O

‘”7.:.‘#{"

60458890

(@2 CONTROL DATA

CDC°® CYBER 170
COMPUTER SYSTEMS

MODELS 815,825,835, 845, AND 855

CDC° CYBER 180

COMPUTER SYSTEMS

MODELS 810, 830, 835, 840, 845,
850, 855, 860, AND 990

VIRTUAL STATE

VOLUME II
INSTRUCTION DESCRIPTIONS
PROGRAMMING INFORMATION

o Ne

HARDWARE REFERENCE MANUAL

REVISION RECORD

ﬂ\mﬁﬂ

4
REVISION . DESCRIPTION
01 - | Manual released.
(06-06-83)
Manual updated to add support of CYBER 170 Model 845 and CYBER 180 Models 810, 830, 835, 845, 855,
(04~15-84) and 990. Due to extensive changes, revision bars and dots are not used and all pages reflect the
latest revision level. This edition obsoletes all previous editioms.
B Manual updated to add support of CYBER 180 Models 840, 850, and 860.
(11-02-84) .
[Manual revised; includes Engineering Change Order 46891. Front Cover through 5, 7/8, 14, 16,
(05-03-85) 11-1-30, 11-2-1, 1I-2-78, 1I-2-127, II-2-129, I1I-2-130, II-2-134, II1-2-136 through I1- 2—138 and
11—2—145 through II-2- 147 are revised. Page I1-2-149 is added.
Cn_ S
‘{\ .

Publication No.
60458890

-REVISION LETTERS 1, 0, Q, S, X AND Z ARE NOT USED.

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphics Division

© 1983, 1984, 1985 4201 North Lexington Avenue
by Control Data Corporation St. Paul, Minnesota 55112

All rights reserved

Prlnted in the United States of America or use Comment Sheet in the back of

this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV I PAGE REV PAGE RE\d
Front Cover - II-1-42 A II-1-101 A 11-2-23 A I11-2-82 A
Title Page - II-1-43 A I1-1-102 A II-2-24 A 11-2-83 A
2 C II-1-44 A I1-1-103 A 11-2-25 A I1-2-84 A
3 C II-1-45 A II-1-104 A 11-2-26 A 11-2-85 A
4 C 1I-1-46 A 11-1~105 A I1-2-27 A I1-2-86 A
5 C II-1-47 A 11-1-106 A 11-2-28 A I1-2-~87 A
6 A II-1-48 A II-1-107 A 11-2-29 A 11-2-88 A
7/8 C I1-1-49 A II-1-108 A I1-2-30 A I1-2-89 A
9 B I1I-1-50 A I1-1-109 A I1-2-31 A 11-2-90 A
10 A I1-1-51 A II1-1-110 A 11-2-32 A 11-2-91 A
11 A II-1-52 A II-1-111 A 1I1-2-33 A 11-2-92 A
12 A II-1~53 A II-1-112 A I1-2-34 A 11-2-93 A
13 B II-1-54 A I1-1-113 A I1-2-35 A I1-2-94 A
14 C 11-1-55 A II-1-114 A 1I1-2-36 A II-2-95 A
15 B II-1-56 A II~-1-115 A 11-2-37 A 11-2-96 A
16 C I1-1-57 A I1I-1~116 A I1-2-38 A 1I1-2-97 A
II-1-1 A II-1-58 B II-1-117 A 11-2-39 A 11-2-98 A
I1-1-2 A I1-1-59 A I1-1-118 A 1I-2-40 A 1I-2-99 A
II-1-3 A 11-1-60 A II-1-119 A I1-2~-41 A I11-2-100 A
II-1-4 A IT-1-61 A 11-1-120 A 11~-2-42 A I1-2-101 A
I1I-1-5 B II-1-62 A II-1-121 A 11-2-43 A II-2-102 A
II-1-6 A II-1-63 B I1-1-122 A 1I-2-44 A 11-2-103 B
II-1-7 A II-1-64 A II-1-123 A II-2-45 A 1I-2-104 A
I1-1-8 A II-1-65 A I1-1-124 A I1-2-46 A 11-2-105 A
I1-1-9 B II-1-66 A I1-1-125 A 1I-2-47 A I11-2-106 A
11-1-10 B {1 I1-1-67 A I1-1-126 A 11-2-48 A 11-2-107 A
I1-1-11 A I11-1-68 A II-1-127 A 1I-2-49 A 11-2-108 A
II-1-12 A II-1-69 A 11-1-128 A I1I1-2-50 A I11-2-109 A
I1-1-13 A 1I1-1-70 A II-1-129 A I11-2-51 A I1-2-110 A
II-1-14 A I1-1-71 A I1-1-130 A 11-2-52 A I1-2-111 A
II-1-15 A II-1-72 A II-1-131 A II-2-53 A 11-2-112 A
11-1-16 A I1-1-73 A I1-1-132 A 11-2~54 A I1-2-113 A
11-1-17 A II-1-74 A I1-1-133 A II-2-55 A II-2~114 A
I11-1-18 A II-1-75 A I1-1-134 A I1-2-56 A I1-2-115 B
I1-1-19 A II-1-76 A II-1-135 A 11-2-57 A 11-2-116 A
I1-1-20 A I1-1-77 A II-1-136 A II-2-58 A I1-2-117 A
11-1-21 A 11-1-78 A I1I-1-137 A I1-2-59 A 11-2-118 A
I1-1-22 B I1-1-79 A 11-2-1 c 11-2-60 A II-2-119 A
11-1-23 B I1-1-80 A I1-2-2 A II1-2-61 A 11-2-120 A
II-1-24 B 11-1-81 A I1-2-3 A I1-2-62 A 11-2-121 B
1I-1-25 B II-1-82 A. I1-2-4 A II-2-63 A 11-2-122 A
II-1-26 B I1-1-83 A 11-2-5 A 1I-2-64 A 11-2-123 A
II-1-26.1/ II-1-84 A I11-2-6 A II-2-65 A I11-2-124 A

II-1-26,2 B I1-1-85 A I1-2-7 A I1-2-66 A I1~2~125 A
T1-1-27 A 1I-1-86 A II-2-8 A 11-2-67 A II-2-126 A
I1-1-28 A 11-1-87 A I1-2-9 A 11-2-68 A 11-2-127 (¢
I1-1-29 A I1I-1-88 A I1-2-10 A 11-2-69 A 11-2-128 A
11-1-30 C 1I1-1-89 A I1-2-11 A 11-2~70 A I1-2~129 C
II-1-31 A II-1-90 B I1-2-12 A 1I-2-71 A 11-2-130 C
I1-1-32 A I1-1-91 A 11-2-13 A I1-2-72 A I1-2-131 A
I1-1-33 A 1I-1-92 A II-2-14 B 11-2-73 A I1-2-132 A
I1-1-34 A I1-1-93 A I1-2-15 A 11-2-74 A 11-2-133 A
I1-1-35 A 1I-1-94 A 11-2-16 A 11-2-75 A 11-2-134 [
II-1-36 A I11-1-95 A 11-2-17 A I1T1-2-76 A I1-2-135 A
11-1-37 A 11-1-96 A 11-2-18 A 11-2-77 A 11-2~-136 C
I1-1-38 A I1-1-97 A I1-2-19 A I1-2-78 C 11-2-137 c
11-1-39 A I1-1-98 A 11-2-20 A 11-2-79 A I11-2-138 C
I1-1-40 A { II-1-99 A I1-2-21 A I1I1-2-80 A I1-2-139 A
I1-1-41 A II-1-100 A I1-2-22 A 11-2-81 A 11-2-140 A
60458890 C 3

PAGE

X
m
<

PAGE

REV

PAGE

REV

PAGE

REV

PAGE

REV

I1-2-141
11-2-142
I1-2-143
I1-2-144
I1-2-145
I1-2-146
I1-2-147
I1-2-148
I1-2-149
I1-A-1
II-A~-2
I11-A-3
II-B-1
1I-B-2
II-B-3
I1I-B-4
II-B-5
II-C-1
II-C-2
II-C-3
1I-C-4
II-C-5
II-C-6
I1I-C-7
II-C-8
II-C-9
II-C-10
II-C-11
II-D-1
II-D-2
II-D-3
II-D-4
II-D-5
1I-D-6
I1-D-7
II-D-8
I1-D-9
II-D-10
I1-D-11
II-D-12
I1-D-13
1I-D-14
I1-D-15
1I-D-16
Index-1
Index~2
Index-3
Index-4
Index-5
Index-6
Index-7
Comment Sheet
Back Cover

B e I T T o N R R N R N N R

60458890 C

PREFACE

This manual contains hardware reference information for the CDC® CYBER 170 Models 815, 825,
835, 845, and 855 computer systems, and the CYBER 180 Models 810, 830, 835, 840, 845, 850,
855, 860, and 990 computer systems, in their Virtual State of operation.

This manual provides model-independent instruction descriptions and programming information
relative to the computer systems hardware., Additional hardware reference information
regarding operation of the computer systems in both their CYBER 170 State and Virtual State
environments is available in manuals listed in the system publications index on the
following page.

AUDIENCE

This manual is for use by programming and engineering services personnel who operate,
program, and maintain the computer systems.

Other manuals applicable to the CYBER 170 and CYBER 180 computer systems are:

Control Data Publication Publication Number
‘NOS Version 2 Operator/Analyst Handbook 60459310
NOS Version 2 Systems Programmer”s Instant 60459370
NOS Version 1 Operator”s Guide 60457700
NOS Version 1 Systems Programmer”s Instant _ 60457790
NOS/BE Version 1 Operator”s Guide 60457380
NOS/BE Version 1 System Programmer”s Reference Manual, Volume 1 60458480
NOS/BE Version 1 System Programmer”s Reference Manual, Volume 2 60458490
NOS/VE Analysis Usage 60463915
NOS/VE Operations Usage ‘ _ 60463914
Codes Booklet 60458100
Maintenance Register Codes Booklet ’ 60458110
cpc®721 Enhanced Display Terminal (CC634B) HRM 62950102

Publication ordering information and latest revision levels are available from the
Literature Distribution and Services catalog, publication number 90310500.

60458890 C

This equipment generates, uses and can
radiate radio frequency energy and if not
installed and used in accordance with the
instructions manual, may cause interference
to radio communications. As temporarily
permitted by regulation, it has not been
tested for compliance with the limits for
Class A computing device pursuant to Subpart
J of Part 15 of the FCC Rules which are
designed to provide reasonable protection
against such interference. Operation of
this equipment in a residential area is
likely to cause interference in which case
the user at his own expense will be required
to take whatever measures may be required to
correct the interference.

PR

60458890 A A

SYSTEM PUBLICATI@N INDEX

CDC CYBER 170/180
MZDELS 835, 840, 845, 850. 855, AND 860

HARDWARE MANUALS

]

HARDWARE MAINTENANCE SYSTEM
MANUALS MANUALS
| |
[! |
CYBER 1707180
MBDEL 835 I I MPDEL B845/855 | IM@DEL 840/850/860 M@DELS 835, 840. 845. 850. B55.
T T T 860, AND 990 (CYBER 17O STATE)}
T/0 UNLT TrEDRY HARDWARE EROE:EFE?ZE‘_%CE MANUAL
60469310
I
I/@ UNIT MLB DIAGRAMS
CYBER 1707180
604690 M@DEL. 835

] 1

I/@ UNLIT MAINTENANCE/PARTS

(VIRTUAL STATE)
HARDWARE REFERENCE MANUAL. V@LUME I

60469840 60469630
I |
I/@ UNIT WIRE LIST
RF 60469110 CYBER 170/180

I I

I/@ UNIT LRGIC DIAGRAMS
60469100

|
L
|
|
|
|
|

CM THERRY J |

_ CP/CM THE@RY

60455910 60458170
] I
CP THE@RY CP/CM LO-L3
60469320 DIAGRAMS
60458180
I
CM M_B DIAGRAMS CP/CM L4 DIAGRAMS
6045?430 60458190

60469060 PARTS 60458200

CP MLB DIAGRAMS | ICP/CM MAINTENANCE/I |

CP/CM MAINTENANCE/ |

CM L@GIC DIAGRAMS
60457420
CP L@GIC DIAGRAMS
60463070
MAINTENANCE
60469050

PARTS 60462510
l

CPO/CMC WIRE LIST
MZDEL B840
GF_ 60462370

]
CPO/CMC WIRE LIST
M2DEL 850
GF 60462980

I
CPO/CMC WIRE LIST
MZDEL 860
GF_ 60461640

MZDELS 840, 845. 850.
855, AND 860 (VIRTUAL STATE}
HARDWARE REFERENCE MANUAL ., VBLUME I
60461320

CYBER 'ITO/180
MZDELS BIQ. 815, 825, 830, 835, 840.
845, B850, 855, 860, AND 930
(VIRTUAL STATEY)
HARDWARE REFERENCE MANUAL. V@QLUME II
60458830

1

SECTION |
SITE PREPARATION - GENERAL
60275100

|

SECTION 2
M@ODEL B35

SITE PREPARATION - SYSTEM DATA
60469010

SECTION 2
MZDELS 845 AND 855
SITE PREPARATION - SYSTEM DATA
60458210

CP/CMC WIRE LIST
GF 60457300 (845)
GF 60458240 (855)

CP WIRE LIST
GF 60463080

|
CP[/CMC WIRE LIST
M2DEL 860
GF 60462930
I

CM WIRE LIST CM WIRE LIST CM WIRE LIST
GF 60458290 GF 60458250 GF 60461630
I
CABLES WIPE LIST CABLES WIRE LIST CABLES WIRE LIST
GF 60469120 GF 60458230 CF 60461650

|

SECTIDN 2
MBDELS 840. 850, AND 860
SITE PREPARATION - SYSTEM DATA
60462300

|

SECTION 3
SITE PREPARATION -
PERIPHERAL EQUIPMENT

COOLING SYSTEM COPLING SYSTEM 60275300
60455930 60461610 I
T T T
P@WER DISTRIBUTIGN AND WARNING CM P@WER DISTR. SECTION 4

(EXCEPT.WIRE LISTS)
60455920

AND WARNING
60433221

1
CP/T@U POWER DISTR.
AND WARNING
(EXCEPT WIRE LISTS)
60461620

I
CP/10U POWER DISTR.

SITE PREPARATION -
MONITORING "AND P@WER DATA
60451300

CYBER 170/180
MODELS 835. 845, AND 855

POWER DISTRIBUTION AND WARNING HARDWARE _OPERATORS GUIDE
IRE LISTS AND WARNING
WIRE LISTS
oF 60459960 & Coisen |
CYBER (707180
INSTL/CHECK@UT INSTL/CHECK@UT INSTL/CHECKEUT MBDELS 840. B50. AND BEO
60463040 6045 8 0 604 e 660 HARDWARE GPERATZRS GUIDE
60463000
KEY 18 L@GIC SYMBDLS]
60456120
l I ECL 10K MICROCIRCUITS
60417700
40-KVA _CONTRGL CABINET AND
ASSOCIATED MGs HWM 60454720 |
| | _ | MAINTENANCE REGISTERS
80-KVA CONTROL CABINET AND CODES BOGKLET
ASSBCIATED MGs HWM 60455810 60458110
I - | I [
GENERAL DESCRIPTIGN CODES BORKLET
60458100

08/85

60458890 C

7/8 ®

©O

1. INSTRUCTION DESCRIPTIONS

Virtual State CP Instructions
CP Instruction Formats

Instruction Description Nomenclature

Interrupts
CP General Instructions

CP Load and Store Instructions
Load/Store Multiple
Load/Store Word
Load/Store Word, Indexed
Load/Store Address

Load/Store Address, Indexed

Load/Store Bytes

Load/Store Bytes, Immediate

Load Bytes, Relative
Load/Store Bit
CP Integer Arithmetic
Instructions
Half-Word Integer Sum
Integer Sum

Half-Word Integer Difference

Integer Difference
Half-Word Integer Product
Integer Product
Half-Word Integer Quotient
Integer Quotient
Half-Word Integer/Integer
Compare
CP Branch Instructions
Branch Relative
Branch Intersegment
Branch on Half-Word
Branch
Branch and Increment
Branch on Segments Unequal
CP Copy Instructions
Copy Address
Copy Half Word
Copy Full Word
CP Address Arithmetic
Instructions
Address Increment, Indexed
Address Increment, Signed
Immediate
Address Relative
Address Increment, Modulo
CP Enter Instructions
Enter Zeros/Ones/Signs
Enter, Immediate Positive/
Negative

60458890 B

CONTENTS

II-1-1

I1-1-1
II-1-1
II-1-2
I1-1-3
II-1-4
II-1-5
II-1-6
I1-1-7
IT-1-7
II-1-8
I1-1-8
I1-1-9
I1i-1-9
I1-1-9
I1-1-10

II-1-11
II-1-12
II-1-13
II-1-14
II-1-14
II-1-14
1I-1-15
II-1-15
1I-1-16

II-1-16
I1-1-17
I1-1-17
I1-1-18
II-1-18
I1-1-19
I1-1-19
I1-1-20
I1-1-20
I1-1-21
II1-1-21

CII-1-22

I1-1-22
I1-1-22

I1-1-23
I1-1-23
I1-1-23
II-1-23
II-1-24

II-1-24

BDP

Enter X1/X0, Immediate
Logical
Enter X1/X0, Signed
Immediate
Enter, Signed Immediate
CP Shift Instructions
Shift Word, Circular
Shift End-0ff, Word/Half-
Word
CP Logical Instructions
Logical Sum/Difference/
Product
Logical Complement
Logical Inhibit
CP Register Bit String
Instructions
Bit String Descriptor
Isolate Bit Mask
Isolate
Insert
CP Mark to Boolean
Instruction
Instruction Descriptions
BDP Nomenclature
BDP Numeric Instructions
Decimal Arithmetic
Decimal Compare
Numeric Move
Decimal Scale
BDP Byte Instructions
Byte Compare
Byte Translate
Move Bytes
Edit
Edit Mask
Edit Operation
MOP Description
Nomenclature
End Suppression Toggle

Special Characters Table

Symbol
Negative Sign Toggle
Zero Field Toggle

Skipping of Signs

Microoperation
Microoperation
Microopefhtion
Microoperation
Microoperation
Microoperation
Microoperation

NoO LN O

II-1-24

II-1-25
II-1-25
II-1-25
II-1-26

II-1-27
11-1-27

II-1-28
II-1-28
II-1-29

I1-1-29
I1-1-29
I1-1-30
II-1-30
II-1-30

I1-1-30
I1-1-31
I1-1-32
I1-1-32
II-1-34
II1-1-35
I1-1-36
I1-1-37
I1-1-38
I1-1-39
I1-1-40
II-1-40
IT-1-41
II-1-42
II-1-42

I1-1-42
I1-1-43
I1-1-43
II-1-43
I1-1-43
II-1-43
II-1-44
II-1-44
I1-1-44
II-1-44
II-1-44
II-1-44
II-1-45
II-1-45

Microoperation
Microoperation

Microoperation
Microoperation
Microoperation
Microoperation
Microoperation
Microoperation
Edit Function NUMERIC
Termination of the
Edit Instruction
Byte Scan While Nonmember
BDP Subscript and Immediate
Data Instructions
Calculate Subscript and Add
Move Immediate Data
Compare Immediate Data
Add Immediate Data
Floating-Point Instruction
Descriptions
Double-Precision Register
Designators
Floating-Point Conversion
Instructions
Convert From Integer to FP
Convert From FP to Integer
Floating—Point Arithmetic
Instructions
Floating-Point Sum/
Difference
Floating—~Point Product
Floating-Point Quotient
Floating-Point Branch
Normal Exit
Branch Exit
Group Interrupt Conditions
Floating-Point Branch on
- Comparison
Floating-Point Branch on
Condition '
Floating-~Point Compare
Vector Instruction Descriptions
Vector Instruction Format
Integer Vector Arithmetic
Integer Vector Compare
" Logical Vector Arithmetic
Integer/Floating—Point
Vector Conversion
Floating-Point Vector
Arithmetic
Special Purpose Vector
Instructions
System Instruction Descriptions
Nonprivileged System
Instructions
Program Error
Scope Loop Sync
Exchange

HEOOW> o

10

I1-1-45
II-1-45
I1I-1-46
II-1-46
I1I-1-46
I1-1-46
I1-1-47
1I-1-47
I1I-1-47

I1-1-47
II-1-48

II-1-48
II-1-49
II-1-50
II-1-51
I1-1-52

II-1-52.

II-1-53

IT1-1-53
II-1-53
I1-1-53

II-1-54

II-1-55
II-1-56
II-1-57
II1-1-58
II-1-58
II-1-58
I1-1-58

II-1-59

IT-1-59
II-1-60
II-1-60
II-1-61
II-1-63
I1-1-63
II-1-64

IT-1-64
II-1-64

II-1-65
I1-1-71

I11-1-72
I1-1-72
I1-1-73
I1-1-73

Return
Pop
Copy Free Running Counter
Test and Set Bit
Test and Set Page
Call Relative
Compare Swap
Call Indirect
Reserved Operation Codes
Execute Algorithm
Local Privileged System
Instructions
Load Page Table Index
Global Privileged System
Instruction
Processor Interrupt
Monitor Mode Instructions
Mixed-Mode Instructions
Purge Buffer
Copy to/from State Buffer
Branch on Condition Register
Peripheral Processor Instruction
Descriptions
PP Instruction Formats
PP Data Format
PP Relocation Register Format
PP Load and Store Imnstructions
PP Arithmetic Instructions
PP Logical Imnstructions
PP Replace Instructions
PP Branch Instructions
PP Central Memory Access
Instructions
PP Input/Output Imstructions
Other IOU Instructions
Exchange Jumps

2, PROGRAMMING INFORMATION

CP Exchange Operations
Virtual State Job—-to-Monitor
Exchange Operations
Virtual State Monitor-to-Job
Exchange Operations
Exchange Packages
CP Registers
Process State Registers
CP Base Constant (BC)
Register
CP Debug Index (DI) Register
CP Debug List Pointer (DLP)
Register
CP Debug Mask Register (DM) -
Register
CP Flag Register
Critical Frame Flag
(CFF)

II-1-74
II-1-75
II-1-76
I1-1-77
II-1-77
II-1-78
I1-1-80
I1-1-81
II-1-83
I1-1-83

IT1-1-83
I1-1-84

I1-1-84
II-1-84
II-1-85
II-1-86
I1-1-86
I1-1-87
IT-1-88

I1-1-90
II-1-90
I1-1-90
I1-1-91
II-1-93
I1-1-97
II-1-103
I1-1-108
II-1-113

II-1-116
II-1-124
II-1-135
I1-1-136
I1-2-1
I1-2-1
I1-2-3
I1-2-3
II-2-3
I1-2-6
II-2-6

I1-2-6
I1-2-6

I1-2-6

11-2-7
I1-2-8

11-2-8

60458890 A

On-Condition Flag (OCF) II-2-8 CP Job Process State (JPS)

Process~Not-Damaged . Register II-2~-14
(PND) Flag I1-2-8 CP Model Dependent Word (MDW)
CP Largest Ring Number (LRN) Register I1-2-14
Register I11-2-8 CP Monitor Process (MPS)
CP Last Processor) Register II-2-15
Identification (LPID) CP System Interval Timer)
Register I1-2-8 (SIT) Register I1-2-15
CP Monitor Condition Register CP Virtual Machine
(MCR) ‘ 11-2-8 Capability List (VMCL) 11-2-15
CP Monitor Mask Register =~ II-2-8 CM Registers I1-2-16
Operand X Registers I1-2-9 CM Corrected Error Log (CEL)
CP Process Interval Timer Register I1-2-16
(PIT) ‘ II-2-9 CM Element Identifier (EID)
CP Program Address (P) Register I11-2-17
i Register II-2-9 CM Environment Control (EC)
o CP Segment Table Address Register I11-2-17
: (STA) Register II-2-10 CM Free-Running Counter Register II-2-17
CP Segment Table Length CM Options Installed (0I) ‘
(STL) Register I1-2-10 Register 11-2-17
CP Top-of-Stack (TOS) CM Port Bounds Register I11-2-17
Pointer Register I1-2-10 CM Status Summary Register I1-2-17
CP Trap Enable (TE) Register II-2-10 CM Uncorrectable Error Log
CP Trap Pointer (TP) (UEL) Register II-2-18
Register I1-2-10 I0U Registers I1-2-18
CP Untranslatable Pointer IOU Element Identifier (EID)
('j.\ - (UTP) Register I1-2-11 Register 11-2-19
L CP Untranslatable Virtual IOU Environment Control (EC)
Machine Identifier Register I1-2-19
(UVMID) Register I1I-2~-11 I0U Fault Status (FS) Registers II-2-19
CP User Condition Register IOU Fault Status Mask Register II-2-19
(UCR) I1-2-11 10U Options Installed (OI)
CP User Mask Register (UMR) II-2-1l Register I1-2-19
CP Virtual Machine IOU 0S Bounds Register I1-2-19
Identifier (VMID) Register I1-2-12 IOU Status Summary Register 1I-2-20
CP Processor State Registers I11-2-12 IOU Test Mode (TM) Register I11-2-20
CP Options Imstalled (OI) CP Condition and Mask Registers I1-2-20
- Register 11-2-13 CP Condition Register Bit
(b" CP Page Size Mask (PSM) Grouping I1-2-23
Register I1-2-13 CP Interrupts I1-2-25
CP Page Table Address Exchange Interrupts I1-2-25
(PTA) Register I1-2-13 Trap Interrupts I1-2-25
CP Page Table Length (PTL) Interrupt Conditions 11-2-26
Register I11-2-13 Access Violation (MCR 54) 11-2-26
CP Processor Fault Status Address Specification
(PFS) Registers I1-2-13 Error (MCR 52) 11-2-27
CP Processor Identifier Arithmetic Loss—of-—
(PID) Register I1-2-13 Significance (UCR 62) 11-2-27
CP Processor Test Mode (PTM) Arithmetic Overflow (UCR 57) II-2-27
Register I1-2-13 Critical Frame Flag (UCR 53) II-2-28
CP Status Summary (SS) Debug (UCR 56) 11-2-28
Register I1-2-13 Divide Fault (UCR 55) 11-2-28
CP Cache/Map Corrected Environment Specificatiomn
Error Log (CCEL/MCEL) * Error (MCR 55) I11-2-28
Register II-2-14 Exponent Overflow (UCR 58) II-2-29
: CP Dependent Environment Exponent Underflow (UCR 59) II-2-29
Control (DEC) Register II-2-14 External Interrupt (MCR 56) II-2-29
0’ CP Element Identifier (EID) Floating-Point Indefinite
A Register I1-2-14 (UCR 61) I11-2-29

60458890 A 11

Floating-Point Loss-of- Data Type 1: Packed

Significance (UCR 60) I1-2-30 Decimal, Unsigned Slack
Free Flag (UCR 50) I1-2-30 Digit 11~-2-42
Instruction Specification Data Type 2: Packed
Error (MCR 51) II-2-30 Decimal, Signed v II-2-43
Inter-Ring Pop (UCR 52) I1-2-31 Data Type 3: Packed
Invalid BDP Data (UCR 63) I1-2-31 Decimal, Signed, Slack
Invalid Segment/Ring Digit 11-2-43
Number Zero (MCR 60) I1-2-31 Data Type 4: Unpacked
Not Assigned (MCR 49) I1-2-31 Decimal, Unsigned I1-2-43
Outward Call/Inward Return Data Type 5: Unpacked
(MCR 61) II1-2-31 Decimal, Trailing Sign
Page Table Search Combined Hollerith I1-2-44
Without Find (MCR 57) 11-2-32 Data Type 6: Unpacked
Privileged Instruction Decimal, Trailing Sign
Fault (UCR 48) 11-2-32 Separate II-2-44
Process Interval Timer Data Type 7: Unpacked
(UCR 51) 11-2-32 Decimal, Leading Sign
Detected Uncorrectable Combined Hollerith I1-2-44
Error (MCR 48) I1-2-32 Data Type 8: Unpacked
CYBER 170 State Exchange Decimal, Leading Sign
Request (MCR 53) I1-2-32 Separate I1I-2-44
Short Warning (MCR 50) 11-2-32 Data Type 9: Alphanumeric II-2-45
Soft Error Log (MCR 62) I1-2-33 Data Type 10: Binary, '
System Interval Timer Unsigned II-2-45
(MCR 59) I1-2-33 Data Type 1l: Binary,
Trap Exception (MCR 63) I1-2-33 Signed II-2~45
Unimplemented Instruction Slack Digit I1-2-45
(UCR 49) I1-2-33 Undefined Results II-2-45
Multiple Interrupt Conditions I1-2-33 Overlap 11-2-45
Flags I11-2-35 Invalid Data I1-2-45
Stack Manipulating Operations I1-2-36 Vector Programming I11-2-46
Stack Frames and Save Areas 11-2-36 Vector Length (Number of
Stack Frame Save Area Format II-2-36 Operations) II-2-47
Stack Frame Save Area Vector Page Size I1-2-48
Descriptor Field "I1-2-37 Vector Broadcast 1I-2-48
Virtual Machine Identifier Vector Interrupts I1-2-48
(VMID) Field I1-2-38 Vector Overlap II-2-48
User Mask/Condition and Floating-Point Programming I1-2-48
Monitor Condition Fields II-2-39 Floating-Point Data Formats II-2-49
Assigned Registers During Stack Standard and Nonstandard FP
Operation I1-2-39 Numbers I1-2-51
Top-of-Stack Pointers - I1-2-39 Floating-Point Zero I1-2-51
Dynamic Space Pointer (AO0) II-2-39 Floating-Point Nonzero II1-2-51
Current Stack Frame Pointer Floating-Point Infinite I11-2-51
(A1) 11-2-39 Floating-Point Indefinite 11-2-52
Previous Save Area Pointer Double-Precision Non-
(A2) I11-2-39 standard FP Numbers 1I-2-52
Binding Section Pointer Exponent Arithmetic I1~-2-52
(43) I1-2-40 Normalization 11-2~52
Argument Pointer (A4) I1-2-40 Floating-Point Sum and
Exceptions During Stack Difference II-2-52
Operations I1-2-40 Floating-Point Multiply I1I-2-53
Business Data Processing Floating-Point Divide II1-2-53
Programming I1-2-40 Floating-Point End Cases II-2-54
BDP Data Descriptors I1-2-40 Program Monitoring II-2-64
BDP Data Types II-2-41 Debug I1-2-64
Data Type 0: Packed Debug List II-2-64
Decimal, Unsigned 11-2-42 Debug List Pointer Register II-2-65

12 60458890 A

ol

Debug Index Register
Debug Mask Register
Enabling Debug

Debug Scan Operation

Interrupts During Debug Scan

Debug—-Software Interaction,
Debug Enabled
Debug-Software Interaction,
Debug Disabled
Virtual and Central Memory
Programming
Process Virtual Memory
System Virtual Memory
Real Memory
Address Tables R
Segment Descriptor Table
System Page Table
Page Table Search
Page Table Entries
PTE Control Fields
PTE Segment/Page
Identifier Field
PTE Page Frame KMA Field
Listing of Pages in
Page Table
Process Binding Section
Access Protection
Ring Structure
Ring Voting
Effect of RN = 0
RN for Read/Write Access
RN for Execute Access
RN Effect on Pop
Instruction
Effect of RN Violations
Execute Access Privilege/
Mode
Keys/Locks
Interstate Programming
Operation in CYBER 170 State
Memory Addressing in CYBER 170
State
Cache Invalidation in CYBER 170
State (Models 835 through
860 Only)
State-Switching Operations
Virtual State Monitor Mode-
to—-CYBER 170 State
Exchange
CYBER 170 State-to-
Virtual State Monitor
Mode Exchange
Exchanges Within CYBER 170
State
Call from Virtual State
to CYBER 170 State
Trap Interrupt from
CYBER 170 State to
Virtual State

60458890 B

II-2-65
II-2-66
I1-2-68
I1-2-68
I1-2-69

I1-2-70
I1-2-70

I1-2-77
I11-2-78
I11-2-78
I1-2-79
I1-2-83
I1-2-84
I1-2-86
11-2-86
I1-2-87
11-2-88

11-2-88
11-2-89

I11-2-90
I1-2-90
I1-2-91
I11-2-95
I1-2-95
11-2-96
I1-2-96
I1-2-96

I1-2-97
I11-2-98

I1-2-98
I1-2-99
I1-2-102
I1-2-102
I1-2-103

I1-2-103
I1-2-104

11-2-104

II-2-104
I1-2-104

I1-2-105

I1-2-105

Return from Virtual State
to CYBER 170 State
Exchange Packages used in
CYBER 170 State
Interstate Exchange Package
Program Address (P)
Register
Stack Pointers
EM Register
Flags
Unified Extended Memory
(UEM) Enable Flag
Expanded Addressing
Select Flag
Enhanced Block Copy Flag
Software Flag (Word 4,
Bit 28)
Instruction Stack Purge
Flag
Software Flag (Word 4,
Bit 26)
CYBER 170 State Monitor
Flag
Exit Mode Halt Flag
RAC Register
FLC Register
Monitor Address (MA)
Register
Address (A) Registers
RAE Register
FLE Register
Virtual State Ring
Numbers
Index (B) Registers
Operand (X) Registers
CYBER 170 State Exchange Package
Interstate Stack Frame Save Area
Code Modificaton in CYBER 170
State
Debug/Performance Monitoring

Exception Handling in CYBER 170

State

Software Exception Conditions
Address Errors
Illegal Instructions
Extended Memory Transfer

Exceptions
Hardware Exceptions in
CYBER 170 State

I0U Peripheral Processor

Programming
Central Memory Addressing by
PPs
Absolute and Relocation
Addressing
0S Bounds Test
PP Central Memory Read
PP Central Memory Write
PP Memory Addressing by PPs

1I1-2-105

II-2-107
I1-2-107

I1-2-109
I11-2-109
I1-2-109
II-2-110

I1-2-110

I1-2-110
II-2-110

I1-2-110

II-2-111

II-2-111

I1-2-111
II-2-111
I1-2-111
I1-2-111

II-2-111
I1-2-112
I1-2-112
I1-2-112

I1-2-112
II-2-112
I1-2-112
II-2-112
I1-2-113

II-2-115
II-2-115

IT-2-115
I1-2-115
I1-2-119
I1-2-120

. I1-2-120

I1-2-121
I1-2-121
I1-2-121
II-2-121
I1-2-122
I1-2-122

II-2-122
I1-2-123

13

Direct 6-Bit Operand
Direct 18-Bit Operand
Direct 6-Bit Address
Direct 12-Bit Address
Indexed 12-Bit Address
Indirect 6-Bit Address
Channel Input/Output Operations
Channel Flags
Channel Active Flag
Register—-Full Flag
Channel (Marker) Flag
Error Flag
Programming for Channel Input/
Output .
Inter-PP Communications
PP Program Timing Consideration
Cache Invalidation
Error Detection and Recovery
PP Hardware Errors
Channel Parity Errors
Parity Errors on Output
Data
Parity Errors on Input
Data
Timeout
Initialization
Display Station Programming
(Chamnel 10g)
Keyboard
Data Display
Character Mode
Dot Mode
Codes
Programming Example
Program Timing Consideration
Real-Time Clock Programming

A. GLOSSARY
B. EDIT EXAMPLES

C. INTERFACE INFORMATION

Interfaces
Twelve-Bit External
Interface
Maintenance Channel
Interface
Two-Port Multiplexer
Interface
Signals

14

11-2-123 I0U Dedicated Channels II-2-136
I1-2-123 Two—Port Multiplexer Programming 11-2-138
I1-2-123 Function Words 11-2-139
11-2-123 Terminal Select (7XXX) I11-2-139
11-2-123 Terminal Deselect (6XXX) I1-2-139
11-2-123 Calendar Clock/Auto Dial-
1I-2-124 Out (1XXX) I1-2-140
11-2-124 Read Summary Status (00XX) II-2-141
11-2-124 PP Terminal Data (01XX) 11-2-141
11-2-124 PP Write Output Buffer
1I1-2-125 (02XX) I1-2-142
11-2-125 Set Operation Mode to
Terminal (03XX) I1-2-142
11-2-125 Set/Clear Data Terminal
11-2-126 Ready (DTR) (04XX) I1T-2-143
I1-2-127 Set/Clear Request to Send
11-2-127 (RTS) (05%XX) I1-2-143
11-2-128 Master Clear (07XX) I1-2-143
I1-2-128 Programming Considerations II1-2-143
I1-2-128 Data Output I1-2-143
Data Input 1I-2-144
I1-2-128 Maintenance Channel Programming II-2-144
MCH Function Words 11-2-144
11-2-129 MCH Control Words I1-2-145
I1-2-129 MCH Programming for Halt/
I1-2-129 Start (Opcode 0/1) I1-2-145
MCH Clear LED (Opcode 3) I1-2-145
I1-2-130 MCH Programming for Read/
11-2-130 Write (Opcode 4/5) 1I-2-146
I1-2-130 MCH Programming for Master
I1-2-130 Clear/Clear Errors
1I-2-130 (Opcode 6/7) II1-2-147
I1-2~-133 MCH Echo (Opcode 8) II-2-147
11-2-134 MCH Programming for Read
I11-2-134 I0U Summary Status
I11-2-136 (Opcode C,I0U Only) 1I-2-147
APPENDIXES
II-A-1 Twelve—Bit Channel
Control Signals 11-C-2
Maintenance Channel
II-B-1 Signals IT-C-3
Control Signals II-C-3
Signals and Cables II-C-3
II-C-1 Data Signals II-C-5
PP and Channel Interaction II-C-5
I1-C-1 Active Flag II-C-5
Full Flag II-C-5
II-C-1 Function Instructions II-C-5
External Channel Input/
II-C-1 Output Sequences II-C-5
II-C-1
II-C-2 D. INSTRUCTION INDEX II-D-1
60458890 C

SN

®

II-1-1
II-1-2
I1-1-3
II-1-4

II-1-5
1I-1-6

I1-1-7
I1-2-1
I1-2-2

1I-2-3
II-2-4

I1-2-5

I1-2-6

I1-2-7
IT-2-8

I1-2-9
IT-2-10

I1-2-11

I1-2-12
II-2-13
I1-2-14

I1-2-15

I1-1-6
I1-1-7
II-1-8
II-1-9

I1-1-10

Vector Instruction Format

Gather Instruction

Scatter Instruction

PP Instruction Formats
and Nomenclature

PP Data Format

PP Relocation Register
Format

Relocation and Address
Formation

CP Calls, Returns and
Interrupts

Virtual State Exchange
Package

Interrupt Flowchart

Format of X0 for Call
Instructions

Virtual State Stack Frame
Save Area

Stack Frame Save Area
Descriptor

BDP Data Descriptor Format

Floating—-Point Data
Formats

Debug List Entry

Debug Condition Select

Central Memory Addressing
from CP

Process Virtual Address
(PVA) Format

System Virtual Address
(SVA) Format

Segment/Page Identifier
(SPID) Format

Real Memory Address (RMA)
Format

CP Load and Store
Instructions

CP Integer Arithmetic
Instructions

CP Branch Instructions

CP Copy Instructions

CP Address Arithmetic
Instructions

CP Enter Instructions

CP Shift Instructions

CP Logical Instructions

CP Register Bit String
Instructions

Compare j Field and X1
Bits 32 and 33

60458890 B

INDEX
'FIGURES
I1-1-61 I1-2-16

II-1-67
II-1-69 I1-2-17
I1-2-18
I1-1-91
I1-1-92 I1-2-19
II-1-92 I1-2-20
I1-2-21
I1-1-117 I1-2-22
II1-2-2 I1-2-23
I1-2-5 I1-2-24
I1-2-34
I1-2-25
I1-2-37
I1-2-26
I1-2-37
I1-2-27
I1-2-38
II-2-41 I1-2-28
I1-2~-49 I1-2-29
II-2-67
II-2-66 I1-2-30
I1-2-31
I1-2-77 I1-2-32
I1-2-78 I1-2-33
I1-2-79
11-2-34
I1-2-80
I1-2-81 I1-C-1
TABLES
II-1-11
II-1-5 I1-1-12
II-1-13
II-1-11 IT-1-14
I1-1-17
I1-1-20
II-1-15
I1-1-22
I1-1-23 I1-1-16
I1-1-25
I1-1-27 I1-1-17
I1-1-29 II-1-18
II-1-19
I1-1-31

Virtual BN-to-Page Number/
Page Offset Conversion

PVA-to—-RMA Conversion

Segment Descriptor Table
Entry Format

Page Table Search, Start
RMA Formation

Page Table Entry Format

Code Base Pointer Format

PVA-to-SVA Conversion,
Read/Write

PVA-to-SVA Conversion,
Execute

Call Indirect Access
Requirements

Interstate Calls, Returns
and Interrupts

Interstate Exchange
Package

CYBER 170 State Exchange
Package

Interstate Stack Frame
Save Area

Display Station Output
Function Code

Coordinate Data Word

Character Data Word

Receive and Display
Program Flowchart

10U Dedicated Channels,
Models 810, 815, 825,
and 830

I0U Dedicated Channels,
Models 835, 840, 845,
850, 855, 860, and 990

Data Sequences Timing

BDP Numeric Instructions

BDP Divide Fault

BDP Byte Instructions

BDP Subscript and
Immediate Data
Instructions

Floating-Point Conversion
Instructions

Floating~Point Arithmetic
Instructions

Floating—-Point Branch
Instructions

Vector Instructions

Nonprivileged Instructions

I11-2-82
I1-2-83

I1-2-85
I1-2-87
I1-2-89
I1-2-91
I1-2-93
I1-2-94
II-2-101
I1-2-106
I1-2-108
I1-2-113
I1-2-114
I1-2-133
I1-2-133
I1-2-133

I1-2-135

II-2-136

I1-2-137
I1-C-11

II-1-32
II-1-35
II-1-38
I1-1-48
I1-1-53
II-1-54
II-1-58

I1-1-62
I1-1-72

15

II~-1-20

II-1-21
11-1-22

I1-1-23
I1-1-24
I1-1-25
I1-1-26
I1-1-27

I1-1-28
II-2~1
I1-2-2
I1-2-3
I1-2-4
I1-2-5
II-2-6

I1-2-7
I1-2-8

I1-2-9

I1-2-10
I1-2-11

16

Local Privileged

Instructions 11-1-83
Mixed Mode Instructions II-1-86
PP Load and Store

Instructions I1-1-93
PP Arithmetic Instructions TII-1-98
PP Logical Instructions II-1-103
PP Replace Instructions I1-1-108
PP Branch Instructions I1-1-113
PP Central Memory Access

Instructions II-1-116
PP Input/Output

Instructions II-1-124
Process State Registers 11-2-7
Processor State Registers I11-2-12
CM Maintenance Registers 11-2-16
I0U Maintenance Registers I1I-2-18
Monitor Condition/Mask

Register Bit Assignments II-2-21

User Condition/Mask Register

Bit Assignments 11-2-22
Interrupt Condition Groups II-2-24
Condition of Flags

Following Call, Return,

Pop, Exchange, and Trap

Operations II-2-35
BDP Operand Types and Field

Lengths 11-2-42
Vector Operations 1I-2-47
Floating Point

Representation I1-2-50

I1-2-12
I1-2-13
I1-2-14
I1-2-15

I1-2-16
I1-2-17
I1-2-18
I1-2-19
I11-2-20

I1-2-21
I1-2-22

I1-2-23
II-2-24
I1-2-25
I11-2-26

II-C-1

II-C-2
I1-Cc-3
I1-C-4
1I-C-5

FP Compare Results I1-2-55,
FP Sum Results, UM Clear 11-2-56
FP Sum Results, UM Set I1-2-57
FP Difference Results,

UM Clear I1-2-58
FP Difference Results,

UM Set I1-2-59
FP Product Results,

UM Clear I1-2-60
FP Product Results,

UM Set 11-2-61
FP Quotient Results,

UM Clear I1-2-62
FP Quotient Results,

UM Set I1-2-63
Debug Conditions 11-2-72
System Instruction

Privilege and Mode 11-2-99
CYBER 170 State Exceptions I1I1-2-117
Keyboard Character Codes I1-2-131
Display Character Codes II-2-132
MCH Function Word Bit

Assignments II-2-148 I
Maintenance Channel

Signals II-C-3
Data Input Sequence . II-C-6
Data Output Sequence I11-Cc-7
MCH Input Sequence 11-C-8
MCH Output Sequence I1-C-9

60458890 C

olel

INSTRUCTION DESCRIPTIONS 1
This section contains the Virtual State CP instruction descriptions and PP instruction
descriptions. . :
VIRTUAL STATE CP INSTRUCTIONS
The Virtual State CP instructions comprise the following five groups:
e General
e Business data processing (BDP)
e Floating-point (FP)
e Vector
. System
CP INSTRUCTION FORMATS
The CP instructions are 16 or 32 bits long, and have 4 basic formats.
Format jkiD (32 Bits)
0 78 1112 1516 1920 31
OoPCOD™ i k i D
8 4 4 4 12
Format SjkiD (32 Bits)
0 45 78 1112 1516 1920 31
oP- . .
cope | S | 1 | ki D
5 3 4 4 4 12
Field Description
Opcode Operation code.
jok,1i Register designators.
D Signed shift count, positive displacement, or bit string descriptor.
S Suboperation code.
60458890 A II-1-1

Business data processing (BDP) instructions using these formats also have one or two 64-bit
data descriptor words which are stored in CM immediately after the instruction. (Refer to
BDP Data Descriptors in this section.)

Format jk (16 Bits)

0 78 1112 15
I— OPCODE] k
8 4 4
Field Description
Opcode Operation code. 7
‘i\,ﬂ)5
j Register designator, suboperation code, or immediate operand.
k Register designator or immediate operand.
BDP instructions using this format have two data descriptor words which are stored in CM
immediately after the instruction. (Refer to BDP Data Descriptors in this section.)
Format jkQ (32 Bits) i
0 78 1112 1516 31 RN
OPCODE i k Q
8 4 4 16
Field Description
Opcode Operation code.
jok ' Register designators, suboperation codes, or immediate operand value.)
Q Signed displacement or immediate operand value.
INSTRUCTION DESCRIPTION NOMENCLATURE
The instruction descriptions in this section use the following address, register, and
instruction designators:
Designator Description
j,k,1i,qQ, Refer to corresponding field in CP Instruction Formats in this section.
Dor S
Aj or Ak One of sixteen 48-bit A registers (AO-AF) specified by j or k field.
Xj or Xk One of sixteen 64-bit X registers (X0-XF) specified by j or k field. @[“m
¢ o
b4

| | y
11-1-2 v 60458890 A s

Designator

XXj or XXk
XjL or XkL
XjR or XkR
204Xk

2n%Q

2n%p

BN

SEG

RN

)

Description
A double-length X register comprised of Xj and X(j+l), or Xk and X(k+l).
Bits O through 31 of an X register.
Bits 32 through 63 of an X register.
Xk, Q or D left-shifted n places with zero fill on right (e.g., 8*Q'
shifts Q three places). ’
Byte number field of a process virtual address.
Segment number field of a process virtual address.
Ring number field of a process virtual address.

Content of memory location (address is the quantity in parentheses).

Additional designators used with the BDP instructions are listed in BDP Nomenclature in this

section.

INTERRUPTS

Refer to CP Interrupts in section 2 of this volume for further information on interrupts.
Exceptions caused by instruction execution are listed with instruction descriptions. The
following exceptions occur independently of instruction execution and, therefore, are not

listed:
Bit
MCR 48
MCR 50
MCR 53
MCR 56
MCR 59
MCR 62
MCR 63
UCR 51

UCR 50

60458890 A

Description
Detected uncorrectable error.
Short warning.
CYBER 170 State exchange request.
External interrupt.
System interval timer.
Soft errér log.
Trap exception.
Process interval timer.

Free flag.

I1-1-3

/‘Tﬁ' i
Wkw
CP GENERAL INSTRUCTIONS
The 84 CP general instructions are divided into 10 subgroups. Tables II-1-1 through II-1-10
list the instructions in each subgroup. The subgroups are as follows:
e Load and store.
° Integer arithmetic.
e Branch.
° Copy.
® Address arithmetic.
e Enter. ’ TN
e Shift. o
e Logical.
e Register bit string.
e Mark to Boolean.
N
Ay
1I-1-4 60458890 A _ kf

CP LOAD AND STORE INSTRUCTIONS

The load and store instructions (table II-1-1) transfer a single bit, byte string, 64-bit
word, oxr multiple 64-bit words between one or more registers and one or more CM locationmns.
Store instructions do not alter any register serving as the source of the data transferred

to CM,
Table II-1-1. CP Load and Store Instructions
Opcode Format Instruction Mnemonic.
S 80 jkQ Load multiple LMULT
C 81 jkQ Store multiple SMULT
‘ 82 ij Load word » LX
83 jkQ Store word SX
84 jkQ Load address LA
85 jkQ Store address SA
Cb 86 jkQ Load bytes, relative LBYTP, j
h‘ 88 jkQ Load bit LBIT
89 jkQ Store bit SBIT
A0 jkiD Load address, indexed LAT
Al jkiD Store address, indexed SAI
A2 jkiD Load word, indexed LXI
C: A3 jkiD Store word, indexed SXI1
. A4 jkiD Load bytes LBYT,XO
A5 jkiD Store bytes SBYT,XO
DO-D7 SjkiD Load bytes, immediate LBYTS,S
D8-DF SjkiD Store bytes, immediate . SBYTS, S

0‘ 60458890 B | 11-1-5

The following interrupt conditions apply to all load and store instructions. Refer to CP
Interrupts in section 2 of this volume for descriptions of these conditions.

e Address specification error.
e Invalid segment/ring number zero.
e Access violation.

e Page table search without find.

e Debug.
Load/Store Multiple
80jkQ Load Multiple Registers, from LMULT Xk,Aj,Q

(Aj displaced by 8*Q), selectivity per XkR

81jkQ Store Multiple Registers, SMULT Xk,Aj,Q
at (Aj displaced by 8*Q), selectivity per XkR ’

0 78 1112 1516 31

80,81 i k Q

These instructions transfer data between the A and X registers and contiguous word locations
in CM.

The CM starting address forms by left-shifting Q three places with zero insertion on right,
and adding the shifted Q to the byte number (BN) field of the process virtual address (PVA)
from Aj. i

XkR bits 48 through 63 specify which contiguous A and X registers are transferred as follows:
48 5152 5556 5960 63

A- | X- | A- X-
FIRST|FIRST|FIRST|LAST

XkR Bits Register Transferred

48-51 First A register.
52-55 First X register.
56-59 Last A register.
60-63 Last X register.
I1-1-6 60458890 A

)

"

‘vkw i

AR

PN
o

The A registers transfer first. When A-first exceeds A-last, no A registers transfer. When
X~-first exceeds X-last, no X registers transfer.

For example, when: A-first = Bjg, X-first = 2j¢
A-last = 414, X-last = Cjg

the instruction does not transfer any A registers and transfers X registers 2 through C.
The store multiple instruction clears CM bits O through 15 when storing the A registers.
The load multiple instruction unconditionally transfers bits 20 through 63 of each CM word
to the corresponding bits of the designated A registers. Bits 16 through 19 (RN-field) of
each A register are set to the largest of the following:

® Bits 16 through 19 of the CM word.

e Bits 16 through 19 of Aj.

e Bits 8 through 11 (Rl field) of the segment descriptor associated with the PVA in Aj.
During a debug scan operation, the PVA resulting from the addition of Aj and Q is the only

data read argument for the load multiple instruction, or the only data write argument for
the store multiple registers instruction. Refer to Debug in section 2 of this volume.

Load/Store Word
823kQ Load Xk, from (Aj displaced by 8*Q) LX Xk,Aj,Q
83jkQ Store Xk, at (Aj displaced by 8*Q) SX Xk,Aj,Q
0 78 1112 1516 31
82,83 j k Q

These instructions transfer one word between Xj and CM. The CM address of the word
transferred is the sum 8 times Q plus the BN field from Aj.

Load/Store Word, Indexed "

A2§kiD Load Xk, from (Aj displaced by 8*D and
: indexed by 8*XiR) LXI Xk,Aj,Xi,Q
A3jkiD Store Xk, at (Aj displaced by 8*D and
indexed by 8*XiR) SXI Xk,Aj,Xi,Q
[1] 78 1112 1516 1920 31
A2,A3 i k i D

These instructions transfer one word between Xk and a word address in CM. The CM address of
the word is.the BN field from Aj plus 8 times XiR (index), plus 8 times D (displacement).
For indexing, these instructions interpret the X0 contents as zeros.. Aj bits 61 through 63
must be zeros or an address specification error occurs. :

60458890 A I1-1-7

Load/Store Address

843kQ Load Ak, from (Aj displaced by Q) LA Ak,Aj,Q
85jkQ Store Ak, at (Aj displaced by Q) SA Ak,Aj,Q
0 78 1112 1516 31
84,85 j k Q

These instructions transfer a 6-byte field between Ak and CM. The field”s leftmost byte
address is the sum of Q (sign-extended to 32 bits) plus the BN field from Aj.

The load Ak instruction transfers the rightmost 44 bits of the 6-byte CM field to Ak bits 20
through 63. The value transferred to Ak bits 16 through 19 is the largest of the following:

e Leftmost 4 bits of the 6-byte CM field.
o Initial Aj bits 16 through 19.

e Bits 8 through 11 (Rl field) of the segment descriptor associated with the PVA in Aje

Load/Store Address, Indexed

AOjkiD Load Ak, from (Aj displaced by D
and indexed by XiR) LAT Ak,Aj,Xi,D
AljkiD Store Ak, at (Aj displéced by D
and indexed by XiR) SATI Ak,Aj,Xi,D
0 78 1112 1516 1920) 31
A0,A1 i k i D

These instructions transfer 6 bytes between Ak and a. 6-byte CM field. The starting
(leftmost) CM address of the 6-byte field is the sum of the displacement D plus the index
value XiR plus the BN field from Aj. For indexing, these instructions interpret the X0
contents as zeros.
The load Ak instruction unconditionally transfers only the rightmost 44 bits of the 6-byte
CM field to Ak bit positions 20 through 63. The instruction transfers to Ak bits 16 through
19 a value that is the largest of the following:

e Leftmost 4 bits of the 6-byte CM field.

e Aj bits 16 through 19,

e Bits 8 through 11 (Rl field) of the segment descriptor for the PVA in Aje.

I1-1-8 : : 60458890 A

U

.1%

Load/Store Bytes
A4jkiD Load Bytes, to Xk from (Aj displaced
by D and indexed by XiR), length per X0 LBYT,X0 Xk,Aj,Xi,D
A5jkiD Store Bytes, from Xk at (Aj displaced
by D and indexed by XiR), length per XO SBYT,X0 ~ Xk,Aj,Xi,D
0 78 1112 1516 1920 31
A4,A5 j k i D

These instructions transfer a field of bytes between Xk and CM. The byte field length
equals 1 plus XO bits 61 through 63. For lengths less than 8, the load byte imstruction.
right-justifies and zero-extends the bytes loaded into Xk.

The beginning (leftmost) CM address of the byte field is the sum of D (zero-extended to 32
bits) plus XiR, plus the BN field from Aj.

Load/Store Bytes, Immediate

DSjkiD Load Bytes, to Xk from (Aj displaced
by D and indexed by XiR), length per S LBYTS,S Xk,Aj,Xi,D
(DS = DO through D7)

DSjkiD Store Bytes, from Xk at (Aj displaced
by D and indexed by XiR), length per § SBYTS,S Xk,Aj,Xi,D

(DS = D8 through DF)

0 45 78 1112 1516 1920 31

DO-DF | § i k i D

These instructions transfer a field of bytes between Xk and CM., The field length equals §
plus one., For lengths less than eight, the load instruction right—justifies and
zero—extends the bytes loaded into Xk.

The beginning (leftmost) CM address of the byte string is the sum of D (displacement) plus

XiR (index), plus the BN field of Aj. For indexing, these instructions interpret the X0
contents as zeros.

Load Bytes, Relative

86jkQ Load Bytes, to Xk LByTP,j
from (P displaced by Q), length per j

0 78 1112 1516 31

86 j k a

60458890 B I1-1-9

This instruction transfers a field of bytes from CM to Xk. The CM byte field length is the
value of the rightmost 3 bits of j plus 1. For lengths less than 8, the byte(s) loaded into
Xk are right-justified and zero-extended on the left. The starting (leftmost) CM byte
address is the sum of Q (sign-extended to 32 bits) plus the BN field from P.

For this instruction, the CP considers the read operation for the byte field an instruction

fetch rather than a data read, and therefore tests the fetch for execute access validity.
Refer to Access Protection in section 2 of this volume.

I.oad/ Store Bit

88jkQ Load Bit, to Xk from (Aj displaced
by Q and bit-indexed by XOR) LBIT Xk,Aj,Q,XO -
. N
89ikQ Store Bit, from Xk at (Aj displaced Y
by Q and bit-indexed by XOR) SBIT Xk,Aj,Q,X0 :
0 78 1112 1516 31
88,89 j k Q
These instructions transfer a single bit between XkR bit 63 and a bit position in CM. The
load bit instruction also clears Xk bits 0 through 62. o
&
The instructions first generate the CM address of the byte containing the bit loaded or o
stored as follows:
1. Form byte index by right-shifting XOR 3 bit positions, end-off, and sign-extend to
32 bits,
2. TForm the sum of this 32-bit byte index plus Q (sign-extended to 32 bits) plus BN
field from Aj.
These instructions then use the original XOR bits 61 through 63 to select the bit position Pt
within the addressed byte., Binary values 0 through 7 for these 3 bits select the 7
corresponding bit position (0 through 7) within the byte. S

The store bit (89) instruction executes as follows: the byte containing the bit to be
stored is read, modified in the appropriate bit position, and written. No other accesses
from any port to the addressed byte are permitted between these read and write accesses.
Clearing a synchronization lock with this instruction requires preserialization which can be
achieved as follows: a test and set bit (14) instruction (which postserializes) issues
immediately before the store bit instruction. This postserialization effectively
preserializes the lock clearing.

For the store bit instruction, operand access validation consists of write access validation
only.

1I-1-10 60458890 B L W

CP INTEGER ARITHMETIC INSTRUCTIONS

The instructions in this subgroup (table II-1-2) perform integer arithmetic on signed two”s

complement words or half words in Xk or XkR. The sign bit is bit O for full-word integers,

or bit 32 for half-word integers.

@? 60458890 A

Table I1I-1-2,

CP Integer Arithmetic Instructions

Opcode Format Instruction Mnemonic
10 ik Integer sum, immediate INCX
11 ik Integer difference SUBX
20 jk Half-word integer sum ADDR
21 jk Half-word integer difference SUBR
22 jk Half-word integer product MULR
23 jk Half-word integer quotient DIVR
24 ik Integer sum ADDX
25 ik Integer difference SUBX
26 ik Integer product MULX
27 jk Integer quotient DIVX
28 jk Half-word integer sum, INCR
immediate

29 jk Half-word integer difference, DECR
immediate

2C jk Half-word integer compare CMPR

2D jk Integer compare CMPX

8A jkQ Half-word integer sum, ADDRQ
signed immediate

8B jkQ Integer sum, signed immediate ADDXQ

8C jkQ Half-word integer product, MULRQ
signed immediate

B2 jkQ Integer proéuct, signed MULXQ

immediate

The integer format is as follows:

01 63
|S REGISTER Xk FULL-WORD INTEGER

3233 : . 63

U

The half-word integer instructions do not alter X register bits O through 31.

HALF-WORD INTEGER

L2

The arithmetic overflow interrupt condition applies to all integer arithmetic instructions.
Individual instruction descriptions list additional interrupt conditions where applicable.
(Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions).

Half-Word Integer Sum

20jk Half-Word Integer Sum,

XkR replaced by XkR plus XjR ADDR Xk,Xj
0 78 1112 15
20 i k

This instruction forms XkR plus XjR and transfers the 32-bit sum to XkR.

28jk Half-Word Integer Sum Immediate,
XkR replaced by XkR plus j INCR Xk,j
0 78 1112 15
28 j k

This instruction forms XkR plus j zero—extended to 32 bits, and transfers the 32-bit sum to
XkR.

I1-1-12 60458890 A

ole

8A3ikQ Half-Word Integer Sum, Signed Immediate, ,
XkR replaced by XjR plus Q ADDRQ Xk,Xj,Q
0 78 1112 1516 31
8A i k Q

This instruction forms XjR plus Q sign—extended to 32-bits, and transfers the 32-bit sum to
XkR.

Integer Sum

24k Integer Sum, Xk replaced by Xk plus Xj ADDX Xk,Xj

0 78 1112 15

24 i k

This instruction forms Xk plus Xj and transfers the 64-bit sum to Xk.

10jk Integer Sum Immediate,
Xk replaced by Xk plus j INCX Xk,j

1] 78 1112_15

10 i k

This instruction forms Xk plus j zero—extended on the left to 64 bits, and transfers the
64-bit sum to Xk.

8BjkQ Integer Sum Signed Immediate,
Xk replaced by Xk minus Xj ADDXQ Xk,Xj,Q
0 78 1112 1516 31
8B i k Q

This instruction forms Xk plus Q sign—extended to 64 bits, and transfers the 64-bit sum to
xk.

60458890 A . ' I1-1-13

Half-Word Integer Difference -

213k Half-Word Integer Difference,
XkR replaced by XkR minus XjR SUBR Xk,Xj
29jk Half-Word Integer Difference Immediate,
XkR replaced by XkR minus j : DECR Xk,j
0 78 1112 15
21,29 i k

These instructions subtract the 32-bit subtrahend in XjR, or in the j field zero—extended to
32 bits on the left, from the 32-bit minuend in XkR, and transfer the 32-bit difference to
XkR. - The instmctions treat each half-word as a signed two”s complement integer.

Integer Difference

25jk Integer Difference,
Xk replaced by Xk minus Xj DECX Xk,j
11k Integer Difference Immediate,
Xk replaced by Xk minus j) SUBX Xk,Xj
0 78 1112 15

11,25 i k

These instructions subtract Xj, or j zero-extended to 64 bits on the left, from Xk, and
transfer the 64-bit difference to Xk. The instructions treat each word as a signed two”s
complement integer.

Half-Word Integer Product

22jk Half-Word Integer Product,
XkR replaced by XkR times XjR MULR Xk,Xj

0 78 1112 15

22 i k-

11-1-14 : S , 60458890 A

,(

P

-

8CjkQ Half-Word Integer Product Signed Immediate,
XkR replaced by XjR times Q MULRQ Xk,Xi,Q
(1] 78 1112 1516 31
8C i k Q

The first instruction multiplies XkR by XjR. The second instruction multiplies the Q field

(sign~extended to 32 bits) by XjR. The multiplication forms an algebraically-signed, 64-bit
intermediate product. The rightmost 32 bits of this intermediate product transfer to XkR as
the final product.

Integer Product

26jk Integer Product, Xk replaced by Xk times Xj MULX Xk,Xj

0 78 1112 15

26 i k

This instruction multiplies the signed two”s complement integers in Xk and Xj to form an
algebraically—signed, 128-bit intermediate product. The rightmost 64 bits of this
intermediate product transfer to Xk as the final product. :

B2ikQ Integer Product Signed Immediate,
Xk replaced by Xj times Q MULXQ Xk,Xj,Q
0 78 1112 1516 31
B2 i k Q

The first instruction multiplies the signed two”s complement integer from Xk by Xj. The
second instruction multiplies the Q field sign—extended to 64 bits by Xj. An algebraically-
signed, 128-bit intermediate product forms. The rightmost 64 bits of this intermediate
product transfer to Xk as the final product.

Half-Word Integer Quotient

23jk Half-Word Integer Quotient, i
XkR replaced by XkR divided by XjR DIVR Xk,Xj
0 78 1112 15
23 j k

This instruction divides XkR by XjR, and transfers the algebraically-signed, 32-bit quotient
to XkR. A divide fault (UCR bit 55) interrupt condition will occur if XjR is equal to zero.

60458890 A I1-1-15

Integer Quotient

273k Integer Quotient, Xk replaced
by Xk divided by Xj

0 78 1112 15

27 i K

This instruction divides the word in Xk by the 64-bit word in Xj, and transfers the result,

consisting of an algebraically-signed, 64-bit quotient to Xk.
interrupt condition will occur if Xj is equal to zero.

" Half-Word Integer/Integer Compare

2Cjk Half-Word Integer Compare,
XjR to XkR, result to XIR

2Djk Integer Compare, Xj to Xk, result to XIR

0 78 1112 15

2¢,2D i k

A divide fault (UCR bit 55)

“ S

These instructions algebraically compare the two”s complement binary integer in XjR or Xj to

the signed two”s complement binary integer. in XkR or Xk, respectively.
zeros. Based on the comparison result, XIR sets as follows:

Condition

Xj = Xk Clear XI1R bits 32 through 63.
Xj 2 Xk Clear XIR bits 32 and 34 through 63, set bit 33.

Xj £ Xk Clear X1R bits 34 through 63, set bits 32 and 33.

11-1-16

Action Taken

X0 consists of all

=
.

Sy

ST

im\
-

60458890 A

ey

CP BRANCH INSTRUCTIONS
This subgroup (table II-1 -3) consists of both conditional and unconditional branch

instructions. Each conditional branch instruction compares the contents of two general
registers to determine whether a normal or a branch exit is taken.

Table II-1-3. CP Branch Instructions

Opcode Format - Instruction Mnemonic
2E jk Branch relative BREL
2F jk Branch intersegment BRDIR
90 jkQ Branch on half-word equal BRREQ
91 jkQ Branch on half-word not equal BRRNE
92 jkQ Branch on half-word greater than BRRGT
93 jkQ Branch on half-word greater than BRRGE

or equal
94 jkqQ Branch on equal BRXEQ
95 ‘ jkQ Branch on not equal BRXNE
96 jkQ Branch on greater than BRXGT
97 jkQ Branch on greater than or equal BRXGE
9C jkQ Branch and increment BRINC
9D ikQ .Branch on segments unequal BRSEG

The debug interrupt condition applies to all branch instructions.
Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume for a description of these conditions.

Branch Relative

2Ejk Branch to P Indexed by 2*XkR ' BRREL Xk

0 78 1112 15

2E i k

This instruction causes an unconditional branch to the CM address formed by adding 2 times
XkR to the BN field in P.

60458890 A I1-1-17

Branch Intersegment

2Fjk Branch to Aj indexed by 2%*XkR BRDIR Aj,Xk

0 78 1112 15

2F i k

This instruction causes an unconditional branch by modifying the key (KEY), segment number
(SEG), and byte number (BN) fields of the PVA in P, as follows:

1. The key in P copies to the lock of the branched-to segment. The branch is permitted
if the key and lock are equal, if the key is a master key, or if the lock is zero or
equals no lock. i

2. The 12-bit SEG field in Aj (bits 20 through 31) transfers to P bits 20 through 31.

3. A value 2 times XkR adds to the rightmost 32 bits from Aj. X0 consists of all
zeros. This sum transfers to bit positions 32 through 63 of P.

This instruction can cause the following exception conditions:
® Address specification error.
e Invalid segment/ring number zero.

° Access violation.

Branch on Half-Word

90ikQ Branch to P Displaced by Z*Q,

if XjR equal to XkR BRREQ Xj,Xk,Q
91jkQ Branch to P Displaced by 2*Q,
if XjR not equal to XkR BRRNE Xj,Xk,Q
92jkQ Branch to P Displaced by 2*Q,
if XjR greater than XkR BRRGT Xj,Xk,Q
93jkQ Branch to P Displaced by 2*Q,
if XjR greater than or equal to XkR BRRGE Xj,Xk,Q
0 78 1112 1516 31
90,91,9293 j [3 Q

These instructions algebraically compare XjR with XkR, treating each as a signed two”s
complement binary integer. XO consists of all zeros. If the comparison between XjR and XkR
does not satisfy the branch condition specified, the instruction takes a normal exit by
adding 4 to the BN field in P to generate the next instruction address. If the Xj right
(XjR) and Xk right (XkR) comparison satisfies the branch condition, the instruction takes a
branch exit by adding 2 times Q to the BN field in P to form the next instruction address..

I1-1-18 - 60458890 A

n,

b

S

Branch
943kQ Branch to P Displaced by 2*Q, if '
Xj equal to Xk BRXEQ Xj,Xk,Q
95jkQ Branch to P Displaced by 2*Q, if .
Xj not equal to Xk BRXNE Xj,Xk,Q
96jkQ Branch to P Displaced by 2*Q, if
Xj greater than Xk BRXGT Xj,Xk,Q
973kQ Branch to P Displaced by 2*Q, if
Xj greater than or equal to Xk : BRXGE Xj,Xk,Q
("w‘ 0 78 1112 1516 31
e) [94,95,96,97 j k Q

These instructions algebraically compare the Xj word with the Xk word, treating each as a
signed two”s complement binary integer. XO consists of all zeros.

If the comparison between Xj and Xk does not satisfy the branch condition specified, the
instruction takes a normal exit by adding 4 to the BN field in P to generate the next
instruction address. If the comparison satisfies the branch condition, the instruction
causes a branch exit by adding 2 times Q to the BN field in P to form the the next
instruction address. |

Branch and Increment

9CjkQ Branch to P Displaced by 2*Q and '
Increment Xk, if Xj greater than Xk BRINC Xj,Xk,Q

0 78 1112 1516 31

f ac j k Q
‘»‘

This instruction algebraically compares the Xj word with the Xk word, treating each as a
signed two”s complement binary integer. For Xj only, the instruction interprets X0 as all
zZeros.

The comparison results are as follows:

Condition) ‘ Action Taken
Xj < Xk Normal exit. Add 4 to BN field in P to form next instruction address.
Xj > Xk Branch exit. Add 2 times Q to BN field in P to form next instruction

address, and increase word in Xk by l. Overflow is ignored.

:45 R

60458890 A I1-1-19

Branch on Segments Unequal

9DjkQ

0

Branch to P Displaced by 2*Q, if‘segments
unequal, else compare byte numbers,
result to XIR.

78 1112

1516

31

BRSEG

9D

Xi,Aj,Ak,Q

This instruction performs a bit-for-bit comparison between the SEG fields in Aj and Ak (bits

20 through 31).

adding 2 times Q to the BN field in P to form the next instruction address.

If the SEG fields are unequal, the instruction takes a branch exit by

1f the SEG fields are equal, the instruction takes a normal exit by adding 4 to the BN field
The instruction also algebraically compares Aj
bits 32 through 63 with Ak bits 32 through 63, treating each 32-bit quantity as a signed
two”s complement binary integer, and stores the comparison result in X1R, as follows:

in P to form the next instruction address.

Result

AJ = Ak
Aj > Ak

Aj < Ak

CP COPY INSTRUCTIONS

Clear XIR.

Clear XIR bits 32 and 34 through 63, set bit 33.

Clear XIR bits 34 through 63, set bits 32 and 33.

Action Taken

The copy instructions (table II-1-4) transfer information between registers.

-11I-1-20

Table I1I-1-4.

CP Copy Instructions

Opcode Format Instruction Mnemonic
09 jk Copy address, A to A CPYAA
OA jk Copy address, X to A CPYXA
OB jk Copy address, A to X CPYAX
oC jk Copy half word CPYRR
oD ik Copy full word CPYXX
60458890 A

C:

Copy Address
09jk Copy, Ak replaced by Aj CPYAA Ak,Aj

0 78 111215

09 i k

This instruction transfers the 48 bits in Aj to Ak.

OAjk Copy, Ak replaced by Xj CPYXA Ak,Xj

0 78 1112 15

0A i k

This instruction unconditionally transfers Xj bits 20 through 63 to the corresponding bit
positions of Ak. The instruction also compares Xj bits 16 through 19 with P bits 16 through
19, and transfers the larger field to Ak bits 16 through 19.

OBjk Copy, Xk replaced by Aj CPYAX Xk,Aj

0 78 1112 15

0B i k

This instruction transfers the 48 bits in Aj to Xk bit positioms 16 through 63, and clears
Xk bits O through 15.

Copy Half Word
0Cik Copy, XkR replaced by XjR °’ CPYRR Xk,Xj
0 78 1112 15
oc j k

This instruction transfers the half-word in XjR to XkR. The XkL content does not change.

60458890 A I1-1-21

Copy Full Word
0Djk Copy, Xk replaced by Xj CPYXX Xk,Xj

0 78 1112 15

oD i k

This instruction transfers the Xj word to Xk.

CP ADDRESS ARITHMETIC INSTRUCTIONS

Address arithmetic instructions (table II-1-5) perform address arithmetic in two’s
complement ignoring overflow.

Table II-1-5. CP Address Arithmetic Instructions

Opcode Format Instruction Mnemonic
2A jk Address increment, indexed ADDAX
8E jkQ Address increment, signed immediate ADDAQ
8F jkQ Address relative ADDPXQ
A7 jkiD Address increment, modulo ADDAD

Address Increment, Indexed.
2Ajk Address Ak Replaced by Ak plus XjR ADDAX Ak,Xj
0 78 1112 15
2A k

This instruction adds XjR and Ak bits 32 through 63, and returns the sum to Ak bits 32

through 63.

I1-1-22

60458890 B

C

C
C

Address Increment, Signed Immediate
8EjkQ Address Ak replaced by Aj plus Q. ADDAQ Ak,Aj,Q

0 78 1112 1516 31

8E i k Q

This instruction transfers Aj bits 16 through 31 to the corresponding Ak bit positions.
Also, the instruction adds Q (sign-extended to 32 bits) and Aj bits 32 through 63, and
transfers the sum to Ak bits 32 through 63. Overflow is ignored.

Address Relative

8FjkQ Address Ak replaced by P plus
2*X4R plus 2*Q ADDPXQ Ak,Xj,Q
0 78 1112 1516 31
8F j k Q

This instruction transfers P bits 16 through 31 to the corresponding 16 bit positions of
Ak, The instruction also adds Q (sign-extended to 32 bits) to the rightmost 32 bits of P,
adds this 32-bit sum to 2 times the XkR value, and transfers the final sum to Ak bits 32
through 63. Overflow is ignored. The instruction interprets X0 as all zeros.

Address Increment, Modulo

A7jkiD Address Ak Replaced by Ai plus D per j ADDAD Ak,Ai,D,j

0 78 1112 1516 1920 31
A7 | k i D

This instruction transfers Ai bits 16 through 31 to the corresponding bit positions of Ak.
The instruction also adds D (zero-extended to 32 bits on left) to Ai bits 32 through 63, and
transfers bits 32 through 60 of this sum to Ak bits 32 through 60. The instruction performs
a logical product (AND) between bits 61 through 63 of this 32-bit sum and the rightmost 3
bits of j, and transfers the 3-bit logical product to Ak bits 61 through 63. Overflow is
ignored.

The following is an example of the logical product (AND) operation:

First operand 0011
Second operand 0101
Result (AND) 0001

CP ENTER INSTRUCTIONS

The instructions in this subgroup (table II-1-6) enter immediate operands (consisting of
logical quantities or signed two”s complement binary integers) into the X registers,

60458890 B II-1-23

Table II-1-6. CP Enter Instructions

Opcode Format Instruction Mnemonic
1F jk Enter zeros ENTZ
1F jk Enter omnes ENTO
1F jk Enter signs ENTZ
39 jk Enter X1, immediate logical ENTX
3D jk Enter, immediate positive ENTP
3E jk Enter, immediate negative ENTN
3F ik Enter X0, immediate logical ENTL
87 jkQ Enter X1, signed immediate ENTC
8D jkQ Enter, signed immediate ENTE
B3 ikQ Enter X0, signed immediate ENTA

Enter Zeros/Ones/Signs
1Fjk Enter XkL with Zeros ENTZ Xk
1Fjk Enter XkL with Ones ENTO Xk
1Fjk Enter XkL with Signs ENTS Xk
0 78 1112 15
1F i k
This instruction translates the rightmost 2 bits of j as follows:
j Field Action Taken
xx00 Clear XkL bits O through 31.
xx01 Set XkL bits 0 through 31.
xx10 Copy bit 32 (sign) of XkR to bits 0 through 31 of XkL.
I1-1-24

60458890 B

s

e

v

Entey Immediate Positive/ Negative

3Djk Enter Xk with plus j
3Ejk Enter Xk with minus j
0 78 1112 15

3D.3E i k

These instructions zero-extend j to 64 bits and transfer this result, or the two’s

complement of this result, to Xk.

Enter X1/X0, Immediate Logical

39jk Enter X1 with Logical jk
3Fjk Enter X0 with Logical jk
0 ’ 78 1112 15

39,3F i k

ENTP

ENTN

ENTX

ENTL

Xk,j

Xk, j

X1,jk

X0, jk

These instructions transfer k to bits 60 through 63, and j to bits 56 through 59 of X0 or

Xl. The instructions clear bits O through 55,

Enter X1/XO0, Signed Immediate

873kQ Enter X1 with Sign—-Extended jkQ

B3jkQ Enter X0 with Sign-Extended jkQ

0 78 1112 1516 31
87,B3 i k o]

These instructions expand the 24-bit concatenation of j, k, and Q to 64 bits
(right—justified) by extending the leftmost bit of j through bits 0 through 39.

result transfers to X0 or Xl.

60458890 B

ENTC

ENTA

X1,jkQ

X0,3kQ

The 64-bit

II1-1-25

Enter, Signed Immediate -

8DjkQ

0

Enter Xk with Sign-Extended Q ' ENTE Xk,Q

78

1112 1516

31

8D

k

This instruction sign-extends Q to 64 bits, and transfers this value to Xk.

CP SHIFT INSTRUCTIONS

The shift instructions (table II-1-7) shift the Xj 64 bits through the number of bit
positions determined from a computed shift count.,

Table II-1-7. CP Shift Instructions

The result transfers to Xk.

Opcode Format Instruction Mnemonic
A8 jkiD Shift word, circular SHFC
A9 jkiD Shift word, end-off SHFX
AA jkiD Shift half word, end-off SHFR

The computed shift count is the sum of the D field rightmost 8 bits plus XiR bits 56 through
overflow from this 8-bit sum is ignored.

63. An
zeros,

1.

11-1-26

The computed shift count is determined by the following:

The leftmost bit of the 8-bit computed shift count determines the shift direction:

Positive sign:

Negative sign:

Left shift.

Right shift.

The instructions interpret X0 as all

60458890 B

S0

—

o

l\.LV K

4

00

2. The actual shift count is the two”s complement of the rightmost 5 or 6 bits of the
computed shift count for 32- and 64-bit operands, respectively. Thus, half words
can be shifted from 0 to 31 places left or from 1 to 32 places right, Similarly,
full words can be shifted from O to 63 places left or from 1 to 64 places right.
The shifts are as follows:

Shift Count 32-Bit Shifts Shift Count 64—Bit Shifts
0111 1111 Left shift 31 0111 1111 Left shift 63
l (rep:ating) l l
0010 0000 Left shift 0 0100 0000 Left shift O
0001 1111 Left shift 31 0011 1111 Left shift 63
0000 0000 Left shift O 0000 0000 Left shift O
1111 1111 Right shift 1 1111 1111 Right shift 1
1110 0000 Right shift 32 1100 0000 Right shift 64
1101 1111 Right shift 1 1011 1111 Right shift 1
(repeating)
1000 0000 Right shift 32 1000 0000 Right shift 64

3. If the computed shift count results in an actual shift count of zero, Xj transfers
to Xk without shifting.

Shift Word, Circular -

A8jkiD Shift Circular, Xk replaced by Xj,
direction and count per XiR plus D SHFC Xk,Xj,Xi,D

0 78 1112 1516 1920 31

AB i k i D

This instruction shifts the Xj word by the computed shift count, and transfers the result to
Xk. The shift is circular. Bits that shift out one end of the word transfer into bit
positions which become unoccupied at the opposite end of the word.

60458890 B ‘ I1-1-26.1/11-1-26.2

ﬁ \hu..ﬂwy,., \ & rM’J

OO0

Shift End-Off, Word/Half-Word

A9ikiD Shift End-Off, Xk replaced by Xj,
direction and count per XiR plus D SHFX Xk,Xj,Xi,D
AAjkiD Shift End-0ff, XkR replaced by XjR,
direction and count per XiR plus D SHFR Xk,Xj,Xi,D
0 78 1112 1516 1920 31
A9 i k i D

These instructions shift the Xj word, or the XjR half-word, and transfer the result to Xk or
XkR. The computed shift count determines the direction and number of bit positions to be
shifted. In a right shift, the instruction right-shifts the word end-off on the right, and
sign-extends on the left. In a left shift, the instruction left—-shifts the word end-off on
the left and inserts zeros on the right.

CP LOGICAL INSTRUCTIONS

The instructions in this subgroup (table II-1-8) perform logical (Boolean) operations on
64-bit operands in the X registers:

Table II-1-8. CP Logical Instructions

Opcode Format Instruction i Mnemonic
18 jk Logical sum IORX
19 jk Logical difference XORX
1A jk ~ Logical product ANDX
1B jk Logical complement ~ NOTX
1C ik Logical inhibit INHX
60458890 A 11-1-27

logicol Sum/ Difference/Product
18jk Logical Sum, Xk replaced by Xk OR Xj

19jk . Logical Difference,
Xk replaced by Xk XOR Xj

1Ajk Logical Product,
Xk replaced by Xk AND Xj

0 78 1112 15

18,19,1A i

k

IORX XK,Xj
. XORX Xk,Xj
ANDX Xk,Xj

These instructions form the logical sum, difference, or product between the words in Xj and

Xk, and return the 64-bit Boolean result to Xk.

Xk replaced by Xj NOT

follows:
Logical
Sum
(OR)
First operand 0011
Second operand 0101
Result 0111
. Logical Complement
1Bjk Logical Complement,

0 78 1112 15

1B i

k

Examples of these operations are as

Logical Logical
Difference Product
(XOR) (AND)
0011 0011
0101 0101
0110 0001

NOTX Xk,Xj

This instruction transfers the one”s complement of the Xj word to Xk. The one”s complement
of a number results from subtracting the original number, bit for bit, from a number

consisting of all ones.

Ones
Xj
Xk

I1I-1-28

Complement

For example:

60458890 A

s

G

Logical Inhibit

1Cjk Logical Inhibit,
Xk replaced by Xk AND Xj NOT INHX Xk,Xj
0 78 1112 15
1Cc i k

This instruction forms the logical product (AND) between the one”s complement of the Xj
number and the Xk number, and returns the result to Xk. For example:

Logical -
Inhibit

Xj 0011

NOT Xj 1100

Xk 0101

Xk AND Xj NOT 0100

CP REGISTER BIT STRING INSTRUCTIONS
The instructions in this subgroup (table 1I-1-9) address a contiguous string (field) of bits

within a register, beginning and ending at any bit position. The instructions interpret X0
as all zeros.

Table II-1-9. CP Register Bit String Instructions

Opcode Format Instruction Mnemonic
AC jkiD Isolate bit mask ISOM
AD jkiD Isolate bit string ISOB
AE jkiD Insert bit string INSB

Bit String Descriptor

The beginning bit position and bit string length are specified by a bit string descriptor.
The descriptor is the rightmost 12 bits of the sum of D (sign—extended) plus XiR, and has
the following format:

52 5758 63

Leftmost| String
Position |Length -1

XiR Bits Description
52-57 Beginning (leftmost) bit position.
58-63 Length, one less than the number of bits in the string.

The instruction specification error interrupt condition applies to all register bit string
instructions. Refer to CP Interrupts in section 2 of this volume for a description of this
condition.

60458890 A ' 1I-1-29

Isolate Bit Mask

- ACjkiD Isolate Bit Mask, into Xk per XiR plus D IsoM Xk,Xi,D

31

AC

i

k

0 78 1112 1516 1920

D

This instruction generates a bit mask consisting of a contiguous field of ones, and places

this field into Xk.

length of the Xk field.

The bit string descriptor defines the leftmost bit position and the
All Xk bits outside the specified string clear.

Isolate
ADjkiD Isolate, into Xk from Xj per XiR plus D ISOB Xk ,Xj,X1i,D
0 78 1112 1516 1920 31

AD

k

D

This instruction clears Xk and transfers a field of contiguous data from Xj into Xk, right-
justified. The bit string descriptor defines the leftmost bit position and Xj field length.

Insert
AEjkiD Insert, into Xk from Xj per XiR plus D INSB Xk,Xj,Xi,D
0 78 1112 1516 1920 31

AE

i

k

This instruction transfers a field of contiguous bits from Xj to Xk, The field is obtained
from the Xj rightmost bit positions, with the length specified by the bit string descriptor.
The field inserts into Xk with the leftmost bit position and the field length also specified

by the bit string descriptor.

unchanged.

CP MARK TO BOOLEAN INSTRUCTION

All Xk bit positions outside the specified field remain

The following instruction tests X1R bits 32 through 33 for values specified by the j field.

1Ejk Mark to Boolean, set Xk per j and XIR MARK Xk,Xi,j
0 78 1112 15
1E j k

This instruction tests XjR bits 32 through 33 for a bit combination by comparing j and XIR
bits 32 through 33 for an equal condition (EQ) as shown in table II-1-10. If XIR bits .32
through 33 equal a value specified by j, the instruction clears Xk bits Ol through 63 and
The instruction clears Xk if no equality occurs.

‘'sets Xk bit O.

From left to right, the 4 bits of j are individual pointers associated with the 4 possible

values of XIR bits 32 and 33 (00, 01, 10, 11).

When set, the first bit in the j field tests

bits 32 and 33 for a value of 00, the second bit for 01, the third bit for 10, and the

fourth bit for 1ll.
either 01 or 11.

I1-1-30

For example, if j equals 0101, equality occurs when bits 32 and 33 are

60458890 ¢

S

b

00

Table II-1-10. Compare j Field and X1 Bits 32 and 33

3 Register XIiR Bits 32, 33
Field 00 [ol [10 [11

0000 Unconditional Inequality

0001 EQ

0010 EQ

0011 EQ EQ
0100 EQ

0101 EQ EQ

0110 EQ EQ

0111 EQ EQ EQ

1000 | EQ

1001 | EQ EQ

1010 EQ EQ

1011 EQ EQ EQ

1100 | EQ EQ

1101 | EQ EQ EQ

1110 | EQ EQ EQ

1111 Unconditional Equality

BDP INSTRUCTION DESCRIPTIONS

The business data processing (BDP) instruction group consists of 18 operation codes in 3
subgroups:

e BDP numeric.
° Byte.
e Subscript and immediate data.
Tables II-1-11 through II-1-14 list the instructions within each subgroup. For descriptions

of source and destination fields, data descriptors, access types, data formats, and data
types, refer to Business Data Processing Programming in section 2 of this volume.

60458890 A ' 11-1-31

BDP NOMENCLATURE

The BDP instruction descriptions use the following additional terms:

Term Description

D(Aj) Source data fiéld addressed by PVA in Aj.

D(Ak) Other source data field, or destination data field, addressed by PVA in Ak.
D(Ai+D) Edit mask addressed by PVA in Ai plus displacement D. The edit instruction

(ED) uses this term.

BDP NUMERIC INSTRUCTIONS , \~‘,

The instructions in this subgroup (table II-1-11) perform arithmetic, shift, conversion, and
comparison operations on byte fields from CM.

Table II-1-11. BDP Numeric Instructions

Opcode Format Instruction Mnemonic)
70 jk Decimal sum ADDN,Aj ,X0 \Q:QD
71 ik Decimal difference SUBN,Aj,XO0
72 ik Decimal product MULN,Aj ,X0
73 jk Decimal quotient DIVN,Aj,X0
74 ik Decimal compare CMPN,Aj ,X0
75 jk Numeric move MOVN,Aj,X0 o
E4 jkiD Decimal scale SCLN,Aj ,X0 g
E5 jkiD Decimal scale rounded SCLR,Aj ,X0

After completing the required operation, the instructions store the right-justified result
in the destination field. These instructions also do the following:

e Zero~fill the high—order destination field positions if the decimal result is
shorter than the destination field.

° Truncate the result”s leftmost bits if the result exceeds the destination field.:
e Treat a decimal numeric value of minus zero as equal to plus zero.

e Do not store minus zero as a result, except when truncation takes place.

O

11-1-32 ~ ‘ 60458890 A %

Nezi

00

An instruction specification error occurs if the length and type fields in the source and
destination field data descriptors do not conform to the length and type allowed for a
particular instruction. This inhibits instruction execution and initiates the corresponding
program interrupte.
The following conditions apply to all BDP numeric instructions:

e Instruction specification error.

e Address specification error.

e Invalid segment/ring number zero.

® Access violation.

e Page table search without find.

e Debug.

e Invalid BDP data.
A destination BDP operand of length zero transforms the instruction into a no—-operation.
However, when the source field length is nonzero, exception sensing for the source field
occurs. This includes testing for arithmetic loss—of-significance and for overflow, but

excludes testing for a divide fault.

Individual instruction descriptions list additional interrupt conditions, where applicable.
Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions.

60458890 A ' I1-1-33

Decimal Arithmetic -

70ik (2 descriptors) Decimal Sum,
D(Ak) replaced by D(Ak) plus D(Aj) ADDN,Aj X0 Ak,Xi

71jk (2 descriptors) Decimal Difference,
D(Ak) replaced by D(Ak) minus D(Aj) SUBN,Aj,X0 Ak,Xi

72jk (2 descriptors) Decimal Product,
D(Ak) replaced by D(Ak) times D(Aj) MULN,Aj,X0 Ak,Xi

73jk (2 descriptors) Decimal Quotient, D(Ak)
replaced by D(Ak) divided by D(Aj) DIVN,Aj,X0 Ak,Xi

0 78 1112 15

70,71,72,73| j k

N

These instructions perform arithmetic operations on the initial destination field (an
augend, minuend, multiplicand, or dividend) and the source field (an addend, subtrahend,
multiplier, or divisor). The decimal result (sum, difference, product, or quotient)
transfers to the destination field. :

The instructions allow packed and unpacked decimal data types 0 through 6. They do not
support unpacked decimal leading sign data types 7 and 8. A numeric move instruction (75)
must be used to format operands of these types prior to use in arithmetic operations.

The instruction results are algebraicaliy signed. If the results equal zero with no loss-
of-significance, a positive sign is entered. The result translates to the preferred codes
of the data type specified by the destination field data descriptor.

These instructions can cause the following exception conditions:

° Arithmetic overflow.

e Divide fault (instruction 73 only, refer to table II-1-12).

11-1-34 - 60458890 A

AN

o0

Table II-1-12., BDP Divide Fault

K K J K Divide
Field Value Field Value Fault
Length Length

0 * 0 * No

0 * Nonzero 0 No

0 * Nonzero Nonzero No
Nonzero 0 0 * Yes
Nonzero 0 Nonzero 0 Yes
Nonzero 0 Nonzero Nonzero No
Nonzero Nonzero 0 * Yes
Nonzero Nonzero Nonzero 0 Yes
Nonzero Nonzero Nonzero Nonzero No

*Since field length is zero, the data is disregarded.

Decimal Compare

743k (2 descriptors) Decimal Compare,

D(Aj) to D(Ak), result to XIR CMPN,Aj,X0 Ak,Xi

0 78 1112 15

74 i k

This instruction algebraically compares the decimal contents of the source and destination
fields, and depending on the comparison results, transfers a half word to X1R as follows:

Condition Action Taken

D(Aj) = D(Ak) Clear XIR.

D(Aj) > D(Ak) Clear XIR bits 32 and 34 through 63, set bit 33.

D(Aj) < D(Ak) Clear XIR bits 34 through 63, set bits 32 and 33.

The instruction allows data types 0 through 6. The maximum operand length is a function of
the data type. The instruction accommodates unequal field lengths by using decimal zero
£ill in the leftmost positions of the shorter-length field.

60458890 A I1-1-35

Numeric Move

755k (2 déscriptors) Numeric Move,) MOVN,Aj,X0 Ak,Xi
D(Ak) replaced by D(Aj) after formatting

0 78 1112 15

75 i k

This instruction obtains a number from the source field, validates the number according to
the T field from its associated data descriptor, reformats it according to the T field in
the destination field data descriptor, and transfers the result to the destination field.

The instruction can convert and format any combination of data types O through 8, and 10 or
11. If the conversion is from a decimal data type to a binary data type, the decimal data
type determines the maximum length for the source as follows:

Maximum
Source Field Source Field
Data Type Length (Bytes)
0 through 3 19
4 through 8 38

The maximum destination field length is eight bytes. The instruction truncates the leftmost
bytes if the destination field is not long enough to accommodate the entire binary number,
or extends the sign bit on the left if the destination field exceeds the conversion result.
When truncation places a negative zero into the destination field, it is not changed to
positive zero.

The same length restrictions apply if the source is a binary data type and the destination
is a decimal data type, except that if the receiving field exceeds the converted number, the
instruction adds leading zeros according to the decimal data type [ASCII character zero
(301¢) or digit zero (03g)1.

When both operands are decimal, the destination field fills from right to left. If the
field lengths are unequal, the instruction either truncates leading digits or inserts
leading zeros according to the destination data type.

This instruction can cause the arithmetic loss~of-significance exception condition.

I1-1-36 60458890 A

O

-~

,'/' \\\
\rk‘u-’ ; oS
e N
W w
3 " o
A S

00

Decimal Scale

E4jkiD (2 descriptors) Decimal Scale,
D(Ak) replaced by D(4j),
scaled per XiR plus D SCLN,Aj,X0 = Ak,X1,Xi
E5jkiD (2 descriptors) Decimal Scale Rounded,
D(Ak) replaced by rounded D(Aj), scaled
per XiR plus D SCLR,Aj,X0 Ak,X1,Xi
0 78 1112 1516_1920 31
E4,E5 j k i D

These shift instructions move data from the source field to the destination field, shifting
the data under control of a computed shift count. This count is the 8-bit sum of the two’s
complement 32-bit integer from XiR plus the D-field rightmost 8 bits of the instruction.
Any overflow from the 8-bit sum is ignored. The X0 contents interpret as all zeros. The
instruction acts as a move instruction if the shift count equals zero.

With positive shift count (bit 56 = 0), the source data left-shifts as determined by bits 57
through 63 of the computed shift count. A negative shift count (bit 56 = 1) causes a shift
to the right. In this case, the number of positions is determined by the two”s complement
of bits 57 through 63 of the computed shift count. A value of 1000 0000 interprets as a
right shift of 128 positions.

A positive shift count effectively multiplies the source data by powers of 10; a negative
shift count divides the source data by powers of 10. The shifting occurs as the data moves
from the source to the destination field. Shifting is end~off with zero—fill as required to
accommodate the length and type specified for the destination field. The source field sign
moves the destination field unchanged.

The shift counts are interpreted as follows:

Shift Count Shifts
01111 1111 Left shift 127
0000 0000 Left shift O
1111 1111 Right shift 1
1000 0001 l

1000 0000 Right shift 128

The instruction allows data types O through 6 for the source and destination fields.
The decimal scale rounded (E5) instruction rounds upward the absolute value of the
right-shift result. This occurs by adding 5 to the last digit shifted end-off, and
propagating carries through the decimal result.

These instructions may cause the arithmetic 1oss?of-significance exception condition.

60458890 A I1-1-37

O

BDP BYTE INSTRUCTIONS

The instructions in this subgroup (table II-1-13) compare, translate, move, edit, or scan
byte fields in CM. ‘

Table II-1-13, BDP Byte Instructions

Opcode . Format 'Instruction Mnemonic
76 jk Move bytes) MOVB,Aj,XO0
77 jk Byte compare CMPB,Aj ,X0
E9 jkiD Byte'compare, collated CMPC,Aj X0
EB jkiD Byte translate TRANB,Aj ,X0
ED jkiD Edit EDIT,Aj,X0
F3 jkiD Byte scan while nonmember SCNB, X0

The following conditions apply to all byte instructions: 7
° Instruction specification error. -
® Address specification error.
® Access violation.
e Page table search without find.
e Debug.
Individual instruction descriptions list additional interrupt conditions where applicable. « -

Refer to CP Interrupts in section 2 of this volume for descriptions of these conditionms.

I1-1-38 - - 60458890 A @;;E

(”"5

O

00

Byte Compare

77jk (2 descriptors) Byte Compare, D(Aj)
to D(Ak), result to XIR, index to XOR CMPB,Aj,X0 Ak,X1
0 78 1112 15
77 i k
E9jkiD (2 descriptors) Byte Compare Collated,

D(Aj) to D(Ak), both translated per
(Ai plus D), result to XIR,
index to XOR . CMPC,Aj,X0 Ak,X1,Ai,D

0 78 1112 1516 1920 31

E9 i k i D

These instructions compare the bytes in the source and destination fields, and set XIR
according to the result. The comparison proceeds from left to right. When the field
lengths are unequal, trailing space characters (20]4) are used for the shorter field. The
maximum operand length is 256 bytes. Data types are ignored. The comparison continues
until the longer field is exhausted or the instructions detect an inequality, as follows:

Compare The byte comparison ends when the instruction detects an inequality
7 between corresponding bytes in the source and destination field.
Compare An inequality detected between corresponding bytes from the source and
Collated destination fields results in the translation of both bytes, using a
(E9) translation table in CM. If the translated bytes are unequal, the

comparison stops with the results shown in the following list. If the
translated bytes are equal, the comparison continues until the longer
field is exhausted, or until the instruction detects another
inequality. In the later case, another translation and comparison
OCCUrLS. :

The comparison results are indicated in X1R as follows:

Condition Action Taken

D(Aj) = D(Ak) X1R cleared.

D(Aj) > D(Ak) Clear XIR bits 32 and 34 through 63, set bit 33.
D(Aj) < D(Ak) Clear XIR bits 34 through 63, set bits 32 and 33.

An unequal comparison places the sequence number of the byte causing the inequality into
XOR. The instruction adds each field”s leftmost byte address to the sequence number in XOR
to determine the byte addresses within the source and destination fields causing the unequal
comparison. Register XOR does not change if inequalities do not exist.

The user determines the translation table contents used by the compare collated instruction,
and preloads the table into CM. The translation table contains 256 bytes. Its starting ‘
address forms by adding the BN field in Ai to the zero—extended D field from the

instruction. Each translated byte adds as a positive offset to ‘the translation table
starting address, forming the address of the translated byte read from CM.

60458890 A I1-1-39

Byte Translate

EBjkiD (2 descriptors) Byte Translate,
D(Ak) replaced by D(Aj), translated
per (Ai plus D) TRANB,Aj,X0 Ak,Xi,D
0 - 78 1112 1516 1920 31
EB i k i D

This instruction translates each source field byte according to a user—generated translation
table in CM, and transfers the results to the destination field. The source and destination
field lengths are limited to 256 bytes. Data types are ignored.

The translation proceeds from left to right. The instruction uses each source field byte as
a positive offset which it adds to the translation table address to locate the translated
byte. Translated bytes transfer to the destination field. The translation terminates after
the destination field length has been exhausted. ’

If the source field exceeds the destination field, the instruction truncates the rightmost
bytes of the source field. When the source field is shorter than the destination field, the
instruction fills the destination field rightmost byte positions with translated space
characters.

The user determines the translation table contents and preloads the table into CM. This
table contains 256 bytes; its starting address forms by adding the BN field in Ai to the
zero—extended D field from the instruction.

Move Bytes
76jk (2 descriptors) Move Bytes,
D(Ak) replaced by D(Aj) MOVB,Aj,X0 Ak,Xi
0 78 1112 15
76 i k

This instruction moves bytes from the source field to the destination field. The move
operation is from left to right; data types are ignored. Maximum field lengths are 256
bytes. Unequal field lengths result in truncating trailing characters from the source field
or inserting trailing space characters into the destination field.

I1-1-40 , 60458890 A

AN
o’

>
=N
=

/ N

S/
// -

N

kﬁ?f

Edit
EDjkiD (1 descriptor) Edit, D(Ak) replaced by
D(Aj) edited per D(Ai+D) EDIT,Aj,X0 Ak,Xi,Ai,D
0 78 1112 1516 1920 31
ED i k i D

Under control of a CM byte field called an edit mask, this instruction edits digits or
characters from the source field and transfers the result to the destination field. It can
perform the following editing functions:

‘:i?a' e Move source field digits/characters to destination field.

® Move characters from the edit mask to destination field.

® Specify and insert a string of O through 15 characters (symbol) into the destination
field.

e Specify an 8-byte special character table (SCT) and insert any character from this
table.

° Insert suppression characters and floating signs to the left of the first

C) significant digit.

° Perform insertion of signs, suppression characters, blanks, symbols, or SCT
characters based on whether the source field is positive or negative.

° Spread suppression character through the destination field.
® Write suppression characters if destination field is zero.

The source data descriptor type fields are restricted to data types O through 9. The
instruction ignores the destination data descriptor type fields.

0 60458890 A II-1-41

Edit Mask

The edit mask consists of a length—~indication byte followed by up to 254 micro—operation
bytes. The length is a binary number indicating the number of bytes in the edit mask
(including the length—indication byte). If the length-indicating byte is either zero or
one, the associated edit instruction results in a no-operation. After the length indicator,
the mask contains a string of one-byte microinstructiomns.

The edit mask address is the sum of the BN field from Ai plus the zero—extended D field from
the instruction. The edit mask format is as follows:

(1] 70 34 70 34 7

LENGTH | MOP| SV |MOP | SV

First byte Following bytes
Field Description
LENGTH Binary number indicating the total number of bytes in the edit mask
(0 to 2555¢).
MOP Microoperator specifying the editing function.
sV Binary specification value from 0 through 15. Meaning varies according to

the associated MOP.

Edit Operation

The edit operation uses the tables and toggles described in the following paragraphs. Edit
control proceeds from left to right on the mask, one character at a time. The instruction
performs the editing function specified by the MOP and the SV.

Indexing through the source field is by bytes unless its data type is packed-numeric.

Packed-numeric data is indexed by half-bytes. Indexing through the destinatiom field is by
bytes. .

MOP Description Nomenclature

The MOP descriptions use the following additional terms:

Term Description

ES End suppression toggle.

SCT Special characters table.

sV Specification value (Refer to Edit Mask, preceding).
SM Symbol.

SN Negative sign toggle.

ZF Zero field.

11-1-42 ' 60458890 A

A

C

End Suppression Toggle

The end suppression (ES) toggle controls zero suppression. Hardware sets the ES toggle
false at the start of edit. The ES toggle sets true when zero suppression ends, when the
first nonzero leading digit is encountered, or by a MOP.

Special Characters Table

The eight-byte special characters table (SCT) is stored in hardware. Entries are written by
the micro operation code D. For proper editing, the SCT must be as follows:

Byte 0 1 2 3 4 5 6
Character b|b|+]|-1]. K

Hexadecimal value |20 (20|2B{2D|2C|2E |24 | 2F

l—-—- Negative sign

Positive sign

7
/

Suppression character

Blank fill character

Symbol

The symbol (SM) is a string of O through 15 characters that the edit instruction creates and
inserts into the destination field, under edit mask control. Once the symbol has been
inserted, the instruction must recreate it before reinserting it. The symbol has a length
of zero when an edit operation begins. The system uses the symbol for the floating-sign and
floating-currency editing features, and for sign—sensitive and significance-sensitive
character string insertion.

Negative Sign Toggle

The negative sign toggle (SN) provides the source field sign. At start of edit, hardware
sets the SN toggle false if the source field is an alphanumeric, an unsigned numeric, or a
positive numeric. The SN toggle is initialized true only for a negative numeric source
field.

Zero Field Toggle

The zero field (ZF) toggle depicts a zero or nonzero source field. It is initialized true,
and sets false after encountering the first nonzero character.

60458890 A I1-1-43

Skipping of Signs

The edit instruction (under edit mask control) automatically skips signs when reading
numeric data types. The signs interpret numerically when reading combined signed data
types, also under edit mask control. ’

Microoperation O

This MOP translates source field characters to ASCII and moves these to the destination
field as follows. The translation performs as described in the Edit Function NUMERIC in
this section.

l. Set ES true if SV is not equal to zero.

2. Translate SV digits from the source field to the equivalent ASCII characters and
copy these into the destination field.

Microoperation 1

This MOP moves type 9 characters as follows:
1. Set ES true if SV is not equal to zero.

2. Move SV characters from the source field to the destination field. The source field
must be type 9 or an invalid BDP data condition occurs.

Microoperation 2,3

These MOPs are no—operations.

Microoperation 4

This MOP moves the next edit mask SV bytes to the destination field.

Microoperation 5

. . This MOP sets the symbol to a single character from SCT, respresenting the source data field
sign as follows:

® Negative source data field.
Copy SCT byte 3 to destination field.

° Positive source data field.

Copy SCT byte SV into symbol field. The SV rightmost 3 bits provide an index
into the SCT. ‘

I1-1-44 : 60458890 A

3
L

'
X

)

¥

G
y

Microoperation 6

This MOP moves the next edit mask SV bytes to the symbol.

Microoperation 7

This MOP conditionally translates source field SV digits to their equivalent ASCII
characters and copies them to the destination field. The translation performs as described
in the Edit Function NUMERIC in this section.

e ES false and zero source field digit.
Copy SCT byte one to destination field.

e ES false and nonzero source field digit.
Set ES true and copy symbol to destination field followed by the translated
digit.

e ES true.
Copy translated digit to destination field.

Microoperation 8

This MOP conditionally copies the symbol to the destination field as follows:

° ES true.
No operation.

e ES false.
Copy symbol to destination field and set ES true.

Microoperation 9

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV>7
Copy symbol to destination field.

° sv <7

Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT. ‘

60458890 A II-1-45

Microoperation A

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV > 7 and source field positive,
Copy symbol to destination field.

e SV > 7 and source field negative.
Copy SCT byte O to destination field, once for each symbol character.

e SV <7 and source field positive. .
Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT.

e SV £ 7 and source field negative.
Copy SCT byte O into destination field.

Microoperation B

This MOP is identical to MOP A, but with the action caused by a reversal of the source field
sign.

Microoperation C

This MOP conditionally copies the symbol or SCT character to the destination field as
follows:

e SV > 7 and ES true.
Copy symbol to destination field.

e SV > 7 and ES false.
Copy SCT byte 1 character to destination field, once for each symbol character.

e SV<L7 and ES true.
Copy SCT byte SV into destination field. The SV rightmost 3 bits provide an
index into SCT.

e SV <7 and ES false.
Copy SCT byte 1 into destination field.

Microoperation D

This MOP copies the next edit mask character into the SCT byte determined by using the SV
rightmost 3 bits as an index into the SCT.

11~-1-46 ’ 60458890 A

O

k1"';:,3"

Microoperation E

This MOP copies SCT byte 1 into the destination field, SV times.

Microoperation F

This MOP conditionally copies SCT character into the destination field as follows:
[No—-operation when SV = O,
e ZF false and nonzero source field: terminate the edit instructionm.

e ZF true and zero source field: reset to start of destination field and copy SCT
c;":{»\) byte 1 into destination field SV times.

Edit Function NUMERIC

Micro-operations 0 and 7 translate and move a source digit into the destination field as
follows:

e Each source digit is checked. Invalid decimal digits cause an Invalid BDP Data
condition. A program interrupt occurs when enabled.

mJ ® When the source field is packed-numeric, appropriate ASCII zone bits are supplied
for the destination character.

e A nonzero digit causes the ZF toggle to be set false.

Termination of the Edit Instruction

The edit instruction terminates when the edit mask is exhausted, or when a MOP 15 is read
and the zero field (ZF) toggle is false. The CP detects no exception conditions for either

' § condition, even though the instruction may not have exhausted the source or destination
fields. If the instruction terminates with the destination field not full, the remaining
portion of the destination field is not altered. If the source field is not exhausted when
the instruction terminates, the source field is checked for invalid BDP data, and. the sign
is examined. ’

The edit instruction may cause the invalid BDP data exception condition.

©0

60458890 A I1-1-47

Byte Scan While Nonmember

F3jkiD (1 descriptor) Byte Scan While Nonmember,
D(Ak) for presence bit in (Ai+D),
character to X1R, index to XOR SCNB,Aj,X0 Ak,Xi
0 78 1112 1516_1920 31
F3 i k i D

This instruction detects possible unwanted characters in a character string by inspecting a
256-bit table in CM. The starting byte address of the table forms by adding the BN field
from Ai to the zero—extended D field from the instruction.

The scan proceeds from left to right, one character at a time. The data type is ignored.
The binary value of each character addresses a bit in the table. The scan terminates if
this bit is a 1 or if the source field has been exhausted.

If the scan terminates because the addressed bit is set, the following occurs:

e The binary value of the sequence number (index) pointing to the byte causing scan
termination is placed right—justified into XOR.

° The binary value of the character causing scan termination is placed right-justified
into X1R.

If the scan terminates from exhaustion of characters in the byte string, XOR contains the
original byte string length, XIR bit 32 sets, and bits 33 through 63 clear.

This instruction can also perform the-Byte Scan While Member function. In this case, the
table specifying the nonallowed byte string characters is logically complemented before the
instruction executes,

BDP SUBSCRIPT AND IMMEDIATE DATA INSTRUCTIONS

The instructions in this subgroup are listed in table II-1-14,

Table II-1-14, BDP Subscript and Immediate
Data Instructions

Opcode Format Instruction Mnemonic
F4 jkiD Calculate subscript and add CALDF,Aj,XO0
F9 jkiD Move immediate data MOVI,Xi,D
FA jkiD Compare immediate data CMPI,Xi,D
FB jkiD Add immediate data ADDI , Xi,D

I1-1-48 . 60458890" A

4

=

./

OO0

The following conditions apply to all subscript and immediate data instructions.
e Instruction specification error.
o Address specification error.
e Invalid segment/ring number zero.
® Access violation.
e Page table search without find.
e Debug.
e Invalid BDP data.

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume.

Calculate Subscript and Add

F4jkiD (1 descriptor) Calculate Subscript
and Add, D(Aj) checked and modified per
(Ai plus D), result added to XkR CALDF,Aj,X0 Ak,Xi,Ai,D
0 78 1112 1516 1920 3
F4 i k i D

This instruction uses a subscript range table (SRT) contained in CM. The SRT contains one
or more 64-bit entries with each entry divided into three binary integer values as follows:

0 78 1112 15

3A j k

Field Description

SIZE Sixteen bits, unsigned. Specifies number of elements in one dimension of an
array (table).

MIN Sixteen bits, signed. Specifies minimum allowable value of source field.
MAX Thirty-two bits, signed. Specifies maximum allowable value of source field.

This instruction forms the PVA of the subscript range table entry using 1) RN and SEG from
Ai, and 2) the byte number (BN) generated by adding the BN field from Ai to the instruction
D field (expanded to 32 bits using zeros in the high—order bit positions). A signed, 32-bit
two”s complement binary integer is obtained from the CM source field at location D(Aj). The
instruction uses binary source field data unchanged and converts decimal data to its binary
equivalent.

60458890 A II-1-49

The occurrence number is the difference between the binary value of the source field”s
rightmost 32 bits and the MIN value (sign—-extended to 32 bits). The occurrence number is a
signed, 32-bit two”s complement integer.

D(Aj) - MIN = OCCURRENCE NUMBER
To calculate the subscript, the instruction multiplies the OCCURRENCE NUMBER by SIZE, and
adds the product to the index value in the destination register XkR. The CP does not detect

overflow during any arithmetic operation associated with this instruction.

The source field is restricted to data types O through 6, 10, and 11, with the maximum field
lengths determined by the source field data type. :

Move Immediate Data

F93jkiD (1 descriptor) Move Immediate Data,
D(Ak) replaced by XiR plus D per j MOVI,Xi,D Ak,Xi,j
0 78 1112 1516 1920 31
F9 j k i D

The immediate data byte is the two”s complement sum of XiR bits 56 through 63, plus the
rightmost 8 bits of the instruction D field. Overflow is ignored on this summation. XO
consists of all zeros.

This instruction moves the immediate data to the destination field after format conversion
specified by the destination field data type and the j—field suboperation code. The
conversion is encoded in the least significant 2 bits (bits 10, 11) of the instruction”s j
field as follows:

j Field
Bits 10,11 Operation

00 The positive, unsigned numeric value (type 10) in the immediate data
byte moves right—justified to the destination field. The destination
field is restricted to data types 10 or 1l1.

01 The decimal numeric (type 4) immediate data byte moves right—-justified
to the destination field after reformatting (if necessary). A positive
sign is supplied as required. The destination field is restricted to
decimal data types O through 6.

10 The ASCII character in the immediate data byte repeats left—to-right in

~the destination field. Destination data type is ignored.

11 The ASCII character in the immediate data byte moves, left-justified,

into the destination field; the remainder of the field fills with space
characters. The destination data type is ignored.

The slack digit of destination field types 1 and 3 is unchanged by this instruction. The
instruction may cause the arithmetic loss—of-significance exception condition.

I1-1-50 o - 60458890 A

s

0

:\k»/‘}'

T

- \mr
J}

ele

o

O

Compare Immediate Data

FAjkiD (1 descriptor) Compare Immediate Data,
XiR plus D to D(Ak) per j, result to XiR CMPI,Xi,D Ak,Xi,j
0 78 1112 1516 1920 -3
FA i k i D

The immediate data byte is the two”s complement sum of XiR bits 56 through 63, plus the
rightmost 8 bits of the instruction D field. Overflow is ignored on this summation. XO
consists of all zeros.

This instruction performs a format conversion on the immediate data byte as specified by
destination field data type and the j field suboperation code. The instruction then
compares the reformatted immediate data byte to the contents of D(Ak). The instruction j
field encodes the operation as follows:

j Field
Bits 10,11 Operation

00 The positive, unsigned numeric value (type 10) in the immediate data
byte compares to the contents of D(Ak). The destination field is
restricted to data types 10 or 11, If field D(Ak) exceeds one byte, the
immediate data byte zero-fills in its high-order positions.

01 The decimal numeric (type 4) immediate data byte compares to the
contents of D(Ak) after reformatting (if necessary) to match the data
type of field D(Ak). A positive sign is supplied as required. The
D(Ak) field is restricted to decimal data types O through 6. If D(Ak)
exceeds one byte, the immediate data byte zero—fills in its high-order
positions.

10 The ASCII character in the immediate data byte compares left—to-right to
the D(Ak) field. Then (DAk) field data type is ignored.

11 The ASCII character in the immediate data byte compares to the leftmost

byte in field D(Ak). If the comparison is equal and field D(Ak) exceeds
one byte, a space character compares left-to-right with each successive
byte remaining in the D(Ak) field. The D(Ak) field data type is ignored.

A half-word transfers to X1R to indicate the comparison result as follows:

Results of Register
Compare X1R
Source = Destination Clear XIR.
Source > Destination Clear bits 32 and 34 through 63, set bit 33.
Source < Destination Clear bits 34 through 63, set bits 32 and 33.

60458890 A II-1-51

Add Immediate Data

FBjkiD (1 descriptor) Add Immediate Data,
D(Ak) replaced by D(Ak) plus XiR
plus D per j ADDI,X1,D Ak,Xi,j
0 78 1112 1516 _1920 31
FB i k i D

The add immediate instruction converts the source field immediate data to match the

destination field data type (if required), and adds the immediate data byte to D(Ak). The

immediate data byte stores the integer value of the addend. The instruction j field encodes P
the data type contained in the immediate data byte. '

The j field least significant bit (bit 11) decodes as follows:

j Field Data Type
Bit 11 Immediate Data Byte
0 Data type = 10. Unsigned (positive) binary integer value.

1 - Data type 4., One ASCII character representing a decimal digit.

If the source field is data type 10, the destination field is restricted to data types 10 or
11. \

If source data is type 4, the destination is restricted to types 0 through 6.

This instruction may cause the arithmetic overflow exception condition.

FLOATING-POINT INSTRUCTION DESCRIPTIONS
Refer to Floating-Point Programming in section 2 of this volume for descriptions of - TN
floating-point data formats, standard and nonstandard numbers, and normalization. The
floating-point (FP) instructions consists of 18 operation codes in 4 subgroups:

. Conversion.

° Arithmetic.

e Branch.

° Compare.

Tables II-1-15 through II-1-17 list the instructions in the first 3 subgroups.

I1-1-52 60458890 A {)

oNe

DOUBLE-PRECISION REGISTER DESIGNATORS

The double-precision FP add, subtract, multiply, and divide instructions operate on double-
length registers, designated as follows:

XXk or XXj Two successive registers Xk, X(k+1l) or Xj, X(j+1) containing a

double-precision FP number. Xk or Xj contains the high order (leftmost)
part of this number.

FLOATING-POINT CONVERSION INSTRUCTIONS

The instructions in this subgroup (table II-1-15) convert 64-bit words between FP and
integer formats.

Table II-1-15. Floating-Point Conversion Instructions

Opcode Format Instruction Mnemonic
3A jk Convert from integer to FP CNIF
3B jk Convert from FP to integer CNFI1

Convert From Integer to FP

3Ajk Convert, floating-point Xk
formed from integer Xj CNIF Xk,Xj

0 78 1112 15

3A i k

This instruction converts the signed 64-bit two”s complement binary integer from Xj to its
normalized FP representation, and transfers the 64-bit result to Xk.

During conversion, the instruction truncates the rightmost bits of integers outside the
range 248 through (248)-1. When Xj is all zeros, it transfers unchanged to Xk.

Convert From FP to Integer

3Bjk Convert, integer Xk formed from
floating-point Xj. CNFL Xk, Xj
0 78 1112 15
3B j k
60458890 A I1-1-53

This instruction converts the 64-bit FP number in Xj to a signed two”s complement binary
integer and transfers the result to Xk. The fractional part of the binary equivalent
truncates. This conversion results in an integer consisting of all zeros if the FP number:

e Is indefinite.

e Has an exponent equal to zero.

° Has a fraction equal to zero.

® Is infinite.

This instruction may cause the arithmetic loss-of-significance, FP indefinite, and FP
infinite exception conditions.

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The instructions in this subgroup (table II-1-16) perform arithmetic operations on FP
numbers.

Table II-1-16., Floating-Point Arithmetic Instructions

Opcode Format Instruction Mnemonic
30 jk FP sum ADDF
31 ik FP difference SUBF
32 jk FP product MULF
33 jk FP quotient DIVF
34 ik Double-precision FP sum ADDD
35 ik Double—-precision FP difference SUBD
36 ; ik Double-precision FP product MULD
37 k jk Double-precision FP quotient DIVD

II-1-54 ' 60458890 A

OO0

The following conditions apply to all FP arithmetic instructions:
e Exponent overflow.
e Exponent underflow.
o. Floating-point loss—of-significance.
o Floating-point indefinite.

Individual instruction descriptions list additional interrupt conditions where applicable.
Refer to CP Interrupts in section 2 of this volume.

Floating-Point Sum/ Difference

30jk Floating-Point Sum,
Xk replaced by Xk plus Xj ADDF Xk,Xj
31jk Floating-Point Difference,
Xk replaced by Xk minus Xj SUBF Xk ,Xj
34k Double-Precision Floating-Point Sum,
XXk replaced by XXk plus XXj ADDD Xk,Xj
35k Double~Precision Floating-Point Difference,
XXk replaced by XXk minus XXj SUBD Xk,Xj
0 78 1112 15
30,31,34,35| | k

The following instruction description applies to either single—~ or double—précision
operations. References to Xk or Xj in the description also apply to XXk or XXj for the
double-precision instructions.

These instructions algebraically compare the exponents of the two FP operands in Xk and Xj.
If the exponents are equal, no adjustment is necessary. If the exponents are unequal, the
instruction aligns the coefficients by right-shifting the coefficient with the smaller
exponent the number of bit positions designated by the difference between the exponents.
The maximum shift is 48 positions for single-precision instructions or 96 positions for
double-precision instructions.)

The two aligned coefficients consist of a signed 48-bit single—precision or 96-bit double-
precision fraction. The instructions add or subtract the two coefficients as determined by
the operation code, using the Xj coefficient as the addend or subtrahend. The algebraic
result is a signed coefficient with 48 bits (single—precision) or 96 bits (double-
precision), plus an overflow bit. The overflow bit provides the required allowance for true
addition (FP sum of coefficients with like signs or FP difference of coefficients with
unlike signs).

60458890 A I1-1-55

If coefficient overflow occurs (overflow bit = 1), the instruction right-shifts the
coefficient one place, inserts the overflow bit in the high order bit position (bit 16),
increases the exponent by one, and places the result in Xk. If the coefficient overflow bit
is zero and the coefficient is not all zeros, the instructions normalize the result before
placing the result in Xk.

If either or both of the input operands in Xk and Xj consists of an infinite or indefinite

FP number, the result transferred to Xk is a nonstandard FP number. Refer to
Floating—-Point Standard and Nonstandard Numbers in section 2 of this volume.

Floating-Point Product

32jk Floating-Point Product,
Xk replaced by Xk times Xj) MULF Xk,Xj
36ik Double Precision Floating-Point Product,
XXk replaced by XXk times XXj MULD - Xk,Xj
0 78 1112 15
32,36 i k

The following instruction description applies to either single— or double-precision ‘ \
‘operations. References to Xk or Xj in the description also apply to XXk and XXj for the W
double~precision instructions.)

The multiply FP instructions algebraically add the signed exponents for the two FP operands
in Xk and Xj, using the result as an intermediate exponent. The instructions multiply the
coefficient in Xk by the coefficient in Xj to produce an algebraically-signed product
consisting of 96 bits (single-precision) or 192 bits (double precision). If the products
high-order bit (bit 16) is a one, the product is already normalized and the high—order 48
bits (single-precision) or 96 bits (double~precision) become an intermediate coefficient.

If the high—order bit is a zero, the instructions left-shift the 96-bit or 192-bit product Ve
one bit position, decrease the intermediate exponent by one, and use the high~order 48 bits
(single-precision) or 96 bits (double-precision) as the intermediate coefficient. This one-
position shift results in a normalized product if both input operands were normalized before
"~ executing the multiply instruction. If the intermediate exponent (including the adjustment
for normalization) is not equal to an out-of-range value, the intermediate exponent and the
intermediate coefficient (with its sign) transfer to Xk to form the final result.

If one or both of the input operands in Xk and Xj consist of an infinite, indefinite, or
zero FP number, the result transferred to Xk is a nonstandard FP number. Refer to
Floating-Point Standard and Nonstandard Numbers in section 2 of this volume.

{2
1I-1-56 . 60458890 A ‘(J’

C

Floating-Point Quotient

33jk Floating-Point Quotient,
Xk replaced by Xk divided by Xj DIVF Xk,Xj
37k Double-Precision Floating-Point Quotient,
XXk replaced by XXk divided by XXj DIVD Xk,Xj
0 78 1112 15
33,37 j k

The following instruction description applies to either single~ or double-precision
operations. References to Xk or Xj in the description also apply to XXk or XXj for the
double-precision instructions.

The divide FP instructions subtract the Xk exponent (divisor) from the Xk exponent
(dividend), and use the signed result as an intermediate exponent.

These instructions divide the Xk signed coefficient by the Xj signed coefficient. If the Xj
coefficient is unnormalized before instruction execution, and can be divided into the Xk
coefficient by a factor exceeding or equal to 2, the CP detects a divide fault.

If the CP does not detect errors, the division results in an algebraically-signed quotient
with 48 bits (single-precision) or 96 bits (double-precision), plus an overflow bit. The
overflow bit allows for cases in which the divisor can be divided into the dividend by a
factor equal to or exceeding one, but less than two. If the overflow bit is a zero, the
sign bit and 48- or 96-bit quotient require no further adjustments. If the overflow bit is
a one, the instruction right-shifts the quotient one position, end-off, with the overflow
bit inserted into the high-order bit position, and the exponent increased by one. The
intermediate exponent and intermediate coefficient (with its sign) transfer to Xk to form
the final result. When one or both of the input operands in Xk and Xj consist of an
infinite, indefinite, or zero FP number, the result transferred to Xk is a nonstandard FP
number. (Refer to Floating-Point Standard and Nonstandard Numbers in section 2 of this
volume.) '

This instruction may cause a divide fault exception condition.

60458890 A | 11-1-57

FLOATING-POINT BRANCH INSTRUCTIONS

This subgroup (table II-1-17) consists of five conditional branch instructions. Each
instruction compares two FP numbers and performs either a normal or branch exit based on the
comparison results.

Table II-1-17. Floating-Point Branch Instructions

Opcode Format Instruction Mnemonic
98 jkQ FP branch on equal BRFEQ
99 jkQ FP branch on not equal BRFNE
9A ij FP branch on greater than BRFGT
98 jkQ FP branch on greater than or equal to BRFGE
9E jkQ FP branch on overflow BROVR
9E jkQ FP branch on underflow BRﬁND
9E jkQ FP branch on indefinite BRINF
3C jk FP compare CMPF
Normal Exit

The instruction takes a normal exit if the branch condition is not satisfied. The next
instruction address forms by adding 4 to the BN field of the current PVA in P.

Branch Exit
The instruction takes a branch exit if the branch condition is satisified. The next

instruction address forms by adding 2 times the Q field value (from the branch instruction)
to the BN field of the current PVA in P.

Group Interrupt Conditions

The following interrupt conditions apply to all FP branch instructions.
° Debug.
e Floating—-point loss—of-significance.
. Floating—point indefinite.

Refer to CP Interrupts in section 2 of this volume for descriptions of these conditions.

I1-1-58 60458890 B

00

FIoating-Point Branch on Comparison

983jkQ Branch to P Displaced by 2*Q,
if floating-point Xj equal to Xk BRFEQ Xj,Xk,Q
99ikQ - Branch to P Displaced by 2*%Q,
if floating—point Xj not equal to Xk BRFNE Xj,Xk,Q
9AjkQ Branch to P Displaced by 2*Q,
if floating—point Xj greater than Xk BRFGT Xj,Xk,Q
9BjkQ Branch to P displaced by 2*Q,
if floating-point Xj
greater than or equal to Xk BRFGE Xj ,Xk,Q
0 78 1112 1516 31
98,99,9A,98| j k Q

Each compare and branch instruction performs an algebraic comparison between the 64-bit
words in Xj and Xk. If the branch conditions are satisfied, the instruction takes a branch
exit. If the conditions are not satisified, a normal exit results.

These instructions treat the 64-bit words in Xj and Xk as single-precision FP numbers.
If Xj or Xk specifies register XO,‘these instructions interpret X0 as all zeros.

For the results with the various combinations of comparison input data, refer to
Floating-Point Standard and Nonstandard Numbers in section 2 of this volume.

Floating-Point Branch on Condition

9EjkQ " Branch to (P) Displaced by 2*Q,
if floating-point Xk is exception per j

j Field Xk Tested For
00 Exponent overflow. BROVR Xk,d
01 Exponent underflow. BRUND Xk,Q
10/11 Exponent indefinite. . BRINF Xk,Q
0 78 1112 1516 31
9E j k Q k

The instruction takes a branch exit if the exception condition designated by bits 10 and 11
of the instruction j field applies to the 64-bit FP number in Xk. A normal exit occurs if
the exception condition designated by j field bits 10 and 11 does not apply to the 64-bit FP
number in Xk.

60458890 A II-1-59

FIoating-Poﬁnt Compare

3Cjk Compare Floating-Point Xj to Xk,
result to X1R CMPF Xi,Xj,Xk
0 78 1112 15
3c i K

This instruction algebraically compares the Xj 64-bit word to the Xk 64~bit word, and
indicates the result by setting bits in X1R. The instruttion treats the 64-bit words in Xj
and Xk as single-precision FP numbers.

If Xj or Xk specifies register X0, the instruction interprets X0 as all zeros. XIR bits are
set as follows:

Results of Register

Compare X1R
Xj = Xk Clear XI1R.
Xj > Xk Clear bits 32 and 34 through 63, set bit 33.
Xj < Xk Clear bits 34 through 63, set bits 32 and 33.
Indefinite Clear bits 33 through 63, set bit 32.

If the comparison results are indefinite, the CP records an FP indefinite condition and sets
register X1R as shown in the preceding table. If the corresponding user mask bit is set and
the trap enabled, the corresponding program interrupt occurs.

VECTOR INSTRUCTION DESCRIPTIONS

The vecfor instruction group consists of 20 operation codes in 6 subgroups:
e Integer vector arithmetic.
° Integer vector compare.
e Logical vector arithmetic.
° Integer/floating~point vector conversion.)
e Floating-point vector arithmetic.
° Special-purpose vector instructions.
Table II-1-18 lists the instructions within each subgroup. For descriptions of vector

length, page size, broadcast, interrupts, and overlap, refer to Vector Programming in
section 2 of this manual.

I1-1-60 60458890 A

il
'y

U

©0

VECTOR INSTRUCTION FORMAT

The vector instruction group utilizes the jkiD format (refer to figure II-1-1).

0 78 1112 1516 1920 31

OPCODE i k i D

8 4 4 4 12

Field

60458890 A

Figure II-1-1. Vector Instruction Format

Designates register Aj which contains the starting address of a source
vector, VAj.

Designates register Ak which contains the starting address of a destination
vector, VAk.)

Designates register Ai which contains the starting address of a second
source vector, VAi. May also designate register Xi which contains the
interval for gather and scatter instructions.

Specifies vector length (number of operations). For further information,

refer to Vector Length described under Vector Programming in section 2 of
this manual.

I1-1-61

Table II-1-18,

Vector Instructions

Instruction Name Opcode Mnemonic
Integer Vector Sum 443kiD ADDXV
Integer Vector Difference 453kiD SUBXV
Integer Vector Compare, = 503jkiD CMPEQV
Integer Vector Compare, < 51 jkiD CMPLEV -
Integer Vector Compare, > 52ikiD CMPGEV
Integer Vector Compare # 533jkiD CMPNEV
Shift Vector Circular 4D jkiD SHFV
Logical Vector Sum 48 5kiD IORV
Logical Vector Difference 493kiD XORV
Logical Vector Product 4A 3kiD ANDV
Convert Vector from Int. to FP 4B jkiD CNIFV
Convert Vector from FP to Integer 4C jkiD CNFIV
Floating Point Vector Sum 403kiD ADDFV
Floating Point Vector Difference 41 jkiD SUBFV
Floating Point Vector Product 42 3kiD MULFV.
Floating Point Vector Quotient 433kiD DIVFV
Floating Point Vector Summation 57 jkiD SUMFV
Merge Vector 54 jkiD MRGV
Gather Vector 553jkiD GTHV
Scatter Vector 56 jkiD SCTV

11-1-62 60458890 A

U

O
C

Integer Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of integers that
compose source vectors from CM. After completing the required operation, the instructions
store the results in the destination vector into CM.

445kiD Integer Vector Sum, V(Ak) replaced ADDXV
by V(Aj) plus V(A1)

45jkiD Integer Vector Difference, V(Ak) SUBXV
replaced by V(Aj) minus V(Ai)

These instructions perform the indicated arithmetic operation on the first element from
V(Aj) and V(Ai) and store the result as the first element of V(Ak). This operation repeats
for successive elements until the required number of operations has been performed.

Integer Vector Compare

The instructions in this subgroup perform comparisons between pairs of integers that compose
source vectors from CM, After completing the required operation, the instructions store the
results in a destination vector that returans to CM.

50ikiD Integer Vector Compare, V(Ak) CMPEQV
replaced by V(Aj) equal to V(Ai)

51jkiD Integer Vector Compare, V(Ak) CMPLTV
replaced by V(Aj) less than
V(Ai)

52jkiD Integer Vector Compare, V(Ak) CMPGTV

replaced by V(Aj) greater than
or equal to V(Ai)

53jkiD Integer Vector Compare, V(Ak) CMPNEV
replaced by V(Aj) not equal
V(AL)

These instructions perform the indicated integer arithmetic comparison on the first elements
from V(Aj) and V(Ai). If the comparison is true, bit O is set and bits 1 through 63 are
cleared in the first element of V(Ak). If the comparison is false, bits 0 through 63 are
cleared in the first element of V(Ak). This operation repeats for successive elements until
the required number of operations has been performed. When broadcast of V(Aj) is selected
and j=0, the content of X0 interprets as all zeros (refer to Vector Broadcast under Special
Purpose Vector Instructions later in this section). :

60458890 B I1-1-63

-

It

3 % %\‘
e vg;

Logical Vector Arithmetic

The instructions in this subgroup perform logical operations between pairs of elements that
compose source vectors from CM. After completing the required operation, the instructions
store the results in a destination vector that returns to CM.

483ikiD Logical Vector Sum, V(Ak) replaced TORV
by V(Aj) OR V(Ai)

49§kiD Logical Vector Difference, V(Ak) XORV
replaced by V(Aj) exclusive-OR V(Ai)

4AjKkiD Logical Vector Product, V(Ak) ANDV
replaced by V(Aj) AND V(Ai)

These instructions perform the indicated logical operation on the first element from V(Aj)
and V(Ai) and store the result as the first element of V(Ak). This operation repeats for
successive elements until the required number of operations has been performed.

Integer/Floating-Point Vector Conversion 4
.
The instructions in this subgroup perform conversions on successive element that compose a
source vector from CM. After completing the required operation, the instructions store the
results in a destination vector that returns to CM.
4BjkiD Convert Vector, floating-point V(Ak) CNIFV
formed from integer V(Aj)
4CjikiD Convert Vector, integer V(Ak) CNFIV
formed from floating-point V(Aj)
.

These instructions perform the indicated conversion on the first element from V(Aj) and
store the result as the first element of V(Ak). This operation repeats for successive
elements until the required number of conversions has been performed. :

Floating-Point Vector Arithmetic

The instructions in this subgroup perform arithmetic operations on pairs of floating-point
operands that compose source vectors from CM. After completing the required operation, the
instructions store the results in a destination vector that returns to CM.

I1-1-64 . : © 60458890 A

D

B

@

403kiD Floating-Point Vector Sum, ADDFV
V(Ak) replaced by V(Aj) plus V(Ai)

41 3kiD Floating-Point Vector Difference, SUBFV
V(Ak) replaced by V(Aj) minus
V(Ai)

42 3kiD Floating-Point Vector Product, MULFV
V(Ak) replaced by V(Aj) times
V(AL)

43 3kiD Floating-Point Vector Quotient, DIVFV
V(Ak) replaced by V(Aj) divided by
V(Ai)

These instructions perform the indicated arithmetic operations oun the first element from
V(Aj) and V(A1) and store the result as the first element of V(Ak). This operation repeats
for successive elements until the required number of operations has been performed.

Special Purpose Vector Instructions

The instructions in this subgroup perform various manipulative operations on source vectors
from CM.

4D §kiD Shift Vector Circular, V(Ak) SHFV
replaced by V(Ai), direction '
and count per V(Aj)

This instruction performs a circular shift on the first element from V(Ai) as directed by
the first element of V(Aj) and stores the result as the first element of V(Ak). This
operation repeats for successive elements until the required number of operations has been
performed.

The shift count for each element in V(Ai) is taken from the rightmost 8 bits of the
corresponding element of V(Aj). The sign bit in the leftmost position of the 8-bit shift
count determines the shift direction. A positive shift count (sign bit = 0) left-shifts the
instruction; a negative shift count (sign bit = 1) right-shifts the instruction. Shifts may
be from O through 63 bits left and from 1 through 64 bits right. (A shift count of O causes
the associated instruction to transfer the initial element of V(Ai) to the corresponding
element in V(Ak) with no shift performed.)

When vector broadcast of V(Aj) is selected and j=0, the X0 contents interpret as all zeros.

60458890 A II-1-65

54 §kiD Merge Vector, V(Ak) partially MRGV
replaced by V(Aj) per mask V(Ai)

This instruction replaces the first element of V(Ak) with the first element of V(Aj) if bit
0 is set in the first element of V(Ai). If bit O is clear, the first element of V(Ak) is
left unchanged. This operation repeats for successive elements until the required number of
operations has been performed.

553kiD Gather Vector, V(Ak) replaced by GTHV
gathered V(Aj) with interval Xi

This instruction forms the contiguous vector V(Ak) by gathering elements from V(Aj) at
interval Xi (refer to figure II-1-2). This instruction obtains the first element from V(Aj)
and stores it as the first element of V(Ak). The second element to be stored in V(Ak) is
taken from the address formed by adding the rightmost 32 bits of Xi, left-shifted 3 places
with zero-fill, to the rightmost 32 bits of the previous address. The nth element of

V(Ak) is replaced by V(Ak) whose address is (Aj)+8*(n-1)(Xi). Execution does mnot alter the
Xi contents.)

I1-1-66 - : 60458890 A

N
\ i
A /7
"

*_) Yy

Xi Xi Xi
e
[Aj]
C . \ I / Positive Interval
V(Ak)
V(Aj)
Zero Interval
J
\ N ™
V(Ak) >
‘ v
Xi Xi Xi
V(Aj) o
\\\\\ \ ////, T
[Aj]
e /‘/ w\ Negative Interval
V(Ak) -
0”," Figure II-1-2. Gather Instruction
0’ 60458890 A

I1-1-67

56 jkiD Scatter Vector, V(Ak) replaced by SCTV
scattered V(Aj) with interval Xi

This instruction scatters the contiguous V(Aj) elements in V(Ak) at interval Xi (refer to
figure II-1-3). This instruction obtains the first element from V(Aj) and stores it as the
first element of V(Ak). The second contiguous element from V(Aj) is stored into V(Ak) at
the address formed by adding the rightmost 32 bits of Xi, left-shifted 3 places with
zero~fill, to the rightmost 32 bits of A(k). Successive elements from V(Aj) are stored into
the addresses formed by adding the rightmost 32 bits of Xi, left—shifted 3 places with
zero—fill, to the rightmost 32 bits of the previous address. The nth element of V(Aj) is
stored into V(Ak) at (Aj)+8*(n-1)(Xi). Execution does not alter the Xi contents.

;: j
\
4

11-1-68 : 60458890 A @ “

00

V(Aj) >
/ \ \ ~ Positive Interval
[Ak]
V(AK) / \ N
Xi R Xi ‘ Xi
V(Aj)
NN \\\
Zero Interval
V(Ak)
[Ak]
V(Aj)

Negative Interval

V(Ak) d ‘

Xi

Figure II-1-3.

60458890 A

Scatter Instruction

57 3kiD Floating~Point Vector Summation, SUMFV
Xk replaced by summation of
elements in V(Ai)

This instruction adds together all the elements in V(Ai) and stores the sum in Xk. The
individual add operations which together form this instruction are single-precision sums and

may be performed in any order.

C

. ™
11-1-70 : 60458890 A {J

C0

00

SYSTEM INSTRUCTION DESCRIPTIONS

The system instructions consist of 27 operation codes in 5 classes. The classes are based
on the characteristics of the code segment from which the instructions are accessed, or the
CP mode in which the instructions may operate. The classes are as follows:

e Nonprivileged.

e Local privileged.

® Global privileged.

e Virtual State.

e Virtual State monitor mode.

e Mixed mode.
Local and global privileged instructions execute only when the XP field of the associated
segment descriptor designates the appropriate privilege (with the CP in any mode). Virtual
State monitor mode instructions execute only when the CP is in Virtual State monitor mode.

Mixed mode instruction parameters within the instruction determine their privilege/mode
requirements. Refer to Access Protection in section 2 of this volume for more information.

60458890 A I1-1-71

NONPRIVILEGED SYSTEM INSTRUCTIONS
The instructions in this subgroup are listed in table 1II-1-19. In some cases, a portion of

the instruction word is unused, as indicated in the instruction format. Instruction
execution is not affected by these unused bits, but it is recommended these bits be zeros.

Table II-1-19. Nonprivileged Instructions

Opcode Format Instruction Mnemonic
00 jk : Program error HALT
01 ik Scope loop synchronization SYNC
02 ik Exchange EXCHANGE
04 jk Return RETURN
06 jk Pop POP
08 ik Copy free running counter CPYTX
14 jk Test and set bit » LBSET
16 jk Test and set page TPAGE
BO jkQ Call relative CALLREL
B4 jkQ Compare swap CMPXA
B5 jkQ Call indirect CALLSEG
BE,BF jkQ Reserved opcodes -
co-c7 SjkiD Execute algorithm EXECUTE, S

Program Error

00jk Program Error HALT

This instruction causes an instruction specification error with the corresponding program
interrupt or halt.

I1-1-72 60458890 A

‘e’

Aﬁi\\

alle

O
C

Scope Loop Sync
0ljk Scope Loop Sync ‘ SYNC

For the model 855, set CP breakpoint register 32 to 10ljg by performing the CMSE command
ER2,32 = 101}, The instruction triggers at TP 44 at location 3Al-ClC.

This instruction is a no—operation within the CP. The instruction generates a pulse to a
test point for oscilloscope synchronization.

Exchange
02jk Exchange EXCHANGE

0 78 15

This instruction exchanges the current process registers (formatted as an exchange package)
with another set stored in CM, and does the following:

e When executed with CP in Virtual State monitor mode, the processor switches from
monitor to job mode.

e When executed in Virtual State job mode, the processor switches from job to monitor
mode and the system call bit sets in the monitor condition register (MCR 10).

In either case, the P register stored in the outgoing exchange package points to the next
instruction that would have executed if the exchange had not occurred.

This instruction can cause the following exception conditions:
° Environment specification error.
e System call,

Refer to CP Modes of Operation in section 2 of this volume for further information.

60458890 A : I1-1-73

Return

04jk

Return) RETURN

78

This instruction requires the following register assignments:

(A0) Dynamic space pointer (DSP).

(A1) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange package Top of stack (TOS) pointer for current ring of execution.
In exchange package TOS pointer for previous ring of execution.

This instruction reestablishes the stack frame and environment of the previous procedure
(which must be executing in an equal or less privileged ring as the current procedure).
This operation does not load MCR or UCR. The instruction executes as follows:

1.

3.

4.

I1-1-74

Update the TOS pointer by storing the CSF pointer from Al into the TOS pointer for
the current ring of execution. This has the effect of cancelling the current stack

frame.

Load the environment from the previous save area (as defined by PSA pointer in A2

and the stack frame descriptor in PSA) as follows:
e P register (all fields).
. ® VMID (CP state switch may take place).
e CFF and OCF.
e User mask register.
e A0 through At (per SFSA descriptor).

e Xs through Xt (per SFSA descriptor).

Set the RN field of each A register loaded from SFSA equal to the largest of the-

following:
e A(RN) from SFSA. o
e Initial A2(RN).

° Rl of SDE for initial A2,

If the final P(RN) does not equal the initial P(RN), set any A(RN) not loaded from

PSA in step 2 (and less than the final P(RN)) equal to the final P(RN).

Update TOS pointer in the exchange package.

60458890 A

00

6. Clear trap enable delay.

7. If any A(RN) loaded from PSA in step 2 is zero, set MCR 60, with interrupt or halt.
When this happens, the instruction execution completes and UTP is unaltered.

This instruction can cause the following exception conditions:
e Address specification error.
e Invalid segment/ring number zero.
® Access violation.
e Environment specification error.
e Page table search without find.
e Outward call/inward return.

o Critical frame flag.

e Debug.

Pop

06jk Pop POP
0 78 15

This instruction requires the following register assignments:

(A0) Dynamic space pointer (DSP).

(Al) Current stack frame (CSF) pointer.

(A2) Previous save area (PSA) pointer.

In exchange package Top of stack (TOS) pointer for current ring of execution.

This instruction moves the CSF, PSA, and TOS pointers to eliminate the stack frame without
changing the P-counter. This instruction reestablishes the stack frame (but not the
environment) of the previous procedure, which must be in the same ring of execution as the
current procedure. The stack frame is reestablished as follows:

1. Obtain the stack frame descriptor from the PSA (SFSA for the previous procedure}
using the PSA pointer in A2.

2. Update the CSF pointer by loading Al with word 2 from the PSA. Set Al ring number
equal to P ring number.

60458890 A . 1I-1-75

3. Update the PSA pointer by loading A2 with word 3 from the PSA. Set A2 ring number
equal to the largest of: a) the A2 initial ring number, b) the A2 ring number from
PSA, or c) the Rl field of the segment descriptor associated with the PSA.

4. Load the critical frame flag (CFF) and the on-condition flag from the PSA.

5. Update the TOS pointer by storing the CSF pointer from final Al into the TOS pointer
for the current ring of execution. This has the effect of cancelling the current
stack frame. :

6. 1If any A1(RN) or A2(RN) loaded from PSA in step 2 is zero, set MCR60, with interrupt
or halt. Instruction execution completes and UTP is unaltered.

This instruction may cause the following exception conditions:
e Address specification error.
e Invalid segment/ring number zero.
e Access violation.
) Environment specification error.
° Page table search without find.
o Inter-ring pop.
° Critical frame flag.

e Debug.

Copy Free Running Counter

08jk Copy Free Running Counter to Xk at XjR CPYTX Xk,Xj

0 78 1112 15

08 i k

This instruction copies the free running counter in CM into Xk (the free-running counter
consists of either 64 bits of counter, or 48 bits of counter which are right-justified with
zero—fill in the leftmost 16 bits). XjR bits 32 and 34 through 63 are zeros. XjR bit 33
specifies which processor port the instruction uses to read the counter as follows:

Bit 33 Port Selected
0 Local processor port to CM.
1 External processor port to CM of another system.
I1-1-76 ' " - 60458890 A

& O

0O
C

Test and Set Bit

14k Load Bit to XkR from Aj Bit Indexed by
XOR and Set Bit in CM LBSET Xk,Aj,X0
0 78 1112 15
14 i k

This instruction transfers one bit from CM into XkR bit position 63 and clears Xk bits 0
through 62. The instruction also sets that bit in CM without changing any other bits in CM.

The instruction addresses the CM byte containing the bit by adding bits 32 through 60 of XOR
(right-shifted 3 positions, end-off, with sign extension on the left), to bits 32 through 63
of Aj. The instruction uses XOR bits 61 through 63 to locate the bit position within the
addressed byte. Values O through 7 for these 3 bits select corresponding bits O through 7
from the addressed byte.

No other CM accesses (from any port) to the CM byte containing that bit are permitted from
the start of the read access until the end of the write access (when the instruction sets
the bit in CM). :
The system performs a serialization function before and after instruction execution. The CP
delays instruction execution until all previous CM accesses by previous instructions
complete, and delays execution of the next instruction until all CM accesses from this
instruction complete.
To establish operand access validity, the instruction uses read- and write-type CM
accesses. The read access bypasses cache memory. Termination of the write access purges
the associated cache entry.
This instruction may cause the following exception conditions:

® Address specification error.

e Invalid segment/ring number zero.

° Access violation.

Page table search without find.

Debug.

Test and Set Page

16jk Test page (Aj) and set XkR TPAGE Xk,Aj
0 78 1112 15
16 i k

60458890 A 11-1-77

This instruction tests CM for the presence of the page (corresponding to the PVA in Aj) in
the system page table with its valid bit set in the associated page descriptor. If the
tested page is in CM, the used bit in the associated page descriptor sets, and the real
memory address translated from the PVA from Aj transfers to XkR. If the tested page is not
in CM, the instruction sets XkR bit 32 and clears XkR bits 33 through 63.

This instruction may cause the following exception conditions:
® Address specification error.

e Invalid segment/ring number zero.

Call Relative P
BOjkQ Call to P displaced by 8%*Q, s
binding section pointer per Aj,
arguments per Ak CALLREL Aj,Ak,Q
0 78 1112 1516 3
BO i k Q

Register assignments are as follows:

(A0) Dynamic space pointer (DSP). g
(Al) Current stack frame (CSF) pointer.
(A2) Previous save area (PSA) pointer.
(A4) Argument pointer.
In exchange package Top of stack (TOS) pointer per RN in P.
This instruction saves the current procedure (caller) environment and calls another’ «

procedure (callee) within the same segment as the caller. The RN and SEG fields of P remain
unaltered.

The caller”s environment is saved by storing designated process and processor registers into
a stack frame save area (SFSA) generated on top of the current stack frame. The DSP in A0,
rounded to the next available full word address, is the PVA of the first word in this SFSA.
The instruction saves some CP registers in the SFSA unconditionally. These registers are as
follows:

) P register.

° Stack frame descriptor.

e User mask.

° Virtual machine identifier.

® Register AO.

PR

()
11-1-78 . : ' 60458890 A ajy

The caller specifies other registers saved. AO is always the first register saved, and XOR
specifies other A and X registers to be saved. XOR has the following format:

52 5556 5960 63

]
L X-last

A-last
X-first
X0 Bits Registers Saved
52-55 First X register.
56-59 Last A register.
60-63 Last X register.

The call instruction does not store any X register if the value of X-last exceeds X-first.

After storing the registers in the SFSA, the instruction executes as follows:

10

2

3.

4‘

5'

Modify dynamic space pointer (DSP) in A0 by adding 8 times the number of SFSA words
to the BN in AO.

Update the top of stack (TOS) pointer in the exchange package by storing the

modified DSP into the exchange package TOS entry corresponding to the current ring
of execution, as determined by the RN in P. This creates a new stack frame.

Form the target address by adding 8 times Q to the BN in P. Bits 61 through 63 of P
are forced to zero.

Establish the stack frame of the callee by loading A0, Al, and A2 from the PSA (SFSA
of the callee).

Copy Aj to A3 and Ak to A4 to reflect parameter changes required to transfer control
to the callee.

This instruction may cause the following exception conditions.

° Instruction specification.
® Address specification error.
e Invalid segment/ring number zero.
e Access violation.
e Page table search without find.
° Debug.
60458890 A II-1-79

-

~

Compare Swap
B43jkQ Compare Xk to (Aj), if locked, branch
to P displaced by 2*Q, if unlocked,
load/store (Aj), result to X1R CMPXA Xk,Aj,X0,Q
0 78 1112 1516 31
B4 j k Q

If the leftmost 32 bits of a 64-bit word in CM location Aj are all ones (Aj locked), the
instruction takes a branch exit. The target address forms by adding the value 2 times Q
(sign—-extended) to the BN field of the PVA in P.

If the above condition is absent, the instruction compares the Xk 64-bit word with the word N
in CM location Aj (64-bit integer compare). If the two words are equal, the instruction

stores X0 in location Aj and clears X1R. If the two words are unequal, the instruction

loads the word in CM location Aj into Xk and sets X1R as follows (in either case, the

instruction takes a normal exit): ’

Results of
Compare Action Taken
Xk = (Aj) Store X0 at (Aj), clear XIR.
Xk > (Aj) , Load (Aj) into Xk, clear XIR bits 32 and 34 through 63, set .
X1R bit 33.
Xk < (Aj) Load (Aj) into Xk, clear X1R bits 34 through 63, set XIR

bits 32 and 33.
Within a given CP, execution of this instruction delays until all previous CM accesses
complete. Execution of all subsequent instructions delays until all CM accesses due to this
instruction complete. 1In dual CP systems, if a second CP executes a compare swap
instruction while the other CP is processing one, the second CP reads the 64-bit word in
location Aj, finds the leftmost 32 bits all ones (locked), and branch-exits. The hardware,
however, does not inhibit other instruction codes issued from the other CP (or any PP
instructions) from accessing and altering location Aj.
The read access bypasses cache, and the write access purges the associated cache entry.

For the debug scan, Aj is both a read and a write address, whereas P+2Q is a branch target
address only when the branch occurs.

This instruction may cause the following exception conditions:
e Instruction specification. 4
® Address specification error.
e Invalid segment/ring number Zero.
® Access violation.
e Page table search without find. “n

e Debug.

%
¢ jﬁ
I1-1-80 60458890 A & ;

Call Indirect
B5ikQ Call per (Aj Displaced by 8%*Q),
arguments per Ak : CALLSEG Aj,Ak,Q
0 78 1112 1516 31
B5 i k Q

The instruction uses the following assigned registers:

Register Description
0 ‘ (A0) Dynamic space pointer (DSP).

(Al) Current stack frame pointer.

(A2) Previous save area pointer.

(A3) Binding section pointer.

(A4) Argument pointer.

In exchange package pr of stack (TOS) pointer for the caller”s ring of
0 execution.

In exchange package TOS pointer for the callee”s ring of execution.

In CM Code base pointer (CB?) addressed by A3+8%Q.

This instruction saves the current procedure (caller) environment and calls another

procedure (callee) indirectly. The callee must be executing within the same or in a higher

privileged ring as the caller. The indirect target address is listed in the CBP addressed

by (Aj displaced by 8 times sign—extended Q). The instruction saves the environment (as

specified by XOR) in the SFSA generated on top of the current stack frame. For details,
‘::x refer to the call relative instruction described in this section.

The instruction executes as follows:

1‘

2.

©0

Add 8 times Q to the BN field from register Aj to form the PVA of a CBP from a
binding section segment (which contains the target PVA).

Round DSP upward as follows: Add 7 to AO, then force A0 bits 61 through 63 to zero.
Store environment in SFSA, per XOR.

Copy P bits O through 31 to XOR (callers ID).

Modify DSP in AO by adding 8 times the number of SFSA words to AO bits 32 through 63.

Adjust TOS pointer in the exchange package by storing this modified DSP in the TOS
entry for the current ring of execution, as determined by the RN field in P.

60458890 A 11-1-81

10.
11.
12,

13.

14.

15,

16.

17.

18.

19.

Load P key with segment descriptor lock for callee.

If P ring number is less than callee segment descriptor R2 (inter-ring call), go to
step 12,

Set P ring number equal to callee segment descriptor R2.

Load P SEG and BN fields with code base pointer SEG and BN fields.
If CBP VMID = 1 (call is to CYBER 170 State),‘go to step 17.

If internal procedure (code base pointer EPF = 0), go to step 16.

Load A3 with new binding section pointer, setting RN equal to the larger of the RN
in CBP and the new RN in P register.

1f trap operation, go to step 17; if call instruction, copy Ak to A4 (pass o
parameters). When k is O through 3, the final contents of A4 is with respect to

which A register is copied.

Copy (AO) to A2 (DSP from step 2 to PSA pointer).

Clear on—condition flag.

Load Al with top of stack pointer from exchange package per final P ring number, and
clear the critical frame flag.

Set dynamic space pointer in A0 equal to current stack frame pointer in Al.

N v
Copy VMID from CBP to the VMID register.
NOTE
The trap interrupt operation unconditionally
includes all the above steps except items
10, 11, and 14. PE
t\‘t., P

This instruction may cause the following exception conditions:

I1-1-82

Instruction specification.
Address specification error.
Invalid segment/ring number zero.
Access violation.

Environment specification error.
Page table search without find.

Outward call/inward return.

Debug. @:iﬁ

kN
/‘ ‘-[
60458890 A ‘{rw

00

Reserved Operation Codes

BEjkQ Reserved for user
BFjkQ Reserved for user
0 78 1112 1516 31
BE,BF i k Q

These two instructions are reserved for the user for software simulation of operatioms that
executive state does not provide through trap interrupts. These operation codes will not be
used in future hardware extensions.

When not implemented, these instructions cause the unimplemented instruction exception, with
interrupt or halt.

Execute Algorithm
CSjkiD Execute Algorithm per S EXECUTE,s j,k,1i,D
This instruction is reserved for future expansion.

When not implemented, this instruction causes the unimplemented instruction exceptiom, with
interrupt or halt.

LOCAL PRIVILEGED SYSTEM INSTRUCTIONS

Instructions in this subgroup (table II-1-20) can execute only from segments which (by the
associated segment descriptor) have either local or global privilege. If a local privileged
instruction is fetched from a segment without either local or global privilege, the CP
detects a privileged instruction fault, inhibits execution, and initiates the corresponding
program interrupt or halt.

Table 1I-1-20., Local Privileged Instructions

Opcode Format Instruction Mnemonic

17 ik Load page table index LPAGE

60458890 A II-1-83

Load Page Table index

17k Load Page Table Index per Xj to XkR
and set XIR LPAGE Xk,Xj,Xi
0 78 1112 15
17 i k

This instruction searches the page table in CM for the presence of a page, returns the final
search index value to XkR, and sets X1R to indicate the search results. The SVA in Xj
defines the required page table entry. . -

-

The SVA determines the starting point in the page table search. The search continues until
the corresponding page descriptor is found, a continue bit equal to zero is detected, or 32
entries have been searched. The validity bit is ignored.

When the page is found, the page table index associated with that entry transfers to XkR,
the number of entries searched transfers to X1R bits 33 through 63 (right—-justified with
zeros extended), and X1R bit 32 sets to indicate the find.

When a page corresponding to the SVA in Xj is not found, the page table index value of the
last entry tested transfers to XkR, the number of entries searched transfers to XIR bits 33
through 63 (right—justified with zeros extended), and X1R bit 32 clears.

If the instruction”s k field equals 1, register X1R loads with the result—indication bit and
the number of entries searched instead of the index value.

This instruction can cause the following exception conditions:
e Privileged instruction fault.

e Address specification error.

GLOBAL PRIVILEGED SYSTEM INSTRUCTION
The processor intérrupt instruction can execute only from segments which (by the associated
segment descriptor) have global privilege. If this instruction is fetched from a segment

without global privilege, the CP detects a privileged instruction fault, inhibits execution,
and initiates the corresponding program interrupt or halt.

Processor Interrupt

03jk Processor Interrupt per Xk INTRUPT Xk,j

0 78 1112 15

03 i k

I1-1-84 60458890 A

J

N
< ,/“
N s

el

o

O

O

This instruction sends an external interrupt to one or more CPs (including the executing
CP) through their CM ports. The interrupting CP sends Xk to CM. CM then sends an external
interrupt to the processor(s) connected to the ports whose numbers correspond to the bits
set in Xk as follows:

Xk Bit Port Number
60 3
61 2
62 1
63 0

Bits 0 through 59 are not used to send interrupts and are ignored by the CM, but have
correct parity. When two ports of the same memory connect to the interrupting CP, the state
of Xk bit 33 selects the port the CP uses to send Xk to CM along with the interrupt. (Xk
bit 33 thus overrides RMA bit 33 for memory port selection).

State of Memory
Bit 33 Port Used
Clear 0
Set 1

The system delays this instruction”s execution until all previous CM accesses by the
interrupting CP complete. If a CP sends an interrupt to itself, this instruction completes
executing before the interrupt is taken.

This instruction can cause the privileged instruction fault exception condition.

MONITOR MODE INSTRUCTIONS

Instructions in this subgroup can execute only with the processor in executive monitor
mode. Otherwise, the CP detects an instruction specification error, inhibits instruction
execution, and initiates the corresponding program interrupt. Refer to Mixed Mode
Instructions in the following description.

60458890 A II-1-85

MIXED MODE INSTRUCTIONS

The execution of instructions in this subgroup (table II-1-21) depends on an instruction
parameter. The parameter value determines whether the instruction is executable from

nonprivileged, local-privileged, or global-privileged segments, or whether the CP must be in
Virtual State monitor mode.

Table II-1-21. Mixed Mode Instructions

Opcode Format Instruction Mnemonic
05 jk Purge buffer PURGE
OE ik Copy from state register’ CPYSX
OF jk Copy to state register CPYXS
9F jk Braﬁch on condition register BRCR

Purge Buffer

053k Purge buffer k of entry per Xj © PURGE Xj,k

0 78 1112 15

05 i k

This instruction invalidates entries in the cache (models 835, 845, 855, and 990), map, or
instruction buffer, selectable as follows:

e All entries in cache (models 835, 845, 855, and 990), map or instruction buffer.
e All entries for a given segment in cache (models 835, 845, 855, and 990) or map.
e All entries for a given page in cache (models 835, 845, 855, and 990) or map.

e All entries for a given 512-byte block in cache (models 835, 845, 855, and 990).

11-1-86 60458890 A

0

i %"‘E: >

O

Xj contains the required address information as either the system virtual address (SVA) or
the process virtual address (PVA). The k value determines the buffer to be purged, the
range of entries to be purged, and the addressing type used, as follows:

Value of k Description

k=0 Purge all cache entries in a 512-byte block defined by SVA in Xj.

k=1 "Purge all cache entries in ASID defined by SVA in Xj.

k=2 Purge all cache entries.

k=3 Purge all cache entries in 512-byte block defined by PVA in Xj.

k = 4 through 7 Purge all cache entries in SEG defined by PVA in Xj.

k=28 Purge all map entries in page associated with page table entry
defined by SVA in Xj. (Page size is determined from page size mask
register.)

k=9 Purge all map entries pertaining to page table entries included‘in

segment defined by SVA in Xj.

k=A Purge all map entries pertaining to page table entry defined by PVA
in Xj. Page size mask register specifies number of bytes in page.

k=8 Purge all map entries pertaining to segment table entry defined by
PVA in Xj, and to all page table entries included within that
segment.

k = C through F Purge all map entries, ignore Xj.

If k =0, 1, 2, or 8 through F, this instruction is a local privileged instruction. It is a
nonprivileged instruction for all other k values.

The system performs a serialization function before this instruction begins execution, and
again when execution completes. The system delays instruction execution until all previous
accesses to CM by this processor complete, and delays the fetch or execution of subsequent
instructions until all CM accesses for this instruction complete.
This instruction may cause the following exception conditions:

e Privileged instruction fault.

e Address specification error (k = 0, 1, 8, or 9).

) Invalid segments.

Copy to/from State Buffer

These instructions copy certain state registers to and from X registers.

If a copy instruction reads a nonexistent register or any register restricted to MCU access
only, the system clears all 64 bits of Xk. A copy instruction used to write a nonexistent
register, or any register restricted to read only or MCU access only, results in a
no—operation.

60458890 A ‘ 11-1-87

ey’

i

OEjk Copy to Xk from State Register per Xj CPYSX Xk,Xj

0 78 1112 15

OE i k

This instruction copies the state register addressed by Xj into Xk.

OFjk Copy to state register from Xk per Xj CPYXS Xk ,Xj
0 78 1112 15
OF i k

This instruction copies Xk into the state register addressed by Xj. Refer to tables I-2-1
and I-2-2 in volume 1.

These instructions can cause the following exception conditions:
e Instruction specifiéation errore.

e Privileged instruction fault (CPYXS only).

Branch on Condition Register

9FjkQ Branch to P Displaced by 2*Q and
Alter Condition Register per jk BRCR j,k,Q
V] 78 1112 1516 31
9F i k Q
This instruction tests the state of a bit in the monitor or user condition register (MCR or g

UCR), as selected by the instruction j and k fields. The j field selects the bit within the
register, and the k field selects the register, branch condition, and bit alteration. When
the branch condition is satisfied, the target address forms by adding 2 times Q (sign-
extended) to the BN in P. The instruction depends on k as follows:

Value of k Description

k =0 or 8 If bit j of MCR is set, clear bit and branch.

k=1o0r?9 If bit j of MCR is clear, set bit and branch.

k=2o0rA If bit j of MCR is set, branch.

k=3 or B If bit j of MCR is clear, branch.

k=4orcC If bit j of UCR is set, clear bit and branch.

k=50rD If bit j of UCR is clear, set bit and branch. @f ﬁ

I1-1-88 60458890 A — 4

Value of k Description

k

6 or E If bit j of UCR is set, branch.

k=7o0rF If bit j of UCR is clear, branch.

When the k field is 0, 8, 1, or 9, this instruction executes in Virtual State monitor mode

only. If the processor is not in monitor mode with execution restricted to that mode, the

CP detects an instruction specification error, inhibits instruction execution, and initiates
the corresponding program interrupt or halt.

This instruction can cause the following exception conditions:

° Instruction specification error.

C s e Debug.

C

0 60458890 A

I1-1-89

PERIPHERAL PROCESSOR INSTRUCTION DESCRIPTIONS

The peripheral processor (PP) instruction set comprises the following eight subgroups:

° Load and store.

e Arithmetic.

e Logical.

e Replace.

e Branch.

e Central memory (CM) access.

e Input/Output (I/0).

e Other 10U,
The Virtual State PP instruction set includes the CYBER 170 State PP instructions as a
subset. The instruction set uses a 7-bit operation code (opcode) which includes the CYBER
170 State 6-bit operation code. Extensions to the instruction set allow programs to
manipulate 16-bit IOU words, 64-bit CM words (as both 12- and 16-bit bytes), and to
reference 28-bit CM addresses.
PP INSTRUCTION FORMATS
Figure II-1-4 shows and describes Virtual State PP instruction formats. PP instructions.are
16 or 32 bits long. In instruction descriptions, the opcode is represented by four or five
octal digits. The fifth digit, when used, indicates the state of bit 58/42 (zero or omne) in
I/0 instructions.

PP DATA FORMAT

Figure II-1-5 shows PP data formats, the packing of PP data into CM words, and the unpacking
of CM words into PP words.

11-1-90 . ‘ 60458890 B

00

PP RELOCATION REGISTER FORMAT

Figure II-1-5 shows the PP relocation register format. This register is loaded/stored by
instructions 24 and 25 (load/store R register).

48 5758 63

OPCODE d

32 4142 4748 5152 63

OPCODE d 0000 m

48 575859 63

OPCODE sf ¢

32 414243 4748 5152 63
OPCODE s c 0000 m
Term Description
OPCODE Instruction operation code; bits 49 through 51
or 33 through 35 of which are zeros.
d Operand, direct/indirect address, shift count.
m Operand, direct address or I/0 function code.
dm Operand.

s I/0 instruction subcode.

c I1/0 instruction channel number.
>A Eighteen-bit arithmetic register.

P Twelve—bit program address counter.

R Twenty—-eight-bit relocation register for central memory
addressing (bits 58 through 63 of R are appended
zeros).

) Quantity in brackets is a direct address (used when

required for clarity).

o)) Quantity in brackets is an indirect address (used
when required for clarity).

Figure II-1-4. PP Instruction Formats and Nomenclature

60458890 A I1-1-91

63 6059 4847 3635 24 23 1211 0
60-bit data word
0000 a b c d e in central memory
LOCATION 48 5152 63
d 0000 a
d+1 0000 b
60-bit data word
d+2 0000 c in PP memory
d+3 0000 d
d+4 0000 e
0 1516 3132 4748
64-bit data word
b ¢ d in central memory
LOCATION 48 63
d
d+1
64-bit data word
in PP memory
d+2
d+3
Figure II-1-5. PP Data Format
36 4546 5758 63 48 51525354 ' 63 LOCATION
b 000000 0000 {00 a d
Relocation register 0000 b d+1
in PP hardware

Relocation register
in PP memory

I1-1-92

Figure II-1-6.

PP Relocation Register Format

60458890 A

New' ear

OO0

OO0

PP LOAD AND STORE INSTRUCTIONS

Load and store instructions (table I1I-1-22) transfer 6—, 12-, 16—, and 18-bit quantities

between the PP A register and the PP memory.

Table II-1-22,

PP Load and Store Instructions

Opcode Instruction
0014 Load d

0015 Load complement d
0020 Load dm

0030 Load (d)

1030 Load (d) long
0034 Store (d)

1034 - Store (d) long
0040 Load ((d))

1040 Load ((d)) long
0044 Store ((d))

1044 Store ((d)) long
0050 Load (m+(d))

1050 Load (m+(d)) long
0054 Store (m+(d))
1054 Store (m+(d)) long

60458890 A

I1-1-93

00144 Load d LDN d

48 5758 63

0014 d

This instruction clears the A register and loads the rightmost 6 bits of A with a copy of
the 6-bit positive integer in the d field. The leftmost 12 bits of A are zeros.

00154 Load Complement d LCN d

48 57 58 63 e

0015 d x

This instruction clears the A register and loads the rightmost 6 bits of A with a one’s
complement copy of the d field. The leftmost 12 bits of A are ones.

0020dm Load dm LDC dm

32 4142 4748 5152 6 .
0020 d |oo0oo m JI

P P+1

This instruction clears the A register and loads A with an 18-bit operand consisting of d as
the leftmost 6 bits and m as the rightmost 12 bits.

00304 Load (d) LDD 4

Pl
\,

48 5758 63

0030 d

This instruction clears the A register and loads A with the rightmost 12 bits of the
positive integer from PP memory location d. The leftmost 6 bits of A are zeros.

11-1-94 : ; , 60458890 A A

10304 Load (d) long LDDL d

48 5758 63

1030 d

This instruction clears the A register and loads A with the 16-bit positive integer from PP
memory location d. The leftmost 2 bits of A are zeros.

0034d Store (d) STD d
cﬂ‘ . 48 5758 63
v 0034 d

This instruction stores the quantity contained in the A register rightmost 12 bits in
location d, and clears the leftmost 4 bits of location d. The operation does not alter the
contents of A.

1034d Store (d) Long STDL d

0) 48 5758 63

1034 d

This instruction stores the A register rightmost 16 bits in location d. The operation does
not alter the contents of A.

00404 Load ({(d)) LDI d

O

48 5758 63

0040 d

This instruction clears the A register and loads A with the rightmost 12 bits of an operand
obtained by indirect addressing. The leftmost 6 bits of A are zeros. To perform indirect
addressing, the IOU reads a word from PP memory location d and uses it as the operand
address. -

60458890 A I1-1-95

10404

48

Load ((d)) Long LDIL 4

5758

1040

63

This instruction clears the A register and loads A with a 16-bit operand obtained by

indirect addressing.

00444d

48

Refer to instruction 0040. The leftmost 2 bits of A are zeros.

Store ((d)) STI d

5758

63

0044

This instruction stores the A register rightmost 12 bits in the location specified by the

location d contents.

The leftmost 4 bits of ((d)) are zeros and the A register contents are

unaltered.
1044d Store ((d)) Long STI 4
48 5758 63
1044

This instruction stores the A register rightmost 16 bits at a location obtained by indirect
Refer to instruction 0044.

addressing.

0050dm

32

Load (m+(d)) LDM m,d

4142

4748 5152 63

0050

0000 m

P+1

This instruction clears the A register and loads A with the rightmost 12 bits of an operand
read from PP memory using indexed direct addressing. The leftmost 6 bits of A are zeros.

To accomplish indexed direct addressing, the I0U adds an index value to a base address to
form the operand address. The m field contains the base address and the d field specifies
the PP memory location containing the index value. If d equals 0, the m field base address
is the operand address.)

I1-1-96

60458890 A

C o

o0

1050dm Load (m+(d)) Long LDML m,d
32 4142 4748 5152 63
1050 d 0000 m
P P+1

This instruction clears the A register and loads A with a 16-bit operand read from PP memory
using indexed direct addressing. Refer to instruction 0050. The leftmost 2 bits of A are
Zeros.

0054dm Store (m+(d)) STM m,d
32 4142 4748 5152 63
0054 d 0000 m
P P+1

This instruction stores the A register rightmost 12 bits in the location determined by
indexed direct addressing. Refer to instruction 0050. Bits 48 through 51 of (mwt(d)) clear.

1054dm Store (m+(d)) Long ‘ STML m,d

32 4142 4748 5152 63
1054 d 0000 m
P P+1

This instruction stores the A register rightmost 16 bits in the location determined by
indexed direct addressing. Refer to instruction 0050.

PP ARITHMETIC INSTRUCTIONS

The PP arithmetic instructions (table II-1-23) perform integer arithmetic using the PP A
register contents as one operand, with the other operand specified by the instruction. The
result replaces the original contents of A. The IOU considers the operands as one”s
complement integers and performs the arithmetic in one”s complement.

60458890 A 11-1-97

Table II-1-23. PP Arithmetic Instructions

Opcode Instruction
0016 Add d
0017 Subtract d
0021 Add dm
0031 Add (d)
1031 Add (d) long
0032 Subtract (d)
1032 . Subtract (d) long
0041 Add ((d)) |
1041 Add ((d)) long
0042 Subtract ((d))
1042 Subtract ((d)) long
0051 Add (mt+(d))
1051 Add (m+(d)) long
0052 Subtract (mt+(d))
1052 Subtract (m+(d)) long
0016d Add d ADN d
48 57 58 63
0016 d

This instruction adds d (treated as a 6-bit positive quantity) to the A register contents.

00174 Subtract d SBN d

48 57 58 63

0017 d

This instruction subtracts d (treated as a 6-bit positive quantity) from the A register
contents.

I1-1-98 60458890 A

00

0021dm Add dm

32 4142 4748 5152

0021 d

0000

This instruction adds an 18-bit value comprised of the 6—bit d field and the m field
rightmost 12 bits to the A register operand.
becomes the rightmost 12 bits of the value.

0031d Add (4d)

48 57 58 63

0031 d

P+1

ADC dm

The d field becomes the rightmost 6 bits and m

ADD d

This instruction adds the rightmost 12 bits of the operand in location d to the A register

contents.
1031d Add (d) Long
48 5758 63
1031 d

This instruction adds the 16-bit operand in location d to the A register contents.

00324 Subtract (d)

48 5758 6
0032 d

ADDL d

SBD d

This instruction subtracts the 12-bit operand in location d from the A register contents.

60458890 A

I1-1-99

10324

-Subtract (d) Long

48 57 58
1032 d

SBDL d

This instruction subtracts the 16-bit operand in location d from the A register contents.

0041d

48

Add ((d))

57 58

63

ADI d

This instruction reads a 12-bit operand from PP memory (PPM) using indirect addressing, and
adds the rightmost 12 bits to the A register contents. To perform indirect addressing, the
PP reads a word from PPM location d and uses it as the operand address.

10414

418

Add ((d)) Long

5758

63

1041

AIDL d

This instruction reads a 16-bit operand from PP memory (PPM) using indirect addressing, and

adds the operand to the A register contents.

To perform indirect addressing, the PP reads a

word from PPM location 4 and uses it as the operand address.

00424

48

Subtract ((d))

5758

63

0042

SBIL d

This instruction reads a 12-bit operand from PP memory (PPM) using indirect addressing, and
subtracts the operand from the A register contents. To perform indirect addressing, the PP
reads a word from PPM location d and uses it as the operand address.

I1-1-100

60458890 A

i ecwy

C

O

OO0

10424 Subtract ((d)) Long SBIL d

48 5758 63

This instruction reads a 16-bit operand from PP memory (PPM) using indirect addressing, and
subtracts the operand from the A register contents. To perform indirect addressing, the PP
reads a word from PPM location d and uses it as the operand address.

0051dm Add (m+(d)) ADM m,d

32 4142 4748 5152 63

0051 d 0000 m

P P+1

This instruction reads an operand from PP memory (PPM) using indexed direct addressing, and
adds the rightmost 12 bits to the A register contents.

To accompliéh indexed directyaddressing, the PP adds an index value to a base address to
form the operand address. The m field contains the base address and the d field specifies
the PPM location containing the index value. If d equals O, the m field base address is the

" operand address.

1051dm Add (m+(d)) Long ADML m,d
32 4142 4748 5152 . 63
1051 d 0000 m
P P+1

This instruction reads a 16-bit operand from PP memory (PPM) using indexed direct addressing
and adds the operand to the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a base address to
form the operand address. The m field contains the base address and the d field specifies
the PPM location containing the index value. If d equals O, the m field base address is the
operand address.

60458890 A 1I-1-101

0052dm Subtract (m+(d)) SBM m,d
32 4142 4748 5152 63 -
0052 d 0000 m
P P+1

This instruction reads an operand from PP memory (PPM) using indexed direct addressing and
subtracts the rightmost 12 bits of the operand from the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a base address to
form the operand address. The m field contains the base address and the d field specifies
the PPM location containing the index value. If d equals O, the m field base address is the
operand address.

1052dm Subtract (m+(d)) Long SBML m,d
32 4142 4748 5152 63
1052 d 0000 m
P P+1

This instruction reads a 16-bit operand from PP memory (PPM) using indexed direct address-
ing, and subtracts this operand from the A register contents.

To accomplish indexed direct addressing, the PP adds an index value to a base address to
form the operand address. The m field contains the base address and the d field specifies
the PPM location containing the index value. If d equals 0, the m field base address is the
operand address.

I1-1-102 60458890 A

AN

TN

o

O
O

PP LOGICAL INSTRUCTIONS

The logical instructions (table II-1-24) perform operations with one operand as the PP A
register contents, and the other as specified by the instruction. The result replaces the

original contents of A.

Table II-1-24, PP Logical Instructions

Opcode Instruction

0010 Shift d

0011 Logical difference d

0012 Logical product d

0013 Selective clear d

0022 Logical product dm

1022 Logical product (d) long

0023 Logical difference dm

1023 Logical product ((d)) long
1024 Logical product (m+(d)) long
0033 Logical difference (d)

1033 Logical difference (d) long
0043 Logical difference ((d))

1043 Logical difference ((d)) long
0053 Logical difference (m+(d))
1053 Logical difference (m+(d)) long

60458890 A

I1-1-103

00104 Shift A by d SHN d

48 5758
0010 d

This instruction shifts the A register operand in the direction and by the number of places
specified by the d field value. If d is in the range 00 through 37 (a positive value), the
shift is left-circular, d positions. A circular shift means that a bit shifted out of the
highest~order position moves into the lowest—order position.

If 4 is in the range 40 through 77 (a negative value), the shift is to the right, end-off.
Thus, d equal to 06 causes a left shift of 6 places; d equal to 71 causes a right shift of 6

places. . /f N
R

00114 Logical Difference d LMN d

48 5758 63

0011 d

This instruction forms the logical difference between the d field contents and the rightmost e
6 bits of the A register operand. The operation does not alter the most significant 12 bits ‘w\ J
of A. -
The logical difference (exclusive OR) results from a bit-for-bit logical comparison of the
two binary quantities, as illustrated by the following example:

Operand 1 0011

Operand 2 0101

Result 0110
This comparison is equivalent to complementing the first operand bits corresponding to the - PN
second operand bits that are ones. i% ,

S

0012d Logical Product A and d LPN d

48 57 58 63

0012 d

This instruction forms the logical product of the d field contents and the rightmost 6 bits
of the A register operand. The leftmost 12 bits of A are zeros.
The logical product results from a bit—-for-bit logical comparison of the two binary
quantities, as illustrated by the following example:

Operand 1 0011)

Operand 2 0101 .

Result 0001 @f\}

II-1-104 ' . 60458890 A @;W£

00

The individual result bits are omes if the corresponding bits in the first and second
operand are ones.

00134 Selective Clear d SCN d

48 5758 63

0013 d

This instruction clears each of the rightmost 6 bits of the A register operand if the
corresponding d field bit is a 1. The‘operation does not alter the leftmost 12 bits of A.

0022dm Logic Product dm LPC dm
32 4142 4748 5152 63
0022 d ZEROS m
P P+1

This instruction forms the bit-for-bit logical product of the A register operand and an

18-bit operand consisting of d as the leftmost 6 bits and m as the rightmost 12 bits. Refer

to instruction 0012 for an example of the logical product operation.

10224 Logical Product (d) Long LPDL d
32 4142 4748 5152 63
1022 d ZEROS m
P P+1

This instruction forms the bit-for-bit logical product of the A register operand and the
16~bit quantity from location d. The result replaces the original contents of A; bits 46
and 47 of A clear. Refer to instruction 0012 for an example of the logical product
operation.

0023dm Logical difference dm LMC dm
32 4142 4748 5152 63
0023 d ZEROS m
P P+1

This instruction replaces the A register contents with the bit-for-bit logical difference

between the A register operand and the 18-bit quantity dm. Refer to instruction 0011l for an

example of the logical difference operation.

60458890 A I1-1-105

10234 " Logical Product ((d)) Long LPIL 4
32 4142 4748 5152 63
1023 d ZEROS m
P E P+1

This instruction forms the logical product of a 16-bit operand read from storage (using
indirect addressing) and the original contents of A, Bits 46 and 47 of A clear. The d
field contents specify the PP memory location containing the operand address.

1024dm Logical Product (m+(d)) Long LPMLm 4
32 4142 4748 5152 63
1024 d ZEROS m
P P+1

This instruction replaces the A register contents with the logical product of the A register
rightmost 16 bits and a 16-bit operand read by indexed direct addressing. Bits 46 and 47 of
A clear. Indexed direct addressing uses the m field contents as a base address. The d
field specifies a PP memory location containing the index value which adds to the base
address to form the operand address. :

0033d Logical Difference (d) LMD d

48 5758 63

0033 d

This instruction replaces the A register contents with the logical difference between the
A register rightmost 12 bits and the rightmost 12 bits of the operand in the location
specified by the d field. The operation does not alter the leftmost 6 bits of A.

1033d Logical Difference (d) Long LMDL d

48 5758 63

1033 d

This instruction replaces the A register contents with the logical difference between the
A register rightmost 16 bits and the operand in the location specified by the d field. The
operation does not alter the most significant 2 bits of A.

I1-1-106 60458890 A

O

r{ A
%

00434 Logical Difference ((d)) LMI 4

48 5758 63

0043 d

This instruction replaces the A register contents with the logical difference between the A
register rightmost 12 bits and the rightmost 12 bits of an operand read by indirect
addressing. The operation does not alter the leftmost 6 bits of A. Refer to instruction
0011 for an example of the logical difference operation. The d field contents specify the
PP memory location containing the operand address.

10434 Logical Difference ((d)) Long LMIL d

48 5758 63

1043 d

This instruction replaces the A register contents with the logical difference between the A
register rightmost 16 bits and an operand read by indirect addressing. The operation does
not alter the leftmost 2 bits of A. Refer to instruction 0011 for an example of the logical
difference operation. The d field contents specify the PP memory location containing the
operand address.

0053dm Logical Difference (mt+(d)) MM m,d
32 4142 4748 5152 63
0053 d ZEROS m
P P+1

This instruction replaces the A register contents with the logical difference between the A
register rightmost 12 bits and the rightmost 12 bits of an operand read by indexed direct
addressing. The operation does not alter the most significant 6 bits of A. Refer to
instruction 0011 for an example of the logical difference operation. Indexed direct
addressing uses the m field contents as a base address. The d field specifies the PP memory
location containing the index value which the PP adds to the base address to form the
operand address.

1053dm Logical Difference (m+(d)) Long ~ LMML m,d
32 4142 4748 5152 63
1053 d ZEROS m
P P+1

This instruction replaces the A register contents with the logical difference between the A
register rightmost 16 bits and an operand read by indexed direct addressing. The operation
does not alter the leftmost 2 bits of A. Refer to instruction 001l for an example of the
logical difference operation. Refer to instruction 0053 for a description of indexed direct
addressing.

60458890 A : I1-1-107

PP REPLACE INSTRUCTIONS

The replace instructions (table II-1-25) perform integer arithmetic with one operand as the
contents of A and the other as specified by the instruction. The result replaces the
original contents of A and the contents of the other operand”s location. The result stored
in location d is either the rightmost 12 bits (for the normal instructions) or the rightmost
16 bits (for the long instructions) of the A register. Therefore, since A contains 18 bits,
the value remaining in A cannot equal the value stored in PP memory location d.

The PP considers the operands as one”s complement integers and performs one”s complement
arithmetic. :

Table II-1-25., PP Replace Instructions

Opcode Instruction
0035 Replace add (d)
1035 Replacé add (d) long
0036 : Replace add one (4d)
1036 Replace add one (d) long
0037 Replace subtract one (d)
1037 Replace subtract one (d) long
0045 Replace add ((d))
1045 Replace add ((d)) long
0046 Replace add one ((d))
1046 Replace add one ((d)) long
0047 » Replace subtract one ((d))
1047 Replace subtract one ((d)) long
0055 Replace add (m+(d))
1055 Replace add (m+(d)) long
0056 Replace add one (m+(d))
1056 Replace add one (m+(d)) long
0057 Replace subtract one (wt+(d))
1057 Replace subtract one (m+(d)) long

I1-1-108 60458890 A

N
\.\\ o /;

A g
4 {)
N s

00

00354 Replace Add (d) RAD d

48 5758 63

1035 d

This instruction adds the rightmost 12 bits of the location d contents to the A register,
and stores the rightmost 12 bits of A, zero-extended, at location d. The result also
remains in A at the end of the operation, with the original contents purged.

1035d Replace Add (d) Long RADL 4

- 48 5758 63

1035 d

This instruction replaces the operand in the PP memory (PPM) location d with the sum of the
PPM location d operand plus the A register rightmost 16 bits. Refer to instruction 0035.

0036d Replace Add One (d) AOD d

48 5758 63

0036 d

This instruction clears the A register, loads A with the location d rightmost 12 bits, and
adds one to A. The instruction then stores the rightmost 12 bits of A, zero—extended, at
location d. The result remains in the A register at the end of the operation, with the
original contents purged.

1036d Replace Add One (d) Long AODL d

48 5758 63

1036 d

This instruction replaces the operand in PP memory (PPM) location d with the sum of the

"original operand value plus 1. Refer to instruction 0036.

0037d Replace Subtract One (4d) SOD d

48 5758 63
0037 d

This instruction replaces the rightmost 12 bits of the operand in PP memory (PPM) location d
with the original operand value minus 1. Refer to instruction 0036.)

60458890 A I1-1-109

AN
=

£

10374 Replace Subtract One (d) Long SODL d

48 5758 63

1037 d

This instruction replaces the operand in PP memory (PPM) location d with the difference of
the original operand value minus 1. Refer to instruction 0036.

00454 Replace Add ((d)) RAI d

48 57 58 63

0045 d

This instruction replaces the rightmost 12 bits of the operand at the address specified by
the PP memory (PPM) location d contents with the sum of the original operand value plus the
A register rightmost 12 bits. Refer to instruction 0035,

10454 Replace Add ((d)) Long RAIL d

48 57 58 63

This instruction replaces the 16-bit operand at the address specified by the PP memory (PPM)
location d contents with the sum of the original operand value plus the A register contents.
Refer to instruction 0035,

0046d Replace Add Ome ((d)) AOI d

48 5758 63

0046 d

This instruction replaces the rightmost 12 bits of the operand at the address specified by
the PP memory (PPM) location d contents with the sum of the original operand value plus 1,
Refer to instruction 0036.

1046d Replace Add One ((d)) Long AOIL d

48 5758 63

1046 d

This instruction replaces the operand at the address specified by the PP memory (PPM)
location d contents with the sum of the original operand value plus l. Refer to instruction
0036. '

I1-1-110 o 60458890 A

@

00

00474 Replace Subtract One ((d)) SOIL d

48 5758 63

0047 d

This instruction replaces the rightmost 12 bits of the operand at the address specified by
the PP memory (PPM) location d contents with the original operand value minus l. Refer to
instruction 0036.

10474 Replace Subtract One ((d)) SOIL d

48 5758 63

1047 d

This instruction replaces the operand at the address specified by the PP memory (PPM)
location d contents with the original operand value minus 1. Refer to instruction 0036.

0055dm Replace Add (m+(d)) ‘ RAM m,d
32 4142 4748 5152 63
0055 . d ZEROS m
P P+1

This instruction reads the rightmost 12 bits of an operand from PP memory (PPM) using
indexed direct addressing, and adds the operand to the the A register contents. The sum”s
rightmost 12 bits replace the original PPM operand. The result remains in A at the end of
the operation, with the original contents of A purged. Indexed direct addressing uses the
m field contents as a base address. The d field specifies the PPM location containing the
index value which the PP adds to the base address to form the operand address.

1055dm Replace Add (m+(d)) Long RAML m,d
32 4142 4748 5152 63
1055 d ZER(BI m
P P+

This instruction reads a 16-bit operand from PP memory (PPM) using indexed direct
addressing, adds the operand to the A register contents, and replaces the original PPM
operand with the sum”s rightmost 16 bits. The result remains in A at the end of the
operation. Refer to instruction 0055.

60458890 A I1-1-111

0056dm Replace Add One (mt+(d)) AOM m,d
32 4142 4748 5152 63
d 2ER04 m

0056
) P+1

P
This instruction adds one to the rightmost 12 bits of a PP memory (PPM) operand read using
indexed direct addressing, and replaces the original PPM operand with the sum”s rightmost 12

Refer to instruction 0055,
AOML m,d

bits.

1056dm Replace Add One (m+(d)) Long
32 4142 4748 5152 63
1056 d ZEROS m
P ’ P+l

This instruction adds one to a 16-bit PP memory (PPM) operand read using indexed direct

addressing, and replaces the original PPM operand with the sum”s rightmost 16 bits. Refer
SOM m,d

to instruction 0055,

Replace Subtract One (w+(d))
63

4142 4748 5152
m

32
0057 d ZEROSJ
P+1

P
This instruction subtracts one from the rightmost 12 bits of a PP memory (PPM) operand read
using indexed direct addressing, and replaces the original PPM operand with the rightmost 12
b4

0057dm

bits of the difference. Refer to instructions 0036, 0055.
SOML m,d

Replace Subtract One (m+(d)) Long
6

1057dm

32 4142 4748 5152
1057 d ZER

P+1

P
This instruction subtracts one from a 16-bit PP memory (PPM) operand read using indexed

Refer to instructions 0036, 0055.

difference.

I1-1-112

direct addressing, and replaces the original PPM operand with the rightmost 16 bits of the

60458890 A

)
y
"

o,

al

O

OO0

PP BRANCH INSTRUCTIONS

The branch instructions (table I1I-1-26) allow departure from sequential instruction

execution.
Table II-1-26., PP Branch Instructions
Opcode ~ Imstruction
0001 Long jump to m+(d)
0002 Return jump to m+(d)
0003 Unconditional jump d
0004 Zero jump d
0005 Nonzero jump d
0006 Plus jump d
0007 Minus jump d
0001dm Long Jump to mt(d) LIM m,d
32 4142 4748 5152 63
0001 d ZEROS ‘I

[

P+1

The long jump instruction branches to the address formed by adding the m field rightmost 12
bits to the location d rightmost 12 bits.
If d equals zero, the m field contents is the jump address.

instruction sequence.

60458890 A

The result is the first word”s address in the new

I1-1-113

0002dm Return Jump to m+(d)
32 4142 4748 5152 63
0002 ZERO4 m
P P+1

RIM m

,d

This instruction stores the current program address plus two (P+2) in the address formed
(If the d field is zero, the m field contents is the address.) The instruction
then branches to location m+(d)+1.

from m(

d).

This instruction interrupts the current program sequence and jumps to a subroutine while
providing the means for a return to the original program. The
The called subroutine must have a common exit point in the

subroutine forms from m+(d).

entry point address to the

form of a long~jump-to-m instruction (operation code 0001) preceding the entry point
The return jump instruction stores the current program address plus two

~(location m+(d)-1).
(P+2) in the first word of the subroutine (location m+(d)).

This word is the second half of

the long jump instruction (its m field) and is the return address to the original program

sequence

« The instruction then branches to mt+(d)+1.

When the

subroutine completes, the

long jump instruction at location m+(d)-1 executes and performs a branch to the return
address in the original program sequence.

0003d
48

Unconditional Jump d

5758

63 -

0003

UJN d

This instruction causes an unconditional branch to any address up to 31 (decimal) locations

forward or backward from the current program address.

octal), the jump is forward.

0004d

Zero Jump d

5758

48

0004

63

If d is

positive (01 through 37

If d is negative (40 through 76 octal), the jump is backward.

ZJN d

If the contents of A is zero, this instruction causes an unconditional branch to any address
up to 31 (decimal) locations forward or backward from the current program address. The

instruction adds the d value to the current program address.
37 octal), the jump is forward

backward

I1-1-114

If d is positive (01 through

If d is negative (40 through 76 octal), the jump is

60458890 A

=

o

OO0

0005d Nonzero Jump d ‘NJN d

48 5758 63

0005 d

If the contents of A is nonzero, this instruction causes an unconditional branch to any
address up to 31 (decimal) locations forward or backward from the current program address.
If d is positive (01 through 37 octal), the jump is forward. If d is negative (40 through
76 octal) the jump is backward.

00064 Plus Jump d PIJN d
48 5758 63

0006 d

If the contents of A is positive, this instruction causes an unconditional branch to any
address up to 31 (decimal) locations forward or backward from the current program address.
The instruction adds the d value to the current program address. If d is positive (0l
through 37 octal), the jump is forward. - If d is negative (40 through 76 octal), the jump is
backward.

0007d Minus Jump d ’ MIN 4

48 5758
0007 d

If the contents of A is negative, this instruction causes an unconditional branch to any
address up to 31 (decimal) locations forward or backward from the current program address.
The instruction adds the d value to the current program address. If d is positive (0l
through 37 octal), the jump is forward. If d is negative (40 through 76 octal), the jump is
backward.

60458890 A II-1~-115

PP CENTRAL MEMORY ACCESS INSTRUCTIONS

The CM access instructions (table I1I-1-27) provide the capability to read and write CM words
to and from PP memory. The PPs have read access to all CM storage locations, while the 0S
bounds register controls write and exchange accesses. (Refer to IOU Maintenance Registers
in section 2 of volume 1l.) Thé IOU performs CM addressing with real memory word addresses.
To address all locations in the larger CM sizes available, the IOU uses address relocation
to modify the CM address in the A register of the PP, Refer to figure II-1-7. If bit 46 in
A is a 1 during a PP central ‘memory read or write instruction, the IOU adds the R register
contents to A register bits 47 through 63 to produce the CM address. If bit 46 of A is O,
the I0U does not perform address relocation but uses the A address. The R register contains
an absolute 64-word starting boundary within CM. When relocation is desired, an absolute CM
address forms by concatenating six Os to the rightmost end of the R contents, and adding
bits 47 through 63 of A.

Table II-1-27., PP Central Memory Access Instructions

Opcode : Instruction

0024 Load R register

0025 . Store R register

0060 Central read from (A) to d

1060 Central read from (A) to d long

0061 Central read (d) words from (A) to m

1061 Central read (d) words from (A) to m long
0062 Central write to (A) from d

1062 Central write to (A) from d long

0063 Central write (d) words to (A) from m

1063 Central write (d) words to (A) from m long
1000 Central read and set lock from d to (A)
1001 Central read and clear lock from d to (A)

II-1-116) 60458890 A

-~
«.‘—'%/)

N

€

36 5758 63
R 000000
46 63
A
36 _63
CM ADDRESS
C’m ' Figuré II-1-7. Relocation Address Formation
00244 Load R Register LRD 4
48 5758 63
0024 d
0 See figure II-1-6. This instruction loads the 22-bit R register from PP memory (PPM)

locations d and d+l. If the instruction d field is not zero, the instruction loads bits 47
through 57 of R from bits 52 through 63 of location (d)+l. Bits 36 through 45 of R are
loaded from bits 54 through 63 of (d). If the d field is zero, this instruction is a pass.

0025d Store R Register SRD d

48 5758 63

C w1

See figure II-1-3, This instruction stores the 22-bit R register contents into PP memory
locations d and d+l. If d is nonzero, the instruction stores bits 46 through 57 of R in bit
positions 52 through 63 of (d)+l, and bits 36 through 45 of R store in bit positions 54
through 63 of (d). Bits 48 through 51 of (d)+1 and 48 through 53 of (d) clear. 1If the d
field is zero, this instruction is a pass.

O

60458890 A I1-1-117

0060d Central Read from (A) to d CRD d

48 5758 63

0060 d

This instruction transfers the rightmost 60 bits of one CM word to the rightmost 12 bits of
5 consecutive PP memory (PPM) words. The IOU discards the leftmost 4 bits of the CM word
and disassembles the remaining 60 bits from left to right into five 12-bit bytes. The
following illustrations show this unpacking. R+A specifies the CM word address (refer to
figure II-1-7); d specifies the first PPM word address. .

The CM word is as follows:

0 34 1516 2728 3940 5152 63

(4) a (12) b (12) c (12) d (12) e (12)

The PPM words formed by unpacking one CM word are as follows:

48 5152 63
0 (4) a (12) .
0 (4) b (12) L
0 (4) c (12)
0 (4) d (12)
0 (4) e (12)
10604 Central Read from (A) to d Long CRDL d ‘;"’7

5758 ,
1060 d

This instruction transfers one CM word to four consecutive PP memory (PPM) words. The IOU
disassembles the CM word from the left. The following illustrations show this unpacking.
R+A specifies the CM word address (refer to figure II-1-7); d specifies the first PPM word
address. The CM word is as follows:

0 1516 i 3132 4748 63

a (16) b (16) c (16) d (16)

II-1-118 , : ‘ 60458890 A \g

OO0

0

The PP memory words formed by unpacking one CM word are as follows:

a8 ‘ 63
a (16)
b {16)
¢ (16)
d (16)
0061dm Central Read (d) Words from (A) to m CRM m,d
32 : 4142 4748 5152 63
0061 ZEROS m
P+1

This instruction transfers the rightmost 60 bits of consecutive CM words to the rightmost 12

bits of consecutive PP memory (PPM) words.
word and disassembles the remaining 60 bits from the left into five 12-bit bytes.
instruction 0060 for an illustration of unpacking.

The PP discards the leftmost 4 bits of each CM
Refer to
R+A specifies the first CM word address

(refer to figure 1I-1-7), m specifies the first PPM word address, and location d specifies

the number of CM words transferred.

the CM address (plus one) for the last word transferred.

60458890 A

If the value of the rightmost 17 bits of A
exceeds (217)-1, the leftmost bit toggles,
switching the operation from direct address
to relocation address mode. If the last
word transferred is from a relative address
of 377776g and relocation is in effect, -
the PP clears the A register and the value
returned to A may not point to the last word
transferred plus 1. Also, when bit 17
switches to 0, addressing switches to the
direct addressing mode.

Upon completion, A contains the nonrelocated portion of

I1-1-119

1061dm Central Read (d) Words from (A)
to m Long CRML m,d
32 4142 4748 5152 63

1061 d ZERO% m

This instruction transfers consecutive CM words to consecutive PP memory (PPM) words. The
IOU disassembles each CM word from the left. Refer to the 1060 instruction for an
illustration of this unpacking. R+A specifies the first CM word address (refer to figure
II-1-7), m specifies the first PP memory word address, and location d specifies the number
of CM words transferred. On completion, A contains the nonrelocated portion of the CM
address (plus one) for the last word transferred.

If the value of the rightmost 17 bits of A
exceeds (217)-1, the leftmost bit toggles,
switching the operation from direct address
to relocation address mode. If the last
word transferred is from a relative address
of 377776g and relocation is in effect,

the PP clears the A register and the value
returned to A may not point to the last word
transferred plus 1. Also, when bit 17
switches to zero, addressing switches to the
direct addressing mode.

00624d Central Write to (A) from d CWD d

5758 63
rg 0062 d

This instruction transfers the rightmost 12 bits of 5 consecutive PP memory (PPM) words to
the rightmost 60 bits of one CM word. (The IOU ignores the leftmost 4 bits of the words.)
These words are assembled from left to right, as shown in the following illustration. R+A
specifies the CM word address (see figure II-1-7); d specifies the first PPM word address.
The IOU verifies each CM address against the 0S bounds address. PPM words are as follows:

I1-1-120 60458890 A

4

C

C

48 5152 63
0 (4) a (12)
0 (4) b (12)
0 (4) c (12)
0 (4) d (12)
0 (4) e (12)

The CM word formed by packing five 12-bit PP memory words is as follows:

0 34 1516 2728 3940 5152 63
4) a (12) b (12) c (12) d (12) e (12)
10624 Central Write to A from d Long CWDL d
48 5758 63
1062 d

This instruction transfers four comsecutive PP membry (PPM) words to one CM word, as shown

in the following illustration.
specifies the first PPM word address.

bounds‘address. The PPM words are as follows:

48

a (16)

b (16)

c (16)

d (16)

The CM word formed by packing four 16-bit PPM words is as follows:

1516

3132

4748

R+A specifies the CM word address (see figure II-1-7); d
The IOU verifies each CM address against the 0S

63

a (16)

b (16)

¢ (16)

d (16}

60458890 A

II-1-121

0063dm Central Write (d) Words to (A) from m CWM m,d
32 4142 4748 5152 63
0063 d ZEROS m
P P+1

This instruction transfers the rightmost 12 bits of consecutive PP memory (PPM) words to the
rightmost 60 bits of comsecutive CM words. Refer to the instruction 0062 for an illustra-—
tion of this packing. R+A specifies the first CM word address (see figure II-1-7), m
specifies the first PPM word address, and d specifies the number of CM words transferred.
The I0U verifies the CM address against the 0S bounds address. On completion, A contains
the nonrelocated portion of the CM address (plus 1) for the last word transferred.

If the value of the rightmost 17 bits of A
exceeds (217)-1, the leftmost bit toggles,
switching the operation from direct address
to relocation address mode. If the last
word transferred is from a relative address
of 377776g and relocation is in effect,

the PP clears the A register and the value
returned to A may not point to the last word
transferred plus one. Also, when bit 17
switches to 0, addressing switches to the
direct addressing mode.

1063dm Central Write (d) Words to (A)

from m Long CWML m,d
32 4142 4748 5152 63
1063 d ZEROS’ m
P C o PH

This instruction transfers consecutive PP memory (PPM) words to consecutive CM words. The
I0U packs four PPM words (from the left) into each CM word. R+A specifies the first CM word
address (see figure II-1-7), m specifies the first PPM word address, and d specifies the

- number of CM words transferred. The IOU verifies each CM address against the 0S bounds
address. On completion, A contains the nonrelocated portion of the CM address (plus 1), for
the last word transferred.

I1-1-122 » . 60458890 A

2

O

(:m,

C

O
O

If the value of the rightmost 17 bits of A
exceeds (217)~1, the leftmost bit toggles,
switching the operation from direct address
to relocation address mode. If the last
word transferred is from a relative address
of 377776g and relocation is in effect,

the PP clears the A register and the value
returned to A may not point to the last word
transferred plus 1. Also, when bit 17
switches to 0, addressing switches to the
direct addressing mode.

10004 Central Read and Set Lock from d to (A) RDSL ‘d

48 5758 63

1000 d

This instruction performs a logical OR function between four consecutive PP memory (PPM)
words and one CM word. The original CM word contents replace the four PPM words; the
logical OR result replaces the original CM word. Refer to the instructions 1060 and 1062
for packing and unpacking of the words. R+A specifies the CM word address (see figure
II-1-7); d is the first PPM word address. The I0OU verifies each CM address against the 0S8
bounds address.

The instruction does not start execution until the IOU completes all previous CM accesses.
The CM does not permit any other port to access the CM word from the start of the read until
the end of the write. The instruction delays subsequent instruction execution by the IO0U
until all CM accesses for the instruction complete.

1001d Central Read and Clear Lock from d to (A) RDCL d

48 5758 63

1001 d

This instruction performs a logical AND function between four consecutive PP memory (PPM)
words and one CM word. The original CM word contents replace the four PPM words; the
logical AND result replaces the original CM word. See the 1060 and 1062 instructions for
packing and unpacking of the words. R+A specifies the CM word address (see figure 1I-1-7);
d is the first PPM word address. The I0U verifies each CM address against the OS bounds
address. The instruction does not start execution until all previous CM accesses by the IOU
complete. The CM does not permit any other port to access the CM word from the start of the
read until the end of the write. The instruction delays execution of subsequent instruc-
tions by the IOU until all CM accesses for the instruction complete.

60458890 A I1-1-123

PP INPUT/OUTPUT AINSTRUCTIONS

The 26 instructions (in table 1I-1-28) direct activity on the I/0 channels. They select an
external device and transfer data to or from that device. The instructions also determine
whether a channel or external device is available and ready to transfer data. The
preparatory steps ensure that the channels carry out an orderly data transfer. Each
external device has a set of external function codes the PP uses to establish operation
modes, and to start and stop data transfer. The devices can also detect certain errors
which are indicated to the controlling PP.

Table 1I-1-28, PP Input/Output Instructions (Sheet 1 of 2)

Opcode Instruction

00640 Jump to m if channel ¢ active

00641 Test and set channel c flag

1064X Jump to m if channel c¢ flag set

00650 Jump to m if channel c¢ inactive

00651 Clear channel c flag

1065X Jump to m if channel c flag clear

00660 Jump to m if channel ¢ full

00661 Test and clear cﬁannel c error flag set
00670 Jump to m if channel c empty

00671 Test and clear channel c error flag clear
00700 Input to A from channel ¢ when active
00701 Input to A ffom channel ¢ if active

00710 Input A words to m from channel c

10710 Input A words to m from channel ¢ packed
00720 Output from A to channel c¢ when active
00721 ' Output from A on channgl c if active
00730v Output A words from m on channel ¢

10730 Output ~ A words from m on channel c packed
00740 . Activate channel c

00741 Unconditionally activate channel c

00750 : Deactivate channel c

II-1-124 ’ 60458890 A

Ne

C
A

©0

Table II-1-28, PP Input/Output Instructions (Sheet 2 of 2)

Opcode Instruction
00751 Unconditionally deactivate channel ¢
00760 Function A on channel ¢ when inactive
00761 Function A on channel c if inactive
00770 Function m on channel ¢ when inactive
00771 Function m on channel c¢ if inactive
00640cm Jump to m if Channel ¢ Active AIJM m,c
32 ‘414243 4748 5152 63
0064 0] ¢ ZER04 m
P

+1

This instruction branches to the location specified by m if channel c is active.

00641cm Test and Set Channel ¢ Flag SCF m,40B+c)
32 414243 4748 5152 63
0064 1 c ZERO4 m ﬁ-]

P+1

This instruction branches to the location specified by m if the channel ¢ flag is set.
Otherwise, it sets the channel flag and exits. Setting m to P+2 unconditionally sets the

channel flag

60458890 A

A conflict condition may occur when two or
more PPs in the same time slot attempt to
simultaneously execute a 00641 instruction
on the same channel. .Only the maintenance
channel (17g) resolves this condition by
letting the PP in the lowest physical barrel
see the true status of the flag. The flag
appears set to the other PPs in conflict and
the PPs take the branch.

II-1-125

1064Xcm Jump to m if Channel c Flag Set FSIM m,c
32 414243 4748 5152 63
1064 ls ¢ |[ZERCS m
P P+

This instruction branches to the location specified by m if the channel ¢ flag is set.

00650cm Jump to m if Channel c¢ Inactive IIM m,c
32 414243 4748 5152 63
0065 [¢ |ZEROS| m
P P+1

This instruction branches to the location specified by m if channel ¢ is inactive.

00651cm Clear Channel c Flag CCF ¢ -
32 414243 4748 5152 63
0065 1 c m
P P+1

This instruction clears the chaunel ¢ flag, and requires but does not use the m field.

1065Xcm Jump to m if Channel ¢ Flag Clear FCIM m,c
32 414243 4748 5152 63
1065 s c ZER m
P P+1

This instruction branches to the location specified by m if the channel c flag is clear.

1I-1-126 ‘ 60458890 A

00660cm Jump to m if Channel c¢ Full FIM m,c

32 414243 4748 5152 63

0066 0] ¢ [|ZEROS| m

P P+1

This instruction branches to the location specified by m if channel c is full.

A 00661cm Test and Clear Channel ¢)
C* ' Error Flag Set SFM m,40B+c
32 414243 4748 5152 63
0066 1 c ZEROSI m
P . P+1

If the channel c error flag is set, this instruction branches to the location specified by m

@ and clears the error flag.

00670cm Jump to m if Channel ¢ Empty ~ EJM m,c
32 414243 4748 5152 63
0067 0] ¢ ZER04 m
P P+1

This instruction branches to the location specified by m if channel ¢ is empty.

00671lcm ' Test and Clear Channel c
Error Flag Clear CFM m,40B+c
32 414243 4748 5152 63
0067 1 ¢ ZER(BI m
P P+1

If the channel c error flag is clear, this instruction branches to the location specified
by m. If the error flag is set, this instruction clears it.

0

60458890 A ‘ I1-1-127

00700c¢ Input to A from Channel c When Active IAN ¢

48 575859 63

0070 0 ¢

This instruction transfers one word from channel ¢ to the low-order 16 bits of A. The
high-order 2 bits of A are zeros. The instruction waits for the channel to become active
and full.

If the channel uses a 12-bit external
interface, the high~order 6 bits of A are
Os. If it uses an 8-bit external interface,
the high~order 10 bits of A are Os.

00701c Input to A from Channel c if Active IAN 40B+c
48 575859 63
0070 1 c

This instruction transfers one channel ¢ word to the low-order 16 bits of A. The high~order
2 bits of A are zeros. If the channel is inactive or becomes inactive before becoming full,
no transfer occurs and the instruction exits with A = 0. .

If the channel uses a 12-bit external
interface, the high-order 6 bits of A are
Os. If it uses an 8-bit external interface,
the high-order 10 bits of A are Os. If the
addressed channel is not connected, the
instruction exits with A = 177777g.

0071Ccm Input A Words to m from Channel c IAM m,c
- 32 414243 4748 5152 63
0071 C| ¢ FEROS m
P P+1
I1-1-128 60458890 A

ofe

This instruction transfers successive words from channel c to PP memory (PPM). The m field
specifies the first PPM word address; (A) specifies the number of words transferred.

The transfer completes when either A = 0 or the channel becomes inactive. If an inactive
channel caused termination, the instruction clears the next PPM word, and A contains the
difference between its initial value and the number of channel words actually transferred.

No transfer takes place if the instruction executes with the channel initially inactive.
The instruction exits with A unchanged and the PPM word specified by m sets to 0. However,
if the addressed channel is not connected, the instruction exits with A = 1777774,

(\“* ' : If the channel uses a 12-bit external
“ interface, the high-order 4 bits of the PP
memory word are Os., If it uses an 8-bit
external interface, the high—order 8 bits of
the PP memory word are Os.

10710cm Input A Words to m
from Channel c¢ Packed IAPM m,c
0 32 414243 4748 5152 63
) 1071 0] ¢ ZEROS m
P P+1

This instruction transfers the low-order 12 bits of successive, channel ¢ words to
consecutive PP memory (PPM) words. During this transfer, the IOU packs four 12~bit words
(48 bits) into three PPM words. (Refer to the following paragraphs.) The high-order 4 bits
C of the channel words are ignored. The m field specifies the first PPM word address; A
" specifies the number of channel words transferred.

A complete transfer depends on the channel word count being a multiple of 4. If the channel
word count is not a multiple of 4, the IOU fills the bits left over when A is counted to
zero (these bits copy the corresponding bits on the channel). When the channel is inactive
or empty, these bits are zeros and, hence, the fill is with zeros. When, however, the
external device and the PP have different word counts, or for some other reason the channel
bits are nonzero, the fill is not zero-fill.

The instruction exits when A is zero or when the channel becomes inactive. If an inactive
channel causes termination, the leftover bits from the previous channel word will fill up to
the next four-channel-word boundary as described above.

No transfer takes place if the instruction executes with the channel initially inactive.
The instruction exits with A unchanged, and the next three PPM words specified by m, mtl,
and m+2 fill as described above.

00

60458890 A I1-1-129

This instruction allows 16—~bit PPM words to be read from 12-bit external devices. The
channel words are as follows:

48 5152 63
(4) a (12)

(4) b (4) c (8)

(4) d (8) e (4)

4) f(12)

The PPM words are as follows.

48 5152 5556 5960 63
a (12) b (4)
c (8 d (8)
e (4) f(12)
00720c Output from A on Channel c ’
when Active . OAN ¢
a8 575859 63
0072 0] ¢

This instruction transfers one word from the A register low-order 12 bits to channel c¢. The
instruction waits for an active and empty channel before executing.

If the channel uses a 12-bit interface, it
does not transmit the channel word high—
order 4 bits to the external device.
Similarly, if it uses an 8-bit external
interface, it does not transmit the channel
word high-order 8 bits.

11-1-130 60458890 A

s

00721c Output from A on Channel c
if Active OAN 40B+c
32 414243 47

0072 1 c

P

This instruction transfers the A register low-order 16 bits to chammel c. If the channel is
inactive, no transfer occurs and the instruction exits. The operation does not alter the
contents of A,

If the channel uses a 12-bit interface, it
does not transmit the channel word high-
order 4 bits to the external device.
Similarly, if it uses an 8-bit external
interface, it does not transmit the channel
word high—-order 8 bits.

w 00730cm Output A words from m on Channel c OAM m,c
32 414243 4748 5152 63
0073 0 ¢ ZER! m
P P+1

This instruction transfers the contents of successive PP memory (PPM) words as successive
‘ words on channel c. The m field specifies the first PPM word address; A specifies the
') number of words to be transferred. The transfer completes when either A = 0 or the channel
» becomes inactive. If an inactive channel caused termination, A contains the difference
between its initial value and the number of words transferred on the channel. If the
instruction executes with the channel initially inactive, no transfer occurs and the
“instruction exits with A unchanged.

" If the channel uses a 12-bit interface, it
does not transmit the channel word high-
order 4 bits to the external device.
Similarly, if it uses an 8~-bit external
interface, it does not transmit the channel
word high—-order 8 bits.

0) 60458890 A II-1-131

10730cm Output A Words from m
on Channel c Packed OAPM m,c
32 414243 4748 5152 63
1073 0] ¢ ZE| m
P ' P+1

This instruction transfers consecutive PP memory (PPM) words as the low—order 12 bits of
successive words on channel c. During the transfer, processing occurs such that the
contents of three PPM words result in four channel words. The high-order 4 bits of the
16-bit channel words set to zeros. This packing is illustrated in the 1071 instruction.
The m field specifies the first PP word address; A specifies the number of channel words to
be transferred. The transfer completes when either A = 0 or the channel becomes inactive.
If an inactive channel caused termination, A contains the difference between its initial
value and the number of words actually transferred on the channel.

If the instruction executes with the channel initially inactive, no transfer occurs and the

instruction exits with A unchanged.

00740¢ Activate channel ¢ ACN ¢

48 575859 63

0074 0] ¢

This instruction sets channel c active to prepare it for I/0 transfer operations. If the
channel is initially active, the instruction waits for the channel to become inactive before
executing.

00741c Unconditionally Activate Channel c ACN 40B+c
48 575859 63
0074 1 ¢

This instruction sets channel ¢ active to prepare it for I/0 transfer operations. The
instruction executes regardless of the channel”s active/inactive status.

00750¢c Deactivate channel c k ~ DCN ¢

48 575859 63

0075 0| ¢

I1-1-132) ' 60458890 A

h=

iy,

00

This instruction sets channel ¢ inactive to terminate I/0 operations on the channel. If the

channel is initially inactive, the instruction waits for the channel to become active before
executing.

If this instruction executes after an output instruction without waiting for the channel to
become empty, the last channel word transferred may be lost.

00751c Unconditionally Deactivate Channel c¢ DCN 40B+c

48 575859 63

0075 1 ¢

This instruction sets channel ¢ inactive to terminate I/0 operations on the channel. If the
channel is initially inactive, the instruction executes regardless of the channel”s
active/inactive state. If this instruction executes. after an output instruction without
waiting for the channel to become empty, the last channel word transferred may be lost.

00760¢c Function A on Channel c when Inactive FAN ¢

48 575859 63

0076 0| ¢

This instruction transfers tﬁe low-order 16 bits of A to channel ¢ as a function code. If
the channel is initially active, the instruction waits for the channel to become inactive

" before executing. The operation does not alter the contents of A.

If the channel uses a 12-bit interface, it
does not transmit the channel word
high-order 4 bits to the external device.
Similarly, if it uses an 8-bit external
interface, it does not transmit the channel
word high-order 8 bits. Parity, however, is
always calculated on the rightmost 16 bits
of A when outputting a function word from A.

60458890 A II1-1-133

00761c Function A on Channel ¢ if Inactive FAN 40B+c

48 575859 63

0076 1] ¢

This instruction transfers the low-order 16 bits of A to channel c as a function code. If
the channel is initially active, the IOU does not transfer the function on the channel, and
the instruction exits.

If the channel uses a 12-bit interface, it
does not transmit the channel word
high-order 4 bits to the external device.
Similarly, if it uses an 8-bit external
interface, it does not transmit the channel
word high-order 8 bits. '

00770cm Function m on Channel c¢ when Inactive FNC m,c
32 414243 4748 5152 63
0077 0 c ZEROS| m
p P+1

This instruction transfers the m field contents to channel c as a function code. If the
channel is initially active, the instruction waits. for the channel to become inactive before
executing. -

If the channel uses a 12-bit interface, it
does not transmit the channel word
high-order 4 bits to the external device.
Similarly, if it uses an 8-bit external
interface, it does not transmit the channel
word high-order 8 bits.

II-1-134 . : 60458890 A

O

U

)

00

00771cm Function m on Channel c if Inactive FNC m,40B+c
32 414243 4748 5152 63
0077 1 c ZEROS m
P P+1

This instruction transfers the m field contents to channel c as a function code. If the
channel is initially active, the I0OU does not transfer the function on the channel and the
instruction exits.

If the channel uses a 12-bit interface, it
does not transmit the channel word
high-order 4 bits to the external device.
Similarly, if it uses an 8-~bit external
interface, it does not transmit the channel
word high-order 8 bits.

OTHER IOU INSTRUCTIONS

002400 Pass PSN
000000 Pass
002500 Pass
48 575859 63
24 0] d

* The pass instructions perform no operation.

00274 PP Keypoint KPT d

48 5758 63

0027 d

This instruction executes as a pass instruction, but allows test—point sensing of its
execution by way of external monitoring equipment.

60458890 A ~ I1-1-135

Exchange Jumps

The exchange jump instructions allow PP programs to request CYBER 170 State exchanges in the
CP. The IOU transmits the exchange request to the CP designated for executing CYBER 170
State instructions. Bit 05 of the monitor condition register sets to indicate an
outstanding IOU exchange request.

If an exchange request for any PP is outstanding, another exchange request from any other PP
causes the second PP to wait until the outstanding exchange request completes.

The d field value controls the action taken to process the exchange request in CYBER 170
State, as described in the following paragraphs.

00260x Exchange Jump EXN d

48 5758 63

0026 Ox

This is an unconditional exchange jump performed with the exchange package at address R+A
(see figure II-1-4). The IOU verifies this address against the 0S bounds address and, if in
the prohibited region, the exchange does not occur. In this case, the 0S bounds fault sets
and, if the enable error stop bit is set in the environment control register, the PP is
idled.

00261x Monitor Exchange Jump MXN d

48 5758 63

- 0026 Ix

This is a conditional exchange jump performed with the exchange package at address R+A (see
figure II-1-7). The IOU verifies this address against the 0S bounds address and, if in the
prohibited region, the exchange does not occur. The 0S bounds fault sets and, if the enable
error stop is set in the environment control register, the PP is idled. If monitor flag is
clear, the exchange jump occurs and the monitor flag sets. If the monitor flag is set
before this instruction begins to execute, the exchange jump is not performed.

00262x Monitor Exchange Jump to MA MAN d

48 5758 63

0026 2x

This is a conditional exchange jump performed with the exchange package at the address in
the CP monitor address register. If the monitor flag is clear, the exchange jump occurs and
the monitor flag sets. If the monitor flag is set before this instruction begins to
execute, the exchange jump is not performed.

11-1-136 ~ - 60458890 A

R

C

e

00263x

1026d

48

Instruction executes as if d = 2x.

Interrupt Processor

57 58

63

1026

INPN d

This instruction causes the IOU to transmit an interrupt for a CP on the memory port

specified by d.
monitor condition register.

C

60458890 A

O
C

This interrupt signal causes the external interrupt bit to set in the
Refer to CP Interrupts in section 2 of this volume.

I1-1-137

L

N~

>
\

PROGRAMMING INFORMATION 2

This section contains programming information for the CP, CM, IOU, system console, and
two—port multiplexer.

CP EXCHANGE OPERATIONS

Figure II-2-1 shows CP modes of operation. Exchange operations switch the CP between
monitor and job modes in both Virtual State and CYBER 170 State. Exchange operations may
also switch states while switching modes. Refer to Interstate Programming Information in
this section for a description of state-switching operations.

An exchange operation exchanges the process running in CP with another process and switches
CP modes. The exchange stores the CP registers of the outgoing process in CM as an exchange
package (refer to Exchange Package, figure II-2-2), and reads the registers of the incoming
process from another exchange package in CM into the CP registers. Exchange operations are
caused by the following:

. Execution of a Virtual State exchange instruction in the CP.

e Execution of the interrupt processor instruction (0026) in any PP.

e Hardware—detected fault or exception with the CP in Virtual State job mode. Such
exchange operations are called exchange ianterrupts.

60458890 C I1-2-1

EXCHANGE TO MPS ———»

TRAP TO EXCHANGE PACKAGE (TP)¥

TRAP CONDITION

f—r

| DEADSTART

¢————— CP 02(EXCHANGE)

EXCHANGE CONDITION

TRAP TO EXCHANGE PACKAGE (TP)—»

TRAP CONDITION

VIRTUAL
STATE CP 02(EXCHANGE)
MONITOR
MODE CP BO/B5(CALL)
PROCESSES
CP 04(RETURN)
VMID=0 |
POP STACK
PUSH STACK
EXECUTION HALT CONDITION HALT
VIRTUAL
STATE
JOB EXECUTION HALT CONDITION
MODE
PROCERSES EXCHANGE TO JPS
CP BO/B5(CALL)
VMID=0/1

CP 04(RETURN)

POP STACK

Virtual State Monitor Mode

PUSH STACK

Virtual State Job Mode

e Virtual State (VMID=0)

e CYBER 170 State (illegal)

e Virtual State (VMID=0)
¢ CYBER 170 State monitor mode (VMID=1)

e CYBER 170 State job mode (VMID=1)

Figure II-2-1.

I1-2-2

CP Calls, Returns and Interrupts

60458890 A

i [Fd / l\ﬁ%:;'j

"V\s,«". .
o d

O

00

VIRTUAL STATE JOB-TO- MONITOR EXCHANGE OPERATIONS

The CP performs an exchange from Virtual State job mode to Virtual State monitor mode as
follows:

1. It stores the outgoing job process registers as an exchange package starting at the
CM address in the job process state (JPS) pointer register.

2. It disables exchange interrupts.

3. It loads the incoming monitor process registers (from another exchange package in
CM) into the CP registers, starting at the CM address in the monitor process state
(MPS) pointer register.

Exchange interrupt conditions occurring with the CP in monitor mode do not cause an exchange
interrupt, but may cause a trap interrupt. Refer to CP Interrupts in this section.

VIRTUAL STATE MONITOR-TO-JOB EXCHANGE OPERATIONS

The CP performs an exchange from Virtual State monitor mode to Virtual State job mode as
follows:

1. It stores the outgoing monitor process registers as an exchange package starting at
the CM address in the monitor process state (MPS) pointer register.

2. It enables exchange interrupts.

3. It loads the incoming job process registers (stored in CM as another exchange
package into the CP registers) starting at the CM address in the job process state
pointer register.

When a Virtual State monitor—to-job mode exchange operation sets MCR bit 55 (environment
specification error), the CP completes the exchange and initiates a job—to-monitor mode
(JPS) exchange in response to the error. Refer to Interrupts in this section.

EXCHANGE PACKAGES

Before initiating a Virtual State monitor-to-job exchange, the operating system specifies
the process environment by composing in CM an exchange package for that process. When the
process is suspended, hardware records system conditions into the same exchange package in
CM, permitting process reactivation (in the absence of uncorrectable errors) without
violating process integrity.

Each suspended process (including the monitor program) has one exchange package stored in
CM. Each exchange package contains the process registers in fifty-two 64-bit words as shown
in figure II-2-2. Refer to Process State Registers in this section for descriptions of the
exchange package entries.

60458890 A I1-2-3

The CP uses the following types of exchange packages:

For exchanges between Virtual State monitor and job modes (exclusively within
Virtual State), the exchange package format is shown in figure II-2-2.

For exchanges between Virtual State monitor and job modes (including switching
between Virtual State and CYBER 170 State), the exchange package format is shown in
figure 1I-2-27.

For exchanges with CYBER 170 State monitor and job modes, the exchange package
format is shown in figure II-2-28,

For exchanges exclusively within CYBER 170 State, the exchange package format is
shown in the appropriate CYBER 170 State hardware reference manual listed in the
preface.

Exchange package addresses, used by hardware to locate exchange packages during exchange
operations, are real memory addresses (RMAs) in hardware registers designated as follows:

For exchanges to Virtual State monitor mode, the RMA is in the monitor process state
(MPS) pointer register.

For exchanges to Virtual State job mode, the RMA is in the job process state (JPS)
pointer register.

Exchange operations do not copy an exchange package into cache memory.

I1-2-4

60458890 A

e - N
\“; m}}/,
e ™
NS
AN
i
N2

VIRTUAL STATE EXCHANGE PACKAGE

BYTE(HEX) WORD(DEC}
00 07| 08 ISllﬁ 63
[} P 0
8 VMID UVmID A0 1
10 Flags Trap Enables At 2
18 User Mask A2 3
20 Monitor Mask A3 4
28 User Condition A4 5
30 Monitor Condition AS 6
38 | Reserved LPID A 7
40 Reserved A7 8
48 Reserved A8 9
50 A3 10
58 Progess Int. Timer AA 1"
60 AB 12
68 Base Constant AC 13
70 AD 14
78 | Mode! Dependent Flags AE . 15
80 | Segment Tabte Length AF 16
88 X0 17
90 X1 18
co 24
cs X8 25
Do X9 26
D8 XA 27
€0 XB 28
E8 Xc 29
Fo XD 30
F8 XE kil
100 XF 32
108 Modet Dependent Word 33
110 | Segment Tabie Address Pointer 34
18 Trap Pointer 35
120 | Deirug Indes] Debug Mask Dehug List Pointer 3%
128 Largest Ring Number Top of Stack Ring Number 1 37
{ | =
Top of Stack Ring Number 15 51

00 0708 15

63

DETAIL FOR VIRTUAL STATE EXCHANGE PACKAGE
BYTE(HEX) WORD(DEC)
0o of o 0 o 0.0 0o o | KEY 0
8 ymID i uvmID 1

wicre| 7 e

7] TeF [1ED]| 2

177) LPID]

1177 Z SEGMENT TABLE LENGTH s

18 LOWER PART - SEGMENT TABLE ADDRESS £

120 DEBUG INDEX Jo o o] DEBUG MASK 3

128 LARGEST RING NO. | 37
00 03]os o708 1}12 15

60458890 A

Figure II-2-2.

Virtual State Exchange Package

II-2-5

CP REGISTERS

The CP registers comprise two classes: process state registers and processor state
registers. This distinction arises because the state of the process, and the state of the
processor, characterize CP operation. Both classes of registers are accessible to the CP
and PPs, Bits within the registers number consecutively from left to right, with the

rightmost bit always equal to 63.

PROCESS STATE REGISTERS

The process state registers relate to a specific Virtual State process executing in the CP.

Various process state registers also support CYBER 170 State operation.

The contents of the

process state registers can be written into memory as a Virtual State exchange package for
either a Virtual State process or a CYBER 170 State process (refer to figures II-2-2 and

11-2-27).

The exchange package for each process contains the step—by-step operating register contents
as directed by process execution. In addition, the exchange package holds other detailed
process state information such that the CP may dynamically switch between exchange packages
(processes) while preserving process integrity. When a process executes in the CP, its
exchange package resides in the process state registers. When a process awaits execution,

its exchange package resides in central memory.

Table II-2-1 lists the processor state registers and permissible access

types for CP

copy-to/from-state-register instructions and for maintemance channel (MCH) access.

CP Base Constant (BC) Register

The 32-bit BC register provides a means for communication with the operating system. The

contents of this register do not directly affect hardware operation.

CP Debug Index (DI) Register
The 6-bit DI register is added to the debug list pointer (DLP) register

each word read from the debug list (DL). DI increments after each word
match occurs, DI+DLP points to the second word of the matched DL entry.

CP Debug List Pointer (DLP) Register

The 48-bit DLP register contains the PVA of the first debug list entry.
63 must be zeros or an address specification error (MCR 52) occurs.

I1-2-6

to form the PVA of
is read. When a DL

DLP bits 61 through

60458890 A

O

N

O

i

O

00

Table II-2-1.

Process State Registers

No. Access
of Type
Register Name Bits Address Copy MCH
Address (A0 through AF) (16 registers) 48 - - -
Base constant (BC) 32 47 R R/W
Debug index (DI) 6 E4 R/W R/W
Debug list pointer (DLP) 48 c5 R/L R/W
Debug mask (DM) 7 E5 R/W R/W
Flags
Critical-frame flag (CFF) 1 EO,El R/W R/W
On-condition flag (OCF) 1 E2,E3 R/W R/W
Process-not-damaged (PND) flag 1 - - -
Largest ring number (LRN) 4 - - CcM
Last processor identification (LPID) -8 - - -
Monitor condition (MCR) 16 43 R R/W
Monitor mask (MMR) 16 60 R/W R/W
Operand (X0 through XF) (16 registers) 64 - - -
Process interval timer (PIT) 32 c9 R/L R/W
Program address (P) 64 40 R R/W
Segment table address (STA) 32 45 R R/W
Segment table length (STL) 12 45 R R/W
Top—of—-stack (TOS) pointer (15 registers) 48 - - cM
Trap enable (TE) 2 c0-C3 R/L R/W
Trap pointer (TP) 48 A R/L R/W
Untranslatable pointer (UTP) 48 44 R R/W
Untranslatable virtual machine
identifier (UVMID) 4 - - -
User condition (UCR) 16 43 R R/W
User mask (UMR) 16 E6 R/W R/W
Virtual machine identifier (VMID) 4 - - -
Notes: R: Unprivileged read
W: Unprivileged write
G: Globally-privileged write
CM: 1In central memory (indirectly accessible)

CP Debug Mask (DM) Register

The 7-bit DM register contains 2 flag bits and 5 mask bits.

initiation and termination.

interrupt. DM.-has the following bit assignments:

DM Bit Description

9 End-of-list-seen flag

10 Debug scan-in-progress flag

11 Data-read mask

12 Data-write mask

13 Instruction—-fetch mask

14 Branch target instruction—fetch mask

15 Call target instruction-fetch mask
60458890 A

The flag bits control debug

A mask bit, when set, enables the corresponding debug

I1-2-7

P Flag Register

The 4-bit flag register contains the flag bits described in the following paragraphs.

Critical-Frame Flag (CFF)

Software sets this flag to indicate that the stack frame in use (when the flag is set)
requires special attention before this frame may be abandoned. Executing return/pop
instructions with CFF set causes an interrupt (other enables-permitting). Call instructions
and trap interrupts record CFF in the stack frame save area (SFSA) and proceed to clear CFF;
return instructions restore the previous CFF condition.

On-Condition Flag (OCF)

Software sets this flag to assist the operating system in the handling of certain trap
interrupts. Call instructions and trap interrupts record OCF in the SFSA and proceed to
clear OCF; return instructions restore the previous OCF conditione.

Process—-Not-Damaged (PND) Flag

Hardware sets this flag in the outgoing exchange package after an uncorrectable error (MCR
48) occurs. PND indicates that the interrupted process is undamaged and may be restarted.
Hardware ignores PND in an incoming exchange package.

CP Largest Ring Number (LRN) Regisierv

The 4-bit LRN register contains the largest ring number for which there is a top—of-stack
(TOS) entry in the associated TOS register. (In model 835, this register is not used as the
TOS pointers are kept in CM.)

CP Last Processor Identification (LPID) Register

In dual-CP systems, the 8-bit LPID register identifies the last CP which executed the
process defined by the exchange package.

CP Monitor Condition Register (MCR)

The 16-bit MCR register records system exception conditions which the operating system must
resolve (for example, hardware errors, instruction specification errors, and access
violations). Refer to CP Interrupts in this section for further information.

CP Monitor Mask Register

The 16-bit MMR register enables or masks certain software-~specified conditions directly
associated with the monitor condition register (MCR). An interrupt occurs when an MCR bit
is set with the corresponding MMR bit set (other enables-permitting). Refer to CP
Interrupts in this section for further information.

I1-2-8 : } 60458890 A

ijj

C
"

©0

Operand X Registers

‘The sixteen 64-bit X registers, numbered X0 through XF, supply operands for arithmetic
operations and data manipulation. Depending on the operation, the registers contain a

- logical quantity, a signed binary integer, or a signed FP number. CP instructions which

only require 32 data bits access the X registers as X-left (bits O through 31) or X right
(bits 32 through 63). The X-register formats are as follows (the S-field is the sign bit):

0 . 63
S X Register

0 31 32 63
S X Register Left S X Register Right

Store operations to X-left (XkL) do not alter X-right (XkR). Store operations to XkR do not
alter XKkL.

CP Process Interval Timer (PIT)

The 32-bit PIT register allows each process to track its own execution time. PIT is set
either by a Copy-To-State—Register instruction with local privilege or from an incoming
exchange package. The CP records PIT in an outgoing exchange package. PIT can be read via
a Copy-From—-State—Register instruction.

PIT decrements at a l-microsecond rate without stopping. A trap interrupt occurs whenever
the count equals zero (other enables—permitting).

CP Program Address (P) Register

The 64-bit P register contains the PVA of an imstruction during the time the CP interprets

and executes it. The P register also contains bits which define memory access protection.
The P-register format is as follows:

910 1516 1920) 31 32 33 63
/// KEY RN SEG \" BN
Field Name Description
KEY Key Access permission attribute (refer to Access Protection under

Virtual Memory Programming in this section).

RN " Ring Access privilege indicator (refer to Access Protection under
Number Virtual Memory Programming in this section).

SEG Segment Process segment number (refer to Access Protection under Virtual
Number Memory Programming in this section).

\ Valid bit Validity indicator (refer to Process Virtual Memory under Virtual

Memory Programming in this section.

60458890 A I1-2-9

- Field Name Description
BN Byte Byte displacement within the 231 bytes in a segment. Bit 32 in the

Number final PVA used as a validity indicator and must be a zero or the PVA
: is rejected. Bit 32 in an A register may be a one, provided index-
ing or displacement changes this bit to a zero in the final PVA,

CP Segment Table Address (STA) Register
The 32-bit STA register contains the real memory address (RMA) of the first segment

descriptor table entry (interpreted as a byte address). Hardware ignores the rightmost 3
bits of STA. Refer to Virtual Memory Programming in this section for further informatiom.

CP Segment Table Length (STL) Register

The 12-bit STL register contains a count equal to one less than the number of 64-bit entries
in the associated segment descriptor table., The virtual addressing mechanism uses this
count to verify that segment table references are to an address within the segment table
boundaries. Refer to Virtual Memory Programming in this section for further information.

CP Top-of-Stack (TOS) Pointer Register

The operating system has for each process fifteen 48-bit TOS pointers to guarantee access
protection. The TOS pointers are located in words 37 through 51 of an exchange package in

CM. Each TOS is associated with ome of the 15 rings of access protection; hardware uses the

pointers to switch stacks during call/return instructions. Each TOS is a PVA pointing to
the top of its associated stack when this stack is not in active use. Refer to Stack
Manipulating Operations in this section, and Access Protection under Virtual Memory
Programming in this section, for further informatiom.

cpP Trﬁp Enable (TE) Register

The 2-bit TE register contains information that determines how traps are enabled. The TE
register bits are represented as follows:

e Trap-enable flip-flop (TEF)

When set, TEF is one of the conditions which enable trap interrupts. TEF is
normally set by a Copy-To-State-Register instruction and cleared by hardware when a
trap interrupt occurs. TEF can also be cleared by another Copy-To-State-Register
instruction.

e Trap-enable delay (TED) flip~flop
i
The TED flip—flop disables a trap interrupt until after the next return instruction
completes execution. TED is normally set by a Copy-To-State-Register imstruction
and cleared by a return instruction. TED can also be cleared by another
Copy-To-State-Register instruction.

CP Trap Pointer (TP) Register

The 48-bit TP register contains a PVA which is the indirect address of the entry point into
the trap interrupt target procedure (refer to CP Interrupts in this section). The code base
pointer (CBP) is the direct address to which TP points. An incoming exchange package loads
the TP register. TP can also be written by a Copy-To-State-Register instruction with local
privilege, and read by a Copy-From—State—Register instruction. .

I1-2-10 © 60458890 A

0

CP Untranslatable Pointer (UTP) Register
When an interrupt occurs because the CP cannot translate a PVA or SVA to an RMA, the 48-bit
UTP register contains the untranslatable PVA or SVA. UTP is set to PVA when the following
MCR conditions occur: '

e MCR 52 sets (except during load-page or purge instructions).

e MCR 54 or 57 sets.

® MCR 60 sets due to invalid SDE or exceeded STL.

e MCR 60 sets due to code base pointer (CBP) RN-field of zero during a call-indirect
instruction.

In the following cases, UTP may be set to either PVA or SVA:
e MCR 52 sets during load-page instruction.
e MCR 52 sets during purge instruction with k=0/1/8/9.

No other interrupt alters the UTP register.

CP Untranslatable Virtual Machine Identifier (UVMID) Register

Hardware sets the 4-bit UVMID register when an exchange operation, call-indirect
instruction, or return instruction is interrupted due to an attempt to switch the CP to a
‘state for which there is no set bit in the virtual machine capability list. In such a case,
hardware sets the UVMID code to indicate which VMCL bit is missing. Values of O through 15
of UVMID correspond to VMCL bits 48 through 63 as follows: ‘

UVMID Missing VMCL Bit
0 48 (Virtual State)
1 49 (CYBER 170 State)
2 through FF 50 through 63 (reserved)

CP User Condition Register (UCR)

The 16-bit UCR register records conditions that normally do not require an exchange to
monitor mode for corrective action. Each bit indicates detection of a particular error or
exception condition in the CP (for example, divide fault, arithmetic overflow and underflow,
or invalid BDP data). A trap interrupt occurs when a UCR bit sets with the trap enable
flip~flop set, the corresponding user mask register (UMR) bit set, and trap—enable delay
flip—-flop clear. Refer to CP Interrupts in this section for further information.

CP User Mask Register (UMR)

The 16-bit UMR register enables or masks certain software—specified conditions directly
associated with the user condition register (UCR). An interrupt occurs when a UCR bit is
set with the corresponding UMR bit set (other emables-permitting). Refer to CP Interrupts
in this section for further information.

60458890 A 11-2-11

CP Virtual Machine Identifier (VMID) Register:

The 4-bit binary code in the VMID register identifies the virtual machine capability being

used, as follows:

VMID Virtual Machine Capability
0 Virtual State
1 CYBER 170 State
2 through FF Reserved

CP PROCESSOR STATE REGISTERS

The processor state registers contain information about the state of the CP hardware, rather
Included among this category of registers are the CP maintenance
registers, which provide additional information about the condition of the CP hardware for

Other processor state registers contain such information as parameters

than a unique process.

diagnostic purposes.

of tables and pointers to exchange packages in CM.

Table I1I-2-2 lists the processor state registers and permissible access types for CP
Copy-To/From—-State-Register instructions and for maintenance channel (MCH) access.

Table II-2-2, Processor State Registers

No. Access
of Type
Register Name Bits Address Copy MCH

Cache/map corrected error log (CCEL/MCEL) 64 92/93 R/G R/W
Dependent environment control (DEC) 64 30 - R/W
Element identifier (EID) 32 10 R R
Job process state (JPS) 32 61 R/M R/W
Model-dependent word (MDW) 64 51 R R/W
Monitor process state (MPS) 32 41 R R/W
Options installed (OI) 64 12 R R
Page size mask (PSM) 7 4A R R/W
Page table address (PTA) 32 48 R R/W
Page table length (PTL) 8 49 R R/W
Processor fault status (PFS) 64 80-81 R/G R/W
Processor identifier (PID) 8 11 R R
Processor test mode (PTM) 64 AO R/G R/W
Status summary (SS) 6 00 - R
System interval timer (SIT) 32 62 R/M R/W
Virtual machine capability list (VMCL) 16 13 R R
Notes: R: Unprivileged read

W: Unprivileged write

G: Globally-privileged write

M: Virtual State monitor mode write

I1-2-12 60458890 A

O

s

N’

CP Options Installed (Ol) Register
The 64-bit OI register is a hard-wired register identifying the options installed in the

CP. Refer to the Maintenance Register Codes Booklet listed in the preface for
model-dependent information contained in the OI register.

CP Page Size Mask (PSM) Register
The 7-bit PSM register specifies the page size used in allocating real memory. Page sizes

are selectable at system initialization time and range from 2K to 16K bytes. Refer to
Virtual Memory Programming in this section for further information.

CP Page Table Address (PTA) Register

The 32-bit PTA rgister is a real-memory byte address pointing to the first page table
entry. Refer to Virtual Memory Programming in this section for further information.

CP Page Table length (PTL) Register
The 8-bit PTL register is a mask specifying the page table length. The page table ranges

from 512K to 131K words in 512K-word increments. Refer to Virtual Memory Programming in
this section for further information.

CP Processor Fault Status (PFS) Registers
The PFS registers record hardware-detected errors occurring within the CP. Refer to the

Maintenance Register Codes Booklet listed in the preface for model-dependent information
contained in the PFS registers.

CP Processor Identifier [PID) Register
The 8-bit PID register is a hard-wired register identifying each processor in the system.

Refer to the Maintenance Register Codes Booklet listed in the preface for model-dependent
information contained in the PID register.

CP Processor Test Mode (PTM) Register
The 64-bit PTM register provides a maintenance capability which forces faults for the
purpose of testing hardware—-fault sensing within the CP. Refer to the Maintenance Register

Codes Booklet listed in the preface for model-dependent information contained in the PTM
register.

CP Status Summary (SS) Register

The 6-bit SS register indicates CP status (similar registers exist in the CM and IOU).

00

Aside from the Virtual State monitor mode bit, if any SS bit is set the SS bit also sets in
the IOU status summary register. Refer to the Maintenance Register Codes Booklet listed in
the preface for further information.

60458890 A I1-2-13

C ¢

CP Cache/Map Corrected. Error I.og (CCEL/MCEL) Register

The CCEL/MCEL register contains model-dependent diagnostic information. Refer to the
Maintenance Register Codes Booklet listed in the preface for further information.

CP Dependent Environment Control (DEC) Register

The 64-bit DEC register is a maintenance register which controls CP operating conditions.
The model-independent bit is as follows:

Bit Description
35 Disable corrected error to status summary. When set, disables the : PN
) setting of corrected error (bit 62) in the CP status summary { ;
register. R

Refer to the Maintenance Register Codes Booklet listed in the preface for model-dependent
bit descriptions.

CP Element Identifier (EID) Register

The 32-bit EID register is a backpanel-wired register identifying each system hardware

element. The EID bits are represented as follows: (/”‘\
L
EID Bits Description
32 through 39 Element type
40 through 47 Model number
48 through 63 - Serial number (hexadecimal)
Refer to the Maintenance Register Codes Booklet listed in the preface for model-dependent
information contained in the EID register. 2N
N

CP Job Process State (JPS) Register

The 32-bit JPS register contains the real memory address (RMA) of the first word of a
Virtual State job mode exchange package. Hardware aligns the JPS address with bits 32
through 63 of RMAs, and interprets the JPS address as zero, modulo 16. The CP ignores bit
32 and interprets bits 60 through 63 as zeros. System deadstart procedures load the initial
JPS.

CP Model Dependent Word (MDW) Register
The MDW register (models 810, 815, 825, 830, and 835 only) contains the PVA of the

instruction that caused the last branch to take place in the CP. The PVAs include those of
call and return instructions. :

M
11-2-14 60458890 B L

©0

CP Monitor Process (MPS) Register

The 32-bit MPS register contains the real memory address (RMA) of the first word of a
Virtual State monitor mode exchange package. Hardware aligns the MPS address with bits 32
through 63 of RMAs, and interprets the MPS address as zero, modulo 16. The CP ignores bit

32 and interprets bits 60 through 63 as zeros. System deadstart procedures load the initial
MPS.

Bit Description
58 Virtual State monitor mode.
59 Short warning. Sets to warn the system of an imminent

environmental failure (for example, system power failure, local
50-Hz/60-Hz power failure, or cooling unit fault).

60 Processor halted.

61 Uncorrectable error. Sets whenever the detected uncorrectable
error (DUE) bit in MCR sets.

62 Corrected error. Sets after the CP corrects an error. The
dependent environment control (DEC) register can be set to disable
the recording of corrected errors.

63 Long environment warning. Sets to indicate an imminent failure
condition (for example, high-temperature warning, blower fault, or
low~temperature fault).

CP System Interval Timer (SIT) Register

The 32-bit SIT register is a timer which establishes maximum time intervals for process
execution. The operating system first sets the timer to the desired value. The timer then
decrements at a l-microsecond rate until the count equals zero (the timer does not stop
counting at zero; it decrements to all ones and continues decrementing). When enabled, the
zero count causes an interrupte.

CP Virtual Machine Capability List (VMCL)

The 16-bit VMCL register is a backpanel-wired register indicating CP capabilities. The VMCL
format is as follows:

VMCL Bit Capability
48 Virtual State
49 CYBER 170 State
50 through 63 Reserved
60458890 A I1-2-15

CM REGISTERS

The CM contains maintenance registers which hold memory status and error information (refer
to table II-2-3). CM maintenance registers are accessible through the maintenance channel

(register 80 is also accessible through the memory ports).

Table II-2-3.

CM Maintenance Registers

No Access
of Type
Register Name Bits Address Copy MCH

Corrected error log (CEL) 64 AO - R/W
Element identifier (EID) 32 10 - R
Environment control (EC) 64 20 - R/W
Free—-Running counter 48 BO R W
Options installed (0I) 32 12 - R
Port bounds register 64 21 - R/W
Status summary 6 00 - R
Uncorrectable error log (UEL) 1 64 A4 - R/W
Uncorrectable error log (UEL) 2 64 A8 - R/W

Counter (08) instruction.

NOTE: The free-running counter can be read from the CP by the Copy Free Running

CM CORRECTED ERROR LOG (CEL) REGISTER

The 64-bit CEL register contains details concerning the first corrected error since this
register was last reset. The model-independent bits are represented as follows:

Description

Indicates that the CEL contains a valid entry. When

this bit is set, further correctable errors are discarded.

Bit
0 Valid bit.
1 Unlogged corrected error.

an entry.

Indicates that a correctable error
occurred but could not be logged because the CEL already contained

The CEL register contains model-dependent information regarding the address, parity, and

encoded number of the memory port associated with the error.

Refer to the Maintenance

Register Codes Booklet listed in the preface for model-dependent information contained in

the CEL register.

II-2-16

60458890 A

/’ ‘\'
i
N
o~
h\v
s
“

00

CM ELEMENT IDENTIFIER (EID) REGISTER

The 32-bit EID register is set by switches on logic panels. EID identifies each system
hardware element according to the following bit assignments:

Bits Description
32 through 39 Element type
40 through 47 Model number
48 througﬁ 63 Serial number (hexadecimal)

Refer to the Maintenance Register Codes Booklet listed in the preface for model-dependent
information contained in the EID register.

CM ENVIRONMENT CONTROL (EC] REGISTER

The 64-bit EC register controls CM error-checking and interleaving. Refer to the
Maintenance Register Codes Booklet listed in the preface for information contained in the EC
register.

CM FREE-RUNNING COUNTER REGISTER

This counter register consists of either 64 counter bits, or 48 counter bits right-justified
with zero-fill in the leftmost 16 bits. The counter increments at a l-microsecond rate.
Successive reads of the free-running counter guarantee different values.

The free-running counter can be written at any time through the maintenance channel. The CP
can read the counter using the Copy Free Running Counter (08) instructiom.

CM OPTIONS INSTALLED (Ol) REGISTER

The 64-bit OI register identifies the memory configuration and is set by field-modifiable
switches on logic panels. Refer to the Maintenance Register Codes Booklet listed in the
preface for model-dependent information contained in the OI register.

CM PORT BOUNDS REGISTER

This 64-bit register controls the range of addresses accessible during a write operation
through specified ports. For ports specified by bounds-register bits, write access is
limited to an area between two real memory addresses (RMAs) in this register. Refer to
Maintenance Channel Programming in this section for further information.

CM STATUS SUMMARY REGISTER
This 64-bit register provides information about the CM clock, error status, and physical

environment condition. Refer to the Maintenance Register Codes Booklet listed in the
preface for specific information contained in the CM status summary register.

60458890 A : I1-2-17

CM UNCORRECTABLE ERROR LOG (UEL) REGISTERS

The two 64-bit UEL registers contain details of the first two uncorrected CM errors which
occurred since the registers were last reset. The model-independent bits are represented as
follows:

Bit : Description

0 Valid bit. Indicates that the UEL contains a valid entry. When
this bit is set, further uncorrectable errors are discarded.

1 Unlogged uncorrectable error. Indicates that an uncorrectable
error occurred but could not be logged because the UEL already
contained an entry.

The UEL registers also confain information about the source of the error. This information
includes the illegal function, memory bounds fault, and multiple-bit memory error. Refer to

the Maintenance Register Codes Booklet listed in the preface for model-dependent information
contained in the UEL registers.

IOU REGISTERS

The IOU contains maintenance registers which hold I0U status and error information (refer to
table II-2~4), IOU registers are accessible through the maintenance channel.

Table I1-2—-4, 10U Maintenance Registers

No. Access
of Type
Register Name Bits Address Copy MCH
Element identifier (EID) 32 10 - R
Environment control (EC) 32 30 - R/W
Fault status (FS) 1 64 80 - R/W
Fault status (FS) 2 64 81 - R/W
Fault status mask 64 18 - R/W
Options installed (0I) 64 12 - R
0S bounds 64 21 - R/W
Status summary 6 00 - R
Test mode 16 A0 - R/W
Uncorrectable error log (UEL) 2 64 A8 - R/W
I1-2-18 : o 60458890 A

O

C

00

IOU ELEMENT IDENTIFIER (EID) REGISTER

The 32-bit EID register is a backpanel-wired register identifying each system hardware
element. The EID bits are represented as follows:

Bits Description
32 through 39 Element type
40 through 47 Model number
48 through 63 Serial number (hexadecimal)

IOU ENVIRONMENT CONTROL (EC) REGISTER

The 64-bit EC register controls timing margins, test mode and deadstart, PP memory dumps,
reconfiguration, and stop-on—-error conditions for the IOU. It also selects PP internal

registers for reading. Refer to the Maintenance Register Codes Booklet listed in the
preface for further information.

IOU FAULT STATUS (FS) REGISTERS

The 64-bit FS registers indicate the presence of uncorrectable faults in the IOU, PP
memories, I/0 channels, or PP hardware. Refer to the Maintenance Register Codes Booklet
listed in the preface for further information.

IOU FAULT STATUS MASK REGISTER

This 64-bit register controls IOU fault reporting to the IOU fault status (FS) registers.

Refer to the Maintenance Register Codes Booklet listed in the preface for further
information.

IOU OPTIONS INSTALLED (Ol) REGISTER

The 64-bit OI register identifies the options installed in the IOU. Refer to the
Maintenance Register Codes Booklet listed in the preface for further information.

IOU OS BOUNDS REGISTER

The 64-bit operating system (0S) bounds register divides the CM into an upper and a lower
region for system protection. The OS bounds register contains a bit for each PP which
indicates the region in CM into which the specified PP may initiate exchange operations or

writes. Refer to the Maintenance Register Codes Booklet listed in the preface for further
information.

60458890 A I1-2-19

IOU STATUS SUMMARY REGISTER
The status summary register indicates errors in the CP, CM and I0U. It also provides

information about the PP-halt, error status, and physical environment conditions. Refer to
the Maintenance Register Codes Booklet listed in the preface for further information.

IOU TEST MODE (TM) REGISTER

The 64-bit TM register forces faults in the I0U for testing of the fault sensing logic.

Bits 48 through 63 of this register serve a dual role. With the Enable Test Mode Register
bit set in the EC register, these bits are used to force test conditions (refer to the
Maintenance Register Codes Booklet listed in the preface for further information). When the

Enable Test Mode Register bit is clear, these read/write bits can be used by software as
interlock/flag status bits. :

CP CONDITION AND MASK REGISTERS

The CP contains a monitor condition register (MCR) and a user condition register (UCR), each
of which records interrupt causes and displays flag conditions. Each condition register has
a corresponding mask register controlling the action taken when a condition register bit
sets. Table II-2-5 lists the bit assignments in the monitor condition and mask registers.
Table I1-2-6 lists the bit assignments in the user condition and mask registers. The
significance of the individual bits is further described in Interrupt Conditions in this
section., Section 2 in volume 1 also describes all CP registers.
In general, MCR and UCR bits may be altered by the following:

e CP hardware indicating a processor condition or external event.

e Branch-on—-condition register instruction (9F).

e PP communication over the maintenance channel.

° Software with the condition register stored in an exchange package in CM.

° Trap interrupts which clear any condition registér bits for which the corresponding
mask register bit is set.

Monitor condition and user mask register bits may be altered by the following:
) Copy to state register instruction (OF).
° PP communication over the maintenance channel.

e Software with the mask register stored in an exchange package in CM.

I1-2-20 ~ 60458890 A

Y

0

Table II-2-5. Monitor Condition/Mask Register Bit Assignments

Associated MCR Bit
Set Set Clear
Condition of Traps
Enabled Disabled Any
Exchange

MCR package Type Description CP Mode of Operation

bit bit Job Mon Job Mon Any

48 0 XX Detected uncorrect— Exch | Trap| Exch Halt Halt
able errore.

49 1 XX Not assigned. Exch | Trap| Exch Halt Halt

50 2 EN Short warning. Exch | Trap| Exch | Stack Stack

51 3 ST Instruction Exch | Trap| Exch | -Halt Halt
specification error. :

52 4 ST Address Exch | Trap| Exch Halt Halt
specification error.

53 5 EN CYBER 170 State Exch | Trap| Exch | Stack | Stack
exchange request.

54 6 ST Access violation. Exch | Trap | Exch Halt Halt

55 7 51 | Environment Exch | Trap | Exch Halt Halt
specification error.

56 8 EN External interrupt. Exch | Trap | Exch | Stack | Stack

57 9 ST Page table search Exch | Trap| Exch Halt Halt

- without find.

58 10 EN System call None | None | None None None
(status bit).

59 11 EN System interval Exch | Trap| Exch | Stack | Stack
timer.

60 12 S 2 Invalid segment/ Exch | Trap| Exch Halt ‘Halt

. ring number zero.

61 13 ST Outward call/ Exch | Trap| Exch Halt Halt
Inward return.

62 14 EN Soft error. Exch | Trap| Exch | Stack | Stack

63 15 ST Trap exception None | None | None None None
(status bit).

Notes: Refer to Interrupt Conditions in this section for bit descriptions.

Stack

20

—

Test for opportunity to trap or exchange at each instruction fetch.

Either condition may happen.
Execution completed.
Execution suppressed.
P = PVA of next instruction.
P = PVA of this instruction.

For RN = 0 on Load A, Return or Pop, 1 = N; for RN = 0 on Call or

Trap, 1 = T; for invalid segment, 1 = T.

For exchange operations, 2 = N; Call, Return or Pop, 2 = T.

60458890 A

I1-2-21

Table II-2-6.

User Condition/Mask Register Bit Assignments

Associated UCR Bit
Set Set Clear
Condition of Traps
Enabled Disabled Any
Exchange
UCR package Type Description CP Mode of Operation
bit bit Job Mon Job Mon Any
48 0 ST Privileged in-
struction fault. Trap | Trap | Exch Halt -
49 1 ST Unimplemented
instruction. Trap | Trap | Exch Halt -
50 E N Free flag. Trap | Trap | Stack | Stack -
51 3 T Process interval
) timer. Trap | Trap | Stack | Stack -
52 4 ST Inter-ring pop. Trap | Trap Exch | Halt -
53 5 T Critical frame Trap | Trap Exch | Halt -
flag.
54 6 Reserved. Trap | Trap | Stack | Stack -
55 7 SN Divide fault. Trap | Trap | Stack | Stack | Stack
56 8 ST Debug. Trap | Trap | Stack | Stack | Stack
57 9 ST Arithmetic overflow. Trap | Trap | Stack | Stack | Stack.
58 10 ET Exponent overflow. Trap | Trap | Stack | Stack | Stack
59 11 ET Exponent underflow. Trap | Trap | Stack | Stack | Stack
60 12 ET FP loss of
significance. Trap | Trap Stack | Stack | Stack
61 13 ST FP indefinite. Trap | Trap | Stack | Stack | Stack
62 14 ST Arithmetic loss
of significance. Trap | Trap Stack | Stack | Stack
63 15 ET Invalid BDP data. Trap | Trap | Stack | Stack | Stack
Notes: Refer to Interrupt Conditions in this section for bit descriptionms.
Stack Test for opportunity to trap or exchange at each instruction fetch.
E Execution of instruction completed.
S Execution of instruction suppressed.
N P = PVA of next instruction.
T P = PVA of this instruction.
11-2-22 60458890 A

E

I

1
¢
-

00

CP CONDITION REGISTER BIT GROUPING

Refer to Interrupt Conditions in this section for bit descriptions. The four groups of
condition register bits shown in table II-2-7 are a function of the characteristics of the
event detected, and of the P register PVA at time of interrupt.

The PVA from the P register stored in the exchange package during exchange interrupts [or in
the stack frame save area (SFSA) during trap interrupts] points to an instruction address
dependent on the condition register bit group as follows:

Group PVA in P Stored During Interrupt

1 Points to the instruction executing when the malfunction was detected.
This instruction did not necessarily initiate the activity resulting in
the malfunction.

2a,2b Points to the instruction that would have been executed if the interrupt
had not occurred. After executing an exchange or return to the
interrupted procedure, processing continues (from the PVA stored in the
exchange package) as though the interrupt had not occurred.

3 Points to the instruction causing the interrupt.

60458890 A I1-2-23

Table I1I-2-7. Interrupt Condition Groups

Occurrence
MCR/UCR
Group Interrupt Condition Bit Type | CY170 | Virtual
Malfunctions Not Neccessarily Related to Current Instruction
1 Detected uncorrectable error MCR 48 Mon X X
Tested Between Instructions, Not Generated by Instructions
2a Short warning MCR 50 Sys X X
: System interval timer MCR 51 Sys X X
Soft error MCR 52 - Sys X X
External interrupt MCR 59 Sys X X
Free flag UCR 50 User X X
Process interval timer UCR 51 User X X
CYBER 170 State exchange request |MCR 53 Sys X X
Tested Between Instructions, Generated by Instructions
2b System call MCR 58 Status X
Exponent overflow UCR 58 User X
Exponent underflow UCR 59 User X
"FP loss—of-significance UCR 60 User X
Invalid segment/RN zero (Note 1) MCR 60 Mon X X
Environment specification error MCR 55 Mon X X
(Note 2)
Tested Before Execution, Generated by Instruction
3 Instruction specification error MCR 62 Mon X
Address specification error MCR 52 Mon X X
Invalid segment/RN zero (Note 1) |MCR 60 Mon X X
Access violation MCR 54 Mon X X
Environment specification error MCR 55 Mon X X
(Note 2)
Page table search without find MCR 57 Mon X X
Outward call/inward return MCR 61 Mon X X
Trap exception MCR 63 Status X X
Privileged instruction fault UCR 48 Mon X X
Unimplemented instruction UCR 49 Mon X X
Inter-ring pop UCR 52 Mon X
Critical frame flag UCR 53 Mon X X
Divide fault UCR 55 User X
Debug UCR 56 User X
Arithmetic overflow UCR 57 User X
FP indefinite UCR 61 User X
Arithmetic loss—of-significance UCR 62 User X
Invalid BDP data UCR 63 User X
Notes: 1 MCR 60 set by load address, return, or pop instructions when RN = 0, is

in group 2b.

MCR 60, set by call or trap instructions when RN = 0, or set by an

invalid segment, is in group 3.

MCR 55 set by exchange operations is in group 2b.
MCR 55 set by call, return, or pop instructions is in group 3.

11-2-24

60458890 A

éﬁi‘a
k; ’?//)

o

CP INTERRUPTS

Exchange interrupts and trap interrupts comprise the CP interrupt structure. The following
paragraphs describe the characteristics of the two interrupt types.

EXCHANGE INTERRUPTS

An exchange interrupt causes an exchange operation as described in Exchange Operations in
this section. Exchange interrupts switch the system from Virtual State job mode (Virtual
State or CYBER 170 State environment) to Virtual State monitor mode. Exchange interrupts

‘are disabled in Virtual State monitor mode.

Exchange interrupts initiate from conditions that set a bit in the monitor condition
register (and in some cases in the user condition register). Exchange interrupts can only
occur when the CP is in Virtual State job mode and the corresponding mask register bit is
set. Refer to tables II-2-5 and II-2-6.

“TRAP INTERRUPTS

A trap interrupt acts as an implicit call indirect (BO) instruction to an interrupt-handling
procedure. Trap interrupts save the current stack frame save area (SFSA) environment, push
the stack, and switch control to a software procedure for trap handling. Trap interrupts
occur in response to the setting of UCR or MCR bits (as shown in tables II-2-5 and II-2-6)
in the following environments:

° Within Virtual State monitor mode.

e Within Virtual State job mode.

eo- Upon switch from CYBER 170 state to Virtual State job mode (refer to State Switching
Operations in this section).

The trap interrupt creates the maximum (33 word) SFSA descriptor and preserves the contents
of the following in the associated SFSA: the P register, A and X registers, VMID, SFSA
descriptor, monitor mask and condition registers, and user mask and condition registers.
After the trap interrupt stores these registers in the SFSA, the CP clears the UCR or MCR
bits causing the trap interrupt.

The trap interrupt target address is obtained by the CP using the PVA in the trap pointer
register to access a code base pointer (CBP) in a system binding section. This CBP contains
the PVA of the next instruction to be executed. The external procedure flag must be set in
the CBP. Refer to CP Stack Manipulating Operations inm this section.

A trap interrupt disables further trap interrupts. Software may reenable traps by either
setting the trap enable delay flip—flop and executing the return (04) instruction, or by
setting the trap enable flip—flop. The return instruction reestablishes the suspended
environment but does not load the monitor/user condition registers from the SFSA into the CP,

If an exception condition arises during execution of a trap operation, the trap interrupt
aborts and the following actions occur:

1. The trap exception bit (MCR 63) sets.

2. The appropriate UCR/MCR bit sets for the condition causing the trap to abort.

60458890 A ' 1I-2-25

3. The trap enable flip-flop condition (set) is recorded in the exchange package stored
for the interrupted procedure.

4, The exchange or halt performs as indicated in tables II-2-5 and I1I-2-6.
Virtual State job mode processes can control trap interrupts by setting bits in the user
mask register. Bits set in the user mask register permit the trap interrupt when the

corresponding UCR bit sets. Trap conditions occurring when traps are disabled have effect
as listed in tables II-2-5 and I1-2-6.

INTERRUPT CONDITIONS
The following paragrabhs present the various conditions causing system interrupts. Each

condition description includes a reference to the corresponding MCR or UCR bit that sets
upon condition detection. Refer to Condition and Mask Registers in this section.

Access Violation (MCR 54)

This bit sets when the CP attempts a CM access without the required access permission. The
CM access is blocked. The following conditions result in a CM access violation:

° Attempt to read a nonreadable segment.

e Attempt to read outside the read ring limit.

e Attempt to write into a nonwritable segment.

e Attempt to write outside the write ring limit.

e Attempt to execute from a nonexecutable segment.

e Attempt to execute from outside the execute ring bracket.

e Attempt to call indirect when the code base pointer is not in a binding sectiomn
segment.

e Attempt to call indirect from a process outside the code base pointer call ring
limit.

e Key/lock violation.

The PVA in P points to the instruction attempting the illegal access.

II-2-26 ; 60458890 A

oo
P
pE

) PrpreN

SR 4

.

C

Address Specification Error (MCR 52)

This bit sets when the CP attempts to use an improper address. This includes:

e Data address with nonzero bifs 61 through 63 generated hy the following instructionmns:

Opcode Instruction
04 Return.
B5 Call indirect.
80 Load multiple.
81 Store multiple.
82 Load word.
83 Store word.
BO Call relative.
F4 Calculate subscript.

e Instruction address with nonzero bits 62 and 63 generated by unconditional branch
instruction (2F).

° Any PVA with nonzero bit 32.
The following instructions may also detect an address specification error:
e Decimal arithmetic (70 to 75, E4, and E5).
° Move immediate data (F9).
e Convert from floating point to integer (3B).
o Test and set page (16).

The PVA in P points to the instruction specifying the incorrect address.

Arithmetic Loss-of-Significance (UCR 62)

This bit sets when significant digit(s) in the result are truncated or not stored in CM
during execution of the following instructions:

e Decimal arithmetic (70 to 75, E4, and E5).
e Move immediate data (F9).
e Convert from floating point to integer (3B).

The PVA in P points to the instruction causing this condition.

Arithmetic Overflow (UCR 57)
This bit sets as a result of one of the following conditions:

e Integer sum instructions (10, 20, 24, 28, 8A, and 8B) when augend and addend have
'~ same signs but sum has opposite sign.

60458890 A 11-2-27

e Integer difference instructions (11, 21, 25, and 29) when minuend and subtrahend
have opposite signs but difference sign is opposite of minuend sign.

° Half-word integer product instructions (22 and 8C) when most significant 32 bits of
intermediate product are not equal to sign bit.

e Integer product instructions (26 and B2) when leftmost 64 bits of intermediate
product are not equal to sign bit.

e Half-word integer quotient instruction (23) when -231 is divided by -20,
e Integer quotient instruction (27) when -264 is divided by -20,

e Decimal arithmetic instructions (70 to 73) when result length exceeds destination
field length.

® Add immediate data instruction (FB) when source or destination field data
descriptors specify invalid data type.

The PVA in P points to the instruction causing the arithmetic overflow condition.

Critical Frame Flag (UCR 53)

This bit sets when the CP attempts to execute a pop or return instruction from a critical
stack frame. The PVA in P points to the pop or return instruction causing this interrupt.
Debug (UCR 56)

This bit sets when a debug match occurs. Refer to Debug in this section for a description
of this condition. The PVA in P points to the instruction causing the debug interrupte.
Divide Fault (UCR 55)

This bit sets when the CP detects a divisor equal to zero during execution of one of the
integer quotient instructions (23, 27, 33, 37, and 73). Also, for the floating point
quotient instructions (33 and 37), the CP detects a divide fault if the divisor coefficient
is a nonstandard value of zero, or is unnormalized and divisible into the dividend

coefficient by a factor exceeding or equal to 2. The PVA in P points to the instruction
causing the divide fault condition.

Environment Specification Error (MCR 55)

This bit sets when the CP detects an error in the environment during a call, return, or pop

instruction, or during an exchange or trap operation. The PVA in P at the time of interrupt
points to the instruction causing the error when the error results from any of the following

conditions:

e A mismatch between VMCL and.the VMID obtained from the code base pointer on a call
: indirect instruction (B5).

° A mismatch between VMCL and the VMID obtained from the stack frame save area (SFSA)
on a return instruction (04).

II1-2-28 60458890 A

0
C

e Initial A2 (previous save area pointer) not equal to A0 (dynamic space pointer) in
the SFSA on a return (04) or pop (06) instruction.

. In the previous stack frame descriptor, the field value designating the last A
register to be loaded is less than 2 on a return instruction (04).

When this error results from the following condition, the PVA in P at the time of interrupt
points to the next instruction which would have executed:

e A mismatch between VMCL and the VMID obtained from the exchange package during an
exchange operationm.

When this error results from the following conditions, the PVA in P at the time of interrupt
points to the instruction as defined under the condition causing the trap operation:

e A mismatch between VMCL and the VMID obtained from the code base pointer during a
trap interrupte.

e External procedure flag not set in the code base pointer during a trap interrupt.

® The VMID from the code base pointer not equal to zero when executing a trap
interrupte.

Exponent Overflow (UCR 58)
Exponent overflow occurs when an FP comparison or arithmetic instruction produces an

exponent with an actual value between 24096 and 212187, The PVA in P points to the next
instruction that would have executed.

Exponent Underflow (UCR 59)
Exponent underflow occurs when an FP arithmetic instruction produces an intermediate

exponent value between -24096 apng -212287, The PVA in P points to the next instruction
that would have executed.

External Interrupt (MCR 56)
This bit sets as a result of a processor interrupt instruction (03) in the interrupted CP
(or in another CP in a multiprocessor system), through the CM port the instruction

specifies. At the time of interrupt, the PVA in P points to the next instruction that would
have executed.

Floating-Point Indefinite (UCR 61)

This bit sets when an FP arithmetic instruction produces a final nonstandard indefinite
result. The PVA in P points to the instruction causing the FP indefinite conditiom.

60458890 A I1-2-29

Floating-Point Loss-of-Significance (UCR 60)

This bit sets when an FP arithmetic instruction produces an intermediate result with an
overflow bit and coefficient of all zeros. The PVA in P points to the next instruction that
would have executed.)

Free Flag (UCR 50)

The free flag is normally set by software in an exchange package in CM: this bit causes an
immediate trap interrupt after an exchange operation loads this exchange package into the
CP. Software conventions dictate the use of this flag; hardware does not set this bit. The
PVA in P points to the next instruction that would have executed.

Instruction Specification Error (MCR 51)
This bit sets:

e During isolate/insert instructions (AC, AD, and AE) when the sum of the leftmost
position designator plus the length designator exceeds 63.

° During business data processing (BDP) instructions when the length specified by the
data descriptor L field exceeds the maximum length for applicable data type.

° If data type fields in source and/or destination data descriptors are invalid during
the following BDP instructions:

Opcode Instruction
70 Decimal sum.
71 Decimal difference.
72 Decimal product.
73 Decimal quotient.
74 Decimal compare.
75 Numeric move.
E4 Decimal scale.
ES Decimal scale rounded.
ED Edit.
F4 Calculate subscript and add.
F9 Move immediate data.
FA Compare immediate data.
FB Add immediate data.

e Execution of BDP calculate subscript and add instruction (FA) when PVA bits 61
through 63 (used to access the subscript range table (SRT)) do not equal O.

e Execution of the program error instruction (00).
] Execution of the Copy-To-State-Register instruction (OF), or the Branch—on—Conditlon—
Register instruction (9F), when execute access is restricted to Virtual State

monitor mode with the CP not in this mode.

e Execution of a call instruction (BO/B5) when the number of the last A register field
(At) in XOR bits 56 through 59) is less than 2.

The P register contains the PVA of the instruction with the error.

I1-2-30 60458890 A

i
C

C

o
C

Inter-Ring Pop (UCR 52)

This bit sets from an attempt to pop a stack frame in one ring with a pop instruction (06)
executing in a different ring. The pop instruction moves the CSF, PSA, and TOS pointers to
eliminate the stack frame without changing the P-counter., The PVA in P points to the pop
instruction attempting the inter-ring pop.

Invalid BDP Data (UCR 63)

This bit sets when the CP detects an invalid decimal digit during execution of the following
instructions: BDP decimal numeric, calculate subscript and add, compare immediate data, move
immediate data, edit, and convert floating point to integer. The PVA in P points to the
instruction causing this condition.

Invalid Segment/Ring Number Zero (MCR 60)
This bit sets for the following reasons:

e A PVA was untranslatable into an RMA because the segment table length was exceeded
or the segment descriptor was invalid. The PVA in P points to the instruction
attempting the CM access.

e A call (BO or B5) instruction attempted to execute with a code base pointer (CBP)
ring number (RN) equal to zero. The PVA in P points to the instruction attempting
the CM access.

e An A register was loaded with a PVA with RN equal to zero during a load A (80, 84,

AO), return (04) or pop (06) instruction. The PVA in P points to the next
instruction that would have executed.

Not Assigned (MCR 49)

When set explicitly by software, this bit causes an interrupt identical to the detected
uncorrectable error (MCR 48).

Outward Call/Inward Return (MCR 61)

This bit sets when the CP attempts an outward call or an inward return. The PVA in P points
to the instruction attempting the outward call or inward return.

60458890 A I1-2-31

Page Table Search Without Find (MCR 57) '

This bit sets when a page table search does not locate the requested page table entry. The
PVA in P points to the instruction attempting the CM access that resulted in this condition,
except when this exception is caused by an instruction fetch directly after a branch exit.
In this case, the PVA in P points to the branched-to instruction.

Privileged Instruction Fault (UCR 48)

This bit sets when:

e An attempt is made to execute a local privileged instruction from other than a
locally-privileged or globally-privileged segment.

e An attempt is made to execute a globally-privileged instruction from other than a
globally-privileged segment.

e A trap (017) instruction executes in CYBER 170 State.

The PVA in P points to the instruction causing the privileged instruction fault interrupt.

Process Interval Time (UCR 51)

This bit sets when the process interval timer decrements to zero. The PVA in P points to
the next instruction that would have executed.

Detected Uncorrectable Error (MCR 48)

This bit sets when the CP detects an uncorrectable error condition in the processor, or on a
processor—initiated memory reference. Typical examples are a parity error in data from
memory that cannot be retried, an uncorrectable error in control storage, and CP errors that
cannot be corrected or retried. A CM bounds violation also causes this exceptiom.

The PVA in P does not necessarily point to the instruction causing the malfunction.

CYBER 170 State Exchange Request (MCR 53)

This bit sets when the CP receives the CYBER 170 State exchange request signal from the IOU,
indicating that a PP in the IOU has executed one of the following instructions: exchange
jump (00260X), monitor exchange jump (00261X), or monitor exchange jump MA (00262X). When
the CP is in Virtual State, the operating system must switch the CP to CYBER 170 State job
mode before the exchange can occur. The PVA in P points to the next instruction that would
have executed.

Short Warning (MCR 50)

This bit sets when certain power distribution and warning system faults occur (refer to the
appropriate power system manual listed in the preface). The PVA in P points to the next
instruction that would have executed. This bit remains set until the condition returns to
normal, at which time it clears.

11-2-32 » 60458890 A

SN

S

O

\ess’

0]
@

Soft Error Log (MCR 62)

This bit sets to indicate error detection and correction by the hardware regarding the
following:

e A corrected error in CM for the port used by this CP (also recorded in the CM
corrected—error register).

° A corrected hardware malfunction in the CP.

The PVA in P points to the next instruction that would have executed.

System Interval Timer (MCR 59)

This bit sets when the system interval timer decrements to zero. The PVA in P points to the
next instruction that would have executed.

Trap Exception (MCR 63)

This bit sets when the system detects a fault during a trap interrupt operation. In such a
case, at least one other MCR bit indicates the cause of the trap exception. The PVA in P
points to the PVA that would have been stored in the stack frame, word O, if the trap had
completed without any exception conditions.

Unimplemented Instruction (UCR 49)

This bit sets when an instruction not implemented in the CP attempts to execute. The
instruction descriptions in section II-1 specify which instructions are model-dependent.
The PVA in P points to the instruction causing the interrupt.

The CYBER 170 State compare/move instructions (464-467) also cause this interrupt.

MULTIPLE INTERRUPT CONDITIONS
Tables II-2-5 and II-2-6 list the interrupt action taken in various operating modes. When
more than one bit sets in the MCR/UCR, the interrupts are processed with the following
priority:

l. Halt (any halt condition present).

2. Exchange (no halt condition present, and any exchange condition present).

3. Trap (ho halt or exchange condition present, and any trap condition present).

4, Stack (none of the above conditions present).

60458890 A v I1-2-33

Figure I1-2-3 is a flowchart showing the CP detecting an exception condition and taking
action on it.

START

ANYTHING
IN UCR?

/ "F\‘
yes)‘dv‘? 1
MMR BIT
SET?
yes,
TRAPS &
EXCHANGE ENABLED? W

STACKABLE

IN
MONITOR
MODE?

STACKABLE?

EXCHANGE

Notes: 1., RNI: Read next instruction.
2, Traps enabled implies: trap enable (TEF) set
and trap enable delay (TED) clear.

Figure II-2-3. Interrupt Flowchart

I1-2-34 : 60458890 A

00

FLAGS

Table II-2-8 indicates the state of the critical frame flag, on-condition flag, trap enable
flip~flop, and trap enable delay flip—-flop following the execution of the Virtual State
call, return, pop, exchange, and trap operations.

60458890 A

Table II-2-8.

Condition of Flags Following Call, Return, Pop,

Exchange, and Trap Operations

. Flags
Operations - CFF| OCF| TEF| TED
Call c c A A
Return PS PS | A C
Pop PS'} PS | A A
Exchange XP | XP | XP | XP
Trap c c c A
Notes: C Cleared by operation.
A As is (unchanged by operation).
PS Loaded by operation from
previous stack frame save area.
XP Loaded by operation from
exchange package.
CFF Critical frame flag.
OCF On-condition flag.
TEF Trap enable flip-flop.
TED Trap enable delay.

I1-2-35

STACK MANIPULATING OPERATIONS

Each process has up to 15 stacks: one for each ring of execution privilege as defined by the
RN field (bits 16 through 19) of the hardware P register. Hardware accesses these stacks to
save/restore the process registers and operating conditions during trap interrupts, and
during the following Virtual State instructions:

e Call indirect.
e Call relative.
] Return.

° Pop.

° Trap.

These 15 stacks are used as parts of a single stack divided solely to guarantee access
protection. The buildup and reduction of the 15 stacks always occurs through the same
locations (in opposite directions), switching from stack to stack only when the P register
ring number changes.

The operating system allocates stack space to each process. One use of the critical frame
flag (CFF) is to mark the first frame in each stack to indicate the beginning of the stack.
The operating system may also check for a maximum allowable stack length when assigning a
new page to the stack through the virtual memory demand paging mechanism.

The 15 stacks operate in conjunction with assigned registers A0 through A4 and 15
top~of-stack (TOS) pointers for the specific process. An exchange operation switches stacks
by providing new A0 through A4 and new TOS pointers.

STACK FRAMES AND SAVE AREAS

A procedure may use its stack for storing its dynamic variables. At times it may call
another procedure, which in turn may call another procedure, and so on. Also, at any time,
a trap interrupt condition may initiate a call-type operation. Each time a call occurs,
hardware saves the registers of the suspended part of the process (the caller) in the
currently active stack, together with some status information. This leaves these registers
free for use by the branched-to software (the callee). The area in which the registers are
stored is the stack frame save area (SFSA). The SFSA combines with the previously stored
dynamic variables (if any) to comprise a stack frame.

The CP hardware design provides that the string of successively-called procedures may

include previously called procedures (recursive calls), provided code modification is not
used.

Stack Frame Save Area Format
For call instructions, the programmer specifies the number of registers stored in SFSA (from

4 to 33) by way of a descriptor placed into X0, as shown in figure II-2-4. Trap interrupts
always generate the maximum save area of 33 words. Figure II-2-5 shows the format of SFSA.

1I-2-36 . . 60458890 A

A
i\

O

O
O

Field

X(s)
A(t)
X(t)
Notes

1.

30

52 5556 5960 63

X(s) | A(t) | X(t)

Register Saved

Starting (first) X register.
Terminating (last) A register.
Terminating (last) X register.

If X(s) exceeds X(t), nothing is stored.
First A register is always AO.

If A(t) is less than 2, an instruction specification error

interrupt occurse.

Figure I1I-2-4, Format of X0 for Call Instructions

BYTE(HEX) WORDI(DEC)
T /Y 0 P REGISTER 0
MINIMUM g [vmiD] A0 REGISTER (DYNAMIC SPACE POINTER) 1
iﬁ‘éi 10 [FRAME DESCRIPTION | A1 REGISTER (CURRENT STACK FRAME POINTER) | 2
Y 18_| USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER) 3

20 , A3 REGISTER (BINDING SECTION POINTER) 4

28 | USER CONDITION A4 REGISTER (ARGUMENT POINTER) 5

30 [MONITOR CONDITION | A5 REGISTER 6

38 A6 REGISTER 7

40 A7 REGISTER 8
MAXIMUM R
SAVE ~] .]
AREA ¢

80 | 00———————15 | AF REGISTER 16

88 X0 REGISTER 17

L]
e o A
[]
100 XF REGISTER 32
00 » 63

Figure II-2-5, Virtual State Stack Frame Save Area

Stack Frame Save Area Descriptor Field

The SFSA descriptor (figure II-2-6) is in word 2, bits O through 15 of the SFSA.
the number of X and A registers saved in the SFSA, and also the state of the critical-frame
flag (CFF), the on-condition flag (OCF), and the process-not-damaged (PND) flag when the

SFSA is generated.

60458890 A

It records

I1-2-37

The CFF and the OCF are hardware register flags set/cleared by copy to/from state register
instructions, and which may also be prerecorded in an exchange package or the SFSA. CFF set
for the current stack frame inhibits instruction execution and causes an interrupt when
encountered during a return or pop instruction.

Executing a call instruction or a trap interrupt stores the CFF and OCF in the SFSA

descriptor generated for the current stack frame and clears these flags.

instruction loads these flags from the previous SFSA.

The PND flag indicates whether or not a process being executed was

Executing a return

damaged and whether the

process may be restarted. This flag is intended to allow recovery of monitor mode processes

where possible.

The PND flag is valid when set during a Virtual State monitor mode
an uncorrectable error.

address for the process, but is not necessarily the address of the

trap operation caused by

In this case, the flag indicates that the executing process was
undamaged and that it may be restarted. The PVA in P of the stack frame is the restart

initiated the malfunction.

The default (clear) state of the PND flag interprets the process as damaged.

ignores the flag when loading a stack frame.

instruction which

The hardware

01234 78 1112 15

0] | X(s) | Alt) | X(t)

L enp

L—— OCF
CFF

Field Description
CFF Critical frame flag.
OCF On—-condition flag.
PND Process not damaged.
X(s) Starting (first) X register.
A(t) Terminating (last) A register.
X(t) Terminating (last) X register.
Note: If X(s) exceeds X(t), nothing is loaded.

Figure II-2-6. Stack Frame Save Area Descriptor

Virtual Machine Identifier (VMID) Field

A call instruction or a trap interrupt stores the virtual machine identifier in SFSA word 1,
bits 4 through 7. A return instruction loads the VMID from the previous SFSA into the CP,
with the exception that an attempt to load a VMID = 1 requires global privilege.

I1-2-38

60458890 A

\.W_,J"
-
-
s " \
N

R

~
9
‘i‘tv: =

C

User Mask/ Condition and Monitor Condition Fields

A trap interrupt (but not a call instruction) stores the UCR and MCR in words 5 and 6,
respectively (bits O through 15), in the SFSA. The CP clears the condition register bit(s)
causing the trap interrupt. The return instruction does not restore the condition registers
from the SFSA to the CP.

ASSIGNED REGISTERS DURING STACK OPERATION

Stack manipulating operations change registers A0 through A4 and TOS pointers from the
exchange package. For proper operation, the programmer must use registers AQ through A4 as
designated. .

Top-of-Stack Pointers

An exchange package contains 15 top—of-stack (TOS) fields which initially point to the next
available vacant word in each stack, as set by the operating system. In subsequent use, TOS
for the active stack points to the first word in the current stack frame. Hardware updates
TOS when any stack frame is pushed or popped. Hardware uses TOS only when stacks switch.

The TOS pointers remain in the exchange package stored in CM and are accessed from there by
hardware.

Dynamic Space Pointer (AO)

Register A0 has the role of dynamic space pointer (DSP), pointing to the first available
vacant byte number in the active stack. Hardware updates DSP when a stack frame is pushed
or popped. Software must update DSP when storing/removing process dynamic variables in the
stack.

Current Stack Frame Pointer (A1)

Register Al has the role of current stack frame pointer (CSF), pointing to the first word in
the current stack frame. CSF updates when a stack frame is pushed or popped. The process
must not reduce a stack frame below CSF, and must not change CSF.

Previous Save Area Pointer (A2)
Register A2 has the role of previous save area pointer (PSA), pointing to the first word of

the previous save area (not necessarily in the currently active stack). PSA updates when a
stack frame is pushed or popped. The process must not change PSA.

60458890 A I1-2-39

Binding Section Pointer (A3)

A binding section pointer (BSP) points to the first word in a list of indirect addresses
(called code base pointers, or CBP) for use by call indirect instructions or other
information determined by software conventions. During call indirect instructions to an
external procedure (which has its own binding section), register A3 always provides the BSP
of this external procedure. The call indirect instruction first uses the BSP in Aj to
access the CBP containing the target address. When this CBP has its external procedure flag
set, the word stored in CM immediately after this CBP loads into A3.

Argument Pointer (A4)

Register A4 has the role of argument pointer, used through software conventions. It copies
from Ak during call indirect instructions. The process may use A4 as permitted through
software conventions.

EXCEPTIONS DURING STACK OPERATIONS

When an exception causes a call instruction or trap interrupt to abort, the following may
precede the abort:

e Dynamic space pointer (A0) may be rounded up.

. Portions of the environment may be stored into the save area on top of the current
stack frame.

BUSINESS DATA PROCESSING PROGRAMMING

Business data processing (BDP) instructions operate on CM data fields which may be ! through
8, 19, 38, or 256 bytes in length. BDP instructions utilize two forms of data fields in

CM: 1) the source field, and 2) the destination field. The former modifies, replaces, or
compares to the latter. These fields are independently designated by BDP data descriptors,
described in the following paragraphs. The CP accommodates 9 types of packed and unpacked
binary-coded decimal (BCD) data, plus alphanumeric, binary—unsigned, and binary-signed data
types. In many cases the data types may be freely mixed as the hardware performs the
necessary type translations. The CP also manipulates alphanumeric data fields.

BDP DATA DESCRIPTORS

The source and destination field data is described by one or two data descriptors obtained
from the CM at locations immediately following a BDP instruction. The instructions using
the format jk have two descriptors. The instructions using the format jkQ have either one
or two descriptors.

As shown in figure II-2-7, each BDP data descriptor is a 32-bit half word describing the
source or destination field data type, number of bytes, and relative memory location.

II1-2-40 60458890 A

- - \‘.
\“\,, ra
~N
N
o

ole

00

01 34 78 1516 31
F| D T L (o]
Field .. Description
F (1 bit) Function of the L field. Length retrieval information, as follows:

F =0 Length is obtained from the L field.

F=1 Length of the descriptor associated with Aj is obtained from XOR
bits 55 through 63. Length of the descriptor associated with Ak
is obtained from X1R bits 55 through 63. Other bits in XOR and
X1R are not used.

D (3 bits) Reserved.
T (4 bits) Data type (refer to table 1I-2-5).
L (8 bits) Length (in bytes) of the source or destination field (refer to

table II-2-5). The maximum length is restricted according to the operand
data type. When the maximum length is exceeded, an instruction
specification error occurs, causing an interrupt or halt.

0 (16 bits) Offset. PVA of the leftmost byte of source or destination field
is obtained by adding the sign-extended O field to the BN field of the base
PVA in Aj or Ak, respectively.

Figure II-2-7. BDP Data Descriptor Format

BDP DATA TYPES

The 12 data types listed in table II-2-9 are described in this subsection, including the
permitted range of values for each data type with respect to digits (D), characters (C),
signs (S), and maximum length (L).

60458890 A I1-2-41

Table 1I-2-9.

BDP Operand Types and Field Lengths

T Data Type Maximum Length
(Bytes)
0 Packed decimal, no sign.
1 Packed decimal, no sign, leading slack digit. 19
2 Packed decimal, signed.
3 Packed decimal, signed, leading slack digit.
4 Unpacked decimal, unsigned.
5 Unpacked decimal, trailing sign combined Hollerith.
6 Unpacked decimal, trailing sign separate. 38
7 Unpacked decimal, leading sign combined Hollerith.
8 Unpacked decimal, leading sign separate.
9 Alphanumeric. 256
10 Binary, unsigned. 8
11 Binary, signed.
Data Type 0: Packed Decimal, Unsigned
A
7)
DD | DD | DD DD| DD| DD
D)
Byte 0 1 2 16 17 18
D: Hex O through 9.
L: 19 bytes maximum.
This format corresponds to an even number of digits in the decimal number.
Data Type 1: Packed Decimal, Unsigned Slack Digit
)
— 77
oD DD DD DD DD DD
)) :
Byte 0 1 2 16 | 17| 18
0: Hex O.
D: Hex O through 9.
L: 19 bytes maximum.
This format corresponds to an odd number of digits in the decimal number.
I11-2-42 60458890 A

-~
LN

Data Type 2: Packed Decimal, Signed

AR Y
77
DD DD DD DD DD DS
AN
17
Byte o |1 | 2 16| 17 | 18

D: Hex O through 9.

S: (Positive sign) hex A, B, C, E, or F (C preferred);
(Negative sign) hex D.

L: 19 bytes maximum.

This format corresponds to an odd number of digits in the decimal number.

-
c /’ Data Type 3: Packed Decimal, Signed, Slack Digit
))
0 DD | DD DD DD DS
)Y
Byte 0 1 2 16 17 18
0: Hex 0.

D: Hex O through 9.
S: (Positive sign) hex A, B, C, E, or F (C preferred);

™, (Negative sign) hex D.
/ L: 19 bytes maximum.

This format corresponds to an even number of digits in the decimal number.

Data Type 4: Unpacked Decimal, Unsigned

A"
)
D D D D D D D D

N

Byte 00| o1| 021 03 34 | 35| 36| 37

N 7
NV
Nt

D: ASCII characters O through 9 (represented by hex 30 through 39).
L: 38 bytes maximum.

0O
C

60458890 A : I11-2-43

Data Type 5: Unpacked Decimal, Trailing Sign Combined Hollerith

N
A

D D D D D D D c

N
N

Byte 00 [01 | 02 |03 34 | 35| 36| 37
In the following, the preferred characters and codes are underlined.

D: ASCII character 0 to 9 (represented by hex 30 through 39).
C: ASCII character decoded as follows:

ASCII 1 to 9 (hex 31 through 39) represents +1 through +9, or

ASCII A through I (hex 41 through 49) represents +1 through +9.

ASCII J through R (hex 4A through 4F and hex 50 through 52)
represents —1 through -9.

ASCITI {, [, O, 8 (hex 7B, 3C, 30, 26) represents +0.

ASCII }, 1, - (hex 7D, 21 2D) represents —0.

L: 38 bytes maximum.

Data Type 6: Unpacked Decimal, Trailing Sign Separate

N
A

D D D D D D D S

N
N~

Byte 0 1 2 33 |34 |35 |36 |37

ASCIT character O through 9 (hex 30 through 39).
ASCII character + (hex 2B), positive sign;
ASCII character - (hex 2D), negative sign.

38 bytes maximum.

w o

!

Data Type 7: Unpacked Decimal, Leading Sign Combined Hollerith

AR
77
C D D | D D D D D
))
Byte 0 1 2 3 34 35 36 37
D: Same as data type 5.

C: Same as data type 5.
L: 38 bytes maximum.

Data Type 8: Unpacked Decimal, Leading Sign Sepordte

N

hY
/7
S| D| D | D D| D| D| D
2> -
Byte of 1| 2] 3 34 135) 36| 37

S: Same as data type 6.
D: Same as data type 6.
L: 38 bytes maximum.

11-2-44

60458890 A

&

Ne

ole

Data Type 9: Alphanumeric

AR
7)
c c c c c C C C
))
Byte 0 1 2 3 252 }253 | 254|255

C: Any ASCII character code.
L: 256 bytes maximum.,

Data Type 10: Binary, Unsighed
L: 8 bytes maximum.

The L bytes of the type 10 data field contain the positive binary operand value.

‘Negatively-signed data moved to a type 10 destination field is considered positive.

Data Type 11: Binary, Signed
L: 8 bytes maximum.

The L bytes of the type 11 data field contain the signed binary operand value. Negative
values are represented in two”s complement form.

Slack Digit
With data types 1 and 3, the slack digit value as read from CM is ignored and treated as

zero., The slack digit value as written into CM is forced to zero and is not affected by any
arithmetic overflow or arithmetic loss-of-significance that may occur.

UNDEFINED RESULTS

Overlap

BDP instruction execution produces undefined results whenever the source and destination
fields overlap and the leftmost and rightmost byte positions do not coincide.

Invalid Data

As a rule, invalid BDP data causes undefined results to be stored in the destination field
in CM only when the corresponding mask bit is clear or traps are disabled. An exception:
the decimal—compare and numeric-move instructions always store undefined results in X1R when
invalid BDP data is detected.

60458890 A II-2-45

VECTOR PROGRAMMING

Vector operations are memory-to—memory operations; that is, the CP accesses one or two
source vector streams from CM, repeats an operation on successive elements, and returns the
results to CM in a destination vector stream. These operations occur without modifying the
CP operating registers. Refer to Vector Instruction Descriptions in section 1 of this
manual for detailed descriptions of the vector instructions.

Most vector instructions stream results at a one-clock—period rate. The source and
destination vectors may be consecutive streams of:

e TFloating-point operands (12-bit exponent plus sign bit, 48-bit coefficient plus sign

bit) .
e 64-bit integers. N
® 64-bit elements (shift/compare/logical data). N
Refer to table II-2-10 for the source- and destination-vector characteristics of each type
of vector operation.
// -
N&,f
N S

L‘!ﬁsgv [\\‘%: Erd

II-2-46 ’ 60458890 A

™,
"\
v ¥

ole

Table II-2-10.

Vector Operations

Vector Operation

Source Vector A

Source Vector B

Destination Vector

Integer Arithmetic

Integer Compare

Logical Arithmetic

Floating-Point
Arithmetic

Floating~Point
Summation

Shift Circular

Merge

Gather

Scatter

64~-bit integers

64-bit integers

64-bit elements

F.P. operands

64-bit elements

64—bit elements

Nonconsecutive
64—-bit elements

Consecutive
64~bit elements

64~bit integers

64-bit integers

64-bit elements

F.P. operands

F.P. operands

64-bit elements

64-bit elements

interval T+

intervalfT

64-bit integers
64-bit elements
64-bit elements

F.P. operands

F.P. operandf

"64-bit elements

64-bit elements

Consecutive
64~bit elements

Nonconsecutive
64-bit elements

t Stored in an X register; not sent to CM.
Tt Accessed from an X register.

VECTOR LENGTH (NUMBER OF

OPERATIONS)

The D-field rightmost 10 bits, when nonzero, specify the length or number of operations to

be performed (1 through 512).

equal zeros, as follow:

X1R specifies the length when the D-field rightmost 10 bits

e When XIR is positive and less than 512, this number provides the vector length.

e When XIR is positive and greater than 512, the vector length is 512.

An instruction specification error (MCR 51) occurs when XIR is negative or when the D-field

rightmost 10 bits are greater than 512, When the D-field rightmost 10 bits and all 32 bits

of X1R are zeros, no memory reference occurs but the instruction undergoes normal

address—exception detection.

60458890 A

I1-2-47

VECTOR PAGE SIZE

Vector operations require a page size of 4096 bytes (512 words) or larger. (A page size of
less than 4096 bytes inhibits the vector instruction and results in an environment
specification error, MCR 55.) Since a vector may be from 1 to 512 elements long and may
overlap page boundaries, it may occupy at most two partially-filled pages. Exceptions to
this are the gather and scatter instructions, which by nature may require up to 512 pages
per vector.

VECTOR BROADCAST

Vector broadcast is an.additional feature for use with all vector instructions except
Floating-Point Summation. Vector broadcast generates a source vector by repeating a single
64-bit element contained in the Xj register in place of V(Aj) if the leftmost D-field bit is
a one.

VECTOR INTERRUPTS

Vector instructions (other than gather and scatter) may not be interrupted after any results
in the destination vector stream have been stored in CM. Instruction execution completes
before a monitor mode routine can process the interrupt. A program interrupt occurring
before any results are stored inhibits the instruction. For the gather and scatter
instructions, interrupts may occur after results have been partially stored in CM.

Interrupting a vector instruction prevents the addressing section from making additional
memory requests, and purges all unused operands assembled for execution.

VECTOR OVERLAP

Source and destination vectors for the same instruction may overlap only when the
destination-vector starting address is less than or equal to the source-vector starting
address. All other cases of source- and destination-vector overlap within a single
instruction cause undefined results.

FLOATING-POINT PROGRAMMING

Floating-point (FP) arithmetic automatically maintains binary point placement during
computations involving large numeric values or values within a widely varying range. This
occurs by separating a number”s significant digits from the number size to express the
number as a fraction multiplied by a power of 2. Thus, each FP number contains two values
as follows: ’

e Coefficient (fraction) represents the number”s significant digits. The binary point
of the coefficient is always directly left of its most significant bit.

e Exponent (characteristic) is a power of 2 by which the coefficient must be multiplied
to obtain the whole FP number value.

I1-2-48 : 60458890 A

AE%\ ;ﬁgg

- >
‘\\;‘)

,/ ' ™
“_

S

H

)r

o le

FLOATING-POINT DATA FORMATS

FP data exists in 64— and 128-bit fixed-length formats (single precision and double
precision), as shown in figure II-2-8.

01

1516 63

S| BIASED EXPONENT COEFFICIENT (leftmost 48 bits)

Format of single precision FP number and of the leftmost part of double precision FP

number
64 65 79 80 127
S| BIASED EXPONENT COEFFICIENT (rightmost 48 bits)

Format of rightmost part of double precision FP number

Bits Description
0,64 Coefficient sign
0 Coefficient positive.
1 Coefficient negative.
Double-precision FP sign bit 64 is set equal to bit 0 in results.
16-63 Coefficient magnitude (leftmost 48 bits).
80-127 Coefficient magnitude (rightmost 48 bits).
The coefficient without the sign bit is an unsigned, exclusively positive
fraction with the binary point directly left of bit 16. Double-precision
FP number bits 64 through 79 are set equal to bits O through 15 in results.
1 Exponent sign, biased.
4-15, Exponent value, two”s complement.
65-79 .
The exponent is a biased-signed two”s complement integer. A bias of
16,384 (400014) adds to the exponent to allow encoding of exponent
values from -4096 to +4095 inclusive (within the 15 exponent bits) as
shown in table II-2-11. '
1-3 Coded to indicate the following FP numbers
00X FP zero.
0X0 FP zero.
011 Standard FP number.
100 Standard FP number.
101 FP infinity.
110 FP infinity.
111 FP indefinite.
Figure II-2-8. Floating-Point Data Formats
60458890 A 11-2-49

I1-2-50

Table II-2-11.

Floating-Point Representation

Exponent
With
Coefficient Actual Term Used for
Sign Exponent Input Numbers in
Hexadecimal (Binary) Arguments This Range
Positive Numbers (Coefficient sign = 0)
7XXX - Indefinite +IND
6FFF 12278
T Infinite +®
5000 4096
4FFF 4095
T 1 +N
4000 0 Standard
3FFF -1
T T +Z3
3000 -4096
2FFF -4097
T T Zero +Z2
1000 -12288
0XXX —-—- Zero +Z1
Negative Numbers (Coefficient sign = 1)
8XXX Zero -Z1
9000 ~12288
l ‘ Zero -Z2
AFFF -4096
8000 ~-4096
l l "-Z3
8FFF -1 Standard
€000 0
! ! -N
CFFF 4095
D000 4096
l l Infinite -
EFFF . 12287
FXXX | —-— Indefinite ~IND

60458890 A

-~
e

I

o
"

C

o

O
C

STANDARD AND NONSTANDARD FP NUMBERS
Nonstandard FP numbers -are FP numbers outside the capacity of standard FP numbers. Special
exponent field codes identify the three nonstandard FP numbers: zero (_-!-_Zl,iZZ), infinity

(+0), and indefinite (+INDEF). Table II-2-11 lists hexadecimal exponent codes for
nonstandard and standard FP numbers.

Floating-Point Zero

Nonstandard FP operands with bits 01 and 02, or Ol and 03 clear, are treated as if
consisting of all zeros. .

The nonstandard zero FP numbers are represented as +Zl or +Z2 as shown in table II-2-11.
The specific number in the +Z1 range which consists of all (64) zeros is termed +0. Thus,
wherever +Z1 is indicated, the +0 is also included since it is a member of +Z1.

The standard zero FP numbers are represented as +Z3 as shown in table II-2-11.

Floating-Point Nonzero

Standard FP operémds which have nonzero coefficients are represented as +N in table II-2-11.

Floating-Point Infinite

Nonstandard FP operands with bit 0l set, and bit 02 not equal to bit 03, are treated as
infinite values.

The nonstandard FP numbers in the Infinite range are represented as +(as shown in table

II-2-11. The specific number in the +@0 range consists of 5000---000. The specific number
in the —-@ range consists of D000---000. :

60458890 A 11-2-51

Floating-Point Indefinite
Nonstandard FP numbers with bits 01, 02, and 03 set are treated as indefinite values.
The nonstandard FP numbérs in the Indefinite range are represented as +IND as shown in table

I1-2~11. The specific number in the +IND range consists of 7000---000. The specific number
in the -IND range consists of F000---000.

Double-Precision Nonstandard FP Numbers

When nonstandard results are generated, the rightmost part of a double-precision FP result
is made identical to the leftmost part.

SN
‘\th.—_.;w““/l

EXPONENT ARITHMETIC

When the operand exponent fields are added (as in FP multiplication) or subtracted (as in FP

division), the exponent arithmetic performs algebraically in two”s complement mode. Such

operations take place as if the bias were removed.

Exponent underflow and overflow conditions are detected for all single-precision results,

but only for the leftmost part of double-precision results.
Ve ™~
N

NORMALIZATION

Normalized operands ensure the highest possible precision in the result. An FP number is

normalized when the coefficient bit 16 is a 1.

Normalization takes place when intermediate results become final results. It occurs by

left-shifting the 48-bit fraction until bit 16 is a 1, and by .reducing the exponent value by

the number of positions shifted. Numbers with zero fractions cannot be normalized and

remain equal to zero.

When normalizing a double-precision FP number, the entire 96-bit fraction left-shifts until)
“w,

bit 16 is a 1, with a corresponding exponent value reduction.

If the coefficient of an intermediate result overflows, the fraction right-shifts 1 bit
position and the exponent increases by 1. If the input operands for the FP multiply (32 and
36) and the FP divide (33 and 37) instructions are unnormalized, the result may be
unnormalized.

FLOATING-POINT SUM AND DIFFERENCE

When two FP operands with unequal exponents are added or subtracted, the hardware aligns
copies of these operands before the addition or subtraction performs, as follows: the
fraction with the smaller expoment is right-shifted, end-off, by the number of bit positiomns
equal to the difference between the exponents. The maximum shift is 48 positions (single-
precision) or 96 positions (double-precision). After copies of the fractions have been
aligned in this manner, they are added or subtracted. The result generated is 48 bits

(single-precision) or 96 bits (double~precision). £
11-2-52 : 60458890 A S

When summing coefficients with like signs or subtracting coefficients with unlike signs, the
result may overflow/underflow by 1l bit; this bit is saved. In such case, the 48- or 96-bit
intermediate result fraction shifts right 1 position, end-off. The overflown bit inserts
into the high-order position. The result”s exponent increases by 1 to adjust for the right
shift of the coefficient. The adjusted exponent and the 48-bit or 96-bit fraction and its
sign bit are the final result.

FLOATING-POINT MULTIPLY

The signed exponents for the two input operands to be multiplied are algebraically added,
with the result used as an intermediate exponent.

The multiplied fractions generate an intermediate product with 96 bits (single—precision) or
192 bits (double—-precision). The correct sign bit is algebraically determined. If the
high-order bit in the product is a 1, the product is already normalized and remains
unchanged. If the high—order bit in the product is a zero, the entire 96- or 192-bit
product left-shifts 1 bit position and the intermediate expoment decreases by l. This
one-position shift normalizes the product if the original input operands were normalized.
The high-order 48 or 96 bits of the product or shifted product become an intermediate

_coefficient. If the final intermediate exponent indicates a standard FP number, the

intermediate exponent and the intermediate coefficient with its sign bit are the final
result.

FLOATING-POINT DIVIDE

During execution of an FP divide instruction, the divisor (Xj or XXj) exponent is subtracted
from the dividend (Xk or XXk) exponent, and the signed result provides an intermediate.
exponent.

The dividend (Xk or XXk) fraction is divided by the divisor (Xj or XXj) fraction. The
result”s sign is determined algebraically from the operand signs. .

If the fraction in Xj or XXj is initially unnormalized and can be divided into the fraction
in Xk or XXk by a factor equal to or exceeding 2, a divide fault occurs, setting UCR bit 55,
with an interrupt (when enabled).

If no error occurs, the intermediate quotient generated is 48 or 96 bits. - When the divisor
can be divided into the dividend by a factor equal to or exceeding 1, but less than 2, an
overflow bit also generates. 1I1f the overflow bit is a zero, the sign bit and the 48- or
96-bit fraction require no further adjustment. When the overflow bit is a 1, the 48— or
96—bit fraction right-shifts 1 position, end-off, and the overflow bit inserts into the
high-order bit position. In such a case, the exponent increases by 1 to compensate for the
shift.

The intermediate exponent and the intermediate fraction (with its sign) then transfer as the
final result to the Xk register.

60458890 A I1-2-53

FLOATING-POINT END CASES

Tables 1I-2-12 through II-2-20 list FP end cases. The nomenclature used is as follows:

N

Z1

zZ2 .

Z3

INF

INDEF

+IND

INDC

DVF
ovL
UNL
LOS

IND

II-2-54

Standard FP number: (3000);4 < exponent < (5000);¢ nonzero, coefficient
normalized or unnormalized. .

Zero: sign bit followed by 63 zero bits.
Zero: FP numbers with exponents in the range 000034 £ exponent < 100014.

Underflow, zero: FP numbers with exponents in the range 1000;4 < exponent <

3000; 6.

Zero: An unnormalized FP number with a zero coefficient and a standard
exponent. That is, 3000;4 < exponent < 5000¢.

FP numbers with exponents in the range 5000;4 £ exponent < 70001¢.
Infinite: The nonstandard FP number sign, 5000 0000 0000 0000;¢.

FP numbers with exponents in the range 7000;¢ £ exponent £ 7FFFig.
Indefinite: The nonstandard FP number 7000 0000 0000 0000;4.

A result of indefinite generated by the FP compare instruction. That is, a
value for X1R = 8000 0000;4. P

Algebraic sum of two FP numbers (e#cluding zZ3).
Algebraic difference of two FP numbers (excluding Z3).
Algebraic product of two FP numbers (excluding Z3).
Algebraic quotient of two FP numbers (excluding Z3).
Divide fault condition.

Exponent overflow, FP,

Exponent underflow, FP.

Loss of significance, FP.

Indefinite, FP.

60458890 A @v;

00

Table II-2-12.

FP Compare Results

Standard Numbers Nonstandard Numbers
Xj +N -N +Z3 -23 +Z1 +INF -INF +INDEF
Xk +Z2
+D, +22< +D, +Z2<
+N | -D, -Z2> < +Z3 = < < > <
+23 =
+D, +22< -D, -Z2>
-N > -D, -22> > +23 = > > <
+Z3 =
-D, =-Z22> Note 1
+Z3 +Z3 = < +Z3 = < < > <
+D, +22<
-3 > +Z3 = > +Z3 = > > <
+Z1 > < > < = > <
+22
+INF < < < < < Note 1 <
-INF > > > > > > Note 1
+INDEF Note 1
Note: 1. FP branch instructions perform normal exit and record FP
indefinite (UCR 61). FP compare instructions set X1 to INDC
and record FP indefinite (UCR 61), except when UMR 61 is set
traps are enabled, in which case X1 is unaltered.
60458890 A 11-2-55

Table 1I-2-13. FP Sum Results, UM Clear

Standard Numbers

Nonstandard Numbers

Xj +N -N +23 -z3 +21 +INF ~INF +INDEF
Xk +22
+S +S +$ +S ,
+0 OVL | ¥0O UNL | +0 UNL | +0 UNL +N +@ OVL | +¢0 OVL |[+IND IND
+N |+0 UNL | +0 LOS | +0 LOS | +0 LOS | +0 UNL
-5 -s -s
-N - OVL | +0 UNL | +0 UNL -N +00 OVL | +e0 OVL |+IND IND
+0 UNL | +0 LOS | +0 LOS | +0 UNL
+23 +0 LOS | +0 LOS | +0 LOS |+@ OVL | +co OVL |+IND IND
-23 +0 LOS | +0 LOS |+ OVL | +a OVL |+IND IND
+z1
+0 LOS | +0 LOS +0 +0 OVL | +0 OVL |+IND IND
+22
+INF +@ OVL | +IND IND |+IND IND
+INF +0 OVL |+IND IND
+INDEF +IND IND
I1-2-56 60458890 A

C
b W

C
O

Table 1I-2~-14.

FP Sum Results, UM Set

Standard Numbers

Nonstandard Numbers

Xj +N -N +Z3 -Z3 +Z1 +INF —-INF +INDEF
Xk +72
+S +8 +S +S
+a@ OVL | +22 UNL +Z2 UNL +Z2 UNL +N +a OVL - OVL +IND IND
+N +Z2 UNL +Z3 LOS +Z3 LOS +Z3 LOS +Z2 UNL
-S -S -S
-N -0 OVL -Z2 UNL -Z2 UNL ~-N +@ OVL - OVL +IND IND
+Z2 UNL |+Z3 LOS | +Z3 LOS | -Z2 UNL |+@ OVL [+ OVL
+Z3 +Z3 LOS +7Z3 LOS +Z3 LOS +0 OVL +0 OVL +IND IND
-Z3 +Z3 LOS +Z3 LOS +00 OVL +0 OVL +IND IND
+Z1
+Z3 LOS +23 LOS +0 +0 OVL +00 OVL +IND IND
+22
+INF +0 OVL +IND IND (+IND IND
+INF - OVL [+IND IND
+INDEF +IND IND
Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk.
60458890 A 11-2-57

Table 11I-2-15. FP Difference Results, UM Clear

C O

Standard Numbers Nonstandard Numbers
Xj +N -N +Z3 -Z3 +Z 1 +INF -~INF +INDEF
Xk 172
-D +D +D +D
+N +0 UNL +0 OVL +0 UNL +0 UNL +N -0 OVL +00 OVL +IND IND
+0 LOS +0 UNL +0 LOS +0 LOS +0 UNL
-D +D -D -D
-N -0 OVL +0 UNL +0 UNL +0 UNL -N - OVL +0 OVL +IND IND
+0 UNL +0 LOS +0 LOS +0 LOS +0 UNL
-D) +D
+73 +0 UNL +0 UNL +0 LOS +0 LOS +0 LOS +0 OVL +@ OVL +IND IND
+0 LOS +0 LOS
-D +D
-Z3 +0 UNL +0 UNL +0 LOS +0 LOS +0 LOS +@ OVL +00 OVL +IND IND
+0 LOS +0 LOS
iZl -N +N +0 LOS +0 LOS +0 +0 OVL +@ OVL +IND IND
+0 TUNL +0 UNL
+2.2
+INF +@® OVL +0 OVL +0 OVL +0 OVL +Q@ OVL +IND IND | +00 OVL +IND IND
-INF - OVL - OVL - Q0 OVL - OVL - OVL -0 OVL +IND IND | +IND IND
j-_INDEF +IND IND | +IND IND | +IND IND |+IND IND {+IND IND |-+IND IND | +IND IND '+IND IND
{
I11-2-58 60458890 A

ol

Table II-2-16.

FP Difference Results, UM Set

Standard Numbers

Nonstandard Numbers

Xj +N -N +Z3 =23 +Z1 +INF —INF +INDEF
Xk 422
+D +D +D +D
+N | +Z2 UNL |+@ OVL +Z2 UNL |+Z2 UNL +N -0 OVL |[+@ OVL [+IND IND
+Z3 LOS +Z2 UNL +Z3 LOS +Z3 LOS +Z2 UNL
-D +D -D -D
~N |- OVL |+Z2 UNL {-Z2 UNL -Z2 UNL -N - OVL |+ OVL [+IND IND
-Z2 UNL +Z3 LOS +Z3 LOS +Z3 LOS -Z2 UNL :
-D +D
+23 -Z2 UNL +Z2 UNL +Z3 LOS +23 LOS +Z3 LOS + o OVL +0 OVL +IND IND
+Z3 LOS +Z3 LOS
-D +D
-Z3 | +Z2 UNL |+z3 UNL ([+Z3 LOS |+Z3 LOS +Z3 LOS |[+00 OVL |+C0 OVL [+IND IND
+Z3 LOS +Z3 LOS ‘
+Z1 | =N +N
-Z2 UNL +Z2 UNL +Z3 LOS +Z3 LOS +0 + 0 OVL + 0 OVL +IND IND
+Z2
+INF +00 OVL +@ OVL +@ OVL +o OVL +@ OVL +IND IND {+00 OVL +IND IND
-INF |- OVL |-00 OVL |- OVL |-0 OVL - OVL |-0o OVL [+IND IND [+IND IND
+INDEF +IND IND | +IND IND |+IND IND |+IND IND | +IND IND |+IND IND |+IND IND [+IND IND '
Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk
60458890 A I1-2-59

Table II-2-17.

FP Product Resdlts, UM Clear

Standard Numbers Nonstandard Numbers
Xj +N -N +Z3 -Z3 iZ 1 +INF -INF iINDEF
Xk +Z2
+P -P +0 OVL +00 OVL
+a OVL - OVL +0 UNL +0 UNL +0 - OVL +00 OVL +IND IND
+N +0 UNL +0 UNL +Z3 +Z3
| +Z3 +Z3
+P -0 OVL +o0 OVL .
+00 OVL +0 UNL +0 UNL +0 -0 OVL +o OVL +IND IND
-N +0 UNL +Z3 +Z3
+Z3
+0 OVL - OVL
+Z3 +0 UNL +0 UNL +0 +Qo0 OVL +q OVL +IND IND
+Z3 +Z3
+00 OVL
~-Z3 +0 UNL +0 - OVL +@ OVL +IND IND
+Z3
+Z1
: +0 +0 +0 ~|+IND IND | +IND IND |[+IND IND
+22 :
+INF +c OVL - O0OVL +IND IND
-INF +00 OVL +IND IND
+INDEF +IND IND
11-2-60 60458890 A

;
L

Table II-2-18. FP Product Results, UM Set
Standard Numbers Nonstandard Numbers
Xj +N -N +7Z3 ~Z3 izl +INF -INF i}NDEF
Xk +22
+P -P +P OVL -P OVL
+on OVL - OVL +Z2 UNL +Z2 UNL +0 -0 OVL +xm OVL +IND IND
+N +Z2 UNL +Z2 UNL +Z3 +Z3
+Z3 +Z3
+P -P OVL +P OVL
+0 OVL -Z2 UNL +Z2 UNL +0 -0 OVL +00 OVL +IND IND
-N +Z2 UNL +Z3 +Z3
+Z3
+P OVL -P OVL
+23 +Z2 UNL -Z2 UNL +0 +0@ OVL - OVL +IND IND
+Z3 +Z3
+P OVL
-Z3 +Z2 UNL +0 - OVL +o OVL +IND IND
+Z3
+Z1 :
+0 +0 +0 +IND IND| +IND IND | +IND IND
+72
+INF +0 OVL - OVL +IND IND
-INF +0 OVL | +IND IND
+INDEF +IND IND

Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk.

o0

60458890 A 11-2-61

Table I1I-2-19.

FP Quotient Results, UM Clear

Standard Numbers

Nonstandard Numbers

Xj +N -N +Z3 -Z3 +Z1 +INF -INF +INDEF
Xk +22
+Q -Q
+@ OVL - OVL
+N +0 OVL +0 OVL Xk DVF |Xk DVF [Xk DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF
-Q +Q -P OVL |+P OVL
+ @0 OVL +o OVL
-N +0 UNL +0 UNL Xk DVF (Xk DVF |Xk DVF +0 +0 +IND IND
+Z3 +23
Xk DVF Xk DVF
+a OVL +a0 OVL :
+Z3 +0 UNL +0 UNL Xk DVF |[Xk DVF |Xk DVF +0 +0 +IND IND
+z3 +Z3
+00 OVL +@ OVL
-Z3 +0 UNL +0 UNL Xk DVF [Xk DVF |[Xk DVF +0 +0 +IND IND
+Z3 +Z3
+z1 :
+0 +0 +0 +0 Xk DVF +0 +0 +IND IND
+72
+INF +00 OVL +00 OVL +0 OVF |-@ OVF |[Xk DVF | +IND IND [+IND IND | +IND IND
-INF +00 OVL +Q@0 OVL ~@ OVF |+00 OVF |[Xk DVF | +IND IND |+IND IND | +IND IND
+INDEF +IND IND |+IND IND | IND IND |IND IND |Xk DVF +IND IND |+IND IND | +IND IND
I11-2-62 60458890 A

SN

~
e

.
A

O

.,

Table II-2-20.

FP Quotient Results, UM Set

Standard Numbers

Nonstandard Numbers

Xj +N -N +Z3 -3 +z1 +INF -INF +INDEF
Xk +22
+0 + =0
+® OVL | -a OVL
+N +Z2 UNL -Z2 UNL Xk DVF Xk * DVF Xk DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF Xk DVF
-0 +0 +
- OVL | +@ OVL
-N +Z2 UNL +Z2 UNL Xk DVF Xk DVF Xk DVF +0 +0 +IND IND
+Z3 +Z3
Xk DVF | Xk DVF
+Q OVL | -Q OVL
+Z3 +Z2 UNL +Z2 UNL Xk DVF Xk DVF Xk - DVF +0 +0 +IND IND
+Z3 +Z3
-Q OVL |+Q OVL
-Z3 -Z2 UNL | +Z2 UNL | Xk DVF | Xk DVF |Xk DVF +0 +0 +IND IND
+Z3 +23
+7Z1
+0 +0 +0 +0 Xk DVF +0 +0 +IND IND
+Z2
+INF +0 OVL - OVL + OVF - OVF +m OVF +IND IND | +IND IND {+IND IND
-INF - OVL +00- OVL -0 OVF +0 OVF - OVF +IND IND | +IND IND |+IND IND
+INDEF +IND IND| +IND IND| +IND IND | +IND IND | +IND IND | +IND IND | +IND IND |+IND IND
Note: This chart is for traps disabled. For traps enabled, replace +IND with Xk.
60458890 A

I11-2-63

,‘\&Mw

O

PROGRAM MONITORING
The CP provides a debug feature to aid the debugging of new Virtual State programs.
The debug feature causes a debug trap interrupt (when emabled), when a CM access of a given

type into a given PVA range occurs. The user can specify up to 32 access ranges and 5
access types for simultaneous debugging.

DEBUG

When enabled, the debug feature tests all executive state memory accesses by scanning a list
of up to 32 entries of selected access type and PVA range combinations. When a match is
found, UCR bit 56 sets and, if enabled, a trap interrupt occurs.

; N
A debug address range may span an e;tire process virtﬁal segment or any contiguous byte ;K J;
field within the segment. Any or all of the following access types can be selected: -
) Data read.
. Data write.
e Instruction fetch (excluding target instruction fetch).
e Branch or return target instruction fetch (excluding call target instruction fetch).
e Call target instruction fetch. . ;
Debug is enabled by setting UMR bit 56 and the trap emable flip-flop. Debug is controlled
by the following:
e Debug list - lists access types and PVA ranges.
e Debug list pointer register — PVA of first emntry in debug list.
® Debug mask register - enables/disables any or ail access types.
° Debug index registers - record number of debug list entries scanned during debug of
a single instruction. N

Debug List

The debug list has up to 32 double-word entries (refer to figure I1-2-9), each one aligned
at a word boundary. The end of list (debug code bit 5) is interpreted after all other bits
in the same debug code have been interpreted and acted upon. Any or all access types can be
selected for debug by the debug code. Access types are defined by the type of access
privilege required (read, write, or execute).

—

b }
% ;3’/ e

11-2-64 : © 60458890 A %

ole

Debug List Pointer Register

This register is a process register containing a PVA that points to the first debug list
entry.

Debug Index Register

This register is a process register which increments as the debug scan proceeds. It
contains a 6-bit word index that is added to the debug list pointer register contents. This
generates the debug list entry addresses during a debug scan initiated by each instruction
accessing virtual memory. The debug index register format is as follows:

58 63

6-BIT WORD INDEX

60458890 A II-2-65

Debug Mask Register

This register (figure 1I-2-10) is a process register which activates the access types

selected in the debug code field of a debug list entry.
debug code is activated for debugging only if the corresponding debug mask bit is also set,

as shown in figure II-2-10.

Each access type selected in the

1920 3132 63
N

3132 63

Field

BN

SEG

DC

DC Bit

Description

Byte numbers of the first and last bytes in the contiguous byte field in

memory to which the debug code applies.
Process segment number to which the debug code applies.

Debug code (listed below).

Operations Triggering Scan

Data read. Activates debug scan on all CM read accesses.
Data write. Activates debug scan on all CM write accesses.

Instruction fetch. Activates debug scan on all CM execute accesses,
after instruction fetch.

Branch or return target instruction fetch, if branch occurs. PVA
bracket applies to the PVA branched to. Call (B5/B0O) target addresses
are excluded. Branch address generated during compare and swap
instruction (B4) is excluded. -

Call (B5/B0) target instruction fetch. Address bracket applies to
address of the called procedure. For the call indirect (B5)
instruction, this is the code base pointer address; for the call
relative (BO) instruction, this is the address in the P register plus
displacement.

End of list. Denotes the last debug list entry.

I1-2-66

Figure II-2-9. Debug List Entry

160458890 A

2N
./
L

Call target instruction fetch

Branch/return target instruction fetch

Instruction fetch

Data write

Data read

FLAGS

Debug scan in progress

End of list seen 1

DEBUG MASK — 09 10 11 12 13 14 15
(Word 36 in exchange package)

DEBUG CODE 0 1 2 3 4 5
(in debug list entry)

i DEBUG SCAN ENABLES

S~

Data read

Data write

Instruction fetch

Branch/return target instruction fetch

Call target instruction fetch

C o o
End of list flag

Figure II-2-10. Debug Condition Select

60458890 A I1-2-67

Enabling Debug

The debug operation may be enabled by any of the following:
e Exchange to a Virtual State process where traps are enabled and UMR 56 is set.

e Return (04) to a Virtual State process where the return operation enables traps and
UMR 56 is set in the user mask register being loaded.

. Set UMR 56 by way of Copy-To-State—Register instruction when traps are enabled:. The

debug flags and index must be zero prior to execution of the Copy-To-State—Register
instruction or an undefined initial debug scan follows the instruction.

e Enable traps by way of Copy-To-State—Register instruction when UMR 56 is set. The
debug flags and index must be zero prior to execution of the Copy-To-State—Register

instruction or an undefined initial debug scan follows the Copy-To—State—-Register
instruction.

Debug Scan Operation

Debug conditions apply to specific instructions as described in table II-2-21, BN(low) and
BN(high) are matched against the address of the leftmost byte of a piece of information
only, whether it is a word, half word, byte string, or 16-bit instruction. The match is as
follows:

BN(low) £ Address < BN(high)
If BN(low) exceeds BN(high) in any debug list entry, the scan proceeds to the next
double-word entry. If either BN(low) or BN(high) bit 32 is set, the comparison results are

undefined.

The CP starts the debug list scan (after instruction fetch but before instruction execution)
if all of the following conditions exist:

e Traps are enabled.

e Debug mask bit in user mask register is set (UMR 56).

e One or more bits in debug mask register are applicable to the type of access. Refer
to table II-2-19.

e End-of-list flag in debug mask register is clear.
When the debug scan initiates, the debug scan-in-progress flag is clear and the debug index
register is zero. The debug scan locates a debug list entry by adding the debug list
pointer and debug list index registers. The debug scan proceeds (not necessarily in the
exact order given) as follows:

1. Set debug scan-in-process flag in debug mask register.

2, Read first half of debug list entry. If end-of-list code, set end-of-list-seen flag
in debug mask register. i

3. Add one to debug index register and read second half of debug list entry.

11-2-68 : ‘ 60458890 A

ﬂéﬁi
&

£
e

-

p=N
N

£

00

. 4. Set UCR 56 (triggering a trap interrupt) if a debug list match is found as follows:
® Accessed PVA is within address bracket of debug list entry.

° One or more debug code bits of debug list entry match the type of access, with
the correspondlng bit set in the debug mask register.

5. 1If step 4 triggered a debug interrupt, proceed to step 8.
6. If end-of-list flag is set, or 32 entries have been read, proceed to step 8.

7. Add one to debug index register and repeat from step 2.

8. Clear debug index register, debug scan-in-process flag, and end—of list-seen flag to

-complete the debug scan.
9. Execute the instruction triggering the scan.

Debug list scanning prior to instruction execution includes all instruction results except
the following (which may occur before the debug scan completes):

l. Setting the page-used bit, either explicitly as in test and set page instruction
(16), or implicitly as with any instruction.

2. Setting of condition register bits.

3. Rounding of A0 on call instructions.

4., Storing the environment into SFSA on .call instructions (a debug trap also stores the

environment into SFSA).

The exception testing and debug scan are not constrained to occur in any given sequence
relative to each other. Two or more matches within the same entry produce only one trap.
The traps due to execution testing may occur concurrently with a debug trap (several bits
set in MCR and/or UCR) or separately, either before or after the debug scan.

Interrupts During Debug Scan

The debug index and flags provide the means for properly initiating, resuming, and
terminating debug scan operations, particularly when an instruction”s execution has been
inhibited by one or more interrupts. These interrupts may either be trap or exchange
interrupts. :

Exchange interrupts cause the flags and debug index register to be stored in the exchange
package, for example, to allow resumption of a partially completed debug entry list scan.

On trap interrupts, the processor retains the flags and index register to allow proper
completion of the debug scan upon return from the trap interrupt.

When enabling traps during the processing of a debug trap interrupt, software must not
reenable debug to prevent loss of integrity of the interrupted debug scan.

60458890 A I1-2-69

Debug-Software Interaction, Debug Enabled

The following items describe interactions with the debug facility that are available with
debug enabled:

Debug mask bits 11 through 15 of debug mask register may be set or cleared by way of
a Copy-To-State-Register instruction; the new bits will be in effect for the debug
scan on the instruction following the copy instruction.

Any copy to the debug flags or index must clear both flags and the index or the
following debug scan is undefined.

UMR 56 may be cleared or .traps disabled by way of a Copy—To-State—Register

instruction with no scan performed on the instruction following the copy instruction.

A return instruction disables debug by loading a user mask register with bit 56
clear, or by entering CYBER 170 State. In such a case, no scan is performed on the
next instruction.

Debug-Software Interaction, Debug Disabled

When debug is disabled after a debug match (after which an exchange or trap interrupt
occurs), the scan—-in-progress flag sets and, if applicable, the end-of-list flag sets. In
this case, the following software action may be taken through a Copy-To—-State—Register
instruction after a trap interrupt, or through altering the exchange package in CM after an
exchange interrupt:

Any of the debug mask register bits 11 through 15 may be set or cleared. The new
mask bits affect the first debug scan when debug is reenabled for this process.

Debug flags and index may be cleared to reinitiate the debug scan from the beginning
when debug is reenabled. ‘

Debug index may be modified by multiples of 2 as the final value is greater than or
equal to 1 and less than or equal to 61.

End-of-list—seen flag may be set to terminate the current debug scan when debug is
reenabled. The scan-in—progress flag may (but need not) be altered when setting
this flag.

The end-of-list-seen flag may be cleared and the scan-in-progress flag set to
continue a scan that terminated. The debug index may also be modified by multiples
of 2 as long as the final value is greater than or equal to 1 and less than or equal
to 61.

When a debug match is absent, the debug may also be disabled by any of the following:

I1-2-70

Trap interrupt.

Exchange interrupt.

Copy-To—State—Register instruction which clears UMR 56 or disables traps.
Call to CYBER 170 State.

Return which clears UMR 56,

Return to CYBER 170 State.

60458890 A

00

When a debug match is absent, and the debug is disabled by any of the six methods described
in the preceding paragraph, only the following software actions may be taken:

® Any of the debug mask register bits 11 through 15 may be set or cleared. The new
mask bits affect the first debug scan when debug is enabled for this process.

e The debug flags and index may be cleared to reinitiate the full debug scan when
debug is enabled.

60458890 A . I11-2-71

Table II-2-21. Debug Conditions (Sheet 1 of 5)

Opcode Mnemonic Instruction Debug Condition
Bit 0: Data Read

DO-D8 _ LBYTS, S Load bytes, immediate LO £ Aj+Xi+D <

A2 LXI Load word, indexed LO £ Aj+8*Xi+8*D <

82 LX Load word L0 £ Aj+8*Q <
A4 LBYT,X0 Load bytes LO £ Aj+Xi+D £ HI
88 LBIT Load bit Lo £ Aj+Q+X0/8 £ HI
AO LAI Load address, indexed LO £ Aj+Xi+D £ HI
84 LA Load address Lo £ Aj+Q < HI
80 LMULT Load multiple LO £ Aj+8*Q L HI1
70 ADDN,Aj,X0 Decimal sum Lo £ Aj+01 S HI

Lo £ Ak+02 <

71 SUBN,Aj,X0 Decimal difference LO £ Aj+01 <

Lo £ Ak+02 <

72 MULN,Aj,X0 Decimal product. LO < Aj+01 <
LO £ Ak+02 < HI

73 DIVN,Aj,X0 Decimal quotient Lo £ Aj+01 <

Lo £ Ak+02 <

E4 SCIN,Aj,X0 Decimal scale Lo £ Aj+ol <

E5 SCLR,Aj,X0 Decimal scale, rounded | LO £ Aj+01 <

74 CMPN,Aj,X0 Decimal compare Lo £ Aj+0l <

L0 £ Ak+02 <

77 CMPB,Aj,X0 Byte compare Lo £ Aj+01 <

, L0 £ Ak+02 <
E9 CMPC,Aj,X0 Byte compare, collated Lo £ Aj+01 LHI

LO < Ak+02 <

Lo £ Ai+D £

F3 SCNB, X0 Byte scan while Ak+01

nonmember

INIA

I1-2-72

60458890 A

J—

R
e

L}

OO

Table II-2-21.

Debug Conditions (Sheet 2 of 5)

Opcode Mnemonic Instruction Debug Condition
Bit 0: Data Read Continued

E8 TRANB,Aj, X0 Byte translate Lo £ Aj+o0l L HI

Lo £ Ai+D < "I

76 MOVB,Aj,X0 Move bytes Lo £ Aj+0l L HI

ED EDIT,Aj,X0 Edit L0 £ Aj+01 < HI

L0 £ Ai+D < HI

75 MOVN,Aj,X0 Numeric move Lo £ Aj+0l- L HI

F4 CALDF,Aj,X0 Calculate subscript Lo £ Aj+ol < HI

and add LO £ Ai+D < HI

B5 CALLSEG Call indirect L0 £ Aj+8*Q L1

04 RETURN Return Lo £ A2 < HI

06 POP Pop 10 £ A2 <HI

14 LBSET Test and set bit L0 < Aj+X0/8 < HI

B4 CMPXA Compare swap L0 £ Aj < HI

FA CMPI,Xi,D Compare immediate data L0 £ Ak+01 L1
FB ADDI,Xi,D Add immediate data L0 £ Ak+01

Bit 1: Data Write

D8~DF SBYTS, S Store bytes, immediate Lb £ AJ+Xi+D < HI

A3 SXI Store word, indexed L0 £ Aj+8*Xi+8%D < HI

83 SX Store word Lo £ Aj-;-8*Q L HI

A5 SBYT,XO Store bytes LO £ Aj+Xi+D L HI

89 SBIT Store bit Lo £ Aj+Q+X0/8 L HI

Al SAI Store address, indexed | LO £ Aj+Xi+D < HI

85 SA Store address L0 £ Aj+Q < H1

81 SMULT Store multiple Lo £ Aj+8*Q L HI

70 ADDN,Aj,X0 Decimal sum Lo £ Ak+02 L HI

60458890 A II-2-73

Table II-2-21. Debug Conditions (Sheet 3 of 5)

Opcode Mnemonic Instruction -Debug Condition
Bit 1: Data Write Continued
71 SUBN,Aj,X0 Decimal difference L0 < Ak+02 < HI
72 MULN,Aj,XO0 Decimal product 10 £ Ak+02 < HI
73 DIVN,Aj,X0 Decimal quotient L0 £ Ak+02 L HI
E4 SCLN,Aj,X0 Decimal scale LO £ Ak+02 £ HI
E5 SCLR,Aj,X0 Decimal scale, rounded- | LO £ Ak+02 <HI
EB TRANB,Aj , X0 Byte translate L0 £ Ak+02 LHI
76 MOVB,Aj,X0 Move bytes L0 £ Ak+02 <HI
ED EDIT,Aj,X0 Edit L0 £ Ak+02 L HI
75 MOVN,Aj,X0 Numeric move L0 £ Ak+02 L HI
BS CALLSEG Call indirect 1.0 £ AQ+7,mod 8 X HI
BO CALLREL Call relative 10 £ AQ+7,mod 8 £ HI
14 LBSET Test and set bit L0 < Aj+X0/8 < HI
B4 CMPXA Compare swap 10 £ Aj L1
F9 MOVI,Xi,C Move immediate data L0 £ Ak+01 £ HI
FB ADDI,Xi,D Add immediate data L0 £ Ak+01 < HI
Bit 2: Instruction Fetch

All instruction fetches initiate a debug trap interrupt when the PVA

accessed is within an address bracket on the debug list.

However:

e The load bytes relative (D0-D7) reference to P+Q is not detected.

e Unimplemented instruction, program error, and execute algorithm is
not necessarily detected.

e The descriptors for BDP instructions are not detected.

e The test is applied for each instruction rather than for each
instruction word.

11-2-74

60458890 A

Table 1I-2-21. Debug Conditions (Sheet 4 of 5)

Opcode Mnemonic Instruction Debug Condition
Bit 3: Branch Target Instruction
94 BRXEQ Branch on equal Lo £ P+2%Q LHI
95 BRXNE Branch on not equal Lo £ P+2%Q < HI
96 BRXGT Branch on greater than Lo £ P+2%Q < HI
97 BRXGE Branch on greater than LO £ P+2*Q S HI
» or equal
*,
(:,,- 90 BRREQ Branch on half word 1.0 £ P+2%Q L HI
equal
91 BRRNE Branch on half word not | LO £ P+2%Q Lu1
equal
92 BRRGT Branch on half word L0 £ P+2%Q L HI
greater than
93 BRRGE Branch on half word L0 £ P+2%Q £ HI
G\ greater than or equal
9C BRINC Branch and increment L0 £ P+2%Q L HI
9D BRSEG Branch on segments LO £ P+2%Q L HI
unequal
2E BRREL Branch relative LO £ P+2%Xk L HI
2F BRDIR Branch intersegment LO £ Aj+2%Xk < HI
C" 98 BRFEQ FP branch on equal Lo £ P+2*Q L uI
99 BRFNE FP branch on not equal Lo ﬁ_P+2*Q L HI
9A BRFGT FP branch on greater Lo £ P+2%Q L HI
than
9B - BRFGE FP branch on greater Lo £ P+2%Q LHI
than or equal
9E BROVR FP branch on overflow Lo £ P+2%Q < HI
9E BRUND FP branch on underflow LO £ P+2*Q L HI
9E BRINF FP branch on indefinite L0 £ P+2%Q L HI
04 RETURN Return Lo < FINAL P S HI
9F BRCR Branch on condition L0 £ P+2%Q L HI
m register
w 60458890 A 11-2-75

Table I1-2-21. Debug Conditions

(Sheet 5 of 5)

Opcode Mnemonic Instruction Debug Condition
~ Bit 4: Call Target Instruction Fetch
B5 CALLSEG Call indirect 10 £ CBP L HI
BO CALLREL Call relative 10 £ P+8*Q,mod 8 £ HI
11-2-76 60458890 A

e

N

O

VIRTUAL AND CENTRAL MEMORY PROGRAMMING

Figure II-2-11 shows how a process virtual address (PVA) converts to a system virtual

address (SVA), and then to a real memory address (RMA).

The operating system provides a
segment descriptor table and a system page table to make the conversion possible.

(START)

PROGRAM REQUESTS
DATA/CODE PVA FROM
A OR P REGISTER

SET MCR54
PERMITTED? ACCESS
VIOLATION
SET MCR60
INVALID >
SEGMENT
CONVERT
PVA TO SVA
no SET MCR57
| PAGE TABLE SEARCH
WITHOUT FIND
yes
CONVERT
SVA TO RMA
l \
CONTINUE INTERRUPT TO
PROGRAM OPERATING
SYSTEM
Figure II-2-11.
60458890 A

Central Memory Addressing from CP

I1-2-77

PROCESS VIRTUAL MEMORY

To the user, memory is a set of segments in process virtual memory space. FEach segment is a
contiguous byte string of 231-1 bytes. A maximum of 4096 segments may exist for each
process at any one time. During process execution, the CP presents process virtual
addresses (PVAs) for hardware translation, first to system virtual addresses (SVAs), and
then to real memory addresses (RMAs) where the requested data resides in CM. The PVA is the
address seen by the user and used by executing code. The PVA may identify a P register
address or a CM operand address. The PVA format is shown in figure IT-2-12.

16 1920 313233 63
RN SEG 0 BN
Field Name k Description
RN Ring Number Access privilege indicator that selectes 1 of 16 rings.
Refer to Access Protection in this section for further
information.)
SEG Segment Process segment number. The same shared segment may be

addressed by different segment numbers.

BN Byte number Byte location within the 231-1 bytes in a segment. Bit 32
in the final PVA used is a validity indicator and must be a
zero or the PVA is rejected. Bit 32 in an A register may be
a one provided indexing or displacement changes this bit to
a zero in the final PVA.

Figure II-2-12. Process Virtual Address (PVA) Format

SYSTEM VIRTUAL MEMORY

The operating system sees-virtual memory as a set of system-wide active segments that totals
all of the process segments. An active segment is the virtual memory division for uniquely
identifying system data. System virtual addresses (SVAs) address the active segments.
Figure 1I-2-13 shows how hardware translates a PVA to an SVA.

In the translation, an active segment identifier (ASID) replaces the RN and SEG fields of
the PVA. All segments active in the system are assigned unique ASIDs to ensure unique
system data. The 16-bit ASID field in the SVA defines a total of 65,536 active segments
that may simultaneously exist in the system. The ASID resides in the segment descriptor
table that the operating system maintains for each process. Any number of ASIDs can be
listed in various process segment descriptor tables against the same segment. This forms
the basis for code sharing.

During the translation, hardware also verifies permission to access the segment containing

the SVA. This occurs by way of the access protection attributes listed in the segment
descriptor table for that segment.

I1-2-78 ' : ‘ : ' 60458890 C

C

e

16 1920 313233 63
] PVA
RN SEG 0 BN

16 313233 63

ASID 0 BN SVA
Field Name Description
ASID Active Global name that uniquely identifies any active segment in

) segment the system.
identifier

BN Byte number Byte location within a segment.

Figure II-2-13. System Virtual Address (SVA) Format

REAL MEMORY

The operating system sees real memory as pages in CM or external mass storage. It maintains
the necessary tables to identify, address, and retrieve the stored information when an
executing process requests it. A page ranges in size from 2K bytes to 16K bytes, as
selected at system initialization via the page size mask register.

CM corresponds with virtual memory by page frames. Page frames are the same size as pages,
and provide the means for swapping pages between CM and external mass storage. A page frame
may be empty, contain new information being created, or contain a copy of a page from
external mass storage that is being examined, modified, or executed.

The operating system manages CM by way of demand paging. In demand paging, the CP retrieves
the requested page(s) from external mass storage to CM as needed for process execution.

This frees the operating system from having to collect in CM all the pages necessary to
complete process execution. In operation, the CP executes a process until a page fault
occurs, whereby the CP switches execution to another process while it retrieves the page
from external mass storage.

The CP always retrieves a copy of a page, and not the page itself, from external mass
storage. Pages in such storage remain unaltered unless or until the CP overwrites the new
page back to its location in external mass storage. (Hardware keeps track of pages in CM
which are still true copies of pages in external mass storage.) The CP writes pages back to
external mass storage to make room for new pages. The operating system identifies candidate
pages for transfer by way of an algorithm which determines the least-used and
least-recently-used pages.

Hardware uses the system page table in CM (described under Address Tables later in this
section) to convert SVAs to RMAs and to complete address translation. In the SVA-to—-RMA
conversion, hardware uses a hashing algorithm to replace the ASID and PN fields of the SVA
with a system/page identifier (SPID) [refer to figure II-2-14]. The SPID resides in the
single system page table that the operating system maintains for all processes.

60458890 A I1-2-79

16 313233 63 Page Bytes
’ Size In
(a) ASID(16) o BN(31) Mask Page
| H 111100 2K
16 31 '33 4748 63 1111000 4K
—] 1110000 8K
(b) ASID(16) ol PN(15-22 bits) L_—| PO(9-16) | 1100000 16K
l 54f5
4) 41
(c) SPID (38)
Field Name Description
ASID Active Global name that uniquely identifies any segment active in
segment the system.
identifier
BN Byte number Byte location within a segment.
PN Page number Part of BN which is hashed with the ASID to form the SPID.

Its length varies from 15 to 22 bits, depending on system
page size.

PO Page offset Byte location within a page. Length varies from 9 to 16
bits, depending on system page size.
SPID Segment/ Identifies page in a particular global segment for conversion
page. to RMA. '
identifier

Figure II-2-14. Segment/Page Identifier (SPID) Format

Once obtained, the SPID provides an index into a list of coincident hashed entries in the
system page table. The CP linearly searches up to 32 coincident entries in comparing the
true SPID (maintained by the operating system) to the system page table entries. The search
continues until a valid page with the requested entry is found, or until 32 entries have
been searched. If the requested entry is not found among the 32 entries, a page fault
occurs and the CP retrieves the page and accompanying entry from external mass storage.

A successful search of the system page table results in identifying the desired page and the
corresponding page frame address listed with the SPID. The page frame address lists the
destination of the page in real memory. The page offset (carried directly from the SVA)
identifies the memory word containing the requested byte. The rightmost 3 bits select the
requested byte within the word. The RMA, formed by the page frame address and the page
offset, has a format as shown in figure II-2-15. The conversion of the virtual byte number
(BN) to the page number and page offset is shown in figure II-2-16.

I1-2-80 . 60458890 A

s’

=
& ./

OO0

Bits

(a)42-63

(b)47-63

(c)32

34,35
36, 37
38-60
61-63

42 5657 63

(PAGE FRAME
a) ADDRESS (22)

. 48 54 565 63
{b) PAGE
OFFSET (9-16)
33
3234 3738 6061 63
(c) o \\x\ REAL MEMORY ADDRESS (RMA)

Description

Page frame address from system page table. Where the page offset has
significant bits, the page frame address rightmost bits must be zeros in
the system page table.

Page offset from SVA, unchanged from PVA. Where the page frame address
has corresponding significant bits, the page offset leftmost bits are
set to zero by the page size mask.

Must be zero.

Selects the port when CP has two memory ports.
Reserved.

Not used.

CM word address.

Byte address within a CM word.

60458890 A

Figure II-2-15, Real Memory Address (RMA) Format

I1-2-81

16 20 32 47 48 5455 5960 63
PVA | RN SEG Part of BN \\\§ Part
S§\ of BN
N——— ——
To be converted
to ASID
BYTES
PSM IN PAGE
1111100 2K
1111000 4K
1110000 . 8K
1100000 - 16K
v <J v
AND AND =/
WITH WITH
COPY PSM NOT PSM COPY
L 4 v v v
2K-BYTE PAGES I 00 00000 I 2K-BYTE PAGES
| 000 o000 |
I 0000 000 I
16K-BYTE PAGES l 00000 00 I 16K-BYTE PAGES
PN to be matched against SPIDs Page offsets used in
‘listed in page table RMAs to address CM

Figure II-2-16, Virtual BN-to-Page Number/Page Offset Conversion

I1-2-82

60458890 A

‘\“_ o

a i \"Y\
L

"

y

}

00

ADDRESS TABLES

The PVA-to-SVA-to-RMA translation with access protection depends upon the operating system

keeping the following tables in CM:

e A segment descriptor table (SDT) for each process. Hardware accesses the SDT for
converting PVAs to SVAs and for enforcing access protection.

e A system page table (SPT) common for all processes.

converting SVAs to RMAs and for keeping track of modified/used pages.

Hardware accesses the SPT for

The PVA-to-RMA Conversion with reference to the address tables is shown in figure II-2-17.

PVA

SVA

RMA

RN SEG

y

VERIFY ACCESS

PERMISSION
Type/mode
Ring number
Keys/Locks
Privilege

CONVERT SEG TO ASID

(by segment table)

SEPARATE BYTE NUMBER
TO PAGE NUMBER AND
PAGE OFFSET

(by page size mask)

ASID

PN ’ OFFSET

FORM PAGE TABLE
SEARCH START
ADDRESS

(By hashing
ASID,PN,PTA PTL)

L

A

SEARCH PAGE TABLE FOR
PAGE FRAME ADDRESS
o If found, replace PN with

page frame.
o If not listed, interrupt to
the operating system.

(By searching up to 32 entries of

page table)
PAGE FRAME RMA OFFSET

Figure 1I-2-17. PVA-to-RMA Conversion

Each process obtaining call-indirect and trap-interrupt target addresses requires binding

section segments.

Hardware accesses the binding segments during call-indirect instructions

and trap interrupts to obtain entry point addresses (code base pointers) and additional
access protection information.

60458890 A

I11-2-83

Segment Descriptor Table

A segment descriptor table (SDT) for each process lists the process segments against the

active system segments and provides access protection information. The SDT starts at a word

boundary and is defined by the following fields in an incoming exchange package:
e Segment table address (STA): An RMA pointing to the first SDT entry.
. Segment table length (STL): The number of SDT entries, minus 1.

For each process segment, the SDT maintains an entry listing the corresponding ASI

D and

access attributes, and whether or not the segment is a cache bypass segment. Refer to

figure II-2-18 for the SDT entry format., The CP reads cache bypass segments direc

tly from

CM without copying the accessed information to cache memory. The CP purges the relevant

cache entry when it writes cache bypass segments. The CP does not update or purge
when it reads or writes CM using an RMA stored in hardware such as MPS or JPS.

cache

The SDT entry (SDE) lists the ASID corresponding to each segment number. The segment
numbers index the table, and combine with the STA to provide the required SDT address.

Invalid SDEs can be marked as such; thus, process segment numbers need not form a
consecutive set (although this is often the case).

An interrupt condition occurs when:
e Hardware attempts to use a segment number for which there is no valid SDE.

e Hardware attempts to use a segment number which exceeds the segment table

length.

Each SDE also lists the segment access protection attributes as established by software

convention. (Refer to Access Protection in this section for further information.)

The information in CM which is subject to change without cache update or purge must be kept

in cache bypass segments. For example, Virtual State exchange operations to MPS and JPS use

RMAs; thus, the CP does not update cache data because cache is organized by SVAs.
170 State exchange operations treat target addresses as PVAs; thus, cache is updat

I11-2-84

(CYBER
ed.)

60458890 A

O

32,33
012345678 1112 1516 31 34 3940 63
\ XPIRP|W4 R1 R2 ASID 01} LOCK
Field Name Description
VL Validity Entry validity indicator
00 1Invalid entry.
01 Reserved.
10 Valid entry, regular segment,
11 Valid entry, cache bypass segment.
Xp Execute Permissible access type indicator
permission 00 Nonexecutable segment.
01 Nonprivileged executable segment.
10 Locally privileged executable segment.
11 Globally privileged executable segment.
RP Read Permissible access type indicator
permission 00 Nonreadable segment.
01 Read controlled by key/lock.
10 Read not controlled by key/lock.
11 Binding section segment, read not controlled by key/lock
(may be read as if RP = 10).
WP Write Permissible access type indicator
permission 00 Nonwritable segment.
01 Write controlled by key/lock.
10 Write not controlled by key/lock.
11 (Reserved).
R1 Ring 1 Ring requirement indicator
@ For execute access, RN of PVA used may not be less than
Rl of the accessed segment”s SDE.
° For write access, RN of PVA used may not exceed Rl of
the accessed segment”s SDE.
R2 Ring 2 Ring requirement indicator
° For execute access, RN of PVA used may not exceed R2 of
the accessed segment”s SDE.
) For read access, RN of PVA used may not exceed R2 of the
accessed segment”s SDE.
ASID Active A global segment name which uniquely identifies eaéh active
segment segment in the system
identifier
LOCK Lock One of 64 locks. A zero value indicates a no-lock condition.
Figure II-2-18. Segment Descriptor Table Entry Format
60458890 A I1-2-85

System Page Table

The system has a system page table-which lists via an SPID each virtual page resident in CM
against the physical address of the assigned page frame. This table is defined by the
following:

e Page table address (PTA). This is an RMA pointing to the first page table entry,
which must be zero, modulo the page table length.

° Page table length (PTL). The page table length in modulo 512 words is as follows.

Words in Bytes in

PTL Page Page
0000 0000 512 4 096
0000 0001 1 024 8 192
0000 0011 2 048 16 384
0000 0111 - 4 096 32 768
0000 1111 8 192 65 536
0001 1111 16 338 131 072
0011 1111 32 768 262 144
0111 1111 65 536 524 288
1111 1111 131 072 1 048 576

e Page size mask (PSM). The page size in modulo 512 bytes is as follows.

Words in Bytes in

PSM Page Page
111 1100 256 2 048
111 1000 512 4 096
111 0000 1 024 8 192
110 0000 2 048 16 384 .

Page Table Search

Hardware converts SVAs to RMAs by searching up to 32 page table entriés for a SPID matching
the SVA (ASID-PN) being converted. Figure II-2-19 depicts how hardware obtains a starting
address for the 32-entry linear search by combining information from the ASID, page table
length, and virtual page number. The technique is called hashing. The page table search is
necessary because many SVAs hash to the same page table search starting address.

I1-2-86 60458890 A

A
'\ “k

sy

T
i
\ i

L

ASID FROM SDE

2K-BYTE PAGES
PN
(i6)—> - () FROM SVA
16 EOR 16 {16 rightmost
bits)
PTL PT _
WORDS (16) 16K-BYTE PAGES
00000000 512
L 00000001 HASH INDEX
. 00000011 = =5

00000111

59
00001111 (® Q)
00001111

4(5)——» AND
00111111

0111111
11 131K

W‘ 3233 4344 5152 63
Q | W PTA N ZEROS

OR L o

T 2) wul swm) ses
il DN oooo

RMA OF FIRST PT LOCATION SEARCHED

Figure II-2-19, Page Table Search, Start RMA Formation

Page Table Entries

Page table entries (refer to PTE in figure II-2-20) list all pages residing in CM by listing
the SPID against the allocated CM page frame (physical) address. The operating system
ensures that only one copy of any active page exists in CM at a time. The PTEs described
also contain 4 control bits.

60458890 A I11-2-87

OO0

PTE Control Fields

The PTE contains 4 control bits: wvalid (V), continue (C), used (U), and modified (M).
Hardware decodes and translates these fields during the page table search as follows:

e The valid (V) bit, when set, causes the PTE under examination to be tested for a
SVA-RMA match. When clear, that PTE is ignored.

° The continue (C) bit, when set, causes the hardware search to continue with the next
PTE. When clear, the hardware search may be halted after testing the current PTE.

. The used (U) bit is set by hardware whenever a PTE is uséd for address translation.
This bit is cleared by software only. :

° The modified (M) bit is set by hardware whenever a PTE is used for a write access to
indicate that the page has been modified.

PTE Segment/Page Identifier Field

The Segment/Page Identifier (SPID) is the PTE field tested for a match against the 38-bit

ASID-PN combination from the SVA.

When the page size exceeds 512 bytes, the PN is less than

22 bits., In this case, the unused rightmost bits are zeros to obtain proper alignment.

I11-2-88

60458890 A

00

PTE Page Frame RMA Field

This 22-bit field is the page frame physical starting address. When the page size exceeds
512 bytes, the rightmost address bits must be zeros to obtain proper alignment.

16 3132 4647 55
— (SVA)ASID SVA(PN) NN\
01234 4142 6162 63
Vb'-+\ﬂ SPID PAGE FRAME ADDRESS . .0 0
Field Name Description
ASID Active segment identifies part of SVA,
SVA(PN) Page number part of SVA,
\ Valid (bit 00) Coded as follows:
V=1 PTE tested.
Vv=20 PTE ignored.
c Continue (bit 0l) Coded as follows:
cC=1 Search continued.
cC=0 Search aborted.
U Used (bit 02) Cleared by software only. Indicates whether a
page was accessed by the CPU:
U=1 An SVA-PTE match occurred.
Uu=0 No SVA-PTE match occurred.
M Modified (bit 03) Cleared by software only and coded as follows:
M=1 This PTE has been used for a write access
since it was entered.
M=0 This PTE has not been used for a write access
since it was entered.
SPID Segment/page (38-bits) Identical to the ASID-PN field combination
Identifier from SVA. Refer to figure II-2-14,
PAGE Real memory starting address of the page frame. When the
FRAME page size exceeds 2K bytes, the rightmost bits of this
ADDRESS field are zeros (corresponding to the unused rightmost bits
in SPID and SVA-PN).
Figure II-2-20. Page Table Entry Format
60458890 A I1-2-89

Listing of Pages in Page Table

To continuously guarantee the same data for all processes, the operating system ensures that
only one copy of a page resides in CM at a time. Therefore, each page has the same page
frame address and is listed against a unique ASID in the page table. Also, the operating
system lists pages in the page table so that a page table search always results in finding
the requested page if it is in CM.

Due to the vast number of possible virtual pages, special techniques are used to list pages
in the page table. The system page table length is, typically, 2 to 4 times the number of
available page frames, and the 16-bit ASID numbers are assigned nonsequentially to
facilitate page listing.

If a vacant spot is not found when attemting to list a page, the operating system takes
further action such as cancelling a page to make room for the new page, changing the ASID
number, or rearranging CM and enlarging the page table size.

PROCESS BINDING SECTION

Binding sections bind different segments into one process. Each process has at least one
binding section for use by hardware during the call indirect (CALLSEG,B5) instruction and
- during trap interrupts.

A binding section used for such purposes resides in a segment for which the SDE(RP) = 11;
such a segment represents a binding segment and lists entry points (code base pointers, CBP)
into called code segments. The 64-bit CBPs (figure I1I-2-21) reside at a word boundary and
are addressed by PVAs as follows:

e For use by CALLSEG:
The relevant CBP is addressed by (Aj+8%Q) from the instruction.

) For use by trap interrupts:
The relevant CBP is addressed by the trap pointer (TP) field from the exchange
package.

A called procedure may have, and a trap interrupt target procedure always has, its own
binding section. In such a case, the external procedure flag (EPF) sets in the relevant
CBP., After a CBP with its EPF set is accessed, the word stored following that CBP loads
into A3 as the new binding section pointer.

I1-2-90 60458890 A

@&,
/]
i
i’

™
2

b

4

N

0 34 789 1112 1516 1920 3132 63
N N
\VMID \ R3 | RN SEG BN
N NN
EPF
Field Name Description
VMID Virtual Specifies the state of the CP after a call indirect instruction
machine or after a trap interrupt, as follows:
identifier VMID = 0000 Virtual State. '
VMID = 0001 CYBER 170 State.
EPF External When EPF = 1, hardware loads the word stored following the CBP
procedure as a new binding section pointer into register A3. When the CBP
flag is used for trap interrupts, this bit must be a 1.
R3 Call limit Highest ring number from which a call indirect instruction to
ring number the listed target PVA may be issued. Initial P(RN) and Aj(RN)
i must both not exceed R3.
RN CBP ring When zero, causes a ring-number zero—exception condition,
number setting MCR bit 60. When nonzero, prevents this exception with

no other effects.,

SEG, Segment Part of PVA of entry point into branched-to code.
BN Number,
Byte number

Figure I1I-2-21. Code Base Pointer Format

ACCESS PROTECTION

Access protection is by way of segments, based on the following elements:

® Process segment table
The process segment table defines the process address space. A process may
access only the segments listed in its segment descriptor table. Refer to
Segment Descriptor Table in this section.

° Ring structure
All PVAs used have a 4-bit ring number (RN) field specifying an access privilege
from 1 to 15. (A lower RN in a PVA indicates a higher PVA access privilege.)
All SDEs and CBPs list access privilege requirements. (A lower RN listed
indicates a higher privilege requirement.)

e Type of access :
SDE control fields permit the type of access attempted (read, write, or
execute). Refer to figure II-2-16.

e Execute access privilege

Some system instructions require special codes in SDE execute permission control
fields. (A local/global execution privilege requirement.)

60458890 A ‘ I1-2-91

I1-2-92

Execute access mode
Some system instructions may execute only in Virtual State monitor mode.

Keys and locks
SDE control fields may further specify that a 6-bit key number in the P register
must equal a 6-bit lock number in the SDE.

Code base pointers
Call indirect instructions and trap interrupts use additional access protection
attributes in CBPs, which must be listed in binding section segments.

60458890 A

=

Figure II-2-22 and II-2-23 illustrate access protection as it pertains to the PVA-to-SVA
conversion for the read/write and execute cases, respectively.

PVA STA REGISTER
RN l SEGMENT TABLE RMA
> + <« J
I RMA OF SDE |

I
C ' : SDE |VL|XP IRP |WP | R1 I R2 [ASID |0|1| LOCK m

P REGISTER

W KEY IRN SEG I BN
| L

O ‘ I b

RING NUMBER ACCESS TYPE KEY-LOCK
TESTS TESTS TESTS

KEY-LOCK test met when:
e SDE(LOCK)=0
o P(KEY)=0
o SDE(LOCK) = P(KEY)

General access requirements:
PVA(SEG) £ STL, SDE(VL = 10/11) SDE ADRS BIT 32 = 0

Read access requirements:

PVA(RN) £ SDE(R2)
SDE(RP) = 10/11
SDE(RP) = 01, KEY - LOCK test met

Write access requirements:
PVA(RN) £ SDE(RL)
SDE(WP) = 10
SDE(WP) = 01, KEY - LOCK test met

m Figure II-2-22. PVA-to-SVA Conversion, Read/Write

60458890 A ‘ 11-2-93

STA REGISTER

P REGISTER
R
. KEY RN SEG SEGMENT TABLE RMA
AN
>+ e
RMA OF SDE
SDE |VL|{XP |RP |WP]|R1|R2 ASID 0|1} LOCK \\\\\\\\\

| l

RING NUMBER

TESTS

ACCESS TYPE
TESTS

KEY-LOCK test met when:

SDE(LOCK) =0
P(KEY)=0

SDE(LOCK) = P(KEY)

General access requirements:

PVA(SEG) < STL, SDE(VL)

Execute access requirements:

10/11 SDE ADR

SDE(R1) £ P(RN) £ SDE(R2).

S BIT 32 = O,

Whenvsegment supplies unprivileged instructions only, SDE(XP) = Ol.

When segment supplies unprivileged and local privileged instructions,
SDE(XP) = 10,

When segment supplies unprivileged, local privileged and global privileged
instructions, SDE(XP) = 11,

I1-2-94

Figure II-2-23, PVA-to-SVA

Conversion, Execute

60458890 A

0

“kw.f"‘f

-

Y
v e

ﬁ

Ring Structure
The ring hierarchy controls read, write, and execute accesses to a segment, as follows:

e All PVAs have a 4-bit ring number (RN) field specifying an access privilege from 1
to 15,

e Rl and R2 fields in SDEs, and the R3 field in CBPs, specify (PVA)RN requirements for
access.

Ring Voting

During certain conditions, the RN loaded into an A register is the largest of the following:
° The RN initially in the A register.
° The RN accessed in memory.
e The Rl of the SDE used to access the RN in memory.

Such conditions and the resulting RN loaded are as follows:

e Load AK instructions (A0, 84) load a new Ak(RN) which is the largest of the
following:

1. Initial Aj(RN).
2. SDE(R1) addressed by initial Aj(SEG).
3. Aj(RN) from memory.

e Load multiple instruction (80) loads new A(RN)s which are the largest of the
following:

1. Initial Aj(RN).
2. SDE(RN) addressed by initial Aj(SEG).

3. The relevant A(RN) from memory.

e Call indirect instruction (B5), when the caller”s CBP(EPF) = 1, loads a new A3(RN)
which is the largest of the following:

1. New CBP(RN) from (Aj+8*Q+8).
2. New P(RN).
e Return instruction (04) loads new A(RN)s which are the largest of the following:

1., Initial A2(RN).
2. SDE(RN) addressed by initial A2(SEG).

3. A(RN) from SFSA in memory.

When the return instruction loads new P(RN), any A(RN) not specified for loading by
the SFSA descriptor are set to the largest of the following:

1. Initial A(RN) of the relevant A register.

2, New P(RN).

60458890 A I1-2-95

Effect of RN = 0

0 can serve as a flag to the operating system to link segments on a demand basis.
0 causes an interrupt condition (setting MCR bit 60), when detected as follows:

RN
RN

e Call indirect instruction (B5) and CBP(RN) = O.

e Return instruction (04) and an A(RN) in memory (specified for loading by SFSA
descriptor) is zero.

. Pop instruction (06) and AL(RN) or A2(RN) in SFSA is zero.

e Load Ak instructions (80, 84) and new Ak(RN) in memory are zero.

e Load multiple instruction (80) and any A(RN) accessed in memory is zero.
e Trap interrupt and CBP(RN) is zero.

No test occurs for RN zero when the A registers are loaded by an exchange operation, or when
an A register serves as an address source to access memorye.

RN for Read/Write Access

PVAs used for read/write are in A registers and must have RN as follows:
e TFor a write access, the A(RN) used may not exceed the accessed segment”s SDE(R1):

A(RN) £ SDE(R1)
(write limit test).

e For a read access, the A(RN) used may not exceed the accessed segment”s SDE(R2):

A(RN) £ SDE(R2)
(read limit test).

RN for Execute Access

The RN for execute access are verified only for operations having the capability to switch
segments. The PVA used may originate from an A register, from a CBP, or from the P
register. PVA(RN) requirements are as follows:

e For accessing a braanch intersegment target instruction, initial P(RN) and Aj(RN)
must fall within the execute bracket given by target segment”s SDE(R1) and SDE(R2):

SDE(R1) < P(RN) £ SDE(R2)
(prevents branches to outside the execute ring bracket of the target
segment).

SDE(R1) £ Aj(RN) £ SDE(R2)
(prevents branches to outside the execute ring bracket of the target
segment).

11-2-96 : 60458890 A

O

o0

O

° For access to a call indirect target instruction, initial P(RN) must not exceed R3
of CBP used, and also not less than Rl of SDE for target instruction. Refer to

figure 1I-2-24. Also, the initial Aj(RN) must not exceed R3 of CBP used:

P(RN) £ CBP(R3)

(a limit set by the operating system).
P(RN) 2 SDE(R1)

(prevents outward calls).
Aj (RN) < CBP(R3)

(a 1limit set by the operating system).

e For accessing a trap interrupt target instruction, initial P(RN) must not

exceed R3

of CBP used, and also not less than Rl of SDE for target instruction. Also, the

trap pointer (TP) ring number must not exceed R3 of CBP used:

P(RN) £ CBP(R3)

(a 1limit set by operating system).
P(RN) 2> SDE(R1)

(prevents outward trap interrupts).
TP(RN) £ CBP(R3)

(a 1limit set by operating system).

° For access to a return target instruction, P(RN) loaded from SFSA may not
than initial previous save area pointer A2(RN):

Initial A2(RN) £ final P(RN)

(prevents user from setting P(RN) in SFSA for an inward return as
cannot diminish A2(RN)).

RN Effect on Pop Instruction

A pop instruction loads Al, A2, CFF, and OCF from SFSA, and updates TOS pointer.
not alter P or A0, and must not alter the ring number in which the stack resides.
entire initial A2 must equal A0 in SFSA, and the initial A2(RN) must equal P(RN).
are:

Initial A2 = A0 in SFSA

Initial A2(RN) = P(RN)
(which equals AO(RN) by the previous test).

60458890 A

be less

user

It does
The
The tests

11-2-97

Effect of RN Violations

Ring number violations and the detection of RN = 0

Operation Violation
Write Aj(RN) > SDE(R1)
Read Aj(RN) > SDE(R2)
Branch SDE(R1) > P(RN) > SDE(R2)
Intersegment

Call Indirect P(RN) > CBP(R3)
Aj(RN) > CBP(R3)
P(RN) < SDE(R1)
CBP(RN) = 0

Return A2(RN) > P(RN) in SFSA
Any A(RN) from SFSA = 0

Pop Initial A2 # AO in SFSA
Initial A2(RN) # P(RN)
A1(RN) from SFSA =0
A2(RN) from SFSA = 0

Load A Accessed A(RN) = 0

Trap P(RN) > CBP(R3)

interrupt TP(RN) > CBP(R3)
P(RN) < SDE(R1)
CBP(RN) = 0

Execute Access Privilege/ Mode

have effect as follows:
Effect
Access violation (MCR 54)
Access violation (MCR 54)
Access violation (MCR 54)
Access violation (MCR 54)
Access violation (MCR 54)
Outward call (MCR 61)
RN zero (MCR 60)

Inward return (MCR 61)
RN zero (MCR 60)

Environment specification error (MCR 55)

Interring pop (UCR 52)
RN zero (MCR 60)
RN zero (MCR 60)

RN zero (MCR 60)

Access violation (MCR 54)
Access violation (MCR 54)
Outward call (MCR 61)

RN zero (MCR 60)

Execution of some system instructions may occur only in a Virtual State monitor process, or
require global/local privilege. An instruction is globally privileged when it is fetched
from a segment for which the SDE(XP) is 11. An instruction is locally privileged when it is
An instruction which has global
privilege also has local privilege. In some cases the requirements are dependent on an

fetched from a segment for which the SDE(XP) is 10.

instruction parameter. Such system instructions are listed in table II-2-22.

11-2-98

60458890 A

-

sy

J

gt:#

©O0

Table II-2-22. System Instruction Privilege and Mode
Instruction Privilege Mode Effect of
Required Required Violation
Interrupt
processor(03) Global Any UCR 48
Copy to state
register
60-7F None Monitor MCR 51
80-BF Global Any UCR 48
CO-DF Local/global Any UCR 48
Return(04) with
SFSA(VMID) = 1 Global MCR 55
Job Undefined
operation
Load page
table index(17) Local/global Any UCR 48
Branch, alter
condition
register(9F)
k = 0/1/8/9 None Monitor MCR 51
Purge buffer k
(05)
k = 0/1/2/8-F Local/global Any UCR 48

UCR 48
MCR 55
MCR 51

Notes:

Privileged instruction fault.
Environment specification error.
Instruction specification error.

Keys/Locks

The key/lock access protection mechanism is independent of other access protection

facilities, and consists of the following:

e Each SDE has a 6-bit field specifying a lock.

e The P register has a 6-bit field specifying a key.

Unlike the ring mechanism, the key—-lock mechanism is not hierarchical.

For access

permission, a specified lock requires an exact match with the key tested, except as follows:

@ A zero lock is a no-lock condition accessible by any key.

® A zero key is a master key opening all locks.

60458890 A

I1-2-99

Key/lock tests perform under the following conditions:
o For read access when the accessed segment”s SDE(RP) = Ol.
e For write access when the accessed segments SDE(WP) = Ol.,

Any segment, except a binding segment used during call indirect access, can be locked as
follows:

e When LOCK = 0, the segment is unlocked.
e When LOCK # O, the segment is locked.

Read or write access to a segment is permitted only when the P register providing the PVA of
the instruction attempting the access has a KEY as follows:

. //‘" "\“
e To access a locked segment, P(KEY) must exactly equal the accessed segment”s W B
SDE(LOCK), P(KEY) must be a master key, or the segment”s SDE(LOCK) must be a no-lock. e
Call indirect/relative instructions always set the final P(KEY) equal to the accessed
segment”s SDE(LOCK). The call indirect access requirements are shown in figure II-2-24.
\
N
.

N—

\
\
-

11-2-100 ' : 60458890 A

INITIAL P REGISTER
WKEY' RN[SEG | BN I
|

SFSA ACCESS STA A0 (DYNAMIC SPACE POINTER)
RMA FN SEG B8N]

7 .
l > + » RMA of SDE
AO(RN) < R1

WP=10 or
WP=01 and SDE FOR SFSA
KEYS=LOCKS F/lep Rplwplmlazl ASID lo1| LOCK N\ \ﬁ
' CBP ACCESS STA Aj+8*Q
| RM/ﬂ |RN| SEG | (PN) BN (PO} l)
—
l |
:
+— Aj(RN) S R2
RP=11
SDE FOR CBP
|VL|XPJ Rplwplmlnzl ASID 101‘ LOCK k N
PTE_FOR CBP] L]
IVL uml SPID I PAGE FRAME RMA]
Cm“ L—» Aj(RN) <R3 RMA of CBP
)

4+—» P(RN) <R3

RAEO CODE_BASE POINTER (CBP}
VMID in VMCL N R3l R4| SEG l BN |
TARGET
INSTRUCTION STA v

b & PRN) 2RI SDE FOR TARGET INSTRUCTION

(j. L—— xp=00 lVLlXPlRP|WP|R1 Rz| ASID |o1| Lock K\ \Q
i I]

: {
mmﬂ RN | SEG I BN l

FINAL P

FINAL P REGISTER

NOTES:
o Final P(KEY) = callee’s SDE(LOCK)

@ When initial P{(RN) greater than callee’s
SDE(R2), final P(RN) = callee’s SDE(R2).

Figure II-2-24, Call Indirect Access Requirements

O

(}‘ 60458890 A ~ II-2-101

INTERSTATE PROGRAMMING

The CYBER 170 State environment is a substate of Virtual State job mode, within which the CP
uses CYBER 170 State compatible instructions, exchanges, and data formats.

This subsection contains some general aspects of the CYBER 170 State and a detailed
description of interaction between the CYBER 170 State and Virtual State. The CYBER 170
State is described in detail in the appropriate computer system (CYBER 170 State) hardware
reference manual listed in the preface.

The general characteristics of the CYBER 170 State are as follows:

e The CYBER 170 State user sees the P register as a CYBER 170 State register.
Hardware, however, treats the P register the same as in Virtual State and performs
the PVA-to-SVA-to-RMA conversion with access protection.

° The CYBER 170 State user sees CM addresses as CYBER 170 State addresses. Hardware,
however, treats these as PVAs and fills in the missing RN and SEG fields from P
register data.

e The entire CYBER 170 State memory exists in one system virtual segment with an ASID
of FFFFig.

e Virtual pages into which PPs write 60-bit words map l:1 into real memory.

e Virtual State procedures execute the CYBER 170 State compare/move instructions (464
through 467) by way of trap interrupts.

e Virtual State procedures handle some CYBER 170 State exceptiom conditions, such as
system or job timer interrupts, hardware errors, or conditions which halt model
173. For the latter case, refer to the CYBER 170 Model 173 hardware reference
manual listed in the preface.

OPERATION IN CYBER 170 STATE

Virtual State programs establish the CYBER 170 State environment and provide recovery
facilities for all hardware and some software errors occurring in CYBER 170 State. The
general operation is as follows:

e Virtual State programs build the page table, segment table, and exchange packages
for the CYBER 170 State environment.

° A Virtual State program switches the CP to CYBER 170 State through one of the
following:

An exchange from Virtual State monitor mode to Virtual State job mode, CYBER 170
State monitor/job mode. .

A call/return within Virtual State job mode, from Virtual State to CYBER 170
State monitor/job mode.

I11-2-102 o : 60458890 A

®

©0

e The CP runs in CYBER 170 State, with exchanges between CYBER 170 State monitor and
job modes, until one of the following occurs:

An exchange interrupt to Virtual State monitor mode.

A trap interrupt within Virtual State job mode, from CYBER 170 State to Virtual
State.

e Virtual State programs determine the cause of the exchange or trap interrupt and
take appropriate action.

MEMORY ADDRESSING IN CYBER 170 STATE

The CM space allocated to CYBER 170 State is addressed as a single segment. An ASID of

FFFF|g is globally reserved for this segment. For models 835, 845, and 855, hardware uses
this ASID value for cache invalidation, described under Cache Invalidation in CYBER 170
State in this section.

Hardware treats all CM addresses supplied by CYBER 170 State programs as PVAs and converts
these first to SVAs, and.then to RMAs. The P register provides the key, ring number, and
segment number for all CM accesses. The PVA-to-RMA conversion includes instruction fetch,
load/store, extended memory transfers, and CYBER 170 State exchanges to MA, Bj+K, or R+A.

The operating system supplies the P register KEY, RN, and SEG fields to make the PVA-to-RMA
conversion possible; these cannot be changed by CYBER 170 State programs. The entire P
register, including the KEY, RN, and SEG fields, loads as follows:

o During Virtual State monitor mode-to~CYBER 170 State monitor/job mode exchanges from
the exchange package at (JPS). The exchange package used is specially formatted for
such an exchange.

. During calls from Virtual State job mode to CYBER 170 State job/monitor mode, from
the code base pointer.

o During returns from Virtual State job mode to CYBER 170 State job/monitor mode, from
the stack frame save area.

CACHE INVALIDATION IN CYBER 170 STATE (MODELS 835, 840, 845, 850, 855, AND 860 ONLY)

When a PP writes a 60-bit word into CM, cache memory is updated by cancelling any copy of
that word in cache memory. The RMA used to write CM is also supplied to cache memory.
Hardware treats this RMA as a SVA with an ASID of FFFF¢.

To fulfill the requirements of cache invalidation addressing, the operating system assigns
an ASID of FFFF|¢ for the virtual memory segment used as CYBER 170 State memory, and must
also map the virtual pages into which PPs write 60-bit words, l:1, into real memory. In
such a case, the RMA supplied is numerically equal to the SVA information necessary to
locate the addressed word in cache memory. The operating system maps CYBER 170 State
address O into BN 0 of system virtual segment FFFFgq,

Cache is not purged when PPs write 64-bit words into CM. Therefore, it is possible to have

other than 1:1 mapping of CM for CYBER 170 State PP-write-to—CM instructions in conjunction
with software cache invalidation.

60458890 B I1-2-103

STATE-SWITCHING OPERATIONS

Figure I1-2-25 depicts the state-switching operations. The CP switches states when its
virtual machine identifier (VMID) changes states through the following:

e Exchanges between Virtual State monitor mode and CYBER 170 State. The new VMID
loads from the exchange package.

e Calls within Virtual State job mode, from Virtual State to CYBER 170 State. The new
VMID loads from the code base pointer.

e Returns within Virtual State job mode, from Virtual State to CYBER 170 State. The
new VMID loads from the stack frame save area.

o Trap interrupts within Virtual State job mode, from CYBER 170 State to Virtual
State. The new VMID is loads from the code base pointer addressed by the trap
pointer.

Virtual State Monitor Mode-to-CYBER 170 State Exchange

The interstate exchange (02) instruction executes the same as a Virtual State exchange
instruction, except the incoming exchange package is formatted as shown in figure II-2-26.

CYBER 170 State-to-Virtual State Monitor Mode Exchange

An exchange from a CYBER 170 State process to Virtual State monitor mode is through an
interstate exchange interrupt, which executes the same as a Virtual State exchange

interrupt, except the outgoing interstate exchange package is formatted as shown in figure
II -2-27. Such an interrupt initiates as follows:

e By conditions which set a bit in the monitor or user condition register (when
enabled).

° By software conditions which cause a model 173 CP to halt. Such conditions set the
exit mode halt flag in the interstate exchange package at (JPS). Refer to the CYBER
170 Model 173 hardware reference manual listed in the preface.

® By a Central Exchange Jump (013) instruction when the CYBER 170 State monitor flag
is set.

This exchange does not update the CYBER 170 State exchange package. Virtual State monitor
mode software may, however, perform the update. Refer to the operating systems manual
listed in the preface for further information.

Exchanges Within CYBER 170 State

Within the CYBER 170 State, CYBER 170 State-compatible exchange jumps and interrupts occur
between the CYBER 170 State monitor and job modes. Refer to the appropriate computer system
(CYBER 170 State) hardware reference manual listed in the preface. Such exchanges use the
exchange package format shown in figure II-2-27. The interstate exchange package is not
altered by this exchange.

II-2-104 60458890 A

l/'/ ’ \\
4
W

O

N

U

OO0

. Call from Virtual State to CYBER 170 State

The interstate call indirect instruction (B5) executes identical to a Virtual State call
indirect instruction, except the stack frame save area (SFSA) has the format shown in figure
II-2-28. The operating system arranges the Virtual State A and X registers so the required
parameters pass to the CYBER 170 State procedure (the call instruction leaves these
registers unchanged in hardware). Figure I1I-2-28 also shows the register formats in
hardware. The call instruction does not store the user and monitor condition registers in
SFSA.

The BN of P supplied by the code base pointer is the P + RAC of the called procedure target
address; BN bits 32 through 39 and 61 through 63 must be zeros.

Trap Interrupt from CYBER 170 State to Virtual State

The interstate trap interrupt causes the same action as the Virtual State trap interrupt
described in this section, except the SFSA has the format shown in figure 1I-2-28. This
trap interrupt occurs when traps are enabled and a bit sets in the user condition register
as listed in table II-2-20.

Bits O through 3 of the X register fields in SFSA are undefined. The VMID and the
P register ring number load from the code base pointer addressed by the trap pointer.

The BN of P stored in SFSA is the P + RAC of the interrupted procedure; BN bits 32 through
39 and 63 are zeros, and bits 61 and 62 denote the parcel address within the instruction
word.

Return from Virtual State to CYBER 170 State

The interstate return instruction (04) executes the same as the Virtual State return
instruction, except the SFSA from which the CYBER 170 State registers are restored is
formatted as shown in figure II-2-28. The return instruction with VMID =1 in SFSA is a
global-privileged instruction.

The BN of P loaded from SFSA must be P+RAC into the CYBER 170 State process, where BN bits
32 through 39 and 63 are zeros, and bits 61 and 62 denote the parcel where execution starts.

60458890 A I1-2-105

CP 02(EXCHANGE)

CP BO/BS(CALL)

| CP 04(RETURN) —__—l
e POP STACK —— STACK(VMID)=0

le———— PUSH STACK —— CBP(VMID)=0

FEXECUTION HALT CONDITION HALT

-EXECUTION HALT CONDITION HALT

CP BO/B5(CALL)

—— e cmm—— Cem— S Gt s et ee—— mm— S——

je—— EXCHANGE TO JPS EXCHANGE PACKAGE(VMID)=0 ——e¢

CP 04(RETURN)
«———— PUSH STACK—— CBP(VMID)=0

POP STACK —— STACK(VMID)=0 —————¢

NOTE:

EXCHANGE TO JPS

¢ EXCHANGE PACKAGE(VMID=1MF=1)

[¢——— PUSH STACK CBP(VMID)=1,A4(MF=1)
le—— POP STACK —— STACK(VMID=1MF=1) ——

L PP 00260(EXN)
CP 013(XJ) -

—EXECUTION HALT CONDITION HALT

VIRTUAL
EXCHANGE TO Mps ———{ VIRTUA
MONITOR
MODE
TRAP TO EXCHANGE PACKAGE (TP PROCESSES
VMID=0
TRAP CONDITION
| obeapstart |—
VIRTUAL STATE MONITOR MODE
VIRTUAL STATE JOB MODE
VIRTUAL
¢———— CP 02(EXCHANGE) STATE
Jos
MODE
¢——— EXCHANGE CONDITION ———— PROCESSES
VMID=0
-TRAP TO EXCHANGE PACKAGE (TP)ﬂ
é———— TRAP CONDITION — |
CYBER
PP 1026(INPN) 170 STATE
) MONITOR
EXCHANGE CONDITION MODE
PROCESSES
CYBER 170 HALT CONDITION —|
e TRAP CONDITION VMID=1
170MF=1
¢———— CP 017(TRAP) :
EXCHANGE TO MA~—»
EXCHANGE TO R+A —»
PP 00261(MXN) CYBER
170 STATE
b CP 013(XJ) JOB
MODE
b PP 00262(MAN) PROCESSES
EXIT CONDITION——— VMID=1
170MF=0
¢—— TRAP CONDITION — |
CP 017(TRAP)
—————— PP 1026(INPN)
EXCHANGE CONDITION

[—EXECUTION HALT CONDITION HALT

j¢————— EXCHANGE TO Bj+K

PP 00260(EXN) j
ja«——————— EXCHANGE TO R+A

le——— PUSH STACK CBP(VMID=1),A4(MF=0)

je—— POP STACK —— STACK(VMID$1,MF=0)

170MF= CYBER 170 STATE MONITOR FLAG

te-EXCHANGE TO JPS EXCHANGE PACKAGE(VMID=1MF=0) —

I1-2-106

Figure II-2-25. Interstate Calls, Returns and Interrupts

60458890 A

ofe

N

/(- ’\\
J

WS

C

©0

EXCHANGE PACKAGES USED IN CYBER 170 STATE

The CP uses two types of exchange packages with CYBER 170 State operations:
° Exchange package for interstate exchanges.
e Exchange package for exchanges within CYBER 170 State.

Before Virtual State monitor mode initiates an exchange to CYBER 170 State monitor/job mode,
the following exchange packages must be ready in CM:

e An interstate exchange package for exchanging from Virtual State monitor mode to
CYBER 170 State monitor/job mode.

® An interstate exchange package for exchanging back to Virtual State monitor mode.

e A CYBER 170 State exchange package for a possible immediate exchange to CYBER 170
State monitor mode (when exchanging from Virtual State monitor mode to CYBER 170
State job mode).

Interstate Exchange Package

The job process state (JPS) pointer locates the first word in this exchange package. The
exchange package format is shown in figure II-2-26. The format is a modified format of the
exchange package used within Virtual State. The CYBER 170 State A, B, X, and other
registers reside in locations occupied by the Virtual State A and X registers in the Virtual
State exchange package. Therefore, after a trap interrupt, the Virtual State program
entered has access to these CYBER 170 State registers by accessing the registers as if they
were Virtual State registers.

The following paragraphs describe the modified fields of the exchange package. For other
fields, refer to Exchange Package in this section.

60458890 A I1-2-107

co
c8
Do
D8
ED
€8
Fo
F8
100
108
10
18
120
128

198

INTERSTATE EXCHANGE PACKAGE

BYTE(HEX) WORD(DEC)
00 03‘04 07l08 11.12 15I1$ 19.2022_23 23.293.1.31 lS.AG 57I58 63

0 C170 P + RAC 0
8 | vmiD uvmiD Virtual State AD 1
10 { Flags iTrap Enables| Virtual State A1l 2
18 | User Mask Virtual State A2 3
20 | Monitor Mask EM| Flags |EM RAC 4
28 | User Condition FLC 5
30 | Monitor Condition R MA [
38 | Reserved | LPID | | RAE [o0==00| 7
40 Reserved G FLE 0<—=00] 8
48 Reserved N A0 9
50 #n Al 10
58 | Process Int. Timer B A2 1
60 g A3 12
68 | Base Constant s - M 13
70 A5 14
78 | Model Dependent Flags A6 15
80 | Segment Table Length

s X0 25
;
g X1 26
" X2 2
e
x X3 28
t
e X4 29
n
s X5 30
i
° X6 3
n
X7 32
Model Dependent Word 33
Segment Table Address Untranstatable Pointer 34
Trap Pointer 35
Debug Index| Debug Mask Debug List Pointer 36
. LRN Top of Stack Ring Number 1 37
| ' 7
Top of Stack Ring Number 15 51

00 03040708 1112 1516

45‘46

63

AN

wW_#

I1-2-108

Figure 1I-2-26.

Interstate Exchange Package

£
60458890 A ‘t}

00

Program Address (P) Register

The P field (word 1, bits 0 through 63) contains the Virtual State P register, which
supplies the PVA for the CYBER 170 State where instruction execution is to begin or resume.
The KEY field contains the process key for access protection., The BN field of the PVA
interprets as the CYBER 170 State P register plus RAC, appended with the parcel address.

The P register part of the parcel address must not exceed 18 bits (because exchanges within
CYBER 170 State truncate the P register to 18 bits). The user must also ensure that the
CYBER 170 State P register does not count past 18 bits, which is possible. The format is as
follows:

Bits Description
00-01 Not used.

02-07 Not used.

08-09 Not used.

10-15 Key (KEY).

16-19 Ring number (RN).
20-31 Process segment (SEG).
32-43 Must be zero.

43-60 P + RAC (word address).
61-62 Parcel address.

63 Must be zero.

CP operation is out of range or undefined when CYBER 170 State P + RAC > 7777777g, or when
P > 777777g. -

Stack Pointers

The 48-bit A0, Al, and A2 fields (words 1 through 3, bits 16 through 63) are Virtual State
A registers. These registers function as stack pointers after a trap interrupt from CYBER
170 State to Virtual State.

EM Register

The EM register contains the exit mode selection bits for use in CYBER 170 State:

Interstate Exchange : CYBER 170 State
Package Exchange Package
Word Bit Description Word Bit
4 20 Hardware error (not used). 3 59
4 21 Hardware error (not used). 3 58
4 22 Hardware error (not used). 3 57
4 29 Indefinite operand. 3 50
4 30 Infinite operand. 3 49
4 31 Address out of range. 3 48
60458890 A I1-2-109

|

Hardware errors in CYBER 170 State cause an
exchange to Virtual State monitor mode.
Bits 20 through 22 function as software
flags preserved during exchanges.

Flags

The flag formats are as follows:

Virtual State » CYBER 170 State
Exchange Package Exchange Package
Word Bit Description Word Bit

4 23 UEM enable flag. 4 56

4 24 Expanded addressing select flag. 4 55

4 25 Enhanced block copy flag. 4 54

4 26 Software flag. 4 53

4 27 Instruction stack purge flag. 4 52

4 28 Software flag. 4 51

5 31 CYBER 170 State monitor flag. - -

6 31 Exit mode halt flag. - -

Unified Extendedeemory (UEM) Enable Flag

If set, this flag enables the CM block copy and single-word copy instructions (011, 012,
014, and 015) to access CM,

Expanded Addressing Select Flag

If set, slects expanded addressing mode, which provides addressing up to 24 bits in a 30-bit
format for data transfer between CM and UEM. If clear, selects standard addressing mode,
which provides addressing up to 21 bits in a 24~bit format for data transfer between CM and
UEM.

Enhanced Block Copy Flag

If set, CYBER 170 State block copy instructions (011, 012) use XO bits 30 through 50 rather
than A0 to determine the CM address.

Software Flag (Word 4, Bit 28)

This is a reserved flag described in software documentation.

I1-2-110 ’ 60458890 A

/"Kr/>“‘\‘»

V&mfd

O

Instruction Stack Purge Flag

If set, this flag causes instruction stack purges as described under Code Modification in
CYBER 170 State in this section.

Software Flag (Word 4, Bit 26)

This is a reserved flag described in software documentation.

CYBER 170 State Monitor Flag

If set in an incoming exchange package, this flag indicates that the CYBER 170 State process
is to start (or resume) execution in CYBER 170 State monitor mode. If set in an outgoing
exchange package, this flag indicates that the interrupted process was executing in CYBER
170 State monitor mode.

Exit Mode Halt Flag

If set, this flag indicates a software error that would halt a model 173 CP. This bit does
not set for hardware errors that would have halted a model 173 CP. Refer to the hardware
reference manual (listed in the preface) that describes the CYBER 170 Model 173.

RAC Register
The 32-bit RAC field (word 4, bits 31 through 63) contains the 21-bit CYBER 170 State

reference address for CM addressing. CP operation is undefined when RAC > 7 777 777g or
RAC + FLC > 7 777 777g.,

FLC Register
The 32-bit FLC field (word 5, bits 31 through 63) contains the 21-bit CYBER 170 State

field length for CM addressing. CP operation is undefined when FLC > 7 777 777g or
RAC + FLC > 7 777 777g.

Monitor Address (MA) Register

The 32-bit MA field (word 6, bits 31 through 63) contains the 18-bit CYBER 170 State MA
register pointing to the CYBER 170 State exchange package starting address used when
executing the following instructions with the CP in CYBER 170 State job mode:

e CYBER 170 State central exchange jump (013).

e PP monitor exchange jump to MA (262x).

CP operation is undefined when MA > 777 777g,

60458890 A I1-2-111

Address (A) Registers

The eight 18-bit A fields (words 9 through 16, bits 46 through 63) are CYBER 170 State CM
address (A) registers.

RAE Register

The 32-bit RAE field (word 7, bits 31 through 63) contains the 21-bit CYBER 170 State RAE
register supplying the reference address for UEM addressing (instructions 011, 012, 0l4,
015). CP operation is undefined when RAE > 7777777g or when the RAE rightmost 6 bits are
nonzero.

FLE Register

The 32-bit FLE field (word 8, bits 31 through 63) contains the 24~bit CYBER 170 State FLE
register supplying the field size for UEM addressing (instructions Ol1l, 012, 014, and Ol15).
CP operation is undefined when FLE > 777777778 or when the FLE rightmost 6 bits are
nonzero.

Virtual State Ring Numbers

The operating system supplies the A register Virtual State ring numbers (words 04 through
16, bits 16 through 19) for use after an interrupt to Virtual State. These must not be
altered in CYBER 170 State.

Index (B) Registers

The 18-bit CYBER 170 State B registers l through 7 (words 18 through 24, bits 46 through 63)
are used primarily as indexing registers. Register BO is not included in the exchange
package; thlS register always contains all zeros.

Operand (X) Registers

Words 25 through 32, bits 04 through 63 contain the CYBER 170 State operand (X) registers.
Hardware sign—extends the X registers in an outgoing exchange package to 64 bits. The
operating system sign-extends the X registers in an incoming exchange package to 64 bits.

CYBER 170 STATE EXCHANGE PACKAGE

The CYBER 170 State exchange package (figure I1I-2-27) resides within the CYBER 170 State
process segment in memory. During exchange operations between CYBER 170 State monitor and
job modes, the current CP CYBER 170 State registers store into an outgoing CYBER 170 State
exchange package and reload from the incoming CYBER 170 State exchange package. These two
exchange packages store into the same CM locations and, thus, the outgoing exchange package
replaces the incoming exchange package in CM. Refer to the appropriate computer system
(CYBER 170 State) hardware reference manual listed in the preface for further information.

11-2-112 _ ' 60458890 A

C o

00

WORD

W N, AW N e

-
]

-
ey

-
N

-
(=)

-
-

C170 BIT:
59 53 50 47 3635

A
At
A2 82
A3 B3
A4 B4
A5 BS
A6 B6
A7 B7

X0

X1

X2

X3

X4

X5

X6

X7

-
o

* REFER TO FLAG BIT DESCRIPTIONS ON PRECEDING PAGES.

Figure II-2-27, CYBER 170 State Exchange Package

INTERSTATE STACK FRAME SAVE AREA

Interstate calls/returns and trap interrupts use a SFSA with the format shown in figure
11-2-29., For the description of modified fields, refer to the corresponding fields in the
Interstate Exchange Package in this section, except as follows:

° The user and monitor condition registers are stored only during trap interrupts.

e The user and monitor condition registers are not loaded by a return instruction to
CYBER 170 State.

° X register field bits O through 3 are undefined in the SFSA after a call, return, or
trap interrupt. Hardware does not sign—extend these fields.

60458890 A

I1-2-113

BYTE(HEX)
) REGISTERS

00 03104 07I08 l5llﬁ 19I2022I23 28I293ll32 45146 57.58 63
0 P P
8 | vmiD (Virtual State) AD Al
10 | Frame Description (Virtual State) A1 A1
18 | User Mask (Virtual State) A2 A2

i EM| Flags* |EM RAC A3
28 | User Condition FLC Al

30

Monitor Condition

wImm=Icz2z o=2—2

A5

AB

A?

c8

A8

A9

AA

AB

AC

AD

AE

AF
X0
X1

4

X7

X8

JJ

100§

XF

00 0304

* REFER TO FLAG BIT DESCRIPTIONS ON PRECEDING PAGES.

¥
45 46

63

I1-2-114

Figure II-2-28,

Interstate Stack Frame Save Area

60458890 A

A7

O
(:m},

CODE MODIFICATION IN CYBER 170 STATE

In model 173, the CYBER 170 State return jump (010), extended memory read or write (011,
012), exchange jump (013), or long jump (02) instructions purge the instruction buffer.
This is also the case in models 810 through 860,

Additionally, when the operating system sets the CYBER 170 State instruction stack purge
flag in the interstate exchange package or SFSA, the conditional jump instructions (03
through 07) and store instructions (50 through 57 with 1 = 6 or 7) also purge the
instruction stack. In such case, the modified code always executes, even with the previous
code in the same instruction word as the modifying code.

With the instruction stack purge flag clear, execution of unmodified code in the instruction
buffer may occur but can never be guaranteed, since an exchange interrupt may clear all
instructions in the buffer at any time, including instructions in the same instruction word
as the code-modifying instruction.

DEBUG/PERFORMANCE MONITORING

The CYBER 170 State environment does not support the Virtual State debug feature. Other
information related to performance monitoring may be collected through the maintenance
channel.

EXCEPTION HANDLING IN CYBER 170 STATE

During execution of CYBER 170 State programs, certain hardware or software errors cause an
exchange to Virtual State monitor mode, or a trap interrupt to Virtual State, as described
in the following paragraphs. Such exceptions do not set exit condition bits or store the P
register at location RAC. Instead, RAC+P stores in the outgoing exchange package or in SFSA.

SOFTWARE EXCEPTION CONDITIONS

Table II-2-23 lists CYBER 170 State exception conditioms. In general, software errors
occurring in CYBER 170 State job mode with the corresponding exit mode selected cause an
exchange to CYBER 170 State monitor mode. Corresponding software errors occurring in CYBER
170 State monitor mode which result in an exchange from CYBER 170 State to Virtual State
monitor mode with no MCR bits set and the CYBER 170 State halt flag in the outgoing exchange
package set are as follows:

. Illegal instruction in CYBER 170 State monitor mode.

¢ Read or write address out of range (with exit mode selected for this error) in CYBER
170 State monitor mode.

e Instruction fetch address or branch target address out of range in CYBER 170 State
monitor mode.

° Infinite or indefinite value detected (with exit mode selected for this error) in
CYBER 170 State monitor mode. '

° 00 instruction in CYBER 170 State monitor mode.

60458890 B II-2-115

0

Exceptions that may only occur immediately after entering or leaving the CYBER 170 State
environment, and which cause an exchange from CYBER 170 State to Virtual State monitor mode,
with an MCR bit set and the CYBER 170 State halt flag in the outgoing exchange package
clear, are as follows:

Bit Description

MCR 55 Environment specification error.

MCR 60 Invalid segment/ring number zero.

MCR 52 Address specification error.

MCR 54 Access violation. -

MCR 61 Outward call/inward return. ‘ SN
1

MCR 63 Trap exception. A
yan N
‘\\‘k' ».‘77
N

S

g
1I-2-116 60458890 A ({ P

00

Table II-2-23.

CYBER 170 State Exceptions

(Sheet 1 of 2)

Job Process CYBER 170
State State
MCR/ | Exchange
UCR Package Exit
Bit Bit Error Mode | Mode Response
MCR 48 - Hard errors: Parity Double | Any Any When address error,
SECDED CM port bounds. inhibit write to that
address.
Complete current
instruction;
exchange to (MPS);
P = RAC + next fetch
address (not necessarily
related to error).
MCR 50 - Short warning. Any Any Complete current
instruction;
MCR 53 - CYBER 170 State exchange exchange to (MPS);
request (PP). P = RAC + next fetch
address (not necessarily
MCR 56 - External interrupt (CP). related to condition).
MCR 59 - System interval timer.
MCR 62 - Soft error.,
MCR 55 - No CYBER 170 State Any Any Inhibit execution of
bit in VMCL on entering target instruction;
CYBER 170 State. exchange to (MPS);
P = RAC + target fetch
address.
MCR 60 - RN =0 on‘return to CYBER
170 State.
MCR 52 - Address specification Any |- Any Inhibit execution of
error when CYBER 170 target instruction;
State entered. exchange to (MPS);
: P = RAC + target fetch
address.
MCR 54 - Access violation when CYBER
170 State entered.
MCR 60 - Invalid segment when CYBER
170 State entered.
MCR 60 - RN = 0 on call to CYBER 170
State or trap from CYBER
170 State.
MCR 61 - Outward call/inward return
to CYBER 170 State.
MCR 63 - Trap exception on trap from
CYBER 170 State.
60458890 A I1-2-117

Table I1-2-23., CYBER 170 State Exceptions (Sheet 2 of 2)

Job Process CYBER 170
State State
MCR/ | Exchange
UCR Package Exit
Bit Bit Error Mode | Mode Response
MCR 57 - Page fault without FLC or Any Any Interrupt execution;
FLE violation. exchange to (MPS);
P = RAC + this/next
fetch address.
UCR 48 - Trap to executing Any Any Trap to TP in exchange
instruction (017). package; P = RAC + next
fetch address.
UCR 49 - Unimplemented instruction Any Any Inhibit execution;
fetched. ‘ trap to TP in exchange
package; P = RAC + this
fetch address.
UCR 50 - Free flag in incoming Any Any Inhibit next instruction;
exchange package. trap to TP in exchange
package; P = RAC + next
fetch address.
UCR 51 - Process interval timer.
UCR 53 - Critical frame on return Any Any Inhibit execution of
to CYBER 170 State. target instruction;
trap to TP in exchange
package; P = RAC + target
fetch address.
29 FP indefinite. Mon Sel Exchange to (MPS);
FP infinite. - | P = RAC + this/next
fetch address.
30 FP indefinite. Mon Sel Exchange to (M,PS);
FP infinite. P = RAC + this/next
fetch address.
- 31 FLC violation, Mon Sel Interrupt execution;
incremental read or write. X or CM = unchanged;
' A = read address less
RAC; exchange to (MPS);
P = RAC + this/next
fetch address.
- 31 FLE violation, Mon Sel Execute as pass;
block transfer instruction exchange to (MPS);
011, 012, P = RAC + next fetch
address.
- 31 FLE violation, single-— Mon Sel Execute as pass;
word transfer instruction exchange to (MPS);
014, 015. P = RAC + this/next
fetch address.
1I-2-118 60458890 A

Sewr’

N
.

oo’

ﬁ‘;

s

p

00

The following exception causes an exchange from CYBER 170 State to Virtual State monitor
mode with an MCR bit set and the CYBER 170 State halt flag in the outgoing exchange package
clear:

Bit Description

MCR 57 Page table search without find.

Exceptions that may occur only immediately after entering or leaving the CYBER 170 State
environment, and which cause a trap interrupt from CYBER 170 State to Virtual State, with a
UCR bit set, are as follows:

Bit ~ Description
UCR 50 Free flag set in incoming exchange package.
UCR 53 = Return with critical frame flag set.

Exceptions causing a trap interrupt from CYBER 170 State to Virtual State, with a UCR bit
set, are as follows:

Bit Description
UCR 48 Trap to Virtual State (017) instruction in the CYBER 170 State instruction
set.
UCR 49 Unimplemented instructions.

A trap interrupt attempted with trap interrupts disabled causes an exchange or stack

operation as described in table II-2-6.

Address Errors

An address error does not change the destination CM location or register. Read/write
address errors occurring in CYBER 170 State monitor mode initiate an exchange to Virtual
State monitor mode only with the corresponding exit mode selected. Instruction fetch
address errors and target instruction fetch address errors in CYBER 170 State monitor mode
always initiate the exchange.

A page-table-search-without-find fault (page fault) in CYBER 170 State (MCR bit 57) causes

-an exchange to Virtual State monitor mode only in the absence of a simultaneous FLC or FLE

violation. When the exchange does occur, the interrupted process is restartable only when
the page fault occurred during execution of a CYBER 170 State UEM transfer instruction (Ol1,
012, 014, 015).

When the page fault causes the exchange, the CP places the PVA causing the page fault into
the untranslatable pointer register, including the SEG and RN fields of the PVA.

The CP tests each CM reference for an address specification error, invalid segment, or

access violation. When an interrupt occurs because of these conditions, the interrupted
CYBER 170 State process may not be restartable.

60458890 A I1-2-119

lllegal Instructions

The following CYBER 170 State instructions, when executed in CYBER 170 State monitor mode,

cause an exchange to Virtual State monitor mode with the CYBER 170 State halt flag set in
the exchange package:

e Any 30-bit instruction at parcel 3.
e Instructions 011 through 013 at parcel 1, 2, or 3.
° Instruction 016,

e Instructioms 011, 012, 0l4, and 015 with certain parameters as described below.

Extended Memory Transfer Exceptions

Instructions 0l1 and 012 in CYBER 170 State monitor mode, with exit mode selected, cause
exceptions with the following priority:

Exception) Response
l. Not in parcel 0 Illegal instruction.:
2. UEM enable flag clear (exchange package) Illegal instruction.
3. FLC violation Address range error.
4. Negative blocklength Address range error.
5. FLE violation Address range error.
6. Zero blocklength Fetch next instruction.

Instructions 014 and 015 in CYBER 170 State monitor mode, with exit mode selected, cause
exceptions with the following priority:

Exception Response
1. UEM enable flag clear (exchange package) Illegal instruction.
2. FLE violation ; Address range error.
3. Xk (CYBER 170 State) bit 21/22/23 set Address range error.
I1-2-120 ‘ : - 60458890 A

C Qo

,.%

HARDWARE EXCEPTIONS IN CYBER 170 STATE

-Table II-2-20 lists CYBER 170 State exception conditions. In general, hardware exceptions
cause an exchange to Virtual State monitor mode or a trap interrupt to Virtual State jo
mode., :

Hardware exceptions causing an exchange from CYBER 170 State to Virtual State monitor mode
are as follows:

Bit Description

MCR48 Detected uncorrectable error.
MCR50 Short warning.
‘:i?'. MCR56 External interrupt.
- MCR59 System interval timer.
MCR62 Soft error.
Hardware exceptions causing a trap interrupt to Virtual State job mode are as follows:

Bit Description

UCR53 Process interval timer.

IOU PERIPHERAL PROCESSOR PROGRAMMING

The PPs may access all CM storage locations. One CM word or a block of CM words can
transfer from a peripheral processor memory (PPM) to CM or from CM to a PPM. Data from
external devices is read into a PPM, and with additional instructions, transfers to CM.
Conversely, data is transferred from CM to a PPM and then transfers by way of additional
instructions to extermal devices.

: C CENTRAL MEMORY ADDRESSING BY PPs

Addresses sent to CM from PPs are real memory addresses. PPs address CM using either
absolute or relocation addressing. Every PP can read all CM locations without restriction.
Every PP has write access to CM as determined by the 0OS bounds register in the 1I0U. The
port bounds register in CM may also be set to limit write access from IOU.

Absolute and Relocation Addressing

If A register bit 46 is a zero, bits 47 through 63 of A specify an absolute CM address 0
through 377777g. 1If bit 46 of A is a 1, bits 47 through 63 of A are added to the 28-bit
relocation register R to specify an absolute CM address 0 through 1777777777g. 1If bit 46
of A changes during a transfer, the addressing mode changes accordingly. Figure II-1-7
shows how a relocation address forms.

Instructions 0024/0025 load/store the relocation register. The leftmost 7 bits of R
represent (unused) extra addressing capacity. The rightmost 6 bits of R are appended
zeros, Figure II-1-6 shows how R stores in PP memory.

©0

60458890 B I11-2-121

OS Bounds Test

The 0S bounds test restricts write access from selected PPs to an upper or a lower regiom in

CM. The PP instructions for which the 0S bounds test performs are as follows:

Exchange jumps (00260, 00261, 00262).
Central write (0062, 1062).
Central write (d) words (0063, 1063).

Central read and set/clear lock (1000/1001).

PP Central Memory Read
Instructions which read CM data into PPM are as follows:
e 60-bit CM words to five 12-bit PP words
Central read from A to d (0060).
Central read (d) words from (A) to m (0061).
e 64-bit CM words to four 16-bit PP words
Central read from A to d long (1060).
Central read (d) words from (A) to m long (1061).
Central read and set lock from d to (A) (1000).

Central read and clear lock from d to (A) (1000).

It is possible, by way of block read (0061, 1061) to read up to 4095 CM words, over-writing
PP memory cyclically. Hardware, however, uses PPM location 0 to hold the program counter

during block transfers. Refer to instructions 0061 and 1061 in section II-1.

. PP Central Memory Write

Instructions which write PPM data from into CM are as follows:
° Five 12-bit PP words to 60-bit CM words
Central write to (A) from d (0062).

Central write (d) words to (A) from m (0063).

e Four 16-bit PP words to 64-bit CM words
Central write to (A) from d long (1062).

Central write (d) words to (A) from m long (1063).

11-2-122

60458890 A

AN

W ¥

,,,,,,,,

A
ywﬁ

U

C

00

It is possible by way of block write (0063, 1063) to write up to 4095 CM words, repeating PP
memory cyclically. Hardware, however, uses PPM location O to hold the program counter
during block transfers. Refer to instructions 1062 and 1063 in section II-l.

PP MEMORY ADDRESSING BY PPs

PP instructions use 6-bit/18-bit direct operands or obtain the operand from PP memory using
direct, indirect, or indexed addressing.

Direct 6-Bit Operand

PP instructions of this type are no—address instructions. They have the format OPCODEd.
The d-field provides a 6-bit direct operand zero-extended to 18 bits in calculations.

Direct 18-Bit Operand

PP instructions of this type are constant address instructions. They have the format
OPCODEdm. The combined d and m field provides an 18-bit operand.

Direct 6-Bit Address

PP instructions of this type are direct address instructions. They have the format
OPCODEd. The d field provides a 6-bit direct address, accessing PPM locations 0 to 77g,

Direct 12-Bit Address

PP instructions of this type are indexed direct address instructions, with zero index. They
have the format OPCODEdm, d = O. The m field provides a 12-bit direct address, accessing PP
memory locations 0 through 7777g, .

Indexed 12-Bit Address

PP instructions of this type are indexed direct address instructions. They have the format
OPCODEdm, d = O. The m field provides a 12-bit direct address (base address). The d field
specifies a PP memory location from O to 77g, the contents of which is a 12-bit index.

The indexed direct address forms by adding the index to the base address as signed one”s
complement numbers, ignoring overflow. When m + (d) = 7777 the result sets to 0000, except
in the addition 7777 + 7777 = 7777.

Indirect 6-Bit Address
PP instructions of this type are indirect address instructions. They have the format

OPCODEd. The 6-bit d field addresses PP locations O through 77g, The 12 rightmost bits
of the addressed location provide an address to access PP memory locations O through 7777g,

60458890 A I1-2-123

CHANNEL INPUT/OUTPUT OPERATIONS

All PPs may access all external devices through internal and external interfaces. Each
internal interface contains a data register and channel control flags. The internal
interfaces connect to externmal interfaces communicating with the external devices.

CHANNEL FLAGS

Channel operation is controlled by the channel flags, which are set/reset by PP instructions
and by signals from the external devices. The channel flags are as follows:

® Channel active/inactive flag.
e Register full/empty flag.

e Channel (marker)vflag.

e Error flag.

The active flag and the full flag control the channel input/output transfers. The status of
these two flags determines the channel active, inactive, full, or empty. The marker flag is
for software use, and the error flag indicates transmission parity errors.

Channel Active Flag

A PP sets the active flag to indicate a reserved channel (channel active). The PP or the
external device clears the active flag to indicate a free channel (channel inactive).

Devices connected through the CYBER 170 State 12-bit channels may also set this flag to
request attention.

A PP sets the active flag by the activate instruction (0074) or function instructions (0076,
0077). A PP clears the active flag with the deactivate instruction (0075). Normally,
external devices clear the active flag in response to a function instruction, or when they
have no more data to send. A PP senses the active flag state using the jump on
active/inactive instructions (00640 and 00650).

Register-Full Flag

A register is full when it contains a function or data word for an external device, or when
it contains a similar word received from the external device. The register is empty after

the word is read. The flag turns on or -off as the register changes states. A channel can

only be full when it is active.

When set, the register—full flag signals the destination that data is available, and signals
the sender that no more immediate data can be sent. When clear, full flag signals the:
destination to wait for the next data word, and signals the sender to send another word.
During block transfers, the register—-full flag sets once for each word written into the
register.

The register—full flag also clears when the channel goes inactive for any reason. The PPs
can sense the flag state using the jump—on-full/empty instructions (00660/00670).

- II-2-124 g . 60458890 A

\\\\\

0

Channel (Marker) Flag

This flag is used by software as a marker and does not affect hardware operation. The flag
provides dual PP I/0 driver programs with a synchronization mechanism. The flag is
inaccessible to external devices.

The marker flag is set/cleared by the channel flag instructions (00641/00751). A PP can
sense the marker flag state using the jump-on-set/clear instructions (1064/1065).

Priority conflicts exist when PPs in the same time slot use this flag. Hardware resolves
the marker flag priority conflicts for the maintenance channel 17g, For other channels,

the problem is resolved by software interlocks kept in CM, or by not assigning PPs in the
same time slot to the same channel. Any five consecutively-numbered PPs are not in the same
time slot.

Error Flag

This flag indicates a data parity error on a channel transfer. The IOU interface sets the
error flag when it detects a data parity error on input data. External devices connected
through 16-bit channels can also set this flag when detecting an output data parity error.
When this flag sets in any internal interface, the channel parity error bit also sets in the
I0U fault status register. PP instructions 00661 and 00671 clear. and sense the error flag.

PROGRAMMING FOR CHANNEL INPUT/OUTPUT

Data transfers to/from external devices are controlled by PP instructions 0064 through
0077. The same instruction set services 8-, 12—, and 16-bit channels. The assignment of
PPs, transfer priorities, and resolution of conflicts is a software responsibility.’

The channel marker flag and/or software interlocks in central memory provide for channel
parity and reservation. Proceed as follows after resolving conflicts:

Action Typical Instruction
l. Clear error flag. Jump if error flag set, and clear flag (00661).
2. Verify channel availability. Jump if active (00640).

3. Verify device availability:

Request device to Function m (00770).
send status.
Wait until device Jump if active (00640).
responds.
Activate channel. Activate (00740).
Read device status. Input to A (00700).
Verify error status. Jump if error flag set (00661).
Analyze device status. Logical product (0012), zero jump (0004).
60458890 A : I1I-2-125

4. Prepare for input/output:

Enter number of
words to A.

Verify channel
inactive.

Prepare device for
read/write.

Wait until device
responds.

5. Read/write data:

Activate channel.

Read/write data.

If write, loop
until empty.

Disconnect Channel.

Verify inactive

" status.

6. Verify transfer integrity:

Verify A words
were transferred
(note 1).
Verify error status.
Verify inactive
status.
" Request device.
to send status.
Wait until the
device respondse.
Activate channel.
Read device statuse.
Verify error status.
Analyze device status.
Verify inactive
status.

Load d (0014).
Jump if active (00640).
Function m (00770).

Jump if active (00640).

Activate (00740).
Input/output A words (0071/0073).
Jump if full (00660).

Deactivate (00750).
Jump if active (00640).

Nonzero jump (0005).

Jump if error flag set (00661).
Jump if active (00640).

Function m (00770).

Jump if active (00640).

Activate (00740).

Input to A (00700).

Jump if error flag set (00661).

Logical product (0012), nonzero jump (0005)
Jump if active(00640).

If A = original value, no words were
transferred. If A is not equal to 0, device
or another PP ended transfer.

INTER-PP COMMUNICATIONS
Any PP can communicate with any other PP using any channel (except the real-time clock) by

omitting the conditioning of that channel”s external devices for a data transfer. Both
single-word and block transfers can be used.

I1-2-126 o -~ 60458890 A

cC

f\k.,,.,/

i, '
(w; ’

il

Either the sending PP or the receiving PP can activate the channel used, after which the
sending PP outputs data into the data register and the receiving PP inputs data from the
same register.

The transfer rate is one word every 250 nanoseconds, except when the transfer is between PPs
in different barrels but the same time slot. In such a case, the transfer rate is one word
every 500 nanoseconds. PPs using the same time slots are as follows:

Models 810, 815 and 825, and 830 Models 835, 840, 845, 850, 855, 860, and 990

Slot PP Number) Slot PP Number

1 0 10 1 0, 5, 20, 25
2 1 11 2 1, 6, 21, 26
3 2 12 3 2, 7, 22, 27
4 3 13 4 3, 10, 23, 30
5 4 14 5 4, 11, 24, 31
6 5 15

7 6 16

8 7 17

9 8 18
10 9 19

Software must resolve priority and reservation problems arising in inter—PP communications.

PP PROGRAM TIMING CONSIDERATION

Some external equipment requires timing considerations in issuing a function, activate, or
input instruction. Refer to the applicable external equipment reference manual. Such
timing considerations may be required, for example, to ensure that the equipment attains a
proper speed before data is sent (required by some magnetic tape equipment). Also,
equipment terminating a data transfer by resetting the active flag often requires timing
considerations in issuing the next function instruction.

CACHE INVALIDATION

When a PP executes 60-bit central write instructions, the IOU sends cache memory
invalidation requests to the CP., The CP responds by purging the cache memory of any former
copies of the words stored in CM., Such invalidation requests are sent during the following
central write instructions:

® Central write A to d (0062), with every 60-bit word.

° Central write (d) words from m to (A) (0063), when an address with bits 62 and
63 set is sent to CM, and with the last word written.

Cache is not invalidated during the
execution of instructions 1001, 1002, 1062,
and 1063.

60458890 C I1-2-127

ERROR DETECTION AND RECOVERY

The IOU and each PP have fault detection and reporting hardware. The IOU generates and
checks parity on all data transferred between PP and PP memory, CM and IOU, and IOU and
external devices.

PP Hardware Errors

When a PP hardware error occurs with the enable error stop bit set in the IOU environment
control register, the PP with the fault halts (idles). In this case, another PP may perform
error detection and logging. When one PP halts from error detection, the remaining PPs are
affected only when a PP is waiting for the halted PP to perform some action.

Error repbrting from any PP with a fault can be disabled by setting the relevant bit in the TN
I0U fault status mask register. This is normally done when removing a PP from service, and

restores normal error reporting from other PPs through the summary status byte. R

Channel Parity Errors

The output register 16 bits are checked for parity whenever the register is full. When a

parity error is detected, the following takes place:
e Channel error flag in the channel concerned sets. ‘ N
° Fault status register bit for this channel sets.)) N
e Uncorrected error bit in IOU status summary register sets.

Error reporting from any channel with a fault can be disabled by setting the relevant bit in

the I0U fault status mask register. This is normally done when removing a channel from

service, and restores normal error reporting from other PPs through the summary status byte.

Parity Errors on Output Data .

\w\;‘//

The IOU sends a data or function word to the channel with parity calculated on all 16 bits
of the channel output register. In case of 8- and 12~bit channels, software must ensure
that the missing bits in the output register are zeros. This ensures correct channel parity
after the unused bits discard.

Software must verify the integrity of a 12-bit channel output data transfer by requesting a
status word from the device concerned. When a device detects a parity error on a 12-bit
function word output, it does not send any response and the channel remains active and full.

Devices connected through 16-bit channels or the maintenance channel respond to a data word
parity error detected at the device by resetting the channel full flag and setting the error
flag. The channel remains active and execution of the current output instruction

continues. These devices respond to a function word parity error by resetting the active
flag and setting the error flag. :

The 12-bit channel contains a switch to disable parity checking.

I1-2-128 60458890 A @

©O

Parity Errors on Input Data

For all channels, the IOU sets the channel error flag whenever it detects a parity error on
input data. The IOU regenerates correct parity before storing the data into PP memory.

Timeout

The maintenance channel interface provides a 100-microsecond timeout counter to ensure that
the PP dealing with that channel continues operations when the maintenance channel does not
respond to a data transfer command. The timeout interval starts when the maintenance
channel goes active or full, and resets when the channel goes inactive or empty. If the IOU
receives no response by the end of the timeout interval, it clears the channel active flag.

Function word output does not activate the timeout counter. This allows software to recover
from a maintenance access control malfunction.

To allow inter-PP communications without timeout, the timeout is disabled when the

maintenance channel interface is deselected from channel 17g using connect codes 8
through F. :

INITIALIZATION

System initialization begins with the IOU, which requires no external hardware or software
aid to initialize itself. After the operator presses the deadstart button (CC545) or
presses the CTRL G key (CC634B, model 990 only), a storage device in the IOU provides
initialization programs and data for further action. -

After the IOU has self-initialized, any or all of the following operations may be performed
by way of the system console and deadstart options:

e Load CP control memory.

e Initialize CM.

e Dump CM.)
e Run CP quick look test.

e Begin maintenance system load.

® Begin operating system load.

60458890 C I1-2-129

SYSTEM CONSOLE PROGRAMMING (CHANNEL 10g)

KEYBOARD

A PP must transmit a one-word function code (70208) to request data from the system
console keyboard. The code prepares the display controller for an input operation. The PP
then activates the input channel and receives one character from the keyboard. This
character enters as the lower 6 bits of the word, and the upper bits clear. There is no
status report by the keyboard. Table II-2-24 lists the keyboard character codes.

DATA DISPLAY (CC545)

Data is displayed within an 203.2 mm (8-in) area of a cathode~ray tube (CRT). The display , { ;
can be alphanumeric (character mode) or graphic (dot mode). There are 262144 dot locations P
arranged in a 512-by-512 format. Each dot position is determined by the intersection of X

and Y coordinates. The lower left corner dot is octal address X = 6000 and Y = 7000, and

the upper right corner dot is octal address X = 6777 and Y = 7777. (Model 990 also uses a

CC634B system console. Refer to the hardware reference manual listed in the preface for
information regarding this terminal.,) ’

Character Mode

Large, medium, and small characters are provided in character mode.
arranged in a 32-by-32 dot format with 16 characters per line. Medium characters are
arranged in a 16~by-16 dot format with 32 characters per line. Small characters are

arranged in an 8-by-8 dot format with 64 characters per line. Table II-2-25 lists the
display character codes.

{
Large characters are *-,}

Dot Mode

In dot mode, display dots are positioned by the X and Y coordinates, ;
position the dots horizontally. The Y coordinates position the dots vertically and unblank |

the CRT for each dot, Horizontal lines form from a series of X and Y coordinates. Vertical
lines form from a single X coordinate and a series of Y coordinates.

The X coordinates 7

8

I1I-2-130 60458890 C {_}Vl

00

Table II-2-24.

Keyboard Character Codes

Character Code Character Code
No data 00 0 33
A (1 1 34
B 02 2 35
c 03 3 36
D 04 4 37
E 05 5 40
F 06 6 41
G 07 7 42
H 10 8 43
I 11 9 44
J 12 + 45
K 13 - 46
L 14 * 47
M 15 / 50
N 16 (51
0 17) 52
P 20 Left blank key 53
Q 21 = 54
R 22 Right blank key 55
S 23 , 56

T 24 . 57
U 25 Carriage return 60
\ 26 Backspace 61
W 27 Space 62
X 30
Y 31
Z 32

60458890 A

I1-2-131

Table 1I-2-25.

Display Character Codes

Character Code ‘Character Code
No data 00 0 33
A 01 1 34
B 02 2 35
C 03 3 36
D 04 4 37
E 05 5 40
F 06 6 41
G 07 7 42
H 10 8 43
I 11 9 44
J 12 + 45
K 13 - 46
L 14 * 47
M 15 / 50
N 16 (51
0 17) 52
P 20 Space 53
Q 21 = 54
R 22 Space 55
S 23 s 56
T 24 . 57
1] 25
v 26
W 27
X 30
Y 31
Z 32

I1-2-132

60458890 A

cc

N

S K

AN
«

Codes

A single function word transmits to select the presentation, mode, and character size
(character mode only). Figure I1-2-29 illustrates the function word format.

The word
following the function word specifies the starting coordinates for the display (for either
mode) .

Figure II-2-30 illustrates the coordinate data word.
character word.

Figure II-2-31 illustrates the

e
O

FIRST
CHARﬁCTER

SECOND
CHARQCTER

—

6'/5

Figure I1I-2-29,

Display Station Output Function Code

COORDINATE
ADDRESS

6:X

7=Y

A
h 9Vs
NOTE:

o

2

A DOT DISPLAY.

IN DOT MODE, EACH Y COORDINATE TRANSMITTED FORCES

Figure II-2-30.

Coordinate Data Word

O:= LEFT PRESENTATION
1= RIGHT PRESENTATION

7 =EQUIPMENT NOT
SES\ECT USED

hy

0= CHARACTER MODE
1= DOT MODE

2= KEYBOARD INPUT

O=SMALL CHARACTERS
| =MEDIUM CHARACTERS
2=LARGE CHARACTERS

M o

L |

A
3s'7 6’5

|

Figure 1I-2-3].

60458890 A

Character Data Word

I1-2-133

I The controller regulates character spacing on the line once the display operation starts. A
new Y coordinate data word must be sent to start each line. If a new Y coordinate is not
specified, data is written on the line specified by the active Y coordinate word, and
information already on that line is overwritten. Character sizes can be mixed by sending a
new function word and coordinate word for each size change. Spacing on a line can be varied
by sending a coordinate word for the character which is to be spaced differently.

PROGRAMMING EXAMPLE

The following programming example (figure II-2-32) requests an input of one line of data
l from the system console, and displays this data on the CRT as it is being typed.

AN
PROGRAM TIMING CONSIDERATION ;{)/
When performing an output operation, the computer must wait for a channel empty condition at
the end of the output to prevent loss of coordinates or data. A full jump at the end of the
output ensures the channel empty and acceptance of the last output word by the display
controller before disconnecting from the channel.
. J
N

I1-2-134 60458890 C q.)}

C

START

INPUT ONE
DATA WORD

NO

STORE
y DATA

v

ASSEMBLE
DATA IN
CHARACTER
MODE FORMAT

v

OUTPUT
ASSEMBLED DATA
PLUS INITIAL
COORDINATES

O

DISPLAY LINE
BEEN FILLED

CONTINUE
DISPLAY

END

Figure II-2-32,., Receive and Display Program Flowchart

0 60458890 A 11-2-135

REAL-TIME CLOCK PROGRAMMING

Channel 14g is reserved for the real-time clock.
and may be read at any time.

IOU DEDICATED CHANNELS

Figure II-2-33 illustrates the IOU dedicated channels for models 810, 815, 825, 830, and

990.

This channel is always active and full,
The real-time clock is a 12-bit free-running counter
incrementing at a l-megahertz rate from 0 to 4095).

Figure II-2-34 illustrates the IOU dedicated channels for models 835, 840, 845, 850,
855, and 860.

DEADSTART

PERIPHERAL
PROCESSORS

@ |

i

}

DISPLAY
CONTROLLER

CC545
CONSOLE

I

PORT 0 PORT 1
RS§232 RS232
| MODEM I
LOCAL
TERMINAL|

(©) OPTIONAL WITH MODELS 810 AND 830.

MODEL 990 ALSO USES A CC634B
SYSTEM CONSOLE.

I MODEM I

REMOTE
TERMINAL]

MAINTENANCE|
ACCESS
CONTROL
(MAC)

L

CHANNEL CHANNEL CHANNEL CHANNEL
10g 1ag 15 174
REAL-TIME
cLOCK
KEYLOCK
AR SWITCH RADIAL INTERFACES
I I PORT 0, 1 ——I-——l
r— 9
BAUD RATE
POWER MICRO- Rl R RI RI
CONTROL [*| PROCESSOR [¢—| SWITCH cp 0 1 5 0 1
PORT 0, 1 Liy Lia
(OPTIONAL)
RS366 | 50/60 Hz
AUTO POWER
DIALOUT SUPPLY

1

10U

REGISTERS

MAINTENANC—EI * IMAINTENANC

CM
REGISTERS

]

CcP

MAINTENANCE
REGISTERS

Figure II-2-33.

II-2-136

IOU Dedicated Channels, Models 810, 815, 825, 830, and 990

60458890 C

2

¥

Yo

P
e

C
C

REMOTE
TERMINAL,

irywiiald PERIPHERAL
(SWITCHES) PROCESSORS
¥
" 11t
— 1
CHANNEL CHANNEL CHANNEL CHANNEL
10g 14g 15 174
REAL-TIME
CLock RADIAL INTERFACES
BAUD 1
] S S S
DISPLAY SWITCHES RI Rl RI RI | R
CONTROLLER 0 1 2 3 4
3 | W—
PORT 0 PORT 1 {OPTIONAL)
RS232 RS232
’ MAC MAC MAC
consoLE oy CP/CM 1840.860) OPTIONAL CP
MODEM 835-990 CP/CM (990) 835:990
LOCAL
TERMINAL|
MODEM 10U
MAINTENANCE c,',“(’;gs,
REGISTERS

Figure 1I-2-34,

60458890 C

I0U Dedicated Channels, Models 835, 840, 845, 850, 855, and 860

I11-2-137

TWO-PORT MULTIPLEXER PROGRAMMING

Channel 15g provides serial communications capability with two external devices through the
two-port multiplexer. One port is reserved for maintenance use. With both ports deselected,
this channel can also be used for PP—to~PP communications. The arrangement is as shown :

below.
CALENDAR
CLOCK
INTERNAL

FIFO I———-yl UART I-——«» PORT 0 (RS232C) ————»
INTERFACE
I’ FIFO l—.l UART Iq—b PORT 1 {R$232C) —g

STANDARD
CHANNEL 155 ——>

o N
DIAA'I‘..(‘;?JT (RS366A) WK ’=‘)~1:
FIFO First-in-first-out output buffer PORT
UART Universal asynchronous receiver-transmitter
The two-port multipléxer can communicate with all devices which use EIA standard RS-232
serial asynchronous interface at baud rates of 110, 300, 600, 1200, 2400, 4800, or 9600.
(Additionally, a baud rate of 19 200 can be used with the models 815 and 825.) The baud
rate for each port is independently selectable by switches on the two—port multiplexer PCB.
The multiplexer ports can accommodate data with odd/even parity, 5 to 8 bits per character, P
and 1 or 2 stop bits. The format is set by issuing appropriate function codes. :
K
The following table lists the devices which the two-port multiplexer can use to display the
l system deadstart settings:
10U 100 10U - I0U 10U
(model (model (model (models (model
810,815) 825) 830) 835-860) 990)
CC 545 SYSTEM CONSOLE X X X -
TWO- CC634B SYSTEM CONSOLE X N
PORT
MUX CDC 752/722 TERMINAL X X
DISPLAY
CDC 721 TERMINAL X X
SWITCH PANEL DISPLAY X

| The models 810, 815, 825, 830, and 990 I0U multiplexer supports the following special

features:

® Remote deadstart.
° Calendar clock.
® Internal port-baud-rate selection,

The models 810 and 830 IOU multiplexer additionally supports the following special features:

° Auto dial-out.
e Remote power control,

I1-2-138

60458890 C

0O
O

FUNCTION WORDS

The two-port multiplexer uses the channel 15g rightmost 12 bits as a function word
the PP. The function word specifies the following:

Octal
Code

7XXX
6XXX
1XXX
00XX
01XX
02XX
03XX
04XX
05XX
06XX

07XX

Description
Terminal select.
T;rminal deselect.
Calendar clock/auto dial-out operations.
Read summary status.
Read terminal data.
Outpﬁt to first in, first out (FIFO) buffer.
Set operation mode to terminal.
Set/clear terminal control signal DATA TERMINAL READY (DTR).
Set/clear terminal control signal REQUEST TO SEND (RTS).

Not used.

Master clear selected port.

Terminal Select (7XXX)

from

This code selects the terminal to which the function codes and data transmissions apply:

Code

7000

7001

Description
Select port O (future use).,

Select port 1 (maintenance use).

Terminal Deselect (6XXX)

This code deselects the two-port multiplexer from channel 15g,
158 can be used for 16-bit PP-to-PP communications.

When deselected, channel
Inter-PP communications over channel

158 should be used with caution since the transfer rate is variable (5 microseconds/word
through 1 millisecond/word, with 100 microseconds/word typical).

60458890 A

I1-2-139

Calendar Clock/Auto Dial-Out (1XXX) -

This code can select several functions which pertain mostly to the calendar clock and auto

dial-out functions.
microprocessor memory to the PPs,

Code

e

1X02

1X03

1X04

1X05

1X06

1X07

1X10

II1-2-140

These particular functions involve a data transfer from the

Description

Read Deadstart Port/Terminal Type. Identifies the port
which initiated the last deadstart operation. The
multiplexer stores the terminal type and port number of
the logged—-in deadstart device.

Set Port Baud Rate. Sets the baud rate of the port which
is currently selected.)

Read Calendar Clock. Reads the calendar clock after the
multiplexer selects either port O or port 1.

Write Calendar Clock. Writes the calendar clock after
the multiplexer selects either port O or port l.

Write Auto Dial-Out Data (models 810 and 830 only).
Prepares the multiplexer for an auto dial-out write
operation. Port 1 must be selected before this function
is issued.

Bit Bit Description
56 through 59 First number
60 through 63 Second number

Read Auto Dial-Out Status (models 810 and 830 only).
Requests the multiplexer for an auto dial-out status
operation. Port 1l must be selected before this function
is issued.

Bit Bit Description
52 through 59 ‘ First number
60 Abandon call
61 éall origination status
62 Data line occupied
63 Power indicatioﬁ

Abandon Call (models 810 and 830 only). Réquests that
the multiplexer abandon the call currently being
attempted.

60458890 A

O

hS

e

00

Read Summary Status (00XX)

This code prepares the channel for status input from the selected terminal. A one word
input must follow to read the 12-bit status response, which is as follows:

Bit
52 through 58
| 59

60

61

62

63

Description
Not used.
Output buffer not full.
Input ready.
Data carrier detect or carrier on.
Data set ready.

Ring indication.

PP Read Terminal Data (01XX)

This code prepares the channel for data input from the selected terminal. Channel 1l5g
must be activated and one word data input instructions must follow to read in the terminal
data. The 12-bit data word has the following format:

Bit

52

53

54

55

56 through 63

60458890 A

Description

Data set ready. Indicates that the DATA SET READY (DSR) signal is
active.

Data set ready and data carrier detector. Indicates that both DATA SET
READY (DSR) and DATA CARRIER DETECTOR (DCD) signals are active.

Overrun. Indicates that the previously received character was not read
by the PP before the present character over—wrote the previous character.

Framing or parity error. Indicates that the received character does not
have a valid stop bit (framing error) or that the received character
parity does not agree with the selected parity (parity error).

Data character.

I1-2-141

PP Write Output Buffer (02XX)

This code prepares the multiplexer for an output operation to the 64-character output buffer
memory. The channel 15g active flag must be set before an output operation can proceed.

When an output operation fills the buffer completely and no more locations are available,
the multiplexer arbitrarily resets the channel active flag.

Set Operation Mode to Terminal (03XX)

This code sets data terminal operation mode as follows.

Code Bit Description
,”(/R\
58 Enable loop back (models 815 and 825 only). When set, this bit enables kw‘ ;
a round-trip data path from channel 15g to the selected RS-232 port -’

and back to channel 15g, The RS-232 interface does not transmit data
externally in this mode.

59 No parity. When set, this bit eliminates parity bit from transmitted
and received character. In such a case, stop bit(s) immediately follow
the last data bit.

60 Number of stop bits. Selects number of stop bits (1 or 2) which follow
immediately after parity bit: k SN
Bit 60 Description N
Clear 1 stop bit.
Set 2 stop bits.

61 through 62 Number of bits per character. Select 5, 6, or 7 bits per character:

Code Bits/Character
TN,
00 5 £
N _F
01 6
10 7
11 8
63 0dd/even parity select. Selects type of parity appended immediately

after data bits. Also determines the parity checked on input. When
set, selects even parity.

o~
zL:F’/J [“@)

I1-2-142 ‘ . 60458890 A

A

%,

oYe

00

Set/Clear Data Terminal Ready (DTR) (04XX)

This code conditions the data terminal to send or discontinue the DATA TERMINAL READY (DTR)
control signal as follows:

Code Bit 63 Action Taken
Set DTR set active.
Clear DTR set inactive.

Set/Clear Request to Send (RTS) (05XX)
This code sets or clears the terminal control signal REQUEST TO SEND (RTS) as follows:

Code Bit 63 Action Taken
Set RTS set active.
Clear RTS set inactive.

Master Clear (07XX)

This code master clears the selected port, including any buffer-stored data. The DTR and
RTS terminal control signals are not affected.

PROGRAMMING CONSIDERATIONS

Channel 15g communicates one at a time with the terminals connected to the external
interface. To establish communications between a PP and the terminal, the following takes
place:

l. PP issues a coded function word to select the terminal.

2. Multiplexer responds by resetting the channel active flag to acknowledge receipt of
the function code.

The multiplexer now routes all data to the selected terminal; other function words and data
input/output follow.

Data Output

The multiplexer can buffer-store a maximum of 64 characters per port. After 64 characters
are stored in the buffer, the multiplexer resets the channel active flag on the last output
word. The multiplexer terminates an output transfer when it receives an inactive signal
from the channel. :

The multiplexer does not permit output to a full buffer. Whenever the output buffer is full

and the multiplexer decodes a function code 02XX (PP write output buffer), the multiplexer
resets the channel active flag.

60458890 A I1-2-143

Data Input

The multiplexer does not buffer-store input data from the terminal. When the PP does not
input the previous data before the new data arrives, a lost data condition (overrun) exists.

Request to Send and Data Terminal Ready

Request to send and data terminal ready signals are automatically brought up by the hardware
under the following conditions (regardless of the software RTS and DIR bits):

° Data in the universal asynchronous receiver—transmitter (UART) output register.

e Data in the FIFO output buffer register.

PN
When no data is in the FIFO or UART, the software bit determines RTS and DTR. (
AN
MAINTENANCE CHANNEL PROGRAMMING
Any PP in the IOU can be programmed to perform any or all of the following operations on the
CP, CM, and 10U through the 8~bit maintenance channel (MCH):
° Initializing registers, controls, and memories.
e Monitoring and recording error information. if h
Y
e Verifying error detection and correction hardware.
The PP performing such operations is often galled the maintenance control unit. The MCH
consists of the MCH interface on channel 17g, a maintenance access control in CP, CM, and
I0U, and two sets of interconnecting cables.
The MCH interface contains a selector that connects the MCH to one of up to seven isolated
sets of cables. The IOU is element O and its maintenance access control connects internally
to the selector. The CP and the CM (models 810, 815, 825, 830, and 835) are assigned @)
arbitrary element numbers depending on the connector used at the MCH interface. (The models S0
845 and 855 CM shares a common cable and element number with the CP.) ; N
The CP and the CM (models 810, 815, 825, 830, and 835) connect to the IOU by separate cables
and gates. This arrangement results in a radial connection that allows the CP or the CM
(models 810, 815, 825, 830, and 835) to be shut down or removed without affecting
communication with the other unit.
MCH FUNCTION WORDS
The MCH function word consists of the connect, opcode, and type fields used as described
below. Table II~2~26 describes the MCH function word bit assignments.
The connect field specifies the unit to which the MCH is connected [CP, CM (models 810, 815,
825, 830, and 835), or IOU], controlling selection within the IOU only. The unit remains
connected until another connect code selects a different unit. Connect codes 10g to 17g
leave the MCH unconnected; in this state the interface can be used for PP-to-PP B
communications without timeout restrictions. {(

L

11-2-144 ' ' 60458890 A @,J

e

9

O
C

The OPCODE field controls the unit selected by the connect code; preparing the unit for a
coming read/write/echo operation; or causing the unit to halt, start, clear, or deadstart.

The use of the TYPE field depends on the connected unit. With the CP the connected unit,
type codes 1 to Ajg (models 810 — 835) or 1 through 7 (models 840 through 860) specify the
CP register connected. Also, for the CP, type code O specifies that the internal address of
the CP register to be connected is specified in a control word sent as two data words
immediately following the function word. With the IOU the connected unit, type codes 0 to 7
specify the starting byte number for read/write operations (all models except 990). For
model 990, the TYPE field must be set to all zeroes. For the models 810, 815, 825, 830, and
835, the CM ignores the type code. For the models 845 and 855, type code A selects access
to CM.

MCH CONTROL WORDS

Some function words must be followed by a 16-bit control word specifying the internal
address of the register to be connected. The control word must issue as two 8-bit data
words (sometimes called address bytes). This is accomplished by outputting two 16-bit words
from PP memory where each word”s rightmost 8 bits comprise the 16-bit control word. Such
control words are required after the following:

1. Function words to CP (models 810, 815, 825, 830, and 835) with opcodes 4/5
(read/write) and typecode O.

2. Function words to CP (models 840, 845, 850, 855, 860, and 990) with opcodes 4/5.
3. Function words to CM and IOU with opcodes 4/5.

4, Function words to CP, CM, and IOU with opcode 8 (echo).

‘MCH Programming for Halt/Start (Opcode 0/1)

These operations consist of the function word output. A halt opcode halts the processor
without damaging the executing process, including the integrity of the halted processor”s
interunit communications such as CYBER 170 State exchange request communication, central
memory communications, and the process state. If the process is restarted without
performing any other MCH operations, or after performing read/write with precautions as
described in the Operating Systems Manual, the process continues undamaged.

MCH Clear LED (Opcode 3)

This operation clears all LEDs associated with pak errors and is intended, however not
required, for use at system initialization. For maintenance reasons, this operation can
also clear LEDs without initializing and master clearing.

60458890 C 1I-2-145

MCH Programming for Read/Write (Opcode 4/5)

Refer to Programming for PP Data Input/Output in this section for a more complete
procedure. In general terms, proceed as follows:

l. 1Issue function with opcode 4/5.

2. Output data word (leftmost half of control word).

3. Verify error flag clear.

4. Output data word (rightmost half of control word).

5. Verify error flag clear.

6. Input/output required number of data words.

7. Verify error flag clear.
Reading a nonexistent register returns all zeros. Writing to a read-only register, or to a
nonexistent register, does not alter any register. Most registers are read/written as
64-bit (8-byte) registers, requiring the input/output of eight MCH data words. Most
registers physically smaller than eight bytes are right-justified with zero—-fill. Reading a

status summary register is an exception in that the status information repeats in each byte.

The IOU may disconnect the MCH without affecting subsequent MCH operations after the
following: :)

e Reading one to eight bytes from any register.

® Writing one byte to a corrected error log register.

e Writing one byte to a uncorrectable error log register.
The following MCH operations on CP registers can be performed with the CP running or halted
(when reading or writing registers which may change while being accessed, the CP should be
halted to avoid erroneous results):

e Read CP status summary register.

e Read CP fault status register.

o Read CP corrected error log registers,

‘o Read CP options installed.

® Read CP equipment ID register.

e Read/write CP dependent environmental control register.

o Read/write test mode control registers.

e Clear errors.
To read/write other CP registers, the CP must be running since microcode accesses these
registers. Refer to table II-2-26. When reading or writing registers which may change

while being accessed, precautions must be taken as described in the operating systems manual
listed in the preface.

I1-2-146 . - 60458890 C

‘-

R —

-

ale

00

MCH Programming for Master Clear/Clear Errors (Opcode 6/7)

These operations consist of a single function word output. The master clear immediately and
arbitrarily clears the connected unit without regard to possible information loss. The
clear—errors operation clears the connected unit error indicators. The unit concerned
should be halted to avoid loss of possible (mext) error reporting while the errors are
cleared.)

MCH Echo (Opcode 8)

This operation checks the data path between the MCH and the IOU MAC. Following the
operation MCH is activated and two bytes are sent to IOU MAC. IOU ignores the first byte
and latches the second byte in the Address Holding Register, in any data pattern. MCH is
deactivated after the second byte is accepted in IOU MAC and the channel is activated
followed by an input sequence. IOU MAC sends data (contents of Address Holding Register)
upon receiving the Active signal and subsequent Empty signals. There is no restriction on
the number of data words read.

MCH Programming for Read IOU Summary Status (Opcode C, IOU Only)

This operation is an alternative, faster means of reading the IOU summary status register.
In general terms, proceed as follows:

1. 1Issue function with opcode c.

2, Input summary status byte.

60458890 C 11-2-147 I

' ' 11-2-148

Table II-2-26. MCH Function Word Bit Assignments (Sheet 1 of 2)

Field Code (Hex) Description
MCH Function Word to 10U
CONNECT 0 Connect IOU maintenance registers.
(bits 8-F PP-to-PP communications.
8-11)
OPCODE 4 Prepare for read (control word required).
5 Prepare for write (control word required).
6 Master clear ADU and R barrel.
7 Clear fault status registers.
8 Echo.
C Read I0OU summary status (reads ome byte,
control word not required).
TYPE 0-7 I0U registers are read circularly (byte O
(bits follows byte 7) from the byte specified by
0-3) the TYPE field.
MCH Function Word to CM (Models 810, 815, 825, 830, and 835 Only)
CONNECT 1 Connect CM maintenance register.
(bits
8-11)
OPCODE 4 Prepare for read (control word required).
v 5 Prepare for write (control word required).
6 Master clear.
7 Clear fault status register.
8 Echo.

60458890 C

¢

e

00

60458890 C

Table II-2-26.

MCH Function Word Bit Assignments (Sheet 2 of 2)

Code (Hex)
Field (Hexadecimal) Description
MCH Function Word to CP
CONNECT 2 Connect CP maintenance registers.
(bits
8-11)
OPCODE 0 Halt processor.
1 Start processor.
4 Prepare for read (control word required).
5 Prepare for write (control word required).
6 Master clear.
7 Clear errors.
8 Echo.
TYPE 0 Control word required.
(Models 1 Read/write cache data buffer.
810, 815, 2 Read/write map segment files.
825, 830, 3 Read maintenance scan.
and 835 4 Read map page files.
5 Read/write register file A.
6 Read/write register file B.
7 Write maintenance scan limit.
8 Read/write control store.
A Read AD register.
TYPE 0 CP process state register.
(Models 1 Control store micrand data.
840, 845, 3 Maintenance access control reference (ROM).
850, 855, 4 Soft control memories.
and 860) 5 BDP control memories.
6 Instruction fetch decode memories.
7 Register file.
A CMC maintenance registers.
TYPE 0 CP process state register.
(Model 1 Control store micrand data.
990) 2 Maintenance access control (echo) function.
3 Reserved for future use.
4 Soft control memories.
5 BDP control memories.
6 Operand cache.
7 Register file.
8 Load and store section control memories.
9 Error processing network.
A CMC maintenance registers.
B Maintenance access control extended echo.
C-F Reserved for future use.

I1-2-149 I

P

.,J‘W ‘

TN

\\N A”y m.s»m.\“ﬂw

%

C

00

A register
ASCII
ASID
BC
BDP
BN
BS
CBP
CEJ/MEJ
CEL
CEM
CF
CFF
CcM
CP
CSF
DEC
DI
DLP
DM
DMR
DSC
DSP
DSR
DTR
EBCDIC
ECL
ECM
ECS
EIA
EID
EPF
ES
FIFO
FL
FLC
FLE
FP
G/L
IC
ILH
I/0
10U
JPS
KEY
LOCK
LPID
LRN
LST
MA
MAC

60458890 A

GLOSSARY

Address register

American Standard Code for Information Interchange

Active segment identifier

Base constant

Business data processing

Byte number

Binding section

Code base pointer

Central exchange jump/monitor exchange jump
Corrected error log

Configuration environment monitor
Critical frame pointer

Critical frame flag

Central memory

Central processing unit

Current stack frame pointer
Model~dependent environment control
Debug index

Debug list pointer

Debug mask

Debug mask register

Display station controller

Dynamic space pointer

Data set ready

Data terminal ready

Expanded binary coded decimal interchange code
Emitter—coupled logic

Extended central memory

Extended core storage

Electronics Industries Association
Element identifier

External procedure flag

End suppression toggle (BDP edit instruction)
First-in, first-out

Field length

Central memory field length register
Extended core storage field length register
Floating-point

Global/local

Integrated circuit

Instruction look—ahead

Input/output

Input/output unit

Job process state pointer

Key

Lock

Last processor identification
Largest ring number

Large-scale integration

Monitor address

Maintenance access control

II-A-1

MCH Maintenance channel

MCR Monitor condition register

MDF Model-dependent flags

MDW - Model-dependent word

MF Monitor flag

MMR Monitor mask register

MOP Micro—operator (BDP edit instruction)
MOS Metal-oxide-semiconductor -

MPS Monitor process state pointer

NOS Network Operating System

NS Negative sign toggle

OCF On-condition flag

o1 Options installed

ON Occurrence number

OP CODE Operation code

P register Program address register

PFA Page frame address

PFS Processor fault status

PID Processor identifier

PIT Process interval timer

PMF Performance monitoring flag

PN Page number

PND Process—not—damaged flag

PO Page offset

PP Peripheral processor

PPM Peripheral processor memory

PSA Previous save area pointer

PSF Previous stack frame

PSM Page size mask

PTA Page table address

PTE Page table entry

PTL Page table length

PTM Processor test mode

PVA Process virtual address

RAC Central memory reference address register
RAE Extended core storage reference address register
RAM Random—-access-memory

RMA Real memory address

RN Ring number

ROM Read-only memory

RP Read permission (segment descriptor field)
RTS Request to send

SCT Special characters table (BDP edit intruction)
SDE Segment descriptor table entries

SDT Segment descriptor table

SECDED Single error correction/double error detection
SEG Process segment number

SFSA Stack frame save area

SIT System interval timer

SM “ The symbol (BDP edit instruction)

SN Negative sign (BDP edit instruction)
SPID Segment page identifier

SPT : System page table

SRT Subscript range table

SS Status summary

STA Segment table address

STL Segment table length

SV Specification value

IT-A-2 ’ ‘ 60458890 A

C O

00

SVA
TED
TEF
TOS
UART
UCR
UEL

UVMID
Ve
VMCL
VMID

ZF

60458890 A

System virtual address

Trap-enable delay

Trap—enable flip-flop

Top of stack

Universal asynchronous receiver—transmitter
User condition register

Uncorrected error log

User mask register

Untranslatable pointer

Untranslatable virtual machine identifier
Search control code (page descriptor field)
Segment validation (segment descriptor field)
Virtual machine capability list

Virtual machine identifier

Write access control (segment descriptor field)
Execute access control (segment descriptor field)
Zero field toggle (BDP edit instruction)

II-A-3

J

A)
)

N

N

00

e —

'EDIT EXAMPLES

This appendix contains edit examples for the BDP edit instruction (ED).

For examples in this appendix, the destina-
tion field is assumed to have the same
length and decimal point position as the
source field, except for the differences
necessitated by insertion characters.

Edit Masks 1 through 25.

These edit masks are used in the examples given in the following pages.

Mask
Number

1

2

60458890 A

Edit Mask (Hexadecimal with insertion

COBOL characters *, §, 0, /, b, C and R shown
Picture as alphanumerics)
$22,229.99 08 96 72 C4 72 01 95 02
$22,222.99 07 96 72 C4 73 95 02
$22,222.22 08 96 72 C4 73 95 02 FA
~22229.99 06 B3 74 01 95 02
Z2727Z9,99+ 07 74 01 95 02 52 98
2Z.,999,99 06 72 C5 03 94 02 (Decimal point is comma)
$$$5$.99CR OB 61 $ 73 80 95 02 62 C R B8
$5%,698.6$ - 0A 61 $ 72 C4 73 80 95 02 FA
$$$$99, 99CR 0c 61 ¢ 73 80 02 94 02 62 C R B8
$$%,8$9.99 DA 61 § 72 c4 72 80 01 95 02
$99.99 05 96 02 95 02
g%, %%9,99 OA 96 DI * 72 C4 72 O1 95 02
$k% kkk *XBCR 11 96 D1 * 72 Cc4 73 95 02 63 b C R B8 F7 95 E5
Sk kkk kk - 0C 96 D1 * 72 C4 73 95 02 F7 95 E2
*k kkk ki OD D1 *# 72 C4 73 95 02 52 98 F6 95 E3
--99999, 99 07 50 71 80 05 94 02
S—T 06 50 73 80 95 02
++H+99 05 52 73 80 02

I1-B-1

Mask
Number

19
20
21
22
23

24
25

COBOL
Picture

00999. 00
99,999
XX/XX/XX
BBB99. 99-
999,00

999.BB
9B9B9

Edit Mask (Hexadecimal with insertion
characters *, $, 0O, /, b, C and R shown

as

alphanumerics)

09
05
08
09
06

06
06

08

42 0003954200

02 C4 03 F6 (blank when zero)

12 41 / 12 41 / 12
43 b b bk02 95 02 B3
03 954200

0395 42b D

01 91 01 91 01 or
01 41 b 01 41 b 01

Edit Examples Using Edit Masks 1 through 8.

Example

II-B-2

NP WN =

O

Source
Field

00000, 00
00000,01
000000.10
00001, 00
00010,00
00100.00
01000,00
10000. 00

00000, 00

00000, 00
00000,01
00001.00
10000, 00

-00000,00
+00000, 00

-12345,67
+00012, 34

00000, 00
01000, 00

-123,45
-023.45
003.45
000,45

00000, 00
00000, 01

Mask
Used

NN NN N o vt U &S Wwww [N N el el

oo

Destination
Field

$bbbbb0. 00
$bbbbb0. 01
$bbbbb0. 10
$bbbbb1.00
$bbbb10, 00
$bbb100, 00
$b1,000, 00
$10,000. 00

$bbbbbb. 00

bbbbbbbbbb
$bbbbbb. 01
$bbbbb1.00
$10, 000,00

-bbbb0. 00
bbbbb0, 00

12345,67-
bbbl2, 34+

bbb000, 00
b1.000,00

$123.45CR
b$23,45CR
bb$3.45bb
bbb$.45bb

bbbbbbbbbb
bbbbbb$.01

60458890 A

,’//(V\\'
‘W‘\‘) W"}

5

00

Edit Examples Using Edit Masks 9 through 16,

Example

26
27
28
29
30
31
32
33
34
35

36
37

38
39

40
41
42
43
44
45
46
47

60458890 A

Source
Field

00001.00
00001,00
00010, 00
00100,00
01000,00
10000, 00
-0000000
0010000
0100000
-1000000

00000, 00
10000, 00

00.00
12,34

00000, 00
00000,01
00000, 10
00001, 00
00010, 00
00100, 00
01000.00
10000, 00

00000, 00
-00000.01
00000,01
-00000, 00

00000, 00
-00000,01

00000, 00
-00000,00
12345,67
-12345,67

-00000000
~12345678
00000000
12345678

Mask
Used

O O WO o0 0o B

15
15

15

16
16
16
16

Destination
Field

bbbbbb$. 10

bbbbb$1.00
bbbb$10. 00
bbb$100, 00
b$1,000.00

1$10,000.00

bbb$00, 00CR
bb$100, 00bb
b$1000, 00bb
$10000, 00CR

bbbbb$0. 00
$10, 000,00

$00, 00
$12,34

§HAxxx%0, 00
§Rxxk*0,01
GHA%xk0, 10
GHkkkk], 00
$%*%%10, 00
$**%100. 00
$%*1,000,00
$10, 000,00

Kkkkkkk dhkkk
§%* %% 01bCR

$*% *%%_01lbbb
dekkkhkk kkkkk

Kkkkkkk hk
Shxxkkk 01

Kekkkhk dkk
kkkkhdk k%
12,345.67+
12,345.67-

b-00000, 00
-123456,78
bb00000, 00

'5123456,78

II-B-3

Edit Examples Using Edit Masks 17 through 25.

II-B-4

78
79
80
81
82
84
85
86
87

88
89

Source
Field

-000.00
000,00
-001.00
010,00
-100.00

00000
-00000
00012
-00123
01234
-12345

000
-123
123

00000
00001

HHMMSS

~00,00
00.00
12,34

000
-123
123

000
-123
123

000
123

21
22
22
22
23
23
24
24
24

25
25

Destination
Field

bbb-. 00
bbbb. 00
bb-1.00
bb10,00
-=100.00

bbb-+00
bbb—-00
bbb+12
bb-123
b+1234
-12345

00000, 00
00123,00
00123,00

bbbbbb
00,001

HH/MM/SS

bbb00, 00-
bbb00. 00b
bbbl2, 34b

000.00
123,00
123,00

000.bb
123,bb
123,bb

0b0bO
1b2b3

60458890 A

¥

C

Edit Mask 26,

COBOL Picture: $ $ §§, $$ %, $85, 884,888,888
Edit Mask: 11 61 § 73 C4 73 C4 73 C4 73 80 95 03 94 03 FF E9

Example Number 90 Using Edit Mask Number
Source Field: 00000000000

Destination Field: b b bbbbbbbbbd

Example Number 91 Using Edit Mask Number
Source Field: 12345678901

Destination Field: $1 23, 456 , 7 8

60458890 A

26,

0.000000

bbbbbbbbbbbbb

26.

2.654321

01

2

654

32

1

II-B-5

ofe

N
w__ v

&

INTERFACE INFORMATION C

INTERFACES

This appendix contains signal description and sequencing information for models 810 through
990 input/output channel interfaces. The following interfaces are available.

-

e External interface, 12-bit
° Maintenance channel interface

(e Two-port multiplexer interface
arsr” .

TWELVE-BIT EXTERNAL INTERFACE

The 12-bit external interface uses bidirectional, synchronous communication to transmit data
between bits 52 through 63 of the channel data register and a number of CDC CYBER 170
external devices. The transmission is over separate input and output coaxial cables using
an AC transmission scheme. In addition to 13 data signals (12 data, 1 parity), the cables

also transmit eight control signals from a PP to an external device, and four from an
(} external device to a PP. Maximum cable length between repeaters is 21 meters (70 feet).
MAINTENANCE CHANNEL INTERFACE

The maintenance channel interface (channel 17g) uses unidirectional, asynchronous
communication. It transmits only 9 data bits (8 data, 1 parity) in each direction. The

data transfers between bits 56 through 63 of the channel data register and the external
device.

TWO-PORT MULTIPLEXER INTERFACE

The two-port multiplexer interface is an EIA standard RS-232 serial interface. Refer to
this standard for more information.

0 60458890 B

1I-C-1

SIGNALS

The following signals are described below.

TWELVE-BIT CHANNEL CONTROL SIGNALS

The 12-bit channel uses the following control signals:

Signal

Active Pulse

Inactive Pulse

Full Pulse

Empty Pulse

Function Pulse

Master Clear

10-Megahertz
Clock

1-Megahertz
Clock

I1-C-2

Description

Sent by a data sending device to a data receiving device to begin a
data transmission. Normally sent by a PP to an external device. An
external device can send this signal to a PP only on the 12-bit
channel.

Sent from either a data sending or data receiving device to signify
end of a data transmission; clears active and full flags.

Sent from a data sending device to a data receiving device with
transmitted data. The full pulse directs the receiving device to
sample the data signals.

Sent by a data receiving device to a data sending device to
acknowledge receipt of a full pulse and associated data. ~.This pulse
signals the sender to transmit more data.

Sent by IOU to an external device to indicate that the associated
data signals are control signals.

Sent by IOU to all external devices on the I/0 channel. It indicates
to those devices that all activity is to cease and initial conditions
are to be restored.

Consists of a pulse sent every 100 nanoseconds. This clock
synchronizes all external devices to I0U.

A pulse every 1 microsecond; sent by the IOU to an external device.

60458890 A

co

AN

et

OO0

MAINTENANCE CHANNEL SIGNALS

The maintenance channel uses the following control signals.

Control Signals
Signal

Active
Inactive

Ready

Function

Error

Description

Sent from IOU to external device to indicate start of data
transmission.

Sent from either data sending or data receiving device to indicate
end of transmission.

Sent from data sending device to data receiving device with
transmitted data; instructs receiving device to sample the data
lines. The receiving device then sends a ready pulse back to
acknowledge receipt of the data and to indicate it is ready for more
data.

Sent only to an external device to indicate that signals on data
lines are control signals.

Sent by external device to IOU to indicate that the device detected

an errore.

Signals and Cables

Table II-C-1 lists the signals used by the maintenance channel interface.

Table II-C-1.

Maintenance Channel Signals (Sheet 1 of 2)

Signal Name Connector Pins
Data out bit 20 (uynidirectional) Al/A2
Data out bit 21 (unidirectional) A3/A4
Data out bit 22 (ynidirectional) A5/A6
Data out bit 23 (unidirectional) A7 /A8
Data out bit 2% (unidirectional) A9/A10
Data out bit 25 (unidirectional) B1/B2
Data out bit 26 (unidirectional) B3/B4
Data out bit 27 (unidirectional) B5/B6
Data out parity (unidirectional) B7/B8

60458890 A

II-C-3

Table II-C-1. Maintenance Channel Signals (Sheet 2 of 2)

Signal Name Connector Pins
Data in bit 20 (unidirectional) c1/c2
Data in bit 2! (uynidirectiomal) c3/c4
Data in bit 22 (unidirectional) c5/C6
Data in bit 23 (unidirectional) c7/c8
Data in bit 24 (unidirectional) c9/c10
Data in bit 25 (unidirectional) D1/D2 2
Data in bit 26 (unidirectional) D3/D4 =
Data in bit 27 (uynidirectional) D5/D6
Data in parity (unidirectional) D7/D8
Function out E1/E2
Ready out E3/E4
Spare E5/E6 'i k;
Active out) E7/E8 "
Inactive out ‘ E9/E10
Ready in F1/F2
Spare F3/F4
Inactive in F5/F6 o
Summary status in F7/F8 h
Exchange accept in D9/D10
Error in B9/B10

Y
I1-C-4 60458890 A \ W

ole

DATA SIGNALS

A data sending device transmits the data signals to a data receiving device along with the
associated full pulses. The IOU also transmits a function code over the data lines to an
external device, with a function pulse.

PP AND CHANNEL INTERACTION

Channel transmissions are controlled by the active and full flags. When a PP executes an
I/0 instruction, the state of these flags is altered and control signal(s) sent to the
external devices. When the devices send control signals to the IOU, the state of these
flags is again altered.

ACTIVE FLAG

When the PP sets the active bit with a 00740 or 00741 instruction, the IOU sends an active
pulse on the external channel. The IOU sends an inactive pulse when the PP clears the
active bit. An active pulse sent by an external device sets the active bit; an inactive
pulse sent by an external device clears the active bit.

FULL FLAG

When a PP sets the full bit using a 00720, 00721, 0073, or 1073 instruction, the IOU sends a

full pulse and data pulses for the data contained in the channel data register to an
external device. When a PP clears the full bit with a 00700, 00701, or 1071 instruction,
the system sends an empty pulse.

When an external device sends a full pulse, the associated data pulses set the channel data
register, and the system sets the full bit. When an external device sends an empty pulse,
the I0U clears the full bit.

FUNCTION INSTRUCTIONS

When a function instruction (00760, 00761, 00770, 00771) executes, the IOU sets active and
full bits, writes a word into the channel data register, and transmits the word from the
data register to an external device. The IOU transmits a function pulse to the external
device to indicate that the word is a control signal rather than data. The external device
sends an inactive pulse to acknowledge the receipt of the function, thereby setting the
active bit and the full bit to zero.

EXTERNAL CHANNEL INPUT/OUTPUT SEQUENCES

Tables II-C-2 (Data Input Sequence), and II-C-3 (Data Output Sequence) show the sequences
followed by the channels during data input and output over an external interface.

Similarily, tables II-C-4 (MCH Input Sequence), and II-C-5 (MCH Output Sequence) show input
and output sequences for the maintenance channel (178)°

Data Sequences Timing is shown in figure II-C-1,

60458890 A I1-C-5

*The inactive signal is normally sent from the external device to the IOU.
certain cases the IOU may deactivate the channel.

Table II-C-2, Data Input Sequence

External
Device

Flags PP
A F E
0 0 O
1 1 0 (1.)
0 0 0
0 o 3.)
1 1 0
1 0 0 (5.)
0

Function Pulse —

|¢————————— |nactive Signal
Active Signal ———

l¢——————— 12/16 Data Bits

lg———————— Full Signal
Empty Signal ———

l¢——— Inactive Signal*

(2.}

(4.)

(6.)

and the function being executed.

Key:

A, F, E are the active, full and error flags

1.

II-C-6

Repeated
for each
data word

However, in

This is determined by the external device

PP executes a function instruction which sets the active and full flags in the
internal interface, places a word in the channel register, and sends a function

pulse.

The external device acknowledges the acceptance of the function by sending an
inactive signal which clears the active flag, the full flag, and the channel

register.

PP sets the active flag to indicate that data flow may start.

The external device sends a 12-bit word (plus parity) to the channel register, w1th
a full signal which sets the full flag.

PP stores the data word in PPM and clears the full flag which, in turn, sends. an
empty signal to the external device.:

Steps 4 and 5 repeat until the device completes the data transfer.

Then the

external device clears its active condition and sends an inactive signal to the PP,
which clears the channel active flag.

60458890 A

»

Table II-C-3, Data Output Sequence

External
Flags PP Device
A F E
0 0 O
1 0 (1) |——————— Function Pulse
0 0 O l¢—————— Inactive Signal —————1 (2))
0 (3.) Active Signal ——————»
12/16 Data Bits ~—————p
11 0 4.) Full Signal ———+ —» Repeated
for each
1 0 0 4¢——————— Empty Signal (5.) data word
0 0 O (6.) }———————— Inactive Signal —————————p

Key:
A, F, E are the active, full, and error flags.

1, PP executes a function instruction which sets the active and full bits in the
internal interface, places a word into the channel register, and sends the function
pulse.

2. The external device acknowledges the acceptance of the function by sending an
inactive signal., This, in turn, clears the active flag, the full flag, and the
channel register.

3. PP sets the active flag to indicate that data flow is about to start.

4, PP places a 12-bit data word (plus parity) into the channel register, which sets the
full flag and sends the full signal,

5. The external device accepts the data word and sends an empty signal which clears the
channel register and the full flag.

6. Steps 4 and 5 repeat until the PP has sent all the data to complete the data
transfer. Then the PP clears the channel active flag, which turns off the external
device with an inactive signal.

60458890 A II-Cc-7

Key:

Table II-C-4. MCH Input Sequence

External
Flags PP Device
A F E
0 0 0
1 1 0 (1) }———— Function Pulse ——»
0 0 O l&———————— Inactive Signal ——no-——__§ (2)
10 0 (3.) p————— Active Signal ———————»p|
8 Bit Control Word =————— Repeated
11 0 Ready Signal ——» (4.) tta::ecélf:;:d
0o o e——— Ready Signal —— | (5) bytes)
0 0 o 6) |——— Inactive Signal — |
1 0 O (7.) Active Signal ————
j¢——————— 8 Data Bits
Repeated
1 1 0 |¢———————- Ready Signal (8.) for each
data byte
(9.) }——————ee— Ready Signal
0 0 0 (10.) }—————— Inactive Signal

A, F, E are the active, full and error flags.

lo

2.

II-C-8

PP executes a function instruction which sets the active and full flags in the
internal interface, places a word in the channel register and sends a function pulse.

The external device acknowledges the acceptance of the function by sending an
inactive signal. This, in turn, clears the active flag, the full flag, and the
channel register.

The PP sets the active flag to indicate that control word data flow is about to
start.

The PP places a control byte into the channel register, which sets the full flag and
sends the ready signal. .

The external device accepts the control byte and sends the ready signal, which
clears the channel register and the full flag.

Steps 4 and 5 are repeated for a second control byte. The two control bytes contain
the upper and lower portions of the address of the data to be read.

The PP ensures that the channel is empty and then deactivates the channel, which
clears the active flag.

60458890 A

N ‘_,/"

8. The PP sets the active flag to indicate that data flow may start.

9. The external device sends an 8-bit byte to the channel register with a ready signal
which, in turn, sets the full flag.

10. The PP stores the data word and clears the full flag which, in turn, sends the ready
signal to the external device.

11, Steps 8 and 9 repeat until the data transfer is complete. The PP deactivates the
channel, which turns off the external device with an inactive signal.

Table II-C-5. MCH Output Sequence

(: External

Flags PP Device
A F E
0 0 O
11 0 (1) }—————— Function Pulse —————p
0 0 O ¢————————— Inactive Signal ———ou-——1 (2.)
10 0 3) }p——————0oH Active Signal ——o—
8 Bit Control Word —————» Repeated
. i f
(»@ 11 0 Ready Signal ——— ol (4. twice (for |
1 0 0 lg——————— Ready Signal ———oo—roueooe—4 (5)) bytes)
0 0 0 | (6) }——— — Inactive Signal ——
10 0 (7} p—————— Active Signal —————p!
8 Data Bits ————————p
Repeated
11 0 (8.) }———————-" Ready Signal ———— M8 for each
data byte
1 0 O 4——————— Ready Signal ——————— (9.)
C b o0 0o o | (100 }—————— Inactive Signal —————p
V‘Jr

Key:
A, F, E are the active, full and error flags.

1. PP executes a function instruction which sets the active and full bits in the
internal interface, places a word in the channel register and sends the function
pulse.

2, The external device acknowledges the acceptance of the function by sending an

inactive signal. This, in turn, clears the active flag, the full flag, and the
channel register.

}l‘ﬂr

60458890 A 1I-C-9

10.

1I-C~10

The PP sets the active flag to indicate that control word data flow is about to

start.

The PP places a control byte into the channel register, which sets the ready flag

and sends the full signal.

The external device accepts the control byte and sends the ready signal which clears

the channel register and the full flag.

The PP ensures that the channel is empty and then deactivates the channel, which

clears the active flag.

The PP sets the active flag to indicate that data flow is about to start.

The PP places an 8-bit Byte into the channel register, which sets the full flag and

sends the ready signal,

The external device accepts the data byte and sends the ready signal, which clears

the channel register and the full flag.

Steps 8 and 9 repeat a sufficient number of times to complete the data transfers.
The PP deactivates the channel, which turns off the external device with an inactive

signal.

60458890 A

J
U

| 1
—i 252 50/
i | ,
ON CHANNEL U LI LI LI " LI LI LI
. h
wpmage _ n tweend AN
ON' CHANNEL | LT L{ i LI ' LI L L
—» p—25%5 !
TRANSMITTED 1 "sA : !
ON CHANNEL 1} \ !
FUNCTION ' !
FULL ' ; !
T S v ' ! !
i 1 1
. L l
! ! ! Z&
" SENT BY 1])
™ EXTERNAL DEVICE] N | I
: i 1 i35ns | 35ns
S | : | L
! [
RECEIVED AT PP
1] 1
INACTIVE | | ‘ F
EMPTY —135 ns—>! —135 ns —
FULL | CABLE DELAY | | CABLE DELAY |
(APPROXIMATELY) . KAPPROXIMATELY)' |
! i
| EXTERNAL DEVICE \
H RESPONSE TIME !
L A .
b 73X 1
NOTES :
ALL TRANSMISSION PULSE WIDTHS (INCLUDING DATA,FULL,EMPTY,ETC) ARE 25%5 ns.
zﬁ; TO AVOID LOST DATA, ALL INPUTS FROM THE CHANNEL TO THE PP MUST ARRIVE
i WITHIN THE 70 ns INPUTS MAY BE EARLIER OR LATER BY 100 ns MULTIPLES.
;
é TOTAL TURNAROUND TIME BETWEEN FUNCTION AND INACTIVE IS MEASURED AT PP.
THIS TIME VARIES DUE TO EXTERNAL DEVICE RESPONSE TIME BUT MUST BE WITHIN
310£350s TO MAINTAIN THE 500 ns CYCLE TIME.
Figure II-C-1. Data Sequences Timing
\
A

60458890 A II-C-11

,\muw mme
Semer ernd

00

INSTRUCTION INDEX

This appendix lists the central processor and peripheral processor instructions, in both

opcode and mnemonic sequences.

CP INSTRUCTIONS - OPCODE SEQUENCE (Sheet 1 of 4)

Opcode Mnemonic Instruction

00 HALT Program error

01 SYNC Scope loop synchronization
02 EXCHANGE Exchange

03 INTRUPT Processor interrupt

04 RETURN Return

05 PURGE Purge buffer

06 POP Pop

08 CPYMX Copy free running counter
09 CPYAA Copy address, A to A

0A CPYXA Copy address, X to A

0B CPYAX Copy address, A to X

oc CPYRR Copy half-word

0D CPYXX Copy full-word

OE : CPYSX Copy from state register
OF CPYXS Copy to state register

10 INCX Integer sum, immediate

11 DECX Integer difference, immediate
14 LBSET Test and set bit

16 TPAGE Test and set page

17 LPAGE Load page table index

18 IORX " Logical sum

19 XORX Logical difference

1A ANDX Logical product

1B NOTX Logical complement

1c INHX Logical inhibit

1E MARK Mark to Boolean

1F ENTZ Enter zeros

1F ENTO Enter ones

1F ENTS Enter signs

20 ADDR Half-word integer sum

21 SUBR Half-word integer difference
22 MULR Half-word integer product
23 DIVR Half-word integer quotient
24 ADDX Integer sum

25 SUBX Integer difference
60458890 A

Page

II-1-72
I1-1-73
II-1-73
I1-1-84
II-1-74

I1-1-86
II-1-75
I1-1-76
II-1-21
II-1-21

I1-1-21
I1-1-21
II-1-22
I1-1-88
II-1-88

I1-1-13
II-1-14
I1-1-77
11-1-77
II-1-84

II-1-28
I1-1-28
II1-1-28
I1-1-28
I1-1-29

I1-1-30
I1-1-24
II-1-24
II-1-24
II-1-12

II-1-14
I1-1-13
II-1-15
I1-1-13
II-1-14

II-D-1

CP INSTRUCTIONS -~ OPCODE SEQUENCE (Sheet 2 of 4)

Opcode Mnemonic Instruction Page

26 MULX Integer product ‘ II-1-15
27 DIVX - Integer quotient I1-1-16
28 INCR Half-word integer sum, immediate I1-1-12
29 DECR Half-word integer difference, immediate II-1-14
2A ADDAX Address increment, indexed I11-1-22
2C CMPR Half-word integer compare I1-1-16
2D CMPX Integer compare II-1-16
2E BRREL Branch relative 11-1-17
2F BRDIR Inter—segment branch I11-1-18
30 ADDF FP sum I1-1-55
31 SUBF FP difference II-1-55
32 MULF FP product II-1-56
33 DIVF FP quotient I1-1-57
34 ADDD Double-precision FP sum II-1-55
35 SUBD Double-precision FP difference II-1-55
36 MULD Double—precision FP product 1I-1-56
37 DIVD Double-precision FP quotient ’ I11-1-57
39 ENTX Enter X1, immediate logical I1-1-24
3A CONI Convert from integer to FP II-1-53
3B CONF . Convert from FP to integer II-1-53
3C CMPF FP compare I1-1-60
3D ENTP Enter immediate, positive II-1-24
3E ENTN Enter immediate, negative II-1-24
3F ENTL Enter immediate, logical II-1-24
40 ADDFV FP vector sum II-1-65
41 SUBFV FP vector difference I1-1-65
42 MULFV FP vector product II-1-65
43 DIVFV FP vector quotient II-1-65
44 ADDXV Integer vector sum II-1-63
45 SUBXV Integer vector difference I11-1-63
48 IORV Logical vector sum 1I-1-64
49 XORV Logical vector difference II-1-64
4A ANDV Logical vector product I11-1-64
48 CNIFV Convert vector from integer to FP II-1-64
4C CNFIV Convert vector from FP to integer II-1-64
4D SHFV Shift vector circular II-1-65
50 CMPEQV Integer vector compare, = II-1-63
51 CMPLEV Integer vector compare, < I1-1-63
52 CMPGEV Integer vector compare, > II-1-63
53 CMPNEV Integer vector compare, # 11-1-63
54 MRGV Merge vector I1-1-66
55 GTHV Gather vector II-1-66
56 SCTV Scatter vector ' II-1-68
57 SUMFV FP vector summation I1-1-70
70 ADDN Decimal sum I11-1-34
II-D-2 60458890 A

-

X,

.

A

b S

OO0

Opcode Mnemonic
71 SUBN
72 MULN
73 DIVN
74 CMPN
75 MOVN
76 MOVB
77 CMPB
80 LMULT
81 SMULT
82 LX

83 SX

84 LA

85 SA

86 LBYTP, j
87 ENTC
88 LBIT
89 SBIT
8A ADDRQ
8B ADDXQ
8C MULRQ
8D ENTE
8E ADDAQ
8F ADDPXQ
90 BRREQ
91 BRRNE
92 BRRGT
93 BRRGE
94 BRXEQ
95 BRXNE
96 BRXGT
97 BRXGE
98 BRFEQ
99 BRFNE
9A BRFGT
9B BRFGE
9C BRINC
9D BRSEG
9E BROVR
9E BRUND
9E BRINF
9F BRCR
AO LAI
Al SAI
A2 LXI
A3 SXI
60458890 B

CP INSTRUCTIONS — OPCODE SEQUENCE (Sheet 3 of 4)

Instruction

Decimal difference
Decimal product
Decimal quotient
Decimal compare
Numeric move

Move bytes
Byte compare
Load multiple
Store multiple
Load word

Store word

Load address

Store address

Load bytes, relative

Enter X1, signed immediate

Load bit

Store bit

Half-word integer sum, signed immediate
Integer sum, signed immediate

Half-word integer product, signed immediate

Enter, signed immediate

Address increment, signed immediate
Address relative

Branch on half-word equal

Branch on half-word not equal

Branch on half-word greater than

Branch on half-word greater than or equal
Branch on equal

Branch on not equal

Branch on greater than

Branch on greater than or equal

FP branch on equal

FP branch on not equal

FP branch on greater than

FP branch on greater than or equal

Branch and increment
Branch on segments unequal
FP branch on overflow

FP branch on underflow

FP branch on indefinite

Branch on condition register
Load address, indexed

Store address, indexed

Load word, indexed

Store word, indexed

Page

11-1-34
II-1-34
II-1-34
II-1-35
II-1-36

II-1-40
II-1-39
II-1-6
II-1-6
II-1-7

II-1-7
II-1-8
I1-1-8
I1-1-9
II-1-25

II-1-10
I1-1-10
II-1-13
II-1-13
I1-1-15

II-1-25
I1-1-23
I1-1-23
I1-1-18
II-1-18

II-1-18
II-1-18
II-1-19
I1-1-19
II-1-19

II-1-19
II-1-59
II-1-59
I1-1-59
II-1-59

I1I-1-19
11-1-20
I1-1-59
II-1-59
II-1-59

I1-1-88
II-1-8
II-1-8
I1-1-7
I1-1-7-

II-D-3

CP INSTRUCTIONS — OPCODE SEQUENCE (Sheet 4 of 4)

Opcode Mnemonic Instruction

A4 LBYT Load bytes

A5 SBYT Store bytes

A7 ADDAD Address increment, modulo
A8 SHFC Shift word, circular

A9 SHFX Shift word, end-off

AA SHFR Shift half-word, end—off
AC ISoM Isolate bit mask

AD ISOB Isolate

AE INSB Insert

BO CALLREL Call relative

B2 MULXQ Integer product, signed immediate
B3 ENTA Enter X0, signed immediate
B4 CMPPXA Compare swap

B5 CALLSEG Call indirect

BE XXXX Reserved for user

BF XXXX Reserved for user

co0-7 EXECUTE, S Execute algorithm

DO-7 LBYTS,S Load bytes, immediate
D8-F SBYTS,S Store bytes, immediate

E4 SCLN Decimal scale

E5 SCLR Decimal scale, rounded

E9 CMPC Byte compare, collated
EB TRANB Byte tramslate

ED EDIT Edit

F3 SCNB Byte scan while nonmember
F4 CALDF Calculate subscript and add
F9 MCVI Move immediate data

FA CMP1 Compare immediate data
FB ADDI Add immediate data

II-D-4

Page

II-1-9
I1-1-9
II-1-23
I1-1-26
I1-1-27

I1-1-27
I1-1-30
II-1-30
11-1-30
I1-1-78

II-1-15
I1-1-25
II-1-80
I1-1-81

II-1-83
II-1-83
I1-1-83
I1-1-9
II1-1-9

I1-1-37
I1-1-37
I1-1-39
II-1-40
II-1-41

II-1-48
II-1-49
II-1-50
II-1-51
II-1-52

60458890 B

e

N

i

L

Mnemonic Opcode
ADDAD A7
ADDAQ 8E
ADDAX 2A
ADDD 34
ADDF 30
ADDFV 40
ADDI FB
ADDN 70
ADDPXQ 8F
ADDR 20
ADDRQ 8A
ADDX 24
ADDXQ 8B
ADDXV 44
ANDX 1A
ANDV 4A
BRCR 9F
BRDIR 2F
BRFEQ 98
BRFGE 9B
BRFGT 9A
BRFNE 99
BRINC 9C
BRINF - 9E
BROVR 9E
BRREL 2E
BRREQ 90
BRRGE 93
BRRGT 92
BRRNE 91
BRSEG 9D
BRUND 9E
BRXEQ 94
BRXGE 97
BRXGT 96
BRXNE 95
CALDF F4
CALLREL BO
CALLSEG B5
CMPB 77
CMPC E9
CMPEQV 50
CMPF 3C
CMPGEV 52
CMPI FA
60458890 B

CP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 1 of 4)

Instruction

Address increment, modulo

Address increment, signed immediate
Address increment, indexed
Double—-precision FP sum

FP sum

FP vector sum

Add immediate data

Decimal sum

Address relative

Half-word integer sum

Half-word integer sum, signed immediate

Integer sum

Integer sum, signed immediate
Integer vector sum

Logical product

Logical vector product
Branch on condition register
Inter-segment branch

FP branch on equal

FP branch on greater than or equal
FP branch on greater than

FP branch on not equal

Branch and increment

FP branch on indefinite

FP branch on overflow

Branch relative

Branch on half-word equal

Branch on half-word greater than or equal

Branch on half-word greater than
Branch on half-word not equal
Branch on segments unequal

FP branch on underflow

Branch on equal

Branch on greater than or equal
Branch on greater than

Branch on not equal

Calculate subscript and add
Call relative

VCall indirect

Byte compare

Byte compare, collated
Integer vector compare, =
FP compare

Integer vector compare,
Compare immediate data

v

Page

II-1-23
I1-1-23
I1-1-22
II-1-55
II-1-55

II-1-52
II-1-34
II-1-23
II-1-12
I1-1-13

IT-1-13
I1-1-13

I1-1-28

I1-1-88
II-1-18

II-1-59
I1-1-59
II-1-59
I1-1-59
II-1-19

II-1-59
II-1-59
I1-1-17
I1-1-18
I1-1-18

II-1-18
I1-1-18
I1-1-20
II-1-59
II-1-19

II-1-19
II-1-19
II-1-19
I1-1-49
I1-1-78

II-1-81
I1-1-39
I1-1-39
II-1-63
II-1-60
II-1-63
II-1-51

II-D-5

CP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 2 of 4)

Mnemonic Opcode Instruction

CMPLEV 51 Integer vector compare, £
CMPN 74 Decimal compare -
CMPNEV 53 Integer vector compare, #
CMPPXA B4 Compare swap

CMPR 2C Half-word integer compare
CMPX 2D Integer compare

CNFIV 4C Convert vector from FP to integer
CNIFV 4B Convert vector from integer to FP
CONF 3B Convert from FP to integer
CONI 3A Convert from integer to FP
CPYAA 09 Copy address, A to A

CPYAX 0B Copy address, A to X

CPYMX 08 Copy free running counter
CPYRR 0C Copy half-word

CPYSX OE Copy from state register
CPYXA 0A Copy address, X to A

CPYXS OF Copy to state register

CPYXX 0D Copy full-word

DECR 29 Half-word integer difference, immediate
DECX 11 Integer difference, immediate
DIVD 37 Double-precision FP quotient
DIVF 33 FP quotient

DIVFV 43 FP vector quotient

DIVN 73 Decimal quotient

DIVR 23 Half-word integer quotient
DIVX 27 Integer quotient

EDIT ED Edit

ENTA B3 Enter X0, signed immediate
ENTC 87 Enter X1, signed immediate
ENTE 8D Enter signed immediate

ENTL 3F Enter, immediate logical
ENTN 3E Enter, immediate negative
ENTO 1F Enter ones

ENTP 3D Enter, immediate positive
ENTS 1F Enter signs

ENTX 39 Enter X1, immediate logical
ENTZ 1F Enter zeros

EXCHANGE 02 Exchange

EXECUTE, S cO0-7 Execute alogrithm

GTHV 55 Gather vector

HALT 00 Program error

INCR 28 Half-word integer sum, immediate
INCX 10 Integer sum, immediate

INHX 1C Logical inhibit

INSB AE Insert

INTRUPT 03 Processor interrupt

II-D-6

Page

II1-1-63
11-1-38
II-1-63
I11-1-80
II~-1-16
I1-1-16
II-1-64
II-1-64
I1-1-53

I1-1-53
II-1-21
I1-1-21
II-1-76
I1-1-21

I1-1-88
I1-1-21
II-1-88
I1-1-22
II-1-14

II-1-14
II-1-57
I1-1-57
II-1-65
I1-1-34
II1-1-15

II-1-16
I1-1-41
II-1-25
II-1-25
II-1-25

I1-1-24
II-1-24
I1-1-24
II-1-24
II-1~24

I1-1-24
II-1-24
II1-1-73
II-1-83
II-1-66
I1-1-72

I1-1-12
II-1-13
I1-1-29
II-1-30
II-1-84

60458890 A

A

.

W)

J

L8

S

%,

e 4

00

CP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 3 of 4)

Mnemonic Opcode Instruction

I0RV 48 Logical vector sum

I0RX 18 Logical sum

IS0B AD Isolate

ISOM AC Isolate bit mask

LA 84 Load address

LAI A0 Load address, indexed
LBIT 88 Load bit

LBSET 14 Test and set bit

LBYT A4 Load bytes

LBYTP, j 86 Load bytes, relative
LBYTS,S DO-7 Load bytes, immediate
LMULT 80 Load multiple

LPAGE 17 Load page table index

LX 82 Load word

LXI A2 Load word, indexed

MARK 1E Mark to Boolean

MCVI F9 Move immediate data

MOVB 76 Move bytes

MOVN 75 Numeric move

MRGV 54 Merge vector

MULD 36 Double-precision FP product
MULF 32 FP product

MULFV 42 FP vector product

MULN 72 Decimal product

MULR 22 Half-word integer product
MULRQ 8C Half-word integer product, signed immediate
MULX 26 Integer product

MULXQ B2 Integer product, signed immediate
NOTX 1B Logical complement

POP 06 Pop

PURGE 05 Purge buffer

RETURN 04 Return

SA 85 Store address

SAI Al Store address, indexed
SBIT 89 Store bit

SBYT A5 Store bytes

SBYTS,S D8-F Store bytes, immediate
SCLN E4 Decimal scale

SCLR E5 Decimal scale rounded
SCNB F3 Byte scan while nonmember
SCTV 56 Scatter vector

SHFC A8 Shift word, circular
SHFR AA Shift half-word, end-off
60458890 B

Page

II-1-64
II-1-28
II-1-30
I1-1-30
I1-1-8

II-1-8
II-1-10
I1-1-77
I1-1-9
II-1-9

I1-1-9
II-1-6
II-1-84
II-1-7
I1-1-7

I11-1-30
II-1-50
I1I-1-40
II-1-36
II-1-66
I1-1-56

II-1-56
II-1-65
I1-1-34
II-1-13
II-1-15
II-1-15

II-1-15
I1-1-28
II-1-75
II-1-86
II-1-74

II-1-8
II-1-10
II-1-11
II-1-9
II-1-9

I1-1-37
11-1-37
II-1-48
II-1-68
1I-1-26
I1-1-27

I1-D-7

CP INSTRUCTIONS — MNEMONIC SEQUENCE (Sheet 4 of 4)

Mnemonic Opcode Instruction Page
SHFV 4D Shift vector circular I1-1-65
SHFX A9 Shift word, end-off I1-1-27
SMULT 81 Store multiple I1-1-6
SUBD 35 Double-precision FP difference I1-1-55
SUBF 31 FP difference I1I-1-55
SUBFV 41 FP vector difference II-1-65
SUBN 71 Decimal difference I1-1-34
SUBR 21 Half-word integer difference I1I-1-14
SUBX 25 Integer difference II-1-14
SUBFV 45 Integer vector difference I1-1-63 N
SUMFV 57 FP vector summation I1-1-70)
sX 83 Store word 11-1-7 e
SXI A3 Store word, indexed I1-1-7 :
SYNC 01 Scope loop synchronization I1-1-73
TPAGE 16 Test and set page I11-1-77
TRANB EB Byte translate II-1-40
XORV 49 : Logical vector difference I1-1-64
XORX 19 Logical difference I1-1-28
XXXX BE Reserved for user I1-1-83
XXXX BF Reserved for user © 1I-1-83 s
N
s
O
.
1 £ ™
11-D-8 . 60458890 A WL)V

Opcode

0000
0001dm
0002dm
0003d
00044

00054
00064
00074
00104
00114

00124
00134
0014d
0015d
00164

00174

0020dm
0021dm
0022dm
0023dm

002400
00244
002500
00254
00260X

00261X
00262X
0027X
00304
00314

00324
00334
00344
00354
00364

00374
00404
00414
0042d
0043d

60458890 A

LIM
RIM
UJN
ZJIN

NJIN
PJN
MJIN
SHN
LMN

LPN
SCN
LDN
LCH
ADN

SBN
LDC
ADC
LPC
LMC

PSN
LRD

SRD
EXN

KPT
LDD
ADD

SBD
LMD
STD

AOD

SOD
LDI
ADI
SBI
LMI

Mnemonic

AQE B
A A

A AR

Ao AL A

[~ -7

A A

[T~ - Ny - Py =

PP INSTRUCTIONS - OPCODE SEQUENCE (Sheet 1 of 4)

Instruction

_Pass

Long jump to m+(d)
Return jump to m+(d)
Unconditional jump d
Zero jump d

Nonzero jump d

Plus jump 4

Minus jump d

Shift A by d

Logical difference d

Logical product d
Selective clear d
Load d
Load complement d
Add 4

Subtract d

Load dm

Add dm

Logical product dm
Logical difference dm

Pass

Load R

Pass

Store R
Exchange jump

Monitor exchange jump
Monitor exchange jump MA
Keypoint

Load (d)

Add (d)

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)
Replace add one (d)

Replace subtract one (d)
Load ((d))

Add ((4))

Subtract ((d))

Logical difference ((d))

Page

I1~-1-135
I1-1-113
II-1-114
II-1-114
II-1-114

I1-1-115
I1-1-115
II-1-115
II-1-104
II-1-104

II-1-104
II-1-105
II-1-94
I11-1-94
II-1-98

I11-1-98
I1-1-94
I1-1-99
II-1-105
I1-1-105

I1-1-135
I1-1-117
I1-1-135
II-1-117
I1-1-136

IT-1-136
II-1-136
I1-1-135
II-1-9%4
I1-1-99

I1-1-99
II-1-106
II-1-95
II-1-109
II-1-109

II-1-109
II-1-95

II-1-100
II1-1-100
I1-1-107

II-D-9

Opcode

00444
00454
00464
0047d
0050dm

0051dm
0052dm
0053dm
0054dm
0055dm

0056dm
0057dm
00604
0061dm
00624

0063dm

00640cm
00641cm
00650cm
00651cm

00660cm
00661cm
00670cm
00671cm
00700¢

00701c
0071Xcm
00720c
00721c¢
0073xcm

00740¢
00741c
00750¢
00751c
00760¢

00761c
00770cm
00771cm
10004
10014

II-D-10

Mnemonic

PP INSTRUCTIONS - OPCODE SEQUENCE (Sheet 2 of 4)

Instruction

STIL
RAI
AOI
SOI
LDM

ADM
SBM
LMM
STM
RAM

AOM
SOM
CRD
CRM
CWD

CWM
AIM
SCF
IM
CCF

FJIM
SFM

EJM m,c

CFM
IAN

IAN
IAM
OAN
OAN
OAM

ACN
ACN
DCN
DCN
FAN

FAN
FNC

FNC m,40B+c

RDSL
RDCL

40B+c
m,c

40B+c
mtc

c
40B+c
c
40B+c
c

40B+c
m,c

Store ((d))
Replace add ((d))
Replace add one ((d))

Replace subtract one ((d))
Load (mr+(d))

Add (m+(d))

Subtract (m+(d))

Logical difference (m+(d))
Store (mt(d))

Replace add (m+(d))

Replace add one (mt(d))

Replace subtact one (wt+(d))

Central read from (A) to d

Central read (d) words from (A) to m
Central write to (A) from d

Central write (d) words to (A) from m
Jump to m if channel C active

Test to m and set channel C flag

Jump to m if channel C inactive

Clear channel C flag

Jump to m if channel C full

Jump to m if channel C error flag set
Jump to m if channel C empty

Jump to m if channel C error flag clear
Input to A from channel C when active

Input to A from channel C if active
Input A words to m from channel C
Output from A on channel C when active
Output from A on channel C if active
Output A words from m on channel C

Activate channel C

Unconditionally activate channel C
Deactivate channel C

Unconditionally deactivate channel C
Function a on channel C when inactive

Function a on channel C if inactive
Function m on channel C when inactive
Function m on channel C if inactive
Central read and set lock from d to (A)
Central read. and clear lock from d to (A)

Page

II-1-96
II-1-110
II-1-110
I1-1-111
II-1-96

I1-1-101
11-1-102
II-1-107
II-1-96

II-1-111

I1-1-112
II-1-112
II-1-118
I1-1-119
I1-1-120

I1-1-122
II-1-125.
I1-1-125
II1-1-126
II-1-126

I1-1-127
I1-1-127
II-1-127
I1-1-127
II-1-128

I1~-1-128
II-1-128
II-1-130
II-1-131
I1-1-131

II-1-132
I1-1-132
I1-1-132
I1-1-133
II1-1-133

II-1-134
II-1-134
II-1-135
II-1-123
I1-1-123

60458890 A

P Y
Wy

OO0

Opcode

1002
1003
1004
1005
1006

1007
1010
1011
1012
1013

1014
1015
1016
1017
1020

1021
10224
1023d
1024dm
1025

10264
1027

10304
10314
10324

10334
10344
10354
10364
10374

10404
10414
10424
10434
10444

10454
10464
10474
1050dm
1051dm

60458890 A

PP INSTRUCTIONS — OPCODE SEQUENCE (Sheet 3 of 4)

Mnemonic Instruction

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

- Pass

LPDL d Logical product (d) long
LPIL d Logical product ((d)) long
LPML m,d Logical product (m+(d) long
- Pass

INPN d Interrupt processor

- Pass

LDDL d Load (d) long

ADDL d Add (d) long

SBDL d Subtract (d) long

LMDL d Logical difference (d) long
STDL d Store (d) long

RADL d Replace add (d) long

AODL d Replace add one (d) long
SODL d Replace subtract one (d) long
LDIL d Load ((d)) long

ADIL 4 Add ((d)) long

SBIL d Subtract ((d)) long

IMIL d Logical difference ((d)) long
STIL d Store ((d)) long

RAIL d Replace add ((d)) long
AOIL d Replace add one ((d)) long
SOIL 4 Replace subtract one ((d)) long
LDML m,d Load (mt+(d)) long

ADML m,d Add (mt+(d)) long

Page

I1-1-135
II-1-135
II-1-135
II-1-135
II-1-135

II-1-135
II-1-135
II-1-135
II-1-135
II-1-135

I1-1-135
I1-1-135
II-1-135
II1-1-135
II-1-135

II-1-135
I1-1-105
II-1-106
I1-1-106
II-1-135

II-1-137
II-1-135
II-1-95
I1-1-99
II-1-100

I1-1-106
II-1-95

I1-1-109
I1-1-109
I1-1-110

I1-1-96
II-1-100
II1-1-101
I1-1-107
II-1-96

II-1-110
II-1-110
II-1-111
I1-1-97

I1-1-101

II-D-11

Opcode

1052dm
1053dm
1054dm
1055dm
1056dm

1057dm
1060d
1061dm
10624
1063dm

1064cm
1065xem
1066
1067
1070

1071xem
1072
1073x%em
1074
1075

1076
1077

I1-D-12

Mnemonic

SBML
LMML
STML
RAML
AOML

SOML
CRDL

m,d
m,d
m,d
m,d
m,d

m,d
d
m,d
d
m,d

m,c
m,c

m,c

m,c

PP INSTRUCTIONS - OPCODE SEQUENCE (Sheet &4 of 4)

Instruction

Subtract (m+(d)) long

Logical difference (mt+(d)) long
Store (mt+(d)) long

Replace add (m+(d)) long
Replace add one (mt+(d)) long

Replace subtract one (mt+(d)) long

Central read from (A) to d long

Central read (d) words from (A) to m long
Central write to (A) from d long

Central write (d) words to (A) from m long

Jump if channel C flag set
Jump if channel C flag clear
Pass

Pass

Pass

Input A words to m from channel C packed
Pass
Output A words from m on channel C packed
Pass
Pass

Pass
Pass

Page

I1-1-102
I1-1-107
I1-1-97

I1-1-111
II-1-112

I1-1-112
I1-1-118
I1-1-120
I1-1-121
I1-1-122

II-1-126
11-1-126
I1-1-135
11-1-135
I1-1-135

I1-1-129
I1-1-135
I1-1-132
I1-1-135
I1-1-135

I1-1-135
II-1-135

60458890 A

“‘_‘ o

00

Mnemonic

Opcode

ACN 40B+c
ACN ¢

ADC m,d
ADD 4d
ADDL d
ADI d
ADIL d

ADM m,d

AOM m,d

ADML m,d
AOML m,d
LCN d

60458890 A

0000
002500
1002
1003
1004

1005
1006
1007
1010
1011

1012
1013
1014
1015
1016

1017
1020
1021
1025
1027

1066
1067
1070
1072
1074

1075
1076
1077
00741c
00740¢

0021dm
0031d
10314
00414
10414

0051dm
0056dm
1051dm
1056dm
00154

PP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 1 of 4)

Instruction

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Pass

Pass

Pass

Pass

Unconditionally activate channel C
Activate channel C

Add dm

Add (d)

Add (d) long
Add ((d))

Add ((d)) long

Add (mt+(d))

Replace add one (m+(d))

Add (mt+(d)) long

Replace add one (mt+(d)) long
Load complement d

Page

II-1-135
II-1-135
I1-1-135
II-1-135
I1-1-135

II-1-135
I1-1-135
I1-1-135
II-1-135
I1-1-135

II-1-135
II-1-135
II1-1-135
II-1-135
II-1-135

I1-1-135
I1-1-135
I1-1-135
I1-1-135
II-1-135

II-1-135
II-1-135
II-1-135
I1-1-135
I1-1-135

II-1-135
II-1-135
II1-1-135
II1-1-132
I1-1-132

II-1-99
I1-1-99
II-1-99
II-1-100
I1-1-100

II-1-101
II-1-112
II-1-100
I1-1-112
II-1-94

II-D-13

Mnemonic

ADN d
AIM m,c
AOD d
AODL d
AOT 4

AOIL d
CCF c
CFM m,c
CRD 4q
CRDL d

CRM m,d
CRML m,d
CwD d
CWDL d
CWM m,d

CWML m,d
DCN 40B+c
DCN ¢
EM m,c
EXN

FAN 40B+c
FAN ¢

FCIM m,c
FIM m,c

FNC m, 40B+c

FNC m,c
IAM m,c
IAN 40B+c
IAN ¢
IAPM m,c

IJM m,c
KPT
LDC m,d
DD d

LDDL 4

LDI 4
LDIL 4

II-D-14

Opcode

00164
00640cm
00364
10364
00464

1046d
00651cm
00671cm
00604
10604

0061dm
1061dm
00624
10624
0063dm

1063dm
00751c¢
00750c¢
00670cm
00260X

00761c
00760c
1065%cm
00660cm
00771cm

00770cm
0071Xcem
00701c
00700c¢
1071xcm

00650cm
0027X
0020dm
00304

10304
00404
10404

PP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 2 of 4)

Instruction

Add 4

Jump to m if channel C active
Replace add one (d)

Replace add one (d) long
Replace add one ((d)) long

Replace add one ((d)) long

Clear channel C flag

Jump to m if channel C error flag clear
Central read from (A) to d

Central read from (A) to d long

Central read (d) words from (A) to m
Central read (d) words from (A) to m long
Central write to (A) from d

Central write to (A) from d long

Central write (d) words to (A) from m

Central write (d) words to (A) from m long
Unconditionally deactivate channel C
Deactivate channel C

Jump if channel C empty

Exchange jump

Function A on channel C if inactive
Function A on channel C when inactive
Jump if channel C flag clear

Jump if channel C full

Function m on channel C if inactive

Function m on to channel C when active
Input A words from channel C to m

Input To A from channel C if active
Input To A from channel C when active
Input A words to m from channel C packed

Jump if channel C inactive
Keypoint
Load dm
Load (4d)

Load (d) long
Load ((d))
Load ((d)) long

Page

II-1-98-
I1-1-125
I1-1-109
11-1-109
I1-1-110

I1-1-110
II-1-126
I11-1-127
I1-1-118
I1-1-118

II-1-119
I1-1-120
I1-1-120
II1-1-121
I1-1-122

I1-1-122
II1-1-133
I1-1-132

JIT-1-127

I11-1-136

I1-1-134
I1-1-133
II-1-126
I1-1-127
II-1-135

I1-1-134
II-1-128
I1-1-128
II-1-128
II-1-129

I1-1-126
I1-1-135
I1-1-94
II-1-94

II1-1-95

II-1-95
II-1-95

60458890 A

~

=
Q

f
‘_\

Nty Ny

00

_ Mnemonic

LDM m,d
LDML m,d
LDN 4
LIM m,d
LMD 4

ILMDL 4 -
LMI 4
LMIL 4
IMM m,d
LMML m,d

LMN d
LPC m,d
LPDL d
LPIL d
LPML m,d

LPN d
LRN d
MAN
MJN 4
MXN

NJN d
OAM mtc
OAN

OAN 40B+c
OAPM m,c

PJIN d
LMC m,d
PSN
RAD d
RADL 4

RATI d
RAIL d
RAM m,d
RAML m,d
RDCL

RDSL
RIM m,d
SBD d
SBI 4
SBDL d

60458890 A

Opcode

0050dm
1050dm
00144
0001dm
00334

10334
00434
10434
0053dm
1053dm

00114
0022dm
10224
10234
1024dm

00124
00244
00262X
00074
00261X

00054
0073xcm
00720¢
00721c
1073xcm

0006d
0023dm
002400
00354
10354

00454
10454
0055dm
1055dm
10014

10004
0002dm
00324
00424
10324

PP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 3 of 4)

Instruction

Load (mt+(d))

Load (m+(d)) long
Load d

Long jump to m+(d)
Logical difference (d)

Logical difference (d) long
Logical difference ((d))
Logical difference ((d)) long
Logical difference (m+(d))
Logical difference (m+(d)) long

Logical difference d
Logical product dm

Logical product (d) long
Logical product ((d)) long
Logical product (mt+(d)) long

Logical product d

Load R

Monitor exchange jump MA
Minus jump d

Monitor exchange jump

Nonzero jump d

Output (A) words from m on channel C
Output from (A) on channel C when active
Output from A on channel C if active)
Output A words from m on channel C packed

Plus jump d

Logical difference dm
Pass

Replace add (d)
Replace add (d) long

Replace add ((d))

Replace add ((d)) long

Replace add (mt+(d))

Replace add (mt+(d)) long

Central read and clear lock from d to (A)

Central read and set lock from d to (A)
Return jump m+(d)

Subtract (d)

Subtract ((d))

Subtract (d) long

Page

II-1-96
I1-1-97
II-1-94
II1-1-113
II-1-106

II-1-106
II-1-107
I1-1-107
I1-1-107
I1-1-107

II-1-104
IT-1-105
II-1-105
II-1-106
II-1-106

II-1-104
I1-1-117
II-1-136
II-1-115
II-1-136

II-1-115
I1-1-131
I1-1-130
I1-1-131
II-1-132

II-1-115
IT-1-105
IT-1-135
I1-1-109
I1-1-109

II-1-110
II1-1-110
II-1-111
II-1-111
II-1-123

II-1-123
II-1-114
II-1-99

I1-1-100
II-1-100

II-Dp-15

Mnemonic

SBIL d
SBM m,d
SBML m,d
SBN d
SCF m,c

SFM m,c
SOoD d
SODL d

SOT d
SOIL d
SOM m,d
SOML m,d
SRD d

STD d
STDL d
STI 4
STIL 4
STM m,d

STML m,d
TSIM m,c
UJN d
ZJN d

II-D-16

Opcode

10424
0052dm
1052dm
00174
00641cm

00661cm
00374
10374

0047d
10474
0057dm
1057dm
0025d

0034d
10344
00444
10444
0054dm

1054dm
1064cm
00034
00044

PP INSTRUCTIONS - MNEMONIC SEQUENCE (Sheet 4 of 4)

Instruction

Subtract ((d)) long
Subtract (mt(d))

Subtract (m+(d)) long
Subtract d

Test and set channel C flag

Jump to m if channel C error flag set
Replace subtract one (d)
Replace subtract one (d) long

Replace subtract one ((d))
Replace subtract one ((d)) long
Replace subtract one (m+(d))
Replace subtract one (m+(d)) long
Store R

Store (d)

Store (d) long
Store ((d))
Store ((d)) long
Store (mt(d))

Store (m+(d)) long

Jump if channel C flag set
Unconditional jump d

Zero jump 4

Page

I1-1-101
I1-1-102
I1-1-102
I1-1-98

II-1-125

I1-1-127
I1-1-109
I1-1-110

II-1-111
II-1-111
I1-1-112
I1-1-112
I1-1-117

II-1-95
I1-1-95
I1~-1-96
I1-1-96
II-1-96

I1-1-97

I1-1-126
I1-1-114
I1-1-114

60458890 A

OO

C
,»,w’l

ol

INDEX

Address arithmetic instructions, CP I1-1-22
Address translation, see Virtual and Central
Memory Programming
Arithmetic instructioms, floating-
point II-1-54

Arithmetic instructions, PP I1-1-97
BDP byte instructions II-1-38
BDP data descriptors I1-2-40

BDP data types

Slack digit I1-2-45

Type O: packed decimal,
unsigned I1~-2-42

Type 1: packed decimal, unsigned slack
digit I1-2-42

Type 10: binary, unsigned II-2-45

Type 11: binary, signed II-2-45

Type 2: packed decimal, signed I11-2-43

Type 3: packed decimal, signed, slack
digit II-2-43

Type 4: unpacked decimal,
unsigned II-2-43

Type 5: unpacked decimal, trailing sign
combined Hollerith II-2-44

Type 6: unpacked decimal, trailing sign
separate 1I-2-44

Type 7: unpacked decimal, leading sign
combined Hollerith ITI-2-44

Type 8: unpacked decimal, leading sign
separate 1I-2-44

Type 9: alphanumeric I1-2-45

BDP instruction descriptions II-1-31
BDP instruction nomenclature II-1-32
BDP numeric instructions I1-1-32

BDP operand types and field lengths 1I-2-42
BDP subscript and immediate data
instructions IT-1-48

BDP undefined results

Invalid data I1-2-45

Overlap II-2-45
Branch instructions, CP 11-1-17
Branch instructions, floating-point II-1-58

Branch instructions, PP I1-1-113
Business data processing (BDP)
programming II-2-40

60458890 B

Byte instructions, BDP I1-1-38

Central memory access instructions,
PP II-1-116

Central memory programming, see Virtual and
Central Memory Programming

Character data word, display

station 11-2-133
Character mode word, display
station 11-2-130
Clock, real-time, programming II-2-136
CM registers
Corrected error log (CEL) I1-2-16
Element identifier (EID) I1-2-17
Environment control (EC) I11-2-17
Free-running counter I1-2-17
Options installed (OI) 11-2-17
Port bounds 11-2-17
Status summary (SS) 11-2-17

Uncorrectable error ‘log (UEL) II-2-18
Codes, display station II-2-133
Condition and mask registers, CP
Conversion instructions, floating-
point II-1-53
Coordinate data word, display
station I1-2-133
Copy instructions, CP I11-1-20
CP address arithmetic instructions
CP branch instructions I1-1-17
CP condition and mask registers
CP condition register bit grouping
CP copy instructions II-1-20
CP exchange operations I1-2-1
CP general instructions I1-1-4
CP instruction description
nomenclature I1-1-2
CP instruction formats II-1-1
CP instruction index
Mnemonic sequence II-D-5
Opcode sequence II-D-1
CP integer arithmetic instructions
CP interrupts I1-1-3
Exchange I1I-2-25
Trap I1-2-25
Conditions, see Interrupt Conditions
CP load and store instructions II-1-5
CP logical instructions I1-1-27

I1-2-20

I1-1-22

I1-2-20
I1-2-23

II-1-11

CP mark to Boolean imnstruction II-1-30
CP register bit string instructions I1-1-29
Index-1

CP registers
Address A 11-2-6
Base constant (BC) I1-2-6
Cache/map corrected error log
(CCEL/MCEL) I11-2-14
Debug index (DI) I1-2-6
Debug list pointer (DLP) 11-2-6
Debug mask (DM) 11~-2-7
Dependent environment control
(DEC) 1I-2-14
Element identifier (EID)
Flag register
Critical-frame flag (CFF) I1-2-8
On-condition flag (OCF) I11~-2-8
Process—-not-damaged (PND)
flag 11-2-8 .
Job process state (JPS) I1-2-14
Largest ring number (LRN) I1-2-8
Last processor identification
(LPID) 11-2-8
Model dependent word (MDW) 11-2-14
Monitor condition (MCR) 11-2-8
Monitor mask (MMR) I11-2-8

II-2-14

Monitor process state (MPS) I1-2-15
Operand X 11-2-9

Options installed (OI) II-2-13

Page size mask (PSM) 11-2-13

Page table address (PTA) II-2-13
Page table length (PTL) I1-2-13

Process interval timer (PIT) I1-2-9
Processor fault status (PFS) I1-2-13
Processor identifier (PID) I1-2-13
Processor test mode (PTM) I1-2-13
Program address (P) 11-2-9
Segment table address (STA)
Segment table length (STL)
Status summary (SS) I1-2-13
System interval timer (SIT)
Top-of-stack (TOS) pointer
Trap enable (TE)
Trap—enable delay flip-flop
(TEF) I11-2-10
Trap-enable flip-flop (TEF)
Trap pointer (TP) I1-2-10
Untranslatable pointer (UTP)
Untranslatable virtual machine
identifier (UVMID) II-2-11
User condition (UCR) I1-2-11
User mask (UMR) I1-2-11
Virtual machine capability list
(VMCL) 11-2-15
Virtual machine identifier
(VMID) I11-2-12
CP shift instructions II-1-26
CYBER 170 State exchange package

I1-2-10
IT-2-10

I1-2-15
I1-2-10

I1-2-10

I1-2-11

II-2-113

Data descriptors, BDP 11-2-40
Data format, PP I1-1-90
Data formats, FP I11-2-49

Index-2

Data sequences timing I1-C-11
Data types, BDP, see BDP data types
Debug, see Program Monitoring
Dedicated channels, I0U 11-2-136
Difference, FP I1-2-52

Display station programming

Character data word I11-2-133
Character mode I1-2-130

Codes I1-2-133

Coordinate data word I11-2-133
Data display II-2-130

Display character codes 11-2-132
Display station output function
code I1-2-133

Dot mode I1-2-130

Keyboard II-2-130

Keyboard character codes I1-2-131
Program timing consideration I11-2-134

Programming example I1-2-134
Receive and display program
flowchart I11-2-135
Divide, FP II-2-53
Double-precision nonstandard FP
numbers I1-2-51
Double-precision register
designators I1-1-53

Edit examples
Using edit masks 1 through 8 I1-B-2
Using edit masks 17 through 25 II-B-4
Using edit masks 9 through 16 1I-B-3
Edit mask 26 II-B-5
Edit masks 1 through 25 II-B-1
End cases, floating-point, see
Floating—Point End Cases
Exceptions during stack operations
Exchange interrupt I1-2-25
Exchange jumps IT-1-136
Exchange operations, CP I1-2-1
Exchange packages I1-2-3
CYBER 170 State exchange
package I11-2-113
Interstate exchange package 1I-2-108
Virtual State exchange package II-2-5
Exponent arithmetic, FP 1I-2-51

1I-2-40

Flags II-2-35
Floating-point arithmetic

instructions II-1-54
Floating-point branch instructions I1-1-58
Floating—-point conversion
instructions II-1-53
Floating~point (FP) end cases
FP compare results II-2-55
FP difference results, UM clear II-2-58
60458890 B

@

I1-2-59
II-2-60
I1-2-61
IT1-2-62
II-2-63

FP difference results, UM set
FP product results, UM clear
FP product results, UM set
FP quotient results, UM clear
FP quotient results, UM set
FP sum results, UM clear I11-2-56
FP sum results, UM set 11-2-57
Floating~point (FP) programming
Exponent arithmetic I1-2-51
FP data formats I1-2-49
FP divide I1-2-53
FP double-precision nonstandard
numbers I1-2-51
FP indefinite numbers
FP infinite numbers
FP multiply I1-2-53
FP nonzero numbers 11-2-50
FP standard and nonstandard
numbers 11-2-50
FP sum and difference II-2-52
FP zero numbers 11-2-50
Normalization I1-2-51
Representation I1-2-50
Floating-point instruction
descriptions I1-1-52
Format
BDP data descriptor
FP data 11-2-49
Integer I1-1-12
0f X0 for call instructions
Page table entry I1I-2-89
PP data 11-1-90
PP instructions 11-1-90
PP relocation register I1-1-91
Process virtual address (PVA) 11-2-78
Real memory address (RMA) 11-2-81
Segment /page identifier (SPID) I1-2-80
System virtual address (SVA) 11-2-79
Vector instruction I1-1-61

II-2-51
I1-2-50

II1-2-41

I1-2-37

General instructions, CP II-1-4
Global privileged system
instructions I1-1-84

Glossary II-A-1

Immediate data instruction, BDP I1I-1-48
Indefinite numbers, FP I1-2-51
Infinite numbers, FP I11-2-50
Input/output instructions, PP II-1-124
Instruction description nomenclature,

cp 11-1-2
Instruction descriptions, BDP I1-1-31
Instruction descriptions, floating-

point II-1-52

60458890 B

Instruction descriptions, peripheral
processor II-1-90
Instruction descriptions, system II-1-71
Instruction descriptions, vector I1-1-60
Instruction format, vector I1-1-61
Instruction formats, PP I1-1-90
Instruction index
CP instructions - mnemonic
sequence II-D-5
CP instructions - opcode
sequence I1-D-1
PP instructions - mnemonic
sequence II-D-13
PP instructions — opcode
sequence II-D-9
Instruction nomenclature, BDP II-1-32
Instructions, mixed mode I1-1-86
Instructions, monitor mode I1-1-85.
Integer arithmetic instructions, CP
Integer format II-1-12
Interface information
Active flag II-C-5
Control signals I1-C-3
Data input sequences I1-C-6
Data output sequences II-C-7
Data sequences timing II-C-11
Data signals II-C-5
External channel 1/0 sequences
Full flag II-C-5
Function instructions
Interfaces I1-C-1
Maintenance channel interface
Maintenance channel signals
MCH input sequence II-C-8
MCH output sequence II-C-9
PP and channel interaction
Signals I1-C-2
Signals and cables II-C-3
Two—port multiplexer interface II-C-1
12-bit channel control signals IT-C-2
12-bit external interface II-C~1
Interrupt conditions
Access violation (MCR 54)
Address specification error
(MCR 52) 11-2-27
Arithmetic loss of significance
(UCR 62) 11-2-27
Arithmetic overflow (UCR 57) I11-2-27
Critical frame flag (UCR 53) 11-2-28
CYBER 170 State exchange request
(MCR 53) I1-2-32
Debug (UCR 56) I1-2-28
Detected uncorrectable error
(MCR 48) I1-2-32
Divide fault (UCR 55) 11-2-28
Environment specification error
(MCR 55) I1-2-28
Exponent overflow (UCR 58)

II-1-11

II-C-5

I1-C-5

I11-C-1
I1-C-3

II-C-5

11-2-26

I1-2-29

Index-3

Exponent underflow (UCR 59) I1-2-29
External interrupt (MCR 56) II-2-29
FP indefinite (UCR 61) 11-2-29
FP loss of significance
(UCR 60) 11-2-30
Free flag (UCR 50) I11-2-30
Instruction specification error
(MCR 51) 11-2-30
Inter-ring pop (UCR 52) 11-2-31
Invalid BDP data (UCR 63) I1-2-31
Invalid segment/ring number zero
(MCR 60) I11-2-31
Multiple I11-2-33
Not assigned (MCR 49) I1I-2-31
Outward call/inward return :
(MCR 61) 1I-2-31
Page table search without find
(MCR 57) 11-2-32
Privileged instruction fault
(UCR 48) I11-2-32
Process interval time (UCR 51) 11-2-32
Short warning (MCR 50) I1I-2-32
Soft -error log (MCR 62) II-2-33
System interval timer (MCR 59) I1-2-33
Trap exception (MCR 63) II-2-33
Unimplemented instruction
(UCR 49) 11-2-33
Interrupt flowchart I11-2-34

- Interrupts, CP I1-1-3; 1I-2-25

Interrupts, multiple I1-2-33
Interstate exchange package I1-2-108
Interstate programming
Address errors I11-2-119
Cache invalidation in CYBER 170
State I1-2-103
Call from Virtual State to CYBER 170
State I1I-2-105
Calls, returns, and interrupts II-2-106
Code modification in CYBER 170
State I1-2-115
CYBER 170 State exchange
package I1-2-112
CYBER 170 State-to-Virtual State monitor
mode exchange II-2-104
Debug/performance monitoring II-2-115
Exception handling in CYBER 170
State I1-2-115
Exchange packages used in CYBER 170
State 11-2-107
Exchanges within CYBER 170
State 11-2-104
Extended memory transfer
exceptions I1-2-120
Hardware exceptions in CYBER 170
State I11-2-121
Illegal instructions 11-2-120
Interstate calls, returns, and
interrupts 11-2-106

Index-4

100
I0U
I0U

10U

Interstate exchange package I1I-2-107
Interstate stack frame save area
(SFSA) I1-2-113
Memory addressing in CYBER 170
State I1I-2-103
Operation in CYBER 170 State 11-2-102
Return from Virtual State to CYBER 170
State II-2-105
Software exception conditions I1-2-115
State-switching operations I1I-2-104
Trap interrupt from CYBER 170 State to
Virtual State I11-2-105
Virtual State monitor mode-to—CYBER 170
State exchange I1I-2-104
dedicated channels II-2-136
pass instructions II-1-135
peripheral processor (PP) programming
Absolute and relocation
addressing I1-2-121
Cache invalidation 11-2-127
Central memory addressing by
PPs II-2-121
Channel active flag II-2-124
Channel flags 11-2-124
Channel input/output (I/0)
operations I1-2-124
Channel marker flag 1I-2-125
Channel parity errors 11-2-128
Direct 12-bit address I1-2-123
Direct 18-bit operand I11-2-123
Direct 6-bit address 11-2-123
Direct 6-bit operand II-2-123
Error detection and recovery I1I-2-128
Error flag I1-2-125
Indexed 12-bit address 11-2-123
Indirect 6-bit address 11-2-123
Initialization II-2-129
Inter-PP communications 11-2-126
Operating system (0S) bounds
test I1-2-122
Parity errors on input data II-2-129
Parity errors on output data II-2-128
PP central memory read I1-2-122
PP central memory write I1-2-122
PP hardware errors 11-2-128
PP memory addressing by PPs I1-2-123
PP program timing
consideration 11-2-127
Programming for channel input/
output II-2-125 ‘
Register-full flag I1I-2-124
Timeout 11-2-129
registers
Element identifier (EID) I11-2-19
Environment control (EC) 11-2-19
Fault status (FS) 11-2-19
Fault status mask II-2-19
Operating system (0S) bounds II-2-19

60458890 B

e
W

Options installed (OI) 11-2-19
Status summary (SS) II~2-20
Test mode (TM) II-2-20

Job-to-monitor exchange operations, Virtual
State I1-2-3

Keyboard character codes, display
station II-2-131
Keyboard, display station II-2-130

Load and store instructions, CP I1-1-5
Load and store instructions, PP I1-1-93
Local privileged system

instructions I1-1-83
Logical instructiomns, CP II-1-27
Logical instructions, PP II-1-103

Maintenance channel programming
For halt/stop (opcode 0/1) II-2-146
For master clear/clear errors (opcode
6/7) I1-2-146
For read IOU summary status (opcode C,
I0U only) II-2-147
For read/write (opcode 4/5) II-2-146
MCH control words ITI-2-146
MCH function word bit
assignments II-2-147
MCH functions words 11-2-144
Maintenance registers
CM II-2-16
00 11-2-18
Mark to Boolean instruction, CP I1-1-30
Mixed mode instructions I1-1-86
Monitor condition/mask register bit
assignments I1-2-21
Monitor mode instructions II-1-85
Monitor-to-job exchange operations, Virtual
State I1-2-3
Multiple interrupt conditions II-2-34
Multiply, FP I11-2-53
Nonprivileged system instructions I1-1-72
Nonstandard numbers, FP I11-2-50
Nonzero numbers, FP I1-2-50
Normalization, FP IT1-2-51
Numeric instructions, BDP II-1-32

Page table entry format II-2-89
Page table search, start RMA
formation 1I-2-87

60458890 B

Page, virtual memory, see Virtual and
Central Memory Programming
Pass instructions, IOU II-1-135
Peripheral processor instruction
descriptions I1-1-90
PP arithmetic instructions IT-1-97
PP branch instructions II-1-113
PP central memory access
instructions II-1~116
PP data format II-1-90
PP input/output instructions II-1-124
PP instruction formats II-1-90
PP instruction index
Mnemonic sequence II-D-13
Opcode sequence I11-D-9
PP load and store instructions I1-1-93
PP logical instructions II-1-103
PP relocation register format I1-1-91
PP replace instructions I1-1-108
Process state registers, CP I11-2-6
Processor state registers, CP 11-2-12
Process virtual address (PVA)
format I1-2-78
Program monitoring
Debug II-2-64)
Debug condition select I1-2-67
Debug conditions 11-2-72
~Debug index register I1-2-65
Debug list I1-2-64
Debug list entry II-2-66
Debug list pointer register I1-2-65
Debug mask register II-2-66
Debug scan operation II-2-68
Debug-software interaction, debug
disabled II-2-70
Debug-software interaction, debug
enabled II-2-70
Enabling debug II-2-68
Interrupts during debug scan II-2-69
Programming information I1-2-1

Real-time clock programming II-2-136
Real memory address (RMA) format I1I-2-81
Register bit string instructions,
CP II-1-29
Register designators, double-
precision II-1-53
Registers
CM, see CM Registers
CP, see CP Registers
IOU, see IOU Registers
Stack operations, see Stack Operatioms,
Assigned Registers
Relocation register format, PP I1-1-91
Replace instructions, PP II-1-108

Index-5

Segment /page identifier (SPID)
format I11-2-80
SFSA descriptor
SFSA descriptor field
Shift instructions, CP

11-2-38
I1-2-37
II-1-26

Stack frame save area (SFSA) format I1-2-36
Stack frames and save areas I1-2-36
Stack manipulating operations I11-2-36
Stack operations, assigned registers
Argument pointer (A4) I1-2-40
Binding section pointer (A3) II-2-40
Current stack frame pointer
(A1) I1-2-39
Dynamic space pointer (AQ) I1-2-39
Previous save area pointer (A2) I1-2-39
Top-of-stack pointers 11-2-39
Stack operations, exceptions during 11-2-40

Standard numbers, FP II-2-50

Subscript and immediate data instructionms,

BDP II-1-48

Sum, FP I11-2-52

System instruction descriptions

System instruction privilege and
mode I1-2-99

System instructions, global
privileged II-1-84

System instructions, local
privileged II-1-83

System instructions, nonprivileged

System publication index = 7/8

System virtual address (SVA)

II-1-71

II-1-72

I1-2-79

Trap interrupt I1-2-25
Two-port multiplexer programming
Calendar clock/auto dial-out
(1XXX) I1-2-140
Data input I1-2-144
Data output II-2-143
Function words I1-2-139
Master clear (07XX) I1-2-143
PP read terminal data (01XX)
PP write output buffer (02XX)
Programming considerations
Read status summary (00XX)
Set/clear data terminal ready
(DTR) (04XX) I11-2-143
Set/clear request to send (RTS)
(05XX) I11-2-143
Set operation mode to terminal
(03XX) 11-2-142
Terminal deselect (6XXX)
Terminal select (7XXX)

I1-2-141
I1-2-142
I1-2-143
I1-2-141

I1-2-139
I1-2-139

Index-6

Undefined results, BDP I1-2-45

User condition/mask register bit
assignments II-2-22

User mask/condition and monitor condition
fields I11-2-39

Vector instruction descriptions II-1-60
Vector instruction format II-1-61

Vector operations I11-2-47
Vector programming
Vector broadcast I1-2-48

Vector interrupts 1I-2-48
Vector length (number of
operations) 11-2-47
Vector overlap 1I-2-48
Vector page size I1-2-48
Virtual and central memory programming
Access protection 11-2-91
Address tables I1-2-83
BN~-to-page number/page offset
conversion I1-2-82
Call indirect access
requirements. II-2-101
CM addressing from CP 11-2-77
Code base pointer format 11-2-91
Effect of RN violations I11-2-98
Effect of RN = 0 I1-2-96

Execute access privilege/mode I1-2-98
Keys/locks II-2-99
Listing of pages in page table II-2-90
Page table entries (PTE) I11-2-87
Page table entry format II-2-89
Page table search I1-2-86
Page table search, start RMA
formation II-2-87
Process binding section I1I-2-90
Process virtual address (PVA)
format I1-2-78
Process virtual memory II-2-78
PTE control fields I1-2-88
PTE page frame RMA field I1-2-89
PTE segment/page identifier
field 1II-2-88
PVA-to-RMA conversion I1I-2-83
PVA-to-SVA conversion, execute II-2-94
PVA-to~SVA conversion, read/
write I11-2-93
Real memory II-2-79
Real memory address (RMA)
format II-2-81
Ring structure 11-2-95
Ring voting I1-2-95
RN effect on pop instruction II-2-97
60458890 B

RN for execute access I1-2-96

RN for read/write access I11-2-96

Segment descriptor table entry
format I11-2-85

Segment descriptor table (SDT) I1-2-84
Segment /page identifier (SPID)
format I1-2-80
System instruction privilege and
mode I1-2-99
System page table (SPT) I1-2-86

60458890 B

System virtual address (SVA)
format II-2~-79
System virtual memory I1I-2-78
Virtual machine identifier (VMID)
field I1-2-38

Virtual State exchange package I1-2-5

Virtual State job—to-monitor exchange
operations I1-2-3

Virtual State monitor-to-job exchange
operations I1-2-3

Index-7

ot

£ \%‘W

OO0

CUT ALONG LINE

COMMENT SHEET

CDC CYBER 170 Computer Systems Models 815, 825, 835, 845, and

855; CDC CYBER 180 Computer Systems Models 810, 830, 835,
MANUAL TITLE: 840, 845, 850, 855, 860, and 990 Virtual State Volume IT
Hardware Reference Manual
PUBLICATION NO.: 0458890 REVISION:

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZiP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

[J Please Reply O No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUS'NESS REPLY MAIL] H
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. . i
]
POSTAGE WILL BE PAID BY]
CONTROL DATA CORPORATION R
. |
Publications and Graphics Division N
- ARH219 L]
4201 North Lexington Avenue N
Saint Paul, Minnesota 55112 Ee——
]
]
1
1
]
i
FOLD T " Fow

- - -

CUT ALONG LINE

£

-

00

CORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN. 55440 ‘ : LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD .

-

N

O |
0

@5 CONTROL DATA

00

