
CURSOR_ UP 2-46 
CURU 2-46 
Cycle reference A-2 

D 
DAT 2-64 
DATA 2-64 
DATA_S 2-64 
DATS 2-64 
Define functions for 

applications 2-36, 36.3 
DEFINE_ TERMINAL 

command 1-5, 10, 12 

Revision D 



Defining key labels for applications 

Defining key labels for 
applications 2-36, 36.3 

Defining protected areas on 
screen 2-12 

DELC 2-47 
Delete 

Current character 2-47 
Current line 2-47 

DELETE_CHAR 2-47 
DELETE_LINE_BOL 2-47 
DELETE_LINE_STAY 2-48 
DELETE_MODULE 

subcommand 1-11 
DELLB 2-47 
DELLS 2-48 
Desired attributes 1-2 
DEVICE parameter 2-34 
Dim characters 2-83 
Direct cursor addressing A-2 
Disabling the display 2-77 
Disabling the printer 2-79 
DISB 2-77 
OISE 2-77 
DISPLAY_BEGIN 2-77 
DISPLAY_END 2-77 
Displaying characters in 

alternate intensity 2-83 
Displaying characters in inverse 

video 2-87 
DOW 2-65 
DOWN 2-65 
DOWN_S 2-65 
Downloading a terminal 

definition file 1-13 
DOWS 2-65 

E 
Edge of screen 

Bottom 2-26, 29 
Left 2-27, 30 
Right 2-28, 31 
Top 2-32 

EDI 2-66 
EDIS 2-66 
EDIT 2-66 

Revision D 

ERASE_LINE_BOL 

EDIT_FILE A-2 
Defaults for function 

keys 2-36.1 
Defining functions and key 

labels 2-36 
EDIT_S 2-66 
Enabling the display 2-77 
Enabling the printer 2-79 
Encoding sequence 2-24 
Encoding variables 2-21 
End 

Blinking 2-84 
Bold line 2-114 
Error field 2-93 
Input field 2-94 
Italics 2-95 
Message field 2-96 
Output 2-78 
Output field 2-97 
Title field 2-98 
Underlining 2-90 

End a fine line 2-103 
End a medium line 2-109 
End insert mode 2-56 
Entering terminal definition 

statements 1-5 
ERAC 2-48 
ERAEOF 2-49 
ERAEOL 2-49 
ERAEOP 2-50 
ERAFB 2-50 
ERAFS 2-51 
ERALB 2-51 
ERALS 2-52 
ERAPH 2-52 
ERAPS 2-53 
Erase all unprotected 

fields 2-53 
ERASE_ CHAR 2-48 
Erase current line 2-52 
Erase current unprotected 

field 2-51 
ERASE_END_OF _FIELD 2-49 
ERASE_END_OF_LINE 2-49 
ERASE_END_OF_PAGE 2-50 
ERASE_FIELD_BOF 2-50 
ERASE_FIELD_STAY 2-51 
Erase from cursor position to 

end of line 2-49 
ERASE_LINE_BOL 2-51 

Terminal Definition Index-3 



ERASE_LINE_STAY 

ERASE_LINE_STAY 2-52 
ERASE_PAGE_HOME 2-52 
ERASE_PAGE_STAY 2-53 
Erase screen 2-53 
ERASE_UNPROTECTED 2-53 
ERAU 2-53 
ERRB 2-93 
ERRE 2-93 
ERROR_BEGIN 2-93 
ERROR_END 2-93 
Existing compiled 

definitions 1-4 
EXTRACT_DECK SCU 

subcommand 1-6 

F 
File A-2 
File Editor 2-12, 36, 36.4, 36.6 
File line 

Begin 2-102 
Cross 2-102 
End 2-103 
Lower left corner 2-105 
Lower right corner 2-105 
Upper left corner 2-107 
Upper right corner 2-107 

File organization A-3 
File position A-3 
Fine vertical line 2-107 
FIXED_ TAB_POSITIONS 2-10 
Fn_S statements 2-73 
Fn statements 2-73 
Format of terminal definition 

statements 2-2 
FUNCTION _KEY_LEAVES_ 

MARK 2-11 
Function keys 2-60, 71; A-3 

Key identifiers 2-60.2, 60.3 
Operation labels 2-60.1, 60.3 
Shifted format 2-72 
U nshifted format 2-72 

FUNKLM 2-11 
FWD 2-67 
FWD_S 2-67 
FWDS 2-67 

lndex-4 Terminal Definition 

G 
General format of terminal 

definition statements 2-2 

H 
Hardware reset 2-57 
HAS_HIDDEN 2-11 
HAS_PROTECT 2-12 
HASH 2-11 
HASP 2-12 
HEL 2-68 
HELP 2-68 
HELP_S 2-68 
HELS 2-68 
HIDB 2-85 
HIDDEN_BEGIN 2-85 
HIDDEN_END 2-85 
HIDE 2-85 
HIGH_ INTENSITY_ 

Initiate 

BEGIN 2-86 
HIGH_INTENSITY_END 2-86 
Highlighting 

High intensity 2-86 
Low intensity 2-88 

HOMAT 2-12 
HOME_AT_ TOP 2-12 
Home position 2-45 
Horizontal accuracy 2-34 
Horizontal bold lines 2-115 
Horizontal medium line 2-109 

I 
IN parameter 2-44 
INITIALIZE_ TERMINAL 

command 2-36.9 
INITIALIZE_ TERMINAL 

statement 2-36.10, 37 
Initializing terminals 2-36.8 

Overview 2-36 
Statement format 

descriptions 2-36.10 
Initiate 

Blinking 2-84 
Insert mode 2-55 
Line mode 2-37 
Screen mode 2-38 

Revision D 



INOUT parameter 

INOUT parameter 2-44 
INPTB 2-94 
INPTE 2-94 
Input/output statement 

Format description 2-44 
Overview 2-40 

Input statement 
Overview 2-60 

INPUT_ TEXT_BEGIN 2-94 
INPUT_ TEXT_END 2-94 
INSC 2-54 
Insert 

Blank character 2-54 
Blank line 2-54 

INSERT_ CHAR 2-54 
INSERT_LINE_BOL 2-54 
INSERT_LINE_STAY 2-55 
INSERT_MODE_BEGIN 2-55 
INSERT_MODE_END 2-56 
INSERT_MODE_ TOGGLE 2-56 
INSLB 2-54 
INSLS 2-55 
INSMB 2-55 
INSME 2-56 
INSMT 2-56 
Integer A-3 
Intersecting 

Bold lines 2-113 
Fine lines 2-102 
Medium lines 2-108 

INVB 2-87 
INVE 2-87 
INVERSE_BEGIN 2-87 
INVERSE_END 2-87 
ITAB 2-95 
ITAE 2-95 
ITALIC_BEGIN 2-95 
ITALIC_END 2-95 

J 
Job A-3 
Job library list A-4 

K 
Key labels for standard 

keys 2-61 
Keyword A-4 

Revision D 

LD _MEDIUM_LOWER_RIGHT 

L 
LABEL parameter 2-44 
Labels for standard keys 2-61 
LD_BOLD_BEGIN 2-113 
LD_BOLD_CROSS 2-113 
LD_BOLD_DOWN_T 2-114 
LD_BOLD_END 2-114 
LD_BOLD_ 

HORIZONTAL 2-115 
LD_BOLD_LEFT_ T 2-115 
LD_BOLD_LOWER_ 

LEFT 2-115 
LD_BOLD_LOWER_ 

RIGHT 2-116 
LD_BOLD_RIGHT_ T 2-116 
LD_BOLD_ UP_ T 2-117 
LD_BOLD_ UPPER_ 

LEFT 2-117 
LD_BOLD_ UPPER_ 

RIGHT 2-118 
LD_BOLD_ VERTICAL 2-118 
LD_FINE_BEGIN 2-102 
LD_FINE_CROSS 2-102 
LD_FINE_DOWN _ T 2-108 
LD_FINE_END 2-103 
LD_FINE_HORIZONTAL 2-104 
LD_FINE_LEFT_ T 2-104 
LD_FINE_LOWER_ 

LEFT 2-105 
LD_FINE_LOWER 

RIGHT 2-105 -
LD_FINE_RIGHT_ T 2-105 
LD_FINE_ UP_ T 2-106 
LD_FINE_ UPPER_ 

LEFT 2-107 
LD_FINE_ UPPER 

RIGHT 2-107 -
LD_FINE_ VERTICAL 2-107 
LD_MEDIUM_BEGIN 2-108 
LD_MEDIUM_CROSS 2-108 
LD_MEDIUM_DOWN_T 2-109 
LD_MEDIUM_END 2-109 
LD_MEDIUM_ 

HORIZONTAL 2-109 
LD_MEDIUM_LEFT_ T 2-110 
LD_MEDIUM_LOWER_ 

LEFT 2-110 
LD_MEDIUM_LOWER_ 

RIGHT 2-110 

Terminal Definition lndex-5 



LD_MEDIUM_RIGHT_ T 

LD_MEDIUM_RIGHT_ T 2-111 
LD_MEDIUM_UP_T 2-111 
LD_MEDIUM_ UPPER_ 

LEFT 2-112 
LD_MEDIUM_ UPPER_ 

RIGHT 2-112 
LD_MEDIUM_ 

VERTICAL 2-112 
LDBB 2-113 
LDBC 2-113 
LDBDT 2-114 
LDBE 2-114 
LDBH 2-115 
LDBLL 2-115 
LDBLR 2-116 
LDBLT 2-115 
LDBRT 2-116 
LDBUL 2-117 
LDBUR 2-118 
LDBUT 2-117 
LDBV 2-118 
LDFB 2-102 
LDFC 2-102 
LDFDT 2-103 
LDFE 2-103 
LDFH 2-104 
LDFLL 2-105 
LDFLR 2-105 
LDFLT 2-104 
LDFRT 2-105 
LDFUL 2-107 
LDFUR 2-107 
LDFUT 2-106 
LDFV 2-107 
LDMB 2-108 
LDMC 2-108 
LDMDT 2-109 
LDME 2-109 
LDMH 2-109 
LDMLL 2-110 
LDMLR 2-110 
LDMLT 2-110 
LDMRT 2-111 
LDMUL 2-112 
LDMUR 2-112 
LDMUT 2-111 
LDMV 2-112 
Left edge of screen 2-27, 30 

Index-6 Terminal Definition 

Modifying a terminal definition deck 

Line 
Bold weight 2-113 
Erase to end 2-49, 52 
Erase to end of field 2-49, 51 
Insert a blank 2-54 
Medium weight 2-108 

Line drawing alternatives 2-101 
Line drawing statements 

Format descriptions 2-101 
Overview 2-99 

LINE_INIT 2-38 
Line mode 2.36.10 
LINE_ POSITION 
parameter 2-34 

LINE_SPECIFICATION 
parameter 2-34 

Lines supported 2-33 
LINI 2-38 
Load module A-4 
Logical terminal attribute 

statements 
Format descriptions 2-93 
Overview 2-91 

LOW_INTENSITY_BEGIN 2-88 
LOW_INTENSITY_END 2-88 

M 
Medium horizontal lines 2-109 
Medium line 

Begin 2-108 
Cross 2-108 
End 2-109 
Lower left corner 2-110 
Lower right corner 2-110 
Meeting point 2-111 
Upper left corner 2-112 
Upper right corner 2-112 

Medium vertical line 2-112 
Meeting point 

Medium lines 2-111 
MESB 2-96 
MESE 2-96 
MESSAGE_BEGIN 2-96 
MESSAGE_END 2-96 
Model name 2-13 
MODEL_NAME 2-13 
Modifying a terminal definition 

deck 1-6 

Revision D 



Modifying the sample deck 

Modifying the sample deck 1-9 
MODN 2-13 
Module A-4 
Mouse 2-34 
Move cursor 

Beginning of line 2-80 
Down one line 2-44.2 
Home position 2-45 
Left one column 2-45 
Next tab stop 2-59 
Previous tab stop 2-57 
Right one column 2-46 
Up one line 2-46 

MOVE_PAST_BOTTOM 2-29 
MOVE_PAST_LEFT 2-30 
MOVE_PAST_RIGHT 2-31 
MOVE_PAST_ TOP 2-32 
Movement of the cursor 2-26 
MOVPB 2-29 
MOVPL 2-30 
MOVPR 2-31 
MOVPT 2-32 
MULS 2-13 
MULTIPLE_SIZES 2-13, 33 

N 
NEX 2-69 
NEXS 2-70 
NEXT 2-69 
NEXT_S 2-70 
Number of columns 2-33 
Number of rows on screen 2-33 

0 
Object library A-4 

Characteristics 1-12 
Object module A-4 
Optimum attributes 1-3 
OUT parameter 2-44 
OUTB 2-78 
OUTE 2-78 
OUTPUT_BEGIN 2-78 
OUTPUT_END 2-78 
Output statements 2-74 
OUTPUT_ TEXT_BEGIN 2-97 
OUTPUT_ TEXT_END 2-97 
OUTTB 2-97 

Revision D 

Protects character positions on the screen 

OUTTE 2-97 
Overriding default 

definitions 2-36 

p 

Page - erase to end 2-50 
Parameter A-5 
Parameter name A-5 
Path A-5 
Permanent file A-5 
Physical terminal attribute 

statements 
Format descriptions 2-83 
Overview 2-81 

Pick/locate device 
specification 2-33 

Position sequence 2-21 
PRIB 2-79 
PRIE 2-79 
PRINT_BEGIN 2-79 
PRINT_END 2-79 
Printer 

Disable 2-79 
Enable 2-79 

PROA 2-80 
PROB 2-89 
PROE 2-89 
Programmable function key 

statements 
Definition 2-71 
Formats 2-72 

PROGRAMMABLE_ TAB_ 
STOPS 2-14 

Prolog A-5 
PROTECT_ALL 2-80 
PROTECT_BEGIN 2-89 
PROTECT_END 2-89 
Protected areas on screen 2-12, 

80 
Protects character positions on 

the screen 2-80 

Terminal Definition lndex-7 



Range 

R 
Range A-5 
Redefining function keys 2-36 
Repainting characters 2-11 
Replacing current characters 

with a space 2-48 
Required attributes 1-2 
Required terminal definition 

statements 2-5 
RES 2-57 
RESET 2-57 
Resetting terminal 

hardware 2-57 
RET 2-80 
RETURN 2-80 
Right edge of screen 2-28, 31 
Ring alternate bell 2-76 
Rings bell on error 2-76 
Row values 2-23 
Rows that terminal 

supports 2-33 

s 
Screen 

Erase 2-53 
Erase to end 2-50 
Mode 2-36 
Size 2-13 

Screen edge 
Bottom 2-26, 29 
Left 2-27, 30 
Right 2-28, 31 
Top 2-32 

SCREEN _INIT 2-38 
Screen size specification 2-33 
SCRI 2-38 
Send statements 

Format descriptions 2-76 
Overview 2-75 

SET_FUNCTION _KEY 2-36 
SET_LINE_MODE 2-38 
SET_PROGRAM_ATTRIBUTE 

command 1-15 
SET_SCREEN _MODE 2-39 
SET_SIZE 2-13, 33 
Set tab stops 2-59 
SETLM 2-38 

Index-8 Terminal Definition 

Switching from line mode to screen mode 

SETS 2-13, 33 
SETSM 2-39 
SOLVER 1-13 
Source code utility (SCU) A-6 
Source library A-6 
Standard function 

assignment 2-60.1 
Standard function key 

statements 2-60 
Start 

Bold line 2-113 
Display of characters 2-85 
Error field 2-93 
Fine line 2-102 
Input field 2-94 
Insert mode 2-55 
Italics 2-95 
Medium line 2-108 
Message field 2-96 
Output field 2-97 
Title field 2-98 
Underlining 2-90 

Statement A-6 
STO 2-70.1 
Stop 

Blinking characters 2-84 
Bold line 2-114 
Display of characters 2-85 
Display of characters in 

inverse video 2-87 
Display of characters in the 
alternate intensity 2-83 

Error field 2-93 
Fine line 2-103 
Input field 2-94 
Insert mode 2-56 
Italics 2-95 
Medium line 2-109 
Message field 2-96 
Output field 2-97 
Title field 2-98 
Underlineing 2-90 

STOP 2-70.1 
STOP _S 2-70.1 
STOS 2-70.1 
String A-6 
Switching between insert and 

overwrite mode 2-56 
Switching from line mode to 

screen mode 2-39 

Revision D 



Switching from screen mode to line mode 

Switching from screen mode to 
line mode 2-38 

Sychronous A-6 

T 
TAB_BACKWARD 2-57 
TAB_CLEAR 2-58 
TAB_CLEAR_ALL 2-58 
TAB_FORWARD 2-59 
TAB_SET 2-59 
TABB 2-57 
Tabbing 2-9, 14, 57, 58, 59 
TABC 2-58 
TABCA 2-58 
TABF 2-59 
TABS 2-59 
TABS_ TO_HOME 2-14 
TABS_ TO_ TAB_STOPS 2-15 
TABS_ TO_ 

UNPROTECTED 2-15 
TABTH 2-14 
TABTTS 2-15 
TABTU 2-15 
Terminal capabilities 1-2 
Terminal definition 1-1, 5, 10 
Terminal definition file A-7 
Terminal definition statements 

Format 2-2 
Required 2-5 

TERMINAL_ DEFINITIONS 
object library 1-11 

TERMINAL_MODEL 2-16 
Terminal reset 2-57 
TITB 2-98 
TITE 2-98 
TITLE_BEGIN 2-98 
TITLE_END 2-98 
Toggling between insert and 

overwrite mode 2-56 
Top edge of screen 2-32 

Revision D 

Working catalog 

Touch panel 2-34 
TYPA 2-16.1 
TYPE_AHEAD 2.16.1 
Type ahead mode 2-16.1 
Type of encoding used by 

terminal 2-20 

u 
UND 2-70.2 
UNDB 2-90 
UNDE 2-90 
UNDERLINE_BEGIN 2-90 
UNDERLINE_END 2-90 
UNDO_S 2-70.2 
UNDS 2-70.2 
Unprotected field 

Erase 2-49, 50 
Erase all 2-53 

UP 2-70.3 
UP_S 2-70.3 
UPS 2-70.3 
USER working catalog 1-10 
Using your terminal definition 

file 1-14 

v 
Value A-7 
Value element A-7 
Value list A-7 
Value set A-8 
Vertical accuracy 2-34 
Vertical bold line 2-118 
Vertical fme line 2-107 
Vertical medium line 2-112 

w 
Working catalog A-8 

Terminal Definition lndex-9 





Comments (continued from other side) 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technology & Publications Division 
ARH219 
4201 N. Lexington Avenue 
Arden Hills, MN 55126-9983 

1.1.1 •• 1.1 .... 11 •• 1.1.11 •• 1.1 .. 1.1 .. 1 •• 1 .. • 11 •• • 1.11 

NO POSTAGE 
NECESSARY 
IF MAILED 

FOLD 

IN THE 
UNITED STATES 



Terminal Definition 60464016 D 

We value your comments on this manual. While writing it, we made some assumptions 
about who would use it and how it would be used. Your comments will help us A 
improve this manual. Please take a few minutes to reply. 9' 

Who are you? How do you use this manual? 

D Manager D As an overview 
D Systems analyst or programmer 

D Applications programmer 

D To learn the product or system 

D For comprehensive reference 

D Operator D For quick look-up 
D Other ____________ ~ 

What programming languages do you use? _________________ _ 

How do you like this manual? Check those questions that apply. 

Yes Somewhat No 
D D D Is the manual easy to read (print size, page layout, and so on)? 

D D D Is it easy to understand? 

D D D Does it tell you what you need to know about the topic? 

D D D Is the order of topics logical? 

D D D Are there enough examples? 

D D D Are the examples helpful? (D Too simple? D Too complex?) 

D D D Is the technical information accurate? 

D D D Can you easily find what you want? 

D D D Do the illustrations help you? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Would you like a reply? D Yes D No 

From: 

Name Company 

Address ate 

Phone 

Please send program listing and output if applicable to your comment. 










