Full Screen Editor Cg?l
for NOS/VE DAIA

Tutorial/Usage 60464015

Common Parameters

Parameter Name Values
BOUNDARY (B) LINE (LINESorL)
STREAM (S)
COLUMN (COLUMNS or C) integer
CURRENT (C)

LINE (LINES or L)

FIRST_MARK (FM)
LAST_MARK (LM)
MARK (M)

MAXIMUM (MAX)

integer

line identifier (modset.sequence)
ALL (A)

CURRENT (C)
FIRST (F)
FIRST_MARK (FM)
FIRST_SCREEN (FS)
LAST (L)
LAST_MARK (LM)
LAST_SCREEN (LS)
MARK (M)

SCREEN (S)

Full Screen Editor for NOS/VE

Tutorial/Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60464015

Related Manuals

SCL Manual Set:
SCL SCL SCL ‘ SCL
Language System Source Code Object Code
Definition —a| [Interface Management Management
Usage Usage Usage ’ Usage
60464013 60464014 60464313 C) 6m6a413 [T

SCL SCL SCL Screen SCL ‘
Advanced Advanced Advanced Formatting

File File File Quick
Management Management Management Usage Reference I
Tutorial Usage Summary ;
60486412 60486413 60486419 60464016 60464018 D

g indicates that the manual is available online.

— indicates a reading sequence.

©1984, 1985 by Control Data Corporation.
All rights reserved.

Printed in the United States of America.

2 Full Screen Editor Revision B

® Manual History

This manual is Revision C, printed December 1985. It reflects NOS/VE
Version 1.1.3 at PSR level 644. New features documented in this revision are:

e Addition of the SET_EPILOG command.

® Removal of the EPILOG parameter from the EDIT_FILE and EDIT _
LIBRARY commands.

e Addition of POSITION _BACKWARD, POSITION_FORWARD, LIST_
BACKWARD, LIST_FORWARD, LIST_LINES, LOCATE_ALL,
LOCATE _NEXT, LOCATE_STRING, MARK _BOX, SET_
PARAGRAPH _MARGINS, FORMAT_PARAGRAPHS, CENTER _
LINES, and EXCHANGE_SCREEN _WIDTH subcommands.

e Addition of the SPARAGRAPH _MARGINS function.
e Addition of a section on calling the editor from within a procedure.

e Addition of three new terminal types, the CDC722-30, the Zenith Z29, and
the IBM (or compatible) PC with Connect.

Change bars reflect the latest revision level.

' Previous

Revision System Version Date
A 1.1.1 July 1984
B 1.1.2 March 1985

Revision C Manual History 3/4 @

® Contents

About This Manual 7
Audience 7
Organization 7
Conventions................ 10
Additional Related

Manuals.................. 12
Ordering Manuals 12
Submitting Comments 12

Part I. Tutorial

Capabilities.................. 1-1
Viking 721 Terminal 2-1
TheBasics 3-1
Getting Started 31
CreatingaFile 3-6
. Moving around the Screen .. 3-8
Changing the Screen
Content................... 39
Moving to the End of a
Line..................... 311
Moving around within the
File..........oooiiiit. 3-12
Entering Subcommands ...3-19
Getting Help 319
Deleting................... 3-23
Inserting 3-27
Searching 3-32
Marking 3-39
Copying.......coovvinnnn. 341
Moving 344
Undoing 3-46
Stopping an Editing
Session 3-47

Part II. Usage

Before You Continue 4-1

. Subcommand Syntax 41

Revision C

Common Parameters 4-2
External and Working
Files...................... 4-5
Open and Closed Files 4-6
The VETO Parameter....... 4-7
The Mask Character 49
Editing Source Code Ultility
Decks...ooovvivinnnnnn.. 49

Common Editing

Functions 51
Starting the Editor.......... 51
CreatingaFile 5-4
Entering Subcommands56
Getting Help 5-8
Stopping 59
Moving the Cursor......... 511
Listing 5-14.1
Paging.................. 514.4
Searching 515
Inserting 5-22
Deleting................... 5-30
Replacing 5-38
Marking 5-42
Copying......coovvvvneenn. 5-46
Movingcooon.... 561
Undoingc.oo...t. 5-65
Creating Multipartition

Files..................... 567
Text Formatting 5-68
FunctionKeys............... 6-1
Editing Keys 6-1

CDC Standard Function
Keys..ooovvviiiiiiiii 6-2

Programmable Function
Keys...oovviviiiiiian, 6-3
Contents 5

CONTENTS

Selecting Editor Options ...7-1

Changing the Screen
Displaycocvnu... 71
Changing Tab Settings7-10
Changing Line Width 7-12
Changing the Verify
Option...........covvvne. 7-13
Changing the Characters
Allowed in a Word.......... 7-14
Changing How Lines Are
Listed in Line Mode 7-15
Displaying Status
Information.............. 7-16
Editing SCU Decks 8-1
Starting the Editor.......... 8-2
Opening Decks 84
Closinga Deck 810
Stopping the Editor 811
Creating Procedures. 9-1
Structure 9-1
Subcommands and
Functions................. 94
Examples 9-10
Calling the Editor from Within
a Procedure 9-12
Prologue and Epilogue
Files...................... 10-1
PrologueFile 10-1
Epilogue File 10-1

6 Full Screen Editor

Using Other Terminals

inScreenMode............ 11-1
CDC722cooviiiiann 11-1
CDC722-30ccounn.. 115
DECVTI100 11-9
IBMPC.................. 11-13
Zenith Z19 or Heathkit

H19 ..., 11-17
ZenithZ29 11-22
Appendixes
Glossary.................... A-1
CharacterSet B-1

Subcommand Strings That
Define Function Keys C-1

Viking 721 Subcommand String
Settings C1
CDC 722 Subcommand String
Settings C-3
CDC 722-30 Subcommand
String Settings C4
DEC VT100 Subcommand
String Settings C-5
IBM PC Subcommand String
Settings C-6
Zenith Z19/Heathkit H19
Subcommand String
Settings C-7
Zenith Z29 Subcommand String
Settings C9
Viking 721 Terminal
Settings D-1
Index Index-1
Revision C

About This Manual

The CONTROL DATA® Network Operating System/ Virtual Environment
(NOS/VE) enables you to edit files with the Full Screen Editor (FSE) Utility.
FSE enables you to edit files or Source Code Utility (SCU) decks both page
by page (screen mode) and line by line (line mode).

This manual explains how to access and use FSE in both screen mode and
line mode. Examples and illustrations help you with each step.

Audience

This manual is intended for you if you are familiar with the interactive use of
NOS/VE. Some knowledge of how to manipulate NOS/VE files is helpful
but is not required. All examples use the CDC® Viking 721 terminal;
knowledge of this terminal is helpful but not essential. For information on
the interactive use of NOS/VE, refer to the System Command Language
(SCL) System Interface manual.

Organization

This manual is one in a set of manuals that describe the System Command
Language (SCL). The organization contains brief descriptions of some of the
SCL manuals, followed by a detailed description of this manual.

SCL Manuals

The following manuals form the core of the SCL manual set.
o SCL Language Definition

e SCL System Interface

® Full Screen Editor

e SCL Source Code Management

e SCL Object Code Management

¢ SCL Advanced File Management

e Screen Formatting

o SCL Quick Reference

Revision B About This Manual 7

ORGANIZATION

SCL Language Definition defines the complete SCL language specification.
It describes SCL language elements, expressions, variable management,
command stream structuring, language-dependent commands and functions,
procedure creation, and command list manipulation.

SCL System Interface describes the basic system interface to NOS/VE using
SCL. It describes system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

Full Screen Editor describes the text editor available on NOS/VE. Organized
in two parts, the manual first describes the basics of editing in screen mode
and then more comprehensively describes the editor. Topics included are
creating files, replacing text, searching, undoing, creating procedures, and so
on.

SCL Source Code Management describes the NOS/VE Source Code Utility, a
development tool used to organize and maintain libraries of ASCII source
code.

SCL Object Code Management describes the storage and manipulation of
units of object code within NOS/VE.

SCL Advanced File Management Usage describes three file management
tools: Sort/Merge, the keyed-file utilities, and the File Management Utility
(FMU). Sort/Merge sorts and merges records; FMU reformats record data;
and the keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

Screen Formatting describes the DEFINE_TERMINAL command and the
statements used to define terminals for use with full screen applications such
as the Full Screen Editor.

SCL Quick Reference provides a quick reference for the SCL commands,
functions, and statements described in the SCL manual set.

Full Screen Editor

Full Screen Editor is divided into two parts. Part I, Tutorial, describes the
basics for the novice user.

Chapter 1 introduces the editor and its capabilities.

Chapter 2 introduces the Viking 721 terminal, which is used exclusively for
all examples.

Chapter 3 describes the basics of screen editing such as creating a file, and
searching, replacing, and moving around in the file.

8 Full Screen Editor Revision B

ORGANIZATION

Part II, Usage, is for the more experienced user. It describes all the editor
capabilities and subcommands. This information is grouped by the functions
they perform rather than alphabetically by subcommand names. The
subcommand names are listed alphabetically on the inside back cover.

Chapter 4 describes concepts that you will need to know before reading the
rest of part II.

Chapter 5 describes some common editing functions (such as starting the
editor, inserting, deleting, replacing, and undoing), all of which contain a
complete description of the topic.

Chapter 6 describes the function keys and how to change the definitions of
the programmable function keys.

Chapter 7 describes how to set various editor options to customize how you
use the editor.

Chapter 8 describes how to edit Source Code Utility (SCU) decks.

Chapter 9 describes how to create procedures to be used with the editor and
lists special functions to be used within procedures. It also describes how to
call the editor from within a procedure.

Chapter 10 describes the editor’s prologue and epilogue files.

Chapter 11 describes how to use the editor in screen mode on other supported
terminals.

Appendix A contains definitions of terms used in this manual as well as
terms not used in this manual, but helpful in understanding NOS/VE.

Appendix B lists the ASCII character set supported by NOS/VE.

Appendix C is a listing of the subcommand strings composing the various
FSE functions.

Appendix D describes the Viking 721 terminal settings needed to ensure
proper operation of FSE.

Revision C About This Manual 9

CONVENTIONS

Conventions

Throughout, this manual uses representations of actual keys to show you
when you should press a key. For example,

is represented as

and

3 7,
1
cLEAR

oL

A

is shown as just
CLEAR

When two keys are shown side by side, it means you should hold down the
first key while pressing the second. For example,

@
means hold down () (the 721’s shift key) and press .

Sometimes you have to press more than one key in succession to execute a
certain function. This is indicated with a + sign. For example,

() [CLEAR) + (NEXT)
means hold down (£3) and press : afterwards press (NEXT).

I Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

A dot next to the page number indicates that a
i significant amount of text (or the entire page) has
changed from the previous revision.

10 Full Screen Editor Revision C

CONVENTIONS

‘ Some function keys have labels on both the keyboard and the screen. For
example, the key labeled only@on the keyboard has the following screen
label:

[MARK
The screen label is used in this manual.

The keys are sometimes combined. For example, to page backward on the
DEC VT100 terminal, you would use:

(EHIFD) 71 EX] + (BETURN)

Within text, cursors are shown as:

For example in line mode editing, the cursor is shown as:

The icursor

In screen mode examples, the cursor is shown as:

. The subcommand descriptions within this manual follow a standard, concise
format. The format is described in chapter 4 of this manual and is the same
format used for other SCL. commands (refer to the SCL Language Definition
manual for detailed information). In descriptions of subcommands or
parameters, valid abbreviations are shown in parentheses.

Within the formats shown in this manual, UPPERCASE characters
represent reserved words; they must appear exactly as shown. Lowercase
characters represent names and values that you supply.

Required names and parameters are in boldface type. Optional parameters
are shown in italics.

All numbers are assumed to be decimal unless otherwise noted.

Interactive examples are shown in a type font that resembles
computer output. User input within interactive examples is shown in blue.

Revision B About This Manual 11

ADDITIONAL RELATED MANUALS

Additional Related Manuals

For detailed information on diagnostic messages refer to the NOS/VE
Diagnostic Messages manual, publication number 60464613, or its online
counterpart.

For detailed hardware descriptions of the Viking 721 terminal, refer to the
721-10/20/30 Hardware Reference Manual, publication number 62940020,
and the Control Data 721-21/31 Owner’s Manual, publication number
62950101.

Ordering Manuals

Control Data printed manuals are available through Control Data sales
offices or through:

Control Data Corporation
Literature and Distribution Services
308 N. Dale Street

St. Paul, MN 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your
opinion on the manual’s usability, to suggest specific improvements, and to
report technical or typographical errors. If the comment sheet has already
been used, you can mail your comments to:

Control Data Corporation

Publications and Graphics Division ARH219
4201 Lexington Avenue North

St. Paul, MN 55126-6198

Please indicate whether or not you want a written response.

Additionally, if you have access to SOLVER, an online facility for reporting
problems, you can use it to submit comments about the manual. When
entering your comments, use SC8 as the product identifier.

12 Full Screen Editor Revision C

® Capabilities 1

This chapter is an overview of some of the basic capabilities of the Full
Screen Editor.

o Capabilities 1

Using the NOS/VE Full Screen Editor on most video display terminals, you
can display a page of text on the screen, move through the file page by page,
and make most of your changes with the touch of a key. This is called screen
editing.

If you are working on a printing terminal, you will use the other type of
editing the editor is capable of, line editing. In contrast to screen editing, you
see only a limited number of lines at any one time. Line editing is also
available for use on video display terminals.

This manual describes how to edit files. Most of the features apply to both
files and Source Code Utility (SCU) decks. Information specific to decks is
discussed in chapter 8, Editing SCU Decks.

Using the editor you can:
e Display and edit more than one file at a time.

® Search for and replace text according to the column in which the text
appears.

® Move or copy parts of a file to the same or another file.
’ ® Undo changes you've made to a file.
e Search for and replace words.

e Create procedures containing both editor subcommands and SCL
commands.

o Format text.

Revision B Capabilities 1-1

CAPABILITIES

When you make changes using the editor, the editor uses a copy of your file,
changes it, and then rewrites your file. When the editor works with a copy of
your file, it automatically deletes all blanks after the last visible character in
each line. For most users, this does not affect the use of the file. In fact, it can
actually decrease the file size (depending on how many blanks you had at
the end of lines in your file). Some utilities, however, may use a specific file
structure that attaches significance to blanks at the end of lines. If you need
to edit these files, you need to be aware of the requirements of the file and
then see if the Full Screen Editor can meet those requirements before editing.
Examples of such files are the bound version of manuals that are called by
the EXPLAIN command and files used by Sort/Merge.

1-2 Full Screen Editor Revision B

) Viking 721 Terminal 2

This chapter introduces the Viking 721 terminal and lists other supported
terminals.

) Viking 721 Terminal 2

Throughout this manual, examples and explanations apply to the Viking 721
terminal.

The Viking 721 terminal must be set up correctly to log in to NOS/VE and
use the editor. Appendix D shows how the terminal should be set up;
however, if your terminal has been used with NOS/VE before, try using it
without changing any of the settings.

Revision B Viking 721 Terminal 2-1

VIKING 721 TERMINAL

The Viking 721 key symbols mean: .
Key Meaning

Return, carriage return, or new line.

= Backspace.

Shift.

Shift lock.

Tab forward.

Tab backward.

Cursor movement.

&)

The locations of these keys are:

2-2 Full Screen Editor Revision B

VIKING 721 TERMINAL

The editor, in screen mode, supports several other terminals. These terminals
are:

CDC 722

CDC 722-30

DEC VT100 or equivalent
IBM PC or equivalent
Zenith 719

Zenith 729

Heathkit H19

If you are using one of these terminals in screen mode, refer to chapter 11,
Using Other Terminals in Screen Mode, whenever needed to determine what
keys to use to perform the functions described in the following chapters.
Information on how to create a file that allows you to use other terminals for
screen editing can be found in the Screen Formatting manual.

Revision C Viking 721 Terminal 2-3

. The Basics 3

This chapter describes how to perform the basics of screen mode editing on a
Viking 721 terminal using function keys and a few subcommands. For
comprehensive descriptions of these functions, refer to part II, Usage.

Getting Started.cotiiiiiiiiiiiii it e s 31
Creating a File ...t e e 3-6
Moving around the Screen ...ttt 3-8
Changing the Screen Contentccoiiiiiiiiiiieiiiiaiiiennn, 39
Movingtothe Endofaliine i iiiennn. 311
Moving around withintheFile i, 3-12
IncreasingtheFileLength i, 312
Moving tothe Firstor Last Line...............................cc... 3-15
Moving from Screen to Screenottt 3-16
Entering Subcommandscoiiiiiiiiiiii e e e 3-19
Getting Help ... e e et 3-19
. |72 13 3 VO 3-23
Deleting Charactersooiiiiuunrieinieiiiiiiieeeeennnns 3-23
Deleting Linesoovviiier i e 3-24
Deleting Wordsooiietniiiii it ettt aie et 3-24
Deleting Blocks of Empty Linescoiiiiiiinniinnn.. 3-26
Inserting. ..o e e, 3-27
Inserting Characters.ooiiitiiiiniiiiiiiiiiiieeeennanns 3-27
Inserting Liinesottt e it 3-28
Inserting Wordscoviiiiiiniiiiii i i e 3-29
Inserting Blocks of Empty Liinescccoiiiiiiinneneannn.. 3-30
SearChIN g it e e 3-32
Searching fora TextString ...ttt iiiieeannn.. 3-32
Searching for the Next Occurrenceccovniinn... 3-35
Searching for All OcCurrencesccvvviiiniereinninineeeeennnnns 3-36
MarKing .ottt e e e e 3-39
{07 030 1 V= A AP 3-41
1 005 o = RS 3-44
Undoing . ..ot 3-46

The Basics 3

Getting Started

To get the editor started, enter the EDIT_FILE command; its format is:

EDIT_FILE (EDIF)
FILE-=file
INPUT=file
OUTPUTfile
PROLOG=file
STATUS=status variable

The FILE (F) parameter specifies the name of the file you want to edit and is
required. If the file you specify does not exist or is busy, a new file is created.
The other parameters are described in part II, Usage.

For example, to edit the permanent file ZAP, which already exists, enter
either:

/edit_file file=$user.zap
or
/edif $user.zap
The following prompt appears:
ef/

This is the line mode prompt. At this point, you can enter any FSE
subcommands to edit your file in line mode or you can enter screen mode.
The rest of part I, Tutorial, describes screen mode.

Revision C The Basics 3-1

GETTING STARTED

To start screen mode, enter the ACTIVATE _SCREEN subcommand
specifying the terminal model you are using. The format of the subcommand
is:

ACTIVATE_SCREEN (ACTS)
MODEL=name
STATUS=status variable

The MODEL (M) parameter specifies the terminal model you are using. You
may set the terminal model with the SET_TERMINAL_ATTRIBUTES
command and include it in your user PROLOG so you won’t need to set it
again. If it has not been specified using SETTA or on a previous
ACTIVATE_SCREEN or SET_SCREEN_OPTIONS subcommand, this
parameter is required. Valid entries are:

Entry Terminal
CDC721 CDC Viking 721
CDC722 CDC 722

CDC722_30 CDC 722-30

VT100 DEC VT100

PC_CONNECT IBM PC or equivalent

719 Zenith Z19 or Heathkit H19

729 Zenith Z29

For example, to specify the Viking 721 terminal, enter:

ef/activate_screen model=cdc721

® 32 Full Screen Editor Revision C

GETTING STARTED

A screen appears showing the beginning of your file. In the following figure,
permanent file ZAP appears as:

Revision B The Basics 33

GETTING STARTED

The format of each screen displayed by FSE is: .

(@ Subcommand Line The line on which you enter subcommands.
To move the cursor to this line, press (HOME);

to return to the file, press(NEXT).

@ Message Line The line on which FSE displays messages.
These messages might be informative
messages, error messages, or prompts asking
you to do something.

@ File Header The line containing the file name, the lines
displayed on the screen, and the file size.

3-4 Full Screen Editor Revision C

GETTING STARTED

‘ @® Cursor Your exact position in the file.
® File Text The contents of the file.

@ Programmable Function = The labels currently assigned to function keys
Key Prompts F1 through F8. These keys are described later
in this manual.

To get more editor status information, use the DISPLAY _EDITOR _
STATUS subcommand described in chapter 7, Selecting Editor Options.

Revision B The Basics 35

CREATING A FILE

Creating a File .

To create a file, start the editor with the EDIT_FILE (EDIF) command
specifying the name of a file that does not exist. A screen appears with the
name of the file displayed.

Create permanent file BERT on your USER catalog by entering:
/edif $user.bert
(assuming file BERT does not already exist).

Enter the ACTIVATE _SCREEN subcommand to start screen mode editing
on a Viking 721 terminal.

ef/activate_screen model=cdc721

The following screen appears.

36 Full Screen Editor Revision B

CREATING A FILE

The editor positions the cursor on the first line. You can then type in
whatever you want to appear in the file. Each time you press the key,
the editor positions the cursor at the beginning of the next line. At the same
time, it updates the file size on the file header line. Enter a few lines of text
into file BERT, pressing the key at the end of each line. For a sample
of what to enter, refer to file ZAP shown earlier. Your file will look similar to:

File BERT is now five lines long (blank lines are counted when they are at
the beginning of the file or are surrounded by text).

Revision B The Basics 3-7

MOVING AROUND THE SCREEN

Moving around the Screen .

To move the cursor around the screen, use the arrow keys on the keypad to
the right of the main keyboard. The numbers on the keys are 2, 4, 6, and 8
and appear as:

@

The direction which the arrow points corresponds to the direction the cursor
moves when the key is pressed. You do not have to hold down the @ key
to use these keys. Also, if you hold the arrow keys down they automatically
repeat. You can use the arrow keys to move the cursor off the screen to the
left and the right. The cursor reappears on the opposite side of the screen.
Try moving the cursor up and down. If you move the cursor off the screen, it
will always return.

3-8 Full Screen Editor Revision B

CHANGING THE SCREEN CONTENT

Changing the Screen Content

If you want to change what’s on the screen, use the cursor positioning
(arrow) keys to move the cursor to the place where you want to make the
change and type over what is there. The change is made as you type.

For example, to correct the errors in the file BERT, position the cursor on the
character in error:

FoZy score and seven
Press:
u
The following results:
Fouy score and seven

The z is replaced with u and the cursor moves one position to the right (in
this example, positioning the cursor at the y).

Press:
r
The result is:

Fou ore and seven

Revision B The Basics 39

CHANGING THE SCREEN CONTENT

Practice using the character keys, the cursor positioning keys, and the .
key by filling up the first 23 lines of file BERT with text.

File BERT is used in the examples that follow to explain other concepts. You
can use the file you have created to practice what you learn.

3-10 Full Screen Editor Revision B

MOVING TO THE END OF A LINE

Moving to the End of a Line

To move the cursor to the end of a line, you do not need to hold down

the cursor positioning key until it reaches the end of the line. Use

&) re instead. This moves the cursor to the end of the current
line. The () F4 key is the function key labeled F4 that is
located in the top row of the keyboard. It also is shown on the screen as the
fourth highlighted (inverse video) box.

For example, to move the cursor in file BERT to the end of the following line
This Line i§ used to show the capabilities of the F4 key.
position the cursor on the line and press:
@ w
The result is:

This line is used to show the capabilities of the F4 key.

Revision B The Basics 311

MOVING AROUND WITHIN THE FILE

Moving around within the File

In screen mode, the editor automatically increases the file’s length as you
add lines to the file. The editor also allows you to easily move around within
the file once the file is too large to fit on the screen. To move around within
the file you use function keys. Some function keys are located above the
regular keys; others are located on the left and right. These keys enable you
to:

e Move through the file one screen at a time.

o Move quickly to the first or last line of the file.

Increasing the File Length

Once you have entered the last line on the screen into a file and pressed the
@ key, the editor automatically repositions the lines displayed on the
screen so you can continue entering lines. The editor positions the last line
on the screen (the 25th line on the Viking 721 terminal) in the middle of the
screen. You then have half the screen on which to enter lines.

For example, enter into file BERT a blank line as line 24 and the following
line as line 25:

o Anything else you can put in a file.

3-12 Full Screen Editor Revision B

MOVING AROUND WITHIN THE FILE

’ When you press at the end of line 25, the editor displays the following

screen:

Revision B The Basics 313

MOVING AROUND WITHIN THE FILE

Each time you fill up the screen, the same process takes place. Once you get
to the bottom of the screen and press , the editor repositions the file. ‘

Enter lines into file BERT until the file size is at least 60 lines. This will
allow you to try the examples that follow. The following text can be entered.

This is the second screen of file BERT.
See the top line of this screen?
It was the bottom line of the first screen.

a

If you press FWD again, this line will appear at the top of the next screen. ‘

3-14 Full Screen Editor Revision B

MOVING AROUND WITHIN THE FILE

' Moving to the First or Last Line

If you are in the middle of a file and want to get back to the first line, press
the function key:

F3
The screen then shows the first lines of the file.
If you need to get to the last line of the file, press:
(> 3

This positions the cursor on the last line and vertically centers the line on the
screen.

Try moving to the beginning and end of file BERT.

Revision B The Basics 3-15

MOVING AROUND WITHIN THE FILE

Moving from Screen to Screen

To move through your file screen by screen, use and keys
(FWD)

located on the left side of the regular keyboard. moves you forward one
screen. moves you backward one screen.

For example, you're at the following screen in file BERT.

To move forward to the next screen, press:

(Ewp)

3-16 Full Screen Editor Revision B

MOVING AROUND WITHIN THE FILE

‘ The next screen appears. Notice that the last line of the previous screen is

now the top line of this screen.

To move back to the previous screen, press:

Revision B The Basics 3-17

MOVING AROUND WITHIN THE FILE

You are returned to where you started. .

3-18 Full Screen Editor Revision B

ENTERING SUBCOMMANDS

Entering Subcommands

Most of the basic editing functions can be done using function keys.
However, there will be times when the function keys provided do not meet
your editing needs. It is then that you will need to enter a subcommand.

To enter subcommands when screen editing, press:

The key is on the keypad to the right of the main keyboard in the
middle of the arrow keys (the @ key)." moves the cursor to the
subcommand line (the top line of the screen). Anything you enter on this line

is processed when you press(NEXT).

When you enter a subcommand, the line and column at which the cursor was
positioned when you pressed is used as the current position. Editor
subcommands are listed on the inside of the back cover. The only
subcommands described in the Tutorial part of this manual are HELP,
QUIT, ACTIVATE_SCREEN, and one form of SET_SCREEN_OPTIONS.

Getting Help

An online help file is available through the editor. If you can’t recall how a
subcommand works, press

HELP

or press the key to move the cursor to the subcommand line and enter
the subcommand:

help

Both access a file containing descriptions of the editor subcommands and
their parameters. When you press

HELP

or enter
help

you are positioned at the beginning of the HELP file. You can then page
through the file by using the and keys described earlier in this
chapter.

Revision C The Basics 3-19

GETTING HELP

If you want to be positioned at a description of a specific subcommand, enter
the HELP subcommand followed by the name of the subcommand for which .
you need help. For example, if you were editing file BERT:

To get help on the INSERT_LINES subcommand, press

and enter:

help insert_Llines

320 Full Screen Editor Revision B

GETTING HELP

. The HELP file appears on the bottom half of the screen with the cursor

positioned at the description of the INSERT _LINES subcommand.

To continue reading the help file, press:
To return to editing the file or files you were editing, press:
This clears the screen of the HELP file.

Revision B The Basics 3-21

GETTING HELP

In the previous example, to return to editing just file BERT, press ‘

and the description of INSERT_LINES is gone.

3-22 Full Screen Editor Revision B

DELETING

Deleting
®

Using function keys, you can delete characters, lines, words, and groups of
blank lines. After reading about each topic, use a practice file to try them out.

Deleting Characters

To delete individual characters, use the key located above and to
the right of the regular keyboard. Position the cursor on the character you
want to delete, and press:

For example, to delete the extra n inClinnic,
Corby Jones Clinnic
position the cursor on the n to be deleted
Corby Jones Clinfiic
and press:
The following results:
|

Corby Jones Clinic

Revision B The Basics 3-23

DELETING

Deleting Lines

To delete lines, use the @ keys. For example, to delete the line
This Lline doesn't belong
from

Dr. Hugo Quackenbush
The Marx Clinic

This Lline doesn't belong
10 Downing Street
Minot, NM 77834

position the cursor anywhere on the line to be deleted:
Thi¥ Line doesn't belong
and press@. The following results:

Dr. Hugo Quackenbush
The Marx Clinic

10 Howning Street
Minot, NM 77834

Deleting Words

To delete a word, use () F10 EEIXIRE]. When you start the editor, the
prompts for programmable function keys F9 through F16 are not displayed.
To display the programmable function key prompts for F9 through F16,
press

and enter:
set_screen_options menu_row=2

The screen then displays two rows of prompts:

Unmrk Boxmk LAST endlin Locnxt 80/132
F1 MARK F2 Chrmk F3 FIRST F4 middle F5 UNDO F6 END F7 LOCATE F8 Locall

delel delwrd Move dedent center
F9 insel 10 inswrd 11 Break 12 Join 13 14 Copy 15 INDENT 16 FORMAT

324 Full Screen Editor Revision C

DELETING

The function of the shifted F10 key depends on where the cursor is
. positioned.

If the cursor is positioned on a character that is not part of a word, that
character is deleted. For example, if the cursor is positioned on a comma (,)
and you press () F10 EEEIRE], just the comma is deleted.

If the cursor is positioned on a character in a word, the current word is
deleted and if the character after the word is a blank, it also is deleted. For
FSE, a word is a string of letters, numbers, or the special characters $, #, @,
and _, surrounded by any other characters. The end of a line or beginning of
a line is also considered to be a word boundary.

For example, the second occurrence of the word Long needs to be deleted in
the following:

This is a very long long program.
Position the cursor anywhere on the word Long
This is a very long léng program.
and press(>) F10 EXRIR. The result is:
This is a very long grogram.

. If the cursor is positioned on a blank character, that character is deleted as
well as any following blanks until a nonblank character is encountered.

For example, the space between close and up needs to be removed:
close up

Position the cursor at the point in the string of blanks you want the deletion
to start:

close up
Press @ F10 EEPRE]- The following results:

close {ip

Revision C The Basics 325

DELETING

Deleting Blocks of Empty Lines .

To delete a group of empty lines, use (<) F9 EEJEIN. This deletes the
current blank line and any following blank lines until a nonblank line is
encountered.

For example, the blank lines between the first and the second line need to be
deleted:

The first Lline.

The second Lline.
Position the cursor on the first blank line to be deleted:

The first Lline.

The second Line
Press:

(9 .
The blank lines are deleted resulting in:

The first Lline.
The second Line.

3-26 Full Screen Editor Revision B

INSERTING

‘ Inserting

Using function keys, you can insert text into your file including characters,
lines, words, and blocks of blank characters. Actually, on the Viking 721
terminal, the text itself isn’t inserted; space is inserted enabling you to enter
your text. Other supported terminals enable you to enter what’s called
insertion mode, which allows you to insert the actual characters rather than
spaces over which you type.

Inserting Characters

To insert a character, use the key located above and to the right of
the regular keyboard. To do so, move the cursor to the character before which
the new character is to appear and press. This inserts a blank
character over which you can type the new character.

For example, a B needs to be inserted between the Y and the I in
CYIL
Position the cursor on the I:
CYEL
. Press:

This inserts a blank:

You can then type the B over the blank.
CYBIL

(After you type B, the cursor moves to the next character.)

Revision B The Basics ~ 3-27

INSERTING

Inserting Lines ‘

The quickest way to insert a line is to use the () and (INSRT) keys. When
you press

© @

a blank line is inserted before the current line. You can then type in the text
of the new line.

For example, to insert
Corby Jones Clinic
between

Dr. Leo Miller
2703 Jones Circle

position the cursor on the line before which you want the new line to appear
(in this example, the line that reads 2703 Jones Circle) and press:

&) @SR

A blank line is inserted:

Dr. Leo Miller .

2303 Jones Circle

Then, just type the new line of text.

Dr. Leo Miller
Corby Jones Clinic
2703 Jones Circle

If you want to insert several lines of text, press

> @)

several times.

328 Full Screen Editor Revision B

INSERTING

Inserting Words

To insert a word, use F10 .F10 inserts 32 blank characters
over which you can type the word or words to be inserted.

For example, to insert
Jones
between Corby and Clinic ,
Corby Clinic
position the cursor to the C in Clinic and press:

F10

32 blanks are then inserted over which you can type the new word:

Clinic

To delete the remaining blanks, position the cursor on the first blank you
want deleted and press @ F10 . This deletes all blanks until a
nonblank character is encountered. In this example, move the cursor to the
second blank character after Jones and press (<) F10 EEJE]. The
following results:

Corby Jones £linic

Revision C The Basics 3-29

INSERTING

Inserting Blocks of Empty Lines ‘

To insert a block of empty lines, use F9 . The number of blank lines
inserted depends on the size of the screen. When you press F9 ,
empty lines are inserted before the current line, leaving two lines of text at
the top and bottom of the screen.

For example, to insert empty lines between the line that reads
Dear George,
and the line that reads

Sincerely,

on the following screen:

3-30 Full Screen Editor Revision B

INSERTING

. position the cursor on the line that says Sincerely, and press:

2 nsel

The following screen results:

Revision C The Basics 3-31

SEARCHING

Searching

Using function keys, you can perform three different types of searching. You
can do searches for a text string, searches for the next occurrence of a string
you specified earlier, and searches for all occurrences of a string.

Searching for a Text String

The easiest way to search for text is to use F7 . When you

press F7 , the cursor moves to the subcommand line and you are
prompted to enter the text you want to locate. The editor searches for the
next occurrence of the text and, if found, positions the cursor at the first
character of the string. You should enter the text exactly the way you want
to find it in the text. For example, to find the word Fred in a file, you cannot
enter FRED or fred;it must be entered as Fred.

Another example: you are editing file BERT and want to locate file. Press:

4l LOCATE |

3-32 Full Screen Editor Revision B

SEARCHING

The cursor moves to the subcommand line and you are prompted to enter the
text you want to locate.

Revision B The Basics 333

SEARCHING

Type file and press (NEXT). The editor searches forward from the current ‘
line (in this case we’ll say it was the top line) and, when the string is found,
positions the cursor at the beginning of the string.

3-34 Full Screen Editor Revision B

SEARCHING

‘ Searching for the Next Occurrence

To search for the next occurrence of a string in a file, press @ F7 .
In this example, to locate the next occurrence of file (assuming file was

the last string specified using 7 [EJ¥NHE), press (&) F7 .The
cursor is positioned at the next occurrence.

To locate any subsequent occurrences, just keep pressing (&) F7 .
If there are no more occurrences of the string, an error message is displayed.

Revision B The Basics 3-35

SEARCHING

Searching for All Occurrences .

To search for all occurrences of a string, use F8 . When you
press F8 , you are prompted to enter the string you want to find.
You can then enter the string you want to find or, to locate the previously
specified string, press(NEXT).

For example, to locate all occurrences of the string move within file FRED,
press:

23 Locall

You are prompted to enter the text for which the editor is to search:

3-36 Full Screen Editor Revision B

SEARCHING

‘ Enter:

move

The directory of all the lines in the file containing move is displayed:

Revision B The Basics 337

SEARCHING

To look at the next screen of located lines, press (NEXT). If there isn’t a next
screen, pressing positions the cursor on the last line of the listed .
lines. If you want to position the cursor at a line contained in the list of lines,

enter the line number on the subcommand line or position the cursor on the

line and press . You are returned to the file text with the line you

selected.

For example, to go to line 10, enter the following on the subcommand line:

10 + (VEXT)

The following screen appears:

3-38 Full Screen Editor Revision C

MARKING

Marking

To use some of the other functions provided by the function keys, you need to
know how to mark text. Marking tells the editor which text to use with a
later operation, such as a copy or move function.

Using function keys, you can mark lines of text or a sequence of character
strings. To mark lines, use F1 m This highlights text in inverse video
on terminals with that capability. For example, to mark the line

This is the line to mark.
in the following text,

first Line
second Lline
This is the Lline to mark
fourth Lline
fifth Line

position the cursor anywhere on the line to be marked:
This is the Line to mark

Press:

/1 [

The line is highlighted to show you that it is marked:

first Line
second line
fourth Line
fifth Line

To mark a range of lines, press F1 mtwicei once on the first line to be
marked and again on the last line to marked. For example, to mark all the
lines from the second line to the fourth, position the cursor on the second
line:

First Line
§econd Line
Third Line
Fourth Lline
Fifth Line

Press:

1 [

Revision B The Basics 3-39

MARKING

The second line is highlighted:

First Line
Fhird Line
Fourth Lline
Fifth Line

Move the cursor to the fourth line and press F1 again. All lines from
the second through the fourth are highlighted:

First Line
Second line
Third Lline
Fourth Lline

You can also mark strings of characters using F2 . This also
highlights the characters you have marked. For example, to mark the phrase

marked text,
in the following text,

If you want to move marked
text, you should use the
MARK function.

position the cursor on the m in marked:
If you want to move garked

Press r2 The m in marked is highlighted:

If you want to move ked

Move the cursor by pressing the arrow keys to the second t in text and
press F2 . All characters between the two markers are now
highlighted as well:

If you want to move

[3383; you should use the
MARK function.

The lines or characters you mark will stay marked until you explicitly
unmark them, mark some other text, move the marked text, or until you stop
the editor. To unmark text, use the 'F1 keys. For example, to
unmark the text marked previously with F2 key, just press:

@ v o

The lines are no longer marked and no longer highlighted.

340 Full Screen Editor Revision C

COPYING

Copyving

To copy the current line to the next line, just press;F14 (COPY, |; marking is not
necessary (an example of this procedure is provided later in this section).

To copy text other than the current line, use F1 oriF2 YT and

Fl4 l . Mark the text you want to copy. (Marking is described earlier
in this chapter.) Position the cursor at the line or character before which you
want the text to appear and press:

F14
For example, to copy

This is the line to copy
to just before the last line of the following text,

Don't copy this line
This is the Line to copy
Don't copy this Lline
Don't copy this Lline

position the cursor on the line to be copied and press F1 . The line is
marked:

This is the Line to copy

Position the cursor on the line before which the line is to be copied:

Don't copy this Line
Don't copy this Line
Bon't copy this Line

Press F14 . The following results:

Don't copy this Line
This is the line to copy
Don't copy this line
This is the Line to copy
Don't copy this Line

The marked text remains marked after the copy is complete. Use
() 1 M| to unmark the text.

Revision C The Basics 3-41

COPYING

If you have marked characters to be copied, position the cursor to the
character before which the copied text is to appear. For example, to copy the .
word seven in

Four seven score
and years ago,

to after the word and, position the cursor on the space in front of seven,

Fouriseven score
press:
r2
The character is highlighted:
Fourfseven score
Then, move the cursor to the n in seven and press:
r2
The characters from the blank to the n in seven are highlighted:
Fourfl3¥=y] score

To copy the marked characters to after the word and, move the cursor to the ‘
location you want them copied:

Four I3l score

3-42 Full Screen Editor Revision B

COPYING

. Press F14 .

The word seven is copied:

Y] score
seven years ago,

The marked characters remain highlighted until you unmark them, mark
different text, or stop the editor.

To copy the current line to the next line, press F14 . No marking is
needed. For example, to copy the line

Repeat this Lline
from the following text,

First Line
Second line
Repeat this Lline
Third Lline
Fourth Lline

position the cursor on the line to be copied:

First Lline

‘ Second line
Kepeat this Lline

Third Lline

Fourth Line

Press F14 . The line is copied to the next line:

First line
Second line
Repeat this Lline
epeat this Lline
Third line
Fourth Line

Revision C The Basics 343

MOVING

Moving .

To move lines or characters, use F1 or F2 and

@ F14 (information on how to display function key prompts for the
F9 through F16 keys is included in the Deleting section of this chapter). You

first need to mark the text to be moved. Then, position the cursor to the point
you want the text to appear and press:

) F1e
For example, to move the line that reads
Move this one
to just before the last line of the following text,

Don't move this Lline
Move this one

Don't move this Lline
Don't move this Lline

position the cursor on the line to be moved.

Moye this one
Press F1 . The line to be moved is highlighted.

®
Position the cursor on the line before which the moved line is to appear.

Don't move this line

Don't move this line
fon't move this Lline

Press () F14 3. The following results.

Don't move this Lline
Don't move this line
Move this one

fon't move this Lline

3-44 Full Screen Editor Revision B

MOVING

If you have marked characters to be moved, position the cursor at the
character before which the moved text is to appear. For example, to move the
word seven in

Four seven score
and years ago,

to after the word and, position the cursor on the space in front of seven:

:seven score

o

The character is highlighted:
Fourlseven score
Then, move the cursor to the n in seven and press:

r2 (I

The characters from the blank to the n in seven are highlighted:

Four Y g)score

To move the marked characters to after the word and, move the cursor to the
location you want them moved:

score

Fou

Press:
(D)4

The word seven is moved to the destination, disappearing from its former
location:

Four score
even years ago,

Revision C The Basics 3-45

UNDOING

Undoing

To undo a change that you have made during your current editing session,
use F5 . Each pressing of F5 cancels all changes you made to
your file since the last time you pressed or a function key that
provides a carriage return (all Viking 721 function keys provide carriage
returns). With each succeeding press of F5 , the changes are undone
in the reverse order you made them. F5 undoes changes you have
made to the file text, and restores previous current positions.

For example, the following changes were made to a file in the order shown:

1. Allabc’s were changed to xyz’s using the REPLACE _TEXT
subcommand. (NEXT)was pressed.

2. The word water was changed to juice by typing juice over water.
3. The first line of the file was deleted using the (&) keys.

Each time you press F5 , the changes are undone as shown:

The first time The first line of the file is returned and the
FS is pressed. word juice ischanged back to water.
The second time The xyz’s are changed back to abc’s.
NOTE

To undo changes to files edited earlier in your current job and not closed
using QUIT or END, you must position the cursor in the file and then press
F5 M. FSE does not automatically return to a previously edited file to
undo changes.

3-46 Full Screen Editor Revision C

STOPPING AN EDITING SESSION

Stopping an Editing Session

There are two ways to stop an editing session. You can stop the editor and
leave all the changes you have made to any edited files intact. You can also
stop the editor and undo all the changes you made to the files you edited.

To stop the editor and save changes to edited files, press:

F6 E

The screen is cleared and after the editing changes are processed the system
prompt appears:

/

To stop the editor and undo all of the changes made to all edited files, press

and enter the subcommand:
quit false

This cancels all changes you have made to all of your edited files. The screen
is cleared and the system prompt appears:

/

For information on stopping an editing session when you are editing decks
refer to Chapter 8, Editing SCU Decks.

Revision C The Basics 347

® Before You Continue 4

Before you read the other chapters in part II, you should be familiar with a
few of the concepts you will encounter. These concepts are:

Subcommand Syntax.........c.oiiiiiiiii e 4-1
Common Parametersottt 4-2
BOUNDARY (B) ..ottt ettt et e eeeiaeeens 4-2
COLUMN (COLUMNS 0r C) .. iiit i ie e e cei e eiee e 4-3
LINE(LINES Or L) ..ot e ettt eeeeaas 44
ST AT U S . e e e e 44
External and Working Fliles. ...t 45
OpenandClosed Filescoiiiniii i 4-6
The VETO Parameteroviuuniiiiiiii ittt 4-7
The Mask Character..............oiuiiiiiiiiiiie i iiiiiaiaennns 49
Editing Source Code Utility Decks...........ccviiiiiiin ... 49

) Before You Continue 4

Subcommand Syntax

The editor subcommands have the same general syntax as SCL commands.
That is, most subcommand names contain a verb describing the function
they perform followed by an object specifying the target of the function. The
verb and the object are separated by an underline character. For example:

delete_Lline

As you may have noted, you can compare a subcommand to a sentence
describing the action. This can prove helpful if you can’t quite recall the
syntax of a subcommand; just try entering a sentence that describes what
you want to do.

Also, subcommands can be abbreviated. All subcommands can be
abbreviated by joining the first three letters of the verb with the first letter of
the object. Several subcommands can be abbreviated to only the first letter of
the verb and the first letter of the object. Still fewer subcommands can be
abbreviated to a single letter. For example, the following subcommands can
be abbreviated as shown here.

' Full Name Abbreviated Names
DELETE_WORD DELW
INSERT_CHARACTER INSC
INSERT_LINE INSLorI
MARK_CHARACTER MARC or MC

All valid abbreviations for all the subcommands are included in their
descriptions and also on the inside back cover.

In the subcommand descriptions in part II, italics mean that the parameter
is optional. Parameters that appear in bold type are required.

Revision B Before You Continue 4-1

COMMON PARAMETERS

Common Parameters .

Many subcommands use the same parameters. Several of these parameters
have a large number of values. For this reason, the following common
parameters and their values are also listed on the inside front cover.

BOUNDARY (B)

The BOUNDARY (B) parameter has the following values:

Value Meaning

LINE (LINESor L) The text boundaries of a subcommand are limited
by lines.

STREAM (S) The text boundaries of a subcommand are limited
by characters specified by an accompanying
COLUMNS parameter.

The following example boundaries may help clarify the descriptions.
LINE boundary:

Four score and

seven years ago <+——— Beginning LINE boundary. .
our forefathers brought

IR PRCIIR AR E NIRRT ~—— Ending LINE boundary.

a new nation.

STREAM boundary:

Four score and
seven BCEEIEIEEE Beginning STREAM boundary.
our forefathers brought
ieJadiM on this continent,
a new nation.

_Ending STREAM boundary.

4-2 Full Screen Editor Revision C

COMMON PARAMETERS

. COLUMN (COLUMNS or ©C)

The COLUMN (COLUMNS or C) parameter has the following values:

Value Meaning
integer Any integer from 1 through 256.
CURRENT (C) The current column.

FIRST_MARK (FM) The first column of the marked text.
LAST_MARK (LM) The last column of the marked text.
MARK (M) All marked columns in the marked text.

MAXIMUM (MAX) The highest possible number value for a column
(equivalent to 256).

For COLUMN parameters that allow a range, you can specify two of the
above values (except MARK) to form a range. For example, to specify a
range of columns from column 1 to the current column, you could enter:

1..current

Revision C Before You Continue 4-3

COMMON PARAMETERS

LINE (LINES or L)

The LINE (LINES or L) parameter has the following values:

Value Meaning

integer A line in the file. The integer can be from 1
through the number of lines in the file.

line identifier A line in an SCU deck. The line identifier

(modset.sequence) consists of a modification name and a sequence

number, separated by a period.

ALL (A) All lines of the file.
CURRENT (C) The current line.
FIRST (F) The first line of the file.

FIRST_MARK (FM) The first line of the marked text.
FIRST_SCREEN (FS) The top line of the file displayed on the screen.
LAST (L) The last line of the file.

LAST_MARK (LM) The last line of marked text.

LAST_SCREEN (LS) The bottom line of the file displayed on the screen.

MARK (M) All marked lines.
SCREEN (S) All lines of that portion of the file displayed on the
screen.

For LINE parameters that allow a range, you can specify two of the above
values (except ALL, MARK, and SCREEN) to form a range. For example, to
specify a range of lines from the first line of the screen to line 250, enter:

first_screen..250

STATUS

The STATUS parameter specifies the status variable to contain the
completion status of the subcommand. All SCL commands and editor
subcommands use this parameter. It is not included in the descriptions of the
parameters for the subcommands in this manual. For information on the
STATUS parameter and its values, refer to the SCL Language Definition
manual.

4-4 Full Screen Editor Revision C

EXTERNAL AND WORKING FILES

External and Working Files

Part II uses the terms external files and working files. You need to know
what these terms mean within the context of editing.

An external file is a file outside the editor. When the editor edits a file it uses
a copy of an external file. This copy is called the working file.

When you stop your editing session, you have a choice whether to keep
changes or discard them. The changes you make to the working file are not
made to the external file until you enter an explicit WRITE _FILE command,
or end your editing session with an END or QUIT subcommand or the

F6 key. If you make changes to a working file and end your editing
session with a QUIT FALSE subcommand, the changes are not made to the
external file.

Unless you specify how to position a file on a given subcommand, the open
position of an external file is determined by the SCL SET _FILE _
ATTRIBUTES command. If you have not entered a SET_FILE _
ATTRIBUTES command with the OPEN_POSITION parameter specified,
by default your external files except OUTPUT are positioned to the
beginning-of-information. OUTPUT is positioned to the end-of-information.

A quick way to update the external copy of a working file without leaving the
editor, is with the WRITE _FILE subcommand. (The format is described in
the Copying section of chapter 5, Common Editing Functions.) To use the
subcommand to update the external copy of the working file, enter

write_file

The working file then overwrites the external copy without stopping your
editing session.

Revision C Before You Continue 4-5

OPEN AND CLOSED FILES

Open and Closed Files

Within part II, you will also encounter the terms open files and closed files.
These terms have special meaning within the editor. Open files are files that
have been accessed via the EDIT_FILE command. Most of the files you will
be concerned about are open files. If a file is open, you can return to it during
your editing session and undo changes. If you end your editing session with
the END or QUIT subcommand, or the F6 key, changes to all open files
are made permanent. If you end your editing session with a QUIT FALSE
subcommand, changes to all open files are canceled.

Closed files are files that have been explicitly closed using the END_FILE
subcommand (this subcommand is described in chapter 5, Common Editing
Functions). When a file is closed, any changes made permanent may not be
undone.

The END and QUIT subcommands and the Fé6 m key are described further
in the Stopping section of chapter 5, Common Editing Functions.

46 Full Screen Editor Revision B

THE VETO PARAMETER

The VETO Parameter

The VETO parameter is available on subcommands such as REPLACE and
LOCATE. The VETO parameter enables you to select which lines you want
the subcommand to affect. This can be very helpful in screen mode if many
lines are affected by, for example, a LOCATE_TEXT subcommand. In
screen mode when you specify TRUE, the editor displays a directory of the
located lines. From this display, you can select a line at which you want to be
positioned. For example, you are editing file FRED and enter a LOCATE _
TEXT subcommand that locates all the lines containing the string move. The
following display appears:

You can then enter the number of the line at which you want to be positioned
or place the cursor on the line in the menu and press return to select that line
position.

When you specify FALSE, the editor tells you how many occurrences were
found and positions you at the last occurrence.

Revision C Before You Continue 4-7

THE VETO PARAMETER

You can also use the VETO parameter in line mode. For example, if you
enter a REPLACE_TEXT subcommand, you are prompted line by line to ‘
determine if you want the change for that line to occur. The following prompt
appears:

REPLACE?

There are several valid responses to this prompt. These responses are:

Response Meaning

CONTINUE (C) The current line and any subsequent lines affected
by the REPLACE subcommand are changed with no
further interaction.

NO (N) Skips the current line and goes on to the next.

QUIT (Q) Stops the replacement.

YES (Y) Replaces only the current line, and locates the next
occurrence.

4-8 Full Screen Editor Revision C

THE MASK CHARACTER

The Mask Character

Some commands described in part II search the file for a specified text
string. With these subcommands, you can use what’s called a mask
character to serve as a wild card character; that is, it matches any other
character. For example, to specify a string to be replaced, searched for, and
s0 on, you could enter something like:

'Fi#d'
Strings that match this string would be:
Ford Fred Food Find Fund
or any other four-character string beginning with F and ending with d.

When you start editing, no mask character is set. You can set the mask
character using the SET_MASK subcommand. The format of the
subcommand is:

SET_MASK (SETM)
CHARACTER=string or keyword value
STATUS-=status variable

The CHARACTER parameter specifies the mask character. Values can be
any character or the keyword NONE. When NONE is specified, the mask
feature is turned off. This parameter is required.

Editing Source Code Utility Decks

Any of the features and functions described in part II can be used to edit
decks on SCU libraries. There are a few functions in chapter 9 that apply
specifically to decks, and these are noted. Editing decks is described in detail
in chapter 8.

Revision B Before You Continue 49

[Common Editing Functions 5

This chapter describes the most common of the editing functions. Each
section describes how to perform a function using function keys (when
applicable) and subcommands.

Starting the Editor i 5-1
Creatinga File i e 5-4
Entering Subcommandso 56
Getting Helpoon i e e 5-8
1703 03 02§ oV~ 20 59
Stopping with Function Keys ..., 59
Stopping with Subcommands i, 59
Moving the CUrSOruuiiiiiiit et 511
Moving the Cursor with Function Keys 511
Moving the Cursor with Subcommands 511
Moving the Cursor Using POSITION_CURSOR 5-12
Moving the Cursor Backwardccoiiiiiini.... 5-14

. Moving the Cursor Forwardciiiiinnn.... 514
LAt et 5-14.1
Listing Lines Previous to the Current Line 5-14.1
Listing Lines Following the Current Line 5-14.2
Listing a Specific Lineor Lines.............cccoiiiiiiieianna.... 5-14.3
Paging ... e 5-14.4
SaArCIN g . . .ot e 5-15
Searching with FunctionKeys i, 515
Searching with Subcommandscoiiiiiiiiiiiinnnn... 5-15
Searching Using LOCATE_TEXT.............iiiiiiiinnnian... 5-16
Searching for All Occurrences of Text..................ccoo.... 5-18.1
Searching for the Next Occurrence of Text 5-18.2
Searching for the Next Occurrenceof aString 5-18.2
Searching for Empty Linesooiiiiiiiiiiiienn, 5-19
Searching for Wide Lines...............c.ccoiiiiiiiiiiieneeann.. 5-20
Setting Search Marginsooviiiiiiiiiiiiiieneann. 5-21
InSerting . ..ottt 5-22
Inserting with Function Keys FE A 5-22
Inserting with Subcommandsol 5-22
Inserting Characters...........ooiiiiiiiiiiiiiiiiienneenns 5-23

‘ Inserting Linesooiuitiiiiii ittt 5-24

Inserting Empty Linesttt 5-25

Inserting Words ...ttt ieeiiiiaeeeaen 5-26
Indenting Textoouiiiieriiii i it eiiiiannnnn 5-27
Inserting Files . ..o i et et 5-28
Deleting ..ottt e e 5-30
Deleting with Function Keysccoiiiiiiiiiiiiiiiiinnneenn. 5-30
Deleting with Subcommandsottt 5-30
Deleting Charactersuiiiiiiiiiieieenreaeeeennnnnnns 5-31
Deleting Linescoitiiiiiiiiii it i enieennn 5-32
Deleting Blocks of TexXtcviunrininiiiiiiiiiiiininiinnennn 5-34
Deleting Wordsttt it eenans 5-36
Deleting Empty Linesottt 5-36
Deleting Characters from the Beginning of Lines 5-37
Replacingt e 5-38
Replacing Linesoouuiiinii e i 5-38
Replacing Blocks of Textoiiiiiin i inannnn 5-40

1 1§ Y= 5-42
Marking with Function Keysccoiiiiiiiiiiiiiiiiiiiiiinnnnn 5-42
Marking Lines with Subcommands........................cooe.en. 5-43
Marking a Box with Subcommandst 5-43
Marking Characters with Subcommands, 5-44
Unmarking with Subcommands..........................coiia... 5-44
Saving Positions with Subcommands............................... 5-45
(070 ¢)72 o Y= S AU 5-46
Copying with Function Keys, 5-46
Copying Blocks of Text with Subcommands......................... 5-55
Copying Text Between Working Files and External Files 5-57

L 0 § s V= 5-61
Moving with Function Keys..............coiiiiiiiiiiiniaiiana.. 5-61
Moving with Subcommands..............c.iiiiin it 5-62
Undoing ..ottt e e e e 5-65
Undoing witha Function Key, 5-65
Undoing with Subcommandscciiiiiiiiiiann.. 5-65
Creating Multipartition Files........... ... ittt 5-67
Text Formattingooviiiiiim it eaanns 5-68
Text Formatting with Function Keysoi.. 5-68
Text Formatting with Subcommands 5-68
Breaking Textoviiiiuiiiiii it e 5-69
Joining Textooiiii it e e 5-70
Setting Paragraph Marginsc.uviiiiiiiiirinniiiininenenn 5-71
Formatting Paragraphs.......... i i 5-72

Centering Linesco.uuiiiii ittt eiiieiiereeeans 5-73

Common Editing Functions 5

Starting the Editor

To start the editor, use the EDIT_FILE command. The format of the
command is:

EDIT_FILE (EDIF)
FILE=file
INPUT=file
OUTPUT=file
PROLOG-=file
STATUS=status variable

The FILE (F) parameter specifies the name of the file you want to edit. If it
does not already exist in your working catalog, it is created. The file must be
a sequential file with a record type of CDC variable (V). Also, it can’t be an
object file. By default, files created by NOS/VE have these attributes. You
can determine a file’s record type by entering the DISPLAY _FILE _
ATTRIBUTE command with the DISPLAY _OPTION parameter equal to
RECORD_TYPE. If the file contains end-of-partition delimiters, the editor
changes the delimiters to WEOP directives. This allows you to manipulate
the end-of-partition delimiters during the editing session. Refer to Creating
Multipartition Files later in this chapter for more information. This
parameter is required.

The INPUT (I) parameter specifies the file used as input to the editor. This
file can be positioned. This file contains optional editor subcommands used
to manipulate the edit file. If INPUT is omitted, file SCOMMAND is
assumed. File SCOMMAND is usually connected to the terminal.

The OUTPUT (O) parameter specifies the file to which you want to write any
output that may result from your editing session. This file can be positioned.
If OUTPUT is omitted, $OUTPUT is assumed.

The PROLOG (P) parameter specifies the name of the file containing
subcommands you want executed each time you start the editor. Within this
file you can put editor subcommands that you want executed every time you
start the editor. For example, if you know you want to use screen mode on a
DEC VT100 terminal, add the appropriate subcommand and you will
automatically start the editor in screen mode. Chapter 10, Prologue and
Epilogue Files, describes the prologue file in more detail. If PROLOG is
omitted, $USER.SCU_EDITOR_PROLOG is assumed.

Revision C Common Editing Functions ~ 5-1

STARTING THE EDITOR

If you would like to specify a file containing FSE subcommands to be
executed each time you leave the editor (an epilogue file), use the SET _
EPILOG subcommand. Chapter 10, Prologue and Epilogue Files, describes
setting an epilogue file in more detail.

For example, to start the editor and edit file ZAP, enter:
/edit_file file=$user.ZAP

The following prompt appears:
ef/

To get into screen mode, enter the ACTIVATE _SCREEN subcommand
specifying the type of terminal you are using. Format of the subcommand is:

ACTIVATE_SCREEN (ACTS)
MODEL=name
STATUS=status variable

The MODEL (M) parameter specifies the type of terminal you are using.
Valid entries are:

Entry Terminal

CDC721 Control Data Viking 721
CDC722 Control Data 722

CDC 722_30 Control Data 722-30
VT100 DEC VT100

PC_CONNECT IBM PC (or equivalent)
719 Zenith Z19 or Heathkit H19
729 Zenith 729

If the MODEL parameter has not been specified on an earlier ACTIVATE _
SCREEN or SET_SCREEN_OPTIONS subcommand or on the
TERMINAL_MODEL parameter of the SET_TERMINAL_ATTRIBUTES
command, it is required. To automatically set the terminal model, include the
SET_TERMINAL_ATTRIBUTES command in your user prolog.

For example, to get into screen mode on a Viking 721 terminal, enter:

ef/activate_screen model=cdc721

5-2 Full Screen Editor Revision C

STARTING THE EDITOR

‘ The first screen of file ZAP then appears:

Once you are in screen mode, you can also enter the ACTIVATE _SCREEN
subcommand to repaint the screen.

If you know you will be using the editor in screen mode on a particular
terminal model, you can add the ACTIVATE _SCREEN subcommand to
what’s called a prologue file. This file contains subcommands or procedures
that are executed every time you start the editor. For example, if you know
you will be using the editor in screen mode on a DEC VT100, you would add
the following ACTIVATE _SCREEN subcommand to your prologue file.

activate_screen model=vt100

Each time you start the editor with the EDIT_FILE subcommand, you are
put in screen mode with the terminal set up as a VT100.

Revision C Common Editing Functions 5-3

CREATING A FILE

Creating a File ‘

You can create a file in either screen or line mode.
Screen Mode:

To create a file in screen mode, enter the EDIT_FILE command specifying a
file that does not exist. For example, file ERNIE does not exist on your
working catalog. To create it on a Viking 721 terminal, enter:

/edit_file file=ernie

The following prompt appears:
ef/

Activate screen mode by entering:

ef/activate_screen model=cdc721

The following screen appears, showing you that it is an empty file:

To enter text into the file, just type what you want to appear in the file. .

54 Full Screen Editor Revision B

CREATING A FILE

Line Mode:

To create a file in line mode, enter the same EDIT_FILE command and then
use the INSERT_LINES subcommand to enter the file text. For example, to
create file ERNIE, enter:

/edit_file file=ernie
You are prompted with:
ef/
To add text to file ERNIE, enter the INSERT _LINES subcommand:
ef/insert_Lines
You are then prompted with:
?
Enter your text:
? Text to go into ERNIE.

Press:

When you press (NEXT), the following appears:

?

You then enter text you intend to appear on line 2 and press (NEXT). If you
don’t enter any text and press , a blank line is inserted. Continue
until you have added all the text you want to add. To stop the insert, enter
what’s known as the UNTIL character (or characters). This character (or
characters) tells the editor to stop the insertion. The initial setting for the
UNTIL character is **. For example, you are inserting text as shown in our

previous example. To stop the insert, add ** to the end of the last line to be
inserted:

? That is all.**

Press:

The insert is ended and the line mode prompt appears:
ef/

Refer to the Inserting section for more information on inserting text.

Revision B Common Editing Functions 55

ENTERING SUBCOMMANDS

Entering Subcommands

You can enter subcommands in either screen or line mode.
Screen Mode:

To enter subcommands in screen mode, press:

This moves the cursor to the subcommand line (top line of the screen). With
the cursor on this line, you can enter any subcommand. Besides editor
subcommands, you can enter any SCL. command. You cannot, however,
continue a subcommand or command from the subcommand line to the next.
The entire entry must be made on the subcommand line. If you enter a
noneditor command that results in output written on your screen, the output
is written over the the existing screen. To restore the screen to its original
form, press:

@ EED + mE)

Another way to restore the screen to its original form is to use the
REFRESH_ROW subcommand. Format of the subcommand is:

REFRESH_ROW (REFR)
ROW=keyword value or list of range of integer

The ROW (ROWS or R) parameter specifies the row of the screen to rewrite
and is required. The range of rows can be 1 through the number of rows your
terminal is capable of displaying, or the keyword value ALL. If you specify
ALL, the entire screen is rewritten. If your terminal requires firmware to be
downline loaded, use the ACTIVATE _SCREEN subcommand again or
press:

(&) CtEAaR) + (NEXT)

56 Full Screen Editor Revision B

ENTERING SUBCOMMANDS

If there is an error in the syntax of the subcommand you enter or the
subcommand causes an error, an error message is displayed on the line
below which you entered the subcommand. The erroneous subcommand you
tried to enter remains on the subcommand line. You can then type the
correction over the subcommand and try again. If you want to abandon the
entire entry, press , and the error message and the entry are erased.

Line Mode:

To enter subcommands in line mode, enter the subcommand after the line

mode prompt and press(NEXT):

ef/insert_Lines
Press:
NEXT

In line mode, you can also enter any SCL command.

Revision B Common Editing Functions 57

GETTING HELP

Getting Help

Online help is available through the editor in the form of a HELP file. The
HELP file contains descriptions of all the editor subcommands and
parameters.

To access the HELP file, you can use either the key, (in screen mode
only) or the HELP subcommand. To use the key, just press it

whenever you want help. The screen is split with the HELP file displayed on
the bottom half of the screen and the text you are editing on the top half. If
you already have more than one file displayed on the screen (this feature is
described in chapter 7, Selecting Editor Options), the HELP file replaces the
file at the bottom of the screen. You can then page through the file or use
subcommands to find the text you want to read.

When you press , only the first 10 or 12 lines of the HELP file are
displayed. To find help quickly on a particular subcommand, use the HELP
subcommand.

The HELP subcommand enables you to position the cursor at the text you
want to read. The format of the subcommand is:

HELP (HEL)
TOPIC=keyword value
STATUS=status variable

The TOPIC (T) parameter specifies the editor subcommand on which you
want help. When you specify this parameter, the cursor is positioned at the
first line of text describing the specified subcommand. If TOPIC is omitted,
the cursor is positioned at the first line of the file.

5-8 Full Screen Editor Revision B

STOPPING

‘ Stopping

To stop the editor, you can use function keys (screen mode only) or
subcommands. With subcommands, you can specify whether or not you
want the changes you’ve made to be permanent and you can also close just
the current file.

If a file contains WEOP directives and has a record type of V (variable) then
whenever the editor makes changes to a file permanent it also changes the
WEOP directives to end-of-partition delimiters. Refer to Creating
Multipartition Files later in this chapter for more information.

Stopping with Function Keys

The following function keys enable you to stop the editor.

Key Function

Fé6 m Stops the editor. Changes you have made to any open files
are made permanent.

Deactivates screen mode. This key leaves you in the editor in
line mode.

Stopping with Subcommands

There are several subcommands you can use to close files.

To stop the editor and close all edited files, you can use the END or QUIT
subcommand. The subcommands do exactly the same thing and have the
same format. The format is:

END or QUIT (QUI)
WRITE _FILE=boolean
STATUS=status variable

The WRITE _FILE (WF, WRITE _DECK, or WD) parameter specifies if you
want changes to all open files made permanent. If WRITE _FILE is omitted,
TRUE is assumed and the changes are made permanent. If FALSE is
specified, no changes to open files are made permanent. For information on
closing decks refer to Closing a Deck in chapter 8.

Revision B Common Editing Functions 5-9

STOPPING

To close only the current file and continue editing other files, use the END _
FILE subcommand. This closes the current file, making it impossible to undo
any changes that have already been made, and frees the resources that were
committed to it. It is also useful if you want to stay in the editor issuing
commands that need to use the current file in its edited state. The format is:

END_FILE (ENDF)
WRITE _FILE=boolean
STATUS=status variable

The WRITE_FILE (WF, WRITE _DECK, or WD) parameter specifies if you
want changes to this file made permanent. If WRITE _FILE is omitted,
TRUE is assumed and all changes are made permanent in the current file. If
FALSE is specified, changes are not made permanent.

The END_FILE and END_DECK subcommands perform the same
function. Closing decks is described under Closing a Deck in chapter 8.

To stop screen mode without stopping the editor, use the DEACTIVATE _
SCREEN subcommand. The format is:

DEACTIVATE_SCREEN (DEAS)
STATUS=status variable

When you enter this subcommand, the screen is blanked and the line mode
prompt appears:

ef/

5-10 Full Screen Editor Revision C

MOVING THE CURSOR

. Moving the Cursor

Several keys and subcommands are available to move the cursor around the
file.
Moving the Cursor with Function Keys

The function keys available to move the cursor are:

Function

Moves the cursor up.

Moves the cursor down.

Moves the cursor right.

Moves the cursor left.

Moves the cursor forward to the next tab setting.

Moves the cursor backward to the previous tab
setting.

Moves the cursor to the subcommand line.

E ENRONORSESEA

‘) r Moves the cursor to the end of the current line.

Moving the Cursor with Subcommands

You can also move the cursor to a specific line or backward or forward from
the current position using subcommands. The general subcommand,
POSITION_CURSOR, does the same thing with parameters that the other
subcommands perform specifically. For example, you could use POSITION _
CURSOR LINE=24 to move the cursor to line 24 or you could use LIST _
LINE LINE=24. You have many more options using the additional
parameters of POSITION _CURSOR, but LIST_LINE is easier to remember.

Revision C Common Editing Functions 5-11

MOVING THE CURSOR

Moving the Cursor Using POSITION_CURSOR

Using this subcommand in screen mode, you can move the cursor to a
nontext line. The format of the subcommand is:

POSITION_CURSOR (POSC or P)
TEXT=range of string
NUMBER-=integer or keyword value
LINE-=range of integer or keyword value
COLUMN=range of integer or keyword value
BOUNDARY-=keyword value
DIRECTION=keyword value
UPPER_CASE=boolean
WORD=boolean
REPEAT_SEARCH=boolean
ROWs=integer
STATUS=status variable

The TEXT (T) parameter specifies a block of text at which to position the
cursor. If TEXT is omitted, the new cursor position is determined by the
LINE, COLUMNS, and BOUNDARY parameters.

The NUMBER (N) parameter specifies the number of times the search is to
be repeated. Values can be a number or the keyword ALL (A). If NUMBER is
omitted, ALL is assumed if you have specified a range for the LINE
parameter; otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter can specify one of two things. If a single
line number is specified (such as 100), the cursor is positioned at that line. If
a range of lines is specified, the editor searches for the text string specified
with the TEXT parameter within that range of lines. Values can be an
integer or any of the LINE keyword values described in the Common
Parameters section of chapter 4. If you specify a value of only one line, the
search is limited to that line. If LINE and DIRECTION are omitted,
CURRENT..LAST is assumed. If you omit LINE and specify BACKWARD
for the DIRECTION parameter, CURRENT..FIRST is assumed.

5-12 Full Screen Editor Revision C

MOVING THE CURSOR

. The COLUMN (COLUMNS or C) parameter specifies the range of columns
to be searched to locate the specified text or word. Values can be an integer
from 1 through 256, or any of the COLUMN keyword values described in the
Common Parameters section of chapter 4. If COLUMNS is omitted, the
editor does not supply a value. When you supply a value, the BOUNDARY
parameter assumes a value of STREAM.

The BOUNDARY (B) parameter specifies the type of boundary that will limit
the search. Values can be LINE or STREAM, as described in the Common
Parameters section of chapter 4. If BOUNDARY is omitted, LINE is
assumed. If a value for COLUMNS is specified and BOUNDARY is omitted,
STREAM is assumed.

The DIRECTION (D) parameter specifies whether to search forward or
backward from the current line. Values can be FORWARD (F) or
BACKWARD (B). If you do not specify a value, FORWARD is assumed.

The UPPER _CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

Revision C Common Editing Functions 5-12.1/5-12.2

MOVING THE CURSOR

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The beginning and end of each
line are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters #, $, @, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor to use the
values used for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them. In other words, if you
specify TRUE for REPEAT _SEARCH and specify values for TEXT,
UPPER_CASE, or WORD, the new values for TEXT, UPPER_CASE, and
WORD are used. FALSE instructs the editor to use the parameters entered
with the current POSITION _CURSOR subcommand. If REPEAT _
SEARCH is omitted, FALSE is assumed.

The ROW (ROWS or R) parameter enables you to move the cursor in relation
to the screen instead of in relation to the file text. When the value specified is
a nontext row (like the subcommand line), the current position in the file
remains the same. For terminals without a (HOME) key, using the ROW
parameter enables you to simulate the (HOME) key.

The following examples show how you might use the POSITION_ CURSOR
subcommand.

position_cursor Line=500

Positions the cursor at line 500 of the file.
position_cursor number=3 direction=b

Moves the current position backward three lines from the current line.
position_cursor Llines=current..last number=2 column=1

Moves the cursor to the first column of the next line.
position_cursor row=2

Moves the cursor to the second line of the current screen.
position_cursor Lline=first

Moves the cursor to the first line in the file.

Revision C Common Editing Functions 5-13

MOVING THE CURSOR

Moving the Cursor Backward

To position the cursor backward a specified number of lines, use the
POSITION _BACKWARD subcommand. The format is:

POSITION_BACKWARD (POSB or PB)
NUMBER=integer

The NUMBER (N) parameter specifies the number of lines to move
backward. If NUMBER is omitted, a value of 1 is assumed.

The following example shows how you might use the POSITION _
BACKWARD subcommand.

position_backward n=25

Moves the cursor backward 25 lines from the current line.

Moving the Cursor Forward

To position the cursor forward a specified number of lines, use the
POSITION _FORWARD subcommand. The format is:

POSITION_FORWARD (POSF or PF)
NUMBER=integer

The NUMBER (N) parameter specifies the number of lines to move forward.
If NUMBER is omitted, a value of 1 is assumed.

The following example shows how you might use the POSITION _
FORWARD subcommand.

position_forward n=63

Moves the cursor forward 63 lines from the current line.

® 5.14 Full Screen Editor Revision C

LISTING

‘ Listing
To list lines on the editor, there are three subcommands available. Lines

previous to the current cursor position, following the current position, or
selected by line number from anywhere in the file may be listed.

Listing Lines Previous to the Current Line

While in line mode, to display a range of lines ending with the current line,
use the LIST_BACKWARD subcommand. In effect, it enables you to view a
number of lines just before the current line and end up where you started.
The format is:

LIST_BACKWARD (LISB or LB)
NUMBER-=integer or keyword value

The NUMBER (N) parameters specifies the number of lines to list. Values
can be numbers or the keyword ALL. ALL lists all the lines from the
beginning of the file to the current position. If NUMBER is omitted, a value
of 1is assumed.

The following example shows how you might use the LIST_BACKWARD
subcommand.

‘ list_backward n=15

Lists 15 lines ending with the current line.

Revision C Common Editing Functions 5-14.1 e

LISTING

Listing Lines Following the Current Line .

While in line mode, to display a range of lines beginning with the current
line, use the LIST_FORWARD subcommand. The format is:

LIST_FORWARD (LISF or LF)
NUMBER=integer or keyword value

The NUMBER (N) parameter specifies the number of lines to list. Values can
be numbers or the keyword ALL. ALL lists all the lines from the current
position to the end of the file. If NUMBER is omitted, a value of 1 is
assumed.

The following example shows how you might use the LIST_FORWARD
subcommand.

list_forward n=15

Lists 15 lines beginning with the current line.

® 5.14.2 Full Screen Editor Revision C

LISTING

. Listing a Specific Line or Lines

To list a specified line or range of lines, in line mode, use the LIST_LINES
subcommand. In screen mode, use the LIST_LINES subcommand to
position the cursor at the specified line. The format is:

LIST_LINES (LISL or LL)
LINE=integer or keyword value

The LINE (LINES or L) parameter specifies the line or range of lines to list.
If a range of lines is specified while in screen mode, the cursor is positioned
at the last line in the range. If LINE is omitted, CURRENT is assumed.

The following example shows how you might use the LIST_LINES
subcommand.

list_Llines 1=25..40

Lists lines 25 through 40.

Revision C Common Editing Functions 5143 ®

PAGING

Paging ‘

Paging applies to screen mode only. Paging is moving through the file a
screen at a time. To view the next screen of text, press:

The bottom line of the current screen appears at the top of the next screen.

To view the previous screen of text, press:

The top line of the current screen appears at the bottom of the previous
screen.

Another way to move more than a few lines at a time is with the and
keys. When you press

the file is repositioned so that the line containing the cursor is at the top of
the screen.

When you press

the file is positioned so that the line containing the cursor is at the bottom of .
the screen.

Pressing either key repeatedly moves you through the file a half page at a
time.

The position of the cursor after pressing , , , or is
the middle of the screen (not the top or bottom of the screen).

I 514.4 Full Screen Editor Revision C

SEARCHING

Searching

There are several function keys and subcommands you can use to search for
text strings within a file.

Searching with Function Keys

The function keys used for searching are:

Key Function
F7 Prompts you for a string to find and then locates it.
@ F7 Searches for the next occurrence of a previously

specified string.

2] Locall Prompts you for a string to find, locates all lines
containing the string, and displays them in a
directory-type display. To locate all occurrences of
the last specified string, press when
prompted to enter a search string.

Searching with Subcommands

You can also locate text, empty lines, and wide lines using subcommands.
The general subcommand LOCATE _TEXT does the same thing using
parameters that the other subcommands perform specifically. For example,
you could use LOCATE_TEXT TEXT="start’ NUMBER=ALL to find all
occurrences of start, or you could use LOCATE _ ALL TEXT="start’.

There are specific subcommands to locate all occurrences of text, locate the
next occurrence of text, locate the next occurrence of a string, and limit the
columns in which you want the search to occur.

Revision C Common Editing Functions 5-15

SEARCHING

I Searching Using LOCATE_TEXT

To locate blocks of text, use the LOCATE_TEXT subcommand. The format
is:

LOCATE_TEXT (LOCT or L)
TEXT=range of string
NUMBER-=integer or keyword value
LINE=range of integer or keyword value

I COLUMN=range of integer or keyword value
BOUNDARY=keyword value
DIRECTION=keyword value
UPPER_CASE=boolean
WORD=boolean
REPEAT_SEARCH=boolean
VETO=boolean
STATUS=status variable

The TEXT (T) parameter specifies strings of text in the first and last lines of
a block of text to be located. If you enter only one string, the block of text to
be located will contain only one line. If you enter two strings, the search for
the second begins immediately after the first is found and the cursor is
positioned at the beginning of the first string. If TEXT is omitted, the lines to
be located will be determined by the NUMBER, LINE, and DIRECTION
parameters.

The NUMBER (N) parameter specifies the number of blocks of text to be
found. Values for this parameter can be a number or the keyword ALL (A). If
you specify a range of values for the LINE parameter, the NUMBER
parameter assumes a value of ALL; otherwise, a value of 1 is assumed. In
line mode, the NUMBER parameter is used to display a range of lines. Refer
to Printing Lines in Line Mode later in this chapter for more information.

The LINE (L) parameter specifies a range of lines to be searched. Values can
be an integer or any of the LINE keyword values described in the Common
Parameters section of chapter 4. If you specify a value of only one line, the
search is limited to that line. If LINE and DIRECTION are omitted,
CURRENT..LAST is assumed. If you omit LINE and specify BACKWARD
for the DIRECTION parameter, CURRENT..FIRST is assumed. In line
mode, the LINE parameter can specify the lines to print. Refer to Printing
Lines in Line Mode later in this chapter for more information.

The COLUMN (COLUMNS or C) parameter specifies the range of columns
to search. Values can be an integer from 1 through 256, or any of the
COLUMN keyword values described in the Common Parameters section of
chapter 4. If COLUMNS is omitted, CURRENT is assumed.

516 Full Screen Editor Revision C

SEARCHING

The BOUNDARY (B) parameter specifies the type of boundary that will

‘ limit the search. Values can be LINE or STREAM as described in the
Common Parameters section of chapter 4. If BOUNDARY and COLUMNS
are omitted, LINE is assumed. If a value for COLUMNS is specified and
BOUNDARY is omitted, STREAM is assumed.

The DIRECTION (D) parameter specifies whether to search forward or
backward from the current line. Values can be FORWARD (F) or
BACKWARD (B). If you do not specify a value, FORWARD is assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as
each word on this page is surrounded by blanks). The first and last columns
on the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as

‘ characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor to use the
values used for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT_SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current LOCATE TEXT subcommand. If
REPEAT_SEARCH is omitted, FALSE is assumed.

The VETO (V) parameter instructs the editor to turn on or off the VETO
parameter described in chapter 4. When you specify TRUE, the editor
displays a directory of located lines. If VETO is omitted, FALSE is assumed.

Revision B Common Editing Functions 5-17

SEARCHING

The following examples show how you might use the LOCATE _TEXT .
subcommand.

locate_text 'PROCEND'
Locates the next occurrence of PROCEND.
loct 'TITLE' direction=b
Locates the previous occurrence of TITLE.
loct line=250
Positions the cursor on line 250 of the current file or deck.
loct repeat_search=true

Locates the string you last specified as a value for the TEXT
parameter.

loct 'PARAMETER' number=all veto=true

Locates all occurrences of PARAMETER from the current position to
the end of the file and displays the lines in a directory-type display.

loct 'one'..'twenty'

Locates the next block of text beginning with one and ending with .
twenty.

L n=5

In line mode, prints the current line and four subsequent lines. In
screen mode, positions the cursor four lines forward.

5-18 Full Screen Editor Revision B

SEARCHING

Searching for All Occurrences of Text

To search the entire file to locate all occurrences of a specified string, use the
LOCATE_ALL subcommand. In screen mode, all occurrences are then
listed, enabling you to position the cursor at a specific line or enter the line
number desired. In line mode, all occurrences are listed and you are
positioned at the last occurrence of the string. The format is:

LOCATE_ALL (LOCA or LA)
TEXT=string

The TEXT (T) parameter specifies the text string you want to find. If TEXT
is omitted, the last text string specified, if any, is assumed.

The following example shows how you might use the LOCATE _ALL
subcommand.

locate_all text="'find this text'

Locates all occurrences of the string, find this text, in the file and lists
them.

Revision C Common Editing Functions 5-181 e

SEARCHING

Searching for the Next Occurrence of Text .

To locate the next occurrence of a previously specified string, use the
LOCATE _NEXT subcommand. The search begins one column after the
current column. The format is:

LOCATE_NEXT (LOCN or LN)

Searching for the Next Occurrence of a String

To search for the next line containing a specified string, beginning at the
current line and column, use the LOCATE _STRING subcommand. The
format is:

LOCATE_STRING (LOCS or LS)
TEXT=string

The TEXT (T) parameter specifies the text string to locate. If TEXT is
omitted, the last string parameter specified, if any, is used.

® 5.182 Full Screen Editor Revision C

SEARCHING

‘ Searching for Empty Lines

To find empty lines (lines with no characters), use the LOCATE _EMPTY _
LINES subcommand. The subcommand format is:

LOCATE_EMPTY _LINES (LOCEL)
NUMBER-=integer or keyword value
LINE-=range of integer or keyword value
DIRECTION=keyword value
VETO=boolean
STATUS-=status variable

The NUMBER (N) parameter specifies the number of empty lines to find.
Values for this parameter can be numbers or the keyword ALL. If you
specify a LINE parameter, this parameter assumes a value of ALL;
otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to search.
Values can be an integer or any of the LINE keyword values described in
the Common Parameters section of chapter 4. If you specify a value of only
one line, the search is limited to that line. If LINE and DIRECTION are
omitted, CURRENT..LAST is assumed. If you omit LINE and specify
BACKWARD for the DIRECTION parameter, CURRENT..FIRST is
assumed.

‘ The DIRECTION (D) parameter specifies whether to search forward or
backward from the current line. Values can be FORWARD (F) or
BACKWARD (B). If you do not specify a value for DIRECTION, FORWARD
is assumed.

The VETO (V) parameter instructs the editor to turn on or off the VETO
parameter described in chapter 4. Values can be TRUE or FALSE. When
you specify TRUE, the editor displays a directory of located lines. If VETO
is omitted, FALSE is assumed.

The following examples show how you might want to use the LOCATE _
EMPTY _LINES subcommand.

locate_empty_Lines number=5

Locates the next five empty lines.
locel Line=20..40

Locates all empty lines between lines 20 and 40.
locel number=10 line=mark

Locates the next 10 empty lines in the marked text.

Revision B Common Editing Functions 519

SEARCHING

Searching for Wide Lines

To locate lines that are wider than the margins specified by the
SET_LINE_WIDTH subcommand, use the LOCATE _WIDE_LINE
subcommand. Format of the subcommand is:

LOCATE_WIDE_LINE (LOCATE_WIDE_LINES or LOCWL)
NUMBER-=integer or keyword value
LINE=range of integer or keyword value
DIRECTION=keyword value
VETO=boolean
STATUS=status variable

The NUMBER (N) parameter specifies the number of wide lines to be found.
Values for this parameter can be numbers or the keyword ALL (A). If you
specify a LINES parameter, this parameter assumes a value of ALL;
otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be searched.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4. If you specify a value of only one
line, the search is limited to that line. If LINE and DIRECTION are omitted,
CURRENT..LAST is assumed. If you omit LINE and specify BACKWARD
for the DIRECTION parameter, CURRENT..FIRST is assumed.

The DIRECTION (D) parameter specifies whether to search forward or
backward from the current line. Values can be FORWARD (F) or
BACKWARD (B). If DIRECTION is omitted, FORWARD is assumed.

The VETO (V) parameter instructs the editor to turn on or off the VETO
parameter described in chapter 4. Values can be TRUE or FALSE. When you
specify TRUE, the editor displays a directory of located lines. If VETO is
omitted, FALSE is assumed.

The following examples show how you might use the LOCATE_WIDE _
LINES subcommand.

Llocate_wide_lines number=10 veto=true
Locates and displays a directory of the next 10 wide lines.
locwl Line=first_screen..last veto=true

Locates and displays a directory of all wide lines between the top line
of the current screen and the last line of the file.

Llocwl number=10 line=mark veto=true

Locates and displays a directory of the next 10 wide lines in the
marked text.

520 Full Screen Editor Revision C

SEARCHING

Setting Search Margins

If you need to limit the number of columns to be searched in subsequent
subcommands that use string searches, use the SET_SEARCH_MARGINS
subcommand. Format is:

SET_SEARCH_MARGINS (SETSM)
MARGIN_COLUMN-=range of integer or keyword value
STATUS=status variable

The MARGIN _COLUMN (MARGIN _COLUMNS or MC) parameter
specifies the columns in which to perform the search. Values can be any
number or any keyword from the list of values for the COLUMN parameter
in the Common Parameters section of chapter 4. If you specify two values,
the search is done from the first column through the last column specified. If
you specify a single integer, only that column is searched. If MARGIN _
COLUMN is omitted, columns 1 through 256 are assumed.

For example, to set the search margins to columns 1 and 7, enter:
set_search_margin margin_column=1..7
The same subcommand could be entered as:

setsm mc=1..7

Revision B Common Editing Functions 5-21

INSERTING

Inserting

There are several function keys and subcommands which allow you to insert
text into your file. Described in this section are the function keys and
subcommands that perform insert functions. Functions include inserting
lines, characters, words, and blocks of blank lines.

Inserting with Function Keys

The following keys perform the described insert functions.

Key

Function

() (vskT)

Al inse

F10

AR INDENT

Inserts a blank character over which you can type
the character to be inserted.

Inserts a blank line over which you can type the new
text.

Inserts blank lines over which you can type new
text. The number of blank lines inserted depends on
the terminal and the current number of files
displayed on the screen. Two lines of text are left at
the top and bottom of the screen with the inserted
empty lines in between.

Inserts 32 blank characters over which you can type
a new word or phrase. If you don’t need this many
blank characters, use the (&) F10 keys to
delete any extra blanks.

Inserts two blank characters in front of any marked
text. If no text is marked, two blank characters are
inserted before the current line.

Inserting with Subcommands

There are several subcommands that enable you to insert characters, lines,
words, text, and text from other files.

522 Full Screen Editor

Revision B

INSERTING

‘ Inserting Characters

To insert characters, use the INSERT_CHARACTERS subcommand. This
subcommand inserts a string of characters before a specified location in the
file. Format of the subcommand is:

INSERT_CHARACTER (INSERT_CHARACTERS, INSC, or IC)
NEW_TEXT=string
INSERTION_LOCATION-=integer or keyword value
INSERTION_COLUMN-=integer or keyword value
STATUS=status variable

The NEW_TEXT (NT) parameter specifies the text to be inserted. If NEW _
TEXT is omitted, one space character is assumed.

The INSERTION _LOCATION (IL) parameter specifies the line in which the
text is to be inserted. Values can be an integer or any of the LINE keyword
values described in the Common Parameters section of chapter 4 with the
exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION _LOCATION is omitted, CURRENT is assumed.

The INSERTION _COLUMN (INSERTION_COLUMNS or IC) parameter
specifies the column before which you want the insertion to begin. Values
can be an integer from 1 through 256, or any of the COLUMN keyword
values described in the Common Parameters section of chapter 4 with the

‘ exception of MARK. Ranges are not allowed. If INSERTION _COLUMN is
omitted, CURRENT is assumed.

The following are examples of how you might use the INSERT _
CHARACTERS subcommand.

insert_characters 'Short comment'

Inserts the text (Short comment) in front of the current column on the
current line.

insc new_text='Last line' insertion_location=last column=7

Inserts the text (Last line) before column 7 on the last line of the file.

Revision C Common Editing Functions 523

INSERTING

Inserting Lines

To insert lines, use the INSERT _LINES subcommand. The format of this
subcommand is:

INSERT_LINES (INSL or I)
NEW_TEXT=string
PLACEMENT=keyword value
INSERTION_LOCATION-=integer or keyword value
UNTIL=string
STATUS=status variable

The NEW_TEXT (NT) parameter specifies the new line of text to be inserted.
If NEW_TEXT is omitted, the text to be inserted is taken from the command
input file.

The PLACEMENT (P) parameter indicates if you want the insertion to occur
before or after the location specified by the LOCATION parameter. Values
can be BEFORE (B) or AFTER (A). If PLACEMENT is omitted, AFTER is
assumed. The function key inserts BEFORE.

The INSERTION _LOCATION (IL) parameter specifies the line after which
or before which the insertion is to occur. Values can be an integer or any of
the LINE keyword values described in the Common Parameters section of
chapter 4 with the exception of ALL, MARK, and SCREEN. Ranges are not
allowed. If INSERTION _LOCATION is omitted, CURRENT is assumed.

The UNTIL (U) parameter specifies a character that stops the insert. If the
NEW_TEXT parameter is omitted, you are prompted to enter input until the
editor encounters the character(s) you specify with this parameter as the last
character(s) in a line. If UNTIL is omitted, ** is assumed.

The following are examples of how you might use the INSERT _LINES
subcommand.

insert_Lines 'NEW LINE'
Inserts the text NEW LINE) after the current line.
i new_text='Insert' position=before
Inserts the text (Insert) before the current line.
insl nt='First line' insertion_location=first position=before
Inserts the text (First line) before the first line of the file.
insert_Lines insertion_location=45 position=before until="#"

Inserts lines from the command input file before line 45 until a #
character is encountered as the last character in a line.

524 Full Screen Editor Revision B

INSERTING

Inserting Empty Lines

To insert empty lines, use the INSERT_EMPTY _LINES subcommand. The
format of the subcommand is:

INSERT_EMPTY _LINES (INSEL)
NUMBER=integer
INSERTION_LOCATION-=integer or keyword value
PLACEMENT=keyword value
STATUS-=status variable

The NUMBER (N) parameter specifies the number of empty lines to insert.
Values can be any integer from 1 through 262,143. If NUMBER is omitted, a
value of 1 is assumed.

The INSERTION _LOCATION (IL) parameter specifies the line at which

the insertion is to occur. Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4
with the exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION_LOCATION is omitted, CURRENT is assumed.

The PLACEMENT (P) parameter specifies whether the insertion is to occur
after or before the specified line or lines. Values can be BEFORE (B) or
AFTER (A). If PLACEMENT is omitted, AFTER is assumed.

The following examples show how you might use the INSERT_EMPTY _
LINES subcommand:

insel number=20 insertion_location=30 placement=before
Inserts 20 empty lines before line 30.
insel number=2 insertion_Location=50

Inserts two empty lines after line 50.

Revision B Common Editing Functions 5-25

INSERTING

Inserting Words

To insert words, use the INSERT_WORD subcommand. This subcommand
inserts a string or 32 blank characters before a specified column in a line.
Format of the subcommand is:

INSERT_WORD (INSW)
NEW_TEXT=string
INSERTION_LOCATION-=integer or keyword value
INSERTION_COLUMN-=integer or keyword value
STATUS=status variable

The NEW_TEXT (NT) parameter specifies the string to be inserted. If
NEW _TEXT is omitted, 32 space characters are assumed.

The INSERTION _LOCATION (IL) parameter specifies the line in which the
word is to be inserted. Values can be an integer or any of the LINE keyword
values described in the Common Parameters section of chapter 4 with the
exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION_LOCATION is omitted, CURRENT is assumed.

The INSERTION _COLUMN (INSERTION _COLUMNS or IC) parameter
specifies the column before which the insertion is to occur. Values can be an
integer from 1 through 256, or any of the COLUMN keyword values
described in the Common Parameters section of chapter 4 with the exception
of MARK. Ranges are not allowed. If INSERTION _COLUMN is omitted,
CURRENT is assumed.

The following examples show how you might use the INSERT_WORD
subcommand:

insert_word
Inserts 32 spaces in front of the current column of the current line.
insw new_text='LINE' insertion_location=10 insertion_column=1

Inserts the word LINE in front of line 10.

5-26 Full Screen Editor Revision C

INSERTING

Indenting Text

There is also a subcommand designed specifically to insert blank characters
in front of lines of text; the INDENT _TEXT subcommand. Format of the
subcommand is:

INDENT_TEXT (INDT)
OFFSET<=integer
NUMBER=integer or keyword value
LINE-=range of integer or keyword value
STATUS=status variable

The OFFSET (O) parameter specifies the number of columns to indent the
specified block of text. If you specify a negative value, that number of
characters will be deleted from the beginning of the lines in the block of text.
If OFFSET is omitted, a value of 1 is assumed.

The NUMBER (N) parameter specifies the number of lines to be indented.
Values may be an integer or any of the LINE keyword values specified in
the Common Parameters section of chapter 4. If you specify a range for the
LINE parameter, the NUMBER parameter assumes a value of ALL.
Otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be indented.
Values can be an integer or any of the LINE keyword values described in
the Common Parameters section of chapter 4. If a single line is specified,
only that line is indented. If LINE is omitted, CURRENT..LAST is assumed.

The following examples show how you might use the INDENT_TEXT
subcommand.

indent_text offset=5 line=a

Indents all lines five spaces.
indent_text Lline=mark

Indents all marked lines one space.
indt

Indents the current line one space.
indent_text offset=-7 line=25..L

Deletes the first 7 characters from lines 25 through the last line.

Revision B Common Editing Functions 5-27

INSERTING

Inserting Files

To insert the text of another file into the current file, use the READ _FILE
command. Format of the subcommand is:

READ_FILE (REAF)
FILE=file
INSERTION _LOCATION=integer or keyword value
PLACEMENT=keyword value
MULTI_PARTITION=boolean
STATUS=status variable

The FILE (F) parameter specifies the name of the file from which the text is
to be inserted. The entire file will be inserted. This parameter is required.

The INSERTION _LOCATION (IL) parameter specifies the line at which the
insertion is to occur. Values can be an integer or any of the LINE keyword
values described in the Common Parameters section of chapter 4 with the
exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION_LOCATION is omitted, CURRENT is assumed.

The PLACEMENT (P) parameter specifies if you want the insertion to occur
before or after the line specified by the INSERTION _LOCATION
parameter. Values may be AFTER (A) or BEFORE (B). If PLACEMENT is
omitted, AFTER is assumed.

The MULTI_PARTITION (MP) parameter specifies whether the editor is to
change the end-of-partition delimiters in the file to WEOP directives. When
the value is TRUE, the editor changes the delimiters to WEOP directives.
When the value is FALSE, the editor stops reading the file at the first end-of-
partition boundry it encounters. If MULTI_PARTITION is omitted, FALSE
is assumed. Refer to Creating Multipartition Files later in this chapter for
more information.

528 Full Screen Editor Revision C

INSERTING

The following examples show how you might use the READ _FILE
command.

read_file file=ernie insertion_lLocation=320

Inserts the contents of file ERNIE into the current file immediately
after line 320.

reaf file=bert insertion_location=Llast_mark position=before

Inserts the contents of file BERT into the current file immediately
before the last marked line.

NOTE

The READ_FILE subcommand reads the external copy of the specified file.
If you have been editing a file within the editor and have not made the
changes permanent and then specify that file on a READ_FILE
subcommand, an external copy is inserted, not the changed working copy.

For more information on copying and moving parts of files, refer to the
sections on Copying and Moving later in this chapter.

Revision B Common Editing Functions 5-29

DELETING

Deleting

There are several function keys and subcommands which enable you to
delete such things as characters, lines, and blank lines from your file. The
function keys and subcommands are described in this section.

Deleting with Function Keys

The following function keys delete text:

Key(s) Function
Deletes the current character.
@ Deletes the current line.

@ o Em
@ 10 EIE

@ Fis

Deletes all empty lines, starting with the current
line, until a nonempty line is encountered.

Deletes the current word. If the cursor is on an
alphanumeric character or a #, $, @, or _ that
character and any surrounding characters are
deleted until a nonalphanumeric character (or blank
character) is encountered. If the cursor is on a blank
character, all blanks are deleted until a nonblank
character is encountered.

Deletes the first two characters in each line of all
marked text.

Deleting with Subcommands

There are several subcommands that delete characters, lines, words, and

text.

530 Full Screen Editor

Revision B

DELETING

Deleting Characters

To delete characters, use the DELETE_CHARACTERS subcommand.
Format of the subcommand is:

DELETE_CHARACTERS (DELC or DC)
NUMBER-=integer or keyword value
LINE=integer or keyword value
COLUMNE=integer or keyword value
STATUS=status variable

The NUMBER (N) parameter specifies the number of characters to be
deleted. Values may be an integer or the keyword ALL. If you omit the
NUMBER parameter and specify a range for either the LINE or COLUMN
parameters, ALL is assumed. Otherwise, if NUMBER is omitted, a value of 1
is assumed.

The LINE (LINES or L) parameter specifies a line in which characters will
be deleted. Values can be an integer or any of the LINE keyword values
described in the Common Parameters section of chapter 4 with the exception
of ALL, MARK, and SCREEN. Ranges are not allowed. If LINE is omitted,
CURRENT is assumed.

The COLUMN (COLUMNS or C) parameter specifies the columns of the
specified line(s) to be deleted. Values can be an integer from 1 through 256, or
any of the COLUMN keyword values described in the Common Parameters
section of chapter 4 with the exception of MARK. Ranges are not allowed. If
COLUMN is omitted, CURRENT is assumed.

Revision B Common Editing Functions 5-31

DELETING

Deleting Lines

To delete lines, use the DELETE_LINES subcommand. This subcommand
enables you to delete single lines or a range of lines. Format of the
subcommand is:

DELETE_LINES (DELL)
TEXT-=range of string
NUMBER=integer or keyword value
LINE=range of integer or keyword value
UPPER_CASE=boolean
WORD=boolean
REPEAT _SEARCH=boolean
STATUS-=status variable

The TEXT (T) parameter specifies a block of text to be deleted, beginning
with the line containing the first string to the the line containing the second
string. If TEXT is omitted, a value is not supplied by the editor and the lines
to be deleted are determined by the NUMBER and LINE parameters.

The NUMBER (N) parameter specifies the number of lines to be deleted from
the current line forward. Values may be numbers or the keyword ALL. If you
omit the NUMBER parameter and specify a range of lines for the LINE
parameter, this parameter assumes a value of ALL. Otherwise, a value of 1 is
assumed. If you specify a range for the TEXT parameter, the NUMBER
parameter specifies the number of text blocks to delete.

The LINE (LINES or L) parameter specifies a range of lines to be deleted.
Values may be an integer or any of the LINE keyword values described in
the Common Parameters section of chapter 4. If you specify a single integer
or keyword value, only that line is deleted. If you specify LINE=MARK,
marked lines are deleted in their entirety, even if the boundary implied by the
mark is STREAM. If LINE is omitted, ALL is assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

532 Full Screen Editor Revision B

DELETING

The WORD (W) parameter specifies whether to search for the specified text

‘ string as a word. When the value is TRUE, it instructs the editor to search
for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The first and last columns on
the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor to use the
values used for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT_SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current DELETE _LINES subcommand. If
REPEAT_SEARCH is omitted, FALSE is assumed.

Revision B Common Editing Functions 533

DELETING

Deleting Blocks of Text

To delete blocks of text, use the DELETE _TEXT subcommand. Format of
the subcommand is:

DELETE_TEXT (DELT or D)
TEXT-range of string
NUMBER=integer or keyword value
LINE=range of integer or keyword value
COLUMN-=range of integer or keyword value
BOUNDAR Y=keyword value
UPPER_CASE=boolean
WORD-=boolean
REPEAT_SEARCH=boolean
STATUS=status variable

The TEXT (T) parameter specifies the text strings which form the boundaries
of the block of text to be deleted. If a single text string is specified, the block
to be deleted will contain one line. If two text strings are specified, the search
for the second string begins after the first string is found. When the second
string is found, the text between the two strings (including the strings) is
deleted. When you specify TEXT, the BOUNDARY parameter is LINE. If
TEXT is omitted, the LINE and NUMBER parameters determine the lines to
be deleted.

The NUMBER (N) parameter specifies the number of blocks to be deleted.
Values may be an integer or the keyword ALL (A). If NUMBER is omitted,
and a range of values is specified for the LINE parameter, ALL is assumed.
Otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be deleted.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4. If a single integer is specified, only
that line is deleted. If LINE is omitted, CURRENT..LAST is assumed.

The COLUMN (COLUMNS or C) parameter specifies the columns to be
deleted in the specified lines. Values can be numbers from 1 through 256 or
any of the COLUMN keyword values described in the Common Parameters
section of chapter 4. If COLUMN is omitted, the DELETE _TEXT
subcommand deletes complete lines.

The BOUNDARY (B) parameter specifies the type of boundary that will limit
the search. Values can be LINE or STREAM as described in the Common
Parameters section of chapter 4. If BOUNDARY is omitted, LINE is
assumed. If a value for COLUMN is specified, STREAM is assumed.

5-34 Full Screen Editor Revision B

DELETING

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter specifies whether to search for the specified text
as a word. When the value is TRUE, it instructs the editor to search for the
specified string as a word. That is, the text you want to find is surrounded by
nonalphanumeric characters. The most common use of the WORD parameter
is to search for a string surrounded by blanks (just as each word on this page
is surrounded by blanks). The first and last columns on the screen are also
considered to be nonalphanumeric characters and are interpreted as
boundaries. The characters @, #, $, and _ are allowed as characters in words.
When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor to use the
values used for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT_SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current DELETE _TEXT subcommand. If
REPEAT_SEARCH is omitted, FALSE is assumed.

The following are examples of how you might use the DELETE _TEXT
subcommand.

d
Deletes the current line.
d text="'first'..'last’'

Deletes all lines from the line containing first to the line containing
last.

Revision B Common Editing Functions 5-35

DELETING

Deleting Words

To delete words, use the DELETE _ WORDS subcommand. What is deleted
depends on where the cursor is positioned. If positioned on an alphanumeric
character, the current word is deleted. If positioned on any other character,
that single character is deleted. If the cursor is positioned on a blank
character, the current character and any following blanks are deleted.
Subcommand format is:

DELETE_WORD (DELW or DW)
LINE=integer or keyword value
COLUMN-=integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter specifies a line in which the deletion is to
occur. Values can be an integer or any of the LINE keyword values described
in the Common Parameters section of chapter 4 with the exception of ALL,
MARK, and SCREEN. Ranges are not allowed. If LINE is omitted,
CURRENT is assumed.

The COLUMN (COLUMNS or C) parameter specifies the column to begin
the deletion. Values can be an integer or any of the COLUMN keyword
values described in the Common Parameters section of chapter 4 with the
exception of MARK. Ranges are not allowed. If COLUMN is omitted,
CURRENT is assumed.

The following are examples showing how you might use the DELETE _
WORD subcommand.

delete_word Line=50
Deletes the first word in line 50 (assuming the current column is 1).
delete_word Line=200 column=7

Deletes the word that has a character in column 7 of line 200.

Deleting Empty Lines

To delete a block of blank lines, use the DELETE_EMPTY _LINES
subcommand. This deletes lines until a nonblank line is encountered. Format
is:

DELETE_EMPTY_LINES (DELEL)
LINE-=range of integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter specifies the line at which the deletion of
blank lines is to begin and end. Values may be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4. If
LINE is omitted, CURRENT is assumed. If the line you specify is not a
blank line, nothing happens.

536 Full Screen Editor Revision B

DELETING

Deleting Characters from the Beginning of Lines

You can use the INDENT_TEXT subcommand to delete characters from the
beginning of lines. Format of the subcommand is:

INDENT_TEXT (INDT)
OFFSET<=integer
NUMBER-=integer or keyword value
LINE-=range of integer or keyword value
STATUS=status variable

The OFFSET (O) parameter specifies the number of columns to indent the
block of text. Values can be an integer. If you specify a negative value, that
number of characters will be deleted from the beginning of the lines in the
block of text. If OFFSET is omitted, a value of 1 is assurned.

The NUMBER (N) parameter specifies the number of lines to be indented.
Values may be a line number or any of the NUMBER keywords specified in
the Common Parameters section of chapter 4. If you specify a range for the
LINE parameter, this parameter assumes a value of ALL. Otherwise, a value
of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be indented.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4. If a single line is specified, only
that line is indented. If LINE is omitted, CURRENT..LAST is assumed.

The following examples show how you might use the INDENT_TEXT
subcommand.

indent_text offset=-5 Line=all

Deletes the first 5 characters from all lines ranging from the first line
to the last line.

indt offset=-10
Deletes the first 10 characters from the current line.
indt offset=-7 line=25..L
Deletes the first 7 characters from lines 25 through the last line.

Revision B Common Editing Functions 5-37

REPLACING

Replacing

There are two ways to replace old text with new text. For screen mode, the
easiest way is to just type the new text over the old. For line mode and screen
mode you can also use subcommands.

Replacing Lines

To replace lines of text, use the REPLACE _LINES subcommand. This
deletes the old lines and replaces them with the lines you specify. Format of
the subcommand is:

REPLACE_LINES (REPL)
TEXT=range of string
NEW_TEXT-=string
NUMBER=integer or keyword value
LINE-=range of integer or keyword value
UNTIL-=string
UPPER_CASE=boolean
WORD-=boolean
REPEAT_SEARCH=boolean
STATUS=status variable

The TEXT (T) parameter specifies the text you want to replace. If a range of
text is specified, the lines containing the entire range is replaced with the
string supplied in the NEW_TEXT parameter. If TEXT is omitted, the LINE
and NUMBER parameters determine the lines to be replaced.

The NEW_TEXT (NT) parameter specifies the new line of text that is to
replace the specified line(s). If you omit this parameter, you are prompted to
enter text line by line until the editor encounters the character(s) specified by
the UNTIL parameter.

The NUMBER (N) parameter specifies the number of lines to replace. Values
can be an integer or the keyword ALL. If you omit this parameter and
specify a range for the LINE parameter, the assumed value is ALL. If a
range of text is specified, the NUMBER parameter indicates the number of
blocks of text to replace. Otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines in which the
replacement is to occur. Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4. If
a single value is specified, only that line is replaced. If LINE is omitted,
CURRENT..LAST is assumed.

5-38 Full Screen Editor Revision B

REPLACING

The UNTIL (U) parameter specifies a character that stops input of

. replacement text. If the NEW_TEXT parameter is omitted, you are prompted
to enter input until the editor encounters the character(s) you specify with
this parameter as the last character(s) of a string. If UNTIL is omitted, ** is
assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter specifies whether to search for the specified text
string as a word. When the value is TRUE, it instructs the editor to search
for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The first and last columns on
the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor on how to use
the values for the last TEXT, NEW_TEXT, UPPER_CASE, and WORD

. parameters. TRUE instructs the editor to use the same TEXT, NEW_TEXT,
UPPER_CASE, and WORD parameters as the last time you entered them on
any subcommand, unless you have specified values for them on this
subcommand. In other words, if you specify TRUE for REPEAT_SEARCH
and specify values for TEXT, NEW_TEXT, UPPER_CASE, or WORD, the
new values for TEXT, NEW_TEXT, UPPER_CASE, and WORD are used.
FALSE instructs the editor to use the parameters entered with the current
REPLACE _LINES subcommand. If REPEAT_SEARCH is omitted, FALSE
is assumed.

The following are examples of how you might use the REPLACE_LINE
subcommand:

replace_Line new_text='text' Line=30..l
Replaces lines 30 to the end of the file with a line that says: text.
repl

Replaces the current line with text you are prompted to enter until the
editor encounters ** at the end of one of the replacement lines.

Revision B Common Editing Functions 5-39

REPLACING

Replacing Blocks of Text .

To replace blocks of text, use the REPLACE_TEXT subcommand. The
format of the subcommand is:

REPLACE_TEXT (REPT or R)
TEXT=string
NEW_TEXT-=string
NUMBER-=integer or keyword value
LINE=range of integer or keyword value
UPPER_CASE=boolean
WORD=boolean
REPEAT _SEARCH=boolean
VETO=boolean
STATUS=status variable

The TEXT (T) parameter specifies the text string to replace in the specified
block of text. If TEXT is omitted, REPEAT _SEARCH is required.

The NEW_TEXT (NT) parameter specifies the replacement text for the
string specified in the TEXT parameter. If NEW_TEXT is omitted, the string
specified in the TEXT parameter is deleted.

The NUMBER (N) parameter specifies the number of times the original text

is to be replaced within the block of text. Values may be an integer or the

keyword ALL (A). If you omit this parameter and specify a range of values ’
for the LINE parameter, ALL is assumed. Otherwise, a value of 1 is

assumed.

The LINE (LINES or L) parameter specifies the range of lines affected by the
replacement. Values can be an integer or any of the LINE keyword values
described in the Common Parameters section of chapter 4. If a single line is
specified, only that line is replaced. If LINE is omitted, CURRENT..LAST is
assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

540 Full Screen Editor Revision B

REPLACING

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The first and last columns on
the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor on how to use
the values for the last TEXT, NEW_TEXT, UPPER_CASE, and WORD
parameters. TRUE instructs the editor to use the same TEXT, NEW_TEXT,
UPPER_CASE, and WORD parameters as the last time you entered them on
any subcommand, unless you have specified values for them on this
subcommand. In other words, if you specify TRUE for REPEAT_SEARCH
and specify values for TEXT, NEW_TEXT, UPPER_CASE, or WORD, the
new values for TEXT, NEW_TEXT, UPPER_CASE, and WORD are used.
FALSE instructs the editor to use the parameters entered with the current
REPLACE_TEXT subcommand. If you omit this parameter, TEXT is
required. Also, if REPEAT _SEARCH is omitted, FALSE is assumed.

The VETO (V) parameter enables you to display a directory of replaced lines,
allowing you to veto any of the displayed lines affected by the subcommand
and also to choose a line at which you want the cursor to be positioned, as
described in the VETO Parameters section of chapter 4. If VETO is omitted,
FALSE is assumed.

The following are examples of how you might use the REPLACE_TEXT
subcommand.

replace_text text='water' new_text='wine'

Changes the first occurrence of water to wine from the current line to
the last.

replace_text repeat_search=true

Uses the same values for TEXT, NEW_TEXT, UPPER_CASE, and
WORD parameters specified on a previous subcommand.

rept text='$' new_text='#"'

Replaces the first occurrence of $ with # from the current line to the
last.

r text="Jill' new_text="Betty' Line=50..last

Replaces all occurrences of Jill with Betty from line 50 to the end of the
file.

Revision C Common Editing Functions 541

MARKING

Marking

Marking text enables you to specify a group of text to be processed later by
another subcommand. When marked text is referenced by another
subcommand, the editor remembers the lines, columns, and file containing
the marked text. When the marked text is contained in a file other than the
current file, the file containing the marked text is made current. Text
remains marked until you do one of the following:

e Mark a new region of text.

¢ Unmark the text with the UNMARK subcommand.

e Delete or move all of the marked text.

® C(lose the file containing the marked text.

e Undo.

There are several function keys and subcommands which enable you to mark
and unmark text bounded by lines or characters.

Marking with Function Keys

Use the function keys provided to mark text in screen mode. These keys are:

Key

Function

NI MARK

@ + I
8 Chrmk]

5-42

Full Screen Editor

Marks a line of text to be processed later. The marked
text is highlighted on terminals with that capability.
To mark a range of lines, position the cursor on the
first line of the range and press F1 [IX4, move the
cursor to the last line, and press F1 again. All
lines in the range are then highlighted.

Unmarks any marked text.

Marks a character in the text to be processed later.
The marked text is highlighted on terminals with
that capability. To mark a range of characters,
position the cursor on the first character of the range
and press|F2 [IJEIY, move the cursor to the last
character of the range, and press F2 again.
The text, from the first character through the last, is
then highlighted.

Revision B

MARKING

Marking Lines with Subcommands

Use the MARK _ LINES subcommand to mark a line to be processed later.
The format of the subcommand is:

MARK_LINES (MARL or ML)
LINE=range of integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter specifies a line or range of lines to be
marked. Values can be an integer or any of the LINE keyword values
described in the Common Parameters section of chapter 4. If a line is
specified, only that line is marked. If a single line is specified and another
single line is already marked, the lines between the two will become marked.
If a range is specified, the entire range is marked and any other marks are
unmarked. Marked text can be processed by subcommands that insert,
delete, move, copy, and replace text. If LINE is omitted, the current line is
assumed.

Marking a Box with Subcommands

Use the MARK _BOX subcommand to mark a rectangular area of text. The
format of the subcommand is:

MARK_BOX (MARB or MB)
LINE-=range of integer or keyword value
COLUMN:-=integer or keyword value
STATUS-=status variable

The LINE (LINES or L) parameter specifies the lines in which the corners of
the box reside. Values can be a line number or any of the LINE keyword
parameters described in the Common Parameters section of chapter 4. If
LINE is omitted, CURRENT is assumed.

The COLUMN (COLUMNS or C) parameter specifies the column in which a
corner of the box resides. Values can be any number from 1 to 256, or any of
the COLUMN keyword parameters described in the Common Parameters
section of chapter 4. If COLUMN is omitted, CURRENT is assumed.

For example, to mark a box with dimensions: 5 lines by 1 column, enter:
mark_box Llines=4..8 columns=12

The marked area covers lines 4, 5, 6, 7, and 8 at column 12.

NOTE

At this time, the only operations supported for box marks are the $SMARK _
FIRST_COLUMN, $MARK_FIRST_LINE, $SMARK_LAST_COLUMN,
$MARK_LAST_LINE, and $MARK _TYPE functions. These allow users to
implement their own SCL procedures to operate on the rectangular area of
text. None of the CDC-supplied editor subcommands support box marks.

Revision C Common Editing Functions 543 ®

MARKING

Marking Characters with Subcommands .

Use the MARK _CHARACTER subcommand to mark specific characters.
This subcommand specifies column boundaries for text to be processed later
by another subcommand. Format of the subcommand is:

MARK_CHARACTER (MARC or MC)
LINE=range of integer or keyword value
COLUMN=range of integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter specifies the lines in which the marked
characters reside. Values can be an integer or any of the LINE keyword
values described in the Common Parameters section of chapter 4. If LINE is
omitted, CURRENT is assumed.

The COLUMN (COLUMNS or C) parameter specifies the columns to be
marked within the specified line(s). Values can be any number from 1 to 256,
or any of the COLUMN keyword values described in the Common
Parameters section of chapter 4. You may not specify a range. If COLUMN
is omitted, CURRENT is assumed.

The following subcommands show how you might use the MARK _
CHARACTERS subcommand.

mark_character '
Marks the current character in the current line.

mark_character Line=40..50 column=30
Marks column 30 of line 40 through line 50.

mark_character column=7

Marks column 7 of the current line.

Unmarking with Subcommands

To explicitly unmark lines or characters you have previously marked, use the
UNMARK subcommand. This subcommand cancels the marks on the file.
The format of the subcommand is:

UNMARK (UNM)
STATUS=status variable

You can implicitly unmark text, mark a new region of text, or delete the
marked text when you enter UNDO. Also when you enter the END_FILE
subcommand, you can close a file containing marked text.

5-44 Full Screen Editor Revision C

MARKING

. Saving Positions with Subcommands

The following subcommands enable you to save the current column, line, and
file name and to return to that file position later.

To save a position in a file, move the cursor to the position you want to save,
press(HOME), and enter the SAVE_POSITION. It saves the current column,
line, and file name for reference later by the RESTORE _POSITION
subcommand. Format of the subcommand is:

SAVE_POSITION (SAVP)
STATUS=status variable

The SAVE _POSITION can save only one position. A position is saved until
you either enter another SAVE_POSITION subcommand or enter an
EXCHANGE _POSITION subcommand, or you close the file.

Pressing the key is the equivalent to entering the SAVE _POSITION
subcommand.

To return to this position later, use the RESTORE _POSITION subcommand.
Format of the subcommand is:

RESTORE_POSITION (RESP)
STATUS=status variable

. To save the current position in the file you are editing while you return to a
previously saved position, use the EXCHANGE _POSITION subcommand.
The format of the subcommand is:

EXCHANGE _POSITION (EXCP)
STATUS=status variable

Pressing the key is the equivalent to entering the EXCHANGE _
POSITION subcommand. You must save a position with the SAVE _
POSITION subcommand before you can use the EXCHANGE _POSITION
subcommand.

Revision B Common Editing Functions 545

COPYING

Copving

You can copy text to different spots in the same file or to a different working
file. You can also copy text to and from external files.

Copying with Function Keys

To copy text in screen mode, use either the F1 [T or F2 [IfMAkey along
with the F14 (COPY)key. The keys perform the following functions.

Key Function

F1 Marks the current line as a boundary for text to be
copied. Move the cursor up or down to the second
boundary and press F1 again to create a block
of lines to be copied. If only one line is to be copied,
press F1 only once.

F2 Marks the current character as a boundary of a
series of characters to be copied. Move the cursor to
the second boundary and press F2 again to
create the range of characters to be copied. If only
one character is to be copied, press F2 only
once.

F14 Copies any marked text to immediately before the
current line if you used the F1 [ILIdkey or the
current character if you used the F2 key. If no
marks are set, the current line is copied to the next
line.

To copy text from one file to another, use the SET_SCREEN_OPTIONS

subcommand, F1 BT, and F14 Using the SET_SCREEN _OPTIONS

subcommand, you can display more than one file on the screen at a time (the
SET_SCREEN_OPTIONS subcommand is described in detail in chapter 7,
Selecting Editor Options). You can then mark the lines you want to copy,
move the cursor to the position in the file at which you want the copied text

to appear, and press F14 (COPY).

For example, you are editing file GROUCHO and want to copy 5 lines from
file HARPO. First, press

and enter

set_screen_options splits=2

5-46 Full Screen Editor Revision C

COPYING

. This splits the screen with two areas displaying text of file GROUCHO:

Move the cursor to the text area of the lower split of the screen and press:

Enter:

edit_file harpo

- Revision B Common Editing Functions 5-47

COPYING

File HARPO appears: ‘

548 Full Screen Editor Revision B

COPYING

. Move the cursor to the first line of text you want copied to file GROUCHO:

Revision B Common Editing Functions 549

COPYING

Press F1 B The line is highlighted.

5-50 Full Screen Editor Revision B

COPYING

. Move the cursor to the last line of text you want to copy.

Revision B Common Editing Functions 551

COPYING

Press F1 I again. The text from the first marked line through the last ‘
marked line are highlighted:

5-52 Full Screen Editor Revision B

COPYING

Move the cursor to the location in file GROUCHO at which you want the
’ copied text to appear:

Revision B Common Editing Functions 5-53

COPYING

Press . The text is copied to file GROUCHO: '

The text remains marked until you UNDOQO, set new marks, or unmark them.

To return to editing just file GROUCHO, press:

554 Full Screen Editor Revision B

COPYING

. Copying Blocks of Text with Subcommands

To copy a block of text from one place to another within your working files
use the COPY_TEXT subcommand. Format of the subcommand is:

COPY_TEXT (COPT or C)
TEXT=range of string
NUMBER-=integer or keyword value
LINE-=range of integer or keyword value
COLUMN-=range of integer or keyword value
INSERTION_LOCATION=integer or keyword value
INSERTION_COLUMN-=integer or keyword value
PLACEMENT=keyword
BOUNDARY=keyword value
UPPER_CASE=boolean
WORD-=boolean
REPEAT_SEARCH=boolean
STATUS=status variable

The TEXT (T) parameter specifies strings of text in the first and last lines of
a block of text to be copied. If you enter only one string, the block of text to be
copied will contain only one line. If you enter two strings, the search for the
second begins immediately after the first is found. If you omit this
parameter, the lines to be copied will be determined by the NUMBER and

‘ LINE parameters. If TEXT is omitted, and you specify the REPEAT _
SEARCH parameter as TRUE, this parameter assumes the value last
specified for the TEXT parameter on any subcommand.

The NUMBER (N) parameter specifies the number of blocks of text to be
copied. Values for this parameter can be numbers or the keyword ALL (A). If
you specify a range for the LINE parameter, this parameter assumes a value
of ALL, otherwise a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be searched
for the text to be copied. Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4. If
a single value is specified, only that line is searched. If LINE is omitted,
CURRENT..LAST is assumed.

The COLUMN (COLUMNS or C) parameter specifies the range of columns
to be searched for the text to be copied. The integers can be from 1 through
256 or any of the keyword values listed in the Common Parameters section of
chapter 4. If COLUMNS is omitted, CURRENT is assumed.

Revision C Common Editing Functions 5-55

COPYING

The INSERTION _LOCATION (IL) parameter specifies the line before which
or after which the line is to be copied (depending on the value of the
PLACEMENT parameter). Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4
with the exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION _LOCATION is omitted, CURRENT is assumed.

The INSERTION _ COLUMN (INSERTION_COLUMNS or IC) parameter
specifies the column before which or after which the text is to be copied
(depending on the value of the PLACEMENT parameter). Values can be an
integer from 1 through 256, or any of the COLUMN keyword values
described in the Common Parameters section of chapter 4 with the exception
of MARK. Ranges are not allowed. If INSERTION _COLUMN is omitted,
CURRENT is assumed.

The PLACEMENT (P) parameter specifies if the copied lines are to appear
before or after the location specified by the INSERTION _LOCATION
parameter. Values can be BEFORE (B) or AFTER (A). If PLACEMENT is
omitted, AFTER is assumed.

The BOUNDARY (B) parameter specifies the type of boundary that will limit
the search. Values can be LINE or STREAM as described in the Common
Parameters section of chapter 4. If BOUNDARY and COLUMNS are
omitted, LINE is assumed. If a value for COLUMNS is specified and
BOUNDARY is omitted, STREAM is assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the text to be copied as a word. That is, the text you want to move
is surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string to be copied that is surrounded by
blanks or punctuation characters (just as each word on this page is
surrounded by blanks or punctuation characters). The first and last columns
on the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor on how to use
the values for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT _SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current COPY_TEXT subcommand. If
REPEAT_SEARCH is omitted, FALSE is assumed.

556 Full Screen Editor Revision B

COPYING

Following are examples of how you might use the COPY_TEXT
. subcommand.

copy_text line=30..40
Copies lines 30 through 40 to immediately after the current line.
copt text='one'..'five' insertion_location=71 placement=before

Copies the next occurrence of a block of text beginning with the line
containing one and ending with the line containing five to
immediately before line 71.

Copying Text Between Working Files and
External Files

To copy text from the current working file to the external copy of a file, use
the WRITE _FILE subcommand. (To copy text from another file to the
current file, use the READ_FILE subcommand described later in this
chapter.) The format is:

WRITE_FILE (WRIF)

TEXT=range of string
NUMBER-=integer or keyword value
LINE=range of integer or keyword value
FILE=file reference

‘ UPPER_CASE-=boolean
WORD=boolean ‘
REPEAT_SEARCH=boolean
MULTI_PARTITION=boolean
STATUS=status variable

The TEXT (T) parameter specifies the strings of text which identify the first
and last lines of a block of text to be written. If you enter only one string, the
block of text to be written will contain only one line. If you enter two strings,
the search for the second begins immediately after the first is found and the
cursor is positioned at the beginning of the first string. If you omit the TEXT
parameter, the lines to be written will be determined by the NUMBER,
LINE, and DIRECTION parameters. If you omit the TEXT parameter and
specify the REPEAT_SEARCH parameter as TRUE, this parameter
assumes the value last specified on a subcommand with a TEXT parameter.

The NUMBER (N) parameter specifies the number of blocks of text to be
copied. Values for this parameter can be an integer or the keyword value
ALL (A). If NUMBER is omitted, ALL is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be searched to
locate the text to be copied. Values can be an integer or any of the LINE

keyword values described in the Common Parameters section of chapter 4. If
a single value is specified, only that line is searched. If LINE is omitted, ALL

. is assumed.

Revision B Common Editing Functions 5-57

COPYING

The FILE (F) parameter specifies the file to which the text is to be copied.
The text from the current file is written to the external copy of the file
specified, not a working copy. The specified file may or may not be
overwritten depending on the file position specified on the FILE parameter
and on how you open your external files (refer to chapter 4, Before You
Continue, for information on external files). If you have not changed how
your external files are opened, you can avoid overwriting a file by adding
$EOI to the file name. For example, to add text from the current file to the
end of file ZAP, specify the FILE parameter as ZAP.$EOI If FILE is
omitted, the external copy of the current file is assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The first and last columns on
the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

The REPEAT_SEARCH (RS) parameter instructs the editor on how to use
the values for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT_SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current WRITE _FILE subcommand. If
REPEAT_SEARCH is omitted, FALSE is assumed.

The MULTI_PARTITION (MP) parameter specifies whether the editor is to
change WEOQOP directives to end-of-partition delimiters when the current
working file is copied to an external file. When the value is TRUE, the editor
changes WEOP directives to end-of-partition delimiters. When the value is
FALSE, no substitution takes place. If MULTI_PARTITION is omitted,
FALSE is assumed. Refer to Creating Multipartition Files later in this
chapter for more information.

558 Full Screen Editor Revision B

COPYING

The following subcommands show how you might use the WRITE _FILE
subcommand.

write_file line=20..last file=zap
Copies lines 20 through the last line of the current file to file ZAP.
write_file text="int'..'end' number=3 fijle=nertz

Copies three blocks of text beginning with the line containing int and
ending with the line containing end to file NERTZ.

write_file Lline=all file=splat

Copies all lines from the current file to the external copy of file SPLAT.
wrif file=ZAP.$EOI

Copies all of the current working file to the end of file ZAP.
wrif

Copies the working copy of the current file to the external copy. In
other words, it makes your changes permanent without closing the
current file and leaving the editor.

To copy lines from an external file into the current working file, use the
READ_FILE subcommand. This subcommand copies all text from another
file into the current file. Format of the subcommand is:

READ_FILE (REAF)
FILE=file
INSERTION_LOCATION-=integer or keyword value
PLACEMENT=keyword value
MULTI_PARTITION=boolean
STATUS=status variable

The FILE (F) parameter specifies the name of the file from which the text is
to be copied. The entire file will be copied. The READ _FILE subcommand
reads text from the external copy of the specified file, not a working copy.
This parameter is required.

Revision B Common Editing Functions 5-59

COPYING

The INSERTION_LOCATION (IL) parameter specifies the line before which
or after which the line is to be copied (depending on the value of the .
PLACEMENT parameter). Values can be an integer or any of the LINE

keyword values described in the Common Parameters section of chapter 4

with the exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION _LOCATION is omitted, CURRENT is assumed.

The PLACEMENT (P) parameter specifies if the copied lines are to appear
before or after the location specified by the INSERTION _LOCATION
parameter. Values can be BEFORE (B) or AFTER (A). If PLACEMENT is
omitted, AFTER is assumed.

The MULTI_PARTITION (MP) parameter specifies whether the editor is to
change the end-of-partition delimiters in the file to WEOP directives. When
the value is TRUE, the editor changes the delimiters to WEOP directives.
When the value is FALSE, the editor stops reading the file at the first end-of-
partition boundry it encounters. If MULTI_PARTITION is omitted, FALSE
is assumed. Refer to Creating Multipartition Files later in this chapter for
more information.

The following examples show how you might use the READ_FILE
subcommand.

read_file file=ernie insertion_location=320

Copies the contents of file ERNIE into the current file immediately '
after line 320.

read_file file=bert insertion_Llocation=Llast_mark placement=before

Copies the contents of file BERT into the current file immediately
before the last marked line.

560 Full Screen Editor Revision B

Moving

MOVING

The editor enables you to move text to different locations in the same file or
to a different file. Moving text using several function keys in screen mode is
easy. There is also a subcommand which enables you to perform the same

functions in line mode.

Moving with Function Keys

To move text in screen mode, use the F1 [Td(or F2) key along
with the (&) F14 [keys. The keys perform the following functions.

Key

Function

1 G

2 chroi

@

@~
@ r GED

Revision C

Marks the current line as a boundary for text to be
copied. Move the cursor up or down to the second
boundary and press F1 again to create a
block of lines to be copied. If only one line is to be
copied, press F1 [ILIdonly once.

Marks the current character as a boundary of a
series of characters to be copied. Move the cursor to
the second boundary and press F2 again to
create the range of characters to be copied. If only
one character is to be copied, press F2 only
once.

Moves any marked text to immediately before the
current line or character.

Cancels marks.

Cancels marks.

Common Editing Functions 5-61

MOVING

Moving with Subcommands

To move a block of text from one place to another in the same file, use the
MOVE_TEXT subcommand. Format of the subcommand is:

MOVE_TEXT (MOVT or M)
TEXT=range of string
NUMBER-=integer or keyword value
LINE-=range of integer or keyword value
COLUMN-=range of integer or keyword value
INSERTION_LOCATION=integer or keyword value
INSERTION_COLUMN-=integer or keyword value
PLACEMENT=keyword value
BOUNDARY=keyword value
UPPER_CASE=boolean
WORD=boolean
REPEAT_SEARCH=boolean
STATUS=status variable

The TEXT (T) parameter specifies strings of text in the first and last lines of
a block of text to be moved. If you enter only one string, the block of text to
be moved will contain only one line. If you enter two strings, the search for
the second begins immediately after the first is found. If TEXT is omitted,
the lines to be moved will be determined by the NUMBER, and LINE
parameters.

The NUMBER (N) parameter specifies the number of blocks of text to be
moved. Values for this parameter can be numbers or the keyword ALL (A). If
you specify a range for the LINE parameter, this parameter assumes a value
of ALL; otherwise, a value of 1 is assumed.

The LINE (LINES or L) parameter specifies a range of lines to be searched
for the text to be moved. Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4. If
a single value is specified, only that line is searched. If LINE is omitted,
CURRENT..LAST is assumed.

The COLUMN (COLUMNS or C) parameter specifies the range of columns
to be searched for the text to be moved. The integers can be from 1 through
256 or any of the COLUMN keyword values listed in the Common
Parameters section of chapter 4. If COLUMN is omitted, CURRENT is
assumed.

562 Full Screen Editor Revision C

MOVING

The INSERTION _ LOCATION (IL) parameter specifies the line before which

. or after which the line is to be moved (depending on the value of the
PLACEMENT parameter). Values can be an integer or any of the LINE
keyword values described in the Common Parameters section of chapter 4
with the exception of ALL, MARK, and SCREEN. Ranges are not allowed. If
INSERTION_LOCATION is omitted, CURRENT is assumed.

The INSERTION_COLUMN (INSERTION_COLUMNS or IC) parameter
specifies the column before which or after which the text is to be moved
(depending on the value of the PLACEMENT parameter). Values can be an
integer from 1 through 256, or any of the COLUMN keyword values listed in
the Common Parameters section of chapter 4 with the exception of MARK.
Ranges are not allowed. If INSERTION _COLUMN is omitted, CURRENT
is assumed.

The PLACEMENT (P) parameter specifies if the moved lines are to appear
before or after the location specified by the INSERTION _LOCATION
parameter. Values can be BEFORE (B) or AFTER (A). If PLACEMENT is
omitted, AFTER is assumed.

The BOUNDARY (B) parameter specifies the type of boundary that will limit
the search. Values can be LINE or STREAM as described in the Common
Parameters section of chapter 4. If BOUNDARY and COLUMNS are
omitted, LINE is assumed. If a value for COLUMNS is specified and

. BOUNDARY is omitted, STREAM is assumed.

The UPPER_CASE (UC) parameter determines the significance of
capitalization in a search. When the value is TRUE, the editor matches
strings assuming there is no distinction between uppercase and lowercase
letters. For example, B matches to both B and b. If the value is FALSE, the
editor searches for the string exactly as you entered it. If you do not specify a
value, FALSE is assumed.

The WORD (W) parameter, when the value is TRUE, instructs the editor to
search for the specified string as a word. That is, the text you want to find is
surrounded by nonalphanumeric characters. The most common use of the
WORD parameter is to search for a string surrounded by blanks (just as each
word on this page is surrounded by blanks). The first and last columns on
the screen are also considered to be nonalphanumeric characters and are
interpreted as boundaries. The characters @, #, $, and _ are allowed as
characters in words. When WORD is omitted, FALSE is assumed.

Revision B Common Editing Functions 563

MOVING

The REPEAT_SEARCH (RS) parameter instructs the editor on how to use
the values for the last TEXT, UPPER_CASE, and WORD parameters.
TRUE instructs the editor to use the same TEXT, UPPER_CASE, and
WORD parameters as the last time you entered them on any subcommand,
unless you have specified values for them on this subcommand. In other
words, if you specify TRUE for REPEAT_SEARCH and specify values for
TEXT, UPPER_CASE, or WORD, the new values for TEXT, UPPER _
CASE, and WORD are used. FALSE instructs the editor to use the
parameters entered with the current MOVE _TEXT subcommand. If
REPEAT_RESEARCH is omitted, FALSE is assumed.

Following are examples of how you might use the MOVE_TEXT
subcommand.

move_text Line=30..40
Moves lines 30 through 40 to immediately after the current line.
movt text='one'..'five' insertion_location=71 placement=before

Moves the next occurrence of a block of text beginning with the line
containing one and ending with the line containing five to
immediately before line 71.

564 Full Screen Editor Revision B

UNDOING

Undoing

The editor provides you with the capability of undoing changes you have
made to your files. There is a function key for use in screen mode and
subcommands for use in either screen or line mode.

Undoing with a Function Key

ThefS [M¥key undoes any changes you have made since the last time you
pressed or pressed a function key that supplies a. (All
function keys on a CDC 721 supply a(NEXT).) If you entered a subcommand
or pressed to move the cursor, but made no changes to the file, the
editor goes back until it encounters a change and that change is undone.

Each time you press F5 LMY, changes that occurred between key
entries are undone in reverse order.

For example, the following changes were made to a file in the order shown:

1. All abc’s were changed to xyz’s using the REPLACE_TEXT
subcommmand. was pressed.

2. The word water was changed towine by typing wine over water.
3. The first line of the file was deleted using the @ keys.
Each time you enter F5 [NY[{)], the changes are undone as shown:

The first time The first line of the file is returned and
F5 [AldYis entered. the word wine is changed back to water.

The second time The xyz’s are changed back to abc’s.

Undoing with Subcommands

There are two subcommands which you can use to undo changes you have
made to your file. The UNDO subcommand undoes changes one at a time in
the reverse order they were made. The RESET_FILE subcommand cancels
all changes you have made to your file since it was opened.

To undo changes one at a time, use the UNDO subcommand. For each
UNDOQO, all changes made since the last time you pressed are
canceled. As you continue to enter UNDOQO, changes that occurred between
key entries are undone in reverse order.

Revision B Common Editing Functions 565

UNDOING

The format of the subcommand is:

UNDO
STATUS-=status variable

For example, the following changes were made to a file in the order shown.

1. Five lines in the file were deleted using the DELETE_LINES
subcommand.

2. The next three lines are displayed using the LOCATE _TEXT
subcommand.

3. A new line is entered using the INSERT _LINES subcommand.
Each time UNDO is entered, the following changes are undone:

The first time The new line inserted is deleted.
UNDO is entered

The second time The five lines deleted are returned.

You can undo only changes made to the current file. You can, however, make
any file that was edited during this session the current file if it has not been
closed with END_FILE, END_DECK, or a select deck subcommand. You
can do this by entering the EDIT_FILE or EDIT_DECK subcommand, or, if
your screen is split, by positioning the cursor in the file you want to be the
current file.

To undo all changes you have made since opening the current file, use the
RESET _FILE subcommand. This subcommand cancels all the changes you
have made to your file since you last accessed the file using the EDIT_FILE
command. Format of the subcommand is:

RESET_FILE (RESF)
STATUS=status variable

Refer to Discarding Deck Changes, in chapter 8, for more information about
undoing changes in decks.

566 Full Screen Editor Revision B

CREATING MULTIPARTITION FILES

Creating Multipartition Files

You can add or delete end-of-partition delimiters to any file you can edit [the
file has a record type file attribute of variable (V)].

The SCU text-embedded directive WEOP represents the end-of-partition
delimiter within the editor. The format of the directive is:

*WEOP

The asterisk (*) is the default key character. If you are editing decks, this
character was defined when the library was created. For files, the asterisk is
always used. The directive starts in column 1 and is the only thing on the
line.

You can put this directive in your file or deck where you want end-of-
partition delimiters to appear. When you start editing, end-of-partition
delimiters become WEOP directives. When you manipulate a file using
WRITE_FILE or READ_FILE, the MULTI_PARTITION parameter
determines what happens to the WEOP directives.

When you rewrite files or decks using the END, END_FILE, END_DECK,
SELECT_DECK, SELECT_FIRST_DECK, SELECT_NEXT_DECK,
SELECT_LAST_DECK, or QUIT subcommands, WEOP directives are
always converted to end-of-partition delimiters.

For example, the following lines show a WEOP directive separating two
blocks of text.

Text for the first partition.
*WEOP
Text for the second partition.

Revision B Common Editing Functions 5-67

TEXT FORMATTING

Text Formatting

There are several function keys and subcommands that enable you to format
text. These function keys and subcommands help you make documents of
almost any type including memos and reports.

Text Formatting with Function Keys

In addition to the basic editing function keys which enable you to insert,
delete, and so on, the editor also provides function keys which apply
specifically to text formatting. These keys are:

Key Function

F10 Inserts 32 spaces on the current line, enabling you to
type in a word or phrase.

() f10 Deletes the word on which the cursor is positioned. If
the cursor is positioned on a blank, all blanks are
deleted until a nonblank character is encountered.

F11 Breaks the current line into two lines. The break
occurs right before the current cursor position. The
cursor is positioned at the end of the first line of the
two resulting lines.

F12 Joins the current line with the next line (does the
opposite of the F11 key).

AW FORMAT Formats the current paragraph.

D)6 Centers the current line.

Text Formatting with Subcommands

There are also equivalent subcommands that perform the same functions.
The subcommands you can use to break or join text are described here. In
addition, there are subcommands you can use to set paragraph margins,
format paragraphs, and center lines. These subcommands are also described
here. For information on subcommands for inserting or deleting words, refer
to the Inserting and Deleting sections earlier in this chapter.

568 Full Screen Editor Revision C

TEXT FORMATTING

‘ Breaking Text

To break a line at a specific point in the line to make one line into two lines,
use the BREAK _TEXT subcommand. The format of the subcommand is:

BREAK_TEXT (BRET or B)
LINE=integer or keyword value
COLUMN-=integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter identifies the line to be broken. Values
can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4 with the exception of ALL, MARK,
and SCREEN. Ranges are not allowed. If LINE is omitted, CURRENT is
assumed.

The COLUMN (COLUMNS or C) parameter specifies the column before
which the break is to occur. In other words, the break occurs just before the
column specified. Values can be an integer from 1 through 256, or any of the
COLUMN keyword values described in the Common Parameters section of
chapter 4 with the exception of MARK. Ranges are not allowed. If COLUMN
is omitted, CURRENT is assumed.

Revision C Common Editing Functions 5-69

TEXT FORMATTING

Joining Text

To join two lines, use the JOIN _TEXT subcommand. This subcommand
joins a line with the next line by appending the second to the first. Format of
the subcommand is:

JOIN_TEXT (JOIT or J)
LINE=integer or keyword value
COLUMN-=integer or keyword value
STATUS=status variable

The LINE (LINES or L) parameter specifies the first of the two lines to be
joined. The line following the specified line is the line to which the first is
joined. Values can be an integer or any of the LINE keyword values
described in the Common Parameters section of chapter 4 with the exception
of MARK. Ranges are not allowed. If LINE is omitted, CURRENT is
assumed.

The COLUMN (COLUMNS or C) parameter specifies the starting column to
which the second line is moved. The second line is always added to the end of
the first line. The columns parameter determines how far after the end of the
first line the second will be added. Values can be an integer from 1 through
256, or any of the COLUMN keyword parameters described in the Common
Parameters section of chapter 4 with the exception of MARK. Ranges are not
allowed. If the value you specify is less than or equal to the length of the first
line, the line is added to the end of the first line. If the value you specify is
greater than the length of the first line, the editor fills the columns in
between with blank characters. If COLUMN is omitted, CURRENT is
assumed.

To indent text, use the INDENT _TEXT subcommand described in Inserting
earlier in this chapter.

5-70 Full Screen Editor Revision B

TEXT FORMATTING

‘ Setting Paragraph Margins

To set or change the paragraph margins, use the SET_PARAGRAPH _
MARGINS subcommand. In any subsequent FORMAT _PARAGRAPH or
CENTER_LINE subcommands, the margins set with SET_PARAGRAPH _
MARGINS are used. The format is:

SET_PARAGRAPH_MARGINS (SETPM)
MARGIN_COLUMN=range of integer
OFFSET=integer

The MARGIN_COLUMN (MC) parameter specifies the right and left
margins. If just one column number is specified, the left margin is set to that
number. If MARGIN _COLUMN is omitted and you have not specified this
subcommand previously in your terminal session, columns 1 and 65 are used.
If you have specified the subcommand previously, any parameter not
specified is not changed.

The OFFSET (O) parameter specifies the number of columns the first line in
the paragraph is to be offset from the rest of the lines in the paragraph. If the
number specified is a positive number, the first line of the paragraph is
indented the number of columns specified. If zero is specified, the first line is
not indented. If a negative value is given, the first line begins to the left of
the rest of the paragraph. If OFFSET is omitted and you have specified this
subcommand during this terminal session, the previous value is used. If you

‘ have not entered this subcommand previously and omit the OFFSET
parameter, a value of 4 is assumed.

The following examples show how you might want to use the SET _
PARAGRAPH_MARGINS subcommand.

set_paragraph_margins mc=7..72
Sets the paragraph margins to column 7 and 72.
set_paragraph_margins mc=10..70 o=5

Sets the margins to 10 and 70 and also specifies that you want the first
line of the paragraph indented 5 columns.

Revision C Common Editing Functions 571 @

TEXT FORMATTING

Formatting Paragraphs .

To adjust words or sentences in a paragraph of text to bring line lengths as
close as possible to preset margins (see the SET_PARAGRAPH_MARGINS
subcommand), use the FORMAT_PARAGRAPHS subcommand. The format
of the subcommand is:

FORMAT_PARAGRAPHS (FORP)
LINE-=integer or keyword value
NUMBER=integer

The LINE (LINES or L) parameter specifies a range of lines to format.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4. If omitted, the current paragraph
is assumed.

The NUMBER (N) parameter specifies the number of lines to format starting
with the current line and moving forward. If LINE is omitted and NUMBER
is specified, the number of lines in the current paragraph specified by the
NUMBER parameter are formatted. If both LINE and NUMBER are
omitted, the current paragraph is assumed.

The following example shows how you might want to use the FORMAT _
PARAGRAPHS subcommand.

forp n=6 .

Adjusts the current line and the five subsequent lines to conform to
previously set margins.

Using the FORMAT_PARAGRAPHS subcommand adds 2 blanks after .,
P and '?.

® 572 Full Screen Editor Revision C

TEXT FORMATTING

. Centering Lines

To center a line or lines between margins that have been previously set using
the SET_PARAGRAPH_MARGINS subcommand, use the CENTER _
LINES subcommand. The format of this subcommand is:

CENTER_LINES (CENL)
LINE-=range of integer or keyword value
NUMBER-=integer

The LINE (LINES or L) parameter specifies a line or range of lines to be
centered. If you specify only one line, the centering is limited to that line.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4.

If LINE is omitted, the lines to be centered are determined by the NUMBER
parameter. If LINE and NUMBER are both omitted, CURRENT is assumed.

The NUMBER (N) parameter specifies the number of lines to be centered. If
NUMBER is omitted, the lines to be centered are determined by the LINE
parameter. If NUMBER and LINE are both omitted, CURRENT..LAST is
assumed.

The following examples show how you might want to use the CENTER _
LINES subcommand.

‘ center_Lines number=5
Centers the next five lines.
cenl line=15..23
Centers all lines between lines 15 and 23.

cenl

Centers all lines between the current line and the last line.

Revision C Common Editing Functions 573 @

) Function Keys 6

In screen mode, you can use function keys to perform many editing tasks
that would otherwise require you to enter subcommands. This chapter
describes those function keys.

Editing Keys . ..ottt e e e 6-1
CDC Standard Function Keys.............coiii i iiiiiiinnn. 6-2

Programmable Function Keys

Function Keys 6
‘ \Y

In addition to the standard ASCII character keys, er@ and @, the editor
supports three types of function keys: editing keys, CDC standard keys, and
programmable keys. This chapter describes these keys and how you can
redefine the programmable keys.

Editing Keys

The terminal does the processing of the editing keys. Since the editor is not
involved, the operations are instantaneous. The editing keys and their

functions are:

Key

Function

<INSRT,

@ @D

@ CED

‘ERASE’

g
|

e

@ EER

Revision B

Inserts a blank character, allowing you to type a new
character over the blank. Some terminals put you in
insertion mode, which enables you to enter the
character itself rather than a space to type in the
new character.

Inserts a blank line.
Deletes the current character.
Deletes the current line. Press:

to fill in the lines at the bottom of the screen with
text from the file.

Backspaces a single character and deletes it.

Blanks the current line and positions the cursor in
column 1 of the blank line.

Moves the cursor forward to the next tab. Refer to the
SET_TAB_OPTIONS in chapter 7, Selecting Editor
Options, for information on setting tabs.

Moves the cursor back to the immediately preceding
tab.

Deletes all characters from the cursor to the end of
the line.

Clears the entire screen; the editor completely
rewrites the screen if you clear it. If you suspect the
screen does not look right, rewrite it by entering:

(&) CtEAR) + (WexD)

Function Keys 6-1

CDC STANDARD FUNCTION KEYS

CDC Standard Function Keys

The CDC standard function keys for the Viking 721 terminal perform
operations that apply to nearly all applications. These operations are
assigned to a key or to key combinations on most supported terminals. The
keys and their functions are:

Function

=
@
<

Displays the next screen in the file. The last line of
the previous screen becomes the first line in the
displayed screen.

Moves screen backward one screen. The top line then
becomes the bottom line of the displayed screen.

Positions the file so that the current line is at the top
of the screen.

Positions the file so that the current line is at the
bottom of the screen and the cursor is centered
vertically on the screen.

Displays the editor HELP file. The HELP file has
brief descriptions of all editor subcommands.

0 B0 E

EDIT Returns you to editing one file (the file at the top of
the screen) when you are in split screen mode.
key can be used to leave the HELP file,
returning you to the file you were editing.

Stops a search or replacement in progress.
Terminates an input line.

Moves the cursor to the subcommand line where you
can then enter subcommands.

Stores the current position for later use with the

key.

Returns you to the position stored with the
key and stores the current position for later use with

the key. Repeated entry of the key

toggles you between two locations.

2] |«
> al |3
3 x| 12
> -

@ Positions the file so the cursor is at the last line
(same as () F3)-
gy Positions the file so the cursor is at the first line

(same as F3).

6-2 Full Screen Editor Revision C

PROGRAMMABLE FUNCTION KEYS

Programmable Function Keys

You can define the programmable function keys to execute any of the editor
subcommands. The labels of the programmable function keys are displayed
at the bottom of your screen.

Usually, only the F1 through F8 function key prompts are displayed. The F9
through F16 prompts can be displayed using the SET_SCREEN_OPTIONS
subcommand described in chapter 7. The lower line of the prompt indicates
the unshifted key function; the upper line indicates the shifted key function.
On the Viking 721 keyboard, the function key numbers are in raised letters
adjacent to the keys. Some programmable function keys also have labels on
the key itself. These labels are used by other applications and have no
significance within the editor.

The original settings for the Viking 721 programmable function keys follow.
(Settings for other terminals are included in chapter 11, Using Other
Terminals in Screen Mode.)

Key Function
Unmrk Marks a line or lines to be used by another editor
[MARK function or subcommand. The marked lines are

shown in inverse video on terminals with that
capability. When shifted,

@ »

unmarks any marked text.

Boxmk Marks a character or range of characters to be
F2 used by another editor function or subcommand.
Marked lines or characters are displayed in inverse
video on terminals with that capability. The shifted
F2 function, Boxmk, is for a future release.

LAST Moves the cursor to the first line in the file.
(X FIRST When shifted,

@ r sl

moves the cursor to the last line of the file and
vertically centers the line on the screen.

endlin Centers the current line vertically on the screen.
[T niddle When shifted,

@ ~ CXED

positions the cursor to the end of the current line.

Revision C Function Keys 6-3

PROGRAMMABLE FUNCTION KEYS

Key

Function

FS

Fé6

UNDO

END

locnxt
@l L OCATE

80/132
(3 Local L}

F9

6-4

delel
insel

Full Screen Editor

Cancels any marks you have set and undoes all
changes you made to your file since the last time the
text was changed.

Stops the current editing session. Changes made
to any open files are made permanent.

Prompts you to enter the text you want to locate.
When you enter the text and press:

the editor locates the text, positioning the cursor at
the first character of the text string. When shifted,

(D) 7 P

locates the next occurrence of the last text located.

Prompts you for a string to find, locates all lines
containing the string, and displays them in a
directory-type display. To locate all occurrences of
the last specified string, press when
prompted to enter a search string. When shifted,

(&) rs ENEEA

changes the screen format from 80 columns to 132
columns or from 132 columns to 80 columns.

Inserts a block of blank lines just before the current
line. The number of lines inserted depends on the
number of lines displayed on the current file. Two
lines of old text are left at the top and bottom of the
screen and blanks inserted between. When shifted,

@ ~ EXm

deletes empty lines, starting with the current line,
until a nonempty line is encountered.

Revision C

PROGRAMMABLE FUNCTION KEYS

Function

delwrd
(‘W inswrd

«

iY@l Join

»

Move
iR Copy

dedent
15 pUDIEY

16

Revision C

Inserts 32 blank spaces in front of the current
character. When shifted,

@ o E

deletes the current word. If the cursor is positioned on
a blank character, blank characters on that line are
deleted until a nonblank character is encountered.

Breaks the current line into two lines. The line is split
just in front of the current cursor position. The cursor
is then positioned at the beginning of the second line.
If the cursor is positioned at the beginning of a line,

a blank line is inserted before the current line.

Appends the next line to the end of the current line.
Undefined.

Copies the lines or characters marked by the MARK
or Chrmk function in front of the current cursor
position. When shifted,

@ e

moves all marked text in front of the current cursor
position, deleting it from its former location.

Inserts two blank characters in front of all marked
lines. When shifted,

(€Y WAl dedent]

deletes the first 2 characters of all marked lines.

Formats the current paragraph. When shifted,

(e JEaTY Center

centers the current line.

Function Keys 6-5

PROGRAMMABLE FUNCTION KEYS

For information on initial programmable function key settings for other
supported terminals, refer to chapter 11, Using Other Terminals in Screen
Mode.

To redefine the settings of these keys, use the SET_FUNCTION_KEY
subcommand. This subcommand enables you to create your own set, or sets,
of function keys. Format of the subcommand is:

SET_FUNCTION_KEY (SETFK)
NUMBER=integer
COMMAND_STRING=string
SHIFT=boolean
LABEL=string
STATUS=status variable

The NUMBER (NUMBERS or N) parameter specifies the number of the key
to be defined. Values can be an integer from 1 through 16. This parameter is
required.

The COMMAND_STRING (CS) parameter specifies a string that contains
the subcommand(s) or command(s) to be executed when the specified key is
pressed. Values can be any editor subcommand or SCL. command. When
more than one is specified, separate them with semicolons. This parameter is
required.

The SHIFT (S) parameter specifies whether the key is to be used with the
key. If SHIFT is omitted, FALSE is assumed.

The LABEL (L) parameter specifies a string that is to appear as the label on
the screen for the specified key. If LABEL is omitted, the label becomes the
first six characters of COMMAND _STRING.

The following are examples of how you might use the SET_FUNCTION _
KEY subcommand.

set_function_key number=4 command_string='dises' label='Status'

Defines the F4 key to execute the DISPLLAY _EDITOR_STATUS
subcommand with a screen label of F4

setfk number=5 command_string='help' shift=true label="help"'

Defines the shifted F5 key to execute the HELP subcommand. The key
has a screen label of F5[I{Y.

Include a SET_FUNCTION _KEY subcommand in your editor prologue file
to redefine a function key each time you start the editor. The editor prologue
file is described in chapter 10, Prologue and Epilogue Files.

66 Full Screen Editor Revision C

® Selecting Editor Options 7

This chapter describes the subcommands that can change many of the
system-supplied settings for the editor and check the status of those settings.

Changing the Screen Displayccoiiiiiiiiiii i 7-1
Setting Screen Options.ouviut ittt a et 7-1
Exchanging Screen Widths i, 78
Aligningthe Screeniiiiiiiiiiiir ittt 79

Changing Tab Settingsooviitiit i i et eieeanss 7-10

Changing Line Width i e 7-12

Changing the Verify Optionttt iiiiiinnnn. 7-13

Changing the Characters AllowedinaWord........................... 7-14

Changing How Lines Are Listedin LineMode 7-15

Displaying Status Informationo i, 7-16

Selecting Editor Options 7

Changing the Screen Display

There are three subcommands enabling you to change the way the screen
appears. These are the SET _SCREEN_OPTIONS, EXCHANGE _
SCREEN_WIDTH, and ALIGN_SCREEN subcommands.

Setting Screen Options

The SET_SCREEN _OPTIONS subcommand enables you to change things
like the number of lines that are listed on your screen, the number of files you
can display at one time, and the number of columns displayed. Format for
the subcommand is:

SET_SCREEN_OPTIONS (SETSO)
MODEL=name
COLUMN-=integer
MENU_ROW-=integer
SPLIT=integer
STATUS=status variable

For all omitted parameters, the editor assumes you want to use the same
values you used the last time you entered the SET_SCREEN_OPTIONS
subcommand.

The MODEL (M) parameter specifies the terminal type you are using. Valid
entries are:

Entry Terminal

CDC721 CDC Viking 721

CDC722 CDC 722

CDC722_30 CDC 722-30

VT100 DEC VT100
PC_CONNECT IBM PC (or equivalent)
719 Zenith Z19 or Heathkit H19
729 Zenith 729

If the MODEL parameter has not been specified on an earlier subcommand
of the editing session, or by a SET_TERMINAL_ATTRIBUTES TRM=name
command previous to the editing session, it is required.

Revision C Selecting Editor Options 7-1 e

CHANGING THE SCREEN DISPLAY

The COLUMN (COLUMNS or C) parameter specifies the number of columns ‘
to be displayed. Values can range from 1 to the maximum number allowed

on your terminal. When first entering the editor, it assumes a value of 80

columns. If COLUMN is omitted, the number of columns displayed remains

the same.

The MENU _ROW (MENU _ROWS or MR) parameter specifies the number
of rows of function key prompts to display. Values can be:

Value Meaning

0 Displays no function key prompts.

1 Displays one line of prompts (F1 through F8).

2 Displays two lines of prompts (F1 through F16).

If MENU_ROW is omitted, the number of rows displayed remains the same.
When starting the editor, a value of 1 is assumed.

The SPLIT (SPLITS or S) parameter specifies the number of areas of text

(splits) you want displayed on the screen. (The screen is divided horizontally

to show more than one file.) This number determines how many files you can

display at the same time. Values can be numbers from 1 through 16. When

entering the editor, the assumed value is 1. The size of the splits is

determined by the integer you specify, each split using an equal number of

lines. If SPLIT is omitted, the number of splits remains the same. .

Pressing the key returns you to editing one file (SPLIT=1) when you
are in split screen mode.

The following example shows how you might use the SET_SCREEN _
OPTIONS subcommand.

® 72 Full Screen Editor Revision C

CHANGING THE SCREEN DISPLAY

In this example, you’ve already used the SET_SCREEN_OPTIONS and
EDIT_FILE subcommands to display files GROUCHO and HARPO and
you are editing them on a Viking 721 terminal:

Revision B Selecting Editor Options 73

CHANGING THE SCREEN DISPLAY

You then want to display files CHICO and ZEPPO at the same time. To do .

this, press and enter the following SET_SCREEN_OPTIONS
subcommand.

set_screen_options splits=4

This adds two more text areas (splits) to the screen. The text from the current
file, in this example HARPO, is displayed in the two new split areas:

74 Full Screen Editor Revision B

CHANGING THE SCREEN DISPLAY

. You then move the cursor to the split in which you want file CHICO to
appear. In this example, the third split:

Revision B Selecting Editor Options ~ 7-5

CHANGING THE SCREEN DISPLAY

Then, press and enter: .

edif chico

File CHICO appears in the third split area:

76 Full Screen Editor Revision B

CHANGING THE SCREEN DISPLAY

‘ Then position the cursor in the fourth split, press and enter:

edif zeppo

File ZEPPO appears:

Revision B Selecting Editor Options ~ 7-7

CHANGING THE SCREEN DISPLAY

Exchanging Screen Widths .

The EXCHANGE SCREEN_WIDTH subcommand allows you to change
the width of the screen, alternating between the 80- and 132- column screen
displays, for those terminals that support them. Format of the subcommand
is:

EXCHANGE_SCREEN_WIDTH (EXCSW)
STATUS-=status variable

When entered, EXCHANGE _SCREEN_WIDTH changes the screen width
to whichever column screen is not being used. For example, if you are using
an 80-column screen, entering EXCSW changes it to a 132-column screen.

® 7-8 Full Screen Editor Revision C

CHANGING THE SCREEN DISPLAY

‘ Aligning the Screen

The ALIGN_SCREEN subcommand enables you to change the alignment of
your screen. Generally, the screen is not realigned unless the current position
of the cursor is no longer within the bounds of what is on the screen. When
this happens, the screen is realigned and repainted with the current line at
the middle of the screen. Format of the subcommand is:

ALIGN_SCREEN (ALIS or A)
MIDDLE=integer or keyword value
TOP=integer or keyword value
BOTTOM-=integer or keyword value
OFFSET<=integer
STATUS-=status variable

The MIDDLE (M) parameter specifies a line to be centered vertically on the
screen. Values can be an integer or any of the LINE keyword values
described in the Common Parameters section of chapter 4 with the exception
of ALL, MARK, and SCREEN. You cannot use this parameter with the TOP
or BOTTOM parameters. If MIDDLE is omitted, CURRENT is assumed.

The TOP (T) parameter specifies a line to be positioned at the top of the
screen. The resulting middle line of the screen becomes the current line.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4 with the exception of ALL, MARK,
‘ and SCREEN. You cannot use this parameter if you have specified a
MIDDLE or BOTTOM parameter. If TOP is omitted, a value is not supplied.

The BOTTOM (B) parameter specifies a line to appear at the bottom of the
screen. The resulting middle line of the screen becomes the current line.
Values can be an integer or any of the LINE keyword values described in the
Common Parameters section of chapter 4 with the exception of ALL, MARK,
and SCREEN. You cannot use this parameter with the TOP or MIDDLE
parameters. If BOTTOM is omitted, no value is supplied.

Revision C Selecting Editor Options ~ 7-8.1/7-8.2

CHANGING THE SCREEN DISPLAY

’ The OFFSET (O) parameter specifies the number of columns to offset your
view of the file on the screen. Values can be integers from 0 through 255.
When an offset is specified, the number you specify is added to column 1 and
the last column displayed. For example, if the rightmost column is 80, and
you specify an OFFSET value of 20, the leftmost column becomes 21 and the
rightmost column becomes 100. The following examples show how you might
use the ALIGN_SCREEN subcommand.

align_screen top=current
Moves the current line to the top of the screen (same as the key).
align_screen bottom=current

Move the current line to the bottom of the screen (same as the
key).

alis offset=50

Displays column 51 as the leftmost column.

Revision C Selecting Editor Options 7-9

CHANGING TAB SETTINGS

Changing Tab Settings

There are two subcommands designed specifically to change tab settings (to
view which tab columns are currently set, use the DISPLAY _EDITOR _
STATUS subcommand described later). These are the SET_TAB_OPTIONS
and CLEAR_TAB subcommands. When editing SCU libraries, tab settings
can be saved for each deck on the individual deck headers.

The SET_TAB_OPTIONS subcommand sets a tab character and the
columns in which you want tabs set. Format of the subcommand is:

SET_TAB_OPTIONS (SETTO)
CHARACTER-=string
TAB_COLUMN-=list of integer
STATUS=status variable

The CHARACTER (C) parameter specifies the tab character. When you enter
a tab character within text typed from your terminal, the tab character
moves any text from the current position to the next tab setting. If you enter
a tab character after the last tab column, the tab character is included as
part of the file text. Values can be anyprintable character. The horizontal
tab character, chr$(9), works well as a value. When you start editing a file,
the tab character is set to the reverse slant (\). When you start editing a deck,
the tab character is set as specified in the deck header (refer to the
CREATE_DECK SCU subcommand in the SCL Source Code Management
manual). If CHARACTER is omitted, the tab character is not changed.

The CHARACTER parameter is useful for line-mode terminals or for screen-
mode terminals that do not have a dedicated tab key. The CDC 722 is such a
terminal. For terminals that do have a tab key, you will find it more useful
than SET_TAB_OPTIONS C=chr$(9) since a dedicated tab key moves the
cursor instantly, while the interpretation of SETTO C=chr$(9) cannot be seen
until later.

The TAB_COLUMN (TAB_COLUMNS or TC) parameter specifies tab
columns to be added to those already selected. A maximum of 256 columns
can be specified as tab columns. Values can be any integer from 1 through
256 and must be enclosed in parentheses. To specify more than one column,
enclose the values in parentheses, and separate the values with commas (,) or
spaces. When you start editing a file, the tab columns selected are 1, 7, and
72. When you start editing a deck, the tab columns selected are those
specified in the deck header (refer to the CREATE_DECK SCU
subcommand in the SCL Source Code Management manual). If TAB _
COLUMN is omitted, the tab settings are not changed.

® 710 Full Screen Editor Revision C

CHANGING TAB SETTINGS

The following examples show how you might use the SET_TAB_OPTIONS
subcommand.

set_tab_options character='1' tab_column=(11,18,41,53)

Sets the tab character to] and adds columns 11, 18, 41, and 53 as tab
columns.

set_tab_options character='!"' tab_column=(3)
Sets the tab character to ! and adds column 3 as a tab column.

To delete all or some of the tab columns, use the CLEAR_TAB subcommand.
Format of the subcommand is:

CLEAR_TAB (CLEAR_TABS or CLET)
TAB_COLUMN-=keyword value or list of range of integer
STATUS=status variable

The TAB_COLUMN (TAB_COLUMNS or TC) parameter specifies the
columns to delete as tab columns. Values can be the keyword ALL or a list of
integers from 1 through 256. Values can also be specified as a range, like
10..60. If TAB_COLUMN is omitted, all tabs are cleared.

For example, the following CLEAR_TAB subcommand clears columns 7 and
65 as tab columns:

clear_tab tab_column=(7,65)

Revision B Selecting Editor Options ~ 7-11

CHANGING LINE WIDTH

Changing Line Width

You can have the editor send you a message when lines in your file exceed a
specified limit. Doing this also causes the editor to add trailing spaces to
lines with a character count less than the limit when you do string
comparisons. Use the SET_LINE_WIDTH subcommand to set the limit.
Format of the subcommand is:

SET_LINE_WIDTH (SETLW)
WIDTH=integer
STATUS-=status variable

The WIDTH (W) parameter specifies the number of characters you can have
on a line before a message is sent. Values can be integers from 0 through
256. Specifying a value of 0 eliminates the message and adds no trailing
blanks to lines. When you create a file, an initial value of 0 is assumed; for
decks, the value is taken from the deck header information. This parameter
is required.

For example, if you press

and enter:
set_Line_width width=80

Then you add a line that is 81 characters long. The message
--WARNING ES 510530--Line longer than current width.

appears. You can then choose to change the line or leave it. Once you have
set the line width, you can locate long lines by using the LOCATE_WIDE _
LINES subcommand. The line width marker only remains in effect
throughout an editing session. Each time you edit the file, you must enter the
SET_LINE_WIDTH subcommand to change the line width and be warned
when lines are too long.

7-12 Full Screen Editor Revision B

CHANGING THE VERIFY OPTION

Changing the Verify Option

The verify option displays lines that have been changed via the REPLACE _
TEXT subcommand and also displays the first and last lines of a block of
text located with the LOCATE _TEXT subcommand. Format of the
subcommand is:

SET_VERIFY_OPTION (SETVO)
ECHO=boolean
STATUS=status variable

The ECHO (E) parameter specifies if you want the verify option on or off.
When you start the editor, the system sets the verify option to TRUE.
Therefore in line mode, the verify option is on unless you specify
ECHO=FALSE on a SET_VERIFY_OPTION subcommand. In screen mode,
the verify option is always off. This parameter is required.

Revision B Selecting Editor Options 7-13

CHANGING THE CHARACTERS ALLOWED IN A WORD

Changing the Characters Allowed in a
Word

If you want to use the WORD parameters on subcommands which allow it
and need to use characters within those words other than alphanumeric
characters, use the SET_WORD_CHARACTERS subcommand to add or
delete allowable characters. When starting the editor, allowable characters
are any alphanumeric character plus the special characters @, #, $, and _.
The format of the subcommand is:

SET_WORD_CHARACTERS (SETWC)
ADD-list of string
DELETE-=list of string
STATUS=status variable

The ADD (A) parameter specifies the characters to add as allowable
characters. Values can be any printable character. If you specify more than
one character, separate them with commas (,) or spaces. If you add the
comma as an allowable character, separate the characters with spaces.
Enclose the values in parentheses and quotes. The space character cannot be

| specified as an allowable character. If ADD is omitted, no characters are
added.

The DELETE (D) parameter specifies the characters to delete as allowable
characters in a word. In other words, characters specified by this parameter
will be treated as punctuation marks. If you specify more than one character,
separate them with commas (,) or spaces. Enclose the values in parentheses
and quotes. Values can be any printable character. The space character is
not allowed. If DELETE is omitted, no characters are deleted.

The following examples show how you might use the SET_WORD _
CHARACTERS subcommand.

| set_word_characters add=('&','l ','%")
Adds the characters &, |, and % as characters allowed in words.
set_word_characters add=('%') delete=('x")

Adds % as an allowable word character and deletes x as an allowable
word character.

set_word_characters add=('-') delete=('$' '#' '_' '3a")

Changes the characters allowed in words to those used in the NOS/VE
COBOL compiler.

7-14 Full Screen Editor Revision C

CHANGING HOW LINES ARE LISTED IN LINE MODE

‘ Changing How Lines Are Listed
in Line Mode

The SET_LIST_OPTIONS subcommand determines whether line identifiers
are displayed in line mode. You would usually use this subcommand when
you are editing decks and want to see the line identifiers. The editor does,
however, add line identifiers to all files. The format of the subcommand is:

SET_LIST_OPTIONS (SETLO)
LINE_IDENTIFIER=keyword value
STATE=boolean
STATUS=status variable

The LINE_IDENTIFIER (LI) parameter specifies where or if the identifier is
to be displayed. Values can be LEFT (L), SEPARATE (S), or NONE (N). If
you select LEFT, the line identifier appears on the same line as the text itself.
If you specify SEPARATE, the identifier is displayed before the line of text
as a separate line. If NONE is specified, the identifier is not displayed at all.
If LINE _IDENTIFIER is omitted, NONE is assumed.

The STATE (S) parameter specifies whether the state of the modification
associated with the line’s introduction is to be displayed. Modification states I
are described in the SCL Source Code Management manual. When the value
is TRUE, the state is displayed. When the value is FALSE, the state is not

. displayed. If STATE is omitted, FALSE is assumed.

Revision C Selecting Editor Options 7-15

DISPLAYING STATUS INFORMATION

Displaying Status Information '

Three subcommands enable you to display information about the current
status of the editor. The subcommands are DISPLAY _POSITION,
DISPLAY _EDITOR_STATUS, and DISPLAY_COLUMN _NUMBERS.

The DISPLAY _POSITION subcommand displays the current line number,
current column number, size of the file, and the line number of the top and
bottom line of the screen on the message line. The format is:

DISPLAY_POSITION (DISP)
STATUS=status variable

For example, if you enter
display_position
you might get the following display:
I Current Line: 12 Column: 10 Size: 109

The DISPLAY_EDITOR_STATUS subcommand enables you to check the
status of a number of editor variables including the current tab character,
tab columns, function key definitions, and so on. Format of the subcommand
is:

DISPLAY_EDITOR_STATUS (DISES) .
STATUS=status variable

Following is the type of display you get when you enter
DISPLAY_EDITOR_STATUS in screen mode.

7-16 Full Screen Editor Revision C

DISPLAYING STATUS INFORMATION

To list the column numbers, use the DISPLAY _COLUMN_NUMBERS
subcommand. The column numbers appear over the current line. The format
of the subcommand is:

DISPLAY_COLUMN_NUMBERS (DISCN)
ROW-=integer
STATUS=status variable

The ROW (R) parameter specifies which row on the screen is to show the
column numbers. Values can be an integer from 1 through 255. In line mode,
this parameter is ignored. If ROW is omitted, the column numbers are
displayed over the current line.

t If you submit a Programming System Report (PSR) on the editor, please
include the editor’s version number.

Revision B Selecting Editor Options 7-17

DISPLAYING STATUS INFORMATION

For example, to list the column numbers of the third line .

FIRST LINE
SECOND LINE
THIRD LINE
FOURTH LINE

position the cursor on the line:

FIRST LINE
SECOND LINE
THIRD LINE
FOURTH LINE

Press:

and enter
display_column_numbers
The following appears:

FIRST LINE

SECOND LINE
123456789A123456789B123456789C123456789D123456789E123456789F1234567896123456789H .
FOURTH LINE

The column numbers shown correspond to columns in the file and not
column numbers on the screen.

7-18 Full Screen Editor Revision C

) Editing SCU Decks 8

Starting the Editor i i 8-2
Opening Decksoiuiiiii e e e e 84
Opening a Deck While Maintaining Other Decks 85
Editing a Specific Deckccoiiiiiiiiiii i 85
Editing the First Deck on the Library 85
Editing the Last Deck onthe Library 86
Editing the Next Deck on the Library 8-6
Opening a Deck While Closing the Previous Deck 86
Editing a Specific Deckt 8-7
Editing the First Deck on the Library 8-7
Editing the Last Deck on the Library 8-7
Editing the Next Deck on the Libraryccooiiiiiiin.... 8-7
Discarding Deck Changes............coviiiiiiiiiiiiiiiiiiinennnnnn, 88
CloSing @ DECKovit ittt e e e 8-10
Stopping the Editor. i i e 8-11

® Editing SCU Decks 8

Within the Source Code Utility (SCU) you can use the Full Screen Editor to
make changes to decks. Besides using the full range of features available to
you during file editing sessions, while editing decks you have an extra set of
subcommands designed specifically for editing decks:

EDIT_DECK SELECT_FIRST_DECK
EDIT_FIRST_DECK SELECT_LAST_DECK
EDIT_LAST_DECK SELECT_NEXT_DECK
EDIT_NEXT_DECK RESET_DECK
SELECT_DECK END_DECK

As with files, you can work on more than one deck during an EDIT _
LIBRARY session. Also if your terminal has screen handling capabilities,
you can activate the screen and edit decks in screen mode.

NOTE

When editing, you can modify only one deck at a time. For example, a
REPLACE _TEXT subcommand can affect only the current deck; if you
want to make the same change in other decks, you must switch to each deck
and repeat the REPLACE _TEXT subcommand.

‘ Once you have entered the editor using the SCU subcommand EDIT _
LIBRARY, SCU restricts your use of other SCU capabilities to those that do

not make changes to the library. The following SCU subcommands are I
allowed:
CREATE_MODIFICATION DISPLAY_GROUP
DISPLAY_DECK DISPLAY_GROUP_LIST
DISPLAY_DECK_LIST DISPLAY_LIBRARY
DISPLAY_DECK_REFERENCES DISPLAY_MODIFICATION
DISPLAY_FEATURE DISPLAY_MODIFICATION _LIST
DISPLAY_FEATURE_LIST EXTRACT_MODIFICATION

When you have completed editing (by entering END or QUIT), all SCU
subcommands are again accessible.

Revision C Editing SCU Decks 8-1

STARTING THE EDITOR

Starting the Editor

You must be in SCU to edit SCU decks. Enter the utility using the SCL
command described in the SCL Source Code Management manual. Its
format is:

SOURCE_CODE_UTILITY
BASE-file
RESULT<file
LIST=file
STATUS=status variable

You then enter the SCU subcommand EDIT_LIBRARY to begin an editing
session. The format of the subcommand is:

EDIT_LIBRARY
MODIFICATION=name
INPUT<file
OUTPUT=file
DECK=name
CONTINUE=boolean
PROLOG=file
STATUS=status variable

The MODIFICATION (M) parameter specifies the name of the modification
to which changes made during the editor session belong. If the modification
does not already exist, you must also specify CONTINUE=FALSE. This
parameter is required.

The INPUT (I) parameter specifies the file used as input to the editor. This
file can be positioned. If omitted, file SCOMMAND is assumed. File
$COMMAND is usually connected to terminal input.

The OUTPUT (O) parameter specifies the file to which the edit display is
written. This file can be positioned. If OUTPUT is omitted, file SOUTPUT is
assumed.

The DECK (D) parameter specifies the name of the deck to be edited first. If
you do not specify the first deck, you must enter an editor deck selection
subcommand before entering commands to change text.

The CONTINUE (C) parameter indicates whether the editor session
continues an existing modification or begins a new modification. When you
specify TRUE, an existing modification is continued. When you specify
FALSE, the editor begins a new modification. If CONTINUE is omitted,
TRUE is assumed.

8-2 Full Screen Editor Revision C

STARTING THE EDITOR

The PROLOG (P) parameter specifies the name of the file the system

‘ executes when you start an editor session. This file can be positioned. If
PROLOG is omitted, file $USER.SCU_EDITOR_PROLOG is assumed.
Chapter 10, Prologue and Epilogue Files, describes the prologue file in more
detail.

For example, to edit deck LOG_CHANGES on the permanent source file
named OLDPL using the existing modification LOG_MOD1, and write the
resulting library on the next cycle of OLDPL, enter:

/scu base=$user.oldpl result=$user.oldpl.$next
sc/edit_Library modification=Log_mod1 deck=log_changes
sce/

You can now use any of the capabilities of the editor including the deck
editor subcommands listed earlier in this chapter; the EDIT_LIBRARY SCU
subcommand adds an entry containing the editor subcommands to the
NOS/VE subcommand list. The name of the entry is SCU_EDIT.

You can edit decks in either screen or line mode. Whenever you are in line
mode, the prompt

sce/
is displayed when the editor is ready for input.

. The following is the header written on the output file if the EDIT_LIBRARY
SCU subcommand is entered in batch mode.

NOS/VE SOURCE CODE UTILITY V1.1 84151 1985-03-22 13:21:53 PAGE 1
EDITOR
BASE=$USER.OLDPL

Revision C Editing SCU Decks 8-3

OPENING DECKS

Opening Decks

You can specify the first deck you want to edit on either the SCU
subcommand EDIT_LIBRARY or on one of the editor subcommands that
edit or select decks. The EDIT_LIBRARY subcommand is described in the
previous section, Starting the Editor; a discussion of using the edit and select
deck subcommands follows.

Once you are in the editor, you can choose to either edit or select a deck.
Either method allows you to make changes to a deck. When editing
additional decks, you can either keep the first deck open while editing a new
deck or you can close the first deck when you start editing a new deck. If you
choose to keep the first deck open, that deck is put in the background. There
it is not affected by editing changes you make to the new deck, but it is
maintained in the same state you left it when you changed decks.

The deck subcommands that start with EDIT, open the deck chosen and
leave other decks open and in the background. The decks in the background
can be edited again by entering another deck subcommand. You can use the
edit deck subcommands in combination with other subcommands like SET _
SCREEN_OPTIONS and COPY_TEXT to transfer lines from one deck to
another and to do other editing functions. The edit deck subcommands allow
you to have many decks easily accessible during one editing session.
Although this is a nice feature, you may want to consider the amount of
system resources you are using when you do this. With each additional deck,
the resources you are using increases.

The deck subcommands that start with SELECT, open the deck chosen, but
at the same time, close the deck you were editing right before you entered the
subcommand (if any). The changes you made to the previous deck are
written to the working library. Refer to the SCL Source Code Management
manual if you would like more information about working libraries. You can
open the previous deck again later in the editing session by entering another
edit or select deck subcommand.

While you are editing decks (having entered the EDIT_LIBRARY
subcommand), you can also edit files. Use the EDIT _FILE subcommand to
edit files. Any deck that is open when you enter EDIT _FILE remains open
while you are editing a file. Entering END or QUIT closes all files as well as
all decks. To edit a deck after editing a file enter one of the edit or select deck
subcommands.

84 Full Screen Editor Revision C

OPENING DECKS

. Opening a Deck While Maintaining Other Decks

The following subcommands start the editing process on a deck while other
decks you had previously edited in this session remain available in the
background:

EDIT_DECK EDIT_LAST_DECK
EDIT_FIRST_DECK EDIT_NEXT_DECK

Their individual descriptions follow.

Editing a Specific Deck

The EDIT_DECK subcommand opens the specified deck on the working
library for editing while maintaining your current position in other decks.
The format of the subcommand is:

EDIT_DECK (EDID)
DECK=name
STATUS=status variable

The DECK (D) parameter specifies the name of the deck to be edited. This
parameter is required.

For example, to edit a deck named MY _DECK enter:

edit_deck deck=my_deck

Editing the First Deck on the Library

The EDIT_FIRST_DECK subcommand opens the first deck on the working
library for editing while maintaining your current position in other decks.
The format of the subcommand is:

EDIT_FIRST_DECK (EDIFD)
STATUS=status variable

Revision B Editing SCU Decks 85

OPENING DECKS

Editing the Last Deck on the Library .

The EDIT_LAST _DECK subcommand opens the last deck on the working
library for editing while maintaining your current position in other decks.
The format of the subcommand is:

EDIT_LAST_DECK (EDILD)
STATUS=status variable

Editing the Next Deck on the Library

The EDIT_NEXT_DECK subcommand opens the next deck on the working
library for editing while maintaining your current position in other decks.
The format of the subcommand is:

EDIT_NEXT_DECK (EDIND)
STATUS=status variable

Opening a Deck While Closing the Previous Deck

The following subcommands start the editing process on a deck and at the
same time close the last deck you were editing, if any (changes made to the
previous deck are written to the working library):

SELECT_DECK SELECT_LAST_DECK .
SELECT_FIRST _DECK SELECT_NEXT_DECK

Their individual descriptions follow.

86 Full Screen Editor Revision B

OPENING DECKS

’ Editing a Specific Deck

The SELECT_DECK subcommand opens the specified deck on the working
library for editing and closes the previous deck (if any). The format of the
subcommand is:

SELECT_DECK (SELD)
DECK=name
STATUS=status variable

The DECK (D) parameter specifies the name of the deck to be edited. This
parameter is required.

For example, to edit a deck named YOUR_DECK enter:

select_deck deck=your_deck

Editing the First Deck on the Library

The SELECT_FIRST_DECK subcommand opens the first deck on the
working library for editing and closes the previous deck (if any). The format
of the subcommand is:

SELECT_FIRST_DECK (SELFD)
STATUS=status variable

Editing the Last Deck on the Library

The SELECT_LAST _DECK subcommand opens the last deck on the
working library for editing and closes the previous deck (if any). The format
of the subcommand is:

SELECT_LAST_DECK (SELLD)
STATUS=status variable

Editing the Next Deck on the Library

The SELECT_NEXT_DECK subcommand opens the next deck on the
working library for editing and closes the previous deck (if any). The format
of the subcommand is:

SELECT_NEXT_DECK (SELND)
STATUS=status variable

Revision B Editing SCU Decks 8-7

OPENING DECKS

Discarding Deck Changes

To discard changes made to the current deck being edited, use the RESET _
DECK subcommand. All changes made since the last time the deck was
opened for editing are discarded; the editor obtains a new copy of the deck
from the working library. The format of the subcommand is:

RESET_DECK (RESD)
STATUS=status variable

For example, consider the following sequence of line mode entries:

Entries Description
sc/edit_Llibrary m=mod3 c=false Begin an editor session within SCU.
sce/edit_deck deck=deck_three Edit DECK_THREE (open first time).
Begin editing deck DECK_THREE.

sce/ .

. Enter first set of changes for DECK_THREE.
sce/select_deck deck=deck_five Select DECK _FIVE, closing DECK_THREE
Begin editing deck DECK_FIVE. (DECK_THREE is rewritten on the
sce/ . working library).

. Enter set of changes for DECK_FIVE.
sce/edit_deck deck=deck_three Edit DECK_THREE (open second time).
Begin editing deck DECK_THREE. DECK_FIVE remains open.
sce/ .

. Enter second set of changes for DECK_THREE.

sce/reset_deck Delete the second set of changes for
Begin editing deck DECK_THREE. DECK_THREE. The first set of changes
remains since DECK_THREE was closed
after they were made. DECK _FIVE is unchanged.

8-8 Full Screen Editor Revision B

OPENING DECKS

You can also undo changes in decks as you would do in files (refer to
‘ Undoing in chapter 5).

Once you enter END_DECK or a select deck ‘subcommand, adeckis clbsed.
Changes made to the closed deck are copied to the working library and
therefore cannot be discarded or undone.

The RESET_DECK subcommand performs a function similar to the
RESET_FILE subcommand. RESET_DECK nullifies changes as does
RESET_FILE. It nullifies them, however, by deleting the deck and replacing
it with a copy from the working library. When you enter RESET_FILE, the
editor actually retraces its steps and undoes changes in reverse order.

Revision C Editing SCU Decks 89

CLOSING A DECK

Closing a Deck '

To close editing on the current deck, use the END_DECK subcommand.
Whether changes you have made are written to the working library is
determined by the WRITE _DECK parameter. The END_DECK and END _
FILE subcommands perform the same function. Either can be used to close a
deck or file.

The format of the END _DECK subcommand is:

END_DECK (ENDD)
WRITE_DECK=boolean
STATUS=status variable

The WRITE_DECK (WD, WRITE _FILE, WF) parameter specifies whether
the changes made to the deck since it was opened for editing are to be written
to the working library. A value of TRUE indicates that the deck is to be
rewritten; a value of FALSE indicates that the deck remains unchanged (the
edited copy is discarded). If WRITE_DECK is omitted, TRUE is assumed
and the results are written to the working library.

810 Full Screen Editor Revision B

STOPPING THE EDITOR

Stopping the Editor

All decks are automatically closed when you leave the editor. To leave the
editor you can either use a function key (screen mode only), or use the END
or QUIT subcommand.

The function key that stops the editor is:
F6 ED

Changes made to all open decks are written to the working library and
changes made to all files are made permanent.

The END and QUIT subcommands stop the editor. They do exactly the same
thing and they have the same format. The format is:

END or QUIT (QUI)
WRITE _DECK=boolean
STATUS-=status variable

The WRITE _DECK (WD, WRITE _FILE, WF) parameter specifies if you
want changes to all open decks or files made permanent. When you specify
TRUE, changes made to all open decks are written to the working library
and changes made to all files are made permanent. When you specify
FALSE, changes to all open decks and files are canceled. If WRITE_DECK
is omitted, TRUE is assumed.

For example, if you have edited decks SUB1, SUB2, and SUBS3, are now
editing deck MAIN, and enter:

end_deck write_deck=true

deck MAIN is rewritten on the working library (preserving any changes
made).

You then end the editing session by entering:
quit write_deck=false

The changes you made to decks SUB1, SUB2, and SUB3 do not become part
of the working library.

When you end the editing session you are still in SCU. You end the SCU
session by entering:

sc/quit write_Llibrary=true

SCU generates a result library. The changes made to the working library
(those made to deck MAIN) become part of the result library. Other changes
made to decks SUB1, SUB2, and SUB3 do not become part of the result
library.

Revision C Editing SCU Decks 8-11

o Creating Procedures 9

To further enhance the power of the editor, you can create procedures which
execute editor subcommands, SCL. commands, and so on. This chapter
describes how to create and run procedures and how to call the editor from
within a procedure.

UG UL, . . ottt e e e 91
Procedure Header.ciiiiiiiiiiiiiiii e 9-2
Statement List ... e 9-2
Procedure End ...t e e 93

Subcommands and Functionscooiiiiiiiiiiiiiiii e, 94
Subcommand e 94
FUunctions e e 9-5

Y 01 o) L= 9-11

Calling the Editor from Withina Procedurecccovinn... 9-13

Creating Procedures 9

This chapter describes how to create procedures to enhance the power and
usability of the editor. In a procedure you can combine editor subcommands,
SCL commands, and special SCL functions to perform sophisticated editing
functions. This chapter describes:

e The structure of procedures.

e Special editor subcommands and SCL functions designed to be used
within editor procedures.

e Examples of procedures.

e How to call the editor from within a procedure.

Structure

Procedures can contain any editor subcommand, SCL command, or SCL.
function; you are not limited to only editor subcommands. This allows you to
have access to the power and versatility of SCL from within the editor.

The structure of a procedure for the editor is the same as an SCL procedure:

procedure header
statement list
procedure end

This section briefly describes the three components of a procedure. For more
detailed information, refer to the SCL Language Definition manual.

Revision C Creating Procedures 9-1

STRUCTURE

Procedure Header

The procedure header is a line giving the procedure a name. The format of
the procedure header is:

PROC procedure names

For example, a procedure named TERMINAL_SETUP could have the
following procedure header:

proc terminal_setup

The name of the procedure can be any valid SCL name. On the procedure
header you can also add any other names by which you may want to
reference the procedure. For example:

proc terminal_setup,terms,t

With this procedure header, you could call the procedure using any of the
following:

terminal_setup
terms
t

Statement List

The statement list is a list of the commands and subcommands that you
want the procedure to execute. For example, the TERMINAL_SETUP
procedure could contain the following editor subcommands:

setso mr=2
setfk n=5 s=true cs='setso mr=1"'

These subcommands tell the editor to display two rows of function key
prompts and set the shifted function key 5 to display only one row.

9-2 Full Screen Editor Revision B

STRUCTURE

Procedure End

The procedure end statement tells the editor that the procedure is over. The
procedure end statement can appear as:

PROCEND
or
PROCEND procedure name
For example, TERMINAL_SETUP might look like:

PROC terminal_setup,terms,t
setso mr=2

setfk n=5 s=true cs='setso mr=1"'
PROCEND terminal_setup

To make your procedure more readable, you probably want to use
indentation. For example,

PROC terminal_setup,terms,t

setso mr=2

setfk n=5 s=true cs='setso mr=1"'
PROCEND terminal_setup

Another way to make your procedure more readable is to add comments. You
can add comments with quotation marks. For example, to document
procedure TERMINAL_SETUP, you might add comments like:

PROC terminal_setup,terms,t
setso mr=2 "Display two function key rows.'
setfk n=5 s=true cs='setso mr=1' "Set F5 to display one row."
PROCEND terminal_setup

Revision B Creating Procedures 9-3

SUBCOMMANDS AND FUNCTIONS

Subcommands and Functions

There is a subcommand and several functions that are designed to be used
within editor procedures. This subcommand and the functions are described
in this section. The Examples section at the end of this chapter shows how
you can use editor subcommands and functions with SCL commands to
create very useful procedures.

Subcommand

The PUT_ROW subcommand is designed to be used within procedures. Its
function is to enable you to print text on any row on the screen. When this
subcommand is in procedures, this enables you to display messages on
different lines on the screen. Format of the subcommand is:

PUT_ROW (PUTR)
TEXT=string
ROW=integer
STATUS=status variable

The TEXT (T) parameter specifies the text to be printed. This is a text string
from 1 through 256 characters. This parameter is required.

The ROW (ROWS or R) parameter indicates the row in which the text will be
written. Values can be an integer from 1 through the number of rows
available on your screen or any of the functions described in the next section

that specify a row. For example, to specify the message row, enter
SMESSAGE_ROW. If ROW is omitted, the current line number is assumed.

For example, in a procedure which defines an alternative set of function key
definitions for the CDC 722 terminal, you might want to write the message

722 keys are set.

in the message row. To do so, include the following subcommand in the
procedure:

put_row text='722 keys are set.' row=$message_row

9-4 Full Screen Editor Revision C

SUBCOMMANDS AND FUNCTIONS

Functions

Functions are phrases that are replaced by values and must be used in a
subcommand, an SCL command, or a procedure. If the value returned is a
string, you can use the function wherever a string parameter is used. If the
value returned is an integer, you can use the function wherever an integer
parameter is used, and so on. The functions, listed alphabetically (with the
abbreviation shown in parentheses), are:

Value that Replaces the
Function Name Function Name
$ACTIVE _IDENTIFIER (lineid’)} A line identifier string (for
($AI) editing decks only). If the line is

active, it returns the string
entered. If the line is not active,
it returns a string, representing
the line identifier for the nearest
active line. If no lines are active,

FIRST is returned.
$CURRENT_COLUMN An integer specifying the
($CC) current column number. If the

POSITION_CURSOR

subcommand is used to specify

a column on a row which is not
part of the file text, the value
returned is the column at which
the cursor was positioned before
the POSITION _CURSOR
subcommand was entered.

$CURRENT_DECK A string specifying the current

($CD) deck’s name (for editing decks
only). All letters in the string
are uppercase, even if the name
was originally entered using
lowercase letters.

$CURRENT_LINE An integer specifying the
($CL) current line number.
$CURRENT_OBJECT A string identifying the current
($CO) file name.

1 Entries shown in lowercase characters require that you supply a value.

Revision B Creating Procedures 9-5

SUBCOMMANDS AND FUNCTIONS

Function Name

Value that Replaces the
Function Name

$CURRENT_OBJECT_TYPE
($COT)

$CURRENT_ROW
($CR)

$CURRENT_SPLIT
(3CS)

$CURRENT_WORD
(BCW)

$CURRENT_WORD_COLUMN
($CWC)

$FUNCTION_ROW
($FR)

$FUNCTION _SIZE
($FS)

$HOME_ROW
($HR)

$LINE_IDENTIFIER
($LI)

SLINE_TEXT
($LT)

96 Full Screen Editor

A string identifying the current
object being edited. Possible
values are FILE, DECK, or
NULL.

An integer identifying the
current row on the screen (as
opposed to the current line
number of a file). Zero is
returned if the current row is not
within screen boundaries or if
you are in line mode.

An integer specifying the
current split of the screen.
Values returned can be from 1
through 16. The top split of the
screen is 1, the next lower split
is 2, and so on.

The current word as a string.

An integer specifying the
column in which the current
word begins.

An integer specifying the top
row in which the function key
prompts are displayed.

An integer specifying the
number of rows used by the
function key prompts.

An integer identifying the row
used for entering subcommands.

A string specifying the line
identifier of the current line (for
decks only).

The text of the current line as a
string.

Revision B

Function Name

SUBCOMMANDS AND FUNCTIONS

Value that Replaces the
Function Name

$MARK_FIRST_COLUMN
($MFC)

$MARK_FIRST_LINE
($MFL)

$MARK_LAST_COLUMN
($MLC)

$MARK_LAST_LINE
($MLL)

$MARK_OBJECT
($MO)

$MARK_OBJECT_TYPE
($MOT)

$MARK_TYPE
($MT)

$MESSAGE_ROW
($MR)

$NEW_TEXT
($NT)

$NUMBER_OF_COLUMNS
(3NOC)

$NUMBER_OF_ROWS
(NOR)

$NUMBER_OF_SPLITS
($NOS)

Revision B

An integer specifying the
column number of the first
marked column.

An integer specifying the line
number of the first marked line.

An integer specifying the
column number of the last
marked column.

An integer specifying the line
number of the last marked line.

A string specifying the name of
the current file containing the
marked text.

A string specifying if the
marked text is in a file or deck.
Values returned can be FILE,
DECK, or NULL.

Specifies if the marked region is
bounded by lines or characters.
Values returned can be LINES
(line boundary) or STREAM
(character boundary).

An integer specifying the
number of the row on the screen
used to display messages.

The last string entered as a
NEW_TEXT parameter.

An integer specifying the
number of columns currently
being used to display text on the
screen.

An integer specifying the
number of rows that now have
text on them.

An integer specifying the
number of splits on the screen.

Creating Procedures 9-7

SUBCOMMANDS AND FUNCTIONS

Value that Replaces the
Function Name Function Name
$OFFSET An integer specifying the
($0) number specified by the

OFFSET parameter of the

$PARAGRAPH_MARGINS
(keyword value)t
($PM)

$SCREEN_ACTIVE
($SA)

$SCREEN_INPUT (text’)t
($3I)

ALIGN_SCREEN
subcommand. If you have not
specified the OFFSET
parameter, 0 is assumed.

An integer specifying the
current left margin setting if
you include the keyword value
LEFT; an integer specifying the
current right margin setting if
you include the keyword value
RIGHT; an integer specifying
the current margin offset if you
include the keyword value
OFFSET.

A boolean value. It is TRUE if
screen mode is active; FALSE if
it is not.

This function allows an SCL
procedure to pause and ask the
user for some input. For
example, the following
command performs a search for
whatever text the user provides
in response to $SI.

locate_text text=$SI
(What do you want to
search for?’)

The value that replaces the
function is whatever you type
on the subcommand line.

1 Entries shown in lowercase characters require that you supply a value.

9-8 Full Screen Editor

Revision C

SUBCOMMANDS AND FUNCTIONS

. Value that Replaces the
Function Name Function Name
NOTE

When typing your input, type
only the text you want. Do not
put apostrophes around it or
double up any apostrophes
within your input.

The text in the function is
displayed on the message row
as a prompt for your input. If
(’text’) is omitted, ENTER

TEXT is used as the prompt.
$SEARCH_MARGINS (keyword value)t An integer specifying the left
($SM) margin is returned if you

include the keyword value LOW.
An integer specifying the right
margin is returned if you
include the keyword value
HIGH.

. T Entries shown in lowercase characters require that you supply a value.

Revision C Creating Procedures 9-9

SUBCOMMANDS AND FUNCTIONS

Value that Replaces the
Function Name Function Name
$SPLIT_SIZE (split)t _An integer specifying the

($S8S)

$TERMINAL_MODEL
($T™M)

$TEXT
($T)

$TITLE_ROW (split)t
($TR)

$UPPER_CASE
($UC)

$VERIFY_OPTION
($VO)

$WORD
(W)

number of available text lines
for the specified split of the
screen. If you do not specify a
split number, the current split is
assumed.

A string specifying the current
terminal model. Values returned
can be any of the terminal
models defined at your site
including CDC721, CDC722,
CDC722_30, PC_CONNECT,
719, or 729.

A string specifying the last text
you specified on a TEXT
parameter.

An integer specifying the row
number of the title row used for
the specified split of the screen.
If you don’t specify a split
number, the current split is
assumed.

A boolean value. It is TRUE if
you specified TRUE on the last
UPPER _CASE parameter;
FALSE if you specified FALSE.

A boolean value. It is TRUE if
you have activated the VERIFY
option; FALSE if it is not
activated.

A boolean value. It is TRUE if
the word search feature is
active; FALSE if it is not.

T Entries shown in lowercase characters require that you supply a value.

9-10 Full Screen Editor

Revision C

EXAMPLES

‘ Examples

The procedures in this section are provided to show you how you might use
procedures to perform editing functions.

Example 1:
This procedure deletes characters.

PROC delete_characters,delete_character,delc,dc (
number, n : ANY
lines, Line, L : RANGE of ANY
columns, column, c: RANGE OF ANY
status)

WHEN any_fault DO
EXIT_PROC WITH osv$status
WHENEND

create_variable local_status kind=status

command="delete_text boundary=stream'
IF $specified(Lines) THEN
command=command//' L='//$parameter(lines)
ELSE
. command=command//' (=current'
IFEND
IF $specified(columns) THEN
command=command// ' c='//$parameter(columns)
ELSE
command=command//' c=c'
IFEND
IF $specified(number) THEN
command=command//' n="'//$parameter (number)
IFEND

include_Line command

PROCEND delete_characters

Revision C Creating Procedures 9-11

EXAMPLES

Example 2: ‘

This procedure deletes empty lines.

PROC delete_empty_Lines, delete_empty_Line, delel,(
lines, line, L : RANGE OF ANY
status)

WHEN any_fault DO
set_verify_option verify status=local_status
EXIT_PROC WITH osv$status

WHENEND

create_variable local_status kind=status

verify=$verify_option
set_verify_option false status=local_status

IF $specified(lines) THEN

position_cursor L=$parameter(lines) c=1
ELSE

position_cursor c=1 l=c
IFEND

start=$line_identifier

position_cursor L=last .
id_two=$line_identifier

position_cursor l=start
set_verify_option verify

REPEAT
id_one=$line_identifier
IF $line_text=""' THEN

delete_Line l=current
ELSE
id_one=1id_two
IFEND
UNTIL id_one=id_two

position_cursor L=current

PROCEND delete_empty_Lines

® 9.12 Full Screen Editor Revision C

CALLING THE EDITOR FROM WITHIN A PROCEDURE

Calling the Editor from Within a
Procedure

In order to call the editor from within a procedure, you must first be aware of
how the default command stream works. The EDIT_FILE command offers
an INPUT parameter, which defaults to SCOMMAND. This parameter
indicates a file from which editor commands will be read. The special file
name $COMMAND indicates the current command stream.

When the EDIT_FILE command is entered at the terminal, the current
command stream is the terminal. Screen mode occurs if it has been set using
ACTIVATE_SCREEN. When the EDIT_FILE is embedded in a procedure
or included file, the current command stream consists of the remainder of
that procedure or included file; that is, everything starting just after the
EDIT_FILE, until or unless an editor QUIT command is reached. If no
editor QUIT is provided, YES will be assumed at the end of the procedure. In
this case, the body of the procedure or included file is considered to be editor
commands. The editor reads the entire procedure or included file without
reading from the terminal in either line or screen mode.

The INPUT parameter allows you to call a file that contains editor
subcommands (but not including the EDIT_FILE command that starts the
editor), and the editor executes those subcommands instead of reading them
from the current command stream in either line or screen mode.

For example, the file EDITOR_SCRIPT contains the commands:

delete_text Lines=first
delete_text lines=last

This file can be used to delete the first and last lines of any file when entered
as follows:
edit_file file=file_to_be_shortened input=editor_script

You can also refer to the command stream that calls a procedure by using
the $COMMAND _OF_ CALLER function. For example, suppose the
procedure, PROC_A, contains:
PROC proc_a (status)
do_something thing=whatever_must_precede_editing
edit_file file=file_to_be_edited input=$command_of_caller
do_something thing=make_use_file_that_is_fully_edited_now
PROCEND proc_a
Once PROC_A is prepared, you can execute it in various ways. If you call
PROC _A from the terminal, after the initial DO_SOMETHING, the
procedure pauses while the editor talks to you at the terminal (in either line
or screen mode according to what you have set for your terminal using

ACTIVATE_SCREEN). When you tell the editor to QUIT, PROC_A
continues with the second DO_SOMETHING, and then finishes.

Revision C Creating Procedures 9-13 @

CALLING THE EDITOR FROM WITHIN A PROCEDURE

Procedure PROC_B shows another way to use the editor:

PROC proc_b (status)
do_something thing=whatever_this_proc_needs_to_do_first
proc_c
list_Lines all
display_value 'this is a sample proc'
quit
do_something thing=final_thing_to_do
PROCEND proc_b

PROC proc_c (status)
do_something thing=just_before_editor
edit_file file=file_c input=$command_of_caller
do_something thing=just_after_editor
PROCEND proc_c

In this example, you call PROC_B at the terminal. PROC_B does
something and then calls PROC_C. PROC_C does something to initialize
and then calls the editor. This time, SCOMMAND _OF_CALLER refers to
the middle of PROC_B, so the editor does the LIST _LINES, DISPLAY _
VALUE, and the QUIT subcommands. The last part of PROC_C then
executes and you return to PROC_B after QUIT. PROC _B executes its
second DO_SOMETHING and is finished.

® 9-14 Full Screen Editor Revision C

) Prologue and Epilogue Files 10

There are two special files within the editor that are executed each time you
start and leave the editor. These files, the prologue and epilogue files, are

described in this chapter.
Prologue Flile.o e e 10-1
Epilogue File.o e e 10-1

® Prologue and Epilogue Files 10

Prologue File

The prologue file is a file containing commands that are executed every time
you start the editor. In this file, you can put any subcommands and SCL
commands that you want executed each time you start the editor. In effect,
this enables you to permanently change settings of function keys, format of
the screen, and so on, from the initial settings provided by the system. For
example, if you know you are going to use the editor in screen mode on a
Viking 721 terminal most of the time, you might want to include an
ACTIVATE_SCREEN CDC721 subcommand in your editor prologue file.

When you start the editor with the EDIT_FILE command, you can specify a
file to be used as the prologue file with the PROLOG parameter. Otherwise,
the editor assumes the prologue file is SCU_EDITOR_PROLOG in catalog
$USER.

Epilogue File

You also have the option of setting an epilogue file that is executed when you
stop the editor. To specify a file containing EDIT_FILE subcommands that

‘ you want executed when you leave the editor, use the SET_EPILOG
subcommand. The format is:

SET_EPILOG
FILE=file

The FILE (F) parameter specifies the file to contain the FSE subcommands.
If FILE is omitted, SUSER.SCU_EDITOR_EPILOG is assumed.

The SET_EPILOG subcommand may be used anytime within an edit
session. If you want epilog file processing to occur automatically, put the
SET_EPILOG subcommand into your prologue file.

If you do not use the SET_EPILOG subcommand, no epilogue file is
executed.

Revision C Prologue and Epilogue Files 10-1

Using Other Terminals in Screen
® Mode 11

Full Screen Editor supports terminals other than the Viking 721. To use
these terminals, you will need to know information specific to these
terminals and how it affects your use of the editor. This chapter shows how
to do functions performed by Viking 721 function keys on the other
supported terminals.

CDC 722 ..t e 11-1
CDC 722-80 . . . ettt ettt e e et e e 115
DECVTI00ottt et e e 119
IBMPCorEquivalent..........cooiiiiiiiiiiiiiiiiiiiieniennnnnn. 11-13
ZenithZ19orHeathkit HI19t 11-17
ZenithZ29 11-22

Using Other Terminals in Screen
Mode 11

This chapter provides you with the information you will need to run the
editor in screen mode on the following terminals.

e CDC 722 e IBM PC or equivalent
e CDC 722-30 e Zenith Z19 or Heathkit H19
e DEC VT100 o Zenith Z29

Information on these terminals includes:
e Equivalent CDC standard function keys.
e Programmable function key initial settings.

For information on creating a terminal-definition file so that you can use the
editor in screen mode with other terminals, refer to the Screen Formatting
manual.

CDC 722

Revision C Using Other Terminals in Screen Mode 11-1

CDC 722

Equivalent CDC Standard Function Keys:

Viking
721 Key CDC 722 Key

Function

@ - GEwTmD
EHED) . ([EW e
EF) () . (REW LD

(E2). (NEW LINE)

(E2) . (NEW LINE)

Move the cursor to
the upper file text
area, press

and enter

setso s=1

®. Gy

BE § ® 8 E

DED . G

D 6.«
@ @D (G 6.
(& (CLEar) (SHIFT) (CLEAR)

(ERIRD) o @

11-2 Full Screen Editor

Moves forward to the next
screen of the file.

Moves backward to the previous
screen of the file.

Positions the file so that the
current line is at the top of the
screen.

Positions the file so that the
current line is at the bottom of
the screen.

Displays the editor HELP file.

Returns you to the previously
edited file.

Inserts a blank character over
which you type the new
character.

Inserts an empty line over
which you can type a new line
of text.

Deletes the current character.
Deletes the current line.
Rewrites the entire screen.

Moves the cursor to the
subcommand line, allowing you
to enter subcommands and SCL
commands.

Ends an input line.

Revision C

CDC 722 Key

CDC 722

Initial Programmable Function Key Settings for the CDC 722:

Description

BKW
F1 FWD
Linedn
[| ineup
DELC
F3 INSC
DELL
F& INSL

Undo
[MARK

Revision C

F1 moves forward one page in the file. When
shifted, F1 [J@fmoves backward one page in the file.

F2 moves the current line to the top of the
screen. When shifted, F2 [Tl positions the
current line to the bottom of the screen.

F3 inserts a blank character at the current
character over which you can type a new character.
When shifted, the F3 [JdBd key deletes the current
character. You can press the F3 key several times

before pressing (NEW _LINE) to delete or insert more

than one character. It is not until you press

that the results are shown.

F4 N inserts a blank line over which you can
type new text. When shifted, F4 [Y3Wll deletes the
current line. You can press the F4 key several times
before pressing to insert or delete more
than one line. It is not until you press
that the results are shown.

F5 ELEI8 marks a line or lines for later use with
another subcommand. These marked lines are not
displayed in inverse video as on the Viking 721.
When shifted, F5 undoes the previous
change to your file.

Using Other Terminals in Screen Mode 11-3

CDC 722

CDC 722 Key

Description

Move
F6 4o
Left
Y@l HELP
Right
F8 I\
10

Unmrk
A Endlin

I
-

NOTES

Fé copies any marked lines or characters
to the current line or character. When shifted,
F6 [moves any marked lines or characters.

F? displays the editor HELP file. When
shifted, F7 moves your view of the file to the left.

F8 stops the editor, making any changes to
all open files permanent. When shifted, F8 [{§flild moves
your view of the file to the right.

F9 moves the cursor to the end of the
current line. When shifted, F9 [Ifildq cancels any marks
you may have set.

Undefined.

Undefined.

e You must press or after pressing a programmable

function key.

e To use the cursor positioning keys or the key, you must first press

GAED.

o The key clears a line from the position of the cursor to the end of
the line. The shifted key clears the entire screen.

® Do not use the key to insert tabs. Instead, use the tab character
defined by the SET_TAB_OPTIONS subcommand. The horizontal tab
character works well (SETTO c=chr$(9)).

11-4 Full Screen Editor Revision C

Revision C

CDCT2277

CDC 722-30

Equivalent CDC Standard Function Keys:

Viking

721 Key CDC 722-30 Key Function

(F3) Moves forward to the next
screen of the file.

Moves backward to the previous
screen of the file.

@ Positions the file so that the
current line is at the top of the
screen.

Positions the file so that the
current line is at the bottom of
the screen.

(Fs) Displays the editor HELP file.

@ T Begins insert mode at cursor. To
end, press [RETURN].

() (insRT) (sArFT) (Wt Inserts a blank line over which
you can type a new line of text.

(oot Deletes the current character.

() (EeTE) (SmiFm) (DOt Deletes the current line.

)t Positions the cursor at the editor

subcommand line, allowing you
to enter editor subcommands.

NEXT RETURN Ends an input line.

tLocated on the numeric keypad to the right of the main keyboard.

® 116 Full Screen Editor Revision C

CDC 722-30

‘ Initial Programmable Function Key Settings for the CDC 722-30:
CDC 722-30 Key Description

unmrk F1 marks a line or lines for later use
3 Il MARK with another subcommand. When shifted,
F1 cancels any marks you may have set.
Boxmk F2 sets the mark at character
7 Chrmk boundaries. When shifted, F2 sets the
mark at a box corner.
LinUp F3 moves forward one page in the file.
F3 D When shifted, F3 moves the current line to
the top of the screen.
LinDn F& moves backward one page in the file.
F4 B When shifted, Fé4 positions the current line
to the bottom of the screen.
Help FS [l undoes the previous change to your
3 UNDO file. When shifted, F5 displays the editor
HELP file.
Offset F6 stops the editor, making changes to
F6 A all open files permanent. When shifted,

‘ Fé6 switches the display of columns 1
through 80 to the display of columns 54 through 133
or the reverse.

locnxt F7 moves the cursor to the subcommand
@l L ocat line and prompts you for the text you want to enter.
When shifted, F? Locates the next
occurrence of a previously specified string.
Move F8 copies any marked lines or
F8 oY% characters to the current line or character. When
shifted, F8 moves any marked lines or
character.
Last F9 aligns the screen to display the
2 First beginning of the file. When shifted, F9

aligns the screen centered around the end of the file.

Revision C Using Other Terminals in Screen Mode 117 e

CDC 722-30

Initial Programmable Function Key Settings for the CDC 722-30: ‘
CDC 722-30 Key Description

line is in the middle of the screen. When shifted,
F10 moves the cursor to just beyond the
end of the current line.

F11 F11 divides the current line into two
smaller lines just in front of the current column. The
cursor stays at the same place, which is just beyond
the last character of the first line of the pair.

F10 aligns the screen so that the current
[k middL

F12 F12 adds the line after the current line onto
the end of the current line.

NOTE

To enter INSERT CHARACTERS (IC), INSERT LINES (IL), DELETE
CHARACTERS (DC), DELETE LINES (DL), or HOME, use the numbers on
the keypad to the right of the main keyboard. For example, to insert
characters, press:

& @ P

Then type in the desired characters and press (RETURN) to end.

The keys are on the keypad to the right of the main keyboard as follows:

1-1C
3-DC
5- HOME
7-1L
9-DL

® 11-8 Full Screen Editor Revision C

DEC Vivy

Using Other Teym'maXs in Screen Mode

Revisio® C

DEC VT100

Equivalent CDC Standard Function Keys:

The following VT100 keys (except) are located on the keypad to
the right of the main keyboard.

Viking

721 Key DEC VT100 Key Function

G) + Moves forward to the next
screen of the file.

+ Moves backward to the previous
screen of the file.

@ + Positions the file so that the
current line is at the top of the
screen.

+ Positions the file so that the
current line is at the bottom of
the screen.

* Displays the editor HELP file.

Move the cursor to Returns you to the previously

the upper file text edited file.

area, press and
enter setso s=1

© @ + Inserts a blank line, allowing
you to type in a new line of text.

(3 + (RETURN Inserts a blank character over
which you type the new
character.

(&) (OLETE) (PFa) + (RETURN) Deletes the current line.

+ Deletes the current character.

@ D + Rewrites the entire screen.

(ENTER) + (RETURN) Positions the cursor at the editor

subcommand line, allowing you
to enter editor subcommands.

NEXT RETURN Ends an input line.

11-10 Full Screen Editor Revision C

DEC VT100

Initial Programmable Function Key Settings for the DEC VT100:

DEC VT100 Key

Description

BKW
F1

Linedn
(8 Lineup

DELC
F3 piis

DELL
F4 BONE

Undo
[T MARK
Move
I Copy

Revision C

F1 [P moves forward one page in the file. When
shifted, F1 Ef@] moves backward one page in the file.

F2 moves the current line to the top of the
screen. When shifted, F2 positions the
current line to the bottom of the screen.

F3EH inserts a blank character at the current
character over which you can type a new character.
When shifted, F3 deletes the current character.
You can press the F3 key several times before
pressing to delete or insert more than one
character. It is not until you press that

the results are shown.

F& inserts a blank line over which you can
type new text. When shifted, F4 deletes the
current line. You can press the F4 key several times
before pressing to insert or delete more
than one line. It is not until you press

that the results are shown.

FS XY marks a line or lines for later use with
another subcommand. These marked lines are
highlighted as on the Viking 721. When shifted,
F5 undoes the previous change to your file.

F6 [copies any marked lines or characters
to the current line or character. When shifted,
F6 (MY moves any marked lines or character.

Using Other Terminals in Screen Mode — 11-11

DEC VT100

DEC VT100 Key Description ’
HOME F7 displays the editor HELP file. When
2 HELP shifted, F7 positions the cursor on the editor
subcommand line.
F8 EElYstops editor making changes to all open
23 END files permanent. When shifted, F8 rewrites
your screen.
F9 XM moves the cursor to the end of the
(-3 ENDLIN current line. When shifted, F9 cancels any

marks you have set.
NOTES
¢ You must press (RETURN) after pressing a programmable function key.

e Keypad keys @ through @ are function keys F1 through F9.

® The following shows the correspondence between the shifted function
keys and the keypad keys.

Function Key Associated Keypad Keys

SHIFT
SHIFT
HIF

HIF

HIF

SHIFT
SHIFT

%) (@) [»)
E 2
n T

< 4) 18l =

slelEERERE
©OFPLEEEE

The keypad can never be used for numeric values within the editor.

e Turn on output flow control if it’s not already on.

l 11-12 Full Screen Editor Revision C

IBM PC (OR EQUIVALENT)

‘ IBM PC (or Equivalent)

Revision C Using Other Terminals in Screen Mode 11-13 e

IBM PC (OR EQUIVALENT)

Equivalent CDC Standard Function Keys:

Viking

721 Key IBM PC Key Function

Moves forward to the next screen of the
file.

Moves to the end of file.

(PgUp) Moves backward to the previous screen of
the file.

Moves to the beginning of file.

(ins) Begins insertion mode. Text to the right of
the cursor moves as you enter new
characters. To end insertion mode, press
| END &

@ Inserts a blank line over which you can
type new text.

DEL Deletes the current character.

() (OLETE) (ALTD) Deletes the current line.

Positions the cursor at the editor
subcommand line, allowing you to enter
editor subcommands.

Ends an input line.

NOTE

The IBM PC terminal definition assumes that the CDC terminal emulation
package CONNECT is running in the PC.

® 11-14 Full Screen Editor Revision C

IBM PC (OR EQUIVALENT)

. Initial Programmable Function Key Settings for the IBM PC:
IBM PC Key Description

Unmrk F1 marks a line or lines for later use with
F1 LIS another subcommand. When shifted,
F1 cancels any marks you may have set.
Trunc F2 sets the mark at character boundaries.
(¥l Chrmk When shifted, F2 blanks the remainder of the
current line from the cursor to the right margin.
Move F3 copies any marked lines or characters to the
=3 Copy current line or character. When shifted,

F3 moves any marked lines or characters.

Join F&4 divides the current line into two smaller
9 Break lines just in front of the current column. The cursor stays

at the same place, which is just beyond the last character
of the first line of the pair. When

shifted, F4 adds the line after the current line to
the end of the current line.

Clear FS QD undoes the previous change to your file.
3 UNDO When shifted, F5 rewrites your screen.

. F6 exits the editor, making changes to all open
Fé files permanent.
Locnxt F7 moves the cursor to the subcommand line
[Ydll L ocate and prompts you for the text you want to enter. When
shifted, F7 locates the next occurrence of a
previously specified string.
Offset F8 locates all occurrences of a previously
8 Locall specified string. When shifted, F8 switches the

display of columns 1 through 80 to the display of columns
54 through 133 or from columns 54 through 133 to 1
through 80.

Revision C Using Other Terminals in Screen Mode 11-15 ®

IBM PC (OR EQUIVALENT)

IBM PC Key Description .
Format F9 aligns the screen so that the current
M Middle] line is in the middle of the screen. When

shifted, F9 moves words across line
boundaries and standardizes spacing between words to fit
the current paragraph to the margins. Standard spacing
is single except for double spacing after any period,
exclamation, question, or colon. Punctuation marks
embedded in nonblank text are not double spaced.

Center F10 moves the cursor to the end of the
F10 current line. When shifted, F10 horizontally
centers the current line within the paragraph formatting
margins.

® 11-16 Full Screen Editor Revision C

ZENITH Z19 OR HEATHKIT H19

Zenith Z19 or Heathkit H19

Revision C Using Other Terminals in Screen Mode 1117 I

ZENITH Z19 OR HEATHKIT H19

Equivalent CDC Standard Keys:

Viking
719 or H19 Key

Function

® ETw
@ GETm)
) EEwE)

(E9) - (RETURN)

(?) + (eTURN)

8 8 [©8 8:

EDIT Move the cursor to
the upper file text
area, press and

enter setso s=1

@@= @

Moves forward to the next
screen of the file.

Moves backward to the previous
screen of the file.

Positions the file so that the
current line is at the top of the
screen.

Positions the file so that the
current line is at the bottom of
the screen.

Displays the editor HELP file.
The key is the key with the
white square on it.

Returns you to the previously
edited file.

Inserts a blank line over which
you can type a new line of text.
When you insert lines, the
function key prompts move
according to the number of lines
inserted. To align the prompts
properly, press . This
key does not require you to press

RETURN) afterward.

T Located on the numeric keypad to the right of the main keyboard.

11-18 Full Screen Editor

Revision C

‘ Viking
721 Key

719 or H19 Key

ZENITH Z19 OR HEATHKIT H19

Function

@©t

@EED @+

@1

When you press, it puts the
terminal into insert mode. While
insert mode is on, pressing any
character moves the existing
text to the right and inserts the
new character. Insert mode is
canceled when you either press

a second time or press
RETURN) .

Deletes the current line. When
you delete lines, the function key
prompts move according to the
number of lines deleted. To align

the prompts properly, press

RETURN). This key does not
require you to press (RETURN

afterward.

Deletes the current character.

@@LEAQ (sHIFT) (ERASE) + (RETURN) Rewrites the entire screen.

® =

Positions the cursor at the editor
subcommand line, allowing you
to enter editor subcommands.

Ends an input line.

. T Located on the numeric keypad to the right of the main keyboard.

Revision C

Using Other Terminals in Screen Mode

1119 |

ZENITH Z19 OR HEATHKIT H19

Initial Programmable Function Key Settings for the Zenith Z19/Heathkit .
H19:

719 or H19 Key Description

F1 moves forward one page in the file. When
F1 L shifted, F1 marks a line or lines to be used with

another function or subcommand.

Mrkchr F2 B moves backward one page in the file. When
F2 EY shifted, F2 marks a character or characters
for use with another function or subcommand.
Unmark F3 moves the current line to the top of the
X0 | ineup screen. When shifted, F3 cancels any marks
you have set.
Copy F4 positions the current line to the bottom
28 | inedn of the screen. When shifted, F4 copies any
marked lines or characters to the current line or
character.
Move F5 [ukIelel¥] moves the cursor to the end of the
SR Middle current line. When shifted, F5 moves any

marked lines or characters to the current line or

character. .

F6 undoes the previous change to your file.
F6 Y] When shifted, F6 moves the cursor to the end

of the current line.

Left F7 exits the editor, making changes to
T Quit your file permanent. When shifted, F7 moves
your view of the file to the left.

Right F8 accesses the editor HELP file. When shifted,
- HELP F8 moves your view of the file to the right 40
columns.

- Undefined but available as a function key only when
F9 shifted.

11-20 Full Screen Editor Revision C

ZENITH Z19 OR HEATHKIT H19

719 or H19 Key Description
Locnxt When shifted, F10 locates the next
F10 occurrence of a previously specified string.

When shifted, F11 locates all
F11

occurrences of a previously specified string.

LOCATE When shifted,F12 [EJE§fd moves the cursor to
F12

the subcommand line and prompts you for the text
you want to enter.

NOTES
® You must enter after pressing an editor function key.

e Function keys F1 through F5 are terminal keys f1 through 5.
¢ Function keys F6 through F8 are the following terminal keys:
F6 Blue square
F7 Red square
F8 White square

e To enter shifted function keys, use the numbers on the keypad to the right
of the main keyboard. For example, to enter a shifted F3, press:

(suiFT) (3) + (RETURN)

The @ key is on the keypad to the right of the main keyboard.

e The F10 through F12 keys are on the keypad to the right of the main
keyboard and are:

F10 (0)

Fii ()
F12

e The key, followed by (RETURN), rewrites the entire screen.

® The Z19 hardware has tabs set every eighth column beginning with 1.
These tabs are set at columns:

1917 25 33 41 49 57 65 73

To specify tabs other than these, use the tab character as set by the SET _
TAB_OPTIONS subcommand.

Revision C Using Other Terminals in Screen Mode — 11-21 l

 soiae 2
i
e Sssasty oot

it
i,
7

Revision C

e 1122 Full Screen Editor

ZENITH 729

. Equivalent CDC Standard Function Keys:
Viking
721 Key Zenith Z29 Key Function
() + Moves forward to the next

screen of the file.

= + Moves backward to the

previous screen of the file.

@ + (RETURN Positions the file so that the
current line is at the top of the
screen.

+ Positions the file so that the
current line is at the bottom of
the screen.

(HELP) + (RETURN) Displays the editor HELP file.
+ Returns you to the previously

BE g © @ &

edited file.
(=))t Inserts a blank line over which
you can type a new line of text.
. When you insert lines, the

function key prompts move
according to the number of
lines inserted. To align the
prompts properly, press

. This key does

not require you to

press
afterward.
+ When you press (iC), it puts the

terminal into insert mode.
While insert mode is on,
pressing any character moves
the existing text to the right
and inserts the new character.
Insert mode is canceled when
you either press @ a second

time or press (RETURN) .

‘ t Located on the numeric keypad to the right of the main keyboard.

Revision C Using Other Terminals in Screen Mode 1123 o

ZENITH Z29

Viking
721 Key Zenith Z29 Key Function
@ T Deletes the current line. When

(&) CLEAR)

(ot

you delete lines, the function
key prompts move according
to the number of lines deleted.
To align the prompts properly,
press . This key
does not require you to

press

afterward.

Deletes the current character.

(SHlFT)‘ERASE) + (RETURN) Rewrites the entire screen.

Positions the cursor at the
editor subcommand line,
allowing you to enter editor
subcommands.

Ends an input line.

1 Located on the numeric keypad to the right of the main keyboard.

® 11-24 Full Screen Editor

Revision C

ZENITH 729

Initial Programmable Function Key Settings for the Zenith Z29:

Zenith
729 Key Description
MARK F1 moves forward one page in the file.
SN fud When shifted, F1 marks a line or lines for

MRKCHR
A bkw
UNMARK
X3 | ineup
COPY
I | inedn
Move
W Middle
Endlin
W UNDO

Left
F7 [15k4

Revision C

later use with another subcommand.

F2 moves backward one page in the file.
When shifted, F2 marks a character or
characters for use with another function or
subcommand.

F3 moves the current line to the top of
the screen. When shifted, F3 cancels any
marks you have set.

F4 positions the current line to the bottom
of the screen. When shifted, F4 copies any
marked lines or characters to the current line or
character.

FS centers the display vertically around the
line the cursor is on. When shifted, F5 moves
any marked lines or characters to the current line or
character.

F6 undoes the previous change to your file.
When shifted, Fé moves the cursor to the
end of the current line.

F7 exits the editor, making changes to your
file permanent. When shifted, F?7 moves your
view of the file to the left.

Using Other Terminals in Screen Mode 11-25

ZENITH Z29

Zenith
729 Key Description

RIGHT F8 aligns the screen to display the beginning
33 top of the file. When shifted, F8 moves your

F9

F1

view of the file to the right 40 columns.

BOTTOM F9 checkpoints the file being edited
wrif (WRITE_FILE). When shifted, F9 aligns
the screen centered around the end of the file.

When shifted, F10 locates the next
0

occurrence of a previously specified string.

When shifted, F11 locates all occurrences of
F11

a previously specified string.

LOCATE When shifted, F12 [Ed3fd moves the cursor to the

F12 subcommand line and prompts you for the text you

want to enter.

Join When shifted, F13 adds the line after the

F13 current line onto the end of the current line.

Break When shifted, F14 divides the current line

F14 into two smaller lines just in front of the current

column. The cursor stays at the same place, which is
just beyond the last character of the first line of the
pair.

NOTES

You must enter after pressing an editor function key.-
Function keys F1 through F9 are terminal keys f1 through 9.

To enter shifted function keys, use the numbers on the keypad to the right
of the main keyboard. For example, to enter a shifted F3, press:

CHED @ + EETUAN)

The @ key is on the keypad to the right of the main keyboard.

The F10 through F14 keys are on the keypad to the right of the main
keyboard and are:

F10 (9 F3 (O
m QO s

2

The key, followed by (RETURN), rewrites the entire screen.

The Z29 hardware has variable tab settings. To specify tabs, use the tab
character as set by the SET_TAB_OPTIONS subcommand.

e 1126 Full Screen Editor Revision C

® Appendixes

GloSSAry A-1
Character Set i B-1
Command Strings That Define FunctionKeys C1
Viking 721 Terminal Settingsoo.... D-1

Glossary A

The following terms are used in this manual:

A

Alphabetic Character
One of the following letters:
A through Z
a through z

See Character and Alphanumeric Character.

Alphanumeric Character
An alphabetic character or a digit. See Character, Alphabetic Character,
and Digit.

ASCII

American National Standard Code for Information Interchange. A 7-bit
code representing a prescribed set of characters. The 7-bit ASCII code
character is stored right-justified in an 8-bit byte.

Batch Mode

A mode of execution where a job is submitted and processed as a unit
without intervention from the user. Contrast with Interactive Mode.

Block
A logical or physical grouping of data.

Boolean
A kind of value that can be either TRUE or FALSE.

Boolean Constant

A constant that represents a boolean (logical) value of TRUE or FALSE.
One of the following names can be used to specify a boolean constant:

TRUE FALSE

YES NO

ON OFF
Byte

A group of bits. For NOS/VE, a byte is 8 bits. An ASCII character code
uses the rightmost 7 bits of 1 byte.

Revision B Glossary A-1

GLOSSARY

C

Catalog
A directory of files and catalogs maintained by the system for a user. The
catalog $LLOCAL contains only file entries.
Also, the part of a path that identifies a particular catalog in a catalog
hierarchy. The format is as follows:
name.name.name

where each name is a catalog. See Catalog Name and Path.

Catalog Name

The name of a catalog in a catalog hierarchy (path). By convention, the
name of the user’s master catalog is the same as the user’s user name.

CDC Standard Keys

Keys on CDC terminals that perform the same functions on all
applications and can be performed on all supported terminals.

Character

A letter, digit, space, or symbol that is represented by a code in one or
more of the standard character sets.

It is also referred to as a byte when used as a unit of measure to specify
block length, record length, and so forth.

A character can be a graphic character or a control character. A graphic
character is printable; a control character is nonprintable and is used to
control an input or output operation.

Closed File

A file that is no longer open. Changes in a closed file cannot be undone. A
closed file is not affected by the END FALSE or QUIT FALSE
subcommand.

Command

An instruction to NOS/VE. Commands that can only be entered from
within the editor are editor subcommands.

Common Parameter

A parameter used by several subcommands for which the same values
can be entered.

Current Line

The line on which the cursor is positioned. If the cursor is on the
subcomand line, the current line is the line on which the cursor was
positioned when you pressed .

A-2 Full Screen Editor Revision B

GLOSSARY

Current Paragraph
A block of lines including the current line separated from the rest of the
file by empty lines.

Current Position

The location of the cursor in the file at this time. The editor determines the
current position by the line and column number. If the cursor is on the
subcommand line, the current position is the position at which the cursor

was positioned when you pressed .

Cursor

The pointer used by your terminal to indicate where you are positioned in
the file.

D
Deck

A sequence of lines in a source library that can be manipulated as a unit
by the Source Code Utility (SCU).

Delimiter
A character or sequence of contiguous characters that identify the end of
a string of characters and separate that string of characters from the
following string of characters. A delimiter is not part of the string of
characters that it delimits.

Delimiter String
A string that marks the end of text input.

Digit
One of the following characters:

0123456789

E

Editing Keys
Keys such as (INSRT), (DLETE), and (ERASE), whose functions are

predetermined and usually performed by software at your terminal.
Contrast with Programmable Function Keys.

Editing Session

The time from when you start the editor (by entering the EDIT_FILE or
EDIT _LIBRARY subcommand) to the time you stop the editor.

Revision C Glossary A-3

GLOSSARY

Ellipsis '
1. Two or more consecutive periods at the end of a physical line to
indicate command line continuation. The ellipsis can be optionally
preceded and/or followed by a space.

2. Two consecutive periods separating two values to indicate a range of
values in a parameter list.

End-of-Partition (EOP)
A special delimiter in a file with variable record type.

Epilogue
The procedure file that is executed when you stop the editor.

F

Family

A logical grouping of NOS/VE users that determines the location of their
permanent files. A family can be subdivided into accounts and projects.

Family Name
A name that identifies a NOS/VE family. See Family.

File
An SCL element specifying a temporary or permanent file, including its ‘
path and, optionally, a cycle reference (for permanent files). A file is
identified by specifying a path and, optionally, a cycle reference (for
permanent files) as follows:

path.cycle reference

A collection of information referenced by a name.

File Header

The line containing the file name. It is displayed during a screen editing
session.

File Name
The name of a NOS/VE file. It is used in a file reference to identify the
file. See Name.

File Position

The location in the file at which the next read or write operation will
begin. The file position designators are:

$ASIS Leave the file in its current position.
$BOI Position the file at the beginning-of-information.
$EOI Position the file at the end-of-information. ‘

l A-4 Full Screen Editor Revision C

GLOSSARY

File Reference

An SCL element that identifies a file and, optionally, the file position to
be established prior to use. The format of a file reference is as follows:

file.file position
See File and File Position.

FSE
See Full Screen Editor.

Full Screen Editor
An editor enabling you to edit files either page by page or line by line.

Function Key
A key on the terminal that, when pressed, performs a specified operation.
The operation can be either defined by the software or built into the
terminal.

Function Key Prompts

Labels displayed on your screen which describe the function of a
programmable function key prompt.

G

Graphic Character
A character that can be printed or displayed.

Integer

A value representing one of the numbers 0, +1, -1, +2, -2 ...

Interactive Mode

A mode of execution where a user enters commands at a terminal and
each command elicits a response from the computer. Contrast with Batch
Mode.

J

Job

A set of tasks executed for a user name. NOS/VE accepts interactive and
batch jobs. In interactive mode, a job is usually the same as a terminal
session.

Revision B Glossary A5

GLOSSARY

L

Line Identifier

The unique identifier of a line in a deck. The line identifier consists of a
modification name followed by a sequence number. The modification
name identifies the modification to which the line belongs.

Local File
A file that is accessed via the local catalog named $LOCAL. See also File,
Path, and Local Path.

Local File Name

The name used by an executing job to reference a file while the file is
assigned to the job’s $LOCAL catalog. Only one file can be associated
with a given name in one job; however, in one job a file can have more
than one instance of the file open by that name.

Local Path
Identifies a local file as follows:
$LOCAL.file name
Login
The process used to gain access to the system.
Logout
The process used to end a job.

M

Mask Character

A character the editor considers a match to any character in a string
comparison. In other words, it is a wild card character.

Message Row
The row on the screen where messages are displayed.

N

Name
A combination of from 1 through 31 characters chosen from:
Alphabetic characters (A through Z and a through z)
Digits (0 through 9)
Special characters (#, @, $, or _)
The first character of a name cannot be a digit.
Numeric Character
Any digit 0 through 9.

A-6 Full Screen Editor Revision B

GLOSSARY

e
Object
The thing being edited. In this manual, either a file or a deck.

Open File

A file prepared for data access. In this manual, an open file is a file that is
being edited or a file that has been edited but has not been closed with the
END_FILE subcommand. When you enter the END or QUIT
subcommand all open files are closed.

P
Path

Identifies a file. It may include the family name, user name, subcatalog
name or names, and file name.

Permanent Catalog
A catalog of permanent files.

Permanent File

A file that does not go away when you log off or when the system is
deadstarted. A permanent file has an entry in a permanent catalog. See

. File.
Programmable Function Keys
Keys whose function you can redefine. Contrast with Editing Keys.

Prologue
The file of commands that is executed when you start the editor.

S
Search Margins

An editing mode in which a file is edited with a page of text as the basic
unit of operation. Also, an SCU editor string-search option that restricts a
string search to a range of columns in each line.

Subcommand

A command that can only be entered and recognized from within the
editor.

Revision C Glossary A-7

GLOSSARY

- ®
Text-Embedded Directive

A text line that SCU processes as a directive when expanding a deck or a
file.

U

User Name

A name that identifies a NOS/VE user and the location of a user’s
permanent files in the user’s family.

User Path

Identifies a file or catalog via a user name and optionally a relative path
as follows:

.user name.relative path
or
$USER.relative path

\Y

V-Type Record

Variable-sized records; system default record type. Each V-type record has '
a record header. The header contains the record length and the length of
the preceding record.

W

Word

A string of alphanumeric characters (plus the special characters $, #, @,
and _) delimited by nonalphanumeric characters, blank characters, and
beginning or end of lines.

l A-8 Full Screen Editor Revision C

Character Set B

Table B-1 lists the ASCII character set used by the NOS/VE system.

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7-
bit ASCII code in an 8-bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the leftmost bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the leftmost
bit in an 8-bit byte for 256 characters. The use and interpretation of the
additional 128 characters is user defined.

Revision B Character Set B-1

CHARACTER SET

Table B-1. ASCII Character Set

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning
000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 0A 012 LF Line feed
011 0B 013 VT Vertical tabulation
012 oC 014 FF Form feed
013 0D 015 CR Carriage return
014 OE 016 SO Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DC1 Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 1B 033 ESC Escape
028 1C 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 1F 037 USs Unit separator
032 20 040 SpP Space
033 21 041 ! Exclamation point
034 22 042 ” Quotation marks
035 23 043 # Number sign
036 24 044 $ Dollar sign
037 25 045 Yo Percent sign
038 26 046 & Ampersand
039 27 047 ’ Apostrophe
040 28 050 (Opening parenthesis
041 29 051) Closing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus
044 2C 054 R Comma
045 2D 055 - Hyphen
046 2E 056 . Period
047 2F 057 / Slant

B-2 Full Screen Editor

(Continued)

Revision B

CHARACTER SET

Table B-1. ASCII Character Set (Continued)

. ASCII Code

Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

048 30 060 0 Zero

049 31 061 1 One

050 32 062 2 Two

051 33 063 3 Three

052 34 064 4 Four

053 35 065 5 Five

054 36 066 6 Six

055 37 067 7 Seven

056 38 070 8 Eight

057 39 071 9 Nine

058 3A 072 : Colon

059 3B 073 ; Semicolon

060 3C 074 < Less than

061 3D 075 = Equals

062 3E 076 > Greater than

063 3F 077 ? Question mark

064 40 100 @ Commercial at

065 41 101 A Uppercase A

066 42 102 B Uppercase B

067 43 103 C Uppercase C

068 44 104 D Uppercase D

069 45 105 E Uppercase E

070 46 106 F Uppercase F

071 47 107 G Uppercase G
. 072 48 110 H Uppercase H

073 49 111 I Uppercase I

074 4A 112 J Uppercase J

075 4B 113 K Uppercase K

076 4C 114 L Uppercase L

077 4D 115 M Uppercase M

078 4E 116 N Uppercase N

079 4F 117 (6] Uppercase O

080 50 120 P Uppercase P

081 51 121 Q Uppercase Q

082 52 122 R Uppercase R

083 53 123 S Uppercase S

084 54 124 T Uppercase T

085 55 125 U Uppercase U

086 56 126 \% Ubppercase V

087 57 127 V' Uppercase W

088 58 130 X Uppercase X

089 59 131 Y Uppercase Y

090 5A 132 Z Uppercase Z

091 5B 133 [Opening bracket

(Continued)

Revision B Character Set B-3

CHARACTER SET

Table B-1. ASCII Character Set (Continued) ‘

ASCII Code

Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning
092 5C 134 \ Reverse slant
093 5D 135 Closing bracket
094 5E 136 - Circumflex
095 5F 137 - Underline
096 60 -+ 140) Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase ¢
100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g
104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k
108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 o Lowercase o
112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s
116 74 164 t Lowercase t ‘
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w
120 78 170 X Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 { Opening brace
124 7C 174 | Vertical line
125 7D 175 } Closing brace
126 7E 176 - Tilde
127 7F 177 DEL Delete

B-4 Full Screen Editor Revision B

Subcommand Strings That Define
Function Keys C

The appendix lists the initial settings of the programmable function keys for
all the supported terminals. The string is the command string which defines
the particular key and the key prompt is the label that appears on the screen.

Viking 721 Subcommand String Settings

The subcommand strings associated with the initial settings for the Viking
721 terminal are:

String Key Prompt
1

mark_Lines MARK
unmark Unmrk
2

mark_characters Chrmk
mark_boxes Boxmk
3

align_screen top=first FIRST
align_screen middle=last LAST

4

align_screen middle=current middle
position_cursor L=c c=$strlen($lt)+1 endlin
5

undo UNDO

6

end END

7

locate_text t=$screen_input('Enter search string') LOCATE
position_cursor; position_cursor rs=true locnxt
8

esvdtext=$screen_input ('Enter search string'); locall

if esv8text='' then; esv$text=$text;
ifend: locate_text rs=true l=a v=true t=esv$text
exchange_screen_width 80/132

Revision C Subcommand Strings That Define Function Keys C-1

VIKING 721 SUBCOMMAND STRING SETTINGS

String Key Prompt

9

insert_empty_Lines p=b n=$split_size-4; insel
position_cursor d=b n=2; align_screen top=c
position_cursor r=$title_row+3

delete_empty_Llines delel

10

insert_characters nt=' inswrd

delete_word delwrd

11

break_text Break

12

join_text Join

14

copy_text L=m p=b Copy

move_text L=m p=b; unmark Move

15

indent_text l=m offset=2 INDENT

indent_text l=m offset=-2 dedent

16

format_paragraphs Format

center_Lline Center

C-2 Full Screen Editor

Revision C

CDC 722 SUBCOMMAND STRING SETTINGS

CDC 722 Subcommand String Settings

The subcommand strings associated with the default settings for the CDC

722 terminal are:

String Key Prompt
1
align_screen bottom=first_screen BKW
align_screen top=Llast_screen FWD
2
align_screen bottom=current Linedn
align_screen top=current Lineup
3
delete_characters c=c DELC
insert_characters nt=' ' INSC
4
delete_Llines l=c DELL
insert_Llines p=b nt=''; position_cursor d=b INSL
5
undo Undo
mark_Lines MARK
6
move_text L=m p=b; unmark Move
copy_text L=m p=b Copy
7
align_screen 0=0 Left
help HELP
8
esv8off=30; if $current_column<>1 then; Right
esv$off=$current_column-1; ifend;
align_screen offset=esv$off;
position_cursor Ll=c c=$current_column+30
end END
9
unmark Unmrk
position_cursor l=c c=$strien($Lt)+1) Endlin

Revision C Subcommand Strings That Define Function Keys C-3

CDC 722-30 SUBCOMMAND STRING SETTINGS

CDC 722-30 Subcommand String

Settings

The subcommand strings associated with the default settings for the CDC

722-30 terminal are:

String Key Prompt

1

unmark Unmrk

mark_Llines MARK

2

mark_boxes Boxmk

mark_characters Chrmk

3

align_screen top=current LinUp

align_screen top=last_screen FWD

4

align_screen bottom=current LinDn

align_screen bottom=first_screen BKW

5

help Help

undo UNDO

6

if$offset=0 then; alis 0=53; else; alis 0=0; ifend Offset

end END

7

position_cursor; position_cursor rs=true; locnxt

locate_text t=$screen_input('Enter search string') Locat

8

move_text L=m p=b; unmark Move

copy_text L=m p=b COoPY

9

align_screen middle=last Last

align_screen top=first First

10

position_cursor l=c c=1+$strlen($lt) Endln

align_screen middle=current middl

11

break_text Break

12

join_text Join
e C4 Full Screen Editor Revis

DEC VT100 SUBCOMMAND STRING SETTINGS

‘ DEC VT100 Subcommand String

Settings
The subcommand strings associated with the default settings for the DEC
VT100 terminal are:
String Key Prompt
1
align_screen bottom=first_screen BKW
align_screen top=last_screen FWD
2
align_screen bottom=current Linedn
align_screen top=current Lineup
3
delete_characters c=c DELC
insert_characters nt=' ' INSC
4
delete_Llines l=c DELL
insert_Lines p=b nt='"' INSL
5

‘ undo Undo
mark_Llines MARK
6
move_text L=m p=b; unmark Move
copy_text L=m p=b Copy
7
position_cursor r=$home_row c=1 HOME
help HELP
8
activate_screen Clear
end END
9
unmark Unmrk
position_cursor L=c c=$strlen($lt)+1) Endlin

Revision C Subcommand Strings That Define Function Keys C-5

IBM PC (OR EQUIVALENT) SUBCOMMAND STRING SETTINGS
IBM PC (or Equivalent) Subcommand
String Settings

The subcommand strings associated with the default settings for the IBM
PC (or equivalent) terminal are:

String Key Prompt
1

unmark Unmrk
mark_Llines MARK

2

delete_text L=c b=s c=$cc..max Trunc
mark_characters Chrmk
3

move_text L=m p=b; unmark Move
copy_text l=m p=b CoPY
4

join_text Join
break_text Break
5

acts Clear
undo UNDO

6

quit QUIT

7

locate_next Locnxt
locate_string t=$screen_input('Enter search string') Locate
8

if$offset=0 then; alis 0=53; else; alis 0=0; ifend Offset
esv$text=$screen_input ('Enter search string'); Locall

if esv$text='' then locate_all; else;
locate_all t=esv$text; ifend

9

format_paragraphs Format
align_screen middle=current MiddLe
10

center_Lines Center
position_cursor L=c c=$strlen($lLt)+1 Endlin

C-6 Full Screen Editor Revision C

ZENITH Z19/HEATHKIT H19 SUBCOMMAND STRING SETTINGS

‘ Zenith Z19/Heathkit H19 Subcommand
String Settings

The subcommand strings associated with the default settings for the Zenith
Z19 and Heathkit H19 terminal are:

String Key Prompt
1
mark_Llines MARK
align_screen top=last_screen FWD
2
mark_characters Mrkchr
align_screen bottom=first_screen BKW
3
unmark Unmark
align_screen top=current Lineup
4
copy_text l=m p=b Copy
align_screen bottom=current Linedn
5

. move_text L=m p=b;unmark Move
align_screen middle=current Middle
6
position_cursor Ll=c c=$strlen($Lt)+1 Endlin
undo UNDO
7
align_screen offset=0 Left
end Quit
8
esv¥off=30; if $current_column<>1 then; Right

esv$off=$current_column-1; ifend;
align_screen offset=esv$off;
position_cursor L=c c=$current_column+30
help HELP

Revision C Subcommand Strings That Define Function Keys C-7 I

ZENITH Z19/HEATHKIT H19 SUBCOMMAND STRING SETTINGS

String Key Prompt ‘
10

position_cursor; position_cursor rs=true Locnxt

11

esvBtext=$screen_input ('Enter search string'); Locall

if esvBtext='' then; esv$text=$text; ifend;
locate_text rs=true l=a v=true t=esv$text

12
locate_text t=$screen_input('Enter search string') LOCATE

C-8 Full Screen Editor Revision C

ZENITH Z29 SUBCOMMAND STRING SETTINGS

Zenith Z29 Subcommand String Settings

The subcommand strings associated with the default settings for the Zenith
Z29 terminal are:

String Key Prompt
1

mark_Lines MARK
align_screen top=last_screen fwd

2

mark_characters MRKCHR
align_screen bottom=first_screen bkw

3

unmark UNMARK
align_screen top=current Lineup
4

copy_text L=m p=b COPY
align_screen bottom=current Linedn
5

move_text L=m p=b; unmark MOVE
align_screen middle=current Middle
6

position_cursor l=c c=$strlen($lt)+1 Endlin
undo UNDO

7

align_screen offset=0 Left
end Quit

8

esv3off=30; if $current_column < > 1 then; RIGHT

esv8off=$current_column ifend;
align_screen offset=esv$off;
position_cursor Ll=c c=$current_column+30

align_screen top=first top

9

align_screen middle=last BOTTOM
write_file wrif
10

position_cursor; position_cursor rs=true; Locnxt

Revision C Subcommand Strings That Define Function Keys C-9 e

ZENITH Z29 SUBCOMMAND STRING SETTINGS

String Key Prompt .
11
esv$text=8$screen_input('Enter search string'); Locall

if esvBtext='"' then; esv$text=$text; ifend;
locate_text rs=true l=a v=true t=esv$text

12

locate_text t=$screen_input('Enter search string') LOCATE
13

join_text JOIN
14

break_text BREAK

e (C-10 Full Screen Editor Revision C

Viking 721 Terminal Settings D

The Viking 721 terminal has three sets of parameters that must be set
correctly to ensure correct operation under the editor. The first set, the
terminal installation parameters, tells the terminal what additional items are
installed with the terminal. The second set, the mode installation
parameters, determines how each mode will operate. The third set, the
operator parameters, allows the terminal user to change certain guidelines.

Once the terminal is installed the first two sets of parameters need not be
changed. The settings are stored in the terminal’s nonvolatile memory and
do not need to be reentered unless the battery loses its power. If you want
detailed information about these parameters refer to the Control Data 721-
21/31 Owner Manual. The CDC 721-10/20/30 Hardware Reference Manual
also contains the needed information (ordering information is in About This
Manual).

The operator parameters allow you to temporarily change some of the
guidelines set up when the terminal was installed. When you reset the
terminal or turn it off, the settings go back to their defaults. To change the
default setting you must change some of the installation parameters. For use
with the editor the operator parameters should be set as shown here. These
parameters are software toggle switches. That is, you have a limited number
of options (usually two) from which to choose. To change a setting, press the
corresponding programmable function key. The first set of prompts appears
when you turn on your terminal.

@ MODE TRMODE 2 MMODE 3MMODE 4GEMODE SEMMODE S RIMMODE 7l TRMNL
B CYBER REPLATO EEf CP/M EADISK bl 4014 6 7 PACK B TEST
Press:

IAMODE 1

il C YBER

to select CYBER mode. At this point, the screen becomes blank except for the
cursor.

Press:

to display the operator parameters and change them, if necessary, to the
following settings:

[l Ret urn I L INE il PRNTR EIMARGIN I ALERT RGN LOCK N PAD ESESCREEN 3 CYBER 78 MORE
1 F4 ON IEJ OFF NA ON BESOFT NN ALPHANENORMAL I ROLL RCBUARGE IV SELECT

Revision B Viking 721 Terminal Settings D-1

VIKING 721 TERMINAL SETTINGS

Then, press: .
IS M OR E
I SELECT
to set more operator parameters to the following:
return LAEBACKGD i3l C URSOR 3l C URS OR il BA UD JSl DUPLE X J3C HR/ LNl LINES Il XPARNT Il m od
Il vark EIBLOCK EEsoLin BN1200CH HALF Bl 30 [KEJ 30 KN OFF AR SELECT
When you have set all parameters, press

@ return '
1

to remove the prompts from the screen. You are now ready to log in to
NOS/VE.

NOTE
You must also ensure that parity is set to EVEN or NONE.

D-2 Full Screen Editor Revision B

. Index

Index

A

About this manual 7
ACTIVATE_SCREEN 3-2;5-2
ACTS 3-2;52
Adding
Blank lines 3-30; 5-25
Characters 3-27; 5-23
Lines 3-28; 5-24
Text to end of line 3-11
Words 3-29; 5-26
Adding trailing blanks 7-12
Additional related manuals 12
ALIGN_SCREEN 7-8
Alignment of screen 7-8
ALIS 7-8
ALL value 4-4
Allowable characters
in a word 7-14
Arrow keys 3-8; 5-10
ASCII character set B-1
Audience 7

BACK 6-2
Backspace 2-2;6-1
BACKTAB 5-12;6-1
Backward 3-16
Basic editing functions 3-1
Basics 3-1
Before you continue 4-1
Beginning editor 3-1
BKW 3-16; 5-14; 6-2
Blank lines
Delete 3-26; 5-30
Deleting 5-36
Insert 3-30; 5-22,25
Blanks 1-2; 7-12
Blocks of empty lines 3-26
BOUNDARY parameter 4-2
Boxmk 6-3
Break 5-68; 6-5
BREAK_TEXT 5-69

Revision C

Breaking lines 5-68
BRET 5-69

C

Cancelling tab settings 7-11
Capabilities 1-1
Carriage return 2-2
CDC standard function keys 6-2
CDC 722 function keys 11-1
CDC 722 terminal 11-1
CDC 722 2-3
CDC721 7-1
CDC722-30 2-3; 7-1;11-5
CDC722 2-3;7-1;11-1
CENL 5-73
CENTER_LINES 5-73
Changing
Characters allowed
in a word 7-14
Columns displayed 7-1
Files displayed 7-1
How lines are listed in
line mode 7-15
Line width 7-12
Lines 5-38
Lines displayed 7-1
Rows of prompts 7-1
Screen alignment 7-8
Screen content 3-9
Screen display 7-1
Tab character 7-10
Tab setting 7-10
Tab settings 7-10
Text 5-40
Verify option 7-13
Character
Copying 3-42
Mark 5-42
Marking 3-40; 6-3
Mask 4-9
.Moving 3-45
Tab 7-10
Character set B-1

Full Screen Editor Index-1 ®

INDEX

Characters
Delete 3-23; 5-30,31; 6-1
Deleting 5-37
Insert 3-27; 5-22,23; 6-1
Replace 5-40
Chrmk 3-40; 5-42; 6-3
CLEAR 6-1
CLEAR_TAB 7-11
Clearing screen 6-1
Clearing tab 7-11
CLET 7-11
Close files 4-6
Closing
All edited files 5-9
Current file 5-10
Closing a deck 8-10
Column numbers list 7-17
COLUMN parameter 4-3
Columns
Changing number
displayed 7-1
Tab 7-10
132 6-4
80 64
$COMMAND 5-1
Common editing functions 5-1
Common parameters 4-2
Control Data Viking 721
terminal 2-1
Control Data 722 7-1
Conventions 10
COPT 5-55
Copy 6-5
COPY key 5-46
COPY_TEXT 5-55
COPY 3-41,43
Copying
Between files 5-46
Between working and external
files 5-57
Characters 3-42
Function keys 5-46; 6-5
General description 3-41
Lines 3-41
Subcommands 5-55
Correcting errors in
screen mode 3-9

o Index-2 Full Screen Editor

Correcting mistakes 3-46
Creating a file 3-6; 5-4

Creating multipartition files 5-67
Current status 3-5

CURRENT value 4-3,4

Cursor 3-5

Cursor movement 2-2; 3-8

Cursor positioning 5-12

D

DATA 6-2
DC 5-31
DEACTIVATE_SCREEN 5-10
DEAS 5-10
DEC VT100 2-3;7-1;11-9
Deck
Close 8-10
Deleting changes 8-8
Editing a specific 85,7
Editing the first 8-5,7
Editing the last 8-6,7
Editing the next 8-6,7
Opening 8-5,6
Deck listings 7-15
Decks 8-1
dedent 5-30; 6-5
Define tab character 7-10
Defining function keys 6-6
Definitions A-1
DELC 531
delel 3-26; 5-30; 6-4
DELEL 5-36
DELETE_CHARACTERS 531
DELETE_EMPTY_LINES 5-36
DELETE_LINES 5-32
DELETE_TEXT 5-34
DELETE_WORD 5-36
Deleting
Blanks 1-2
Blocks of empty lines 3-26
Blocks of text 5-34
Characters 3-23; 5-30,31; 6-1
Characters from the beginning
of lines 5-37
Current character 6-1
Current line 6-1

Revision C

Deck changes 8-8
Empty line 3-26
Empty lines 5-30,36; 6-4
End of line 6-1
General description 3-23
Line 3-24
Lines 5-30,32; 6-1
Subcommands 5-30
Tab columns 7-11
Words 3-24; 5-30,36
Deleting function keys 5-30
DELL 5-32
DELT 5-34
DELW 5-36
delwrd 3-24; 5-30,68; 6-5
Discarding deck changes 8-8
DISCN 7-17
DISES 7-16
DISP 7-16
DISPLAY_COLUMN _
NUMBERS 7-17
DISPLAY_EDITOR_
STATUS 7-16
DISPLAY_POSITION 7-16
Displaying
Status information 7-16
Displaying column numbers 7-17
Displaying status
information 7-16
Displays next screen 6-2
DLETE 3-23; 5-30; 6-1
DOWN 6-2
DW 5-36

E

EDID 85

EDIF 31;51

EDIFD 8-5

EDIL 82

EDILD 86

EDIND 8-6
EDIT_DECK 8-5
EDIT_FILE 3-1;5-1
EDIT_FIRST_DECK 8-5
EDIT_LAST_DECK 8-6
EDIT_LIBRARY 8-2

Revision C

INDEX

EDIT_NEXT_DECK 8-6
Edit SCU decks 8-2
Edit top file 6-2
EDIT 3-21;6-2; 7-2
Editing
First deck on library 8-5,7
Last deck on library 8-6,7
Next deck on library 8-6,7
Specific deck 8-5,7
Editing keys 6-1
Editing more than one file at the
same time 7-2
Editing SCU decks 8-1
Editor concepts 4-1
Editor options 7-1
Editor status 6-4; 7-16
Empty lines
Delete 3-26;5-30
Deleting 5-36
Insert 3-30; 5-22,25
END_DECK 8-10
END_FILE 5-10
End-of-partition delimiter 5-1,67
End split screen 6-2
END 3-47; 5-9;6-4; 8-11
ENDD 8-10
ENDF 5-10
endlin 5-12; 6-3
ENDLIN 3-11
Entering subcommands
Line mode 5-7
Screen mode 3-19; 5-6
Entering text
Line mode 5-5
Screen mode 5-4
Entering, text
Screen mode 3-7
Epilogue file 10-1
ERASE 6-1
Erasing 6-1
Example procedures 9-10
EXCHANGE_POSITION 5-45
EXCHANGE_SCREEN _
WIDTH 7-8
EXCP 545
EXCSW 7-8
External files 4-5

Full Screen Editor Index-3 e

INDEX

F

File
Creating 3-6; 5-4
Header 3-4
Help 5-8;6-2
Multipartition 5-67
Reposition 6-2
Size 7-16
Text 3-5
Variable record type 5-67
FILE 31
Files
Changing number
displayed 7-1
Close 4-6
Epilogue 10-1
External 4-5
Input 51
Inserting 5-28
Multipartition 5-1
Open 4-6
Output 5-1
Prologue 10-1
Specification 5-1
Working 4-5
FIRST 6-3
First line 3-15
FIRST_MARK value 4-3,4
FIRST_SCREEN value 4-4
FIRST value 44
Format of the screen 3-4
FORMAT_PARAGRAPHS 5-72
Formatting text 5-68
FORP 5-72
Forward 3-16
Full Screen Editor 8
Capabilities 1-1
Stopping 3-47; 6-4
Function key
Definitions 7-16
Function key prompts 7-2
Function keys 6-1
CDC standard 6-2
CDC 722 111
CDC 722 definitions C-3
DEC VT100 11-6
DEC VT100 definitions C-4

® Index-4 Full Screen Editor

Delete 5-30
Editing 6-1
Heathkit H19 11-10
Heathkit H19 definitions C-5
Insert 5-22
Programmable 3-5; 6-3
Viking 721 definitions C-1
Zenith Z19 11-10; C-5

Functions 9-5

FWD 3-16; 5-14; 62

F1 MARK 3-39; 5-42,46,61; 6-3

F10 delwrd 3-23,24

F10 inswrd 3-29; 5-22,68; 6-5

F11 Break 5-68;6-5

F12 Join 5-68; 65

F14 Copy 6-5

F15 INDENT 5-22; 6-5

F2 Chrmk 3-40; 5-42,46,61; 6-3

F3 FIRST 3-15; 6-3

F4 ENDLIN 3-11

F4 middle 6-3

F5 UNDO 3-46; 5-65; 6-4

F6 END 3-47; 5-9; 6-4

F7 LOCATE 3-32; 5-15; 6-4

F7locnxt 3-35

F8locall 3-36; 6-4

F9 delel 3-26

F9insel 3-30; 5-22; 6-4

G

General Description 6-4
Function key 5-65
Subcommand 5-66

Getting help 5-8; 6-2

Getting Help 3-19

Getting started 3-1

Glossary A-1

Going to the first line 3-15

Going to the last line 3-15

H

Heathkit H19 2-3;7-1; 11-17
Help 3-19; 5-8; 6-2

HOME 3-19; 5-12

How to enter subcommands 5-6

Revision C

IBM PC 2-3;7-1;11-13

IC 523

Increasing the file length 3-12

INDENT_TEXT 5-27,37

INDENT 5-22; 6-5

Indenting text 5-22,27

Index

INDT 5-27,37

INSC 5-23

insel 3-30; 6-4

INSEL 5-25

INSERT_CHARACTERS 5-23

INSERT_EMPTY _LINES 5-25

INSERT_LINES 5-24

INSERT_WORD 5-26

Inserting
Blank characters 5-22
Blank lines 3-30; 5-22
Blocks of empty lines 3-30
Characters 3-27; 5-23; 6-1
Empty lines 3-30; 5-22,25; 6-5
Files 5-28
Function Keys 5-22
General description 3-27
Lines 3-28,30; 6-1
Subcommands 5-22
Text from another file 5-28
Words 3-29; 5-22,26; 6-5

inset 5-22

INSL 5-24

INSRT 3-27; 5-22; 6-1

INSW 5-26

inswrd 3-29; 5-22,68; 6-5

J

Join 5-68; 6-5
JOIN_TEXT 5-70
Joining lines 5-68,70; 6-5
JOIT 5-70

K
Keys

CDC standard 6-2

Revision C

INDEX

Cursor positioning 2-2
Editing 6-1

Function 6-1
Prompts displayed 7-2
Redefine setting 6-6

L

Last line 3-15
LAST_MARK value 4-34
LAST_SCREEN value 4-4
LAST value 4-4
LAST 6-3
Leaving FSE 3-47
Lengthing the file 3-12
Limit search columns 5-21
Limiting line width 7-12
Line
Break 5-68
Changing width 7-12
Copying 341
Enter 3-7;54
Join 5-70
Marking 3-39; 6-3
Moving 3-44
Width 7-12
Line editing 1-1
Line identifiers 7-15
LINE parameter 4-4
Lines
Changing number
displayed 7-1
Delete 3-24; 5-30,32; 6-1
Insert 3-28,30; 5-22; 6-1
Listing 5-71
Mark 5-42
Replacing 5-38
LISB 5-14.1
LISF 514.2
LISL 5143
LIST_BACKWARD 5-14.1
List column numbers 7-17
LIST_FORWARD 5-14.2
LIST_LINES 5-14.3
Listing decks 7-15
Listing lines 5-71
LOCA 5-18.1

Full Screen Editor Index-5 @

INDEX

locall 3-36; 5-15; 6-4
Locate
Line 5-12
Text 5-12
LOCATE_ALL 5-18.1
LOCATE_EMPTY_LINES 5-19
LOCATE_NEXT 5-18.2
LOCATE_STRING 5-18.2
LOCATE_TEXT 5-16
LOCATE_WIDE_LINES 5-20
LOCATE 3-32; 5-15; 6-4
Locating
All occurrences 3-36; 5-15
Empty lines 5-19
Examples 5-18
General description 3-32
Next occurrence 3-35; 5-15
String 3-32; 5-15
Text 3-32;5-15,16
Wide lines 5-20
LOCEL 5-19
LOCN 5-18.2
locnxt 3-35; 5-15; 6-4
LOCS 5-18.2
LOCT 5-16,71
LOCWL 5-20

M

Manual conventions 10
Manual organization 7
Manual set 7
Manuals
Ordering 12
Related 12
MARB 5-43
MARC 5-44
Mark 3-39
MARK_BOX 5-43
MARK_CHARACTER 5-44
MARK_LINES 543
Mark value 4-3
MARK value 4-4
MARK 5-42; 6-3
Marking 3-39
Characters 5-42; 6-3
Function keys 5-42

o Index6 Full Screen Editor

General description 5-42
Lines 5-42;6-3
Subcommands 5-43
MARL 543
Mask character 4-8
Maximum value 4-3
MC 5-43
Menu row 3-24
MENU_ROWS parameter 7-2
Message line 3-4
middle 6-3
ML 5-43
Model 3-2;5-2
MODEL parameter 7-1
Move 5-61;6-5
Move cursor
Down 5-12
Keys 5-12
Left 5-12
Right 5-12
Subcommands 5-12
To next tab setting 5-12
To previous tab setting 5-12
To subcommand line 5-12
Up 512
Move screen backward one
screen 6-2
MOVE _TEXT 562
Move to next tab 6-1
Moving
Backward 3-16
Cursor 22
Forward 3-16
From screen to screen 3-16
Function keys 5-61
General description 3-44
Screen by screen 5-14
Subcommands 5-62
Text 561
The cursor 5-12
To first line 6-3
To last line 6-3
To the end of a line 3-11
To the first line 3-15
To the last line 3-15
Within the file 3-12
Moving around the screen 3-8

Revision C

Moving to the end of a line 3-11
MOVT 5-62
Multipartition file 5-1,67

N

New line 2-2
NEXT 6-2

o

Online help 3-19; 5-8; 6-2
Open files 4-6
Opening decks
Closing previous deck 8-6
General description 8-4
Maintaining other decks 8-5
Ordering manuals 12
Organization 7

P

Paging 5-14;6-2
Painting the screen 5-6; 6-1
POSB 5-14
POSC 5-12
POSF 5-14
Position
Saving 5-45
POSITION_BACKWARD 5-14
POSITION_CURSOR 5-12
POSITION_FORWARD 5-14
Positioning the cursor 2-2
Printing lines in line mode 5-16
Procedure end 9-3
Procedure header 9-2
Procedures 9-1
Examples 9-10
Functions used in 9-5
Structure 9-1
PROCEND 9-3
Programmable function keys
Defining 6-6
Description 6-3
Prompts 3-5,24
Prologue 5-1

Revision C

INDEX

Prologue file 10-1
Prompts
Changing number
displayed 7-1
PUT_ROW 94
PUTR 94

Q

quit 3-47
QUIT 5-9; 8-11

READ_FILE 5-28,59
REAF 528,59
Realign screen 7-8
Record type 5-1
Record type of variable 5-67
Redefine key settings 6-6
REFR 5-6
REFRESH_ROW 5-6
Refreshing the screen 5-6; 6-1
Related manuals 12
REPL 5-38
REPLACE_LINES 5-38
REPLACE_TEXT 540
Replacing

Blocks of text 5-40

Lines 5-38
Reposition file 6-2
REPT 5-40
RESD 838
RESET_DECK 88
RESET_FILE 5-66
RESF 5-66
RESP 545
RESTORE_POSITION 5-45
Restoring the screen 5-6; 6-1
Restoring your position 5-45; 6-2
Return 2-2
Reversing changes 5-65
Rewrite screen 6-1

S
SAVE_POSITION 5-45

Full Screen Editor Index-7 ®

INDEX

Saving positions 5-45
SAVP 545
SCL manual set 7
SCL procedures 9-1
Screen
Alignment 7-8
Clear 6-1
Display 7-1
Display next 6-2
Format 3-4
Painting 5-6; 6-1
Refreshing 5-6; 6-1
Splitting 7-1
Width 5-20; 7-1,12
Screen editing 1-1
Screen mode 5-4
SCREEN value 4-4
SCU decks 7-15; 8-1
SCU_EDITOR_EPILOG 10-1
SCU_EDITOR_PROLOG 10-1
SCU, stopping 8-11
Search margins 5-21
Searching
All occurrences 3-36; 5-15
Empty lines 5-19
For all occurrences 3-36
For text strings 3-32
For the next occurrence 3-35
Function keys 5-15
General description 3-32
Margins 5-21
Next occurrence 3-35; 5-15
String 5-15
Subcommands 5-15
Text 3-32; 5-15
Wides lines 5-20
SELD 8-7
SELECT_DECK 8-7
SELECT_FIRST_DECK 8-7
SELECT_LAST_DECK 8-7
SELECT_NEXT_DECK 8-7
Selecting editor options 7-1
SELFD 8-7
SELLD 8-7
SELND 8-7
SET_EPILOG 10-1
SET_FUNCTION_KEY 6-6

o Index-8 Full Screen Editor

SET_LINE_WIDTH 7-12
SET_LIST_OPTIONS 7-15
SET_MASK 4-9
SET_PARAGRAPH _
MARGINS 5-71
SET_SCREEN_OPTIONS 7-1
SET_SEARCH_MARGINS 5-21
SET_TAB_OPTIONS 7-10
SET_VERIFY_OPTION 7-13
SET_WORD_
CHARACTERS 7-14
SETE 10-1
SETFK 6-6
SETLO 7-15
SETLW 7-12
SETM 49
SETPM 5-71
SETSM 5-21
SETSO 7-1
Setting

Line width 7-12

Search margins 5-21

Tab character 7-10

Tabs 7-10

Your Viking 721 terminal D-1
SETTO 7-10
SETUP D-1
SETVO 7-13
SETWC 7-14
Shift 2-2
SHIFT CLEAR 6-1
SHIFT DLETE 5-30; 6-1
SHIFT ERASE 6-1
SHIFT F1 Unmrk 3-40; 5-42; 6-3
SHIFT F10 delwrd 5-30,68; 6-5
SHIFT F14 Move 3-44;6-5
SHIFT F14 MOVE 5-61
SHIFT F15 dedent 5-30; 6-5
SHIFT F2 Boxmk 6-3
SHIFT F3 LAST 6-3
SHIFT F4 endlin 5-12; 6-3
SHIFT F7 locnxt 5-15; 6-4
SHIFT F8 132col 6-4
SHIFT F9 delel 5-30; 6-4
SHIFT INSRT 3-28; 5-22; 6-1
Shift lock 2-2
Size of file 7-16

Revision C

Source Code Utility 8-1

SOURCE_CODE_UTILITY 8-2

Split-screen editing 7-2
SPLITS parameter 7-2
Splitting lines 5-68; 6-5
Splitting screen 7-1
Standard function keys 6-2
Starting the editor 3-1; 5-1
Statement list 9-2
Status 3-5; 6-4
Status information 7-16
STATUS parameter 4-4
Stop a search 6-2
STOP 5-9; 6-2
Stopping
An editing session 3-47
Editor 8-11
FSE 6-4
Function keys 3-47; 59
Screen mode 5-10
SCU 8-11
Subcommands 3-47; 59
Store current position 6-2
Storing positions 5-45
Storing your position 6-2
String
Delete 5-36
Mark 5-42
Replace 5-40
Strings
Insert 5-22
Subcommand
Abbreviations 4-1
Line 34
Strings C-1
Syntax 4-1
Subcommand syntax 4-1
Subcommands 3-19; 5-6
Entering 3-19
Submitting comments 12
Supported terminals 2-1; 3-2

Revision C

T

Tab
Clear 7-11
Settings 7-10
Tab backward 2-2
Tab character 7-16
Tab column 7-16
Tab forward 2-2
Tab movement 6-1
TAB 5-12; 6-1
Tabs 7-10
Terminal
CDC 722 2-3;11-1
CDC 722-30 2-3;11-5
DEC VT100 2-3;11-9
Heathkit H19 2-3; 11-17
IBM PC 2-3;11-13
Viking 721 2-3; D-1
Zenith Z19 2-3;11-17
Zenith 729 2-3;11-22
Terminal model 3-2; 5-2
Terminate input line 6-2
Text
Delete 5-34
Enter 3-7;54
Indenting 5-27
Replace 5-40
Text formatting
Function keys 5-68
Subcommands 5-68
Text string searching 3-32
Trailing blanks 7-12
Typing over 39

Full Screen Editor

INDEX

U

UNDO 5-66; 6-4

Undoing 3-46

UNM 5-44

Unmark 5-42

UNMARK 5-44

Unmarking 3-40; 6-3
Subcommands 5-44

Unmrk 3-40; 5-42; 6-3

UNTIL character 5-5

UP 6-2

Using other terminals in screen

mode 11-1

\Y

Variable record type file 5-67
Verify option 7-13
VETO parameter 4-7
Viking 721 subcommand

strings C-1
Viking 721 terminal 2-1; 7-1
Viking 721 terminal settings D-1
VT100 7-1

o Index-10 Full Screen Editor

W

WEOP directives 5-1
WEOP 5-67
Width 5-20; 7-1,12
Word
Processing 5-68
Words
Allowable characters 7-14
Delete 3-24; 5-30,36
Insert 3-29; 5-22,26; 6-4
Working files 4-5
WRIF 557
WRITE_FILE 5-57

z

Zenith Z19 2-3; 7-1; 11-17
Zenith Z29 2-3;7-1;11-22
719 7-1;11-17

729 7-1;11-22

132 columns 6-4

721 2-1;71

722 7-1;11-1

80 columns 6-4

80/132 64

Revision C

Full Screen Editor for NOS/VE 60464015 C

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be used. Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have?
0O Manager 0O As an Overview O SCL Language Definition
O Systems Analyst or Programmer O To Learn the Product/System 0O SCL System Interface

O Applications Programmer O For Comprehensive Reference O SCL Quick Reference

O Operator O For Quick Look-up O Full Screen Editor

O Other

‘What programming languages do you use?
Which are helpful to you? 0 Common Parameters (inside front cover) [0 Subcommand Index (inside back cover)
O Related Manuals page O Character Set [0 Glossary [1 Other:

How Do You Like This Manual? Check those that apply.

<
@

Somewhat
(=]

S

Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?

Is the order of topics logical?

Are there enough examples?

Are the examples helpful? (O Too simple O Too complex)

Is the technical information accurate?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you what you need to know about the topic?

ooooooooo
gooooooo
ooooooooag

Comments? If applicable, note page number and paragraph.

Would you like areply? O Yes O No Continue on other side

From:

Name C

Address Date

. Phone No.

Please send program listing and output if applicable to your comment.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY ADDRESSEE

(SB) CONTROL DATA

Publications and Graphics Division
ARH219

4201 Lexington Avenue North
Saint Paul, Minnesota 55112

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

Comments (continued from other side)

Subcommand Index

A

ACTIVATE_SCREEN 3-2;52
ACTS.......ooiiiiiiat 3-2; 52
ALIGN_SCREEN............. 7-8
ALIS 7-8
B

BREAK_TEXT 5-69
BRET...................ooou 569
C

CENLool, 573
CENTER_LINES 573
CLEAR TAB................ 7-11
CLET.........coooiviiiiniin, 7-11
COPT......coviiiiiiaaenen 5-55
COPY_TEXT 5-55
D

DEACTIVATE_SCREEN 510
DEAS ...l 5-10
DELCcoiiiieniian... 531
DELELc...co.. 5-36

DELETE_CHARACTERS....531
DELETE_EMPTY_LINES ...5-36

DELETE_LINES 5-32
DELETE_TEXT 5-34
DELETE_WORD 5-36
DELL.............oooiiitl 5-32
DELT.........c..ooiiiiitt 5-34
DELW ...t 5-36
DISCN.......c.oiiiiint 7-17
DISES ...t 7-16
DISP ...t 7-16
DISPLAY_COLUMN _

NUMBERS................. 7-17
DISPLAY_EDITOR_

STATUScont 7-16
DISPLAY_POSITION 7-16

E
EDID...........cooiiiint. 8-5
EDIFoiet 3-1;5-1
EDIFD..............ooiinit 8-5
EDILoooiiiiiit, 8-2
EDILD............coooiiiiiit, 8-6
EDINDoooiiiiiin, 8-6
EDIT_DECK 8-5
EDIT_FILE............... 31;5-1
EDIT_FIRST _DECK 8-5
EDIT_LAST DECK 8-6
EDIT_LIBRARY.............. 8-2
EDIT_NEXT_DECK.......... 8-6
END............oooiiii 59; 811
ENDDooviiiinnn. 810
END _DECK................. 8-10
ENDF ...t 510
END _FILE 510
EXCHANGE_POSITION545
EXCHANGE_SCREEN _
WIDTH...................... 7-8
EXCP....ooooiiiiiiiii 545
EXCSW....c..ooiiiiiiiiat, 7-8
F
FORMAT_PARAGRAPHS ...5-72
FORP................ooi 572
H
HEL....................ol. 5-8
HELP 5-8
|
INDENT_TEXT 527,37
INDT ...t 5-27,37
INSC ..o 523
INSEL.........ooovvvvninnnt 5-25

INSERT_CHARACTERS523
INSERT_EMPTY_LINES....525

(Continued)

INSERT_LINES 5-24 POSITION_BACKWARD514

INSERT_WORD 52 POSITION_CURSOR........ 511
INSL oo oo 524 POSITION FORWARD...... 514
INSW .o 526 PUTR «euvoeeeeaenenaennnnn, 9-4
PUT_ROW ...oovoevneennnnn.. 9:4
J
JOIN_TEXTveeneenen. 510 Q
JOIT ..o 5-70 QUL .o, 5-9; 8-11
QUIT ...oveeeeeeeaan.. 5.9; 811
L
LISB ..., 514.1 R
(L1 Sy READFILE 52050
LIST_BACKWARD 514.1 gg‘;}g """""""""" 5‘28%5_2
LIST FORWARD iy REFR.........
LIST_LINES 5143 BEFRESH ROW 56
LOCA o e REPL................. 5-38
LOCATE_ALL............. 5181 REPLACE LINES........... 5-38
LOGATE EMPTY LINES .. 519 REPLACE_TEXT......... 5-40
LOCATE_NEXT........... 518.2 gggg """""""""""" 5;3
LOCATE STRING B182 OO o
LOCATE_TEXT 516 -DECK.....oovnnnne
LOGATE WIDE LINGS . . 520 RESET_FILE........... 5.66
LOCEL - s RESF.................. 566
TOON ey RESPL.._............ 5-45
LOCS .. eveoeeeann 5182 BESTORE_POSITION....... 545
LOCT ... eveeeeeeeeeinin 516
LOCWL. ..o 520 g
M SAVE_POSITION 5.45
SAVP ...t 5.45
MARB . ..o 5-43 SELDoooviiiiiiiiinnn. 8-7
MARCoiiiiiaaeaaann 5-44 SELECT _DECK 87
MARK BOX...........c..... 543 SELECT_FIRST DECK 87
MARK_CHARACTER 5-43 SELECT_LAST _DECK....... 87
MARK_LINES............... 5-44 SELECT_NEXT_DECK 87
MARLcooiiiiaaeaaain 5-43 SELFDcooooiiiiiit. 87
MOVE TEXT.......covu.... 5-62 SELLDcccoviiiiinnn. 87
MOVT ..o iiiiaaaaaaaann 5-62 SELNDcoooiiiiinnnn. 87
SETE .. .ovoeeeeeeeeeeannn 101
SET _EPILOGovvee ... 101
p SETFK «..\oovoeeeeeeerinn, 66
POSB....ooveeereeeneiininn, 514 SET_FUNCTION_KEY....... 6-6
POSC...ouoeeeeeeeeannin, 511 SET_LINE_WIDTH 7-12
POSF ..., 514 SET_LIST_OPTIONS 715

(Continued)

SETLW 7-12
SETM 49
SET_MASK 4-9
SET_PARAGRAPH _

MARGINS.................. 571
SETPM571
SET_SCREEN_OPTIONS7-1
SET_SEARCH_MARGINS. .. 521
SETSM521
SETSO 7-1
SET_TAB_OPTIONS 7-10
SETTO 7-10
SET_VERIFY OPTION 7-13
SETVO 713
SETWC 7-14
SET WORD

CHARACTERS 714
U
UNDO .o 086
UNM oo
UNMARK D44
w
WRIF 207

WRITE FHLE .. o0 o 007

i) ‘

(A u’;“,},‘-‘ m‘. HaNAR ‘ W,v 1,]

i i) RN
g [\‘}|
! . i) “ : g ; : e “‘,\',,a‘ ‘A"“\‘h”}“l‘l‘}* i

i ! K A ity LEE i v art L

it i | bl R I AN | P Tl '.? 5;,‘ ,,W.w

B m)’; WH K Lt ;1", ‘r, (CRE L 1 e i ; "‘4{"‘”’4“"“}\ ul ,"ﬂ iy iy il ”41 i
: : : P : e wv‘uw R

i U
';\.‘w"“” ol iy f Wi o ;u u’i{j“,“l“ﬁf“
! i : d’x,m \W!,‘ i e]
it) B ! ¢l LA q'.J‘f‘u“
RN : ,‘ i A Afat
‘“ i iy ‘f‘,! "[u‘mu . i M’ ! T “m “

i iy
‘F‘M i e

al
g AR
/(1‘3\‘,,» d ‘,\1“ "‘m“”“v

"'é“w‘ i

oty ‘r
R
1!\““\:“;1‘ iy
e ORI
i : e L iy it 1‘ f
En it R AN :‘“M.w

i ol b

“ i md,‘

RO
T h

m i E I).

\’f‘
}f}v

b e
e T
, ‘m,. ; ’“r‘v‘w“ bk !

i o st ; i
il “'/ TRy i g ; A
e W Iy ’ I R Ay ! v“”“w

i 1 it v ¥ ‘u
l«m e
bR \J ‘\ i Il M"
sl

U H‘\
/p AR
HiA ﬁ h f‘

v yw‘r r ';,“‘,

w i
i

el

i : ! k]
'w’ i i ? 3 i e
T e]

el

