OPERATING SYSTEM

TASK FORCE REPORT

Task Force Members
David Jasper

Al livine
John Jantzen

Steve Clothier
Roy Kuntz

Jeff Landreth
Larry Leskinen
Dave Moriis.
Dwight Olson
Jim Whelan =~ >

April 20, 1973

” ‘7/':(C/S%

SRR -Be5

NCENCDC PRIVAE

THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY

TO THE NATIONAL CASH REGISTER COMPANY AND CONTROL

DATA CORPORATION, ITS CONTENTS SHALL NOT BE

DIVULGED OUTSIDE OF EITHER COMPANY NOR REPRODUCED

WITHOUT EXPLICIT PERMISSION OF THE DIRECTOR AND

GENERAL MANAGER. NCR/CDC ADVANCED SYSTEMS LABORATORY,
a5t

Executive Advisor

Chairman - NCR
Chairman - CDC

CbC
NCR
CDC
CbC
NCR
CDC
NCR

OPERATING SYSTEM

' TASK FORCE REPORT

= EXECUTIVE SUMMARY
Il. RECOMMENDATIONS
AL Sucée_ss Crifgrict
B‘.‘ Spmmdi’y Conclusions and ‘S'rrc_fegy for a Cdmmca;! Operating System
C_. R‘ecommendedlAcﬁon‘s ' L
ll-l: MISS!ONAND ASSUMPTiQNS '
A, Mission ' |
B. Assumptions |
C. .“crifigalvl'ssues | |
lV '»CONSIDERATIONS OF ENVIRONMENT AND SCALE
A. v'Oberoﬁonal Environmen; | |
B. ‘lssue of Sca‘le
| V. ANALYS!S‘OF O.“S. FUNCTIONAL CAPABILITIES
A Definition of Key OS Modules
B ! Anolysis of Capabilitics

APPENDICES

’ A ‘ Definitions
B. CYBER 70 SCOPE 3.4 Modules

'C. Integrated Product Line System Models -

D. Distribution Qf OS Modules -

OPERATING SYSTEM TASK FORCE]

Io‘

EXECUTIVE SUMMARY

The mission and assumptions granted in the charter did not require significanf

‘modification.

A ‘common operating system' is possible ..

A 'common operating system' is necessary as the glue to sustaining an -

_ir)fggra%ed preduct line in the eyes of the user.

A common software set is necessary to achieve o total savings on a joint

“effort, i.e. development costs will not be reduced, only focused; support

costs are reduced only if the product line is integrated with common software.

A sing!”e (joint) devé!_opmen'r is feasible and desirable. The produc‘f, however,

-would not be a single or common operating system but rather a cohesive -

'construction kit for several versions of the operating system.

The kit would allow us to produce versions which were optimized for space,

~or performance in different operational environments, such as batch,

'interccfiv.e,’ ‘ond transaction. But below a ct)foff point and above a defined
size the probability of successfully usin‘g.a single set of modules was judged
to be sliéhf. | |

The Operating System, in order to s;mﬁ thi’zb rangé with one set of,mc-:%;,‘zies.
must ha\'e a consistent functional a:‘chifecture for all models of‘fh‘e i}iné..

’

The architecture was defined.

. The Operating System was sub~divided into twelve functional components

for detailed analysis:

OPERATING SYSTEM TASK FORCE 2

Task Motkﬁxgc‘:“menf' -
- .'l.ob Manogémenf‘
= Memory Mcnagemchf
- Job Control Language Pgocegsor
- Device Drivers
- Record /O
- Block I/O
- Scheduling"cnd Allocation
- .éinding
- Device Allécoﬁon
- Operator Control

- Data Mdncgement

= Each co.nip'one‘nf investigated appeared to have the same Fun;ﬁoﬁal and philosophical
éharacferi-sl'ics from both companies' points of view.

- Most components appeared to require parameterization or different versions |
in.order to serve in the targef range of configurations or for different operational
environments. Device drivers were an exception; they appeared to b¢
independent of z‘he.prcccdin‘g variables. |

- | The cost effective use of the 6150 for the "PPU" changes the O.S. approach
from that used in. 'rhe'CYBER. 70 to an cpproqch réquiring more sophistfcatcd |
momorf manugemehf and multi-—rgﬁkiné.

- A concept of loca”y‘ public memory was duscribed.

- Scheduling and allocation of resources is the primary component affccted by

changes of scale and operational environments.

|OPERATING SYSTEM TASK FORCE
| - Apper}di‘ces‘showi_ng. pfesent SCOPE 3.4 distribution of components was
~ attached at the request of the JAC. The O.5. vT‘osk Force also voted
on‘o probable disfribuﬁén of components .in thé proposed Operating

System.

' OPERATING SYSTEM TASK FORCE
Il. RECOMMENDATIONS
A, Succéss.Critéria |
There are four major ‘iss;uves which the Operating Sys.fem.Tcsk Force
\ recognized as critical inbeing able to.sfa'rg that o comn.wnv.opera’r.ing system isa
recommended venture.
1. Agreement had to be reached fho% there was a commonality in
functional requirex;nents for operating over the range.
2. | We had to recognize the‘ po;sibi.lify of at le&st oﬁe:p:c;s‘si's!e struciure
- -of an boperc:fing system to cover thé range.

3. There had to l%e general agreement rk;af a pex-??heral éroce;sor based
operafing sygfeﬁq was feasible and desirublé for the entire range.

-4. We had to‘ be convinced that ndfec’hndlogy'br.ook 'fh'roughs-woula be
_required to prdduce a common operating .systerﬁ to covc;‘ the joint
product lii‘né. |

The Operating System Task Force believes that these criteria have been

\._

mef as evidenced by the following conclusions and recommendations.

OPERATING SYSTEM TASK FORCE "~ . -

B. Summary’ Conclusic;ns and Strategy for a Common Operating System : S
The Operating S}/sfems- Task Group believes that the most important concept which must
| be understood by any reader of this report is fhaf we do not believe that a "Common
Operating System" or a "Single Operating System spanning the full range" is offoinqble.}
We do however believe that a joint dev'elopment eFFcSrr is feasible and dasirogle whic!.w

would produce what we shall call an Operating System Construction Kit.

The group._cEEllied the majority of ifs‘energy _fd cbmpcring their experien.ce and preconceived
ideas regovrd_ing functional ’fveafures and design concepts of an cparating system for the range
of conﬂgurofioné Qnder sfu'dy.. This wos:done with the g.;vool of arriving at a measure of
~the-feasibility of an "Operating S--y.ste‘m Construction Kif".Wéfhjsigljifi,.c.anfvly greater
confidence than could be attached to the feasibility of a "Common Operoiing System"

as sugéesfed by the JAC in their report.to the Steering Committee. An "Ope;dfing

System Construction Kit" was understood to be a set of modules. defined and implemented)
such that, although redundant versions of some monles may be reéuired to span the

range, the interfuces to those medules are processor independent and ccnsismnv% o e
extent that to replace one module with another version of that module would recssiiale
no redesign or reprogramming of r'ne remaining modules. Further it is recognized ihat noet all |

modules need reside in the peripheral processors. Some modules may, in foct, be CPU

modules. We arrived at the conclusion that such a "Construction Kit" is feasible from a

256K bytes, single processor (6150) system through a system containing a single P2 central
processor, four 6150 peripheral processors, and 8M bytes of memory to a systém composed
of multiple P3 central processor, twelve 6150 peripheral processors with 32M bytes of

shared memory .

OPERATING SYSTEM TASK FORCE 6

This conclusion is based on our assumption that a satisfactory and consistent virtual

‘storage strategy can be attained (See Virtual Storage Task Group Report).

It is recognized that the above ‘range of configurations does not cover the ﬂ-:ll rdhgé of
configurqfiéns deﬁnéd in the table of Integrated Preduct Line S‘ysfem Moedules .pr_apc.r_ed
'- By fh‘e‘Srrofegy Task Group (See Appendix C). The Operating System Task Group
belie;/c:s there is a significant risk associated with assuming thot we can utilize common:
modules and interfaces os well as retaining a consistent opércx%?ng éysfém.shucfurc and
architecture cbove qnd below the indicated range.

An "Operating System Construction Kit" as defined above, would, from our customer's
point of view, appear to Ee a ff_t_'of versions of an coperating system for an integrated |
product line. "This is due to the fact that we, fhé manufocfurérs, would configuré

: se\)elfol versions (three to six) from the "set of modules" which together would cover

the rangé of configuraiions and operciional environments under constuzration. However

i

not only could a customer move an cpplication which he hod develeasd from cre version o
another with no difficulty, but it would indeed be trus that many modules appearing in

one version would appear in one or more other versions, and further than that the

inter-module interfuces would be consistent across all of the versions.

It is in fact the tightly disciplined control of inter-module interfaces which is the
heart of our understanding of what needs to be accomplished in order to say an

"Operating System Construction Kit" has been realized across the range of products.

OPERATING SYSTEM TASK FORCE - L e Ty

For e‘xomple,'supp‘ose' that when the development is complete and the dust has cleared,
every médule fn the set dppeors in two versions and furthermore fl%df when we conéigure
the vorio.us operating system versions we discover that some of them.contain only the

"A" versions of modulés and the o_tbers contain only "B" versions of modules. We would
still orng that we had. attained our goal of producing an "Operating System Co_nsfruc%icn'
Kit" if the inter-module interfacing was such that a version of @ g'i‘v'en module _c_:f_'il-d_

be replaced wifE the oth'e‘r version of that mo;!ule.

The inrerc‘;m;ngecbility.o.f modules is the pivotal issue with regard to the attainment éf

an "Operating System Construction Kit." It is of the utmost importance, not.only to

.attain.the necessary .degree of configurability, but more importantly it is necessary in

order that the unit testing of modules can minimize the system integration, system
generation (build), system test, field configuration and field installation costs and

schedules.

A cloai understanding of this issue Tocusses our attenticn on the sirgle most critical
element of risk. The degree to which we realize this goal of infer-:'ndngecbili.*y of
m,ovo'ules will determine the .degree'fo which we succeed in our endeavor. Furthermore, -
the realization of an adequate level of success will require a well conceived and
implemented set .of tools,‘prucri‘ces and procedures, and administrative controls . . .

in short @ comprehensive "software engineering discipline" which is'understood,.

accepted, and enthusiastically supported by management and development personnel.

OPERATING SYSTEM TASK FORCE -‘ 4 | . | 8

Thé Operating System Task Group believes that an adequate level of success -_in these
.areas can be attained, they do not believe f_Ect it will be easy, but they agreé' .fhot
it is necessary. Furfhermore, we Believe thf_ quite independent of any joint |
development activity, each company must pLJl';UG »vigorously the areq of fechnolog}

necessary to produce an "Operating System Construction Kit".

The technology of 'Operating System Construction Kits' has evolved since the mid‘:iic |
 1960's with the introduction of OS/360. Today both NCR and CDC use System

Build or Sysiem Generation fechniques which ‘(‘;1“0\{‘1 parcmeterization of well

defined functional modules. Addifiondll);, recent developments in the industry

include table ‘driven techniques and syntax driven mechanisms. Howevér, the use

of replaceable modules in the Operating System Construction Kit crédfes interdependencies
that compound the interface and testing problems. The additional xdevelbpmenf
complexity and cost, thever, are expected to remain within reasonable limits.

In other words, the requirémenf to span the fuil range increases i‘he.magnifudc

of the problem a;f»preciczb}\/ bQ% does not rec.iuir"e ‘a technology bréczk through. [urther,
parallel advancement in softwore writer's languages and software engiheering
techniques oid in the odvanccmcnt.of configuration ix‘x:jepmnde‘n'r Opc:'aﬂng. S'/si‘e:‘nv_

Construction Kit technolegy.

OPERATING SYSTEM TASK FORCE - g

C. Recommended Actions |

. The Qpérating S.yste?n ‘Tdsk'.' jGroup recommends five specific gctivifies v

: thch shoﬁld be ihifiofeci c.;, quickly as possible: | |

1. Obtain full corporate commitment by Both companies to the idintb
development of the Op’e;rdﬁng System vConsfrucﬁor.\ Kit as defined.

This assumes that in one way or cnoi'hér a single organization is eétablished
dnd given the respensibility for thet de’velopménf. |
2. - Since the soﬂware engineering too,l‘s and prbcedures are critical %q'
“ensure succes§, the ‘s.pecificcﬁ'on (f a total software en;qineering~
'sysfeﬁl must b;é‘iniiiated. |
3. A clearly delineated statement of requir'em.enfs and goals fér the.
,.Jo‘int-‘Enc:)c‘iﬁct,Line .must.be;prépared;. -:zHo»vvev‘er,-‘-«work- on ltems 1 and
2 above can proceed in parallel for perhaps as much as six months
.preéeeding such a statement. .

4. An integrdfec;lv pr'o;lu'cf »line has been exprossed as a multi-dimensional
opportunity . The basic dimensions cn"é 1) direct cost savif.g Hurqugh '
shqred develépmeni‘, production and support, and 2) a broad product

voffering in the eyes of the user. Tha first point doas not réqt;'iz‘;? an

3

"integraied product line" but rather only the sharing of some comiponents.

Further, it is the Ee!icf of the Operating System Task Forucé that G
certain critical mass of commonality must bé achieved in oraeli io |
successf‘ullyvachievevand'mainvtain a truely integrated product line.
A common‘ set of opcrotivng system versions is the least amount of
commonality to sustain an integrated p’rod.uct line and is in fact

fundamental to any other "external" or software comnionality .

OPERATING SYSTEM TASK FORCE

5 ‘.'

We further recommend that any joint venture must go beyond an

agreement to implement operating systems to common specifications.

Any suchdgrééménf would be untenable due to the many conflicting

~ pressures in each company. As a result, during the varying stages

and at various levels of the development process commonality would be

~lost to the extent that iis value would be neglible.

10

| OPERATING SYSTEM TASK FORCE
..._lll.l.' © MISSION AND ASSUMPTIONS
Ao Mission
The ‘m.oin rﬁis;ion'wos cdnsidérafion of the full opportunity of vcooperaﬁ'on.
There may well be other l‘evelvs of cooperation in the area of operofiﬁg systems,
hox%«eirer, the operating system task group did not give gxplicif consideration to
them but rother assumed this was ‘;o be a consideration of the Sﬁqfegy.'fcxsk, Group.
The mission was described f_hen as: |
Propo;e and define imevfhod(s) for achieving the foliowing goal:
A .s‘ingl;é‘Asef of modules which can be uséd to consiruct gen_err.si‘
purpdse éperating syﬁ.‘ems for configurations spanning ﬂ'omvfhé tbp of
the stavrbxdcrd brddugf iine down fo a minimum. |
“The proposal should quantify-the .degr’ecwof -anticipated-success in several
~ dimensions:
) ‘Ra_nge'bf configurations;
2). ~ Range of feamres(sub;gtfcbility);
3) . ,R%:nge of'O..‘S; ty.pé er;';ph.o',sis (e..g. fim\e sharing, rémo’:’ @ batch,

transaction processing.

1

OPERATING SYSTEM TASK FORCE P e T

B.

Assumptions

The logical or virtual architecture is consistent for all models of the

joint product line.

The minimum member of the joint product line for this 0.5. will consist of:

single processing element, 256K bytes, 100M bytes RAS, keyb'pqrd and CRT

~ operators console, plus peripherals.

A large system is assumed to be

-2 2 CPU's with option for their own private executable memory

> 10 PPU's

> 100M bytes main memory

Y 3 block access storage devices plus a large variety of peripherals

Multiple systems are to be -considered and consist of some combination.
of large systems which are coupled via dynamically shared peripherals
and block access storage devices. Each system executes its ow:: copy

of the cperating system.

i

Network systerns are censidered to be muliiple systems which are

linked but do not share peripherals and block access storage devices.
The O.S. will reside primarily in the PPU's.

Same data formats across all processing elements of the P.L.

OPERATING SYSTEM TASK FORCE

All modules of the O.S. can be written in one software writers

language which will be defined by fbdt task force.

Memory will be managed by the O.S. with a consistent virtual memory

-scheme.
Permanently available systems disk.

V.M. and co-resident virtual machine proposal will be developed
. p hy Ind

by other task forces.

There is no particular requirement to support old devices or file formats

in the new O.S. except as required for co-resident virtual machines.

Hardware modifications generated by this task force can be included in

the system design.

13

| OPERATING SYSTEM TASK FORCE = . RV

C.

Critical Issues

General strategy for a specific tasking structure for CPU - PPU -
memory resource allocation including multiprocessing, scheduling,

- dispatching, etc.

- General strategy for O.S. levels of features and services for a range

- of configurations.

-~ General strategy for O.S. levels of capability to perform timesharing,

remote batch, tronsoction services, etc.

-~ General strategy for O.S. construction to satisfy modularity, f!exibili.‘y,v

-~configuration-independence, -optimization.of .performance, linkage

- mechanisms, and control methodology .

Other l;sues:

- Reliability, availability, serviceability consideration.

~. Human facters:

- Performance
PPU logical structure
P-language -

Identification of critical performance issues.

- Effect of virtual memory on O.S. and PPU's.

OPERATING SYSTEM TASK FORCE

- Estimate the number of PPU's required in the minimum configuration

(virtual).

- Any special considerations for project control.

- Recommended service functions (e.g. measurements, modeling, sysiem

integration, regression tests).

]‘5"

 OPERATING SYSTEM TASK FORCE h R L - R
IVV.‘ _ CONSIDERATblONS OF"EN_/.IR_O:NMENT.A_ND SCALE |
AL 'Opérofiénal Environments o
Six mo‘desb of access (operational éﬁvirgnmenfs) to the s.ysfem (baféh, remote bdfc'h>, |
interactive, fronsacffon, real-time iond.ﬁrﬁe—crificc!) have béen ;onsidered. ‘ Those
six have beeﬁ reduced to three primor;/ dis’rin;t mode; of access. Remote batch and
: bofch‘a;e‘ considered to be the same Some features .required for fim_e—cfiffccl q;plicaﬁoﬁs
‘willl be included in the oéércﬂng sysf;erﬁ'buf geﬁerci support for these applications were
" not included in our discussions.because these applications genercily revquire snosialization
,OF the operafion system for each app!icdﬁon.- ‘Real-time ‘cmd‘ interactive reguiraments
"-c'ure simiéa; ;md will .be provided as vccvpobﬁ‘i‘ﬁeé'iﬁ the operating system (rea! -.5' ime \:vii'h
small intervals will create prdﬁ!ems). Therefore, three modes of access to the sysiem were
" considered in this report. They are bof;h, interactive and frc:n'svacﬁor?.'_ |
‘Scheduling and c:lloccfion.cppéar to' be the’ major differences in fh"e operating -

~ system due to the three modes. . The intent of the allocation and scheduling

‘algorithms differ in different operating environments. Response time is the important

objective in interactive si«s‘rems, total throughput for batch systems and ir ivo-naction
systems, the objecﬁve is to maximize tﬁroug%apu? yei provide "reasenulio s lonse Hins,
E““h of these objectives can bve cchi‘éved‘p{imcrily fhfcugh the schediil oo slloeeiion
clgorithms, Combinations of o-pssr‘c.*ianal envircnmants are olso depend i on shedutiog

and allacation in mezeting ebjectives. Co-existance of the different modes of access is an
issue of volume end scale. In the larger systems it is clear that all three modes of access
may co~exisl and scheduling and allocation appear to be the major problem for the

operating system in that co-existance.

'OPERATING SYSTEM TASK FORCE - 7

fofe_reﬁt s.cheduling and o'llo_ccﬁ‘o'n feé:hniqués and o!gorifhms-Will be fequir_ed for
“each of operaﬁondl environments and for combinations of these. Additional techniques
ond olgorifhms will be required for various systems in the range (atglecst different

‘ a;lgorifhms will be required for the Qpp.er end and f}he lower end). The effort required

- for different algorithms can be reduced by using table driven techniques.

OPERATING SYSTEM TASK FORCE R 18

B. Ilssues.of‘ Scale

From the view point of the operating system, the lntegrcféd Product Line
ml;sf'hgve a consistent functionally logical architecture. That architecture-is |
described By the logical structure of the computing ﬁysfem which the opérd’rihg'
system must support. From the dgsumpfions described in Secffon I, this l‘ogicdl

structure is shown as follows:

e

Cp o lep

| Shared : ‘
=Memory ; I
o - /O Device

Minimum Logical Configuration

Ph| | Lem PM

el lerl lepl

.. ' .. > L r
~ Shured v —1 o __J J
MumorX . o . —‘ . l - LS/

e ' I/O Deuvices

General Logical Configuration

OPERAT!NG SYSTEM TA‘S‘K. FORCE . I | T
| Q_ne 6F‘ the key cllue‘s.\ﬁorﬁ .thcn is what i.svrequi.red to provide an operating

sysfe‘m w'hichb su;')porfs such a broad‘configur‘ction range ? ‘lf has been cs;uméd that

it is feasible to develop an operoﬁné system for the large éeneral- configuration. - In

cbnsi'derin.g' the remainder of the range, memory havs‘ be.en‘videntiﬁe.d as a key factor

in the issue of scale. With shared m‘emc;ry sizes ranging Froh relatively small f§

exfremely large, differences cen%er around various sf'rc!'egies_ for opi'imum Qsc of

that memory . O;j the low gnd memory is extremely critical and o‘c.)ﬂ’mizc‘.ficnv ”

centers urégnd effective u_%%lization of fhcf meﬁxory . On the high end the

optimization centfers around effective CPU utilization.

The task group has identified three potential techniques for minimizing resident

memory requirements.

Compaction - By the use of inferpi‘efive execution techniques code compaction
" could be derived for OS modules thus deriving a savings in shared memory
‘requirements. The exact extent of the savings is somewhat controversial

but could be as much as 4 to 1 compaction.

Performance Degradation ~ Certain modules would be rmore finely everlayed <«

moved to non-rasident storage. This would reduce overall shered memory

requirsments at the expense of decreased performance,

Reduction of Features = Certain features of the operating system could be climinated
by removing certain modules of the operating system or replacing such

modules with modules providing & reduction of capability .

OPERATING SYSTEM TASK FORCE | 2

It was agreed that the above techniques could be incoi‘pora*ed to yield--éﬁ '
bveroll redUcﬁoﬁ- of shared memory requirements to prox)fdé a significant lowering
of the minimﬁm sﬁcred memory requirement to 1/4M Bytes. Howe;_/er', by fé)lloWing
the above il:nplementcﬁgh opproach, ‘cdditionall complexities wivll‘be introduced in this
area. The significance of this is related fobfhe quality of the fé‘chrv\iqukes developed

during implementation to cope with the cdded complexity.

OPERATING SYSTEM TASK FORCE .21

V. ANALYSIS OF O.S. FUNCTIONAL CAF"ABILITIES,

A, Definiﬁon. of Key O.S. Modules |

In order to o.ssessv the Feasibilify of a-single deyelopmentb éf a set of modu‘le's'

which can be configur'ed into v;:rrioug, installation-specific operating systems to
cover the rcmgé encompassed by the Joint Product Liné, the set of modules Was;
‘pari'liﬁcned irﬁ’o twelve cafegori‘es. The.'sef of modules fciii’ng info a given caregory
is called a'component. The twelve componenrs; which were sélecfed are 'Brie;‘iy

_ described below and a ;eciion for each component which discusses our'de!ibcratiqns

- and observations follows.

' OPERATING SYSTEM TASK FORCE

~ Task Management
Task Management is that collection of modules which provide services to
tasks as entities. These services include task creation, invocation and

inter-task communicction primitives.

Job Management
Since "jobs" are c:rvbifrc‘.'r\/ co“ec%idn* of tasks, Job Mancéémenfis that
'co”ec.t‘ion of moduie's which provide cperating system ssrvices which deal with
collections of tasks which are designated by the .use,r‘ as a "job". Thése
” ..include |ob inifiot,ioﬁ, pre=allocation ,,of.nésou_fc.es.to‘,jo»bs, and job

termination.

‘Memory Management
That collzction of modules which provide the operating sysicm services
relating to the allocation, de-allocation, gerbage collection (etc.) of real

Lnide
e duis g

memory .

Job Contrel Language Processor
- That collection of mdd_ules which effects those actions speéified by the user
in ‘d "JCL Task". Where a JCL Task is a task Whose source form is Job

Confrbligﬁg uage.

22

OPERATING SYSTEM TASK FORCE 23

‘Device Drivers
- Those device dependent modules which perform the functions associated with

transferring a physical data records to/from an external device from/to m’emory.r

Record /O
ards .

Cilney e

Those modules which provide access to user defined logice! rec
P ¢

 Block 1/0
Those modules which provide the device dependent interface between Record

1/O-and the Device Drivers. These ‘incl vde buffer-management and device

scheduling.

Scheduling and Allocation

N ;e o e . . ';1‘ R
Those medules, - which coniain the decision-making sirategics with oo

to the assignment of resources to a cellection of competing requastor: of

such resources.

Binding

That collection of modules which provide the Operating System services
associated with resolving references among separately compiled program
units. These services fall into two major categories "static" and "dynamic"

‘binding services.

OPERATING SYSTEM TASK FORCE 24

Device Allbcotion
Those modules which deal with fhe“spe_cific problems of allocating 1/O.

devices as resources (see Schedulling and Alloccﬁoh).

Operator Control
Those modules which provide the means by which en opercicr and the
Operating System communicate with each other (see Job Conired

Language and the Job Confro'lv.Lcngucge Processor).

-Data-Management
Those modules which provide the /O and data structuring services above and

beyond Record 1/0, Block I/O and Device Drivers..

OPE‘RAT.ING SYSTEM TASK FORCE | - | 25
B. Analysis of Capabilities |
| “ Task Mbndgeménf
A task is the smallest unit of work recognized by the sysferﬁ. Thus, it is also
“the ultimate consumer of resourcés. It has two parts: - the procédure which is never
modified and the dynamic context which differs for different instances of execution
and which may be modified. Task Management hondies.fhe creation of, farmincf‘icn of,

control of, and ccmmunication ameng the tasks in the system.

Primitive Task Mcnc.gemer;r Functions -
e Task initiation
ESTABLISH - creates an inactive task
CALL - creates a process referred to as the callee of the process that

issued the CALL (the callf_r).

o Task termination

"DISESTADLISH - destroys an inactive task

- CALLEND - terminaies the issuing process.
6 Events
WAIT - puts a process into wait state (flushing all of its dynamic context

to shared memory) until the occurrence of an event or set of

events. Four types of events have been idenfified:

" OPERATING SYSTEM TASK FORCE 26

1. Alarm - a specified elapsed time or time-of-day.

2. Process termination - the destruction of a procesé after it has
issued o CALLEND. -

3. Signal - an eveﬁf caused by .anofhe'r process issuing a SIGNAL
funcfio.n'.. The prox.';ess :\A/difihg for c"signci has fh._e option to
“extinguish” the signal when he is awckened by‘ it (he will
execute mutually exclusive of other procassss who specified
Mextinguish") o1 fo leave the signal set {he will execute

. along with any other procass waiting for thet signal).

4. Process directed wakeup = The process has been specifically

named by another process to be.awakened.
SIGNAL - sets a named siénal. If this is an event cnéfher process has
selected (been waiting forj, it will be made ready (awakened).
If the signal has not been §elecfec!, it will La saved v i o

- selection iv mode.. If the signal is alreudy i, fhe st sier

has the option of having this setting disicoorded or having it

stacked behind the previous setting.

e - Inter-process parume.‘ér passing
Along with the ESTABLISH, CALL, and SIGNAL functions, a precess may pass
some parameters. This may be either by name (shared segments) or by value

(copied data from one process's address space to the other's).

* OPERATING SYSTEM TASK FORCE | | o L 27

 EXEC Tobles

o Task list - s composed of”quk‘defviniﬁon blocks and process c‘orif'roli blocksv‘. It

- appears that an abbreviated process control block of Uﬁ to 20_0‘byres would
‘be permanently fesidenf in shared memory, :.she'wimg §uch things as . |
Iink’céés fvov other processe$ and current state.” Other elements of the process
control block such as the address mc:e daéérip%ion (segment and page

tables) could possibly bz moved cut to secondary storage if necessary.

o Eventlists - contain signals that have been set or selected and times—of-duy

that processes are waiting for.

e Ready list - shows all processes that are ready to execute .an @ processor. This

is the list searched by each processor when it needs something fo‘ do.

- TN R

Tasks arz the basic m{:;hcnruisrn for load leveling aore: processors, This tukes
tvo forms:
1. Load k.:velinrg across v.:'iFfei‘enf types of processers is to ’:;-3(%0;’1;(: by re-;cotlix;xg
“and/or fe—compilofion of a task (not procedure) for the desired fype of |
'brocessor. Th_é interfoce betwean tasks is strictly prodcsSo:’-inciept:nd-::ﬁt;
o task doe; not know yvhof kind of processor is used{by i“he,tcsks that is
communicates with,
B 2. Load leveling across prbcessors of the same type is to be done by main;cining
ail dbynomic'confeXt of a process in ﬁhored memo‘ryiwhene\"er the prdééss -

is not executing on a processor,

OPERATING SYSTEM TASK FORCE | 3 R

Switching the periphe;’ol processor among processes can be done by firmware

' or software. Firr‘n'wcr; switching ﬁcy be faster but results in significant loss of control
bver scheduling. Control over scheduling is important bacause of the wide vobriclfion with
operotioﬁcl environment (see section on Scheduling and Allocation). -Software switching

is, fherefore, prcferrﬂd unless performence analyses show significant degradation in total

system performance,
It is necessary for taslks to communicate. This is generally done through two
kinds of functions which ara semetimes combinad:

|] Event hondling functions pro; ide faciliiies to synchronize op.efctic;né.

2, Paramefer'pcss?ng functions provide facilitics for passing data.
Events can be. handled with any of three methods: -

1. Evenfs frigggr immediéfe séheduliﬁg cycle (Inferru;':oi‘~ Driven).‘
2, * Events set a flag in memory which must ba tested later (Memory Driven).

3. Events transmit ddfa to a task, the data is queved until transmission can

occur (Mesﬁge- Driven),

Any harc rdware configuration and & nost software ystems provide soivs elemants of
coch mc:i"uo-.';‘, Appropriate sofiware techniques will usually cilow ena monad to be
converted to cnof'hér; if necessary.

Processe$ are either ready or waiting.. The state is usual}y represented by the procéss
being in either a ready list or a waiting list.. Event posting functions cause processes to be

placed into the ready list. Event waiting functions cause processes to be placed into the.

waiting list,

OPERATING SYSTEM TASK FORCE 29

Pq‘ramgterg‘cqn E.e passed between processes either of two was:' L
1. Dafld‘is: p‘lclyc.ed infc; and removed from a segment shared by the communicating
..'processes. Inifhis method the processes control the co‘mmuhiqafion H_';emselves.
2. Data ismovéd from fhe qddress -spvace of one-précess to that of fhe other.
This fo‘cilify must be provided by the sysfef.m. o

Processes must iniﬁé%e the exec;ufion of other processas, contrbl_i‘ﬁc%: siiecuton and .
recognize their 'rerminaﬁon; This aHows a sysfe.rﬁ structure where a system fask s;;c:wns
(crcafes under its control) iob'procéssofs which spawn Auser processors, efc. (see the
secl:ﬁon‘ox; Job Mcnog-emenf). |

Task structure is important in system structure. Bccause a task can run only
on some real and virtual machines, tasks must be structured sé that functions can be
executed by the processors a.pp'ropricm.a to it. It is desirable to be able to use
‘differenf processors fo‘r fheASGme task without éhcnging the structure.

Task dynamic coﬁfexfs and working sets can be ecs‘ﬂy identified if tasks correspond |
to source language (PASCAL) procedures, This can greatly simp?h"y‘f:‘percrirz-;; system
imp!ementaﬁom ' |

Both peripheral processors and central processors will exzouie task mons smeni,

All task management dynamic data resides in shared memory v.i::re it can be accessed by

all processors.

Effect of Varying Size and Operating Fnvironment

| We believe that the basic architecture described above will be unaffected by -

large variations in the numbers of tasks. We expect as many as 1000 processes in the

1-4M byte range of systems.

OPERATING SYSTEM TASK FORCE 30

This also does not seem to affect the architecture. There will be a problem in
real-time environments with smoll_timé intervals since we expect a reasonably large

fask switch time (up to one milliseconc). - -

OPERATING SYSTEM TASK FORCE 31

JOB MANAGEMENT

Job management here is defined mostly by exclusion. It is those medulzs

»

which are not JCL, 1/0 and data management, preduct set, appiications, or

[

task mc:nogerﬁenf. It includes spo'olingv of input and output files, =i scheduil -,
~ and operating environment definition .‘

We have .idenﬁfiedv‘fhr‘ee modes of access to the system: interactive,
batch, and trunsocﬁon.. Transaction differs from interactive in that itlusuaHy.
has shorter, more well—aefined périods of activity. It appears fo us that q”u _
three modes can co-exist in the same sysfém by olléwing suitcbly flexib.le ‘schedulir‘\g
olgorifhms, such as table-driven. Evén‘fhough't.he implerﬁerw-fafion is prébably non-‘-t‘rivial,’ |

it appears to be less a function of the wide range of scale we are talking about

than the variction in application of any one size system.

OPERATING SYSTEM TASK FORCE 32

A "job" is the external user of the s}/sfem's idea of .a‘piece‘“ of work. The opé'raffng
sysfem> in general deals witE tasks,with a iclalg being an artifically féqued collection ‘of
tasks for fh:e convénience of the user. |
| For exiqm.plg,' a job might be considered to be all the tosks created as a result of
.fhe items between "Logon" and "Logoff'" control items. The:ere‘wm- probably ba af least
one "Operating Systera Job," There rﬁusf be accounting information provided «f o

.iob'lev'a!. :
The. f&!owing dicgram depicfs the relationship among sysrém, i’oEs., and tdéks.‘

All tasks which become active as a result of the Logon are part of a single job.

Operating

System .

Job Manegement

Dayfile | + Catclogue .
' . Control-Language
Processor

Device ' ‘ - Co ol
~ Driver

> (lntertask
> LCommunication ‘
\ A
. ; > Infile Outfile ,
Note: For the purposes of this diagram a file is an asynchronous process which provides

data to its parent process via the intertask communications mechanisin.

- OPERATING SYSTEM TASK FORCE 33

Sev_era! facilities directly related to job management must be provided by the
A 6perqﬁng system.
Interjob corﬁmunicdfion must- bg provided for. The use of global variables rhroﬁgh'
the]'ob control language seems the proper mechanism. That is, there will be a
cliass of variables which are global to the entire system o to @ set of jobs in addition to
variables which are local to all tasks of a job,
Jobs must be able to initiate other jobs. Ineffect, this meaes that ¢ jeb must
be able to present a Legon and a Job Contro Language file to the cperating syctem.
There Amusr be Faci}liﬂes for "decdii;we“ scheduling of jebs. That is, the system
vn;nusr be cblé to initiare a job by ¢ certain specified rich and/or guarantee completion

of a job by a certain specified time.

. —

Preallocation of resources will be allowed. An installation may require that

all resources be preallocated to all jobs.
Job sequencing, both basic ordering and conditional execution must be supported.

Sequencing can be accomplished with the "jobs initiats jobs" mechanism, This con

alss help with sequential rescurce allocation in a required preallosaiinn envirooont,
The focility to terminate jobs os jobs (that is, il tesks relciing o o jobd st

be ‘provided.

One area affected by operational environment ard installation is the accounting.
The accounting implementation wiil have to be parameterized in such a way that

selected portions can be turned on/off. - : : .

OPERATING SYSTEM TASK FORCE 34

Considerations of Scalé - Differiﬁg féquiremenfs on job manogement erf the possible
| configurarioné.‘ |

| The réqbiremenfs of job managgrﬁenf are essenﬁdlvly constant over Bothf
dimensions of scale and opércting environment A(small,' overlop,' large B’cfch,

interactive, transaction).

Conclusion

The job management facilities previously planned and required by Ci:C and
NCR are basically identical. We see no reason why o common set of facilities

could not span the entire range of the joint product line.

OPERATING SYSTEM TASK FORCE . S 35
'_ME_MvORY MANAG EMENT

In 'ord‘e‘r to discuss memory management, it is necessary to make some
assumpﬁon_s about fhe.f.ype cnd»conﬁguraﬁor’)s of memory possiblé on a reasonable
R sy.stem.. Given the four elemeﬁfs, Cyber 8_O_pr-ocessor, 6150 précessing élemenf, ‘
Cyber 80 memory, and 6150 MSU, a large number of c‘onfigurdﬁons, 'some with highly
different characteristics, can be postulated. Unless hqrdwc.'ev can make memory
transparlenf., the operating system will have to management it Thus, memery is
o resource and wi”lbe mdncged“by kind and access attribute.
" :
'configUrcfioﬁs can be mapped. Only %hose actual configuratiens \.‘,'lwiéh can be mapped
- to the logical configuration are considé.rea further. Other possfbie configurations
are not considered part of the .common preduct line by the operating s;ystem. ,

J The Iogi;:al configuration was §vo|ved fhréugh two iterations. The earlier
configﬁrcfions may be of some infé;esf as rationale for fheyulﬁmate .logicdl‘AconﬁQuroﬁon.b

This first configuration is shown in the diagfqm below:

; n@i Q. o Fplviete 1Rfivéte |

A et ot BN B v Momar.

3‘,' i xyn /y, ;A_(qs;;o_r Y Me mor;

Central 606 Central -~ 11/0 1 1/0
o » » , cco

Processo Processol Processol Processof

- l I

SHARED - o
' ‘ '1/O Devices

MEMORY

OPERATING SYSTEM TASK FORCE B -

The major .‘;onsjtrucfs in. thfs conﬁgﬁfcfion are fhéf there is one memory»}wlgichv is directly
accéssiblé by all proc‘esso_rs,‘ both central énd perfpheral . Al;o, each processor may optionally
have memory private fo. it. Memory méﬁcgement_therj has two or possibly three qsé‘ecfs,
shared* memory maﬁagem'enf and private mémory m'cndgémenf; whiéh caﬁ be further

divided into C. P. pnvate memor\/ mcmocomem‘cnd peripheral prxvd«‘ rmamory management.

The odycnfcges of private memory sesm to center around ruiucing confiizts in
shared memory. The advantages of shared memory are to reduce dui redundoncy,

lower total memory requirements, etc. The fcsk group ha§ oﬁ]y,co ',:;;z;md privaie
memory as ‘3?';ef0res to fhe_p r'p rcl processors. Private memory usage on o ceniral prcce—sscrb‘
‘would be vr-.lry dépendenf vpon fhe. type o'r'_ memory used; cost, speed, si:'_'—a‘, ete,
‘There are three distinct alternatives to .fhe amount of private memory a
processor couldihave:
| 1. . None - at least logically which Iedves open thé option for a hardwore
‘cache.
2. Small - wEich implies m_ono-tgsking in private mcmo& with asingle
cperof‘ing system task af o ‘ﬁm'e with ro!l out or pariial 15! out batween
tosks.

3. Larger - which implies that the operatis .9 lsiﬁm “lU“‘l"tGJ!\S tha pnvme

memory.

*Shared memory is often called main memory in other contexts by the task force.

Lccca”y
Public
Mem

OPERATING SYSTEM TASK FORCE 37

Since there are some definite cost/performance tradeoffs concerning private
-versus shared memory, it is desirable* to expand the previous logical configuration

to include the one shown below:

Priv '
Mem Locally Pulslic Memory
| : - | ~ | !
Central . ey ; Do ;
Processer| T Priv | [I/O | Piv |_:1/O /O 1y Peiv
' Shared Mem | | Proc ’ i Proc i Proc J Proc | Mer
'“ ,, : _— . - i
_ _ Memory ‘ l :
Central : - ' , : '
lProcessor o : : (1/O Devices)
Priv
Mem

*1. Locally Public Memory and shared memory maybe a logical partition of physical

shared memory .
2. The operating system task group belicves tha

logicol cenfiguration are desirable but guestio
physical configurations must be cnswered by
3. See "Memory Mancgement and Tosk Structu
This configuration introduces the concept of "locally public memory"”, that is,
o . 1 e 3)
memory that is shared by same, but not necessarily all processcrs. This construct gives
the greatest degree of flexibility in configuring for cost effectiveness, since only those

processors which need to access data or execute code in the Locally Public Memory

access it and yet they can share a single copy of that code or data.

-1

OPERATING SYSTEM TASK FORCE - | - 38

Memory Management and Task Structure

It is highly desirable for a given task to be able to migrate between processors
. l!'. e g‘i . T'C 1} - , . ,\! l f!,\\ s l]" . ' !‘ !’- .
in a multiprocessor configuration. This allows desirable flexibility in load balancing.
Large private memories tend to complicaie this while optimizing uccesses to main

£
[

(shared) memory. To permiy this task migration the following rule is offereu:
y. Top gratior g

Rule When a processor reaches the point ¢ which it can no longer perform
useful worl k, it must place the dynamic context of that tasi
usetul worik on a task, iF must piace the dynamic context of that task
in the shared memory where "another" processor may pick up that

task when it is ready for servicing.

Private and Locally Public Memory Management

For private and locally publi‘c memory management s’rrafég)"fhere are ‘thrjee
points in o spectrum which roughly correspond to the amount of privats memory; none,
small, large:

. %czs-’as'are Ur.m‘-.«'«::re of the location (re: shared or privaie memory) of

d}mcmic context. |
This may utilize a cache memory cpproacb.

2. Tasks believe that all dynamic context is in shared memory.

This corresponds to the 6000 system where an entire tdsk is swapped .

into private memory.

_ OPERATING SYSTEM TASK FORCE R 39
3. Tasks decide which parts of dynamic context are in shared and which
in private memory.
This approcchw would probobly be used to multiprogram a peripheral

processor. -

Shared Memory Managemant

It was agreed that the dec“occxﬁc;n of o page ond the clio‘céfion cfa
éqge \x'hen'pagés are available in shared memory would best be done by the |
Apr‘ocessor r‘eAclgl‘J‘iring_ the furiction. This means that that p'q:;i" of. ;harec “m‘e,mcrymmmnogé-
ment would h’dye to b‘e éup“cc’red to ruﬁ in any processor.. Aisé, this, lme other
focilifiés, implies somé interlock mechanism which can be used between processors of |

~ different types.

OPERATING SYSTEM TASK FORCE 40

Virtual Memory

Along with the hierarchies of shared, locally public, cﬁd private memofy,
virtual memory has a major effect on memory mchogemgnf. One of the ossumpfions.
‘9f the operating system task force was fhof. "user memory can be managed by the ope}cting '
sysfém with a consistant virtual memory scheme for cl! t?U's." ‘T‘ne system design task
~ force has provided the further assumption that virfual memo;y écpa’uilities are riot
c;pfioncl, but will be present, at least to the Cyber €0 mem;n'y.

Since i'h:e operating system will reside primarily in the peripheral processors, the

peripheral processors must be able to access virtual shared memory in a way conzistant

with the CPU's.

|Private | Private
Mem | " | Mem .
1/0 1/O
eoo
CPU" - Shared ' PROC PRCC
o Memory ‘Jf {
&
€ ’
CPU |-=

In the preceding diagram, the points marked with a " 2 " cre where consiztent
virtual mémory accesses to shared memory are reqﬁired. There are several alternatives
to providing this access from the peripheral processor:

a) peripheral processor software

b) peripheral processor firmware

OPERATING SYSTEM TASK FORCE 41

c) peripherdl p:rocessor:hordwcre '
d) the cenfrcl procéssor upon'demcnd'
' .or some bcombin'qrion thereof.
A large part of the operating system should, and for a system of the expected
. ‘magnitude prob'obly'musf, be basically user tasks. In fact, only that part of the
.operoi'ing-sysf_em which CDC has .ccxiled EXEC or NCR has called KERMNEL or NUCLZUS
will not Mook like a user tasks. i is de"si‘rt::b!e to allow operating system fusks
to have all of the cdventages and receive all the protection of user rasks. Virtual
raemory is cen‘_ciln!y one of these qdvani-oésé. Since *he operating sysiem will be
executing primorilyin the _péripheral processor and addressing to a large dégreé peripheml

processor memory, some virtual memory scheme is necessary in addressing peripheral

~processor-memory. The'diagram below shows-the virtual ‘memory accesses required:

LPM
O D
v | .._......m;..w] _ N
CPU oo X : Priv — D pp L 980 . ;
. ' Shared -1 Mem ~ i i i P g
Tl e
g Merory - - —-

&

CPU

4 Accesses to shared (main) memory

O Accesses To private (MSU) me‘nio'n'jy

OPERATING SYSTEM TASK FORCE - o 42

It was generc”y agreed by fhe opercmng sysfem fask force that any code
written (independent of the language in which it isiwritte'n) for a virfuai merﬁory
system should and will be‘ different from the same prog_rcr;l wriffeﬁ for @ non-virtual
memory system. This implies fhat if virtual memory is nof available on the peripheral
processor, then programs will have to be rewritten (not just recomplled) if the
decision that it funcnons on the PP or CP ChdnﬂCa. .

To é”ow reasonqblé migrdﬂon of tasks beiween CP and PP, ’fhe PP virtual
" memory mechanism must be, if r.\of identical, o proper subsat of the C? rmechanism.
The paging mechanism will run in both CP ,cmd‘.'r"P units. The cequiring and reieasing
of pages when "rhere are pages avcz”c'o!é will run from the oroces-:ér requiring tna
function while page swappmg will prebebly best be sprvxced by the peripheral
processor. Tbe key to a good pcging mechanism is a good method of w0rkmg set
n"\ancge‘menf. This could be accomplished by:

1. User aids (Poé;:cl compiler, ‘efc.)
A2‘. Segm.enf usage (enfering/exiﬁng)

3. Hardware cnds (pam modification)

Structure of the Operating Sysiom

o All dynamic contexi of the task will reside in shared memory.
o All task control tables will reside in shared memory.

o Shared memory will be addressed virivally by a process.

(-]

Multiple address spaces in shared memory will be on a segment basis.
e Segments in shared memory will be paged.

e Protection in shared memory of a process will be on a segment basis.

OPERATING ‘SYASTEM TASK FCRCE ‘ : 43
. o The smallest unif of shoring by a process w.i-l.l be on a segment bas.is.
o Large porﬂéns of the operating system will opérafe under Qirfual memory .
'o' Processés must be able to dyndmica.lly allocafe/dea”ocai:e segmeﬁfs, |
o Whilea process’ isin execufjon, a method of locking pages/segments

‘must be ‘cvcil‘able.

Scale and Opercting Environment

The m.csior fmpcch of sCaio‘ on memory mancgénﬁenf comes af the point of
inclusion or non-inclusion of the Cyber 80 mem‘or‘/in.ﬂ-‘.e system. Some part of
memory mcnc:xgemenfis geing to .be.-conce\;ned only with that memory.. I wiIH hava
to be designed in such a way that it can be conveniently included or not in the system. |

 The addition of privdte memory on '§ehfrcl processors will also have some
impact oﬁ memory management. This impact will be dependent upbn the fypveiof
 memories added. | |

Differing operating environments will necessitate differing scheduling and

allocation mechanisms o3 described in that section of this paper.

 OPERATING SYSTEM TASK FORCE 44

BLOCK l/O
Block I/O wn“ provude the devnce dependenf mferface between record 1/0
and device 1/0. B]ock 1/0 functions lnglude managing 1/0 buFfer space, scheduling
'|/O requests to the appropriate device d’riv»er WGiﬁr‘\g for 1/O reéuest complefié:n and |
‘informing fhevre'quesi'cr of the our‘come of the reques?; Lcmca] error recovery waH ba
performed by block 1/0.
o Biock 1/0 mﬁsf be structured such that they can Ee adapted to the zwpémrienol
enri‘vonmexj_t: o |
1. Overthe ,splacfrbm of memory configurations, one memory munagzment
techniqgue most probably will not lend itself to optimizing memory for all
iﬁcreménfs of the spéctrum. ‘Hence, the structure of block 1/O must be
| adaproble enough to include the cpproprlcfe memory mondgemenf fechmcbes.

20 leeWIse, the required devnce optimization varies wafh opercﬂonol

environment and the structure must accommodcfe these vcriances.

OPERATING SYSTEM TASK FORCE T 45

RECORD I/O
Record 1/O will pfovide the user with access to files at the logical record

level. Record 1/'0O groups records into blocks and interfaces with bldék 1/0 tc read
or write the data. Record 1/QO is device independent exﬁepf for a set of device
“dependent rules which determine the conditions under whi.ch_ block 1/0 should be
interfaced. Record compression/ decompression and co:licci'in‘g is provid‘ed by record
I/O and is transparent to users Aaccessing a file at the record 170 level. Automatic
buffering of data blocks may be provided where applicable (sequenticl files). The
virtual .hﬂ'embry system may impact buffering of deta 'o!oc!;s such that buffering mey be -

impractical (excessive binding of pages or actually re-reading a buffered block).

Qv

- OPERATING SYSTEM TASK FORCE 46

DEVICE DRIVERS
A devi‘ce driver wn;ll perform the ‘funcfion of déviée I/0. ‘A'dev,ivce driver -..

is a task with no differenc:es from any other task other than some defined privileges.
These privileges would include access to a .device and use of l/O instructions. Furfher,
a device driver is aware of only one request at a time; it performs the physical 1/0O .
transfer, and is specific to a device type or class. The dev‘icevdriver will ‘infobrm its
reques‘for or caller the outcome (hardware s;fc:fus or formatted status) of ihe; .;i_/O requosh,’
A device driver will perform hardware error recovery.

A device d?iver as an. entity will exfst as one pro;edure for each device type |
or class, There is to be one unique co.:nt'ext for each i/O requegf. Thére is t.o be at most
one active 1/0O task (dévice Hriver) active for each data path.

A kde,vice driver interface with ifrs caller will be via shared address sbace;.

The shared address space will include .’rrhc data a'rea, request inFormct.ionv (address, count,
etc.) and outcome information. All pages of fhe'shoredvoddress 5pocie fo/From which 1/0O
is being done ;nusr be bound for the duration of the /0.

A device driver should be sfrucz‘{J.red in‘ such a way that only the portion
necessary to perferm 1/0 is resident in o limited mcs*.azv x Those paits wis
are exception conditions or requesis »(error r,ecov‘ery proc;r;iures,* etc.) would be noen-
residénr. -Thfs structure must be aduptable ifo the degiee that éorfions, can be include‘d/
c>:¢iuded across the spectrum of mL;mmAy (;onfigvur‘af‘iozvxs. The f‘d‘cpfubmfy aspect ?.;'nplies

~adesign and progrcmrﬁing disciéli_nc _whicH must be followed at implementation time. A
. de}vi‘ce drrivevr‘, 50 srructured; bsl%o'u’i-‘d bé aEle to span the range of a cémmon ‘6peraﬁng system,

The above does not confrcdicf our conclusion that only one version of a specific device driver

s necessory for all of our logical conf:gurohons and vcnohons of operahng

‘environments. Device drivers. may be the only | module w:th thls chcractenshc.

 OPERATING SYSTEM TASK FORCE . 47
SCHEDULING AND ALLOCATION

S»chfedul‘in.g and Al l»ocoﬁon are related topics having to do with thé_cséignmenf
‘;.of r_esoprcé to a task. In particular, we consider scheduling to be making guesses about
_ifh‘e order‘in which ollo;oﬁon is to be performed. Allocation involves actually affcxchingv'
resource fo a tesk. N
“There must be some interconnection among the various a!_ic:cutprs x." order o best
use the resources of the system. In order to accomplish this c,_‘s:'ng!e scheduiing st is
proposed. This is a list of tasks in the system in the order in -hich they ar: wupecisi to
b: sm.vic‘edv by a processor. Processor sveyviAcing is usdq’ E'?ec‘cu;s; a'processor must be
| qllock:oi“ed to a task before uny use of»o' resource or deollo'dﬁ'tio;\‘ ccnb~ P‘z:;rfr'ormed. All
resource allocators ;héuld use thisvlist to help them de‘c‘ide how to tn'll.;;lt;xf.e resources
among competing fcsk;. This permits coordi‘notved ollééoﬁion of ‘resoﬁrces since the status
of tasks with regard to ré;ource allocations is,'sulrriwmoriz‘e'd -in_ the list. For example, if
memory is a critical resource in the system f>hen allocation should in general be to the
task using the most memory.
A sample list might consist of three paris:
R E}:peui:‘ed tasks - these tasks will be ollocared a‘p,."cc-:—:ssor in their
current ofdar - no re—ordeﬁné wi.ilv be dene.
2, Assigned (Ready) tasks —i'bheAsej tasks can use a processor but their order
may be changed.
3. Unassigned (Not Ready) tasks - these tasks cannot presently use a

processor.

-OPERATING SYSTEM TASK: FORCE 48 .

Beyc;nd these three parts the l:sf is ordered by other criteria including, but not
vlb.imifed'to, possession of critical resources, time in sysferﬁ (cging) and externally supplied
priorities. The nature and effect of these criteria is certain to change from ipsfollation to
insfollc:.f‘ion. It is therefore necessary for both NCR and CDC to provide for ‘vcricﬁon

1

of scheduling algerithms. A single scheduling facility to manipulate the above ist und

0

;
;ontml ‘§f an externally provided algorithm must be providad by both companies
Such a scheduling facility could be table driven v here the scheduling cloarithia
is established as entries in a table and the scheduler is a procedure cr set of nrocedurs
" which manipulate tasks according to these entries. The p possibie task staies are represented
‘as rows of a matrix. The columns of %hc;. matrix contuin parameiers used for ordering the
tasks in each state and information about moving tasks from that state to another. Tasks
fit one of the states at creation and are moved from state to state according f,é the
matrix as events occur.
The intent of the allocation and scheduling algorithms differs in the differenf

operational environments, In interactive systems, the importont obiactive is wausily

response time. In batch system, total fhroughnut is mest impoerteni. Vionsacsion sysiams
usually aitarnt to maximize threughput w:i,.nuf camx,.g any recnonse Hmo to cuceed

some maximum. These ob]ecﬂyes are achieved almosi totaily through the schcduliné
and cﬂlécofion algorithms used. The combination of one or more gperational
environments is also heavily cwenJenr upen a good s’ch‘,oulmg and allocation qlco‘ ihm.

’ Since the algorithms are based on operational environment, both NCR cmd CDC
need to provide standard clgo}'ithms or tables for use or modification by their

customers. In many cases, a single algorithm (table) will .cpply to both NCR and CDC

customers.

| OPERATING SYSTEM TASK FORCE 49.

“More sophisticated sCheduling ol‘gqrifhms r"équire more space since the scheduiing .
" matrix requires more rows (s.fufes) and more pcra:ﬁeters per TOW, The u.s‘e of such a matrix
is likely to consurﬁe more précéssor powér. On smaller systems, it may not be cost-
effec‘tivfe to ;Jse very sbphisﬁcafed scheduliné algorithms, This rﬁeans that scheduling
algorithms prt;vided for the top of ’rheiline may not be useful at ths bétrom. Also, the
'vscheduli'ng algorithms provided for fhe‘ bottom of the line‘may. not bc able fo‘ cot oﬁf?r@m
pe‘rFormonce out of the top of the line,

The only major difference of scala Lj resource allocaticn is s the number of-

resources. It -i_s possible that the éddii;ionél resources m dlarge sysiam would complicate
the scheduling and aliccation dlgorif’mr;; (in particular the processor scheduling olgorithm
since it must handle all interdependehcies). Additional complexity is more likely due
to the nﬁmber of types of resources, not thehumber of resources alone. In fhe-'range' of
scales being considered f’he number of Wpés of reséurces is likely to be Fai.rly constant, |

Frequent allocation and de-allocation of resources occurs in interactive systems.

This contrasts to batch systems where resources are usually allocaizd en a jeb-by-{-h

[l

.

basis. Transactien sysfem:{. are uzuc}Hy built fo run with pre~allece o rSsoUress fuve
for prpcassors). This allocation is chanj;_l;ad only in case of error o oiher exrr~30:“«..§j:zs.
“conditions. The less frequently allocation is perfdrmed the less sensitive the systen:

to improper design of the algerithms. This means that sophisticated allocation alger’-
sensitive to details of the environment iore fe;c;uired'jn interactive systems but simpler

‘algorithms are adequate for batch. -Transaction systems require a sophisticated processor

scheduler 'oh|y;

OPERATYING SYSTEM TASK FORCE - 50

JOB CONTROL LAN GUAGE PROCESSOR
The Job Control Lunguage (JCL) is the Ichguuge used to ‘comml"micafe with the
system and direct it to do work. The JCL processor is the system routine that interprets

and proce‘sées the JCL statements.

The system or jcb control langucge has many faces, cnd may, by some definitions,

Ao

be a number of languages. It is the language(s) used by epercicis ond users fo communics
with the system and direct its operation. The language(s) must suppeii: remoie/main

. * ! P Tt ay H
conscle operators, remofe terminal operators, remofeﬂoccl patch vors, and interactive

‘Users.,

The confusion as to how many languages there are arises from recognition of the
overlapping requirements among users. For example, all users will want to manipulate
job and file parameters, both the console operator and interactive users will want to

function in an interactive mode, etc.

The cc:g;ébiliﬁes on>d general ué;.\‘proach ‘devel’oped by CDC's Can‘cﬁdian Developmant
Division, (CPD), end .described in their Command Language Descrip:ion docuinent oatisi
th‘e nceds of‘NCR and CDC ccress the rcmga L:-»f the preduct line ond iz":» 's"‘he Hiree mojor
-operating énvironmenfs; i.e., batch, 'inferqéfivecmd trénsacfion. The foll'éWin]g are
sorﬁe of the chcractérisﬂcs and features:

—-The JCL is terminal oriented which subsets effectively for all operaﬁqhal

environments.

'OPERATING SYSTEM TASK FORCE 51'_
~-The JCL should be natural and not require programming experience to use it
.effecrively;
- =-The user is not restricted to rigid formats. -
--The JCL must provide the capability to be redefined cr the user level or;d
allow the user to aefine.his 6Wn commands; i.e., it must be extensible.
--Inter-job commun_icofi‘on will ,be. provided througH ’fhe JCL using global
variubles, |
--Jobs may initiate other }ob‘s.A This allows job sequencing.
- ~-Special features ond fac.ilifies may be provided lo privileged users; e.g.,
* operators cn_d operations managers.
-;-‘The JCL should provide ‘he!,;' to the user,
-,—The JCL Processor must provvide two modes of operation. One provides .for -

immediate interpretation and processing of JCL statements. The other allows

~ for'collecting JCL statements without inrerprétafion.

The risks in a common JCL processor are minimal. Much of the work hes already

been done by CDD in defining the lunguage and the processor,

bOPERATING SYSTEM TASK FORCE - 52

DEVICE ALLOCATION

Device Allocation can take place at any time when a task decides it requires
the use §F adevice. In some cases (at installation option) all allocation will teke p]oce
at the start of a Job. |
“Usually devices are allocated to system tasks which will operate the dev?cés
" as reqqesfed by several users. It is also possible (at installation opfion).for davices to
be ollocated directly to users. This option will be used mainly in barch systerss. Such
allocation is UchHy discouraged in interactive systems ond not pro sided in transaction
systems, Smaller sys.‘ems cﬂso discouragz allocation of devicas io UIers becousz of ihe
smaller number ot total devices available.
Allocation of d removable volume device (e.g., disc, magnetic tape) implies
‘the mounting of the proper volume on that device. In some cases, allocation may
depend upon Where the operator mounts the volume. Allocation of devices fo.u'sers implies

the existence of private volumes for mounting on those devices.

.Communications devices are treoted exactly as are other devices in that they are

normally allocatsd to system tesks (e.g., Transaction Distributer) but con o sllocerad o
users; if necessary, Dial-up terminals ore freafed @5 removable velume: i

dialed in terminal being "mounted.”

One algorithm for 1/O device allocation is not suffi: .-t for all systems ovar
the range and all operational environments. Multiple routi. iay have to be piovided

to satisfy various users.

OPERATING SYSTEM TASK FORCE | 53

BINDING

Binding is done at times defined by operaffons; »perfo.rmed on fhé program such és
compiling, linking (entirely a bindingfuncfion)., loc;ﬁng, an‘d execution (d}rncmié
binding). The later binding times plrovicie more ﬂexibilify. in operatibng environment
at the -expénse of redundcnf and wasteful binding opérﬁtions. Very dyncmic systems
~such as most inArerache systems rg:quire later binding tirmes then constant sysi‘ems‘such
- as commercial batch systems. Transaction .;,‘/stems usually inveie e fraquant but well-.

controlled bindings. Scientific batch systems do-not usuclly rec: 2 lote binding timas
: i ' o .

but their changing nature usually means that the overhead involveid in tater-binding is not

harmful. 1n order to reduce over?lz;é;:d costs, operating systems code should be »dyncmi;.cﬂy
bound only when necessary. Virtual Storage sysféms usually provide focilifiesl ‘fo aid
dynamic binding but improper use of these facilities 'Acon cause severe perf§rma:mce :
degradation. Tl;aere is no reason why systems cannot be built to both avoid the severe
degradation associc;fed with dyno‘mi'c binding cnd‘provide'Facilifies Fér earlier bindving |

when desired.

OPERATING SYSTEM TASK FORCE 54

How

Static Binding

you can tell -
lf'snormdlly d..one time affair between the opefcﬁng sys‘revmvand the process.
The'o;}erai;ing system normolly links all exferr;cl .relferences of a prb;esg priof
fo execuf‘i'on.

Dependins on the versatility of the operoﬂng"sys%em pre-allocation and

and binding of real mermory may be somewhet dynamic.

| .

Both CPU and PPU could @:wfake in the affair.

Linear space requirements are normally known prior to exzcution.

'OPERATING SYSTEM TASK FORCE 55

Dynamic Binding

How you can tell

Its an affair with the operating system that can go on for the life of the process.

~ Operating system links and loads only that procedure that was externally referenced.

The external references of the procedure called will not be resolved.

t

There is normally no real memory pre-allocated to the procedure of a pracess.
Y 7 PT P

!

Bé.ﬁh the CPU and PPU could ‘pczrroke in the affoir. -

Control Data views dynamic I.inking and loading as on infogeal part of the
Viiltual ‘M'emory mechaniﬁm (at Iécsr as of 4/10/73). It is assumed ot rhé serating
system will use dynamic l¢§ding and linking in a large portion of its p_rocessors. MCR and-
CDC's use of dynamic loading and -linking is quesﬁo'nobble for first release for the

-operating system,

' OPERATING SYSTEM TASK FORCE s

oPERATbR CONTROL
- Operafor»‘Confrol IS that part of the s?s;tem that provides fhe»témpdfer operator
with information about the status of the system and the 'igbs being processed, and fhea._'
ability to influence or conhbl ‘fhe‘ beha\j/iorﬁof the system wifhin certain limi_ts;

Operator Control is requ'i're.d by all systems over the rcm:xe Theﬂs'ysfcms cannot
operate withou;_ operator qcfion.. Operator action should Sé directed primosiiv by éhe -
system. Operator communication and control occurs t} rough vz of fhe JCL e

“operator may have spéc?cﬁ facilities and feoh..Jre‘s provided for priviieged uicis. A common
Ope;é?or »Co.nrrol facility can be provided by incluo‘?ng parameters that can be set-by |
ihsfcr“c:ﬂ.oﬁ ;aption. | . |

" Both CDC and NCR believe that the operator communicates with the system
through the Jol; Control Loﬁguage; | |
: A comrﬁqn Operator Confrol facility can be provided with minimal risk. Since .
the facilities ’provided in Hwis oréq are through JCL, there are ifew, if any, problems and

issues that need resolution ouiside of the JCL area.

'

OPERATING SYSTEM TASK FORCE |

DATA MANAGEMENT

57

- The "operating system" will to the best of our knowledge provide to the data

" management system all interfaces, task/process interfaces and procedure interfaces,

which are available in the system thus fulfilling the requirements (requests) of data

management.

OPERATING SYSTEM TASK FORCE

APPENDICES

OPERATING SYSTEM TASK FORCE A-1

APPENDIX A - DEFINITIONS

ALLOCATION - The act of picking a reqﬁesf for a resource and honoring that requeéf._

DEVICE DRIVER - An operating system task which performs a physica‘l I/O transfer

from a specific davice.

DEVICE HANDLER - The portion of a device driver which is not sensitive fo schéduling

criteria.

DEVICE TYPE - A class of devices which are similar enough in operation that they can

be hand‘l.ed Ey a single vdevice‘d'rivevr procedure.

FDYNAMlC CONTEXT - The data fora-processwhich is cha_n;;ed during'exe(;.ution. B

EVENT -~ Anything which caus;es a list of requests for service to be cltevrbed .

EXEC ~ The novn-'-fdsk procc—idt;f‘es necessary for managing the interaction between
px'oce§s§:s and inactive msks, and the se?e‘c{'ion of proviinas
for a procassor.

JOB - The immedicie user of a computing system's view of ¢ piace of work. From
the operating system it is a rather arbitrary set of tasks that
" are performed as a result of information between a users

LOGON and LOGOFF statements.

~ OPERATING SYSTEM TASK FORCE A2

~JOB CONTROL LANGUAGE - The language used by an operator or other immediate
| user of a computing system to request services and direct the

operation of the system.

MEMORY, LOCALLY PUBLIC - Memory accessible by‘mt;lﬂple, but not ne;essaﬁl‘)‘/cll,

physical _prdc'essor;s in a computing system.
MEMORY, PRIVATE - Memory accessible by enly cne physical processbr.

MEMORY, SHARED - Memory accessible by all physical processors in a comnuiing
| : y by all physical p :

sysfem.

PROCESS - An active instance of a task. A proccs;s is the only entity apélied to a
., v::.-pno.cessor:by%EX EC ,to,,get-.\wotk;.d one. |
A process‘n‘ormally vcv:orbxs‘isi's of:
1. Adynamic context uhi‘que to this process, and
2. Aset qf procedures shared with other procesées fh;:_:f have
been creq%ed from the scme inactive fask.
A process has its own address space which ey have o tain

segments shared with other procasses,

READY STATE - The state of a process which is able to use a processor as soon as it

can be allocatad .

SCHEDULING -~ The act of ordering‘»lists of reqbu'esfs for service dt the time requests

are made.

 OPERATING SYSTEM TASK FORCE A3
TASK -1. T.he smallest ‘unit'oF ,wo.rk ,fecognized by the sysfem;
2. The 6biect in the ’s‘,ystem‘td which resources ﬁre ollqccfed.
These two defin‘ifi»ons are not contradictory. Either one can be

used as the primary definition and the others will follow.

TRANSACTION DISTRIBUTOR - A s'ervic‘e function for transuction systems. It
inputs transactions frem files and distributes them to the
appropriate processing tasks. The entire uzaration is

controlled through a transaction distributicn lenguege.

WAIT STATE - The s"rcxfei of a process which cannot use a processor until some event

occurs. -

APPENDIX B - CYBER 70 SCOPE 3.4 M‘ODULES | B=1

The followlng pages shouw the object size of SCOPE 3.y modules
~.grouped somewhat by functlon. All numbers are. octal LO- b1t
words. The "Proc” column identifies the processor {P or (%

used by the module.

Size Proc Name ~ Description
Miscellaneous

MTR . System monitor

134k P
200 C CPNTR - System monitor
.4ooo C : ' . ECS Driver
175 o C RECOVR . ,
1314 _ p TDS. Terminate deadstart
7?7?57 subtotal : . : ‘
Display Routines
1300 P . DSD Dynamic system display
350 P ax9 kLOOD resident overlay ‘
1420 P BXA-8XR 18 DSD console command overlays
2c37- . P 8DA-8D 2 18 DSD dlsplay driver overlays
345 P ayq 7000 station routine ,
- 115k P BEA-BEZ 17 7000 statlon routines
52 P IDL
52 P 1DL Overlay loader and dayflle message
: processor for DSD . .
52 P DM Device queus sanager
s P L6 Display good SR
571 P M DED #hother o wuino ot :
12?5 P DIS Routinma to ooson L oneral cordds

: from consozu
13L3% subtotal

Permanent File Manager

12l C PFCCD ‘ Permanent fila control card pr"assor

551 P 1rC . Droep permanentc 7ile mass storag

3313 P PFC Pernmanont file catalog

L?7? P LPF " Permanent file queug manager

12bYy P LFC - Catalog function part II

131e P PFA Permanent file attach

17 P 2FA ' Utility I/L processor PFA segment

1302 P LPF . _Load permanent files

1005 - . P PFP ‘Permanent file purge

1270 P PFE - Permanent file extend

130k P PFR Permanent file rename

4?7l P PD PFA Delay Overlay -

ya2e P EPF ~ Send permanent file audit information

732 P PFS - Position function storage allocation:

35 P PRM '~ Permission code processor for perk
——ma S -

_ OPERATING SYSTEM TASK FORCE ~ * | B-2

"Size Proc Name Description

Permanent File Utilities

2433k ¢ AUDIT Audit permanent files.

17237 C PFDUMP Dump PFD and RBTC

11566 C DUMPF Dump permanent files to tape

21l0ue C LOADPF Load permanent files

5003 . ¢ TRANSPF Transfer permanent files
C10bL P DPF - Dump permanent files

1051 P TRF _ Transfer j*ﬂ**nent files

223 o P LU DUMPF initialization

300 p TTT Transfer permanent file tables
C_UbS P PFD Permanent file dum '
107500 subtotal ' ‘

MASS STORAGE T/0

Allocatable Devices

© 350 C SPH - Stack proceszsor monitor
L0 P ano " Allocatsbla cdavice file copan
& P 185 Interface b=ztwsen stack processer
: mgr- and LSP/3bL0
327 P 1LRN - Release record block chain
370 P YES Enter stack requests
‘BL7? P “ISP © . "Stack processcr main program
7b P 3asP - Driver overlay for bk0O3-I
141 - P =N "Driver overlay for kL33
124 P asT , Driver overlay for bLO3-II
12y - P 3SR Driver overlay for 8k5
l2e P 3su Driver overlay for 814
117 P 3Isv ~ Driver overlay for 821
12k p 3su Driver overlay for 2yl
12y P 3ass : Driver cverlay for 25Y
S5 =g oub* obtal- ’ » '
uaes p 1EPR Stack proceoosaor main orooran-ICS 7
. » . | 1/0 ?a,tL., PR :
A 2 JEP , ECS Driver cvaerlay fof |
R P 3 ©ECS Driver overlay
R ¢ P SET o ECS Diivur overlaw o :
S 133 P 3ER ECS ¥rivar cverlay fop
R P 3EU CECS Brivar cunrlay
S el P JEV. : ECS Diiowp oooclay for 821
13Y P . 3EUY : ECS Iiiwrr wvorlay for 841
7= P ‘3ES : ECS Driver overlay for 854
1ekb subtotal - v :
ebad P 18X Process stack processor errors
337 P CEM - Central error manager
P

: lﬁ%'* 7EC - Generate ECS buffers
- J340 subtotal : : L

QPERATING SYSTEM TASK FORCE

Non-allocatable Devices

Tabe

L7
yge
502
1015
bl

Labels
1260

- 3b31L

TTVTVWTVDO

o

Name

" 5DA

1PK
3IPK
1DA
EKG

LABEL

Desdription

‘Family disk pack label processor

Sequential pack close
Sequential pack initialization

".Disk pack label routine

Family pack end of job processor

14 Overlays.

OPERATING SYSTEM TASK FORCE

UNIT RECORD I/0 DRIVERS

Size K ".

3067

. 1150

10kLY
- 521
121

343

Proc-

Name

TAPE

TAPE

ya27?
1275

542
540

5L5
500

LOL

RS
e
4o
L3g
EQ07

257
155
T3y

3,035Y

52
ce3
101

am

310

voTv

TVOUVO

‘T

.a,

T T vUo ‘v o YUUvUTw TOUUTTO

o K= T TUvT

LIR
LIS
2Is
1Ia

1IU
eLp .

2FC
2RC

- LPL

VSN
1TS
2TA

LNF
MT

IRT
LRS

LNR

1h3
WI
WTF

S
L

2TB
1RY9

Lun
L
e

bLM
bLC

RTL
272
8T3

qeTrack S"krf"xz /
: Bac!u%rd Clein wout

_iDescription

JANUS Main Program

JANUS Main Program

JANUS Routine

Initiate JANUS Control P01nt
JANUS Backspace Print Name

On-Line Printer Driver

On-Lin2 Card fPunch Driver

On-Lina Card Reader Liiver

Plotter Prograsa {Dumi, 2

Visual Serial MHumber
- Tapa Sampler

Tape Assignment Overlay

Multifile Position Routine
for ANSI Labelled Tapes
Driver for Long Record Stranger {L7
Tapes for ?7-Track Tapes
SCOPE Tape Read Driver :
Stranger {S} Tape Read DrlverA
for ?7-Track Tapes

- 9-Track S-Format Tape Read Drlver

9-Track SCOPE Format Tape wrlte
Driver

SCOPE Tape 5rzte DPlV"P for
?-Track Tones

Forward Skip :uublrl‘fﬂP EYSIE

SL\ahOO’ IS8T Tooe wers REEER

P IRVE 1

q- ?rack i¥0PE

I!{\j Vo . K) .
Dayfile lessages an 170 Reounsts
OVGPlay to SuK B

- Qverlay to U

18 Recovary overlays

Load Field Name Messages

Load Conversion Table into MMTC

ANSI/DISPLAY code conversion
Table for MMNTC Memory

EBC0OIC/Display Code Conversion
Table for MMTC Memory

Segment for Loading of MMTC
Qonversion Memory

OPERATING SYSTEM TASK FORCE a5

JOB PROCESSING

Size - Proc. Name Description
217 P ACE Control Card Reader
110 P 1Ad - Advance Jobs' :
1076 P 1EJ L End of Job Processor
) rd "I - P 2Td '~ Translate Job Card -
510 P 1IB - Initiate a Batch Job "
b52 P 18I : Swapin or Rollin a Job
131 P &SI Overlay to Process Parity Error
' - - for 18I ' C
b2 p AN Y) - - Swapout or Rollout =z !ob
1200 C Integrated Schaduler

I/0 Interface

CI0 . Circular Input/Output

30y P .
113 P 1SG ' Add liessage to Dayiile
30k C CFC
2he C JORANDNM
250 - C I0 .
kO C SYS.RM
3537 C FILE
6000 C B Sequential records
L00 C Word addressable
13000 C Indexed sequential
3000 C SAC :
600D C B-bit

OPERATING SYSTEM TASK FORCE B-6

~ Size Proc. Name | Description
CHECKPOINT/RESTART
' k2 C CHEKPT
1512 C RESTART
11,05 P kP Tape Checkpoint -
43 P CY) Reset FNT for Restart
- 31k P ' RST Restore Control Point Area- for
o , Restart
yshL P IRC Reload Core for Restart

DU:P/\? 'OREVI/O‘@UEUES

SDD C XAXRESQ

500 C XAXXDiiFa :

x25 P XReg Restore (ueusz

25 b P Xoa ~Dump Queue
fi? LA“ZCU

hakh C TRAP
613 C TRAPPER
107 C SETCORE . . _

- E3? P LOo0 “Load 0ctal Corrections
22k P MEM ' Process Memory Function
314 P ILT Load Jobs from Tape
317 P 1DF Dump Dayfile
140 P 1BT - Tape/Disk Blank Labels
k2. P ITD » Dump Output File to Tape

13320 C DMFECS ~ v
ecl P RPV - Process Reprisve Function
203 P STS Statusz Routine

P

1 0LL bHP o Dbump

OPERATING SYSTEM TASK FORCE

UTILITIES

LOADER

Size

10255

bl
k400

457

163y
bL5bk
520
2070
257
b5
2551
1405
522
1,237

30b

345
1031

EDITLIB

yo7y

~ 11430
5723

L5

2
bl

UPDATE
13382

 JOB DEPENBENCY

1=
-

el ¥ o]
[F N RS

Proc-

TVY AN AN AN

TOVUT ANN

Name

SEGBILD.
- SEGRES

LOAD

- LOADC

LOADM
LOADU

LOADUC
LOADUMN

- UOLOAD

LIBRARY
LOADO
LOADDL
LOAD D2
LoAD O3

- LDL
LDV -

LDU

EDITLIB
EDITSYS

EDITUSR

- MDI

bEMD

" SRB

UPDATE

TRANSR
CTRANSF
JoB

Dascription

. Loader Utility

Absolute Overlay Loadser

Absolute Overlay Loader

Move System Dlrectory {EDIiLIB UOeJ
Dummy EDITLIB Overl ay ‘

EDITLIB Routine to {aomnlets

Disk fLddress of Roanord

Process Job Dependency

OPERATING SYSTEM TASK FORCE

FILE UTILITIES

Size

111
k325
15k
k03
&0y
k03
k02
5320
2L5
3337
2uty
a217e

Proc.

Name

BKSP
COMPARE
COPY
COPYBF
COPYCF
COPYCR
COPYBR
COPYN

COPYSEF

COoRYL
COPYECD
COPYXS

DISPORE
DSP

SKIPB
SKIPF

REWIND
UNLOAD

RETURN

LCL
eTC
1TO -
bTO
L0F
OPE
CLo

REGUEST

RE®
IR
IR@ -

LISTHP

" Qverlay to 1TO

Description

Process Dispose Funciion

File Close Routine
Close Tape File
Tape Open Routine
Open File Routine {All Filesl}
Open Routino {Dummylt

File (lose Routins {Dummy>

] - N S SO L+ S
Request Card frog ¥

Reg Overlay (ontanninsg 00000
Req OGvariay '

OPERATING SYSTEM TASK FORCE

Size - “Proc ~ Name
INTERCOM ‘ ,

2003k C LOGIN
81 C CONNECT
15741 C SITUATE
ec C DISCCNT
14365 C BATCH
1131b C a '
J14le C PAGE
1772 C - SEND
11517 C CLOGOUT.
21560 C CONVERT
21430 C BRESSG
30L47 - C TEACH
7540 C FILES
13501 C STORE
10526 C DISCARD
132ky C FETCH
wuk0oY C XEG .
4L140 - C PASSURD
73bYy C CASSETS
L5222 C - READ
20b1Yy (. ERRORS
453 C TESTLP
3b14d C EDITOR
? - P RNE
ke P CON
1302 P LZF
125k P . - 82F

125 P qzZF

50b P . 2XP

253 P xe-
13y P 5¥pP
75 p LXP

235 P uxp

a P X6

2y P P
- 7?7 P LLX

325 p ZLX

sye P ypx
1140 P LUWE

7581 P 02z
1312 P 1272

yg P ‘q27

Jyy P 1CT

304 n o acu
4y P 3C1 .
537 p

3T

Description

‘Check if INTERCOM control point

Connect file name to TTY
Multiplexor driver
Multiplexor driver

Mult]ple\OP driver

High spead EXPQ nroCesInr
Process special gircctives
Process out: dota strno

"Outpuv banne» oo termina

Qutput lacad card

Pirocess input dats strean
“Graphics iqut/ou put .processer

- End 7“0\5551rg

LCC EXPERT processer

Qverlay to LL' ~

Qverlay to LLY

INTERCOM VY4 wide band drlver
INTERCOM LCC driver initiator.
INTERCOM LCC driver

INTERCOM LCC driver

Common communications interface
Assign new user table

User table processor
User table processor

OPERATING SYSTEM TASK FORCE e . ~ B-10

‘Size Proc "~ Name Description

INTERCOM {cont.}

b P J3CX ' Command processor for 1CI
173 P 3CF Clean up phase of 1(I
1145 P 111 .. Starts INTERCOM at control p01nt
Iks P aTT READ/WRITE for remote termlnal
13y P . Tl READ segment. of 3TT
371 P 3Te WRITE seament of 3TT
1135 P 1BR INTERCOM Vo4 bufier managar
?5) P 18P MUJ processor ' C '
11 P LQnN 18P overlay
412 P - LPT CINTERCON Vs iow speed ZXPORT
‘ processor ‘
. §57e p 8PT Input file transrission
- 506 P SPT Output file franzasission
15 P 1PJ Process job corz
L? P 1I0 Send dayfile LNTERCON
B terminal
beh P ¥In Sends massages te terminals from
' v PP routines
371 P 1DS H Display generator for INTERCOM VR
- e32 P T7% : INTERCOM 4.1 7000 display generator
77e P TBL - INTERCOM VRY table transmitter ‘
306 P FNT Modifies VRY FNT entry for batch
' and DROPO
214 P Iup s Initiate user program
ys. P IAP _ Initiate another program
340 P MES Message transfer routine
125 P - eME Qverlay to MES
150 P 3IME Overoay to MES
32 P MUJ Multi-user job initialization
37 P MAC ‘ MUJ accounting
u07) p FAD ; File attachrsdotach for MY
b P GBY - Begins graephicy soda '
L P GEJ Ends graphics ooda
g P L6 dJ Update I6S guzua witen K68 s stred
definsd E
e P cGdJ Format SCOPE arror mossas. @
' ey IG6S o
2 P . LGR 274 16X recovery

Tuble 1, Integrated Product Line System Models - o o ‘ .
- 4 - . . . B v . : . ‘
: Scientific . - BDP . . - " Amount of Amount of No. of - Amt, of
Type of . Morthly Iystem System Compe- No. ¢f Type of ~ Real CPU Virtual =~ 6150 I/OCPME -
~ Sysizzm Rental - Fericrm. Pexricrm. tition . CPUs CPU . Memory CPU Mem. 1/C PPE (X.B)
SUPERSCATI 350 3x168 3%198 3 880C(F4) ° 1-16 MB 2000 MB 5-10 = 100-350
(P4) 275 1.22108MP 198MP 2 8803(F4) © 1-16MB OO0 M3 4.8 - £2-230
*1€0 1.1x198 - 198 1 8607 (1 ¢) 1-16 ML 8600 MB 3-5 30-120
VEXY LAS3SS . 200 2xAE00 1.52198 198 3 P3 1-16 MB ".8000 MB 4-6 50-200
@3) £ R BMPECO 1.22168MP . 168 MP 2 P3 1-8 M0 £060 MB 3-5 50-160
* 80 525600 1.1x168 168 1 P3 1-8MB 8000 MB 2-¢ 20-13
1£2GE 100 1.3x 188 168 3 P2 1-8 MB 8000 MB 3-5 50-180
(®2) 75 1. 2% 158D 158 MP 2 P2 1-8 B 8000 MB 2-4 30-125
* 20 1.1x158 158 1 D2 1-8 MB 8000 MB ° 1-3 15-75
MEDIUNM 50 25 1. 9158 158 e 150X+ 0.5-4 MB 15 MB 1-3 10-40
SCIZNTIFIC 25 L 7ExERT 3.5x145 145 MP 3 6150X 0.25-2MB -~ 16 MR 1-2 10-30
-& BUSINZZS * 25 B8R 92.E5x145 145 ‘ 2 $150X 0.95-2 MB 1€ MB 0-1 0-15
©1 15 Sx£500 1.E52145 small 145 1 6150%X 0.25-2 MB 16 MB 0-1- 0-15
MEDIUM 45 - 1169 158 "3 6150 50ns 0.5-4 MB 10 MB 1-3 10-42
BUSZIESS 30 - 9. 20145 145 MP 2 8150 E0ns 0.2:-2 MB . 16 MB 1-2 . .10-50
(®0) * 15 -— 1.E%145 145 1 . 8180Z0ns 0.25-2 MB 18 MB 0-1 . 0-15
SMALL : 15 e 135 P) 6150 90ns 0 IEMB 0 -
BUSINESS * 10 - 125 1 6150 ©0ns 0 16 MB 0 -
®) s — 115 1 §15C oCns o 16 MB 0 -

*Targat Config. ti v

¥ B1EON denzie. w0050 et ln yet to be defined and periorms .3 z €<00 in Sclentific CPU performance.

$3INAOW WILSAS INIT 1ONA0Yd QILVIDIINI = D XIANIddY

~ OPERATING SYSTEM TASK FORCE . p-1
APPENDIX D - DISTRIBUTION OF O.S. MODULES

_ The O.S. Task Group generated the list of functional elements in the following table
. as characterizing the bulk of an operating system. The members of the group were
then polled as to where in their best judgement the funciicns should be performed

in @ system consisting of both PPUs and CPUs using the foilewing definitions.

The function shouid only be done in the PP

PP -
cp - The function should enly be done in the CP
Both - The function would be performed in both the CP and PP

Either - Determination as to where the function is to be performed is uncertain

ASSUMPTIONS

1. Hardware can support any distribution of components required.
2. The size and number of processors in a configuration will be determined by the

distribution of C.S. components raiher than vice versa.

OPERATING SYSTEM TASK FORCE |

~ Votes of the Task Group Members

PP CP BOTH EITHER

Devicce Drivers ’ 9 A
Block /O P
Record /O 2 2 5
Data Manc.ger;lenf 7 1 R
Loaders - Static 8 R
.- Dynamic 13 3 2
Task Mcé'oge.n;em | v 9
JCL Processor 7 2
Opercfovr Control 8 ‘ | 1
.Ufilifies’ 3 .4 2
Shared Memory Mgmf - Swap | | 4 . _ 1 . 2 |
| | - No S‘WGP o 9
Job Manegemcnt v ' | | 5 . 2 2
»Ho'rdwc:re-Dicgnosiics o ' - o | -9 ----j

I/0 Device Allocation _ 7 - 2

