
NOS/VE

System Usage

60464014 (5 2) CONTR,..OL DATA

NOSNE System Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464014

Manual I-liistory

Revision System Version

A 1.0.2

B 1.1.1

c 1.1.3

D 1.2.1

E 1.2.1

F 1.2.2

G 1.2.3

H 1.3.1

PSR Level Date

613

644

664

670

678

688

700

February 1984

August 1984

October 1985

September 1986

December 1986

April 1987

September 1987

April 1988

This manual merges the topics previously described in both the SCL
for NOSNE Language Definition and SCL for NOSNE System
Interface manuals. Both manuals are replaced with this manual, the
NOSNE System Usage manual.

In addition, the command and format descriptions formerly in SCL for
NOSNE Language Definition and SCL for NOSNE System Interface
now reside only in the NOSNE Commands and Functions manual,
formerly titled SCL for NOSNE Quick Reference.

This manual also documents the following feature-related changes for
NOSNE version 1.3.1 at PSR 700:

• The ADMINISTER_ USER utility has been replaced with the
ADMINISTER_ VALIDATION utility. ADMINISTER_ VALIDATION
is first discussed in chapter 3, Interactive Sessions.

• SET_PASSWORD has been changed to CHANGE_LOGIN_
PASSWORD and two new parameters, EXPIRATION _INTERVAL
and EXPIRATION_DATE have been added. This is discussed in
chapter 3.

©1984, 1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOSNE System Usage Revision H

o DELETE_CATALOG has been enhanced to allow a user to delete
a non-empty catalog. DELETE_CATALOG is discussed in chapter
4, Catalog and File Management.

o Users wishing to attach a file for READ and/or EXECUTE access
may now do so without sharing its file position with other,
concurrent attachments of the file. This capability is called Private
Read and is discussed in chapter 4.

o Job classes have been enhanced to allow users to select a
particular job class and to allow sites to restrict users from using
given job classes based on several different criteria. This is
discussed in chapter 6, Job Management.

o $JOB_DEFAULT is a new function that returns information on a
the default values a site establishes for a user's job attributes. The
description of default job attributes is found in chapter 6. The
$JOB_DEFAULT function is described in the NOSNE Commands
and Functions manual.

o ANSI standard X3.27 levels 3 and 4 have been added to NOSNE's
support of ANSI labelled tapes. This support is discussed in
chapter 11, Tape Management.

o INCLUDE_SMALL_CYCLES has been added to the BACKUP_
PERMANENT_FILE utility. This utility is discussed in chapter 12,
Backup and Restore Utilities.

Appendixes A and B have been updated as needed.

This edition obsoletes all previous editions.

Revision H Manual History 3

Contents

About This Manual

The NOSNE User
Manual Set

Conventions
Submitting Comments
CYBER Software Support

Hotline

NOS/VE Concepts

NOSNE Jobs ..
The System Command

Language
The File System . . .
Working Environments
NOSNE Attributes .
Networks
Online Help
Dual-State Systems .

The System Command
Language

Input to SCL
Using NOSNE

Commands, Utilities,
and Functions

Data Representation
Assignment Statements
Expressions
Control Statements . . .
Examples of Statements
Procedures

11

12
14
15

15

1-1

1-1

1-1
1-2
1-3
1-3
1-4
1-4
1-4

2-1

2-2

2-11
2-29
2-32
2-33
2-34
2-35
2-36

Interactive Sessions 3-1

Networks
Logging In and Out

Revision H

3-2
3-4

Entering Commands
Interactively.

Terminal Disconnects
Reestablishing Terminal

Connections.
Job Time Limits ...
Displaying Your User

Validation.
Changing Your User

Validations
Getting Help On Line
Using Online Manuals .

Catalog and File
Management . .

NOSNE File and
Catalog Structures.

Referencing File Names
Creating Catalogs and

Files
Catalog and File

Permits
Attaching and Detaching

Permanent Files .
Using Files with

Passwords
NOSNE File Attributes
Copying Files . .
Comparing Files
Displaying the

Representation of Data
in a File

Managing Remote Files
and Catalogs . . .

Command and SCL
Procedure Execution.

Command Lists

3-9
3-19

3-19
3-20

3-21

3-23
3-24
3-28

4-1

4-1
4-5

4-13

4-21

4-30

4-39
4-40

4-64
4-80

4-82

4-84

5-1

5-2
Command List Entries . 5-3

Contents 5

Command List Search Controlling the Flow of
Modes 5-7 a Command Stream . 8-10

Changing the Command Executing Statement
List 5-8 Lists Conditionally

Displaying the Command (IF/IFEND) 8-15
List 5-12 Condition Processing 8-16

Displaying Command Suspending Command
List Entries. . . 5-13 Processing (WAIT) . 8-26

Changing System

Job Management 6-1 Environments. . . . 8-26

Overview of NOSNE
Writing SCL Procedures Jobs 6-1

and Command Utilities. 9-1
Job Attributes 6-12
Submitting Batch Jobs . 6-25 Commands and

Terminating Jobs . . . 6-32
Functions Used in
Procedure Writing. 9-3

Displaying Job Status 6-32 Creating Procedures 9-18
Managing Tasks 6-33 Procedure Calling
Managing Job Output 6-38 Environments ... 9-20
Using Standard and Job Procedure Format 9-21

Files 6-57 Defining Procedure
Managing Job Logs 6-64 Parameters 9-24
Displaying Job Resource Sample Procedure 9-42

Limits 6-70 Creating SCL Command
Setting Multiprocessing Utilities 9-45

Options 6-71 Writing Command
Setting Job Sense Utilities 9-46

Switches 6-72 Permitting Others to
Use Your Utilities . 9-60

SCL Variables, Types, Using Your Utility . 9-62
and Expressions. . . 7-1 Formatting SCL

Creating and Using Procedures 9-67

Variables . 7-2
SCL Types. 7-22 Dual-State File Access 10-1
Expressions 7-37 File Access

Requirements. 10-1
SCL Command Streams Getting a File from a

and Condition Dual-State Partner
Processing 8-1 System 10-2

Block Structure 8-2 Replacing a File on a
Dual-State Partner

Structuring a Command System 10-2
Stream 8-3

6 NOSNE System Usage Revision H

Setting Link Attributes
Using ADMINISTER_
VALIDATION ..

Preserving N OSNE File
Attributes.

10-3

10-4

Tape Management . 11-1

Reserving and Releasing
Tape Units 11-1

Requesting Magnetic
Tapes 11-4

Rewinding Tape Files 11-5
NOSNE Labelled Tape

Support 11-5
Using Labelled Tapes 11-16
Using Unlabelled Tape

Files. 11-32

Backup and Restore
Utilities 12-1

Overview
Backup Operations
Restore Operations

Terminal Management

Attribute Overview ..
Network Dependencies
Managing Terminal

Attributes.
Managing Connection

Attributes. . . .
Terminal Input
Terminal Output

Micro File Transfers

Using CONNECT.
Using XMODEM
KERMIT-VE
DesktopNE ...

Revision H

12-1
12-5

12-19

13-1

13-1
13-3

13-4

13-23
13-41
13-46

14-1

14-1
14-6

14-18
14-21

Glossary

Related Manuals .

Ordering Printed
Manuals

Accessing Online
Manuals ..

Character Set .

ASCII Character Set . .
EBCDIC Character Set

ANSI Tape Label
Formats

Required Labels
Optional Labels .
User Labels . . .

Format Effectors .

Vertical Spacing
Characters ...

Vertical Form Unit
Loading

SCL Language Syntax

Metalanguage Symbols .
SCL Language Syntax
Calls to Commands . .

SCL Procedure Syntax

Basic Syntax
Expressions

A-1

B-1

B-1

B-1

C-1

C-1
C-5

D-1

D-4
D-25
D-26

E-1

E-1

E-3

F-1

F-1
F-3
F-5

G-1

G-1
G-4

Old Commands . H-1

Index Index-1

Contents 7

Figures

4-1. Master Catalog 9-1. Sample SCL
Structure 4-4 Procedure 9-43

4-2. Two Family File 9-2. Sample SCL Command
Hierarchy 4-9 Utility 9-50

4-3. Block and Record 9-3. Unformatted SCL
Types 4-70 Procedure 9-68

7-1. Job Block Structure 7-15 9-4. Formatted SCL
8-1. CYCLE Statement Procedure 9-69

Use 8-11 E-1. Vertical Forms Unit
8-2. EXIT Statement Use . 8-13 Load Image E-4

F -1. Calls to Commands F-5

Tables

2-1. Characters in SCL 11-1. Conditions for
Names 2-7 Writing HDR Labels . 11-14

3-1. Summary of User 11-2. Default Tape Label
Controlled Interrupts. 3-13 Attributes 11-24

3-2. Summary of Online 12-1. Summary of Backup
Help Commands 3-24 Utility Subcommands ... 12-17

3-3. Summary of Screen 12-2. Summary of Restore
Mode Operations . . . 3-28 Utility Subcommands .. 12-27

3-4. Summary of Line 13-1. Terminal Attribute
Mode Subcommands. . 3-30 Network Applicability. . 13-18

4-1. Changing Attributes of 13-2. Terminal Attribute
Old Files 4-55 Editing Modes 13-21

6-1. Standard Files and 13-3. NOSNE Initial
Initial Connections ... 6-58 Values at the Default

7-1. Scope of Variables . 7-14 Level 13-34

7-2. Status Variable Fields 7-32 13-4. Connection Attribute

7-3. Operand and Operator
Network Applicability. . . 13-36

Combinations 7-45 13-5. Connection Attribute

9-1. Commands Used in
Editing Modes. 13-39

Procedure Writing . 9-3 14-1. Configuration File

9-2. Topical List of
Entries 14-16

NOSNE Functions . 9-5 B-1. Related Manuals .. B-2

9-3. Utilities and C-1. ASCII Character Set C-2
Terminators 9-72 C-2. ASCII to EBCDIC

Conversion for Tapes. . . C-6

8 NOSNE System Usage Revision H

D-1. Label Characteristics D-2 D-7. EOVl - First
D-2. VOLl - Volume End-of-Volume Label. D-23

Header Label (1) ... D-6 D-8. EOV2 - Second
D-3. HDRl - First File End-of-Volume Label . D-24

Header Label (1) ... D-9 E-1. Vertical Spacing
D-4. HDR2 - Second File Characters E-1

Header Label (1) . D-16 F-1. SCL Metalanguage
D-5. EOFl - First Conventions . . . F-1

End-of-File Label . D-20 H-1. NOSNE Old
D-6. EOF2 - Second Commands H-1

End-of-File Label .. D-21

Revision H Contents 9

About This Manual

This manual describes the command interface to the CONTROL
DA."rA® Network Operating System/Virtual Environment (NOSNE)
using the System Command Language (SCL). It provides discussions
on system access, interactive processing, file and catalog management,
job management, tape file management, and terminal attributes.

This manual also describes the complete SCL language specification
including language elements, expressions, variables, command stream
structuring, and procedure creation.

A complete command reference description of the commands and
functions discussed in this manual can be found in the NOSNE
Commands and Functions manual. In addition, command and function
parameter information can be obtained online using the DISPLAY_
COMMAND_INFORMATION and DISPLAY_FUNCTION_
INFORMATION commands.

This manual requires no previous knowledge of NOSNE other than
specific login information provided by your site. However, if you are a
first time user of NOS/VE, or if you are new to a mainframe
computer environment, you may want to read the Introduction to
NOSNE manual before reading this manual. The Introduction to
NOSNE is a tutorial designed to help you become familiar with some
of the more general uses of NOS/VE.

If you are a new user of NOSNE and you do not have access to the
Introduction to NOS/VE manual, or if you simply wish to skip that
manual and proceed with this manual, you should read this manual
sequentially starting with chapter 1 and continuing on through the
rest of the book. If you are already acquainted with NOSNE, this
manual can be used as a reference guide to the usage of NOSNE.

Revision H About This Manual 11

The NOS/VE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOSNE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOSNE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOSNE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOSNE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOSNE.

NOS/VE System Usage

Describes the command interface to NOSNE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOSNE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOSNE. Program
execution is described in detail. Topics include loading a program,

12 NOS/VE System Usage Revision H

program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing~

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_ TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOSNE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision H About This Manual 13

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

14 NOSNE System Usage Revision H

§ubmittinP" Comments
~

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYJBER §ofhvare §uppo:rt JE-:Iotline

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision H About This Manual 15

NOSNE Concepts 1

NOS/VE Jobs 1-1

The System Command Language 1-1

The File System 1-2

Working Environments 1-3

NOS/VE Attributes 1-3

Networks .. 1-4

Online Help 1-4

Dual-State Systems 1-4

NO§/VJE Concepts

NOS/VE is the Network Operating SystemNirtual Environment for
Control Data's CYBER 180 computer systems. This chapter presents
an overview of some of the NOS/VE concepts presented in this
manual. The chapters that follow in this manual discuss the concepts
presented here in detail.

NOS/VJE Jobs

When a program is executed on NOS/VE, a task is created. In order
to begin creating tasks on the system, you must identify yourself to
NOS/VE. This process of identification is called logging in. You tell
NOS/VE you are done creating tasks by logging out.

A job is a series of tasks delimited by logging in and logging out.

There are two different kinds of jobs on NOS/VE: interactive and
batch. When you log in to NOS/VE at a terminal, you are initiating
an interactive job. When you are running an interactive job, you
control the job by entering commands to the system on a line by line
basis.

1

With batch jobs, you submit the entire job from login to logout to the
system for execution. In this way, you need not spend large amounts
of time at your terminal controlling each individual phase of the job.
At the same time, of course, you do not have the immediacy of
control with batch jobs that you have with interactive jobs.

The §ystem Command Language

The System Command Language (SCL) is a block structured language
that is both the command language for NOS/VE and a high-level
programming language. That is, you can use SCL to enter system
commands and to write commands of your own.

The SCL Interpreter processes all commands before submitting them
to NOS/VE for execution. The SCL Interpreter examines each
command for correct syntax and then evaluates any parameters
specified for the command.

All NOS/VE commands, command utilities, functions, and control
statements adhere to naming and syntax conventions, making NOS/VE
a homogeneous system that is easy to learn and use.

Revision H NOSNE Concepts 1-1

The File System

The File System

Information is organized and stored on NOSNE in files. Files, in
turn, are organized and stored in catalogs. NOSNE has a hierarchical
catalog system that can be visualized in the following way:

Master
Catalog

for User1

File
PROLOG

Family
NVE

Master
Catalog
for PAT
($USER)

Master
Catalog

for User2

Catalog
EXAMPLES

File
C_PROG

Master
Catalog

for User3

Family
VE2

Master
Catalog

for User4

Master
Catalog

for Users

Each NOSNE user has a master catalog in which they can store
permanent files and catalogs. NOSNE users are members of a family
of users who can share files with one another and with members of
other families of NOSNE users.

NOSNE files can be found by tracing the path through the catalog
hierarchy to the file. You reference the file by specifying the name of
each catalog preceding the file before specifying the file's name.

The file system provides users the ability to set security privileges for
files within their master catalog. This includes the naming of
passwords for files as well as specifying the ways other users may use
the files.

In addition to the master catalog and its catalogs and files, every
NOSNE user has access to a temporary and a system catalog. The
temporary catalog contains files that exist for the user only for the
length of each individual job. The system catalog contains files and
libraries used to support NOSNE and its products.

1-2 NOSNE System Usage Revision H

Working Environments

~Vorking Environments

Your working environment determines the processing capabilities to
which you are allowed access. Your default working environment is
determined by how your site validates you to use the system. NOSNE
allows you to tailor certain aspects of your working environment to
better suit your needs.

Your default working environment generally includes access to the
files and libraries that support the features available at your site.
These files and libraries support such NOSNE features as the System
Command Language, all of the NOSNE commands available to you,
error reporting and online documentation abilities, the programming
languages (such as FORTRAN) available at your site, and a variety of
other abilities available on NOSNE.

As a part of this working environment, NOSNE supplies a default
command list to every user of NOSNE. This command list contains
every command available to you. NOSNE also offers you the ability
to tailor the command list by adding and deleting commands in the
list, as well as re-ordering them. Because of this ability, you can
create your own programs and commands and then add them to your
working environment by adding them to the command list. In this
way you can execute these commands and programs in the same way
you would execute any NOSNE command -- simply by entering its
name to the SCL interpreter.

NOS/VE Attributes

A NOSNE attribute is a characteristic of specific parts of the system.
For instance, both files and jobs have attributes associated with them
that describe the file or job and dictate how they can be used.
Attributes allow you to control the behavior of various elements of
NOSNE by controlling the values of the attributes associated with
those elements.

Revision H NOSNE Concepts 1-3

Networks

Netvvorks

When you begin an interactive session, your terminal is connected to
the CYBER using a collection of hardware and software that is
collectively known as a network. A network transfers information back
and forth between your terminal and the computer.

Networks give NOSNE users the ability to interact with more than
one computer. Through the use of networks, you can establish a
connection to a computer, interrupt that connection, and then connect
to another computer. You can also use networks to submit batch jobs
from one computer to another, and to send files to specific devices
(such as a printer) for processing.

Your site has a choice -0f several different networks that can be used
with NOSNE including NOSNE's primary network, CDCNET.

Online Help

NOSNE provides several different ways for you to obtain help while
you are logged in. This help includes prompting for incorrectly entered
parameter values, commands that return command and function
parameter descriptions, and online manuals with more detailed
information about NOSNE.

Dual-State Systems

Some CYBERs run two different operating systems at the same time.
These CYBERs are said to be dual-state systems. Every dual-state
system runs NOSNE as one of its operating systems and either a
NOS or a NOS/BE operating system as the other. A NOS dual-state
system, then, runs NOS and NOSNE; a NOS/BE dual-state system
runs NOS/BE and NOSNE.

1-4 NOSNE System Usage Revision H

The System Command Language

Input to SCL .
Prompts ..
Input Lines
SCL Names

Characters You Can Use
Using Uppercase and Lowercase Letters
Examples of Valid and Invalid Names
Reserved Names

Using Spaces

Using NOSNE Commands, Utilities, and Functions
Commands

Naming Conventions ..
Entering Commands . . .
Abbreviating Commands
NOSNE Command Lists
Command Descriptions

Parameters and Values .
Specifying Parameters .

Order Dependence .
Abbreviating Parameters .

Specifying Value Lists ...
Specifying a Simple Value .
Specifying a Range as a Value
Specifying Value Sets

Specifying Expressions as Values
Types of Values
Using the STATUS Parameter

Command Utilities .
Starting a Utility
Stopping a Utility

Functions
Calling a Function
Displaying the Value of a Function

Data Representation .
Constants .
Variables .
SCL Types.

Assignment Statements .

Expressions

2

2-2
2-4
2-5
2-6
2-6
2-8
2-8
2-9

2-10

2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-15
2-16
2-17
2-17
2-18
2-19
2-20
2-21
2-23
2-24
2-24
2-25
2-26
2-27
2-28

2-29
2-29
2-30
2-31

2-32

2-33

Control Statements . . .

Examples of Statements

Procedures

2-34

2-35

2-36

The System Command Language

The System Command Language (SCL) is a block-structured language
that performs two basic roles:

• As a command language, SCL provides the means for submitting
statements (such as compiler calls, program execution commands,
and system commands) to NOS/VE. All statements are first
processed by the SCL interpreter and then submitted to NOS/VE
for execution. The SCL interpreter examines each statement for
correct syntax and then evaluates statement parameters. If a
statement contains any syntax errors or invalid parameters, or is
otherwise not recognized as valid, SCL reports the errors to you
and does not attempt to execute the statement.

• As a programming language, SCL supports variables, functions,
expressions, and the grouping of SCL statements into procedures
and utilities.

2

This chapter focuses on SCL as the command language for NOS/VE. It
includes the following topics:

• Basic SCL syntax requirements

• NOS/VE naming conventions

o Using commands, utilities, and functions

• Specifying parameters

The last sections of this chapter also provide introductory information
about SCL as a programming language. For more information about
SCL as a programming language, see chapter 10, SCL Variables,
Types, and Expressions; chapter 11, Command Streams and Condition
Processing; and chapter 12, Writing SCL Procedures and Command
Utilities.

Revision H The System Command Language 2-1

Input to SCL

Input to §CL

A statement, such as a system command or an assignment statement,
is the basic unit of input interpreted by the SCL interpreter. SCL
statements must meet uniform syntax requirements regarding the use
of names and spaces. In addition, parameter values passed to
commands and functions must match the predefined data type (such as
integer or boolean) for that parameter.

The SCL interpreter processes all statements to NOSNE. The list of
statements that the SCL interpreter receives is called the command
stream.

The source of input to the SCL interpreter varies, depending on
whether you enter NOSNE commands through an interactive terminal
or whether you submit batch jobs.

• When you are at an interactive terminal, statements are processed
directly by the SCL interpreter.

• When you submit a batch job, the statements are first placed in a
mass storage file and then processed by the SCL interpreter.

2-2 NOSNE System Usage Revision H

The following figure illustrates the flow of data to the SCL
interpreter:

interactive
input

command
stream

SCL
interpreter

command
execution

batch
job

mass storage
file

command
stream

Input to SCL

The SCL interpreter monitors the command stream, and either
submits the statements to NOSNE for execution or returns a
diagnostic message if an error is encountered.

The following paragraphs supply a brief description of SCL input
requirements. For a full syntactic description of the requirements, see
appendixes F and G.

Command streams are discussed in chapter 8, Command Streams and
Condition Processing.

Revision H The System Command Language 2-3

Input to SCL

Prompts

A NOSNE job is typically organized into several groups of SCL
statements called blocks. At a minimum, each job has one block called
the job block. The job block contains the SCL statements from job
initiation to job termination.

During an interactive job, SCL prompts you for input in different
ways, depending in part on what kind of block you are in. For
example, in the job block of an interactive job, SCL prompts for input
as follows:

I

This prompt indicates that NOSNE has processed any preceding
input, and is ready to accept additional input.

The system prompt (() may be preceded by additional characters
identifying a particular kind of block, such as the block created by a
control statement. For example:

/i=O
/loop "Initiate a LOOP control block"
loop/i = i + 1
loop/display_value value = i
loop/exit when i = 10
loop/loopend "End the control block"
I

Control statements are discussed later in this chapter.

In certain situations, the system provides options for changing the
input prompt to a user-selected string. For more information, refer to
the description of the PROMPT_STRING parameter of the CHANGE_
CONNECTION_ATTRIBUTES command in the NOSNE Commands
and Functions manual.

2-4 NOSNE System Usage Revision H

Input to SCL

Input Lines

Input lines are composed of one or more statements. The following
discussion applies to all input lines, whether they are in batch jobs,
interactive jobs, or procedures. The examples in the following
discussion include the prompts issued for interactive input lines.

To enter more than one statement on an input line, separate the
statements from one another using semicolons. The semicolon
functions only as a delimiter and is not required as a terminator at
the end of an input line. The following example contains two
statements on a single input line:

/string1 = 'String 1 is a string variable.'; display_catalog

If an input line is longer than the width of your terminal screen or
input device, you can enter it on more than one physical line.

To do so, enter an ellipsis (two or more consecutive periods) at the
end of the line you are continuing. The system prompts for continued
lines by preceding the input prompt with an ellipsis. The following
single input line is contained on two physical lines:

/string2 = 'This is a very long string that is cont in ..
.. /ued over two physical lines.'

The following single input line contains three statements on two
physical lines:

/done= true; copy_file input= ..
.. /file1 output=file2; display_catalog

To include an ellipsis as an actual part of a line (for example, as part
of a string), follow the ellipsis with a character other than a period or
space.

An input line cannot exceed 65,535 characters (a line continuation
ellipsis is not counted in the 65,535-character limit). SCL begins
processing a continued input line only after you have entered all
physical lines. It then merges the physical lines into a single input
line, interprets the line's syntax, and evaluates parameters and
expressions.

Revision H The System Command Language 2-5

Input to SCL

SCL Names

NOS/VE uses SCL names to identify command and parameter names,
files, and catalogs. Whether the name is predefined by the system or
one that you choose, the rules for forming it are the same. A name
can be any combination of alphanumeric characters, underscores, and
other special characters (listed in table 2-1) as long as it does not
begin with a numeric character and contains 31 or fewer characters.

NOS/VE does not distinguish between uppercase and lowercase letters
in a name: for example, it interprets the names MY_ FILE and My_
File as being identical.

Characters You Can Use

The table on the following page c.:>ntains a list of the characters you
can use when forming SCL names.

2-6 NOSNE System Usage Revision H

Table 2-1. Characters in SCL Names

Character

a-z

A-Z

0-9

$

@

\

{

}

I

Description

Lowercase alphabetic

Uppercase alphabetic

Numeric

Underline

Dollar sign1

Number sign

Commercial at

Opening bracket2

Closing bracket2

Reverse slant2

Circumflex2

Grave accent2

Opening brace2

Closing brace2

Vertical line2

Tilde2

Input to SCL

1. A variable name, or file name defined by NOSNE contains a dollar
sign to distinguish it from a user-defined name. Names for SCL
variables may not begin with a dollar sign. In general, avoid defining
names that contain the dollar sign character in any position.

2. The special characters [,], \, ", ', {, }, I, and - apply to natural
languages requiring additional characters. Unless your language
requires them, we recommend you a void using these characters in
names.

Revision H The System Command Language 2-7

Input to SCL

Using Uppercase and Lowercase Letters

The system translates lowercase letters in names to their uppercase
equivalents. As a result, the following names are equivalent:

NAME_ with_ UPPER_and_lower _CASE
name_ WITH_ upper _AND_ LOWER_ case

Examples of Valid and Invalid Names

The following are examples of valid names:

new _data_file

#3

user_l23

location@349_ 231

part_ number_ 804284_ 4 72383

The following are examples of invalid names:

Invalid Name Reason

123_3456A Begins with a digit.

abc.345 Contains an invalid character
(period).

this_name_is_going_to_be_ Contains more than 31 characters.
too_ long

2-8 NOS/VE System Usage Revision H

Input to SCL

Reserved Nam es

The following NOSNE names are reserved for system use. For
example, if you try to create a file with one of the following names,
you will receive an error message.

$ASIS
$BOI
$BOP
$COMMAND
$COMMAND_OF _CALLER
$EOI
$FAMILY
$HIGH
$JOB
$LOCAL
$LOW
$NEXT
$PROC
$SYSTEM
$TASK
$USER
$UTILITY

Revision H The System Command Language 2-9

Input to SCL

Using Spaces

SCL recognizes the following entries as a single space:

• One or more ASCII space (SP) characters.

• One or more ASCII horizontal tab (HT) characters.

• An SCL comment.

• Any combination of the above.

For more information about ASCII characters, see the character set in
appendix C. Ways of using SCL comments are discussed in chapter 9,
Writing SCL Procedures and Command Utilities.

In commands, use spaces to separate parameters from the command
and from each other. Spaces can also be used to improve the
readability of statements in the procedures you write. For example, in
the following LOGIN command, spaces delimit the command
parameters and improve the readability of the command:

login login_user = smith password = jones

Since the system recognizes spaces as separators, you cannot use them
within names. For example, the following forms of the LOGIN
command are not valid:

Invalid Command

log in login_user=user_123
password=pass_456

login login_user=user _123
password=pass_456

login login_user=user_123 ..
password=pass_456

Reason

Space appears within the
command name LOGIN.

Space appears within the user
name USER_ 123.

No space before the ellipsis.

In addition, you cannot use spaces before or after operators in a
parameter value (for examples, see Specifying Expressions as Values
later in this chapter).

2-10 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Using NOS/VE Commands, Utilities, and
Functions

The following sections describe the requirements and conventions for
using NOS/VE commands, utilities, functions, and their parameters.

Commands

Under NOS/VE, a command initiates a specific operation, such as
creating or deleting a file. During an interactive session, you enter
NOS/VE commands after the input prompt.

Commands consist of a command name that may be followed by one
or more parameters separated by commas or spaces. Commands have
the following format:

command parameter ... parameter

Naming Conventions

Each NOS/VE command follows the same format: it begins with a
verb and is followed by an object which can be one or more words
separated by underscores. An example is the command CHANGE_
TERMINAL_ATTRIBUTES. The verb is CHANGE and the object is
the two words TERMINAL_ATTRIBUTES.

The verb_object format makes SCL commands self-descriptive.
Therefore, you can easily recognize the purpose of commands and
anticipate the names for commands you have not yet used. For
example, the DELETE_FILE command deletes a file and the
DISPLAY_FILE_ATTRIBUTES command displays file attributes.

Revision H The System Command Language 2-11

Using NOSNE Commands, Utilities, and Functions

Entering Commands

NOSNE executes commands when you enter one of the following:

• The name of a recognized command.

• The file path of an executable file.

For example, the following entry causes the system command
DISPLAY_CATALOG to be executed:

/display_catalog

The following entry causes a procedure or a list of commands residing
in file $USER.SAMPLE_PROC to be executed:

/$user.sample_proc

Files and file paths are discussed in chapter 4, Catalog and File
Management. For more information on entering commands, see
chapter 5, Command and SCL Procedure Execution.

Abbreviating Commands

You can abbreviate commands by using the first three letters of the
command's verb followed by the first letter of each word in the
command's object with no underscores. For example, the following
commands are shown with their abbreviations:

CREATE_FILE or CREF

SET_ WORKING_CATALOG or SETWC

The following are exceptions to this standard:

• The word PASSWORD when used in command or parameter names
is abbreviated PW. For example, CHANGE_LOGIN _PASSWORD
is abbreviated CHALPW.

• The words MINIMUM and MAXIMUM when used in command and
parameter names are abbreviated MIN and MAX respectively.

2-12 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

NOS/VE Command Lists

A command name is recognized by the SCL interpreter if it appears
as an entry in the command list (a list of the commands currently
available for your use).

When you log in to NOSNE, the command list initially contains
entries for all the commands the system provides. This list is called
the $SYSTEM command list. You can delete any entries in the
command list (including those for NOSNE system commands), replace
them with entries for commands you create, or add other entries of
your own.

You can also control the order in which the command list is searched.
If you have added an entry to the command list with the same name
as a system command, COPY_FILE for example, you can search the
command list so that one version of the command is chosen over the
other.

Any changes you make to the command list apply only to your
current interactive or batch job. Command lists are described in
chapter 5, Command and SCL Procedure Execution.

Command Descriptions

Detailed descriptions of commands, functions, control statements, and
utility subcommands provided by NOSNE and processed by the SCL
interpreter are found in the NOSNE Commands and Functions
manual. These descriptions are arranged alphabetically by name and
contain:

• General information about the command

• Examples which show how to use the command

• Information about syntax requirements

• Information about parameters and their requirements

Revision H The System Command Language 2-13

Using NOSNE Commands, Utilities, and Functions

Parameters and Values

Commands often contain parameters that let you select various
processing options. For each parameter, the command defines a value
type such as integer or boolean. When you specify the value for a
parameter, it must match the defined value type.

Specifying Parameters

Parameter names consist of one or more words, separated by
underscores, and describe the parameter (such as OUTPUT or
TERMINAL_MODEL).

You can specify a command parameter either as a parameter name
equated to a list of values (called the value list) or as a value list
alone.

parameter name = value list

or

value list

You must separate parameters from the command and from other
parameters by commas or spaces. The following example calls the
COPY_FILE command to copy the contents of file MY_INPUT into
file MY_OUTPUT. Two parameter names and their value lists are
specified.

/copy_file input=my_input output=my_output

You can enter the same command and include only the value lists as
follows:

/copy_file my_input my_output

Parameter names follow the same rules as other SCL names.

2-14 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Order Dependence

The order in which you enter parameters depends on whether you
specify the parameter names.

o When you specify parameter names, you can list the parameters in
any order, as shown in the following examples:

/copy_file input=my_input output=my_output

/copy_file output=my_output input=my_input

Each command description defines a particular order for its
parameters. When you enter a parameter name, the system places
the parameter in its pre-defined position.

o When you omit parameter names, you must specify the parameters
positionally. That is, you must enter them in the order shown in
the format of the command description. In the following example,
the second parameter is listed without a name. Because the
parameter is defined as second in the parameter list, you must
enter it in that position.

/copy_file input=my_input my_output

To position to a particular parameter, include the appropriate
number of commas. For example, to specify the second and fifth
parameters, enter a command with the following format:

command, ,value list, , ,value list

Revision H The System Command Language 2-15

Using NOS/VE Commands, Utilities, and Functions

Abbreviating Parameters

You can abbreviate parameter names by taking the first character
from each word in the parameter name. For example, the abbreviation
for the COMMAND parameter is C, and the abbreviation for the
OUTPUT_DESTINATION_USAGE parameter is ODD.

The following are exceptions to this standard:

• STATUS has no abbreviation.

• PASSWORD is abbreviated PW.

• OUTPUT_DESTINATION is abbreviated ODE.

• OUTPUT_DISPOSITION is abbreviated ODI.

• The words MINIMUM and MAXIMUM when used in command and
parameter names are abbreviated MIN and MAX respectively. For
example, MAXIMUM_ WORKING_SET is abbreviated MAXWS and
MINIMUM_ WORKING_SET is abbreviated MINWS.

2-16 NOS/VE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Specifying Value Lists

A value list specifies one or more values that can be processed for a
parameter. Each parameter defines the manner in which you can
specify the values.

In SCL, you can use the following kinds of values:

• Simple value

• Range of values

• Value set

Specifying a Simple Value

A simple value is a single expression of a particular type such as
string or integer. The following are simple values:

Value

10
8+4

'Mon-Fri'
'Hello '/fthere'

Type

Integer

String

To include more than one value in a value list, enclose the entire list
in parentheses and delimit each value with a comma or a space.

(value,value, ... value)

For example:

(10,2*3 8-1)

A space following the opening parenthesis or preceding the closing
parenthesis is optional.

For more information about expressions, see chapter 7, SCL Variables,
Types, and Expressions.

Revision H The System Command Language 2-17

Using NOSNE Commands, Utilities, and Functions

Specifying a Range as a Value

You can enter a parameter value as a range by showing it as two
values of the same type separated by an ellipsis (two consecutive
periods).

value .. value

A range represents the values from the first value listed through the
second value, provided the first value is less than or equal to the
second.

The following are range values:

Value Type

1..10 Integer range

false .. true Boolean range

'a' .. 'z' String range

A parameter defined to accept a range of values will accept a simple
value, that is, a value with a range of one. The following examples
are valid range values whose value is the integer 5:

5

5 .. 5

To include more than one range value in a value list, enclose the
entire list in parentheses and delimit each range value with a comma
or a space.

(value .. value,value .. value, ... ,value .. value)

For example:

(1..10,0 .. 3 -1.. + 1)

A space following the opening parenthesis or preceding the closing
parenthesis is optional.

2-18 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Specifying Value Sets

A simple value and a range of values are each considered a single
value element. A value set contains two or more value elements, and
is specified as follows:

(value element,value element, ... ,value element)

You can include simple values and value ranges in the same value
set. The following are examples of value sets:

Values Types

(21,false) Integer, boolean

('Error code : ',700) String, integer

(ascii,hexidecimal) Keyword, keyword

To include more than one value set in a value list, enclose the entire
list in parentheses and delimit each value set with a comma or a
space.

((value set),(value set), ... ,(value set))

For example:

((O,false),(1,true) (1..3,true))

A space following the opening parenthesis or preceding the closing
parenthesis is optional.

Revision H The System Command Language 2-19

Using NOSNE Commands, Utilities, and Functions

Specifying Expressions as Values

You can represent each value or value element as an expression.

The following expressions are valid parameter values:

10

(i+j)

(a*b**c)

Expressions for parameters cannot contain spaces surrounding
operators.

The following are examples of invalid expressions for parameters:

In valid Expression

display_value value=3 +5

display_value a * b**c

2-20 NOSNE System Usage

Reason

Contains a space before the +
operator.

Contains a space before and after
the * operator.

Revision H

Using NOSNE Commands, Utilities, and Functions

Types of Values

SCL assigns a certain type (such as integer or boolean) to each
parameter. The SCL interpreter verifies that the value you assign to a
parameter matches its system-defined type. If there is a mismatch, the
SCL interpreter terminates the command and either issues a
diagnostic message or prompts you for the correct type of value.

The following table lists and defines the types of parameter values
recognized by SCL. Any of these values can be represented as an
expression. For more information about SCL types, see chapter 7, SCL
Variables, Types, and Expressions.

Type

File

Name

String

Integer

Revision H

Description

Reference to a file or catalog. Each element of a file
reference must be a valid SCL name. The entire
reference cannot exceed 256 characters including
colon (:) and period (.) separators. For more
information, see the description of files and file
references in chapter 4.

Combination of 1 through 31 alphabetic, numeric,
and special characters. An SCL name you create
cannot begin with a numeric character. For more
information, see the discussion of SCL names in this
chapter.

Combination of up to 256 alphabetic, numeric, and
special characters enclosed in single quotation
marks.

Integer value in bases 2 through 16. Numeric
characters express integer values. A combination of
numeric characters and the alphabetic characters A,
B, C, D, E, and F (uppercase or lowercase)
represents integers in bases 11 through 16.

The System Command Language 2-21

Using NOSNE Commands, Utilities, and Functions

Type

Boolean

Real

Status

Any

Application
value

Keyword

Description

Value that is either true or false. Boolean constants
are TRUE, YES, ON, FALSE, NO, and OFF.

Sequence of digits containing a decimal point and an
optional trailing exponent with an optional sign.

Record consisting of three fields (NORMAL,
CONDITION, and TEXT) that contain the completion
status of a command. A brief discussion of the
status parameter is presented in the following
section.

Any expression. Certain parameters allow for values
that either are not of a specific kind or can be one
of several different kinds.

Value whose syntax and meaning are defined by an
application or utility.

Name that has special meaning in the context of a
particular parameter. In general, keywords are used
to restrict acceptable values to a predefined set of
values.

Keywords are also used in addition to one of the
other value kinds for a parameter. For example, a
parameter named COUNT might normally expect
integer values but could be defined to accept the
keyword value ALL. If you subsequently specify
COUNT= ALL, the system repeats a specified
operation until some limit is reached (for example,
until all tape marks are skipped).

2-22 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Using the STATUS Parameter

Every NOSNE command has an optional STATUS parameter which
you can use to check for error conditions.

A status variable has three fields. After processing a command, the
system passes a boolean value to field NORMAL: TRUE if the
command was processed correctly and FALSE if the command could
not be processed. If NORMAL = FALSE, the system passes an integer
code that uniquely identifies the error that occurred to a field called
CONDITION. The TEXT field contains additional information about
the condition.

If an abnormal condition occurs during the execution of the command,
the system passes information about that condition to the status
variable. You can include commands in your job to check the contents
of the status variable and to change the flow of execution based on
the result.

For more information about SCL variables, see chapter 7, SCL
Variables, Types, and Expressions. For more information about the
STATUS parameter, and condition handling, see chapter 8, SCL
Command Streams and Condition Processing.

Revision H The System Command Language 2-23

Using NOSNE Commands, Utilities, and Functions

Command Utilities

Command utilities are special commands that make a set of
subcommands available to you. The subcommands perform the
particular operations of a utility. For example, the EDIT_FILE utility
provides subcommands for editing files; the CREATE_OBJECT_
LIBRARY utility provides subcommands for maintaining object
libraries.

When you enter the command to initiate a utility, the system adds
the subcommands associated with the utility to your command list.
While a utility is executing, its subcommands obey the same rules
and conventions as other commands. When you exit from a utility,
however, its subcommands are removed from the command list and
are no longer available for your use.

Starting a Utility

To start a command utility, enter the utility's command name and
any associated parameters. During an interactive job, the system
responds by displaying the utility's unique prompt. For example, if
you start the CREATE_OBJECT_LIBRARY utility, the system
responds with the COL/ prompt:

/create_object_library
COL/

2-24 NOSNE System Usage Revision H

Using NOS/VE Commands, Utilities, and Functions

While the command utility is executing, you can enter both NOSNE
commands and the utility's subcommands. You can display a list of
the subcommands and functions available within a utility by entering
the DISPLAY_COMMAND_LIST_ENTRY command. Once you end
the utility, the utility's subcommands are no longer available.

The CREATE_OBJECT_LIBRARY command is documented in the
Object Code Management manual. The DISPLAY_COMMAND_LIST_
ENTRY command is documented in the NOSNE Commands and
Functions manual.

Stopping a Utility

Every NOSNE utility has a subcommand called QUIT. To stop a
utility, enter the QUIT subcommand. For example, to stop the
CREATE_OBJECT_LIBRARY utility, enter QUIT after the utility
prompt:

COL/quit
I

Revision H The System Command Language 2-25

Using NOSNE Commands, Utilities, and Functions

Functions

NOS/VE provides a set of functions that perform operations such as
converting data, returning attribute information about your current
environment, and accessing the system date and time. Command
utilities may provide functions that perform operations specific to the
utility.

NOS/VE provides two sets of functions, which are used to return
values of various system attributes and variables:

• Functions used anywhere within an SCL statement.

• Functions used within procedures to determine various attributes
of procedure parameters. See chapter 9, Writing SCL Procedures
and Command Utilities, for further information about procedures.

Some NOS/VE utilities also provide functions. These functions are
available only while the utility is executing. A utility's functions are
described in the documentation for that utility. Use the HELP
command to access online documentation for a utility.

To display available functions, use the DISPLAY_COMMAND_LIST_
ENTRY command and specify FUNCTIONS as the value for the
DISPLAY_OPTIONS parameter. To display the functions available for
a specific utility, enter the preceding command from within that
utility.

2-26 NOSNE System Usage Revision H

Using NOSNE Commands, Utilities, and Functions

Calling a Function

To call a function, enter the name of the function, followed optionally
by a list of parameters enclosed within parentheses as follows:

$function name(parameter list)

The following considerations apply when calling functions:

• All function names begin with the dollar sign character; an
example of a function name is $DATE.

• Each parameter in the list represents a value and is separated
from other parameters by a space or comma as follows:

$function name(value)
or

$function name(value,value, ... value)

• Spaces following the opening parenthesis or preceding the closing
parenthesis are optional.

• If you do not include a parameter list, you need not enter the
opening and closing parentheses.

• There can be no space between the function name and the opening
parenthesis of the parameter list.

The following is a call to the function that returns the current date:

$date

You can also call the function as follows:

$date()

Revision H The System Command Language 2-27

Using NOSNE Commands, Utilities, and Functions

The call to the $DATE function is replaced with a string representing
the current date. Assume, for example, that the following expression
is executed on March 28, 1987:

'The current date is '//$date

The result is a string with the following value:

The current date is 1987-03-28

The $DATE function accepts one optional parameter that specifies the
format in which the date is to be returned. If you omit this
parameter, a default format is used. If you specify the parameter
MONTH, as in the following example:

$date(month)

the date is returned as shown in the following example:

March 28, 1987

Displaying the Value of a Function

To display the value that a function returns, use the DISPLAY_
VALUE command. This command is useful both in procedure writing
and during interactive sessions.

For example, to find out the current date during an interactive
session, you could enter the following after the system prompt:

/display_value $date(month)

The system responds as follows:

March 28, 1987
I

2-28 NOSNE System Usage Revision H

Data Representation

Data Rep:resentation

Each NOSNE job consists of data and statements that perform some
operation on the data. This data can be contained within files; data
can also be represented by constants and variables.

Constants

A constant specifies a fixed data value to the SCL interpreter. You
can use constants anywhere within jobs, procedures, or utilities.

NOSNE provides several functions that return constant values; these
functions are particularly useful to procedure writers. For example,
the $MAX_INTEGER function returns the largest positive integer for
the system.

The following is a list of functions which return constant values:

$MAX_ INTEGER

$MAX_ NAME

$MAX_ STRING

$MAX_ VALUE_
SETS

$MAX_ VALUES

$MIN _INTEGER

Revision H

Returns the maximum positive integer allowed
for a parameter (9,223,372,036,854,775,807).

Returns the maximum length of a name allowed
for a parameter (31).

Returns the maximum length of a string allowed
for a parameter (256).

Returns the maximum number of a value sets
allowed for a parameter (2,147,483,647).

Returns the maximum number of values allowed
per value set (2,147,483,647).

Returns the minimum integer value allowed for a
parameter (-9,223,372,036,854,775,808).

The System Command Language 2-29

Data Representation

Variables

A variable is a name that refers to a data item whose value can be
changed during the execution of a job. You can use variables
anywhere within a job, but they are generally known only within the
block in which they are created.

An SCL variable must be assigned a data type when it is created. If
you create a variable explicitly with the CREATE_ VARIABLE
command, you specify the variable's type using the KIND parameter.
If you create a variable implicitly, you use an assignment statement
to assign a value to a previously undefined variable. The variable
inherits the· data type of the expression to which it is equated.

2-30 NOSNE System Usage Revision H

Data Representation

SCL Types

The following table shows the most common data types and examples
of values for each type:

Type

Name or Keyword

Integer

String

Boolean

File

Example

N2000
ALL

100
-5000

'This is a string.'
'Names don"t have apostrophes, but strings
do.' 1

TRUE or FALSE
YES or NO
ON or OFF

MY_FILE
$USER.MY_FILE
$LOCAL.MY_FILE

For more information about variables and types, see chapter 7, SCL
Variables, Types, and Expressions.

1. To include an apostrophe within a string, use two consecutive apostrophes

Revision H The System Command Language 2-31

Assignment Statements

Assignment Statements

Assignment statements assign values to variables. The general form of
the assignment statement is as follows:

variable = expression

You can implicitly create variables by assigning them a value in an
assignment .

1
statement, and you can explicitly create or delete variables

using commands. If you explicitly create a variable, you specify its
data type (for example, integer or boolean). If you implicitly create a
variable, its data type is the same as the expression to which it is
equated.

The following are examples of assignment statements:

Assignment Statement Data Type

factor = lO*j Integer

file_deleted = true Boolean

first_name = 'John' String
last_name = 'Doe'
full_ name = last_name/f, 'I/first_ name

To assign a new value to a variable that already exists, the value of
the expression on the right side of the equals sign must be of the
same type as the variable on the left.

2-32 NOSNE System Usage Revision H

Expressions

Expressions

An expression is the representation of a single value. An expression
can be a constant or a variable appearing alone, or constants,
variables, and operators combined to compute a value.

The following considerations apply to expressions:

• An expression can contain any number of data items, but after it
is evaluated, it represents a single value.

• If an operation is performed on two data items of differing data
types, an error occurs. NOSNE provides a number of functions
which convert data items of one data type to items of another
type.

• When the system encounters a NOSNE-defined constant or
function in an expression, it evaluates the constant or function
(and any supplied arguments) and uses the resulting value in the
expression.

• In an expression, the system evaluates operands within parentheses
first, with the innermost parentheses taking precedence.

• In an expression used in an assignment statement, you can
surround operators with spaces; in an expression used in a
parameter, you cannot enter spaces surrounding the operators (for
examples, see Specifying Expressions as Values earlier in this
chapter).

You can use expressions for any parameter of a NOSNE command,
command utility, function, or control statement. Expressions are also
valid for any parameter of an SCL procedure. Rules for expressions
are described in chapter 7, SCL Types, Variables, and Expressions.

Revision H The System Command Language 2-33

Control Statements

Control Statements

A control statement structures and controls the flow of a command
stream. With control statements, you can structure a command stream
into blocks of statements called statement lists. These statement lists
can be executed until either a required condition occurs, a repetition
count is reached, or a specific exit is requested from the block.

SCL provides the following types of control statements:

• Structured statements used to structure a command stream into
groups of statements either processed as separate entities or until
a specified terminating condition or statement is encountered.

• Flow control statements used to control the flow of a structured
statement.

• Conditional execution statements used to control the execution of
statements based on the evaluation of an associated boolean
expression.

• Condition handler statements used to execute groups of statements
when specified abnormal conditions occur.

Control statements are described in chapter 8, SCL Command Streams
and Condition Processing.

2-34 NOSNE System Usage Revision H

Examples of Statements

Exa:irnples of Statements

The following example contains assignment statements, a command,
and a control statement.

i=10 Assignment statement.

for j 1 to by 1+1 do FOR control statement begin clause.

k=j *j Assignment statement.

display_value k DISPLAY_ VALUE command.

f orend FOR control statement end clause.

In the example, the following activity takes place:

1. The variable I is created (variables can be referenced in either
uppercase or lowercase) and assigned the initial value 10. The
variable I is used as an iteration limit for the subsequent FOR
control statement.

2. The variable J is implicitly created by the FOR statement. J is
given the initial value of 1 and is incremented by 2, that is 1+1,
each time the FOR statement is executed.

3. The variable K is implicitly created and then assigned the value of
J times J.

4. The DISPLAY_ VALUE command is used to display the value of k.

Execution of the preceding statements produces these results:

1

9
25
49
81

Revision H The System Command Language 2-35

Procedures

Procedures

A procedure is a list of statements that are processed like a single
command when the procedure is called by its name. The syntax of a
procedure call is identical to the syntax of NOSNE commands,
including an optional list of parameters to which values can be
passed. It is therefore possible to use procedures both to create your
own commands and to replace NOSNE commands with your own
versions. Procedures are described in chapter 9, Writing SCL
Procedures and Command Utilities. Altering the NOSNE command
list is described in chapter 5, Command and SCL Procedure Execution.

2-36 NOS/VE System Usage Revision H

Interactive Sessions

Networks

Logging In and Out . .
Login Information
Changing Your Password

Entering Commands Interactively
Line and Screen Mode Processing

Using Screen Mode Processing .
Network Command Characters
User-Controlled Interrupts .

Pause Break
Terminate Break
Screen-Mode Pause and Terminate Breaks

N AM/CCP Processing
N AM/CDCNET Processing . .
NAMVE/CDCNET Processing

Terminal Disconnects

Reestablishing Terminal Connections

Job Time Limits

Displaying Your User Validation

Changing Your User Validations

Getting Help On Line
Online Help Commands . . .
Using Parameter Prompting

Using Online Manuals
Summary of Screen Mode Operations
Summary of Line Mode Subcommands .
The Online Examples Manual

3

3-2

3-4
3-5
3-7

3-9
3-9

3-10
3-12
3-13
3-15
3-16
3-16
3-17
3-17
3-18

3-19

3-19

3-20

3-21

3-23

3-24
3-24
3-26

3-28
3-28
3-30
3-31

Interactive Sessions 3

A NOSNE job that you manage directly from a terminal is called an
interactive session. In order to start an interactive session, you must
log in to NOSNE. How you log in to NOSNE and manage your job
depends in part upon the type of network you are using to connect to
the computer. This chapter describes some of the networks you might
use to connect to N OSNE, and then tells you how to manage a
NOSNE interactive session.

Revision H Interactive Sessions 3-1

Networks

Networks

Networks are collections of hardware and software connecting your
terminal to the computer. The following figure illustrates the parts of
a network:

Communication Line s
• Q

Terminal Input .. r u Queue Queue Operating
Interface y 8

~ Output Queue System
Program Queue I u

-- Expedited Data --+ c 8

8

M02180

In the preceding illustration, the terminal is connected to a Terminal
Interface Program (TIP). The TIP runs on the network's hardware and
processes the data that passes between the terminal and the network's
communication line.

3-2 NOSNE System Usage Revision H

Networks

The communication line connects the TIP with the host computer. The
communication line has three paths: the input, output, and expedited
paths. Note that the input and output paths both have queues on
either end. These queues are used to store information waiting to be
processed by the network. The following describes each of the
communication paths:

Input path

Contains information being sent from the terminal to the host
computer.

Output path

Contains information being sent from the host computer to the
terminal.

Expedited path

Contains data that bypass the network's queues and is sent
immediately to the host computer for processing. The expedited
path is used for data which informs the operating system and/or
the network, to take some kind of special action.

The communication line is connected to a service. The service is a
program running on the host computer that handles the flow of
information between the network and the computer.

Revision H Interactive Sessions 3-3

Logging In and Out

Logging In and Out

Logging in to NOSNE involves two operations:

1. Establishing a communications link with the host computer.

2. Identifying yourself to NOSNE.

Both processes are easy to do, but vary depending upon the terminal
you are using, the way that your terminal is connected to the
network, the actual network that you are using, and whether you are
using a dual-state system.

You can log in to NOSNE through the following standard networks:

• NAMVE/CDCNET

• NAM/CDCNET

• NAM/CCP

• INTERCOM

To log out of NOSNE, at the system prompt simply enter:

/logout

The Introduction to NOSNE manual describes how to log in and out
of NOSNE using the standard networks. That manual, however,
assumes that you have already connected your terminal to the
network. If you have any questions about logging in that are not
.discussed in that manual, consult your site personnel.

3-4 NOSNE System Usage Revision H

Logging In and Out

Login Information

Before you can log in to NOSNE, you must be validated to use the
system by your site personnel. After you have been validated, you
should be provided with the following information:

• Family name

The name of the group of users under which your permanent
catalogs are located.

• User name

This name, combined with your family name, identifies you as
a valid NOSNE user and gives the location of your permanent
files within your family.

• Password

This word prevents others from logging in to the system under
your user name. You will use the assigned password the first
time you log in to the system. At that time, you should change
the assigned password to something that is known only to you.
To change your password, use the CHANGE_LOGIN_
PASSWORD command.

• Account and project names

These names may not be required by your site. Account and
project names are used to identify who should be billed for
your use of the system.

• Network used to access NOSNE

Along with this information should be any network-dependent
information you will need to use NOSNE.

• Additional instructions specific to your site, if any.

Revision H Interactive Sessions 3-5

Logging In and Out

When you log in, at a minimum the system will check the validity of
your family name, user name, and password. In addition, depending
upon your validation level, the system may also check the validity of
the account and project information supplied to it. The following table
defines the three different validation levels.

Level

USER

ACCOUNT

PROJECT

Definition

System checks the validity of the family name, user
name, and password information supplied to it during
login.

In addition to the USER level information, the
system also checks the validity of the account name
supplied to it during login.

In addition to the USER and ACCOUNT level
information, the system also checks the validity of
the project name supplied to it during login.

You can find out what your validation level is by using the
$VALIDATION _LEVEL function. For instance:

/display_value $validation level
USER

I

Note that in some cases, you can let your family name, account, and
project information default to given values during login. For instance,
you do not need to enter your family name during login if you are
logging in to a system that has just one family on it. Similarly, for
ACCOUNT and PROJECT validation levels, you need not specify
account and project information during login if the appropriate values
are set up for your user validation. See Displaying Your User
Validation later in this chapter for information on your user
validation. See the Introduction to NOSNE for more information about
logging in.

3-6 NOSNE System Usage Revision H

Logging In and Out

Changing Your Password

The first time you log in to NOSNE, you should change the password
given to you by your site to a password only you know. This is done
using the CHANGE_LOGIN _PASSWORD command. For instance, if
your site assigned you a password of A678Y59, you can change it as
follows:

/change_login_password old_password=A678Y59
.. /new_password=goofy

Your new password is now GOOFY.

For security reasons, your site may choose to force you to change
your password from time to time. If this is the case, when you login
you will see a message displayed on your screen informing you of
this. Your site determines when you will start seeing this message as
well as how often you must change your password.

The number of days that your site allows to pass before you must
change your password is known as the maximum expiration interval.
The date that your password will expire is known as the expiration
date. The expiration warning interval indicates when you will start
seeing the message informing you that your password will expire. This
value is in terms of days before your password expires.

For instance, suppose your expiration date is June 3, 1988, your
maximum expiration interval is 30 days, and your expiration warning
interval is 10 days. Then starting on May 25, you will see the
following message every time you log in until you change your
password:

--INFORMATIVE CL 7018-- Your password will expire at 00:00:00
on 1988-06-03.

If you do not change your password by midnight, June 2, 1988, your
password will expire and you will no longer be able to log in.

If you change your password on June 2, then your new expiration
date will be 30 days from then, or at midnight on July 1.

Revision H Interactive Sessions 3-7

Logging In and Out

You can use the CHANGE_LOGIN_PASSWORD command to set your
own expiration interval and expiration date. To do this, use either the
EXPIRATION _DATE parameter to explicitly set an expiration date, or
use the EXPIRATION _INTERVAL parameter to set an interval that
the system will use to calculate the new expiration date. If you
specify both parameters on the call to CHANGE_LOGIN_PASSWORD,
the system will use the date specified on EXPIRATION_ DATE as the
new expiration date, and will use the value specified on
EXPIRATION _INTERVAL to calculate future expiration dates.

Note that the values you specify on the EXPIRATION_DATE and
EXPIRATION _INTERVAL parameters may not exceed the maximum
expiration interval permitted to you by your site.

You can find out what your expiration interval, expiration date,
expiration warning interval, and maximum expiration interval are by
displaying your user validation using the ADMINISTER_ VALIDATION
utility. This process is discussed in Displaying Your User Validation
later in this chapter.

A value of UNLIMITED for either the maximum expiration interval
or the expiration interval values means that no time period exists in
which you have to change your password. A value of NONE for
expiration date means that your password will never expire. A value
of zero (O) for expiration warning interval means that you will not be
warned that your password is going to expire.

3-8 NOSNE System Usage Revision H

Entering Commands Interactively

Entering Commands Interactively

Once you have started an interactive session, you manage the session
by entering input lines to the system. Input lines may contain
commands for the system to execute, or data for processing by
programs.

You can use any of the ASCII 128-character set in the input line. You
terminate a command line using the end-of-line character defined for
your terminal. By default, this character is the carriage return.

By entering commands to NOS/VE, you can give instructions to the
SCL interpreter, a program, a command utility, or directly to the
network. You can interactively enter commands to the SCL interpreter
or to a program only when you are prompted to do so by the
interpreter or the program. You can usually enter commands to the
network at any time.

Normally, as each input line is completed it is given to the SCL
interpreter or program to process. However, if you enter input at a
rate that exceeds the rate at which the system can process it, the
information is saved by the system and the typed-ahead input is
delivered to the interpreter or program when requested.

Line and Screen Mode Processing

NOSNE allows interaction in both line and screen mode. When you
first start an interactive session, by default your interactive job is set
to line mode. You interact with NOSNE in line mode by entering
commands line by line after the system prompt (!). At this time, the
INPUT_EDITING_MODE connection attribute is set to NORMAL.

Some applications, however, allow you to interact with NOS/VE in
screen mode. In screen mode, you enter and edit data by moving the
cursor to different positions on the screen, and the system displays
messages in different areas of the screen. Note that applications using
screen mode will set the INPUT_EDITING_MODE connection
attribute to TRANSPARENT.

For more information on connection attributes, see chapter 13,
Terminal Management.

Revision H Interactive Sessions 3-9

Entering Commands Interactively

Using Screen Mode Processing

To use screen mode, your terminal must support screen-mode
interaction. Further, you must identify your terminal model and
specify that you want to use screen mode interaction. The following
example sets the TERMINAL_MODEL terminal attribute and specifies
screen-mode interaction:

/change_terminal_attribute terminal_model=pc_connect_13
/change_interaction_style mode=screen

The following table lists the most commonly used terminal models.
For a complete list of the NOSNE supported terminal models, see the
TERMINAL_MODEL terminal attribute description in chapter 13,
Terminal Management.

NOS/VE Model Name

CDC_ 721

CDC_ 722

CDC_ 722_30

DEC_ VTlOO

DEC_ VTlOO_GOLD

DEC_ VT220

MAC_CONNECT_lO

MAC_CONNECT_ll

MAC_CONNECT_20

3-10 NOSNE System Usage

Terminal Model

CDC 721

CDC 722

CDC 722_30

DEC VTlOO (18 function key
definition)

DEC VTlOO (32 function key
definition)

DEC VT220

Apple Macintosh (CONNECT 1.0)

Apple Macintosh (CONNECT 1.1)

Apple Macintosh (CONNECT 2.0)

Revision H

NOS/VE Model Name

PC_CONNECT_lO

PC_CONNECT_ll

PC_CONNECT_l2

PC_CONNECT_l3

ZEN_Z19

ZEN_Z29

Entering Commands Interactively

Terminal Model

IBM PC (CONNECT 1.0)

IBM PC (CONNECT 1.1)

IBM PC (CONNECT 1.2)

IBM PC (CONNECT 1.3)

Zenith Z19 or Heathkit H19

Zenith Z29

In addition to the NOSNE-supplied terminal definitions, most sites
provide other terminal definitions. To see a list of available terminal
definitions, enter the following command:

/display_object_library $system.tdu.terminal_definitions

The system displays a list of terminal definitions that includes the
date and time the definitions were created. Definition names consist of
the terminal model name prefixed by CSM$.

To use a terminal definition, enter the terminal model name (without
the CSM$ prefix) as the value for the TERMINAL_MODEL parameter
on the CHANGE_ TERMINAL_ATTRIBUTES command.

For more information about terminal definitions, refer to the NOSNE
Terminal Definition manual.

Revision H Interactive Sessions 3-11

Entering Commands Interactively

Network Command Characters

In some cases, you may also enter commands for the network to
process by entering the appropriate network keystroke sequence. This
is only possible if your network supports network command characters
and if the INPUT_EDITING_MODE connection attribute is set to
NORMAL. See Screen Mode Pause and Terminate Breaks for
information on the network command characters you can use when
INPUT_EDITING_MODE is set to TRANSPARENT.

A network command character is a character that indicates that the
data appended to the character is to be handled in some special way
by the network. The following is an example of this:

%1

In the above example, the network keystroke sequence consists of the
percent sign (%) which is the network command character followed by
the number one (1) which has significant meaning to the network.

To find out what your network command character is, use the
DISPLAY_TERMINAL_ATTRIBUTES (DISTA) command. You may
also change your current network command character to any
one-character string value using the CHANGE_ TERMINAL_
ATTRIBUTES (CHATA) command. For example:

/display_terminal_attributes ..
. . /do=network_com:nand_charaeter
Network_Coomand_Character : $CHAR(37) "%"
/change_terminal_attributes ..
. ./net \'/Ork_eorrrnand_character 'G'
/dista nee
Network_Coomand_Character : $CHAR(64) "@"

3-12 NOSNE System Usage Revision H

Entering Commands Interactively

User-Controlled Interrupts

It is often possible for you to interrupt the system's current operation
and get it to perform a specific function. This is done by entering the
appropriate network keystroke sequence. When you do this, you are
executing a user-controlled interrupt. User-controlled interrupts are
sent to the operating system as expedited data.

Each network has its own set of user-controlled interrupts that you
may use. The following table lists the user-controlled interrupts
available for each of the standard networks. Some of the following
interrupts initiate processing conditions. Others provide the equivalent
of a NOS/VE command.

If you are not using a standard network, consult your network's
documentation or your site personnel for information on the supported
user controlled interrupts.

Table 3-1. Summary of User Controlled Interrupts

Condition or
SCL Command CDCNET1 NAM/CCP2 INTERCOM

Pause Break %1 CTRL-P %A

Terminate Break %2 CTRL-T %A, TERC

User Exit (LOGOUT) %X ESC X none

Discard Typed-Ahead Input %T none none

(Continued)

1. The first character in the sequence is the character specified by the NETWORK_
COMMAND_CHARACTER attribute. Normally, this character is the percent sign (%).
CDCNET refers to both NAMVE/CDCNET and NAM/CDCNET.

2. The first character in the sequence is the character specified by the NETWORK_
COMMAND_CHARACTER attribute. Typically, this character is the escape character
(ESC). VTlOOs, however, use the percent (%) character by default.

Revision H Interactive Sessions 3-13

Entering Commands Interactively

Table 3-1. Summary of User Controlled Interrupts (Continued)

Condition or
SCL Command

DETACH_JOB %D

DISPLAY_JOB_STATUS %S

DISPLAY_JOB_STATUS %J
N=ALL

DISPLAY_LOG DO=lO %L

DISPLAY_ACTIVE_ %A
TASKS

ESC D

ESC S

ESC J

ESC L

ESC A

%A, DETJ

%A, DISJS,
RESC

%A, DISJS
N= ALL,
RESC

%A, DISL
10, RESC

%A, DISAT,
RESC

While most of the interrupts available to you will not affect data on
the network, the pause and terminate break interrupts will. The pause
break and terminate break interrupts are discussed later in this
section.

By default, you can use user-controlled interrupts only when the
INPUT_EDITING_MODE connection attribute is set to NORMAL.
However, most networks will allow you to set up the capability to use
either the pause or the terminate break interrupts when INPUT_
EDITING_MODE is set to TRANSPARENT.

3-14 NOSNE System Usage Revision H

Entering Commands Interactively

Pause Break

The pause break interrupt is a condition that suspends the execution
of a command. A pause break is handled in the following manner:

• Any unread typed-ahead data that currently exists on either the
operating system or the network is discarded.

o The operating system suspends command execution.

A pause break is usually ignored during permanent file transfers.
However, on INTERCOM a pause break is treated as a terminate
break -- that is, the file transfer is terminated rather than suspended.

To suspend the execution of a command while in line mode, enter the
pause break keystroke sequence for the network you are using. Once
you have entered this keystroke sequence, the system responds with
the following message and prompt:

Suspended - 1
p/

The displayed number, which identifies the pause break level,
increases by 1 each time you enter a pause break without resuming
or terminating the previously suspended command.

To continue execution of the suspended command, use the RESUME_
COMMAND command. To terminate the suspended command, use the
TERMINATE_COMMAND command. RESUME_COMMAND and
TERMINATE_COMMAND operate on the most recently suspended
command.

Revision H Interactive Sessions 3-15

Entering Commands Interactively

Terminate Break

A terminate break interrupt is a condition that terminates the
execution of the current command. A terminate break is handled in
the following manner:

• Any unread typed-ahead data that currently exists on either the
operating system or the network is discarded.

• Any unwritten output generated by the terminated command that
currently exists on either the operating system or the network is
discarded.

• The operating system terminates command execution.

To terminate the execution of a command while in line mode, enter
the terminate break keystroke sequence for the network you are
using. After you have entered the terminate break sequence, the
system responds with the following message and prompt:

Cornnand terminated.
I

Screen-Mode Pause and Terminate Breaks

The pause and terminate breaks are not automatically supported when
you are using a utility in screen mode. This is because when you are
using a utility in screen mode, the INPUT_EDITING_MODE
connection attribute is set to TRANSPARENT so the network will not
interpret the network keystroke sequences. However, for most
networks you may establish a way to use either the pause or the
terminate break interrupts when the INPUT_EDITING_MODE
connection attribute is set to TRANSPARENT.

How you establish a method of controlling the processing when
INPUT_EDITING_MODE is TRANSPARENT, depends on which
network you are using. The following sections describe how to
establish control processing when using the NAM/CCP,
NAM/CDCNET, and NAMVE/CDCNET networks. If you are not using
one of these networks, consult your network's documentation or your
site personnel for more information.

3-16 NOSNE System Usage Revision H

Entering Commands Interactively

Once you establish a method of controlling processing, you can use
this method when INPUT_EDITING_MODE is NORMAL (as is
typically the case when you are processing commands in line mode) as
well as when INPUT_EDITING_MODE is TRANSPARENT.

N AMICCP Processing

To use CTRL-T to terminate processing and CTRL-P to interrupt
processing when INPUT_EDITING_MODE is TRANSPARENT, enter
the CHANGE_ TERMINAL_ATTRIBUTES command with the
ATTENTION _CHARACTER parameter set to a non-null value. For
example, enter:

change_terminal_attributes attention_character=$char(1)

N AM/CDCNET Processing

To use a user-defined character to either terminate or interrrupt
processing do the following:

1. Using the CDCNET command, CHANGE_TERMINAL_
ATTRIBUTES, define an attention character.3

2. Using the CDCNET command, CHANGE_CONNECTION_
ATTRIBUTES, set the attention character action to either:

1 For the pause break condition (interrupt processing).

2 For the terminate break condition (terminate processing).

3. The character you choose for the attention character must come from a subset of the
ASCII character set as described in the CDCNET Terminal Interface manual.

Revision H Interactive Sessions 3-17

Entering Commands Interactively

For example, to define CTRL-C as the pause break character, enter:

%change_terminal_attributes attention_character=3
%change_connection_attr1butes attention_character_action=1

The CDCNET commands CHANGE_ TERMINAL_ATTRIBUTES and
CHANGE_CONNECTION_ATTRIBUTES are described briefly in the
CDCNET_ACCESS online manual. They are described in detail in the
CDCNET Terminal Interface Usage manual.

NAMVE/CDCNET Processing

To use a user-defined character to either terminate or interrupt
processing do the following:

1. Using the NOS!VE command, CHANGE_TERMINAL_
ATTRIBUTES, define an attention character.

2. Using the NOS!VE command CHANGE_TERM_CONN_
DEFAULTS, set the attention character action to either:

1 For the pause break condition (interrupt processing).

2 For the terminate break condition (terminate processing).

3. Set the ATTENTION_ CHARACTER_ACTION connection attribute
for terminal files INPUT, OUTPUT, and COMMAND to the same
value as the attention character action in step 2. Use the NOS!VE
command CHANGE_CONNECTION_ATTRIBUTE to do this.

For example to define CONTROL/C as the pause break character,
enter:

change_terminal_attributes attent1on_character=$char(3(8))
change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=comnand aca=1

3-18 NOS/VE System Usage Revision H

Terminal Disconnects

Terminal Disconnects

A terminal disconnect is a condition that occurs when the line
between the terminal and the system is disconnected or when you
explicitly detach your terminal from the current interactive job.

When a terminal is disconnected, the system does the following:

o For most networks, the system discards typed-ahead input that has
not been read. For NAMNE, however, the disconnect condition will
not occur until all typed-ahead input has been read by the job.

o The system continues executing the job until terminal input or
output is attempted. At that time, the job is suspended and
retained by the system for a period of time determined by the
DETACHED_JOB_ WAIT_ TIME job attribute. For information
about job attributes, see the Job Management chapter later in this
manual.

To explicitly disconnect your terminal from the current interactive job,
either use the user controlled interrupt or use the DETACH_JOB
command. When explicit disconnection occurs, the system
automatically initiates a new interactive job.

JReestablishing Terminal Connections

You can reconnect your terminal to a disconnected interactive job. To
do so, you must reconnect your terminal to the system within the
period of time allotted by the DETACHED_JOB_ WAIT_ TIME job
attribute. If you do not reconnect within this period of time, the job is
terminated.

Once you have reconnected your terminal to the system, you may
reconnect your terminal to the suspended job using the ATTACH_JOB
command. After reconnecting to the job, the system leaves it in a
pause break condition. At this time, you may either resume or
terminate the suspended command.

You cannot attach a job that originated on a different network from
the one you are currently using. For example, if you were using
CDCNET and your job was disconnected, and you log back in to the
system using INTERCOM, you will not be able to reconnect the
suspended job. To reconnect the job, log in to the system using
CDC NET.

Revision H Interactive Sessions 3-19

Job Time Limits

Job Time Limits

A time limit is a condition that occurs in a job when the central
processing time resource limit for a job is reached. When this
happens, the system does the following:

• Suspends all of your current activity in the job.

• Displays a message informing you that the limit has been reached.

For interactive jobs, the system will also give you the following
message prompting you for an integer value to be added to your CPU
time resource limit. You may either enter a value at the prompt and
the system will continue executing your job, or you may logout.

JOB TIME LIMIT REACHED
CP_TIME resource limit has been reached.
Accumulator value is 10000.
Abort limit is 140737488.
Please enter an integer increment or LOGOUT.
?

Note that the increment you specify added to the accumulator value
cannot exceed the abort limit. Limits are discussed in the Job
Management chapter later in this manual.

3-20 NOSNE System Usage Revision H

Displaying Your User Validation

Displaying Your User Validation

To display your user validation information, follow these steps:

1. Enter the ADMINISTER_ VALIDATION utility.

2. At the utility prompt, enter the DISPLAY_ USER subcommand.

3. To exit the ADMINISTER_ VALIDATION utility, enter the QUIT
command at the utility prompt.

For example:

/administer_validation
AV/display_user

SARE TT
CAPABILITIES

Value: (EXPLICIT_REMOTE_FILE
IMPLICIT_REMOTE_FILE
MAIL_VE_LOCAL_MULTI_HOST_ACCESS
MAIL_VE_SELF_ADMINISTRATION
READ_UNLABELLED_TAPES ..
TIMESHARING ..
WRITE_UNLABELLED_TAPES)

CPU_ TIME_LIMIT
Job warning limit: UNLIMITED
Job maximum limit: UNLIMITED

CREATION_ACCOUNT_PROJECT
Not authorized to display value.

DEFAULT_ACCOUNT_PROJECT
Account: 01257
Project: P83A2821

JOB_CLASS
Job classes: (BATCH

INTERACTIVE
SYSTEM_DEFAULT
EXPRESS_BATCH ..
FILE_ TRANSFER)

Interactive default: INTERACTIVE
Batch default: BATCH

LINK_ATTRIBUTE_CHARGE
Value: "

LINK_ATTRIBUTE_FAMILY
Value: 'CLSH990'

LINK_ATTRIBUTE_PASSWORD

Revision H Interactive Sessions 3-21

Displaying Your User Validation

Not authorized to display value.
LINK_ATTRIBUTE_PROJECT

Value: ''
LINK_ATTRIBUTE_USER

Value: , SARETT'
LOGIN_PASSWORD

Expiration date: 1988-03-14.10:30:28
Expiration interval: 35 days
Maximum expiration interval: Unl1m1ted
Expiration warning interval: 14 days
Password attributes: NONE

MAILVE_ADMINISTRATION
Value: SELF

MAILVE_DISTRIBUTION_LIST_LIMIT
Value: 25

MAILVE_MAILBOX_LIMIT
Value: 1

MAILVE_RETENTION_LIMIT
Value: 14

PERMANENT_FILE_SPACE_LIMIT
Total limit:
Total accumulation:

RING_PRIVILEGES
Minimum ring: 11
Nominal ring: 11

SRU_LIMIT
Job warning limit:
Job maximum limit:

TASK_LIMIT
Job warning limit:
Job maximum limit:

USERS_NAME
Value: 'SARETTE S'

USER_EPILOG
Value: $USER.EPILOG

USER_PROLOG

UNLIMITED
0

50000
UNLIMITED

30
30

Value: $USER.PROLOG
AV/ quit
I

3-22 NOSNE System Usage Revision H

Changing Your User Validations

Changing Your User Validations

You may change some of your validation information using the
ADMINISTER_ VALIDATION utility. To do this, enter the
ADMINISTER_ VALIDATION utility and then the CHANGE_ USER
utility. For instance, it is possible for you to change the default for
your account and/or project login information through the use of these
utilities. Thus, if you want your default account number during login
to be A668Y9 enter the following:

/administer_validation
AOMV/change_user
CHAU/change_default_account_project account=A668Y9
CHAU/ quit
AOMV/quit
I

You may also change your login information for dual-state access and
your prolog and epilog names using these utilities. For information on
changing your login information for dual-state access, see Dual-State
File Access later in this manual. For information on changing your
prolog and epilog names, see Job Management later in this manual.

Revision H Interactive Sessions 3-23

Getting Help On Line

Getting JBielp On Lime

NOSNE provides the ability to display information about commands,
subcommands, functions, and messages through commands and
parameter prompting. This section discusses these methods of
obtaining online help.

Online Help Commands

The following table summarizes the commands used display
information about commands, subcommands, functions, and messages.

Table 3-2. Summary of Online Help Commands

Command

DISPLAY_ COMMAND_
INFORMATION

DISPLAY_FUNCTION_
INFORMATION

3-24 NOSNE System Usage

Description

Lists a command's parameters and
their abbreviations, types, and
default values.

Lists a function's parameters and
their types, and default values.

(Continued)

Revision H

Getting Help On Line

Table 3-2. Summary of Online Help Commands (Continued)

Command

DISPLAY_COMMAND_LIST_
ENTRY

HELP

Revision H

Description

Displays a list of all available
commands and functions. When
used within a utility, displays a
list of all available subcommands
and functions.

Uses the EXPLAIN utility to
access the help text provided in the
system. The forms of help text
available can be categorized either
as screens from an online manual
or, if you are in a utility that
provides other help, as windows of
help text that overlay what is on
your screen.

If. you access an online manual, the
manual can contain general
information about a specified
subject, an explanation of an error
message, or information specific to
the the utility you are currently
using. The name of the manual
always resides in the upper left
hand corner of the screen.

Interactive Sessions 3-25

Getting Help On Line

Using Parameter Prompting

In addition to the commands described in table 3-2, NOSNE
conditionally provides further online help when you call a command
through parameter prompting. Parameter prompting may be enabled
and disabled using the CHANGE_SCL_ OPTION command. By
default, parameter prompting is enabled.

Parameter prompting occurs when you do one of the following:

• You enter a command with one or more parameters supplied, and
either one or more parameters are in error or a required
parameter is missing. Errors are reported and corrections are
prompted for until you have supplied all required parameters and
all supplied parameters are satisfactory.

• You enter a command without specifying any parameter values,
but the command has at least one required parameter. In this
case, all the parameters on the command are prompted for, with
the exception of the status parameter.

• You enter a question mark followed by a command reference. You
can use this technique either at the NOSNE prompt or from
within an SCL procedure. The system theri prompts you for all the
command's parameters, whether required or not.

3-26 NOSNE System Usage Revision H

Getting Help On Line

To stop prompting and terminate the command, enter a terminate
break at the parameter prompt. If you do not enter a terminate break
at the parameter prompt, the system prompts you for the remaining
parameter values and executes the command, using the values you
have supply for the parameters. In addition, you may enter the
following:

Carriage return

Question mark (?)

Semicolon (;)

Slant (/)

Revision H

Indicates you want to use the default value for
an optional parameter.

Obtains information about acceptable responses
to the prompt. Entering a question mark a
second time in response to a prompt will result
in the display of information about all the
command's parameters.

Indicates that no more prompting should occur
and the command should be executed. The
semicolon can be entered as the entire
response, or it can be entered at the end of a
parameter response. The semicolon will work
only if you have supplied all the required
parameters.

Indicates that the rest of the response is to be
interpreted as a command line. The slant must
be entered as the first character of the
response.

Interactive Sessions 3-27

Using Online Manuals

Using Online Manuals

You can access manuals on line by using the EXPLAIN utility. The
EXPLAIN utility can operate in either line or screen mode. If you
enter EXPLAIN with no parameters, the system displays the NOS/VE
System Information Manual main menu. From this menu, you can get
a list of online manuals as well as information about using online
manuals.

Summary of Screen Mode Operations

If you are using EXPLAIN in screen mode, you can perform the
following operations by using the corresponding function keys or
dedicated keys:

Table 3-3. Summary of Screen Mode Operations

Operation Description

RETURN or 6~i1 Page forward one screen.

Bk:w Page backward one screen.

Q.p Display the previous menu screen.

:ft@ Find information about a topic.

:~@g* Display a menu of topics described in the manual.

M¢k. Return to where you last used the Find operation
or made a menu selection.

:f:~@sJ Display the main menu.

(Continued)

3-28 NOSNE System Usage Revision H

Using Online Manuals

Table 3-3. Summary of Screen Mode Operations (Continued)

Operation

Revision H

Description

Display operations and help instructions. Pressed
again, displays the Help menu. Pressed while
cursor is positioned on function key label, displays
a brief description of the function.

Copy the current screen to the file specified by the
LIST parameter on the HELP or EXPLAIN
command.

Toggles logging operation on and off. When
logging is on, copies the current and all
subsequently displayed screens to the file specified
by the LIST parameter on the HELP or EXPLAIN
command.

Redisplay the current screen.

Return to the previous manual.

Leave the online manual.

Turn the operations display on.

Turn the operations display off.

Interactive Sessions 3-29

Using Online Manuals

Summary of Line Mode Subcommands

If you are using EXPLAIN in line mode, you can use the following
subcommands to perform operations:

Table 3-4. Summary of Line Mode Subcommands

Subcommand
or key

+ or RETURN

UP

xxxx?

?

DISI

<

TOP

HELP

SETLO ON

SETLO OFF

CLEAR

REVERT

QUIT

Description

Page forward one screen.

Page backward one screen.

Display the previous screen.

Find information about xxxx.

Find next information about xxxx.

Display an alphabetical menu of topics described
in the manual.

Return to where you last typed xxxx? or made a
menu selection.

Display the main menu.

Display the Help menu.

Copy the current and subsequent screens of text to
the file specified by the LIST parameter on the
EXPLAIN command.

Stop copying.

Redisplay the current screen.

Return to the previous online manual.

Leave the online manual.

3-30 NOSNE System Usage Revision H

Using Online Manuals

The Online Examples Manual

The Examples manual is an online menu-driven manual containing
fully executable examples. These examples reflect concepts found in
various areas of NOSNE such as:

0 COBOL

0 CYBIL

0 The EDIT_FILE utility

0 FORTRAN

0 Object code management

0 Screen Formatting

0 Source code management

0 The System Command Language

Using this manual, you may view, print, or copy an example to a file.
Once an example has been placed in a file, it may be executed or
edited. To access the Examples manual, enter the following:

/help m=examples

Once within the manual, you may get instructions on how to read and
use the manual by doing the following:

o Press the key(s) that perform the B~Jp operation.

o Wait for the help window to appear on your screen.

o Press B~rn again.

NOTE

The examples in the online Examples manual are provided to
demonstrate possible uses of NOSNE and its products. To whatever
extent an example seems useful, you are welcome to use it. However,
Control Data makes no claims regarding the suitability of these
examples for any particular purpose.

Revision H Interactive Sessions 3-31

Catalog and File Management

NOS/VE File and Catalog Structures .
Temporary File Catalogs
Permanent File Catalogs

Referencing File Names . .
Working Catalogs
Requirements for Referring to Files
File Cycles . . .
File Positioning

Creating Catalogs and Files
Creating Catalogs
Deleting Catalogs
Creating Files

Implicit File Creation .
Explicit File Creation .

Deleting Files
Catalog Entries
Displaying Catalog Entries
Changing Catalog Entries .
Displaying Catalog Information .

Catalog and File Permits .
Access Control Entries .

Permit Groups
Access Modes
Share Requirements .

Creating and Deleting Access Control Entries
Multiple Access Control Entries

Attaching and Detaching Permanent Files
Attaching Files Explicitly

Accessing the File
Sharing the File with Others ..

How Sharing of Files Is Controlled
Multiple Attaches within a Job .
Attaching Files as a Private Reader
Using the $ASIS Open Position

Using Files with Passwords

NOS/VE File Attributes
Attributes for All NOS/VE Files
Establishing File Attributes . . .

4

4-1
4-2
4-3

4-5
4-7
4-8

4-10
4-12

4-13
4-13
4-15
4-15
4-16
4-17
4-18
4-18
4-19
4-20
4-20

4-21
4-22
4-22
4-23
4-24
4-26
4-28

4-30
4-32
4-32
4-32
4-33
4-36
4-37
4-38

4-39

4-40
4-40
4-58

Attributes for Record Access Files 4-59
Attributes for Keyed Files 4-60
Changing File Attributes . 4-61
Displaying File Attributes . 4-62

Copying Files 4-64
File Organization Combinations 4-66
Copying Sequential Files to Sequential Files 4-67
Copying Sequential Files to Keyed Files . . 4-71
Copying Byte-Addressable Files to Byte-Addressable Files 4-73
Copying Keyed Files to Keyed Files . . . 4-7 4
Copying Keyed Files to Sequential Files 4-77
Copying List Files . 4-79

Input File Has a FILE_CONTENTS Value of LIST 4-79
Output File Has a FILE_CONTENTS Value of LIST 4-79

Comparing Files 4-80

Displaying the Representation of Data in a File 4-82

Managing Remote Files and Catalogs . . 4-84
Implicit Remote NOSNE File Access 4-84

Creating a Remote Validation . . . 4-84
Using Commands for Implicit Remote NOSNE File Access 4-85

Explicitly Accessing Remote Files 4-86
Transferring a Remote File to Your System 4-88
Transferring a File to a Remote System . 4-89

Common Remote File Management Problems . 4-90

Catalog and File Management

This chapter describes the NOSNE file system and the concepts
required to use and manage files. The following are described in
detail:

• NOSNE Catalog and File Structures

• Referencing File Names

• Creating Catalogs and Files

• Catalog and File Permits

• Attaching and Detaching Permanent Files

• NOSNE File Attributes

• Copying Files

The EDIT_CATALOG utility, described in the Introduction to NOSNE
manual, makes use of the concepts described in this chapter; however,
that utility is a screen mode application and uses labelled function
keys to perform the file management operations that are described in
this chapter.

NOS/VE File and Catalog Structures
NOSNE stores all programs and data in files. Files, in turn, are
stored in logical groupings called catalogs.

NOSNE supports permanent and temporary files. These files reside in
permanent and temporary file catalogs.

Revision H Catalog and File Management 4-1

NOSNE File and Catalog Structures

Temporary File Catalogs

Your temporary catalog, called $LOCAL, is a temporary workspace for
the temporary files you create during your job. In addition, NOSNE
uses the $LOCAL catalog to create and store certain system-defined
files that it requires to process your job.

Certain temporary files in the $LOCAL catalog are referred to as
local files in this manual. These are the files that are given a local
file name and are then stored in the $LOCAL catalog under that file
name. Local files are attached to a job by means of a local file name
and are then considered "local" to the job that attached them.

The $LOCAL catalog contains files only; you cannot create catalogs
within $LOCAL.

The $LOCAL catalog exists only during the time your job exists. All
the files in $LOCAL are deleted when your job ends.

4-2 NOSNE System Usage Revision H

NOSNE File and Catalog Structures

Permanent File Catalogs

Within NOSNE, permanent files reside in a hierarchy of permanent
catalogs. The permanent catalog that contains all your permanent files
and any other permanent catalogs you create is called your master
catalog; by default, your master catalog is reserved for your user
name when you are validated as a NOS/VE user. The official name of
your master catalog is your user name prefixed by a period (.). For
example, to obtain a display of the contents of his master catalog,
user SARETT enters the following:

display_catalog catalog=.sarett

The following describes the structure of the NOSNE permanent files
and catalogs:

Name Description

Family Designates a grouping of NOSNE users. Each
NOSNE system can have more than one family. You
can refer to your family with $FAMILY.

Master catalog Contains all the permanent files and catalogs that
belong to your user name. You can also refer to this
catalog with $USER.

Catalog Designates a permanent catalog which is subordinate
in the hierarchy to the master catalog.

File Designates a collection of information referenced by a
name; the file resides on its own or within a
permanent catalog within the master catalog.

Revision H Catalog and File Management 4-3

NOSNE File and Catalog Structures

You can picture this hierarchy as shown in the following figure:

Master
Catalog

tor User1

Family
NVE

Master
Catalog
for PAT
($USER)

Master
Catalog

tor User3

Master
Catalog

tor User4

File
PROLOG

Cab log
EXAMPLES

File
FTN_PROG

File
C_PROG

Family
VE2

Master
Catalog

for Users

File File

Master
Catalog
for JIM

File
PROLOG

CHECK_STATS ACCOUNTS

Figure 4-1. Master Catalog Structure.

4-4 NOSNE System Usage Revision H

Referencing File Nam es

Ref ercenci:ng File Na mes

To manipulate and perform operations on NOSNE files, you often
must refer to the file as a file name on a NOSNE command. You do
this by specifying its file path. A complete file path can include the
family name and all the catalogs in the path that lead to the file. A
file path can also specify an optional file cycle as well as an optional
open position. Conceptually, you can think of each item in the file
path as an element. The most complete file path you can use includes
the following elements:

:family.username.catalog(s).filename.cycle.openposition

It is not usually necessary for you to use the complete file path shown
in the preceding example. As stated previously, file cycles and open
position elements are optional. File cycles and open positions are
described in a later section.

The best way to trace a file path is to start with the file name and
trace the path to the top of the file hierarchy. Suppose in the
preceding figure that user PAT wants to copy the file FTN _PROG to
temporary file SCRATCH. The following example shows the complete
file path to filename FTN _PROG:

/copy_file input=:nve.pat.examples.ftn_prog output=$local.scratch

You can refer to files within your own family or within other users'
family catalogs. Suppose you want to copy user JIM's CHECK_STATS
file, and user JIM is part of family VE2. The correct way to reference
the file, then, is as follows:

/copy_file input=:ve2.jim.finance.check_stats
.. /output=$local.scratch

Revision H Catalog and File Management 4-5

R~ferencing File Names

Note that the above command will result in an error if you are not
user JIM or JIM has not permitted you access to CHECK_STATS.
See Catalog and File Permits later in this chapter for more
information.

A file path can also contain a file cycle. A file cycle is a numbered
version of a given file. That is, whenever more than one copy of a file
exists at the same time, by default the copies will be numbered in the
order that they were created. Thus, if two versions of file CHECK_
STATS existed, you could print version two by specifying the following
file path:

/print_file file=:ve2.jim.finance.check_stats.2

You can also specify an optional open position element. For example,
suppose you are user JIM and have some statistics in file TEMP that
you want to copy to the end of file CHECK_STATS. The complete file
reference is:

/copy_file input=$1ocal .temp output= ..
.. /:ve2.jim.finance.check_stats.$eoi

NOSNE provides a number of ways to refer to catalogs and files
without specifying a complete file path. The following sections describe
the short cuts, provide in detail the basic rules for referring to
NOSNE files and catalogs, and describe in further detail the concepts
of file cycles and file positioning.

4-6 NOSNE System Usage Revision H

Referencing File Names

Working Catalogs

Your working catalog is the catalog in which NOSNE assumes a file
exists if you do not specify its complete file path. When you log in,
NOSNE normally sets your working catalog to $LOCAL. However,
this can be changed through the use of either your own user prolog,
or the prologs maintained by your site. For more information on
prologs, see Job Management later in this manual.

Setting your working catalog to a catalog within your master catalog
provides two benefits:

o You can work within your master catalog without having to enter
the family and catalog elements of the file path.

o Any files and catalogs you create are automatically saved when
you log out because you are working within your own master
catalog.

To set your working catalog to a specific catalog, specify the catalog's
path on the SET_ WORKING_CATALOG command. For example, user
PAT sets the working catalog to EXAMPLES by entering the
following:

/set_working_catalog catalog=.pat.examples

or uses the equivalent, which is:

/set_working_catalog catalog=$user.examples

Now user PAT can create files by entering far fewer keystrokes as in
the following:

/create_file file=pascal_program

The PASCAL_PROGRAM file is automatically saved in user PAT's
EXAMPLES catalog.

You can change your working catalog to any other catalog as often as
you wish during your job. You can return the path of your current
working catalog by using the $CATALOG function.

Revision H Catalog and File Management 4-7

Referencing File Names

Requirements for Referring to Files

While it is never incorrect to specify a full catalog or file path, it can
often be inconvenient. The following list describes the short cuts that
NOSNE accepts for referring to a file path:

• Specify the name of the family in the file path only if you are
referencing a catalog or a file residing under a family different
than yours.

• Specify the name of a master catalog in the path only if you are
referencing a catalog or file that does not reside within your
working catalog, or within a catalog subordinate to your working
catalog.

• Use the $LOCAL keyword only if your $LOCAL catalog is not
your working catalog.

• Specify just the name of the catalog or file if the catalog or file
resides in your working catalog.

Note that the file path you specify determines what characters you
use to begin the file reference. The following table describes the
possible beginnings for a file path.

Value

Colon (:)

Period (.)

$FAMILY

$USER

$LOCAL

$SYSTEM

File or
Catalog
name

Meaning

Used when the family catalog is included in the file
reference.

Used when the master catalog begins the file reference.

Used to begin a reference to a file or catalog in your
family catalog.

Used to begin a reference to a file or catalog in your
master catalog.

Used to begin a reference to your local catalog.

Used to reference :$SYSTEM.$SYSTEM (that is, family
$SYSTEM, user $SYSTEM). This username contains
files used to support many NOSNE products.

Path begins with the name of a catalog or file.

4-8 NOSNE System Usage Revision H

Referencing File Names

For example, consider the following figure:

File
PROLOG

Fiie
FTN_PROG

Family
VE1

Uaar
STEVE

File
PROJECT

File
PROG_DATA

Family
VE2

File
ACCOUNTS

M02175

Figure 4-2. Two Family File Hierarchy

Suppose that user MARK sets his working catalog to catalog
PROGRAMS by entering:

/set_working_catalog catalog=.mark.programs

Mark can then access the following files with the following references:

Path from
PROGRAMS

$user. pro log

ftn_prog

ftn_data.prog_data

.steve.project

:ve2.rich.accounts

Revision H

Full Path Reference

:vel.mark.prolog

:vel.mark.programs.ftn_prog

:vel.mark.programs.ftn_data.prog_data

:ve 1.steve. project

:ve2.rich.accounts

Catalog and File Management 4-9

Referencing File Names

File Cycles

A permanent file can have up to 999 different versions. Each version,
called a cycle, is identified by a cycle number. When you create a file,
NOS/VE identifies the version of the file as cycle 1 unless the file
previously had a cycle created for it, or you explicitly reference a
cycle number. If the file previously had a cycle created for it, NOS/VE
will create the new file with the next highest available cycle number.

You can make a reference to a specific file cycle by appending the
cycle reference to the end of the file reference. The reference can be
in the form of an unsigned integer, or a keyword that represents a
specific cycle number. The functions that may be used are as follows:

Cycle Descriptor Meaning

$HIGH The highest currently defined cycle number. This
designator can only be used for existing files.

$LOW The lowest currently defined cycle number. This
designator can only be used for existing files.

$NEXT A new cycle of a file with a cycle number one
greater than that designated by $HIGH. If the
file doesn't exist, 1 is used.

unsigned integer The cycle whose number is specified. The number
must be in the range of 1 through 999.

For example, suppose you have cycles 1 and 2 of file STEVE_PGM.
The following both refer to cycle 2 of STEVE_PGM:

steve_pgm.2

steve_pgm.$high

4-10 NOSNE System Usage Revision H

Referencing File Names

In the same manner, the following entries both refer to cycle 1 of
STEVE_PGM:

st eve_pgm . 1

steve_pgm.$1ow

If the specified cycle of a file referenced for an output operation does
not exist, NOSNE creates the requested cycle.

To create another cycle of STEVE_PGM you can use the COPY_FILE
command as follows:

/copy_file input=steve_pgm output=steve_pgm.$next

As a result of the copy, the version of the file that is one number
higher than the current highest version of STEVE_PGM is created.

Normally, if you omit the cycle reference on the file path, NOSNE
uses $HIGH. However, always check the default file cycle reference
you specify on a file path. For example, if you omit the file cycle
reference on the FILE parameter of the DELETE_FILE command,
NOSNE deletes the cycle which corresponds to $LOW.

You can change a file's cycle number by using the CHANGE_
CATALOG_ENTRY command. For example, to change cycle 2 of file
STEVE_PGM to cycle 88, enter the following:

/change_catalog_entry file=steve_pgm.2 new_cycle=88

Revision H Catalog and File Management 4-11

Referencing File Names

File Positioning

The position of a file is the location in the file at which data is being
written and read. A file may be positioned at its beginning, end, or
somewhere in between. You can include a file position on a file
reference to indicate how you want the file positioned when it is
opened. This open position is always the last element of a file
reference. The possible open positions are listed as follows:

Open Position

$BOI

$EOI

$ASIS

NOTE

Meaning

Positions the file to the beginning-of-information
when it is opened.

Positions the file to the end-of-information when
it is opened.

Meaningful only on files that are explicitly
attached using the ATTACH_FILE command. See
Attaching and Detaching files later in this
chapter.

The open position specified on the file reference overrides any open
positioning specified on a previous command.

4-12 NOSNE System Usage Revision H

Creating Catalogs and Files

Creating Catalogs and Files

By using the appropriate NOSNE commands, you can create and
delete files and catalogs residing in your master catalog. You can also
create files for the temporary catalog, $LOCAL. Because you are the
owner of your master catalog as well as the files and catalogs within
your master catalog, you can permit other users different kinds of
access to your permanent files and catalogs. File and catalog permits
are described later in this chapter.

NOSNE uses the following rules to determine ownership of a catalog
or file:

• You are the owner of files or catalogs within your master catalog.

• You are the owner of files and catalogs registered in subordinate
catalogs within your master catalog.

You cannot create permits allowing others to use the files in
$LOCAL.

Creating Catalogs

You can create new catalogs within your master catalog or within
catalogs subordinate to your master catalog using the CREATE_
CATALOG command. This command allows you to create catalogs
explicitly; NOSNE does not support implicit catalog creation.

For example, user MARK can create catalog NEW_ CATALOG by
entering the appropriate path on the CREATE_ CATALOG command.
The last element of the path is the name of the created catalog.

/create_catalog c=.mark.programs.ne~_catalog

As a result of the preceding example, catalog NEW_CATALOG is
created and registered in catalog PROGRAMS.

Revision H Catalog and File Management 4-13

Creating Catalogs and Files

A NOSNE user may create a path that is 100 catalogs deep.
However, the family and master catalogs each count for a level. For
example, consider the following figure:

Family Catalog
Level 1

Master Catalog
Level 2

Subcatalog 1
Level 3

Subcatalog 2
Level 4

I
.
l

Subcatalog 98
Level 100

Subcatalog n
Level 3

.
l

Subcatalog n+97
Level 100

M02177

In addition, the actual path name can have no more than 256
characters in it. Thus, a path can be 100 catalogs or 256 characters
long, whichever comes first.

The total number of catalogs that you may create within your master
catalog is limited by the amount of mass storage memory your site
allows you to use.

4-14 NOSNE System Usage Revision H

Creating Catalogs and Files

Deleting Catalogs

You can delete a catalog residing within your master catalog using
the DELETE_ CATALOG command. For instance, in order to delete
catalog PROGRAMS (and everything in it), user MARK would enter
the following:

/delete_catalog catalog=.mark.programs
.. /delete_option=catalog_and_contents

Once the catalog is deleted, NOS/VE releases all storage space
associated with the catalog and deletes the catalog name from within
the master catalog.

In order to delete a catalog, you must be the owner of it. In addition,
you cannot delete your master catalog.

The DELETE_ CATALOG command may also be used to delete all of
a catalog's contents while leaving the catalog itself untouched. In
order for Mark to delete catalog PROGRAMS' contents and leave
PROGRAMS itself untouched (that is, make PROGRAMS an empty
catalog), he would enter:

/delete_catalog catalog=.mark.programs
.. /delete_option=contents_only

Creating Files

As is the case with catalogs, you can create files within a catalog for
which you are the owner. NOS/VE recognizes two methods of file
creation: explicit and implicit.

Revision H Catalog and File Management 4-15

Creating Catalogs and Files

Implicit File Creation

Implicit file creation may be accomplished with the use of the
following NOSNE commands:

• COPY_FILE

• EDIT_FILE

• COLLECT_ TEXT

Each of these commands contains a parameter that allows you to
supply a non-existing file name; NOSNE uses that file name to create
a new file. In the following example, the file named on the OUTPUT
parameter is created as a result of entering:

/copy_file input=.jim.finance.check_stats
.. /output=.jim.finance.new_stats

The following command creates the file named on the FILE
parameter. You can then use the EDIT_FILE utility to enter text in
the newly created file.

/edit_file file=.jim.finance.new_stats

You can also use the EDIT_FILE command to edit an existing file
and then create a different file containing the edited version of the
existing file. You do this by first using the EDIT_FILE utility to edit
the file. Then, once you are done editing the file, use the WRITE_
FILE subcommand to write the contents of the file to a new file. See
the NOSNE File Editor manual for more information on the EDIT_
FILE and WRITE_FILE commands.

If you use the COLLECT_ TEXT command to create a file, NOSNE
prompts you for line-by-line text insertion. The following shows the
implicit creation of file TEXTFILE, and the use of the ct? prompt. To
stop entering text, enter two asterisks (**). For example:

/collect_text o=$user.textfile
ct? This is some information that I want to place
ct? into file TEXTFILE in my master catalog.
ct? **
I

4-16 NOSNE Svstem Usage Revision H

Creating Catalogs and Files

In addition to the commands listed here, you may implicitly create a
file using any command that writes information to a file. Thus, the
OUTPUT parameter that exists on all of NOSNE's DISPLAY
commands can be used to create a file. For instance, user MARK can
create a file containing a list of every catalog and file immediately
subsequent to his master catalog by entering the following:

/display_catalog catalog=.mark output=.mark.disc_output

Explicit File Creation

You can create files explicitly using the CREATE_FILE command.
CREATE_FILE provides parameters with which you can specify a
permanent file name, a local file name, a password for the file, and a
retention period for a file cycle; you can also specify that the system
should keep a log of file access activity.

In addition to creating a file, the CREATE_FILE command explicitly
attaches the new file to your job. That is, after the command is
executed, your job can access the file through the local catalog.

You may detach the file from your job explicitly using the DETACH_
FILE command. For information about attaching and detaching files,
refer to Attaching and Detaching Files later in this chapter.

In general, you should use the CREATE_FILE command only when
you need to create a new file under one or more of these conditions:

• You want to specify a password for a new file or create a new
cycle for a file that has a password.

o You want to specify the length of time a new file cycle is retained
by the system.

o You need to assign a local file name to the file for use by
subsequent commands in a program.

• You want to specify the $ASIS file position when you reference the
file on subsequent commands in the job.

Revision H Catalog and File Management 4-17

Creating Catalogs and Files

Deleting Files

As is the case with catalogs, you can delete files for which you are
the owner. In addition, it is also possible for you to delete files you
don't own if you are permitted to do so by the owner of the file. See
Catalog and File Permits later in this chapter for more information.

When you delete a file, the system releases all storage space for the
file. If you attempt to delete a file that is being used by another job,
the file remains attached to that job until it is detached; however, the
job issuing the DELETE_FILE command can no longer access the file.
If the file is attached within a job but is not opened, a DELETE_
FILE command will also detach the file from the job.

NOTE

When deleting a file, be certain to query the file cycles in existence
for that file and indicate what cycle you want to delete. If you do not
specify the cycle number, NOSNE deletes the lowest file cycle.

Catalog Entries

In NOS/VE when a permanent file is created it is registered in a
catalog, and certain kinds of information are recorded and preserved
with the file name. NOS/VE maintains this information as a catalog
entry for the file. Catalog entries include the following:

• File name

• Optional file password

o Access control list

• Optional access log

• Account and project information

• Cycle descriptor for each cycle of the file

4-18 NOSNE System Usage Revision H

Creating Catalogs and Files

The access log is a record of all the users who access the file. This
log contains the following information for each user who accessed the
file:

• The user name of the user who accessed the file.

• The number of times the user accessed the file.

• The last cycle accessed by the user.

o The date and time of the last access by the user.

The cycle descriptor provides the following information:

o The file's cycle number.

• The number of times the file has been accessed.

• The date and time the file was created, last accessed, and last
modified.

o The expiration date for the file.

o File attributes

Access control lists are described in Catalog and File Permits later in
this chapter. File attributes are described in the File Attributes
section later in this chapter.

Displaying Catalog Entries

You can display the information contained in a file's catalog entry by
using the DISPLAY_CATALOG_ENTRY command. If the file belongs
to another user, you can display the information in the catalog entry
only if you are permitted access to the file.

If you display the file's cycle description, you will see dates and times
for the last access and modification of the file. Note, however, that if
you currently have explicitly attached the file (explicit file
attachments are described later in this chapter), the date and times
fields will show the date and time of the attachment.

Revision H Catalog and File Management 4-19

Creating Catalogs and Files

For example, if you explicitly attach a file and then edit it, the last
access and modification times will show the date and time of the
attachment, not the edit. When you explicitly detach the file, the last
access and modification fields will be updated to show the date and
time of the detachment.

You can use the DISPLAY_FILE_ATTRIBUTES command to display a
file's attributes.

Changing Catalog Entries

You can use the CHANGE_CATALOG_ENTRY command to change
the following catalog entries:

• The file name, password, log selection, and account and project
identification for all cycles of a file.

• The retention period, cycle number, and damage condition for a
specific cycle of a file.

You can change a file's attributes using the CHANGE_FILE_
ATTRIBUTES commands.

You can change a catalog entry for a file only if you have control
access for the file. If the file has a password associated with it, you
must also specify the password.

Displaying Catalog Information

You can display information about a catalog by using the DISPLAY_
CATALOG command. DISPLAY_CATALOG displays the following
information:

• The names of all catalogs and files registered in the catalog.

• A description of the files registered in the catalog including
information about the files' cycles, or account and project
information.

• A description of the access control entries established for the
catalog. Access control entries are described later in this chapter.

• A list containing the size in bytes of each file or cycle in the
catalog as well as the damage condition of each damaged cycle.

4-20 NOSNE System Usage Revision H

Catalog and File Permits

Catalog and File Permits

Through the use of catalog and file permits, you can specify the ways
in which you are willing to share your files with other NOSNE users.
You can also limit access to catalogs and files for which you are the
owner, both to yourself and to others. When you create a file permit,
the permissions you define for the file are recorded by NOSNE as an
access control entry for the file. The access control entries defined for
a file constitute a file's access control list.

You cannot create permits allowing others to use the files in
$LOCAL.

An access control entry defined for a catalog applies to each file in
the catalog as well as to each file in any subordinate catalogs
registered in the catalog. However, even if a file resides in a catalog
for which an access control entry is already defined, you may define a
separate set of permits for the file for a particular user or a
particular group of users.

Only the owner of a file or a catalog may establish a permit for it.
Although a catalog permit can define the access control entry for the
files in the catalog, access to the catalog is not controlled by the
access control entry.

This section describes the elements of an access control entry, the
ways you define access control entries, and the rules for accessing
files and catalogs which have file and catalog permits.

Revision H Catalog and File Management 4-21

Catalog and File Permits

Access Control Entries

NOSNE uses the access control entry defined for a file to determine
whether a user or group of users may use the file and the ways in
which they may use it and share it with other users. An access
control entry contains the following items:

• The user or group of users to which the access control entry
applies. In this discussion, the permitted group of users is called
the permit group.

• The access modes allowed for the user(s). These access modes
specify the ways the file can be used.

• The share modes that must at a minimum be permitted to others
by members of the permit group who request access to the file.
These modes are called the share modes or share requirements and
specify the ways that users must share the file while it is in use.

o Application information that may be used by programs and
utilities in whatever ways are necessary. The type and meaning of
information appearing in this field is entirely dependent upon the
program or utility used to access the file.

Permit Groups

A permit group is the group of users to which an access control entry
applies. The following are the permit groups to which an access
control entry can apply:

• All users.

• All users in a family.

o One user in a family.

• All users executing under an account name.

• One user executing under an account name.

• All users executing under an account and project name.

• One user executing under an account and project name.

4-22 NOSNE System Usage Revision H

Catalog and File Permits

Access Modes

Access modes specify the ways a user may use a file or the files
within a catalog. The following are the access modes:

ALL

Access is permitted for APPEND, EXECUTE, MODIFY, READ,
SHORTEN, and WRITE.

APPEND

Access is permitted to append information to the end of the file or
files.

CONTROL

Access is permitted to delete a cycle and to change its identity
including the file name, cycle number, password, log selection,
retention, account name, project name, and file attributes.

CYCLE

Access is permitted to add new cycles to the file or files or to
create a new file.

EXECUTE

Access is permitted to execute object code or an SCL procedure in
the file or files.

MODIFY

Access is permitted to alter data within the existing file or files.

NONE

Access is specifically prohibited.

Revision H Catalog and File Management 4-23

Catalog and File Permits

READ

Access is permitted to read the file or files.

SHORTEN

Access is permitted to delete information from the end of the file
or files.

WRITE

Access is permitted for APPEND, MODIFY, and SHORTEN modes.

You may also specify a permission that is a combination of the above
access modes. For instance, the permission of READ and EXECUTE is
commonly used.

Share Requirements

As the owner of a file, you may want to require that other users of
your file make the file available for certain modes of access. To do
this you must specify what share modes users must grant to others if
the file is used concurrently. This set of share modes established in
the file's access control entry constitutes a file's share requirements.

For example, suppose you create an access control entry and require
that the file be shared for READ and EXECUTE access. If a user
then attempts to access the file and specifies only a READ share
mode, the attempt will fail. If you determine that your file does not
require sharing by concurrent users, you should specify a share
requirement of NONE in the access control entry.

4-24 NOSNE System Usage Revision H

Catalog and File Permits

The following are the share modes that can be specified as a file's
share requirements:

ALL

Sharing is required for APPEND, EXECUTE, MODIFY, READ,
SHORTEN, and WRITE.

APPEND

Sharing is required for APPEND access.

EXECUTE

Sharing is required for EXECUTE access.

MODIFY

Sharing is required for MODIFY access.

NONE

A user is authorized exclusive access, and no modes of sharing are
imposed on users of the file. When attaching the file, users may
select a share mode of NONE.

READ

Sharing is required for READ access.

SHORTEN

Sharing is required for SHORTEN access.

WRITE

Sharing is required for APPEND, MODIFY, and SHORTEN modes.

Revision H Catalog and File Management 4-25

Catalog and File Permits

Creating and Deleting Access Control Entries

NOSNE creates a default access control entry for each user's master
catalog. A user can delete this default catalog permit or change it to
a more restrictive permit allowing access, for example, to just read
and execute the files in the catalog.

You use the following commands to create, change, delete, and display
access control entries:

CREATE_CATALOG_PERMIT

Creates an access control entry for a catalog. This permit applies
to all files and catalogs within the catalog that do not have
permits specifically defined for them. This command is also used to
change a catalog permit.

CREATE_FILE_PERMIT

Creates or changes an access control entry for a file.

DELETE_CATALOG_PERMIT

Deletes an access control entry for a catalog.

DELETE_FILE_PERMIT

Deletes an access control entry for a file.

DISPLAY_CATALOG

Displays, among other things, the access control list entries for a
catalog.

DISPLAY_CATALOG_ENTRY

Displays, among other things, the access control list entries for a
file.

You may create, change, and delete access control entries for catalogs
and files that you own; these are the files and catalogs that reside in
your master catalog. You can permit groups of users access to your
files, and you can also create more restrictive kinds of access to
specific users.

4-26 NOSNE System Usage Revision H

Catalog and File Permits

For example, suppose you are user SARETT and you want to permit
user SUEO to write to file CHECK_STATS which resides in catalog
EXAMPLES within your master catalog. Let us say that user SUEO
is part of a group which already has READ and EXECUTE access to
all the files in catalog EXAMPLES. The permissions for all the files
in catalog EXAMPLES are displayed by entering:

/display_catalog catalog=.sarett.exarnples display_option=perrnits

PERMIT_GROUP: PUBLIC
PERMITS: READ, EXECUTE
SHARE: NONE
APPLICATION_INFORMATION:

At this point, the files in catalog EXAMPLES are for public use and
may be read and executed. User SARETT can then enter the following
to permit user SUEO to write to file CHECK_STATS:

/create_file_perrnit file=.sarett.exarnples.check_stats
.. /group=user user=sueo access_mode=write share_mode=none

Note, however, that SUEO will no longer be able to read or execute
the file.

When you are creating access control entries, you can also restrict
your own access. You can do this by specifying your user name for
the USER parameter on the CREATE_FILE_PERMIT command. For
example, to restrict your own access to file CHECK_STATS in catalog
EXAMPLES, enter the following:

/create_file_perrnit file=.sarett.exarnples.check_stats
.. /group=user user=sarett access_rnode=read share_mode=read

NOTE

If both the group and the user parameters are not specified on the
CREATE_FILE_PERMIT command, a permit will be created using
your user name as a default.

No matter how much you restrict your access to a catalog or file that
you own, as the owner, you can always delete the catalog's or file's
access control entries.

Revision H Catalog and File Management 4-27

Catalog and File Permits

When you are creating file and catalog permits, keep in mind that
you can access a given file with a NOSNE command only if the
minimum access permissions for the file conform to the operation of
the command. For example, the DELETE_FILE command requires
that the user have CONTROL permission. In addition, the following
are also true:

• Commands that write files require NONE as the share
requirement in effect for the file.

• Commands that read files require the absence of APPEND,
MODIFY, SHORTEN, and WRITE from the share requirements in
effect for the file.

Multiple Access Control Entries

A catalog or file can have many access control entries defined for it.
In addition, a catalog or file may have access control entries defined
for each element in its path. When this situation occurs, the system
uses the following rules to determine which access control entry to
apply to the user:

• If you belong to more than one permit group for which an access
control entry is defined, the access control entry applicable to the
smaller group applies.

For example, if one entry applies to all users (that is, the permit
group is PUBLIC) and another permit group applies to a family of
users to which you belong, the system uses the entry applying to
the family of users.

• If access control entries for the same permit group exist for more
than one element of the catalog or file path, the entry applicable
to the last element in the path applies.

For example, consider the following path:

$user.catalog_1.catalog_2.junk_file

Suppose the master catalog and CATALOG_l each have a single
access control entry and they both apply to the same permit group,
and neither CATALOG_2 nor JUNK_FILE have access control
entries. In that case, the permissions defined in CATALOG_l's
access control entry apply to both JUNK_ FILE and all the files in
CATALOG_2.

4-28 NOSNE System Usage Revision H

Catalog and File Permits

If necessary, the system uses both rules to determine the applicable
access control entry. For example, consider the following file path:

catalog_1.file_1

Suppose CATALOG_! has an access control entry applying to
FAMILY_A. Further, suppose that FILE_l has access control entries
applying to the PUBLIC permit group (which is all users) as well as
to FAMILY_A. If a member of the permit group, FAMILY_A, attempts
to access FILE_l, the following factors are considered:

1. CATALOG_l's access control entry can not be used because it is
not the last applicable entry in the file reference.

2. FILE_l's access control entry defined for the PUBLIC permit
group does not apply because it does not involve the smallest
permit group.

3. This leaves FILE_ l's access control entry for FAMILY_A which is
the access control entry the system uses to grant access to the
users in FAMILY_A for FILE_ 1.

Revision H Catalog and File Management 4-29

Attaching and Detaching Permanent Files

Attaching an.d Detaching Permanent FHes

When a permanent file is needed for use within a job, the job must
attach it. When the file is attached, it becomes reserved for use
within the job. When the job is finished using the file, it should be
detached.

Attachment is achieved either explicitly or implicitly. When you make
a reference to a file on a NOS/VE command, NOS/VE automatically
attaches the file to the job. When the command operation is complete,
NOS/VE automatically detaches the file from the job. These file
attachments and detachments are somewhat transparent to the user.
This method of attaching and detaching files is called implicit
attachment.

In NOS/VE, explicit file attachment is recommended for files that
require sharing within a job. You may also want to explicitly attach
files for the following reasons:

• You need to specify the file's password.

• You need to specify a local file name for the file to be used by
subsequent commands in the job.

• You need to use the $ASIS file position on subsequent references
to the file.

• You need to restrict certain kinds of access to the file while your
job is using it.

4-30 NOSNE System Usage Revision H

Attaching and Detaching Permanent Files

The following NOSNE commands are available to attach and detach
your permanent files explicitly:

ATTACH_FILE

Use this command to attach a permanent file for which you
specify an optional local file name, a password, the modes of
access in which you intend to use the file, the modes in which
you are willing to share the file, and whether you are willing
to wait if the file is currently unavailable to you.

CREATE_FILE

Use this command to create a new file and attach it to a job
with an optional local file name, password, and enable NOSNE
to log the activity of the new file.

DETACH_FILE

Use this command to detach a file from a job.

The remainder of this section describes the rules NOSNE uses to
determine whether file access is granted to attach requests.

Revision H Catalog and File Management 4-31

Attaching and Detaching Permanent Files

Attaching Files Explicitly

When you use the ATTACH_FILE command to attach a file, you may
specify the ways you want to use the file. You may also specify the
ways in which you are willing to share the file within your job and
within other jobs requesting use of the file. You use the ACCESS_
MODES and SHARE_MODES parameters to do this.

Accessing the File

When you explicitly attach a file you use the ACCESS_MODE
parameter to specify how you intend to use the file while it is
attached to your job. For example, if you want to use the file for the
READ and MODIFY access modes, you then enter the following:

/attach_file file=.sarett.examples.file_a
.. /access_mode=(read,modify)

NOSNE then compares the above request with the set of permissions
established by the file's owner in the file's access control entry. If
READ, MODIFY access is not among the access permissions in the
file's access control entry, the attach attempt will fail. Note that the
default value for the ACCESS_MODE parameter is READ and
EXECUTE, and that you may specify neither CYCLE nor CONTROL
access for this parameter.

Sharing the File with Others

The share requirements specified on the file's access control entry are
the minimum ways the file's owner has specified that the file must be
shared. Thus, you must include these share requirements in the set of
share modes specified on the SHARE_MODES parameter of the
ATTACH_FILE command. You can always specify a share mode set
that is larger than the set specified on the file's access control entry.

4-32 NOSNE System Usage Revision H

Attaching and Detaching Permanent Files

In the preceding example, the requested attachment of FILE_A is
successful only if the FILE_A's owner specified NONE for the share
requirements in the file's access control entry. For example, let's say
the file's owner established that FILE_A must, at a minimum, be
shared for READ access. Then the preceding example must be
expanded to include the SHARE_MODES parameter:

/attach_file file=.sarett.examples.file_a
.. /access_mode=(read,modify) share_mode=read

Note that the default values supplied by the ATTACH_FILE command
for the SHARE_MODE parameter depend upon the value specified on
the ACCESS_MODE parameter. If the ACCESS_MODE parameter
includes APPEND, SHORTEN, or MODIFY, the SHARE_MODE
parameter will default to NONE. Otherwise, the SHARE_MODE
parameter defaults to READ and EXECUTE.

How Sharing of Files Is Controlled

When a job attempts to attach a file that is already attached to job,
the following conditions must be met in order for the attachment to
succeed:

• The maximum access modes that you can specify on the attach
request is the intersection of the following sets:

The set of access modes established in the applicable access
control entry.

The intersection of all share mode sets specified on outstanding
attachments of the file.

o The minimum number of share modes you must specify on the
attach request is the union of the following sets:

The set of share requirements established in the applicable
access control entry.

The union of access mode sets specified on all outstanding
attachments of the file.

Revision H Catalog and File Management 4-33

Attaching and Detaching Permanent Files

For instance, suppose FILE_A has the following access control list:

/display_catalog_entry ..
.. /file=.sarett.examples.file_a display_option=permit
PERMIT_GROUP: USER

FAMILY: NVE, USER: RICH
PERMITS: READ, SHORTEN, APPEND, MODIFY, EXECUTE
SHARE: NONE
APPLICATION_INFORMATION:

PERMIT_GROUP: USER
FAMILY: NVE, USER: PAT
PERMITS: READ, SHORTEN, APPEND, MODIFY
SHARE: READ, EXECUTE
APPLICATION_INFORMATION:

If users RICH or PAT want to attach FILE_A, they must request the
attachment of the file with the access modes as well as the share
requirements established for their applicable access control entry. For
example, if FILE_A is not currently attached, user RICH can specify
the following and be granted an attachment of FILE_A:

/attach_file file=file_a local_file_name=first_a ..
.. /access_modes=(read,append,shorten) share_modes=(read,execute)

Now, suppose user PAT wishes to attach FILE_A while user RICH
currently has it attached with the previous selections. Then her
allowable access and minimum share requirements are determined by
the rules stated previously in this section. For instance, PAT's allowed
access to the file as determined by these rules is represented by the
shaded area in the following figure:

Rich's Share Selections
on the ATTACH Request

4-34 NOSNE System Usage

Represents Pat's access to the flies
as allowed by NOSNE.

Pat's Allowed Access
In the Fiie Permit

M02246

Revision H

Attaching and Detaching Permanent Files

Further, PAT's mm1mum share requirements are represented by the
shaded area in the following figure:

Rich's Access Selections
on tho ATTACH Request

r'71
L;J

Pat's Share Requirements
In the File Permit

Represents the minimum share mode
required for Pat by NOSNE.

M:l2247

Thus, the following attach request represents the only allowable access
and minimum share selections that PAT can make for FILE_A in this
situation:

/attach_file f=file_a lfn=file_1 am=read
.. /sm=(read,shorten,append,execute)

The WAIT parameter on the ATTACH_FILE command offers the
choice to wait for a file which may be currently unavailable for
certain modes of access or sharing due to a current attachment of the
file.

Revision H Catalog and File Management 4-35

Attaching and Detaching Permanent Files

Multiple Attaches within a Job

You can attach a file more than once within a job. To do this you
must specify a unique local file name on the LOCAL_FILE_NAME
parameter of the ATTACH_FILE command for each attachment within
the job. If the name is already known within the job, the attach will
fail. Also, for best results you should avoid names that are the same
as an SCL variable defined within the job.

A file may be attached to a job more than once either by a single
task or by a group of tasks. For the purposes of this discussion,
assume that several tasks are sharing access of an attached file. Keep
in mind that the following discussion also pertains to a single task
which has multiple attachments of a file.

Once a file is attached by two or more tasks within a job, what
happens most often is that the two tasks share the same file position;
that is, the tasks read and write data from the same position in the
file. If no effort is made to coordinate the positioning of the file
among multiple tasks, a second task's requested file position can also
affect the file positioning of tasks which already have the file
attached.

For example, suppose TASKA is writing information to FILE_A, and
TASKB attaches the file with the default open position, $BOI
(beginning-of-information). TASKA's file position will also be positioned
at FILE_A's beginning-of-information. For this reason, care must be
taken to coordinate the activities of each task concurrently accessing a
file.

There are two ways to avoid this situation. The first is for TASKB to
attach the file with an OPEN _POSITION of $ASIS. This way,
TASKB's file position becomes the same as TASKA's. The second way
is for TASKB to attach the file as a private reader. See Using the
$ASIS Open Position later in this section for more information on the
$ASIS open position. Private readers are discussed next.

4-36 NOSNE System Usage Revision H

Attaching and Detaching Permanent Files

Attaching Files as a Private Reader

A private reader is a task that does not want to share the file
position of other tasks currently accessing the file. To be a private
reader, all of the following must occur:

• A task must attach the file with the ATTACH_FILE command.

• The file may only be attached for READ and/or EXECUTE access
by the task that desires to privately read the file.

• The file's organization must be either sequential or
byte-addressable.

o A value of TRUE must be specified on the PRIVATE_READ
parameter of the ATTACH_FILE command. This value may be
specified explicitly by the task executing the ATTACH_FILE
command. However, if no value is specified for this parameter, and
all of the previous conditions are met, by default NOSNE grants a
private read status for the file attachment.

Since private readers of files are neither affected by nor may affect
the file positions of other tasks, a private reader may want to exclude
SHORTEN from its share mode privileges. Otherwise, it is possible for
another task or job to shorten the file and cause the private reader to
be reading from beyond the end-of-information.

Revision H Catalog and File Management 4-37

Attaching and Detaching Permanent Files

Using the $ASIS Open Position

If you have explicitly attached a file, you can specify an open position
of $ASIS when you access the file. The $ASIS position has several
different meanings depending upon the circumstances surrounding the
access to the file, as described below:

• If the accessing task is a private reader and

the file has not been opened within the job before by the
accessing task, this open position denotes
beginning-of-inf orma ti on.

the file has been opened within the job before by the accessing
task, this open position denotes the position of the file when it
was last closed by the accessing task.

• If the accessing task is not a private reader and

the file has not been opened within the job before by any
non-private reading task, this open position denotes
beginning-of-information.

the file is currently opened by another non-private reading task
within the job, this file position denotes the current position
within the file of the non-private reading task.

For instance, suppose TASKA is a non-private reading task
that has opened FILE_l. If TASKB is a non-private reading
task that opens FILE_l with an open position of $ASIS,
TASKB will be positioned to TASKA's current position within
FILE_l.

the file is not currently opened within the job by any
non-private reading task, but it has been opened before by a
non-private reading task within the job, this open position
denotes the file's position when it was last closed by a
non-private reading task within the job.

For instance, suppose TASKA has accessed FILE_ l as a
non-private reader but has subsequently closed the file. If no
other non-private reading tasks within the job are currently
accessing FILE_l, and TASKB is a non-private reader that
opens FILE_l with an open position of $ASIS, the resulting
open position will be the same as TASKA's position in FILE_ l
immediately before closing the file.

4-38 NOSNE System Usage Revision H

Using Files with Passwords

Using Files with Passv1ords

You can create more security for a file by specifying a password for
it. Once this is done, the file can only be accessed by permitted users
who specify the file's password. For example, the following creates a
password for a FILE_A:

/create_file file=file_a password=turkey

To create a password for an existing file, or to change an existing
file's password, use the CHANGE_CATALOG_ENTRY command. If
you are the file's owner, you may display the file's password using the
DISPLAY_CATALOG_ENTRY command.

Once a password is created, you must use it on some NOSNE
commands. For example if a password was created for a file, the
DELETE_FILE command will not operate on that file unless the file's
password is specified.

For the most part, in order to use a file that has a password, you
must explicitly attach the file. When you explicitly attach the file, you
must specify its password, and the access and share modes for which
you want to use the file. For instance, suppose FILE_A has a
password of TURKEY and you want to edit the file. Then, at a
minimum, you must do the following:

/attach_file file=file_a password=turkey
.. /access_mode=(read,write) share_mode=none
/edit_file file=file_a

Revision H Catalog and File Management 4-39

NOSNE File Attributes

NOS/VE File Attributes

Each NOSNE file cycle has a set of file attributes that describe its
content and control its processing. File attributes are preserved for the
life of a file. Once defined, they need not be reestablished.

There are two types of attributes: preserved and temporary.

• Preserved attributes can be classified as follows:

- Those that cannot be changed during the life of the file cycle.
These attributes describe the organization of the information in
the file cycle.

- Those that can be changed permanently. These attributes may
describe the content of the file cycle or affect the manner in
which the cycle is accessed by a command.

• Temporary attributes are those that describe a particular use
(attachment) of a file.

The SET_FILE_ATTRIBUTE command is used to establish the initial
file attributes for a new file. The term new file refers to a file cycle
that has never been used (has not been opened for processing). The
file cycle is not actually created until it is opened or a CREATE_
FILE command is executed.

The ATTACH_FILE command is used to specify temporary attributes
which remain in effect until the file cycle is detached or the job ends.

The CHANGE_FILE_ATTRIBUTE command is used to change certain
file attributes permanently for a file cycle that has been used (opened
for processing).

The DISPLAY_FILE_ATTRIBUTE command can be used to display
the current attributes of a file cycle.

Attributes for All NOSNE Files

The following list gives a description of each file attribute:

• ACCESS_MODES

Specifies how the file is to be used by subsequent commands
that do not explicitly specify an access mode when the file is
opened. The following options are available.

4-40 NOSNE System Usage Revision H

NOSNE File Attributes

READ

You can read the file.

WRITE

You can write the file (combination of APPEND, MODIFY,
and SHORTEN).

APPEND

You can append information to the end of the file.

MODIFY

You can alter data within the existing file.

SHORTEN

You can delete data from the end of the file.

EXECUTE

You can execute the file.

NONE

No access to the file is permitted until a subsequent SET_
FILE_ATTRIBUTE command restores file access to one or
more of the preceding selections.

If the file is currently explicitly attached, this access mode
must be a subset of the access mode selections specified with
the ATTACH_FILE command.

Omission for a new temporary file causes READ and WRITE to
be used.

Omission for an old file causes READ and/or WRITE to be
used depending upon whether the ring of the command
accessing the file is within the READ and/or WRITE bracket of
the file. Rings are discussed in the Object Code Management
manual.

Omission for a permanent file that has been scheduled for job
access using the ATTACH_FILE command causes the
ACCESS_MODE specified on that command to be used as
qualified by the ring of the command accessing the file.

• AVERAGE_RECORD_LENGTH

Specifies an estimate length of the average record in a new
keyed file. This attribute is ignored for a sequential or
byte-addressable file and for an old indexed sequential file.

Revision H Catalog and File Management 4-41

NOSNE File Attributes

For details, see the SCL Advanced File Management manual.

• BLOCK_ TYPE

Specifies the block type. This attribute applies only to a
sequential or byte-addressable file. Options are:

SYSTEM_SPECIFIED (SS)

The file is logically divided into a number of fixed-sized
blocks whose length is determined by NOSNE. The disk
block size is 2,048 bytes. The tape block size is 4,128 bytes.
The MAXIMUM_BLOCK_LENGTH and MINIMUM_
BLOCK_LENGTH attributes do not affect this blocking
algorithm.

USER_ SPECIFIED (US)

The file is logically divided into a number of blocks whose
length may vary between a user-defined minimum and
maximum length.

Omission for a new file causes SYSTEM_SPECIFIED blocking
to be used. For an old file, the preserved value is always used.

• CHARACTER_CONVERffiON

Specifies whether conversion between the internal character
code of a file and ASCII should be performed. The
INTERNAL_ CODE attribute directs conversion if selected.

TRUE

Conversion is performed.

FALSE

No conversion is performed.

Omission for a new file causes FALSE to be used.

• COLLATE_ TABLE_NAME

Specifies the name of a collation table for a keyed file with
collated keys. This attribute is ignored for a sequential or
byte-addressable file.

For further information, see the SCL Advanced File
Management manual.

4-42 NOSNE System Usage Revision H

NOSNE File Attributes

o COMPRESSION _PROCEDURE_NAME

Specifies the name of the optional compression procedure used
with the file.

This attribute is ignored for a sequential or byte-addressable
file. For more information, see the CYBIL Keyed-File and
Sort/Merge Interfaces manual.

o DATA_PADDING

Specifies the percentage of space within each new data block of
an indexed-sequential file that is to be left unused during
initial file creation. This attribute is ignored for a direct
access, sequential, or byte-addressable file.

Omission for a new keyed file causes 0 (zero) to be used. For
an old keyed file, the preserved value is always used.

For further information, see the SCL Advanced File
Management manual.

o DYNAMIC_HOME_BLOCK_SPACE

Reserved.

o EMBEDDED_KEY

Specifies whether the primary key values of a new keyed file
are part of the record data.

This attribute is ignored for a sequential or byte-addressable
file.

For further information, see the SCL Advanced File
Management manual.

o ERROR_EXIT_PROCEDURE_NAME

Specifies the name of an externally declared (XDCL) CYBIL
procedure to which control is given whenever an abnormal
status is returned by certain file access routine requests. This
attribute is equivalent to the ERROR_EXIT_NAME attribute
and can be used interchangeably.

Omission causes no error exit procedure to be used.

o ERROR_LIMIT

Specifies the maximum number of recoverable (nonfatal) file
errors that can occur before a fatal error is returned. This
attribute is ignored for a sequential or byte-addressable file.

For details, see the SCL Advanced File Management manual.

Revision H Catalog and File Management 4-43

NOSNE File Attributes

• ESTIMATED_RECORD_COUNT

Specifies your optional estimate of the maximum number of
records to be stored in the new file. This attribute is used to
calculate a suitable block size for the keyed file.

This attribute is ignored for a sequential or byte-addressable
file.

For details, see the SCL Advanced File Management manual.

• FILE_ACCESS_PROCEDURE_NAME

Specifies the name of an externally declared (XDCL) CYBIL
procedure that intervenes in the calling sequence between users
of the file and the file access routines.

Omission for a new file causes no file access procedure to be
used. Omission for an old file causes the preserved procedure
name to be used.

• FILE_CONTENTS

Specifies the type of data contained in the file. It is used by
NOSNE facilities to verify correct usage of a file. Options are:

UNKNOWN

Content is unknown.

OBJECT

Object module or object library.

LIST

Character data for printing that includes a print format
effector character as the first character of each record. You
cannot specify LIST for a keyed file. If you do, an error is
returned when the file is opened.

LEGIBLE

Character data.

ASCII_ LOG

Log file in ASCII format.

BINARY_LOG

Log file in binary format.

FILE_BACKUP

Backup file.

4-44 NOSNE System Usage Revision H

NOSNE File Attributes

SCREEN

Screen formatting form file.

name

Any name other than those indicated in the preceding list.

Omission for a new file causes UNKNOWN to be used. For an
old file, the preserved value is always used.

o FILE_LABEL_ TYPE

Specifies the label type for an ANSI-labelled tape file. The
following ANSI label standards are supported:

ANSI 1969 standard - READ only
ANSI 1978 standard - level 1
ANSI 1978 standard - level 2
ANSI 1983 standard revision - level 4

Valid options:

LABELLED (L)

Specifies an ANSI standard label.

UNLABELLED (UL)

Specifies that the tape is unlabelled.

If this attribute is omitted for a new file, UL is assumed. If
omitted for an old file, the preserved value is used.

o FILE_LIMIT

Specifies the maximum length of the file in bytes. An abnormal
status is generated if this limit is exceeded.

NOTE

NOS/VE imposes a default limit of 150,000,000 bytes. It is
possible, however, for your site to change this value.

If the length of a keyed file reaches its FILE_LIMIT value,
you must enter the COPY_KEYED_FILE command to
reinstate the file.

Omission for a new file causes 150,000,000 to be used. For an
old file, the preserved value is always used.

Revision H Catalog and File Management 4-45

NOS/VE File Attributes

• FILE_ORGANIZATION

Specifies the organization of a file. A sequential file may be
associated with a disk device, magnetic tape, or terminal. A
byte-addressable or keyed file can reside only on a disk device.
Options are:

SEQUENTIAL (SQ)
BYTE_ADDRESSABLE (BA)
INDEXED_ SEQUENTIAL (IS)
DIRECT_ACCESS (DA)

IS and DA are for keyed files only. Omission for a new file
causes SEQUENTIAL to be used. For an old file, the preserved
value is always used.

• FILE_PROCESSOR

Specifies the name of the processor of the file. This attribute
qualifies the FILE_CONTENT attribute. It is used by NOSNE
facilities to verify correct usage of a file. Options are:

ADA
APL
ASSEMBLER
BASIC
c
COBOL
CYBIL
DEBUGGER
FORTRAN
LISP
PASCAL
PLl
PPU _ASSEMBLER
PRO LOG
SCL
scu
UNKNOWN
vx

Omission for a new file causes UNKNOWN to be used. For an
old file, the preserved value is always used.

4-46 NOSNE System Usage Revision H

NOSNE File Attributes

o FILE_STRUCTURE

Specifies the structure of the file. This attribute qualifies the
FILE_CONTENT and FILE_PROCESSOR attributes. It is used
by NOSNE and its facilities to verify correct file usage.
Options are:

UNKNOWN

The structure is unknown.

DATA

Data file.

LIBRARY

Library file.

name

Name other than UNKNOWN, DATA, or LIBRARY.

Omission for a new file causes UNKNOWN to be used. For an
old file, the preserved value is always used.

o FORCED_ WRITE

Specifies whether modified blocks of a file are to remain in
memory without being forced to the device when the
modification to each block has completed.

This attribute is used only for keyed files and for US blocked
tape files.

For further information, see the SCL Advanced File
Management manual.

e HASHING_PROCEDURE_NAME

Specifies the optional, user-defined hashing procedure used only
for a direct-access file. This attribute is ignored for a
sequential or byte-addressable file. The default is
AMP$SYSTEM_HASHING_PROCEDURE.

For details, see the SCL Advanced File Management manual.

• INDEX_LEVELS

Specifies the target number of index levels for a new
indexed-sequential file. The default is 2. This attribute is
ignored for direct access, sequential, or byte-addressable files.

For details, see the SCL Advanced File Management manual.

Revision H Catalog and File Management 4-47

NOSNE File Attributes

• INDEX_PADDING

Specifies the percentage of space within each new index block
of an indexed-sequential file that is to be left unused during
the initial file creation. The default is 0 (zero). This attribute
is ignored for direct access, sequential, or byte-addressable files.

For details, see the SCL Advanced File Management manual.

• INITIAL_HOME_BLOCK_COUNT

Specifies the number of home blocks to be created when a new
direct-access file is first opened. This attribute is required for
direct-access files. It is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management manual.

• INTERNAL_CODE

Specifies the internal code in which data is represented in the
file. It is used by the file access routines to direct tape
conversion. It is also available to utilities or application
programs to direct conversion on disk files. The attribute
selections are:

A6

NOS 6/12 bit display code (ASCII 128-character set).

AS

CYBER 170 8/12-bit ASCII code (ASCII 128-character set).

ASCII

NOSNE 7-bit ASCII code right-justified in an 8-bit byte
(ASCII 128-character set).

D64

NOS 6-bit display code (CDC 64-character set).

EBCDIC

8-bit EBCDIC tape code.

Omission for a new file causes ASCII to be used. For an old
file, the preserved value is always used.

4-48 NOSNE System Usage Revision H

NOSNE File Attributes

• KEY_LENGTH

Specifies the length, in bytes, of the primary key for a new
keyed file. KEY_LENGTH is a required attribute for a new
indexed sequential file. This attribute is ignored for a
sequential or byte-addressable file.

For an old keyed file, the preserved value is always used.

For details, see the SCL Advanced File Management manual.

• KEY_POSITION

Specifies the byte number of each record at which the
EMBEDDED_KEY field starts. The first byte position is 0
(zero). This attribute is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management manual.

• KEY_TYPE

Specifies how the primary key values of a new indexed
sequential file are compared.

The default is UNCOLLATED. This attribute is ignored for
direct access, sequential, and byte-addressable files.

For details, see the SCL Advanced File Management manual.

o LINE_NUMBER

Specifies the length and location of a line number in each
record of a file. The attribute values are specified as:

(location, length)

Line number length is limited to six characters. Line number
location is the byte in the line of the beginning of the line
number. The first byte in the record has a location of 1.

Omission for a new file . indicates the absence of line numbers
in the file. For an old file, the preserved value is always used.

• LOADING_FACTOR

Reserved.

• LOCK_EXPIRATION _TIME

Specifies the number of milliseconds between the time a lock is
granted and the time it expires. This attribute is valid only for
direct access files. The default is 60,000 milliseconds. This
attribute is ignored for sequential and byte-addressable files.

For details, see the SCL Advanced File Management manual.

Revision H Catalog and File Management 4-49

NOSNE File Attributes

• LOGGING_OPTIONS

Enables the use of keyed-file recovery options. For details, see
the SCL Advanced File Management manual, and the CYBIL
Keyed-File and Sort/Merge Interface Usage manual.

• LOG_RESIDENCE

Specifies the catalog path for the keyed-file's update recovery
log. For more information, see the SCL Advanced File
Management manual and the CYBIL Keyed-File and
Sort/Merge Interfaces manual.

• MAXIMUM_BLOCK_LENGTH

Specifies the maximum block length (0 to 2,147,483,615) in
bytes. A specification of a maximum block length is ignored
when SYSTEM_SPECIFIED_BLOCKING is requested (block
size is controlled by the operating system in this case). All
logical blocks are constrained to MAXIMUM_BLOCK_
LENGTH or less. Blocks may vary in length between
MINIMUM_BLOCK_LENGTH and MAXIMUM_BLOCK_
LENGTH.

This attribute is effective only for record access files. Records
are packed into blocks according to ANSI 1978 standards.

For a tape file, this block size determines the maximum size of
the physical record written to a tape volume.

For disk files, transfers between central memory and the device
are in multiples of one or more blocks.

Omission of block length for a new file causes 4,128 to be
used. For an old file, the preserved value is always used.

See the Advanced File Management manual for information on
how block lengths are handled for keyed files.

• MAXIMUM_RECORD_LENGTH

Specifies the maximum length in bytes (1 to 65,497) allowed
for a record. This attribute is used only for files with
RECORD_ TYPE = F or that are keyed files, although certain
products (such as Sort/Merge) use the record when processing
other record types. F type records are padded to this length on
output. This attribute is required for a keyed file, regardless of
record type.

Omission for a new file with RECORD_ TYPE = F causes 256
to be used. For an old file with RECORD_ TYPE = F or for
an old keyed file, the preserved value is always used.

4-50 NOSNE System Usage Revision H

NOSNE File Attributes

o MESSAGE_CONTROL

Specifies which classes of messages are generated during access
of a keyed file.

This attribute is ignored for a sequential or byte-addressable
file. For details, see the SCL Advanced File Management
manual.

o MINIMUM_BLOCK_LENGTH

Specifies, in bytes, the minimum block length. This attribute is
applicable only for files with BLOCK_ TYPE = USER_
SPECIFIED. .

For RECORD_ TYPE = F, blocks are padded to MINIMUM_
BLOCK_LENGTH using the " character. All blocks are at
least MINIMUM_BLOCK_LENGTH and do not exceed
MAXIMUM_BLOCK_LENGTH regardless of record type. The
specified value must exceed 17 bytes, which is the length of
the longest noise block on tape.

This attribute is ignored for keyed files.

Omission for a new file causes 18 bytes to be used. For an old
file, the preserved value is always used.

o MINIMUM_RECORD_LENGTH

Specifies the minimum record length in bytes for a new keyed
file. This attribute is ignored for a sequential or
byte-addressable file.

For details, see the SCL Advanced File Management manual.

o OPEN_POSITION

Specifies the positioning to occur when the file is opened.
Options are:

$BOI

Position to beginning-of-information.

$ASIS

No positioning. See Using the $ASIS Open Position earlier
in this chapter for more information.

$EOI

Position to end-of-information.

If an open position is specified on a file reference, it takes
precedence over the file attribute open position.

Revision H Catalog and File Management 4-51

NOSNE File Attributes

If a file reference does not specify an open position, the file
attribute open position is used.

Omission of the OPEN_POSITION attribute causes ·$EOI to be
used for the OUTPUT file and $BO! to be used for all other
files.

• PADDING_CHARACTER

Specifies the padding character used to pad short RECORD_
TYPE = F records to their MAXIMUM_RECORD_LENGTH.
This attribute is used for sequential or byte-addressable files
only.

Omission for a new file causes the space character to be used.
For an old file, the preserved value is always used.

• PAGE_FORMAT

Specifies the frequency and separation of titling in a legible
file. This attribute is used only by the file access routines if
the file is associated with a terminal. It is used by other
services to prepare files for printing. Options are:

CONTINUOUS (C)

Specifies that a title should appear once at the beginning of
the file.

BURSTABLE (B)

Specifies that a title and page number should appear at the
top of each page of the file.

NON _BURSTABLE (NB)

Specifies that title and page number should be separated
from other data by a triple space rather than forcing top of
form as in the burstable selection.

UNTITLED (U)

Specifies that no titling or pagination should appear in the
file.

Omission for a new terminal file causes CONTINUOUS to be
used. Omission for a new nonterminal file causes BURSTABLE
to be used. For an old file, the preserved value is always used.

4-52 NOSNE System Usage Revision H

NOSNE File Attributes

o PAGE_LENGTH

Specifies the number of lines to be written on a printed page.
For terminal files, the values of the corresponding terminal
attribute is used as the default. For old files, the preserved
attribute is always used. For all other files, 60 is used as the
default.

• PAGE_ WIDTH

Specifies the number of characters to be written to a printed
line. For terminal files, the values of the corresponding
terminal attribute is used as the default. For an old file, the
preserved value is always used. For all other files, 132 is used
as the default.

o PRESET_ VALUE

Specifies the integer value to which memory associated with a
disk file is initialized. Currently, 0 (zero) is always used.

Omission for a new file causes 0 (zero) to be used. For an old
file, the preserved value is always used.

o RECORD_LIMIT

Specifies the maximum number of records to be included in a
keyed file. This attribute is ignored for a sequential or
byte-addressable file. The default is 242-1.

For details, see the SCL Advanced File Management manual.

o RECORD_ TYPE

Specifies the record type. Options are:

Revision H

FIXED (F)

ANSI fixed length.

TRAILING_CHARACTER_DELIMITED (T)

Records of varying lengths terminated by a single trailing
character. The system-supplied record delimiting character
is the line-feed character (OA hex).

VARIABLE (V)

CDC variable.

Catalog and File Management 4-53

NOSNE File Attributes

UNDEFINED (U)

Undefined.

Omission for a new record access file causes VARIABLE to be
used. Omission for other disk files and for keyed files causes
UNDEFINED to be used. For keyed files, VARIABLE and
UNDEFINED are equivalent. For an old file, the preserved
value is always used.

The record types ANSI-VARIABLE (D) and ANSI_SPANNED
(S) are supported only for magnetic tape files. These record
types are specified through the CHANGE_ TAPE_ LABEL_
ATTRIBUTES command.

• RECORDS_PER_BLOCK

Specifies an estimate of the number of data records that are
contained in each data block of a new keyed file. This attribute
is ignored for a sequential or byte-addressable file or an old
keyed file.

For details, see the SCL Advanced File Management manual.

• STATEMENT_IDENTIFIER

This attribute is applicable to files maintained by the Source
Code Utility (SCU) and is used to specify the length and
location of a statement identifier in each record of the file. The
values of the attribute are specified as:

(location, length)

Statement identifier length is limited to 17 characters.
Statement identifier location is the byte in the record of the
beginning of the statement identifier. The first byte in the
record has a location of 1.

This attribute is used only for sequential and byte-addressable
files.

Omission for a new file indicates the absence of statement
identifiers in the file. For an old file, the preserved value is
al ways used.

• USER_INFORMATION

Specifies a string of 32 characters of information you supply
that is preserved with the file. This information is not
interpreted by NOSNE.

Omission for a new file indicates the absence of user
information.

4-54 NOSNE System Usage Revision H

NOSNE File Attributes

Some file attributes can be changed after a file cycle has been created
using the CHANGE_FILE_ATTRIBUTES command. Table 4-1
illustrates whether and how file attributes can be changed for an old
file.

Table 4-1. Changing Attributes of Old Files

Attribute Name No1 Yes2 Temporary

ACCESS_ MODE x

AVERAGE_RECORD_LENGTH x

BLOCK_ TYPE x

CHARACTER_ CONVERSION x

COLLATE_TABLE_NAME x

COMPRESSION _PROCEDURE_ x
NAME

DATA_ PADDING x

EMBEDDED_KEY x

ERROR_EXIT_NAME or ERROR_ x
EXIT_PROCEDURE_NAME

1. Attributes in this column cannot be changed. Initial values can be
established for a new file via the SET_FILE_ATTRIBUTE command.

2. Attributes in this column can be permanently changed by a
CHANGE_FILE_ATTRIBUTE command.

(Continued)

Revision H Catalog and File Management 4-55

NOSNE File Attributes

Table 4-1. Changing Attributes of Old Files (Continued)

Attribute Name No1 Yes2 Temporary

ERROR_ LIMIT x
ESTIMATED_RECORD_COUNT x
FILE_ACCESS_PROCEDURE or x
FILE_ACCESS_PROCEDURE_
NAME

FILE_CONTENT x
FILE_LIMIT x
FILE_ ORGANIZATION x
FILE_PROCESSOR x
FILE_STRUCTURE x
FORCED_ WRITE x
HASHING_PROCEDURE_NAME x
INDEX_ LEVEL x
INDEX_ PADDING x
INITIAL_HOME_BLOCK_COUNT x
1. Attributes in this column cannot be changed. Initial values can be
established for a new file via the SET_FILE_ATTRIBUTE command.

2. Attributes in this column can be permanently changed by a
CHANGE_FILE_ATTRIBUTE command.

(Continued)

4-56 NOSNE System Usage Revision H

NOSNE File Attributes

Table 4-1. Changing Attributes of Old Files (Continued)

Attribute Name No1 Yes2 Temporary

INTERNAL_ CODE x

KEY_LENGTH x

KEY_ POSITION x

KEY_ TYPE x

LINE_NUMBER x

LOCK_ EXPIRATION_ TIME x

MAXIMUM_BLOCK_LENGTH x

MAXIMUM_RECORD_LENGTH x

MESSAGE_CONTROL x
MINIMUM_BLOCK_LENGTH x

MINIMUM_RECORD_LENGTH x

OPEN _POSITION x

PADDING_CHARACTER x

PAGE_FORMAT x
1. Attributes in this column cannot be changed. Initial values can be
established for a new file via the SET_FILE_ATTRIBUTE command.

2. Attributes in this column can be permanently changed by a
CHANGE_FILE_ATTRIBUTE command.

(Continued)

Revision H Catalog and File Management 4-57

NOSNE File Attributes

Table 4-1. Changing Attributes of Old Files (Continued)

Attribute Name No1 Yes2 Temporary

PAGE_LENGTH x
PAGE_ WIDTH x
PRESET_ VALUE x
RECORD_LIMIT x
RECORD_ TYPE x
RECORDS_PER_BLOCK x
RING_ATTRIBUTES x
STATEMENT_IDENTIFIER x
USER_ INFORMATION x
1. Attributes in this column cannot be changed. Initial values can be
established for a new file via the SET_FILE_ATTRIBUTE command.

2. Attributes in this column can be permanently changed by a
CHANGE_FILE_ATTRIBUTE command.

File attributes are available to any program or procedure (that is, an
editor, compiler, or the SCL interpreter) that processes a file. These
attributes define the file characteristics for all commands that access
files.

Establishing File Attributes

When a file cycle is first created, it is assigned a set of default
attributes unless others are provided on a SET_FILE_ATTRIBUTE
command. Any attributes specified on the SET_FILE_ATTRIBUTE
command override the default attributes when the file cycle is created.
Refer to Displaying File Attributes later in this chapter for an
example showing the default attributes for a new file.

If a file cycle that has been established by SET_FILE_ATTRIBUTE
is then opened by a command (such COLLECT_ TEXT), any attributes
defined by the command are merged with those supplied with the
SET_FILE_ATTRIBUTE command. The merged attributes are then
preserved with the file cycle.

4-58 NOSNE System Usage Revision H

NOSNE File Attributes

A permanent file cycle can be created and its file attributes
established before the file is opened and any data is written to the
file. The following command sequence can be used to prepare the file
attributes in advance:

/create_file f=$user.file
/set_file_attributes f=$user.file file_contents=list
/detach_file f=$user.file

The SET_FILE_ATTRIBUTE command establishes the attributes of
the file cycle.

NOTE

Only the PAGE_LENGTH and PAGE_ WIDTH are applicable to
terminal files. Only attributes applicable to files with a sequential file
organization pertain to tape files (except for the FORCED_ WRITE
and FILE_LABEL_ TYPE attributes).

Attributes for Record Access Files

Record access files are files containing data organized into records.
Read and write operations on the file are then performed on a record
by record basis (as opposed to the bit by bit operations performed on
segment access files). Refer to the CYBIL Sequential and
Byte-Addressable Files manual for more information on record and
segment access files.

The attributes described in this section apply to record access files
with the following types of file organization:

o Sequential

• Byte-addressable

o Keyed file (unless otherwise indicated)

Refer to the following for complete information concerning sequential,
byte-addressable, and keyed file access:

• FORTRAN Version 1 Language Definition

• FORTRAN Version 2 Language Definition

• COBOL usage manual

• CYBIL Sequential and Byte-Addressable Files manual

Revision H Catalog and File Management 4-59

NOSNE File Attributes

• CYBIL Keyed-File and Sort/Merge Interfaces manual

• SCL Advanced File Management manual

The following are the file attributes pertaining to record access files:

BLOCK_ TYPE

MAXIMUM_BLOCK_LENGTH

MAXIMUM_RECORD_LENGTH

MINIMUM_BLOCK_LENGTH (does not apply to keyed files)

PADDING_CHARACTER (does not apply to keyed files)

Attributes for Keyed Files

The attributes listed in this section apply only to keyed files (the
FILE_ORGANIZATION attribute is INDEXED_SEQUENTIAL or
DIRECT_ACCESS). When used with sequential or byte-addressable
files, these parameters are ignored.

The following are the file attributes pertaining to keyed files:

AVERAGE_RECORD_LENGTH

COLLATE_TABLE_NAME

COMPRESSION _PROCEDURE_NAME

DATA_ PADDING

DYNAMIC_HOME_BLOCK_SPACE

EMBEDDED_KEY

ERROR_ LIMIT

ESTIMATED_RECORD_ COUNT

FORCED_ WRITE

HASHING_PROCEDURE_NAME

INDEX_ LEVEL

INDEX_ PADDING

4-60 NOSNE System Usage Revision H

INITIAL_HOME_BLOCK_COUNT

KEY_LENGTH

KEY_POSITION

KEY_ TYPE

LOADING_FACTOR

LOCK_ EXPIRATION_ TIME

LOGGING_ OPTIONS

LOG_RESIDENCE

MESSAGE_CONTROL

MINIMUM_RECORD_LENGTH

RECORD_LIMIT

RECORDS_ PER_ BLOCK

Changing File Attributes

NOSNE File Attributes

The CHANGE_FILE_ATTRIBUTE command alters certain file
attributes for a file cycle that already exists.

When a file cycle is first used (that is, when it is initially opened),
file attributes provided by the creator are preserved with the file. This
command allows a subset of the preserved attributes to be changed.

This command may be used to alter file attributes of permanent or
temporary files. In either case, the file must not be in use (that is,
open) within the job. Other restrictions apply when you use this
command:

o A permanent file cycle must not currently be attached to another
job.

o If the file cycle must be scheduled for job access using the
ATTACH_FILE command prior to issuing this command, a share
mode value of NONE is required.

o The user must have CONTROL permission and the user's share
requirements must be NONE.

Revision H Catalog and File Management 4-61

NOSNE File Attributes

Displaying File Attributes

The DISPLAY_FILE_ATTRIBUTE command displays the attributes of
one or more files. Each display entry will include the file name and
the list of requested attribute names and their associated values. The
DISPLAY_FILE_ATTRIBUTES command can also be used to display
a description of how the attribute was defined.

The following example displays the initial default attributes for a new
file:

/set_file_attributes new_file
/display_file_attributes new_file all
Access_Mode (read, shorten, append, modify,

Application_Information
Average_Record_Length
Block_ Type
Character_Conversion
Collate_Table_Name
Compression_Procedure_Name
Data_Padding
Dynamic_Home_Block_Space
Embedded_Key
Error_Exit_Procedure_Name
Error _Limit
Estimated_Record_Count
File_Access_Procedure_Name
File_Contents
File_Label_Type
File_Limit
File_Organization
File_Processor
File_Structure
Forced_Write
Global_Access_Mode

Global_File_Address
Global_File_Name
Global_File_Position
Global_Share_Mode
Hashing_Procedure_Name

execute)
none

system_specified
no
none
none
0
no
yes
none
0

0
none
unknown
unlabelled
4398046511103 1

sequential
unknown
unknown
no
(read, shorten, append, modify,
execute)

0
$000000000SOOOOD19800812TOOOOOO
boi
none
(amp$system_hashing_procedure)

1. The maximum file size currently enforced is the value of the site-defined system
attribute MAXIMUM_SEGMENT_LENGTH.

4-62 NOSNE System Usage Revision H

Index_Levels
Index_Padding
Initial_Home_Block_Count
Internal_Code
Key_Length
Key_Position
Key_ Type
Line_Number
Loading_Factor
Lock_Expiration_Time
Logging_Options
Log_Residence
Maximum_Block_Length
Maximum_Record_Length
Message_Control
Minimum_Block_Length
Minimum_Record_Length
Open_Position
Padding_Character
Page_ Format
Page_Length
Page_Width
Permanent
Preset_ Value
Record_L imit
Record_ Type
Records_Per_Block
Ring_Attributes
Size
Statement_Identifier
User_Information

Revision H

2
0

asci i
1

0
uncollated

NOSNE File Attributes

("Location" 1, "Length" 1)
90
60000
none
none
4128
256
none
18
0
$boi

burstable
60
132
no
0
4398046511103
variable
65535
(11, 11, 11)
0
("Length" 1, "Location" 1)
none

Catalog and File Management 4-63

Copying Files

Copying Files

You can copy one file to another by using the COPY_FILE command.
For example, to copy file DATA to file TEST_DATA, enter:

/copy_file input=data output=test_data

The original file is called the input file; the file into which the
original is copied or converted is called the output file. The output file
structure (for example, the FILE_ORGANIZATION, BLOCK_TYPE,
and RECORD_ TYPE attributes of the output file) may differ from the
corresponding attributes of the input file.

The COPY_FILE command performs either a byte-by-byte copy or a
record-by-record copy, depending on the attributes of the specified
input and output files.

A byte-by-byte copy does not change the physical representation of the
file; the resulting output file is an identical copy of the input file.

Although a record-by-record copy changes the physical representation
of the file, its logical content remains the same. That is, the contents
of individual records in the file do not change, although the means of
accessing them may differ because of differing file attributes.

The following consid,erations apply to copying files:

• The copy terminates when the COPY_FILE command encounters
an end-of-information (EOI) in the input file. For unlabelled tape
files, the copy terminates when a tapemark is encountered. If the
input file is empty, the COPY_FILE command returns an
abnormal status condition. If the input file is at its
end-of-information, the exception condition FSE$INPUT_FILE_AT_
EOI is returned. If an unlabelled tape is at a double tape mark,
the exception condition AME$INPUT_AFTER_EOI is returned.

• If an unlabelled tape contains sets of data, each followed by a
single tapemark, issue the COPY_FILE command once for each set
of data to obtain a complete copy of the tape file.

• This command does not copy single tapemarks. For more
information on copying tape files, see the Tape Management
chapter later in this manual.

• If the output file does not exist, the COPY_FILE command will
create it and place it in the specified catalog.

4-64 NOSNE System Usage Revision H

Copying Files

• Unless a SET_FILE_ATTRIBUTE command has been specified for
the created output file, this file inherits the file attributes of the
input file. The only exception is the ring attributes of the created
file, which default to the ring of the caller of the COPY_FILE
command.

• The COPY_FILE command merges the separate FILE_CONTENTS
and FILE_STRUCTURE attribute values into a single FILE_
CONTENTS value. The following displays the merged FILE_
CONTENTS' value.

Old FILE - Old FILE_
New FILE_CONTENTS CONTENTS STRUCTURE

ASCil_LOG ASCILLOG DATA

BINARY_LOG BINARY_LOG DATA

DATA UNKNOWN DATA

FILE_BACKUP FILE_BACKUP DATA

LEGIBLE_DATA LEGIBLE DATA

LEGIBLE_ LIBRARY LEGIBLE LIBRARY

LIST LIST DATA

OBJECT_DATA OBJECT DATA

OBJECT_LIBRARY OBJECT LIBRARY

SCREEN_FORM SCREEN FORM

UNKNOWN UNKNOWN UNKNOWN

<name> <name> UNKNOWN

If the merging truncates the FILE_STRUCTURE value, the
warning message FSE$0UTPUT_STRUCTURE_ TRUNCATED is
issued.

Revision H Catalog and File Management 4-65

Copying Files

• In order to use the COPY_FILE command, you must have the
following minimum access and share mode permits for the input
and output files:

File Access Mode Share Mode

Input READ READ, EXECUTE

Output - first APPEND, NONE
choice SHORTEN

Output - APPEND NONE
second choice

In the following three examples, the first copies the contents of
$USER.PROLOG to $LOCAL.A; the second copies file $USER.X to
$OUTPUT, which is the default; and the third appends file
$USER.INFILE to file $USER.OUTFILE. In the last example, explicit
file positioning is specified for file $USER.OUTFILE.

/copy_file input=$user.prolog output=$local .a
/copy_file $user.x
/copy_file $user.infile $user.outfile.$eoi

File Organization Combinations

The following table shows the valid file organization combinations for
input and output files. If an attempted copy is invalid, the COPY_
FILE command returns an abnormal status condition.

Output File

Input File Sequential Byte-Addressable Keyed File

Sequential Valid Invalid Valid

Byte-Addressable Invalid Valid Invalid

Keyed File Valid Invalid Valid

4-66 NOSNE System Usage Revision H

Copying Files

Copying Sequential Files to Sequential Files

When one sequential file is copied to another, the following
restrictions determine whether the copy operation is supported:

o If a file has a FILE_CONTENTS attribute value of LIST, it must
not have UNDEFINED (U) records and system-specified blocking.

• An input file having U records and system-specified blocking
cannot be copied to a file whose FILE_CONTENTS value is LIST.

o If either file has a FILE_CONTENTS of LIST and has F records,
its MAXIMUM_RECORD_LENGTH must be greater than 1.

o If both files have a FILE_CONTENTS attribute value of
LEGIBLE_DATA, their values for the LINE_NUMBER and
STATEMENT_IDENTIFIER attributes must be identical.

o If the FILE_CONTENTS attributes of both files are not identical,
one of these attributes must have a value of UNKNOWN.
However, if the FILE_CONTENTS value of one of the files is
LIST, the other's FILE_CONTENTS value can be either
UNKNOWN or LEGIBLE_DATA.

Revision H Catalog and File Management 4-67

Copying Files

If the following conditions are met, the COPY_FILE command
performs a byte-by-byte copy of one sequential file to another:

• Both files are mass storage files.

• Both files are opened at their beginning-of-information (BO!).

• The size of the input file is less than or equal to the FILE_LIMIT
value of the output file.

• The output file is attached for both APPEND and SHORTEN
access.

• The following file cycle attributes are identical for both files:

BLOCK_ TYPE
FILE_ACCESS_PROCEDURE
FILE_CONTENTS
FILE_ORGANIZATION (SEQUENTIAL)
RECORD_ TYPE .

Even when the RECORD_ TYPE attribute values are the same, the
following additional restrictions apply:

- When both files contain F records, the MAX_RECORD_
LENGTH and PADDING_CHARACTER attribute values must
be identical.

- When both files contain TRAILING_ CHARACTER_
DELIMITED (T) records, the RECORD_DELIMITING_
CHARACTER attribute value must be identical.

- When both files contain U records and a user-specified
BLOCK_ TYPE, the MAX_BLOCK_LENGTH attribute values
must be identical.

4-68 NOSNE System Usage Revision H

Copying Files

When the above processing restrictions are met, the COPY_FILE
command performs the copy operation with the following results:

o If one file has a FILE_CONTENTS value of LIST and the other
does not, format-effectors are either added or removed. Refer to the
section on Copying List Files later in this chapter.

o If the output file has F records, the MAX_RECORD_LENGTH
attribute of the output file must have a value as large as the
largest input record; otherwise, input records are truncated to the
MAX_RECORD_LENGTH value of the output file. When this
happens, the exception condition FSE$0UTPUT_RECORDS_
TRUNCATED is returned.

• While reading an unlabelled tape, the system stops copying when
it encounters the end of the last volume provided by the
REQUEST_MAGNETIC_ TAPE command or when it encounters a
single (embedded) tapemark within a volume.

o While copying an unlabelled or a nonstandard labelled tape file to
an unlabelled tape file, single (embedded) tapemarks found in the
input file are not copied to the output file.

• If the output file is an unlabelled tape file, the system writes two
tapemarks at the completion of the copy operation. Then the
system backspaces the volume to a position preceding the two
tapemarks.

When copying record-by-record, the COPY_FILE command determines,
from the block and record types shown in figure 4-3, the working
storage length used to read the input file.

Revision H Catalog and File Management 4-69

Copying Files

Input File Output File

System-specified User-specified
(SS) Block Type (US) Block Type

Record Types v T u F u F D* S*

V, SS 3 3 3 2 1 2 1 3
T, SS 3 3 3 2 1 2 1 3
u, SS 2 2 2 2 1 2 1 2
F, SS 4 4 4 2 1 2 4 4

u, us 3 3 3 2 1 2 1 3
F, US 4 4 4 2 1 2 4 4
D, US* 3 3 3 2 1 2 3 3
S US* 3 3 3 2 1 2 1 3

Key for preceding table:

v
T
u
F
D
s
1

2

3

4

*

VARIABLE
TRAILING_CHARACTER_DELIMITED
UNDEFINED
FIXED
ANSI_ VARIABLE
ANSI_ SPANNED
The working storage length is the output file's MAX_
BLOCK_ LENGTH.
The working storage length is the output file's MAX_
RECORD_LENGTH.
The working storage length is the input file's MAX_BLOCK_
LENGTH.
The working storage length is the input file's MAX_
RECORD_LENGTH.
Supported for labelled tape files only.

-
Figure 4-3. Block and Record Types

The values determined in figure 4-3 are incremented by 1 when the
FILE_CONTENTS attribute of one (and only one) file is LIST. If the
MAXIMUM_BLOCK_LENGTH attribute of an ANSI_ VARIABLE file
is used to determine the value for the working storage length, then
this value is decreased by 4.

4~70 NOSNE System Usage Revision H

Copying Files

Copying Sequential Files to Keyed Files

Under NOSNE, you can perform a record-by-record copy of a
sequential file to a keyed file. Byte-by-byte copies of sequential files
to keyed files cannot be performed. The following file attribute
restrictions apply:

• The keyed file cannot have a FILE_ CONTENTS attribute value of
LIST.

• If the input (sequential) file has a FILE_ CONTENTS value of
LIST, it cannot have U records and system-specified blocking.

o When the sequential file has a FILE_CONTENTS value of LIST
and contains F records, its MAX_RECORD_LENGTH value must
exceed 1.

o If the FILE_CONTENTS value of both files is LEGIBLE_DATA,
the LINE_NUMBER and STATEMENT_IDENTIFIER values of
each file must be the same.

o The FILE_CONTENTS values of the two files must conform to
one of the following:

- The FILE_CONTENTS attribute of the input file is LIST and
the keyed file has a FILE_CONTENTS attribute of LEGIBLE_
DATA or UNKNOWN.

- The FILE_ CONTENTS attributes of both files are identical, or
one file has a FILE_CONTENTS value of UNKNOWN.

Revision H Catalog and File Management 4-71

Copying Files

When the preceding restrictions are met, the COPY_FILE command
performs a record-by-record copy with the following results:

• If the output file is opened at its beginning-of-information, the
COPY_FILE command releases any data previously written on the
output file.

• If the output file is not positioned at its beginning-of-information,
the data in the output file is retained and the copy operation
merges the two files. However, the COPY_FILE command adds
only those records from the input file that have unique keys. It
copies records from the input file beginning at its open position.
During the copy operation, if a record from the input file has a
key that already belongs to a record on the output file, the
COPY_FILE command terminates and returns an abnormal status
condition.

• When copying a sequential file to a keyed file, the COPY_FILE
command assumes that each sequential file record has an
embedded key whose location is determined by the KEY_LENGTH
and KEY_POSITION attributes of the output file.

• If the output file has nonembedded keys, the value of the KEY_
POSITION attribute of the input file is assumed to be 0 and the
KEY_LENGTH attribute value is determined by the output file's
KEY_LENGTH attribute.

• When copying a sequential file to a keyed file, the COPY_FILE
command determines the working storage length used to read the
sequential file as follows:

If the output file has embedded keys, the working storage
length used for the sequential file is equal to the MAX_
RECORD_LENGTH value of the keyed file.

If the keyed file has nonembedded keys, the working storage
length used for the sequential file is the sum of the values of
the keyed file's MAX_RECORD_LENGTH and KEY_LENGTH
attributes. The working storage length is incremented by 1 if
the input file has a FILE_CONTENTS value of LIST.

When the COPY_FILE command encounters records longer than the
working storage length, it truncates the records and issues a
warning-level abnormal status condition.

4-72 NOSNE System Usage Revision H

Copying Files

Copying Byte-Addressable Files to Byte-Addressable
Files

The COPY_FILE command cannot copy a byte-addressable file to a
file that has a different file organization.

The COPY_FILE command performs a byte-by-byte copy of one
byte-addressable file to another if the following conditions are met:

• Both files are mass storage files.

• Both files are opened at the same byte address.

• The output file is attached for both APPEND and SHORTEN
access.

• The size of the input file is less than or equal to the value of the
FILE_LIMIT attribute of the output file.

• The following file attributes of both files are identical:

BLOCK_ TYPE
FILE_ACCESS_PROCEDURE
FILE_ CONTENTS
FILE_ ORGANIZATION (byte addressable)
RECORD_ TYPE

Even when the RECORD_ TYPE attributes are the same, further
restrictions apply:

- When both files have F records, the MAX_RECORD_LENGTH
and PADDING_CHARACTER attribute values must be
identical.

- When both files have U records and user-specified BLOCK_
TYPE attributes, the MAX_BLOCK_LENGTH attributes must
be identical.

Revision H Catalog and File Management 4-73

Copying Files

Copying Keyed Files to Keyed Files

The following restrictions apply to requests for copying a keyed file to
another keyed file:

• Keyed files cannot have a FILE_CONTENTS attribute value of
LIST.

• If the FILE_CONTENTS attribute of both files has a value of
LEGIBLE_DATA, the values of the LINE_NUMBER and
STATEMENT_IDENTIFIER attributes for each file must be
identical.

• If the FILE_CONTENTS attributes of both files are not identical,
one of the FILE_CONTENTS values must be UNKNOWN.

• If the input file has embedded keys and the output file has
nonembedded keys, the MAX_RECORD_LENGTH value of the
output file must equal the difference between the input file's
KEY_LENGTH value and its MAX_RECORD_LENGTH value.
The KEY_LENGTH values of both files must be identical.

• If the input file has nonembedded keys and the output file has
embedded keys, the value of the MAX_RECORD_LENGTH
attribute of the output file must equal the sum of the input file's
KEY_LENGTH and MAX_RECORD_LENGTH values. The KEY_
LENGTH values of both files must be identical.

• If both the input and output files have the same KEY_ TYPE
attribute (both have embedded or nonembedded keys), each file
must have the same MAX_RECORD_LENGTH and KEY_
LENGTH values.

4-74 NOS/VE System Usage Revision H

Copying Files

The COPY_FILE command performs a byte-by-byte copy of one keyed
file to another when the following conditions are met:

• The output file is not currently open within the job.

• Both files are opened at their beginning-of-information (BOD.

• The output file is attached for both APPEND and SHORTEN
access.

• The size of the input file is less than or equal to the FILE_LIMIT
value of the output file.

• The following file attributes of both files are identical:

COLLATE_TABLE_NAME
COMPRESSION _PROCEDURE_NAME
EMBEDDED_KEY
FILE_ACCESS_PROCEDURE
FILE_ CONTENTS
FILE_ORGANIZATION (keyed files)
HASHING_PROCEDURE_NAME
INITIAL_HOME_BLOCK_COUNT
KEY_ LENGTH
KEY_POSITION
KEY_ TYPE
MAX_BLOCK_LENGTH
MAX_RECORD_LENGTH
MIN_RECORD_LENGTH
RECORD_ TYPE
RECORDS_PER_BLOCK

If the above conditions are not met, the COPY_FILE command
performs a record-by-record copy of the requested keyed files.

NOTE

If you are aware that a record-by-record copy of one keyed file to
another will occur, it is more efficient to use the COPY_KEYED_
FILES command for the COPY operation.

Revision H Catalog and File Management 4-75

Copying Files

The copy operation has the following results:

• If the output file is opened at its beginning-of-information, the
COPY_FILE command deletes any data previously written on the
output file and replaces it with the contents of the input file.

• If the output file is not opened at its beginning-of-information, the
data in the output file is retained and the copy operation results
in merging of the input and output files. However, when the
COPY_FILE command copies records from the input file, it copies
only records with unique keys. If it reads a record from the input
file, and the record has a key that already belongs to a record on
the output file, the copy operation terminates and returns an
abnormal status condition.

• If the input file has embedded keys and the output file has
nonembedded keys, the characters established for the KEY_
LENGTH attribute of each input record are written as the key on
the corresponding output record. The KEY_LENGTH attribute of
the output file is observed. Unsatisfactory results may occur if the
KEY_POSITION value of the input file is nonzero.

• If the input file has nonembedded keys and the output file has
embedded keys, each output record is prefixed by the key of its
corresponding input record. The KEY_POSITION and KEY_
LENGTH attributes of the output file are observed. Unsatisfactory
results may occur if the KEY_POSITION value of the output file
is nonzero.

When performing a copy operation from one keyed file to another, the
COPY_FILE command determines the working storage length used to
read the input file as follows:

• If the input file has embedded keys, the working storage length
used is the value of the input file's MAX_RECORD_LENGTH
attribute.

• If the input file has nonembedded keys, the working storage length
used is the sum of the value of the input file's MAX_RECORD_
LENGTH and KEY_LENGTH attributes.

• If the output file's values for the EMBEDDED_KEY, KEY_
LENGTH, and MAX_RECORD_LENGTH attributes are not the
same as the corresponding values for the input file, truncation
may occur; no abnormal status condition is returned.

4-76 NOSNE System Usage Revision H

Copying Files

Copying Keyed Files to Sequential Files

The following restrictions apply when the COPY_FILE command
copies a keyed file to a sequential file.

• The keyed file cannot have a FILE_CONTENTS value of LIST.

• If the output file has a FILE_ CONTENTS value of LIST, it cannot
contain U records and system-specified blocking.

• If the sequential file has a FILE_ CONTENTS value of LIST and
contains F records, its MAX_RECORD_LENGTH value must
exceed 1.

• One of the following conditions must be met with respect to the
FILE_CONTENTS attributes:

- They must be identical for both files.

- One file must have a FILE_CONTENTS value of UNKNOWN.

- It must have a value of LEGIBLE_DATA or UNKNOWN for
the input file, and LIST for the output file. The last case is
described under Copying List Files in this chapter.

• If the FILE_CONTENTS attribute of both files is LEGIBLE, the
values of each file's LINE_NUMBER and STATEMENT_
IDENTIFIER attributes must also be identical.

Revision H Catalog and File Management 4-77

Copying Files

NOTE

In the following cases, the COPY_FILE command stores keys for
the output file that are different from those used in the input file:

- When the KEY_POSITION attributes of the input and output
files are not the same (applies only to embedded keys).

- When the KEY_POSITION attribute of the output file is
nonzero (applies only to nonembedded keys).

- When the KEY_LENGTH attributes of the input and output
files are not identical.

• If the OPEN _POSITION of the output file is BOI, the previous
content of the file is released and is replaced by the content of the
input file.

• The system considers a sequential file to be a file that contains
embedded keys whose location is determined by its KEY_
POSITION and KEY_LENGTH attributes. This consideration
applies only if this file is copied to another keyed file.

• When copying from a keyed file to a sequential file, the COPY_
FILE command determines the working storage length used to
read the keyed file as follows:

- If the keyed file has embedded keys, the working storage
length used is the input file's MAX_RECORD_LENGTH value.

- If the keyed file has nonembedded keys, the working storage
length used is the sum of the input file's MAX_RECORD_
LENGTH and KEY_LENGTH attributes.

- The value determined above is increased by 1 if the FILE_
CONTENTS attribute of the output file has a value of LIST.

4-78 NOSNE System Usage Revision H

Copying Files

Copying List Files

The following section describes how NOSNE handles file-copying
operations when either the input file or the output file has a FILE_
CONTENTS value of LIST.

Input File Has a FILE_ CONTENTS Value of LIST

If the FILE_CONTENTS attribute of the input file has a value of
LIST and that of the output file is set to DATA, LEGIBLE_DATA or
UNKNOWN, the first character (which is the format effector) of each
record of the input file is not copied to the output file.

Output File Has a FILE_CONTENTS Value of LIST

If the FILE_CONTENTS attribute of the input file has a value of
DATA, LEGIBLE_DATA or UNKNOWN and the FILE_CONTENTS
attribute of the output file has a value of LIST, the following
record-by-record conversion is performed; otherwise the system writes
a record-by-record copy to the output file without inserting format
effectors.

• If the PAGE_FORMAT value is set to CONTINUOUS, a
triple-space format effector ('-') is inserted in the first record of the
output file. A single-space format effector is inserted in all the
remaining lines of the output file.

• If the PAGE_FORMAT value is set to BURSTABLE or
NONBURSTABLE, a page-eject format effector ('l') is inserted at
each interval established by the PAGE_LENGTH attribute. A
single-space format effector is inserted in all the remaining lines
of each page of the output file.

NOTE

If the output file has F records, the records may be truncated because
of the introduction of format effectors. To avoid truncation, choose a
MAXIMUM_RECORD_LENGTH for the output file that is greater by
1 than it was on the input file.

Revision H Catalog and File Management 4-79

Comparing Files

Comparing JFiles

You can compare the contents of two files by using the COMPARE_
FILE command.

This command performs a binary comparison of data on the specified
files (file attributes are not compared). When data on the two files
does not match, the system writes the position, content, and logical
difference to the specified output file.

The contents of the files are compared from the open position of each
until end-of-information on the shorter of the two files.

If the files are identical in content, a normal status is returned. If the
files are not identical in content, an abnormal status is returned.

The following example creates two files and compares their contents
with the COMPARE_FILE command. The COLLECT_ TEXT command
is used to create the text file; EDIT_FILE is used to change one
character in the file so that a comparison will result in errors (EDIT_
FILE is described in the NOSNE File Editor manual).

/colt o=file_l
ct? This is a temporary file
ct? that will be used in a
ct? COMPARE_FILE example.
ct? ,..
/copy_file i=file_l o=file_2
/edit_file f=file_2
Begin editing file: $LOCAL. FILE_2
ef/replace_text t='x' nt='z'
COMPARE_FILE ezample.
ef/end
Pcompare_file f=file_l w=file_2

BYTE ADDRESS FILE WORD WITH WORD LOGICAL DIFFERENCE
96 46494c4520657861 46494c4520657a61 0000000000000200

-- Specif i ed compare error 1 i mi t exceeded.
1 compare errors.

--ERROR-- 1 compare errors.

The output from the COMPARE_FILE command indicates that a
comparison error resulted at byte address 96. The entire contents of
the relevant words (in hexadecimal) of each file and their logical
difference is also shown.

4-80 NOSNE System Usage Revision H

Comparing Files

The following example illustrates how to check for a
CLE$COMPARE_ERRORS_DETECTED condition.

/create_variable n=st v=status
/compare_file ab status=st
/if not st.normal then

if st.condition= ..
cle$compare_errors_detected then

else

ifend
ifend

Revision H

Your commands to
process the comparison
error.

Your commands to
process some other
error.

Catalog and File Management 4-81

Displaying the Representation of Data in a File

Displaying the Representation of Data in a
File

You can display the contents of a file in hexadecimal, ASCII, or both
hexadecimal and ASCII formats by using the DISPLAY_FILE
command.

If you specify ASCII format, the system displays unprintable ASCII
characters (such as NUL or ESC) as spaces.

If you specify hexadecimal format, the system converts each
hexadecimal digit to the ASCII representation of the hexadecimal digit
(that is, 0 through 9 and A through F).

If you specify both hexadecimal and ASCII, the system displays each
line in both formats: the hexadecimal version of the file followed by
the printable ASCII equivalent. For example, the ASCII numeral 1 is
followed by its hexadecimal equivalent, 31. (Appendix C lists the
ASCII character equivalents.)

The following example displays the internal contents of the entire
V-record file FILE_ l created for the COMPARE_FILE example
earlier in this chapter. Only the ASCII format is requested.

/display_file i=file_1 f=ascii
BYTE ADDRESS ASCII

O This is a temporar
32 y file that will be
64 used in a & COMPARE_
96 FILE example.

4-82 NOSNE System Usage Revision H

Displaying the Representation of Data in a File

The following example repeats the DISPLAY_FILE operation, but
requests both ASCII and hexadecimal formats:

/display_file i=file_1 f=(ascii,hex)
BYTE ADDRESS HEXADECIMAL ASCII

O 0000000000001800 00000000001e5468 Th

16 6973206973206120 74656d706f726172 is is a temporar
32 792066696c650000 0000000016000000 y file
48 0000001e74686174 2077696c6c206265 that will be
64 207573656420696e 2061000000000000 used in a
80 150000000000261e 434f4d504152455f & COMPARE_
96 46494c4520657861 6d706c652e FILE example.

The following example displays the following ranges of byte addresses
for file FILE_l: bytes 3 through 8; bytes 16 through 24; and bytes 56
through 88:

/display_file i=file_1 ba=(3 .. 8,16 .. 24,56 .. 88)
BYTE ADDRESS HEXADECIMAL ASCII

3 000000180000
16 6973206973206120 74 is is a t
56 2077696c6c206265 207573656420696e will be used in
72 2061000000000000 1soooooooooo261e a &
88 43 c

Revision H Catalog and File Management 4-83

Managing Remote Files and Catalogs

Managing Remote Files and Catalogs

If your site supports the Permanent File Transfer Facility (PTF), you
can access files and catalogs explicitly on any remote NOSNE and
non-NOSNE system connected to your system. You can also access
files implicitly if both the remote and local systems are NOSNE.

Implicit Remote NOSNE File Access

If your implicit remote file reference capability is TRUE (refer to
Displaying Your User Validation in chapter 3), then you can
implicitly access remote files. To implicitly access a remote file, do
the following:

1. Provide your user validation information to the remote system
using the CREATE_REMOTE_ VALIDATION command. You only
need to do this once for each remote system you want to access
during your job.

2. Use SCL commands to create, copy, and delete files and catalogs
implicitly on the remote NOSNE system. You can also display
catalogs.

Creating a Remote Validation

To create a validation on a remote system, use the CREATE_
REMOTE_ VALIDATION command. The validation you create remains
in effect until you either log out or delete the validation with the
DELETE_REMOTE_ VALIDATION command.

The following example establishes a remote access to family SKY on a
remote system for a user with user name MIKE_B, password STARS,
and family name SKY:

/create_remote_validation location=sky validation=' login
.. /lu=mike_b pw=stars lf=sky'

4-84 NOSNE System Usage Revision H

Managing Remote Files and Catalogs

Use the DISPLAY_REMOTE_ VALIDATION command to display the
names of the remote systems for which you have created a validation
during the current job.

If you want to delete a remote validation, use the DELETE_
REMOTE_ VALIDATION command. If you want to replace a remote
validation with a different one, use the DELETE_REMOTE_
VALIDATION command followed by the CREATE_REMOTE_
VALIDATION command.

Using Commands for Implicit Remote NOS/VE File Access

Once you have created a validation for a remote system, you can use
the following commands to access remote files implicitly:

CHANGE_CATALOG_ENTRY
CHANGE_FILE_ATTRIBUTE
COPY_FILE
CREATE_ CATALOG
CREATE_CATALOG_PERMIT
CREATE_FILE
CREATE_FILE_PERMIT
DELETE_CATALOG

DELETE_CATALOG_PERMIT
DELETE_FILE
DELETE_FILE_PERMIT
DISPLAY_ CATALOG
DISPLAY_CATALOG_ENTRY
DISPLAY_FILE_ATTRIBUTE
SET_ FILE _ATTRIBUTE

You can use the DISPLAY_CATALOG command to find out which
catalogs and files are available to you on the remote system.

You can specify only one reference to a remote family per command;
you cannot specify a remote file for the OUTPUT parameter of
DISPLAY commands. For example, suppose you want to copy the
remote file MY_FILE to your current mainframe. Then, assuming
MY_FILE is under family SYSTEM_B and username ME, you can
copy the file by doing the following:

1. If you have not already done so, define a remote validation for
family SYSTEM_B. You do this by entering the following
command:

/create_remote_validation l=system_b ..
.. /v='login lu=me pw=my_password lf=system_b'

2. Implicitly reference the file in a COPY _FILE command. You do
this by entering the following:

/copy_file i=:system_b.me.my_file o=$user.file_to_copy_to

Revision H Catalog and File Management 4-85

Managing Remote Files and Catalogs

Explicitly Accessing Remote Files

If your family administrator has authorized you to explicitly access
remote files by setting the explicit remote file reference capability to
TRUE (refer to Displaying Your User Validation in chapter 3), then
you can use the MANAGE_REMOTE_FILES command. (You can also
use MANRF to explicitly access files of different families on the same
mainframe.)

With the MANAGE_REMOTE_FILES command, you delimit a set of
commands to be submitted as a batch job on a remote system. When
transferring files between two NOSNE systems, you can use the two
special file transfer commands, SEND_FILE and RECEIVE_FILE, to
transfer files between systems. If you transfer a file to an existing
file, the same rules that govern the copy operations of the COPY_
FILE command determine whether and how the file transfer ocurrs.

If an error occurs during execution of a file transfer command, the job
aborts; no further commands are executed unless you used the
STATUS parameter on the command in error.

The MANl\GE_REMOTE_FILES command allows you to access files
on a non-NOSNE system. The format, however, of the command or
commands needed to provide remote validation and to perform file
transfers varies among the different systems. You may specify the
validation commands using the CREATE_REMOTE_ VALIDATION
command. Refer to the Remote Host Facility Usage manual for
descriptions of the commands accepted by the supported non-NOSNE
systems.

The examples in this section assume that the remote system is
NOSNE.

4-86 NOSNE System Usage Revision H

Managing Remote Files and Catalogs

When you use MANRF to access a NOSNE system, follow these
guidelines:

• The first command in the set of commands must be a LOGIN
command to provide validation information to the remote system.
(If you have already created a remote validation for the system
with the CREATE_REMOTE_ VALIDATION command, you need
not include the LOGIN command.)

• After the LOGIN command, you may enter NOSNE commands.
Two additional commands are available with MANRF: SEND_
FILE which transfers a file from the remote system to your
system; and RECEIVE_FILE which transfers a file from your
system to a remote system.

• Only one file can be transferred per set of commands delimited by
MANRF.

• End the MANAGE_REMOTE_FILES command list with the
character specified by the UNTIL parameter of MANRF. (The
default value is two asterisks (**)). Once you end the list of
commands, the collection of commands is submitted to the remote
system as a batch job.

Revision H Catalog and File Management 4-87

Managing Remote Files and Catalogs

Transferring a Remote File to Your System

To transfer a remote NOSNE file to a file on your system, follow
these steps:

1. If necessary, establish the file attributes for the file to which you
are going to transfer the remote file by using the SET_FILE_
ATTRIBUTES command.

2. Enter the MANAGE_REMOTE_FILES command with the name of
the remote system and the name of the file to which you want to
copy the remote file. For example:

/manage_remote_fi les location=sl(y fi le=$local .temp_fi le_copy
mrf?

3. If you have not created a remote validation using the CREATE_
REMOTE_ VALIDATION command, enter the LOGIN command
with the validation information for the remote site. For example:

mrf? login login_user=mike_b password=stars login_family=sky

4. To transfer the remote file to your system, enter the SEND_FILE
command. For example:

mrf? send_file file=$user.temp_list
mrf?

5. To end the MANAGE_REMOTE_FILE session, enter two asterisks
after the mr f? prompt:

mrf?**
I

The system submits the commands you delimited as a batch job on
the remote system.

4-88 NOSNE System Usage Revision H

Managing Remote Files and Catalogs

Transferring a File to a Remote System

To transfer a file from your system to a remote system, follow these
steps:

1. Enter the MANAGE_REMOTE_FILES command with the name of
the remote system and the name of local file you want to transfer
to the remote system. For example:

/manage_remote_files location=sky file=local_text
mrf?

2. If you have not created a remote validation using the CREATE_
REMOTE_ VALIDATION command, enter the LOGIN command
with the validation information for the remote system. For
example:

mrf? login lu=mike_b p~=stars lf=sky

3. If necessary, establish the file attributes for the file to which you
want to transfer the remote file by including a SET_FILE_
ATTRIBUTES command.

4. Enter the RECEIVE_FILE command with the name of the remote
file to which you want to copy the local file. For example:

mrf? receive_file f=$user.text_copy
mrf?

5. To end the MANAGE_REMOTE_FILE session, enter two asterisks
after the mrf? prompt:

mrf?**
I

The system submits the commands you delimited as a batch job on
the remote system.

Revision H Catalog and File Management 4-89

Managing Remote Files and Catalogs

Common Remote File Management Problems

This section discusses some problems that commonly occur when
permanent file transfers are being performed.

If your user pro log incurs an error, the PTF server will be not be
able to execute SCL commands for you. In addition, no information on
the error will be returned to you. Rather, the job log for the serving
job is printed on the remote system.

The most common way for a user prolog to incur an error is for a
prolog that does not test for interactive jobs. Since the serving job is
running as a batch job on the remote system, this can cause an error
to be generated in some cases. For information on testing for
interactive and batch jobs in your prolog, see the Job Management
chapter later in this manual.

When you access a remote file (either implicitly or explicitly), that
file is attached for use on the remote system until the access
operation is complete. Thus, it is possible that you could initiate
another file transfer operation on a remote file that is already
attached. This results in an error. In order to avoid this problem,
make sure any access operations for a given file have completed
before attempting to attach the file for another access operation.

Also, note that the LOCATION parameter on MANRF must be of type
string or name even though the DISPLAY_COMMAND_
INFORMATION indicates that this parameter may be of type any.

4-90 NOSNE System Usage Revision H

Command and SCL Procedure Execution 5

Command Lists 5-2

Command List Entries 5-3
Object Library Command List Entries . 5-3
Catalog Command List Entries 5-4
$SYSTEM Command List Entry 5-4
Command Utility Command List Entries 5-5
Control Statements Command List Entry 5-5
Control Commands List Entry 5-6

Command List Search Modes 5-7
GLOBAL Search Mode. . . 5-7
RESTRICTED Search Mode 5-7
EXCLUSIVE Search Mode 5-7

Changing the Command List . 5-8
Adding Entries to the Command List 5-8
Deleting Entries from the Command List 5-11
Moving Entries within the Command List 5-11
Changing the Search Mode 5-12

Displaying the Command List 5-12

Displaying Command List Entries . 5-13

Commmand and §CL Procedure Execution 5

When you tell NOSNE to execute a command or SCL procedure you
are making a command reference. The following are the various ways
to make a command reference:

• Specify just the name of the command or procedure to be executed
if it exists in your command list.

For instance, if you wanted to display the contents of your catalog,
simply enter:

/display_catalog

Since the command exists in your command list, it will be
executed.

• Specify just the name of the file containing the command or
procedure to be executed if the file resides in a catalog that exists
in your command list.

For instance, suppose you have a temporary file named BEAN that
contains an SCL procedure named COUNTER. Since $LOCAL is
automatically placed in your command list, to execute procedure
COUNTER, you would enter:

/bean

• Specify the full file path reference to the file containing the
command or procedure to be executed.

For instance, suppose user PAT has placed file BEAN in
subcatalog CATALOG_l, and that BEAN contains procedure
COUNTER. Since CATALOG_l is not in PAT'S command list, in
order to execute procedure COUNTER, PAT would have to enter:

/.pat.catalog_1.bean

Note that if file BEAN was an object library or module, procedure
COUNTER would also have to be included in the reference as
follows:

/.pat.catalog_1.bean.counter

You may also execute a command asynchronously within your job
using EXECUTE_ COMMAND. Asynchronous tasks and EXECUTE_
COMMAND are discussed in the Job Management chapter later in
this manual.

Revision H Command and SCL Procedure Execution 5-1

Command Lists

Command lists are discussed in detail in the following section. For
information on writing SCL procedures, see Writing SCL Procedures
and Command Utilities later in this manual. For information on
executing programs, see the NOSNE Object Code Management
manual.

Command Lists

A command list is a list of the entire set of commands and functions
available to you. The commands and functions can exist in many
forms within the command list. For example, commands can reside in
object libraries, catalogs, as command entries in $SYSTEM, or as
commands subordinate to a command utility. $SYSTEM, and each
object library and catalog that exists within the command list is
known as a command list entry.

NOSNE automatically establishes a command list for each user as
part of the user validation and job initialization process. The default
command list consists of all the NOSNE system commands (known as
the $SYSTEM command list entry) and the $LOCAL catalog. Thus, all
local files with the correct file attributes (see Catalog Command List
Entries later in this chapter for more information) are available as
command names.

The SCL command list contains one or more command list entries.
The order in which these are listed determines, in part, how NOSNE
searches these entries for commands and functions.

You can change the command list to establish your own command
environment. For example, you can add commands to the list and
delete or replace any entries in the command list, including the
NOSNE system commands. You can also control the order in which
the command list is searched for entries.

5-2 NOSNE System Usage Revision H

Command List Entries

Command List Entries

A command list entry is one of the following:

• An object library.

• A catalog.

• The special entry $SYSTEM.

• A command utility.

In addition, there are two command list entries that you cannot alter
or manipulate:

• The control statements entry, which contains statements such as
IF/IFEND and is searched before all other command list entries.

• The control commands entry, which contains commands such as
LOGIN and LOGOUT and is searched after all other command list
entries.

Object Library Command List Entries

A file used as a command list entry must be an object library. An
object library is a file that can contain commands and other modules.
A command can be an SCL procedure, a program description, or the
starting procedure of an executable program.

For a command to be found in an object library, the command name
must be one of the names of an SCL command procedure, one of the
names of a program description, or the name of the starting procedure
of an object module.

In addition to commands, the message modules on an object library in
the command list may be searched for status and help messages.
These object libraries may also contain screen formatting modules. See
the NOSNE Object Code Management manual for more information
on object libraries and their contents.

If you want to overwrite or detach an object library that is in the
command list, you must first delete the library from the command list
using the DELETE_COMMAND_LIST_ENTRY command.

Revision H Command and SCL Procedure Execution 5-3

Command List Entries

Catalog Command List Entries

A catalog used as a command list entry causes the system to search
in the specified catalog for a command. For a command name to be
found in a catalog entry, the command name must be the name of a
file in the catalog and the file must contain an executable program or
an SCL procedure. The FILE_CONTENTS, FILE_STRUCTURE and
FILE_PROCESSOR attributes of the file are used to determine how
to process the command. The following table illustrates how these
attributes are used. Attempting to use a file whose attributes do not
match an entry in this table as a command results in an error.

File File
File Content Processor Structure Action

OBJECT Ignored DATA or Program is
LIBRARY executed.

LEGIBLE or SCL or DATA or SCL
UNKNOWN UNKNOWN UNKNOWN Procedure is

interpreted.

NOTE

The use of catalogs as command list entries should be avoided in
situations in which speed is a concern. Object libraries provide more
flexibility than catalogs and can be processed much more efficiently.

$SYSTEM Command List Entry

$SYSTEM represents the command list entry containing the commands
that are provided by NOSNE. To execute a command explicitly in the
$SYSTEM command list entry, use:

$system.conmand_name

This causes the system to search only the $SYSTEM command list
entry for command_name.

5-4 NOSNE System Usage Revision H

Command List Entries

Command Utility Command List Entries

The subcommands and functions provided by a command utility
constitute a command list entry. When you start a utility, the system
adds the utility command list entry to the beginning of the command
list. This makes all of the utility's commands and functions available
to you. When you stop a utility, the system removes the utility
command list entry from the command list.

Control Statements Command List Entry

Control statements are statements used to structure and control the
flow of a job. Control statements belong to a special command list
entry that is always searched first. This entry cannot be removed
from or replaced in the command list. The following commands also
reside in this command list entry:

COLLECT_ TEXT

JOB/JOBEND

TASKtrASKEND

UTILITY /UTILITYEND

These commands are also in the $SYSTEM entry. Refer to SCL
Command Streams and Condition Processing later in this manual for
a list of control statements.

Revision H Command and SCL Procedure Execution 5-5

Command List Entries

Control Commands List Entry

A small number of commands provide capabilities basic to SCL and
belong to a special command list entry that is always searched last.
This entry cannot be removed from or replaced in the command list.

The commands in this group are the following:

ACCEPT_LINE

CHANGE_COMMAND_SEARCH_MODE

CREATE_COMMAND_LIST_ENTRY

CREATE_ VARIABLE

DELETE_COMMAND_LIST_ENTRY

DELETE_ VARIABLE

DISPLAY_COMMAND_INFORMATION

DISPLAY_ COMMAND_LIST

DISPLAY_ COMMAND_LIST_ENTRY

DISPLAY_ VALUE

INCLUDE_COMMAND

INCLUDE_FILE

INCLUDE_ LINE

LOGIN

LOGOUT

PUT_LINE

These commands are also in the $SYSTEM entry.

5-6 NOSNE System Usage Revision H

Command List Search Modes

Command List Search Modes

The command list can be searched in one of three ways: GLOBAL,
RESTRICTED, or EXCLUSIVE.

GLOBAL Search Mode

When GLOBAL search mode is in effect, all entries in the command
list can be searched for a command. Also, commands that are
specified by path name and command name can be executed.

RESTRICTED Search Mode

With RESTRICTED search mode, all entries in the command list are
candidates for being searched. However, in order for a search to
proceed beyond the first entry in the command list, the command you
enter must be preceded by a slant (/). As with GLOBAL search mode,
commands that are specified by path name and command name can be
executed.

EXCLUSIVE Search Mode

When EXCLUSIVE search mode is in effect, only the entry at the
beginning of the command list is searched for a command. In this
mode, commands that are specified by path name and command name
are not allowed. In addition, the CHANGE_COMMAND_SEARCH_
MODE, CREATE_COMMAND_LIST_ENTRY, and DELETE_
COMMAND_LIST_ENTRY commands are not allowed.

SCL assignment and control statements are always available and
cannot be removed from the command list.

Revision H Command and SCL Procedure Execution 5-7

Changing the Command List

Changing the Command I.ist

With the following commands, you can add or delete command list
entries, specify where a command should be put in the command list,
and alter the search mode:

CREATE_COMMAND_LIST_ENTRY

Adds entries to either the beginning or the end of the command
list.

DELETE_COMMAND_LIST_ENTRY

Deletes entries from the command list.

CHANGE_COMMAND_SEARCH_MODE

Changes the search mode for the command list.

These commands are described later in this chapter.

Adding Entries to the Command List

If a file or catalog fits the criteria described previously, you can add
it to the front or the back of the command list by using the
PLACEMENT parameter on the CREATE_COMMAND_LIST_ENTRY
command. Omission of the PLACEMENT parameter causes the entry
to be placed at the front of the command list.

NOTE

To add an object library to the command list, you must have at least
EXECUTE access to the object library.

Adding an executable file to the command list, allows you to execute
any program or procedure residing on that file by entering its name.

For example, assume that file DATE_PROCEDURE contains the
following procedure:

proc display_date,disd (
format,f : key month, mdy, dmy, iso, ordinal =month
status)
display_value $date($value(format))

procend display_date

5-8 NOS/VE System Usage Revision H

Changing the Command List

If this procedure is not added to the command list, it can be executed
only by entering the file name. To reference a procedure by the
defined procedure names, you must add the procedure to the command
list.

When you refer to an entry in the command list, the following rules
apply:

• The procedure name can be the same as another name in the
command list. However, when the command list is searched for the
command name, the first command in the list having the specified
name is executed.

o When two commands have the same name but reside in different
places in the command list, you can execute the one that resides
further down the list by specifying its path name. For example,
suppose you have added to the front of your command list a
library containing a command that has the same name as a
system command. To execute the system command, you need only
specify the following:

$system.corrmand_name

• You can also use the slant character (/) to execute a command
that resides further down the command list. The slant causes the
first entry in the command list to be skipped when the command
list is searched. For example, the Source Code Utility (SCU) has a
command called DISPLAY_LIBRARY, with abbreviation DISL. This
is the same as the abbreviation for the system command
DISPLAY_LOG. From within SCU, the DISPLAY_LOG command
could be called as follows:

sc//disl

Before you can add the file containing the defined procedure(s) to your
command list, you must first create an object library. The complete
facilities for maintaining object libraries are described in the NOS/VE
Object Code Management manual. However, the following examples
show you the commands you need to create an object library from a
file of one or more procedures.

Revision H Command and SCL Procedure Execution 5-9

Changing the Command List

Assume that a file. named PROCEDURE_FILE exists in your master
catalog and has the following contents:

PROC display_date,disd (
format,f : key month, mdy, dmy, iso, ordinal =month
status)
display_value $date($value(format))

PROCEND display_date
PROC d1splay_t1me,d1st (

format,f : key ampm, hms = ampm
status)
display_value $time($value(format))

PROCEND display_time

The file contains two procedures: one for displaying the current date
and one for displaying the current time.

To create a procedure library and add it to your command list,
perform the following steps:

1. Enter:

/create_object_library

This command initiates the CREATE_OBJECT_LIBRARY
command utility, which issues the following prompt:

COL/

2. Subsequent commands can include the CREATE_OBJECT_
LIBRARY subcommands (refer to the NOSNE Object Code
Management manual). Enter the following subcommand to add the
procedure file to the object library being created.

COL/add_modules 1ibrary=$user.procedure_file

3. Enter the following subcommands to create the object library and
terminate the utility session.

COL/generate_library library=$user.command_library
COL/quit

The GENERATE_LIBRARY subcommand generates an object
library named PROCEDURE_LIBRARY.

5-10 NOSNE System Usage Revision H

Changing the Command List

4. Add the object library to the command list with the following
command:

/create_corrmand_list_entry entry=$user.command_library

5. After you have entered this command, you can call the procedures
directly, as shown in the following examples:

/display_time
6:38 PM

/display_date iso
1985-03-28
/dist format=hms
18:38:14

Deleting Entries from the Command List

You can delete any entries from the command list by using the
DELETE_COMMAND_LIST_ENTRY command. For example, to
delete the object library added in the preceding example, enter:

/delete_command_list_entry entry=$user.corrmand_library

Moving Entries within the Command List

To move an entry to the front or end of the command list, delete the
entry, then add the entry and specify whether you want the entry to
be added at the beginning or end of the list. For example, if you want
to move the $SYSTEM entry to the beginning of the command list,
enter:

/delete_cornmand_list_entry entry=$system
/create_corrmand_list_entry entry=$system

With the $SYSTEM entry at the front of the command list, system
commands take precedence over local files with the same name.

Revision H Command and SCL Procedure Execution 5-11

Displaying the Command List

Changing the Search Mode

You can change the search mode by using the CHANGE_
COMMAND_SEARCH_MODE command. The SEARCH_MODE
parameter specifies the new search mode to be associated with the
command list. For example:

/change_corrmand_search_mode search_mode=restricted

This example sets the search mode to RESTRICTED.

Displaying the Command List

You can display information about the current command list and/or
the search mode governing the command list with the DISPLAY_
COMMAND_LIST command.

The following is an example of a command list display.

/display_command_list display_option=all
SEARCH MODE IS global
ENTRIES ARE :$local, $system,

:$system.$system.scu.conmand_library.S

5-12 NOSNE System Usage Revision H

Displaying Command List Entries

Displaying Command List Entries

You can display information about one or more entries in a command
list with the DISPLAY_ COMMAND_LIST_ENTRY command. The
following is an example of a portion of a full command list entry
display.

/disp lay_command_ l ist_entry entry=a 11 disp lay_opt ion= a 11

Control Statements

bloc!\ I blocl\end
cancel
col lect_text colt
continue
cycle
exit
ex it_proc
for I forend
if I elseif I else I ifend
job I jobend
loop I loopend
pop
proc I procend
push
push_ commands
repeat I unt i 1
tasl\ I tasl\end
ut i 1 i ty / ut i 1 ityend
when I whenend
while I whi lend

ENTRY :$local

-- Potential commands within a catalog are not shown.
-- No functions in this catalog.
ENTRY $system
Commands

accept_ line
accept_ntf _messages
act ivate_fam i ly_adm inistrator
act ivate_job_stat ist ic
activate_system_administrator
act i vate_system_stat ist ic
administer _mai 1
administer _recovery_ log
administer _scheduling
administer _validations
af terburn_object_ text
ana 1 yze_dump
analyze_object_library
ana 1 yze_program_dynam i cs
ana 1 yze_resource_usage

Revision H

accept_lines, accl
accnm

act i vate_job_stat i st i cs, act js

act i vate_system_stat i st i cs. actss
admm
admrl
adms
admv
afterburn_binary, aftot, aftb
anad
anaol
anapd
anaru

Command and SCL Procedure Execution 5-13

Displaying Command List Entries

apl
assemble
attach_f i le
attach_job
backup_log_repositories
backup_permanent_files

subm i t_job
tdu_post_processor
terminate_job
term i nate_output

terminate_ task
transfer _f i le_xmodem
upgrade_software
vector _fort ran
vx
wait
wait_for _system_ idle

ENTRY $system
Functions

$access_mode
$catalog
$char
$command_source
$cond it i on_code
$cond it i on_name

$value_kind
$variable
$vname

Control Commands

accept_ 1 i ne
change_command_search_mode
create_command_ l ist_entry
create_variable
delete_command_ l ist_entry
delete_variable
display_command_ information

display_command_ list
display_command_ l ist_entry
display_value
include_command
include_f i le
include_ line
login
logout
put_ line
set_command_ list

5-14 NOS/VE System Usage

attf
attj

backup_permanent_f i le, bacpf

subj

terminate_jobs, terj
term inate_outputs, term inate_pr int,
terminate_prints, tero, terp
tert
trafx, xmodem
upgs
ftn2, vecf, vfortran, vftn, fortran2

waifsi

$condition

accept_ lines, accl
chacsm
create_command_ l ist_entries, crecle
create_variables, crev
delete_command_ l ist_entries, de le le
delete_variables. delv
di scp, di sp 1 ay _command_paramet er,
display_command_parameters, disci
discl
disc le
display_values, disv
incc
incf
incl

put_ lines, put 1
setcl

Revision H

Job Management

Overview of NOS/VE Jobs
Interactive Jobs
Batch Jobs
Parent and Child Jobs .
Parent and Child Tasks
Job Names
Job Classes

Job Class Restrictions .
Selecting a Job Class .
Job Class Example for Batch Jobs
Job Class Example for Interactive Jobs .

Job Environments
Setting Up Prologs and Epilogs

Job Attributes
Managing Job Attributes .
Summary of Job Attributes

Submitting Batch Jobs
Using SUBMIT_JOB

Submitting Jobs to Remote Systems .
Using JOB/JOBEND
Using NOS and NOS/BE ROUTE
Using ROUTE_JOB

Terminating Jobs . . .

Displaying Job Status .

Managing Tasks . .
Executing Tasks
Creating Tasks .

Using TASKtrASKEND .
Using EXECUTE_COMMAND

Displaying Task Status . .
Displaying Active Tasks ..
Defining the Primary Task
Terminating a Task

Managing Job Output.
Using PRINT_FILE

Printing Files at CDCNET Batch Stations
Printing Files at Remote and Partner Systems

Displaying and Changing Output Attributes . . .

6

6-1
6-1
6-1
6-2
6-2
6-2
6-3

. "~ 6-4
6-4
6-5
6-7
6-8
6-9

6-12
6-12
6-12

6-25
6-26
6-26
6-29
6-30
6-31

6-32

6-32

6-33
6-33
6-3~
6-35
6-35
6-35
6-37
6-37
6-37

6-38
6-39
6-40
6-41
6-44

Summary of Output Attributes
Displaying Output File Status
Deleting Files from the Output Queue .
Wait Queue Usage
Format Effectors . ·

Terminals
Using Format Effectors with COPY_FILE
Using Format Effectors with PRINT_FILE

Using Standard and Job Files .
Creating File Connections . .
Displaying File Connections .
Deleting File Connections ..
File Connection Considerations

Managing Job Logs
Changing the Message Level .
Changing the Message Language .
Putting Messages into a Job Log .

Putting Messages into an Active Job Log
Putting Messages into a Job History Log
Putting Messages into the Display Message Area

Displaying the Current Job Log
Displaying a Job History Log.
Displaying Output History .

Displaying Job Resource Limits

Setting Multiprocessing Options

Setting Job Sense Switches

6-45
6-52
6-52
6-52
6-53
6-53
6-54
6-56

6-57
6-59
6-61
6-61
6-61

6-64
6-65
6-65
6-65
6-66
6-66
6-66
6-67
6-69
6-69

6-70

6-71

6-72

Job Management

This chapter gives an overview of NOSNE job concepts; it explains
the ways to initiate, manage, and terminate jobs, and how to display
the status of jobs including any files created by jobs.

The use of certain system files, called standard files, which are used
by jobs to direct a job's input and output processing, are described
near the end of this chapter

Overview of NOSNE Jobs

A job is a set of tasks executed for a user. A task can be the
execution of a command, a utility, a program, or a user-defined task.
For more information about task execution, see the NOSNE Object
Code Management manual.

There are two modes of job execution:

• Interactive

• Batch

Interactive· Jobs

You begin an interactive job by logging in to NOSNE from an
interactive terminal. You then enter commands after the system
prompt. The system prompts you again after the command has been
processed. By default, all input to the job is taken from your terminal,
and all job output is sent to your terminal. You end the job by
logging out.

Because you are interacting with NOSNE during the job, you can
initiate and control the execution of commands, tasks, and other jobs.

Batch Jobs

In batch mode, you submit a job to the system for execution. The
system then executes the job as one unit. When a batch job
terminates, all job output is, by default, sent to the output queue for
printing.

Revision H Job Management 6-1

Overview of NOSNE Jobs

You can submit a batch job from a NOSNE interactive job, from
another NOSNE batch job, from another operating system (such as
NOS or NOS/BE), from a remote NOSNE or non-NOSNE system, or
from a batch input device. You can also submit jobs to other systems
for execution by those systems.

Parent and Child Jobs

The terms parent and child describe the relation of jobs to one
another in the system. A parent job is a job that initiates the
execution of another job; the job that has been initiated by the parent
job is called the child job.

A parent job can initiate the execution of many child jobs. A child
job, in turn, can be the parent job of other child jobs.

Parent and Child Tasks

The terms parent and child are also used to describe the relation of
tasks to one another within a job. A parent task is a task that
initiates the execution of another task; the initiated task is called the
child task. Child tasks, in turn, can initiate other child tasks.

Job Names

NOSNE assigns a unique name to each job in the system. This name,
called the system-supplied job name, uniquely identifies a job
throughout its lifetime.

The system-supplied job name has the following format:

model_ serial_ alphacounter _integercounter

model

serial

alphacounter

integercounter

Four-digit model number of the machine. For
example, a model 855 would appear as 0855.

Four-digit serial number of the machine.

Three-character alphabetic counter beginning with
AAA. Each system maintains its own alphabetic
counter.

Four-digit integer counter beginning with 0001.
Each system maintains its own decimal counter.

6-2 NOSNE System Usage Revision H

Overview of NOSNE Jobs

The following is an example of a system-supplied job name:

$0860_0452_AAA_4000

To specify a system-supplied job name in a command, you can enter
either the last two counters preceded by a dollar sign ($) or, in most
cases, just the integer counter preceded by a dollar sign ($). In the
preceding example, the following job names are equivalent:

$AAA_4000 or $4000

The model and serial number components of the job name are added
by the system when the value is processed. If you enter just the
integer counter, the system will insert the current alpha counter. If
the alphabetic counter has not advanced since the job was created
(that is, if AAA has not advanced to AAB), the system will insert the
correct value for the alphabetic counter. If the alphabetic counter has
advanced since the job was created, you must enter both the
alphabetic and the integer counter to ensure that you are referencing
the correct job name.

In addition to the system-supplied job name, you can give the job a
user-supplied name. You can then use either the system-supplied name
or the user-supplied name in commands that require you to specify a
job name.

Job Classes

Each job in the system is assigned a job class. By default, NOSNE
uses five job classes:

o INTERACTIVE

o BATCH

• SYSTEM

o MAINTENANCE

• UNASSIGNED

Your site administrator can create additional job classes for you.

Revision H Job Management 6-3

Overview of NOSNE Jobs

Every job that enters the system is assigned to a job class. The job
class assignment controls the operation of the job during its life in the
system. For example, the job class determines the initiation priority of
the job relative to other jobs and the amount of system resources the
job can use during execution. In addition, based on the job class, the
system assigns attribute values to the job.

Job Class Restrictions

It is possible for your site to restrict specific jobs from assignment to
a particular job class. For this reason, your job may be restricted to a
set of job classes since a job may belong to a job class only if it is
validated to do so. You can obtain the job classes for which you are
validated by using the ADMINISTER_ VALIDATION utility discussed
in chapter 3.

In addition to the classes permitted for your use, your site
administrator can further restrict your access to these job classes
through the use of your job's input attributes. A job's input attributes
give information used to determine the class in which a job can run
in. The following are the input attributes defined for every job
entering the system:

CPU_ TIME_LIMIT
JOB_MODE
JOB_QUALIFIER
LOGIN _ACCOUNT
LOGIN _FAMILY
LOGIN _PROJECT

LOGIN_USER
MAGNETIC_ TAPE_LIMIT
MAXIMUM_ WORKING_SET
ORIGINATING_APPLICATION_NAME
SRU_LIMIT
USER_JOB_NAME

All of the previous attributes are discussed in Job Attributes later in
this chapter. Your site may choose to use none, some, or all of the
previous attributes to determine what job class a job may hold
membership in.

Selecting a Job Class

Your site can select a default job class for your interactive or batch
jobs. You can determine what this default is by using the
ADMINISTER_ VALIDATION utility discussed in chapter 3.

If you do not wish to use your default job class, you may specify the
name of another job class on the JOB_CLASS parameter of the JOB,
SUBMIT_JOB, or LOGIN commands. However, you must be permitted
to use the job class you specify, and your job's input attributes must
match the qualifications for membership in the job class.

6-4 NOSNE System Usage Revision H

Overview of NOSNE Jobs

If your job is not allowed membership in the job class you specify, the
job is not accepted and an error message is displayed on your screen.
For batch jobs, an error message is also placed in the job log of the
submitting job.

Some sites may choose to utilize an automatic job class assignment.
Automatic job class assignment is requested by specifying the job class
name AUTOMATIC on the JOB_CLASS parameter of the JOB,
SUBMIT_JOB, or LOGIN commands. As is the case with any job
class, you must be permitted you to use the job class AUTOMATIC.

The system assigns membership to the first job class it finds that
allows membership based on your job class validation and your job's
input attributes. If no class is found meeting this criteria, an error
status is issued and the job is denied access to the system.

NOTE

Your site administrator may decide to remove a job class from your
system while one of your jobs belonging to that job class is waiting to
be executed in the job input queue. When this happens, the job is
temporarily assigned to the job class UNASSIGNED. The disposition
of jobs belonging to job class UNASSIGNED is determined by your
site.

Job Class Example for Batch Jobs

Suppose your site has peak operating hours between 8 a.m. and 7
p.m. and that in order to most efficiently use its resources, your site
personnel have created the following job classes with the following
restrictions:

Job Class Input Attribute

SMALL_JOB CPU_TIME_LIMIT
MAXIMUM_ WORKING_SET

BIG_JOB CPU_ TIME_LIMIT
MAXIMUM_ WORKING_SET

Revision H

Limits

1 .. 20
20 .. 300

21 . . unlimited
301 .. unlimited

Job Management 6-5

Overview of NOSNE Jobs

Further suppose that your site will allow job class SMALL_JOB to be
used at any time, but that job class BIG_JOB can be used only from
7 p.m. to 8 a.m. Finally, let SMALL_JOB and BIG_JOB be the only
two job classes available for your batch jobs.

In this situation, the following allows MY_JOB membership in job
class SMALL_JOB and the job can run at any time:

/submit_job f=my_job cpu_time_limit=20 ..
.. /job_class=small_job maximurn_working_set=300

The following allows job NEXT_JOB membership in job class BIG_
JOB and the job runs only from 7 p.m. to 8 a.m.:

/submit_job f=next_job cpu_time_limit=unlimited
.. /job_class=big_job maximum_working_set=unlimited

Notice that NEXT_JOB may still be queued at 8 a.m. when BIG_
JOB can no longer be used. If this happens, NEXT_JOB is
temporarily placed in job class UNASSIGNED and your site can then
either delete the job or let it execute later in the day.

NOTE

A job class can not be deleted from the system if a job is currently
initiated in that job class.

If you are validated to use the automatic job class assignment, the
following places your job into job class SMALL_JOB:

/submit_job f=newest_job cpu_time_limit=10 ..
.. /job_class=automatic maximurn_working_set=150

The following example, however, results in an error because a job
class does not exist for the job:

/subrnit_job f=no_job cpu_time_limit=15
. ./ job_cl ass=automat i c maximum_work i ng_set =500
--ERROR-- The attributes of this job prevent it from
being a member of any Job Class.

6-6 NOSNE System Usage Revision H

Overview of NOSNE Jobs

Job Class Example for Interactive Jobs

Suppose your site has a limited number of tape drives. As a result,
the following job classes are created at your site:

Job Class

INTERACTIVE_DEFAULT

TAPE_JOB

Input Attribute

MAGNETIC_ TAPE_
LIMIT

MAGNETIC_ TAPE_
LIMIT

Limits

0

10

Using these job classes, by default you are placed in job class
INTERACTIVE_DEFAULT, and you can not use a tape drive during
the course of your interactive job. However, if you do need to use tape
drives, you can specify job class TAPE_JOB when you log in. For
instance, suppose you are user SUEO, your password is GIPPER, and
your family name is VE 1. Then, if you are using N AMVE/CDCNET,
the following login sequence will place your interactive job in job class
TAPE_JOB:

User: sueo pw=gipper lf=ve1 mtl=S jc=tape_job

If your site supports automatic job class assignment, the following will
also place you in job class TAPE_JOB:

User: sueo pw=gipper lf=ve1 mtl=6 jc=automatic

The following, however, results in an error:

User: sueo pw=gipper lf=ve1 mtl=15 jc=automatic
Error: The attributes of this job prevent it from being a
member of any Job Class.
Incorrect validation entered.
Please try again.

User:

SUEO may then correct the log in information, or disconnect from the
network.

Revision H Job Management 6-7

Overview of NOSNE Jobs

NOTE

In general, on a NAMVE/CDCNET connection you can enter any
information during your interactive login that you can using the
LOGIN command. However, if you wish to enter more than USER,
FAMILY, and PASSWORD information, all login values must be
entered at the USER prompt.

For any connection other than NAMVE/CDCNET, you can supply only
the information for which you are prompted.

Job Environments

A job's environment determines what capabilities the job will have,
and how you will interact with it. The following elements make up a
job's environment:

• Connection, job, link, program, and terminal attributes.

• Interaction style.

• Working catalog.

• Message mode and natural language.

• Job limits.

• Remote validations.

• Command list entries.

• Job Statistics.

• File connections.

• SCL interpreter options as supplied by the CHANGE_SCL_
OPTIONS command.

Most of the above topics are discussed in this manual. Program
attributes, however, are discussed in the NOSNE Object Code
Management manual. Also, job statistics are discussed in the NOSNE
System Performance and Maintenance manual, Volume 1, and in the
CYBIL System Interface manual.

A prolog is a convenient way to set up values for these elements.
Prologs are discussed next.

6-8 NOSNE System Usage Revision H

Overview of NOSNE Jobs

Setting Up Prologs and Epilogs

A prolog is a file containing SCL statements that are executed each
time a job is initiated. An epilog is a file containing SCL statements
that are executed each time a job ends. The particular prologs and
epilogs that are executed whenever you begin or end a job depend
upon what system you log in to, and what validation is supplied to
the system when you log in. Your site may maintain a prolog or
epilog for each of the following:

• System

The system prolog or epilog is executed every time you log in
or log out of a particular mainframe.

• Job Class

The job class prolog or epilog is executed every time you begin
or end a job belonging to a particular job class.

• Account

The account prolog or epilog is executed every time you begin
or end a job belonging to a particular account number.

• Project

The project prolog or epilog is executed every time you begin
or end a job belonging to a particular project number.

In addition to the prologs and epilogs maintained by your site, you
may create prolog and epilog files of your own. These are known as
your user pro log and your user epilog. Note that your user prolog is
executed after every other site maintained prolog has been executed,
and your user epilog is executed before any other site maintained
epilog has been executed.

You may use your user pro log and epilog to execute commands that
you would normally do everytime you logged in to the system, or just
before you logged out of the system. The prolog in particular is useful
for setting up your job's environment.

Typically, the name of your prolog file is $USER.PROLOG, and the
name of your epilog file is $USER.EPILOG.

Revision H Job Management 6-9

Overview of NOSNE Jobs

The following example uses the COLLECT_ TEXT command to put the
commands to set up your user environment into file $USER.PROLOG.
The following example assumes you are using a DEC VT220 terminal
to log in to NOSNE through NAMVE/CDCNET.

/collect_text output=$user.prolog
ct? change_terminal_attribute terminal_model=dec_vt220
ct? change_interactive_style screen
ct? set_working_catalog $user
ct? **
I

Since the above example puts the commands into the prolog file, they
will be executed each time you log in.

It is often necessary to test for the job mode of the current job since
your prolog and epilog files execute everytime you begin and end a
job. This is done using an IF/IFEND block (discussed in Command
Streams later in this manual) along with the $JOB function. For
instance, the following can be used to execute commands only if the
current job is interactive:

IF $STRING($JOB(JOB_MODE) 'INTERACTIVE') then

statement list

!FEND

You may also want to place in your pro log the commands used to set
up screen mode terminate or pause breaks. See Interactive Sessions in
this manual for more information.

6-10 NOSNE System Usage Revision H

Overview of NOS/VE Jobs

The names for your prolog and epilog files are assigned by your
family administrator. If you want to set up a prolog or epilog, you
must create files with those names. However, you can change the
names of the prolog and epilog files using the ADMINISTER_
VALIDATION utility.

1. To use this utility, enter the ADMINISTER_ VALIDATION
command; then enter the CHANGE_ USER subcommand to initiate
the CHANGE_ USER utility as follows:

/administer_validation
ADMV/change_user
CHAU/

2. To change the name of your prolog file, use the CHANGE_
USER_PROLOG subcommand. To change the name of your epilog
file, use the CHANGE_ USER_EPILOG subcommand. For instance,
to change the name of your epilog file to $USER.LAST_ THINGS_
TO_DO, enter

CHAU/change_user_epilog '$user. last_things_to_do'
CHAU/

3. If you want to display the current name of your prolog and epilog
files, use the DISPLAY_USER_PROLOG and DISPLAY_USER_
EPILOG subcommands. For example, suppose your user name is
SARETT. To display the name of your user prolog, enter the
following subcommand:

CHAU/display_user_prolog

The system displays:

SARE TT
USER_PROLOG

Value: $USER.PROLOG
CHAU/

4. To exit from the CHANGE_ USER subutility and the
ADMINISTER_ VALIDATION utility, use the QUIT subcommand as
follows:

CHAU/quit
ADMV/quit
I

Revision H Job Management 6-11

Job Attributes

Job Attributes

When a job enters NOSNE, it is assigned a set of job attribute values
based on the way the job was submitted and on the job class it was
assigned. Your site can change default job attributes for a given job
class. Some job attributes affect the manner in which the job is
processed; others provide default attribute values for output files
generated by the job.

Managing Job Attributes

The following commands are used to manage job attributes:

DISPLAY_JOB_ATTRIBUTES

Displays the current values of a job's attributes.

CHANGE_JOB_ATTRIBUTES

Changes the value of ·one or more of the current job's attributes.

DISPLAY_JOB_ATTRIBUTES_DEFAULTS

Displays the default job attributes for the current system.

You may also use the $JOB_DEFAULT function to return the various
default job attributes for the current system. For example, to obtain
the default value of the cpu time limit attribute for your system,
enter the following:

/display_value $job_default(cpu_time_limit)

Summary of Job Attributes

The NOSNE job attributes descriptions follow. Included in the job
attribute descriptions are the job attribute default values as well as
whether the job attribute value can be changed using the CHANGE_
JOB_ATTRIBUTES command.

COMMENT_BANNER

Specifies a default 1 to 31 character string that is displayed with
the output files generated by the job (including the OUTPUT file).
Use of this string is determined by your site.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

6-12 NOSNE System Usage Revision H

Job Attributes

CONTROL_ FAMILY

Specifies the family name of the control user.

CONTROL_ USER

Specifies the user name of the control user. For most jobs, the
control user is the same as the login user. However, there are two
exceptions to this:

o Jobs entered through a SUBMIT_JOB, DETACH_JOB, or
JOB/JOBEND command inherit the user name of the control
user who initiated the parent job. Thus, in a chain of
submitted jobs, the first job in the chain is the control user of
all of the following jobs even though they may all have
different login users.

• Jobs entered through a private input/output station have the
private station operator assigned as the control user.

Both control users and login users may manipulate their jobs
using the DISPLAY_JOB_STATUS and TERMINATE_JOB
commands. Parent jobs may also issue these commands for any
child jobs they directly initiated.

COPIES

Specifies the default number of output file copies to be made; the
value can be an integer ranging from 1 to 10.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

CPU_ TIME_ LIMIT

Specifies the system default value in seconds for the maximum cpu
time allocated to the job. If a job selects automatic assignment to
a job class and specifies no time limit, then the value of this
attribute is used. Initially, the value of this attribute is unlimited
for both batch and interactive jobs.

CYCLIC_AGING_INTERVAL

Specifies the time, in microseconds, before the memory manager
ages the job's working set.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

DETACHED_JOB_ WAIT_ TIME

Specifies the number of seconds a job, if detached or disconnected
from the terminal session, will remain suspended before the job is
terminated.

Revision H Job Mana!!ement 6-13

Job Attributes

DEVICE

Specifies a default name that, when combined with the STATION
parameter value, identifies the printer to which output files
generated by the job are to be sent. Values can be a valid printer
name or the keyword AUTOMATIC.

If AUTOMATIC is specified, the system prints the file at any
printer that meets the specifications supplied for the EXTERNAL_
CHARACTERISTICS and FORMS_ CODE attributes. Can be
changed using a CHANGE_JOB_ATTRIBUTES command.

DISPATCHING_PRIORITY

Specifies the default dispatching priority assigned to all your tasks.
Values are Pl (lowest priority) to PlO. If DEFAULT is specified,
the dispatching priority table established by the job's service class
is reinstated. Attempting to raise the value of this parameter has
no effect, even though no error status is returned. Can be changed
using a CHANGE_JOB_ATTRIBUTES command.

EARLIEST_PRINT_ TIME

Specifies the earliest time when output files generated by the job
are to be printed. A value of NONE indicates no restrictions.

EARLIEST_RUN _TIME

Specifies the earliest time when the job is to be initiated. A value
of NONE indicates no restrictions.

EXTERN AL_ CHARACTERISTICS

Specifies a default string to be used by all output files generated
by the current job. This string selects a printer that has the same
string assigned as its external characteristics. The actual meaning
of this string is defined by the site.

Values can be any string of 1 to 6 characters or the keyword
NORMAL. If NORMAL is specified, the system selects a printer
that has an EXTERNAL_CHARACTERISTICS value of NORMAL.
Can be changed using a CHANGE_JOB_ATTRIBUTES command.

6-14 NOSNE System Usage Revision H

Job Attributes

FORMS_ CODE

Specifies a default string for each output file generated by the job.
This string selects a printer that has the same string assigned as
its FORMS_CODE value. The actual strings are site-defined.

Values can be any string of 1 to 6 characters or the keyword
NORMAL. If NORMAL is specified, the system selects a printer
that has a FORMS_ CODE value of NORMAL. If NORMAL is
specified when the OUTPUT_ DESTINATION_ USAGE parameter
value is DUAL_STATE, the NORMAL value is equivalent to a
string of spaces. Can be changed using a CHANGE_JOB_
ATTRIBUTES command.

JOB_ABORT_DISPOSITION

Specifies what should be done with the job if it aborts because of
system failure. The keywords are:

RESTART

Job is automatically resubmitted so that it starts over from the
beginning.

TERMINATE

Job is discarded.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

JOB_CLASS

Displays the class of the current job.

JOB_MODE

Displays your job's mode. Returnable values are INTERACTIVE or
BATCH.

JOB_ QUALIFIER

Displays from 1 to 5 names used to qualify the job. These
qualifier(s) may limit a job to a specific job class or set of job
classes or mainframes. For instance, a job qualifier of VECTOR
could be defined to mean that the job requires vector processors.
In this way, jobs specifying the VECTOR qualifier could not be
submitted to machines that do not have vector processors.

Revision H Job Management 6-15

Job Attributes

JOB_RECOVERY_DISPOSITION

Specifies what the active job recovery process should do with the
job if there is a system interrupt while the job is executing. The
keywords are:

CONTINUE

An attempt is made to reestablish the state of the job as it
was at the point of interruption. If the attempt succeeds, the
job will continue normal execution. If the attempt fails, the
value specified for the JOB_ABORT_DISPOSITION attribute is
used to determine disposition of the job.

RESTART

Job is automatically resubmitted so that it starts over from the
beginning.

TERMINATE

Job is discarded.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

JOB_SIZE

Specifies the size in bytes of your job's input file. For interactive
jobs, this value is always zero.

JOB_ SUBMISSION_ TIME

Specifies the time when your job arrived in the input queue.

LATEST_PRINT_ TIME

Specifies the latest time that output files created by your job are
to be printed. If the output file does not get printed by the latest
print time, it is discarded. A value of NONE indicates no
restrictions.

LATEST_RUN _TIME

Specifies the latest time that the job may be initiated. If the job
does not get initated by the latest run time, it is discarded. A
value of NONE indicates no restrictions.

LOGIN _ACCOUNT

Specifies the account name under which your job is scheduled and
run.

6-16 NOSNE System Usage Revision H

Job Attributes

LOGIN_FAMILY

Specifies the family name under which your job is scheduled and
run.

LOGIN _PROJECT

Specifies the project name under which your job is scheduled and
run.

LOGIN_USER

Specifies the user name under which your job is scheduled and
run.

MAGNETIC_ TAPE_LIMIT

Specifies the maximum number of magnetic tape drives required at
one time by the job.

The job may only be a member in a job class that supports a
magnetic tape limit greater than or equal to the value of this
attribute.

MAXIMUM_ WORKING_SET

Specifies the maximum number of pages to be contained in the
job's working set. If necessary the memory manager will remove
pages from the working set to assure this value is not exceeded.
Can be changed using a CHANGE_JOB_ATTRIBUTES command.

MINIMUM_ WORKING_SET

The MINIMUM_ WORKING_SET specifies a page aging algorithm
threshold. If the number of pages in a working set is less than or
equal to the MINIMUM_ WORKING_SET value, then the pages in
that working set are not aged. Normal aging is resumed wlien the
number of pages in the working set exceeds the MINIMUM_
WORKING_SET value.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

Revision H Job Management 6-17

Job Attributes

OPERATOR_ FAMILY

Specifies the default private station or the default family name of
the station operator to whom output files generated by the job are
sent. If the OUTPUT_DESTINATION_USAGE value for an output
file is PRIVATE or NTF, this family name together with the value
of the OPERATOR_ USER attribute identifies the private station
operator or remote system operator who can print or receive the
file. This attribute is also used to establish the CONTROL_
FAMILY attribute of output files with OUTPUT_DESTINATION _
USAGE values of PRIVATE or NTF.

OPERATOR_ USER

Specifies the default private station or remote system operator user
name attribute for output files generated by this job. If the
OUTPUT_ DESTINATION_ USAGE value for an output file is
PRIVATE or NTF, this user name together with the OPERATOR_
FAMILY attribute identifies the private station operator or remote
system operator who can print or receive the file. This attribute is
also used to establish the CONTROL_ USER attribute of output
files with OUTPUT_ DESTINATION_ USAGE values of PRIVATE
or NTF.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

ORIGINATING_APPLICATION_NAME

Specifies the name of the application which entered your job to the
system.

OUTPUT_CLASS

Specifies the default output class for output files generated by this
job. The output class defines the initial priority, maximum priority,
an aging interval, and an aging factor for the output file.

The only defined output class is NORMAL. This means all output
files have an initial priority of 100, a maximum priority of 3700,
an aging interval of 1 second, and an aging factor of 1 priority
unit per aging interval.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

OUTPUT_ DESTINATION

Specifies the default location name of the system where the output
file is sent for printing if the file's OUTPUT_DESTINATION_
USAGE attribute is QTF or NTF. For all other values of
OUTPUT_ DESTINATION_ USAGE, this attribute is ignored.

6-18 NOSNE System Usage Revision H

Job Attributes

A location name is a name associated with a remote system, such
as a family name or a logical identifier. Location names are
determined by your site.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

OUTPUT_ DESTINATION_ USAGE

Specifies the default for either the kind of CDCNET print station
where the file is printed, or the queued-file transfer application
used to forward the output file to a remote system. The following
options are available:

PUBLIC

Indicates the file will be printed at a public CDCNET batch
I/O station. When PUBLIC is specified, the values of the
OPERATOR_FAMILY, OPERATOR_USER, OUTPUT_
DESTINATION, and REMOTE_HOST_DIRECTIVE attributes
are ignored.

PRIVATE

Indicates the file will be printed at a private CDCNET batch
I/O station when the designated station operator is controlling
the station. When PRIVATE is specified, values of the
OUTPUT_DESTINATION and REMOTE_HOST_DIRECTIVE
attributes are ignored.

DUAL_ STATE

Indicates the file will be printed under control of the partner
system. When DUAL_ STATE is specified, the only other
meaningful attribute values are the values of the FORMS_
CODE, COPIES, ROUTING_BANNER, and REMOTE_HOST_
DIRECTIVE job attributes.

QTF

Indicates that the file will be forwarded to the remote system
identified by the OUTPUT_DESTINATION job attribute for
processing by that system.

NTF

Indicates that the file will be forwarded to a remote NTF
system for processing by that system. See your site personnel
for more information on NTF.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

Revision H Job Management 6-19

Job Attributes

OUTPUT_DISPOSITION

Specifies the default disposition of the job's standard output.
Allowable values are either a file name or one of several
keywords. The following list describes the results of each of the
allowable values.

file_name

Specification of a file name causes the standard output to be
copied to the specified permanent file at job end. You may not
specify a remote family name with this file name. If the
attempt to copy the standard output file to this file fails, the
output file is sent to the output queue for printing.

DISCARD_ALL_OUTPUT (DAO)

All output generated by the job is discarded. This includes the
standard output file at jobend. This option has no effect unless
the job destination is a NOSNE or NTF system.

DISCARD_STANDARD_OUTPUT (DSO)

Standard output is discarded at job end. This option has no
effect unless the job destination is a NOSNE or NTF system.

LOCAL (L)

Any output generated by the job is printed at the destination
system rather than being returned to the originating user's
default output station.

If the job destination is a NOSNE system, the destination
system's default for OUTPUT_ DESTINATION_ USAGE is used
rather than the job's normal default value.

PRINTER (P)

Any output generated by the job is returned to the originating
user's default output station.

6-20 NOSNE System Usage Revision H

Job Attributes

WAIT_QUEUE (WQ)

For jobs transferred remote systems, any output generated by
the job is returned to the originating user's $WAIT_ QUEUE
subcatalog on the originating system, using the user's job name
as the file name. If the file already exists, a file cycle which
corresponds to $NEXT is created.

For jobs executing on the local system, the output is placed in
the executed job's LOGIN_ USER's $WAIT_ QUEUE subcatalog.

If the $WAIT_ QUEUE subcatalog does not exist at the time
the output files are returned, it is created for the user.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

OUTPUT_PRIORITY

Specifies the default increment that is added to the output file's
initial priority (defined by the output class) for all output files
generated by this job. Values can be:

Keyword

LOW

MEDIUM

HIGH

Increment

0

1500

3000

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

PAGE_AGING_INTERVAL

Specifies the number of CP microseconds that elapses before the
memory manager ages the job's working set.

If you need to age your job, and if your job does not go into
extended waits or have numerous asynchronous, unrelated tasks,
set this attribute to a low value, and the CYCLIC_AGING_
INTERVAL attribute to a high value. Otherwise, set the CYCLIC_
AGING_INTERVAL attribute to a low value and the PAGE_
AGING_INTERVAL to a high value.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

PURGE_DELAY

Indicates the length of time the output file generated by the job
remains in the output queue after it is printed.

Revision H Job Management 6-21

Job Attributes

REMOTE_HOST_DIRECTIVE

Specifies a default text string which may be used to control output
processing of output files, or control processing of jobs submitted to
remote systems. How this string is interpreted depends upon the
following:

• If this string is intended to control output processing of output
files, then this string should contain one of the following:

- A PRINT_FILE command for output files to be printed on
a NOSNE system.

- A ROUTE command for output files to be printed on a
non-NOSNE system.

- The ROUTE command's parameters for output files to be
printed on the non-NOSNE side of a dual-state system.

• If this string is intended to control processing of a job
submitted to a remote system, then this string should contain
one of the following:

- A SUBMIT_JOB command for jobs submitted to remote
NOSNE systems for processing.

- A ROUTE command for jobs submitted to non-NOSNE
systems for processing.

This parameter is ignored unless the OUTPUT_DESTINATION_
USAGE output attribute or the JOB_DESTINATION _USAGE
parameter on the SUBMIT_JOB command specify the appropriate
value. For more information on submitting jobs to remote systems,
see Submitting Jobs to Remote Systems later in this manual. For
more information on submitting output files to remote and partner
systems, see Printing Files at Remote and Partner Systems.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

ROUTING_BANNER

Specifies a default character string to be displayed with output
files generated by this job. The actual use of this string is
determined by the site.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

SENSE_SWITCHES

Displays the setting of the job's sense switches.

6-22 NOSNE System Usage Revision H

Job Attributes

SERVICE_ CLASS

Displays the name of the job's service class.

SITE_INFORMATION

Displays the SITE_INFORMATION string associated with all
output files created by your job.

SRU_LIMIT

Specifies the maximum number of System Resource Units (SRUs)
allocated to the job. The value must be larger than the user's SRU
limit assigned when the user was validated or the job will be
rejected. As the job executes if the accumulated SRUs exceed this
value, a job abort limit condition will occur and the job will
terminate.

The job may only be a member in a job class that supports a SRU
limit greater than or equal to the value of this attribute.

STATION

Specifies a default I/O station name (or the control facility name
in the case of a private station or NTF remote system) to which
the file is to be sent.

Values can be any valid station name or the keyword
AUTOMATIC. If AUTOMATIC is specified, the system default is
used.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

SYSTEM_JOB_NAME

Displays the name assigned to your job by the system.

USER_ INFORMATION

Specifies a user information string of up to 256 characters. This
string enables you to pass information (such as a file path) to a
submitted job. This string is also passed on to all output files
generated by the submitted job.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

USER_JOB_NAME

Displays the name assigned to the job by the user.

Revision H Job Management 6-23

Job Attributes

VERTICAL_PRINT_DENSITY

Specifies the default vertical print density at which the file is to
be printed. This value will affect the selection of the printer where
the file is printed. Select one of the following keywords:

SIX

Selects a printer to print at six lines-per-inch.

EIGHT

Selects a printer to print at eight lines-per-inch.

NONE

Vertical print density is not used to select a printer.

FILE

Vertical print density of the source file is used to determine
the print density. If the source file attribute is 6, SIX is used.
If the source file attribute value is in the range of 7 through
12, EIGHT is used.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

VFU_LOAD_PROCEDURE

Specifies the default name of a procedure file containing the
definition of a vertical forms unit (VFU) load image that must be
loaded into the printer before the file is printed. This attribute
affects printer selection.

The keyword NONE indicates that the file need not be printed o.n
a printer capable of using VFU load procedures or that the default
VFU load procedure should be used.

Specification of a procedure file causes the system to select a
printer capable of using the VFU load procedures and then
download the procedure file to the printer before the file is
printed.

Can be changed using a CHANGE_JOB_ATTRIBUTES command.

6-24 NOSNE System Usage Revision H

Submitting Batch Jobs

Submitting Batch Jobs
There are several ways you can submit a batch job for execution by
NOS/VE:

• Create a file containing a set of SCL statements. The first
statement in the file must be the LOGIN command. You can then
submit the file for execution as a batch job using the SUBMIT_
JOB command. You can issue the SUBMIT_JOB command from an
interactive job or from another batch job.

• Delimit a list of commands as a job and automatically submit the
job to the system for execution using the JOB/JOBEND control
statements. When you submit a job in this manner, the validation
information is taken from the parent job so you need not include a
LOGIN command. You can use the JOB/JOBEND control
statements to delimit a job in a terminal session, within a file,
and within a batch job.

• Route jobs to NOS/VE from another system. Jobs can be forwarded
to NOS/VE by a queued-file transfer application, such as QTF, or
through a dual-state partner system. To route jobs from a NOS/VE
system, use a SUBMIT_JOB command. To route jobs from NOS,
use the NOS ROUTE command. To route jobs from NOS/BE, use
the NOS/BE ROUTE command. To route jobs from other remote
host types, use the appropriate MFQUEUE command as described
in the Remote Host Facility Usage manual.

• Submit a job to a NOS/VE system from a batch station input
device. You can precede the job with the ROUTE_JOB command if
you want to specify a user-supplied job name, the system on which
the job should run, and the job output destination. You can issue
the ROUTE_JOB command as the first image in a card deck.

• Include JOB/JOBEND commands or a SUBMIT_JOB command in
a set of SCL commands submitted through the MANAGE_
REMOTE_FILES command from another NOS/VE system or
submitted through MFLINK from a non-NOS/VE system.

For information about controlling the output produced by a job, refer
to Managing Job Output later in this chapter.

Revision H Job Management 6-25

Submitting Batch Jobs

Using SUBMIT_JOB

To submit a file as a batch job using the SUBMIT_JOB command,
follow these steps:

1. Create a file that contains a series of SCL statements. The first
statement in the file must be the LOGIN command. You can end
the series of commands with the LOGOUT command; however,
including it is optional.

For example, the following sequence of commands shows how to
use the COLLECT_ TEXT command to create a file to be
submitted for batch execution:

/collect_text batch_file
ct? login login_user=sdh password=pass456
ct? login_family=nve
ct? display_command_list all
ct? logout
ct? **

2. When you want to submit the file as a batch job, use the
SUBMIT_JOB command. For example, the following entry submits
file BATCH_FILE for execution with the user-supplied job name
MY_JOB. The job's output is written to the file $USER.MY_JOB_
OUTPUT.

/submit_job file=batch_file user_job_name=my_job
.. /output_disposition=$user.my_job_output

Submitting Jobs to Remote Systems

You may use the SUBMIT_ JOB command to execute jobs on remote
systems if your site has the appropriate queued-file transfer
applications connecting your system to a remote system (see your site
personnel for more information on your site's configuration).

To execute a job on a remote system, you must specify a location
name as the JOB_DESTINATION parameter of the SUBMIT_JOB
command. The location name is a name associated with the remote
system, such as a family name or a logical identifier. Location names
are determined by your site. For more information, see your site
administrator.

6-26 NOSNE System Usage Revision H

Submitting Batch Jobs

If you are submitting the job to a remote system, you may also need
to specify which queued-file transfer application you are using to
transfer the job to the remote system. This is done using the JOB_
DESTINATION_ USAGE parameter on the SUBMIT_JOB command.
You may specify QTF, NTF, or some other site-developed queued-file
transfer application on this parameter. See your site personnel for
more information on the appropriate queued-file transfer application to
specify on this parameter. If you have specified a remote system, the
default value for the JOB_DESTINATION _USAGE parameter is QTF.

NOTE

If both the JOB_DESTINATION and the JOB_DESTINATION _
USAGE parameters are omitted from the SUBMIT_JOB command, the
LOGIN _FAMILY job attribute is used to determine to which system
the job should be submitted. If the LOGIN _FAMILY attribute value is
not a local family name, the job is forwarded to QTF for transfer to a
remote system.

In some cases, you must also use the REMOTE_HOST_DIRECTIVE
(RHD) parameter on the SUBMIT_JOB command to submit jobs to
remote systems. The REMOTE_HOST_DIRECTIVE job attribute
specifies a text string that may be used to control output processing of
the job. How this attribute is interpreted depends on the value of the
JOB_ DESTINATION_ USAGE (JDU) parameter of SUBMIT_JOB. The
following table summarizes the possible interpretations of the
REMOTE_HOST_DIRECTIVE attribute for each of the possible values
of JDU:

JDU RHD

QTF Specifies the text string to be interpreted by the
destination remote host identified by the JOB_
DESTINATION job attribute. The required content of the
directive string depends on the remote host type:

Revision H

o For a NOSNE remote host system, specify a
SUBMIT_JOB command with no FILE parameter. For
example:

/submit_job file=my_job ..
.. /jd=ve_family jdu=qtf ..
. . /rhd='subj odi=local s=station_1'

Job Management 6-27

Submitting Batch Jobs

JDU

QTF
(cont.)

RHD

For transfers between two NOSNE systems, this attribute
is not usually needed because attributes are preserved
during transfers. However, if the file is being relayed
through a non-NOS/VE system, you must specify the
appropriate SUBMIT_JOB command on the RHD
attribute or the following attribute values will be lost
during the transfer:

CPU_ TIME_LIMIT
EARLIEST_RUN _TIME
JOB_EXECUTION_RING
JOB_ QUALIFIER
LATEST_RUN _TIME
MAGNETIC_ TAPE_LIMIT
MAXIMUM_ WORKING_ SET
OPERATOR_ FAMILY
OPERATOR_ USER
SRU_LIMIT
STATION
USER_ INFORMATION

In addition, the file reference case of the OUTPUT_
DISPOSITION attribute may be lost during the transfer.

• If the remote host is a non-NOS/VE system, refer to the
Remote Host Facility Usage manual for descriptions of
the MFQUEUE remote host directives accepted by the
specific systems.

NTF Depends on the type of the destination system. See your
site personnel for more information.

Suppose file MY_JOB has the following contents:

login login_user=user_abc password=abc_password
display_catalog catalog=$user

To submit this job to the destination system MFl, enter:

/submit_job file=my_job job_destination=mf1

Notice that the JOB_DESTINATION_USAGE parameter has not been
specified, so QTF is used by default. Also, since no OUTPUT_
DISPOSITION has been specified, the job's output will be returned to
your local default output station.

6-28 NOSNE System Usage Revision H

Submitting Batch Jobs

Using JOB/JOBEND

You can delimit and submit a list of one or more SCL statements to
be executed as a batch job by using the JOB/JOBEND command. You
would normally use JOB/JOBEND during an interactive session to
submit a short series of commands for batch mode execution on a
one-time basis, or to delimit a job within a procedure.

The batch job created and submitted by JOB/JOBEND inherits the
LOGIN_ USER, PASSWORD, and LOGIN_FAMILY of the parent job.
You need not provide a LOGIN command for validation: NOSNE
generates appropriate LOGIN and LOGOUT commands when it
processes JOB/JOBEND.

To submit a batch job interactively using JOB/JOBEND, follow these
steps: ·

1. Enter the JOB command. The system responds with the following
prompt:

job/

2. After the JOB/ prompt, enter a series of SCL statements.

3. To end the list and submit the job for execution, enter the
JOBEND command. For example, the following commands direct
NOSNE to compile and execute a CYBIL program:

/job
job/cybil i=$user.cybil_program
job/lgo
job/jobend
I

JOB/JOBEND treats all lines within it as containing only statements,
and a line ending with two or more periods is treated as a
continuation line. If you try to use commands such as COLLECT_
TEXT (or other commands that allow you to enter a series of
commands or subcommands or text) you may experience problems. For
best results, submit such jobs using the SUBMIT_JOB command.

Note that the JOB command cannot be used to submit a job to a
remote system.

Revision H Job Management 6-29

Submitting Batch Jobs

Using NOS and NOS/BE ROUTE

To submit a batch job to NOS/VE from a NOS or NOS/BE system,
use the ROUTE command.

The NOS and NOS/BE ROUTE commands include parameters that
allow you to specify the destination for your job file and the
destination for the job's output. The parameters you need are
described below:

• The LFN parameter specifies the name of the local file you want
to submit as a NOS/VE job.

• The DC parameter specifies an input disposition code for the file
named on the LFN parameter. The following input disposition code
options are available:

DC=IN specifies that the file should be queued with an input
disposition.

DC= NO specifies that the file should be queued with an input
disposition and that output not explicitly routed by the job
should be discarded.

DC= TO specifies that the file should be queued with an input
disposition and that output should be queued with a wait
disposition unless explicitly routed elsewhere.

• The ST= lid parameter specifies the logical identifier (lid) of the
machine to which you want to route the job.

• The DO= lid parameter specifies the logical identifier (lid) of the
machine to which you want to route the job's output.

(For complete documentation of the NOS ROUTE command, refer to
volume 3 of the NOS Version 2 Reference Set; for complete
documentation of the NOS/BE ROUTE command, refer to the NOS/BE
Version 1 Reference Manual.)

The following example submits the NOS file MY JOB to system NVE
and causes the job's output to be sent to either the central site or the
mainframe from which the job was routed:

route,myjob,dc=in,st=nve

6-30 NOSNE System Usage Revision H

Submitting Batch Jobs

The following example submits file MY JOB to system NVE and
causes the job's output to be placed in the NOS wait queue:

route,myjob,dc=to,st=nve

The following example routes the file MYJOB to system NVE and
causes the job's output to be sent to the user with a terminal ID of
AB.

route,myjob,dc=in,st=nve,tid=ab

Using ROUTE_JOB

When you submit a batch job to NOSNE from an I/O station input
device, you have the option of preceding the job with the ROUTE_
JOB command. With ROUTE_JOB, you can specify a user-supplied
job name, the system on which the job should run, and the destination
for output files.

For card input, you must start the command in column six. The first
four columns must contain /*BC which indicates batch command text.
Here is an example of a card input job:

/cBc route_job, jn=job1, jd=nosve1, jod=public_io_station_1

input job

If necessary, you can continue the command over a series of cards.
For example,

/*BC route_job jn=job2 ..
/*BC jd=nosve2
/*BC jod=nosve_control_facility
/*BC un=batch_user_1
/*BC uf=nosve2

input job

/*EOI

Revision H Job Management 6-31

Terminating Jobs

Terminating Jobs

The TERMINATE_JOB command terminates a job. You can use the
TERMINATE_JOB command to terminate a job that has been
initiated or that is waiting to be initiated (a job cannot terminate
itself). However, you can only terminate child jobs and jobs for which
you are the login user or the control user.

If you terminate a job that is waiting to be initiated, it is eliminated
as a candidate for execution. If you terminate a job that has been
initiated, NOSNE causes an abnormal termination. This termination
includes releasing all files and resources used by the job and routing
of its output file and job log for printing. Conditions established by
WHEN statements are not processed (see SCL Command Streams and
Condition Processing later in this manual for an explanation of the
WHEN statement).

Displaying Job Status

To display the status of an active job, use the DISPLAY_JOB_
STATUS command. For example:

/display_job_status job_name=my_job do=all
Control_Family
Control_User
CPU_ Ti me_ Used

Display_Message
Job_Class
Job_Destination_Usage
Job_Mode
Job_State
Login_Family
Login_User
Operator_Action_Posted
Page_Faults

System_Job_Name
User_Job_Name

6-32 NOSNE System Usage

nve
sarett
Job Mode- 16.161

Monitor Mode- 1.463
put l ' hi'
batch
ve
batch
initiated
nve
sarett
no
Assigned- 484

From Disk- 128
Reclaimed- 154

$0990_0102_aaj_0722
my_job

Revision H

Managing Tasks

Managing Tasks

A task is the unit of execution within a job. A task can be the
execution of a command, a utility, a program, or a user-defined task.

This section discusses how you can define and control the execution of
tasks within your job.

Executing Tasks

In NOSNE, tasks execute either synchronously or asynchronously.
With synchronous execution, the task initiator waits until the initiated
task terminates before it continues executing (the task initiator may
be a job or a parent task). With asynchronous execution, the task
initiator continues executing immediately after initiating the task.

For example, with synchronous execution if TASKA initiates TASKB
then TASKA must suspend itself. If TASKB then synchronously
initiates TASKC, TASKB must also suspend itself. In this situation, in
order for TASKB to resume execution, TASKC must terminate, and in
order for TASKA to resume execution, TASKB must terminate. Thus,
for synchronous execution, a parent task must wait for all of its child
tasks to terminate before it can resume execution.

TASKA, TASK B, TASKC could also execute asynchronously. In this
way, each task is executing independently of the other. However, for
asynchronous execution a parent task cannot terminate normally until
all of its child tasks terminate. In other words, in order for TASKA to
terminate normally during asynchronous execution, it must wait for
TASKB to terminate. Note, however, that if TASKA terminates
abnormally, then TASKB (and all of TASKB's child tasks) is
terminated at once.

Whether a task initiates synchronously or asynchronously depends
upon how it was created. See the following section for information on
how to create tasks.

Revision H Job Management 6-33

Managing Tasks

Creating Tasks

Tasks can be created both implicitly and explicitly. You implicitly
create a task by executing programs or most utilities (normally,
executing a NOSNE command that does not start a utility will not
create a task). When you implicitly create a task, you are always
executing the task synchronously.

You can create a task explicitly using one of the following commands:

TASK!I'ASKEND

Can create a task that executes either synchronously or
asynchronously. See the following section for more information on
TASKfI'ASKEND.

EXECUTE_ COMMAND

Executes a single NOSNE command as an asynchronous task.

EXECUTE_ TASK

Executes a single program as either a synchronously or
asynchronously executing task. See the Object Code Management
manual for details.

6-34 NOSNE System Usage Revision H

Managing Tasks

Using TASK/TASKEND

You can use TASK!rASKEND to delimit a sequence of commands to
be executed as a task. If you do not name the task, the task is
executed synchronously. If you name the task on the TASK command,
the task is executed asynchronously.

The following example shows how to use TASKITASKEND to
asynchronously execute a task to monitor a job's status every 10
minutes and display a message when the job completes:

/tasl< check_job
task/while $strrep($job_status(my_job, job_state))<>'UNKNOWN'
task/wait 10*60*1000 "ten minutes"
taskh1h i lend
task/display_value 'LlY_JOB is done'
task/taskend

Using EXECUTE_COMMAND

To execute a single command as an asynchronous task, use the
EXECUTE_COMMAND command, followed by the command name.
Note that you cannot execute a command utility with this command.

Displaying Task Status

You can display the current status of one or more asynchronous tasks
by using the DISPLAY_ TASK_STATUS command. A message is
displayed informing you that the specified task or tasks are still
executing, have completed execution normally, or have been
terminated due to an error. For example:

/display_task_status tn=mytask
MYTASK terminated with ..

--ERROR AM 1016-- FSP$0PEN_FILE was issued for file,
:$LOCAL.F.1, which does not exist.

Revision H Job Management 6-35

Managing Tasks

You can display task status only for tasks initiated by the requesting
group of synchronously executing tasks. For example, consider the
following group of tasks:

Asynchronous
Execution _.. TASKB

""' (executing)

Asynchronous .-----.
Execution _.,; TASKC

-....... (executing)

Synchronous
TASKA l Execution......., TASKD
(suspended) J -...... (suspended)

Synchronous-----
Execution ..a..i TASKF

-....... (executing}

Asynchronous -----...
Execution TASKE

(executing)

M02213

In the preceding figure, TASKA asynchronously initiated TASKB and
TASKC. TASKA then synchronously initiated TASKD which, in turn,
asynchronously initiated TASKE. TASKD then went on to
synchronously initiate TASKF. In this situation, TASKA, TASKD, and
TASKF are the requesting group of synchronously executing tasks and
they are the only tasks that can request the status of TASKB,
TASKC, and TASKE.

The keyword ALL for the TASK_NAME parameter of the DISPLAY_
TASK_STATUS command can be used to display the status for all
tasks initiated by the requesting group of synchronously executing
tasks.

6-36 NOSNE System Usage Revision H

Managing Tasks

Displaying Active Tasks

You can display data about active tasks within your job by using the
DISPLAY_ACTIVE_ TASKS command. For example,

/di sat
ACTIVE TASKS = 2
OCP$CREATE_OBJECT_LIBRARY job time= 0.060 monitor time = 0.016 page faults = 78
$JOBMNTR job time = 0.570 monitor time = 0. 148 page faults =311
I

Defining the Primary Task

The primary task is the task to which break conditions (such as
terminate break and pause break) are sent. For tasks which are
executing synchronously, the innermost child task is the primary task.

If the tasks within your job are executing asynchronously, a task can
issue a DEFINE_PRIMARY_ TASK command to designate itself as the
primary task of the job. If a primary task is terminated, its parent
task becomes the new primary task. If the primary task is terminated
and it has no parent task, the job is also terminated.

Terminating a Task

The TERMINATE_ TASK command is used to terminate a task.
However, a task can only be terminated by its creator. For instance,
suppose TASKA created TASKB, and TASKB created TASKC. Then
TASKB can only be terminated by TASKA, and TASKC can only be
terminated by TASKB. At no time can TASKC terminate TASKB or
TASKA, nor can TASKB terminate TASKA. In addition, TASKA can
not terminate TASKC directly. Note, however, that if TASKA
terminates TASKB while TASKC is executing, TASKC will be
terminated as well.

Revision H Job Management 6-37

Managing Job Output

Managing Job Output

For interactive jobs, the standard output produced by the job is sent
to the terminal as it is produced.

For batch jobs, the default destination for output produced by the job
is file OUTPUT. At the end of job processing, file OUTPUT is queued
for printing according to the job's job attributes.

For all jobs, you can use the PRINT_FILE command to queue a file
for printing.

There are several ways you can control files queued for printing using
the PRINT_FILE command and job attributes:

• When you submit a batch job for execution using the JOB or
SUBMIT_JOB command, you can use the OUTPUT_DISPOSITION
parameter to specify that the output should be written to the
named permanent file or placed in the $WAIT_QUEUE subcatalog.
Using this same parameter, you can also discard standard output,
discard all output or specify the location at which the output is to
be printed. See the OUTPUT_DISPOSITION parameter on the
JOB or SUBMIT_JOB command for details.

• If you want the batch job's standard output to be discarded, you
can include a CHANGE_JOB_ATTRIBUTES command in the job.
For example:

change_job_attributes odi=discard_standard_output

• You can change the job attributes that control the attributes of the
queued file by including the CHANGE_JOB_ATTRIBUTES
command in the job.

• You can change the job attributes that control job output for all
your jobs by including the CHANGE_JOB_ATTRIBUTES
command in your user prolog. The following example specifies that
all batch job output and all files queued for printing in the batch
job using the PRINT_FILE command will be routed to the NOS
partner system, which will then route them to the mainframe with
the logical identifier (LID) M02:

if $string($job(job_mode)) = 'BATCH' then
change_job_attributes odu=dual_state
rhd='dc=pr,ec=a9,st=m02'

if end

6-38 NOSNE System Usage Revision H

Managing Job Output

• If your output is queued for printing in the NOSNE system from
which the job originated, you can display, change, and terminate
the output using the DISPLAY_OUTPUT_ATTRIBUTES,
CHANGE_OUTPUT_ATTRIBUTES, and TERMINATE_OUTPUT
commands.

The following sections describe job output manipulation in more detail:

Using PRINT_FILE

You can schedule one or more files for printing by using the PRINT_
FILE command. Depending on the value of the OUTPUT_
DISPOSITION job attribute, the PRINT_FILE command causes the
system to place the file in the output queue, discard the file, or place
the file in the wait queue. If the file is placed in the output queue,
the system removes the file from the queue and uses the file's output
attributes to transfer the file to one of the following destinations:

o A CDCNET batch station.

o The partner system on a dual-state mainframe.

• A remote NOSNE system's output queue.

• A non-NOSNE system.

The wait queue is described later in this section. Parameters on the
PRINT_FILE command specify a file's output attributes. Default
values for parameters not specified on the call to the PRINT_FILE
command are obtained from your job attributes.

See the Printing Files at Remote and Partner Systems section for
more information on printing files using remote and dual-state partner
systems.

When files are printed with DATA_ MODE= CODED, the first
character of each record (print line) is used as a format effector to
control line spacing. For more information, see Format Effectors later
in this chapter.

The following example illustrates the use of the PRINT_FILE
command. In this example, the output destination and all other
parameters are supplied by default:

/fortran i=fortran_source l=fortran_listing
/print_file fortran_listing

Revision H Job Management 6-39

Managing Job Output

Printing Files at CDCNET Batch Stations

You may print a file at either a public or private CDCNET Batch
Station. To do this, you must make sure the appropriate job attribute
values exist for the output file. This can be done using the PRINT_
FILE command. The following table summarizes what attributes must
be specified in order to print a file at a CDCNET batch station.

Destination Attribute Value

Public OUTPUT_ PUBLIC
DESTINATION_ USAGE

STATION Station name

Private OUTPUT_ PRIVATE
DESTINATION_ USAGE

STATION

OPERATOR_ FAMILY

OPERATOR_ USER

Station control facility name

Station operator's family
name

Station operator's user name

If you attempt to print a file at a CDCNET batch station and you
have supplied incorrect values for the STATION, OPERATOR_
FAMILY, or OPERATOR_ USER attributes, the output file is placed in
the output queue, though it is not printed and no error messages are
returned.

Refer to the following section for information on printing files at a
CDCNET batch station on a remote system.

6-40 NOSNE System Usage Revision H

Managing Job Output

Printing Files at Remote and Partner Systems

If you are using a dual-state system, you may use the PRINT_FILE
command to print files on the partner operating system. You may also
use the PRINT_FILE command to print files using systems other than
the one on which you are currently executing, if your site has the
appropriate queued-file transfer applications connecting your system to
a remote system. See your site personnel for more information on
your site's configuration.

The OUTPUT_DESTINATION (ODE) and OUTPUT_DESTINATION_
USAGE (ODU) attributes of a file specify the file's destination. The
following table summarizes the appropriate ODE and ODU values for
each of the file's possible destinations. The ODE and ODU attributes
may be changed using the PRINT_FILE, CHANGE_JOB_
ATTRIBUTES, and CHANGE_OUTPUT_ATTRIBUTES commands.

Destination System

Dual-state partner

Remote NOSNE

Remote non-NOSNE

ODE

None (ignored)

Location name

Location name

ODU

DUAL_ STATE

QTF

QTF or NTF

The location name value of the OUTPUT_DESTINATION parameter
is a name associated with a remote system, such as a family name or
a logical identifier. Location names are determined by your site. For
more information, see your Site Administrator.

The following example illustrates printing a file at the remote system,
M09:

/print_file file=fortran_listing
.. /output_destination=M09 ..
.. /output_destination_usage=qtf

If you have specified a remote system for the OUTPUT_
DESTINATION attribute, and the OUTPUT_ DESTINATION_ USAGE
attribute is not QTF, NTF, or some other queued-file transfer
application, the output file will not be transferred to the remote
system, and it will be placed in the local system's output or wait
queue, depending upon the value of the job's OUTPUT_DISPOSITION
attribute.

Revision H Job Management 6-41

Managing Job Output

You can also use the REMOTE_HOST_DIRECTIVE parameter on the
PRINT_FILE command to control file processing on a remote or
dual-state partner system. The value that you specify for this
parameter depends on the value of the OUTPUT_DESTINATION_
USAGE attribute. The following table summarizes the possible values
of the RHD parameter:

ODU

PUBLIC

PRIVATE

DUAL_
STATE

RHD

Ignored.

Ignored.

Indicates that the values specified on this parameter are
supplied to the NOS or NOS/BE ROUTE command. The
dual-state link attributes indicate the user validation
under which the file is routed. The dual-state system
creates the 'ROUTE,filename' portion of the string for
you. For example:

/print_file file=data_file odu=dual_state
.. /rhd='dc=pr,ec=a9,st=m02'

Refer to the NOS Reference Set, Volume 3, or the
NOS/BE Reference Manual for descriptions of the ROUTE
command attributes.

If the values on the RHD parameter are incorrect, the
NOS or NOS/BE ROUTE command may fail and you will
not receive any message reporting the failure. Refer to
Dual-State File Access later in this manual for for more
detailed information on link attributes and dual-state
access.

6-42 NOSNE System Usage Revision H

Managing Job Output

ODU RHD

QTF Indicates the text string interpreted by the remote host
identified by the OUTPUT_DESTINATION parameter.
The content of the directive string depends on the remote
host type:

NTF

Revision H

• For a NOSNE remote host system, specify the RHD
parameter on either a PRINT_FILE command with no
FILE parameter, or on a CHANGE_JOB_
ATTRIBUTE command. For example:

/print_file file=data output_destination=nv2
.. /output_destination_usage=qtf ..
.. /rhd='prif odu=public s=station_1'

For transfers between two NOSNE systems, this
attribute is not usually needed because attribute
values are preserved during transfers. However, if the
file is being relayed through a non-NOSNE system,
you must specify the appropriate PRINT_FILE or the
following attribute values may be lost:

COMMENT_BANNER
EARLIEST_PRINT_ TIME
LATEST_PRINT_ TIME
OPERATOR_ FAMILY
OPERATOR_ USAGE
OUTPUT_DESTINATION _USAGE
PURGE_DELAY
ROUTING_BANNER
STATION
VERTICAL_PRINT_DENSITY
VFU_LOAD_PROCEDURE

• If the remote host is a non-NOSNE system, refer to
the Remote Host Facility manual for descriptions of
the MFQUEUE remote host directives accepted by
specific remote systems.

Depends on the type of the destination system. See your
site personnel for more information.

Job Management 6-43

Managing Job Output

If you are printing a file on a dual-state partner system and you do
not use the REMOTE_HOST_DIRECTIVE parameter, the file will be
printed on the partner system's local batch printer. The following
example directs that any output from the PRINT_FILE command be
printed on the dual-state system:

/change_job_attribute ..
.. /output_destination_usage=dual_state

However, if the job that contains the PRINT_FILE command was
issued from a NOSNE remote batch facility station, the resulting
output will print at the originating station's printer regardless of the
value specified for the OUTPUT_DESTINATION_USAGE parameter.

Displaying and Changing Output Attributes

An output file is a file that is scheduled to be written to an output
device. An output file's attributes describe and control how the file is
printed. The following commands are used to manage a file's output
attributes. To use them, you must be logged in to the NOSNE system
where the output file was generated and must be the login user or
control user for the file.

DISPLAY_ OUTPUT_ ATTRIBUTES

Displays the attributes of an output file.

CHANGE_ OUTPUT_ATTRIBUTES

Changes the attributes of an output file. If the output file is
printing, its attributes cannot be changed.

6-44 NOSNE System Usage Revision H

Managing Job Output

Summary of Output Attributes

The following are the output attribute names. You may change the
value of some of these attributes by using the CHANGE_OUTPUT_
ATTRIBUTES command.

COMMENT_BANNER

Specifies a character string to be displayed with the printed file.
The use of this string is determined by the site.

Can be changed using the CHANGE_ OUTPUT_ATTRIBUTES
command.

CONTROL_ FAMILY

Specifies the family name of the control user.

CONTROL_ USER

Specifies the user name of the control user. For most jobs, the
control user is the same as the control user of the job that
generated the output file. The only exception to this is if the
output file's destination is a private input/output station. In this
situation, the private station operator is assigned as the control
user of the output file.

Control users can manipulate output files using the CHANGE_
OUTPUT_ATTRIBUTES, DISPLAY_OUTPUT_ATTRIBUTES,
DISPLAY_OUTPUT_STATUS, and TERMINATE_OUTPUT
commands. Login users use these commands to manipulate their
own output files.

COPIES

Specifies the number of copies to be printed.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

COPIES_ PRINTED

Displays the number of copies that have been made so far.

DATA_MODE

Specifies whether the data is coded or transparent. When files are
printed with DATA_MODE=CODED, the first character of each
record (print line) is used as a format effector to control line
spacing. For more information, see Format Effectors later in this
chapter.

Revision H Job Management 6-45

Managing Job Output

DEVICE

Specifies a name that, when combined with the STATION attribute
value, identifies the printer at which the file is to be printed.

Values for this attribute can be a valid printer name or the
keyword AUTOMATIC. If you specify AUTOMATIC, the system
prints the file at any printer that meets the EXTERNAL_
CHARACTERISTICS and FORMS_ CODE specifications.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

DEVICE_ TYPE

Displays the type of device to which the file is scheduled.
Currently this value will always be PRINTER.

EARLIEST_PRINT_ TIME

Displays the earliest time the file is to be printed. A value of
NONE indicates that no restrictions apply.

EXTERN AL_ CHARACTERISTICS

Specifies a string that is used to select a printer that has the
same string defining its external characteristics. The actual
meaning of this string is defined by the site.

Values can be any string of 1 to 6 characters or the keyword
NORMAL. If you specify NORMAL, the system selects a printer
that has an EXTERNAL_CHARACTERISTICS value of NORMAL.

Can be changed using the CHANGE_ OUTPUT_ATTRIBUTES
command.

FILE_POSITION

Displays a restarting point for output. If the connection with the
output station is lost during output, this attribute is used to record
the position at which the transfer was discontinued. Currently, this
attribute's value will always be beginning-of-information.

FILE_SIZE

Indicates the size (in bytes) of the output file.

FORMS_ CODE

Specifies a string that is used to select a printer that has the
same string defining its forms code attribute. The actual meaning
of this attribute is defined by the site.

6-46 NOSNE System Usage Revision H

Managing Job Output

Values can be any string of 1 to 6 characters or the keyword
NORMAL. If you specify NORMAL when the DESTINATION_
USAGE attribute is DUAL_STATE, the NORMAL value is
equivalent to a string of spaces.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

LATEST_PRINT_ TIME

Displays the latest time a file is to be printed. If the file is not
printed by this time, it is discarded. NONE indicates there are no
restrictions.

LOGIN _ACCOUNT

Displays the account name of the job that generated the output
file.

LOGIN_FAMILY

Displays the family name of the job that generated the output file.

LOGIN _PROJECT

Displays the project name of the job that generated the output file.

LOGIN_USER

Displays the user name of the job that generated the output file.

OPERATOR_ FAMILY

Specifies the family name of a private station or remote system
operator. This family name together with the OPERATOR_ USER
attribute identifies the private station operator or remote system
operator who can print or receive the file. This attribute is also
used to establish the CONTROL_FAMILY attribute of the output
file. This attribute is not meaningful unless the OUTPUT_
DESTINATION_USAGE attribute specifies PRIVATE or NTF.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

OPERATOR_ USER

Specifies the user name of a private station or remote system
operator. This user name together with the OPERATOR_FAMILY
attribute identifies the private station operator or remote system
operator who can print or receive the file. This attribute is also
used to establish the CONTROL_ USER attribute of the output
file. This attribute is not meaningful unless the OUTPUT_
DESTINATION_ USAGE attribute specifies PRIVATE or NTF.

Revision H Job Management 6-47

Managing Job Output

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

ORIGINATING_APPLICATION_NAME

Displays the name of the application that entered to the system
the job that generated the output file.

OUTPUT_ CLASS

Specifies an output class for the output file. The output class
defines the initial priority, maximum priority, aging interval, and
an aging factor for the output file.

The only defined output class is NORMAL. This means all output
files have an initial priority of 100, a maximum priority of 3700,
an aging interval of 1 second, and an aging factor of 1 priority
unit per aging interval.

Can be changed using the CHANGE_ OUTPUT_ATTRIBUTES
command.

OUTPUT_ DESTINATION

Specifies the location name of the system where the output file is
sent for printing if the file's OUTPUT_ DESTINATION_ USAGE
attribute is QTF or NTF. For all other values of OUTPUT_
DESTINATION_ USAGE, this attribute is ignored.

A location name is a name associated with a remote system, such
as a family name or a logical identifier. Location names are
determined by your site.

Can be changed using the CHANGE_ OUTPUT_ATTRIBUTES
command.

OUTPUT_ DESTINATION_ USAGE

Specifies either the kind of CDCNET print station where the file
is printed, or the queued-file transfer application used to forward
the output file to a remote system. The following options are
available:

PUBLIC

Indicates the file will be printed at a public CDCNET batch
I/O station. When PUBLIC is specified, the OPERATOR_
FAMILY, OPERATOR_USER, OUTPUT_DESTINATION, and
REMOTE_HOST_DIRECTIVE attributes are ignored.

6-48 NOSNE System Usage Revision H

Managing Job Output

PRIVATE

Indicates the file will be printed at a private CDCNET batch
I/O station at a time when a designated station operator is
controlling the station. When PRIVATE is specified, the
OUTPUT_DESTINATION and REMOTE_HOST_DIRECTIVE
attributes are ignored.

DUAL_ STATE

Indicates that the file is to be printed under control of the
partner system. If this value is specified, the only other
meaningful attributes are the values of the FORMS_CODE,
COPIES, ROUTING_BANNER, and REMOTE_HOST_
DIRECTIVE attributes.

QTF

Indicates that the file is forwarded to a remote system for
printing by that system.

NTF

Indicates that the file is forwarded to a remote NTF system for
printing by that system. See your site personnel for more
information on NTF. ·

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

OUTPUT_PRIORITY

Specifies a priority increment that is added to the output file's
initial priority (defined by the output class). Values can be:

Value

LOW

MEDIUM

HIGH

Increment Value

0

1500

3000

OUTPUT_ SUBMISSION_ TIME

Displays the time when the job sent the output file to the queue.

PURGE_DELAY

Displays the length of time the file remains in the output queue
after it has printed. NONE indicates the file is purged
immediately.

Revision H Job Management 6-49

Managing Job Output

REMOTE_HOST_DIRECTIVE

Specifies a default text string which is to control the processing of
output files generated by the job. How this attribute is interpreted
depends on the value of the OUTPUT_DESTINATION_USAGE
(ODU) attribute. See the Submitting Jobs to Remote Systems
section or the Printing Files at Remote and Partner Systems
section for more detailed information.

Can be changed using the CHANGE_ OUTPUT_ATTRIBUTES
command.

ROUTING_BANNER

Specifies a character string to be displayed with the printed file.
The actual use of this string is determined by the site.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

SITE_INFORMATION

Displays the SITE_INFORMATION string associated with the job
that generated the output file.

STATION

Specifies the UO station name (or the control facility name in the
case of a private station or the NTF remote station) to which the
file is sent.

Values can be any valid station name or the keyword
AUTOMATIC. If you specify AUTOMATIC, the system default is
used.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

SYSTEM_FILE_NAME

Displays the system-supplied name of the output file. This file is
created by the NOSNE system on which the PRINT_FILE
command was entered. The created name is unique (no other file
on the network will have the same name).

SYSTEM_JOB_NAME

Displays the system-supplied name of the job that generated the
output file. This name is created by the NOSNE system on which
the job was submitted. The created name is unique (no other job
on the network will have the same name).

6-50 NOSNE System Usage Revision H

Managing Job Output

USER_FILE_NAME

Displays the user-supplied name of the output file. If no name is
specified, the file's name is used.

USER_ INFORMATION

Displays the user information string associated with the job that
generated the output file.

USER_JOB_NAME

Displays the user-supplied name of the job that generated the
output file.

VERTICAL_PRINT_DENSITY

Specifies the vertical print density at which the file is to be
printed. This value will affect the selection of the printer where
the file is printed. Select one of the following keywords:

SIX

Selects a printer to print at six lines per inch.

EIGHT

Selects a printer to print at eight lines per inch.

NONE

Vertical print density is not used to select a printer.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

VFU_LOAD_PROCEDURE

Specifies the name of a procedure file containing the definition of
a vertical forms unit (VFU) load image that must be loaded into
the printer before the file is printed. This attribute affects printer
selection.

You can specify the keyword NONE to indicate that the file need
not be printed on a printer capable of using VFU load procedures
or that the default VFU load procedure should be used.

If you specify the name of a procedure file, the system selects a
printer capable of using the VFU load procedures and the
procedure file is downloaded to the printer before the file is
printed.

Can be changed using the CHANGE_OUTPUT_ATTRIBUTES
command.

Revision H Job Management 6-51

Managing Job Output

Displaying Output File Status

To obtain information about the status of an output file, use the
DISPLAY_OUTPUT_STATUS command. You can obtain this
information only if the file is currently in the output queue of the
NOSNE system where the requesting job is executing. In addition,
you can only display the status of output files for which you are login
or control user.

Deleting Files from the Output Queue

To delete a file (or files) from the NOSNE output queue, use the
TERMINATE_OUTPUT command. You can only delete files that are
in the queue and for which you are the login user or the control user.
If a file is already being printed, you cannot terminate the printing.

Wait Queue Usage

You can have output from your batch job placed in subcatalog
$WAIT_QUEUE within your $USER catalog. If you specify a value of
WAIT_QUEUE on the OUTPUT_DISPOSITION parameter of the
SUBMIT_JOB or JOB command, output generated by the job is placed
in the wait queue under a file whose name is the same as the user's
job name. For example, output from the following job will be placed in
file $USER.$WAIT_QUEUE.BIG_COMPILE.

/job user _job_name=bi g_compi 1 e output_di sposi ti on=\•1a i t_queue

job/fortran input=$user.big_job.source binary=$user.big_job. lgo

job/jobend

Files placed in the wait queue are saved as the next cycle. Because of
this, existing files are not replaced.

The subcatalog $WAIT_ QUEUE is also used to contain any output
files produced by PRINT_FILE commands in the job. The name of
such a file in the $WAIT_ QUEUE subcatalog is the name of the
output file specified on the PRINT_FILE command.

You do not need to create the $WAIT_ QUEUE subcatalog; the system
automatically creates it when necessary.

If your job executes on another system and you have specified WAIT_
QUEUE on the OUTPUT_DISPOSITION parameter, the job's output
is returned to the $WAIT_ QUEUE subcatalog on the system from
which you submitted the job.

6-52 NOSNE System Usage Revision H

Managing Job Output

You can also change the OUTPUT_DISPOSITION job attribute to
WAIT_ QUEUE so that all output from your job is placed into the
$WAIT_QUEUE subcatalog. By doing this, you do not have to specify
the OUTPUT_DISPOSITION parameter on the SUBMIT_JOB or JOB
command. To set the OUTPUT_DISPOSITION job attribute to WAIT_
QUEUE, enter the following at the system prompt:

/change_job_attribute output_disposition=wait_queue

Format Effectors

Format effectors are used to control the appearance of data on an
output device. Under the right circumstances, the first character of
each output line can be interpreted as a format effector. How an
output device interprets a format effector depends upon the
capabilities of the device. This section discusses how format effectors
are used for terminals and printers.

Terminals

There are two types of format effectors for terminals: preprint
effectors which control the format before the rest of the line is
printed, and postprint effectors which control the format after the line
is printed.

The preprint format effectors include:

Character Action

space Advance 1 line.

0 Advance 2 lines.

Advance 3 lines.

+ Advance 0 lines (overprint).

1 Print at top of screen.

1 Clear screen.

Do nothing.

Revision H Job Management 6-53

Managing Job Output

The postprint format effectors include:

Character Action

Advance 1 line.

I Print at current line.

If a file has a FILE_CONTENT attribute of LIST, NOS/VE interprets
the first character of each line in the file as a format effector. If
column 1 of an output line contains a character that is not a format
effector, the system interprets it as the space format effector. Use the
SET_FILE_ATTRIBUTES command to set the FILE_CONTENT
attribute to LIST.

Every NOS/VE command that writes data to or from a file with a
FILE_CONTENT attribute of LIST will interpret format effectors.

Using Format Effectors with COPY_FILE

The COPY_FILE command interprets format effectors when copying a
file with a FILE_ CONTENT attribute of LIST to another file with a
FILE_CONTENT attribute of LIST. If format effectors are not
present, COPY_FILE assumes the following:

• The first line has a hyphen as a format effector (denoting triple
spacing).

• Subsequent lines have a blank space as a format effector (denoting
single spacing).

In the following example, file FORMAT_FILE, which has a FILE_
CONTENT attribute of LIST, contains the following text:

Preprint Test.

1Cleared Screen.
Advance 1 line.

OAdvance 2 lines.
-Advance 3 lines.

6-54 NOSNE System Usage Revision H

Managing Job Output

When you copy file FORMAT_FILE to your terminal, the format
effectors are interpreted:

/copy_file format_file

The following portion of the text file appears on the screen:1

Preprint Test.
<OVER>

When you press RETURN, the screen clears. Then, the remainder of
the text file is displayed as follows:

Cleared Screen.
Advance 1 line.

Advance 2 lines.

Advance 3 lines.

When you assign a local file to your terminal (using the REQUEST_
TERMINAL command described in Terminal Management later in this
manual), its format effectors are, by default, not interpreted. However,
you still can have format effectors interpreted by using the SET_
FILE_ATTRIBUTES command before the file is opened. To do this,
enter the following;

/request_terminal f=$local.term_f
/set_file_attributes f=$local .term_f fc=list

When you are copying to a terminal file, you can suppress format
effectors by changing the file's FILE_CONTENT attribute to a value
other than LIST. Once this is changed, COPY_FILE will not interpret
format effectors when copying to the file.

1. This example shows how text is displayed via a CDCNET connection when the
HOLD_PAGE and HOLD_PAGE_OVER terminal attributes are TRUE.

Revision H Job Management 6-55

Managing Job Output

Using Format Effectors with PRINT_ FILE

How format effectors are interpreted when using printers depends
upon the printer being used. However, the following lists the standard
control characters used by NOSNE and its products:

Character Action

space Advance 1 line.

0 Advance 2 lines.

+

1

Advance 3 lines.

Advance 0 lines (overprint).

Advance to top-of-form.

In addition, if you are using a CDCNET batch station printer and it
supports vertical format unit (VFU) load image files to control
printing formats, you can use the format effectors defined for standard
VFU load files or define additional format effectors by creating a VFU
load file. Appendix E lists the format effectors defined by default VFU
load files. Refer to the CDCNET Batch Device User Guide for
information about creating a VFU file.

6-56 NOSNE System Usage Revision H

Using Standard and Job Files

Using Standard and Job Files

NOSNE provides you with a group of standard files which are located
in your $LOCAL catalog. These files serve as the source of input and
the destination for output.

You can connect standard files to other files, and any data access
request made to the standard file is passed on to the connected files.
By default, NOSNE connects the standard files to a set of job files.
The job files are assigned to devices depending on whether the job is
interactive or batch. The job files are as follows:

COMMAND

Serves as the main source of input for the SCL interpreter.

INPUT

Serves as the file most programs will read from. For interactive
jobs, this file is assigned to the terminal. For batch jobs this file
is assigned to the null device class.

OUTPUT

Serves as the file most programs will write to. For interactive
jobs, this file is assigned to the terminal. For batch jobs, this file
is assigned to the file that is printed by default when the job
terminates.

$JOB_LOG

Represents the job log.

The following table lists the standard files and their initial file
connections.

Revision H Job Management 6-57

Using Standard and Job Files

Table 6-1. Standard Files and Initial Connections

File Name Interactive Batch Usage

$ECHO None None Specifies the file to
receive a copy of every
SCL command that is
interpreted or skipped.

$ERRORS OUTPUT OUTPUT Specifies the file to
which programs and
utilities write error
information.

$INPUT INPUT INPUT Specifies the file from
which commands and
programs read input
data.

$LIST None OUTPUT Specifies the file to
which printable output
is written.

$NULL None None Specifies the null device
class. Attempts to write
to this device class
causes data to be
discarded as it is
written. Attempts to
read from this device
class always cause an
end-of-information status
to be returned.

$OUTPUT OUTPUT OUTPUT Specifies the file to
which normal job output
is written.

$RESPONSE $JOB_LOG $JOB_LOG Specifies the file that
and receives error or
OUTPUT informative completion

messages from
commands. The initial
connections of
$RESPONSE cannot be
changed.

6-58 NOSNE System Usage Revision H

Using Standard and Job Files

Creating File Connections

You can create a connection between a subject file and a target using
CREATE_FILE_CONNECTION. The subject file is usually a standard
file, but it can also be a temporary file. In this case, the temporary
file must not have been previously created.

When you connect one file to another, any data access request against
the subject file is passed to the target file. You can connect a subject
file to more than one target file. On input, the access requests are
passed only to the most recently connected target file. On output, the
access requests to the subject file are passed to each of the target
files.

When you connnect file $OUTPUT to another file, specify the open
position of $EOI so that write operations will append information to
the end of that file.

The following example connects file $OUTPUT with file
$USER.OUTPUT_FILE. The subsequent DISPLAY_CATALOG
command writes its output to both file '$OUTPUT (which is connected
to file OUTPUT by default) and file OUTPUT_FILE.

/create_file_connection sf=$output f=$user.output_file.$eoi
I disc $user
CATALOG: CATALOG_1
CATALOG: CATALOG_2

FILE: DATA_FILE_1
FILE: EPILOG
FILE: OUTPUT_FILE
FILE: PROLOG

Revision H Job Management 6-59

Using Standard and Job Files

To display the contents of $USER.OUTPUT_FILE, first delete the
current file connection. (If you do not delete the file connection
between $OUTPUT and its target file, a subsequent COPY_FILE
command referencing the two files will fail.)

/delete_file_connection sf=$output f=output_file
/copy_file i=$user.output_file o=$output
CATALOG: CATALOG_1
CATALOG: CATALOG_2

FILE: DATA_FILE_1
FILE: EPILOG
FILE: OUTPUT_FILE
FILE: PRO LOG

The following example connects file $ECHO to file ECHO_FILE.
Notice that the $EOI open position is used so that ECHO_FILE is
not overwritten.

/crefc sf=$echo f=echo_file.$eoi

As a result of this connection, each subsequent command is echoed to
file ECHO_FILE after it is interpreted. Commands written to $ECHO
are preceded by one of the following identifiers that indicates how the
command was processed:

CI Command interpreted.

CS Command skipped (as in a conditional sequence).

NOTE

Commands executed from procedures residing on files attached in
EXECUTE only mode are not echoed.

6-60 NOSNE_ System Usage Revision H

Using Standard and Job Files

Displaying File Connections

You can use the DISPLAY_FILE_CONNECTION command to display
the names of the files currently connected to standard files.

For instance, the following example displays all file connections:

/display_file_connection all
:$LOCAL.$ECH0.1 is connected to: :$LOCAL.ECHO_FILE.1.$EOI.
:$LOCAL.$ERRORS.1 is connected to: :$LOCAL.OUTPUT.1.
:$LOCAL.$INPUT.1 is connected to: :$LOCAL.INPUT.1.
:$LOCAL.$LIST.1 is not connected to any files.
:$LOCAL.$0UTPUT.1 is connected to: :$LOCAL.OUTPUT.1.
:$LOCAL.$RESPONSE.1 is connected to: :$LOCAL.RESPONSE_FILE.1,
:$LOCAL.$JOB_LOG.1, :$LOCAL.OUTPUT.1.

Deleting File Connections

You can delete a connection between a standard file (and any other
connected file) and its target file by using the DELETE_FILE_
CONNECTION command.

The following example deletes the file connections between $ECH 0
and ECHO_FILE:

/delete_file_connection sf=$echo f=$1ocal.echo_file

You cannot delete the initial file connection between the standard file
$RESPONSE and files $JOB_LOG and OUTPUT.

File Connection Considerations

If NOSNE encounters an error when accessing one of the target files,
it fulfills your request regarding any remaining target files and
reports the error to the user who called the subject file. If NOSNE
encounters errors on more than one target file, only the initial error
is reported.

When connected files are accessed, each file's attributes are -considered
separately. Thus, there is no conflict if the page width of a subject
file is 80 and the page width of a target file is 132. The subject file
and each target file are accessed individually and file attributes of the
subject file are irrelevant during access to a target file.

Revision H Job Management 6-61

Using Standard and Job Files

When a file connection is created, the file attributes of the subject file
and target file are checked to ensure that they are compatible. A
subject file and target file are considered to be compatible when their
FILE_CONTENT and FILE_STRUCTURE attributes are equal (a
value of UNKNOWN is considered equal to any other value). The files
are checked for compatibility each time the files are opened while
they are connected.

You can connect a temporary non-standard file to any other file if the
temporary non-standard file does not currently exist. However, when
you do this and then write data to the temporary file, remember that
the data is passed to the target file and no information is actually
written to the temporary file. In this situation, when you delete the
file connection the temporary file will be empty and assigned to the
NULL device class.

You can use the DISPLAY_FILE_ATTRIBUTE command, the $FILE
function, or the $ACCESS_MODE function displays to display the
following:

• Preserved attributes of the target file that was connected first.

• Temporary attributes of the subject file.

When a target file is opened as the result of an access to a subject
file, the following file attributes of the subject file apply:

ACCESS_ MODE

This attribute is always selected. The value is the set of modes
common to both the subject file and the target file. Specifically,
the access modes for the subject file constitute a subset of the
access modes for the target file. For more information, see the
description of the ACCESS_MODES parameter of the ATTACH_
FILE command earlier in this chapter.

OPEN _POSITION

NOS/VE follows a hierarchical set of rules in determining the open
position (beginning-of-information, end-of-information, or no
positioning) for a target file. These rules are listed in order of
precedence. Rules 1, 3, and 4 also assume that the target file is
attached via the ATTACH_FILE command if the $ASIS open
position is being used:

1. The open position you specified for the target file when you
defined its connection to the subject file.

6-62 NOSNE System Usage Revision H

Using Standard and Job Files

2. The open position you specified in an ATTACH_FILE command
of the target file.

3. The open position you specified for the subject file using a file
reference.

4. The open position you specified on an ATTACH_FILE command
of the subject file.

FILE_ CONTENT

This attribute is selected only if the target file is new and if no
value has been explicitly given for the attribute. The value you
assign must conform to one of the following guidelines:

• It must be identical to the FILE_CONTENT attribute of the
subject file.

• Either file must have a FILE_CONTENT value of
UNKNOWN.

o One file must have a FILE_CONTENT value of ASCILLOG,
while the other file has a value of LIST or LEGIBLE_DATA.

If you create a target file as a result of a reference to a subject
file, the FILE_CONTENT attribute of the target file assumes the
same value as the FILE_ CONTENTS attribute of the subject file.

FILE_STRUCTURE

This attribute is selected only if the target file is new and if no
value has been explicitly given for the attribute. The value used is
that of the subject file.

RING_ATTRIBUTES

A ring attribute is a value that defines the four ring brackets
(read, write, execute, or call) for a target file. This attribute is
always selected. If the target file is new, the value used for all
three ring attributes is the ring at which the connection was
made. If the target file is an old file, the value used for each ring
attribute is the greater of the corresponding ring attribute of the
target file and the ring at which the connection was made.

Revision H Job Management 6-63

Managing Job Logs

Managing Job Logs

A log is a record of every given event that occurs while the log is
active. One such log is a job log. The job log records the following
events within your job:

• Command interpretations.

• Conditional statement executions (such as the IF statement).

• Program generated messages.

• System generated messages.

• Recovery of jobs.

NOS/VE creates a job log for every job in the system. The job log
becomes active when you begin a job and becomes inactive when you
end a job.

Some sites may also support job history logs. A job history log records
the following events that occur for your user name:

• Submission of jobs to the system.

• Submission of output files to the output queue.

Sites that support job history logging usually deactivate the log only
at the end of the day. Because of this, you can interrogate the job
history log for events that occurred in previous jobs.

It is possible for you to display the job logs active for your job. You
may also write messages to the active job logs for your jobs. NOS/VE
provides the following commands for job log management:

CHANGE_MESSAGE_LEVEL

CHANGE_NATURAL_LANGUAGE

DISPLAY_MESSAGE

DISPLAY_LOG

DISPLAY_JOB_HISTORY

DISPLAY_ OUTPUT_ HISTORY

The following sections describe these commands.

6-64 NOS/VE System Usage Revision H

Managing Job Logs

Changing the Message Level

There are two levels of messages displayed: brief and full. By default,
the system sets the message level to brief for interactive jobs and to
full for batch jobs. To change the level, use the CHANGE_
MESSAGE_LEVEL command.

For example, to change the message level to full, enter the following
command:

/change_message_level full

When the message level is set to full, error messages contain the
severity level, product identifier, and condition code. In addition, any
file references appearing in the message are shown with their
complete path.

Changing the Message Language

You can specify the language used for messages and help information
produced within your job. However, message and help modules must
be available for the language you specify (if the specified modules are
not available, NOSNE uses the US_ENGLISH modules). For more
information, see the NOSNE Object Code Management manual.

To specify the language for messages, use the CHANGE_NATURAL_
LANGUAGE command. The following example changes the natural
language to Spanish:

/change_natural_language natural_language=spanish

Putting Messages into a Job Log

You can put messages into your active job log and job history log, and
the display message area of a job by using the DISPLAY_MESSAGE
command:

• If you put a message into a job log, you can see the message
using the DISPLAY_LOG command.

• If you put a message into a job history log, you can display the
message using the DISPLAY_JOB_HISTORY and the DISPLAY_
OUTPUT_HISTORY commands.

• If you put a message in the job's display message area, you can
display the message using the DISPLAY_JOB_STATUS command.

Revision H Job Management 6-65

Managing Job Logs

Putting Messages in.to an Active Job Log

The following example puts a message in the job log and then
displays the previous two lines of the log:

/dism message='Llessage for job log.' to=job
/disl 2
10:08:43.089.CI.dism 'Message for job log.' to=job
10:08:43.107.PR.Message for job log.
10:08:47.219.CI.disl 2

Putting Messages into a Job History Log

The following example puts a message in the job history log:

/dism message='~essage for history log.' to=history

To display the job history log, use the DISPLAY_JOB_HISTORY
command. For an example of using history log messages, refer to the
SHOW_JOB_HISTORY example in the online Examples manual.

Putting Messages into the Display Message Area

The following procedure uses the DISPLAY_MESSAGE command to
issue a display message every 100 iterations. The job can then use the
DISPLAY_JOB_STATUS command to monitor its progress.

proc proc1
for i=1 to 10000
if $mod(i,100)=0 then

st=$strrep(i)
dism message='i is '//st to=job_message

ifend
f orend
procend

6-66 NOS/VE System Usage Revision H

Managing Job Logs

While procedure PROCl is executing, the user occasionally checks the
procedure's status using the network keystroke sequence, %s (see
chapter 3 for more information on network keystroke sequences).

/proc1
%s
CPU_ Ti me_ Used

Display_Message
Page_Faults

%s
CPU_Time_Used

Display_Message
Page_Faults

Job Mode- 7.288
Monitor Mode- 1.660

i is 200
Assigned- 1610

From Disk.- 1255
Reclaimed- 672

Job Mode- 12.958
Monitor Mode- 1.699

i is 1400
Assigned- 1618

From Disk.- 1255
Reclaimed- 689

You can use this technique in a batch job you submitted in order to
monitor its progress from other jobs. Use the DISPLAY_JOB_STATUS
command to display the status of the job.

Displaying the Current Job Log

To display the contents of an active job log, use the DISPLAY_LOG
command. Each log entry is in the following format:

hh:mm:ss.mmm.mo.text

The time the log entry was made is shown as the hour (hh), minute
(mm), second (ss), and millisecond (mmm). The message origin (mo) is
one of the following:

CI Command interpreted.

CS Command skipped (as in a conditional sequence).

PR Program-generated message.

RC Job recovery.

SY System message.

Revision H Job Management 6-67

Managing Job Logs

The following example displays the last 16 lines of an active job log:

/display_log display_options=16
09:21:44.066.CI.change_message_level brief
09:21:58.187.CI.set_file_attributes data_file
09:22:09.325.CI.copy_file data_file
09:22:09.379.PR. --ERROR-- FSP$0PEN_FILE was issued for

file, DATA_FILE, which does not exist.
09:22:21.311.CI.scu
09:22:24.597.CI.quit
09:22:24.775.PR. Task complete SCP$SCU
09:22:24.775.PR. job time = 0.072

monitor time = 0.018 page faults = 59
max working set = 110

09:22:28.765.CI.chaml full
09:22:37.351.CI.copy_file data_file
09:22:37.372.PR. --ERROR AM 1016-- FSP$0PEN_FILE was

issued for file, :NVE.SARETT.DATA_FILE,
09:22:37.372.PR. which does not exist.
09:22:43.843.CI.scu
09:22:52.917.CI.quit
09:22:52.974.PR. Task complete SCP$SCU
09:22:52.975.PR. job time = 0.075

monitor time = 0.016 page faults = 52
max working set = 110

09:23:38.809.CI.display_log display_options=16

Each of the entries in the preceding example was created when a
command was read either from an interactive file or the main
command file ($LOCAL.COMMAND) of a batch job, or each time a
task finished executing. Note that some utilities suppress the logging
of subcommands. The information written to the job log at task
completion indicates the task name, the time in seconds it took the
task to execute, page fault data, and the maximum working set size of
the data while it was executing. For more information on this data,
see the NOSNE Object Code Management manual.

6-68 NOSNE System Usage Revision H

Managing Job Logs

Displaying a Job History Log

To display the history of a job, use the DISPLAY_JOB_HISTORY
command. (Job history logging must be activated at your site.)

For example,

/disp lay_job_history
$0990_0102_AAD_ 1367 JOB_Q\JEUING_STARTED 02/06/88 14: 51: 43

UJN=SARETT, LOGIN_USER=: NVE. SARETT,
CONTROL_USER=: NVE. SARETT, STATION=AUTOMATIC

$0990_0102_AAD_ 1367 JOB_INITIATED 02/06/88 14:51:43

$0990_0102_AAD_ 1367 PRINT_PLOT _F!LE_EXECUTED 02/06/88 15: 01: 02
SFN=$0990_0102_AAD_1413, OUTPUT_DESTINATION=NVE,
OUTPUT _DES TI NAT ION_USAGE=DUAL_STATE,
USER_F I LE_NAME =PROLOG

$0990_0102_AAD_1367 SUBMIT_JOB_EXECUTED 02/06/88 15: 19:42
SJN=$0990_0102_AAD_ 1457, JOB_DESTINATION=NVE,
JOB_DESTINATION_USAGE=VE, UJN=SARETT

Displaying Output History

To display the history of a job's output, use the DISPLAY_OUTPUT_
HISTORY command. (Job history logging must be activated at your
site.)

For example,

/display_output_history
$0990_0102_AAD_1367 PRINT_PLOT_F!LE_EXECUTED 07/31/87 15:21:02

SFN=$0990_0102_AAD_ 1413, OUTPUT _DESTINATION=NVE,
OUTPUT_DESTINATION_USAGE=DUAL_STATE,
USER_F I LE_NAME =PROLOG

$0990_0102_AAD_1367 OUTPUT_QUEUING_STARTED 07/31/87 15:21:03
LOGIN_USER=: NVE. SARETT, SFN=$0990_0102_AAD_ 1413,
CONTROL_USER=: NVE. SARETT, STATION=AUTOMATIC

$0990_0102_AAD_1367 PRINT_PLOT_INITIATED
SFN=$0990_0102_AAD_1413

$0990_0102_AAD_1367 PRINT_PLOT_TERMINATED
SFN=$0990_0102_AAD_1413

Revision H

07/31/87 15: 21: 03

07/31/87 15:21:15

Job Management 6-69

Displaying Job Resource Limits

Displaying Job Resource Limits

When you are validated on the system, your site administrator sets up
system resource limits for your user name. The jobs you execute
under your user name are limited to the resources allowed for your
user name. It is possible for you to further restrict the resources used
by a job running under your user name. With the CHANGE_JOB_
LIMIT command, you can change the job limits for the following
resources:

• Central processing (CP) time

• System resource units (SRU s)

• Number of tasks permitted in the job

To display a job's resource limits, use the DISPLAY_JOB_LIMITS
command. A display of your job limits similar to the following
example appears:

/display_job_limits

Limit Name

CP _TIME

SRU

TASK

Accumulator

3

Resource Limit

126663740
UNLIMITED

10

Abort Limit

140737488
UNLIMITED

11

For each of the limit names, the system also displays values for the
following:

Abort Limit

Accumulator

Resource Limit

Maximum number resources allowed for your
user name. If your job reaches the abort limit,
your job is logged out.

Total number of resources used by your job.

Maximum number of resources allowed before
your job causes a resource condition. You can
change the resource limits for a particular job to
any value between the current value of the
accumulator and the job abort limit.

6-70 NOSNE System Usage Revision H

Setting Multiprocessing Options

Setting Mu..dtipirocessing Options

Some computer systems contain two central processing units (CPUs).
For systems with dual CPUs, you can specify the CPU on which you
want your job to run, or you can specify that you want your job to
run on both processors.

You can find out how many processors your system has by using the
TOTAL_PROCESSORS keyword on the $MAINFRAME function.

To set these multiprocessing options, use the SET_
MULTIPROCESSING_OPTIONS command. The following examples
show how to use the SET_MULTIPROCESSING_OPTIONS command:

/set_multiprocessing_options

/set_multiprocessing_options
.. /mp=on

/set_multiprocessing_options
.. /mp=off

Revision H

Job runs on either PO or Pl
(whichever was the previous
default), but not both.

Job runs on PO and/or Pl.

Job runs on PO only.

Job Management 6-71

Setting Job Sense Switches

§etting Job Sense §witches

A sense switch is a section of memory that an executing program can
interrogate as a boolean value. By turning a sense switch on or off,
you can externally control the execution of a program. For information
on interrogating sense switches from within a program, see your
programming language's language definition manual.

The SET_SENSE_SWITCH command turns a job's software managed
sense switches on or off. Each job has eight switches associated with
it that are identified by integer values 1 through 8. A system operator
can set sense switches for any job. You can set sense switches only
for jobs you own.

For example:

/set_sense_switch on=(1,2,3)
/set_sense_switches job_name=$0855_0104_pdq_0861 on=1 off=2
/set_sense_switches job_name=$0855_0104_pdq_0862
.. /off=(1,2,3,4,5,6,7,8)

Note that you can interrogate sense switches from within an SCL
procedure using the SWITCHn keyword of the $JOB function. You can
also display their current settings using the DISPLAY_JOB_
ATTRIBUTES command.

6-72 NOSNE System Usage Revision H

SCL Variables, Types, and Expressions 7

Creating and Using Variables 7-2
Variable Names 7-3
Creating Variables 7-4

Creating Variables Implicitly 7-4
Creating Variables Explicitly 7-5
Array Variables 7-6
Assigning Initial Values . . . 7-7

Values Assigned Implicitly 7-7
Values Assigned Explicitly 7-9

Scope of Variables in a Block Structure . 7-10
Statically Linked Blocks 7-10
Specifying the Scope of a Variable 7-12
Example: Job Block Structure 7-13

Examples of Variables 7-16
Implicit Variable Creation . . 7-16
Explicit Variable Creation . . 7-17

Deleting Variables (DELETE_ VARIABLE) 7-19
Displaying a List of Variables (DISPLAY_ VARIABLE_LIST) 7-19
Variable References 7-20

Referencing Array Variables . 7-20
Referencing Status Variables . 7-20

SCL Types 7-22
Integer Type 7-23

Specifying a Number Base 7-23
Specifying Hexadecimal Integers . 7-24
Specifying a Sign 7-25
Using Spaces 7-25
Examples of Valid and Invalid Integers 7-26

Real Type 7-27
Specifying a Real Number 7-27
Examples of Valid and Invalid Real Numbers 7-28

String Type . 7-29
Boolean Type 7-31
Status Type 7-32
File Type . 7 -34
Name Type 7-35
Key Type . 7-35
Any Type . 7-36
Application Value Name . 7-36

Expressions
Integer Expressions
String Expressions .
Logical Expressions
Relational Expressions
Combinations of Expressions
Displaying the Value of an Expression

7-37
7-38
7-39
7-40
7-41
7-44
7-46

§CL Variables, Types, and Expressions

This chapter presents discussions of the following topics in_ SCL:

• Variables, including how to create and delete, use and display
variables.

7

• Types, including acceptable types for parameters and variables and
the rules governing each type.

• Expressions, including rules for syntax and operators.

Examples are provided with each discussion.

Revision H SCL Variables, Types, and Expressions 7-1

Creating and Using Variables

Creating and Using Variables

A variable is a name that refers to a data item whose value can be
changed. SCL supports the following types of variables:

Integer

Real

String

Boolean

Status

The environment in which a variable is accessible is called the scope
of the variable. Unless otherwise specified, a variable is assigned a
local scope, that is, its use is restricted to the block in which it is
created.

Variables can reside in the following kinds of blocks:

• Job block. The job block exists once a job begins and includes all
statements from the LOGIN command to the LOGOUT command,
including any prolog or epilog commands.

• Utility block. A utility block is established by a program that
processes utility subcommands; when the utility terminates, the
block is no longer defined.

• Procedure block. A procedure block is created when an SCL
procedure is called; when the procedure terminates, the block is no
longer defined. A procedure can be called anywhere within a job
but is considered a separate block at the point at which it is
called. Thus, any local variables created within a procedure are
known only to the procedure.

• WHEN block. A WHEN block is created when a condition occurs
for which a WHEN statement has been defined. For more
information about the WHEN statement, see chapter 8, Commands
Streams and Condition Processing.

7-2 NOSNE System Usage Revision H

Creating and Using Variables

Variables created in other blocks reside in the enclosing block from
those listed above. In the following example, the variable COUNTER
is created within a FORJFOREND block, but it resides in the
enclosing (interactive) job block.

/FOR counter=1 TO 10 DO

FOR/FORE ND
I

A variable exists from the time it is defined until it is explicitly
deleted or until the block in which it resides terminates.

Variable Names

Variable names follow the same rules and conventions as other SCL
names with the following additional restrictions:

• The boolean constant names, TRUE, FALSE, YES, NO, ON and
OFF cannot be used for variable names.

o A variable name cannot begin with the dollar sign ($) character.

• A variable name cannot be the same as that of another variable in
the same block.

• A variable name in a procedure should not be the same as a
parameter name in the same procedure.

Revision H SCL Variables, Types, and Expressions 7 -3

Creating and Using Variables

Creating Variables

You can create SCL variables either implicitly by assigning a value to
a variable name, or explicitly using the CREATE_ VARIABLE
command.

Creating Variables Implicitly

You can create variables implicitly in one of the following ways:

• By using an undefined variable name as the object of an
assignment statement. For example:

I example_2 = 5

EXAMPLE_2 is an integer variable whose value is 5.

If you implicitly create a variable by equating it to an existing
variable, the new variable inherits its attributes from the variable
to which it is equated. For example:

new_example = example_2

Like EXAMPLE_2, NEW_EXAMPLE is an integer variable whose
value is 5.

• By using an undefined variable name as the control variable of a
FOR statement. The value you assign must be an integer. For
example:

FOR i = 1 to 10 DO

(statement list)

FORE ND

For more information about the FOR/FOREND statement, see
chapter 8, Command Streams and Condition Processing.

7-4 NOSNE System Usage Revision H

Creating and Using Variables

Creating Variables Explicitly

You can create variables explicitly by using the CREATE_ VARIABLE
command. The following is a list of parameters and parameter
requirements for the CREATE_ VARIABLE command:

names, name, n
kind, k
dimension, d
value, v
scope, s
status

: list of name = $required
: list 1..2 of any = integer
: range of integer -2147483647 .. 2147483647 = 1

any = $optional
name = local
var of status = $optional

The following example creates a simple integer variable whose initial
value is 3:

/create_variable n=example_1 k=integer v=3

NOTE

You cannot create a variable of type real using the CREATE_
VARIABLE command. You can, however, create variables of type real
implicitly.

Revision H SCL Variables, Types, and Expressions 7-5

Creating and Using Variables

Array Variables

An array is a set of values of a particular data type identified by a
single variable name. For example, a boolean array named ANSWERS
could contain all the true or false answers to a set of survey
questions.

The values in an array variable (also called elements) each occupy a
specific position in the array. Each of these positions is represented by
an integer within the range of -2147483647 to 2147483647.

The position occupied by the first element in an array is called the
lower bound. The position occupied by the last element in an array is
called the upper bound.

When you create an array variable with the CREATE_ VARIABLE
command, you specify the upper and lower bounds of the array using
the DIMENSION parameter. For example, the following command
creates an array whose first element is referenced by the integer 1
and whose last element is referenced by the integer 10:

/create_variable n=digits k=integer d=1 .. 10

If you omit the DIMENSION parameter, the variable is assumed not
to be an array, that is, it has dimensions of 1..1.

7-6 NOSNE System Usage Revision H

Creating and Using Variables

Assigning Initial Values

You can assign a value to a variable either when you create it, or at
a later time. A variable must have a value, however, before it can be
read. The value you assign to a variable when you create it depends
in part on whether you create the variable implicitly or explicitly.

Values Assigned Implicitly

When you implicitly create a variable, the following rules apply:

• The new variable inherits the attributes of the variable or
expression to which it is equated. In the following example, the
variable NEW_ VARIABLE is a string variable whose value is the
string Doe, John.

new_variable = 'Doe, John'

In the following example, the variable NAME has all of the
attributes of variable NEW_ VARIABLE; it is a string variable
whose value is the string Doe, John.

name = new_variable

• If you implicitly create an array variable, you must equate the
new variable to an existing array. The new array has the same
type, values, and upper and lower bounds as the array to which it
is equated. For example:

new_array = old_array

Subscripts are not allowed when you implicitly create an array
variable. For example, the following statements are not valid:

a_new_array(10) = O

b_new_array(4) = old_array

Revision H SCL Variables, Types, and Expressions 7-7

Creating and Using Variables

• If you implicitly create a status variable using an assignment
statement, you must equate the new variable to an existing status
variable or use the $STATUS function. The new status variable is
identical to the status variable to which it is equated. For
example:

new_status = old_status

Field references are not allowed when you implicitly create a
status variable. For example, the following statement is not valid:

new_status.normal = true

You can achieve the equivalent of the previous statement, however,
using the $STATUS function. The $STATUS function has
parameters which correspond to the fields of a status variable, and
can be used to assign values to those fields. For example:

new_status = $status(true)

The above statement assigns the boolean value TRUE to the
NORMAL field of the variable NEW_STATUS.

The fields of a status variable are discussed later in this chapter.

7-8 NOSNE System Usage Revision H

Creating and Using Variables

Values Assigned Explicitly

When you create a variable using the CREATE_ VARIABLE command,
you can optionally assign the variable an initial value using the
VALUE parameter. The following restrictions apply:

• You cannot use the VALUE parameter to assign values to specific
elements in an array. Each element in an array is initialized with
the value you specify.

Once an array variable has been created, you can assign values to
specific array elements using assignment statements. For example:

/create_variable n=array_1 k=integer d=10
/array_1(8) = 80

• You cannot use the VALUE parameter to assign values to the
fields of a status variable. You must either use the system default
(see below) or the $STATUS function. For example:

/create_variable n=new_status k=status v=$status(false,'xx',O)
/array_1(8) = 80

• If you do not specify an initial value, the following default values
are assigned:

Type Default Initial Value

Boolean FALSE

Integer 0

Status NORMAL field = TRUE

String " (null string)

Variables of types other than those listed above are not given
default values.

Revision H SCL Variables, Types, and Expressions 7 -9

Creating and Using Variables

Scope of Variables in a Block Structure

The scope of a variable defines the blocks in which the variable can
be accessed. Variables are by default local to the block in which they
are created. A local variable is accessible to the following blocks:

• The block in which the variable is defined.

• Blocks which are statically linked to the block in which the
variable is defined.

Statically Linked Blocks

Two blocks are statically linked when one block is defined directly
within another. A statically linked block has access to local variables
residing in the enclosing block.

The following blocks are statically linked to the blocks in which they
are called:

• Utility blocks

• Blocks created by the INCLUDE_FILE command

• Blocks created by the INCLUDE_LINE command

• Blocks delimited by the following control statements:

BLOCK/BLOCKEND
FORJFOREND
IF/IFEND
LOOP/LOOPEND

7-10 NOSNE System Usage

REPEAT/UNTIL
WHEN/WHENEND
WHILE/WHILE ND

Revision H

Creating and Using Variables

For those statically linked blocks in which variables can reside
(utilities and WHEN/WHENEND) the following considerations apply:

• If a variable is created with the same name and type as a locally
accessible variable, references to that variable name default to the
variable residing in the current block. In the following example,
the string variable VAR_ l is created in the job block, and
referenced in the nested utility block. Another string variable
named VAR_ l is then created and referenced in the utility block.

/create_variable var_1 k=string v='Job Block Variable'
/create_object_library
COL/display_value var_1
Job Block Variable
COL/create_variable var_1 k=string v='Utility Block Variable'
COL/display_value var_1
Utility Block Variable
COL/

• When the variable residing in the utility block is deleted or the
block terminates, references to VAR_ l refer to the variable
residing in the job block:

COL/delete_variable var_1
COL/display~variable var_1
Job Block Variable
COL/

Revision H SCL Variables, Types, and Expressions 7-11

Creating and Using Variables

Specifying the Scope of a Variable

If you create a variable using the CREATE_ VARIABLE command, you
can use the SCOPE parameter to specify the scope of the variable.

You can specify any of the following values for the SCOPE parameter:

LOCAL

The variable is local to the current block. A variable with this
scope can be accessed only by the block in which it resides, and by
blocks to which it is statically linked.

XDCL

The variable is externally declared (XDCL). A variable with this
scope can be referenced by other blocks if a variable with identical
KIND and DIMENSION parameters is created with a scope of
XREF in those blocks.

XREF

The variable is externally referenced (XREF). A variable with this
scope can reference another block if a variable with identical
KIND and DIMENSION parameters is created with a scope of
XDCL in that block.

JOB

Causes the variables to be created in the job block with an XDCL
scope. If the current block is not the job block, an XREF
declaration in the current block is made. A variable with a scope
of JOB is implicitly accessible from SCL commands at the same
level, from within a utility environment, from within a block, and
from within another task. However, a JOB scope does not allow a
variable to be implicitly accessed from within an SCL procedure.
To access a variable with a JOB scope from an SCL procedure,
you must create the variable within the procedure with an XREF
scope.

name

Causes the variables to be created in the utility block specified by
name with an XDCL scope. If the current block is not the utility
block, an XREF declaration in the current block is made.

7-12 NOSNE System Usage Revision H

Creating and Using Variables

Example: Job Block Structure

Figure 7-1 illustrates a job block. The following considerations apply
to this illustration:

• The job block encompasses everything from LOGIN to LOGOUT.

• Each inner block is a procedure block created by calling a
procedure.

• The job block contains two subordinate blocks created by the
execution of procedures A and D.

• Variables created in the job block and outside of blocks A and D
with an XDCL scope are accessible within the job block. Other
blocks can access these variables if they create a variable with the
same name and type with a scope of XREF.

• Local variables created within block A are known only to block A;
local variables created within block D are known only to block D.

• Once blocks A and D cease to exist (that is, once the procedure
terminates), local variables within their scope also cease to exist.

• Blocks A and D each contain one subordinate procedure block.
Block B is subordinate to block A, and block E is subordinate to
block D.

• Blocks B and E each contain one subordinate procedure block.
Block C is subordinate to block B, and block F is subordinate to
block E.

• The rules for the scope of variables in blocks B, C, E, and F are
the same as those described for blocks A and D.

Revision H SCL Variables, Types, and Expressions 7-13

Creating and Using Variables

Table 7-1 illustrates the scope of variables shown in figure 7-1. Each
variable is assumed to have been created with the default scope of
LOCAL.

Table 7-1. Scope of Variables

Defined
Variable in Block Accessible to Block

i JOB JOB,A, B, C, D, E, F

a A A,B, C

b B B, C

c c c

j JOB JOB, D, E, F

d D D, E, F

e E E, F

f F F

k JOB JOB

A A

m B B

n D D

0 E E

7-14 NOSNE System Usage Revision H

Revision H

Creating and Using Variables

login
create_variable i scope=xdcl
k=1

Job Block

~~~~~~~~~~~~~~~~~~~ 

A "Execute Procedure A" 
crev a scope=xdcl 
crev i scope=xref 
1=1 
~~~~~~~~~~~~~~~ 

B "Execute Procedure B"
crev b scope=xdcl
crev (a,i) s=xref
m=1
~~~~~~~~~~~-

I C "Execute Procedure C" 
I crev (a, b,i) s=xref 
I c=1 
I 
I Exit C 

Exit B 

Ex t A 

create_variable j scope=xdcl 

D "Execute Procedure D" 
crev d scope=xdcl 
crev (i,j) scope=xref 
n=1~~~~~~~~~~~~~~~ 

E "Execute Procedure E" 
crev e s=xdcl 
crev (d,i,j) s=xref 
o=1 
~~~~~~~~~~~-

I F "Execute Procedure F"
I crev (d,e,i,j) s=xref
I f=1
I
I Exit F

Exit E
Ex t D

logout

Figure 7-1. Job Block Structure

SCL Variables, Types, and Expressions 7-15

Creating and Using Variables

Examples of Variables

This section presents examples of implicitly and explicitly created
variables.

Implicit Variable Creation

If a status variable by the name of JOB_STATUS currently exists,
the following statement creates a status variable named NEW_JOB_
STATUS that is identical to the variable JOB_STATUS:

new_job_status = job_status

The next example creates an array variable named LIST with 10
elements, and then creates a variable named NEW_LIST, which has
the same type and values as LIST:

create_variable n=list d=10 k=string
new_ 11 st = 1 i st

Since LIST(l) is a string variable, NEW_LIST(l) is also a string
variable.

The next example creates a status variable named NEW_ STATUS,
and then creates a status variable named OLD_STATUS, which
contains all of the fields of NEW_ STATUS:

create_variable n=new_status k=status
old_status = new_status

The following statement creates a boolean variable named FAILED
with the value contained in the NORMAL field of the status variable
OLD_STATUS:

failed= old_status.normal

7-16 NOSNE System Usage Revision H

Creating and Using Variables

Explicit Variable Creation

This section presents examples of variables created with the
CREATE_ VARIABLE command. The last example briefly illustrates
the scope of variables in SCL procedures.

The following example creates a variable named GLOBAL_STATUS,
of type STATUS, with a scope of JOB:

/create_variable n=global_status k=status s=job

The GLOBAL_STATUS variable can be referenced externally from
any block (via the SCOPE=XREF parameter).

The next example creates a variable named DONE of type boolean. Its
initial value is set to FALSE, and it is given a scope of XDCL. Other
blocks can reference the DONE variable if they create the same
variable with a scope of XREF.

/create_variable n=done k=boolean v=false s=xdcl

The next example creates a variable named SHORT_STRING of type
string. Its initial value is set to 'US,' with a maximum length of 2
characters. Since the SCOPE parameter is omitted, LOCAL scope is
assumed.

/create_variable n=short_string v='US' k=(string,2)

The next example creates an integer array (ARRAY_l) of 10 elements
that can be referenced as 1 through 10:

/create_variable n=array_1 k=integer d=1 .. 10

The next example creates a string array (ARRAY_2) of 10 elements
that can be referenced as -5 through 4:

/create_variable n=array_2 k=string d=-5 .. 4

In the next example, the VALUE parameter sets a boolean variable
FLAG to TRUE:

/create_variable n=f lag k=boolean v=true

Revision H SCL Variables, Types, and Expressions 7-17

Creating and Using Variables

The following example shows how to use a variable with a scope of
JOB to pass values in and out of a procedure. The examples are
based on the following procedure (stored in file $LOCAL.MY_PROC):

PROC my_proc ()

create_variable n=job_string k=string s=xref
job_string = 'new string value'
display_value '--MY_PROC completed--'

PROCEND my_proc

Entering the following command creates variable JOB_STRING with
a scope of JOB:

/create_variable n=job_string v='string value' s=job

The following series of statements illustrates how the value of JOB_
STRING is changed within procedure MY_PROC:

/display_value job_string
string value
/my_proc
--MY_PROC completed--
/ display_va lue job_string
new string value
I

The first instance of the DISPLAY_ VALUE command displays the
initial value of variable JOB_STRING. The procedure MY_PROC is
then executed. The second DISPLAY_ VALUE command displays the
value of variable JOB_STRING after it has been changed within the
procedure.

7-18 NOSNE System Usage Revision H

Creating and Using Variables

Deleting Variables (DELETE_ VARIABLE)

You can delete a variable in either of the following ways:

• Explicitly, using the DELETE_ VARIABLE command either from
the block in which the variable is defined or from a block to
which the defining block is statically linked.

• Implicitly, when the block in which the variable is defined ceases
to exist.

The following example uses the DELETE_ VARIABLE command to
remove variables named COUNT and LOOPS:

/delete_variable (count, loops)

Displaying a List of Variables (DISPLAY_
VARIABLE_LIST)

To display a list of the variables accessible from the current block,
use the DISPLAY_ VARIABLE_LIST command. The system displays
the variable names starting with the most recently created variable.

The following is a sample display of variables created in the job
block. VARIABLE_l was created first, and VARIABLE_4 was created
last.

/display_variable_list
LOCAL VARIABLES IN JOB

variable_4
variable_2
osv$status

variable_3
variable_1

OSV$STATUS is a status variable created by the system in the job
block at the beginning of the job. The OSV$STATUS variable is
discussed in chapter 8, SCL Command Streams and Condition
Processing.

Revision H SCL Variables, Types, and Expressions 7-19

Creating and Using Variables

Variable References

You refer to a variable by the name you assigned it at the time of its
creation. Array variables and variables of type status each have
addititonal considerations, and are discussed in the following sections.

Referencing Array Variables

Each element in an array occupies a particular position between the
upper and lower bounds of the array. This position is represented by
an integer subscript. To reference an element of an array, specify the
subscript in the following format:

variable_ name(subscript)

The subscript can be any integer expression. For example:

next_entry_location(last+1)

The following considerations also apply to array variables:

• A space is not allowed between the variable name and its
subscript.

• If you omit the subscript from an array variable reference, the
reference is to the entire variable.

Referencing Status Variables

A status variable has three fields in which information about the
completion status of a command is stored. The status variable and its
fields are described later in this chapter. To reference a specific field
of a status variable, use the following format:

variable_name.field name

Field name can be any of the following keywords:

NORMAL
CONDITION
TEXT

The following example references the CONDITION field of a status
variable named LOCAL_STATUS:

local_status.condition

7-20 NOSNE System Usage Revision H

Creating and Using Variables

The following considerations apply to status variables:

• Spaces are not allowed surrounding the period between the
variable name and its field designation.

• If you omit the field designation from a status variable reference,
the reference is to the entire variable.

The following are valid variable references:

Variable Reference

data_ l i st_ 1 (1 0)

stat.condition

stat_array(4).normal

Description

References the 10th element of variable array
DATA_LIST_l.

References the CONDITION field of status
variable STAT.

References the NORMAL field of the fourth
element in the array of status variables
named STAT_ARRAY.

The following are invalid variable references:

Invalid Reference

stat.next

1 i st (4)

stat . normal

Revision H

Reason

Invalid field specification (NEXT) for the
status variable.

Space between the variable name and the
subscript is not allowed.

Spaces surrounding the period are not allowed
in the field specification.

SCL Variables, Types, and Expressions 7-21

SCL Types

§CL Types

In SCL, variables and parameters have a specific data type, such as
integer or boolean, associated with them (parameters may have more
than one data type associated with them). Consequently, when you
create an SCL variable or define a parameter for a procedure, you
define a particular type for it. Likewise, when you assign a value to
an existing variable or specify a value for a parameter, the value you
specify must match the data type defined for the variable or
parameter.

SCL supports the following data types for parameters:

• Integer

• Real

• String

• Boolean

• Status

• File

• Name

• Key

• Any

• Application Value Name

7-22 NOSNE System Usage Revision H

SCL Types

Currently, SCL supports the following subset of types for variables:

• Integer

• Real

• String

• Boolean

• Status

This section defines each of the types listed and discusses the syntax
requirements for each.

Defining variables is discussed in the previous section. Defining
procedure parameters is discussed in chapter 9, Writing SCL
Procedures and Command Utilities.

Integer Type

An integer is a value representing one of the numbers 0, + 1, -1, + 2,
-2, and so on. SCL supports integer values within the range from
-9,223,372,036,854,775,808 to + 9,223,372,036,854,775,807. The
minimum and maximum integer values are returned by the $MIN_
INTEGER and $MAX_INTEGER functions respectively.

Specifying a Number Base

SCL supports integer values in bases two through sixteen. To specify
an integer in a base other than decimal, you must include a trailing
radix. If you omit the radix, decimal is assumed.

When you enter a trailing radix, surround it with opening and closing
parentheses, as shown in the following examples:

In teger(Radix)

1011010(2)

14(8)

93(10)

1F(16)

Revision H

Decimal Equivalent

90

12

93

31

SCL Variables, Types, and Expressions 7-23

SCL Types

Specifying Hexadecimal Integers

To specify an hexadecimal (base sixteen) integer use a combination of
numeric characters and the following letters:

ABCDEF
abcdef

SCL makes no distinction between uppercase and lowercase letters in
hexadecimal integer values.

You must begin an hexadecimal integer with a digit. When you
specify a hexadecimal integer that begins with an alphabetic
character, you must add a leading zero. This is necessary to avoid the
ambiguity that arises with certain representations. For example, the
16th element of an array whose name is Al is indicated as follows:

A1(16)

This is also the hexadecimal representation of the decimal value 161.
To avoid this ambiguity, you must enter the hexadecimal
representation as follows:

OA1(16)

7·24 NOSNE System Usage Revision H

SCL Types

Specifying a Sign

You can optionally precede an integer with a sign (ASCII plus or
minus character). If you omit the sign, a plus is assumed. For
example:

+100

-1AF02(16)

700(8)

Using Spaces

A positive number

A negative number

A positive number

The following is a set of guidelines for using spaces when entering
integer values:

• Precede and follow an integer with either a delimiter, such as a
comma or space, or an operator, such as * (for multiplication).

• Do not enter a space between the digits and the radix.

• You can enter spaces after the opening parenthesis and before the
closing parenthesis of the radix.

• A void using spaces between a number and its sign, especially
when using real numbers in expressions for parameter values.

Revision H SCL Variables, Types, and Expressions 7-25

SCL Types

Examples of Valid and Invalid Integers

The following are valid integer values:

123456789

OFFFF(16)

-101(2)

+704264(8)

-63(10)

10101010101(2)

The following are invalid integer values:

Invalid Integer

100200(2)

FFF(16)

345(17)

Offf

123 (8)

Reason

Contains a digit, 2, that is invalid in a binary
representation

Does not begin with a digit, although it is an
hexadecimal value.

Contains an invalid radix specification (17).

Does not contain a radix indicating an
hexadecimal value.

Contains a space between the digits and the radix.

7-26 NOS/VE System Usage Revision H

SCL Types

Real Type

A real number consists of the following elements:

• A mantissa, which is a sequence of digits containing a decimal
point (period).

• A Trailing exponent (optional) with an optional sign.

Specifying a Real Number

Specify a real number as follows:

• Include at least one digit on each side of the decimal point.

• Use decimal numbers only.

• Separate the mantissa from the exponent with either the letter E
or D (in uppercase or lowercase).

• Delimit a real number at both ends (with spaces, for example).

• Do not enter a space in the mantissa, in the exponent, or between
the mantissa and the exponent.

• Avoid using spaces between the sign and number digits, especially
when using real numbers in expressions for parameter values.

• Create real numbers only in the range from 4.SE-1234 to
3.2E+1232.

The real number value is the mantissa multiplied by 10 raised to the
power specified by the exponent. SCL maintains real numbers in
normalized double-precision, floating-point format.

Revision H SCL Variables, Types, and Expressions 7-27

SCL Types

NOTE

Currently, the following additional considerations apply to real
numbers:

• You can use real numbers as values for both implicitly created
variables and parameters.

• You cannot specify REAL as the type for an explicitly created
variable.

• Real number arithmetic operations are not supported.

• Real numbers with leading signs are not supported.

Examples of Valid and Invalid Real Numbers

The following are valid real numbers:

12.26E2 34.0e5

3.0d-3 0.003

The following are invalid real numbers:

In valid Real
Value Reason

.33e-5 Does not have at least one digit on each side of
the decimal point.

Includes a number base. 5.6(8)

-3.2 d-4 Contains an embedded space and a leading sign.

7-28 NOSNE System Usage Revision H

SCL Types

Real Type

A real number consists of the following elements:

• A mantissa, which is a sequence of digits containing a decimal
point (period).

• A Trailing exponent (optional) with an optional sign.

Specifying a Real Number

Specify a real number as follows:

• Include at least one digit on each side of the decimal point.

• Use decimal numbers only.

• Separate the mantissa from the exponent with either the letter E
or D (in uppercase or lowercase).

• Delimit a real number at both ends (with spaces, for example).

• Do not enter a space in the mantissa, in the exponent, or between
the mantissa and the exponent.

• Avoid using spaces between the sign and number digits, especially
when using real numbers in expressions for parameter values.

• Create real numbers only in the range from 4.SE-1234 to
3.2E+1232.

The real number value is the mantissa multiplied by 10 raised to the
power specified by the exponent. SCL maintains real numbers in
normalized double-precision, floating-point format.

Revision H SCL Variables, Types, and Expressions 7-27

SCL Types

NOTE

Currently, the following additional considerations apply to real
numbers:

• You can use real numbers as values for both implicitly created
variables and parameters.

• You cannot specify REAL as the type for an explicitly created
variable.

• Real number arithmetic operations are not supported.

• Real numbers with leading signs are not supported.

Examples of Valid and Invalid Real Numbers

The following are valid real numbers:

12.26E2 34.0e5

3.0d-3 0.003

The following are invalid real numbers:

In valid Real
Value Reason

.33e-5 Does not have at least one digit on each side of
the decimal point.

Includes a number base. 5.6(8)

-3.2 d-4 Contains an embedded space and a leading sign.

7-28 NOSNE System Usage Revision H

SCL Types

String Type

A string is any sequence of ASCII characters surrounded by
apostrophes. The maximum string length is 256 characters. The
following is an example of a string:

~This is a string.'

You can enter a string containing a single space, as follows:

To denote an empty string, enter two consecutive apostrophes, as in
the following example:

In a string, the apostrophes serve as delimiters and are not part of
the string itself. To add an apostrophe to the string, represent it as
two consecutive apostrophes as follows:

'You can''t use a single apostrophe within a string.'

The following considerations apply to string values:

• If you create a string variable implicitly, or if you do not specify
the length of a string when explicitly creating a string variable,
the system assigns the variable a default maximum length of 256
characters.

• At any given time, a string variable has a current length equal to
the length of the string last assigned to it.

• If a string is assigned a value that is shorter than its maximum
length, the remaining characters become blanks.

• If a string is assigned a value that is longer than its maximum
length, excess characters are truncated and the string's current
length is its maximum length.

Revision H SCL Variables, Types, and Expressions 7 -29

SCL Types

The following are valid string values:

Valid String

'A . B . Sm i t h '

'This long ..
string is ..
continued'

Explanation

Ordinary string.

String of one apostrophe.

Continued string.

The following are invalid string values:

Invalid String Reason

'This string is not terminated. The final apostrophe is missing.

'You can't have a single Within a string, a single
apostrophe. ' apostrophe must be represented by

two consecutive apostrophes.

'This 1 ong string is not The ellipsis (..) is missing at the
correctly continued onto a second end of the lines that are continued
1 i ne.' (after not and after second).

7 -30 NOSNE System Usage Revision H

SCL Types

Boolean Type

A boolean value is a value that is either TRUE or FALSE.

You can represent a boolean value of TRUE with any of the following
names (uppercase or lowercase):

TRUE
YES
ON

You can represent a boolean value of FALSE with any of the
following names (uppercase or lowercase):

FALSE
NO
OFF

The following are valid boolean assignments:

done = false
debug_mode = ON
print_listing_reply =no

The following are invalid boolean assignments:

In valid Boolean
Assignment Reason

debug_mode = Improper specification of TRUE value.
correct

done= .f. Improper specification of FALSE value.

Revision H SCL Variables, Types, and Expressions 7-31

SCL Types

Status Type

A status value is a record that contains the completion status of a
command. Each status record consists of three fields. These fields are
described in the following table.

Table 7-2. Status Variable Fields

Field Name Field Kind

NORMAL Boolean

CONDITION Integer

TEXT String of length 256

Description

Specifies whether the command
completed without an error
(TRUE) or with an error
(FALSE).

If the command had an error,
this integer specifies the
condition code of the diagnostic
message for the aborted
command. This field also
contains a 2-character product
identifier.

This string contains message
parameters that are substituted
into the basic diagnostic
message corresponding to the
condition encountered.

If the command completes normally, the NORMAL field is set to
TRUE and all other fields are undefined. If the command cannot be
completed, the NORMAL field is set to FALSE; the other fields return
the conditions and the diagnostic message parameters describing the
error that occurred.

7-32 NOSNE System Usage Revision H

SCL Types

The following considerations apply to status values:

• Spaces are not allowed surrounding the period between the
variable name and its field designation.

• If you omit the field designation from a status variable reference,
the reference is to the entire variable.

The following are valid status references:

Valid Status Value

stat.condition

stat_array(4).norma1

Reason

References the CONDITION field of status
variable STAT.

References the NORMAL field of the fourth
element in the array of status variables
named STAT_ARRAY.

The following are invalid status references:

Invalid Status
Value

stat.next

stat . normal

Revision H

Reason

Invalid field specification (NEXT) for the
status variable.

Spaces surrounding the period are not allowed
in the field specification.

SCL Variables, Types, and Expressions 7 -33

SCL Types

File Type

NOTE

The FILE type is currently supported for parameter values only and
may not be used when defining variables.

A value of type FILE can be a reference either to a catalog or to a
file. Whether the reference is to a file or a catalog depends on the
use to which the value is put. For example, the following command
results in an error:

/display_catalog c=$local.$errors

Although the CATALOG parameter on the DISPLAY_CATALOG
command accepts a value of type FILE, the command itself requires
that the value supplied be a catalog reference. Because your $LOCAL
catalog cannot have subcatalogs, the value in the above example
refers to a file called $ERRORS in the $LOCAL catalog.

The format for file and catalog references is as follows:

:family.username.catalog(s).filename.cycle.position

Each element of a file reference must be a valid SCL name. The
entire reference cannot exceed 256 characters including colon (:) and
period (.) separators. For more information about referencing files and
catalogs, see chapter 4, Catalog and File Management.

The following are valid file references:

Valid File
References Reason

$user .my_data.2 References the second cycle of file MY_DATA
located in the $USER catalog .

. smith.output .$eoi References the END_OF_INFORMATION
position for file OUTPUT in SMITH'S master
catalog.

7-34 NOSNE System Usage Revision H

SCL Types

The following are invalid file references:

Invalid File
Reference

$local.output.test_1

$user . notes

Name Type

NOTE

Reason

$LOCAL catalog cannot have subcatalogs
(OUTPUT).

Spaces surrounding separators are not allowed
in file or catalog references.

The NAME type is currently supported for parameter values only and
may not be used when defining variables.

A value of type NAME is any valid SCL name, that is, any
combination of alphanumeric and special characters as long as the
name is less than 31 characters and does not begin with a number.

For more information about SCL names, see chapter 2, The System
Command Language.

For more information about defining parameters of type NAME, see
chapter 9, Writing SCL Procedures and Command Utilities.

Key Type

NOTE

The KEY type is currently supported for parameter values only and
may not be used when defining variables.

A value of type KEY (also called a keyword) is generally one of
several options provided for a given command. For example, the
CHANGE_INTERACTION _STYLE command allows you to specify
one of two keyword options for the STYLE parameter: LINE or
SCREEN.

For more information about defining parameters of type KEY, see
chapter 9, Writing SCL Procedures and Command Utilities.

Revision H SCL Variables, Types, and Expressions 7-35

SCL Types

Any Type

NOTE

The ANY type is currently supported for parameter values only and
may not be used when defining variables.

Specifying type ANY (also called the UNION type) provides for the
case where any one type is applicable. For example, the VALUE
parameter of the DISPLAY_ VALUE command allows you to specify an
expression of any type. Values specified for parameters of type ANY
must meet the restrictions and syntax requirements for the particular
type specified.

Application Value Name

NOTE

Application value names are currently supported for parameter values
only and may not be used when defining variables.

When writing SCL procedures, you can define your own value type by
specifying a name of your own choosing when defining a parameter's
type. This user-defined type is called an application value.

When you specify an application value, you can also specify the
procedure which is called to evaluate the parameter value. If no
procedure is specified, the parameter value is returned as a string
with no evaluation performed.

For more information about application values, see the Cybil System
Interface manual.

7-36 NOSNE System Usage Revision H

Expressions

Expressions

An expression is the representation of one or more operations
performed to compute a value. A single value or variable appearing
alone also constitutes an expression. This chapter focuses on
expressions in which constants and variables are combined by
operators.

NOTE

Real number arithmetic operations are not supported.

Expressions are used to perform the following kinds of computation:

• Integer addition

• Integer subtraction

• Integer multiplication

• Integer division

• Integer exponentiation

• String concatenation

• Logical difference and sum

• Logical complement

• Logical product

• Relational comparisons

In an expression, the system evaluates operands within parentheses
first, with the innermost parentheses taking precedence.

When the system encounters an SCL-defined constant or function in
an expression, it evaluates the constant or function (and any supplied
arguments) and uses the resulting value in the expression.

An expression can contain any number of data items, but after it is
evaluated, it represents a single value.

In an expression used in an assignment or control statement, you can
surround the operator with spaces; in an expression used in a
parameter, you cannot enter spaces surrounding the operators.

Revision H SCL Variables, Types, and Expressions 7-37

Expressions

Integer Expressions

An integer expression is one that is evaluated as an integer value.

In integer expressions, you can use the following operators:

Operator Use

+ Indicates that two integer operands are to be added.

*
I

**

Indicates that the right operand is to be subtracted from
the left operand.

Indicates that two integer operands are to be multiplied.

Indicates that the left operand is to be divided by the
right operand. Standard integer division is employed: the
result is the integer quotient with any remainder
discarded.

Indicates that the integer preceding the operator is
exponentiated by the integer following the operator.

Except when using an integer expression as a parameter value, you
can precede and/or follow the operator with spaces.

The following series of assignment statements (each one affecting the
next) is an example of using integer expressions.

Statement Meaning

j ;+2

k = 2**j

k = k/3

Assigns the integer 1 to the variable I.

Assigns the sum of I and 2 to the variable J. Therefore,
J is equal to 3.

Assigns the result of 2 raised to the Jth power to the
variable K. Therefore, K is equal to 8.

Assigns the quotient of the variable K divided by 3 to
the variable K. Therefore, K is equal to 2.

7-38 NOSNE System Usage Revision H

Expressions

String Expressions

A string expression is one that is evaluated as a string.

In string expressions, you can use the following concatenation
operator:

II

This operator joins the two string operands to form a single string.
Except when using an expression as a parameter value, you may
precede and/or follow the operator with spaces.

Included in the following assignment statements is an example of the
concatenation operator.

Statement

string_1 = 'First part'

string_2 = ' last part'

s = string_1//string_2

Revision H

Meaning

Assigns the string 'First part' to the string
variable STRING_ I.

Assigns the string ' last part' to the string
variable STRING_2.

Concatenates the values of string variables
STRING_l and STRING_2 and places the
result in string variable S. The value of S
is as follows:

'First part last part'

SCL Variables, Types, and Expressions 7-39

Expressions

Logical Expressions

A logical expression is one that is evaluated as either true or false. In
a logical expression, all operands must be boolean values. The result
of a logical expression is always a boolean value.

In logical expressions, you can use the following operators:

Operator Use

OR Performs a logical sum (inclusive OR) of two operands. If
one operand is TRUE, the expression is evaluated as
TRUE; otherwise, it is evaluated as FALSE. If the left
operand is TRUE, the right operand is not evaluated.

XOR Performs a logical difference (exclusive OR) between two
operands. If one operand is TRUE, but not both, the
expression is evaluated as TRUE; otherwise, it is
evaluated as FALSE.

AND Performs a logical product of two operands. If both
operands are TRUE, the expression is evaluated as TRUE;
otherwise, it is evaluated as FALSE. If the left operand is
FALSE, the right operand is not evaluated.

NOT Performs a logical complement of an operand. If the
operand is TRUE, the expression is evaluated as FALSE.
If the operand is FALSE, the expression is evaluated as
TRUE.

You must precede and follow a logical operator with one or more
spaces. The following logical expression is valid:

(string='a') or (string='b')

The following logical expression is invalid:

(string='a')or(string='b')

7-40 NOSNE System Usage Revision H

Expressions

The following assignment statements are examples of using logical
expressions:

Statement

y = true; z = false

x = y OR z

x = NOT y

x = y AND z

x = y XOR z

Meaning

Creates boolean variables Y and Z.

If either Y or Z is TRUE, X is TRUE. Since
Y is TRUE, Xis TRUE.

X is the complement of Y. Since Y is TRUE,
Xis FALSE.

X is TRUE only if both Y and Z are TRUE.
Since Z is FALSE, X is FALSE.

X is TRUE because Y is TRUE and Z is
FALSE (one operand is TRUE but not both).

Relational Expressions

A relational expression is one that expresses a relationship between
values of the same kind (for example, two string operands or two
integer operands). The result of a relational expression is always a
boolean value.

In relational expressions, you can use the following operators:

Operator Result

> When the operand to the left of this operator is greater
than the operand to the right, the expression is evaluated
as TRUE; otherwise, it is evaluated as FALSE.

< When the operand to the left of this operator is less than
the operand to the right, the expression is evaluated as
TRUE; otherwise, it is evaluated as FALSE.

> = When the operand to the left of this operator is greater
than or equal to the operand to the right, the expression
is evaluated as TRUE; otherwise, it is evaluated as
FALSE.

Revision H SCL Variables, Types, and Expressions 7-41

Expressions

Operator Result

< = When the operand to the left of this operator is less than
or equal to the operand to the right, the expression is
evaluated as TRUE; otherwise, it is evaluated as FALSE.

= When the operand to the left of this operator is equal to
the operand to the right, the expression is evaluated as
TRUE; otherwise, it is evaluated as FALSE.

< > When the operand to the left of this operator is not equal
to the operand to the right, the expression is evaluated as
TRUE; otherwise, it is evaluated as FALSE.

Except when using a relational expression as a parameter value, you
can precede and/or follow the operator with spaces.

The following additional rules apply to relational expressions:

• FALSE is evaluated as less than TRUE.

• String comparisons are made according to the ASCII collating
sequence. All ASCII characters are collated according to their
ASCII codes. For example, the # character is ASCII code 23
(hexadecimal) and so is higher in the collating sequence than the $
character, which is ASCII code 24 (hexadecimal). A listing of the
ASCII character set is in appendix C. Uppercase and lowercase
characters are not equivalent in the ASCII collating sequence, and
therefore are not equivalent in string comparisons.

• When the system compares two strings of unequal length, it treats
the shorter string as though space characters extended it to the
right to the length of the larger string.

7-42 NOSNE System Usage Revision H

Expressions

The following series of statements illustrate how to use relational
expressions:

Statement

5
j

s 'abc '
t 'abcde'
y = true
z = false

i > j

< j

s = t

y <> z

>= j

s <= t

Revision H

Meaning

Initializes integer variables I and J,
string variables S and T, and boolean
variables Y and Z.

I (5) is greater than J (1). Therefore, the expression
is evaluated as TRUE.

I (5) is not less than J (1). Therefore, the expression
is evaluated as FALSE.

Before the comparison, string S is extended on the
right with spaces so that its length equals the
length of string T. S ('abc ' followed by an
additional space) is not equal to T ('abcde').
Therefore, the expression is evaluated as FALSE.

Y (TRUE) is not equal to Z (FALSE). Therefore, the
expression is evaluated as TRUE.

I (5) is greater than J (1). Therefore, the expression
is evaluated as TRUE.

The first 3 characters of both S ('abc ') and T
('abcde') are equal (abc). However, for S, character 4
is a space, whereas for T character 4 is d. The
ASCII code for a space is 20 (hexadecimal), whereas
the ASCII code for d is 64 (hexadecimal). Therefore,
S is less than T, and the expression is evaluated as
TRUE.

SCL Variables, Types, and Expressions 7-43

Expressions

Combinations of Expressions

You can combine only certain kinds of operands with a particular
operator. The valid combinations and the kind of the result are shown
in table 7-3.

When the precedence of operations is not specified with parentheses,
the system performs the operations in the order shown in the table.
For example, ** is evaluated before * in the following expression:

a*b**C

Thus the preceding expression is identical to:

a*(b**c)

When the order of precedence is equivalent, evaluation is performed
from left to right. For example, the result of the following expression
is 4:

a I 4 * 2

If you reversed the preceding expression's elements, the result would
be 1.

2 * 4 I 8

7-44 NOSNE System Usage Revision H

Expressions

Table 7-3. Operand and Operator Combinations

Left Right Order of
Operand Operator Operand Result Precedence I

Integer ** Integer Integer 1

Integer * or I Integer Integer 2

Integer + or - Integer Integer 3

None + or - Integer Integer 3

String II String String 4

Integer Relational Integer Boolean 5

String Relational String Boolean 5

Boolean Relational Boolean Boolean 5

None NOT Boolean Boolean 6

Boolean AND Boolean Boolean 7

Boolean OR or Boolean Boolean 8
XOR

1. When order of precedence is equivalent, operators are evaluated
from left to right.

Revision H SCL Variables, Types, and Expressions 7 -45

Expressions

Displaying the Value of an Expression

To display the value of an expression, use the DISPLAY_ VALUE
command. The following is a list of parameters and parameter
requirements for the DISPLAY_ VALUE command:

value, values, v
output, o
status

: list of any = $required
: file = $output
: var of status = $optional

If you specify more than one expression for the VALUE parameter,
the system displays each value on a separate line.

The following examples demonstrate use of the command with
expressions of several different types.

/display_value 2**7-4
124

/display_value ('Line 1' ,'Line 2' ,'Line 3')
Line 1
Line 2
Line 3

/display_value ($max_integer,$min_integer)
9,223,372,036,854,775,807
-9,223,372,036,854,775,808

/create_variable name=stat lcind=sta·tus
/display_value $variable(stat,kind)
STATUS

7-46 NOSNE System Usage Revision H

Expressions

In addition, you can use the DISPLAY_ VALUE command to determine
hexadecimal, octal, or decimal equivalents. In the three examples that
follow, the first displays the decimal equivalent of an hexadecimal
number, the second displays the hexadecimal equivalent of a decimal
number, and the third displays the octal equivalent of a decimal
number.

/display_value 1~0FFFFFF(16)
16777215

/display_value 1(16)*16777215
OFFFFFF(16)

/display_value 1(8)*16777215
77777777 (8)

For a more formal way of converting integers, see the description of
the $STRREP function in the N OSNE Commands and Functions
manual.

Revision H SCL Variables, Types, and Expressions 7-4 7

SCL Command Streams
and Condition Processing 8

Block Structure 8-2

Structuring a Command Stream . 8-3
Grouping Statements into a Block (BLOCK/BLOCKEND) . 8-5
Causing Unlimited Repetition of a Statement List

(LOOP/LOOPEND). 8-6
Causing Preconditional Repetition of a Statement List

(WHILE/WHILEND) . 8-7
Causing Postconditional Repetition of a Statement List

(REPEAT/UNTIL) 8-8
Causing Controlled Repetition of a Statement List

(FOR/FORENm 8-9

Controlling the Flow of a Command Stream 8-10
Causing the Next Iteration of a Repetitive Statement

(CYCLE) . 8-10
Exiting from a Structured Statement (EXIT) 8-12
Exiting from a Procedure or Utility (EXIT) 8-14

Executing Statement Lists Conditionally (IF/IFEND) 8-15

Condition Processing 8-16
Error Processing 8-1 7

Error Processing Example 8-18
Testing for Specific Error Conditions 8-19

Condition Handling 8-20
Establishing a Condition Handler (WHEN/WHENEND) 8-22
Exiting from a WHEN Block (CONTINUE) 8-24
Canceling a Condition (CANCEL) . . 8-25

Suspending Command Processing (WAIT) . 8-26

Changing System Environments 8-26
Establishing a New Environment (PUSH) . 8-27
Restoring the Previous Environment (POP) 8-28

SCL Command Streams
and Condition Processing 8

SCL provides commands and control statements that structure and
control the command stream by organizing and processing it in blocks.

This chapter describes the SCL block structure and the statements
you can use to perform the following operations:

• Structuring a command stream into blocks.

• Controlling the flow of a command stream.

• Executing statement lists conditionally.

• Error processing using status variables.

• Condition handling.

• Suspending command processing.

• Changing the system environment.

Revision H SCL Command Streams and Condition Processing 8-1

Block Structure

Block Structure

In SCL a block is a physical or logical grouping of data. A NOSNE
job is typically organized as several SCL blocks. At a minimum, each
job has one block called the job block. The job block contains the SCL
statements from job initiation to job termination (including prolog and
epilog processing initiated by these commands).

The following is a list of entities in SCL which constitute their own
block:

• Job

• Utility

• Procedure

• The following control statements:

BLOCK/BLOCKEND
FOR/FORE ND
IF/IFEND
LOOP/LOOPEND

REPEAT/UNTIL
WHEN/WHENEND
WHILE/WHILEND

• The INCLUDE_FILE command

• The INCLUDE_LINE command

NOTE

The INCLUDE_FILE and INCLUDE_LINE commands are described
in chapter 9, Writing SCL Procedures and Command Utilities, along
with the following related topics:

• Reading lines from a file (ACCEPT_LINE)

• Writing lines to a file (PUT_LINE)

• Inserting files into the command stream (INCLUDE_FILE)

• Inserting lines into the command stream (INCLUDE_LINE)

• Inserting commands into the command stream (INCLUDE_
COMMAND)

8-2 NOSNE System Usage Revision H

Structuring a Command Stream

The following considerations apply to blocks:

• Within a command stream, a block of statements is treated as a
separate entity until a specified terminating condition or statement
is encountered.

• Blocks created entirely within another block are subordinate to the
outer block and are said to be statically linked to that block. For
example, the block created by a call to a utility is statically linked
to the block which issued the call. A statically linked block has
access to the variables defined in the outer block. For more
information, see chapter 7, SCL Variables, Types, and Expressions.

Structuring a Command Strream

SCL provides control statements that enable you to organize a
command stream into blocks of statements which can then be
processed in a sequential, conditional, or repetitive manner.

Some control statement have a clause which initiates the block and a
clause which terminates the block. This type of control statement is
called a structured statement.

Each structured statement has the following format:

label: structured statement begin clause
statement list

structured statement end clause label

The optional label is any valid SCL name; it is a convenient way of
referring to a structured statement. Flow control statements (described
later in this chapter) can transfer control within or out of a
structured statement by referencing the statement label.

A label precedes the structured statement it identifies and is
separated from the structured statement by a colon delimiter. Except
for a REPEAT statement, a label can optionally follow a structured
statement end clause.

The following example illustrates a labelled LOOP statement:

multiple_input: LOOP

"statement list for multiple input"

LOOPEND multiple_input

Revision H SCL Command Streams and Condition Processing 8-3

Structuring a Command Stream

The following conditions apply to the format of labelled statements:

• The beginning and ending labels must be identical.

• A label cannot be referenced by procedures called from within a
structured statement or by statement lists introduced by
INCLUDE_FILE or INCLUDE_LINE commands (described in
chapter 9).

• No space can precede the colon.

• A space following the colon is optional.

• The scope of a statement label is restricted to the statement it
labels. That is, it is not possible to refer to a label on a structured
statement from outside that statement.

The following structured statements are described in this section:

• BLOCK/BLOCKEND

• LOOP/LOOPEND

• WHILE/WHILEND

• REPEAT/UNTIL

• FOR/FOREND

8-4 NOSNE System Usage Revision H

Grouping Statements into a Block (BLOCK/BLOCKEND)

Grouping Statements into a Block
(BLOCK/BLOCKEND)

To group a sequence of statements into a block, use the
BLOCK/BLOCKEND statement. Exiting from the block occurs either
when the last statement in the statement list is executed or through
explicit transfer of control via an EXIT statement. Flow control
statements are described later in this chapter.

The format of the BLOCK/BLOCKEND statement is as follows:

label: BLOCK
statement list

BLOCKEND label

The BLOCK/BLOCKEND statement is used primarily to designate a
group of statements which can be exited if a particular condition
exists.

The following example creates a block named MAIN. The statement
list includes an EXIT flow control statement that causes an exit from
block MAIN when the tested condition is TRUE. If the tested
condition is FALSE, the EXIT statement is inhibited.

main: BLOCK

exit when not status.normal

BLOCKEND main

Revision H SCL Command Streams and Condition Processing 8-5

Causing Unlimited Repetition of a Statement List (LOOP/LOOPEND)

Causing Unlimited Repetition of a Statement List
(LOOP/LOOPEND)

To cause a statement list to be repeated an unlimited number of
times, use the LOOP/LOOPEND statement This statement is useful,
for example, when you want to read an undetermined number of lines
from a file.

NOTE

Exiting from a LOOP statement is possible only via an EXIT
statement.

The format of the LOOP/LOOPEND statement is as follows:

label: LOOP
statement list

LOOPEND label

The following example uses a LOOP statement to read lines from file
INPUT. Each line read is stored in string variable INPUT_STRING.
When a null input line is encountered, the execution of the loop is
ended; otherwise the string variable is written to file $OUTPUT.

input_string = 11

read_input: LOOP
accept_line input_string input
EXIT read_input WHEN $strlen(input_string) = O
display_value input_string

LOOPEND read_input

When this loop is executed, the following interaction takes place:

SUPPLY INPUT_STRING testing
testing
SUPPLY INPUT_STRING
I

Pressing RETURN after the SUPPLY INPUT_STRING prompt results
in the variable INPUT_STRING having a length of 0. This causes the
EXIT statement condition to be TRUE. The loop is then exited.

8-6 NOSNE System Usage Revision H

Causing Preconditional Repetition of a Statement List (WHILE/WHILEND)

Causing Preconditional Repetition of a Statement List
(WHILE/WHILE ND)

To perform conditional repetition of a statement list, use the
WHILE/WHILEND statement. Prior to each iteration of the statement
list, the boolean expression in the WHILE statement is evaluated. If
the expression is TRUE, the statement list is executed; if the
expression is FALSE, control passes to the statement following the
WHILEND clause.

The format of the WHILE/WHILEND statement is as follows:

label: WHILE boolean expression DO
statement list

WHILEND label

The following example computes the factorial of a variable named
FACTORIAL_ OF:

/factorial_of = 5
/last_value = 1

"Compute the factorial of 5."
"Value for first loop."

/factorial: while factorial_of > 1 do
while/last_value = factorial_of * last_value
while/factorial_of = factorial_of - 1
while/whilend factorial
/display_value last_value
120

I

Revision H SCL Command Streams and Condition Processing 8-7

Causing Postconditional Repetition of a Statement List (REPEAT/UNTIL)

Causing Postconditional Repetition of a Statement
List (REPEAT/UNTIL)

To perform conditional repetition of a statement list, use the
REPEAT/UNTIL statement. After each iteration of the statement list,
the boolean expression within the UNTIL clause is evaluated. If this
expression is evaluated as FALSE, the statement list is executed
again. If the expression is evaluated as TRUE, control passes to the
statement following the UNTIL clause. Thus, a REPEAT statement is
always executed at least once.

The format of the REPEAT/UNTIL statement is as follows:

label: REPEAT
statement list

UNTIL boolean expression

The following example reads lines from file INPUT until a null input
line is entered:

I 1 i ne = ''
I repeat
repeat/accept_line v=line i=input
repeat/display_value line
repeat/ unt i 1 line =
SUPPLY LINE Line 1
Line 1

SUPPLY LINE

I

Pressing return after the SUPPLY LINE prompt signals end of input
for the loop.

8·8 NOSNE System Usage Revision H

Causing Controlled Repetition of a Statement List (FORIFOREND)

Causing Controlled Repetition of a Statement List
(FOR/FOREND)

To control repetition of a statement list, use the FORJFOREND
statement.

The format of the FORJFOREND statement is as follows:

label: FOR variable = initial TO final BY step DO
statement list

FOREND label

The following example displays each character in a string on a
separate line:

/string= 'down hill'
/blanks = ' '
/for i = 1 to $strlen(string) do
for/display_value $substr(blanks,1,i)// ..
for .. /$substr(string,i,1)
for/forend

d

0

w
n

h

Revision H SCL Command Streams and Condition Processing 8-9

Controlling the Flow of a Command Stream

Controlling the Flow of a Command Stream

SCL provides control statements that control the flow of a structured
statement. These fiow control statements are as follows:

• The CYCLE statement causes the next iteration of a repetitive
statement.

• The EXIT statement causes control to pass to one of the following:

- The statement immediately following a structured statement.

The caller of an SCL procedure or utility.

Causing the Next Iteration of a Repetitive Statement
(CYCLE)

Use the CYCLE statement to begin the next iteration of a repetitive
statement. If any of the conditions specified in the CYCLE statement
occur, the current iteration stops at the point where the condition
occurs, and the next iteration or cycle begins.

The format of the CYCLE statement is as follows:

CYCLE label
WHEN boolean expression

The CYCLE statement can be used within the statement list of the
following structured statements:

• LOOP statement: The occurrence of a CYCLE statement causes
control to be transferred to the first statement in the statement
list of the LOOP statement.

• WHILE statement: The boolean expression that conditionally
repeats the statement is evaluated, and the WHILE statement
terminates or continues from that point.

• REPEAT statement: The boolean expression that conditionally
repeats the statement is evaluated, and the REPEAT statement
terminates or continues from that point.

• FOR statement: The FOR statement terminates with the final
iteration or continues with the next iteration.

8-10 NOSNE System Usage Revision H

Causing the Next Iteration of a Repetitive Statement (CYCLE)

Figure 8-1 illustrates how the CYCLE statement functions. The
following considerations apply to this illustration:

• It assumes there are conditional statements that would cause
control to go to loop 2 preceding the CYCLE statement.

• If the first CYCLE is executed, the LOOP statement labelled
LOOPl is cycled.

• If the second CYCLE is executed, the LOOP statement labeled
LOOPl is also cycled. Thus, both LOOP2 and LOOPl are
effectively cycled.

• If the third CYCLE statement is executed, the LOOP statement
labelled LOOP2 is cycled and control remains in LOOP2.

Revision H

---~- Loop1 : Loop •
....._ __ cycle

-- Loop2: Loop

'---+------eye Le Loop1

""'------cycle

Loopend Loop2

loopend Loop1

First CYCLE Statement

Second CYCLE Statement

Third CYCLE Statement

Figure 8-1. CYCLE Statement Use

SCL Command Streams and Condition Processing 8-11

Exiting from a Structured Statement (EXIT)

Exiting from a Structured Statement (EXIT)

To cause your job to transfer control out of a structured statement or
any block, use the EXIT statement. Execution continues with the
statement following the structured statement.

The format of the EXIT statement is as follows:

EXIT designator
WHEN boolean expression
WITH status expression

The following considerations apply to the EXIT statement

• The term designator applies to the label of a structured statement,
the name of an active procedure, the name of an active utility, or
the keywords PROCEDURE and UTILITY.

• The status expression used with the WHEN clause must be a
procedure's status value.

• You can use the WHEN and WITH clauses either separately or
together. If you use them together, you can list either clause first.

Figure 8-2 illustrates how the EXIT statement functions. The
following considerations apply to this illustration:

• It assumes that, preceding the EXIT statement, there are
conditional statements that would cause control to go to BLOCK2.

• If the first EXIT is executed, control is transferred to the next
statement after the LOOPEND statement labeled BLOCKl, and
BLOCKl is terminated.

• If the second EXIT is executed, control is also transferred to the
next statement after the LOOPEND statement labeled BLOCKl.
Thus, both BLOCK2 and BLOCKl are terminated.

• If the third EXIT statement is executed, control is transferred to
the next statement after the LOOPEND statement labeled
BLOCK2, and BLOCKl remains active.

8-12 NOSNE System Usage Revision H

block 1 : Loop

...------exit

block2: Loop

------exit block1

*

[

exit

p;nd block2

next statement

Loopend block 1

.__.._ _ _..next statement

Exiting from a Structured Statement (EXIT)

First EXIT Statement

Second EXIT Statement

Third EXIT Statement

Figure 8-2. EXIT Statement Use

In the following example, the FOR statement is exited when the
system encounters an abnormal status:

process: FOR i = 1 TO 10 DO

EXIT process WHEN NOT status.normal

FOREND process

Revision H SCL Command Streams and Condition Processing 8-13

Exiting from a Procedure or Utility (EXIT)

Exiting from a Procedure or Utility (EXIT)

To return control to the caller of an SCL procedure or utility, use the
EXIT statement. Execution resumes at the statement following the
procedure or utility call.

The following example exits a procedure with an abnormal status:

PROC example (status)

EXIT example WITH ..
$status(false,'US' ,1,'Proc Example Failed')

PROCEND example

If the EXIT statement is executed, the following output is returned:

/example
--ERROR-- CC=US 1 TEXT=?Proc Example Failed

8-14 NOSNE System Usage Revision H

Executing Statement Lists Conditionally (lF/IFEND)

Executing Statement Lists Conditionally
(IF/IFEND)

To conditionally execute one of several statement lists, use the
IF/IFEND statement in conjunction with ELSEIF and ELSE clauses.
Statement execution is based on the evaluation of associated boolean
expressions.

The format of the IF/IFEND statement is as follows:

IF boolean expression THEN
Statement list

ELSEIF boolean expression THEN
Statement list

ELSE
Statement list

I FEND

The following is an example of an IF statement within an SCL
procedure (refer to the NOS/VE Commands and Functions manual for
descriptions of the $PARAMETER and $VALUE functions). Assume
that an integer parameter named INT is passed to the procedure. The
following IF statement causes the procedure to report whether the
integer is negative, zero, or positive:

PROC pos_or_neg (int : integer)
IF $value(int) = 0 THEN

display_value $parameter(int)//' is Zero'
ELSEIF $value(int) > 0 THEN

display_value $parameter(int)//' is Positive'
ELSE

display_value $parameter(int)//' is Negative'
I FEND
PROCEND pos_or_neg

Revision H SCL Command Streams and Condition Processing 8-15

Condition Processing

Condition Processing

SCL provides the following mechanisms for specifying the action to be
taken when an abnormal condition occurs:

• Error processing

This mechanism is available when the STATUS parameter is
included in a command and the command terminates with an
abnormal status. 1

• Condition handling

This mechanism can be implemented when an abnormal condition
occurs for a command under the following circumstances:

The STATUS parameter is not specified for the command.

A syntax error is encountered for the command.

The job resource limit has been reached.

A pause break has been entered.

Error processing and condition handling are discussed in the sections
that follow.

1. For an example of how to process errors in statements that do not include the
STATUS parameter, see the description of the INCLUDE_LINE command in chapter 9,
Writing SCL Procedures and Command Utilities.

8-16 NOSNE System Usage Revision H

Error Processing

Error Processing

All NOSNE commands have an optional parameter called STATUS.
When you specify the STATUS parameter, you must supply a
previously declared variable of type STATUS as its value. This
variable is used by the SCL interpreter to hold the completion status
of the command.

If you include the STATUS parameter on a command, the SCL
interpreter proceeds to the next command even if an abnormal
condition is encountered. Most commands do not inform you of an
error if you include the STATUS parameter. However, succeeding
commands can check the contents of the status variable and alter the
flow of statements, based upon the occurrence of abnormal conditions.

If you do not include a value for the STATUS parameter and an error
occurs, the SCL interpreter skips succeeding commands in the current
input block.

The following blocks are considered input blocks:

• Job block

• Utility block

• Procedure block

• WHEN/WHENEND block

• INCLUDE_FILE block

• INCLUDE_LINE block

For more information about variables of type STATUS, see chapter 7,
SCL Variables, Types, and Expressions.

Revision H SCL Command Streams and Condition Processing 8-17

Error Processing

Error Processing Example

The following example creates a status variable; calls a command;
and, depending upon the outcome of the command, conditionally
executes a set of statements:

create_variable name=local_status kind=status
attach_file file=$user.data_library status=local_status
IF NOT local_status.normal THEN

"Perform error processing."

I FEND

In the example, the following activity takes place:

1. The CREATE_ VARIABLE command creates a status variable
named LOCAL_STATUS.

2. An ATTACH_FILE command issues an attach request for file
DATA_LIBRARY in the master catalog.

3. Because you included the STATUS parameter, you are not notified
of any error in processing the ATTACH_FILE command. However,
you can test the value of the NORMAL field for the status
variable LOCAL_ STATUS. This test yields the following
information:

• If the value is TRUE, the command has been properly executed
and the IF statement is not executed.

• If the value is FALSE, an error has occurred in the attempt to
process the ATTACH_FILE command and the IF statement is
executed.

8-18 NOSNE System Usage Revision H

Error Processing

Testing for Specific Error Conditions

You can also control error processing by testing for specific error
conditions. The CONDITION field of the status variable can contain a
unique condition code for each diagnostic that NOSNE issues. In
addition, each condition code is associated with a unique condition
identifier name.

The $CONDITION _NAME function returns a string representation of
the name for the condition code identified in the CONDITION field.
you can compare this value with any specific condition name and
control error processing based on the result of the comparison.

For more information about the $CONDITION _NAME function, see
the NOSNE Commands and Functions manual. Condition codes and
condition names are described in the NOSNE Diagnostic Messages
manual.

Revision H SCL Command Streams and Condition Processing 8-19

Condition Handling

Condition Handling

When you specify the STATUS parameter on a command, you can
alter the command stream based on the completion status of the
command. You can also provide condition handlers to alter the
command stream in the event of certain system conditions.

The conditions for which you can test are defined by condition
categories, and each condition category is identified by a condition
name as follows:

Condition Name Condition Description

PROGRAM_FAULT The executing program has terminated in error.
This includes system-provided programs (for
example COBOL or SORT) or your programs.

LIMIT_FAULT The job resource limit has been reached.

COMMAND_FAULT The SCL interpreter or a command utility has
detected a syntax or semantic error in a
command or statement.

ANY_FAULT Includes any of the fault conditions
PROGRAM_FAULT, LIMIT_FAULT, or
COMMAND_FAULT.

INTERRUPT A pause break (terminal interrupt) has been
entered.

Condition handling is activated when a condition exists for a command
that does not contain a STATUS parameter, or is beyond the scope of
STATUS variable error processing. When condition handling is
activated, one of the following events occurs:

• A batch job that has not defined a condition handler for the
condition is terminated.

• An interactive job that has not defined a condition handler for the
condition terminates the command with a message and prompts
you for the next command.

• A condition handler that has been defined for the condition is
activated to process the condition.

8-20 NOSNE System Usage Revision H

Condition Handling

The severity of a condition determines whether the condition handler
is activated. Condition handling takes place as follows:

Severity Level

INFORMATIVE

WARNING

NONSTANDARD

DEPENDENT

ERROR

FATAL

CATASTROPHIC

Condition Handling

Condition handling is not activated; the
command that issued the condition completes
without aborting, although SCL writes the
message to the $RESPONSE file.

Same as for INFORMATIVE.

Same as for INFORMATIVE.

Same as for INFORMATIVE.

Condition handling is activated.

Same as for ERROR.

Same as for ERROR.

For more information about severity levels, see the NOSNE
Diagnostic Messages manual.

Revision H SCL Command Streams and Condition Processing 8-21

Condition Handling

Establishing a Condition Handler (WHEN/WHENEND)

To provide condition handling, use the WHEN/WHENEND statement.

The format of the WHEN/WHENEND statement is as follows:

WHEN condition name(s) DO
statement list

WHENEND

Condition name(s) can be any of the following keyword values:

• PROGRAM_FAULT

• LIMIT_FAULT

• INTERRUPT

• COMMAND_FAULT

• ANY_FAULT

The WHEN statement is evaluated continually in the block in which
it resides. Consequently, if the conditions specified in the WHEN
statement occur, the subsequent statement list is executed. If more
than one condition handler is established, the most recent condition
handler in the current block takes precedence. When a block ceases to
exist, any WHEN statements in that block become undefined.

When one of the conditions occurs, two variables are initialized:
OSV$STATUS and OSV$COMMAND_NAME.

Variable

OSV$STATUS

OSV$COMMAND_
NAME

Description

Contains a copy of the status record set by the
program that determined the condition.

Contains a string whose value is the name of
the command that was being processed when
the condition occurred.

The WHEN statement is activated, and the statement list can then
interrogate these variables in order to determine the error condition
and initiate appropriate action.

8-22 NOSNE System Usage Revision H

Condition Handling

The following considerations apply to the WHEN/WHENEND block:

• If any of the conditions specified in the WHEN statement occur
while the WHEN statement list is being processed, the block that
defined the WHEN statement is terminated with an abnormal
status.

• Variables created within a WHEN block are local to that block
and are released when control is returned from the WHEN
statement.

• Exiting from a WHEN block takes place via the CONTINUE
statement. If no CONTINUE statement is encountered, the exit
occurs after the last statement in the WHEN block is processed.

What happens when you exit from a WHEN block depends on the
following factors:

• Condition that caused the WHEN statement to be activated.

• Whether the RETRY option was specified on the CONTINUE
statement.

For more information, read Exiting from a WHEN Block in the next
section.

The following example illustrates how to establish a condition handler.
In this case, each time a LIMIT_FAULT condition is encountered, the
statements following the WHEN clause are executed. The CHANGE_
JOB_LIMIT command increments the current time limit by 60 CP
seconds.

WHEN limit_fault DO
put_line ' Incrementing time limit by 60 CP seconds.'
change_job_limit name=cp_time ..

resource_limit=($job_limit(cp_time, accumulator)+60)
CONTINUE RETRY
WHENEND

Revision H SCL Command Streams and Condition Processing 8-23

Condition Handling

Exiting from a WHEN Block (CONTINUE)

The CONTINUE statement transfers control from the WHEN block in
which it appears.

The format of the CONTINUE statement is as follows:

CONTINUE
RETRY
WHEN boolean expression

If the boolean expression in the WHEN clause is TRUE, the WHEN
block is exited. If the expression is FALSE, the WHEN block is not
exited. If the WHEN clause is omitted, the block is exited;

What happens upon exit depends on the following factors:

• The condition that caused the WHEN statement to be activated.

• Whether RETRY was specified on the CONTINUE statement.

The following descriptions illustrate the process of exiting when
RETRY is specified on the CONTINUE statement; they also apply to
the action taken in the absence of a CONTINUE statement:

COMMAND_FAULT or PROGRAM_FAULT, without RETRY

Processing continues at the statement following the one that
caused the WHEN statement to be activated.

COMMAND_FAULT or PROGRAM_FAULT, with RETRY

The statement that caused the WHEN statement to be activated is
reprocessed.

INTERRUPT or LIMIT_FAULT, without RETRY

Processing continues at the point of interruption.

INTERRUPT or LIMIT_FAULT, with RETRY

The results are undefined.

8-24 NOSNE System Usage Revision H

Condition Handling

The following example establishes a condition handler for a command
fault The user is prompted for several options whenever an
COMMAND_FAULT condition occurs.

WHEN corrmand_fault DO
create_variable name=response kind=string

LOOP
accept_line variable=response ..
prompt='Enter RETRY, CONTINUE, or corrmand:
input=input
IF $translate(ltu,response) = 'RETRY' THEN

CONTINUE RETRY
ELSEIF $translate(ltu,response) = 'CONTINUE' THEN

CONTINUE
ELSE

include_ line
!FEND

LOOP END
WHENEND

Canceling a Condition (CANCEL)

To cancel one or more condition selections made with a WHEN
statement, use the CANCEL statement. The most recently made
WHEN statement with the specified condition selection is canceled
first.

The format of the CANCEL statement is as follows:

CANCEL condition(s)

The following example cancels the LIMIT_FAULT condition established
in the previously shown WHEN statement:

/cancel limit_fault

Several conditions can be canceled at the same time, as shown in the
next example:

/cancel command fault program_fault

Revision H SCL Command Streams and Condition Processing 8-25

Suspending Command Processing (WAIT)

Suspending Command Processing (WAIT)

To suspend the processing of commands within your job until a
specified time period has elapsed, or until one or more specified
events have taken place, use the WAIT command.

The parameters of the WAIT command are as follows:

time, t
task_names, task_name, tn
queue_names, queue_name, qn
until, u
status

: integer 0 . .4294967295 = $optional
: list of name = $optional
: list of name = $optional
: key all, any = all
: var of status = $optional

Length of time is measured in milliseconds. For example, to cause a
job to wait for 20 seconds (20,000 milliseconds), enter the following
form of the command:

/\'lait 20000

Alternatively, you can achieve the same results by entering the
following form of the WAIT command:

/wait 20"'1000

Changing System Environments

SCL contains statements that enable you to temporarily change
system environments within procedures. These are the PUSH and POP
statements. You change the system environment by changing one or
more environment objects. The following is a list of keyword names
for the environment objects you can change with the PUSH and POP
statements:

COMMAND_LIST
FILE_CONNECTIONS
INTERACTION _STYLE
MESSAGE_LEVEL
NATURAL_ LANGUAGE
PROGRAM_ATTRIBUTES
WORKING_CATALOG

8-26 NOSNE System Usage Revision H

Establishing a New Environment (PUSH)

Establishing a New Environment (PUSH)

To establish a new version of a system environment, use the PUSH
statement. The newly established environment remains in effect until
you either remove it with a POP statement or exit from the block in
which the PUSH statement was executed.

The format of the PUSH statement is as follows:

PUSH keyword(s)

When an environment object is affected by a PUSH statement, its
value is copied from the previous version. You can revise or
interrogate it with SCL commands, statements, and/or functions
specific to that environment object. Only the most recently pushed
version of the system environment can be referenced or changed.

The following example illustrates a procedure that temporarily
changes the command list environment object. This procedure uses the
command library .AJL.COMMAND_LIBRARY only during its
execution. After exiting from the procedure, you no longer have the
command library in your command list.

PROC change_environment
PUSH corrmand_list
create_corrmand_list_entry e=.ajl.conmand_library

"Execute corrmands found in .ajl.corrmand_library."

PROCEND

If you try to PUSH a particular object again within the same block
before restoring the original environment with a POP statement, an
error results.

Revision H SCL Command Streams and Condition Processing 8-27

Restoring the Previous Environment (POP)

Restoring the Previous Environment (POP)

To delete a current version of a system environment object and to
restore the changed environment object to its former value, use the
POP statement.

The format of the POP statement is as follows:

POP keyword(s)

This deletion operation is performed automatically when your program
exits from a block in which the corresponding PUSH statement was
executed (see the example in the preceding section).

8-28 NOSNE System Usage Revision H

Writing SCL Procedures
and Command Utilities 9

Commands and Functions Used in Procedure Writing 9-3
Reading Lines from a File and Writing Lines to a File . 9-10

Reading Lines from a File (ACCEPT_LINE) 9-10
Writing Lines to a File (PUT_LIN_E, COLLECT_ TEXT) . 9-12

Inserting Files or Strings into the Command Stream . . . 9-14
Inserting Files (INCLUDE_FILE) 9-14

Using $COMMAND and $COMMAND_OF_CALLER 9-15
Interactive Procedures and Utilities 9-15

Inserting Lines (INCLUDE_LINE) 9-16
Inserting Commands (INCLUDE_COMMAND) 9-17

Creating Procedures 9-18

Procedure Calling Environments 9-20

Procedure Format 9-21
Procedure Header Format . 9-22
Statement List Format . 9-23
Procedure End Format . . . 9-23

Defining Procedure Parameters 9-24
Parameter Name 9-26
Value Specification 9-26

Parameter Data Type . . . 9-27
Formats for the Parameter Data Type . 9-27
Data Types 9-28
Using Data Type NAME. . . 9-29
Using Data Type STRING . . 9-30
Using Data Type INTEGER . 9-31
Using Data Type KEY or a KEY Clause 9-31
Using VAR OF and ARRAY OF Clauses. 9-32

Value List Type 9-34
Default Specification 9-40

Specifying $REQUIRED. 9-40
Specifying $OPTIONAL . 9-40
Specifying a Value List . 9-41

Sample Procedure 9-42

Creating SCL Command Utilities 9-45

Writing Command Utilities ..
Overview
Example: Defining a Utility .
Example: Subcommand Processors

Processor for CHANGE_FORMAT
Processor for DISPLAY_DATE .
Processor for DISPLAY_ TIME ...
Processor for QUIT

Organizing Subcommands and Subcommand Processors
Subcommands
Subcommand Processors

Permitting Others to Use Your Utilities

Using Your Utility ...
Executing the Utility
Parameter Prompting
Displays of Subcommand Information
Changing Utility Attributes .

Formatting SCL Procedures ..
Formatting Example
Input to the Procedure Formatter
Controlling the Formatting Process
Utility Definition File

Initial List of Utilities and Terminators
Adding Utilities and Terminators to the List

How the Formatter Formats the Input File .
How the Formatter Handles Errors

9-46
9-47
9-49
9-54
9-55
9-56
9-57
9-57
9-58
9-58
9-59

9-60

. ·9-62
9-62
9-64
9-65
9-66

9-67
9-67
9-69
9-70
9-72
9-72
9-75
9-76
9-80

"VV :riti:ng §CJL Procedures
and Crnrm1mand Utilities

An SCL procedure consists of a list of statements that are processed
when you execute (call) the procedure by the name you define for it.

An end user of a procedure sees no difference between calling a
procedure and calling any other NOSNE command. This capability
makes it easy to create a new command or to redefine any existing
command. Procedure users need not know whether the command is
implemented as an SCL procedure or as an executable program.

You can define procedures to accept parameters. Either these
parameters can be tested to execute certain commands or statements,
or they can be substituted in commands or statements that are
executed within the procedure.

A command utility is a command that gives you access to an
additional set of commands. NOSNE not only provides a number of
utilities for your use, but also allows you to create your own utilities.1

1. For a complete list of system-defined utilities, see the discussion of utility definition
files later in this chapter.

Revision H Writing SCL Procedures and Command Utilities 9-1

Writing SCL Procedure~ and Command Utilities

This chapter discusses the following topics:

• Commands and functions used in procedure and utility writing

• Interactive procedures and utilities

• Creating procedures

• Procedure structure

• Defining procedure parameters

• Creating utilities

• Utility structure

• Defining utility subcommands

• Executing utilities

• Formatting procedures and utilities.

9-2 NOSNE System Usage Revision H

Commands and Functions Used in Procedure Writing

Commands and Functions Used in Procedure
Writing

The following tables provide a list of the commands and functions
commonly used when writing procedures and a list of all the NOSNE
functions available for your use.

The following commands are discussed in greater detail in the next
sections:

INCLUDE_FILE
INCLUDE_ LINE
INCLUDE_ COMMAND

ACCEPT_ LINE
PUT_ LINE
COLLECT_ TEXT

For more information about the commands and functions listed below,
see the NOSNE Commands and Functions manual.

Table 9-1. Commands Used in Procedure Writing

Command

ACCEPT_ LINE

COLLECT_ TEXT

CREATE_ VARIABLE

DELETE_ VARIABLE

DISPLAY_ VALUE

DISPLAY_ VARIABLE_
LIST

FORMAT_SCL_PROC

Revision H

Description

Reads lines from a file into a string
variable.

Reads lines of text from the command
stream and writes them to a specified file.

Creates an SCL variable.

Deletes variable declarations from the
current block.

Displays the value of an expression.

Displays the variables available to your
current job.

Formats a procedure and detects errors in
the input file.

(Continued)

Writing SCL Procedures and Command Utilities 9-3

Commands and Functions Used in Procedure Writing

Table 9-1. Commands Used in Procedure Writing (Continued)

Command Description

INCLUDE_COMMAND Causes the text of a specified string to
logically replace the occurrence of the
INCLUDE_COMMAND command. This
enables you to construct a command
through string manipulation and then have
the command processed.

INCLUDE_FILE

INCLUDE_LINE

PUT_LINE

WAIT

9-4 NOS/VE System Usage

Inserts into the command stream a text file
containing SCL statements.

Inserts into the command stream a string
containing SCL statements.

Writes lines from a string variable to a
file.

Suspends command processing until a
specified number of milliseconds have
elapsed, or until another specified event or
set of events has taken place.

Revision H

Commands and Functions Used in Procedure Writing

Table 9-2. Topical List of NOS/VE Functions

Topic

Accessing Date and Time:

Accessing the current date

Accessing the current time

Converting Data:

Converting a string to a file name

Converting a string or a boolean to an integer

Converting a string to a name

Converting a name, file, or variable to a string

Converting any value to a string

Converting a string to a variable name

Returning Constant Values:

Returning the maximum integer value

Returning the minimum integer value

Returning the maximum name length

Returning the maximum string length

Returning the maximum number of value sets

Returning the maximum number of values

Function Name

$DATE

$TIME

$FNAME

$INTEGER

$NAME

$STRING

$STRREP

$VNAME

$MAX_ INTEGER

$MIN_INTEGER

$MAX_ NAME

$MAX_ STRING

$MAX_ VALUE_
SETS

$MAX_ VALUES

(Continued)

Revision H Writing SCL Procedures and Command Utilities 9-5

Commands and Functions Used in Procedure Writing

Table 9-2. Topical List of NOS/VE Functions (Continued)

Topic

Manipulating Strings:

Finding the character given the ordinal

Finding the ordinal given the character

Determining string length

Changing characters in a string

Copying a string and adding apostrophes

Deleting trailing spaces from a string

Searching for a character in a set of characters

Searching for a character not in a set of
characters

Searching one string for another string

Processing substrings

Obtaining File and Catalog Information:

Determining the access mode of a file

Interrogating file attributes

Accessing the working catalog name

Interrogating file paths

9-6 NOSNE .system Usage

Function Name

$CHAR

$ORD

$STRLEN

$TRANSLATE

$QUOTE

$TRIM

$SCAN_ANY

$SCAN_NOT_
ANY

$SCAN_STRING

$SUBSTR

$ACCESS_ MODE

$FILE

$CATALOG

$PATH

(Continued)

Revision H

Commands and Fnnctions Used in Procedure Writing

Table 9-2. Topical List of NOS/VE Functions (Continued)

Topic

Obtaining Hardware Information:

Returning attributes of the mainframe

Returning attributes of the processor

Obtaining Information about Jobs:

Interrogating job resource limits

Interrogating job attributes

Determining the status of a job

Determining the system default values for a
job's attributes

Determining the terminal model

Interrogating remote validation

Determining your interaction style

Determining the name of a task

Determining the status of a task

Determining the message level

Determining the language of messages

Determining the execution ring

Interrogating variable attributes

Testing job default program attributes

Function Name

$MAINFRAME

$PROCESSOR

$JOB_LIMIT

$JOB

$JOB_STATUS

$JOB_DEFAULTS

$TERMINAL_
MODEL

$REMOTE_
VALIDATION

$INTERACTION_
STYLE

$TASK_ NAME

$TASK_ STATUS

$MESSAGE_
LEVEL

$NATURAL_
LANGUAGE

$RING

$VARIABLE

$PROGRAM

(Continued)

Revision H Writing SCL Procedures and Command Utilities 9-7

Commands and Functions Used in Procedure Writing

Table 9-2. Topical List of NOS/VE Functions (Continued)

Topic

Obtaining Information about Output Files:

Interrogating output file attributes

Determining the status of an output file

Functions Dealing with Status Values:

Determining the condition code

Determining the condition name

Determining the severity of a condition

Constructing a status value

Obtaining the completion status of a command

Parameter Reference Functions:

Function Name

$JOB_OUTPUT

$OUTPUT_
STATUS

$CONDITION_
CODE

$CONDITION_
NAME

$SEVERITY

$STATUS

$PREVIOUS_
STATUS

Determining whether a parameter is passed $SPECIFIED

Determining the number of value sets $SET_ COUNT

Determining the number of value elements in a $VALUE_COUNT
value set

Determining whether parameters are specified as $RANGE
ranges

Determining the kind of value of a parameter

Determining or setting a parameter value

Accessing the entire value list

Accessing the entire parameter list

9-8 NOS/VE System Usage

$VALUE_KIND

$VALUE

$PARAMETER

$PARAMETER_
LIST

(Continued)

Revision H

Commands and Functions Used in Procedure Writing

Table 9-2. Topical List of NOS/VE Functions (Continued)

Topic

Miscellaneous Functions:

Interrogating utility attributes

Calculating the modulus of two integers

Generating unique names

Determining the source of a command

Reserved for future use

Function Name

$UTILITY

$MOD

$UNIQUE

$COMMAND_
SOURCE

$QUEUE

Revision H Writing SCL Procedures and Command Utilities 9-9

Reading Lines from a File and Writing Lines to a File

Reading Lines from a File and
Writing Lines to a File

Commands are provided to read a line from a file into a string
variable and to write a string variable to a file.

Reading Lines from a File (ACCEPT_LINE)

To read lines from a file into a string variable, use the ACCEPT_
LINE command. You must create the string variable before entering
the ACCEPT_LINE command.

To guarantee that the ACCEPT_LINE command reads from a
terminal, do not use a standard file (such as $INPUT) for the INPUT
parameter. Instead, use a file such as the job file INPUT. This
guarantees that reading occurs from the terminal rather than from
another target file connected to the $INPUT file. It also ensures that
the prompt is written to the terminal.

In the example on the following page, the WRITE_FILE_ TO_
OUTPUT procedure reads each line from file INFILE into a string
variable named INPUT_STRING until the end-of-information is
reached.

By default, NOSNE commands which access a file perform an implicit
attach/detach of the file. For example, the ACCEPT_LINE command
performs an automatic attach before reading a line and an automatic
detach after reading a line from a file. In the example on the next
page, however, the WRITE_FILE_ TO_OUTPUT procedure eliminates
the need for this by using ATTACH_FILE to explicitly attach the file.
The $ASIS file position maintains the correct file position for each
execution of the ACCEPT_LINE command. After the file is read, it is
explicitly detached with the DETACH_FILE command.

File INFILE is assumed to have the following contents:

123

456
789

9-10 NOSNE System Usage Revision H

Reading Lines from n File and Writing Lines to a File

File WRITE_FILE_ TO_OUTPUT has the following contents:

PROC write_file_to_output(
input , i : f i 1 e = $required
output,o file= output
status : var of status = $optional
)

create_variable input_string kind=string
create_variable input_count kind=integer
attach_file f=$value(input)
LOOP

accept_line variable = input_string
input = $fname($string($value(input))//' .$asis')
prompt='>>>?' line_count=input_count.

EXIT WHEN input_count=O
display_value input_string

LOOP END
detach_file f=$value(input)

PROCEND write_file_to_output

When the procedure is executed, the following output is produced:

/write_file_to_output input=infile
123

456
789

Revision H Writing SCL Procedures and Command Utilities 9-11

Reading Lines from a File and Writing Lines to a File

Writing Lines to a File (PUT _LINE, COLLECT_ TEXT)

To write lines from a string to a file, use the following commands. A
list of each command's parameters is included.

• PUT_LINE

lines, line, 1
output, o
status

• COLLECT_ TEXT

output, o
until, u
prompt, p
substitution_ mark,
status

sm

: list of string = $required
: file = $output
: var of status = $optional

: file = $required
string = '**'
string 0 .. 30 = 'ct? '
string 1 or key none = none
var of status = $optional

If you are writing more than one line in succession to a file, use the
COLLECT_ TEXT command for faster response. This command opens
the output file only once for multiple lines, whereas the PUT_LINE
command opens the file for each line. In addition, the COLLECT_
TEXT command allows you to substitute the values of variables and
string expressions in the output file.

The following example writes a three-line message to file OUTPUT.
The leading space in each of the three strings is a format effector (a
space character) that causes each string to print on a separate line.

/put_l i nes 1 i nes= (..
.. /' Today''s date: '//$date(month)
.. /'The current time: '//$time(ampm}
.. /' Welcome to NOS/VE.')

Today's date: March 28, 1988
The current time: 2:45 PM
Welcome to NOS/VE.

9-12 NOSNE System Usage Revision H

Rending Lines from u File and Writing Lines to u File

The following command sequence creates a file named DATE into
which an SCL procedure is entered and then called.

/C011ect_text output=date until='end'
ct? proc date ()
ct? display_value $date(rr.onth)
ct? procend
ct? end
/date "Execute the procedure here."
March 28, 1988

NOTE

Although you can use both the PUT_LINE and DISPLAY_ VALUE
commands to display the value of one or more strings, observe the
following differences:

• The PUT_LINE command never adds a page title or format
effectors (the string is assumed to contain any necessary format
effectors).

• Depending on the attributes of the output file, the DISPLAY_
VALUE command may add a page title or format effectors. Format
effectors are discussed in chapter 6, Job Management.

Revision H Writing SCL Procedures and Command Utilities 9-13

Inserting Files or Strings into the Command Stream

Inserting Files or Strings into the Command Stream

NOS/VE provides commands that insert (include) a file or string into
the command stream. The following commands are described in this
section:

INCLUDE_FILE
INCLUDE_ LINE
INCLUDE_COMMAND

Inserting Files (INCLUDE _FILE)

To cause a text file containing SCL statements to logically replace the
occurrence of the command itself, use the INCLUDE_FILE command.
The commands in the specified file are processed in the same context
as the INCLUDE_FILE command. That is, tl~e command has access
to the same variables and conditions, as well as to parameter
substitution.

To understand the example that follows, assume that file PROLOG
contains the following statement list:

display_value 'Login at '//$time(ampm)//' on '// ..
$date(month)//' .'

Entering the following INCLUDE_FILE command produces the
indicated results:

/include_file file=prolog
Login at 3:21 PM on March 28, 1987.

The inserted statement list is treated the same as the statement list
of an unlabeled BLOCK statement.

9-14 NOSNE System Usage Revision H

Inserting Files or Strings into the Command Stream

Using $COMMAND and $COMMAND_OF_CALLER

NOSNE uses $COMMAND and $COMMAND_OF_CALLER to specify
an active command stream and the current position within it.

• $COMMAND specifies the position in the command stream from
which the SCL interpreter is currently reading input. When you
call a procedure, the interpreter begins reading from the procedure
file. $COMMAND in this case specifies the position between the
PROC and PROCEND statements from which input is currently
being read. If you insert $COMMAND into the procedure's
statement list using the INCLUDE_FILE command, the
interpreter considers the current input file to be the statement list
following the INCLUDE_FILE command up to the PROCEND
statement.

• $COMMAND_ OF_ CALLER specifies the $COMMAND file from
which the requesting procedure was called. That is, while a
procedure is executing, $COMMAND_OF_CALLER specifies the
current position in the command stream which called the
procedure.

Interactive Procedures and Utilities

You can create procedures and utilities which allow continuous
interactive input in two ways:

• By inserting $COMMAND_OF_CALLER into the statement list of
a procedure or utility using the INCLUDE_FILE command.

o By passing $COMMAND to a procedure or utility as a parameter
value and then inserting the parameter value into the statement
list of the procedure or utility using the INCLUDE_FILE
command.

Either instance allows continuous interactive input to the procedure or
utility provided the call to the procedure or utility is issued from an
interactive terminal.

The interpreter begins reading from the $COMMAND file which called
the procedure or utility at the point following the call. The remaining
statements in the procedure or utility block cannot be executed until
you exit the block created by the INCLUDE_FILE command, for
example via an EXIT statement.

Revision H Writing SCL Procedures and Command Utilities 9-15

Inserting Files or Strings into the Command Stream

Inserting Lines (INCLUDE_LINE)

To cause the text of a string to logically replace the occurrence of the
command itself, use the INCLUDE_LINE command. The commands in
the specified string are processed in the same context as the
INCLUDE_LINE command. That is, the string has access to the same
variables, conditions, and parameter substitution as the INCLUDE_
LINE command.

This command lets you construct a line of one or more statements via
string manipulation and then process it.

The following example uses string concatenation to create a line and
then processes the line with the INCLUDE_LINE command:

/time_call = '$time(ampm)'
/date_call = '$date(month)'
/cornmand_list = 'display_value ('//time_call//' '//date_call//')'
/include_line sl=command_list
3:26 PM
March 28, 1987

The inserted statement list is treated as the statement list of an
unlabeled BLOCK statement.

You can use the INCLUDE_LINE command to control any syntax
errors encountered during evaluation of assignment statements. For
example, if you enter the following commands, the error shown is
displayed:

/create_variable n=address k=string
/address = 1304
--ERROR-- Wrong kind of value for variable.
I

Assigning an integer value to a string variable is a syntax error.
Since assignment statements do not have status parameters, you
cannot perform error processing for errors of this kind.

The following example demonstrates the use of the INCLUDE_LINE
command to control syntax errors in assignment statements:

/create_variable n=incl_status k=status
/include_line sl='address = 1304' status=incl_status
/display_value ('This error occurred:' incl_status)
This error occurred:
--ERROR-- Wrong kind of value for variable.

9-16 NOSNE System Usage Revision H

Inserting Files or Strings into the Command Stream

Inserting Commands (INCLUDE_COMMAND)

To construct a command through string manipulation and then process
the command, use the INCLUDE_COMMAND command. The
command causes the text of the specified string to logically replace
the occurrence of the INCLUDE_COMMAND command. The command
in the specified string is processed in the same context as the
INCLUDE_COMMAND command. That is, the command in the string
has access to the same variables, conditions, and parameter
substitutions as the INCLUDE_COMMAND command.

Be aware of the following distinctions between the INCLUDE_LINE
command and the INCLUDE_COMMAND command:

• The INCLUDE_LINE command permits processing of multiple
commands and control statements. However, the INCLUDE_
COMMAND command accepts only one command.

• The INCLUDE_LINE command creates an input control block;
that is, it treats the statement list as if it were the statement list
of an unlabeled BLOCK statement. The INCLUDE_COMMAND
command does not.

The following example creates a string that is to be interpreted as a
command. Next, it processes the command with the INCLUDE_
COMMAND command.

/time_call='$time(ampm)'
;ccrr.rnand='display_value ('//time_call//')'
/include_corr.mand corr.mand=com~and
11:41 AM

Revision H Writing SCL Procedures and Command Utilities 9-17

Creating Procedures

Creating Procedures

To create a procedure, complete the following steps (it is assumed that
your working catalog is set to $USER):

1. Use the EDIT_FILE utility to create a file to contain the
procedure. For example, the following command creates file
$LOCAL.SAMPLE_PROC to hold a procedure:

/edif $local .sample_proc

For further information about the EDIT_FILE utility, see the
NOSNE File Editor manual.

2. Create the procedure. Details about procedure format are found
later in this chapter. The following is a sample procedure:

proc print_report, prir {
file, f file= $required
number, n integer 1 .. 10 = 5
banner, b : string = 'MONTHLY STATUS REPORT'
status)

print_file file=$value{file) copies=$value{number)
rout1ng_banner=$value{banner) ..
comnent_banner=$strrep{$value{number))//' copies printed.'

procend print_report

9-18 NOSNE System Usage Revision H

Creating Procedures

3. Format the procedure using the SCL formatter. This is an optional
step you can perform to make your procedure easier to read. For
example, the following command formats the procedure contained
in file $LOCAL.SAMPLE_PROC:

/format_scl_proc input=$local .sample_proc
.. /out put =pr i r

Because you are writing it to a permanent file (located in the
working catalog $USER, which contains only permanent files), the
file $USER.PRIR containing the procedure is now permanent.

The formatted procedure appears as follows:

PROC print_report, prir (
file, f
number, n
banner, b
status
)

file= $reQuired
integer 1 .. 10 = 5
string = 'MONTHLY STATUS REPORT'
var of status = $optional

print_file file=$value(file) copies=$value(number)
routing_banner=$value(banner) ..
corrment_banner=$strrep($value(number))//' copies printed.'

PROCEND print_report

4. Execute the procedure. You can execute procedures in two ways.

o Enter the name of the file containing the procedure.

o Enter the name of the procedure which resides on an object
library.

For more information, see chapter 5, Command and SCL Procedure
Execution.

Revision H Writing SCL Procedures and Command Utilities 9-19

Procedure Calling Environments

Procedure Calling Environments

SCL procedures can be called from the following environments:

• From outside a procedure.

• From within another SCL procedure. These are called nested calls.

• From within itself. These are called recursive calls.

Access to variables in procedures is discussed in chapter 7, SCL
Variables, Types, and Expressions.

SCL procedures cannot be defined within another SCL procedure
(nested definitions). For example, the following structure is not valid:

PROC a

PROC b

PROCEND b

PROCEND a

9-20 NOSNE System Usage Revision H

Procedure Format

This section describes the format of SCL procedures.

An SCL procedure has the following general format:

PROC procedure names (parameter definitions)
statement list

PROCEND procedure name

Procedure Forinat

The procedure header is required and always begins with a PROC
statement. The procedure end is required and always begins with a
PROCEND statement. The statement list is optional.

For example, assume the file PROC_FILE contains the procedure
DISPLAY_NUMBER as follows:

proc display_number ()

statement 1 i st

procend

The procedure header, statement list, and procedure end are described
in more detail in the following paragaraphs.

Revision H Writing SCL Procedures and Coininand Utilities 9-21

Procedure Header Format

Procedure Header Format

The procedure header has the following format:

PROC procedure name,alias, .. ,alias

The following considerations apply to the procedure header:

• Minimally, it must include a PROC statement with one procedure
name. A procedure name is any valid SCL name.

• The PROC statement must be separated from the procedure name
by a space.

• The procedure header may also include aliases for the procedure
name. Supply the aliases in a list in which each name is separated
by a comma or a space.

The following procedure header defines a PROC statement with the
procedure name DISPLAY_NUMBER:

PROC display_number

The DISPLAY_NUMBER procedure name shown in the following
example contains the aliases DISPLAY_NUMBERS and DISN:

PROC display_number,display_numbers,disn

statement 1 i st

PROCEND display_number

With this definition, any of the following calls are valid provided the
procedure has been added to the command list:

display_number
display_numbers
disn

9-22 NOSNE System Usage Revision H

Statement List Format

Statement List Format

A statement list constitutes the body of a procedure. The statement
list can contain any valid SCL statement, including SCL comments.
For example:

PROC display_number,display_numbers,disn
"This procedure displays the number 3."
display_value 3

PROCEND display_number

An SCL procedure constitutes its own block. When the procedure
terminates, the block is undefined. Any variables created in the
procedure cease to exist, and outstanding calls to utilities or
procedures are terminated.

Procedure End Format

Optionally, you can specify the name of the procedure on the
procedure end statement PROCEND in the following format:

PROCEND procedure name

If you specify the procedure name, it must match the first name listed
on the procedure header as in the following example:

PROC display_number, display_numbers, disn

PROCEND display_number

In general, include the procedure name in the PROCEND statement
for documentation purposes.

Revision H Writing SCL Procedures and Command Utilities 9-23

Defining Procedure Parameters

Defining Procedure Parameters

When you define a procedure, you can optionally specify that it is to
accept parameters. As with parameters on NOS/VE commands, the
parameters you specify allow you to pass data in and out of the
procedure. The following is a list of some common uses for
parameters:

• Specifying the source of input for the command or procedure.

• Specifying the destination for output from the command or
procedure.

• Passing variables in and out of the command or procedure.

• Providing the specific data for the purposes of the command or
procedure.

• Providing a record of the command or procedure's completion
status.

Recall that the definition of a procedure has the following format:

PROC procedure names (parameter definitions)
statement list

PROCEND procedure name

The following guidelines apply to this procedure format:

• The opening and closing parentheses are required.

• The opening parenthesis must be on the same line as the
procedure names.

• Each parameter definition can be expressed in one of the following
ways:

On separate lines:

parameter definition
parameter definition

More than one to a line, separated by semicolons:

parameter definition; parameter definition

9-24 NOSNE System Usage Revision H

Defining Procedure Parameters

Split over two or more lines. In this case, an ellipsis (..) must
appear at the end of each line to be continued:

parameter ..
definition

The following is a sample format of a procedure header with
parameter definitions included:

PROC procedure names (
parameter definition

parameter definition)

Each parameter definition has the following format:

parameter names:value specification=default specification

parameter names

Name or names by which you can reference a parameter. For
each parameter you define, you must include at lease one
name.

value specification

Kind of value and whether you can represent it as a list and/or
a range. You can define lists further to allow a specific number
of value sets. In addition, you can define each value set to
contain a specific number of value elements. The value
specification is optional.

default specification

Indicates whether a parameter is required or optional. If the
parameter is optional, you can also specify its default value.
The default specification is optional.

In the procedure definition, the full parameter definition format
appears as follows:

PROC procedure names (
parameter names:value specification=default specification)
statement list

PROCEND procedure name

Parameter names, the value specification, and the default specification
are described in more detail in the following sections.

Revision H Writing SCL Procedures and Command Utilities 9-25

Parameter Name

Parameter Name

A parameter name enables you to reference a particular parameter in
the procedure header. For each parameter you define, you must
include at least one name. The following example illustrates how you
can write the DISPLAY_NUMBER procedure to accept a number:

PROC display_number,display_numbers,disn
number,numbers,n:integer)

The NUMBER parameter is defined with two aliases and is given a
value specification of integer (value specifications are described in the
next section).

Value Specification

The value specification specifies the type of value and whether you
can represent it as a list and/or range. The value specification consists
of one of the following elements:

Value Specification

data type

value list type OF data
type

Description

Specifies the type of value the parameter
can be.

Specifies whether the parameter value can
be given as a list and/or a range of values.

The value specification is optional. If you do not specify a data type,
the system assumes the parameter is a value of type FILE. An
exception occurs if the parameter name is STATUS; in this case, the
data type is assumed to be VAR OF STATUS.

The following sections describe the two kinds of value specifications in
more detail.

9-26 NOS/VE System Usage Revision H

Value Specification

Parameter Data Type

The parameter's data type defines:

• The type of value.

• Whether it is a variable or an array.

• Whether it can be represented by one or more keywords.

Formats for the Parameter Data Type

The following are valid formats for the parameter data type:

data type

KEY keyword

data type OR KEY keyword

The following are valid parameter formats when the data type is a
valid variable type:

VAR OF data type

ARRAY OF data type

Revision H Writing SCL Procedures and Command Utilities 9-27

Value Specification

Data Types

The following table lists the data types:

Data Type

FILE

NAME

STRING

INTEGER

REAL

BOOLEAN

KEY

STATUS

ANY

application value name

Description

File

SCL name

String

Integer

Real number

Boolean value

Keyword value

Status variable

Entry indicating that any data type can be
used. (You can use the $VALUE_KIND
function to evaluate the parameter and
return the actual data type.)

Name of an application value. For further
information on application values, see the
CYBIL System Interface manual.

The following paragraphs describe how to use the data types.

9-28 NOSNE System Usage Revision H

Value Specification

Using Data Type NAME

When using the data type NAME, you can specify its minimum and
maximum character lengths in either of the following formats:

NAME length

NAME minimum length .. maximum length

If you omit the length, the system assumes 1..$MAX_NAME (31
characters)

The following examples create specific name lengths:

name 10 Name consisting of exactly 10 characters.

name 1 .. 9 Name consisting of 1 to 9 characters.

name 2 .. 2 Name consisting of exactly 2 characters.

Revision H Writing SCL Procedures and Command Utilities 9-29

Value Specification

Using Data Type STRING

When using the data type STRING, you can specify its minimum and
maximum character lengths in either of the following formats:

STRING length

STRING minimum length .. maximum length

If you omit the string length, the system assumes O .. $MAX_STRING
(256 characters) string length.

The following examples indicate strings of specific lengths:

string 10 String consisting of exactly 10 characters.

st r i ng 1 .. 40 String consisting of 1 to 40 characters.

string 1 .. 2 String consisting of 1 or 2 characters.

9-30 NOSNE System Usage Revision H

Value Specification

Using Data Type INTEGER

When using the data type INTEGER, you can specify its minimum
and maximum integer values as follows:

INTEGER minimum value .. maximum value

If you omit the minimum and maximum values, the system assumes
$MIN _INTEGER .. $MAX_INTEGER
(-9,223,372,036,854,7,775,808 .. +9,223,372,036;854,7,775,807)

The following examples illustrate how to represent integer values:

integer 1 .. 100 Integer from 1 to 100.

integer O .. $max_ integer Integer from 0 to $MAX_INTEGER.

Accordingly, you can define the DISPLAY_NUMBER procedure to
accept numbers only in the range -100 to + 100:

PROC display_number,display_numbers,disn (
number,numbers,n integer -100 .. 100 =$required
status : var of status = $optional
)

Using Data Type KEY or a KEY Clause

When using the data type KEY or a KEY clause, you can accept one
of a list of names you define as a parameter value. For example,
assume that a parameter named COUNT specifies the number of lines
of a file to display. You can define the COUNT parameter as
accepting the keywords ALL or NONE. Subsequently, specifying ALL
causes the system to list all lines of the file in question. You can
define such a parameter as follows:

count,c : key all none

If you want to permit an integer value and a keyword, define the
COUNT parameter as follows:

count,c : integer or key all none

Revision H Writing SCL Procedures and Command Utilities 9-31

Value Specification

Using VAR OF and ARRAY OF Clauses

If you want the value of the parameter passed to be a variable, or if
you want the procedure to return a value, use the VAR OF clause. If
you want a variable array with a dimension greater than 1 to be
passed to the procedure, use the ARRAY OF clause.

When using a VAR OF or ARRAY OF clause, you must also specify
one of the following data types for the variable:

STRING
INTEGER
REAL
BOOLEAN
STATUS
ANY

Specifying ANY for the value kind allows a variable of value kind
STRING, INTEGER, REAL, BOOLEAN, or STATUS. You can use the
$VALUE_KIND function to evaluate the variable and return the
variable's kind.

In general, the following considerations apply to accessing parameter
values from within a procedure:

• Values supplied as parameters cannot be directly accessed within
the procedure. The $VALUE function must be used to access the
procedure's parameter values.

• Parameter values defined by the ARRAY OF clauses cannot be
directly manipulated within the procedure. A copy of the variable
or array must be implicitly created and its value reassigned to the
parameter using the $VALUE function.

• You may not use a KEY clause in conjunction with a VAR OF or
ARRAY OF clause.

• You may not use a value list type, described in the next section,
in conjunction with a VAR OF or ARRAY OF clause.

9-32 NOSNE System Usage Revision H

Value Specification

The following example illustrates one way that values can be assigned
to parameter values which are variables.

PROC ask (
answer, a
status
)

var of string
var of status

input_answer = ''
REPEAT

$required
$optional

accept_line v=input_answer i=input ..
p='Enter Yes or No - '

input_answer = $substr($translate ..
(ltu input_answer) 1 1)

UNTIL (input_answer = 'Y' OR ..
input_answer = 'N')

$value(answer) = input_answer

PROCEND ask

The procedure reflects the following characteristics:

• The single parameter, ANSWER, is a string variable.

• The procedure issues a prompt until you enter a value starting
with Y, y, N, or n.

• The procedure then sets the value of the ANSWER parameter to Y
or N.

The following example uses the procedure:

I response=''
/ask response
Enter Yes or No - you bet
/display_value response
y

For an example of a procedure that returns values as variables and in
an array variable, see the online Examples manual (the name of the
example is SET_PARAMETERS). For more information about the
$VALUE and $VALUE_KIND functions, see the NOSNE Commands
and Functions manual.

Revision H Writing SCL Procedures and Command Utilities 9-33

Value Specification

Value List Type

If you want a parameter to accept a list of value sets or a range, you
need to include the value list type in the parameter definition. The
value list type defines the parameter as a list of value sets.

The following are valid formats for the value list type:

LIST

LIST value set count

LIST value set count, value count

LIST value set count, RANGE

LIST value set count, value count, RANGE

LIST RANGE

RANGE

Element

value set count

value count

RANGE

Description

Entry that identifies the number of value sets
allowed. The value set count consists of one of
the following:

• Integer expression (indicating both the
minimum and maximum number of value
sets).

• Range of integer expressions (indicating the
minimum to maximum number of value
sets).

When you specify LIST, the default value is the
value of $MAX_ VALUE_SETS. When you do
not specify LIST, the default value is 1.

Entry that specifies the number of elements in
a value set.

Entry indicating that any value element can be
given a range of values.

The examples on the following pages illustrate how value
specifications function within a procedure.

9-34 NOSNE System Usage Revision H

Value Specification

Example 1: Using a List of Value Sets.

Assume that you create the following procedure:

PROC display_number,display_numbers,disn (
number,numbers,n list 1 .. 10 of integer= $required
status : var of status = $optional
)

FOR i = 1 TO $set_count(number) DO
display_value $strrep($value(number,i),10)

FORE ND

PROCEND display_number

The procedure reflects the following characteristics:

o It displays the decimal value of one or more integer expressions.

• The value list type specifies that the NUMBER parameter can be
represented by 1 to 10 value sets of type integer.

• The NUMBER parameter is required and has the aliases
NUMBERS and N.

• The $SET_COUNT function returns a count of the number of
value elements for the NUMBER parameter.

• The $VALUE function returns the value of the NUMBER
parameter.

After you add the procedure to the command list so that it can be
referenced by any of its procedure names, the following calls are
valid:

/display_number 2+3
5
/disn (Oa(16),100(8)+100(2))
10
68
/display_numbers n=(1,2,3,4)
1

2

3
4

One value set.

Two value sets.

Four value sets.

Revision H Writing SCL Procedures and Command Utilities 9-35

Value Specification

Example 2: Including a Range in a List of Value Sets

Assume that you change the procedure in example 1 to include an IF
statement:

PROC display_number,display_numbers,disn
number,numbers,n list 1 .. 10, range of integer $required
status : var of status = $optional
)

FOR i = 1 TO $set_count(number) DO
IF $range(number,i) THEN

FOR j = $value(number,i,1, low) TO
$value(number,i,1,high) DO
display_value $strrep(j,10)

FORE ND
ELSE

display_value $strrep($value(number,i),10)
I FEND

FORE ND

PROCEND display_number

This DISPLAY_NUMBER procedure tests whether the NUMBER
parameter was specified as a range, and then determines the lower
and upper limits of the range. The following activity takes place:

1. The $RANGE function tests a value element for the NUMBER
parameter. If the value element is specified as a range, $RANGE
returns a TRUE value.

2. The $SET_ COUNT function returns a count of the number of
value elements for the NUMBER parameter.

9-36 NOSNE System Usage Revision H

Value Specification

3. The $VALUE function returns the value of the parameter.

The $RANGE, $SET_COUNT, and $VALUE functions are described in
the NOS/VE Commands and Functions manual.

The following call to procedure DISPLAY_NUMBER is now valid:

/display_number (1 .. 3,25(16),10 .. 11,-10,-1 .. 1)
1

2
3
37
10
11
-10
-1

0

In the example, the following five value sets are passed to the
procedure:

Value Set Value Elements

1..3 The range of numbers 1 through 3.

25(16) The number 25 (hexadecimal).

10 .. 11 The range of numbers 10 through 11.

-10 The number -10.

-1..1 The range of numbers -1 through + 1.

Revision H Writing SCL Procedures and Command Utilities 9-37

Value Specification

Example 3: Including a Value Count in a List of Value Sets

By including a value count, you indicate that each value set can
contain one or more value elements. Specify the value count either as
an integer expression (indicating both the mininum and maximum
number of value elements) or as a range of integer expressions
(indicating the minimum to maximum number of value elements). The
default value count is 1.

Assume that you change the procedure in example 2 as follows:

PROC display_number,display_numbers,disn (
number ,numbers,n : 1 ist 1 .. 10, 1 .. 2, ..

range of integer = $required
status : var of status = $optional
)

FOR i = 1 TO $set_count(number) DO
IF $value_count(number,i) = 1 THEN

base=10
ELSE

base=$value(number,i,2)
I FEND
IF $range(number,i) THEN

FOR j = $value(number,i,1, low) TO
$value(number,i,1,high) DO
display_value $strrep(j,base)

FORE ND
ELSE

display_value $strrep($value(number,i),base)
I FEND

FORE ND

PROCEND display_number

9-38 NOSNE System Usage Revision H

Value Specification

In this procedure, the following activity takes place:

• The NUMBER parameter is defined as a list of 1 to 10 value sets,
each of which can contain 1 or 2 value elements.

• The $VALUE_ COUNT function returns a count of the number of
value elements in the NUMBER parameter.

• In this instance, the first value element specifies the integer
expression to be displayed; the second value element specifies the
base in which the number is to be displayed. If you omit the base,
the system assumes decimal.

The $VALUE_COUNT, $SET_COUNT, $RANGE, and $VALUE
functions are described in the NOS/VE Commands and Functions
manual.

The following is a valid call to procedure DISPLAY_NUMBER:

/disn n=((100(8),16) 2**4 (4096,8))
40
16
10000

In the preceding call, the NUMBER parameter is represented by the
following three value sets:

Value Set Value Elements

(100(8),16) The number 100 octal in base 16.

2**4 The number 2**4 in base 10.

(4096,8) The number 4096 in base 8.

Revision H Writing SCL Procedures and Command Utilities 9-39

Default Specification

Default Specification

The default specification indicates whether you want a parameter to
be required or optional. Include the default specification in the
procedure in the following format:

parameter names : value specification = default specification

You can define the default specification with one of the following
entries:

$REQUIRED
$OPTIONAL
value list

The default specification is optional. Omitting the default specification
is equivalent to specifying $OPTIONAL.

The three entries are described in the following sections.

Specifying $REQUIRED

If you specify $REQUIRED as the default specification, you must
enter the parameter when calling the procedure. If interactive
prompting is in effect, you are prompted for the parameter; otherwise
SCL terminates the call with a diagnostic message.

The following parameter definition specifies a required parameter:

output,o: file= $required

Specifying $OPTIONAL

If you specify $OPTIONAL as a default specification, you can omit the
parameter from the procedure call. The system assumes no default
value for the parameter. The following parameter definition specifies
an optional parameter:

output,o: file= $optional

9-40 NOSNE System Usage Revision H

Default Specification

Specifying a Value List

If you specify a value list as the default specification, the parameter
is optional. If you omit the parameter from the procedure call, the
system assumes the default value specified by the value list. The
default value is treated exactly as if it had been supplied in the
parameter list, with one exception: using the $SPECIFIED function in
the body of the procedure produces a FALSE result. For more
information about the $SPECIFIED function, see the NOSNE
Commands and Functions manual.

In the following example, the DISPLAY_NUMBER procedure is
defined to accept an OUTPUT parameter with a default value of
$OUTPUT:

PROC display_number,display_numbers,disn (
number,numbers,n: list 1..10, 1..2, ..
range of integer -100 .. 100 =$required
output.a file= $OUTPUT
status
)

: var of status = $optional

If you omit the OUTPUT parameter on the call to the DISPLAY_
NUMBER procedure, the output from the procedure is written to file
$OUTPUT.

Revision H Writing SCL Procedures and Command Utilities 9-41

Sample Procedure

Sample Procedure

Figure 9-1 contains a procedure that accepts parameters. These
parameters:

• Identify the printed file listing using the ROUTING_BANNER
parameter.

• Specify the number of copies to be printed.

The procedure then prints a comment on the banner page indicating
how many copies were requested.

To call the procedure, enter the name of the procedure (PRINT_
REPORT), followed by the parameter entries defined in the procedure
itself. This step assumes that you have already placed the procedure
in an object library and added the library to the command list. For
more information about executing procedures, see chapter 5, Command
and SCL Procedure Execution.

The following call instructs NOSNE to print four copies of file
ACCOUNTING_STATS with the header WEEKLY STATUS REPORT
on the first page of each listing:

/print_report file=accounting_stats number=4 ..
. ./'banner= '\1/EEKL Y STATUS REPORT'

9-42 NOSNE System Usage Revision H

G) PROC pr i nt_repor~ , pr i r (
@ f i le, f f i le = $requ i red

number, n
banner, b
status

@>

integer 1 .. 10 = 5
string = 'MONTHLY STATUS REPORT'
var of status = $optional

Sample Procedure

~print_file file=$value(file) copies=$value(number)
routing_banner=$value(banner) ..
conment_banner=$strrep($value(number))//' copies printed.'

@ PROCEND pr i nt_report

Figure 9-1. Sample SCL Procedure

The following sequence describes what occurs in the sample procedure:

G) Procedure header (PROC statement) identifies the procedure
name PRINT_REPORT and its alias PRIR. The opening
parenthesis (which must be on the same line as the procedure
name) introduces the parameter list.

@ Parameters are defined on separate lines.

• The FILE parameter specifies the file to be printed. When
entered, this parameter can be abbreviated to F. This is a
required parameter.

• The NUMBER parameter specifies the number of copies to be
printed. SCL accepts only an integer value from 1 through 10
for this parameter. This parameter is optional. If you do not
specify this parameter when calling the procedure, SCL
assumes you want five copies printed.

• The BANNER parameter specifies the text of the comment
you want printed on the first page of each printout. SCL
accepts only a string value for this parameter. This
parameter is optional. If you do not specify this parameter
when calling the procedure, the value MONTHLY STATUS
REPORT is used.

Revision H Writing SCL Procedures and Command Utilities 9-43

Salllple Procedure

@ A closing parenthesis terminates the parameter definitions.

© The PRINT_FILE command is configured so that it can accept
the parameters specified in the procedure call. When the
procedure is called, this command is executed with the
designated parameters in effect.

• The FILE parameter accepts the value contained in the FILE
parameter that must accompany the procedure call. The
$VALUE function performs the necessary reference.

• The COPIES parameter accepts the value contained in the
optional NUMBER parameter that accompanies the procedure
call. The $VALUE function performs the necessary reference.

• The ROUTING_BANNER parameter accepts the value
contained in the optional BANNER parameter that
accompanies the procedure call. The $VALUE function
performs the necessary reference.

• The expression for the COMMENT_BANNER parameter does
three things:

- Accepts the value contained in the optional NUMBER
parameter that accompanies the procedure call.

Converts that value to a string representation.

Concatenates that string representation with the string
' copies printed.'

Values supplied as parameters cannot be directly accessed within
the procedure. The $VALUE function must be used to access the
procedure's parameter values. The $STRREP function performs
the necessary value conversions.

The $VALUE and $STRREP functions are described in the
NOS/VE Command and Function manual.

® The PROCEND statement terminates the procedure.

9-44 NOSNE System Usage Revision H

Creating SCL Command Utilities

Creating §Cl, Comman(l Utilities

A command utility is a command that gives you access to an
additional set of commands. For example, NOSNE provides a
command utility named CREATE_OBJECT_LIBRARY. When you
enter the command CREATE_OBJECT_LIBRARY, a set of commands
for editing files is added to your command list.2

Because these commands are available only while the utility is active,
they are called subcommands of the utility. These commands perform
the actual operations of the utility. Once you exit the utility, the
subcommands are removed from your command list and are no longer
available.

While the command utility is in effect, you can continue to enter all
the SCL commands, functions, and control statements in your
command list as well as the utility's subcommands.

In addition to providing system-defined utilities such as the CREATE_
OBJECT_LIBRARY utility, SCL allows you to define your own
utilities.3 The next sections describe the following procedures:

• How to write a command utility.

• How to permit others to use your utility.

• How to use your utility.

2. For a more complete discussion of command lists, see chapter 5, Command and SCL
Procedure Execution

3. For a complete list of system-defined utilities, see the discussion of utility definition
files later in this chapter.

Revision H Writing SCL Procedures and Command Utilities 9-45

Writing Command Utilities

Vvriting Command UtiU.tnes

The next sections describe how to write a utility:

• The Overview section describes the overall process involved in
writing a utility. The following topics are addressed:

Creating a procedure file to contain the utility.

Formatting the procedure file.

Adding the utility to your command list.

It does not describe in detail the actual defining of the utility.

• Example: Defining a Utility presents an example of a utility in
detail as one way you can define a utility.

• Organizing Subcommands and Subcommand Processors expands the
description of subcommands and subcommand processors by
showing you alternate ways of structuring your utility.

9-46 NOSNE System Usage Revision H

Overview

Overview

To write a utility, perform the following steps:

1. Using the EDIT_FILE utility, create a file to contain the
procedure in which you define the utility. (For more information
about the EDIT_FILE utility, see the NOSNE File Editor
manual.)

2. Write the utility as follows:

a. Create a procedure and, within the procedure, define the
utility. (This step is described in detail in Example: Defining a
Utility next in this chapter.)

b. Define the subcommand processors for the utility subcommands.
(Examples of subcommand processors are shown in Example:
Subcommand Processors later in this chapter.)

3. To make your utility easier to read, format the utility file using
the SCL formatter (this step is optional):

a. Create a file and place the utility definition in the file. In this
utility definition file, you must enter the utility names and
terminators on a single line, for example:

name=(date_time_utility, dtu) terminator=(quit, qui)

b. Format the utility file you created in step 2. When formatting
a procedure containing a utility, you must specify a utility
definition file similar to the one you created in the preceding
step. For example, the following command formats the utility
file $LOCAL.SAMPLE_ UTILITY:

/format_scl_proc input=$local.sample_utility
.. /output=$user.utility_file ..
.. /utility_definition_file=$local.utility_def

The formatted utility file now resides in the permanent file
$USER.UTILITY_FILE. (The SCL formatter and utility
definition files are discussed later in this chapter.)

Revision H Writing SCL Procedures and Command Utilities 9-47

Overview

4. Place the utility in an object library. For example, assume your
utility, its command tables, and its subcommand processors are all
in the permanent file $USER. UTILITY_FILE. Use the CREATE_
OBJECT_LIBRARY utility to generate an object library as follows:

/create_object_library
COL/add_modules 1=$user.utility_file
COL/generate_library 1=$user.utility_library
COL/quit

The utility now resides in the object library $USER.UTILITY_
LIBRARY. (Object libraries are described in detail in the NOSNE
Object Code Management manual.)

5. Add the object library to your command list. For example, the
following command adds the object library $USER.UTILITY_
LIBRARY to your command list:

/create_command_list_entry e=$user.utility_library

The utility can now be executed simply by entering its name.
Command lists are discussed in chapter 5, SCL Command and
Procedure Execution. The CREATE_COMMAND_LIST_ENTRY
command is documented in the NOSNE Commands and Functions
manual.

9-48 NOSNE System Usage Revision H

Example: Defining a Utility

Example: Defining a Utility

When writing a command utility, you define the following items:

• The name of the command utility.

• The utility's environment.

• The subcommands of the utility.

• The statements to be executed within the established utility.

For an example of how to define these elements, see the sample
utility (figure 9-2) and the description that accompanies it.

The sample utility displays the current date and time in various
formats. It includes the following subcommands:

CHANGE_FORMAT
DISPLAY_DATE
DISPLAY_ TIME
QUIT

For a discussion of the processors for these subcommands, see
Example: Subcommand Processors later in this chapter.

For an executable version of this sample utility, see the UTILITY_
EXAMPLE entry in the online Examples manual.

Revision H Writing SCL Procedures and Command Utilities 9-49

Example: Defining a Utility

G)PROC date_time_utility, dtu (
output, o file= $output
status
)

: var of status = $optional

~UTILITY name=date_time_utility prompt ='dtu' ..
library=:nve.bob.dtl#library

~command (change_format, chaf) processor=dtp#change_format
command (display_date, disd) processor=dtp#display_date
command (display_time, dist) processor=dtp#display_time
command (quit, end, qui) processor=dtp#Quit

@tab lend

@create_variable dtv#output scope=date_t ime_ut i 1 ity · ..
kind=string value=$string($value(output))

create_variable dtv#date_format scope=date_time_utility
kind=string value='MONTH'

create_variable dtv#time_format scope=date_time_utility
kind=string value='AMPM'

include_file $command_of_caller u=date_time_utility

@UTILITYEND

(Z)PROCEND date_time_utility

Figure 9-2. Sample SCL Command Utility

9-50 NOSNE System Usage Revision H

Example: Defining a Utility

CD You must define an SCL command utility within an SCL
procedure. In the sample, the procedure header (PROC
statement) identifies the procedure name DATE_ TIME_ UTILITY
and its alias DTU. A call to the procedure begins execution of
the enclosed utility.

Creating procedures is discussed ear lier in this chapter.

@ To begin the definition of the command utility, use the UTILITY
command. The parameters of this command define the utility
environment, for example:

• Use the NAME parameter to specify the name used to refer
to the utility while it is active (DATE_ TIME_ UTILITY). This
parameter is required.

• Use the PROMPT parameter to specify the prompt (DTU)
that informs users they are in the utility. The following
example is a call to the sample utility and the subsequent
prompt display:

/ date_t ime_ut i l i ty

dtu/

• Use the LIBRARY parameter to specify the object library
containing the processors for the utility subcommands
(processors are discussed in the next step).

More complete descriptions of the UTILITY command and
related commands are documented in the NOS/VE Commands
and Functions manual.

Revision H Writing SCL Procedures and Command Utilities 9-51

Example: Defining a Utility

® To define a subcommand for the utility, use the COMMAND
command. Each subcommand you define is an entry in a
command table and can be used only while the utility is active.

You must define a subcommand that terminates the utility. An
example of a termination subcommand is shown in Example:
Subcommand Processors later in this chapter.

In the sample utility, the parameters of this command define:

• The names of the subcommand. These names are used to call
the subcommand. The same rules apply to the subcommands
you define as apply for listing procedure names and command
names.

• The processor that executes when the subcommand is called.
The processors listed in the sample utility are procedures
residing on the object library :NVE.BOB.DTL#LIBRARY
(defined by the LIBRARY parameter of the UTILITY
command).

If you do not specify a processor for a subcommand, the first
name in the command table entry is assumed to be the
processor name as well. For example, the processor for the
following command table entry:

cormiand name=(my_subcormiand,ms)

is assumed to be a procedure or program named MY_
SUBCOMMAND.

© To end the collection of entries for a utility's command table,
use the TABLEND command. This command is required to
separate command table entries from the executable statements
in the established utility.

9-52 NOSNE System Usage Revision H

Example: Defining a Utility

@ Enter the statements to be executed within the established
utility. In the sample utility:

• Three variables are defined to pass format and output
information between the command processors. To see how
these variables are used, see Example: Subcommand
Processors later in this chapter.

• The INCLUDE_FILE command associates $COMMAND_OF_
CALLER with the utility and is necessary to enable
interactive input within the utility. INCLUDE_FILE, in this
case, accepts command input following the call to the utility
(the $COMMAND_OF_CALLER) and passes the input to the
utility for execution.

@ To end the definition of the command utility, use the
UTILITYEND command. When the user executes the
subcommand that terminates the utility, control is passed from
the UTILITY /UTILITYEND block. This subcommand must be an
entry in the command table you define for the utility.

(j) Terminate the procedure with the PROCEND statement.

Revision H Writing SCL Procedures and Command Utilities 9-53

Example: Subcommand Processors

Example: Subcommand Processors

This section describes the procedures that act as subcommand
processors for the sample utility in figure 9-2. For ease of reference,
the definition of the utility block is repeated here.

UTILITY name=date_t1me_utility prompt='dtu' ..
11brary=:nve.bob.dtl#library

conmand (change_format, chaf) processor=dtp#change_format
conmand (display_date, d1sd) processor=dtp#display_date
conmand (display_time, dist) processor=dtp#display_time
conmand (quit, end, qui) processor=dtp#quit
tab lend

create_variable dtv#output scope=date_t1me_utility ..
kind=string value=$str1ng($value(output))

create_variable dtv#date_format scope=date_time_utility
kind=str1ng value='MONTH'

create_variable dtv#time_format scope=date_time_utility
kind=string value='AMPM'

1nclude_file $conmand_of_caller u=date_time_utility

UTILITYEND

9-54 NOSNE System Usage Revision H

Example: Subcommand Processors

Processor for CHANGE_FORMAT

The following procedure acts as the processor for the CHANGE_
FORMAT subcommand defined in the DATE_ TIME_ UTILITY. The
subcommand has two parameters, DATE_FORMAT and TIME_
FORMAT, which allow the user to specify the display formats for the
utility's other subcommands.

If the user specifies a display format for the date, this value is passed
to the utility block using the string variable DTV#DATE_FORMAT.
If the user specifies a display format for the time, this value is passed
to the utility block using the string variable DTV#TIME_FORMAT. If
no display formats are specified, the default values defined in the
utility block are used.

PROC dtp#change_format
date_format, df key month, mdy, dmy, iso, ordinal
time_format, tf key ampm, hms $optional
status var of status = $optional
)

create_variable dtv#date_format scope=xref kind=string
create_variable dtv#time_format scope=xref kind=string

IF $specified(date_format) THEN
dtv#date_format = $string($value(date_format))

I FEND
IF $specified(time_format) THEN

dtv#time_format = $string($value(time_format))
I FEND

PROCEND dtp#change_format

$optional

Revision H Writing SCL Procedures and Command Utilities 9-55

Example: Subcommand Processors

Processor for DISPLAY_DATE

The following procedure acts as the processor for the DISPLAY_DATE
subcommand defined in the DATE_ TIME_ UTILITY. The subcommand
has two parameters, FORMAT and OUTPUT. The value for FORMAT
is passed to the procedure from the utility block by the string
variable DTV#DATE_FORMAT. The value for the OUTPUT
parameter is passed to the procedure from the utility block by the
string variable DTV #OUTPUT.

PROC dtp#display_date (
format, f : key month, mdy, dmy, iso, ordinal

$name(dtv#date_format)
output, o file= $fname(dtv#output)
status : var of status = $optional
)

display_value $date($value(format)) o=$value(output)

PROCENO dtp#display_date

9-56 NOSNE System Usage Revision H

Example: Subcommand Processors

Processor for DISPLAY_ TIME

The following procedure acts as the processor for the DISPLAY_ TIME
subcommand defined in the DATE_ TIME_ UTILITY. The subcommand
has two parameters, FORMAT and OUTPUT. The value for FORMAT
is passed to the procedure from the utility block by the string
variable DTV#TIME_FORMAT. The value for the OUTPUT
parameter is passed to the procedure from the utility block by the
string variable DTV #OUTPUT.

PROC dtp#display_time (
format, f key ampm, hms = $name(dtv#time_format)
output, o file= $fname(dtv#output)
status
)

var of status = $optional

display_value $time($value(format)) o=$value(output)

PROCEND dtp#display_time

Processor for QUIT

The following procedure acts as the processor for the QUIT
subcommand defined in the DATE_ TIME_ UTILITY. When the user
specifies this subcommand, the utility block DATE_ TIME_ UTILITY is
exited and control is passed to the enclosing procedure.

PROC dtp#quit (
)

EXIT date_time_utility

PROCEND dtp#quit

Revision H Writing SCL Procedures and Command Utilities 9-57

Organizing Subcommands and Subcommand Processors

Organizing Subcommands and Subcommand
Processors

When you define the subcommands and subcommand processors for a
utility by using the COMMAND command, you are creating a
command table. This table identifies the names of the subcommands
and subcommand processors.

When writing your own utilities, there are a number of ways you can
organize the body of subcommands and subcommand processors. A
discussion of some of these options follows.

Subcommands

When you define subcommands, you can place the definitions:

• In the utility block itself.

• In a separate file specified by the TABLES parameter on the
UTILITY command.

In the sample utility in figure 9-2, the command table is defined
within the UTILITY/UTILITYEND block. In this case, a TABLEND
command is required to separate the entries in the command table
from the executable statements in the established utility.

Alternately, you can specify a file containing the command table
entries on the TABLES parameter of the UTILITY command. In this
case, the TABLEND command is not required.

Using the TABLES parameter to specify the command list makes it
easier to maintain the subcommands for a utility. You need not alter
the utility file to update the utility's subcommands.

9-58 NOSNE System Usage Revision H

Organizing Subcommands and Subcommand Processors

Subcommand Processors

Subcommand processors must be procedures or programs residing in
an object library. When a subcommand is entered, the command list is
searched for the name of the subcommand and its processor. The
processor, if present, is then executed.

You can locate processors for the subcommands:

• In the same object library as the utility definition.

• In a separate object library specified by the LIBRARY parameter
on the UTILITY command.

In the sample utility in figure 9-2, the processors are defined in a
separate object library. If you do not specify an object library, the
system assumes the processors are in the object library containing the
utility.

Using the LIBRARY parameter to specify the object library in which
a utility's subcommand processors reside makes it easier to maintain
the subcommands for a utility. You need not alter the utility file to
update the utility's subcommands.

Revision H Writing SCL Procedures and Command Utilities 9-59

Permitting Others to Use Your Utilities

Permitting Others to Use Your Utilities

You can permit other NOSNE families and users to use the utilities
you create. When you permit others to use your utility, you are
actually permitting limited access to the object libraries and/or files
you used to write your utility.

The structure of the utility file and the libraries and files associated
with the utility determine the type of permit needed. The following
two examples represent the configurations and permits you might use.

Example 1

The utility and its associated files reside in a single object library.
That is:

• You defined the utility's command table in the
UTILITY /UTILITYEND block.

• You placed both the utility definition file and the subcommand
processors in a single object library.

When this is the case, use the CREATE_FILE_PERMIT command to
permit access to the file. For example, to permit all NOSNE users to
use the utility residing in the object library $USER. UTILITY_
LIBRARY enter:

/create_file_permit $user.utility_library ..
.. /group=public access_mode=(read,execute)
.. /share_mode=(read,execute)
I

Any NOS/VE user can now add this library to their command list by
specifying the complete file path name on the CREATE_COMMAND_
LIST_ENTRY command.

For a more detailed description of file permits, see chapter 4, Catalog
and File Management.

9-60 NOSNE System Usage Revision H

Permitting Others to Use Your Utilities

Example 2

The utility and associated files reside in more than one file and/or
object library. That is:

• You specified a file to contain the command table using the
TABLE parameter on the UTILITY command.

• You specified an object library in which the subcommand
processors reside using the LIBRARIES parameter on the UTILITY
command.

When this is the case:

1. Place the utility file and all associated files in a subcatalog of
your $USER catalog.

2. Use the CREATE_CATALOG_PERMIT command to permit access
to the files in the catalog.

For example, to permit users in the family NVE to use the utility
residing in the subcatalog $USER.UTILITY_CATALOG enter:

/create_catalog_permit $user.utility_catalog
.. /group=family family_name=nve ..
.. /access_mode=(read,execute)
.. /share_mode=(read,execute)
I

Any user in the family NVE can now add the utility file to their
command list by specifying the complete file path name on the
CREATE_COMMAND_LIST_ENTRY command. The user need only
add to the command list the UTILITY /UTILITYEND block. All
associated files are accessible to the user with the catalog permit,
provided that file references you made in the utility file give full path
names.

For a more detailed description of catalog permits, see chapter 4,
Catalog and File Management.

Revision H Writing SCL Procedures and Command Utilities 9-61

Using Your Utility

Using Your Utility

When using a utility you have defined, the same options are available
to you as for any system-defined utility or SCL command:

• You execute the utility by name.

• You can be prompted for parameter input.

• You can display subcommand information.

You also have the option of changing some of the attributes of the
utility with the CHANGE_ UTILITY_ATTRIBUTES command.

Executing the Utility

Once you add the utility to your command list, you can execute it
simply by entering its name (the name of the enclosing procedure).
For example, to use the utility named DATE_TIME_UTILITY shown
in figure 9-2:

1. Begin execution of the utility by entering its name.

/date_time_utility

2. When the utility prompt appears, enter the utility subcommands.
For example:

dtu/display_time
10:23 AM

dtu/quit
I

9-62 NOSNE System Usage Revision H

Executing the Utility

When you call a NOSNE utility, it is typically executed as a separate
task within your job. A task has the ability to establish an
environment which is distinct from the environment which calls it.

One component of a task's environment is the command list, that is,
the commands available for use within the task. Changes to the
command list within a task are not necessarily recognized by other
tasks within the same job.

For example, the CREATE_OBJECT_LIBRARY utility provides a set
of subcommands for creating and maintaining object libraries. When
the utility ends or the task is suspended by a call to another
synchronous task, those subcommands are no longer available.

However, the utilities you create with the UTILITY /UTILITYEND
statement are not executed in a separate task. Consequently, if you
call the utility you create within a utility such as the CREATE_
OBJECT_LIBRARY utility, you can use both utilities' subcommands.

Revision H Writing SCL Procedures and Command Utilities 9-63

Parameter Prompting

Parameter Prompting

If you enter incorrect or incomplete parameter specifications during an
interactive session, by default the system prompts you for further
input. Parameter prompting also occurs by default for the
subcommands you define for a utility.

For example, if you are using the DATE_ TIME_ UTILITY discussed
earlier in this chapter, and you specify an invalid format on the
DATE_FORMAT parameter for the CHANGE_FORMAT subcommand,
the parameter prompting dialogue might appear as follows:

dtu/change_format date_format=year
Error: YEAR not an allowed value for parameter DATE_FORMAT.
Date Format? month
dtu/

For a more complete discussion of parameter prompting, see the
Introduction to NOSNE manual.

9-64 NOSNE System Usage Revision H

Displays of Subcommand Information

Displays of Subcommand Information

You can use the DISPLAY_COMMAND_LIST_ENTRIES command to
display the subcommands of an active utility. For example, if you are
using the DATE_ TIME_ UTILITY discussed earlier in this chapter
and want a list of the utility subcommands, enter:

dtu/display_command_list_entries

ENTRY date_time_utility
Conmands

change_ format
display_time
dtu/

display_date
quit

You can use the DISPLAY_COMMAND_INFORMATION command to
display the parameters of a specific subcommand in an active utility.
For example, if you are using the DATE_ TIME_ UTILITY discussed
ear lier in this chapter and want parameter information about the
CHANGE_FORMAT subcommand, enter:

dtu/display_comrnand_information change_format
date_format, df key month, mdy, dmy, iso, ordinal $optional
time_format, tf key ampm, hms $optional
status var of status = $optional
dtu/

The subcommand information is taken directly from the processors you
define, is given a standard format, and is then displayed.

The DISPLAY_COMMAND_LIST_ENTRY and DISPLAY_
COMMAND_INFORMATION commands are documented in the
NOSNE Commands and Functions manual.

Revision H Writing SCL Procedures and Command Utilities 9-65

Changing Utility Attributes

Changing Utility Attributes

When using a utility you defined with the UTILITY /UTILITYEND
command, you can change certain attributes of the utility using the
CHANGE_ UTILITY_ATTRIBUTES command.

The following example shows how you can change the utility attribute
ENABLE_SUBCOMMAND_LOGGING (ESL) for the DATE_TIME_
UTILITY discussed earlier in this chapter. (Because this parameter
was not specified on the UTILITY command, the subcommands are
logged by default.)

dtu/display_date
July 28, 1987
dtu/display_value $utility(subcommand_logging_enabled)
-TRUE

dtu/change_utility_attributes utility=date_time_utility
dtu .. /enable_subcorrmand_logging=false
dtu/display_value $utility(subcommand_logging_enabled)
FALSE
dtu/display_date
July 28, 1987
dtu/display_log do=5
19:12:47.967.CI.display_date
19:12:52.638.CI.display_value $utility(subcorrmand_logging_

enabled)
19:12:56.977.CI.change_utility_attributes utility=

date_time_utility enable_subcorrmand_logging=false
19:13:01.059.CI.display_value $utility(subcorrmand_logging_

enabled)
19:13:15.694.CI.display_log do=5

While subcommand logging is enabled, the subcommand DISPLAY_
DATE is recorded in the the job log (at 19:12:47). When the utility's
ENABLE_SUBCOMMAND_LOGGING attribute is subsequently set to
FALSE, the subcommand DISPLAY_DATE is not recorded in the job
log.

The CHANGE_ UTILITY_ATTRIBUTES command is documented in
the NOSNE Commands and Functions manual.

9-66 NOSNE System Usage Revision H

Formatting SCL Procedures

JFmrmatting §CL Procedures

SCL provides a formatter that performs two major tasks:

• Formats a file containing SCL statements, making the procedure
easier to read.

• Detects certain errors in the input file and issues appropriate
diagnostic messages.

The formatter reads an input file of SCL statements and generates a
formatted output file. The input file can consist of one or more SCL
procedures or portions of procedures.

Formatting Example

The figures on the following pages illustrate the effect that the SCL
procedure formatter has on an unformatted procedure. Figure 9-3
shows an unformatted procedure contained in file INFILE. Figure 9-4
shows the same procedure after formatting has taken place.

To format the sample procedure, perform the following steps:

1. Call the SCL procedure formatter as follows:

/format_scl_proc input=infile output=$user.proc_form

The procedure formatter processes the statements in input file
INFILE and writes them to output file PROC_FORM in your
$USER catalog.

The FORMAT_SCL_PROC command is described in detail in the
NOS/VE Commands and Functions manual.

Revision H Writing SCL Procedures and Command Utilities 9-67

Formatting Example

2. Enter the following command to view the formatted procedure
(displayed in figure 9-4):

/copy_file file=$user.proc_form

proc aaa (
input, i:file =$REQUIRED
output, o:file=$0UTPUT
status)
put_this_message_out 'this is a message to be put to ..
output' o=$output
edit_f i le xyz
l ,,a
include_file abcc

lll quit
while_label: while abc>def do
if hij='???' then
create_object_library
add_module library=:nve.abcdefghijklmnopqrstuvwxyz1.abcdefghi ..
jklmn2
generate_library a

lll quit
else;exit
ifend;whilend;procend

Figure 9-3. Unformatted SCL Procedure

9-68 NOS/VE System Usage Revision H

PROC aaa (
1nput, 1 f11e = $requ1red
output, o: file = $OUTPUT
status
)

var of status = $opt1ona1

Input to the Procedure Formatter

put_this_message_out 'this is a message to be put to output' ..
o=$output

EDIT_FILE xyz
1,, a
1nclude_f11e abcc

QU1t

while_ label: ..
WHILE abc > def DO

IF h1j = '???' THEN
CREATE_OBJECT_LIBRARY

quit

add_module 1ibrary=:nve.abcdefghijklmnopqrstuvwxyz1 ..
. abcdefghijklmn2
generate_library a

ELSE
EXIT

I FEND
WHILEND wh11e_labe1

PROCEND aaa

Figure 9-4. Formatted SCL Procedure

Input to the Procedure Formatter

You create a file containing SCL statements for input to the
procedure formatter. The file can consist of one or more SCL
procedures, each beginning with a PROC statement and ending with a
PROCEND statement.

It is not required that the input consist of complete procedures. Any
collection of SCL statements is processed by the procedure formatter.
However, SCL structure blocks within the input file must be complete,
or the FORMAT_SCL_PROC command generates diagnostic messages.

Revision H Writing SCL Procedures and Command Utilities 9-69

Controlling the Formatting Process

Controlling the Formatting Process

To control the formatting process, you can enter special SCL
comments in the input file. Begin a special SCL comment with the
following characters:

"$

Terminate a comment with either the double quote character (") or
the end-of-line character.

Format The special comment has the following format:

"$
COMMAND=name
FORMAT= boolean

Parameters COMMAND (C)

Remarks

Examples

Utility command or a utility terminator. This parameter
informs the formatter that the specified command should
be read by the formatter but ignored by the operating
system when the procedure is executed.

FORMAT (FMT or F)

Boolean value that notifies the formatter whether to
enable or disable the formatter. You can use this
parameter to turn formatting on or off.

• The comment can begin in any character position of a
line, but only blank characters can precede the
comment in the input line.

• If a command appears on the line after the special
comment and is separated from it by a semicolon, the
specified action applies to that command, as well as to
following lines.

Consider the following procedure fragment:

PROC show

edit_file xyz
include_file editing_directions
11 $END

PROCEND

9-70 NOSNE System Usage Revision H

Revision H

Controlling the Formatting Process

The following activity occurs:

1. A call is made to the file editor command EDIT_
FILE.

2. File EDITING_DIRECTIONS is executed.

3. The last editing subcommand in file EDITING_
DIRECTIONS is END. To let the formatter know
where the editor is terminated, the "$END comment is
included in the procedure. When the procedure is
executed, the END subcommand in the EDITING_
DIRECTIONS file is executed and the "$END entry is
ignored because it is a comment.

Writing SCL Procedures and Command Utilities 9-71

Utility Definition File

Utility Definition File

The SCL procedure formatter maintains a table of utilities and
terminators. You can also add entries to this list.

Initial List of Utilities and Terminators

Table 9-3 lists the utilities initially entered into the utility table.

Table 9-3. Utilities and Terminators

Utility Name

ADMINISTER_ VALIDATIONS
ADMV

ANALYZE_DUMP
ANAD

BACKUP _PERMANENT_FILE
BACKUP _PERMANENT_FILES
BACPF

BUILD_REAL_MEMORY
BUIRM

CREATE_APPLICATION _MENU
CREAM

CREATE_INTERSTATE_CONNECTION
CREIC

CREATE_MESSAGE_MODULE
CREMM

9-72 NOSNE System Usage

Terminator

QUIT
QUI

QUIT
QUI

QUIT
QUI

QUIT
QUI

END_
APPLICATION_
MENU
ENDAM
QUIT
QUI

DELETE_
INTERSTATE_
CONNECTION
DELIC
QUIT
QUI

END_MESSAGE_
MODULE
END MM
QUIT
QUI

(Continued)

Revision H

Utility Definition File

Table 9-3. Utilities and Terminators (Continued)

Utility Name

CREATE_OBJECT_LIBRARY
CREOL

DEFINE_ CLIENT
DEFC

DEFINE_SERVER
DEFS

DISPLAY_ BIN ARY_ LOG
DISBL

EDIT_DECK
EDID

EDIT_FILE
EDIF

EDIT_PHYSICAL CONFIGURATION
EDIPC

LINK_ VIRTUAL_ENVRIONMENT
LIN VE

LOGICAL_ CONFIGURATION_ UTILITY
LOGCU
LCU

MAIL
MAI

Terminator

QUIT
QUI

END_DEFINE_
CLIENT
END DC
QUIT
QUI

END_DEFINE_
SERVER
ENDDS
QUIT
QUI

QUIT
QUI

QUIT
QUI
END

QUIT
QUI
END

QUIT
QUI
END

QUIT
QUI

QUIT
QUI
END

QUIT
QUI

(Continued)

Revision H Writing SCL Procedures and Command Utilities 9-73

Utility Definition File

Table 9-3. Utilities and Terminators (Continued)

Utility Name

MANAGE_NETWORK_APPLICATION
MANAGE_NETWORK_APPLICATIONS
MANNA

MEASURE_PROGRAM_EXECUTION
ME APE

NETWORK_ OPERATOR_ UTILITY
NET OU

PHYSICAL_ CONFIGURATION_ UTILITY
PHY CU
PCU

RESTORE_PERMANENT_FILE
RESTORE_PERMANENT_FILES
RE SPF

SOURCE_CODE_ UTILITY
scu

9-74 NOSNE System Usage

Terminator

QUIT
QUI

QUIT
QUI

QUIT
QUI

QUIT
QUI
END

QUIT
QUI

QUIT
QUI
END

Revision H

Utility Definition File

Adding Utilities and Terminators to the List

To add to the list of utilities, complete the following steps:

1. Define a utility file.

2. Specify the utility file in the FORMAT_SCL_PROC command.

In the utility file, you must make entries on a single line that include
the name of a utility and the utility terminator as follows:

NAME= list of name
TERMINATOR =list of name

NAME (NAMES or N)

List of names for one utility. This entry is required.

TERMINATOR (TERMINATORS or T)

List of names that terminate the utility. If you omit this entry,
QUIT and QUI are used.

Utility names must be unique: they cannot be the same as the name
of a system-defined or other utility. If the terminator names include
more than QUIT and QUI, you must specify all terminators.

The following are examples of valid entries in a utility file:

n=(my_utility,mu) t=(end,quit,qui)
names=(your_utility, yu)
it s_ut i 1 i ty stop

Revision H Writing SCL Procedures and Command Utilities 9-75

How the Formatter Formats the Input File

How the Formatter Formats the Input File

The formatter generates lines in the output file according to the
following conventions:

• Continuation lines:

Before an SCL statement is formatted, all continuation lines
are read and concatenated with the first line of the statement.

If a statement line exceeds the specified page width, it is
broken at a reasonable place, and required continuation lines
are generated.

Continuation lines are indented six columns from the position
at which the first line of the statement is indented.

When statement with continuation lines is too long to fit on
the entire line if the indentation algorithm is obeyed, the
indenting is suppressed in the continuation lines.

• Indent column:

The indent column governs the starting column of the statement
written to the output file. Initially, the indent column is column 1
unless the INITIAL_INDENT_COLUMN parameter in the
FORMAT_SCL_PROC command overrides.

• Indentations:

Following a control statement that defines the beginning of an
SCL structure block, all statements are indented two spaces.
Indentation ends with the corresponding end statement. (IF is an
example of such an SCL control statement.)

• Labelled statements:

If a statement is labelled, the label (followed by the continuation
ellipses) is placed on a line by itself. It is indented two columns
less than the current indent column, if the current indent column
is more than three.

• Uppercase/lowercase:

SCL control statement identifiers (IF, WHILE, PROC, etc.), along
with certain control words (DO, EXIT, etc.) are written to the
output file in uppercase. With the exception of certain utility
names, all other names are written in lowercase.

9-76 NOSNE System Usage Revision H

How the Formatter Formats the Input File

• Breaking expressions:

When necessary, an expression consisting of an
operand-operator-operand sequence is broken immediately after the
operator.

• Utilities:

Utilities are formatted in the same manner as SCL structure
blocks.

• Comments:

Comments occurring at the beginning of a statement line are
written as separate lines and indented to the current indent
column. Exceptions are comments starting in column 1 of the input
file. Such comments are written starting in column 1 of the output
file.

• Spaces:

With the exception of characters contained in a string expression
or comment, spaces are added or deleted as follows:

Commas are written with no leading space and with one
trailing space.

- A colon that separates the parameter name from the parameter
specification in a PROC declaration has leading spaces deleted
and is followed by a space.

Contiguous spaces are formatted as one space.

- A single space is inserted following the equal sign of an
assignment statement.

Unnecessary spaces in a parameter list are not written.

• Multiple statements:

If multiple statements separated by semicolons appear on an input
line, each statement is formatted to a separate line and the
semicolons are discarded.

Revision H Writing SCL Procedures and Command Utilities 9-77

How the Formatter Formats the Input File

• Optional statement terminators:

If a statement terminator is optional, the formatter generates the
terminator when it is not specified on the input statement. (An
example of an optional terminator is the THEN of an IF
statement.)

• COLLECT_ TEXT and related commands:

COLLECT_ TEXT is treated as a special case, because the text
being collected might not contain SCL statements. Whenever SCL
encounters a COLLECT_ TEXT command, the command's
parameter list is scanned for the UNTIL parameter.

- If the UNTIL parameter is not specified, or if it is specified as
a literal string, the formatting process stops until the line
containing the ·specified string (or **) is read. All COLLECT_
TEXT lines are copied to the output file without any other
processing.

- If the UNTIL parameter is specified as a variable other than a
literal string on COLLECT_ TEXT, formatting does not stop,
because there is no way of knowing when it is to be
reactivated. The results in this case are undefined.

The COLLECT_TEXT command is converted to uppercase and
written to the output file starting in column 1.

If you specify the PROCESS_COLLECT_ TEXT parameter as
TRUE, the COLLECT_TEXT lines are formatted.

The following commands are treated the same way as the
COLLECT_ TEXT command:

CREATE_BRIEF _HELP _MESSAGE
CREATE_FULL_HELP _MESSAGE
CREATE_PARAMETER_ASSIST_MESSAGE
CREATE_PARAMETER_HELP _MESSAGE
CREATE_PARAMETER_PROMPT_MESSAGE
CREATE_ STATUS_ MESSAGE
MANAGE_REMOTE_FILES

9-78 NOSNE System Usage Revision H

How the Formatter Formats the Input File

o Key character:

Any input line beginning with the key character specified in the
FORMAT_SCL_PROC command is written directly to the output
file with no attempt at processing.

• Long statements:

Statement that exceed the maximum command size of 65,535
characters are written to the output file as they appear in the
input file. A warning message written as a comment is sent to the
output file. However, the procedure formatter attempts to reduce
the formatted statement to the maximum command size by
decreasing any indentation.

• Blank lines:

If a blank line does not follow the last line of a procedure header,
a blank line is added. If a blank line does not appear before a
PROCEND statement, one is added.

Revision H Writing SCL Procedures and Command Utilities 9-79

How the Formatter Handles Errors

How the Formatter Handles Errors

When the formatter encounters errors in the input file, the following
conventions apply:

• If the formatter encounters a problem with a statement, such as
the inability to determine the UNTIL value of the COLLECT_
TEXT command, a warning message is written to the output file
as a comment.

• Certain errors detected by the formatter (such as unbalanced
parentheses) are reported to the output file as system diagnostic
messages. The current message mode is used.

• For each error or warning message written to the output file, the
input lines in which the error was detected immediately follow the
message.

• Certain information about a line in error may be retained by the
formatter. For example, if a WHEN statement is recognized but an
error is detected in some remaining portion of the statement, a
WHEN block is still established, and it requires a WHENEND
statement.

• The formatter checks whether the block structures are properly
nested. When it encounters a statement specifying the end of a
block (such as WHILEND), the formatter checks for the definition
of the WHILE block. If none exists and another block was defined
within the block terminated by a WHILEND statement, a format
error message is generated. The message indicates the line number
of the definition of the statement that begins the internal block.

When a PROCEND statement is encountered and a PROC block
exists, all blocks begun but not terminated within the PROC block
are noted in a diagnostic message.

• The formatter does not check parameter syntax. For example, the
following statement is considered acceptable:

IF 'this is a string' = 255(10) THEN

• The formatter maintains a count of error and warning messages
issued and reports this count to the status variable at termination
of procedure formatting. However, an error count of 25 causes the
formatting process to terminate.

9-80 NOSNE System Usage Revision H

Dual-State File Access 10

File Access Requirements 10-1

Getting a File from a Dual-State Partner System . 10-2

Replacing a File on a Dual-State Partner System. 10-2

Setting Link Attributes Using ADMINISTER_ VALIDATION 10-3

Preserving NOS/VE File Attributes 10-4

Dual-State File Access 10

A CYBER simultaneously running two operating systems is called a
dual-state system. A NOS dual-state system runs NOS and NOS/VE; a
NOS/BE dual-state system runs NOS/BE and NOS/VE. The pairs of
operating systems on a dual-state system are called dual-state
partners.

This chapter discusses copying files between NOS/VE and its
dual-state partner. If your site is a dual-state site, you can print
NOS/VE files on a printer belonging to the dual-state partner by
using the OUTPUT_DESTINATION_USAGE and REMOTE_HOST_
DIRECTIVE parameters of the PRINT_FILE command.

File Access Requirements

You can copy only files for which you are permitted access:

• If you are a NOS/VE user on a NOS dual-state system, you are
typically validated to use both NOS and NOS/VE. Your user
names for the two operating systems are the same, and you can
access files in your permanent file catalog on either system. You
can also access other NOS users' files if you have been permitted
to access the files. (NOS controls access to files residing on the
NOS system.) However, before you can access a file on NOS, you
may have to use the CHANGE_LINK_ATTRIBUTES command to
specify your NOS validation information.

o If you are a NOS/VE user on a NOS/BE dual-state system, you
are typically validated to use both NOS/BE and NOS/VE. To
access a file on NOS/BE, you must provide the correct NOS/BE
file id and password, and the file must be on the NOS/BE default
permanent file set. You can use the CHANGE_LINK_
ATTRIBUTES command to provide alternate user and accounting
information for the NOS/BE system.

If you use CHANGE_LINK_ATTRIBUTES to set your link attributes,
you will typically need to use this command at least once for every
job in which you are performing dual-state file accesses. To avoid this,
you can set your link attributes once using the ADMINISTER_
VALIDATION utility. See Setting Link Attributes Using
ADMINISTER_ VALIDATION later in this chapter for more
information.

Revision H Dual-State File Access 10·1

Getting a File from a Dual-State Partner System

Getting a File from a Dual-State Partner
System

To get a file from a dual-state partner system (NOS or NOS/BE) and
copy it to a NOSNE file, follow these steps:

1. Determine whether you need to use the CHANGE_LINK_
ATTRIBUTES command to provide validation information to the
partner system. You can determine what your current link
attributes are by using the DISPLAY_LINK_ATTRIBUTES
command. Your site may restrict the displaying of certain link
attributes.

2. Establish the file attributes of the NOSNE file to which you are
going to copy the NOS or NOS/BE file:

• If you are copying to a new NOSNE file, you can use the
SET_FILE_ATTRIBUTE command to set up the attributes of
the file before you open it: Then you can reference the new file
on the GET_FILE command.

• If you are copying to an existing NOSNE file, the attributes of
the file stay the same.

3. Use the GET_FILE command to copy the file from NOS or
NOS/BE to the NOSNE file.

Replacing a File on a Dual-State Partner
System

To copy a NOSNE file to a file on a dual-state partner system (NOS
or NOS/BE), follow these steps:

1. Determine whether you need to use the CHANGE_LINK_
ATTRIBUTES command to provide validation information to the
partner system. You can determine what your current link
attributes are by using the DISPLAY_LINK_ATTRIBUTES
command. Your site may restrict the displaying of certain link
attributes.

2. Use the REPLACE_FILE command to copy the file to NOS or
NOS/BE.

10-2 NOSNE System Usage Revision H

Setting Link Attributes Using ADMINISTER_ VALIDATION

Setting Link Attributes Using ADMKNISTER._
VALIDATION

You can set your link attributes using the ADMINISTER_
VALIDATION utility so that you do not have to specify a CHANGE_
LINK_ATTRIBUTES command for every job in which you want to
perform dual-state file accesses. Once you have set up a link attribute
using the ADMINISTER_ VALIDATION utility, that value will be the
default for that attribute until you change it again using the utility.

In order to set link attributes using this utility, first enter the
ADMINISTER_ VALIDATION utility and then the CHANGE_ USER
subcommand. You can then use the following commands to set your
link attributes:

CHANGE_LINK_ATTRIBUTE_CHARGE

Sets your charge number link attribute.

CHANGE_LINK_ATTRIBUTE_FAMILY

Sets your family name link attribute.

CHANGE_LINK_ATTRIBUTE·_PASSWORD

Sets your password link attribute.

CHANGE_LINK_ATTRIBUTE_PROJECT

Sets your project number link attribute.

CHANGE_LINK_ATTRIBUTE_ USER

Sets your user name link attribute.

For example, in order to set your password link attribute, enter the
following:

/administer_validation
ADMV/Change_user
CHAU/Change_link_attribute_password value='clouds'
CHAU/Quit
ADMV/QUit
I

Revision H Dual-State File Access 10-3

Preserving NOSNE File Attributes

Preserving NO§/VJE File Attributes

When you transfer a file to/from the dual-state partner, the file's
attributes and permissions are not saved. You can use the permanent
file backup and restore utilities to preserve this information. To do
this:

1. Use the BACKUP _PERMANENT_FILE utility to back up the
file(s) you want to move to the dual-state partner.

2. Use REPLACE_FILE with DATA_ CONVERSION =B56 to replace
the NOSNE backup file on the dual-state partner.

3. Use GET_FILE with DC=B56 to get the NOSNE backup file
from the dual-state partner.

4. Use the RESTORE_PERMANENT_FILE utility to restore the
file(s) that were backed up in step 1.

The following example demonstrates how to transfer the file
$USER.MY_COMMAND_LIB to/from the NOS file BACKUP.

1. Backup the file $USER.MY_COMMAND_LIB to the backup file
$LOCAL.BACKUP.

/backup_permanent_file bf=$1ocal .backup 1=$output
PUB/backup_file f=$user.my_command_lib
PUB/ quit

2. To transfer the backup file to NOS, enter:

/replace_file f=$1ocal .backup dc=b56

3. To obtain the backup file from NOS, enter:

/get_file t=$1ocal.backup dc=b56

4. To restore the file as $USER.MY_COMMAND_LIB_COPY, enter:

/restore_permanent_file 1=$output
PUR/restore_file f=$user.my_command_lib bf=$1ocal .backup
PUR .. /nfn=$user.my_command_lib_copy
PUR/ quit

10-4 NOSNE System Usage Revision H

Tape Management

Reserving and Releasing Tape Units
Reserving Magnetic Tape Units
Releasing Magnetic Tape Units .

Requesting Magnetic Tapes

Rewinding Tape Files

NOSNE Labelled Tape Support
Labelled Tape Terms
Tape Label Information . . .

ANSI Volume Information
VOLl Tape Label . .

ANSI File Information
HDRl Tape Label .
HDR2 Tape Label .

NOSNE HDR2 Extensions
Multifile Positioning
Label Processing

HDR Labels
EOF Labels .

Using Labelled Tapes .
Initializing Labelled Tape Volumes
Writing Labelled Tapes
Reading Labelled Tapes
Reading Tape Files Not Written on NOSNE
Summary of Tape Label Attributes

Default Tape Label Attributes
Using the CHANGE_TAPE_LABEL_ATTRIBUTES

Command
Displaying Tape Label Attributes
Labelled Tape File Examples

Writing an ANSI File Set .
Reading a File Set
Duplicating Labelled Tapes

Using Unlabelled Tape Files
Reading and Writing Unlabelled Tapes
Skipping Tape Marks

11

11-1
11-2
11-3

11-4

11-5

11-5
11-6
11-6
11-7
11-7
11-8
11-8
11-9

11-10
11-12
11-13
11-13
11-13

11-16
11-16
11-17
11-18
11-18
11-19
11-24

11-26
11-27
11-28
11-28
11-30
11-31

11-32
11-32
11-34

Tape Management

This chapter describes how to reserve, release, request, and position
magnetic tape resources. This chapter also describes labelled and
unlabelled tape files, and tells you how to use them.

Reserving and Releasing Tape Units

11

If a job needs more than one tape file opened at the same time, the
job must reserve the tape units before opening any of the tape files.
Once the need for multiple tape file access is satisfied, the resources
should be released and made available to other jobs.

The reservation of a tape unit does not result in actual tape unit
assignment. Instead, NOSNE records the information and, when the
tape files are opened, ensures that the tape units are available to
continue processing. The job is suspended if the required number of
tape units is already reserved or assigned to other jobs. In this
manner, NOSNE can anticipate and prevent situations that would
result in one or more jobs becoming deadlocked because an insufficient
number of tape units is available to them.

Tape units remain reserved for a job until they are specifically
released or until the job terminates. You should release tape
reservations as soon as the job no longer requires them. If you do not
release them, they remain in effect until the job terminates. Releasing
the resources enables other jobs to access the tape units, enables
NOSNE to manage its tape resources more effectively, and increases
throughput for all users.

Revision H Tape Management 11-1

Reserving and Releasing Tape Units

Reserving Magnetic Tape Units

The RESERVE_RESOURCE command informs NOSNE of the number
of tape units needed for job processing.

This command is necessary only if a job requires the concurrent use
of more than one tape unit. The maximum number of tape units
which can be requested must not exceed the total number available
within the system. If not, an error status is returned and the
command is terminated.

The RESERVE_RESOURCE command ensures that the number of
tape units needed by the requesting job will not conflict with the
number of units that all other jobs have reserved or have assigned to
them. If the reservation causes a conflict, , the requesting job is
suspended until other jobs release their tape reservations.

The RESERVE_RESOURCE command must be executed prior to
opening a file that resides on tape. Once this command has been
issued within a job, additional attempts to reserve resources are
denied until all previous resource reservations have been released.

You should issue this command immediately before opening a tape
file. Premature use of this command can delay job advancement.

The following example reserves three 9-track magnetic tape units: one
with 800 cpi and two with 6250 cpi:

/reserve_resources mt9$800=1 mt9$6250=2

You should also immediately release resource reservations when the
resources are no longer needed by using the RELEASE_RESOURCE
command.

11-2 NOSNE System Usage Revision H

Reserving and Releasing Tape Units

Releasing Magnetic Tape Units

The RELEASE_RESOURCE command releases tape reservations
previously established with the RESERVE_RESOURCE command.

Tape reservations may be released as soon as they are no longer
required by a job. For example, if four 9-track tape units were
reserved and it is no longer necessary to have more than two of them
in use concurrently, then two can be released immediately and the
remaining two released later.

Tape units assigned to a file are returned to the system when the file
is returned by a job. Even though the tape units are no longer
assigned, the job's resource reservations remain in effect until released
with a RELEASE_RESOURCE command or when the job terminates.
When tape reservations are released they become available for other ·
jobs.

The following example releases reservations for three 9-track magnetic
tape units: one with 1600 cpi and two with 6250 cpi:

/release_resource mt9$1600=1 mt9$6250=2

Revision H Tape Management 11-3

Requesting Magnetic Tapes

]Requesting Magnetic Tapes

The REQUEST_MAGNETIC_ TAPE command associates a specific file
with a tape unit. It provides NOS/VE with information used to direct
assignment of a file to magnetic tape. Actual device assignment,
access, or operator communication for tape mounting does not occur
until the file is opened for access within the job.

If this command is issued for a file which is currently associated with
a different device class such as mass storage or terminal, or if the
tape file is already open, an error status is returned and the
command is terminated.

The following example associates a 9-track, 1600 cpi tape with the
external VSN of X01234 to file PAYROLL:

/request_magnetic_tape file=payroll type=mt9$1600
.. /external_vsn='X01234'

The following example associates a 9-track, 6250 cpi multi-volume
tape file with external VSN s Y 4567, Y 4568, and Y 4569 to file
NEWPL:

/request_magnetic_tape f11e=newpl external_vsn=('Y4567', ..
.. /'Y4568' ,'Y4569') type=mt9$6250

The following example associates a tape with file NEWPL. When the
file is opened, the operator will be requested to mount a tape with an
external VSN of Y789. The system will then be asked to verify that a
tape with a recorded VSN of Z408 was assigned. This form of the
REQUEST_MAGNETIC_ TAPE command is useful in situations where
the tape's recorded VSN may not uniquely identify the volume.

/request_magnetic_tape file=tape_file external_vsn='Y789'
.. /recorded_vsn='Z408' type=mt9$6250

If you are going to use two or more tape units simultaneously, use
the RESERVE_RESOURCE command before using any REQUEST_
MAGNETIC_TAPE commands.

11-4 NOSNE System Usage Revision H

Rewinding Tape Files

Rewinding Tape Files

The REWIND_FILE command positions a file to the
beginning-of-information. You can use other SCL commands to rewind
tape files by including a file position on a parameter that specifies a
file reference (for example, $LOCAL.TAPE.$BOI).

When REWIND_FILE is issued for an unlabelled tape file, the file is
positioned to the beginning of the first tape volume.

If REWIND_FILE is issued for an ANSI-labelled tape file, and the
value of the file's FILE_SET_POSITION tape label attribute is
NEXT_FILE, the REWIND_FILE command causes the next
ANSI-labelled file accessed to be the same as the previously accessed
file. For FILE_SET_POSITION tape label attribute values other than
NEXT_FILE, this command has no effect.

Labelled and unlabelled tapes, and tape label attributes are described
later in this chapter.

NO§NE Labelled Tape Support

NOSNE supports labelled tapes that correspond to the 1978 ANSI
standard X3.27 and the December 1983 revision. Included are the
ANSI levels 1 through level 4 capabilities.

In NOSNE, labelled tapes are supported for tape files having the
following block type and record type file attributes:

o The BLOCK_TYPE is USER_SPECIFIED (US) and the
RECORD_ TYPE is either FIXED (F), UNDEFINED (U), ANSI_
VARIABLE (D), or ANSLSPANNED (S).

• The BLOCK_ TYPE is SYSTEM_SPECIFIED (SS) and the
RECORD_ TYPE is UNDEFINED (U) or VARIABLE (V).

Revision H Tape Management 11-5

NOSNE Labelled Tape Support

Labelled Tape Terms

As you read about labelled tapes, be aware of the following terms:

ANSI file

A single file residing in a file set that is preceded by an HDR
label group (HDRl and optional HDR2 through HDR9 labels) and
followed by an EOF label group (EOFl and optional EOF2 through
EOF9 labels). An ANSI file can span tape volumes. In the
descriptions of labelled tapes, all files are assumed to be ANSI
files unless otherwise noted. In the sections that follow, the terms
ANSI file, and ANSI labelled file and ANSI labelled tape file are
used interchangeably.

Tape File

A NOSNE temporary file identified by a path name and a
collection of tape volumes. The same path name can be used to
access any of the ANSI-files residing on the file set associated
with the tape file.

File Set

One or more ANSI-files residing on one or more tape volumes.
Each file in the set has the same file set identifier but a unique
file identifier.

Tape Label Information

The following sections describe the parts of an ANSI labelled file
header that contain tape volume and tape file information.

11-6 NOSNE System Usage Revision H

NOSNE Labelled Tape Support

ANSI Volume Information

ANSI tape volume information is contained in the VOLl label which
is recorded at the beginning of each volume.

VOLl Tape Label

The VOLl tape label contains the following information used to
identify a tape volume:

Volume Identifier

Specifies the identifier used to verify that the correct tape volume
is being accessed. The volume identifier is specified with the
RECORDED_ VSN parameter of the REQUEST_MAGNETIC_
TAPE command.

Owner Identifier

Specifies the owner of the tape volume. When the system
initializes a tape volume, the specified owner identifier is recorded
in the VOLl label of the tape. Currently, the owner identifier is
ignored by the system when accessing a labelled tape volume.

Volume Accessibility Code

Specifies a validation code that must be associated with the user
to access the tape volume. When the system initializes a tape
volume, the specified volume accessibility code is recorded in the
VOLl label of the tape. Currently, a volume accessibility code is
not required to access a tape volume.

Revision H Tape Management 11-7

NOSNE Labelled Tape Support

ANSI File Information

ANSI file identification information is recorded at the beginning of
each ANSI-labelled tape file. This information is contained in three
areas which together constitute an HDR label group.

HDRl Tape Label
HDR2 Tape Label
NOSNE HDR2 Extensions

Detailed descriptions of these three areas follow.

HDRl Tape Label

The ANSI HDRl tape label contains the following information for
identifying and controlling access to a labelled tape:

File Identifier

Specifies the label identifier for the file. It is used to differentiate
between different ANSI files in a file set.

File Set Identifier

Specifies a unique identification for a set of files at a site.

File Section Number

Specifies the section number of this portion of the ANSI file. When
an ANSI file spans tape volumes, the portion of the file on the
first volume is assigned section number 1; the portion on the
second volume is assigned section number 2, etc.

File Sequence Number

Specifies the numeric position of an ANSI file on a multifile set.
You can use this sequence number for random positioning to an
ANSI file on a multifile set.

Generation Number

Specifies a particular revision of the ANSI file that is defined by
the file identifier.

Generation Version Number

Specifies the state of processing of the ANSI file that is identified
by the file identifier and generation number. This number is used
to identify which steps, in a multistep file creation process, the
ANSI file has undergone.

11-8 NOSNE System Usage Revision H

NOSNE Labelled Tape Support

Creation Date

Specifies the creation date of the ANSI file.

Expiration Date

Specifies the earliest date that the ANSI file may be overwritten
and, implicitly, the date that any subsequent files in the multifile
set may be overwritten. Currently, the system does not perform
expiration date checking.

File Accessibility Code

Specifies the validation code that a user must have to access the
ANSI file. When the system writes a new ANSI file, the
accessibility code is placed in the HDRl label of the file. Currently
the system does not perform accessibility code checking.

System Code

Identifies the system that created the ANSI file. ANSI files created
on NOSNE have a value of 'NOSNE Vl.O '.

HDR2 Tape Label

The ANSI HDR2 tape label contains information that describes the
format of the file data. When accessing an existing ANSI file,
NOSNE uses values from the HDR2 label if they are present;
otherwise, the file attributes specified for the tape file are used. When
you create a new ANSI file, the following items are recorded in the
HDR2 label:

Record Format

Specifies the following ANSI record format:

FIXED (F)
ANSI_ VARIABLE (D)
ANSI_SPANNED (S)
blank (non-ANSI standard format)

This item corresponds to the record_ type file attribute. Different
record_ type values can be used for each ANSI file in a multifile
set.

Revision H Tape Management 11-9

NOSNE Labelled Tape Support

Block Length

Specifies the maximum size (in characters) for all tape blocks on
the file. This item corresponds to the maximum_block_length tape
label attribute (see Summary of Tape Label Attributes later in this
chapter for more information). Different values can be used for
each ANSI file on a multifile set.

Record Length

Specifies the maximum size (in characters) for all records on the
ANSI file. This item corresponds to the maximum_record_length
tape label attribute (see Summary of Tape Label Attributes later
in this chapter for more information). Different values can be used
for each ANSI file in a multi.file set.

Buffer Offset Length

Specifies the number of characters at the beginning of each tape
block that will be ignored prior to the beginning of the first
record. In the current version of NOSNE, only files with a buffer
offset length of zero are supported.

NOS/VE HDR2 Extensions

NOSNE maintains additional information in the ANSI HDR2 label
that describes the format of ANSI files written in internal NOSNE
formats (non-ANSI record formats).

When accessing an existing ANSI file, NOSNE uses values from the
HDR2 label if they are present; otherwise, the NOSNE tape file
attributes are used.

When a new ANSI file is created by NOSNE, the following
information is recorded in the HDR2 label section that is reserved for
system use:

Block Type

Specifies the following NOSNE block types:

USER_SPECIFIED (US)

SYSTEM_SPECIFIED (SS)

11-10 NOSNE System Usage Revision H

NOSNE Labelled Tape Support

Record Type

Specifies the following NOSNE record types:

UNDEFINED (U)

FIXED (F)

VARIABLE (V)

ANSI_ VARIABLE (D)

ANSLSPANNED (S)

Padding Character

Specifies the NOSNE padding character for fixed records. The
padding character field applies only to tape files having
user-specified blocking and F records.

Character Set

Specifies the character set in which the labels will be recorded. All
labels on a file set are recorded in the same character set. This
field also specifies the character set used for data on the ANSI file
if the value of the character conversion field is TRUE. The valid
character sets are ASCII and EBCDIC. Once the character set
value is specified and the ANSI file is accessed, the character set
value cannot be changed.

Character Conversion

Specifies whether character conversion is performed. To read ANSI
files written in the EBCDIC character set, you must specify a
character set value of EBCDIC and a character conversion value of
TRUE.

To write ANSI files with EBCDIC data on a tape volume with
EBCDIC labels, you must specify a character set value of EBCDIC
and a character conversion value of TRUE.

ANSI files that require character conversion as well as those that
do not may both reside on the same file set.

Unless you specify otherwise, NOSNE assumes that textual
information is represented by the ASCII character set.

Revision H Tape Management 11-11

NOSNE Labelled Tape Support

Multifile Positioning

When accessing a tape volume containing more than one file, you can
position the tape volume to the file you want. The following file
positioning options are available, and can be specified on the
CHANGE_ TAPE_ LABEL_ATTRIBUTES command.

Position

BEGINNING_
OF_SET

CURRENT_FILE

NEXT_FILE

FILE_
IDENTIFIER_
POSITION

FILE_
SEQUENCE_
POSITION

END_OF_SET

Description

First ANSI file on the file set.

Last ANSI file accessed.

ANSI file following the one last accessed.

ANSI file identified by the file identifier and
generation number.

ANSI file identified by file sequence number.

Point immediately following the last file on the
file set.

11-12 NOSNE System Usage Revision H

NOSNE Labelled Tape Support

Label Processing

HDR labels (for example, HDRl or HDR2 labels described earlier in
this section) are read and verified each time an existing ANSI file is
opened.

In the subsequent sections that pertain to labels, the READ, WRITE,
and READ/WRITE access modes have the following meanings:

• WRITE access means that SHORTEN or APPEND access were
specified. MODIFY access is not meaningful for tape files.

• READ access means that READ access was specified but
SHORTEN and APPEND were not.

• READ/WRITE access means that READ access was specified as
were SHORTEN or APPEND.

HDR Labels

HDR labels are written for a new or existing ANSI file if a new or
existing ANSI file is opened with READ/WRITE or WRITE access and
either of the following is true:

• The REWRITE_LABELS parameter is set to TRUE. (For a
description of the REWRITE_LABELS parameter, see the
description of the Summary of Tape Label Attributes.)

• The tape is currently positioned at a point immediately following
the last file in the file set.

EOF Labels

EOF labels (EOFl and EOF2) are written when the file is closed
when either of the following conditions are true:

• HDR labels were written when the file was opened.

• The preceding operation was an output operation.

Table 11-1 summarizes the conditions for which HDR labels are
written for an ANSI file.

Revision H Tape Management 11-13

NOSNE Labelled Tape Support

Table 11-1. Conditions for Writing HDR Labels

FILE_SET_ HDR Labels
POSITION Value Access Condition Written

BEGINNING_ OF_ REWRITE_ LABELS= FALSE No
SET under READ access

REWRITE_LABELS=FALSE No
under READ/WRITE access

REWRITE_LABELS =FALSE No
under WRITE access

REWRITE_LABELS=TRUE No
under READ access

REWRITE_LABELS =TRUE Yes
under READ/WRITE access

REWRITE_LABELS=TRUE Yes
under WRITE access

CURRENT_FILEl REWRITE_ LABELS= FALSE No
under READ access

REWRITE_LABELS =FALSE No2

under READ/WRITE access

REWRITE_ LABELS= FALSE No2

under WRITE access

1. Included with the CURRENT_FILE value are the NEXT_FILE,
FILE_IDENTIFIER_POSITION, and FILE_SEQUENCE_POSITION
values for the FILE_SET_POSITION tape label attribute.

2. If the FILE_SET_POSITION parameter of the CHANGE_ TAPE_
LABEL_ATTRIBUTES command is set to FILE_SEQUENCE_
POSITION and the FILE_SEQUENCE_NUMBER value is one
greater than the last file on the set, a new file is written at the end
of the set. If the FILE_SET_POSITION parameter of the CHANGE_
TAPE_LABEL_ATTRIBUTES command is set to NEXT_FILE and
the previous file accessed was the last file of the file set, a new file is
written at the end of the file set.

(Continued)

11-14 NOSNE System Usage Revision H

NOSNE Labelled Tape Support

Table 11-1. Conditions for Writing HDR Labels (Continued)

FILE_SET_
POSITION Value

CURRENT_FILE1

END_OF_SET

Access Condition

REWRITE_LABELS=TRUE
under READ access

REWRITE_LABELS=TRUE
under READ/WRITE access

REWRITE_LABELS=TRUE
under WRITE access

REWRITE_LABELS=FALSE
under READ access

REWRITE_ LABELS= FALSE
under READ/WRITE access

REWRITE_ LABELS= FALSE
under WRITE access

REWRITE_LABELS=TRUE
under READ access

REWRITE_LABELS=TRUE
under READ/WRITE access

REWRITE_LABELS=TRUE
under WRITE access

HDR Labels
Written

No

Yes2

Yes2

No (error)

Yes

Yes

No (error)

Yes

Yes

1. Included with the CURRENT_FILE value are the NEXT_FILE,
FILE_IDENTIFIER_POSITION, and FILE_SEQUENCE_POSITION
values for the FILE_SET_POSITION tape label attribute.

2. If the FILE_SET_POSITION parameter of the CHANGE_ TAPE_
LABEL_ATTRIBUTES command is set to FILE_SEQUENCE_
POSITION and the FILE_SEQUENCE_NUMBER value is one
greater than the last file on the set, a new file is written at the end
of the set. If the FILE_SET_POSITION parameter of the CHANGE_
TAPE_LABEL_ATTRIBUTES command is set to NEXT_FILE and
the previous file accessed was the last file of the file set, a new file is
written at the end of the file set.

Revision H Tape Management 11-15

Using Labelled Tapes

Using Labelled Tapes

This section discusses initializing, writing, and reading labelled tapes.

Initializing Labelled Tape Volumes

To initialize a tape volume, you must contact the system operator;
only the system operator can initialize a labelled tape. For further
information about handling labelled tapes, see the NOSNE Operations
manual.

A tape volume that has been initialized by the system operator has a
label consisting of a VOLl label followed by an empty ANSI file. The
format of the label is:

• Denotes Tepemerk

To rewrite the labels on the empty ANSI file, you must specify TRUE
for the REWRITE_LABELS parameter on the CHANGE_ TAPE_
LABEL_ATTRIBUTES command. You must also specify TRUE for
REWRITE_LABELS if you want to write on an initialized tape
volume or on an ANSI file not created by NOSNE.

11-16 NOSNE System Usage Revision H

Using Labelled Tapes

Writing Labelled Tapes

You can write a labelled tape file by copying the file from mass
storage to the tape device. Before you issue the COPY_FILE command
to copy the file to the tape, use the CHANGE_ TAPE_LABEL_
ATTRIBUTES command to specify that you want the tape label
written. If you are writing a file to a tape volume that contains a file
set, you also need to use the file positioning parameters on the
CHANGE_ TAPE_LABEL_ATTRIBUTES command.

The following example copies a single permanent mass storage file
with V records and system-specified blocking to an ANSI labelled tape
file. The example begins with the REQUEST_MAGNETIC_ TAPE
command to associate the tape file with the tape device. The SET_
FILE_ATTRIBUTES command is then used to set the following file
attributes for the tape file before the CHANGE_ TAPE_LABEL_
ATTRIBUTES command is issued:

RECORD_ TYPE

MAXIMUM_RECORD_LENGTH

BLOCK_ TYPE

FILE_LABEL_ TYPE

When the COPY_FILE command is issued, the complete ANSI file is
written including the tape label header.

/request_magnetic_tape file=$1ocal .tape type=mt9$6250
.. /recorded_vsn='TA9327' ring=true
/set_file_attributes file=$local.tape ..
. . /file_label_type=labelled block_type=user_specified
.. /record_type=fixed maximum_record_length=140
/change_tape_label_attributes file=$1ocal.tape ..
.. /rewrite_labels=true
/copy_file input=$user.data_set_10 output=$local .tape

Revision H Tape Management 11-17

Using Labelled Tapes

Reading Labelled Tapes

You can read an ANSI file by copying the file from tape to mass
storage. The following example copies a single ANSI tape file
($LOCAL.TAPE) to $LOCAL.PF_l. In this example, the SET_FILE_
ATTRIBUTES command specifies the file attributes for the tape file.
Since no SETFA command is issued for the mass storage file, it
inherits the file attributes and label information that were set for the
tape file when it was written.

/request_magnetic_tape file=$local .tape type=mt9$6250
.. /recorded_vsn='TA9327' ring=false
/set_file_attributes file=$local.tape ..
.. /file_label_type=labelled block_type=user_specified
.. /maximum_record_length=140 record_type=fixed
/copy_file input=$local.tape output=$local.pf_1

You can find examples which show the way to read and write
multiple ANSI files that are associated with file sets later in this
chapter.

Reading Tape Files Not Written on NOSNE

The following is an example that copies a tape file not written on
NOS/VE to mass storage.

request_magnetic_tape file=$local .tape
recorded_vsn='show' type=mt9$6250
ring=false

set_file_attributes file=$local.tape
block_type=user_specified ..
record_type=fixed ..
maximum_block_length=132*100
maximum_record_length=132 ..
file_label_type=labelled

change_tape_label_attributes file=$local .tape
file_set_position=beginning_of_set

copy_file input=$1ocal.tape output=$loca1 .data

11-18 NOSNE System Usage Revision H

Using Labelled Tapes

Summary of Tape Label Attributes

Tape label attributes control and define the ways a labelled tape file
is processed by NOSNE. Tape label attributes can be set using the
CHANGE_ TAPE_LABEL_ATTRIBUTES command. This section
discusses these attributes and how to use CHANGE_ TAPE_LABEL_
ATTRIBUTES. See Default Tape Label Attributes later in this section
for information on the defaults for the tape label attributes

The following list describes each of the tape label attributes:

BLOCK_ TYPE

Specifies the NOSNE block type to be used to access the file.
Values can be:

SYSTEM_SPECIFIED (SS)
USER_SPECIFIED (US)

BUFFER_ OFFSET

Specifies the number of characters at the beginning of the each
tape block that will be ignored prior to the beginning of the first
record. Currently, only files with a buffer offset of 0 is supported.

CHARACTER_ CONVERSION

Specifies whether or not file data is to be converted to or from the
character set specified by the CHARACTER_SET attribute. Values
are:

TRUE

Specifies that the file data will be converted. During a READ
operation, the file is converted from the character set specified
in the CHARACTER_SET attribute to ASCII when it is read
by NOSNE. During a WRITE operation, the tape file is
written in the character set specified by the CHARACTER_
SET attribute.

FALSE

No conversion takes place.

Revision H Tape Management 11-19

Using Labelled Tapes

CHARACTER_ SET

Specifies the character set of the labels and file data on the tape.
Values can be ASCII or EBCDIC. All labels on the tape will be
accessed in the character set specified by this attribute.

CREATION _DATE

Specifies the creation date of the ANSI file. This date is specified
in ISO format (yy-mm-dd).

EXPIRATION _DATE

Specifies the expiration date of the ANSI file and, implicitly, the
expiration date of any subsequent ANSI files in the volume set.
This expiration date is specified in the ISO format (yy-mm-dd). If
the expiration date is less than or equal to the creation date, a
zero is recorded in the ANSI label when the ANSI file is written.
Currently, the system does not perform expiration date checking.

FILE_ACCESSIBILITY_ CODE

Specifies the I-character validation code string that must be
associated with users accessing the ANSI file. When writing an
ANSI file, the system records the specified value in the HDRl
label on the tape file. Currently, when reading an ANSI file, the
system ignores this attribute.

FILE_IDENTIFIER

Specifies the 1- to 17-character label identifier string used to
differentiate between ANSI files on a multifile set.

FILE_SEQUENCE_NUMBER

Specifies the numeric position of an ANSI file on a multifile set.
Use this attribute to randomly position the tape to any ANSI file
on a multifile set. Values can be any integer from 1 to 9999.

If a value is specified for the FILE_SET_POSITION attribute, this
attribute must be assigned a value. If no value is specified for
FILE_SET_POSITION, this attribute is ignored.

11-20 NOS/VE System Usage Revision H

Using Labelled Tapes

FILE_SET_IDENTIFIER

Specifies a unique 1- to 6-character string identification for a set
of ANSI files within an installation.

The value specified for this attribute is used for all subsequent
ANSI files written to the file set if this attribute is specified on
subsequent CHANGE_ TAPE_LABEL_ATTRIBUTES commands for
the same magnetic tape file.

FILE_SET_POSITION

Specifies the position of the ANSI file on the set of ANSI files
that reside on the associated set of tape volumes.

The tape volumes are specified on a REQUEST_MAGNETIC_
TAPE command prior to the CHANGE_ TAPE_LABEL_
ATTRIBUTES command entry.

Valid values for this attribute are:

BEGINNING_OF_SET (BOS)

During a READ operation, this values specifies that the first
ANSI file on the file set is accessed. During a WRITE
operation, this value specifies that the ANSI file written is the
first one on the file set.

CURRENT_FILE (CF)

During a READ operation, this value specifies that the current
ANSI file is to be read. That is, the last file accessed will be
read again. During a WRITE operation, this value specifies
that the current file is written (the last file accessed will be
rewritten).

NEXT_FILE (NF)

During a READ operation, this value specifies that the ANSI
file following the file last accessed will be read. During a
WRITE operation, this value specifies that the ANSI file to be
written follows the file last accessed. If the tape is positioned
at the beginning of the first volume of the file set, the first
ANSI file on the file set is accessed.

Revision H Tape Management 11-21

Using Labelled Tapes

FILE_IDENTIFIER_POSITION (FIP)

When reading, this value specifies that the ANSI file identified
by the FILE_IDENTIFIER and GENERATION_NUMBER
attributes is to be accessed. When writing, this value specifies
that the ANSI file identified by these attributes is to be
rewritten. The FILE_IDENTIFIER and GENERATION_
NUMBER values of the new ANSI file will be the same as
those values for the existing ANSI file.

FILE_SEQUENCE_POSITION (FSP)

During a READ or WRITE operation, this value specifies that
the ANSI file identified by the FILE_SEQUENCE_NUMBER
attribute is to be accessed.

END_OF_SET (EOS)

When the REWRITE_LABELS attribute is TRUE, this value
specifies that the ANSI file is to be written after the last ANSI
file on the file set. When the REWRITE_LABELS attribute is
FALSE, this value will cause an error to be returned.

GENERATION _NUMBER

Specifies a specific revision of the ANSI file defined by the FILE_
IDENTIFIER attribute. Value can be an integer from 1 to 9999.

GENERATION_ VERSION _NUMBER

Specifies the state of processing of the file specified by the FILE_
IDENTIFIER and GENERATION_NUMBER attributes. Values can
be any integer from 0 to 99. This value is used to identify which
steps, in a multistep file creation process, the file has undergone.

MAXIMUM_ BLOCK_ LENGTH

Specifies the NOSNE maximum block length used to access the
ANSI file. Values can be an integer from 1 to 2,147,483,615.
However, to read or write tape blocks that exceed 4,128 bytes,
your site must be configured to allow long tape blocks.

11-22 NOSNE System Usage Revision H

Using Labelled Tapes

MAXIMUM_RECORD_LENGTH

Specifies the NOSNE maximum record length used to access the
ANSI file. Values can be an integer from 1 to 4,398,046,511,103.

PADDING_ CHARACTER

Specifies the NOSNE padding character used to pad records for
ANSI fixed record type (RT=F).

RECORD_ TYPE

Specifies the record type used to access the ANSI file. Values are:

FIXED (F)
UNDEFINED (U)
VARIABLE (V)
ANSI_ VARIABLE (D)
ANSLSPANNED (S)

REWRITE_LABELS

Specifies whether the HDR label group will be rewritten when the
ANSI file is opened for READ/WRITE or WRITE access. Values
are:

TRUE

Specifies that the HDR label group will be rewritten when the
ANSI file is opened for READ/WRITE or WRITE access. TRUE
is required for writing a new file over an existing file. It is
also required for writing a new file subsequent to reading an
existing file (unless the last file on the file set was read).

FALSE

Specifies that the HDR label group will not be rewritten when
the ANSI file is opened for READ, READ/WRITE, or WRITE
access. Refer to table 11-1 for more information.

Revision H Tape Management 11-23

Using Labelled Tapes

Default Tape Label Attributes

The following table contains the default values of tape label
attributes:

Table 11-2. Default Tape Label Attributes

Attribute Field Default Value

BLOCK_ TYPE See footnote1

BUFFER_ OFFSET 0

CHARACTER_ CONVERSION See footnote1

CHARACTER_SET See footnote1

CREATION _DATE Today's date

EXPIRATION_DATE '00000' (implies that the ANSI file
has expired)

FILE_ACCESSIBILITY_ ' ' (space)
CODE

FILE_IDENTIFIER Leftmost 17 characters of the path
name. (For example, if the NOSNE
tape file path is
$LOCAL.EXPERIMENT_34_
RESULTS, the resulting FILE_
IDENTIFIER value is
EXPERIMENT_34_RES.)

1. If the REWRITE_LABELS parameter of the CHANGE_ TAPE_
LABEL_ATTRIBUTES command is FALSE, the values of these
attributes are taken from the HDR2 label, if they are present. If you
omit these parameters on the CHANGE_ TAPE_LABEL_
ATTRIBUTES command, and the REWRITE_LABELS parameter on
the command is TRUE, the previously defined values for these file
attributes are used and are recorded in the HDR2 label.

(Continued)

11-24 NOSNE System Usage Revision H

Using Labelled Tapes

Table 11-2. Default Tape Label Attributes (Continued)

Attribute Field Default Value

FILE_SEQUENCE_NUMBER 1 for the first access. For subsequent
accesses, the file sequence number
equals the sequence number of the
file last accessed plus one.

FILE_SET_IDENTIFIER Volume identifier from the VOLl
label.

FILE_SET_POSITION NEXT_FILE1

GENERATION_NUMBER 1

GENERATION_ VERSION_ 0
NUMBER

MAXIMUM_BLOCK_ See footnote2

LENGTH

MAXIMUM_RECORD_ See footnote2

LENGTH

PADDING_CHARACTER See footnote2

RECORD_ TYPE See footnote2

REWRITE_LABELS FALSE

1. This setting causes the ANSI file immediately following the current
file to be accessed. If the tape is positioned at the beginning of the
first volume of the file set, the first ANSI file on the file set is
accessed.

2. If the REWRITE_LABELS parameter of the CHANGE_ TAPE_
LABEL_ATTRIBUTES command is FALSE, the values of these
attributes are taken from the HDR2 label, if they are present. If you
omit these parameters on the CHANGE_ TAPE_LABEL_
ATTRIBUTES command, and the REWRITE_LABELS parameter on
the command is TRUE, the previously defined values for these file
attributes are used and are recorded in the HDR2 label.

Revision H Tape Management 11-25

Using Labelled Tapes

Using the CHANGE_TAPE_LABEL_ATTRIBUTES Command

When you write an ANSI file you can use the CHANGE_TAPE_
LABEL_ATTRIBUTES command to write or change file labels.

You can define only one file at a time on the CHANGE_ TAPE_
LABEL_ATTRIBUTES command. Subsequent CHANGE_ TAPE_
LABEL_ATTRIBUTES commands for the same ANSI tape file merge
with previous CHANGE_ TAPE_LABEL_ATTRIBUTES commands.

Before you can use the CHANGE_TAPE_LABEL_ATTRIBUTES
command you must first associate the tape file to your job with a
REQUEST_MAGNETIC_ TAPE command.

When writing more than one ANSI file to tape, you can use
CHANGE_ TAPE_LABEL_ATTRIBUTES to specify different HDRl
and HDR2 label information for each ANSI file written. If you use
this command, it must precede the writing of each ANSI file. File
attributes and tape label attributes not specified on this command are
taken from any corresponding attribute values already in place for the
file.

11-26 NOSNE System Usage Revision H

Using Labelled Tapes

Displaying Tape Label Attributes

To display the current tape label attributes defined for an ANSI tape
file, use the DISPLAY_ TAPE_LABEL_ATTRIBUTES command.

• If you specify a DISPLAY_OPTIONS value of NEXT_FILE on this
command, the values for the next ANSI file to be accessed are
displayed.

• If you specify a DISPLAY_OPTIONS value of CURRENT_FILE,
the values for the most recently accessed ANSI file are displayed.

• If your job has not opened the file referenced on this command
and you have not referenced it on a CHANGE_ TAPE_LABEL_
ATTRIBUTES command, the default tape label attribute values are
displayed (table 11-2).

An error occurs if the NOSNE file has not been assigned to your job
by a REQUEST_MAGNETIC_ TAPE command.

Revision H Tape Management 11-27

Using Labelled Tapes

Labelled Tape File Examples

The following examples illustrate the use of NOSNE commands and
in particular the CHANGE_ TAPE_LABEL_ATTRIBUTES command
to access and manipulate ANSI tape files.

Writing an ANSI File Set

The following example copies two mass storage files to a tape volume
as a part of a file set. It also uses DISPLAY_ TAPE_LABEL_
ATTRIBUTES to list in $USER.DISTLA_FILE_SET_l the tape label
attributes for each written file. Note that for each tape file on the
CHANGE_ TAPE_LABEL_ATTRIBUTES commands, the same file set,
'SETl', is specified for the FILE_SET_IDENTIFIER parameters but a
unique file identifier is specified for the FILE_IDENTIFIER
parameters.

/request_magnetic_tape file=$1ocal .tape type=mt9$6250 ..
.. /recorded_vsn='TA3642' ring=true
/set_file_attributes file=$local .tape file_label_type=labelled
.. /block_type=user_specified record_type=fixed
.. /maximum_record_length=140
/change_tape_label_attributes file=$1oca1.tape
.. /file_identifier='file1' file_set_identifier='set1'
.. /rewrite_labels=true
/copy_file input=$user.pf1 output=$local.tape
/display_tape_label_attributes file=$local.tape
.. /output=$user.distla_file_set_1
/change_tape_label_attributes file=$loca1.tape ..
.. /file_identifier='file2' file_set_identifier='set1'
.. /rewrite_labels=true
/copy_file input=$user.pf2 output=$local.tape
/display_tape_label_attributes file=$local.tape
.. /output=$user.distla_file_set_1.$eoi
/copy_file input=$user.distla_file_set_1

11-28 NOSNE System Usage Revision H

Using Labelled Tapes

The contents of the tape labels for the ANSI files that were written
are on $USER.DISTLA_FILE_SET_l and appear as follows:

/edit_file file=$user.distla_file_set_1

FILE :$local.tape
Block_ type
Buffer_offset
Character_conversion
Character_set
Creation_date
Expiration_date
File_accessibility_code
File_identifier
File_seouence_number
File_set_identifier
File_set_position
Generation_number
Generation_version_number
Maximum_block_length
Maximum_record_length
Padding_character
Record_ type
Rewrite_ labels
FILE :$local.tape
Block_ type
Buffer_offset
Character_conversion
Character_set
Creation_date
Expiration_date
File_accessibility_code
Fi le_ identifier
File_seouence_number
File_set_identifier
File_set_position
Generation_number
Generation_version_number
Maximum_block_length
Maximum_record_length
Padding_character
Record_ type
Rewrite_ labels

Revision H

user_specified
0
no
asci i
unknown
unknown

'FILE1'
1

'SET1'
next_fi le
1

0
4128
140

ans1_f1xed
yes

user_specified
0
no
asci i
unknown
unknown

'FILE2'
2
'SET1'
next_f i le
1

0
4128
140

ansi_fixed
yes

Tape Management 11-29

Using Labelled Tapes

Reading a File Set

The following example reads the files in the file set that were written
in the previous example. Note the different uses of the parameters on
each of the CHANGE_ TAPE LABEL_ATTRIBUTES commands. On
the first usage of the command, when a value of FILE_SEQUENCE_
POSITION is specified for the FILE_SET_POSITION parameter, a
value must also be specified for the FILE_SEQUENCE_NUMBER
parameter. On the second usage of the command, when the value
FILE_IDENTIFIER_POSITION is specified for the FILE_SET_
POSITION parameter, a value must also be specified for the FILE_
IDENTIFIER parameter.

/request_magnetic_tape file=$local.tape type=mt9$6250
.. /ring=false recorded_vsn='TA3642'
/change_tape_label_attributes file=$local.tape
.. /file_set_position=file_sequence_position ..
. . /file_sequence_number=1 rewrite_labels=false
/copy_file input=$local.tape output$local.first_file
/change_tape_label_attributes file=$local.tape ..
. ./file_identifier='file2' ..
.. /file_set_position=file_identifier_position ..
. . /rewrite_labels=false
/copy_file input=$local.tape output=$local .second_file

11-30 NOSNE System Usage Revision H

Using Labelled Tapes

Duplicating Labelled Tapes

By reserving two tape units, you can copy files from one tape directly
onto another. The following example copies a labelled tape file
(evsn ='first') to the first file on a second labelled tape volume
(evsn ='second'). This example can be used to duplicate permanent file
backup tapes that are not multi-ANSI files.

/reserve_resource mt9$6250=2
/request_magnetic_tape file=$local.first type=mt9$6250
.. /ring=false evsn='first' rvsn='ta123'
/set_file_attributes file=$local.first ..
. . /file_label_type=labelled block_type=system_specified
.. /record_type=variable
/change_tape_label_attributes file=$local .first ..
. . /file_set_position=beginning_of_set rewrite_labels=false
.. /block_type=system_specified record_type=variable

/request_magnetic_tape file=$local .second type=mt9$6250
.. /ring=true evsn='second' rvsn='ta67'
/set_file_attributes file=$local.second ..
. . /file_label_type=labelled block_type=system_specified
.. /record_type=variable
/change_tape_label_attributes file=$local.second ..
. . /file_set_position=beginning_of_set rewrite_labels=true
.. /block_type=system_specified record_type=variable

/copy_file i=$local .first o=$local.second
/release_resources mt9$6250=2

Revision H Tape Management 11-31

Using Unlabelled Tape Files

Using Unlabelled Tape Files

This section discusses how to read and write unlabelled tapes, and
how to skip tape marks on unlabelled tapes.

Reading and Writing Unlabelled Tapes

You can write an unlabelled tape file by copying the file from mass
storage onto a tape volume. The following example copies
$USER.DATA_SET_ 10, a permanent mass storage file with V records
and system-specified blocking, to an unlabelled tape file. When the
permanent file is written to tape, it will be written with U records
and user-specified blocking.

/request_magnetic_tape file=$1ocal .tape type=mt9$6250
.. /ring=yes external_vsn='XU0023'
/set_file_attributes file=$1ocal.tape ..
.. /file_label_type=unlabelled block_type=user_specified
.. /record_type=undefined
/copy_file input=$user.data_set_10 output=$1oca1.tape

You can read an unlabelled tape file by first copying the file from
tape to mass storage. The simplest way to do this is to use the
REQUEST_MAGNETIC_ TAPE command to associate the file with the
magnetic tape device class and then copy the file into a mass storage
file using the COPY_FILE command. When no file attributes are set
for the output file, it inherits the file attributes of the input file
named on the COPY_FILE command. For example:

/request_magnetic_tape file=$1oca1 .tape type=mt9$6250
.. /external_vsn='UL0067' ring=no
/copy_file input=$1oca1.tape output=$1oca1.data

11-32 NOSNE System Usage Revision H

Using Unlabelled Tape Files

When you copy a file from tape to mass storage, you can use the
SET_FILE_ATTRIBUTES command to set file attributes for both the
input and output files. The following contains the previous example
but includes the use of the SETFA command to specify record types
and block types for both the input and output files.

/request_magnetic_tape file=$1oca1.tape type=mt9$6250
.. /external_vsn='UL0067' ring=no
/set_file_attributes file=$1oca1 .tape ..
.. /file_label_type=unlabelled block_type=user_specified
.. /record_type=undefined
/set_file_attributes file=$1oca1 .data ..
.. /block_type=system_specified record_type=variable
/copy_file input=$1oca1 .tape output=$1oca1 .data

By reserving two tape units, you can copy files from one tape directly
onto another. This example copies an unlabelled tape file to another
unlabelled tape volume.

/reserve_resource mt9$6250=2
/request_magnetic_tape file=$1oca1.first
.. /type=mt9$6250 ring=false evsn='first'
/set_file_attributes file=$1oca1 .first ..
. ./file_ label_type=unlabel led ..
.. /block_type=user_specified record_type=undefined

/request_magnetic_tape file=$1oca1.second type=mt9$6250
.. /ring=true evsn='second'
/set_file_attributes file=$1oca1 .second ..
.. /file_label_type=unlabelled block_type=user_specified
.. /record_type=undefined

/copy_file i=$1oca1 .first o=$1oca1 .second
/release_resources mt9$6750=2

Revision H Tape Management 11-33

Using Unlabelled Tape Files

Skipping Tape Marks

The SKIP_ TAPE_MARK command positions an unlabelled tape file in
a backward or forward direction. This command is not valid for
labelled tape files.

The file is positioned a specified number of tape marks from the
current position or until a boundary condition is encountered.

The boundary condition for a forward skip is the end of the last
volume in the list of volumes associated with the file. The boundary
condition for a backward skip is the beginning of the current volume.
Refer to the REQUEST_MAGNETIC_ TAPE command description later
in this chapter for further information.

If the file is not associated with a magnetic tape unit, the command
is ignored.

For example:

/skip_tape_marks file=master count=3
/skip_tape_marks my_file forward 5
/skip_tape_mark file=new_master direction=backward

11-34 NOSNE System Usage Revision H

Backup and Restore Utilities

Overview
Uses of the Backup Utility
Access Rules
List File Information .

Backup Operations ...
Starting and Stopping the Backup Utility .
Backing Up to Disk
Backing Up to Tape Files .

Labelled Backup Tapes
Multivolume Files ...
Multifile Backup Tapes

Backing Up to $NULL .
Backing Up Catalogs ...

Backing Up a Specific Catalog .
Excluding a Specific Catalog ..
Deleting Catalogs and their Contents .

Backing Up Files
Backing Up a Specific File
Excluding a Specific File
Specifying File Cycles to Be Included .
Including Cycles Based on Their Size .
Excluding the Highest Cycles
Deleting All Cycles of a File

Summary of Backup Utility Subcommands

Ref.tore Operations
Starting and Stopping the Restore Utility .
Restoring from Disk and Tapes
Displaying Information about a Backup File
Using the $BACKUP _FILE Function
Restoring Catalogs

Restoring a Nonexisting Catalog.
Restoring an Existing Catalog

Restoring Files
Restoring All Files
Restoring a N onexisting File .
Restoring Cycles of an Existing File

Summary of Restore Utility Subcommands

12

12-1
12-2
12-3
12-4

12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-9

12-10
12-10
12-10
12-11
12-12
12-12
12-13
12-13
12-14
12-16
12-16
12-17

12-19 .
12-19
12-20
12-21
12-23
12-23
12-24
12-25
12-25
12-25
12-26
12-26
12-27

Backup and Restore Utilities 12

This chapter describes the utilities that back up and restore
permanent files. The chapter includes:

• General concepts, including file access rules for the utilities,
instructions for starting and stopping the utilities, instructions for
specifying list information, and instructions for specifying tape
labels.

• Examples that illustrate how to use the subcommands of the
utilities.

For information about backing up and restoring an entire system,
refer to the Site Performance and Maintenance manual, Volume 2.

Overviev1

You can use the BACKUP _PERMANENT_FILES utility to create a
backup file containing copies of files and catalogs. A backup file can
reside on either disk or tape. BACPF provides a set of subcommands
that allow you to select the files and catalogs to be copied to the
backup file. BACPF copies all catalog information, such as file
descriptions, access control lists, and usage logs.

When you want to restore files and catalogs from a backup file, you
use the RESTORE_PERMANENT_FILES utility. RESPF provides a
set of subcommands that allows you to select the files and catalogs
you want to restore to the system from the backup file.

The rest of this chapter discusses the BACKUP _PERMANENT_FILES
and RESTORE_PERMANENT_FILES utilities in detail.

Revision H Backup and Restore Utilities 12-1

Overview

Uses of the Backup Utility

Most sites regularly back up to tape all of the permanent files that
exist at the site. However, you may also want to perform backup
operation for the following reasons:

• If you want to maintain your own set of backup tapes for your
files and catalogs rather than relying on your site's regular
permanent file backups.

• If you want to transfer many files, or even whole catalogs, to
other users' master catalogs, systems, or sites. You can do this by
backing up all files and catalogs to a single backup file and then
transferring just that file.

• If you want to rename a catalog. You can do it by performing the
following steps:

1. Back up the catalog to a disk file.

2. Restore the backed up catalog using the name you wish it to
have.

3. Delete the catalog you wish to rename.

12-2 NOSNE System Usage Revision H

Overview

Access Rules

Because the backup and restore utilities access permanent files, the
file access rules that apply to permanent file commands also apply to
the utilities.

• To back up a file, you must have READ access permission.

• The backup utility will not back up a file cycle that is already
attached to the current job with access modes that do not include
READ, or with share modes that include APPEND, MODIFY, or
SHORTEN access.

• The backup utility will not back up a file cycle that is attached by
another job with a share mode that does not include READ, or
with an access mode that includes APPEND, MODIFY, or
SHORTEN access.

• To delete a file, you must have CONTROL access permission for
the file.

• To delete a catalog, you must be the owner of the catalog.

• To restore a file cycle, you must have CYCLE permission for the
existing file; to restore the initial cycle of a file you must have
cycle permission for the catalog in which the file will reside.

• To restore a file with a password, you must be the owner of the
file.

• To restore a catalog that does not reside in your permanent
catalog structure, you must be the owner of the catalog.

Revision H Backup and Restore Utilities 12-3

Overview

List File Information

Both the backup and restore utilities summarize the results of the
utility operations. This information is written to the file designated on
the LIST parameter of the BACKUP _PERMANENT_FILES and
RESTORE_PERMANENT_FILES commands. By default, the system
lists the following information for each permanent file cycle:

• Modification date.

• Modification time.

• Size of the file.

You can specify the information you want on the list file as follows:

• For backup operations, enter the SET_LIST_OPTION subcommand
prior to entering any other backup utility subcommands.

• For restore operations, enter the SET_LIST_OPTION subcommand
prior to entering any other restore utility subcommands.

The SET_LIST_OPTION subcommand does not affect the list file
information that the DISPLAY_BACKUP _FILE subcommand produces.

The following example uses the SET_LIST_OPTION subcommand to
specify that the listing should show all the file and cycle display
options.

I respf 1 i st =restore_ 1 i st
PUR/set_list_options file_display_option=all
PUR .. /cycle_display_options=all

12-4 NOSNE System Usage Revision H

Backup Operations

Backup Operations

The BACKUP _PERMANENT_FILES utility allows you to select and
copy files and catalogs to a backup file. Backup files may reside on
either disk or tape. The default is to back up to disk. To back up to
tape, you must use the REQUEST_MAGNETIC_ TAPE command
before you start the backup utility.

Starting and Stopping the Backup Utility

To start the backup utility, use the BACKUP _PERMANENT_FILES
command. You must include the name of the file to which you want
the backed up information copied. You can also specify a file for list
information.

The following example starts the backup utility, names the backup file
BACKUP _FILE, and specifies BACKUP _LIST as the list file:

/backup_permanent_file backup_file=backup_file list=backup_list

Once you have started the utility, the system displays the permanent
file backup utility prompt:

PUB/

In response to the prompt, you can enter backup utility subcommands
to direct backup operations (table 12-1 summarizes the backup utility
subcommands).

In a typical backup session, you would first issue a series of include
and exclude subcommands to narrow the selection criteria for catalogs
and files you want to back up. You would then use the BACKUP_
CATALOG and BACKUP _FILE subcommands to specify the catalogs
and files you want to back up.

You can also use the group of delete subcommands with the
EXCLUDE_HIGHEST_CYCLE subcommand to delete all but the
highest cycles of files in a catalog. (For an example, refer to the
Excluding the Highest Cycles section of this chapter.)

Once you have used the subcommands to perform your backup, you
can stop the utility by entering the QUIT subcommand:

PUB/ quit
I

Revision H Backup and Restore Utilities 12-5

Backup Operations

Backing Up to Disk

When you backup a file or catalog, by default the backup utility will
store the backup file on disk rather than on tape. When you backup
to disk, the backup file will appear in your current working catalog
under the name you specified on the BACKUP _PERMANENT_FILE
command.

Backing Up to Tape Files

To backup to tape, you must use the REQUEST_MAGNETIC_ TAPE
command prior to entering the backup utility.

You can back up files to either labelled or unlabelled tapes. By
default, the backup utility assumes a tape type of labelled. To change
the default label type, enter the CHANGE_BACKUP _LABEL_ TYPE
command prior to executing any backup or restore operations. To
display the current label type, use the DISPLAY_BACKUP _LABEL_
TYPE command.

When you restore files from a backup tape, the default tape label type
does not need to match the label type of the backup file. For example,
if the default label type is labelled and the backup tape file label type
is unlabelled, the system console operator specifies during the tape
assignment whether the restore operation continues.

Instead of using the backup and restore utilities for tape backups, you
can use the COPY_FILE command to copy a mass storage backup file
to a labelled or unlabelled tape or to copy a backup tape file to a
mass storage file.

For information on retrieving backup files from tape, see the Restore
Operations section later in this chapter.

Labelled Backup Tapes

The first time you want to use a tape volume for a labelled tape
backup, you must have the system console operator blank label the
tape.

You can specify file position $EOI to append information to a labelled
tape backup file.

12-6 NOSNE System Usage Revision H

Backup Operations

Multivolume Files

Each catalog or file cycle which is backed up to tape is preceded by
header information that contains file identification information,
including the version number and file size.

The backup file on the first tape volume begins with this header
information, followed by the file contents, followed by the next file
header, and so on.

A backup file may begin on one volume and end on the next volume.
Thus, the first information on tapes after volume 1 may not be the
header information but actual file data. When this occurs, the restore
utility issues the following message:

UNABLE TO READ THE VERSION NUMBER.

If you receive this message for the first volume, it indicates an error
and you should inform the site analyst. For other volumes, the
message is informational only: the restore utility skips forward to
either the first file header or the first complete file on the volume.

Multifile· Backup Tapes

You can put more than one backup file on a tape volume if you are
backing up catalogs and files to labelled tapes. To do this, use the
CHANGE_ TAPE_LABEL_ATTRIBUTE command to set the FILE_
SET_POSITION tape label attribute to NEXT_FILE.

Note that NEXT_FILE is the default for this attribute. However,
unless you explicitly set this attribute to NEXT_FILE, the backup
utility will change it to BEGINNING_OF_SET and you will only be
able to have one backup file on the tape volume.

Once you have set the FILE_SET_POSITION to NEXT_FILE, you
create multiple backup files on the labelled tape by issuing one
BACKUP _PERMANENT_FILE command for each tape file.

Revision H Backup and Restore Utilities 12-7

Backup Operations

You can make each backup file on the tape easier to retrieve by
using the FILE_IDENTIFIER parameter on the CHANGE_ TAPE_
LABEL_ATTRIBUTE command to identify each backup file on the
tape. By default, this string is blank. However, once you have
specified a value for this string each subsequent file on the tape will
inherit that value unless you specify a different FILE_IDENTIFIER
for a file.

The following example uses the BACKUP_ CATALOG subcommand to
place three different backup files on a labelled tape:

/request_magnetic_tape f=tape evsn='abc' r=true
/chatla f=tape fsp=nf
I bacpf bf=tape
PUB/bacc c=$user.cobol
PUB/ quit
/chatla f=tape fi='fortran catalog'
I bacpf bf =tape
PUB/bacc c=$user.fortran
PUB/ quit
/chatla f=tape fi='cybil catalog'
I bacpf bf=tape
PUB/bacc c=$user.cybil
PUB/ quit
I

Notice that the second and third files on this tape have file identifiers
associated with them. Also, note that once you have explicitly
specified NEXT_FILE for the FILE_SET_POSITION file attribute,
you do not have to specify it again (not even on subsequent
CHANGE_ TAPE_LABEL_ATTRIBUTES commands).

The BACKUP _PERMANENT_FILES command and the BACKUP_
CATALOG subcommand are discussed later in this chapter. For
information on retrieving backup files from tapes, see the Restore
Operations section later in this chapter.

12-8 NOS/VE System Usage Revision H

Backup Operations

Backing Up to $NULL

When you are performing backup operations, it is not always
necessary to back up files and catalogs to disk or tape; you may also
back up to $NULL (or to any null device class). When you back up to
$NULL, none of the specified catalogs or files are actually backed up.
Rather, by default, a backup to $NULL generates a list of all the
files existing in the specified catalogs. The list will exist in the list
file specified on the call to the backup utility. Therefore, this is a
convenient way for you to generate a listing of every file currently
existing in a catalog and its subcatalogs.

Backing up to $NULL is also a good way of finding out which of your
files, if any, contain unreadable data. Since a normal backup to
$NULL leaves the actual file data untouched by the backup utility,
you must tell the backup utility you want it to attempt to read all of
the file data during backup operations. This is done by specifying
READ_DATA on the NULL_BACKUP_FILE_OPTION parameter of
the SET_BACKUP _OPTIONS subcommand. This should be done
immediately upon entering a backup utility session in which you are
backing up to $NULL and you want to locate any files that contain
unreadable data. For example:

/bacpf bf=$nu11 1=$1oca1. 1 ist
PUB/setbo nbfo=read_data
PUB/bacc c=$user
PUB/ quit
I

You may then locate any files containing unreadable data by
examining the backup utility list file ($LOCAL.LIST, in the preceding
example) for error messages. Note that the NULL_BACKUP _FILE_
OPTION parameter of the SET_BACKUP _OPTIONS subcommand will
have no effect on those backup utility sessions where you are actually
backing up to disk or tape.

Revision H Backup and Restore Utilities 12-9

Backup Operations

Backing Up Catalogs

You may use the backup utility to perform the following operations on
catalogs:

• Back up specific catalogs

• Exclude specific catalogs from subsequent BACPF operations.

• Delete the files from a catalog.

• Delete an entire catalog from a catalog.

The following sections discuss these operations in detail.

Backing Up a Specific Catalog

To create a backup copy of the file cycles and catalogs in a specific
catalog, use the BACKUP_ CATALOG subcommand.

The following example backs up all of your files, subcatalogs, and files
residing in all of your subcatalogs:

PUB/backup_catalog c=$user

Excluding a Specific Catalog

To exclude a specific catalog from subsequent backup and delete
operations, use the EXCLUDE_CATALOG subcommand.

The following example excludes subcatalog CATALOG_ l from the
BACKUP_ CATALOG operation:

/bacpf bf=backup_file
PUB/exec c=$user.catalog_1
PUB/ bacc c=$user

You can back up an excluded catalog by explicitly entering its name
on the CATALOG parameter of the BACKUP_ CATALOG subcommand.

12-10 NOS/VE System Usage Revision H

Backup Operations

Deleting Catalogs and their Contents

To delete all of the files within a catalog and within its subcatalogs,
use the DELETE_CATALOG_CONTENT subcommand. To delete an
entire catalog, use the INCLUDE_EMPTY_CATALOG subcommand
before using the DELETE_CATALOG_CONTENT subcommand.

The following example deletes just the files residing within catalog
CATALOG_!, and its subcatalogs; it does not delete any subcatalogs
that might exist in CATALOG_!.

/bacpf bf=backup_file
PUB/delcc c=$user.catalog_1
PUB/Quit

To delete CATALOG_l completely, use the INCLUDE_EMPTY_
CATALOG subcommand. This subcommand determines whether empty
catalogs are deleted by subsequent DELETE_CATALOG_CONTENT
subcommands.

Note that all other subcommands take precedence over the
INCL UDE_EMPTY_ CATALOG subcommand.

The following example deletes CATALOG_ l entirely from the master
catalog:

/bacpf bf=backup_file
PUB/incec
PUB/delcc c=$user.catalog_1
PUB/ quit

Revision H Backup and Restore Utilities 12-11

Backup Operations

Backing Up Files

You may use the backup utility to perform the following operations on
files:

• Back up a specific file.

• Exclude a specific file from a backup operation.

• Backup files based on file cycles.

• Delete specific files.

The following sections discuss these operations in detail.

Backing Up a Specific File

To create a backup copy of a specific permanent file, use the
BACKUP _FILE subcommand.

The following example backs up all cycles of file DATA_FILE_O in
subcatalog CATALOG_l of the master catalog:

PUB/backup_file f=$user.catalog_1.data_file_O

To backup a single cycle of a file, specify the cycle number in the file
reference. For instance:

PUB/backup_file f=$user.catalog_1.data_file_0.87

12-12 NOSNE System Usage Revision H

Backup Operations

Excluding a Specific File

To exclude a specific file from subsequent backup and delete
operations, use the EXCLUDE_FILE subcommand. This subcommand
takes precedence over all INCLUDE subcommands.

The following example excludes all file cycles of DATA_FILE_l in
subcatalog DATA_CATALOG_l from the backup operation:

PUB/exclude_file f=$user.data_catalog_1.data_file_1
PUB/backup_catalog c=$user.data_catalog_1

You can back up an excluded file by explicitly entering its name on
the BACKUP _FILE subcommand, as follows:

PUB/backup_file f=$user.data_catalog_1.data_file_1

Or you can explicitly back up the highest cycle of the file with the
following subcommand:

PUB/backup_file f=$user.data_catalog_1.data_file_1.$high

Specifying File Cycles to Be Included

To specify the file cycles to be included in subsequent backup and
delete operations, use the INCLUDE_CYCLE subcommand.

By using the INCLUDE_ CYCLE subcommand, you can perform a
partial backup or deletion of permanent files. You specify the cycles to
be included in the operation based on their creation date and time,
last access date and time, last modification date and time, or
expiration date.

The EXCLUDE subcommands take precedence over this subcommand.

The following example produces a partial backup composed of all file
cycles that were modified on or after January 2, 1988:

PUB/include_cycle selection_criteria=modified_after 1 2 1988

Revision H Backup and Restore Utilities 12-13

Backup Operations

Use two INCLUDE_CYCLE subcommands to specify a window for
backup and delete operations. For example:

PUB/include_cycle selection_criteria=modified_after 1 1 1987
PUB/include_cycle selection_criteria=modified_before 1 3 1987

These subcommands cause only those cycles modified on January 1,
1987 and January 2, 1987 to be included in backup and delete
operations.

The following example backs up and deletes all your file cycles that
have not been accessed since April 30, 1986:

PUB/incc sc=accessed_before may 1, 1986
PUB/ bacc c=$user
PUB/delcc c=$user
PUB/ quit

Including Cycles Based on Their Size

To include cycles based on their size, use the INCLUDE_LARGE_
CYCLE or INCLUDE_SMALL_CYCLE subcommand.

The INCLUDE_LARGE_CYCLE subcommand specifies that
subsequent backup and delete operations include only permanent file
cycles whose size is greater than or equal to a specified number of
bytes.

The INCLUDE_SMALL_CYCLE subcommand specifies that
subsequent backup and delete operations include only permanent file
cycles whose size is less than or equal to a specified number of bytes.

Regardless of its size, a file cycle that has been excluded using an
EXCLUDE subcommand is not backed up or deleted.

Use these subcommands to reduce the size of the permanent file base
by deleting large file cycles and ignoring small files cycles.

12-14 NOSNE System Usage Revision H

Backup Operations

If you use both subcommands in a backup session, the intersection of
the sets specified on the subcommands are included in subsequent
backup operations. For instance, suppose you did the following in a
backup session:

PUB/include_large_cycle minimum_size=600
PUB/include_small_cycle maximum_size=700

The following illustrates the size of the cycles included in subsequent
backup operations (in this case, any cycles containing between 600
and 700 bytes):

---6~"""""""'01j////;"""""'""'0~~Wi"rge_cycle ms=600

include_small_cycle ms=700 700

rTT!TJ Indicates the size of the cycles included
YJjjJj in subsequent backup operations.

Suppose in a different backup session, you did the following:

PUB/include_large_cycle minimum_size=700
PUB/include_small_cycle maximum_size=500

Then the following illustrates the size of the cycles included in
subsequent backup operations (in this case, no cycles would be
included because nothing is contained in the intersection of the sets
specified by the two INCLUDE subcommands):

include_small_cycle ms=SOO

7r include_large_cycle ms=7,00

500

Revision H Backup and Restore Utilities 12-15

Backup Operations

Excluding the Highest Cycles

To exclude the highest cycles from subsequent backup and delete
operations, use the EXCLUDE_HIGHEST_CYCLE subcommand. (The
highest cycles are the cycles with the largest numbers.) You specify
the number of high cycles to be excluded.

The following example excludes the two highest cycles of each file in
your master catalog from a subsequent DELETE_CATALOG_
CONTENT subcommand:

PUB/exclude_highest_cycle noc=2
PUB/delcc c=$user

Deleting All Cycles of a File

To delete all cycles of a file, use the DELETE_FILE_ CONTENT
subcommand.

The following example deletes all cycles of permanent file DATA_
FILE_l in your master catalog:

PUB/delfc f=$user.data_file_1

12-16 NOSNE System Usage Revision H

Backup Operations

Summary of Backup Utility Subcommands

Table 12-1 summarizes the subcommands that direct the backup and
delete operations.

Table 12-1. Summary of Backup Utility Subcommands

Subcommand Purpose

BACKUP_ CATALOG Backs up the file cycles and
subcatalogs in a catalog.

BACKUP _FILE Backs up a permanent file cycle.

DELETE_CATALOG_CONTENTS Deletes all files and subcatalogs
in a catalog.

DELETE_FILE_ CONTENTS Deletes all cycles of a file.

EXCLUDE_CATALOG Excludes a catalog from
subsequent backup and delete
operations.

EXCLUDE_FILE Excludes a file or cycle from
subsequent backup and delete
operations.

EXCLUDE_HIGHEST_CYCLES Excludes the highest cycles of
files from subsequent backup and
delete operations. (The highest
cycles are the cycles with the
largest numbers.)

INCLUDE_CYCLES Determines the cycles included in
subsequent backup and delete
operations. You specify the cycles
to be included based on the
cycles' creation dates and times,
last access dates and times, last
modification dates and times, or
expiration dates. An excluded
cycle is not backed up or deleted,
regardless of its date and time.

(Continued)

Revision H Backup and Restore Utilities 12-17

Backup Operations

Table 12-1. Summary of Backup Utility Subcommands
(Continued)

Subcommand

INCLUDE_EMPTY_CATALOGS

INCLUDE_LARGE_CYCLES

INCLUDE_SMALL_CYCLE

SET_ BACKUP_ OPTIONS

SET_ LIST_ OPTIONS

QUIT

12-18 NOSNE System Usage

Purpose

Causes subsequent DELETE_
CATALOG_ CONTENT
subcommands to delete empty
catalogs.

Causes subsequent backup and
delete operations to include only
cycles whose size is greater than
or equal to the specified number
of bytes. A previously excluded
cycle is not backed up or deleted,
regardless of its size.

Causes subsequent backup and
delete operations to include only
cycles whose size is less than or
equal to the specified number of
bytes. A previously excluded
cycle is not backed up or deleted,
regardless of its size.

Specifies subsequent actions to be
taken by the backup utility.

Specifies the information you
want subsequent subcommands to
write to the list file.

Terminates execution of the
backup utility.

Revision H

Restore Operations

Restore Operations

The RESTORE_PERMANENT_FILES utility restores permanent files
and catalogs from backup files created by the BACKUP_
PERMANENT_FILES utility.

NOTE

The restore utility does not replace or overwrite file information that
already exists on line.

Starting and Stopping the Restore Utility

To start the restore utility, use the RESTORE_PERMANENT_FILE
command. On the command, you can specify a file for list information.

The following example starts the restore utility and specifies file
RESTORE_LIST as the list file:

/respf l=restore_list

Once you have started the utility, the system displays the permanent
file restore utility prompt:

PUR/

In response to the prompt, you can enter restore utility subcommands
to direct restore operations (table 12-2 summarizes the restore
subcommands).

Once you have used the subcommands to restore your files and
catalogs, you can stop the utility by entering the QUIT subcommand:

PUR/ quit
I

Revision H Backup and Restore Utilities 12-19

Restore Operations

Restoring from Disk and Tapes

By default, the restore utility assumes that a backup file exists on
disk. Therefore, if the files and catalogs you are restoring exist in a
backup file residing on tape, you must use the REQUEST_
MAGNETIC_ TAPE command before starting the restore utility.

To restore the contents of a backup file when more than one backup
file resides on a labelled tape, use the CHANGE_ TAPE_LABEL_
ATTRIBUTE command to explicitly set the FILE_SET_POSITION
tape label attribute to NEXT_FILE.

Unless you explicitly specify NEXT_FILE for this attribute, the
restore utility will specify BEGINNING_OF_SET for the FILE_SET_
POSITION tape label attribute.

For instance, suppose you have the following:

• A tape with an external volume serial number of ABC.

• Two backup files on the tape, each named TAPE.

• Each backup file contains one catalog. The first contains catalog
.$USER.COBOL and the second contains catalog $USER.FORTRAN.

To restore these catalogs, do the following:

/reqmt f=$local.tape evsn='abc' r=false
/chatla f=$local.tape fsp=nf
I respf
PUR/resc c=$user.cobol bf=$local.tape
PUR resc c=$user.fortran bf=$local.tape
PUR/quit
I

A backup file may also be placed on a labelled tape with a FILE_
IDENTIFIER associated with it. You can then specify the backup file
by entering a CHANGE_ TAPE_LABEL_ATTRIBUTES command with
the appropriate FILE_IDENTIFIER value and a FILE_SET_
POSITION value of FILE_IDENTIFIER_POSITION.

12-20 NOSNE System Usage Revision H

Restore Operations

For instance, suppose in the previous example that the second backup
file on the tape had a file identifier associated with it of FORTRAN
CATALOG. To restore the FORTRAN catalog from that file, you could
do the following:

;reQi'Tit f=$local .tape evsn='abc' r=false
/chat la f=$local .tape fsp=fip fi='FORTRAN CATALOG'
;respf
PUR/resc c=$user.fortran bf=$local.tape
PUR/QUit
I

Displaying Information about a Backup File

To display information about the catalogs, files, and cycles of a
backup file, use the DISPLAY_BACKUP _FILE subcommand.

You can select different informational displays with the DISPLAY_
OPTION parameter. The following example displays the name and
type of each entry on the backup file BACKUP:

;respf l=restore_list
PUR/display_bacKup_file bf=$local.bacKup ..
PUR .. /do= identifier
PUR/ quit
/ copf i=restore_ list

D fSPLA Y BACKUP FI LE:
:NVE.SARETT.BACKUP. 1

:NVE.SARETT.CATALOG_1

:NVE.SARETT.CATALOG_l.DATA_FILE_O
PERMANENT FILE

:NVE.SARETT.CATALOG_l.DATA_FILE_O
PERMANENT_FILE
CYCLE = 1

:NVE. SARETT. CATALOG_ 1. DATA_FILE_O
PERMANENT_FILE
CYCLE = 2

:NVE.SARETT.CATALOG_1.DATA_FILE_2
PERMANENT FILE

:NVE.SARETT.CATALOG_1.DATA_FILE_2
PERMANENT _FI LE
CYCLE = 1

Revision H Backup and Restore Utilities 12-21

Restore Operations

To display more detailed information about each entry in the backup
file, use the DESCRIPTOR display option on the DISPLAY_BACKUP _
FILE subcommand. This information includes:

• Record headers maintained on the backup file.

• The version of the backup utility that produced the backup file.

• The date and time the backup file was written.

• The backup utility subcommand(s) that produced the backup file.

• Information on each file cycle that includes the following:

Cycle number.

Usage count.

Creation date and time.

Last access date and time.

Last modification date and time.

Expiration date.

Size in bytes.

If you specify the READ_DATA display option on the DISBF
subcommand, the listing will report the following:

• All of the information returned for the DESCRIPTOR display
option.

• The results of an attempt to read the data in every file cycle
contained in the backup file.

12-22 NOSNE System Usage Revision H

Restore Operations

Using the $BACKUP _FILE Function

To display the attributes of a file or catalog on a backup file, use the
$BACKUP _FILE function. This function returns the attribute
information as a string with all letters converted to uppercase.
Because this function reads the backup file at the
beginning-of-information, only the first item of information on the file
can be queried and returned to you.

Use the $BACKUP _FILE function to restore a file or catalog when
you do not know its name on the backup file, but do know the name
of the destination file or catalog. For example, if you receive a tape
produced by the BACKUP_ CATALOG command and you want to
restore a catalog on the backup file BACKUP _FILE to your own
catalog, enter the following commands:

PUR/restore_catalog ..
PUR .. /c=$fname($bacl<Up_fi le(baclrnp_fi le, identifier)) ..
PUR .. /backup_file=backup_file ne~_catalog_name=$user.my_catalog

The $FNAME function is included on the RESTORE_CATALOG
subcommand to convert the string returned by $BACKUP _FILE to a
file name. You can use the resulting file name in any subsequent
RESTORE_FILE or RESTORE_CATALOG subcommand. These
subcommands are discussed next in this chapter.

Restoring Catalogs

You can use the RESTORE_PERMANENT_FILE utility to restore
catalogs from backup files. You can restore catalogs that do not
currently reside within your permanent catalog structure, and you can
restore catalogs that reside , but have some files or subcatalogs
missing from them. The following sections discuss these two different
types of catalog restoration.

Revision H Backup and Restore Utilities 12-23

Restore Operations

Restoring a Non existing Catalog

To restore a nonresident catalog, use the RESTORE_ CATALOG
subcommand. The following example restores the master catalog to a
new subcatalog in the master catalog:

PUR/restore_catalog
PUR .. /catalog=Suser nen_catalog_name=$user.catalog_2
PUR .. /backup_file=backup_files

New subcatalog CATALOG_2 appears in the master catalog as
follows:

/display_catalog c=$user
CATALOG: CATALOG_1
CATALOG: CATALOG_2

FILE: DATA_FILE_1
FILE: EPILOG
FILE: PROLOG

/display_catalog c=$user.catalog_2
CATALOG: CATALOG_1

FILE: DATA_FILE_1
FILE: EPILOG
FILE: PROLOG

/display_catalog c=$user.catalog_2.catalog_1
FILE: DATA~FILE_O

FILE: DATA_FILE_2
/display_catalog_entry f=$user.catalog_2.catalog_1.data_file_O ..
.. /display_option=descriptor

NUMBER OF CYCLES: 2, ACCOUNT: D5927, PROJECT: P693N354
PASSWORD: NEW_DATA_O_PW, LOG SELECTION: TRUE
CYCLE NUMBER: 87, ACCESS COUNT: 3,
CREATION DATE AND TIME: 1985-11-14 21:22:22.056,
LAST ACCESS DATE AND TIME: 1985-11-14 21:23:24.531,
LAST MODIFICATION DATE AND TIME: 1985-11-14 21:23:24.531,
EXPIRATION DATE: 1985-01-13
CYCLE NUMBER: 2, ACCESS COUNT: 2,
CREATION DATE AND TIME: 1985-11-14 21:22:22.123,
LAST ACCESS DATE AND TIME: 1985-11-14 21:23:24.531,
LAST MODIFICATION DATE AND TIME: 1985-11-14 21:23:24.531,
EXPIRATION DATE: NONE

12-24 NOSNE System Usage Revision H

Restore Operations

Restoring an Existing Catalog

It is possible for you to have a catalog that is missing some or all of
the data that it once contained. If you have previously backed up that
catalog, you may restore its files and subcatalogs (and all files and
subcatalogs within the subcatalogs) from the backup file, using the
RESTORE_EXISTING_CATALOG subcommand. For example:

PUR/restore_existing_catalog ..
PUR .. /catalog=Suser backup_file=backup_files

Note that since the restore utility never overwrites currently existing
file cycles, this process will only restore data that exists in the
backup file but not in the currently existing catalog.

Restoring Files

You can use the restore utility to perform the following operations on
files:

• Restore all of the files that exist within the backup file and not in
your catalog.

• Restore a specific file from the backup file.

• Restore the missing file cycles of an existing file.

The following sections discuss these operations in detail:

Restoring All Files

To restore all catalogs and permanent files on a backup file, use the
RESTORE_ALL_FILES subcommand.

For example, the following job restores all files that were previously
backed up during a backup utility session:

/job
job/request_magnetic_tape file=pf_tape_file ..
job .. /evsn='pfb001' type=mt9$6250 ring=false
job/respf
job/restore_all_files backup_file=pf_tape_file
job/quit
job/jobend

Revision H Backup and Restore Utilities 12-25

Restore Operations

Restoring a Non existing File

To restore a file that does not reside in the permanent file system,
use the RESTORE_FILE subcommand.

For example, the following commands restore cycle number 87 of file
DATA_FILE_O in subcatalog CATALOG_l. The file cycle is restored
as cycle number 1 of file DATA_FILE_2 in CATALOG_2 of the
master catalog.

PUR/resf f=$user.catalog_1.data_file_0.87
PUR .. /bf=copy_of_file password=new_data_O_pw
PUR .. /nfn=$user.catalog_2.data_file_2.1

Restoring Cycles of an Existing File

To restore missing cycles of a file that exists in the permanent file
system, use the RESTORE_EXISTING_FILE subcommand.

The following example restores any cycles of file $USER.CATALOG_
1.DATA_FILE_O that exist in backup file COPY_OF_FILE but that
do not currently exist in the user's master catalog:

/delete_file f=$user.catalog_1.data_file_0.87
.. /pw=new_data_O_pw
/respf
PUR/restore_existing_file
PUR .. /f=$user.catalog_1.data_file_O
PUR .. /backup_file=copy_of_file password=new_data_O_pw
PUR/qui t

12-26 NOSNE System Usage Revision H

Restore Operations

Summary of Restore Utility Subcommands

Table 12-2 summarizes the subcommands that direct the restore utility
operations.

Table 12-2. Summary of Restore Utility Subcommands

Subcommand

$BACKUP _FILE function

DISPLAY_BACKUP _FILE

QUIT

Purpose

Returns attribute information for
a file or catalog on a backup file
produced by the backup utility.

Displays the contents of a backup
file produced by the backup
utility.

Terminates execution of the
restore utility.

RESTORE_ALL_FILES Restores the catalogs and
permanent files in a backup file.

RESTORE_CATALOG Restores a catalog that does not
exist on line.

RESTORE_EXISTING_ CATALOG Restores the files and subcatalogs
in a catalog.

RESTORE_EXISTING_FILE Restores cycles of a file.

RESTORE_FILE Restores file cycles that do not
exist on line.

SET_ LIST_ OPTION Specifies the information you
want subsequent commands to
write to the list file. The list
produced by the DISPLAY_
BACKUP _FILE subcommand is
not affected.

Revision H Backup and Restore Utilities 12-27

Terminal Management

Attribute Overview . . .
Terminal Attributes .
Connection Attributes

Network Dependencies .
Attribute Value Constraints .
Changing Attribute Values .

Managing Terminal Attributes .
Changing Terminal Attribute values .
Displaying Terminal Attributes .
Terminal Attribute Set
Terminal Attribute Defaults . . .
Terminal Attribute Applicability

Network Type
Editing Mode

Managing Connection Attributes
Connection Attribute Levels .
SCL Commands
Connection Attribute Set . . .
Initial Default Values for Connection Attributes
Connection Attribute Applicability

Network Type
Editing Mode .

Terminal Input . .
Input Buffering .
Normal Editing Mode
Transparent Editing Mode .
Typed-Ahead Input

Terminal Output ..
Normal Editing Mode

Interline Positioning .
Page Holding

Transparent Editing Mode .
Page Width and Page Length Attributes

13

13-1
13-2
13-2

13-3
13-3
13-3

13-4
13-4
13-4
13-5

13-17
13-17
13"."17
13-21

13-23
13-23
13-24
13-25
13-34
13-36
13-36
13-38

13-41
13-41
13-42
13-44
13-45

13-46
13-46
13-48
13-48
13-49
13-50

Terminal Management

This chapter discusses the attributes that define how the network
and/or NOSNE interacts with a terminal. It also describes the SCL
and CDCNET commands that perform the following functions:

• Change and retrieve attribute values.

• Read data from a terminal or write data to a terminal.

13

An interactive job has only one terminal connection, and files that are
assigned to the terminal device class within an interactive job are
associated with the job's terminal connection.

An application can accept input from a terminal by reading a
terminal file; an application can send output to a terminal by writing
data to a terminal file. To associate a file with a terminal connection,
you can use the REQUEST_ TERMINAL command, described later in
this chapter. For interactive jobs, the job files INPUT and OUTPUT
are always assigned to the terminal device class.

Attribute Ove:rrvie'Vv

The network maintains the attributes used for terminal management
and determines their initial value. You can change or retrieve
attribute values through either network commands or SCL commands.
NOSNE also changes certain attributes implicitly as part of
performing l/O operations. (Refer to the Managing Connection
Attributes section).

The attributes for terminal management are divided into two types:
terminal attributes and connection attributes. Attribute usage for both
types of attributes is network-dependent.

Revision H Terminal Management 13-1

Terminal Attributes

Terminal Attributes

The network maintains a single set of terminal attribute values for
each terminal which apply to all connections from that terminal.

Terminal attributes describe physical characteristics of the terminal,
which remain constant across all the connections from the terminal.
For example, the attribute which specifies the parity used by the
terminal is a terminal attribute. Terminal attributes are normally
specified by the terminal user with either a network command or an
SCL command.

Connection Attributes

Connection attributes describe how the terminal is used, which may
vary from connection to connection. Thus, the network maintains a
separate set of connection attribute values for each connection from a
terminal. For example, the attribute which specifies whether
characters received from the terminal are edited normally or
transparently is a connection attribute. Connection attributes are
normally specified by using an SCL command.

13-2 NOSNE System Usage Revision H

Network Dependencies

Network Dependencies

NOS/VE supports terminal access through the following networks:

• NAMVE/CDCNET

• NAM/CDCNET

• NAM/CCP

• INTERCOM

The connection attributes supported by NOS/VE correspond to those of
the NAMVE/CDCNET network, along with several NAM/CCP
attributes. Since the four networks do not offer identical capabilities,
attribute usage depends on the specific network.

The attribute descriptions presented in this chapter specify the effect
of the attributes for NAMVE/CDCNET connections. Some attributes
may not be applicable, or may have a different effect for the other
types of networks. Tables 13-1 and 13-4 indicate which attributes are
supported by each type of network. The mapping from NOS/VE
attributes to NAM/CCP device characteristics is described in the
CYBIL File Management manual. Also included in the CYBIL manual
are the attributes for NAM/CDC NET connections and the relationship
of NOS/VE attributes to INTERCOM terminal support.

Attribute Value Constraints

Certain network-specific constraints exist on the values that may be
assigned to attributes. For example, allowed values for one attribute
may depend on the current value of another attribute. However, you
do not usually encounter these constraints during typical use. For
more information, refer to your network's documentation.

Changing Attribute Values

Both CDCNET and NAM/CCP provide network commands to change
terminal and connection attributes. However, you should use SCL
commands to change terminal and connection attribute values. You
may use CDCNET network commands to change terminal attribute
values, but you should not use them to change connection to change
connection attribute values (see the Managing Connection Attributes
section). You should not use NAM/CCP network commands to change
the value of any attribute (device characteristic).

Revision H Terminal Management 13-3

Managing Terminal Attributes

Managing Terminal Attributes

Terminal attribute values affect all connections from the terminal. In
general, you should change terminal attributes only when you are
beginning a terminal session.

Changing Terminal Attribute values

To change terminal attributes, use one of the following commands:

The SCL CHANGE_TERMINAL_ATTRIBUTE command.

The CDCNET <ncc>CHANGE_TERMINAL_ATTRIBUTES
command where <nee> is the CDC NET network command
character (usually a %).

See the Terminal Attribute Set section for attributes, names, and
descriptions.

Displaying Terminal Attributes

The DISPLAY_ TERMINAL_ATTRIBUTE command displays the
attribute values of the terminal in use for the job.

The following example lists the indicated terminal attributes:

/display_terminal_attributes ..
. . /(cancel_line_character,
.. /backspace_character)
Backspace_Character
Cancel_Line_Character

$CHAR(8)
$CHAR(24)

"BS"

"CAN"

Note that the quoted characters on the right are ASCII mnemonics.

13-4 NOSNE System Usage Revision H

Terminal Attribute Set

Terminal Attribute Set

Terminal attributes describe the physical characteristics of a terminal
and remain constant across all connections from the terminal. The
following brief descriptions of each terminal attributes include:

• The attribute's parameter name and abbreviation.

• The attribute's purpose.

• Valid attribute values.

Further descriptions of the functions of terminal attributes can be
found in the CDCNET Terminal Interface Usage manual.

ATTENTION_ CHARACTER (AC)

Specifies the input character which causes the network to perform
the action specified by the ATTENTION_ CHARACTER_ACTION
connection attribute. The ATTENTION _CHARACTER is recognized
whenever it is received from the terminal (it does not need to
occur at the beginning of a line). You can set this attribute to the
NUL character to disable this feature.

BACKSPACE_CHARACTER (BC)

Specifies the input character which causes the network to delete
the previous character in an input line. The effect of this attribute
is conditioned by the value of the STORE_BACKSPACE_
CHARACTER connection attribute.

Revision H Terminal Management 13-5

Terminal Attribute Set

BEGIN_LINE_CHARACTER (BLC)

Specifies the input character which the terminal sends at the
beginning of a line. When the specified character is received as
the first character of an input line, the network discards the
character. This attribute is useful for block mode terminals, which
send a fixed character at the beginning of a line and at the end of
a line. You can set this attribute to the NUL character to disable
this feature.

CANCEL_LINE_CHARACTER (CLC)

Specifies the input character that, when followed by the END_
LINE_CHARACTER, causes the network to cancel the line being
entered. The network forwards the cancelled line to NOSNE which
then discards the line and any partial input line that preceded it.
You can set this attribute to the NUL character to disable this
feature.

CARRIAGE_RETURN_DELAY (CRD)

Specifies the number of milliseconds the network is to wait before
sending additional output to the terminal after a carriage return
action has been performed. The delay allows a mechanical printing
mechanism to reposition before printing is resumed. While the
delay is active, NUL characters are sent to the terminal.

CARRIAGE_RETURN _SEQUENCE (CRS)

Specifies the 0- to 2-character string sent to the terminal to
perform a carriage return action. See the description of the END_
LINE_POSITIONING, and END_PARTIAL_POSITIONING
terminal attributes for more information.

CHARACTER_FLOW_CONTROL(CFC)

Specifies whether the X-ON/X-OFF protocol (DCl and DC3
characters) is to be used to regulate the flow of data between the
network and the terminal.

TRUE

The X-ON/X-OFF protocol is to be used to regulate input and
ouput.

FALSE

The X-ON/X-OFF protocol is not to be used.

13-6 NOSNE System Usage Revision H

Terminal Attribute Set

CODE_SET (CS)

Specifies the character encoding used by the terminal. The
following values are allowed:

ASCII

The terminal uses the ASCII character set.

TPAPL

The terminal uses the typewriter-paired APL character set.

BPAPL

The terminal uses the bit-paired APL character set.

ECHOPLEX (E)

Specifies whether each input character received from the terminal
is sent back (echoed) to the terminal by the network.

TRUE

Input is echoed to the terminal.

FALSE

Input is not echoed to the terminal.

END_LINE_CHARACTER (ELC)

Specifies the input character that indicates the end of a complete
input line. This character causes the network to forward the stored
input characters to NOS/VE as a complete input line. The END_
LINE_CHARACTER is not forwarded as part of the data.

Revision H Terminal Management 13-7

Terminal Attribute Set

END_LINE_POSITIONING (ELP)

Specifies the character string sent to the terminal to position the
cursor upon receipt of the END_LINE_CHARACTER. The
following values are allowed:

CRS

The character string sent is the value of the CARRIAGE_
RETURN _SEQUENCE terminal attribute.

LFS

The character string sent is the value of the LINE_FEED_
SEQUENCE terminal attribute.

CRSLFS

The character string sent is the value of the CARRIAGE_
RETURN_SEQUENCE terminal attribute followed by the value
of the LINE_FEED_SEQUENCE terminal attribute.

NONE

No character string is sent.

END_OUTPUT_SEQUENCE (EOS)

Specifies a string of 0 to 4 characters that is sent to the terminal
following every complete output message. (Refer to the Terminal
Output section for a description of a complete output message.)
Any character combination is allowed. This attribute is provided
for use by test tools such as terminal emulator packages.

END_PAGE_ACTION (EPA)

Specifies the character string sent to the terminal after a page of
output data has been sent to the terminal without an intervening
input line. This attribute has no effect if the PAGE_LENGTH
terminal attribute is set to 0. If HOLD_PAGE is TRUE, the page
holding action occurs before the character string is sent to the
terminal. The following values are allowed:

FFS

The character string sent is the value of the FORM_FEED_
SEQUENCE terminal attribute.

NONE

No character string is sent.

13-8 NOSNE System Usage Revision H

Terminal Attribute Set

END_PARTIAL_CHARACTER (EPC)

Specifies the input character which indicates the end of a partial
input line. This character causes the network to forward the stored
input characters to NOSNE as a partial input line. The END_
PARTIAL_ CHARACTER is not forwarded as part of the data. The
effect of this attribute is conditioned by the value of the
PARTIAL_CHARACTER_FORWARDING connection attribute. You
can set this attribute to the NUL character to disable this feature.

END_PARTIAL_POSITIONING (EPP)

Specifies the character string sent to the terminal to position the
cursor upon receipt of the END_PARTIAL_CHARACTER. The
following are allowed values:

CRS

The character string sent is the value of the CARRIAGE_
RETURN _SEQUENCE terminal attribute.

LFS

The character string sent is the value of the LINE_FEED_
SEQUENCE terminal attribute.

CRSLFS

The character string sent is the value of the CARRIAGE_
RETURN _SEQUENCE terminal attribute followed by the value
of the LINE_FEED_SEQUENCE terminal attribute.

NONE

No character string is sent.

Revision H Terminal Management 13-9

Terminal Attribute Set

FOLD_LINE (FL)

Specifies whether the network folds output lines whose length
exceeds the value of the PAGE_ WIDTH terminal attribute.

TRUE

The network folds output lines when necessary. The portion of
an output line that exceeds the PAGE_ WIDTH value is
displayed on the next physical line.

FALSE

The network does not fold output lines. If line folding is to
occur, it must be performed by the terminal.

FORM_FEED_DELAY (FFD)

Specifies the number of milliseconds the network is to wait before
sending additional output to the terminal after a form feed action
has been performed. The delay allows a mechanical printing
mechanism to reposition before printing is resumed. While the
delay is active, NUL characters are sent to the terminal.

FORM_FEED_SEQUENCE (FFS)

Specifies the 0- to 7-character string sent to the terminal to
perform a form feed action. See the description of the END_
PAGE_ACTION terminal attribute for more information.

HOLD_PAGE (HP)

Specifies whether the network suspends the flow of data to the
terminal when a page of output data has been sent to the terminal
without an intervening input line. This attribute has no effect if
the PAGE_LENGTH terminal attribute is set to 0. (Refer to the
Terminal Output section for a description of page holding.)

TRUE

Terminal output is suspended when a page of output has been
displayed.

FALSE

Output is sent to the terminal without interruption.

13-10 NOSNE System Usage Revision H

Terminal Attribute Set

HOLD_PAGE_OVER (HPO)

Specifies whether the network sends a prompt to the terminal each
time a hold page condition occurs. (Refer to the Terminal Output
section for a description of page holding.)

TRUE

A prompt message is sent to the terminal after a page of
output has been displayed.

FALSE

No prompt is sent to the terminal.

LINE_FEED_DELAY (LFD)

Specifies the number of milliseconds the network is to wait before
sending additional output to the terminal after a line feed action
has been performed. The delay allows a mechanical printing
mechanism to reposition before printing is resumed. While the
delay is active, NUL characters are sent to the terminal.

LINE_FEED_SEQUENCE (LFS)

Specifies the 0- to 2-character string sent to the terminal to
perform a line feed action. See description of the END_LINE_
POSITIONING and END_PARTIAL_POSITIONING terminal
attributes for more information.

NETWORK_COMMAND_CHARACTER (NCC)

Specifies the character used to identify network commands. When
this character is the first character of an input line, the line is
processed by the network and not forwarded to NOSNE.

PAGE_LENGTH (PL)

Specifies the number of lines displayed at the terminal as a page
of output. When an end of page condition occurs (the page length
value minus one physical line of data have been sent to the
terminal), the network performs the action specified by the
HOLD_PAGE terminal attribute and then the action specified by
the END_PAGE_ACTION terminal attribute. A value of 0
indicates an infinite page length, meaning that an end of page
condition did not occur.

Revision H Terminal Management 13-11

Terminal Attribute Set

PAGE_ WIDTH (PW)

Specifies the number of characters that the terminal can display
on a line. A value of 0 indicates an infinite page width, meaning
that the network does not perform line folding. In order to allow
NOS/VE programs to tailor output to the terminal's actual line
width, you should set this attribute to indicate the physical
characteristics of the terminal.

PARITY (P)

Specifies the parity checking performed on each character received
from the terminal and the parity generation performed for each
character sent to the terminal. The following values are allowed:

EVEN

The sum of all bits in a character is an even number.

ODD

The sum of all bits in a character is an odd number.

MARK

The parity bit is set to one.

NONE

If the INPUT_EDITING_MODE connection attribute is set to
TRANSPARENT, no parity check is performed on input and no
parity is generated on output. If the INPUT_EDITING_MODE
connection attribute is NORMAL, no parity check is performed
on input, but the parity bit is set to zero in each character
sent to NOS/VE and each character sent to the terminal.

ZERO

The parity bit is set to zero.

PAUSE_BREAK_CHARACTER (PBC)

Specifies the input character that causes a pause break condition
when it is received as the only character on a line.

13-12 NOSNE System Usage Revision H

Terminal Attribute Set

STATUS_ACTION (SA)

Specifies how the network handles status messages from network
operators. The following values are allowed:

DISCARD (D)

Status messages received by the network are not displayed at
the terminal.

SEND (S)

Each status message is displayed at the terminal when it is
received by the network.

HOLD (H)

The four most recent status messages are held by the network
and not displayed until either the connection terminates or the
value of this attribute is changed.

TERMINAL_CLASS (TC)

Specifies the class of terminal in use. The following values are
allowed:

TTY

C75x

C721

12741

TTY40

H2000

X364

T4010

HASP_POST

Revision H

M3x teletypewriters.

CDC 75x, 722-10, 722-20 terminals.

CDC 721 terminals.

IBM 27 41 terminals.

M40 teletypewriters.

Hazeltine 2000 terminals.

ANSI X3.64 terminals, including CDC 722-30
terminals.

Tektronix 4010 terminals.

HASP terminals that support only postprint
format effectors.

Terminal Management 13-13

Terminal Attribute Set

HASP_PRE

C200UT

714_30_40

C711

C714_10_20

C73X

12740

13780

13270

HASP terminals that support both postprint and
preprint format effectors.

CDC 200 user terminals.

CDC 714-30 and CDC 714-40 terminals.

CDC 711 terminals.

CDC 714-10 and CDC 714-20 terminals.

CDC 73x terminals.

IBM 27 40 terminals.

IBM 3780 terminals.

IBM 3270 terminals.

TERMINAL_MODEL (TM)

Specifies a logical name for the type of the terminal in use. This
attribute determines what is used for full screen applications such
as EDIT_FlLE. You may enter a name specifying a terminal
definition that you defined, or one of the following system-supplied
names:

NOS/VE Model Name

CDC_ 721

CDC_722

CDC_ 722_30

CDC_910

DEC_ VTlOO

DEC_ VTlOO_GOLD

DEC_ VT220

IBM_3270

IBM_3270_2

13-14 NOSNE System Usage

Terminal Model

CDC 721

CDC 722

CDC 722_30

CDC 910 workstation

DEC VTlOO (18 function key
definition)

DEC VTl 00 (32 function key
definition)

DEC VT220

IBM 3270 model 1

IBM 3270 model 2

Revision H

NOS/VE Model Name

IBM_3270_3

IBM_3270_4

IBM_3270_5

MAC_ CONNECT_ lo

MAC_CONNECT_ll

MAC_CONNECT_20

PC_CONNECT_lO

PC_CONNECT_ll

PC_CONNECT_l2

PC_CONNECT_l3

SUN_l60

TEK_4109

TEK_4115

TEK_4125

TV_950

TV_950_PROTECTED

TV_955

TV_955_PROTECTED

ZEN_Z19

ZEN_Z29

Revision H

Terminal Attribute Set

Terminal Model

IBM 3270 model 3

IBM 3270 model 4

IBM 3270 model 5

Apple Macintosh (CONNECT 1.0)

Apple Macintosh (CONNECT 1.1)

Apple Macintosh (CONNECT 2.0)

IBM PC (CONNECT 1.0)

IBM PC (CONNECT 1.1)

IBM PC (CONNECT 1.2)

IBM PC (CONNECT 1.3)

Sun Microsystems 160 workstation

Tektronix 4107 or 4109

Tektronix 4115 or 4115B

Tektronix 4125, 4128, or 4129

Televideo 950

Televideo 950 with field protection

Televideo 955

Televideo 955 with field protection

Zenith Z19 or Heathkit H19

Zenith Z29

Terminal Management 13-15

Terminal Attribute Set

NOTE

Changing the terminal model attribute causes a new terminal
definition to be loaded the next time a full screen application is
initiated. Any CHANGE_ TERMINAL_ATTRIBUTES command
embedded in the terminal definition is executed at this time.

TERMINAL_NAME (TN)

Specifies a unique 31-character name for the terminal in use. This
attribute is read-only and you cannot change it. The name is
obtained from the network during LOGIN or, on NAMVE/CDCNET
connections only, when a detached job is reattached to a terminal.
The characters of the default network-assigned name describe the
unique physical path through which the terminal is connected to
the network. For example, NAM/CCP default terminal names
identify the coupler node, MCI node and connection number. The
network administrator is responsible for the uniqueness of
non-default terminal names.

This attribute is not applicable on INTERCOM as it does not
assign terminal names.

TERMINATE_BREAK_CHARACTER (TBC)

Specifies the input character that causes a terminate break
condition when it is received as the only character on a line.

13-16 NOSNE System Usage Revision H

Terminal Attribute Defaults

Terminal Attribute Defaults

The network establishes the initial value for each terminal attribute.

Terminal Attribute Applicability

The effect of each terminal attribute depends on the network to which
the terminal is connected and the type of editing mode in effect.

Network Type

NOS/VE supports terminal access through four networks:
NAMVE/CDCNET, NAM/CCP, NAM/CDCNET, and INTERCOM. Not
all attributes apply to all networks. Table 13-1 indicates which
terminal attributes are supported by each type of network. You can
assign a value to any terminal attribute even if it does not apply to a
particular network. However, the changed value of a nonapplicable
attribute cannot be retrieved and has no effect. The mapping from
NOS/VE terminal attributes to NAM/CCP device characteristics is
described in the CYBIL File Management manual. This manual also
discusses the relationship of NOS/VE attributes to INTERCOM
terminal support

Revision H Terminal Management 13-17

Terminal Attribute Applicability

Table 13-1. Terminal Attribute Network Applicability

NAMVE/ NAM/ NAM/
Attribute CDCNET CDC NET CCP INTERCOM

ATTENTION_ x na1 2 na
CHARACTER

BACKSPACE_ x x x na
CHARACTER

BEGIN_LINE_ x na na na
CHARACTER

CANCEL_ LINE_ x x x na
CHARACTER

CARRIAGE_ x x x na
RETURN_DELAY

CARRIAGE_ x na na na
RETURN_
SEQUENCE

CHARACTER_ x x x na
FLOW_CONTROL

CODE_SET x na na na

ECHOPLEX x x x na

END_LINE_ x x x na
CHARACTER

1. na means not applicable.

2. In this network, the attribute's effect does not correspond to the
description given in this chapter. Rather, the value of this attribute
qualifies the meaning of the INPUT_EDITING_MODE connection
attribute.

(Continued)

13-18 NOSNE System Usage Revision H

Terminal Attribute Applicability

Table 13-1. Terminal Attribute Network Applicability (Continued)

NAMVE/ NAM/ NAM/
Attribute CDCNET CDCNET CCP INTERCOM

END_LINE_ x x x na1

POSITIONING

END_ OUTPUT_ x na na na
SEQUENCE

END_PAGE_ x na na na
ACTION

END_PARTIAL_ x x x na,
CHARACTER

END_PARTIAL_ x x x na
POSITIONING

FOLD_LINE x x x na

FORM_ FEED_ x na na na
DELAY

FORM_ FEED_ x na na na
SEQUENCE

HOLD_PAGE x x x na

HOLD_PAGE_ x na na na
OVER

LINE_FEED_ x x x na
DELAY

1. na means not applicable.

(Continued)

Revision H Terminal Management 13-19

Terminal Attribute Applicability

Table 13-1. Terminal Attribute Network Applicability (Continued)

NAMVE/ NAM/ NAM/
Attribute CDCNET CDCNET CCP INTERCOM

LINE_FEED_ x na1 na na
SEQUENCE

NETWORK_ x x x na
COMMAND_
CHARACTER

PAGE_LENGTH x x x x

PAGE_ WIDTH x x x x

PARITY x x x x

PAUSE_BREAK_ na na x na
CHARACTER

STATUS_ACTION x x x na

TERMINAL_ CLASS na x x x

TERMINAL_ x x x x
MODEL

TERMINAL_ x x x na
NAME2

TERMINATE_ na na x na
BREAK_
CHARACTER

1. na means not applicable.

2. This attribute can only be displayed; it cannot be changed.

13-20 NOSNE System Usage Revision H

Terminal Attribute Applicability

Editing Mode

The applicability of certain terminal attributes depends on the editing
mode that is in effect (refer to the INPUT_EDITING_MODE
connection attribute description). Table 13-2 indicates which terminal
attributes are in effect for each editing mode. You can change or
retrieve any terminal attribute, even if the attribute does not apply to
the current editing mode. However, the attribute value has no effect
until the editing mode is changed.

See the Terminal Input and Terminal Output sections later in this
chapter for a more detailed discussion of editing modes.

Table 13-2. Terminal Attribute Editing Modes

Attribute Editing Mode

ATTENTION_ CHARACTER Normal/Transparent

BACKSPACE_ CHARACTER Normal

BEGIN_LINE_CHARACTER Normal

CANCEL_ LINE_ Normal
CHARACTER

CARRIAGE_RETURN_ Normal
DELAY

CARRIAGE_RETURN_ Normal
SEQUENCE

CHARACTER_ FLOW_ Normal/Transparent
CONTROL

CODE_SET Normal

ECHOPLEX Normal/Transparent

END_LINE_CHARACTER Normal

END_LINE_POSITIONING Normal

END_OUTPUT_SEQUENCE Normal/Transparent

(Continued)

Revision H Terminal Management 13-21

Terminal Attribute Applicability

Table 13-2. Terminal Attribute Editing Modes (Continued)

Attribute Editing Mode

END_PAGE_ACTION Normal

END_PARTIAL_ Normal
CHARACTER

END_PARTIAL_ Normal
POSITIONING

FOLD_LINE Normal

FORM_FEED_DELAY Normal

FORM_FEED_SEQUENCE Normal

HOLD_PAGE Normal

HOLD_PAGE_OVER Normal

LINE_FEED_DELAY Normal

LINE_FEED_SEQUENCE Normal

NETWORK_ COMMAND_ Normal
CHARACTER

PAGE_LENGTH Normal

PAGE_ WIDTH Normal

PARITY N ormaltrransparent

PAUSE_BREAK_ N ormaltrransparent
CHARACTER

STATUS_ACTION N ormaltrransparent

TERMINAL_ CLASS N ormaltrransparent

TERMINAL_MODEL N ormaltrransparent

TERMINAL_ NAME N ormaltrransparent

TERMINATE_BREAK_ N ormaltrransparent
CHARACTER

13-22 NOSNE System Usage Revision H

Managing Connection Attributes

Managing Connection Attributes

The set of connection attribute values that actually controls the
terminal interaction for a connection is maintained by the network.
However, NOSNE maintains a separate set of connection attribute
values for each instance of open of a file associated with a terminal
connection. See the CYBIL File Management manual for more
information about attribute values at the instance-of-open level.

Connection Attribute Levels

To simplify the specification of connection attribute values to be used
for an instance of open, NOS/VE maintains three levels of connection
attribute values. Each level specifies the default or initial values to be
used when an instance of the next level is created.

Level

Default

File

Instance of
Open

Revision H

Description

Specifies the default attribute values assigned to a file
when it is associated with a terminal. (For the initial
values at this level, see Initial Default Values for
Connection Attributes later in this chapter.) If an
attribute value is not specified when a terminal file is
created (via the REQUEST_ TERMINAL command), the
initial attribute value at the file level is the
corresponding value from the default level. Changes at
the default level do not affect values at the file level
for existing files.

Specifies the initial attribute values to be used for an
instance of open of a terminal file. Changes at the file
level do not affect values at the instance-of-open level
for existing instances of open. (SCL commands do not
affect attribute values at the instance-of-open level. See
the CYBIL File Management manual.)

Specifies the attribute values to be used on a terminal
connection when the connection is accessed via a
particular instance of open. NOS/VE monitors the
attribute values currently in effect for a connection.
Each time a task accesses a connection, attribute
values that do not match the specified instance-of-open
attributes are changed.

Terminal Management 13-23

SCL Commands

SCL Commands

The following SCL commands allow you to change or retrieve
connection attributes at the default and file levels:

Level

Default

File

SCL Command

CHANGE_ TERM_ CONN _DEFAULT
DISPLAY_ TERM_CONN _DEFAULT

CHANGE_CONNECTION_ATTRIBUTE
DISPLAY_ CONNECTION _ATTRIBUTE

The CHANGE_TERM_CONN_DEFAULT command enables you to
change the connection attribute defaults for terminal connecton. This
command does not affect connection attribute values at the file level
for existing files.

Refer to the Connection Attribute Descriptions section for attributes,
names, and descriptions.

The DISPLAY_TERM_CONN_DEFAULT command allows you to
display the connection attribute defaults for a terminal connection.

The CHANGE_CONNECTION_ATTRIBUTE command lets you
change the terminal file's connection attributes. The command only
changes the connection attribute values at the file level for the
specified file. It does not affect connection attribute values at the
instance of open level for existing instances of open of the specified
file.

The DISPLAY_CONNECTION_ATTRIBUTE command enables you to
display either all or a specified set of the terminal file's connection
attributes.

13-24 NOSNE System Usage Revision H

Connection Attribute Set

Connection Attribute Set

Connection attributes describe the characteristics of a particular
network's interactive environment. Once a terminal is connected to a
network, the values specified for a connection attribute will affect the
connection. The following brief descriptions of each attribute include:

o The attribute's parameter name and abbreviation.

• The attribute's purpose.

o Valid attribute values.

For more detailed information, see the CDCNET Terminal Interface
Usage manual.

ATTENTION_ CHARACTER_ACTION (ACA)

Specifies the type of user interrupt command simulated by the
network when the character defined by the ATTENTION_
CHARACTER terminal attribute is received from the terminal. If
the ATTENTION_ CHARACTER is set to NUL, this attribute has
no effect. The following values are allowed:

0

All typed-ahead input is discarded.

1

All undelivered input and output is discarded, and a pause
break condition is raised.

2 - 9
All undelivered input and output is discarded, and a terminate
break condition is raised.

Revision H Terminal Management 13-25

Connection Attribute Set

BREAK_KEY_ACTION (BKA)

Specifies the type of user interrupt command simulated by the
network when the break key is pressed at the terminal. The
following values are allowed:

0

All typed-ahead input is discarded.

1

All undelivered input and output is discarded, and a pause
break condition is raised.

2 - 9

All undelivered input and output is discarded, and a terminate
break condition is raised.

END_OF_INFORMATION (EOI)

Specifies a string of 0 to 31 characters that, when entered as a
complete input line, is interpreted as an end-of-information mark
on the input file. A string of zero characters indicates that EOI is
never reached for the terminal file. This attribute is for NOSNE
internal use only; it is not sent to the network.

INPUT_BLOCK_SIZE (IBS)

Specifies the maximum number of characters (80 through 2000)
stored by the network before input data is forwarded to NOSNE.
When the input data is forwarded, it is sent as a partial input
line.

13-26 NOSNE System Usage Revision H

Connection Attribute Set

INPUT_EDITING_MODE (IEM)

Specifies how the network edits the data received from the
terminal. (Ref er to the Terminal Input section of this chapter for
more information concerning the input editing modes.) The
following values are allowed:

NORMAL

NORMAL editing mode is in effect. The network edits input to
remove special codes or characters before the input is
forwarded to NOSNE.

TRANSPARENT

TRANSPARENT editing mode is in effect. The network
forwards input to NOSNE without converting or deleting any
special codes or characters.

NOTE

The value of the INPUT_EDITING_MODE attribute also
determines how the network edits output sent to the terminal.

INPUT_OUTPUT_MODE (IOM)

Specifies how the network coordinates the terminal input and
output streams. The following values are allowed:

UNSOLICITED (U)

The network edits and forwards input data as it is received.
Input need not be solicited by a task in order to be edited and
forwarded.

If output is received while an input line is being entered, the
output is not sent to the terminal until the input line is
completed. If an input line is started while output is being sent
to the terminal, the output is suspended until the input line is
completed.

Note that typed-ahead input may be edited in the wrong mode
if the INPUT_EDITING_MODE is changed.

Revision H Terminal Management 13-27

Connection Attribute Set

SOLICITED (S)

The network does not edit or forward input data until it is
solicited by a task. A task solicits input by reading from a
terminal file associated with the terminal.

When input has been solicited, input and output are
coordinated the same way as for UNSOLICITED_ OUTPUT
mode. If output is received while an input line is being
entered, the output is not sent to the terminal until the input
line is completed. If an input line is started while output is
being sent to the terminal, the output is suspended until the
input line is completed.

When input has not been solicited, input is accepted by the
network and stored in raw form. The input data is not edited
or forwarded until input is solicited. Echoplexing, backspacing,
and cursor positioning are not performed. Output is sent to the
terminal as it is received, and received input does not suspend
output in progress.

Note that typed-ahead input is always edited in the desired
mode if the INPUT_EDITING_MODE is changed.

FULL_DUPLEX (F)

The network does not coordinate the input and output streams.
Input data is edited and forwarded as it is received. Output
data is sent to the terminal as it is received.

Note that typed-ahead input may be edited in the wrong mode
if the INPUT_EDITING_MODE is changed.

INPUT_ TIMEOUT (IT)

Specifies whether NOS/VE is to limit the amount of time a task
waits for input from the terminal when it reads from a terminal
file. The length of the timeout interval and the action taken when
a timeout occurs are determined by the INPUT_ TIMEOUT_
LENGTH and INPUT_ TIMEOUT_PURGE connection attributes.

TRUE

NOS/VE limits the task wait time.

FALSE

NOS/VE does not limit the task wait time

This attribute is for NOS/VE internal use only; it is not sent to
the network.

13-28 NOSNE System Usage Revision H

Connection Attribute Set

INPUT_ TIMEOUT_LENGTH (ITL)

Specifies the maximum number of milliseconds (0 through 86,401)
that a task is to wait for input from a terminal when it reads
from a terminal file. If no input occurs within the specified
timeout interval, a GET call returns abnormal status. This
attribute's effect is conditioned by the value of the INPUT_
TIMEOUT connection attribute. This attribute is for NOSNE
internal use only; it is not sent to the network.

INPUT_ TIMEOUT_PURGE (ITP)

Specifies whether undelivered terminal input and output is to be
discarded when an input timeout condition occurs. This attribute
has no effect if the INPUT_ TIMEOUT_LENGTH attribute is set
to 0. This attribute's effect is conditioned by the value of the
INPUT_ TIMEOUT connection attribute. This attribute is for
NOSNE internal use only; it is not sent to the network.

PARTIAL_CHARACTER_FORWARDING (PCF)

Specifies whether the network forwards a partial input line when
an END_PARTIAL_CHARACTER is received from the terminal.
(The END_PARTIAL_CHARACTER terminal attribute is described
earlier in this chapter.)

TRUE

The network sends a partial input line to NOSNE upon receipt
of the END_PARTIAL_CHARACTER.

FALSE

The network stores the END_PARTIAL_CHARACTER as part
of the data to be forwarded to NOSNE. A partial input line is
not sent.

Revision H Terminal Management 13-29

Connection Attribute Set

PROMPT_FILE (PF)

Specifies the local file name of the file to which the prompt string
is written. NOSNE opens the file specified by the PROMPT_FILE
attribute when a task performs its first input from the terminal
file. This attribute is for NOSNE internal use only; it is not sent
to the network.

PROMPT_STRING (PS)

Specifies the string written to the prompt file when a task reads
from the terminal file. This attribute is for NOSNE internal use
only; it is not sent to the network.

STORE_BACKSPACE_CHARACTER(SBC)

Specifies how the network processes the character specified as the
BACKSPACE_ CHARACTER when it is received from the terminal.
(The BACKSPACE_CHARACTER terminal attribute is described
earlier in this chapter.)

TRUE

The network stores the BACKSPACE_CHARACTER as part of
the data to be forwarded to NOSNE.

FALSE

The network discards the BACKSPACE_CHARACTER and
removes the last character from the data to be forwarded to
NOSNE.

STORE_NULS_DELS (SND)

Specifies whether the network stores or discards the NUL and
DEL characters when they are received from the terminal.

TRUE

The network stores the NUL or DEL characters as part of the
data to be forwarded to NOSNE.

FALSE

The network discards the NUL and DEL characters.

13-30 NOSNE System Usage Revision H

Connection Attribute Set

TRANSPARENT_CHARACTER_MODE (TCM)

Specifies the action the network takes when a TRANSPARENT_
FORWARD_CHARACTER or a TRANSPARENT_TERMINATE_
CHARACTER is received from the terminal. The following values
are allowed:

FORWARD (F)

The network forwards the stored input characters as a complete
input line to NOSNE when a TRANSPARENT_FORWARD_
CHARACTER is received from the terminal. The
TRANSPARENT_FORWARD_CHARACTER is not included in
the input line. TRANSPARENT editing mode remains in effect.

TERMINATE (T)

The network forwards the stored input characters as a complete
input line to NOSNE and reverts to NORMAL editing mode
when a TRANSPARENT_TERMINATE_CHARACTER is
received from the terminal. The TRANSPARENT_
TERMINATE_CHARACTER is not included in the input line.

FORWARD_TERMINATE (FT)

The network forwards the stored input characters as a complete
input line to NOSNE when a TRANSPARENT_FORWARD_
CHARACTER is received from the terminal. The
TRANSPARENT_FORWARD_CHARACTER is not included in
the input line. The network reverts to NORMAL editing mode
when a TRANSPARENT_TERMINATE_CHARACTER is
received after a TRANSPARENT_FORWARD_CHARACTER.

NONE (N)

The network takes no action when a TRANSPARENT_
FORWARD_CHARACTERorTRANSPARENT_TERMINATE_
CHARACTER is received from the terminal.

Revision H Terminal Management 13-31

Connection Attribute Set

TRANSPARENT_FORWARD_CHARACTER(TFC)

Specifies a string of up to four characters; any one of these
characters is recognized by the network as the transparent mode
forwarding character. See the description of the TRANSPARENT_
CHARACTER_MODE connection attribute for more information.

TRANSPARENT_LENGTH_MODE (TLM)

Specifies the action the network takes when it receives the number
of characters specified by the TRANSPARENT_MESSAGE_
LENGTH connection attribute. The following are allowed values:

FORWARD (F)

The network forwards the stored input characters as a complete
input line to NOSNE when the number of characters specified
by the TRANSPARENT_MESSAGE_LENGTH attribute has
been received. The input line may exceed the specified length if
more input data is available by the time the line is actually
forwarded.

FORWARD_EXACT (FE)

The network forwards the stored input characters as a complete
input line to NOSNE when the number of characters specified
by the TRANSPARENT_MESSAGE_LENGTH attribute has
been received. The length of the input line will equal the
specified length.

TERMINATE (T)

The network forwards the stored input characters as a complete
input line to NOSNE and reverts to NORMAL editing mode
when the number of characters specified by the
TRANSPARENT_MESSAGE_LENGTH attribute has been
received.

NONE (N)

The network takes no action when the number of characters
specified by the TRANSPARENT_MESSAGE_LENGTH
attribute has been received.

13-32 NOSNE System Usage Revision H

Connection Attribute Set

TRANSPARENT_MESSAGE_LENGTH (TML)

Specifies the minimum ·number of characters (1 through 32,767)
forwarded in each transparent input message. See the description
of the TRANSPARENT_LENGTH_MODE connection attribute for
more information.

TRANSPARENT_TERMINATE_CHARACTER (TTC)

Specifies a string of up to four characters; any one of these
characters is recognized by the network as the transparent mode
terminating character. See the description of the TRANSPARENT_
CHARACTER_MODE connection attribute for more information.

TRANSPARENT_ TIMEOUT_MODE (TTM)

Specifies the action the network takes when no input is received
from the terminal for an interval of 400 milliseconds or more. The
following are allowed values:

FORWARD (F)

The network forwards the stored input characters as a complete
input line to NOSNE when a timeout occurs between
characters.

TERMINATE (T)

The network reverts to NORMAL editing mode when a timeout
occurs between characters.

NONE (N)

No action is taken when a timeout occurs between characters.

Revision H Terminal Management 13-33

Initial Default Values for Connection Attributes

Initial Default Values for Connection Attributes

The network establishes the initial value for each connection attribute.
However, the initial connection attribute values maintained by the
network are irrelevant since NOSNE changes the network-maintained
values to the corresponding instance-of-open values on the first access
to the connection.

NOSNE establishes the set of initial values for connection attributes
at the default level. These initial values are specified in table 13-3. If
connection attribute values are not explicitly specified at either the
default or file level, these initial values become the connection
attributes for a terminal file.

Table 13-3. NOS/VE Initial Values at the Default Level

Connection Attribute Initial Value

ATTENTION_ CHARACTER_ 2
ACTION

BREAK_KEY_ACTION 0

END_OF_INFORMATION '*EOI'

INPUT_BLOCK_SIZE 160

INPUT_EDITING_MODE NORMAL

INPUT_ OUTPUT_ MODE UNSOLICITED

INPUT_ TIMEOUT FALSE

INPUT_ TIMEOUT_LENGTH 86401

INPUT_ TIMEOUT_PURGE TRUE

PARTIAL_ CHARACTER_ FALSE
FORWARDING

(Continued)

13-34 NOSNE System Usage Revision H

Initial Default Values for Connection Attributes

Table 13-3. NOS/VE Initial Values at the Default Level
(Continued)

Connection Attribute Initial Value

PROMPT_FILE $local.output

PROMPT_STRING ' ? '

STORE_BACKSPACE_ FALSE
CHARACTER

STORE_NULS_DELS FALSE

TRANSPARENT_ CHARACTER_ NONE
MODE

TRANSPARENT_FORWARD_ Carriage Return
CHARACTER

TRANSPARENT_LENGTH_MODE NONE

TRANSPARENT_MESSAGE_ 2000
LENGTH

TRANSPARENT_TERMINATE_ Carriage Return
CHARACTER

TRANSPARENT_ TIMEOUT_MODE NONE

Revision H Terminal Management 13-35

Connection Attribute Applicability

Connection Attribute Applicability

The effect of each connection attribute depends on the network used to
access the terminal and the type of editing mode that is in effect.

Network Type

NOSNE supports terminal access through the following four networks:
NAMVE/CDCNET, NAM/CCP, NAM/CDCNET, and INTERCOM. Not
all attributes apply to all networks. Table 13-4 indicates which
connection attributes are applicable for each network. You can assign
a value to any connection attribute even if does not apply to a
particular network. However, the changed value of a nonapplicable
attribute cannot be retrieved and has no effect.

For detailed information on the mapping from NOSNE terminal and
connection attributes to N AM/CCP device characteristics, and on the
relationship between NOSNE connection attributes and INTERCOM
terminal support, see the CYBIL File Management manual, listed in
appendix B of this manual.

Table 13-4. Connection Attribute Network Applicability

NAMVE/ NAM/ NAM/
Attribute CDCNET CDCNET CCP INTERCOM

ATTENTION_ x na1 na na
CHARACTER_
ACTION

BREAK_ KEY_ x x x na
ACTION

END_ OF_ x x x x
INFORMATION

INPUT_BLOCK_ x na na na
SIZE

INPUT_ EDITING_ x x x x
MODE

1. na means not applicable.

(Continued)

13-36 NOS/VE System Usage Revision H

Connection Attribute Applicability

Table 13-4. Connection Attribute Network Applicability
(Continued)

NAM VE/ NAM/ NAM/
Attribute CDCNET CDCNET CCP INTERCOM

INPUT_ OUTPUT_ x x x na
MODE

INPUT_ TIMEOUT x x x x

INPUT_ TIMEOUT_ x x x x
LENGTH

INPUT_ TIMEOUT_ x x x x
PURGE

PARTIAL_ x x x na
CHARACTER_
FORWARDING

PROMPT_FILE x x x x

PROMPT_FILE_ID x x x x

PROMPT_ STRING x x x x

STORE_ x x x na
BACKSPACE_
CHARACTER

STORE_NULS_ x x x na
DELS

1. na means not applicable.

(Continued)

Revision H Terminal Management 13-37

Connection Attribute Applicability

Table 13-4. Connection Attribute Network Applicability
(Continued)

NAMVE/ NAM/ NAM/
Attribute CDCNET CDCNET CCP INTERCOM

TRANSPARENT_ x x x na
CHARACTER_
MODE

TRANSPARENT_ x x x na
FORWARD_
CHARACTER

TRANSPARENT_ x x x na
LENGTH_MODE

TRANSPARENT_ x x x na
MESSAGE_
LENGTH

TRANSPARENT_ x x x na
TERMINATE_
CHARACTER

TRANSPARENT_ x x x na
TIMEOUT_MODE

1. na means not applicable.

Editing Mode

The applicability of many connection attributes depends on the editing
mode in effect (refer to the INPUT_EDITING_MODE connection
attribute description). Table 13-5 indicates which connection attributes
are in effect for each editing mode. You can change or retrieve any
connection attribute even if the attribute does not apply to the current
editing mode. However, the attribute value has no effect until the
editing mode is changed.

See the Terminal Input and Terminal Output sections later in this
chapter for a more detailed discussion of editing modes.

13-38 NOSNE System Usage Revision H

Connection Attribute Applicability

Table 13-5. Connection Attribute Editing Modes

Attribute Editing Mode

ATTENTION_ CHARACTER_ N ormalfl'ransparent
ACTION

BREAK_KEY_ACTION N ormalfl'ransparent

END_ OF _INFORMATION Normal

INPUT_BLOCK_SIZE N ormalfl'ransparent

INPUT_EDITING_MODE N ormalfl'ransparent

INPUT_OUTPUT_MODE N ormalfl'ransparent

INPUT_ TIMEOUT Normal/Transparent

INPUT_ TIMEOUT_LENGTH N ormalfl'ransparent

INPUT_ TIMEOUT_PURGE N ormalfl'ransparent

PARTIAL_ CHARACTER_ Normal
FORWARDING

PROMPT_FILE Normal

PROMPT_ FILE_ ID Normal

(Continued)

Revision H Terminal Management 13-39

Connection Attribute Applicability

Table 13-5. Connection Attribute Editing Modes (Continued)

Attribute Editing Mode

PROMPT_STRING Normal

STORE_BACKSPACE_CHARACTER Normal

STORE_NULS_DELS Normal

TRANSPARENT_ CHARACTER_ Transparent
MODE

TRANSPARENT_FORWARD_ Transparent
CHARACTER

TRANSPARENT_LENGTH_MODE Transparent

TRANSPARENT_MESSAGE_ Transparent
LENGTH

TRANSPARENT_ TERMINATE_ Transparent
CHARACTER

TRANSPARENT_ TIMEOUT_MODE Transparent

13-40 NOSNE System Usage Revision H

Terminal Input

Terminal linput

NOS/VE allows more than one task in a job to be reading from the
same terminal at the same time. When a task reads from a terminal
file, a complete input line is delivered to the task. When multiple
tasks are waiting for input at the same time, the order in which
input lines are delivered to tasks does not necessarily match the order
in which the tasks issued calls to read from the terminal.

Input Buffering

Input characters received from a terminal are buffered by the network
and forwarded to NOS/VE under conditions defined by certain
terminal and connection attributes. The attributes that define
forwarding conditions vary depending on the editing mode in effect.
The forwarded data is buffered by NOS/VE until a task reads from a
file associated with the terminal.

Input data is forwarded to NOS/VE as either a complete input line or
a partial input line. Partial input lines are concatenated by NOS/VE
to form a complete line before input data is delivered to a task. In
the following example, two lines are entered in normal editing mode;
the first line ends with the END_PARTIAL_CHARACTER, and the
second line ends with the END_LINE_CHARACTER:

<line 1>end_partial_character
<line 2>end_line_character

The input is then delivered to a task which reads from the terminal
as a single line as follows:

<line 1><line 2>

Revision H Terminal Management 13-41

Normal Editing Mode

Normal Editing Mode

If the INPUT_EDITING_MODE connection attribute is normal, input
lines consist of characters from the ASCII 128-character set. The
network performs the following editing actions on input characters as
they are received from the terminal:

Editing Action

Parity checking

Echoplexing

Character code
conversion

Store and forward

Backspacing

13-42 NOSNE System Usage

Description

The network verifies that the parity bit in
each character is set as determined by the
PARITY terminal attribute. After verifying
the parity bit, the network sets the bit to 0
(even if the PARITY attribute is set to no
parity).

The network optionally sends (echoes)
received characters back to the terminal.
This action is conditioned by the
ECHOPLEX terminal attribute.

The network converts each character from
the terminal's encoding to the appropriate
ASCII 128-character code, as determined by
the CODE_SET terminal attribute.

The network stores characters received
from the terminal until a forwarding
condition occurs. Forwarding conditions are
defined by the END_LINE_CHARACTER
and END_PARTIAL_CHARACTER
terminal attributes and the PARTIAL_
CHARACTER_FORWARDING and INPUT_
BLOCK_SIZE connection attributes.

The network optionally discards the last
character in the store and forward buff er
when the BACKSPACE_CHARACTER is
received from the terminal. This action is
conditioned by the STORE_BACKSPACE_
CHARACTER connection attribute.

Revision H

Editing Action

Cursor positioning

Network command
recognition

Attention character
action

Break key action

Character discarding

Revision H

Normal Editing Mode

Description

The network positions the cursor on the
terminal display when certain characters
are received. Cursor positioning actions are
defined by the END_LINE_POSITIONING
and END_PARTIAL_POSITIONING
terminal attributes.

The network recognizes an input line which
begins with the NETWORK_COMMAND_
CHARACTER as a network command, and
processes the command rather than
forwarding the input line.

The network takes the action specified by
the ATTENTION _CHARACTER_ACTION
connection attribute whenever the
ATTENTION_CHARACTER is received
from the terminal.

The network takes the action specified by
the BREAK_KEY_ACTION connection
attribute whenever the break key is
pressed.

The network optionally discards certain
characters when they are received from the
terminal. Character discarding actions are
conditioned by the STORE_NULS_DELS
connection attribute, and the BEGIN_
LINE_CHARACTER and CANCEL_LINE_
CHARACTER terminal attributes.

Terminal Management 13-43

Transparent Editing Mode

Transparent Editing Mode

If the INPUT_EDITING_MODE is transparent, input lines consist of
characters as they are encoded by the terminal. The network performs
the following minimal editing actions on input characters as they are
received from the terminal:

Editing Action

Parity checking

Description

The network verifies that the parity bit in
each character is set as determined by the
PARITY terminal attribute. If the PARITY
terminal attribute is set to no parity, the
network does not change the parity bit in
input characters, which allows input data
to include 256 distinct characters.
Otherwise, the network sets the parity bit
to 0 in each character, which restricts
input data to 128 distinct characters.

Echoplexing The network optionally sends (echoes)
received characters back to the terminal.
This action is conditioned by the
ECHOPLEX terminal attribute.

Store and forward The network stores characters received
from the terminal until a forwarding
condition occurs. Forwarding conditions are
defined by the following connection
attributes: TRANSPARENT_CHARACTER_
MODE, TRANSPARENT_LENGTH_MODE,
TRANSPARENT_ TIMEOUT_MODE, and
INPUT_BLOCK_SIZE.

13-44 NOSNE System Usage Revision H

Editing Action

Attention character
action

Break key action

Typed-Ahead Input

Typed-Ahead Input

Description

The network takes the action specified by
the ATTENTION _CHARACTER_ACTION
connection attribute whenever the
ATTENTION_ CHARACTER is received
from the terminal.

The network takes the action specified by
the BREAK_KEY_ACTION connection
attribute whenever the break key is
pressed at the terminal.

Input data may be entered (typed ahead) before a task reads from the
terminal. The network and NOSNE buffer the typed-ahead input until
a task requests the input. The amount of input that can be typed
ahead depends on the buffering capacity of the network:

o When you reach the type-ahead limit on a NAMVE/CDCNET or
NAM/CDCNET connection, the network sends the BEL character
in response to received characters and discards the characters.
User interrupts are suspended; however, the BREAK key and
ATTENTION_ CHARACTER key are still enabled.

• When you reach the type-ahead limit on a NAM/CCP connection,
the network sends the following message:

WAIT ..

You must then wait until a task reads the input which has been
entered. You cannot interrupt the task with a PAUSE_BREAK or
TERMINATE_BREAK character until the task accepts the input.

Revision H Terminal Management 13-45

Terminal Output

Terminal Output

NOSNE allows more than one task in a job to be writing to the same
terminal at the same time.

NOSNE buffers output data so that it can be sent to the terminal in
large amounts. The following concepts are used to describe terminal
output processing:

• An output record is a sequence of characters which are to be sent
to the terminal as a unit. In the case of normal output editing, an
output record corresponds to a line to be displayed at the terminal.

• An output message consists of one or more output records.

• An output block consists of one or more output records sent to the
terminal as one network message. An output block may be a
complete output message or a partial output message. An output
record may not span output blocks.

Normal Editing Mode

If the INPUT_EDITING_MODE connection attribute is normal, each
output record corresponds to a line of output. An output line consists
of 0 to 2,043 characters in the ASCII 128-character set.

Output lines within an output block are separated by an ASCII US
character, which is inserted by NOSNE when a line is added to a
block. This character is not sent to the terminal by the network.
Therefore, the ASCII US character should not be included in data
written to the terminal. If the ASCII US character is included in
terminal output data, it will be interpreted as an end-of-line by the
network.

13-46 NOSNE System Usage Revision ·

Normal Editing Mode

The network performs the following processing on output lines as they
are sent to the terminal:

Output Processing

Interline positioning

Parity generation

Character code
conversion

Page holding

Line folding

Revision H

Description

The network determines the cursor
positioning which occurs between output
lines by either processing format effectors
imbedded in the output data or following a
fixed positioning convention.

If the PARITY terminal attribute is set to
no parity, the network sets the parity bit
in each character to 0. Otherwise, the
network sets the parity bit in each
character as determined by the PARITY
terminal attribute.

The network converts each ASCII
128-character code to the appropriate
terminal code, as determined by the
CODE_SET terminal attribute.

The network optionally holds each page of
uninterrupted (by input) output on the
terminal display for examination by the
terminal user before displaying further
output. This action is controlled by the
HOLD_PAGE, HOLD_PAGE_OVER, and
PAGE_LENGTH terminal attributes.

The network optionally splits an output
line which exceeds the terminal's page
width into multiple physical lines. This
action is controlled by the FOLD_LINE
terminal attribute.

Terminal Management 13-47

Normal Editing Mode

Output Processing

Page boundary form
feed

Output message
boundary notification

Interline Positioning

Description

The network optionally performs a form
feed action at the end of every page of
uninterrupted (by input) output. This action
is controlled by the END_PAGE_ACTION
and PAGE_LENGTH terminal attributes.

The network sends the characters defined
by the END_OUTPUT_SEQUENCE
terminal attribute to the terminal at the
end of every output message.

When the FILE_CONTENTS file attribute of a terminal file is set to
LIST, the network processes the first character of each output line as
a format effector. The value of the format effector determines what
interline cursor positioning is to occur. The format effector character
in not sent to the terminal.

When the FILE_CONTENTS file attribute of a terminal file is not
set to LIST, the network treats the first character of each output line
as the first character to be displayed. The network positions the
cursor at the beginning of the next line.

Page Holding

Page holding is enabled whenever the HOLD_PAGE terminal
attribute has a value of TRUE, and the PAGE_LENGTH terminal
attribute has a nonzero value. When page holding is enabled, the
network suspends output after sending a page of output which has not
been interrupted by input. This allows the terminal user to examine
the displayed information before further output is displayed.

13-48 NOSNE System Usage Revision H

Transparent Editing Mode

In order to resume the display of output following suspension, the
terminal user must enter a line of input. If a nonempty line is
entered, it is sent to NOSNE as input data. If an empty line is
entered, it is not sent to NOSNE.

If the HOLD_PAGE_OVER terminal attribute is set to TRUE, the
network sends a message whenever output is suspended.

• CDCNET sends the following message:

<OVER>

o NAM/CCP sends the following message:

OVER ..

The message is a visual prompt that indicates that the network is
waiting for input before "turning" to the next page.

Transparent Editing Mode

If the INPUT_EDITING_MODE connection attribute is transparent,
no significance is assigned to the grouping of output data into output
records. Each output record is delivered to the terminal as a stream
of raw characters. No action is taken as a result of output record
boundaries, and no constraint exists on the size of output records.

The network processes output records as they are sent to the terminal
for display in the following manner:

o If the parity terminal attribute is set to no parity, the network
does not change the parity bit in the character sent to the
terminal, which allows output data to include 256 characters.

o If the parity terminal attribute is set to a value other than no
parity, the network sets the parity bit as determined by the parity
terminal attribute in each character sent to the terminal, which
restricts output data to 128 characters.

Revision H Terminal Management 13-49

Page Width and Page Length Attributes

Page Width and Page Length Attributes

There are both terminal and file attributes for page width and page
length. The two types of attributes are used for different purposes and
may have different values.

The terminal attributes define the physical characteristics of the
terminal, and control the line folding and page holding actions.

The file attributes define the logical characteristics of the information
written to the terminal. Tasks which produce output (for terminals as
well as any other device), should query the file attributes and tailor
the generated output to the reported dimensions. If a value has not
been specified for either of the file attributes, the corresponding
terminal attribute value is used as a default.

13-50 NOSNE System Usage Revision H

Micro File Transfers 14

Using CONNECT . 14-1
Saving NOSNE File Attributes During File Transfers . . 14-1
Example: Using CONNECT to Transfer an Object Library 14-4

Using XMODEM . . . 14-6
Parity Requirements 14-6
File Types 14-6

Micro Binary Files 14-6
Text Files 14-7
CYBER Binary Files 14-7

Special Characters . . . 14-8
Setting the High-Order Bit 14-9
Initiating the File Transfer 14-9

Specifying File Name . . 14-10
Establishing Transfer Direction 14-10
Specifying File Type 14-11
Specifying the End-of-Line . . . 14-13
Specifying the File Type Block 14-13
Checking for Errors 14-14
Specifying File Markers 14-14
Specifying a Configuration File 14-16

KERMIT-VE 14-18
Accessing the KERMIT online manual 14-18
Simple KERMIT File Transfers. 14-19

DesktopNE _. 14-21

Micro File Transfers

NOSNE supports several methods for transferring files between a
microcomputer and a host running NOSNE:

• CDC CONNECT

• XMODEM command

• KERMIT-VE

• DesktopNE for users of the Apple Macintosh

Using CONNECT

14

If you have access to CONNECT, refer to the CONNECT manual for
your microcomputer to determine if the version of CONNECT you are
using supports use with NOSNE. (Versions of CYBERNET CONNECT
purchased from CDC CYBERNET and Control Data CONNECT for
the CDC 110 will not work on NOSNE.)

Saving NOSNE File Attributes During File Transfers

When you transfer a file to NOSNE using CONNECT, CONNECT
sets the attributes of the file to certain defaults depending upon
whether the file was transferred in ASCII or binary mode. Files
transferred in ASCII mode have the following attributes:

Access_Mode (read, shorten, append, modify,
execute)

Application_Information none
Average_Record_Length
Block_ Type system_specified
Character_Conversion no
Collate_Table_Name none
Compression_Procedure_Name none
Data_Padding O
Dynamic_Home_Block_Space no
Embedded_Key yes
Error_Exit_Procedure_Name none
Error_Limit 0
Estimated_Record_Count O
File_Access_Procedure_Name none
File_Contents unknown

Revision H Micro File Transfers 14-1

Using CONNECT

File_Label_Type
Fi le_Limit
File_Organization
File_Processor
File_Structure
Forced_Write
Global_Access_Mode

Global_File_Address
Global_File_Name
Global_File_Position
Global_Share_Mode
Hashing_Procedure_Name
Index_Levels
Index_Padding
Initial_Home_Block_Count
Internal_Code
Key_Length
Key_Position
Key_Type
Line_Number
Loading_Factor
Lock_Expiration_Time
Logging_Options
Log_Residence
Maximum_Block_Length
Maximum_Record_Length
Message_Control
Minimum_Block_Length
Minimum_Record_Length
Open_Position
Padding_Character
Page_ Format
Page_Length
Page_Width
Permanent
Preset_Value
Record_Limit
Record_ Type
Records_Per_Block
Ring_Attributes
Size
Statement_Identifier
User_Information

14-2 NOSNE System Usage

unlabelled
4398046511103
sequential
unknown
unknown
no
(read, shorten, append, modify,
execute)
0
$766461040S0102D19880112T025000
boi
none
(amp$system_hashing_procedure)
2
0

asci i
1

0
uncollated
("Location" 1, "Length" 1)

90
60000
none
none
4128
256
none
18
0
$boi

burstable
60
132
yes
0
4398046511103
variable
65535
(11, 11, 11)
44
("Length" 1 , 11 Loca t ion 11 1)
none

Revision H

Using CONNECT

Files transferred in binary mode have the following attributes:

Access_Mode

Application_Information
Average_Record_Length
Block_ Type
Character_Conversion
Collate_Table_Name
Compression_Procedure_Name
Data_Padding
Dynamic_Home_Block_Space
Embedded_Key
Error_Exit_Procedure_Name
Error _Limit
Estimated_Record_Count
File_Access_Procedure_Name
File_Contents
File_Label_Type
Fi le_Limit
File_Organization
File_Processor
File_Structure
Forced_Write
Global_Access_Mode

Global_File_Address
Global_File_Name
Global_File_Position
Global_Share_Mode
Hashing_Procedure_Name
Index_Levels
Index_Padding
Initial_Home_Block_Count
Internal_Code
Key_Length
Key_Position
Key_ Type
Line_Number
Loading_Factor
Lock_Expiration_Time
Logging_Options
Log_Residence
Maximum_Block_Length
Maximum_Record_Length
Message_Control

Revision H

(read, shorten, append, modify,
execute)
none
1

system_specified
no
none
none
0
no
yes
none
0
0
none
object
unlabelled
4398046511103
sequential
unknown
unknown
no
(read, shorten, append, modify,
execute)
0
$247564340S0102D19880112T025025
boi
none
(amp$system_hashing_procedure)
2
0

asci i
1

0
uncollated
(

11 Location 11 1, "Length" 1)
90
60000
none
none
4128
256
none

Micro File Transfers 14-3

Using CONNECT

Minimum_Block_Length
Minimum_Record_Length
Open_Position
Padding_Character
Page_ Format
Page_Length
Page_Width
Permanent
Preset_Value
Record_Limit
Record_ Type
Records_Per_Block
Ring_Attributes
Size
Statement_Identifier
User_Information

18
0
$boi

burstable
60
132
yes
0
4398046511103
undefined
65535
(11, 11, 11)
18
(

0 Length" 1, "Locat1on° 1)
none

If you have created a file on NOS/VE with attributes other than the
defaults listed above, and you are going to transfer that file to and
from a microcomputer using CONNECT, you may want to save the
file's attributes. To save NOS/VE file attributes when transferring
NOS/VE files to and from a microcomputer, use the permanent file
backup and restore utilities.

Example: Using CONNECT to Transfer an Object
Library

The following example details a procedure for using CONNECT and
the permanent file backup and restore utilities to transfer a NOS/VE
object library called :NVEl.ME.COMMAND_LIBRARY from a
NOS/VE system to a microcomputer and back again.

NOTE

To successfully use the steps in the following example, you must be
running either CDC CONNECT for the IBM Personal Computer1

version 1.15 (or greater) or CDC CONNECT for the Macintosh2

version 1.0 (or greater).

1. Registered trademark of the International Business Machines Corporation.

2. Registered trademark of Apple Computer, Inc.

14-4 NOSNE System Usage Revision H

Using CONNECT

1. Create a local backup copy of file :NVEl.ME.COMMAND_
LIBRARY using the backup utility. Enter these commands on
NOS/VE:

/backup_permanent_file backup_file=$1ocal.backup_copy
.. I 1 i st =$out put
PUB/backup_file file=:nve1.me.command_library
PUB/quit

2. Use CONNECT to perform a binary transfer of the file
$LOCAL.BACKUP_ COPY to the micro.

3. When you want to transfer the microcomputer copy of
$LOCAL.BACKUP_COPY back to NOS/VE, first create a NOS/VE
file with a RECORD_ TYPE of VARIABLE to accept the
microcomputer file. For instance, assuming you name this file
NEW_FILE, enter the following command on NOS/VE:

/set_file_attributes file=$1ocal.new_file
.. /record_type=variable

4. Use CONNECT to send the microcomputer copy of
$LOCAL.BACKUP_COPY to the NOS/VE file NEW_FILE that
you created in the previous step.

5. To restore the file attributes and name the file $USER.NEW_
COMMAND_LIBRARY, enter the following commands on NOS/VE:

/restore_permanent_file list=$output
PUR/restore_file file=:nve1.me.conmand_library
PUR .. /backup_file=Slocal.new_file ..
PUR .. I new_f i 1 e_name=Suser. new_command_ 1 i brary
PUR/ quit

Revision H Micro File Transfers 14-5

Using XMODEM

Using :XMODJEM

The XMODEM command transfers files between a host running
NOSNE and a microcomputer using the Christensen protocol.
(Because NOS/BE INTERCOM does not support packet forwarding as
required by XMODEM, you cannot use XMODEM when you are
connected to NOSNE by INTERCOM.)

Parity Requirements

To use the Christensen protocol, you must be able to set PARITY to
NONE. The Christensen protocol is an 8-bit protocol that requires all
8 bits to be passed as data. Data networks that cannot be set to a
parity of none may not be used. XMODEM automatically sets PARITY
to NONE before a transfer, and restores it to its original value before
ending.

File Types

When transferring a file from a host to a microcomputer, file
attributes determine the type of transfer that is done. When
transferring a file from a microcomputer to a host, file attributes are
set when the file is transferred. You can transfer the following types
of files:

• Micro binary files

• Text files

• CYBER binary files

Micro Binary Files

A micro binary file is indicated when the USER_INFORMATION file
attribute is set to MICRO_BINARY. This file attribute may be set by
XMODEM or by the SET_FILE_ATTRIBUTE command.

A micro binary file is read and written character for character
(characters are 8 bits). A NOSNE file with the USER_
INFORMATION file attribute set to MICRO_BINARY is always
transferred from the host to the microcomputer in this manner
regardless of any other file attributes.

14-6 NOSNE System Usage Revision H

Using XMODEM

Text Files

If a NOSNE file has a RECORD_ TYPE file attribute of VARIABLE
and the USER_INFORMATION file attribute is not MICRO_BINARY,
the file is transferred to a microcomputer as a text file. Text files are
read and written a line at a time.

When a text file is sent to a microcomputer, an ASCII carriage return
or carriage return and line feed are added to the end of each line.
Which character or characters are added depends on the value
indicated on the LINE_FEED parameter of the XMODEM command.
During a transfer from host to microcomputer and back,
end-of-partitions are retained.

When a text file is received from a microcomputer, a carriage return
is used to indicate the end-of-line. A line feed immediately following
the carriage return is ignored.

CYBER Binary Files

A NOSNE file being transferred to a microcomputer is transferred as
a CYBER binary file if the file attributes are RECORD_
TYPE= UNDEFINED. The file is blocked as it is sent to the
microcomputer. The first character of each block indicates the block
length. This method allows the exact length of the file to be
preserved.

NOSNE object libraries are transferred in the same manner as
CYBER binary files, except that FILE_STRUCTURE file attribute is
set to LIBRARY when the file is received by the host.

You can transfer NOSNE backup files in the same way you transfer
CYBER binary files except that the RECORD_ TYPE file attribute is
set to VARIABLE and the FILE_CONTENTS attribute is set to
FILE_BACKUP.

Revision H Micro File Transfers 14-7

Using XMODEM

Special Characters

XMODEM uses special file marking characters when transferring
CYBER binary files and text files.

• CYBER binary files

The character represented by OF6 hexadecimal indicates
end-of-information (EOI).

• Text files

Special file marker sequences for text files are explained under
Specifying File Markers later in this chapter.

These characters are always inserted into files being transferred from
the host to a microcomputer. When these characters are encountered
in a file being sent from a microcomputer, they are translated into
the appropriate file markers.

To be recognized as a file marker in a CYBER binary file, the file
marker characters must appear where the block length indicator is
expected. To be recognized as a file marker in a text file, the file
marker characters must appear immediately after the end-of-line. If
any blocks are received after the EOI character, the blocks are
acknowledged with either an ACK or NAK, but the data is ignored.

These characters have no special meaning for a micro binary file.

14-8 NOSNE System Usage Revision H

Using XMODEM

Setting the High-Order Bit

When a text file is transferred, the high-order bit of each character is
not set. If your microcomputer requires this bit to be set, there are
two possible solutions.

• You can write a program on the microcomputer to set the
high-order bit.

• If the file is going from microcomputer to host to microcomputer
and is not being used on the host, you can transfer the file as a
micro binary file.

Initiating the File Transfer

The XMODEM command initiates a file transfer. The format of the
XMODEM command is:

XMODEM
FILE_NAME =file
TRANSFER_DIRECTION =keyword
FILE_ TYPE= keyword
LINE _FEED= boolean
SPECIAL_FILE _TYPE _BLOCK= boolean
ERROR_CHECKING=keyword
FILE _MARKERS= keyword
CONFIGURATION _FILE =file
STATUS= status variable

None of the parameters for XMODEM are required. You may specify
the parameters for the XMODEM command in the usual way as
illustrated by the following example.

/xmodem file_name=file_1 transfer_direction=receive
.. /file_type=micro_binary line_feed=true
.. /special_file_type_block=false ..
. . /error_checking=crc file_markers=nos

Revision H Micro File Transfers 14-9

Using XMODEM

You can also specify parameters using positional notation as shown in
the following example:

/xrnodem file_2 send text

Or, you can enter the command name alone. If you enter only the
command name, you will be prompted for the FILE_NAME and
TRANSFER_DIRECTION parameters. If TRANSFER_
DIRECTION= RECEIVE, you will also be prompted for the FILE_
TYPE parameter. You will not be prompted for the LINE_FEED,
SPECIAL_FILE_ TYPE_BLOCK, ERROR_CHECKING, FILE_
MARKERS, CONFIGURATION _FILE, or STATUS parameters.

Specifying File Name

The FILE_NAME (FN) parameter specifies the file to be transferred,
and, optionally, how the file is to be positioned. There is no default
for this parameter. If you do not specify a file, you will be prompted
to do so.

Establishing Transfer Direction

The TRANSFER_DIRECTION (TD) parameter indicates the direction
of a file transfer. Transfer direction is from the point of view of the
host. Specify one of the following options:

SEND

The SEND (S) option indicates a file is sent from the host to a
microcomputer.

RECEIVE

The RECEIVE (R) option indicates a file is received by the host
from a microcomputer.

There is no default for the TRANSFER_DIRECTION parameter. If
you do not make an entry, you will be prompted to do so.

If you specify SEND, it indicates the file is sent from the host. Any
file sent from the host must have READ access and must not be an
empty file. If the file you specified on the FILE_NAME parameter is
empty or cannot be read, you will be prompted for another file name.
After you have entered a valid file name and transfer direction, you
will receive a message indicating the approximate number of blocks to
be transferred. At this point, enter the commands required on your
microcomputer to place it in receive mode. The transfer begins when

14-10 NOSNE System Usage Revision H

Using XMODEM

the microcomputer sends a NAK character (or the letter C for CRC
mode) to the host. If you decide not to transfer a file or decide to
abort a transfer once it has started, enter CONTROL X (the ASCII
CAN character) to end the transfer operation.

If you specify RECEIVE, it indicates the file is received by the host.
If the file specified on the FILE_NAME parameter does not exist, the
file is created. If the file is one that already contains data, the file
must have WRITE access (that is, you must be able to MODIFY,
SHORTEN, and APPEND). If the file being received is an old file
(that is, a file that has been opened regardless of whether it contains
data), the record type must be compatible with the type of file being
received. If the file is a CYBER binary or micro binary, the
RECORD_ TYPE file attribute must be UNDEFINED. If the file is a
text file, the RECORD_TYPE file attribute must be VARIABLE.

The following example sends file MAIL from the host to a
microcomputer.

/xmodem file_name=mail transfer_direction=send

To receive file TEST from a microcomputer, enter:

/xmodem file_name=test transfer_direction=receive

Since the host will be receiving a file, you will be prompted for the
FILE_ TYPE parameter.

Specifying File Type

The FILE_ TYPE (FT) parameter specifies the type of file received by
the host. Choose one of the following keyword values:

TEXT (T)

The TEXT option indicates a text file is to be received.

BINARY (B)

The BINARY option indicates a CYBER binary file is to be
received.

OBJECT_LIBRARY (OL)

The OBJECT_LIBRARY option indicates an object library is to be
received.

Revision H Micro File Transfers 14-11

Usi.ng XMODEM

MICRO_BINARY (MB)

The MICRO_BINARY option indicates a micro binary file is to be
received.

VE_BACKUP(V)

The VE_BACKUP option indicates that a NOSNE backup file is
to be received.

SELECT_AUTOMATICALLY (SA)

The SELECT_AUTOMATICALLY option indicates that the file type
to be received will be determined by the first block received.

There is no default for this parameter. If you do not make an entry
and TRANSFER_DIRECTION=RECEIVE, you will be prompted to do
so. This parameter is ignored when TRANSFER_DIRECTION=SEND.

After the FILE_ TYPE parameter is entered, XMODEM checks to
ensure that record types are compatible if the file is an old file. If
TEXT, BINARY, OBJECT_LIBRARY, or MICRO_BINARY are
specified and XMODEM determines that record types are incompatible
between the file attributes specified and the existing file attributes,
you will be prompted for a new FILE_NAME and FILE_ TYPE.

If you have chosen the SELECT_AUTOMATICALLY option, XMODEM
cannot check for record type compatibility. If you are writing on an
old file and you use this option, be sure to check for record
compatibility before trying to transfer a file. If record types are not
compatible, XMODEM will abort the first time it attempts to write to
the old file. For a new file, record compatibility is not a concern. See
the Specifying the File Type Block section for more information.

After file and record types have been verified, XMODEM issues the
following message:

Cyber receiving file from micro

At this point, you should enter the commands required to place your
microcomputer in send mode.

14-12 NOSNE System Usage Revision H

Using XMODEM

Specifying the End-of-Line

The LINE_FEED (LF) parameter specifies whether a line feed is
required after a carriage return to signal the end of a line. It is used
only for transfers from the host (TRANSFER_ DIRECTION= SEND).
When TRANSFER_ DIRECTION= RECEIVE, this parameter is ignored
and either a carriage return alone or a carriage return and a line
feed will indicate the end-of-line.

If LINE_FEED is set to TRUE, a carriage return and a line feed are
transmitted to the microcomputer to indicate the end-of-line. If set to
FALSE, only a carriage return is transmitted. The default value is
TRUE.

Specifying the File Type Block

The SPECIAL_FILE_ TYPE_BLOCK (SFTB) parameter specifies
whether a nonstandard block is transmitted. If set to TRUE, the
nonstandard block is transmitted as the first block of the file. If set to
FALSE, this block is never transmitted. The default value is FALSE.

If this parameter is set to TRUE, the first block transferred by
XMODEM is of the form

81(16) I filetype I 255-filetype I 123D I 128 zeroes

where filetype may be:

00 - Text
04 - Micro binary
08 - CYBER binary
40(16) - Object library

This nonstandard block is recognized by some microcomputer terminal
packages (such as ASCII Express3 for the Apple4 II microcomputer
family). The block is also recognized by the NOSNE implementation
of XMODEM. If this nonstandard block is not recognized by a
receiver, the receiver will send an NAK character. After three NAK
characters have been sent, XMODEM will proceed with the file
transfer.

3. A registered trademark of United Software Industries, Inc.

4. A registered trademark of Apple Computer, Inc.

Revision H Micro File Transfers 14-13

Using XMODEM

If the FILE_ TYPE parameter is set to SELECT_AUTOMATICALLY
and the first block received is a nonstandard block in the format
shown above, FILE_ TYPE determines the type of transfer that is
done. If the file type is not recognized, the file is assumed to be a
micro binary file. If the first block received is not in the format
shown above when FILE_ TYPE is set to SELECT_
AUTOMATICALLY, the file is assumed to be a text file.

Checking for Errors

The ERROR_ CHECKING (EC) parameter determines whether error
detection is done using checksums or using a CRC algorithm. This
parameter has effect only when the host is the receiver. If
TRANSFER_ DIRECTION= SEND, the microcomputer determines the
error checking method used and this parameter is ignored.

Enter one of the following keyword values:

CRC (CR)

The CRC option indicates that error detection is done using the
CCITT cyclic redundancy method.

CHECKSUM (CH)

The CHECKSUM option indicates that error detection is done
using the checksum method.

If you do not specify a value for this parameter, CRC is assumed.

The CRC method is the more reliable method for error detection, but
is not supported by all implementations for XMODEM. If, after four
tries, XMODEM receives no response from the microcomputer, the
host will assume that the microcomputer does not support the CRC
method and will revert to the checksum method.

Specifying File Markers

The FILE_MARKERS (FM) parameter specifies the sequences sent as
file markers and what received sequences are interpreted as file
markers. This parameter applies only to text files.

14-14 NOSNE System Usage Revision H

Using XMODEM

Specify one of the following keyword values:

NOS (NOSVE or N)

These keyword values are equivalent. If the FILE_MARKERS
parameter is specified as NOS, NOSVE or N, the following file
markers are used:

If TRANSFER_ DIRECTION= SEND:

#EOR is sent from the host to the microcomputer to indicate
end-of-partition.

#EOI is sent from the host to the microcomputer to indicate
end-of-information.

If TRANSFER_ DIRECTION= RECEIVE:

#EOI indicates end-of-information when received by the host
alone on a line. Any characters received after an #EOI are
ignored.

#EOR, #EOF, or #EOP causes an end-of-partition to be
written when any of the sequences is received by the host
alone on a line.

CPM (C or MSDOS or M)

These keyword values are equivalent. If the FILE_MARKERS
parameter is specified as CPM, MSDOS or M, the following file
markers are used:

If TRANSFER_ DIRECTION= SEND:

CONTROL Z is sent by the host to indicate the
end-of-inf orma ti on.

End-of-partitions are ignored when sent to a microcomputer.

If TRANSFER_DIRECTION=RECEIVE:

CONTROL Z is recognized by the host as end-of-information.

#EOR, #EOF, and #EOP are recognized by the host as
end-of-partition.

If you do not enter a value for this parameter, NOSVE is assumed.

Revision H Micro File Transfers 14-15

Using XMODEM

Specifying a Configuration File

The CONFIGURATION _FILE (or CF) parameter allows you to change
the default values for the LINE_FEED, SPECIAL_FILE_ TYPE_
BLOCK, ERROR_CHECKING, and FILE_MARKERS parameters.

The file you specify for this parameter must exist. If you do not
specify a file, PFTF uses file $USER.PFTF _ CONFIG as the
configuration file. If file $USER.PFTF _ CONFIG does not exist, PFTF
assumes there is no configuration file.

Table 14-1 lists the entries that can be supplied within the
configuration file.

Table 14-1. Configuration File Entries

Entry
Name1 Entry Type Default Description

LF boolean YES Specifies whether a line feed is
required after a carriage return
to signal the end of a line.
This entry is ignored if
TRANSFER_
DIRECTION= RECEIVE.

SP boolean NO Specifies whether a nonstandard
block is transmitted as the first
block of the file.

EC keyword value CRC Specifies the error detection
(CRC or method used. This entry is
CHECKSUM) ignored if TRANSFER_

DIRECTION=SEND.

FM keyword value NOSVE Specifies file markers used.
(NOSVE, CPM,
or MSDOS)

1. Entry names are constructed so that the same configuration file can
be used on NOSNE or NOS.

14-16 NOSNE System Usage Revision H

Using XMODEM

The configuration file contains configuration entries you want to use
for file transfers. The file is constructed according to the following
rules:

• Entries begin in any column.

• One configuration entry per line.

• Spaces are not significant.

• Any line beginning with an asterisk (*) is interpreted as a
comment line.

• Each entry may, but is not required to, end with a period.

• If an entry ends with a period, commerits may be placed after the
period.

• Blank lines are ignored.

• Uppercase and lowercase characters are equivalent.

e Maximum line length is 80 characters.

For example:

•This is a sample configuration file.

lf=no. Send er instead of cr/lf to micro
f m=cpm
ec=checksum

Revision H Micro File Transfers 14-17

KERMIT-VE

JKE JRMJT-VE

KERMIT-VE is the NOSNE implementation of the KERMIT file
transfer protocol.5 The protocol involves two programs running on
separate computers linked by a communications line. Each program
must follow the standard rules which allow them to communicate with
each other, regardless of the machine the programs run on.

KERMIT-VE is intended primarily for file transfers between
microcomputers and NOSNE.

Accessing the KERMIT online manual

For detailed information about KERMIT-VE, see the KERMIT online
manual. To access the KERMIT online manual, at the NOSNE system
prompt type

/he 1 p m=l,ermi t

or start KERMIT and use the HELP command. To use the KERMIT
HELP command, invoke KERMIT on your microcomputer, connect
your microcomputer to NOSNE, log in to NOSNE, and at the system
prompt type

I kermi t

Once you have done this, you will see the KERMIT-VE prompt. At
the KERMIT-VE prompt, type

KERMIT-VE: help manual

and you will see the KERMIT online manual.

NOTE

The NETWORK_COMMAND_CHARACTER attribute should not be
the same as the first character of the KERMIT escape sequence
(typically the ESC character). For information on how to change the
NETWORK_COMMAND_CHARACTER on NOSNE, see the
CHANGE_TERMINAL_ATTRIBUTES command in chapter 13.

5. The KERMIT protocol was developed initially at the Columbia University Center for
Computing Activities. The implementation of the KERMIT protocol for NOSNE was
developed with the permission of Columbia University and follows the guidelines for
commercial use and distribution of KERMIT as published by Columbia University.

14-18 NOSNE System Usage Revision H

KERMIT-VE

Simple KERMIT File Transfers

Below is an example of how to perform two ASCII file transfers at an
IBM Personal Computer (PC) executing MS-DOS Kermit. The PC is
connected to a NOSNE host computer. The IBM PC is local, the
NOSNE system is remote. In the example, FILEl.TXT is sent from
the PC to the host file $USER.SUB_CATALOG_l.FILE1, and then
FILE2.TXT is received by the PC from the NOSNE host file
$USER.SUB_ CATALOG_ l .FILE2.

NOTE

Some commands in this example are specific to MS-DOS KERMIT.
Other versions of KERMIT may use different commands to perform
these same tasks.

1. Use the following commands to initate KERMIT on the PC, set the
baud rate to 19200 (note that this assumes a CDCNET connection)
and connect to NOSNE:

A>kermit
IBM-PC Kermit-MS V2.28
Type ? for help

Kermit-MS>set baud 19200
Kermit-MS>connect

[Connecting to host, type Control-] C to return to PC]

2. At this point you are ready to log in to the host system. Enter
whatever commands are necessary to do this. Once you are logged
in, you can initiate KERMIT-VE, set your working catalog, and
begin receiving a file from the PC by entering the following:

/kermi t
Welcome to KERMIT-VE, Version 1.0.1

KERMIT-VE: local setwc $user.sub_catalog_1
KERMIT-VE: receive

Receiving ...

NOTE

The LOCAL command used in the above example allows you to
execute any NOSNE command at the KERMIT-VE prompt.

Revision H Micro File Transfers 14-19

KERMIT-VE

3. It is necessary at this point to return to the PC side to direct the
file transfer. You do this by entering a CTRL/J followed by a C.
Once you have returned to the PC side, enter the following to send
the file to NOSNE:

Kermit-MS>send file1.txt file1

NOTE

The file being sent in the preceding example is sent as FILEl
rather than FILEl.TXT because NOSNE will not accept a file
name with a period (.) in it.

4. The PC displays the progress of the file transfer. When the PC's
KERMIT prompt returns to the screen, the transfer is done. When
you see the PC's KERMIT prompt, you must connect back to
NOSNE and enter a carriage return to complete the file transfer
operation and bring up the KERMIT-VE prompt:

Kermit-MS> connect

KERMIT-VE:

NOTE

If you are performing a binary file transfer, you must set the file
type on KERMIT-VE to BINARY, and set the parity on both
KERMIT-VE and the PC KERMIT to ODD.

5. · To send a file from NOSNE to the PC, enter the KERMIT SEND
command, escape to the PC using the control sequence described
earlier, and enter the KERMIT RECEIVE command:

KERMIT-VE: send file2 file2.txt
Sending ... FILE2 as FILE2.TXT
Kermit-MS> receive

6. Once the transfer is complete, you must return to NOSNE again
to finish the transfer operation by entering a return. You may
then quit KERMIT-VE, and log out from NOSNE.

14-20 NOSNE System Usage Revision H

DesktopNE

Desktop NE

DesktopNE is an application developed for the Macintosh that extends
the Macintosh user interface to Control Data's mainframe computers.
Using DesktopNE and your Macintosh, you can manage mainframe
files and applications just as you do Macintosh files -- by using the
mouse to manipulate icons.

You can transfer files between your Macintosh and Control Data's
mainframes using DesktopNE. DesktopNE file transfers are
accomplished using the X.PC protocol developed by TYMNET
Incorporated.

For more information on using DesktopNE, see the DesktopNE for
Macintosh usage manual, or the online help that came with your copy
of DesktopNE.

Revision H Micro File Transfers 14-21

Glossary A

Glossary A

A

Abort

The immediate abnormal termination of a command or task.

Absolute Path

Identifies a file or catalog via a system path, family path, user path,
or local path. Contrast with Relative Path.

Alias

Alternative name for a statement or parameter.

Alphabetic Character

One of the following letters:

A through Z

a through z

See also Character and Alphanumeric Character.

Alphanumeric Character

Alphabetic or numeric character. See also Character, Alphabetic
Character, and Numeric Character.

American Standard Code for Information Interchange (ASCII)

A 7-bit code representing a prescribed set of characters. NOSNE
stores each 7-bit ASCII code right justified in an 8-bit byte.

ANSI

American National Standards Institute.

ANSI File

A single file whose file data is preceded by an HDR label group
(HDRl and optional HDR2 through HDR9 labels) and followd by an
EOF label group (EOFl and optional EOF2 through EOF9 labels). An
ANSI file can span tape volumes.

ANSI_SPANNED Record

See S Type Record.

Revision H Glossary A-1

ANSI_ VARIABLE Record

ANSI_ VARIABLE Record

See D Type Record.

Application Value

Boolean

The kind of value whose syntax and semantics are defined by the
application program that interprets the value.

ASCII

See American Standard Code for Information Interchange.

Assignment Statement

A statement that assigns a value to a variable.

Asynchronous Task Execution

A task whose execution is independent of other events. Contrast with
Synchronous Task Execution.

B

Batch Mode

A mode of execution where a job is submitted and processed as a unit
with no intervention from the user. Contrast with Interactive Mode.

Beginning-of-Information (BOI)

The file boundary that marks the beginning of the file.

Bit

A binary digit. A bit has a value of 0 or 1. See also Byte.

Block

A logical or physical grouping of data.

BOI

See Beginning-of-Information.

Boolean

A kind of value that is evaluated as TRUE or FALSE.

A-2 NOSNE System Usage Revision H

Boolean Constant Character

Boolean Constant

A constant that represents a boolean (logical) value of TRUE or
FALSE. One of the following names can be used to specify a boolean
constant:

TRUE

YES

ON

Byte

FALSE

NO

OFF

A group of contiguous bits. For NOSNE, 1 byte is equal to 8 bits. An
ASCII character code uses the rightmost 7 bits of 1 byte.

Byte-Addressable File Organization

A file organization in which records are accessed by their byte
address.

c

Catalog

1. A directory of files and catalogs maintained by the system for a
user. The catalog $LOCAL contains only temporary file entries.

2. The part of a path that identifies a particular catalog in a catalog
hierarchy. The format is as follows:

name.name.name

where each name is a catalog. See also Catalog Name and Path.

Catalog Name

The name of a catalog in a catalog hierarchy (path). By convention,
the name of the user's master catalog is the same as the user's user
name.

Character

A letter, digit, space, or symbol that is represented by a code in one
or more of the standard character sets.

It is also referred to as a byte when used as a unit of measure to
specify block length, record length, and so forth.

Revision H Glossary A-3

Child Job Comment

A character can be a graphic character or a control character. A
graphic character is printable; a control character is nonprintable and
is used to control an input or output operation.

Child Job

Job that has been initiated by another job.

Child Task

Task that has been initiated by another task.

COBOL

COmmon Business Oriented Language.

Collating Sequence

The sequence in which characters are ordered for purposes of sorting,
merging, and comparing.

Command

A statement that initiates a specific operation on NOSNE. A
command name is recognized by the SCL interpreter if it appears as
an entry in the command list.

Command Library

An object library used in the SCL command list.

Command List

One or more entries that define the commands that are currently
available. A command list entry is an object library, catalog, or
special entry $SYSTEM.

Command Stream

The source for all statements to be processed by the SCL interpreter.

Command Utility

NOSNE processor that adds its command table (referred to as its
subcommands) to the beginning of the SCL command list. The
subcommands are removed from the command list when the processor
terminates.

Comment

Any characters or sequence of characters (except the quotation mark)
that is preceded by a quotation mark and terminated by another
quotation mark or an end of line. A comment is treated exactly as a
space.

A-4 NOSNE System Usage Revision H

Compiler Control User

Compiler

A processor that accepts source code as input and generates object
code as output.

Condition Code

Alphanumeric characters that uniquely identify a NOSNE diagnostic.
The condition code is returned as part of the status record when an
abnormal status occurs.

Condition Handler

A WHEN statement to which control is transferred when a condition
occurs. The WHEN statement is executed only if it has been
established as the condition handler for the specified condition and if
the condition occurs in its scope.

Condition Name

A string value that corresponds to a specified condition code.
Condition codes and names are used in status processing.

Connection Attribute

The characteristics that relate to a terminal connection. A terminal
has a separate set of connection attributes for each connection. See
Terminal Attribute.

Control Command

A system command that you cannot remove, although you can
override it. An example of a control command is LOGIN.

Control Family

The family name of the control user.

Control Statement

A statement used to structure and control the flow of a job.

Control User

The user name under which a user submits a job. With the following
exceptions, the control user is the same as the login user.

• Jobs entered via the SUBMIT_JOB command, DETACH_JOB
command, or JOB/JOBEND command pair inherit the parent job's
control user.

• Jobs entered from a private 1/0 station have the private station
operator as the control user for the job.

Revision H Glossary A-5

cpi Digit

cpi

Characters per inch, a measure of the tape recording density.

CYBIL

CYBER Implementation Language. The implementation language of
NOSNE.

Cycle

A numbered version of a file that can be registered with the same file
name and in the same catalog as the other versions of the file. Each
permanent file can have from 1 through 999 cycles.

See also Cycle Number and Cycle Reference.

Cycle Number

An unsigned integer from 1 through 999 that identifies a specific
version of a permanent file.

Cycle Reference

The cycle of a permanent file to be accessed. A cycle reference can be
either an unsigned integer or one of the following designators:

D

$HIGH

$LOW

$NEXT

D Type Record

Variable length records as defined by the ANSI Standard.

Default

The assumed value for a parameter when the parameter is not
specified by the user.

Delimiter

The indicator that separates and organizes data.

Digit

One of the following characters:

0 1 2 3 4 5 6 7 8 9

A-6 NOSNE System Usage Revision H

Direct-Access File Organization End-of-Partition (EOP)

Direct-Access File Organization

A keyed-file organization in which each record is accessed directly by
hashing its primary-key value. Records can be accessed sequentially,
but the records are not returned in sorted order. Contrast with
Indexed-Sequential File Organization.

Directive

A statement that specifies processing of a command or subcommand.

Display Code

A 64-character subset of the ASCII code, which consists of alphabetic
letters, symbols, and numerals. This character set is not used by
NOSNE.

Dual State

The state in which two operating systems execute simultaneously on
the same mainframe. NOSNE and either NOS Version 2 or NOS/BE
Version 1.5 are such partners.

E

Ellipsis

1. Two or more consecutive periods at the end of a physical line to
indicate command line continuation. The ellipsis can be optionally
preceded and/or followed by a space.

2. Two consecutive periods separating two values to indicate a range
of values in a parameter list. See also Value Element.

Embedded Key

A key that is contained within a record, as opposed to a key that is
defined outside a record (such as in the Working-Storage or
Common-Storage sections of a COBOL program).

End-of-Information (EOI)

The point at which data in the file ends.

End-of-Partition (EOP)

A special delimiter in a file with variable record type.

Revision H Glossary A-7

Environment Objects Family Name

Environment Objects

Elements that make up an SCL command environment. These
elements include such things as file connections, program attributes
and the command list.

EOI

See End-of-Information.

EOP

See End-of-Partition.

Epilog

The SCL statement list that is executed at the end of a job.

Execution Ring

The level of hardware privilege assigned to a procedure while it is
executing.

Expression

Notation that represents a value. A constant or variable appearing
alone, or combinations of constants, variables, and operators.

F

F Type Record

Fixed-length records, as defined by the ANSI Standard.

Family

A logical grouping of NOSNE users that determines the location of
their permanent files.

Family Administrator

The family member who creates, deletes, and otherwise manages the
validations of other members of the family. A user with system
administration capability assigns a family administrator at the time
the family is created.

Family Name

A name that identifies a NOSNE family. See also Family.

A-8 NOSNE System Usage Revision H

Family Path File Organization

Family Path

Identifies a file via a family name and a user path as follows:

:family name. user path

or

$FAMILY.user path

Field

A subdivision of a record that is referenced by name. For example,
the field NORMAL in a record of type OST$STATUS called OLD_
STATUS is referenced as follows:

OLD_STATUS.NORMAL

File

1. A collection of information referenced by a name.

2. An SCL element that specifies a temporary or permanent file,
including its path and, optionally, a cycle reference (for permanent
files). A file is identified by specifying a path and, optionally, a
cycle reference (for permanent files) as follows:

path.cycle reference

File Attribute

A characteristic of a file. Each file has a set of attributes that defines
the file structure and processing limitations.

File Connection

State where any data access requests that are made for a file are
passed on to a second file as well.

File Name

The name of a NOSNE file. It is used in a file reference to identify
the file. See also Name.

File Organization

Defines the way records are stored in a file. The available file
organizations are sequential, byte-addressable, direct-access, and
indexed-sequential.

Revision H Glossary A-9

File Position FORTRAN

File Position

The location in the file at which the next read or write operation will
begin. A file that can be positioned is identified by specifying a path,
an optional cycle reference (for permanent files), and an optional file
position as follows:

path.cycle reference.file position

The file position designators are:

$ASIS Leave the file in its current position.

$BOI Position the file at the beginning-of-information.

$EOI Position the file at the end-of-information.

See also Path and Cycle Reference.

File Reference

An SCL element that identifies a file and, optionally, the file position
established prior to the file's use. The format of a file reference is:

:family.catalog.file.cycle.file position

where catalog is one or more catalog names separated by a period.

where file is a 1- to 31-character name.

where cycle is a numeric value from 1 to 999 that represents a
version of the file.

where the file positions are:

$BOI

$ASIS

$EOI

See also File and File Position.

FORTRAN

FORmula TRAN slating system.

A-10 NOSNE System Usage Revision H

Function Integer Constant

Function

A statement that performs a specific action and can be called by
name from a statement elsewhere in a program. Normally, a function
computes a value and returns it to the portion of the program that
called it. An example is the $DATE function, which computes the
current date in one of a number of formats.

H

Hashing Procedure

The CYBIL procedure used to relate a primary-key to a home block
number in a direct-access file.

Home Block

A unit of space in a direct-access file.

I

Indexed-Sequential File Organization

A keyed-file organization in which each record is accessed by finding
its primary-key value in the file index. When records are read
sequentially from an indexed-sequential file, they are returned sorted
by primary-key value. Contrast with Direct-Access File Organization.

Input Lines

One or more SCL statements. Statements on a single line are
separated by semicolons. Input lines can be continued on more than
one physical line by placing an ellipsis at the end of each physical
line to be continued. Input lines have a maximum length of 65,535
characters.

Integer

A value representing one of the numbers 0, + 1, -1, + 2, -2, and so
forth.

Integer Constant

A constant that represents an integer value. One or more digits and,
for hexadecimal integer constants, the following characters:

ABCDEFabcdef

A hexadecimal integer constant must begin with a digit. A preceding
sign and subsequent radix are optional.

Revision H Glossary A-11

Interaction Style Job Limits

Interaction Style

Method by which users enter and receive data on your terminal. The
interaction style may be either line or screen mode.

Interactive Mode

A mode of execution where the user enters commands at a work
station and each command elicits a response from the host. Contrast
with Batch Mode.

J

Job

A set of tasks executed for a user name. NOSNE accepts interactive
and batch jobs. In interactive mode, a job is usually the same as a
terminal session.

Job Attribute

A characteristic of a job.

Job Class

Name that defines a set of attributes assigned to a job. These
attributes control the operation of the job during its input and
initiation phases. For instance, the job class determines when. a
particular job is initiated. The default job classes used by NOSNE are
SYSTEM, MAINTENANCE, BATCH, INTERACTIVE, and
UNASSIGNED.

Job File

A file that contains the statements and input data for the job and the
output produced by the job. The job files are identified by the
following names:

COMMAND

INPUT

$JOB_LOG

Job Limits

OUTPUT

$NULL

Limits that are used to define the amount of resources a job may use.

A-12 NOSNE System Usage Revision H

Job Log

Job Log

A chronological listing that receives error messages and information
messages from commands.

K

Key

List

A string of characters or a number that the user defines to uniquely
identify a record.

Keyed File

A type of file that provides for record access by a primary-key value.
Currently, NOSNE supports two types of keyed files: indexed
sequential and direct access.

Keyword

A parameter value that has special meaning in the context of a
particular parameter. For example, a parameter called COUNT might
normally expect an integer but could be given the keyword ALL.

L

Label

A name used to reference a structured statement.

Line Mode

Method of interacting with a utility a line at a time.

Line Mode Interaction

Interaction with NOSNE is performed on a line by line basis. The
user enters a' single line of data and waits for NOSNE to respond
before entering another line of data.

Link Attributes

Attributes which are used to specify login information to the partner
side of a dual-state system.

List

A command format notation specifying that a parameter can be given
several values.

Revision H Glossary A-13

Load Module Mass Storage File

Load Module

A module reformatted for code sharing and efficient loading. When the
user generates an object library, each object module in the module list
is reformatted and written as a load module on the object library.

Local File

A file that is accessed via the local catalog named $LOCAL. See also
File, Path, and Local Path.

Local Path

Identifies a local file as follows:

$LOCAL.file name

Local System

The operating system your interactive job's or a batch job's parent job
is currently executing on.

Lock

A mechanism that makes a primary-key value (or, for a file lock, all
primary-key values) inaccessible to other instances of open of the file.

Login User

The user name under which a job is scheduled and run. For batch
jobs, the user name appearing in the USER parameter of the LOGIN
command is the login user.

M

Mainframe Attribute

A characteristic of the mainframe on which the NOSNE operating
system is running.

Mass Storage

Disk storage that allows random file access and permanent file
storage.

Mass Storage File

A file stored on a disk. The file can have any organization.

A-14 NOSNE System Usa~e Revision H

Master Catalog Network Command Character

Master Catalog

The catalog the system creates for each user name. The master
catalog contains entries for all permanent files and catalogs a user
creates. The name of the master catalog is the same as the user
name.

Module

A unit of text accepted as input by the loader, linker, or object
library generator. See also Object Module and Load Module.

Multifile Set

A set of more than one ANSI file residing on one or more tape
volumes.

N

NAM

See Network Access Method.

Name, SCL

Combination of from 1 through 31 characters chosen from the
following set:

• Alphabetic characters (A through Z and a through z).

• Digits (O through 9).

• Special characters: #, @, $, _, [,], \, ", ... , {, }, I,
The first character of a name cannot be numeric.

Natural Language

Language used for messages and help information produced in a job.

NCC

See Network Command Character.

Network Access Method (NAM)

A NOS software package that provides communication between
terminal users and the host computer.

Network Command Character

Character which indicates that the data appended to the character is
to be handled in a special way by the network.

Revision H Glossary A-15

N onembedded Key Object File

Nonembedded Key

A primary key that is not physically contained in the record. Contrast
with Embedded Key.

NOS

Acronym for Network Operating System, an operating system for the
host computer. NOS controls the computation of programs submitted
through remote terminals and maintains normal hatch processing
operations for jobs submitted locally.

NOS/BE

Acronym for Network Operating System/Batch Environment, an
operating system for the host computer. NOS/BE controls the
computation of programs submitted through remote terminals and
maintains normal batch processing operations for jobs submitted
locally.

NOS/VE

Acronym for Network Operating SysternNirtual Environment, an
operating system for the mainframe computer.

NOSNE has all of the capabilities of NOS. In addition, NOSNE uses
virtual memory.

NTF System

Any remote system that is connected to the local system through the
Network Transfer Facility (NTF) queued file transfer application. For
more information on NTF, see your system administrator.

Numeric Character

Any digit from 0 through 9.

0

Object Code

Executable code produced by a compiler.

Object File

A file containing one or more object modules.

A-16 NOSNE System Usage Revision H

Object Library Parameter Definition

Object Library

A file containing one or more load, SCL procedures, program
description, message, and/or load modules and a dictionary to each
module.

Object Module

A compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader
and the CREATE_OBJECT_LIBRARY utility.

Open Operation

A set of preparatory operations performed on a file before file input
and output can take place.

Operand

An entity to which an operation is applied.

Operator

The symbol that represents the action to be performed in an
operation.

p

Padding

Space deliberately left unused. Fixed-length records are padded if the
data provided for the record is shorter than the record length. Within
keyed files, blocks are padded during file creation to allow easy
addition or expansion during later file updates.

Parameter

A value list optionally preceded by and equated to a parameter name.
For example:

parameter name value list

or

value list

Parameter Definition

Specifies the parameter names, value specification, and default
specification for an SCL procedure parameter.

Revision H Glossary A-17

Parameter Expression Permanent File

Parameter Expression

An expression that, when evaluated, results in a parameter value.

Parameter List

A series of parameters separated by spaces or commas.

Parameter Name

A name that uniquely identifies a parameter.

Parameter Value

See Value.

Parent Job

A job that initiates another job.

Parent Task

Task that initiates another task.

Partner System

The operating system sharing a dual-state mainframe with the local
system. See Local System.

Path

In NOSNE, a path specifies the location of a file or catalog in a
catalog hierarchy. A general example of a path, from highest to lowest
level in its hierarchy, is family name, user name (or master catalog
name), subcatalog name(s), and file name.

Pause Break

Action which allows you to suspend an executing command so that
you can perform other activities, such as checking the status of your
job or consulting an online manual. Also called user break 1.

Permanent Catalog

A catalog of permanent files.

Permanent File

A mass storage file preserved by NOSNE across job executions and
system deadstarts. A permanent file has an entry in a permanent
catalog. See also File.

A-18 NOSNE System Usage Revision H

Position-Dependent Parameter Pro log

Position-Dependent Parameter

A parameter that must appear in a specified location, relative to other
parameters. Contrast with Position-Independent Parameter.

Position-Independent Parameter

A parameter that consists of a parameter name followed by a value
list. Contrast with Position-Dependent Parameter.

Primary Key

The required record key in a keyed file. The primary-key value must
be defined for a file when the file is first created, and each record in
the file must have a unique value for the key.

Primary Task

Task to which break conditions (such as pause break) are sent.

Private Reader

Task that does not share its current file position with any other
current accessors of that file.

Procedure

A sequence of SCL commands executed when the procedure name is
entered. It can be stored as a module on an object library.

Procedure Library

An object library that contains SCL procedures.

Processor Attribute

A characteristic of the hardware processor on which the system is
running.

Program Attribute

A characteristic of a program as defined in the program description or
by a job default value.

Program Description

Information that defines a program, including the modules that
comprise the program and the options to be used when it is executed.

Prolog

The SCL statement list that is executed at the beginning of each job.

Revision H Glossary A-19

QTF System Remote System

Q

QTF System

Any remote system that is connected to the local system through the
QTF queue file transfer application. For more information on QTF,
see the RHF Usage manual.

R

Radix

Specifies the base of a number. NOSNE recognizes number bases
from base 2 through base 16. A radix enclosed in parentheses must
follow a nondecimal number.

See also Integer Constant.

Random Access

The process of reading or writing a record in a file without having to
read or write the preceding records; applies only to mass storage files.
Contrast with Sequential Access.

Range

Value represented as two values separated by an ellipsis. The element
is associated with the values from the first value through the second
value. The first value must be less than or equal to the second value.
For example:

value .. value

Real Number

A number that has a decimal point and at least one digit on each
side of the decimal point.

Relative Path

Identifies a file via defaults established with the current working
catalog or an absolute path. A relative path is used in a family path,
user path, and local path. SCL supplies any omitted values necessary
to create an absolute path.

Remote System

An operating system that resides on a mainframe other than the one
your interactive job's or a batch job's parent job is currently executing
on.

A-20 NOSNE System Usage Revision H

Remote Validation Sequential Access

Remote Validation

Condition that occurs when the necessary information has been
provided to N OSNE that allows a user to access files residing on a
remote system.

Ring

Level of hardware protection given a file or segment. A file is
protected from unauthorized access by tasks executing in higher rings.
See also Execution Ring.

Ring Attributes

A file attribute whose value consists of three ring numbers, referred
to as rl, r2, and r3. The ring numbers define the four ring brackets
for the file as follows:

Read bracket is 1 through r2.

Write bracket is 1 through rl.

Execute bracket is rl through r2.

Call bracket is r2 + 1 through r3.

s

S Type Record

Spanned records as defined by the ANSI Standard.

SCL

See System Command Language.

Screen Mode

Method of interacting with a utility a screen at a time.

Screen Mode Interaction

Data is entered and displayed in different areas of the screen.

scu
See Source Code Utility.

Sequential Access

The processing of records in order (physical or logical). Contrast with
Random Access.

Revision H Glossary A-21

Sequential File Organization SRUs

Sequential File Organization

A file with records stored and retrieved in the order in which they
were written. No logical order exists other than the relative physical
record position.

Service

Program running on a computer that handles the flow of information
between the network and the computer.

Service Class

Defines characteristics that govern the execution phase of job
processing.

Sign

Indicates whether a number is positive or negative. It is one of the
following characters:

+ Positive number

Negative number

If a sign is omitted, the number is positive.

See also Integer Constant.

Site Administrator

The family member who creates, deletes, and otherwise manages the
other members of the family. A system analyst assigns a site
administrator at the time the family is created.

Source Code

Statements written for input to a compiler.

Source Code Utility (SCU)

A NOSNE command utility that stores, organizes, manipulates, and
extracts units of text. It is a development tool for large systems or
application development groups.

Source Library

A collection of decks on a file, with a header describing the collection,
generated and manipulated by the Source Code Utility (SCU).

SR Us

See System Resource Units.

A-22 NOSNE System Usage Revision H

Standard File Status Variable

Standard File

A file that provides a default file for use by job files and other files.
The standard files are identified by the following names:

$ECHO

$ERRORS

$INPUT

$LIST

$OUTPUT

$RESPONSE

Standard Output

Output produced at the end of a batch job. The output contains the
job log and any information written to standard file OUTPUT.

Statement

The basic unit of input that is interpreted by SCL. The following are
the SCL statement types.

Assignment statement

Command

Control command

Control statement

Statement List

One or more statements separated by delimiters.

Statically Linked Block

Block defined directly within another block that has access to the
outer block's local variables.

Station

A collection of batch I/O devices.

Status Variable

A variable record of kind status that holds the completion status of a
command.

Revision H Glossary A-23

String System File

String

A value that represents a sequence of characters.

String Constant

A sequence of characters delimited by apostrophes ('). An apostrophe
can be included in the string by specifying two consecutive
apostrophes.

String Length

An integer that specifies the length of a string.

Structured Statement

A control statement used to structure a job into groups of statements
that are processed as a separate entity or until a specified termination
condition or statement is encountered.

Subcatalog

A catalog registered in the master catalog or another subcatalog. See
also Catalog.

Subcommand

A command that has been added to the command list by a command
utility.

Synchronous Task Execution

A task whose execution is dependent upon the occurrence of another
event. Contrast with Asynchronous Task Execution.

$SYSTEM Catalog

The catalog containing all the NOSNE operating system and
accompanying product files.

System Command Language (SCL)

The block-structured interpretive language that provides an interface
to the features and capabilities of NOSNE. All commands and
statements are interpreted by SCL before being processed by the
system.

$SYSTEM Command List Entry

The list of all commands provided by NOSNE.

System File

See Job File and Standard File.

A-24 NOSNE System Usage Revision H

System Operator Terminate Break

System Operator

A user with special privileges. These privileges are available only at
the system console.

System Path

Identifies a file or catalog in the system catalog. Its format is as
follows:

$SYSTEM.relative path

System Resource Units (SRUs)

An accounting unit used to measure resource usage by a job or task.

System-Supplied Job Name

Unique, 19-character name the system gives each job you submit.

T

Tape Volume

Single reel of magnetic tape used for mass storage of file data.

Task

The instance of execution of a program.

Terminal Attribute

The physical characteristics that relate to a terminal. These attributes
apply to all connections from the terminal. See also Connection
Attribute.

Terminal Class

Interactive terminal type; the system associates a set of default
terminal attributes with the terminal type.

Terminal Definition File

The source file used in defining a terminal for use with a full-screen
application.

Terminate Break

Action which allows you to terminate an executing command. Also
called user break 2.

Revision H Glossary A-25

U-Type Record

u

U-Type Record

A record for which the record structure is undefined.

User Break 1

See Pause Break.

User Break 2

See Terminate Break.

User Name

Value Count

A name that identifies a NOSNE user and the location of a user's
permanent files in the user's family.

User Path

Identifies a file or catalog via a user name and, optionally, a relative
path as follows:

. user name.relative path

or

$USER.relative path

Utility

See Command Utility.

v

V-Type Record

Variable-sized record; system default record type. Each V-type record
has a record header. The header contains the record length and the
length of the preceding record.

Value

An expression or application value specified in a parameter list. Each
value must match the defined kind of value for the parameter.
Keywords, constants, and variable references are all values.

Value Count

An integer expression indicating the number of value elements
supplied for a parameter.

A-26 NOSNE System Usage Revision H

Value Element Value Set Connt

Value Element

A single value or a range of values represented by two values
separated by an ellipsis. For example:

value

or

value .. value

See also Value, Value List, and Value Set.

Value List

A series of value sets separated by spaces or commas and enclosed in
parentheses. If only one value set is given in the list, the parentheses
can be omitted. For example:

(value set,value set,value set)

or

value set

See also Value, Value Element, and Value Set.

Value Set

A series of value elements separated by spaces or commas and
enclosed in parentheses. If only one value element is given in the set,
the parentheses can be omitted. For example:

(value element,value element,value element)

or

value element

See also Value, Value Element, and Value List.

Value Set Count

An integer expression indicating the number of value sets supplied for
a parameter.

Revision H Glossary A-27

Variable Working Catalog

Variable

1. Represents a data value.

2. SCL defines the following kinds of variables:

string

integer

real

boolean

status

Variable Name

A name that identifies a variable.

Variable Reference

An integer, string, or boolean variable reference identifying an
integer, string, or boolean variable by its name and optional subscript.
For example:

variable name(subscript)

A status variable reference identifies a status variable by its name
and optional subscript and/or field. For example:

variable name(subscript) .field

w

Working Catalog

The catalog prefixed to a file reference that begins with a name (that
is, not a period, colon, or a system name beginning with a dollar
sign). The working catalog is the catalog used if no other catalog is
specified on a file reference.

A-28 NOSNE System Usage Revision H

Related Manuals B

The following lists the categories of manuals which relate to NOSNE.

Ordering Printed Manuals

Accessing Online Manuals

Table B-1. Related Manuals
NOSNE Site Manuals .
NOSNE User Manuals
CYBIL Manuals ..
FORTRAN Manuals . .
COBOL Manuals
Other Compiler Manuals
VX/VE Manuals
Data Management Manuals
Information Management Manuals
CDCNET Manuals . . .
Miscellaneous Manuals.
Hardware Manuals . . .

B-1

B-1

B-2
B-2
B-3
B-5
B-6
B-7
B-7
B-8

B-10
B-11
B-11
B-12
B-14

If you are familiar with the SCL System Interface, SCL Language
Definition, and SCL Quick Reference manuals, you will find they are
retitled and reorganized for NOSNE release 1.3.1, PSR level 700.
Descriptions of the changes follow:

SCL System Interface and SCL Language Definition

The SCL System Interface and SCL Language Definition manuals
are replaced by a single manual, NOS/VE System Usage. NOSNE
System Usage contains the information you once found in the two
manuals, except for the formats of commands and functions. Look
for the command and function formats in the NOSNE Commands
and Functions manual.

SCL Quick Reference

The SCL Quick Reference manual is retitled NOS/VE Commands
and Functions. It contains the same information, but is organized
differently. Book 1 describes the formats of the commands and
functions not associated with utilities. Book 2 describes the
commands and subcommands of the command utilities.

Related Manuals JB

All NOSNE manuals and related hardware manuals are listed in
table B-1. If your site has installed the online manuals, you can find
an abstract for each NOSNE manual in the online System
Information manual. To access this manual, enter:

/explain

Ordering Printed Manuals
To order a printed Control Data manual, send an order form to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

To obtain an order form or to get more information about ordering
Control Data manuals, write to the above address or call (612)
292-2101. If you are a Control Data employee, call (612) 292-2100.

Accessing Online Manuals

To access the online version of a printed manual, log in to NOS/VE
and enter the online title on the EXPLAIN command (table B-1
supplies the online titles). For example, to see the NOS/VE Commands
and Functions manual, enter:

/help manual=scl

The examples in some printed manuals exist also in the online
Examples manual. To access this manual, enter:

/help manual=examples

When EXAMPLES is listed in the Online Manuals column in table
B-1, that manual is represented in the online Examples manual.

Revision H Related Manuals B-1

Related Manuals

Table B-1. Related Manuals

Manual Title

NOS/VE Site Manuals:

CYBER 930 Computer System
Guide to Operations
Usage

CYBER Initialization Package (CIP)
Reference Manual

DesktopNE Host Utilities
Usage

MAINTAIN _MAIL2
Usage

NOSNE Accounting Analysis System
Usage

NOSNE Accounting and Validation
Utilities for Dual State
Usage

NOSNE
LCN Configuration and Network
Management
Usage

NOSNE
Network Management
Usage

NOSNE Operations
Usage

Publication
Number

60469560

60457180

60463918

60463923

60458910

60463917

60463916

60463914

Online
Manuals1

MAIM

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

2. To access this manual, you must be the administrator for
MAILNE.

(Continued)

B-2 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Site Manuals (Continued):

NOSNE 60463915
System Performance and Maintenance
Volume 1: Performance
Usage

NOSNE 60463925
System Performance and Maintenance
Volume 2: Maintenance
Usage

NOSNE 60464513
User Validation
Usage

NOS/VE User Manuals:

EDIT_CATALOG EDIT_
Usage CATALOG

EDIT_CATALOG for NOSNE 60487719
Summary

Introduction to NOSNE 60464012
Tutorial

NOSNE 60486412 AFM_T
Advanced File Management
Tutorial

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-3

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

NOS/VE User Manuals (Continued):

NOS/VE
Advanced File Management
Usage

NOS/VE
Advanced File Management
Summary

NOS/VE
Commands and Functions
Quick Reference

NOS/VE File Editor
Tutorial/Usage

NOS/VE
Object Code Management
Usage

NOS/VE Screen Formatting
Usage

NOS/VE
Source Code Management
Usage

NOS/VE System Usage

NOS/VE
Terminal Definition
Usage

Screen Design Facility for NOS/VE
Usage

Publication Online
Number Manualsl

60486413

60486419

60464018

60464015

60464413

60488813

60464313

60464014

60464016

60488613

AFM

SCL

EXAMPLES

OCM

EXAMPLES

SCM and
EXAMPLES

EXAMPLES

SDF

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual. ·

(Continued)

B-4 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

CYBIL Manuals:

CYBIL for NOSNE
File Management
Usage

CYBIL for NOSNE
Keyed-File and Sort/Merge Interfaces
Usage

CYBIL for NOSNE
Language Definition
Usage

CYBIL for NOSNE
Sequential and Byte-Addressable Files
Usage

CYBIL for NOSNE
System Interface
Usage

Publication Online
Number Manuals1

60464114

60464117

60464113

60464116

60464115

EXAMPLES

EXAMPLES

CYBIL and
EXAMPLES

EXAMPLES

EXAMPLES

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-5

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

FORTRAN Manuals:

FORTRAN Version 1 for NOSNE
Language Definition
Usage

FORTRAN Version 1 for NOSNE
Quick Reference

FORTRAN Version 2 for NOSNE
Language Definition
Usage

FORTRAN Version 2 for NOSNE
Quick Reference

FORTRAN for NOSNE
Tutorial

FORTRAN for NOSNE
Topics for FORTRAN Programmers
Usage

FORTRAN for NOSNE
Summary

COBOL Manuals:

COBOL for NOSNE
Summary

Publication
Number

60485913

60487113

60485912

60485916

60485919

60486019

Online
Manuals1

EXAMPLES

FORTRAN

EXAMPLES

VFORTRAN

FORTRAN_T

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-6 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

COBOL Manuals (Continued):

COBOL for NOSNE
Tutorial

COBOL for NOSNE
Usage

Other Compiler Manuals:

ADA for NOSNE
Usage

ADA for NOSNE
Reference Manual

APL for NOSNE
File Utilities
Usage

APL for NOSNE
Language Definition
Usage

BASIC for NOSNE
Summary Card

BASIC for NOSNE
Usage

LISP for NOSNE
Usage Supplement

Pascal for N OSNE
Summary Card

Publication Online
Number Manuals1

60486012

60486013

60498113

60498118

60485814

60485813

60486319

60486313

60486213

60485619

COBOL_T

COBOL and
EXAMPLES

ADA

EXAMPLES

BASIC

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-7

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Other Compiler Manuals
(Continued):

Pascal for NOS/VE
Usage

Prolog for NOS/VE
Quick Reference

Prolog for NOS/VE
Usage

VX/VE Manuals:

C/VE for NOS/VE
Quick Reference

C/VE for NOS/VE
Usage

DWB/VX
Introduction and User Reference
Tutorial/Usage

DWB/VX
Macro Packages Guide
Usage

DWB/VX
Preprocessors Guide
Usage

DWB/VX
Text Formatters Guide
Usage

Publication Online
Number Manualsl

60485613

60486718

60486713

60469830

60469890

60469910

60469920

60469900

PASCAL and
EXAMPLES

PRO LOG

c

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-8 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

VX/VE Manuals (Continued):

VX/VE
Administrator Guide and Reference
Tutorial/Usage

VX/VE
An Introduction for UNIX Users
Tutorial/Usage

VX/VE
Programmer Guide
Tutorial

VX/VE
Programmer Reference
Usage

VX/VE
Support Tools Guide
Tutorial

VX/VE
User Guide
Tutorial

VX/VE
User Reference
Usage

Publication Online
Number Manuals1

60469770

60469980

60469790

60469820

60469800

60469780

60469810

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-9

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Data Management Manuals:

DM Command Procedures
Reference Manual

DM Concepts and Facilities
Manual

DM Error Message Summary
for DM on CDC NOSNE

DM Fundamental Query and
Manipulation Manual

DM Report Writer
Reference Manual

DM System Administrator's
Reference Manual
for DM on CDC NOSNE

DM Utilities
Reference Manual
for DM on CDC NOSNE

Publication
Number

60487905

60487900

60487906

60487903

60487904

60487902

60487901

Online
Manuals1

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-10 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Information Management Manuals:

IM/Control for NOSNE
Quick Reference

IM/Control for NOSNE
Usage

IM/Quick for NOSNE
Tutorial

IM/Quick for NOSNE
Summary

IM/Quick for NOSNE
Usage

CDCNET Manuals:

CDCNET Access Guide

CDCNET Batch Device
User Guide

CDCNET Commands
Quick Reference

CDCNET Configuration and Site
Administration Guide

CDCNET Diagnostic Messages

CDCNET Conceptual Overview

Publication
Number

L60488918

60488913

60485712

60485714

60463830

60463863

60000020

60461550

60461600

60461540

Online
Manualsl

CONTROL

QUICK

CDCNET_
ACCESS

CDCNET_
BATCH

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-11

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

CDCNET Manuals (Continued):

CDCNET Network Analysis

CDCNET Network Configuration
Utility

CDCNET Network Configuration
Utility
Summary Card

CDCNET Network Operations

CDCNET Network Performance
Analyzer

CDCNET Product Descriptions

CDCNET Systems Programmer's
Reference Manual Volume 1
Base System Software

CDCNET Systems Programmer's
Reference Manual Volume 2
Network Management Entities and
Layer Interfaces

CDCNET Systems Programmer's
Reference Manual Volume 3
Network Protocols

CDCNET Terminal Interface
Usage

CDCNET TCP/IP
Usage

Publication Online
Number Manuals!

60461590

60000269

60461520

60461510

60460590

60462410

60462420

60462430

60463850

60000214

NET CU

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-12 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Publication Online
Manual Title Number Manuals1

Migration Manuals:

Migration from IBM to NOSNE 60489507
Tutorial/Usage

Migration from NOS to NOSNE 60489503
Tutorial/Usage

Migration from NOS to 60489504
NOSNE Standalone
Tutorial/Usage

Migration from NOS/BE to NOSNE 60489505
Tutorial/Usage

Migration from NOS/BE to 60489506
NOSNE Standalone
Tutorial/Usage

Migration from VAXNMS to NOSNE 60489508
Tutorial/Usage

Miscellaneous Manuals:

Applications Directory 60455370

CONTEXT 60488419
Summary Card

CYBER Online Text for NOSNE 60488403 CONTEXT
Usage

Control Data CONNECT 60462560
User's Guide

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-13

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Miscellaneous Manuals (Continued):

Debug for NOSNE
Quick Reference

Debug for NOSNE
Usage

DesktopNE for Macintosh
Tutorial

DesktopNE for Macintosh
Usage

NOSNE Diagnostic Messages
Usage

MAILNE
Summary Card

MAILNE
Usage

Math Library for NOSNE
Usage

NOSNE Examples
Usage

NOSNE System Information

Publication
Number

60488213

60464502

60464503

60464613

60464519

60486513

Online
Manuals1

DEBUG

MESSAGES

MAIL_ VE

EXAMPLES

NOS_ VE

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

B-14 NOSNE System Usage Revision H

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Miscellaneous Manuals (Continued):

Programming Environment
for NOSNE
Usage

Programming Environment
for NOSNE
Summary

Professional Programming
Environment
for NOSNE
Quick Reference

Professional Programming
Environment
for NOSNE
Usage

Remote Host Facility
Usage

Hardware Manuals:

CYBER 170 Computer Systems
Models 825, 835, and 855
General Description
Hardware Reference

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Codes Booklet

Publication Online
Number Manualsl

60486819

60486613

60460620

60459960

60458100

ENVIRON
MENT

PPE

1. This. column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

(Continued)

Revision H Related Manuals B-15

Related Manuals

Table B-1. Related Manuals (Continued)

Manual Title

Hardware Manuals (Continued):

CYBER 170 Computer Systems,
Models 815, 825, 835, 845, and 855
CYBER 180 Models 810, 830, 835,
840, 845, 850, 855, and 860
Maintenance Register
Codes Booklet

HPA/VE Reference

Virtual State Volume II
Hardware Reference

7021-31/32 Advanced Tape Subsystem
Reference

7221-1 Intelligent Small
Magnetic Tape Subsystem
Reference

Publication Online
Number Manuals1

60458110

60461930

60458890

60449600

60461090

1. This column lists the title of the online version of the manual and
indicates whether the examples in the printed manual are in the
online Examples manual.

B-16 NOS/VE System Usage Revision H

Character Set

ASCII Character Set

EBCDIC Character Set .

c
C-1

C-5

Character §et c

ASCII Character Set

This appendix lists the ASCII character set (refer to table C-1).

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents
each 7-bit ASCII code in an 8-bit byte. These 7 bits are right justified
in each byte. For ASCII characters, the eighth or leftmost bit is
always zero. However, in NOS/VE the leftmost bit can also be used to
define an additional 128 characters.

If you want to define additional non-ASCII characters, be certain that
the leftmost bit is available in your current working environment. The
full screen applications (such as the EDIT_FILE utility, the EDIT_
CATALOG utility, and the programming language environments)
already use this bit for special purposes. Therefore, these applications
accept only the standard ASCII characters. In applications in which
the leftmost bit is not used, however, you are free to use it to define
the interpretation of each character as you wish.

Revision H Character Set C-1

ASCII Character Set

Table C-1. ASCII Character Set

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation

012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in

016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3

020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape

028 lC 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 lF 037 us Unit separator

032 20 040 SP Space
033 21 041 Exclamation point
034 22 042 Quotation marks
035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 Opening parenthesis
041 29 051 Closing parenthesis
042 2A 052 ... Asterisk
043 2B 053 + Plus

(Continued)

C-2 NOSNE System Usage Revision H

ASCII Character Set

Table C-1. ASCil Character Set (Continued)

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

044 2C 054 Comma
045 20 055 Hyphen
046 2E 056 Period
047 2F 057 Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 30 075 Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 D Uppercase 0
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K

076 4C 114 L Uppercase L
077 40 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

080 50 120 p Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 s Uppercase S

084 54 124 T Uppercase T
085 55 125 u Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W

(Continued)

Revision H Character Set C-3

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

Hexa-
Decimal decimal Octal Graphic or
Code Code Code Mnemonic Name or Meaning

088 58 130 x Uppercase X
089 59 131 y Uppercase Y
090 5A 132 z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 5D 135 1 Closing bracket
094 5E 136 Circumflex
095 5F 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

104 68 150 h Lowercase h
105 69 151 Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 0 Lowercase o

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s

116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w

120 78 170 x Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 Opening brace

124 7C 174 Vertical line
125 7D 175 Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

C-4 NOSNE System Usage Revision H

EBCDIC Character Set

EIBCDIC Character Set

NOSNE uses the ASCII character set. When you write an EBCDIC
tape, NOSNE translates the ASCII characters to EBCDIC characters.
When you read an EBCDIC tape, NOSNE translates the EBCDIC
characters to ASCII characters.

This section lists the ASCII character set with its EBCDIC
equivalents (refer to table C-2) and the EBCDIC character set with its
ASCII equivalents (refer to table C-3).

Revision H Character Set C-5

EBCDIC Character Set

Table C-2. ASCII to EBCDIC Conversion for Tapes

ASCII EBCDIC
ASCII Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

NUL 00 NUL 00
SOH 01 SOH 01
STX 02 STX 02
ETX 03 ETX 03
EOT 04 EOT 37
ENQ 05 ENQ 2D
ACK 06 ACK 2E
BEL 07 BEL 2F

BS 08 BS 16
HT 09 HT 05
LF OA LF 25
VT OB VT OB

FF oc FF oc
CR OD CR OD
so OE so OE
SI OF SI OF

DLE 10 DLE 10
DCl 11 DCl 11
DC2 12 DC2 12
DC3 13 TM 13

DC4 14 DC4 3C
NAK 15 NAK 3D
SYN 16 SYN 32
ETB 17 ETB 26

CAN 18 CAN 18
EM 19 EM 19
SUB lA SUB 3F
ESC 1B ESC 27

FS lC FS lC
RS lE RS lE
GS 1D GS 1D
us lF us lF

space 20 space 40
! 21 ! 4F

22 7F
23 # 7B

$ 24 $ 5B
% 25 % 6C
& 26 & 50

27 7D

28 4D
29 5D

... 2A ... 5C
+ 2B + 4E

(Continued)

C-6 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-2. ASCil to EBCDIC Conversion for Tapes (Continued)

ASCII EBCDIC
ASCil Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

2C 6B
20 60
2E 4B
2F 61

0 30 0 FO
1 31 1 Fl
2 32 2 F2
3 33 3 F3

4 34 4 F4
5 35 5 F5
6 36 6 F6
7 37 7 F7

B 3B B FB
9 39 9 F9

3A 7A
3B 5E

< 3C < 4C
30 7E

> 3E > 6E
? 3F ? 6F

@ 40 @ 7C
A 41 A Cl
B 42 B C2
c 43 c ca
D 44 D C4
E 45 E C5
F 46 F C6
G 47 G C7

H 4B H CB
I 49 I C9
J 4A J D1
K 4B K 02

L 4C L D3
M 40 M D4
N 4E N D5
0 4F 0 D6
p 50 p 07
Q 51 Q DB
R 52 R D9
s 53 s E2

T 54 T E3
u 55 u E4
v 56 v E5
w 57 w E6

(Continued)

Revision H Character Set C-7

EBCDIC Character Set

Table C-2. ASCII to EBCDIC Conversion for Tapes (Continued)

ASCII EBCDIC
ASCII Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

x 58 x E7
y 59 y ES
z 5A z E9
[5B [4A

\ 5C \ EO
] 5D] 5A

5E 5F
5F 6D

60 79
a 61 a 81
b 62 b 82
c 63 c 83

d 64 d 84
e 65 e 85
f 66 f 86
g 67 g 87

h 68 h 88
69 89

j 6A j 91
k 6B k 92

6C 93
m 6D m 94
n 6E n 95
0 6F 0 96

p 70 p 97
q 71 q 98
r 72 r 99
s 73 s A2

t 74 t A3
u 75 u A4
v 76 v A5
w 77 w A6

x 78 x A7
y 79 y AS
z 7A z A9

7B co
7C 6A
7D DO
7E Al

DEL 7F DEL 07

undefined 80 undefined 20
undefined 81 undefined 21
undefined 82 undefined 22
undefined 83 undefined 23

(Continued)

C-8 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-2. ASCII to EBCDIC Conversion for Tapes (Continued)

ASCII EBCDIC
ASCII Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

undefined S4 undefined 24
undefined SS undefined 15
undefined S6 undefined 06
undefined S7 undefined 17

undefined SS undefined 2S
undefined S9 undefined 29
undefined SA undefined 2A
undefined SB undefined 2B

undefined SC undefined 2C
undefined SD undefined 09
undefined SE undefined OA
undefined SF undefined 1B

undefined 90 undefined 30
undefined 91 undefined 31
undefine'd 92 undefined lA
undefined 93 undefined 33

undefined 94 undefined 34
undefined 95 undefined 35
undefined 96 undefined 36
undefined 97 undefined 08

undefined 9S undefined 38
undefined 99 undefined 39
undefined 9A undefined 3A
undefined 9B undefined 3B

undefined 9C undefined 04
undefined 9D undefined 14
undefined 9E undefined 3E
undefined 9F undefined El

undefined AO undefined 41
undefined Al undefined 42
undefined A2 undefined 43
undefined A3 undefined 44

undefined A4 undefined 45
undefined AS undefined 46
undefined A6 undefined 47
undefined A7 undefined 48

undefined AS undefined 49
undefined A9 undefined 51
undefined AA undefined 52
undefined AB undefined 53

undefined AC undefined 54
undefined AD undefined 55
undefined AE undefined 56
undefined AF undefined 57

(Continued)

Revision H Character Set C-9

EBCDIC Character Set

Table C-2. ASCII to EBCDIC Conversion for Tapes (Continued)

ASCII EBCDIC
ASCII Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

W1defined BO W1defined 5S
W1defined Bl W1defined 59
W1defined B2 W1defined 62
W1defined B3 W1defined 63

W1defined B4 W1defined 64
W1defined B5 W1defined 65
W1defined B6 W1defined 66
W1defined B7 W1defined 67

W1defined BS W1defined 6S
W1defined B9 W1defined 69
W1defined BA W1defined 70
W1defined BB W1defined 71

W1defined BC W1defined 72
W1defined BD W1defined 73
W1defined BE W1defined 74
W1defined BF W1defined 75

W1defined co W1defined 76
W1defined Cl W1defined 77
W1defined C2 W1defined 7S
W1defined C3 W1defined so
W1defined C4 W1defined SA
W1defined cs W1defined SB
W1defined C6 W1defined SC
W1defined C7 W1defined SC

W1defined cs W1defined SE
W1defined C9 W1defined SF
W1defined CA W1defined 90
W1defined CB W1defined 9A

W1defined cc W1defined 9B
W1defined CD W1defined 9C
W1defined CE W1defined 90
W1defined CF W1defined 9E

W1defined DO W1defined 9F
W1defined D1 W1defined AO
W1defined D2 W1defined AA
W1defined D3 W1defined AB

W1defined D4 W1defined AC
W1defined 05 W1defined AD
W1defined D6 W1defined AE
W1defined D7 W1defined AF

W1defined DS W1defined BO
W1defined 09 W1defined Bl
W1defined DA W1defined B2
W1defined DB W1defined B3

(Continued)

C-10 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-2. ASCII to EBCDIC Conversion for Tapes (Continued)

ASCII EBCDIC
ASCII Hexadecimal EBCDIC Hexadecimal
Character Value Character Value

undefined DC undefined B4
undefined DD undefined B5
undefined DE undefined B6
undefined DF undefined B7

undefined EO undefined BS
undefined El undefined B9
undefined E2 undefined BA
undefined E3 undefined BB

undefined E4 undefined BC
undefined E5 undefined BD
undefined E6 undefined BE
undefined E7 undefined BF

undefined ES undefined CA
undefined E9 undefined CB
undefined EA undefined cc
undefined EB undefined CD

undefined EC undefined CE
undefined ED undefined CF
undefined EE undefined DA
undefined EF undefined DB

undefined FO undefined DC
undefined Fl undefined DD
undefined F2 undefined DE
undefined F3 undefined DF

undefined F4 undefined EA
undefined F5 undefined EB
undefined F6 undefined EC
undefined F7 undefined ED

undefined F8 undefined EE
undefined F9 undefined EF
undefined FA undefined FA
undefined FB undefined FB

undefined FC undefined FC
undefined FD undefined FD
undefined FE undefined FE
undefined FF undefined FF

Revision H Character Set C-11

EBCDIC Character Set

Table C-3. EBCDIC to ASCII Conversion for Tapes

EBCDIC ASCII
EBCDIC Hexadecimal ASCII Hexadecimal
Character Value Character Value

NUL 00 NUL 00
SOH 01 SOH 01
STX 02 STX 02
ETX 03 ETX 03

undefined 04 undefined 9C
HT 05 HT 09
undefined 06 undefined S6
DEL 07 DEL 7F

undefined OS undefined 97
undefined 09 undefined SD
undefined OA undefined SE
VT OB VT OB

FF oc FF oc
CR OD CR OD
so OE so OE
SI OF SI OF

DLE 10 DLE 10
DCl 11 DCl 11
DC2 12 DC2 12
TM 13 DC3 13

undefined 14 undefined 9D
undefined 15 undefined S5
BS 16 BS OS
undefined 17 undefined S7

CAN lS CAN lS
EM 19 EM 19
undefined lA undefined 92
undefined 1B undefined SF

FS lC FS lC
GS 1D GS 1D
RS 1E RS 1E
us lF us lF

undefined 20 undefined so
undefined 21 undefined Sl
undefined 22 undefined S2
undefined 23 undefined S3

undefined 24 undefined S4
LF 25 LF OA
ETB 26 ETB 17
ESC 27 ESC 1B

undefined 2S undefined SS
undefined 29 undefined S9
undefined 2A undefined SA
undefined 2B undefined SB

(Continued)

C-12 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-3. EBCDIC to ASCII Conversion for Tapes (Continued)

EBCDIC ASCII
EBCDIC Hexadecimal ASCII Hexadecimal
Character Value Character Value

undefined 2C undefined SC
ENQ 20 ENQ OS
ACK 2E ACK 06
BEL 2F BEL 07

undefined 30 undefined 90
undefined 31 undefined 91
SYN 32 SYN 16
undefined 33 undefined 93

undefined 34 undefined 94
undefined 3S undefined 9S
undefined 36 undefined 96
EOT 37 EOT 04

undefined 3S undefined 98
undefined 39 undefined 99
undefined 3A undefined 9A
undefined 3B undefined 9B

DC4 3C DC4 14
NAK 3D NAK lS
undefined 3F undefined 9E
SUB 3F SUB lA

space 40 space 20
undefined 41 undefined AO
undefined 42 undefined Al
undefined 43 undefined A2

undefined 44 undefined A3
undefined 4S undefined A4
undefined 46 undefined AS
undefined 47 undefined A6

undefined 4S undefined A7
undefined 49 undefined AS
[4A [SB

4B 2E

< 4C < 3C
(40 (2S
+ 4E + 2B

4F 21

& so & 26
undefined Sl undefined A9
undefined S2 undefined AA
undefined S3 undefined AB

undefined S4 undefined AC
undefined SS undefined AD
undefined S6 undefined AE
undefined 57 undefined AF

(Continued)

Revision H Character Set C-13

EBCDIC Character Set

Table C-3. EBCDIC to ASCil Conversion for Tapes (Continued)

EBCDIC ASCil
EBCDIC Hexadecimal ASCil Hexadecimal
Character Value Character Value

undefined 58 undefined BO
undefined 59 undefined Bl
] 5A] 50
$ 5B $ 24

• 5C • 2A
50 29
5E 3B
5F 5E

60 20
61 2F

undefined 62 undefined B2
undefined 63 undefined B3

undefined 64 undefined B4
undefined 65 undefined B5
undefined 66 undefined B6
undefined 67 undefined B7

undefined 68 undefined BS
undefined 69 undefined B9
I 6A I 7C

6B 2C

% 6C % 25
60 5F

> 6E > 3E
? 6F ? 3F

undefined 70 undefined BA
undefined 71 undefined BB
undefined 72 undefined BC
undefined 73 undefined BO

undefined 74 undefined BE
undefined 75 undefined BF
undefined 76 undefined co
undefined 77 undefined Cl

undefined 78 undefined C2
79 60
7A 3A

7B # 23

@ 7C @ 40
70 27
7E 30
7F 22

undefined 80 undefined ca
a 81 a 61
b 82 b 62
c 83 c 63

(Continued)

C-14 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-3. EBCDIC to ASCII Conversion for Tapes (Continued)

EBCDIC ASCII
EBCDIC Hexadecimal ASCII Hexadecimal
Character Value Character Value

d S4 d 64
e SS e 6S
f S6 f 66
g S7 g 67

h SS h 6S
i S9 i 69
undefined SA undefined C4
undefined SB undefined cs
undefined SC undefined C6
undefined SD undefined C7
undefined SE undefined cs
undefined SF undefined C9

undefined 90 undefined CA
j 91 j 6A
k 92 k 6B
I 93 I 6C

m 94 m 6D
n 9S n 6E
0 96 0 6F
p 97 p 70

q 9S q 71
r 99 r 72
undefined 9A undefined CB
undefined 9B undefined cc
undefined 9C undefined CD
undefined 9D undefined CE
undefined 9E undefined CF
undefined 9F undefined DO

undefined AO undefined Dl
Al 7E

s A2 s 73
t A3 t 74

u A4 u 7S
v AS v 76
w A6 w 77
x A7 x 7S

y AS y 79
z A9 z 7A
undefined AA undefined D2
undefined AB undefined D3

undefined AC undefined D4
undefined AD undefined DS
undefined AE undefined D6
undefined AF undefined D7

(Continued)

Revision H Character Set C-15

EBCDIC Character Set

Table C-3. EBCDIC to ASCil Conversion for Tapes (Continued)

EBCDIC ASCil
EBCDIC Hexadecimal ASCil Hexadecimal
Character Value Character Value

undefined BO undefined DS
undefined Bl undefined D9
undefined B2 undefined DA
undefined B3 undefined DB

undefined B4 undefined DC
undefined B5 undefined DD
undefined B6 undefined DE
undefined B7 undefined DF

undefined BS undefined EO
undefined B9 undefined El
undefined BA undefined E2
undefined BB undefined E3

undefined BC undefined E4
undefined BD undefined E5
undefined BE undefined E6
undefined BF undefined E7

{ co { 7B
A Cl A 41
B C2 B 42
c C3 c 43

D C4 D 44
E C5 E 45
F C6 F 46
G C7 G 47

H cs H 4S
I C9 I 49
undefined CA undefined ES
undefined CB undefined E9

undefined cc undefined EA
undefined CD undefined EB
undefined CE undefined EC
undefined CF undefined ED

} DO } 7D
J D1 J 4A
K D2 K 4B
L D3 L 4C

M D4 M 4D
N D5 N 4E
0 D6 0 4F
p D7 p 50

Q DS Q 51
R D9 R 52
undefined DA undefined EE
undefined DB undefined EF

(Continued)

C-16 NOSNE System Usage Revision H

EBCDIC Character Set

Table C-3. EBCDIC to ASCII Conversion for Tapes (Continued)

EBCDIC ASCII
EBCDIC Hexadecimal ASCil Hexadecimal
Character Value Character Value

undefined DC undefined FO
undefined DD undefined Fl
undefined DE undefined F2
undefined DF undefined F3

EO 5C
undefined El undefined 9F
s E2 s 53
T E3 T 54

u E4 u 55
v E5 v 56
w E6 w 57
x E7 x 58
y ES y 59
z E9 z 5A
undefined EA undefined F4
undefined EB undefined F5

undefined EC undefined F6
undefined ED undefined F7
undefined EE undefined FS
undefined EF undefined F9

0 FO 0 30
1 Fl 1 31
2 F2 2 32
3 F3 3 33

4 F4 4 34
5 F5 5 35
6 F6 6 36
7 F7 7 37

8 F8 8 38
9 F9 9 39
undefined FA undefined FA
undefined FB undefined FB

undefined FC undefined FC
undefined FD undefined FD
undefined FE undefined FE
undefined FF undefined FF

Revision H Character Set C-17

ANSI Tape Label Formats D

Required Labels D-4
VOLl - Volume Header Label . . D-5
HDRl - First File Header Label . D-8
HDR2 - Second File Header Label D-15
EOFl - First End-of-File Label . . D-19
EOF2 - Second End of File Label D-21
EOVl - First End-of-Volume Label . D-22
EOV2 - Second End of Volume Label D-24

Optional Labels . D-25
HDR3 through HDR9 - Additional File Header Labels1 D-25
EOF3 through EOF9 - Additional End-of-File Labels1 . . . D-25
EOV3 through EOV9 - Additional End-of-Volume Labels2 . D-26

User Labels . D-26

ANSI Tape Label Formats D

ANSI labels perform two functions. They provide information that
uniquely identifies a file and the reel on which it resides, and they
mark the beginning and ending of a file and the beginning and end of
a reel.

ANSI labels are designed to conform to the American National
Standard Magnetic Tape Labels for Information Interchange
X3.27-1978 and the December 1983 revision. All labels are 80
characters long and are recorded at the same density as the data on
the tape. The first three characters of an ANSI label identify the
label type. The fourth character indicates a number within a label
type.

Labels padded to longer than 80 characters and which otherwise meet
the ANSI X3.27-1969 standard can be read (but not written) by
NOSNE.

Table D-1 is a summary of each label type, name, function, and
whether or not it is required.

Revision H ANSI Tape Label Formats D-1

ANSI Tape Label Formats

Table D-1. Label Characteristics

Required/
Type Number Name Used As Optional

VOL 1 Volume Beginning-of- Required
header label volume

UVL 1-9 User volume Beginning-of- Optional (1)
label volume

HDR 1 File header Beginning-of- Required
label information

HDR 2 File header Beginning-of- Required (2)
label information

HDR 3-9 File header Beginning-of- Optional (1)
label information

UHL 1-9 User header Beginning-of- Optional (1)
label information

EOF 1 End-of-file End-of- Required
label information

1. Ignored when reading labels, omitted when writing labels.

2. Allowed to be absent when reading labels, included when writing
labels.

(Continued)

D-2 NOSNE System Usage Revision H

ANSI Tape Label Formats

Table D-1. Label Characteristics (Continued)

Required/
Type Number Name Used As Optional

EOF 2 End-of-file End-of- Required (1)
label information

EOF 3-9 End-of-file End-of- Optional (2)
label information

UTL 1-9 User trailer End-of- Optional (2)
label information

EOV 1 End-of-volume End-of-volume Required
label (1)(3)

EOV 2 End-of-volume End-of-volume Required
label (1)(3)

EOV 3-9 End-of-volume End-of-volume Optional (1)
label

1. Allowed to be absent when reading labels, included when writing
labels.

2. Ignored when reading labels, omitted when writing labels.

3. End of volume labels are required at the end of all but the last
volume of a multivolume set.

Revision H ANSI Tape Label Formats D-3

Tape Label Formats

Tape Label Formats

The VOLl, HDRl, and EOFl labels are required on all ANSI-labeled
tapes. In addition, an EOVl label is required if the physical
end-of-tape reflector is encountered before an EOFl label is written or
if a multifile set is continued on another volume. In the descriptions
of the contents of these labels, n is any numeric digit and a is any
uppercase letter, digit, or any of the following special characters.

Space II $ % & * + #

@ I < = > ?

Some fields are optional. An optional field which does not contain the
designated information must contain blanks. Fields which are not
described as optional are required and written as specified. n-type
fields are right-justified and zero-filled, and a-type fields are
left-justified and blank-filled.

D-4 NOSNE System Usage Revision H

Tape Label Formats

VOLl · Volume Header Label

The volume header label must be the first label on a labelled tape.
All reels begin with a VOLl label. If two or more reels belong to a
volume set, the file section field in the HDRl label gives the actual
reel number.

VOL I 1 I volume serial number

va I reserved

reserved

reserved l owner
identification

owner identification (oid}

oid I reserved

reserved

reserved I lsv

Table D-2 explains the above volume header label illustration. The
length field is expressed in characters.

Revision H ANSI Tape Label Formats D-5

Tape Label Formats

Table D-2. VOLl - Volume Header Label (1)

Character
Position

1-3

4

5-10

11

Field Name

Label identifier
(2)

Label number
(2)

Volume serial
number (2)

Accessibility (3)

Length Contents

3 Must be VOL.

1 Must be 1.

6 Volume identification
assigned by owner to
identify this physical reel of
tape.

1 An a character which
indicates the restrictions, if
any, on who may have
access to the information on
the tape. A blank means
unlimited access. Any other
character means special
handling, in the manner
agreed between the
interchange parties. The
default is blank (unlimited
access).

(1) None of the fields are checked on overwrite.

(2) Checked on read.

(3) Not checked on read.

(Continued)

D-6 NOSNE System Usage Revision H

Tape Label Formats

Table D-2. VOLl - Volume Header Label (1) (Continued)

Character
Position

12-31

32-37

38-51

52-79

Field Name

Reserved for
future
standardization
(2)

Reserved for
future
standardization
(2)

Owner
identification
(old) (2)

Reserved for
future
standardization
(2)

Length Contents

20 Must be blanks.

6 Must be blanks.

14

28

Any a characters identifying
the owner of the physical
volume.

Must be blanks.

80 Label standard 1 Identifies the version of the
ANSI standard under which
the labels were created.

version (lsv) (2)

1. ANSI X3.27 - 1969

2. Unused

3. ANSI X3.27 - 1978

4. ANSI X3.27 - 1983

The default is 4.

(1) None of the fields are checked on overwrite.

(2) Not checked on read.

Revision H ANSI Tape Label Formats D-7

Tape Label Formats

HDRl - First File Header Label

The first file header label must appear before each file. When a file is
continued on more than one volume, the file header label is repeated
after the volume header label on each new volume for that file. If two
or more files are grouped in a multifile set, each HDRl label
indicates the relative position of its associated file within the set.

HOR r 1 I file identifier (fi)

file identifier (fi)

fi file set identifier l file section
number (secno)

secno file
sequence number l generation number l gvn

gvn creation date I expiration date

expiration date I fa J block count

system code

system code l reserved

Table D-3 explains the above first file header label illustration. The
length field is expressed in characters.

D-8 NOSNE System Usage Revision H

Tape Label Formats

Table D-3. HDRI - First File Header Label (1)

Character
Position Field Name

1-3 Label identifier
(2)

4 Label number
(2)

5-21 File identifier
(fi) (3)

22-27 Set (identifier
file) (4)

Length Contents

3 Must be HDR.

1 Must be 1.

17 Up to 17 a characters used
as the file identification (fid)
parameter on the
CHANGE_TAPE_LABEL_
ATTRIBUTES command. The
default is the leftmost 17
characters of the file path
name.

6 Up to six characters used as
the FILE_SET_
IDENTIFIER parameter on
the CHANGE_ TAPE_
LABEL_ATTRIBUTES
command. This value is the
same for all files of a
multifile set. The default is
the value of the volume
serial number in the VOLl
label of the first tape
volume of the file set.

(1) None of the header label fields are checked on overwrite.

(2) Checked on read.

(3) Checked on read if specified.

(4) Not checked on read.

Revision H

(Continued)

ANSI Tape Label Formats D-9

Tape Label Formats

Table D-3. HDRl - First File Header Label (1) (Continued)

Character
Position Field Name

28-31 File section
number (secno)
(2)

32-35 File sequence
number (2)

Length Contents

4 Four n characters

4

identifying the file section
number. The file section
number of the first HDRl
label of a file is 0001. If the
file extends to more than
one volume, this number is
incremented by one for each
subsequent volume. The
default is 0001.

Four n characters used to
specify the position of a file
within a file set. This value
is 0001 for the first file,
0002 for the second, and so
on. In all the labels for a
particular file, this field
contains the same number.
The default is the current
position on the file set.

(1) None of the header label fields are checked on overwrite.

(2) Checked on read if specified.

(Continued)

D-10 NOSNE System Usage Revision H

Tape Label Formats

Table D-3. HDRl - First File Header Label (1) (Continued)

Character
Position

36-39

40-41

Field Name

Generation
number
(optional) (2)

Generation
version number
(gvn) (3)

Length Contents

4 Four n characters specifying
the generation number of a
file. This value is specified
by the GENERATION_
NUMBER parameter of the
CHANGE_TAPE_LABEL_
ATTRIBUTES command.
This value is 0001 for the
first generation of a file,
0002 for the second, and so
on. The default is 0001.

2 Two n characters used to
distinguish successive
iterations of the same
generation. The generation
version number of the first
attempt to create a file is
00. This value is specified
by the GENERATION_
VERSION _NUMBER
parameter of the
CHANGE_TAPE_LABEL_
ATTRIBUTES command.

(1) None of the header label fields are checked on overwrite.

(2) Checked on read if specified.

(3) Checked on read.

Revision H

(Continued)

ANSI Tape Label Formats D-11

Tape Label Formats

Table D-3. HDRl · First File Header Label (1) (Continued)

Character
Position Field Name

42-47 Creation date
(2)

Length Contents

6 Date the file was created; it
is recorded as a space
followed by two n characters
for the year followed by
three n characters for the
day within the year. This
value is specified by the
CREATION _DATE
parameter of the
CHANGE_TAPE_LABEL_
ATTRIBUTES command. The
default is the current date.

(1) None of the header label fields are checked on overwrite.

(2) Checked on read. The creation date is meaningful only on read
operations; on write operations the current date is used.

(Continued)

D-12 NOSNE System Usage Revision H

Tape Label Formats

Table D-3. HDRl · First File Header Label (1) (Continued)

Character
Position

48-53

Field Name

Expiration date
(2)

Length Contents

6 The file is considered
expired when the
EXPIRATION_DATE is
ear lier than or equal to
today's date. When this
condition is satisfied, the
remainder of the volume
may be overwritten. Thus,
to be effective on multifile
volumes, the expiration date
of a file must be earlier
than or the same as the
expiration date of all
preceding files on the
volume. The expiration date
is written in the same
format as the creation date.

This value is specified by
the EXPIRATION_DATE
parameter on the
CHANGE_TAPE_LABELS_
ATTRIBUTES command. The
default is 000000.

(1) None of the header label fields are checked on overwrite.

(2) Not checked on read.

(Continued)

Revision H ANSI Tape Label Formats D-13

Tape Label Formats

Table D-3. HDRl · First File Header Label (1) (Continued)

Character
Position Field Name Length Contents

54 File 1 An a character which
accessibility indicates the restrictions, if
code (fa)(2) any, on who may have

access to the information in
this file. A blank means
unlimited access. This value
is specified by the FILE_
ACCESSIBILITY_ CODE
parameter on the
CHANGE_TAPE_LABEL_
ATTRIBUTES command. The
default is blank (unlimited
access).

55-60 Block count (2) 6 Must be zeros.

61-73 System code (2) 13 Thirteen characters
identifying the operating
system that recorded this
file. The default is 'NOSNE
Vl.OAA'.

74-80 Reserved for 7 Must be spaces.
future standard-
ization (2)

(1) None of the header label fields are checked on overwrite.

(2) Not checked on read.

D-14 NOSNE System Usage Revision H

Tape Label Formats

HDR2 - Second File Header Label

The HDR2 label follows the HDRl label. It contains information that
identifies the format of the data in the file which follows:

HOR I 2 1 rf block length

record length bt rt l block length
extension (blx)

blxl record length l pc cs l cc reserved extension (rlx)

reserved

reserved

bol j reserved

reserved

reserved

Table D-4 explains the above second file header label illustration. The
length field is expressed in characters.

Revision H ANSI Tape Label Formats D-15

Tape Label Formats

Table D-4. HDR2 - Second File Header Label (1)

Character
Position Field Name Length Contents

1-3 Label identifier 3 Must be HDR.
(2)

4 Label number 1 Must be 2.
(2)

5 Record Format 1 Indicates the record format
(rf) (2) of the file as follows:

F - ANSI Fixed

D - ANSI Variable

S - ANSI Spanned

6-10 Block length 5 Specifes the maximum
(bl) (2) length of the tape blocks on

the file.

11-15 Record length 5 Specifies the maximum
(rl) (2) length of each record on the

file.

16-17 Block type (ht) 2 Indicates the NOSNE block
(2) type of the file as follows:

US - User-specified

SS - System-specified

(1) None of the second file header fields are checked on overwrite.

(2) Checked on read.

(Continued)

D-16 NOSNE System Usage Revision H

Tape Label Formats

Table D-4. HDR2 - Second File Header Label (1) (Continued)

Character
Position

18

19-21

22-24

25

26

Field Name

Record type (rt)
(2)

Block length
extension (blx)
(2)

Record length
extension (r Ix)
(2)

Padding
character (pc)
(2)

Character Set
(cs) (2)

Length Contents

1 Indicates the NOSNE record
type of the file as follows:

3

3

1

1

F - ANSI Fixed

U - Undefined

V - Variable

D - ANSI Variable

S - ANSI Spanned

Specifies the most
significant digits of the
block length

Specifies the most
significant digits of the
record length.

Specifies the NOSNE
character which is used to
pad fixed length records.

Indicates the character set
in which the file is recorded
as follows:

A - ASCII

E - EBCDIC

(1) None of the second file header fields are checked on overwrite.

(2) Checked on read.

(Continued)

Revision H ANSI Tape Label Formats D-17

Tape Label Formats

Table D-4. HDR2 - Second File Header Label (1) (Continued)

Character
Position Field Name

27 Character

51-52

conversion (cc)
(2)

Buffer offset
length (bol) (2)

Length Contents

1 Indicates that character set
conversion is to be
performed between the data
on the tape and NOSNE.

2

T - True (perform
conversion)

F - False (do not
perform conversion)

Specifies the number of
characters at the beginning
of each block that are not
part of the data on the file.

(1) None of the second header label fields are checked on overwrite.

(2) Checked on read.

D-18 NOSNE System Usage Revision H

Tape Label Formats

EOFI - First End-of-File Label

The end-of-file label is the last block of every file. It is the system
end-of-information for the file. A single tape mark precedes EOFl. A
double tape mark written after the EOFl label marks the end of a
multifile set.

EOF I 1 I file identifier (fi}

file identifier (fi}

f i set identification I file section
number (secno}

secno file
sequence number I generation number I gvn

gvn creation date l expiration date

expiration date l fa l block count

system code

system code I reserved

Table D-5 explains the above first end of file label illustration. The
length field is expressed in characters.

Revision H ANSI Tape Label Formats D-19

Tape Label Formats

Table D-5. EOFl - First End-of-File Label

Character
Position Field Name Length Contents

1-3 Label identifier 3 Must be EOV.
(1)

4 Label number 1 Must be 1.
(1)

5-54 Same as 50 Same as the corresponding
corresponding fields in HDRl.
fields in HDRl
(optional) (2)

55-60 Block count (3) 6 Six n characters specifying
the number of data blocks
between this label and the
preceding HDR label group.
This total does not include
labels or tape marks.

61-80 Same as 20 Same as corresponding fields
corresponding in HDRl.
fields in HDRl
(optional) (2)

(1) Checked on read.

(2) Checked on read disposition same as corresponding fields in HDRl.

(3) Not checked on read.

D-20 NOSNE System Usage Revision H

Tape Label Formats

EOF2 - Second End of File Label

The EOF2 label follows the EOFl label. It contains information that
identifies the format of the data on the file.

EOF I 2 I rf block length

record length bt rt I block length
extension (blx}

blxJ record I ength I pc cs l cc reserved extension (rlx}

reserved

reserved

bol I reserved

reserved

reserved

Table D-6 explains the above second end-of-file label illustration. The
length field is expressed in characters.

Table D-6. EOF2 - Second End-of-File Label

Character
Position

1-3

4

5-80

Field Name

Label identifier
(1)

Label number
(1)

Same as
corresponding
fields in HDR2.
(1)

(1) Not checked on read.

Revision H

Length Contents

3 Must be EOF

1 Must be 2

76 Same as corresponding fields
in HDR2.

ANSI Tape Label Formats D-21

Tape Label Formats

EOVl - First End-of-Volume Label

The end-of-volume label is present only if the physical end-of-tape
reflector is encountered before closing the file when writing or if the
program writing this file closed the volume and continued writing the
file on the next volume. EOVl is preceded by a single tape mark and
followed by a double tape mark.

EOV l 1 I file identifier (fi)

file identifier (fi)

fi set identication I file section
number (secno)

file I generation number I secno sequence number gvn

gvn creation date I expiration date

expiration date I fa l block count

system code

system code l reserved

Table D-7 explains the above first end of volume illustration. The
length field is expressed in characters.

D-22 NOS/VE System Usage Revision H

Tape Label Formats

Table D-7. EOVI - First End-of-Volume Label

Character
Position Field Name Length Contents

1-3 Label identifier 3 Must be EOV.
(1)

4 Label number 1 Must be 1.
(1)

5-54 Same as 50 Same as the corresponding
corresponding fields in HDRl.
fields in HDRl
(optional) (2)

55-60 Block count (3) 6 Six n characters specifying
the number of data blocks
between this label and the
preceding HDR label group.
This total does not include
labels or tape marks.

61-80 Same as 20 Same as corresponding fields
corresponding in HDRl.
fields in HDRl
(optional) (2)

(1) Checked on read.

(2) Checked on read disposition same as corresponding fields in HDRl.

(3) Not checked on read.

Revision H ANSI Tape Label Formats D-23

Tape Label Formats

EOV2 - Second End of Volume Label

The EOV2 label follows the EOVl label. It contains information that
identifies the format of the data on the file.

EOV I 2 I" block length

record length bt rt j block length
extension (blx)

blx l record length l pc cs 1 cc reserved extension (rlx)

reserved

reserved

bol I reserved

reserved

reserved

Table D-8 explains the above second end-of-file label illustration. The
length field is expressed in characters.

Table D-8. EOV2 - Second End-of-Volume Label

Character
Position Field Name

1-3 Label identifier
(1)

4 Label number
(1)

5-80 Same as
corresponding
fields in HDR2.
(1)

(1) Not checked on read.

D-24 NOSNE System Usage

Length Contents

3 Must be EOV

1 Must be 2

76 Same as corresponding fields
in HDR2.

Revision H

Optional Labels

Optional Labels

Six types of optional labels are allowed. N OSNE ignores these labels
while reading an ANSI File. These labels are not written by NOSNE.
They are additional file header (HDR3-9), end-of-volume (EOV3-9),
end-of-file (EOF3-9), user volume (UVLa), header (UHLa), and trailer
(UTLa) labels.

HDR3 through HDR9 - Additional File Header
Labels1

HDR3 through HDR9 labels may immediately follow HDR2. Their
format is:

Character Length in
Position Field Name Characters Con ten ts

1-3 Label identifier 3 HDR

4 Label number 1 2-9

5-80 76

Only the label identifier and the label number are checked on read.

EOF3 through EOF9 - Additional End-of-File Labels1

EOF3 through EOF9 labels may immediately follow EOF2. Their
format is:

Character Length in
Position Field Name Characters Con ten ts

1-3 Label identifier 3 EOF

4 Label number 1 2-9

5-80 76

Only the label identifier and the label number are checked on read.

1. Reserved for operating system use.

Revision H ANSI Tape Label Formats D-25

User Labels

EOV3 through EOV9 - Additional End-of-Volume
Labels2

EOV3 through EOV9 labels may immediately follow EOV2. Their
format is:

Character Length in
Position Field Name Characters Contents

1-3 Label identifier 3 EOV

4 Label number 1 2-9

5-80 76

User Labels

User labels may immediately follow their associated system labels.
Thus, user volume labels (UVLa) may follow VOLl, user header labels
(UHLa) may follow the last HDRn label, and user trailer labels
(UTLa) may follow the last EOVn or EOFn label. Their format is:

Character
Position Field Name

1-3 Label identifier

4 Label number

5-80 User option

2. Reserved for operating system use.

D-26 NOSNE System Usage

Length in
Characters Contents

3 UVL, UHL, or UTL.

1 Must be 1-9 for UVL
labels. For other labels,
any a character.

76 Any a characters.

Revision H

Format Effectors

Vertical Spacing Characters

Vertical Form Unit Loading
Reserved Format Channels
Vertical Forms Unit Load Image .

E

E-1

E-3
E-3
E-4

JFo:rmat Effectors E

This appendix describes vertical spacing characters and vertical form
unit loading

Vertical §pacing Characters

The following characters cause vertical spacing actions when they are
encountered in the first character position of a print line. In this
appendix, these characters are called format effectors. If your file
contains a format effector that specifies a capability not available on
all printers (such as the format effector that specifies Load Vertical
Forms Unit), you must specify an EXTERNAL_CHARACTERISTIC
parameter on the PRINT_FILE command to ensure that the
appropriate printer is used to print the file.

Table E-1. Vertical Spacing Characters

Format
Effector

1
2

+
sp
0

8
7
6
5
4
3
9
x

Meaning

Advance to top-of-form (page-eject) before printing1

Advance to bottom-of-form channel before printing
Advance 0 lines before printing (overprint)1

Advance 1 line before printing (single space)1

Advance 2 lines before printing1

Advance 3 lines before printing1

Advance to channel 1 before printing
Advance to channel 2 before printing
Advance to channel 3 before printing
Advance to channel 4 before printing
Advance to channel 5 before printing
Advance to channel 6 before printing
Advance to channel 7 before printing
Advance to channel 8 before printing

1. Supported for all printers. Action taken for characters not supported
by a printer is specified in the device definition.

(Continued)

Revision H Format Effectors E-1

Vertical Spacing Characters

Table E-1. Vertical Spacing Characters (Continued)

Format
Effector

y
z
w
u
A
B
I
H
G
F
E
D
c
I
J
K
L
M
N
Q
R
s
T
v
<US>
others

Meaning

Advance to channel 9 before printing
Advance to channel 10 before printing
Advance to channel 11 before printing
Advance to channel 12 before printing
Advance to top-of-form (page eject) after printing1

Advance to bottom-of-form channel before printing
Advance 0 lines after printing (overprint)1

Advance to channel 1 after printing
Advance to channel 2 after printing
Advance to channel 3 after printing
Advance to channel 4 after printing
Advance to channel 5 after printing
Advance to channel 6 after printing
Advance to channel 7 after printing
Advance to channel 8 after printing
Advance to channel 9 after printing
Advance to channel 10 after printing
Advance to channel 11 after printing
Advance to channel 12 after printing
Deselect auto page-eject
Select auto page-eject
Select 6 lines per inch
Select 8 lines per inch
Load Vertical Forms Unit
Single space
Undefined format effector action

E-2 NOSNE System Usage Revision H

/

Vertical Form Unit Loading

Vertical Form Unit Loading
Printers which support format channels contain some sort of vertical
format unit (VFU). If a printer has a VFU, it may be used to support
different forms sizes as well as the selection of vertical print density
and auto page-eject control.

Reserved Format Channels

For printers which support format channels, three channels are
reserved for specific carriage control operations. Channel 1 is always
used to position the paper to its top-of-form. Two additional channels
of the site's choosing are also reserved: one for positioning the paper
to the logical bottom-of-form, the other for skipping over the
perforations between forms (auto page-eject). Each of these channels
may occur only once in the Vertical Forms Unit load image.

By default, both the bottom-of-form and auto page-eject channels are
placed at two lines above the physical end of the form. If the operator
or user changes forms size or print density, the bottom-of-form and
auto page-eject channels are moved to accommodate the change in the
number of lines on the form.

Revision H Format Effectors E-3

Vertical Form Unit Loading

Vertical Forms Unit Load Image

Figures E-1 and E-2 show the standard VFU load image used if the
site or user does not specify a VFU load procedure for a printing
device or a print file.

Lin• ChallDel•

2 3 4 5 6 7 8 9 10 11 12

1 I I .l .l :r I x .l I x
2
3
4
5
6
7 .l I
8
9
10
11
12
13 I x J I
14
15 1
16 I
17
18
19 x I I
20
21 I J
22 I
23 I
24
25 I I J
26 .l
27
28
29
30
31 I .l I I I I
32
33 I
34
35
36
37 I I J
38
39
40
41 J I
42
43 x x I J
44
u
4f.
47
48

Figure E-1. Vertical Forms Unit Load Image
(Continued)

E-4 NOSNE System Usage Revision H

Vertical Form Unit Loading

(Continued)

1.lH Channelt

49 x I l • Set for 1.5 toch
.50 fon at 6 Un••
.51 x x I per inch
.52
53 x
54
.55 I
.56 x
.5~ x
5& I
59
60
61 I I
62 2 • Set for 11 inch
63 I fon IC 6 liDH
64 I I per loci>
65 1 I
66 I 3 • kt for a.s lllch
67 forll at 8 liDel
6e per inch
69 I 1
70 4 • Sec for 12 loch
71 I ton at 6 lioH
72 per inch
73
74
H
76 I
77
78 I
79 I
&O
81 x
82 I I
13 I
a4
85 x
86 :r 5 • Set for 11 toch
11 fOrll at & liDll
ee ,.., '-i'
19 I
90
91 I 1
92
93 1
94 6 • Sit for 12 inch
95 fora at 8 liDU
96 per inch

Figure E-1. Vertical Forms Unit Load Image

Revision H Format Effectors E-5

SCL Language Syntax

Metalanguage Symbols

SCL Language Syntax

Calls to Commands . .

F

F-1

F-3

F-5

§CL Language Syntax

This appendix contains reference information about the syntax of
language elements supplied as input to the SCL interpreter. In
addition to presenting the basic syntax, this appendix describes the
form of calls to commands.

Metalanguage Symbols

Table F-1 presents the conventions (metalanguage symbols) used in
the syntax presentation. Unless underlined, any character from this
table should be read as a metalanguage symbol.

Table F-1. SCL Metalanguage Conventions

Symbol

< >

[]

Revision H

Description

Is read as is defined to be.

Is read as or ; elements separated by this
symbol are mutually exclusive.

Elements enclosed by these symbols
constitute a single element in relation to
the surrounding metalanguage symbols.

Elements enclosed by these symbols are
optional and constitute a single element in
relations to the surrounding metalanguage
symbols.

Elements followed by this symbol may be
repeated. When this symbol follows a
greater than symbol (>) or closing bracket
m, it applies to the metalanguage text
between and including the matching lesser
than symbol (<) or opening bracket ([).

(Continued)

SCL Language Syntax F-1

Metalanguage Symbols

Table F-1. SCL Metalanguage Conventions (Continued)

Symbol

<any ASCII character
except xxxxx >

<sp>

<nl>

<bol>

<eol>

<eop>

<eoi>

< .. >

F-2 NOSNE System Usage

Description

Denotes any ASCII character except the
character(s) specified by xxxxx.

One or more spaces and/or comments.

New line.

Beginning-of-line.

End-of-line.

End-of-partition.

End-of-information.

Two or more dots optionally preceded
and/or followed by < sp >.

Revision H

SCL Language Syntax

§CL Language Syntax
The syntax of SCL is presented in metalanguage form as follows:

<SCL input> ··=<job>
<conmand procedure>
<included file>
<included line>

<job>::= <login> [<statement list>] <logout>

<login>··= <batch login>
<interactive login>

<batch login>::= <bol> [<;lnl>] ...
<login cOrTITland> <; lnl>

<logout>::= LOGOUT I <end of text>

<end of text>··= <eol> <eoi>
<eol> <eop>

<included file> ··= <bol> [<statements>] <end of text>

<included line>··= <bol> [<statements>] <eol>

<statement list>::= <statements> <;lnl>

<statements> ::=<statement>[<; lnl> <statement>] ...

Revision H SCL Language Syntax F-3

SCL Language Syntax

<statement>··= <conmand>
<variable definitions>
<assignment statement>
<push>
<pop>
<condition statement>
<structured statement>
<if statement>
<control statement>
<empty>

<condition statement>··= <when statement>
<cancel>
<continue>

<structured statement>··= <block statement>
<repetitive statement>

<repetitive statement> ··=<for statement>
<loop statement>
<repeat statement>
<while statement>

<control statement>··= <cycle>
<exit>
<exit_proc>

<;lnl> ::= <;>l<nl>

<;> ::= [<sp>] ; [<sp>]

F-4 NOSNE System Usage Revision H

Calls to Commands

Calls to Commands

The definitions shown in figure F-1 illustrate the form of calls to
commands:

<cOITITland> ::= <cOITITland reference> [<,lsp> <conmand parameters>]

<cOITITland reference>::=
<conmand name>

I </> [<sp>] <comnand name>
I $SYSTEM <.> <conmand name>
I <file><.> <conmand name>

<catalog> <.> <conmand name>

<cOITITland parameters>::=
[<corrmand parameter>] [<, lsp> [<conmand parameter>]] ...

<c0111Tiand parameter> ::=
[<parameter name> [<sp>] = [<sp>]] <parameter value>

<parameter value>··= <expression>
<omitted parameter name>

<,lsp> ::= <,> <sp>

<,> ::= [<sp>] , [<sp>]

Figure F-1. Calls to Commands·

Revision H SCL Language Syntax F-5

Calls to Commands

The following conditions apply to calls to commands:

• If you specify only <command name>, the command list is
searched for the command. See the chapter 5, Command and SCL
Procedure Execution for a discussion of SCL command lists.

• If you prefix the <command name> entry by a slant character (/),
the entry at the front of the command list is bypassed in the
search for the command. This facility is normally used within a
command utility to call a command that does not belong to the
utility but has the same name (usually abbreviated) as a utility
subcommand.

• If you specify $SYSTEM, the <command name> entry must
designate one of the commands supplied as part of NOSNE.

• If you specify a <file> entry, the file must comprise an object
library containing the command. You may use a cycle reference, as
part of the <file> specification, to select a particular version of
the object library. See the NOSNE Object Code Management
manual for details about how an object library is searched for a
command.

• If you specify a <catalog> entry, the <command name> entry
must be the name of a file within the designated catalog that can
be treated as a command.

For information about the syntax of procedures, see appendix G.

F-6 NOSNE System Usage Revision H

SCL Procedure Syntax

Basic Syntax

Expressions
Boolean Expression .
File Expression . . .
Integer Expression .
Keyword Expression
Name Expression .
Real Expression . .
String Expression .
Status Expression

G

G-1

G-4
G-4
G-6
G-8

G-10
G-10
G-11
G-12
G-12

§CL Procedure Syntax G

This appendix documents the syntax of SCL procedures. In addition to
presenting the basic syntax, this appendix contains syntax descriptions
of expressions.

The definition of a procedure consists of two main parts:

• A header in which the names for the command are defined.

• A specification for the command's parameters.

Basic Syntax

The basic procedure syntax appears as follows (see appendix F for an
explanation of special symbols):

<proc header>::= [<sp>] PROC <sp> <proc names>
[[<sp>] <(> <param defs> <)>]

<proc names>::= <proc name> [<,lsp> <proc name>] ...

<proc name> ::=<name>

<param defs> ::=
<param def>[<; lnl> <param def>] ...

<param def>::= <param names> [[<sp>]:[<sp>] <value spec>]
[[<sp>] = [<sp>] <default spec>]

I <empty>

<param names> ::=<parameter name> [<,lsp> <parameter name>] ...

<parameter name>::= <name>

Revision H SCL Procedure Syntax G-1

Basic Syntax

<value spec> ::=
[<value list kind> <sp> OF <sp>] <param value kind>

<value list kind>··= LIST [<sp> <value set count>
[<,lsp> <value count>] [<,lsp> RANGE]]

[LIST <sp>] RANGE

<value set count>··= <min value sets>[< .. > <max value sets>]
<value count>::= <min values>[< .. > <max values>]
<min value sets>::= <integer param expr>
<max value sets> ::=<integer param expr>
<min values> ··=<integer param expr>
<max values> ::=<integer param expr>

<param value kind>::= <value kind> [<or keyword values>]
<var value kind> [<or keyword values>]
<keyword values>

<or keyword values>··= <sp> OR <sp> <keyword values>

<keyword values> ::=
KEY <sp> <keyword value> [<,lsp> <keyword value>] ...

<keyword value> ::=<name>

<var value kind>··= VAR <sp> OF <sp> <var kind>
ARRAY <sp> OF <sp> <var kind>

G-2 NOSNE System Usage Revision H

<var kind>::=
BOOLEAN
INTEGER
REAL
STATUS
STRING
ANY

<value kind>
BOOLEAN
FILE

Basic Syntax

INTEGER [<sp> <min int value>< .. > <max int value>]
NAME [<sp> <min name length>[< .. > <max name length>]]
REAL
STATUS
STRING [<sp> <min str length>[< .. > <max str length>]]
ANY
<application value name> [<sp> <application procedure name>]

<min name length> ::=<integer param expr>
<max name length> ::=<integer param expr>
<min str length> ::=<integer param expr>
<max str length>::= <integer param expr>
<min int value> ::=<integer param expr>
<max int value>::= <integer param. expr>
<application procedure name> ::=<name>

<default spec>::= $REQUIRED I $OPTIONAL I <default value>

<default value>··= <value list>

<(> .. = ([<sp> l

<)> .. = [<sp>])

< .. > ::= .. [.]

Revision H SCL Procedure Syntax G-3

Expressions

Expressions

An expression is used to designate or compute a value of a particular
type.

It is defined as follows:

<expression> ··=<boolean expression>
<file expression>
<integer expression>
<keyword expression>
<name expression>
<real expression>
<string expression>
<status expression>

Definitions for the preceding kinds of expressions are presented in the
next sections.

Boolean Expression

This expression is defined as follows:

<boolean expression>::=
<boolean term 1> [<boolean sum I diff> <boolean term 1>] ...

<boolean sum I diff> ::=<boolean sum> I <boolean difference>

<boolean sum>::= <sp> OR <sp>

<boolean difference> ··= <sp> XOR <sp>

<boolean term 1> ::=
<boolean term 2> [<boolean product> <boolean term 2>] ...

<boolean product>::= <sp> AND <sp>

<boolean term 2> ::=[<boolean complement>] <boolean operand>

G-4 NOSNE System Usage Revision H

<boolean complement> ::=NOT <sp>

<boolean operand> ··=<boolean variable>
<boolean function>
<boolean>
<relational expression>
<(> <boolean expression> <)>

<boolean>::= <true> I <false>

<true> ::=TRUE I YES I ON

<false>::= FALSE I NO I OFF

<relational expression>··=
<relational term> [<relation> <relational term>]

<relation> . ·= <equal to>
<not equal to>
<greater than>
<greater than or equal to>
<less than>
<less than or equal to>

<equal to> . ·= [<sp>] = [<sp>]

<not equal to> . ·= [<sp>] < > [<sp>]

<greater than> [<sp>] ~ [<sp>]

<greater than or equal to> ::= [<sp>] >= [<sp>]

<less than> : := [<sp>] ~ [<sp>]

<less than or equal to>::= [<sp>] <= [<sp>]

<relational term> ::=<expression>

Expressions

Revision H SCL Procedure Syntax G-5

Expressions

File Expression

This expression is defined as follows:

<file expression> ··=<file reference>
<file>
<catalog>

<file I catalog>::= <file> I <catalog>

<file reference>··=
<file>[<.> <file position>]

<file> ::=<path> [<.><cycle reference>]

<catalog> ::=<path>

<path> ··=<absolute path>
<relative path>

<absolute path>··= <family path>
<system file>
<user path>

<family path>::=
<:><family name>[<.> <relative path>]

<system file>··= <job file>
<standard file>

<job file>··= COMMAND I INPUT I OUTPUT
$JOB_LOG I $NULL

G-6 NOSNE System Usage Revision H

<standard file>··= $ECHO $ERRORS $INPUT
I $LIST $OUTPUT $RESPONSE

<user path>··=
<.> <user name> [<.> <relative path>]

<relative path>::=
<path element> [<.> <relative path>]

<path element> ::=<path element name>

<cycle reference> ::=
<cycle number>

I <generic cycle reference>

<cycle number>::= <unsigned integer>

Expressions

<generic cycle reference>::= $HIGH I $LOW I $NEXT

<file position>··= $ASIS I $BOI I $EOI

<:> . ·=

<.> . ·=

Revision H SCL Procedure Syntax G-7

Expressions

Integer Expression

An integer expression is a numeric expression with an integer result.
If the result of the expression as given is of type real, the result is
automatically converted to an integer.

This expression is defined as follows:

<integer expression>::=
<integer term 1> [<add I sub> <integer term 1>] ...

<add I sub>::= <add> I <subtract>

<add> ::= [<sp>] + [<sp>]

<subtract> : := [<sp>] - [<sp>]

<integer term 1> ::=
<integer term 2> [<multiply I divide> <integer term 2>] ...

<multiply I divide> ··=<multiply> I <divide>

<multiply> : := [<sp>] * [<sp>]

<divide> ::= [<sp>] I [<sp>]

<integer term 2> ::=
<integer term 3> [<exponentiate> <integer term 3>] ...

<exponentiate> · ·= [<sp>] ** [<sp>]

G-8 NOSNE System Usage Revision H

<integer term 3> : := [<plus I minus>] <integer operand>

<plus I minus>::= <plus> <minus>

<plus>::=+ [<sp>]

<minus>::= - [<sp>]

<integer operand> ··=<integer variable>
<integer function>
<unsigned integer>
<(><integer expression>~<)>

<integer>··= [<sign>] <unsigned integer>

Expressions

<unsigned integer> ::=<digit> [<hex digit>] ... [<(><radix><)>]

<sign>::= <+I-> [<sp>]

<hex digit> : := <digit> I A B
I a b

<radix> : := <unsigned decimal>

<unsigned decimal> : := <digit>

Revision H

C I D
c I d

E I F
e I f

SCL Procedure Syntax G-9

Expressions

Keyword Expression

This expression is defined as follows:

<keyword expression> ··=<keyword>
<name function>

Name Expression

This expression is defined as follows:

<name expression> ::=<name>
I <name function>

<name>::= <alphabetic char> [<alphanumeric char>] ...

<alphanumeric char>::= <alphabetic char> I <digit>

<alphabetic char>··= <letter>

<letter> . ·= <upper
<lower

<upper case letter>

<international letter>
<special alphabetic char>

case letter>
case letter>

: := A B c D E F

I L M N 0 p Q
IW x y z

G
R

H

s
I J K

T u v

<lower case letter>··= a I b I c I d
1 I m I n I o
w I x I y I z

e I f I g

P I Q I r
h I I j I k

s I t I u I v

<international letter>··= <upper case international letter>
<lower case international letter>

<upper case international letter>··= @I l I\ I l I

<lower case international letter>··= I { I 1 I } I

<special alphabetic character>::= I# I $ I_

<di 91 t > : : = I O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

G-10 NOSNE System Usage Revision H

Expressions

Real Expression

A real expression is a numeric expression with a real result. This
expression is defined as follows:

<real expression>··= <real variable>
<real function>
<unsigned real>

<real> ::= [<sign>] <unsigned real>

<unsigned real>::= <mantissa> [<exponent>]

<mantissa> ::=<integer part><.> <fraction part>

<integer part> ::=<unsigned decimal>

<fraction part>::= <unsigned decimal>

<exponent>::= <exponent char> [<+1->l <unsigned decimal>

<exponent char>::= E I e ID I d

Revision H SCL Procedure Syntax G-11

Expressions

String Expression

This expression is defined as follows:

<string expression>::=
<string operand> [<concatenate> <string operand>] ...

<concatenate>::= [<sp>] // [<sp>]

<string operand> ··=<string variable>
<string function>
<string>
<(> <string expression> <)>

<string>::=<'> [<string char>] ... <'>

<string char>::= [<any ascii character except '> I ''

The concatenation operator (//) joins two strings.

Status Expression

This expression is defined as follows:

<status expression>··= <status variable>
<status function>

G-12 NOSNE System Usage Revision H

Old Commands

Ordering Printed Manuals

Accessing Online Manuals

H

H-1

H-1

Old Commands H

Table H-1 lists old commands from previous versions of NOSNE and
the preferred command or replacement command. Some of the
preferred commands may have parameters that differ from an old
command. Commands listed more than once were replaced by more
than one command.

Table H-1. NOS/VE Old Commands

Old Command

CHANGE_ TERM_ CONN_
ATTRIBUTES

DISPLAY_ l 70_REQUEST

DISPLAY_ 7600_REQUEST

DISPLAY_ COMMAND_
PARAMETERS

DISPLAY_IBM_REQUEST

DISPLAY_PRINT_STATUS

DISPLAY_ TERM_ CONN_
ATTRIBUTES

DISPLAY_ VAX_REQUEST

EDIT_LIBRARY (SCU
subcommand)

SET_COMMAND_LIST

SET_ COMMAND_LIST

Revision H

Preferred/Replacement Command

CHANGE_CONNECTION _
ATTRIBUTES

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

DISPLAY_ TAPE_ LABEL_
ATTRIBUTES

DISPLAY_ COMMAND_
INFORMATION

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

DISPLAY_OUTPUT_STATUS

DISPLAY_ CONNECTION_
ATTRIBUTES

DISPLAY_ TAPE_LABEL_
ATTRIBUTES

EDIT_DECK (SCU Subcommand)

CREATE_COMMAND_LIST_
ENTRY

DELETE_COMMAND_LIST_
ENTRY

(Continued)

Old Commands H-1

Old Commands

Table H-1. NOS/VE Old Commands (Continued)

Old Command

SET_COMMAND_LIST

SET_COMMAND_MODE

SET_COMMAND_MODE

SET_JOB_LIMIT

SET_LINK_ATTRIBUTES

SET_MESSAGE_MODE

Preferred/Replacement Command

CHANGE_COMMAND_SEARCH_
MODE

CHANGE_INTERACTION _STYLE

CHANGE_SCL_OPTIONS

CHANGE_JOB_LIMIT

CHANGE_LINK_ATTRIBUTES

CHANGE_MESSAGE_LEVEL

SET_ TERMINAL_ATTRIBUTES CHANGE_ TERMINAL_
ATTRIBUTES

TERMINATE_PRINT TERMINATE_ OUTPUT

H-2 NOSNE System Usage Revision H

Index

Index

A
Abbreviation

Command 2-12
Parameter 2-16

Abort, glossary definition A-1
Absolute path, glossary

definition A-1
ACCEPT_LINE 9-3, 10
Access control entries 4-22

Access mode 4-23
Changing 4-26
Creating and deleting 4-26
Multiple entries 4-26
Permit groups 4-22
Share mode 4-24

Access log 4-19
ACCESS_MODE file

attribute 4-40
$ACCESS_MODE function 9-6
Account name 3-5
Active job logs 6-66

Displaying 6-69
ADMINISTER_

VALIDATION 3-21, 23; 6-11;
10-3

Alias, glossary definition A-1
Alphabetic character, glossary

definition A-1
Alphanumeric character, glossary

definition A-1
ANSI file 11-6
ANSI, glossary definition A-1
ANSI-labelled tapes 11-5; D-1

ANSI file 11-6
EOFl label 11-13; D-19
EOF2 label 11-13; D-21
EOF3 through EOF9 D-25
EOVl label D-22
EOV2 label D-24
Examples 11-28
File set 11-6
HDRl label information 11-8;

D-8
HDR2 label information 11-9;

D-15
HDR3 through HDR9 D-25

Revision H

Initializing volumes 11-16
Label information 11-6
Label processing 11-13
Label types D-2

Required D-4
Multifile volumes 11-12
NOSNE HDR2

extensions 11-10
Reading 11-18
Tape file 11-6
Tape label attribute 11-19
Tape label formats D-1
Volume information 11-7
Writing 11-17

ANSI tape user labels D-26
Any

Data type 2-22; 7-36
Definition 7-36

ANY_FAULT condition 8-20
Application value

Data type 2-22; 7-36
Definition 7-36
Glossary definition A-2

Array
Definition 7-6
Lower bound 7-6
References 7-20
Upper bound 7-6
Variables 7-6

ARRAY OF
Clause 9-32
Restrictions 9-32

ASCII
Character set C-1
Glossary definition A-1

$ASIS 4-38
Assignment statement

Definition 2-32
Examples 7-7
Glossary definition A-2
Processing syntax errors 9-16

Asynchronous tasks 6-33
Glossary definition A-2

ATTACH_FILE 4-31; 8-18; 9-10
ATTACH_JOB 3-19

NOSNE System Usage Index-1

Attaching files

Attaching files 4-30
Explicitly 4-32
More than once within a
job 4-36

Private readers 4-37
Sharing while attached 4-33

ATTENTION_ CHARACTER
Connection attribute 13-25
Terminal attribute 13-5

Attributes, definition 1-3
AVERAGE_RECORD_LENGTH

file attribute 4-41

B
BACKSPACE_ CHARACTER

terminal attribute 13-5
BACKUP_CATALOG sub

BACPF 12-5, 10, 17
BACKUP_FILE sub

BACPF 12-5, 12, 17
$BACKUP _FILE sub

RESPF 12-23, 27
BACKUP _PERMANENT

FILES 12-1, 5 -
Backup utility 12-1, 5

Backing up
Catalogs 12-10
Files 12-12
To disk 12-6
To tape files 12-6

Changing backup tape
types 12-6

Deleting catalogs 12-11
Deleting file cycles 12-16
Displaying backup tape

types 12-6
Excluding catalogs 12-10
Excluding file cycles 12-16
Excluding files 12-13
Including file cycles 12-13

By size 12-14
List file 12-4
Rules for file access 12-3
Starting the utility 12-5
Stopping the utility 12-5
To $NULL 12-9

Index-2 NOSNE System Usage

To tape files
Labelled 12-6
Multi.file tapes 12-7
Multivolume 12-7

Batch job 6-1
Input 2-2
Termination 8-20

Batch mode, glossary
definition A-2

Boolean

BEGIN _LINE_ CHARACTER
terminal attribute 13-6

Beginning of information,
glossary definition A-2

Bit, glossary definition A-2
Block

Count (ANSI file) D-14
Definition 8-2
Execution 8-3
Glossary definition A-2
INCLUDE_FILE 9-14
INCLUDE_LINE 9-16
Input 8-17
Job 7-2, 13
Length (ANSI file) 11-10;

D-16
Length extension (ANSI

file) D-17
Procedure 7-2; 9-23
Statically linked 7-10; 8-3
Type (ANSI file) 11-10; D-17
Utility 7-2
UTILITY /UTILITYEND 9-53

58 '
WHEN/WHENEND 7-2

BLOCK/BLOCKEND
Exiting 8-5
Statement 8-5
Syntax 8-5

BLOCK_ TYPE file
attribute 4-42; 11-10

BLOCK_ TYPE tape label
attribute 11-19

$BOI 4-12
Boolean

Conventions 7-31
Data type 2-22, 31; 7-31
Definition 7-31
Expressions 7-40
Glossary definition A-2
Operators 7-40

Revision H

Boolean constant, glossary definition

Boolean constant, glossary
definition A-3

BREAK_KEY_ACTION
connection attribute 13-26

Buffer offset length (ANSI
file) 11-10; D-18

BUFFER_ OFFSET tape label
attribute 11-19

Byte-addressable file
organization, glossary
definition A-3

Byte, glossary definition A-3

c
CANCEL_ LINE_ CHARACTER

terminal attribute 13-6
CANCEL statement 8-25
Canceling a condition 8-25
CARRIAGE_RETURN _DELAY

terminal attribute 13-6
CARRIAGE_RETURN _

SEQUENCE terminal
attribute 13-6

$CATALOG function 4-7; 9-6
Catalog name, glossary

definition A-3
Catalog reference 7-34

Element 7-34
Maximum length 7-34

Catalogs 4-1
Access control entries 4-22

Multiple entries 4-26
Backing up 12-10
Creation 4-13
Deletion 4-15
Displaying 4-20
Entries 4-18

Changing 4-20
Displaying 4-19

Glossary definition A-3
Hierarchy 1-2; 4-3
$LOCAL 4-1
Master ($USER) 4-3
Permanent 4-3

Glossary definition A-18
Permits 4-21

Revision H

CHANGE_SCL_ OPTION

Remote management 4-84
Explicit 4-86
Implicit 4-85

Restoring from backup
files 12-23, 25

$SYSTEM, glossary
definition A-24

Temporary 4-2
Working 4-7

Glossary definition A-28
CDC CONNECT 14-1
CDCNET batch station 6-39, 40
Central Processing Units 6-71
Central software support 12
CHANGE_BACKUP_LABEL_

TYPE 12-6
CHANGE_CATALOG_

ENTRY 4-20, 39
CHANGE_COMMAND

SEARCH_MODE 5-8~ 12
CHANGE_CONNECTION

ATTRIBUTE 2-4; 13-24 -
CHANGE_FILE

ATTRIBUTE 4-:-55, 61
CHANGE_JOB_

ATTRIBUTE 6-12
CHANGE_JOB_LIMIT 6-70;

8-23
CHANGE_LINK_

ATTRIBUTE 10-1, 2
CHANGE_LINK_ATTRIBUTE_

CHARGE sub ADMV 10-3
CHANGE_LINK_ATTRIBUTE_

FAMILY sub ADMV 10-3
CHANGE_LINK_ATTRIBUTE_

PASSWORD sub ADMV 10-3
CHANGE_LINK_ATTRIBUTE_

PROJECT sub ADMV 10-3
CHANGE_LINK_ATTRIBUTE_

USER sub ADMV 10-3
CHANGE_LOGIN _

PASSWORD 3-5, 7
CHANGE_MESSAGE_

LEVEL 6-65
CHANGE_NATURAL_

LANGUAGE 6-65
CHANGE_ OUTPUT

ATTRIBUTE 6-44 -
CHANGE_SCL_OPTION 3-26

NOSNE System Usage Index-3

CHANGE_TAPE_LABEL_ATTRIBUTE

CHANGE_TAPE_LABEL_
ATTRIBUTE 11-12, 16, 19, 26;
12-7, 8, 20

CHANGE_TERM_CONN_
DEFAULT 13-24

CHANGE_ TERMINAL_
ATTRIBUTE 3-10, 12; 13-4

CHANGE_ UTILITY_
ATTRIBUTES 9-66

$CHAR function 9-6
Character

Conversion (ANSI file) 11-11;
D-18

Dollar sign in names 2-7, 27
Glossary definition A-3
Network command 3-12;

13-11
Use in names 2-6

CHARACTER_ CONVERSION
File attribute 4-42; 11-11
Tape label attribute 11-19

CHARACTER_ FLOW_
CONTROL terminal
attribute 13-6

Character set
ANSI file 11-11; D-17
ASCII C-1
EBCDIC C-5

CHARACTER_ SET tape label
attribute 11-20

Child job 6-2
Glossary definition A-4

Child task 6-2
Glossary definition A-4

Christensen protocol 14-6
COBOL, glossary definition A-4
CODE_SET terminal

attribute 13-7
COLLATE_ TABLE_NAME file

attribute 4-42
Collating sequence, glossary

definition A-4
COLLECT_ TEXT 9-3, 12
Combinations of

expressions 7 -44
$COMMAND 9-15
Command

Abbreviation 2-12
Definition 2-11
Descriptions 2-13

Index-4 NOS/VE System Usage

Command stream

Execution 2-12
Format used in this

manual 11
Glossary definition A-4
Inserting into command

stream 9-17
Naming conventions 2-11
Suspending processing 8-26
Termination 8-20
Used in procedures 9-3
utility 2-24

COMMAND
Command 9-52
Job file 6-57

COMMAND_FAULT
condition 8-20

Command library, glossary
definition A-4

Command list 1-3; 5-1; 9-45
Adding entries 5-8; 9-48
Changing 5-8, 11
Definition 2-13
Entries 5-2

Catalogs 5-4
Command utilities 5-5
Control commands 5-3, 6
Control statements 5-3, 5
Deleting 5-11
Displaying 5-13
Message modules 5-3
Moving 5-11
Object libraries 5-3
$SYSTEM 5-4

Glossary definition A-4
Search modes 5-7

Changing 5-12
Searching 2-13
$SYSTEM 2-13

$COMMAND_ OF_
CALLER 9-15, 53

Command references 5-1
$COMMAND_SOURCE

function 9-9
Command stream

$COMMAND 9-15
$COMMAND_ OF_

CALLER 9-15
Current position 9-15
Definition 2-2
Glossary definition A-4

Revision H

Command table

Inserting commands into 9-17
Inserting files into 9-14
Inserting strings into 9-14
Structuring 8-3

Command table 9-52, 58
Command utility 5-5

Defining a 9-49
Definition 9-45
Glossary definition A-4

COMMENT_BANNER
Job attribute 6-12
Output attribute 6-45

Comment, glossary
definition A-4

Comments
About this manual 12
Formatter 9-70
in procedures 9-70
SCL 2-10; 9-23

COMPARE_FILE 4-80
Comparing files 4-80
Compiler, glossary

definition A-5
COMPRESSION _PROCEDURE_

NAME file attribute 4-43
Concatenation operator 7-39
Condition

Canceling 8-25
Categories 8-20
Codes 8-19
Handling 8-20
Processing 8-16
Severity levels 8-21

$CONDITION_CODE
function 9-8

Condition code, glossary
definition A-5

Condition handler, glossary
definition A-5

$CONDITION _NAME
function 9-8

Condition name, glossary
definition A-5

CONDITION (status field) 2-23;
7-20, 32; 8-19

Connecting files 6-59

Revision H

CONTROL_ USER

Connection attribute 13-1, 2
Attribute set 13-25
Changing 13-3
Default level 13-23

Changing 13-24
Displaying 13-24

Default values 13-34
File level 13-23

Changing 13-24
Displaying 13-24

Glossary definition A-5
Instance of open level 13-23
Network applicability 13-36

Editing mode 13-38
Constants 2-29
CONTINUE

Statement 8-23, 24
Syntax 8-24

Control command 5-6
Control command, glossary

definition A-5
CONTROL_ FAMILY

Job attribute 6-13
Output attribute 6-45

Control family, glossary
definition A-5

Control statement 5-5
Block 8-2
BLOCK/BLOCKEND 8-5
Condition handler 2-34
Conditional execution 2-34
CONTINUE 8-24
CYCLE 8-10
Definition 2-34
Descriptions 2-13
EXIT 8-12
Flow control 2-34; 8-10
FORJFOREND 7-4; 8-9
Glossary definition A-5
IF/IFEND 8-15
LOOP/LOOPEND 8-6
POP 8-28
PUSH 8-27
REPEAT/UNTIL 8-8
Structured 2-34; 8-3
WHEN/WHENEND 8-22
WHILE/WHILEND 8-7

CONTROL_ USER
Job attribute 6-13
Output attribute 6-45

NOSNE System Usage Index-5

Control user, glossary definition

Control user, glossary
definition A-5

Conventions
Boolean 7 -31
Command names 2-11
Expressions 2-33; 7-37
Functions names 2-27
Hexadecimal integers 7-24
In this manual 11
Parameter names 2-14
Procedure format 9-76
Procedure names 2-36
Real number 7-27
Variable names 7-3

COPIES
Job attribute 6-13
Output attribute 6-45

COPIES_PRINTED output
attribute 6-45

COPY_FILE 4-64
Copying files 4-64

Between file
organizations 4-66

Byte-addressable to
byte-addressable 4-73

Keyed to keyed 4-7 4
Keyed to sequential 4-77
List files 4-79
On dual-state systems 10-2
Sequential to keyed 4-71
Sequential to sequential 4-67
Tape files 11-17, 18
Using format effectors 6-54

CPI, glossary definition A-6
CPU_TIME_LIMIT job

attribute 6-13
CREATE_CATALOG 4-13
CREATE_CATALOG_

PERMIT 9-61
CREATE_COMMAND_LIST_

ENTRY 5-8; 9-48, 60, 61
CREATE_FILE 4-17, 31
CREATE_FILE_

CONNECTION 6-59
CREATE_FILE_PERMIT 9-60
CREATE_ OBJECT_

LIBRARY 9-47
CREATE_REMOTE_

VALIDATION 4-84

Index-6 NOSNE System Usage

DELETE_ CATALOG_ CONTENT sub BACPF

CREATE_ VARIABLE 2-30; 7-5;
8-18· 9-3

Creation date (ANSI file) 11-9;
D-12

CREATION _DATE tape label
attribute 11-20

CYBIL, glossary definition A-6
Cycle

Descriptor 4-10, 19
Glossary definition A-6

CYCLE
Statement 8-10
Syntax 8-10

Cycle number, glossary
definition A-6

CYCLIC_AGING_INTERVAL
job attribute 6-13

D
D type record, glossary

definition A-6
DATA_MODE output

attribute 6-45
DATA_PADDING file

attribute 4-43
Data type

ANY 2-22; 7-36
Application value 2-22; 7-36
BOOLEAN 2-22, 31; 7-31
FILE 2-21, 31; 7-34
INTEGER 2-21, 31; 7-23
KEY 7-35
KEYWORD 2-22, 31
NAME 2-21, 31; 7-35
Procedure parameter 9-27
REAL 2-22; 7-27
STATUS 2-22; 7-32
STRING 2-21, 31; 7-29
UNION 7-36

$DATE function 9-5
Decimal equivalents 7-47
Default, glossary definition A-6
DEFINE_PRIMARY_

TASK 6-37
DELETE_CATALOG 4-15
DELETE_ CATALOG_ CONTENT

sub BACPF 12-11, 17

Revision H

DELETE_ CATALOG_PERMIT

DELETE_ CATALOG_
PERMIT 4-26

DELETE_COMMAND_LIST_
ENTRY 5-3, 8, 11

DELETE_FILE 4-18
DELETE_FILE_

CONNECTION 6-61
DELETE_FILE_CONTENT sub

BACPF 12-16, 17
DELETE_FILE_PERMIT 4-26
DELETE_REMOTE_

VALIDATION 4-84
DELETE_ VARIABLE 7-19; 9-3
Delimiter

Apostrophe 7-29
Comma 2-15
Glossary definition A-6
Period 7-34
Semicolon 7-34; 9-24
Space 2-10

Desktop/VE 14-1, 21
DETACH_FILE 4-31; 9-10
DETACH_JOB 3-16
DETACHED_JOB_ WAIT_ TIME
job attribute 3-19; 6-13

DEVICE
Job attribute 6-14
Output attribute 6-46

DEVICE_ TYPE output
attribute 6-46

Diagnostic messages 7-32
Digit, glossary definition A-6
Direct-access file organization,

glossary definition A-7
Directive, glossary

definition A-7
DISPATCHING_PRIORITY job

attribute 6-14
DISPLAY_ACTIVE_ TASK 6-37
DISPLAY_BACKUP _FILE sub

RESPF 12-4, 21, 27
DISPLAY_BACKUP _LABEL_

TYPE 12-6
DISPLAY_CATALOG 4-20, 26
DISPLAY_ CATALOG_

ENTRY 4-19, 26, 39
Display code, glossary

definition A-7
DISPLAY_COMMAND_

INFORMATION 3-24; 9-65

Revision H

Dual-state system

DISPLAY_ COMMAND_
LIST 5-12

DISPLAY_COMMAND_LIST_
ENTRY 2-26; 3-25; 9-65

DISPLAY_CONNECTION _
ATTRIBUTE 13-24

DISPLAY_FILE 4-82
DISPLAY_FILE_

CONNECTION 6-61
DISPLAY_FUNCTION _

INFORMATION 3-24
DISPLAY_JOB_

ATTRIBUTE 6-12
DISPLAY_JOB_ATTRIBUTE_

DEFAULTS 6-12
DISPLAY_JOB_HISTORY 6-65,

69
DISPLAY_JOB_STATUS 6-32,

65
DISPLAY_LINK_

ATTRIBUTES 10-2
DISPLAY_LOG 6-65, 67
DISPLAY_MESSAGE 6-65
DISPLAY_ OUTPUT_

ATTRIBUTE 6-44
DISPLAY_ OUTPUT_

HISTORY 6-65, 69
DISPLAY_ OUTPUT_

STATUS 6-52
DISPLAY_REMOTE_

VALIDATION 4-85
DISPLAY_ TAPE_LABEL_

ATTRIBUTE 11-27
DISPLAY_ TERM_ CONN_

DEFAULT 13-24
DISPLAY_ TERMINAL_

ATTRIBUTE 3-12; 13-4
DISPLAY_ VALUE 2-28; 7-46;

9-3
DISPLAY_ VARIABLE_

LIST 7-19; 9-3
Displaying values 7 -46
Documentation B-1
Dollar sign character in

names 2-7, 27
Dual-state system 1-4; 10-1

File
Access 10-1, 2
Printing 10-1

Glossary definition A-7

NOS/VE System Usage Index-7

EARLIES'l'_PRINT_ TIME

E
EARLIEST_PRINT_ TIME

Job attribute 6-14
Output attribute 6-46

EARLIEST_RUN _TIME job
attribute 6-14

EBCDIC character set C-5
$ECHO standard file 6-58
ECH OPLEX terminal

attribute 13-7
EDIT_FILE utility 9-18, 47
Ellipsis 2-5; 9-25

Glossary definition A-7
ELSE clause 8-15
ELSEIF clause 8-15
EMBEDDED_KEY file

attribute 4-43
Embedded key, glossary

definition A-7
END_LINE_CHARACTER

terminal attribute 13-7
END_LINE_POSITIONING

terminal attribute 13-8
END_ OF _INFORMATION

connection attribute 13-26
End-of-information, glossary

definition A-7
End-of-partition, glossary

definition A-7
END_OUTPUT_SEQUENCE

terminal attribute 13-8
END_PAGE_ACTION terminal

attribute 13-8
END_PARTIAL_ CHARACTER

terminal attribute 13-9
END_PARTIAL_POSITIONING

terminal attribute 13-9
Environment

Changing 8-27
Objects 8-26
Restoring 8-28

Environment objects
Glossary definition A-8

EOFl tape label 11-13; D-19
EOF2 tape label 11-13; D-21
EOF3 through EOF9 tape

labels D-25
$EOI 4-12
EOVl tape label D-22

Index-8 NOSNE System Usage

EOV2 tape label D-24
Epilog 6-9

EXPLAIN

Glossary definition A-8
Error

Conditions 8-19
Processing 2-23; 8-17
Semantic 8-20
Syntax 8-20

ERROR_ EXIT_ PROCEDURE_
NAME file attribute 4-43

ERROR_LIMIT file
attribute 4-43

Error processing
SCL formatter 9-80
Syntax 9-16

$ERRORS standard file 6-58
ESTIMATED_RECORD_COUNT

file attribute 4-44
Examples online manual 3-31
EXCLUDE_CATALOG sub

BACPF 12-10, 17
EXCLUDE_FILE sub

BACPF 12-13, 17
EXCLUDE_HIGHEST_CYCLE

sub BACPF 12-5, 16, 17
EXCLUSIVE search mode 5-7
EXECUTE_COMMAND 5-1;

6-34, 35
EXECUTE_ TASK 6-34
Executing

Commands 5-1
SCL procedures 5-1

Execution ring, glossary
definition A-8

EXIT
Statement 8-5, 6, 12; 9-15
Syntax 8-12

Expedited data 3-3
Expiration

Date (ANSI file) 11-9; D-13
Date (Password) 3-7
Interval (Password) 3-7
Warning interval

(Password) 3-7
EXPIRATION_ DATE tape label

attribute 11-20
EXPLAIN 3-28

Revision H

Explicit

Explicit
Command execution 5-4
Variable creation 2-30; 7-5,

17
Variable deletion 7-19

Exponent 7-27
Expression

As parameter value 2-20
Conventions 2-33; 7-37
Definition 2-33; 7-37
Displaying the value of 7-46
Glossary definition A-8
Integer 7-38
Logical 7-40
Operators 7-37
Relational 7-41
String 7~39
Syntax of G-3
Use of spaces in 2-33
Valid combinations 7-44

EXTERNAL_
CHARACTERISTICS job
attribute 6-14

EXTERNAL_
CHARACTERISTICS output
attribute 6-46

F
F type record, glossary

definition A-8
Family administrator, glossary

definition A-8
Family, glossary definition A-8
Family name 3-5

Glossary definition A-8
Family path, glossary

definition A-9
Field, glossary definition A-9
File

Accessibility code (ANSI
file) 11-9; D-14

Data type 2-21, 31; 7-34
Identifier (ANSI file) 11-8;

D-9 -
Section identifier (ANSI

file) 11-8 ~

Section number (ANSI
file) 11-8; D-10

Revision H

File reference

Set 11-6
Set identifier (ANSI

file) 11-8; D-9
FILE_ACCESS_PROCEDURE_

NAME file attribute 4-44
FILE_ACCESSIBILITY_ CODE

tape label attribute 11-20
File and catalog structure 4-1
File attribute

Attribute set 4-40
Changable attribute 4-55
Changing 4-61
Displaying 4-62
Dual-state files 10-2
Establishing for a new

file 4-58
Glossary definition A-9
Keyed files 4-60
Preserved 4-40
Preserving on dual-state

transfers 10-4
Record access files 4-59
Temporary 4-40
Using CONNECT 14-1

File connection, glossary
definition A-9

FILE_CONTENTS file
attribute 4-44; 5-4; 13-48

$FILE function 9-6
FILE_IDENTIFIER tape label

attribute 11-20
FILE_LABEL_ TYPE file

attribute 4-45
FILE_LIMIT file attribute 4-45
File name, glossary

definition A-9
FILE_ORGANIZATION file

attribute 4-46
File organization, glossary

definition A-9
File position, glossary

definition A-10
FILE_POSITION output

attribute 6-46
FILE_PROCESSOR file

attribute 4-46; 5-4
File reference 7 -34

Element 7-34
Glossary definition A-10
Maximum length 7-34

NOSNE System Usage Index-9

FILE_SEQUENCE_NUMBER tape label attribute FOR/FORE ND

FILE_SEQUENCE_NUMBER
tape label attribute 11-20

FILE_SET_IDENTIFIER tape
label attribute 11-21

FILE_SET_POSITION tape
label attribute 11-21

FILE_SIZE output
attribute 6-46

FILE_STRUCTURE file
attribute 4-47; 5-4

File transfer
KERMIT 14-18
XMODEM 14-1

Files 4-1
Access control entries 4-22

Multiple entries 4-26
Attaching and detaching 4-30
Backing up 12-1, 12
Byte-addressable organization,

glossary definition A-3
COMMAND job file 6-57
Comparing 4-80
Connections 6-59

Creating 6-59
Deleting 6-61
Displaying 6-61

Copying 4-64
Creating 4-13, 15

Explicit 4-17
Implicit 4-16

CYBER binary files 14-7
Cycles 4-6, 10; 12-13

Glossary definition A-6
Number, glossary

definition A-6
Deleting 4-18
Detaching 4-30
Direct-access organization,

glossary definition A-7
Displaying 12-9
Dual-state 10-1

Copying 10-2
Glossary definition A-9
Indexed-sequential

organization, glossary
definition A-11

INPUT job file 6-57; 13-1
Inserting into command

stream 9-14
Job 6-57

Index-10 NOSNE System Usage

$JOB_LOG job file 6-57
Micro binary 14-6
Microcomputer to NOSNE

transfers 14-1
Names 4-5
Open position 4-6, 12

$ASIS 4-38
$BOI 4-12
$EOI 4-12

Output file 6-44
OUTPUT job file 6-38, 57;

13-1
Passwords 4-39
Paths 1-2; 4-5, 8, 14
Permanent, glossary

definition A-18
Permits 4-21
Positioning 4-12
Printing 6-38

At CDCNET Batch
Stations 6-40

At Remote and partner
systems 6-41

Using format effectors 6-56
Referencing 1-2; 4-5, 8
Remote management 4-84

Explicit 4-86
Implicit 4-85

Restoring 12-1, 19, 25
Sharing 4-21, 33
Standard 6-57
Standard file 6-58

Glossary definition A-23
Tapes 11-1

ANSI-labelled 11-5; D-1
Multifile 11-12
Requesting 11-4
Rewinding 11-5
Unlabelled 11-5, 32

Temporary 4-2
Text files 14-7
Unreadable data 12-9

Flow control statement 8-10
$FN AME function 9-5
FOLD_LINE terminal

attribute 13-10
FOR/FOREND

Statement 7-4; 8-9
Syntax 8-9

Revision H

FORCED_ WRITE file attribute

FORCED_ WRITE file
attribute 4-4 7

FORM_FEED_DELAY terminal
attribute 13-10

FORM_FEED_SEQUENCE
terminal attribute 13-10

Format effectors 6-53; 9-13; E-1
With COPY_FILE 6-54
With PRINT_FILE 6-56

FORMAT_SCL_PROC 9-3, 67
Formatting

Conventions for
procedures 9-76

Procedures 9-19, 67
Utilities 9-47, 76

FORMS_ CODE
Job attribute 6-15
Output attribute 6-46

FORTRAN, glossary
definition A-10

Function

G

Definition 2-26
Descriptions 2-13
Displaying values 2-28
Execution 2-27
Glossary definition A-11
Naming conventions 2-27
Parameters 2-27
Use of spaces in 2-27
Used in procedures 9-3
Utility 2-26

Generation
Number (ANSI file) 11-8;

D-11
Version number (ANSI

file) 11-8; D-11
GENERATION _NUMBER tape

label attribute 11-22
GENERATION_ VERSION_

NUMBER tape label
attribute 11-22

GET_FILE 10-2
GLOBAL search mode 5-7

Revision H

INCLUDE_ FILE

H
Hashing procedure, glossary

definition A-11
HASHING_PROCEDURE

NAME file attribute 4-47
HDRl tape label 11-8; D-8

Processing 11-13
HDR2 tape label 11-9; D-9

NOSNE extensions 11-10
Processing 11-13

HDR3 through HDR9 tape
labels D-25

HELP 2-26; 3-25
Hexadecimal integer

Conventions 7-24
Equivalents 7-47

Hierarchy of catalogs 1-2; 4-3
High order bit 14-9
HOLD_PAGE_OVER terminal

attribute 13-11, 49
HOLD_PAGE terminal

attribute 13-10, 48
Home block, glossary

definition A-11
Hotline 12

I
IF/IFEND

Statement 8-15
Syntax 8-15

Implicit
File attach 9-10
File detach 9-10
Variable creation 2-30; 7-4,

16
INCLUDE_COMMAND 9-4 17
INCLUDE_CYCLE sub

1

BACPF 12-13, 17
INCLUDE_EMPTY_CATALOG

sub BACPF 12-11, 18
INCLUDE_FILE

Block 8-2, 17; 9-14
Command 9-4, 14, 53
Using $COMMAND 9-15
Using $COMMAND_OF_

CALLER 9-15

NOSNE System Usage Index-11

INCLUDE_LARGE_CYCLE sub BACPF

INCLUDE_LARGE_CYCLE sub
BACPF 12-14, 18

INCLUDE_ LINE
Block 8-2, 17; 9-16
Command 9-4, 16

INCLUDE_SMALL_CYCLE sub
BACPF 12-14, 18

INDEX_LEVELS file
attribute 4-47

INDEX_PADDING file
attribute 4-48

Indexed-sequential file
organization, glossary
definition A-11

INITIAL_HOME_BLOCK_
COUNT file attribute 4-48

Initiating tasks 6-35
Input

Attributes 6-4
Blocks 8-17
Current source of 9-15
Data 13-41
Definition 2-2
Delimiter 8-4
Delimiters 2-10, 14, 20, 27,

33; 7-20, 21, 29, 33; 9-22
Lines 2-5
Maximum line length 2-5
Multiple statements 2-5
Typed-ahead 13-45

INPUT_BLOCK_SIZE
connection attribute 13-26

INPUT_EDITING_MODE
connection attribute 3-9, 12,
14; 13-27' 42, 46

INPUT job file 6-57; 9-10; 13-1
Input lines, glossary

definition A-11
INPUT_OUTPUT_MODE

connection attribute 13-27
$INPUT standard file 6-58;

9-10
INPUT_ TIMEOUT connection

attribute 13-28
INPUT_ TIMEOUT_LENGTH

connection attribute 13-29
INPUT_ TIMEOUT_PURGE

connection attribute 13-29

Index-12 NOSNE System Usage

Integer
Data type 2-21, 31; 7-23
Definition 7-23
Expressions 7-38

Job

Glossary definition A-11
Hexadecimal conventions 7-24
Operators 7-38
Radix specification 7-23
Signed 7-25

Integer constant, glossary
definition A-11

$INTEGER function 9-5
$INTERACTION _STYLE

function 9-7
Interaction style, glossary

definition A-12
Interactive

Input 3-9
Jobs 6-1
Procedures 9-15
Sessions 3-1
Utilities 9-15

Interactive job
Input 2-2, 4
Prompt 2-4

Interactive mode, glossary
definition A-12

INTERNAL_CODE file
attribute 4-48

Interpreter, SCL 2-1
INTERRUPT condition 8-20
Interrupting the system 3-13

In screen niode 3-16
Pause break 3-15

RESUME_
COMMAND 3-15

TERMINATE_
COMMAND 3-15

Terminate break 3-16
Iteration of repetitive

statement 8-10

J
$JOB 6-72
Job

Block 2-4; 7-2, 13; 8-2, 17
File 6-57; 9-10
History log 6-66

Revision H

JOB_ABORT_DISPOSITION job attribute

Limits 3-20; 6-70
JOB_ABORT_DISPOSITION job

attribute 6-15
Job attribute

Attribute set 6-12
Changing 6-12
Displaying 6-12
Glossary definition A-12

Job class, glossary
definition A-12

JOB_CLASS job attribute 6-15
Job classes

Assignment 6-4
Example

Batch jobs 6-5
Interactive jobs 6-7

Restrictions 6-4
Selection 6-4
UNASSIGNED 6-6
Valida ti on 6-4

$JOB_DEFAULTS function 9-7
Job file 6-57; 9-10

Glossary definition A-12
$JOB function 9-7
Job history log 6-66

Displaying 6-69
JOB/JOBEND 6-29
$JOB_LIMIT function 9-7
Job limits 3-20; 6-70
Job limits, glossary

definition A-12
Job log, glossary

definition A-13
$JOB_LOG job file 6-57
JOB_MODE job attribute 6-15
$JOB_OUTPUT function 9-8
JOB_ QUALIFIER job

attribute 6-15
JOB_RECOVERY_

DISPOSITION job
attribute 6-16

JOB (Scope of variable) 7-12
JOB_SIZE job attribute 6-16
$JOB_STATUS function 9-7
JOB_SUBMISSION_TIME job

attribute 6-16

Revision H

KEY_LENGTH file attribute

Jobs

K

Attributes 1-3; 6-12
Batch 1-1; 6-1, 25

Glossary definition A-2
I/O stations 6-31
Input 2-2
JOB/JOBEND 6-29
SUBMIT_JOB 6-26
Submitting 6-25, 29
Submitting to remote

systems 6-26
Termination 8-20

Child 6-2
Glossary definition A-4

Classes 6-3
Environments 1-3; 6-8
Epilogs 6-9

Changing names 6-11
Glossary definition A-12
Input attributes 6-4
Interactive

Input 2-2, 4; 3-9
Jobs 1-1; 3-1; 6-1
Prompt 2-4

Logging in and out 3-4
Logs 6-64

Message placement 6-65
Message level 6-65
Multiple file

attachments 4-36
Names 6-2
Natural languages 6-65
Output 6-38
Output line 13-46
Overview 1-1; 6-1
Parent 6-2

Glossary definition A-18
Prologs 6-9

Changing names 6-11
Terminating 6-32

KERMIT-VE 14-1, 18
KERMIT-VE file

transfers 14-18
Key, glossary definition A-13
KEY_LENGTH file

attribute 4-49

NOSNE System Usage Index-13

KEY_POSITION file attribute

KEY_POSITION file
attribute 4-49

KEY_ TYPE file attribute 4-49
Keyed file

Copying 4-7 4, 77
File attributes 4-60
Glossary definition A-13

Keyword
Data type 2-22, 31; 7-35
Definition 7-35
Glossary definition A-13

L
Label

Glossary definition A-13
Identifier D-16

LATEST_PRINT_ TIME
Job attribute 6-16
Output attribute 6-47

LATEST_RUN_TIME job
attribute 6-16

LIMIT_FAULT condition 8-20
Limits 3-20; 6-70
LINE_FEED _DELAY terminal

attribute 13-11
LINE_FEED_SEQUENCE

terminal attribute 13-11
Line mode

Glossary definition A-13
Processing 3-9

Line mode interaction, glossary
definition A-13

LINE_NUMBER file
attribute 4-49

Link attribute 10-2
Changing 10-2, 3
Displaying 10-2
Glossary definition A-13

List, glossary definition A-13
$LIST standard file 6-58
Load module, glossary

definition A-14
$LOCAL catalog 4-2
Local file 4-2

Glossary definition A-14
Local path, glossary

definition A-14
LOCAL (Scope of variable) 7-12

Index-14 NOSNE System Usage

$MAINFRAME function

Local system, glossary
definition A-14

LOCK_EXPIRATION _TIME file
attribute 4-49

Lock, glossary definition A-14
LOG_RESIDENCE file

attribute 4-50
Logging in and out 3-4
LOGGING_OPTIONS file

attribute 4-50
Logical

Expressions 7-40
Operators 7-40

LOGIN _ACCOUNT
Job attribute 6-16
Output attribute 6-47

LOGIN_FAMILY
Job attribute 6-17
Output attribute 6-4 7

Login Information 3-5
For NAMVE/CDCNET 6-8
Validation level 3-6

LOGIN _PROJECT
Job attribute 6-17
Output attribute 6-47

LOGIN_USER
Job attribute 6-17
Output attribute 6-47

Login user, glossary
definition A-14

Logs 6-64
Display message area 6-66
Displaying 6-65
Message placement 6-65

LOOP/LOOPEND
Exiting 8-6
Statement 8-6
Syntax 8-6

Lower bound (array) 7-6

M
MAGNETIC_TAPE_LIMIT job

attribute 6-17
$MAINFRAME 6-71
Mainframe attribute, glossary

definition A-14
$MAINFRAME function 9-7

Revision H

MANAGE_REMOTE_FILES NETWORK_COMMAND_CHARACTER terminal attribute

MANAGE_REMOTE_
FILES 4-86

Mantissa 7-27
Manual set for NOSNE 10
Manuals B-1
Mass storage, glossary

definition A-14
Master catalog, glossary

definition A-15
$MAX_ INTEGER

function 2-29; 7-23; 9-5
$MAX_NAME function 2-29;

9-5
$MAX_STRING function 2-29;

9-5
$MAX_ VALUE_SETS

function 2-29; 9-5, 34
$MAX_ VALUES function 2-29;

9-5
MAXIMUM_ BLOCK_ LENGTH

File attribute 4-50
Tape label attribute 11-22

Maximum expiration interval
(Password) 3-7

Maximum length
Catalog reference 7-34
File reference 7-34
Input lines 2-5
SCL names 2-6
Strings 7-29

MAXIMUM_RECORD_LENGTH
File attribute 4-50
Tape label attribute 11-23

MAXIMUM_ WORKING_SET
job attribute 6-17

Message
Language 6-65
Level 6-65

MESSAGE_CONTROL file
attribute 4-51

Message level
Changing 6-65

$MESSAGE_ LEVEL
function 9-7

Metalanguage symbols F-1
Micro file transfer 14-1
$MIN _INTEGER function 2-29;

7-23· 9-5
MINIMUM_BLOCK_LENGTH

file attribute 4-51

Revision H

MINIMUM_RECORD_LENGTH
file attribute 4-51

MINIMUM_ WORKING_SET job
attribute 6-17

Minus sign 7-25
$MOD function 9-9
Module, glossary definition A-15
Multifile set, glossary

definition A-15
Multifile tape volumes 11-12
Multiple statements on input

line 2-5
Multiprocessing 6-71

N
Name

Allowable characters 2-6
Data type 2-21, 31; 7-35
Definition 2-6
Procedure parameter 9-26
Procedures 9-22
Reserved 2-9
Scope of variable 7-12
Special characters 2-7
Upper and lowercase

characters 2-8
Use of dollar sign

character 2-7, 27
$NAME function 9-5
Natural language 6-65

Changing 6-65
$NATURAL_ LANGUAGE

function 9-7
Natural language, glossary

definition A-15
Nested procedure call 9-20
Network

Command characters 3-12;
13-11

Keystroke sequence 3-12
Network access method, glossary

definition A-15
Network command character,

glossary definition A-15
NETWORK_ COMMAND_

CHARACTER terminal
attribute 13-11

NOS/VE System Usage Index-15

Networks

Networks 1-4; 3-2; 13-1, 3
Communication Line 3-3
Data Paths 3-3
Service 3-3
Standard 3-4
Terminal Interface

Program 3-2
User-controlled

interrupts 3-13
Screen mode 3-16

N onembedded key, glossary
definition A-16

NORMAL (status field) 2-23;
7-20, 32

NOS
Files 10-1
Glossary definition A-16

NOS/BE
Files 10-1
Glossary definition A-16

NOSNE
Glossary definition A-16
Manual set 10

NTF system, glossary
definition A-16

$NULL standard file 6-58
Numeric character

0

Glossary definition A-16
Use in SCL names 2-6

Object code, glossary
definition A-16

Object file, glossary
definition A-16

Object library 5-3, 10
Creating 5-10
Generating 9-48
Glossary definition A-17

Object module, glossary
definition A-17

Octal equivalents 7-47
Online help 1-4; 3-24, 28
Online manuals 3-28; B-1

Examples manual 3-31
Line mode operation 3-30
Screen mode operation 3-28

lndex-16 NOSNE System Usage

OUTPUT_DESTINATION_USAGE

Open operation, glossary
definition A-17

OPEN _POSITION file
attribute 4-51

Operand and operator
combinations 7-44

Operand, glossary
definition A-17

Operator
Boolean expressions 7-40
Glossary definition A-17
Integer expressions 7-38
Logical expressions 7-40
Relational expressions 7-41
String expressions 7-39

OPERATOR_ FAMILY
Job attribute 6-18
Output attribute 6-47

OPERATOR_ USER
Job attribute 6-18
Output attribute 6-47

$OPTION AL 9-40
$ORD function 9-6
Order dependence of

parameters 2-15
Order of operations 7-37
Ordering manuals B-1
ORIGINATING_APPLICATION _

NAME
Job attribute 6-18
Output attribute 6-48

OSV$COMMAND variable 8-22
OSV$STATUS variable 7-19;

8-22
Output attribute

Attribute set 6-45
Changing 6-44
Displaying 6-44

Output block 13-46
OUTPUT_CLASS

Job attribute 6-18
Output attribute 6-48

OUTPUT_DESTINATION
Job attribute 6-18
Output attribute 6-48

OUTPUT_ DESTINATION_
USAGE

Job attribute 6-19
Output attribute 6-48

Revision H

OUTPUT_DISPOSITION job attribute

OUTPUT_DISPOSITION job
attribute 6-20

Output file 6-44
Deleting 6-52
Displaying its status 6-52
Format effectors 6-53
Printing on partner

systems 10-1
Using the wait queue 6-52

OUTPUT job file 6-57; 13-1
Output line 13-46

Interline positioning 13-48
Page holding 13-48

Output message 13-46
OUTPUT_ PRIORITY

Job attribute 6-21
Output attribute 6-49

Output queue 6-39
Deleting files 6-52

Output record 13-46
$OUTPUT standard file 6-58
$0UTPUT_STATUS

function 9-8
OUTPUT_ SUBMISSION_ TIME

output attribute 6-49
Owner identifier 11-7

p

PADDING_CHARACTER
File attribute 4-52
Tape label attribute 11-23

Padding character (ANSI
file) 11-11; D-17

Padding, glossary
definition A-17

PAGE_AGING_INTERVAL job
attribute 6-21

PAGE_FORMAT file
attribute 4-52

Page length 13-50
PAGE_ LENGTH

file attribute 13-50
File attribute 4-53
Terminal attribute 13-11, 50

Page width 13-50
PAGE_ WIDTH

File attribute 4-53; 13-50
Terminal attribute 13-12, 50

Revision H

Parameter
Abbreviation 2-16
Definition 2-14

Pause break

Glossary definition A-17
Naming conventions 2-14
Position-dependent 2-15
Position-independent 2-15
Prompting 1-4; 9-64
Use of spaces in 2-14
Value list 2-17

Parameter definition
Procedure 9-24

Parameter expression, glossary
definition A-18

$PARAMETER function 9-8
$PARAMETER_ LIST

function 9-8
Parameter list, glossary

definition A-18
Parameter name, glossary

definition A-18
Parameter prompting 3-26
Parameter value

Expressions 2-20
Types 2-21
Use of spaces in 2-20

Parent job 6-2
Glossary definition A-18

Parent task 6-2
Glossary definition A-18

PARITY terminal
attribute 13-12

PARTIAL_ CHARACTER_
FORWARDING connection
attribute 13-29

Partner system, glossary
definition A-18

Password 3-5, 7
Changing 3-7
Expiration date 3-7
Expiration interval 3-7
Expiration warning

interval 3-7
Path 4-14

Glossary definition A-18
$PATH function 9-6
Pause break 3-15

Glossary definition A-18
RESUME_COMMAND 3-15
Screen mode 3-16

NOSNE System Usage lndex-17

PAUSE_BREAK_ CHARACTER terminal attribute Pro log

TERMINATE_
COMMAND 3-15

PAUSE_BREAK_CHARACTER
terminal attribute 13-12

Permanent catalog 4-3
Glossary definition A-18

Permanent catalog
hierarchy 1-2; 4-3

Permanent file, glossary
definition A-18

Permanent File Transfer
Facility 4-84

Permit groups 4-22
Plus sign 7-25
POP statement 8-28
Position-dependent parameter,

glossary definition A-19
Position-independent parameter,

glossary definition A-19
Positioning files 4-12
Preserving NOS/VE file

attributes 10-4
PRESET_ VALUE file

attribute 4-53
$PREVIOUS_ STATUS

function 9-8
Primary key, glossary

definition A-19
Primary task 6-37

Glossary definition A-19
PRINT_FILE 6-38, 39
Printing dual-state files 10-1
Private reader 4-37

Glossary definition A-19
Problem-reporting 12
PROC/PROCEND

Statement 9-21
Syntax 9-21

Procedure
Array specification 9-32
Block 7-2; 8-2, 17; 9-23
Commands used in 9-3
Definition 2-36
Example 9-43
Execution 9-19
Exiting from 8-14
Format 9-21
Formatting 9-19, 67
Functions used in 9-3
Glossary definition A-19

lndex-18 NOSNE System Usage

Interactive input 9-15
Names 9-22
Naming conventions 2-36
Nested call 9-20
Nested definition 9-20
Optional parameter 9-40
Parameter definition 9-24
Parameters 2-36
Recursive call 9-20
Required parameter 9-40
Syntax G-1
Variable specification 9-32
Writing 9-18

Procedure library, glossary
definition A-19

Procedure parameter
ARRAY OF type 9-32
Data type 9-27
Default specification 9-40
Definition 9-24
INTEGER type 9-31
KEY type 9-31
LIST type 9-34
NAME type 9-29
Names 9-26
Optional 9-40
Range of values 9-34
Required 9-40
STRING type 9-30
Syntax 9-24
Value count 9-34
Value list 9-41
Value set count 9-34
Value specification 9-26
VAR OF type 9-32

Processor attribute, glossary
definition A-19

$PROCESSOR function 9-7
Program attribute, glossary

definition A-19
Program description, glossary

definition A-19
PROGRAM_ FA ULT

condition 8-20
$PROGRAM function 9-7
Project name 3-5
Prolog 6-8, 9

Glossary definition A-19

Revision H

Prompt

Prompt
String 2-4
System 2-4
UTILITY /UTILITYEND 9-51

PROMPT_FILE connection
attribute 13-30

PROMPT_STRING connection
attribute 2-4; 13-30

Prompting for parameters 9-64
PTF 4-84
PURGE_DELAY

Job attribute 6-21
Output attribute 6-49

PUSH statement 8-27
PUT_LINE 9-4, 12

Q
QTF, glossary definition A-20
$QUEUE function 9-9
Queued-file transfer

application 6-26
$QUOTE function 9-6

R
Radix

Glossary definition A-20
Specification 7-24

Random access, glossary
definition A-20

$RANGE function 9-8, 36
Range, glossary definition A-20
Reading lines from a file 9-10
Real (number)

Conventions 7-27
Data type 2-22; 7-27
Definition 7-27
Exponent 7-27
Glossary definition A-20
Mantissa 7-27
Restrictions 7-27

RECEIVE_FILE sub
MANRF 4-86

Record access files
File attributes 4-59

Record format (ANSI file) 11-9;
D-16

Revision H

RESERVE_RESOURCE

Record length (ANSI file) 11-10;
D-16

Record length extension (ANSI
file) D-17

RECORD_LIMIT file
attribute 4-53

RECORD_ TYPE
File attribute 4-53; 11-11
Tape label attribute 11-23

Record type (ANSI file) 11-11;
D-17
RECORDS_PER_BLOCKfi~

attribute 4-54
Recursive procedure call 9-20
Reestablishing terminal

connections 3-19
Referencing

Commands 5-1
Files 4-5, 8

Relational
Expressions 7-41
Operators 7-41

Relative path, glossary
definition A-20

RELEASE_RESOURCE 11-3
REMOTE_HOST_DIRECTIVE

Dual-state systems 10-1
Job attribute 6-22
On PRINT_FILE 6-42
On SUBMIT_JOB 6-27
Output attribute 6-50

Remote system, glossary
definition A-20

Remote validation 4-84
Creating 4-84
Deleting 4-84
Displaying 4-84
Glossary definition A-21

$REMOTE_ VALIDATION
function 9-7

REPEAT/UNTIL
Statement 8-8
Syntax 8-8

REPLACE_FILE 10-2
REQUEST_MAGNETIC_

TAPE 11-4; 12-5, 20
REQUEST_TERMINAL 6-55;

13-1
$REQUIRED 9-40
RESERVE_RESOURCE 11-2

NOSNE System Usage Index-19

Residence of variables

Residence of variables 7-2
Resource limits 3-20; 6-70
$RESPONSE standard file 6-58
RESTORE_ALL_FILES sub

RESPF 12-25, 27
RESTORE_CATALOG sub

RESPF 12-23, 24, 27
RESTORE_EXISTING_

CATALOG sub RESPF 12-25
27 '

RESTORE_EXISTING_FILE
sub RESPF 12-26, 27

RESTORE_FILE sub
RESPF 12-26, 27

RESTORE_PERMANENT
FILES 12-1, 19 -

Restore utility 12-1
Displaying backup files 12-21
From disk 12-20
From tapes 12-20
List file 12-4
Restoring catalogs 12-23

Existing 12-25
N onexisting 12-24

Restoring files 12-25
Existing 12-26
Nonexisting 12-26

Rules for file access 12-3, 19
Starting the utility 12-19
Stopping the utility 12-19

RESTRICTED search mode 5-7
RESUME_COMMAND 3-15
RETRY clause 8-23, 24
REWIND_FILE 11-5
REWRITE_LABELS tape label

attribute 11-23
Ring attribute, glossary

definition A-21
$RING function 9-7
Ring, glossary definition A-21
ROUTE_JOB 6-31
ROUTING_BANNER

Job attribute 6-22
Output attribute 6-50

Routing jobs
From batch station input

device 6-31
From NOS 6-30
From NOS/BE 6-30

Index-20 NOSNE System Usage

Service class, glossary definition

s
S type record, glossary

definition A-21
$SCAN _ANY function 9-6
$SCAN _NOT_ANY

function 9-6
$SCAN_STRING function 9-6
SCL

Blocks 2-4
Command list 5-2
Comments 9-23
Definition 2-1
Formatter 9-19, 47, 67
Glossary definition A-24
Input 2-2, 5
Interpreter 2-1, 3
Names 2-6
Prompts 2-4
Statement 2-2
Syntax F-1

SCL name, glossary
definition A-15

Scope
Example 7-13
JOB 7-12
LOCAL 7-12
Name 7-12
Of variables 7-2, 12
XDCL 7-12
XREF 7-12

Screen mode
Glossary definition A-21
Processing 3-9

Screen mode interaction,
glossary definition A-21

SCU, glossary definition A-22
SEND_FILE sub MANRF 4-86
Sense switches 6-72
SENSE_SWITCHES job

attribute 6-22
Sequential access, glossary

definition A-21
Sequential file organization,

glossary definition A-22
Service 3-3

Glossary definition A-22
Service class, glossary

definition A-22

Revision H

SERVICE_ CLASS job attribute

SERVICE_ CLASS job
attribute 6-23

SET_BACKUP_OPTION sub
BACPF 12-9, 18

$SET_ COUNT function 9-8, 35
SET_FILE_ATTRIBUTES 4-58
SET_LIST_OPTION sub

BACPF 12-4, 18
SET_ LIST_ OPTION sub

RESPF 12-4, 27
SET_ MULTIPROCESSING_

OPTIONS 6-71
SET_SENSE_SWITCH 6-72
SET_ WORKING_CATALOG 4-7
$SEVERITY function 9-8
Share modes

(requirements) 4-24
Sharing catalogs and files 4-21
Sign

Definition 7-25
Glossary definition A-22

Site administrator, glossary
definition A-22

SITE_INFORMATION job
attribute 6-23

SITE_INFORMATION output
attribute 6-50

SKIP_ TAPE_MARK 11-34
SOLVER 12
Source code, glossary

definition A-22
Source library, glossary

definition A-22
Spaces

As delimiters 2-10
Definition 2-10
Use in array references 7-20
Use in expressions 2-33
Use in functions 2-27
Use in parameter values 2-20
Use in status

references 7-21, 33
Use with parameters 2-14
Used in labelled

statements 8-4
Used in procedure

headers 9-22
Special characters

In names 2-7
XMODEM 14-8

Revision H

STORE_NULS_DELS connection attribute

$SPECIFIED function 9-8, 41
SRU, glossary definition A-25
SRU _LIMIT job attribute 6-23
Standard file 6-57; 9-10

Glossary definition A-23
Standard NOSNE networks 3-4
Standard output, glossary

definition A-23
Statement

Assignment 2-32; 7-7
Continuation 2-5
Control 2-34
Definition 2-2
Delimiter 2-5
Examples 2-35
Glossary definition A-23
Multiple 2-5

STATEMENT_INDENTIFIER
file attribute 4-54

Statement list
As a block 8-5
Conditional execution 8-15
Controlled repetition 8-9
Glossary definition A-23
Iteration 8-10
Postconditional repetition 8-8
Preconditio.nal repetition 8-7
Unlimited repetition 8-6

Statically linked block 7-10
Glossary definition A-23

STATION
Job attribute 6-23
Output attribute 6-50

Station, glossary definition A-23
Status

Data type 2-22; 7-32
Definition 7-32
Fields 2-23; 7-20, 32; 8-19
Parameter 2-23; 8-17
References 7-20

STATUS_ACTION terminal
attribute 13-13

$STATUS function 9-8
Status variable, glossary

definition A-23
STORE_BACKSPACE_

CHARACTER connection
attribute 13-30

STORE_NULS_DELS
connection attribute 13-30

NOSNE System Usage Index-21

String

String
Concatenation 7-39
Current length 7-29
Data type 2-21, 31; 7-29
Definition 7-29
Delimiters 7-29
Expressions 7-39
Glossary definition A-24
Inserting into command

stream 9-14
Maximum length 7-29
Operators 7-39

String constant, glossary
definition A-24

$STRING function 9-5
String length, glossary

definition A-24
$STRLEN function 9-6
$STRREP function 9-5, 44
Structured statement

Exiting from 8-12
Iteration 8-10
Labelled 8-3
Syntax 8-3

Structured statement, glossary
definition A-24

Subcatalog, glossary
definition A-24

Subcommand 9-45
Definition 2-24; 9-52
Descriptions 2-13
Glossary definition A-24
Organization 9-58
Processors 9-52, 54

Subject file 6-59
SUBMIT_JOB 6-26
$SUBSTR function 9-6
Synchronous tasks 6-33

Glossary definition A-24
Syntax

Procedure G-1
SCL F-1

$SYSTEM 5-4
Command list 2-13
Glossary definition A-24

System
Code (ANSI file) 11-9; D-14
Environments 8-26
Prompt 2-4
Variables 8-22

Index-22 NOSNE System Usage

Tapes

System Command Language 2-1
Glossary definition A-24
See also SCL

SYSTEM_FILE_NAME output
attribute 6-50

SYSTEM_JOB_NAME
Job attribute 6-23
Output attribute 6-50

System operator, glossary
definition A-25

System path A-25
System-supplied job name 6-2

Glossary definition A-25
$SYSTEM.TDD .TERMINAL_

DEFINITIONS 3-11

T
TABLEND 9-52
Tape file 11-6
Tape label attribute

Attribute set 11-19
Changing 11-12, 16, 26
Displaying 11-27

Tape units 11-1
Releasing 11-3
Reserving 11-2

Tape volume, glossary
definition A-25

Tapes 11-1
ANSI-labelled 11-5; D-1

ANSI file 11-6
EOFl label 11-13; D-19
EOF2 label 11-13; D-21
EOF3 through EOF9 D-25
EOVl tape label D-22
EOV2 tape label D-24
Examples 11-28
File set 11-6
HDRl label

information 11-8; D-8
HDR2 label

information 11-9; D-15
HDR3 through HDR9 D-25
Initializing volumes 11-16
Label information 11-6
Label processing 11-13
Multifile volumes 11-12

Revision H

Target file TRANSPARENT_LENGTH_MODE connection attribute

NOSNE HDR2
extensions 11-10

Reading 11-18
Tape file 11-6
Tape label attribute 11-19
Volume information 11-7
Writing 11-17

Requesting 11-4
Rewinding 11-5
Unlabelled 11-5, 32

Reading 11-32
Skipping tape marks 11-34
Writing 11-32

Target file 6-59
Task, glossary definition A-25
$TASK_NAME function 9-7
$TASK_STATUS function 9-7 .
TASKtrASKEND 6-34, 35
Tasks 6-2, 33

Active 6-37
Asynchronous 6-33

Glossary definition A-2
Child 6-2

Glossary definition A-4
Creating 6-34
Displaying their status 6-35
Executing 6-33
Output line 13-46
Overview 1-1
Parent 6-2

Glossary definition A-18
Primary 6-37

Glossary definition A-19
Reading from terminals 13-41
Synchronous 6-33

Glossary definition A-24
Terminating 6-37
Utility execution 9-63
Writing to terminals 13-46

Terminal
Connection 13-1
Definitions 3-10, 11

Terminal attribute 13-1, 2, 4
Applicability 13-17

Editing mode 13-21
Attribute set 13-5
Changing 13-3, 4
Defaults 13-17
Displaying 13-4
Glossary definition A-25

Revision H

Terminal class, glossary
definition A-25

TERMINAL_ CLASS terminal
attribute 13-13

Terminal definition file, glossary
definition A-25

Terminal disconnects 3-19
Reestablishing 3-19

Terminal input 13-41
Editing mode 13-42

Normal 13-42
Transparent 13-44

Input buffering 13-41
Terminal Interface Program 3-2
$TERMINAL_MODEL

function 9-7
TERMINAL_MODEL terminal

attribute 3-10; 13-14
Terminal models 3-10; 13-14

Site-defined 3-11
TERMINAL_NAME terminal

attribute 13-16
Terminal output

Editing mode 13-46
Normal 13-46
Transparent 13-49

Terminate break 3-16
Glossary definition A-25
Screen mode 3-16

TERMINATE_BREAK_
CHARACTER terminal
attribute 13-16

TERMINATE_COMMAND 3-15
TERMINATE_JOB 6-32
TERMINATE_OUTPUT 6-52
TERMINATE_TASK 6-37
TEXT (status field) 2-23; 7-20,

32
$TIME function 9-5
$TRANSLATE function 9-6
TRANSPARENT_ CHARACTER_

MODE connection
attribute 13-31

TRANSPARENT_FORWARD_
CHARACTER connection
attribute 13-32

TRANSPARENT_ LENGTH_
MODE connection
attribute 13-32

NOSNE System Usage Index-23

TRANSPARENT_MESSAGE_LENGTH connection attribute Value, glossary definition

TRANSPARENT_ MESSAGE_
LENGTH connection
attribute 13-33

TRANSPARENT_ TERMINATE_
CHARACTER connection
attribute 13-33

TRANSPARENT_ TIMEOUT_
MODE connection
attribute 13-33

$TRIM function 9-6
Trouble-reporting 12
Typed-ahead input 3-9; 13-45

u
U-type record, glossary

definition A-26
Union

Data type 7-36
Definition 7-36

$UNIQUE function 9-9
Unlabelled tapes 11-5, 32

Reading 11-32
Skipping tape marks 11-34
Writing 11-32

Upper bound (array) 7-6
User-controlled interrupts 3-13

In screen mode 3-16
Pause break 3-15

RESUME_
COMMAND 3-15

TERMINATE_
COMMAND 3-15

Terminate break 3-16
User epilog file 6-9

Changing their names 6-11
USER_FILE_NAME output

attribute 6-51
USER_INFORMATION

File attribute 4-54
Job attribute 6-23
Output attribute 6-51

USER_JOB_NAME output
attribute 6-51

User name 3-5
Glossary definition A-26

User path, glossary
definition A-26

Index-24 NOSNE System Usage

User pro log file 6-9
Changing their names 6-11

User-supplied job names 6-3
User validation 3-21
Utility

Access 9-60
Attributes 9-66
Block 7-2; 8-2, 17
Defining a 9-49
Definition 2-24
Definition file 9-48, 72
Executed as a task 9-63
Execution 2-24
Exiting from 8-14
File 9-48, 60
Formatting 9-4 7
Functions 2-26
Glossary definition A-26
Interactive input 9-15
Subcommands 2-24
Termination 2-25

$UTILITY function 9-9
UTILITY /UTILITYEND

Block 9-53, 58
Command 9-51
Command table 9-52
Example 9-49
Execution 9-62
Prompt 9-51
Subcommand

information 9-65
Subcommand processors 9-54

v
V-type record, glossary

definition A-26
Validation 3-21, 23
$VALIDATION_LEVEL 3-6
Validation level 3-6
$VALUE_COUNT function 9-8
Value count, glossary

definition A-26
Value, displaying a 7-46
Value element

Definition 2-19
Glossary definition A-27

$VALUE function 9-8, 32, 44
Value, glossary definition A-26

Revision H

$VALUE KIND function

$VALUE_KIND function 9-8,
32

Value list
Definition 2-17
Glossary definition A-27
Procedure parameter 9-41
Range of values 2-18
Simple values 2-17
Value sets 2-19

Value set
Definition 2-19
Glossary definition A-27

Value set count, glossary
definition A-27

VAR OF
Clause 9-26, 32
Restrictions 9-32

Variable
Assigning values 7-7
Creation 2-30; 7-4, 16
Data type assignment 2-30
Data types 7-2
Default values 7-9
Definition 2-30; 7-2
Deletion 7-19
Display current list 7-19
Glossary definition A-28
List 7-19
Local access 7-10
Naming conventions 7-3
Residence 2-30; 7-2, 10
Scope 7-2, 10, 12

Variable creation
Examples 7-16
Explicit 2-30; 7-5, 17
Implicit 2-30; 7-4, 16
WHEN/WHENEND

block 8-23
Variable deletion

Explicit 7-19
Implicit 7-19

$VARIABLE function 9-7

Revision H

XREF (Scope of variable)

Variable name, glossary
definition A-28

Variable reference, glossary
definition A-28

VERTICAL_PRINT_DENSITY
Job attribute 6-24
Output attribute 6-51

VFU load images E-1
VFU_LOAD_PROCEDURE

Job attribute 6-24
Output attribute 6-51

$VN AME function 9-5
Volume accessibility code 11-7
Volume identifier 11-7
VOLl tape label 11-7; D-5

w
WAIT 8-26; 9-4
Wait queue 6-52
WHEN/WHENEND

Block 7-2; 8-17, 23
Exiting from 8-23, 24
Statement 8-22
Syntax 8-22
Variable creation 8-23

WHILE/WHILE ND
Statement 8-7
Syntax 8-7

Working catalogs 4-7
Glossary definition A-28

Working Environment 1-3
Writing lines to a file 9-12

x
XDCL (Scope of variable) 7-12
XMODEM 14-1

Command 14-9
General 14-6
Special characters 14-8

XREF (Scope of variable) 7-12

NOSNE System Usage Index-25

Comments (continued from other side)

fold on dotted line;
lges with tape only. ----------

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technology & Publications Division
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-9983

1.1.1 .. 1.1 11 •• 1.1.11 .. 1.1 •• 1.1 .. 1 .. 1 ... 11 ... 1.11

NO POSTAGE
NECESSARY
IF MAILED

FOLD

IN THE
UNITED STATES

NOS/VE System Usage 60464014 H

We value your comments on this manual. While writing it, we made some assumptions
about who would use it and how it would be used. Your comments will help us
improve this manual. Please take a few minutes to reply.

Who are you? How do you use this manual?

D Manager D As an overview

D Systems analyst or programmer
D Applications programmer

D To learn the product or system
D For comprehensive reference

D Operator D For quick look-up
D Other ____________ ~

What programming languages do you use? ------------------

How do you like this manual? Check those questions that apply.

Yes Somewhat No
D D D Is the manual easy to read (print size, page layout, and so on)?

D D D Is it easy to understand?

D D D Does it tell you what you need to know about the topic?

D D D Is the order of topics logical?

D D D Are there enough examples?

D D D Are the examples helpful? (D Too simple? D Too complex?)

D D D Is the technical information accurate?

D D D Can you easily find what you want?

D D D Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

Would you like a reply? D Yes D No

From:

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

/

~ ~ CONTf\.OL DATA

