
CONTROL DATA®
7700 DUAL-P-ROCESSOR
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL

CONTROL DATA
CO R PO RA TION

CONTROL DATA®
7700 DUAL-PROCESSOR
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL

CONTROL DATA
CORPORATION

REVISION
01 P reli mi nary edition.

(1-73)

A Manual released,
(11-73)

Publication No.
ts0396300

©1973
by Control Data Corporation

Printed in the United States of America

REVISION RECORD
DESCRIPTION

Address comments concerning this
manual to:
Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

or use Comment Sheet in the back of
this manual.

PREFACE

This manual provides reference information for the CONTROL DA TA® 7700 Dual­

Processor Computer System. The first section includes a general description of the

overall system. The second, third, and fourth sections describe the system hardware.

The last two sections describe the instruction sets for the central processors and

peripheral processor units.

The following are customer engineering manuals. Refer to the Literature Distribution

Service Catalog for the latest revision of each manual.

Control Data Publications

Central Computer (AA121-A) and Adjunct Processor (AD102-A)

Theory, Diagrams, Maintenance Aids, Parts Data

Power and Reference Wire Lists

Central Processor (AA121-A)

Chassis· 1 Wire Lists

Chassis 2 Wire Lists

Chassis 3 Wire Lists

Chassis 4 Wire Lists

Chassis 5 Wire Lists

Chassis 6 Wire -Lists

Chassis 7 Wire Lists

Chassis 8 Wire Lists

Chassis 9 Wire Lists

Chassis 10 Wire Lists

Chassis 11 Wire Lists

Chassis 12 Wire Lists

Chassis 13 Wire Lists

Chassis 14 Wire Lists

Chassis 15 Wire Lists

LCM Stack Cables Wire Lists

Channel Tabs Wire Lists

Adjunct Processor (AD102-A)

Chassis 6 Wire Lists

Chassis 7 Wire Lists

60396300 A

Pub. No.

60396400

60396500

60396600

60396700

60396800

60396900

60397000

60397100

60397200

60397300

60397400

60397500

60397600

60397700

60397800

60397900

60398000

60398100

60398200

60398300

60398400

iii

iv

Control Data Publications

Chassis 8 Wire Lists

Chassis 9 Wire Lists

Chassis 10 Wire Lists

Chassis 11 Wire Lists

Chassis 12 Wire Lists

Chassis 13 Wire Lists

Chassis 14 Wire Lists

Channel Tabs Wire Lists

Peripheral Processor Unit (ABlOl-A, A Tl 74-A, AB102-A/ B)

Maintenance

Refrigeration System

Power Distribution and Warning System

Pub. No.

60398500

60398600

60398700

60398800

60398900

60399000

60399100

60399200

60274900

60297900

60367300

60298600

60396300 A

CONTENTS

1. SYSTEM DESCRIPTION Input/Output Multiplexer 2-12

Introduction 1-1 Normal PPU to SCM Data
Transfer 2-14

Characteristics of Central
Normal SCM to PPU Data Processors 1-1 Transfer 2-15

Characteristics of Large Core
High Speed PPU to SCM Data Memory 1-3 Transfer 2-17

Characteristics of Peripheral
High Speed SCM to PPU Data Processor Units (PPU) 1-4 Transfer 2-18

Basic System Description 1-4 Small Core Memory 2-19
Central Processors and Large Core

Address Format 2-20 Memory 1-5

Peripheral Processor Units 1-7 Parity Checking 2-20

Maintenance Control Units 1-8 Duty Cycle Integrator 2-20

Operator Stations 1-8 Memory Protection 2-21

Power Distribution Units 1-10 Memory References 2-22

Condensing Units 1-10 Memory Access 2-23

System Communication 1-10
3. LARGE CORE MEMORY

2. CENTRAL PROCESSOR Address Format 3-1
DESCRIPTION Parity Checking 3-2

Central Processing Unit. 2-1 Memory Protection 3-2

Operating Registers 2-2 Memory References 3-3

Instruction Registers 2-3 Block Copies 3-3

PSD Register 2-4 Direct Single-Word Transfers 3-3

Support Registers 2-8 Access Control 3-4

EPA Register 2-9 Unlocked Mode 3-4

Functional Units 2-9 Locked Mode 3-4

Boolean Unit 2-10 Flag Register 3-5

Shift Unit 2-11

Normalize Unit 2-11 4. PERIPHERAL PROCESSOR UNIT

Floating Add Unit 2-11 DESCRIPTION

Long Add Unit 2-11 Computation Section 4-1

Floating Multiply Unit 2-11 A Register 4-1

Floating Divide Unit 2-11 P Register 4-2

Population Count Unit 2-11 Q Register 4-2

Increment Unit 2-12 X Register 4-2

60396300 A v

Sk Register 4-2 Underflow 5-12

fd Register 4-3 Indefinite 5-12

k Register 4-3 Nonstandard Operands 5-13

Memory 4-3 Normalized Numbers 5-16

Input/Output 4-3 Rounding 5-16

Input Channel Control 4-4 Double Precision Results 5-16

Output Channel Control 4-5 Integer Arithmetic 5-17

PPU to PPU Data Transfers 4-5 Instruction Timing 5-18

PPU to Peripheral Equipment Description of Instructions 5-23
Data Transfers 4-8 OOxxx Error Exit to EEA 5-24

Maintenance Control Unit 4-8 OlOxK Return Jump to K 5-25
MCU Dead Start 4-11 01 ljK Block Copy (Bj) + K
PPU Dead Start 4-11 Words from LCM to SCM 5-27

CPU Dead Start 4-11 012jK Block Copy (Bj) + K

PPU Dead Dump 4-12 Words from SCM to LCM 5-30

Clear LCM 4-12 013jK Exchange Exit to (Bj) + K
(Exit Mode Flag Set) 5-32

LCM Timeout Error 4-12 013xx Exchange Exit to NEA
PPU and MCU Parity Errors 4-12 (Exit Mode Flag Not Set) 5-34

SCM and LCM Parity Errors 4-13 014jk Read LCM at (Xk) to Xj

PPU Program Error 4-14 (Xk Bit 20 Not Set) 5-36

014jk Special LCM Functions
(Xk Bit 20 Set) 5-37

5. CENTRAL PROCESSOR 015jk Write Xj into LCM at (Xk) 5-39
INSTRUCTIONS

0160k Reset Input Channel (Bk)
Instruction Formats 5-1 Buffer 5-40

Instruction Issue 5-3 016jk Read Input Channel (Bk)

Program Branching 5-3 Status to Bj (j # O) 5-42

Duplicate Entries in IWS 5-3 0170k Reset Output Channel
(Bk) Buffer 5-43

Holes in IWS 5-4
01 7jk Read Output Channel

Exchange Jump 5-4 (Bk) Status to Bj (j # 0) 5-45

Exchange Exit Instructions 5-6 02ixK Jump to (Bi) + K 5-45

Error Exit 5-7 030jK Branch to K if (Xj) = 0 5-47

Input/ Output Interrupt 5-7 031jK Branch to K if (Xj) # 0 5-49

Real-Time Interrupt 5-8 0 3 2jK Branch to K if (Xj) Positive 5-49

Program Breakpoint 5-8 033jK Branch to K if (Xj) Negative 5-50

Step Mode 5-8 034jK Branch to K if (Xj) In Range 5-50

Floating Point Arithmetic 5-9 035jK Branch to K if (Xj) Out of

Format 5-9 Range 5-51

Packing 5-10 036jK Branch to Kif (Xj) Definite 5-52

Overflow 5-11 037jK Branch to Kif (Xj) Indefinite 5-52

vi 60396300 A

04ijK Branch to K if (Bi) = (Bj) 5-53 37ijk Integer Difference of (Xj)

05ijK Branch to K if (Bi) I (Bj) 5-54
and (Xk) to Xi 5-93

06ijK Branch to K if (Bi) ~ (Bj) 5-55 40ijk Floating Product of (Xj)
and (Xk) to Xi 5-94

07ijK Branch to K if (Bi) < (Bj) 5-56 41ijk Round Floating Product of
1 Oijx Transmit (Xj) to Xi 5-56 (Xj) and (Xk) to Xi 5-97

1 lijk Logical Product of (Xj) 42ijk Floating Double Precision
and (Xk) to Xi 5-57 Product of (Xj) and (Xk) to Xi 5-98

12ijk Logical Sum of (Xj) and 43ijk Form Mask of jk Bits to Xi 5-100
(Xk) to Xi 5-58 44ijk Floating Divide (Xj) by (Xk)
l3ijk Logical Difference of (Xj) to Xi 5-101
and (Xk) to Xi 5-59

45ijk Round Floating Divide (Xj)
14ixk Transmit Complement of by (Xk) to Xi 5-104
(Xk) to Xi 5-60

46xxx Pass 5-105
15ijk Logical Product of (Xj) 47ixk Population Count of (Xk)
and Complement of (Xk) to Xi 5-61

to Xi 5-105
16ijk Logical Sum of (Xj) and 50ijK Set Ai to (Aj) + K 5-106
Complement of (Xk) to Xi 5-62

17ijk Logical Difference of (Xj) 51ijK Set Ai to (Bj) + K 5-107

and Complement of (Xk) to Xi 5-63 52ijK Set Ai to (Xj) + K 5-108

20ijk Left Shift (Xi) by jk 5-64 53ijk Set Ai to (Xj) + (Bk) 5-110

2 lijk Right Shift (Xi) by jk 5-65 54ijk Set Ai to (Aj) + (Bk) 5-111

22ijk Left Shift (Xk) Nominally 55ijk Set Ai to (Aj) - (Bk) 5-112
(Bj) Places to Xi 5-66

56ijk Set Ai to (Bj) + (Bk) 5-114
23ijk Right Shift (Xk) Nominally 57ijk Set Ai to (Bj) - (Bk) 5-115
(Bj) Places to Xi 5-68

24ijk Normalize (Xk) to Xi and Bj 5-69 60ijK Set Bi to (Aj) + K 5-116

25ijk Round Normalize (Xk) to Xi 61ijK Set Bi to (Bj) + K 5-116

and Bj 5-72 62ijK Set Bi to (Xj) + K 5-117

26ijk Unpack (Xk) to Xi and Bj 5-74 6 3ijk Set Bi to (Xj) + (Bk) 5-118

27ijk Pack (Xk) and (Bj) to Xi 5-75 64ijk Set Bi to (Aj) + (Bk) 5-118

30ijk Floating Sum of (Xj) and 65ijk Set Bi to (Aj) - (Bk) 5-118
(Xk) to Xi 5-77

66ijk Set Bi to (Bj) + (Bk) 5-119
3lijk Floating Difference of (Xj) 6 7ijk Set Bi to (Bj) - (Bk) 5-119
and (Xk) to Xi 5-79

32ijk Floating Double Precision 70ijK Set Xi to (Aj) + K 5-119

Sum of (Xj) and (Xk) to Xi 5-81 71ijK Set Xi to (Bj) + K 5-120

33ijk Floating Double Precision 72ijK Set Xi to (Xj) + K 5-120
Difference of (Xj) and (Xk) to Xi 5-84 73ijk Set Xi to (Xj) + (Bk) 5-121
34ijk Round Floating Sum of (Xj) 7 4ijk Set Xi to (Aj) + (Bk) 5-121 and (Xk) to Xi 5-86

35ijk Round Floating Difference of 75ijk Set Xi to (Aj) - (Bk) 5-122

(Xj) and (Xk) to Xi 5-89 76ijk Set Xi to (Bj) + (Bk) 5-122

36ijk Integer Sum of (Xj) and (Xk) 7 7ijk Set Xi to (Bj) - (Bk) 5-122
to Xi 5-92

60396300 A vii

6. PERIPHERAL PROCESSOR 27xx Pass 6-19
UNIT INSTRUCTIONS 30d Load (d) 6-19

Instruction Formats 6-1 31d Add (A) + (d) 6-19

Address Modes 6-2 32d Subtract (A) - (d) 6-20

No Address Mode 6-3 33d Logical Difference (A) and (d) 6-20

Constant Mode 6-3 34d Store (A) at (d) 6-20

Direct Address Mode 6-3 35d Replace Add (A) + (d) 6-21

Indexed Direct Address Mode 6-3 36d Replace Add One (d) 6-21

Indirect Address Mode 6-3 37d Replace Subtract One (d) 6-21

Examples of Address Modes 6-4 40d Load ((d)) 6-22

Restrictions on Instruction Loops 6-4 41d Add (A) + ((d)) 6-22

Instruction Timing 6-5 42d Subtract (A) - ((d)) 6-23

Description of Instructions 6-9 43d Logical Difference (A)

OOxx Error Stop 6-10
and ((d)) 6-23

OlOOm Long Jump tom 6-10
44d Store (A) at ((d)) 6-24

Oldm Long Jump tom+ (d) 6-10
45d Replace Add (A)+ ((d)) 6-24

0200m Return Jump to m 6-11 46d Replace Add One ((d)) 6-25

02dm Return Jump to m + (d) 6-11
47d Replace Subtract One ((d)) 6-25

03d Unconditional Jump d 6-12 5000m Load (m) 6-26

04d Zero Ju:inp d 6-12
50dm Load (m + (d)) 6-27

05d Nonzero Jump d 6-13
51 OOm Add (A) + (m) 6-27

06d Positive Jump d 6-13
51dm Add (A) + (m + (d)) 6-28

07d Negative Jump d 6-14
5200m Subtract (A) - (m) 6-29

1 Od Shift (A) by d 6-14 52dm Subtract (A) - (m + (d)) 6-29

lld Logical Differertce (A) and d 6-15 5300m Logical Difference (A)
and (m) 6-30

l 2d Logical Product (A) and d 6-15
53dm Logical Difference (A)

l 3d Selective Clear (A) by d 6-16 and (m + (d)) 6-30

14d Load d 6-16 5400m Store (A) at (m) 6-31

15d Load Complement d 6-16 54dm Store (A) at (m + (d)) 6-31

16d Add (A) + d 6-17 5500m Replace Add (A) + (m) 6-32

1 7d Subtract (A) - d 6-17 55dm Replace Add (A+ (m + (d)) 6-32

20dm Load dm 6-17 5600m Replace Add One (m) 6-33

2ldm Add (A) + dm 6-18 56dm Replace Add One (m + (d)) 6-34

22dm Logical Product (A) and dm 6-18 5700m Replace Subtract One (m) 6-34

23dm Logical Difference (A) 57dm Replace Subtract One
and dm 6-18 (m + (d)) 6-35

24xx Pass 6-19 60dm Jump to m if Channel d

25xx Pass 6-19 Input Word Flag Set 6-36

26xx Pass 6-19 61dm Jump to m if Channel d
Input Word Flag Not Set 6-36

viii 60396300 A

1-1

1-2

1-3

2-1

2-2

2-3

2-4

2-5

2-6

5-1

5-2

5-3

62dm Jump tom if Channel d
Input Record Flag Set

63dm Jump tom if Channel d
Input Record Flag Not Set

64dm Jump to m if Channel d
Output Word Flag Set

65dm Jump tom if Channel d
Output Word Flag Not Set

66dm Jump to m if Channel d
Output Record Flag Set

67dm Jump tom if Channel d

6-36

6-37

6-37

6-37

6-38

Output Record Flag Not Set 6-38

7ldm Input (A) Words to m on
Channel d 6-39

72d Output from A on Channel d 6-40

73dm Output (A) Words from m
on Channel d 6-40

74d Set Output Record Flag on
Channel d 6-41

75xx Pass 6-41

76xx Pass 6-41

77xx Error Stop 6-41

70d Input to A on Channel d 6-38 APPENDIX A. 6000/7000 Result Differences

APPENDIX B. Programming Considerations

FIGURES

Basic Computer System 1-2 3-1

Mainframe Chassis Configuration 1-6 4-1

Operator Station 1-9 4-2

CPU Information Flow 2-1 4-3

PSD Register Arrangement 2-5 5-1

I/O Buffer Areas in SCM 2-13 5-2

SCM Address Format 2-20 6-1

SCM Memory Map 2-22 6-2

I/O Exchange Package Areas in
SCM 2-24

TABLES

Bits 58 and 59 Configurations 5-9 6-1

Central Processor Instruction
Timing 5-18 6-2

Central Processor Instruction
Designators 5-23 6-3

LCM Address Format

PPU I PPU Communications

PPU /Controller Communications

MCU Configuration

Parcel Instruction Arrangements

Exchange Package

PPU 12-bit Instruction Format

PPU 24-bit Instruction Format

Addressing Modes for PPU
Instructions

Peripheral Processor Unit
Instruction Timing

PPU Instruction Designators

3-1

4-6

4-9

4-10

5-2

5-5

6-1

6-2

6-2

6-5

6-9

60396300 A ix

SYSTEM DESCRIPTION 1

INTRODUCTION

The CONTROL DATA 7700 Dual-Processor Computer System combines two 15-million

instruction per second central processors with a powerful input/ output (I/ 0) structure.

This gives a general purpose computer capable of processing concurrently a wide range

of scientific and business applications. Individual users have the full power of the large

central processors but the economies of a single facility shared by all departments of a

corpora ti on.

This computer system lends itself to all the common problem processing methods: batch,

remote batch, and interactive. The efficiencies of multiprogramming provided by system

software give unequalled throughput. Advanced concepts like distributed computing, tape

staging, and parallel processing meet the challenge of a corporate data processing

facility for current and future needs.

The basic computer system (Figure 1-1) comprises two central processors, a single

large core memory (LCM), and up to 32 first level peripheral processor units (PPUs).

Two of these PPUs are used as maintenance control units (MCUs). LCM is shared by

the two central processors. A third access to LCM is provided for future expansion.

Some of the PPUs are physically located with the central processors and others may be

located in remote stations. Each PPU has up to six data links to peripheral equipment

and/ or second level PPU, one data link to a central processor, and one data link to an

MCU.

CHARACTERISTICS OF CENTRAL PROCESSORS

CENTRAL PROCESSING UNIT (CPU)

• 60-bit internal word

• Synchronous internal logic with 27. 5-nanosecond clock period

• 12-word instruction word stack (IWS)

• Eight 60-bit operand (X) registers

• Eight 18-bit address (A) registers

• Eight 18-bit index (B) registers

60396300 A 1-1

.....
I

N

en
0
w
CD
en
w
0
0

CENTRAL COMPUTER

CENTRAL PROCESSING UN IT

(8 60-BIT X REGISTERS)

(8 18-81T A REGISTERS)

(8 18-B IT 8 REGISTERS)

(12 60-BIT WORD INSTRUCTION STACK)

CENTRAL
PROCESSOR A

SMALL CORE MEMORY I
(32, 768 60- BIT WORDS

I

L

SMALL CORE MEMORY

INCREMENT @
(32,768 60-BIT WORDS

INPUT/OUTPUT MULTIPLEXER CD
(CHANNELS 0,4,5,6,7, 10, 11, 12)

1NPLiT/OuiPuTMulr1PlExER TiNPuT/ouTPUT MLlLTIPlExER
INCREMENT-I @ I INCREMENT-2 @

(CHANNELS 2,3,13,14) I (CHANNELS I, 15,16,17)

NOTES:

(D STANDARD EQUIPMENT LOCATED IN CENTRAL COMPUTER

@
@
@)
@
@
<il
@

OPTIONAL EQUIPMENT LOCATED IN CENTRAL COMPUTER

OPTIONAL EQUIPMENT LOCATED ADJACENT TO CENTRAL COMPUTER

STANDARD EQUIPMENT LOCATED ADJACENT TO CENTRAL COMPUTER

STANDARD EQUIPMENT LOCATED IN ADJUNCT PROCESSOR

OPTIONAL EQUIPMENT LOCATED IN ADJUNCT PROCESSOR

OPTIONAL EQUIPMENT LOCATED ADJACENT TO ADJUNCT PROCESSOR

STANDARD EQUIPMENT LOCATED ADJACENT TO ADJUNCT PROCESSOR

CARD
READER

®

® CDC OWNED EQUIPMENT FOR MAINTENANCE LOCATED ADJACENT TO CENTRAL PROCESSOR

@ CDC OWNED EQUIPMENT FOR MAINTENANCE LOCATED ADJACENT TO ADJUNCT PROCESSOR

THIRD ACCESS

(FUTURE EXPANSION)

ACCESS

c

ACCESS LARGE CORE MEMORY

ADJUNCT PROCESSOR

I
~---------------

1

CENTRAL
PROCESSOR B

CENTRAL PROCESSING UNIT @
(8 60-BIT X REGISTERS)

{8 18-BIT A REGISTERS)

(8 18-BIT B REGISTERS)

{ 12 60-BIT WORD INSTRUCTION STACK}

SMALL CORE MEMORY@

(32,768 60-BIT WORDS) - - - - --
A ACCESS CONTROL(D SMALL CORE MEMORY

- - - - - - INCREMENT @
LARGE CORE MEMOR"Y'IO-------------------t(32,768 60-BIT WORDS)

FLAG REGISTER CD
(48 BITS)

LARGE CORE MEMORY

FLAG REGISTER

INCREMENT @
(48 BITS)

LARGE CORE MEMORY
(256,000 60-BIT WOROS)

- - _CD_ - -
LARGE CORE MEMORY

INCREMENT @
(256,000 60-BIT WORDS

~ERIPHERAL

INPUT/OUTPUT MULTIPLEXER @
{CHANNELS 0 1 41 5,6, 7, 10, 11 1 12)

1NPur/oUTPuT MU'LrlPLExERT1NPITT10UrPur MulT1PlEXER
INCREMENT-I @ : INCREMENT-2 @

Figure 1-1. Basic Computer System

3AAl8

-1

I

_J

FUNCTIONAL UNITS

• Boolean unit

• Shift unit

• Normalize unit

• Floating add unit

• Long add unit

• Floating multiply unit

• Floating divide unit

• Population count unit

• Increment unit

INPUT /OUTPUT MULTIPLEXER (MUX)

• 8, 12, or 16 independent 12-bit channels

• Each channel bidirectional

• Fixed 128-word buffer areas in small core memory (SCM) for normal channels 1

and 10 through 17

Fixed 256-word buffer areas in SCM for high speed channels 2 through 7

Any area in SCM addressable by maintenance control unit (MCU) through chan­

nel 0

SMALL CORE MEMORY (SCM)

• 32, 768 or 65, 536 60-bit words of coincident current memory with five parity

bits per 60-bit word

• Organized into 16 or 32 independent banks (2048 words per bank)

• 275-nanosecond read/write cycle time

• 27. 5 nanoseconds per word maximum transfer rate

CHARACTERISTICS OF LARGE CORE MEMORY (LCM)

• 256, 000 or 512, 000 60-bit words of linear select memory with four parity bits

per 60-bit word

• Organized into four or eight independent banks (64, 000 words per bank)

60396300 A 1-3

• 1760-nanosecond read/write cycle time

• Eight words read simultaneously each reference

• 27. 5 nanoseconds per word maximum transfer rate

• 48-bit or 96-bit flag register to permit locking of individual areas

• Accessible from either central processor

• Third access provided for future expansion

CHARACTERISTICS OF PERIPHERAL PROCESSOR UNITS (PPU)

COMPUTATION SECTION

• 12-bit internal word

• Binary computation in fixed point

• Synchronous internal logic with 27. 5-nanosecond clock period

OPERATING REGISTERS

• 18-bit arithmetic (A) register

• 12-bit program address (P) register

• 13-bit memory read (X) register

• 12-bit instruction (fd) register

• 12-bit working .(Q) register

MEMORY

• 4096 12-bit words of coincident current memory with a parity bit for each

12-bit word (odd parity)

• Organized into two independent banks (2048 words per bank)

• 275-nanosecond read/write cycle time

INPUT /OUTPUT SECTION

• Eight independent channels (asyn~hronous)

• Each channel bidirectional (12-bit)

1-4 60396300 A

BASIC SYSTEM DESCRIPTION

The computer system mainframe includes two central processors, a single LCM, two

MCUs, and up to 20 PPUs. Also, up to 10 PPUs may be located externally. Typically,

these additional PPUs are part of operator stations. Two power distribution units

(PDUs) provide power for the system. The PDUs also contain warning circuits that

monitor chassis and dew point temperatures. Four condensing units provide cooling for

the system. These system elements are described briefly in the following paragraphs.

The central processor, LCM, and PPU are described in more detail in sections 2, 3,

and 4, respectively. The mainframe chassis configuration is illustrated in Figure 1-2.

CENTRAL PROCESSORS AND LARGE CORE MEMORY

Each central processor consists of a CPU, nine functional units, an MUX, and an SCM.

The central processors share a single LCM.

Computation is performed by the functional units. Data moves into and out of the

functional units through the operating registers (A, B, and X) in the CPU.

The central processor uses three types of memory arranged in a hierarchy of speed

and size.

1. The IWS contains 12 60-bit words for issuing of instructions. This register

memory is part of the CPU and holds instruction words previously read from

SCM. Program loops can be held in the IWS, thereby avoiding memory

refer enc es.

2. The SCM contains 32, 768 or 65, 536 60-bit words arranged in 16 or 32 banks

of 2048 60-bit words each. Each bank is phased; that is, consecutive addresses

go to different banks. This gives a marked decrease in memory conflicts and

allows overlapping of memory cycles. Each bank is made up of 10 memory

stacks. Each stack contains 1024 12-bit words plus one parity bit per 12-bit

word (odd parity). These stacks are identical to the PPU memory stacks.

Either instructions or data may be held in SCM.

3. The LCM is shared by the central processors and contains 256, 000 or 512, 000

60-bit words arranged in four or eight phased banks. This memory is a linear

select memory with one parity bit for each 15 bits (odd parity). Each LCM

word contains eight 60-bit words for rapid transfer of blocks of data. However,

individual 60-bit words may also be accessed. Instructions cannot be sent

directly from LCM to the IWS.

60396300 A 1-5

......
I

0)

/~

~
OPTIONAL
PPU 1; MCU;
MUX
CHANNELS
0, 4- 7, 10-12;
OPTIONAL
MUX
CHANNELS
1-3, 13-17

~
SCM BANKS
14-17,
OPTIONAL
SCM BANKS
34 - 37

~
SCM BANKS
10-13,
OPTIONAL
SCM BANKS
30-33

~
SCM BANKS
4-7,
OPTIONAL
SCM BANKS
24- 27

PPU 2-7

SCM BANKS
0-3,
OPTIONAL
SCM BANKS
20-23

~
DIVIDE,
FLOATING
AOC
FUNCTIONAL
UNITS, CPU

~
SHIFT,
POP. COUNT,
LONG ADD,
BOOLEAN,
INCREMENT
FUNCTIONAL
UNITS, CPU

MULTIPLY,
NORMALIZE
FUNCTIONAL
UN ITS

~-SCM BANKS 4-7,
OPTIONAL SCM
BANKS 24 -27

~-SCMBANKS 10-13,
OPTIONAL SCM
BANKS 30-33

~-SCM BANKS 14-17,
OPTIONAL SCM
BANKS 34-37 ~ ~ OPTIONAL PPU I; MCU;

MUX CHANNELS 0,4-71

ro-12;0PTIONAL MUX
CHANNELS 1-3, 13-17

PPU 2-7

OPTIONAL

PPU 10-15

~SCM BANKS 0-3, ~DIVIDE, FLOATING ADO ~SHIFT, POP. COUNT, ~MULTIPLY, NORMALIZE ~ µ_]OPTIONAL ~OPTIONAL ~ ~ v
OPTIONAL SCM FUNCTIONAL UNITS, LONG ADD, BOOLEAN, FUNCTIONAL UNITS LCM CONTROL LCM BANKS 6,7 LCM BANKS 4,5 LCM BANKS 2,3 LCM BANKS 0, I
BANKS 20-23 CPU INCREMENTFUNCTIONAL

UNITS, CPU
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ADJUNCT PROCESSOR CENTRAL COMPUTER 

3AA2A 

Figure 1-2. Mainframe Chassis Configuration 



The SCM performs certain basic functions in system operation which the LCM cannot 

effectively perform. These functions are essentially those requiring rapid random access 

to unrelated fields of data. The first 4K addresses in SCM are reserved for the input/ 

output control and data transfer to service the communication channels to the PPUs. 

Central processor object programs do not have access to these areas. The remainder 

of SCM may be divided between fields of program code and fields of data for the cur­

rently executing program. A small portion may contain a resident monitor program. 

The MUX includes the mechanism to buffer data to (or from) PPUs that are directly 

connected to the central processor. The PPUs communicate with the central processor 

over 12-bit bidirectional MUX channels. In the basic system, there are eight channels, 

one of which is reserved for tJSe by the MCU. Each channel has assembly I disassembly 

registers to convert 12-bit PPU words to 60-bit central processor words (and vice versa). 

The function of the MUX is to deliver these 60-bit words to SCM for incoming data, 

read 60-bit words from SCM for outgoing data, and provide the capability to interrupt 

the central processor for monitor action on the SCM buffer data. Some of the I/O chan­

nels are called high-speed channels as opposed to normal channels. High-speed channels 

transfer data at approximately twice the speed of normal channels. Each normal chan­

nel has an SCM buffer area for incoming data and a separate buffer area for outgoing 

data. The high-speed channels share buffer areas. Each channel also has separate 

exchange packages for incoming and outgoing data. The I/ 0 exchange package areas 

and the buffer areas are permanently assigned in the lowest order addresses of SCM. 

PERIPHERAL PROCESSOR UNITS 

The PPUs are separate and independent computers, some of which reside in the main­

frame. Others may be remotely located. A PPU may be connected to the MUX, 

another PPU, a peripheral device, or a combination of these. PPUs that connect 

directly to the MUX, whether in the mainframe or remotely located, are termed first 

level PPUs. Each PPU has a computation section that performs binary computation in 

fixed point arithmetic. A PPU memory provides storage for 4096 12-bit words. This 

storage is arranged in two independent banks, each with a cycle time of 275 nanoseconds. 

The two memory stacks used in a bank contain 1024 12-bit words each. This type of 

stack is also used in SCM. The PPU instruction set, combined with the high speed 

memory and channel flexibility, enables a PPU to drive many types of peripherals with­

out the necessity of an intermediate controller. There are eight input data paths and 

eight output paths connecting the PPU to other devices. The PPU input/ output facility 

provides a flexible arrangement for high-speed communication with a variety of I/O 

devices. The bidirectional channels allow additional PPUs to be added to the system by 

linking PPU to PPU. 

60396300 A 1-7 



MAINTENANCE CONTROL UNITS 

The MCUs are mainframe PPUs with specially connected 1/0 channels. They are 

capable of dead starting the first level PPUs. An MCU can reference any part of SCM 

by specifying the SCM address. It can dead start the central processor by entering a 

program into SCM and initiating an exchange jump to start execution. With these 

capabilities, it may perform system initialization and basic recovery of the system. 

The MCU also serves as a maintenance station for directing and monitoring system 

maintenance activity. 

OPERATOR STATIONS 

The operator stations (Figure 1-3) are self-contained data processing systems that serve 

primarily as 1/0 processors for the central processors. An operator station is com­

posed of the following elements. 

PPUs (six) 

Display console 

Disk drive 

Card reader 

Card punch 

Printers (two) 

Magnetic tape units. (two) 

One of the six PPUs in an operator station usually connects to the central processor 

through a MUX channel. An alternate method is for an operator station to connect to 

the central processor through a first level PPU residing in the mainframe. 

The maximum cable length between the mainframe and an external first level PPU, or 

between a mainframe first level PPU and an operator station, is 200 feet. Communica­

tion is over 12-bit bidirectional channels. 

The PPU connected to the card reader receives the dead start signal and is assigned 

the task of loading the resident programs and dead starting the other five PPUs in the 

station. The system also performs its own error detection and dead dump procedures. 

1-8 60396300 A 



o:> 
0 
w 
CD 
o:> 
w 
0 
0 

;J:> 

...... 
I 

CD 

CARD READER 

Figure 1-3. 

.. 

MAGNETIC TAPE UNITS 

Operator Station 

CENTRAL PROCESSOR 
OR FIRST LEVEL PPU 

2AU3A 



POWER DISTRIBUTION UNITS 

Two PDUs distribute 400-Hz power to the de power supplies located in the mainframe 

and in operator stations adjacent to the mainframe. Each PDU also contains a warning 

system that monitors logic chassis temperature, room dew point temperature, and con­

densing unit condition. A warning panel in the PDU contains relay circuits that activate 

a horn and automatically shut off computer power when cooling system malfunctions 

occur. 

CONDENSING UNITS 

Four condensing units, each with a capacity rating of 10 tons, provide cooling for the 

mainframe and the operator stations adjacent to the mainframe. Any remotely located 

operator station is cooled by a condensing unit with a capacity of 2 tons. The con­

densing units cool by pumping refrigerant through cold plates in each chassis. 

SYSTEM COMMUNICATION 

System communication paths are illustrated in Figure 1-1. All input data enters and 

leaves the system via peripheral equipment. The first level PPUs gather input data 

from the peripheral equipment for delivery to a central processor and distribute pro­

cessed data to the output devices. Communication between a PPU and the I/O devices 

is generally limited by the rate at which the equipment or controller can deliver or 

accept data. 

Communication between a first level PPU and a central processor is over a channel 

identical to that used for communication between the PPU and peripheral equipment. 

All first level PPUs may be in operation at the same time. Data may be sent to or 

from a central processor on long records. These records can exceed the size of the 

SCM buffer area which is filled and emptied in a circular mode. This is done by I/ 0 

interrupts that initiate a program that can empty or fill the buffer area some 50 times 

faster than a PPU can fill or empty it. For example, a PPU starts filling the buffer 

area at its lowest address and continues entering words until the midpoint of the buffer 

is reached. This causes an interrupt to a program which empties the lower half of the 

buffer. Meanwhile, the PPU continues filling the buffer. At the end of the buffer, 

another interrupt occurs to reinitiate the program which has completed its task of 

emptying the lower half of the buffer. Meanwhile, the PPU starts to refill the buffer 

at the lower address. 

1-10 60396300 A 



CENTRAL PROCESSOR DESCRIPTION 2 

CENTRAL PROCESSING UNIT 

Each CPU includes all central processor logic circuits not contained within the functional 

units, MUX, and SCM. It includes the registers and control logic to direct the arith­

metic operations and provide interface between the functional units, SCM, and LCM. 

In addition to instruction execution, the CPU performs instruction fetching, address 

preparation, memory protection, and data fetching and storing. Figure 2-1 illustrates 

the general flow of information. 

c1 

_L 

j 1NSTRUCTION WORD STACK (60 BITSJ 

~ T 

I 

i1 
yr 
L I CURRENT )J 

INSTRUCTION WO 

FROM SCM L_ IN STRUCTION 
ISSUE 

FUNCTIONAL 
UNITS 

LONG ADO 

FLOATllllG ADD 

FLOATING MULTIPLY 

FLOATING DIVIDE 

BOOLEAN 

SHIFT 

NORMALIZE 

POPULATION COUNT 

INCREMENT 

A REGISTERS 
118 BITS l ' X REGISTERS (60 BITS) B REGISTERS 

(18 BITS) 

j 
SCM 

ADDRESS 

l j 
SCM 
DATA 

j 
LCM 

ADDRESS 

ll 
LCM 
DATA 

Figure 2-1. CPU Information Flow 

ZAU4A 

60396300 A 2-1 



Program execution is begun by an exchange jump. The operating system can use an 

exchange jump to switch program execution between two SCM programs, leaving the 

first program in a usable state for later reentry. 

The CPU reads 60-bit words from SCM and enters them in the IWS which is capable of 

holding up to 12 60-bit words. Each instruction word in turn leaves the IWS and enters 

the current instruction word (CIW) register for interpretation and testing. The CIW reg­

ister holds four 15-bit instructions, two 30-bit instructions, or combinations of the two 

types of instructions. The 15- or 30-bit instructions issue individually from the CIW 

register to one of nine functional units. The functional units obtain the instruction oper­

ands from and store results in 24 operating registers. Reservation control keeps an 

account of active operating registers to avoid conflicts. 

OPERA TING REGISTERS 

Twenty-four registers are provided to minimize memory references for arithmetic oper­

ands and results. These 24 are divided 

Function 

Operand Registers 

Address Registers 

Index Registers 

X REGISTERS 

into: 

Identity 

XO through 

AO through 

BO through 

Length 

X7 60 Bits 

A7 18 Bits 

B7 18 Bits 

There are eight 60-bit operand (X) registers in the CPU. These registers (XO, Xl, .•. , 

X7) are the principal data handling registers for computation. Data flows from these 

registers to SCM and LCM. Data also flows from SCM and LCM into these registers. 

All 60-bit operands involved in computation must originate and terminate in these registers. 

Operands and results transfer between SCM and these registers as a result of placing 

SCM addresses into corresponding address registers. 

The X registers also serve as address registers for referencing single words from LCM. 

XO is used as the LCM relative starting address in a block copy operation. 

A REGISTERS 

There are eight 18-bit address (A) registers in the CPU. These registers (AO, Al, ... , 

A 7) are essentially SCM operand address registers. The registers are associated one­

for-one with the X registers. Placing a quantity into an address register Al through A5 

2-2 60396300 A 



causes an immediate SCM read reference to that relative address and sends the SCM word 

to the corresponding operand register Xl through X5. Similarly, placing a quantity into 

address register A6 or A 7 causes the word in the corresponding X6 or X7 operand reg­

ister to be written into that relative address of SCM. Only the lower 16 bits are used; 

the remainder are ignored. 

The AO and XO registers operate independently of each other and have no connection 

with SCM. AO is used as the relative SCM starting address in a block copy operation 

and for scratch pad or intermediate results. 

B REGISTERS 

There are eight 18-bit index (B) registers in the CPU. These registers (BO, Bl, ... , B7) 

are primarily indexing registers for controlling program execution. Program loop counts 

may be incremented or decremented in these registers. 

Program addresses may be modified on the way to an A register by adding or subtract­

ing B register quantities. The B registers also hold shift counts for pack and normalize 

operations and the channel number for channel status requests. 

BO always contains positive zero. It can be used as an operand but cannot hold results 

from instructions. 

INSTRUCTION REGISTERS 

INSTRUCTION WORD STACK 

The IWS is a group of twelve 60-bit registers that hold program instruction words for 

execution. It is essentially a moving window in the program code. The IWS is filled 

two words ahead of the program address currently being executed. A small program 

loop of up to ten instruction words may be entirely contained within the IWS. When this 

happens, the loop may be executed repeatedly without further references to SCM. 

When a shift stack condition exists, each rank is cleared and simultaneously entered 

with information from the next highest order rank. The information in rank one is dis­

carded. New information arriving from SCM is entered in rank 12. 

The twelve registers are individually identified by rank. The rank one register contains 

the oldest data. If the IWS contains sequential program instruction words, the contents 

of the rank one register corresponds with the lowest storage address in the instruction 

address stack. 

60396300 A 2-3 



INSTRUCTION ADDRESS ST ACK 

A group of twelve 18-bit address registers are associated with the IWS. These regis­

ters, called the instruction address stack (IAS), hold relative SCM program addresses 

on a one-for-one basis with the program words in the IWS. The rank one register con­

tains the SCM address from which the word in rank one of the IWS was read. All ranks 

are compared with the current program address. If coincidence occurs for any rank, 

the corresponding rank in the IWS is sent to the CIW register. 

CIW REGISTER 

The CIW register is divided into four 15-bit parcels. All four parcels are loaded when 

an instruction word is read from the IWS. An instruction issues from the CIW register 

when conditions in the functional units and operating registers are such that the instruc­

tion will be executed without conflicting with previously issued instructions. The other 

parcels are then shifted left in the CIW register by either 15 or 30 bits, depending upon 

the instruction format. 

P REGISTER 

The 18-bit program address (P) register contains the current program execution address. 

It serves as a program address counter and holds the relative SCM address for each 

program step. (Refer to appendix B for related information.) P is advanced to the next 

program step in the following ways. 

1. P is advanced by one when an instruction word is sent to the CIW register. 

2. P is set to the address specified by a branch instruction. If the instruction is 

a return jump,. (P) + 1 is stored before entering P with the new value to allow 

a return to the original sequence. 

3. P is set to the address specified in the exchange package. 

PSD REGISTER 

The program status designator (PSD) register is a collection of 18 program status flags. 

Six of these flags are mode designators and 12 are condition designators. The arrange­

ment of these flags in the register is illustrated in Figure 2-2. 

The PSD register is loaded from the exchange package during an exchange jump sequence. 

All 18 bits are entered in the register at this time. The six mode designators remain 

unaltered throughout the execution interval for the exchange package. The 12 condition 

designators may be set by conditions that occur during the execution interval. All flags 

are stored in the SCM exchange package at the end of the execution interval. 

2-4 60396300 A 



MOOE FLAGS 

16 15 14 13 12 

MONITOR 

STEP 

INDEFINITE 

OVERFLOW 

UNDERFLOW 

LCM PARITY 

II 

SCM PARITY 

10 9 8 

LCM BLOCK RANGE 

CONDITION FLAGS 

7 6 4 3 2 0 

UNDERFLOW 

OVERFLOW 

INDEFINITE 

STEP 

BREAKPOINT 

PROGRAM RANGE 

SCM DIRECT RANGE 

LCM DIRECT RANGE 

SCM BLOCK RANGE 2AU5A 

Figure 2-2. PSD Register Arrangement 

MODE FLAGS 

The upper six bits (12 through 17) in the PSD register are mode flags. These flags 

remain unaltered throughout the execution interval for the exchange package. 

EXIT MODE FLAG (BIT 17) 

This flag determines the initial SCM address for the exchange package during execution 

of an exchange exit (013) instruction. If this flag is set, the exchange package address 

is K + (Bj) + (RAS). If clear, the address is (NEA). This flag also controls execution 

of the 014 special LCM functions instruction. It can be executed if this flag or the 

monitor mode flag is set. If both flags are clear, the instruction is executed as a pass 

ins true ti on. 

MONITOR MODE FLAG (BIT 16) 

This flag determines when an I/O interrupt request is honored. If this flag is set, the 

current program continues until execution is complete. If an I/ 0 interrupt request 

occurs during this time, it is not honored until the end of the current program. If the 

flag is clear, an I/O interrupt is honored immediately. 

The monitor mode flag also controls execution of the 0160 and 0170 reset buffer instruc­

tions and the 014 special LCM functions instruction. If this flag is set, the instructions 

are executed as described. If clear, the 0160 and 01 70 instructions are executed as 

pass instructions. If both this flag and the exit mode flag are clear, the 014 special 

LCM functions instruction is executed as a pass instruction. (Refer to appendix B for 

related information. ) 

60396300 A 2-5 



STEP MODE FLAG (BIT 15) 

If this flag is set and the first instruction of the current exchange interval has issued, 

the step condition flag (bit 3) sets. The step condition flag then terminates the execution 

interval after the last instruction in the CIW register has issued. 

INDEFINITE MODE FLAG (BIT 14) 

This flag enables interruption of the current exchange interval when an indefinite floating 

point result occurs. If this flag and the indefinite condition flag (bit 2) are both set, 

the execution interval is terminated after the last instruction in the CIW register has 

issued. 

OVERFLOW MODE FLAG (BIT 13) 

This flag enables interruption of the current exchange interval when an overflow of the 

floating point range occurs. If this flag and the overflow condition flag (bit 1) are both 

set, the execution interval is terminated after the last instruction in the CIW register 

has issued. 

UNDERFLOW MODE FLAG (BIT 12) 

This flag enables interruption of the current exchange interval when an underflow of the 

floating point range occurs. If this flag and the underflow condition flag (bit 0) are both 

set, the execution interval is terminated after the last instruction in the CIW register 

has issued. 

CONDITION FLAGS 

The lower 12 bits (O through 11) in the PSD register are condition flags. These flags 

may be set from the exchange package or from conditions that may occur during the 

execution interval. When this occurs, the execution interval for the exchange package 

is terminated after the last instruction in the CIW register has issued. (Refer to 

appendix B for related information. ) 

LCM PARITY CONDITION FLAG (BIT 11) 

This flag sets when a parity error exists in a word read from LCM. 

2-6 60396300 A 



SCM PARITY CONDITION FLAG (BIT 10) 

This flag sets when a parity error exists in a word read from SCM. 

LCM BLOCK RANGE CONDITION FLAG (BIT 9) 

This flag sets when a block copy instruction is issued which would cause an LCM refer­

ence to an address which equals or exceeds (FLL). If an LCM timeout error occurs, 

this flag sets in the CPU which caused the error. 

SCM BLOCK RANGE CONDITION FLAG (BIT 8) 

This flag sets when a block copy instruction is issued which would cause an SCM refer­

ence to an address which equals or exceeds (FLS). 

LCM DIRECT RANGE CONDITION FLAG (BIT 7) 

This flag sets when a direct read or write LCM instruction is issued which would cause 

an LCM reference to an address which equals or exceeds (FLL). If an LCM timeout 

error occurs, this flag sets in the CPU which caused the error. 

SCM DIRECT RANGE CONDITION FLAG (BIT 6) 

This flag sets whenever an increment instruction (50 through 57) is issued which causes 

an SCM reference to an address equal to or greater than (FLS), or whenever (P) is 

equal to or greater thap. (FLS). 

PROGRAM RANGE CONDITION FLAG (BIT 5) 

This flag sets whenever (P) equals zero or an error exit instruction (00) is issued. 

When this flag is set by a 00 instruction, execution terminates immediately. 

BREAKPOINT CONDITION FLAG (BIT 4) 

This flag sets whenever (P) equals (BPA). 

STEP CONDITION FLAG (BIT 3) 

This flag sets whenever the step mode flag (bit 15) is set and a new word has entered 

the CIW register. 

60396300 A 2-7 



INDEFINITE CONDITION FLAG (BIT 2) 

This flag sets when one of the floating point functional units generates an indefinite 

result. The execution interval is not terminated unless the indefinite mode flag (bit 14) 

is also set. 

OVERFLOW CONDITION FLAG (BIT 1) 

This flag sets when an overflow of the floating point range occurs in the result from a 

functional unit. The execution interval is not terminated unless the overflow mode flag 

(bit 13) is also set. 

UNDERFLOW CONDITION FLAG (BIT O) 

This flag sets when an underflow of the floating point range occurs in the result from a 

functional unit. The execution interval is not terminated unless the underflow mode flag 

(bit 12) is also set. 

SUPPORT REGISTERS 

The support registers are used to assist the operating registers during the execution of 

programs. These registers are loaded from SCM during the execution of an exchange 

sequence. The information is not altered during the execution interval for an exchange 

package. When the execution interval has been completed, the data in these registers 

is sent back to SCM. 

RAS REGISTER 

The 18-bit reference address-SCM (RAS) register is loaded from SCM during the second 

word of an exchange sequence. An absolute SCM address is formed by adding (RAS) to 

the relative address which is determined by the instruction. SCM references from the 

MUX are absolute addresses. Therefore, they are not added to (RAS). 

FLS REGISTER 

The 18-bit field length-SCM (FLS) register is loaded from SCM during the third word 

of an exchange sequence. Relative SCM addresses are compared with (FLS). If a 

relative SCM address equals or exceeds (FLS), the SCM block range or SCM direct 

range condition flag sets in the PSD register. 

2-8 60396300 A 



RAL REGISTER 

The 24-bit reference address-LCM (RAL) register is loaded from SCM during the fifth 

word of an exchange sequence. An absolute LCM address is formed by adding (RAL) to 

the relative address which is determined by the instruction. 

Fll REGISTER 

The 24-bit field length-LCM (FLL) register is loaded from SCM during the sixth word 

of an exchange sequence. Relative LCM addresses are compared with (FLL). If a 

relative LCM address equals or exceeds (FLL), the LCM block range or LCM direct 

range condition flag sets in the PSD register. 

NEA REGISTER 

The 24-bit normal exit address (NEA) register is loaded from SCM during the seventh 

word of an exchange sequence. This register is used during an exchange exit (013) 

instruction when the exit mode flag in the PSD register is clear. When this occurs, 

the current program is terminated with an exchange sequence. The absolute SCM ad­

dress for the new exchange package is contained in the NEA register. 

EEA REGISTER 

The 24-bit error exit address (EEA) register is loaded from SCM during the eighth word 

of an exchange sequence. This register is used whenever an error exit occurs during 

the execution interval for an exchange package. When this occurs, (EEA) comprises the 

absolute address in SCM for the exchange package that terminates the program. 

BPA REGISTER 

The 18-bit breakpoint address (BPA) register is loaded from SCM during the first word 

of an exchange sequence. This register allows a program to be run in small sections. 

When (EPA) and (P) are equal, the breakpoint condition flag is set in the PSD register. 

This terminates the execution interval for the exchange package after the last instruction 

in the CIW register has issued. 

FUNCTIONAL UNITS 

There are nine functional units in the central processor. Each is a speCialized arith­

metic unit with algorithms for a portion of the central processor instructions. Each unit 

is independent of the other units, and a number of functional units may be in operation 

60396300 A 2-9 



at the same time. There are no visible registers in the functional units from a pro­

gramming standpoint. A functional unit receives one or two operands from operating 

registers at the beginning of instruction execution and delivers the result to the oper­

ating registers when the function has been performed. There is no information retained 

in a functional unit for reference in subsequent instructions. These units operate essen­

tially in a three-address mode, with limited source and destination addressing. 

All functional units, with the exception of the floating multiply and divide units, have 

1-clock-period segmentation. This means that the information arriving at the unit, 

or moving within the unit, is captured and held in a new set of registers every clock 

period. Therefore, it is possible to start a new set of operands for unrelated compu­

tation into a functional unit each clock period even though the unit may require more 

than 1 clock period to complete the calculation. This process may be compared to a 

delay line in which data moves through the unit in segments to arrive at the destination 

in the proper order but at a later time. All functional units perform their algorithms 

in a fixed amount of time. No delays are possible once the operands have been delivered 

to the unit. 

The floating multiply unit has 2-clock-period segmentation. Operands may enter the 

multiply unit in any clock period providing there was no operation initiated in the 

preceding clock period. There is a 1-clock-period delay in initiating a multiply instruc­

tion if another multiply instruction has JUSt been started. 

The floating divide unit is the only functional unit in which an iterative algorithm is 

executed. There is essentially no segmentation possible in this unit although the 

beginning of a new operation can overlap the completion of the previous operation by 

2 clock periods. 

A brief description of the operations performed by the functional units is provided in the 

following paragraphs. Refer to the description of central processor instructions for 

details. 

BOOLEAN UNIT 

The boolean unit executes instructions 10 through 17, 26, and 27. These instructions 

require bit-by-bit data manipulation. These include both the logical operations 

(11 through 13 and 15 through 17) and the transmissive operations (10, 14, 26, and 27). 

2-10 60396300 A 



SHIFT UNIT 

The shift unit executes instructions 20 through 23 and 43. These instructions require 

shifting the entire 60-bit field of data within the operand word. 

NORMALIZE UNIT 

The normalize unit executes instructions 24 and 25. These instructions increase the 

coefficient portion of a floating point operand to the largest possible value while reducing 

the exponent by a corresponding amount. 

FLOATING ADD UNIT 

The floating add unit executes instructions 30 through 35. These instructions require 

single or double precision addition or subtraction of operands in floating point format. 

LONG ADD UNIT 

The long add unit executes instructions 36 and 37. These instructions require integer 

addition or subtraction of operands in fixed point format. 

FLOATING MULTIPLY UNIT 

The floating multiply unit executes instructions 40 through 42. These instructions require 

single or double precision multiplication of operands in floating point format. 

FLOATING DIVIDE UNIT 

The floating divide unit executes instructions 44 and 45. These instructions require 

single precision division of operands in floating point format. 

POPULATION COUNT UNIT 

The population count unit executes instruction 47. This instruction counts the number 

of bits in a 60-bit operand which have a value of one. 

60396300 A 2-11 



INCREMENT UNIT 

The increment unit executes instructions 50 through 77. These instructions require 

arithmetic operations on two selected 18-bit operands. During 50 through 57 instruc­

tions. the result is transmitted to an A register. Also. this result plus (RAS) is sent 

to SCM when the Al through A 7 registers are used. During 60 through 67 instructions. 

the result is transmitted to a B register. During 70 through 77 instructions. the result 

is transmitted to an X register. 

INPUT /OUTPUT MULTIPLEXER 

The MUX supervises the transfer of data to or from the SCM and the directly connected 

PPUs. The PPUs communicate with the SCM over 12-bit bidirectional channels. The 

MUX has a channel control for each channel. It translates I/ 0 control signals going to 

or coming from a PPU. The channel control unit also includes assembly and disassembly 

registers for converting 12-bit PPU words to 60-bit central processor words and vice 

versa. 

There are 8, 12. or 16 channels in the MUX. Fifteen channels, numbered 1 through 17 

(octal), can connect to PPUs. A sixteenth channel. channel 0, connects to the MCU but 

operates differently. It is not included in the following description. but is included in 

the PPU description. 

Priority for SCM access and I/O interrupts is assigned in order by channel number with 

the lowest order channels having the highest priority; input has priority over output. 

Each MUX channel has an SCM buffer area which is reserved for I/0 data. Each buffer 

is divided into two fields, a lower field and an upper field. Data is entered (or removed) 

in the buffer area in a circular mode. That is. the last word in the lower field is 

followed by the first word in the upper field; the last word in the upper field is followed 

by the first word in the lower field. Whenever a PPU fills or empties a buffer area to 

the point where a field boundary is crossed, the CPU is interrupted and an exchange 

sequence is performed to initiate a program to process the buffer data. The PPU con­

tinues to fill (or empty) the second buffer field while the data in the first buffer field is 

being processed. The buffer areas in SCM are illustrated in Figure 2-3. These loca­

tions are fixed and cannot be changed unless a wiring modification is made. Note that 

the high-speed channels share common buffer areas. 

2-12 60396300 A 



The basic channel configuration includes high-speed channels 4 through 7 and normal 

channels 10 through 12. If both optional MUX increments are installed. the system 

includes high-speed channels 2 through 7 and normal channels 1 and 10 through 17. 

High-speed channels transfer data at approximately twice the speed of normal channels. 

Also. the high-speed channel buffer areas are twice as large as the normal channel 

buffer areas. 

10000 

CHANNEL 16 CHANNEL 16 CHANNEL 17 CHANNEL 17 
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER 

7000 

CHANNEL 14 CHANNEL 14 CHANNEL IS CHANNEL 15 
IN PUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER 

6000 

CHANNEL 12 CHANNEL 12 CHANNEL 13 CHANNELl3 
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER 

5000 

CHANNEL 10 CHANNEL 10 CHANNEL 11 CHANNEL II 
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER 

4000 

HIGH SPEED CHANNELS 4 AND 5 HIGH SPEED CHANNELS 6 AND 7 
IIO BUFFER I/O BUFFER 

3000 

CHANNEL I CHANNEL I HIGH SPEED CHANNELS 2 AND 3 
IN PUT BUFFER OUT PUT BUFFER I/O BUFFER 

2000 

AVAILABLE FOR A MONITOR PROGRAM 

1000 

I/O EXCHANGE PACKAGES 

200 400 600 1000 

(OCTAL ADDRESSES) 2AU6A 

Figure 2-3. 1/0 Buffer Areas in SCM 

60396300 A 2-13 



• 

NORMAL PPU TO SCM DATA TRANSFER 

The following description lists the events in a normal PPU to SCM input record sequence. 

The sequence begins with a reset input channel buffer instruction that resets the input 

channel buffer for receipt of a new record. This sets the input assembly counter and 

the input buffer address to zero. The CPU then notifies the PPU that SCM is ready to 

receive data. It does this by transmitting a message to the PPU over the associated 

MUX output channel. The content and format of the message depend upon the communi­

cation scheme, which is determined by the software. 

Upon receipt of this message, the PPU enters the first 12-bit word into its output reg­

ister. This entry causes the transmission of a word pulse and 12 data bits to the input 

channel control for this channel in the MUX. The MUX enters the first word in the 

upper 12 bits of the 60-bit assembly register. Then the MUX sends a resume pulse to 

the PPU and advances the assembly counter. The resume pulse clears the output word 

flag at the PPU and the second 12-bit word enters the PPU output register. The se­

quence of word pulse, input assembly; and resume pulse is repeated for each 12-bit 

word transmitted over the data path. When five 12-bit words have been assembled into 

a 60-bit word, a resume pulse is sent to the PPU and a word request is made for SCM 

access. The MUX does not accept the next 12-bit word from the PPU until the request 

for SCl'vl access has been accepted by the SCM. This may be only a few clock periods, 

or many clock periods, depending upon SCM bank conflicts. Once the word request has 

been accepted by SCM, the buffer address is advanced, the assembly counter is reset 

to zero, and the transmit and assembly procedure is repeated for the next 60-bit word. 

When the PPU has transmitted enough words to fill half of its assigned SCM buffer area, 

the MUX sends an interrupt request to the CPU. When this is accepted by the CPU, 

an exchange jump is initiated to a program that processes the data in the first half of 

the buffer. Meanwhile, the PPU continues to transmit 12-bit words, which the MUX 

assembles into 60-bit words and stores in the upper half of the buffer. When the upper 

half of the buffer becomes full, the MUX sends another interrupt request to the CPU, 

provided that the program from the first interrupt has completed processing the lower 

half of the buffer and has performed an exchange exit. Otherwise, the interrupt request 

is not sent to the CPU and further input from the PPU is locked out until the exchange 

exit is executed. 

2-14 60396300 A 



NOTE 

If an error condition occurs which causes the I/ 0 pro­
gram to exit to an error handling routine at EEA, the 
error routine may, in returning to the I/ 0 program, 
inadvertently release the interrupt lockout condition 
prematurely by performing an exchange exit instruction 
(013). To prevent this situation from occurring, bit 17 
of EEA can be set in the incoming exchange package. 
This bit is sent to exchange jump control and blocks 
an 013 instruction from releasing any I/O interrupt 
request flags that might be set. 

When the interrupt request has been sent, the PPU begins to enter data into the lower 

half of the buffer while the data in the upper half is being processed. Thus, the buffer 

operates in a circular mode with interrupts at the center and end of the buffer area. 

An input record may contain any amount of data. The transmitting PPU terminates the 

record by sending a record pulse to the MUX. Before sending the record pulse, the 

PPU ensures that the last 12-bit word was accepted by the MUX. (If the PPU output 

word flag is clear, the MUX has accepted the last word. ) Upon receipt of the record 

pulse, the MUX sends an interrupt request to the CPU. If the PPU has not transmitted 

enough 12-bit words to form a complete 60-bit word, the remainder of the word is filled 

with zeros. Other than this, the CPU handles this request the same as an interrupt 

request caused by a threshold condition. The resulting I/ 0 program determines whether 

the interrupt was caused by a buffer threshold or a record pulse. It does this by read­

ing the SCM address (read input channel status instruction) to determine whether a 

threshold has been crossed since the last interrupt. The I/ 0 program processes the 

input data according to the situation sensed. 

The PPU must not begin transmitting a new record of input data until the data in the 

buffer has been processed. There is no hardware provision to prevent the PPU from 

doing this. Therefore, the PPU program must not enter new data until directed to do 

so by the CPU program.' If the PPU proceeds before the CPU has reset the input buffer, 

the incoming data for the new record may be partially lost. The incoming record con­

tinues to be input with no indication of error except that the record is shortened by the 

lost data. 

NORMAL SCM TO PPU DATA TRANSFER 

The following description lists the events in a normal SCM to PPU output record se­

quence. The I/ 0 program has already loaded the output buffer with some data. The 

output sequence begins with a reset output buffer instruction that sets the output buffer 

60396300 A 2-15 



address to zero and sends a word request to SCM to read the first word from the output 

buffer to the 60-bit disassembly register in the MUX. When SCM delivers the 60-bit 

word to the disassembly register, the output channel control for this channel clears the 

disassembly counter and outputs a record pulse and a word pulse to the PPU to indicate 

that transmission of a new record is starting. 

The upper 12 bits of the data in the disassembly register are placed on the input chan­

nel for the PPU. When the PPU program senses the record pulse on its input channel, 

it reads the 12 bits of data and sends a resume pulse to the MUX. The MUX output 

data remains on the PPU input channel until the PPU accepts it. 

When the resume pulse arrives from the PPU, the MUX advances the disassembly reg­

ister to the next 12 bits of the 60-bit word and sends another word pulse to the PPU. 

The output buffer address also advances to the next address at this time so that a pro­

gram monitoring this channel could determine that the PPU has accepted the first 12 bits 

of a new 60-bit word. The sequence of output disassembly, word pulse, PPU input, and 

resume pulse continues until the entir.e 60-bit word has been sent by the MUX. At this 

time, the MUX sends another word request to SCM for the next word in the output buffer. 

When this word arrives in the disassembly register, the upper 12 bits and a word pulse 

are sent to the ?PU and the process of delivering a new 60-bit word is repeated. 

When the PPU has emptied half of its assigned buffer area, the MUX sends an interrupt 

request to the CPU. When this is accepted by the CPU, an exchange jump is initiated 

to the program that refills the portion of the buffer that has just been emptied. This 

operation is similar to that performed for a PPU to SCM transfer. Output to the PPU 

continues from the upper half of the buffer while the lower half is being refilled. 

When the upper half of the buffer becomes empty, the MUX sends another interrupt 

request to the CPU provided that the program from the first interrupt has completed 

processing the lower half of the buffer and has performed an exchange exit. Otherwise, 

the interrupt request is not sent to the CPU and further output to the PPU is locked out 

until the exchange exit is executed. 

2-16 

NOTE 
If an error condition occurs which causes the 1/0 pro­
gram to exit to an error handling routine at EEA, the 
error routine may, in returning to the I/O program, 
inadvertently release the interrupt lockout condition 
prematurely by performing an exchange exit instruction 
(013). To prevent this situation from occurring, bit 17 
of EEA can be set on the incoming exchange package. 
This bit is sent to exchange jump control and blocks an 
013 instruction from releasing any 1/0 interrupt request 
flags that might be set. 

60396300 A 



Using a software-determined communication scheme, the CPU has notified the PPU of 

the length of the record. When the PPU has received the expected amount of data, it 

simply stops reading data on its input channel. This stops further transmission by the 

MUX. 

HIGH SPEED PPU TO SCM DATA TRANSFER 

The following description lists the events in a high-speed input record sequence. The 

sequence for a high-speed channel is basically the same as for a normal channel except 

that the word and record pulses from the PPU are not synchronized by the MUX. 

The sequence begins with a reset input channel instruction that resets the input channel 

buffer for receipt of a new record. This sets the input assembly counter to zero and 

the input buffer address to the starting address of the buffer for the selected channel. 

Next, the PPU enters the first 12-bit :vord into its output register. This causes the 

transmission of a word pulse and 12 data bits to the input channel control for this chan­

nel in the MUX. The MUX enters the 12-bit word in the upper 12 bits of the 60-bit 

assembly register. 

A static high-speed resume signal is sent to the PPU during this time. This clears 

the output word flag in the PPU immediately after it is set. The second 12-bit word 

may now be entered in the PPU output register. This sequence continues as each 12-

bit word is transmitted over the data path. 

When five 12-bit words have been assembled into a 60-bit word, the MUX sets the input 

word request flag for SCM access. This blocks the high-speed resume signal to the 

PPU and clears the input assembly counter in preparation for the arrival of the next 

PPU word. It also blocks the processing of a new 12-bit word if one arrives before 

the request for access has been accepted by SCM. This may be only a few clock periods 

or many clock periods, depending upon SCM bank conflicts and channel priority. Once 

the word request has been accepted by SCM, the buffer address is advanced, the input 

word request flag is cleared, and the high-speed resume signal is again sent to the 

PPU. The transmit and assembly procedure is then repeated for the next 60-bit word. 

Interrupt requests resulting from reaching a buffer threshold or receiving a record pulse 

from the PPU are the same as for the normal PPU to SCM data transfer. 

60396300 A 2-17 



HIGH SPEED SCM TO PPU DATA TRANSFER 

The following description lists the events in a high-speed output record sequence. The 

sequence for a high-speed channel is basically the same as for a normal channel except 

that the resume pulse is not resynchronized by the MUX. Also, the output data path 

includes a series of three output data buffer registers. The output channel control also 

controls the flow of data from the disassembly register through these buffer registers 

to the PPU. The three buffer registers are designated ranks A, B, and C. 

The output sequence begins with a reset output buffer instruction that sets the output 

buffer address to the starting address of the buffer. At this time, the MUX also sends 

a word request to SCM to read the first word from the buffer to the 60-bit disassembly 

register. When the 60-bit word has been delivered to the disassembly register, the 

MUX clears the disassembly counter and sends a word pulse and a record pulse to the 

high-speed control. Concurrently, the upper 12-bit word in the disassembly register is 

transmitted to rank A of the buffer registers. 

Upon receipt of the record pulse from the output channel control, the high-speed buffer 

control transmits a record pulse to the PPU. This sets the input record flag in the 

PPU. 

Upon receipt of the word pulse from the output channel control, the high-speed buffer 

control enters the 12-bit word from the disassembly register into rank A. Then it out­

puts the word pulse to the PPU where it sets the input word flag. The word pulse is 

not sent to the PPU if an interrupt lockout condition exists in the output channel control. 

In consecutive clock periods, the data moves from rank A to rank B to rank C of the 

buffer registers. The data in rank C is transmitted to the PPU and remains in the data 

path until the PPU transmits a resume pulse to the high-speed control. 

The high-speed control does not wait for the resume pulse from the PPU before sending 

a resume pulse to the output channel control. The output channel control increments 

the disassembly count and transmits the second 12-bit word to rank A. At this time, 

the output channel control advances the address register to the next address in the SCM 

buffer and sends a word pulse to the high-speed control. Upon receipt of this second 

word pulse, rank A is entered with the second 12-bit word and the resume pulse is 

again sent to the output channel control. In the following clock period, the data in 

rank A moves into rank B. 

2-18 60396300 A 



The process is repeated for the third 12-bit word. However, when the output channel 

control sends the third word to rank A, the resume pulse is not sent back to the output 

channel control. 

At this point all action stops until the PPU accepts the first 12-bit word and transmits 

a resume pulse to the high-speed buffer control. When a resume pulse arrives from 

the PPU, rank C is cleared and entered with the second 12-bit word in rank B. A 

resume pulse is then sent to the output channel control. 

The sequence continues until the fifth 12-bit word has been sent to rank A by the output 

channel control. At this time, the output channel control sends another word request to 

SCM for the next 60-bit word in the buffer. 

At the time the output word request flag sets, the last two 12-bit words are in ranks B 

and C. The PPU accepts the fourth word and transmits a resume pulse to the high­

speed buffer control. Rank C is then cleared and entered with the fifth word from 

rank B. When this data has been delivered to the PPU, action halts until the requested 

word is delivered to the disassembly register from SCM. 

Some clock periods later, the word is delivered to the disassembly register, and the 

process of delivering a new 60-bit word to the PPU begins. 

Interrupt requests resulting from reaching a buffer threshold are the same as for the 

normal SCM to PPU data transfer. 

SMALL CORE MEMORY 

SCM is a 16- or 32-bank coincident current type memory with a capacity of 32, 768 or 

65, 536 65-bit words (including five odd parity bits per word). Each bank is independent 

of the other banks. Sequentially addressed words reside in sequential banks. This 

allows a maximum data transfer rate of one word each clock period. Each bank has a 

4-clock-period access time from arrival of the address to readout of the word. The 

total read/write cycle time for a bank is 10 clock periods. Therefore, it is possible 

for a maximum of 10 banks to be in operation at one time. This occurs during block 

copy instructions between SCM and LCM in which sequentially addressed words cannot 

cause SCM conflicts. In random addressing of SCM, an average of four banks in oper­

ation at one time is normal. 

60396300 A 2-19 



ADDRESS FORMAT 

The location of each word in SCM is identified by a 16-bit address. The address format 

is illustrated in Figure 2-4. Within the address format, the lowest four or five bits 

specify one of 16 or 32 banks. The next bit of this address specifies which stack in a 

bank (odd or even) is to be referenced. The 11-bit address defines one of 2048 separate 

locations within the specified bank. Numerically consecutive addresses reference consec­

utive banks. This is the most efficient use of bank phasing. 

ADDRESS BANK SEL 
15 14 4 3 0 

16 BANKS 

ADDRESS BANK SELECT 
15 5 4 0 

32.BANKS 
2AU7A 

Figure 2-4. SCM Address Format 

PARITY CH ECK ING 

Parity is checked during each SCM read/write cycle. When a parity error is detected, 

the SCM parity condition flag is set in the PSD register. Also, the 16-bit address of 

the failing word and five section parity error bits are sent to the MCU. (Refer to 

appendix B for related information.) 

If a parity error occurs during a block copy operation, the block copy is executed to 

completion. The execution interval for the exchange package is terminated at the end of 

the current program instruction word. 

DUTY CYCLE INTEGRATOR 

Each odd and even stack in a bank of SCM includes a duty cycle integrator circuit that, 

when activated, prevents continued repetitive referencing of a stack at the maximum rate 

of once every 10 clock periods. 

When active, the duty cycle integrator circuit slows references for the entire bank to a 

read/write cycle time of 880 nanoseconds or 32 clock periods. This prevents stack 

2-20 60396300 A 



damage due to overheating. The duty cycle integrator remains active for 1 millisecond 

after all references to a bank cease. 

The duty cycle integrator is activated by approximately 800 repeated references to a 

stack more frequently than once every 20 clock periods. To prevent activating the duty 

cycle integrator, programmers should not use SCM locations for counters or tables 

requiring repeated references that exceed this rate. 

It would be extremely unusual for normal user's programs to activate the duty cycle 

integrator. 

It is not possible to activate the duty cycle integrator from the 1/0 channels. Only very 

unusual programs written for the CPU can cause the integrator to activate. The follow­

ing are examples of such programs. 

1. Counting in a tight loop by loading the count in an. X register, adding to the 

count, storing the new count, .and then branching back to reload the count. 

These instructions execute entirely within the IWS. 

A suggested way of doing this type of program (which also decreases the pro­

gram execution time) is to load the count in an X register and keep it there 

until just prior to exiting from the routine. Then, store the final updated count 

into SCM. Certain benchmark programs have used this type of routine. 

2. Idle loops, which are merely waiting for an 1/0 interrupt, should attempt to do 

all activities within the IWS using the X and B registers. This prevents a 

situation in which one memory bank receives an extraordinary number of con­

secutive references from the CPU. 

MEMORY PROTECTION 

All central processor references to SCM are made relative to a reference address 

(Figure 2-5). The reference address in SCM (RAS) defines the lower limit of the pro­

gram and/ or data. The upper limit is defined by the program field length added to the 

RAS. The field length in SCM (FLS) is the number of 60-bit words comprising the field. 

It is established by the operating system prior to program execution. All references to 

SCM from the current program must lie within this field. 

During an exchange jump, the RAS and FLS are loaded from the exchange package into 

the RAS and FLS registers to define the limits of the field. 

60396300 A 2-21 



11n11 D 
ABSOLUTE RELATIVE 
MEMORY MEMORY LAST LOCATION+ I 
ADDRESS ADDRESS IN PROGRAM AREA 

RAS+ P P = FLS 

RAS+ P P<FLS PROGRAM AREA 
(FIELD LENGTH) 

RAS P=O 

SOME ARBITRARY 
LOCATION IN 
PROGRAM AREA 

FIRST LOCATION 

000000 IN PROGRAM AREA 

2AU8A 

Figure 2-5. SCM Memory Map 

When the program specifies a read or write address, it is automatically checked to see 

if it lies within the limits of the field. If it does, the program proceeds normally; if 

it does not, an unconditional exit is made and the program is terminated. 

The PSD register contains two flags which indicate SCM status. The direct range con­

dition flag sets if a single requested address is outside the limits of the field. A block 

range condition flag sets if a block transfer between SCM and LCM causes a reference 

to an address in SCM which is outside the limits of the field. 

MEMORY REFERENCES 

When an SCM storage reference is initiated, the address is sent to all banks in the 

memory. Only the selected bank, if free, accepts the address. If the bank is busy, 

the request waits in a storage address stack (SAS) until that bank is free. Instruction 

issue stops when a second address is sent to SCM and the previous address has not been 

accepted. At this time, there may be a third address in process in the increment unit 

that cannot be stopped. This address is also held in the SAS. Thus, requests for three 

2-22 60396300 A 



addresses may be waiting in the SAS at the same time. Instruction issue does not start 

again until all unaccepted addresses have been accepted by SCM (up to three addresses). 

NOTE 

It is possible to abort a valid SCM memory write when 
it is followed by an SCM out-of-range write. The follow­
ing sequence of instructions could produce this situation: 
write SCM bank X, write SCM bank X, and write SCM 
out of range. The first valid write is accepted by the 
bank. The second write to bank X is held up in the SAS 
because it is going to the same bank. While the second 
write is waiting, the range check for the out-of-range 
write is being performed. This causes the SCM direct 
range condition flag to be set in the PSD register before 
the second write to bank X can be initiated. Since this 
flag stops any write into SCM, both the second write to 
bank X (which is valid) and the out-of-range write are 
aborted. 

All addresses presented to SCM are processed in the order in which they are received. 

SCM requests received simultaneously .are given a priority that determines which ad­

dress will be allowed access first. These priorities are: 

1. Exchange sequence request 

2. Increment unit request 

3. Return jump exit request 

4. I/O request 

5. Instruction fetch request 

6. LCM block c;:opy request 

All memory references appear the same to SCM. The hardware provides tags that 

identify the source or destination of any SCM word referenced. 

MEMORY ACCESS 

SCM transmits data to and receives data from the PPU, CPU, LCM, and MCU. 

PPU ACCESS 

PPU access is limited to certain buffer areas in the lower order addresses of SCM 

(Figure 2-3). These areas are used for data transfers and for PPU-CPU communication. 

The PPUs can reference the I/O buffer areas at any time, but to avoid loss of data, 

they should do so only when directed by the CPU program. 

60396300 A 2-23 



As the PPUs write or read the buffer data, a CPU I/O program empties the input buffers 

or fills the output buffers. An I/0 interrupt to this CPU program occurs at threshold 

and upon receipt of a record pulse from a PPU. A separate exchange package for the 

I/O program exists for each input and output channel. The I/O exchange packages are 

permanently assigned in the lower order addresses of SCM. 

as illustrated in Figure 2-6. 

These areas are arranged 

The MUX establishes I/O priorities for the PPUs, assembles incoming 12-bit PPU words 

into 60-bit SCM words, and disassembles the 60-bit outgoing SCM words into 12-bit 

PPU words. 

1000 
CHANNEL 16 CHANNEL 16 CHANNEL 17 CHANNEL 17 

INPUT N.CKAGE OUTPUT F'lllCKAGfl INPUT PACKAGE OUTPUT PACKAGE 
700 

CHANNEL 14 CHANNEL 14 CHANNEL 15 CHANNEL 15 

INPUT PACKAGE OUTPUT PACKAGE INPUT PACKAGE OUTPUT PllCKAGE 
600 

CHANNEL 12 CHANNEL 12 CHANNEL 13 CHANPEL 13 

INPUT PACKAGE jouTPUt PACKAGE INPUT PACKAGE iooTPVT PACKAGE 
500 

CHANNELIO CHANNEL 10 CHANNEL II CHANNEL II 

INPUT PACKAGE OUTPUT PACKAGE INPUT PACKAGE OUTPUT PACKAGE 
400 

CHANNEL 6 CHANNEL 6 CHANNEL 7 CHANNEL 7 

INPUT PACKAGE OUTPUT PACKAGE INPUT PACKAGE OUTPUT F'lllCKAGE 
300 

CHANNEL 4 CHANNEL 4 CHANNEL 5 CHANNEL 5 

INPUT PM:KAGE Cl.JTPVT PM:KAGE INPUT PACKAGE OUTPUT AIO<AGE 
200 

CHANNEL2 CHANNEL 2 CHANNEL 3 CHANNEL 3 

INPUT PACKAGE OUTPUT PACKAGE INPUT PACKAGE OUTPUT PACKAGE 
100 

MCU REAL TIME CHANNEL I CHANNEL I 

PACKAGE PACKAGE INPUT PACKAGE OUTPUT PlllCKAGE 
0 

0 20 40 60 100 

( OCTAL ADDRESSE~,) ?AU9A 

Figure 2-6. I/O Exchange Package Areas in SCM 

2-24 60396300 A 



CPU ACCESS 

Increment unit instructions 51 through 57 are used by a CPU program for referencing 

single SCM words. 0 The A registers used by these instructions are divided into five 

read address registers (Al through A5) and two write address registers (A6 through A 7). 

Placing a quantity into an A register causes a reference to that SCM location. If the 

A register is A6 or A7, the contents of the corresponding X register is stored in SCM. 

If the A register is Al through A5, the corresponding X register is loaded with the 

contents of that SCM location. If the referenced SCM address is outside the field limits 

of the currently executing CPU program, the SCM direct range condition flag is set in 

the PSD register. 

The CPU also references SCM when the IWS requires another SCM word because the 

stack advanced or because a branch was out of the stack. The word is read from SCM 

to the IWS even though it might be outside the field limits of the currently executing 

program. However, it sets the SCM direct range condition flag in the PSD register 

when the P register advances to or is set to the out-of-range address. 

The CPU accesses SCM in a third way when it executes an exchange sequence. An 

exchange sequence involves reading the exchange package from SCM for the initiating 

program and storing the exchange package into SCM for the terminating program. Since 

the exchange package is not usually within the field limits of the currently executing 

program, no checks are made. 

LCM ACCESS 

The block copy instructions (011 and 012) transfer large blocks of LCM data to or from 

SCM. The portions of SCM used for block copies must lie within the SCM field limits 

of the CPU program initiating the transfer. If not, the SCM block range condition flag 

is set in the PSD register. 

MCU ACCESS 

The MCU has access to any part of SCM. Each SCM word is referenced separately by 

a 16-bit absolute address. The MCU accesses SCM through the MUX. 

60396300 A 2-25 



LARGE CORE MEMORY 3 

Large core memory (LCM) is a four- or eight-bank linear select type memory with a 

capacity of 256, 000 or 512, 000 64-bit words (including four odd parity bits per word). 

Each bank is independent of the other banks. A storage reference to a bank results in 

a read/write cycle which requires 64 clock periods to complete. Each bank has a 

20-clock period read access time (measured from the time a processor has gained LCM 

access to the arrival of data at its destination). Eight 64-bit words are simultaneously 

read from or written into a bank memory stack. These words are held in a 512-bit bank 

operand register. A subsequent reference to one of these words can be made without 

the delay of another read/write cycle. Maximum data transfer rate is one word each 

clock period. This occurs during block copies between SCM and LCM. Two central 

processors share LCM. A third access is provided for future expansion. 

ADDRESS FORMAT 

The location of each word in LCM is identified by a 19-bit address. The address for­

mat is illustrated in Figure 3-1. Within the address format, the lowest three bits 

specify one of eight 60-bit words within an LCM word. The next lower two or three 

bits specify one of four or eight LCM banks. The 13-bit address defines the location 

within the specified bank. For numerically consecutive addresses, consecutive banks 

are referenced at every eighth address for systems using all eight banks. 

ADDRESS BANK SEL jwoRD SEL 

18 17 5 4 3 2 0 
FOUR BANKS 

ADDRESS BANK SEL I WORD SEL 
18 6~ 32 0 

El GHT BANKS 
2AUIOA 

Figure 3-1. LCM Address Format 

60396300 A 3-1 



PARITY CHECKING 

Parity is checked every time a 60-bit word is read from LCM. When an LCM parity 

error is detected, the LCM parity condition flag is set in the PSD register. The 

19-bit address of the failing word and four section parity error bits are sent to the 

MCU. 

If a parity error occurs during a block copy operation, the block copy is executed to 

completion. The execution interval for the exchange package is terminated at the end 

of the current program instruction word. 

MEMORY PROTECTION 

All references to LCM are made relative to a reference address. The reference ad­

dress in LCM (RAL) defines the lower limit of the data. The upper limit is defined by 

the data field length added to the RA!.:· The field length in LCM (FLL) is the number 

of 60-bit words comprising the field. It is established by the operating system prior to 

program execution. All references to LCM from the current program must lie within 

this field. 

During an exchange jump, the RAL and FLL are loaded from the exchange package into 

the RAL and FLL registers to define the limits of the program. 

When the program specifies a read or write address, it is automatically checked to see 

if it lies within the limits of the field. If it does, the program proceeds normally; if 

it does not, an unconditional exit is made and the program is terminated. 

The PSD register contains two flags which indicate LCM status. The LCM direct range 

condition flag sets if a single requested address is outside the limits of the field. The 

LCM block range condition flag sets if a block transfer between SCM and LCM causes a 

reference to an address in LCM which is outside the limits of the field. If a timeout 

error occurs, both flags are set in the CPU which caused the error. 

3-2 60396300 A 



MEMORY REFERENCES 

BLOCK COPIES 

Block copy instructions move quantities of data between LCM and SCM as quickly as 

possible. All other activity in the CPU, except for I/O word requests, is stopped 

during a block copy operation. All instructions issued prior to this instruction are 

executed to completion and no further instructions issue until the block copy is nearly 

completed. As a result of these restrictions, the data flow between LCM and SCM can 

proceed at the rate of one 60-bit word each clock period. When an I/O word request 

for SCM occurs during this transfer, the data flow is interrupted for 1 clock period. 

The I/ 0 word address is inserted in the stream of addresses to the SAS, and the ad­

dresses for the block copy are resumed with a minimum of a 1-clock-period delay. An 

additional delay occurs if the I/O reference causes a bank conflict in SCM. 

DIRECT SINGLE-WORD TRANSFERS 

A direct single-word transfer either reads one 60-bit word from LCM and enters this 

word into an X register or writes one 60-bit word directly into LCM from an X reg­

ister. 

The execution time for transferring a word from LCM to an X register depends upon 

whether the requested word already resides in one of the bank operand registers. A 

read LCM instruction for a word not currently residing in a bank operand register 

requires 20 clock periods to deliver a 60-bit word to the designated X register. A read 

LCM instruction for a word already residing in a bank operand register as a result of 

a previous instruction requires 6 clock periods to deliver the requested word to the 

designated X register. Thus, although the first 60-bit word requires 20 clock periods, 

the second through eighth words in the same LCM word require 6 clock periods each. 

This means that consecutive LCM operands are available, on an average, every 7. 75 

clock periods. All of these times increase if bank conflicts occur. 

The execution time for writing a word into LCM from an X register normally requires 

5 clock periods. A delay occurs if the required LCM bank is busy completing a bank 

read/write cycle for a different block of eight words than that required for this instruc­

tion. In this case, the word is held in the LCM write register until the LCM bank is 

free. 

60396300 A 3-3 



ACCESS CONTROL 

Three accesses into LCM are provided. Two accesses are for the central processors 

and a third access is for future expansion. Only one of the accesses may be in oper­

ation at any one time. The access control ensures that this is always the case. The 

access control may be operated in either an unlocked mode or a locked mode. 

UNLOCKED MODE 

The unlocked mode is the normal mode of operation. In this mode, requests from the 

three accesses are handled on a first-come, first-served basis if LCM is idle. A 

priority network handles simultaneous requests. If a request is made while LCM is 

busy, the requesting central processor waits until LCM is free before the request is 

honored. If more than one access has requested LCM when LCM becomes free, the 

access with the highest priority is honored regardless of the order in which the requests 

are received. 

LOCKED MODE 

The locked mode is used by executive programs during periods of pointer manipulations 

where several separate pieces of LCM data must be read, changed, and rewritten. The 

other central processor(s) is prevented from accessing this data. A 1-bit locking reg­

ister is associated with each access to provide a long-term locking mechanism. If one 

central processor executes an instruction (014) to set its locking register, the other 

central processor(s) is prevented from accessing LCM. No more than one locking reg­

ister may be in the set state at any one time. If two central processors attempt to 

set their locking registers at the same time, the central processor with the highest 

priority sets its register. If a central processor that is locked out requests LCM 

access, it waits until the LCM access control is unlocked before the request is honored. 

An 18-bit timeout counter ensures that no access can lock up LCM indefinitely. The 

counter resets to zero whenever one of the locking registers sets. It is then incre­

mented every clock period that the locking register is set. If the count reaches 40, 000 

(octal) (450. 56 microseconds), the locking register is forced clear. At this time, the 

LCM block range error and LCM direct range error condition flags in the PSD register 

are set in the CPU whose locking register caused the error. This causes the erring 

CPU to make an error exit. In addition, a timeout error signal is sent to the asso­

ciated MCU. 

3-4 60396300 A 



FLAG REGISTER 

A second locking facility provides very long-term locking of individual small areas in 

LCM. This is a 48-bit flag register, expandable to 96 bits, which can be read or 

modified from any of the three accesses. The setting of a bit in the flag register does 

not cause any physical change in LCM nor does it cause a hardware lock to occur. The 

significance of each bit is determined by software convention. Individual bits may be 

set or cleared using the 014 instruction. 

60396300 A 3-5 



PERIPHERAL PROCESSOR UNIT DESCRIPTION 

Each PPU is a completely independent and self-contained computer. Therefore, each 

PPU may be executing a different program at the same time. The primary function of 

4 

a PPU is to perform I/0 tasks at the request of a central processor. Two of the PPUs 

are used as MCUs. They are identical to the other PPUs except they have specific, 

invariant channel connections. The MCUs are described later in this section. 

Operation of the PPU is controlled by a stored program that is sequentially executed in 

a one-address mode. All manipulative operations are performed in an 18-bit A register. 

Arithmetic is binary in a ones complement mode. The program instructions make use 

of specially assigned locations in the lowest order 64 words of PPU memory. Address 

arithmetic involving these words is performed in a separate address arithmetic unit that 

adds two addresses in a 12-bit ones complement mode. 

The PPU may also directly control peripheral equipment devices with a minimum of 

intervening circuits. A modest amount of character conversion and formatting of data 

may be performed in the PPU before data is transmitted to a central processor. In 

addition, the PPU may be programmed to perform the synchronizing function required in 

interfacing an electro-mechanical device to a central processor. In this mode, the PPU 

is generally dedicated to one or a small number of specific devices such as printers, 

card readers, tape units, disk files, and so on. 

COMPUTATION SECTION 

The computation section of a PPU performs the arithmetic operations associated with 

manipulating operands and with indirect addressing. These arithmetic operations involve 

seven registers: A, P, Q, Z, Sk, fd, and k. Only the A register is used directly by 

a programmer. 

A REGISTER 

The 18-bit A register is the principal operand register. In an arithmetic operation, 

the A register always holds one of the operands and always receives the arithmetic 

result. The contents of A are treated as signed operands. If bit 1 7 is set, the operand 

is negative. 

60396300 A 4-1 



Overflows are ignored although an end-around carry may show in the register at the end 

of an instruction execution. No sign extension is provided for 6-bit or 12-bit quantities 

entered in the low order bits. However, the unused upper bits are cleared to zero. 

Zero is represented by all zeros. The A register is used in the shift, logical arithme­

tic, and four 1/0 instructions. 

The A register counts the length of the block for block input or output instructions. As 

each word is transmitted, the A register is entered with the new count. 

The A register receives the input data word (12 bits) for the input to A instruction and 

holds the output data word (12 bits) for the output from A instruction. 

P REGISTER 

The 12-bit P register holds the address of the current instruction. During the execution 

of the current instruction, the contents of P is advanced by one or two to provide the 

address of the next instruction in the program for 12- or 24-bit instructions. If a jump 

is called for, the jump address is entered in P. 

Q REGISTER 

The 12-bit Q register has two major functions. It is primarily used for holding the 

address of an operand during instruction execution. The secondary purpose is to hold 

the upper six bits of an 18-bit operand in the lower six bits of the register during oper­

and arithmetic. 

X REGISTER 

The 13-bit X register holds all data read from memory. It also is used during 18-bit 

arithmetic operations in the A register. It holds the lower 12 bits of the operand during 

these instructions. 

Sk REGISTER 

The 6-bit Sk register contains a shift count during execution of shift instructions. The 

lowest order five bits contain the number of bit positions by which the contents of the 

A register is to be shifted. The highest order bit determines whether the shift is left 

circular or right open-ended. 

4-2 60396300 A 



fd REGISTER 

The 12-bit fd register holds the current instruction word for translation. The upper 

six bits are the f designator and the lower six bits are the d designator from the in­

struction. 

k REGISTER 

The 3-bit k register is the instruction cycle counter and is used to count the number of 

memory references required during execution. 

MEMORY 

Each processor has its own 12-bit, 4096-word, magnetic core, random access memory 

with a read/write cycle time of 275 nanoseconds. Each 12-bit word has a parity bit 

attached. 

The memory is organized into two banks. Consecutive addresses alternate between 

these banks to increase processing speed. The memory consists of four 12-bit memory 

modules, each 1024 words. Two of these modules form one memory bank. Associated 

with each bank is an S register which holds the address of the operand in storage, a 

Z register which holds operands to be stored, and the X register which receives oper­

ands read from either bank. There are, therefore, two Z and two S registers for each 

PPU. Associated with each Z register is a parity generating circuit that generates an 

odd parity bit that is stored in the memory with the operand. Parity is checked when 

operands are read from memory. In the event of a parity error, the PPU sends a 

parity error signal to the MCU. 

INPUT /OUTPUT 

A PPU communicates with a central processor and with other devices over bidirectional 

channels. 

There are provisions for eight input and eight output cables in each PPU. Each cable 

provides 12 bits of incoming or outgoing data and the associated control lines for that 

data. The PPU may enter the data on any one of these eight input or output cables at 

any one time. Each path has two associated control lines carrying control information 

in the direction of data flow. These lines carry a word pulse to indicate passage of 

each 12-bit word of data and a record pulse to indicate the completion of a record of 

60396300 A 4-3 



data. Each path has one associated control line carrying control information against 

the direction of the data flow. This line carries a resume pulse to indicate receipt of 

a data word. 

INPUT CHANNEL CONTROL 

There are provisions for eight input cables in each PPU. Each input cable provides a 

path for 12 bits of incoming data and the associated control lines for that data. The 

PPU may accept the data on any one of these eight input cables at any one time. The 

Channel selection of the input channels, which are numbered 0 through 7, is determined 

by the lowest order three bits in the d portion of the fd register. 

An input channel is controlled by the setting and clearing of control flags within the 

PPU. The flags are directly associated with the control signals transmitted or received 

over the input channel. (Refer to appendix B for related information.) 

INPUT WORD FLAG 

This flag is set when a word pulse is received over the input cable by the PPU. The 

flag is cleared when the PPU has accepted the data on the cable and sends a resume 

pulse to the transmitting device at the other end of the cable. This flag is forced to a 

cleared state during a dead start condition. A PPU senses the status of this flag by 

executing 1/0 jump instruction 60 or 61. 

INPUT RECORD FLAG 

This flag is set when a record pulse is received over the input cable by the PPU. The 

flag is cleared when the PPU has accepted the next following input data word and sends 

a resume pulse to the data transmitter at the other end of the cable. The flag is forced 

to a cleared state during a dead start condition. A PPU senses the status of this flag 

by executing I/O jump instruction 62 or 63. 

INPUT RESUME FLAG 

This flag is set for 1 clock period when the PPU has accepted the input data and is 

ready for the next word to be transmitted. This flag is also set during a dead start 

condition. A resume pulse is transmitted by the PPU over the input cable during the 

time in which this flag is set. 

4-4 60396300 A 



OUTPUT CHANNEL CONTROL 

There are provisions for eight output cables in each PPU. Each output cable provides 

a path for 12 bits of outgoing data plus the associated control lines for that data. The 

PPU may enter data on any one of these eight output cables at any one time. Channel 

selection of the output channels, which are numbered 0 through 7, is determined the 

lowest order three bits in the d portion of the fd register. Data is transmitted over 

the output cables and remains on the cable until changed by the transmitting PPU. 

An output channel is controlled by the setting and clearing of control flags within the 

PPU. The flags are directly associated with the control signals transmitted or received 

over the output channel. (Refer to appendix B for related information.) 

OUTPUT WORD FLAG 

The flag is set when the PPU transmits a 1-clock-period-wide word pulse over the 

associated output cable. The flag is cleared when a resume pulse is received by the 

PPU over this output cable. This flag is forced clear during a dead start condition. 

A PPU senses the status of this flag by executing 1/0 jump instruction 64 or 65. 

OUTPUT RECORD FLAG 

This flag is set when the PPU transmits a 1-clock-period-wide record pulse over the 

associated output cable. The flag is cleared when a resume pulse is received over this 

output cable. This flag is forced clear during a dead start condition. A PPU senses 

the status of this flag by executing 1/0 jump instruction 66 or 67. 

PPU TO PPU DATA TRANSFERS 

Figure 4-1 illustrates two PPUs with an interconnecting channel. Assume that a series 

of one-word transfers is required and that PPU A is the output and PPU B is the input 

PPU. The following sequence describes one method by which a one-word data transfer 

between the two PPUs can be accomplished. 

1. PPU A executes an output from A instruction (72). The instruction places 

12 bits of data from the A register on the output channel, sets the output word 

flag, and sends a word pulse to PPU B. 

2. PPU B is periodically executing a jump on input word flag instruction (60). 

Upon receipt of the word pulse from PPU A, the input word flag sets and 

PPU B jumps to an input program and executes an input to A instruction (70). 

This instruction enters the 12 bits on the input channel, clears the input word 

flag, and sends a resume pulse to PPU A. 

60396300 A 4-5 



3. At PPU A, the resume pulse clears the output word flag and the output record 

flag, if it is set. After executing the output from A instruction (step 1), 

8 
0 
0 
0 
0 

PPU A repeatedly executes a jump on no output word flag instruction (65). If 

PPU B has not yet accepted the output word, the output word flag is still set. 

Otherwise, when PPU B has accepted the word, the resume pulse has cleared 

the output word flag, and PPU A proceeds to the next instruction. 

PP U A P PU B 

OUTPUT 

8 WORD PULSE 0 
INPUT 

WORD - WORD 
FLAG FLAG 

I 

~ DATA BITS 

INPUT RESUME PULSE 0 .... RESUME OUTPUT INPUT 

OUTPUT 

8 RECORD PULSE © 
INPUT 

RECORD -- RECORD 
FLAG FLAG 

t- - - -- I- - - - -
INPUT 

© WORD PULSE (i) 
OUTPUT 

WORD - WORD 
FLAG FLAG 

INPUT OUTPUT 
DATA BITS ®--

INPUT 

0 RESUME PULSE 
RESUME 

~ 

INPUT 

© RECORD PULSE 0 
OUTPUT 

RECORD -- RECORD 
FLAG FLAG 

SET BY ANY OUTPUT DAT A INSTRUCT I ON ( 72, 73) CLEARED BY A RESUYE Pi.JLSE 

SET BY A WORD PL1LSE CLEARED BY RESUME PULSE 

SE I BY ANY INP1;1 DATA INSTf~UCT ION ( lO, lli CLEARED AFTER ONE CLOCK PER 100 

SET BY OlJTPlJT r:;>ECORD FL AG I NS TR!JCT I ON (14) CLEARED BY A RESUr-£ Pl.JLSE 

SET BY OUTPl.JT RE CORO PULS[ CLEARED BY RESUME PULSE 2AUllA 

Figure 4-1. PPU/PPU Communications 

4-6 60396300 A 



Note that in this example, PPU A notified PPU B that it was transmitting a word by 

sending a word pulse. PPU A could also have accomplished this by executing an output 

record flag instruction that sends a record pulse to PPU B. In this case, PPU B would 

periodically monitor the status of the record flag instead of the word flag. Then, when 

the record flag sets upon receipt of the record pulse, PPU B would go to a data transfer 

sequence. 

For block transfers, some of the flag monitoring functions are performed automatically 

by the block output and block input hardware. The following sequence illustrates one 

method by which a block transfer between two PPUs can be accomplished. 

1. PPU A prepares for the block transfer by placing the length of the block to be 

transferred in the A register. It then executes a block output instruction (73). 

This instruction sets the output word flag and sends 12 bits and a word pulse 

to PPU B. 

2. Assuming that PPU B has been notified of the length of the block through a 

software-determined communication scheme, PPU B prepares for an input by 

placing the length of the expected block in its A register. Then it repeatedly 

executes a jump on input word flag instruction (60). 

3. The word pulse from PPU A sets the input word flag at PPU B, and PPU B 

proceeds to execute the block input instruction (71). This instruction enters 

the 12 bits, clears the input word flag and input record flag, if set, and sends 

a resume pulse to PPU A. 

4. At PPU A, the resume pulse clears the output word flag and the output record 

flag, if set. The block output hardware automatically decrements the output 

count in the A register and sends the next 12 bits and another word pulse to 

PPU B. 

5. Similarly, at PPU B, the block input hardware decrements the input count in 

the A register ar:d enters the next 12 bits. The sequence repeats until the 

A register in PPU A becomes zero and PPU A sends a record pulse to PPU B. 

Note that if the two counts in the A registers are unequal, the PPU with the larger 

count hangs up, waiting for the proper response from the other PPU, which has already 

terminated its block transfer operation. Normally, however, if PPU A terminates first, 

it sends a record pulse to PPU B, which terminates input to PPU B. If PPU B termi­

nates first, PPU A hangs up and remains hung up until PPU B inputs enough additional 

words to decrease the output count in PPU A to zero, or until PPU A is dead started. 

60396300 A 4-7 



PPU TO PERIPHERAL EQUIPMENT DATA TRANSFERS 

A direct-driven peripheral device requires two PPU channels. One channel is assigned 

to control and status, and the other is used for data transfers. Depending upon the 

peripheral device, the associated control signals are terminated, s·et to 1 or 0, or 

assigned functions. Figure 4-2 shows one configuration that might be used for a card 

punch controller. 

For detailed information on data transfers between a PPU and a peripheral device, refer 

to the documentation on the specific peripheral device. 

MAINTENANCE CONTROL UNIT 

Two of the mainframe PPUs are used as MCUs. They are internally identical to any 

other PPU. However, the fixed external connections as illustrated in Figure 4-3 are 

quite different. Both MCUs are capable of communicating with each other, with an 

SCM, and with up to 13 first level PPUs. Each MCU has eight bidirectional channels. 

They gain additional capability through scanners, which expand the number of channels 

to allow communication with the PPUs. 

The MCU scanner selects incoming data for the MCU from one of 17 (octal) scanner 

input channels and distributes MCU output to one of 16 (octal) scanner output channels. 

Scanner channels 1 through 15 connect to channel 0 of PPU 1 through 15. Scanner in­

put channel 16 carries parity error address bits, and scanner input channel 17 carries 

LCM parity error address bits to the MCU. Scanner output channel 16 connects the 

MCU to a reference voltage scanner for testing marginal operation of mainframe modules. 

The scanner also connects directly to the PPU for transmission of dead start, dead dump, 

and clear parity error signals and for receipt of program error and stack parity error 

bits. 

In operation, the MCU selects one of the scanner channels and communicates through 

that channel as if it were its own. The MCU program selects the desired channel by 

outputting the channel select code (1 through 17) as bits 8 through 11 on MCU channel 0. 

Then, when the MC U outputs data on channel 7, the data goes to the destination PPU or 

to the reference voltage scanner via the selected scanner channel. Input to the MCU 

comes from the selected scanner channel and is received as data through MCU channels 

3 and 7. 

4-8 60396300 A 



CHANNEL A 

CHANNEL B 

PPU 

STATUS BITS 

WORD PULSE --
INPUT 

STATUS -. RECORD PULSE 

RESUME PULSE 

~ - -- -
CONTROL BITS 

WORD PULSE 

OUTPUT 

CONTROL RECORD PULSE 

RESUME PULSE -

DATA BITS 

WORD PULSE 

INPUT RECORD PULSE -
RESUME PULSE 

~---~ DATA BITS 

WORD PULSE 

OUTPUT 
RECORD PULSE . 
RESUME PULSE 

~ 

{LOGICAL I j 

{LOGICAL 0] 

+{ TERMN J 

s J ---,_ TERMN 

J J -l TERMN 

{LOGICAL o] 

_J TERMN j -L 

PERIPHERAL 
CONTROLLER 

©---1 

~ 

PUNCH 

CONTROL 

UNIT 

®--

..... 

-@---. 

2AU 12A 

Figure 4-2. PPU I Controller Communications 

60396300 A 4-9 



KEYBOARD DATA, STATUS ( 2) 

DISPLAY DATA (I) 

DISPLAY 
CONSOLE 

I 
I 
I 

MCU STACK 
PARITY ERRORS ( 3) 

l I 

I 
STATUS (I) 

DATA (4) 
MCU 

DISK 
PACK DATA (2) 

ADDRESS (3) 

I 
MCU CLEAR 

PARITY ERROR (3) 

l I 

I 
STATUS (I) 

CARO 
DATA (O) READER 

MCU DEAD START 

I 

I 
I- - -

I 
I 

STATUS (I) 

DATA (O) 

CARD 
READER MCU DEAD START 

MCU CLEAR 
I 

PARITY ERROR ( 3) 

l I 

I 
I 
I 

STATUS (I) 

DATA (4) 

DISK MCU 
PACK DATA ( 2) 

ADDRESS (3) 

I 
MCU STACK 

PARITY ERRORS(3) 

l I 

I 
I 

KEYBOARD DATA, STATUS ( 2) 

DISPLAY DATA (I) 
DISPLAY 

CONSOLE I 
I 

4-10 

( 7) PPU INPUT DATA, MODULE SELECT 
HI/LO MARGIN SELECT, 

REFERENCE VOLTAGE (16) MODULE SELECT 
MARGIN 

PPU OUTPUT DATA, SCM /LCM 
SCANNER 

(7 I PARITY ERROR ADDRESS BITS 0-11 

MCU SCANNER CHANNEL SELECT, (I-IS) PPU DATA (OJ 
PPU DEAD START, PPU DEAD DUMP, MCU SCANNER PPU DEAD START, 
PPU CLEAR PARITY ERROR, PPU DEAD OUM P, 

(OJ HI/LO MARGIN SELECT PPU CLEAR PARITY 
(I-IS) ERROR 

FIRST LEVEL 
PPU 

PPU PROGRAM ERROR, PPU PARITY ERRORS, PPU PROGRAM ® LCM PARITY ERROR ADDRESS BITS 12.-17, 
ERROR AND PARITY 

(3 I SCM PARITY ERROR ADDRESS BITS 12 - 15 
(HS) ERRORS 

r6) tl7) LCM PARITY ERROR 
ADDRESS BITS O· 17 

SCM PARITY ERROR 
ADDRESS BITS 0-15 

CPU DEAD START (MASTER CLEAR), SCM l 
(0) CLEAR I /0, CLEAR PARITY ERROR ADDRESS 

(4,S) SCM ADDRESS 

MUX SC M !--, 
(6) SCM READ DATA (O) 

SCM WRITE DATA IOI SCM DATA 

1 1cLEAR PARITY ERROR I 1 MASTER CLEAR CPU 

(2,0) CLEAR TIMEOUT ERROR, CLEAR LCM (MASTER CLEAR) 

(3) LCM PARITY ERROR ADDRESS BIT 18 

(2 I TIMEOUT ERROR 

SCM/LCM PARITY 
(SI ERRORS, MCU DATA 

SCM SCM PARITY ERRORS 
WRITE DATA, 

(6) MCU DATA OUTPUT INPUT 

SELECT SELECT 
LCM PARITY ERRORS 

MCU 
DATA 

ADJUNCT PROCESSOR 
- - - - - - - - - - - - - - - - - - - - - - -

CENTRAL COMPUTER 

MCU 

SCM 
DATA 

WRITE DATA, 

~ (6) MCU DATA OUT PUT lt..IPUT LCM PARITY ERRORS 
LCM 

SELECT SELECT 
SCM PARITY ERRORS 

SCM/ LCM PARITY 
(5) ERRORS, MCU DATA 

(2) TIMEOUT ERROR 

(3) LCM PARITY ERROR ADDRESS B1T JB 

(2,0) CLEAR TIMEOUT ERROR, CLEAR LCM (MASTER CLEAR) 

MASTER CLEAR 

l 1 CLEAR PARITY ERROR 

SCM WRITE DATA IOI 1 SCM 1 
ADDRESS 

CPU DEAD START (MASTER CLEAR), 
(O) CLEAR 1/0,CLEAR PARITY ERROR 

MUX SCM !-----' 
(4,S) SCM ADDRESS 

SCM DATA 
(6 I SC M READ DATA (O) 

SCM PARITY ERROR J ADDRESS BITS 0-15 

LCM PARITY ERROR 
ADDRESS BITS 0-17 

I 16 I 11171 
(7) PPU INPUT DATA, MODULE SELECT 

HI/LO MARGIN SELECT, 
(16) MODULE SELECT REFERENCE VOLTAGE 

(7) 

(O) 

(3) 

PPU OUTPUT DATA, SCM/LCM 
PARITY ERROR ADDRESS BITS 0-11 

MCU SCANNER CHANNEL SELECT, 
PPU DEAD START,PPU DEAD OUMPi MCU SCANNER 
PPU CLEAR PARITY ERROR, 
HI/LO MARGIN SELECT 

PPU PROGRAM ERROR,PPU PARITY ERRORS, 
LCM PARITY ERROR ADDRESS BITS 12-17, 
SCM PARITY ERROR ADDRESS BITS 12-15 

NOTES~ 

NUMBERS IN PARENTHESIS ARE 
OCTAL CHANNEL DESIGNATORS. 

@ UPTO 13FIRST LEVEL PPU MAY 
BE CONNECTED AS SHOWN. 

Figure 4-3. MCU Configuration 

MARGIN 
SCANNER 

(I-IS) PPU DATA (0) 

PPU DEAD START, 
PPU DEAD DUMP, 
PPU CLEAR PARITY FIRST LEVEL 

(I-IS) ERROR PPU 

PPU PROGRAM ® 
ERROR AND PARITY 

(I-IS) ERRORS 

CPU 

3AA3B 

I 

I 

I 

60396300 A 



MCU DEAD START 

The MCU is dead started by the card reader. A switch on the card reader generates 

the dead start signal that sets the MCU registers to the following values. 

(A) 007777 

(P) 0000 

(X) 0000 

(f) 71 

(d) 00 

(k) 1 

The card reader then inputs a program to the MCU over channel 0 until the A register 

count has decremented to zero (memory full) or until the END OF FILE switch on the 

card reader is manually depressed, generating a record flag. After reading the card 

deck, the MCU initiates execution of the program that was input at address 0001. 

PPU DEAD START 

To dead start a PPU, the MCU first selects the scanner channel connected to the PPU 

and then outputs the dead start signal as bit 2 on MCU output channel O. At the selected 

PPU, this signal sets the PPU registers to the values described for the MCU dead start. 

Also, the PPU flags for the input and output channel control are all forced to a cleared 

condition, and a continuous resume signal is sent over all input cables while the dead 

start signal is up. Dropping the dead start signal allows a program to be loaded from 

the MCU into the PPU over input channel O. PPU loading, if not terminated at some 

point by a record flag, terminates when the A register has decremented to zero (7777 

octal words). The PPU then begins execution of the program at address 0001. (Refer to 

appendix B for related information.) 

CPU DEAD START 

Under control of the MCU program, the MCU outputs the CPU dead start and clear 

I/0 signals (bits 5 and 4, respectively, of MCU output channel 0). The clear I/O signal 

clears the I/O MUX of all current I/O requests. The MCU then drops the clear I/O sig­

nal and holds the dead start signal up while it writes into SCM. Since the MCU has 

access to any part of SCM, each word sent to SCM is given a specific address. When 

the MCU drops the dead start signal, the CPU executes an exchange jump using an 

60396300 A 4-11 



exchange package starting at absolute SCM location 0. The MCU must have written the 

exchange package and a program into SCM. Software determines how the CPU loads the 

system programs. 

PPU DEAD DUMP 

One of the control signals sent by the MCU to a PPU (through scanner selection) is the 

dead dump signal. The MCU sends this signal, under control of the MCU program, 

when the PPU program has failed and a dump of PPU memory is desired to analyze the 

cause of failure. 

To dead dump a PPU, the MCU program first outputs a dead start signal to set up the 

PPU registers. Then it outputs the dead dump signal as bit 1 on MCU output channel 0. 

At the selected PPU, the dead dump signal changes the 71 input code in the f register 

(set by the dead start signal) to a 73 output code. This output code causes the PPU to 

begin transmission of the entire PPU memory over PPU output channel O. The trans­

mission starts at PPU address 0 and terminates at PPU address 7776. Input of this 

data at the MCU is under control of the MCU program. Refer to appendix B tor related 

information. ) 

CLEAR LCM 

Either MCU can output a clear LCM signal as bit 6 on MCU output channel 0. This 

signal clears the locking registers and control flags in LCM. 

LCM TIMEOUT ERROR 

If one of the central processors accesses LCM for longer than 450. 56 microseconds 

while in the locked mode, a timeout error signal is sent to the associated MCU as 

bit 8 on MCU input channel 2. The MCU clears the timeout error flag in LCM by out­

putting a clear timeout error signal as a record pulse on MCU output channel 2. 

PPU AND MCU PARITY ERRORS 

The MCU and each PPU contains hardware for detecting parity errors during memory 

read cycles. The memory stack that has failed is indicated by setting a stack parity 

error bit in a four-bit register. 

4-12 60396300 A 



The MCU is able to sense the contents of a PPU parity error register by selecting the 

PPU via the scanner and inputting the PPU stack 0 through 3 parity error bits as bits 0 
' through 3 on MCU input channel 3. The MCU clears the PPU parity error register by 

selecting the scanner channel for that PPU and outputting the PPU clear parity error 

signal as bit 0 on MCU output channel 0. 

The MCU senses the contents of its own parity error register by reading bits 7 through 

10 of MCU input channel 3, The MCU clears its parity errors by outputting the MCU 

clear parity error signal as a record pulse on MCU output channel 3. 

SCM AND LCM PARITY ERRORS 

The MCU is also able to monitor the SCM and LCM section parity errors and read the 

SCM or LCM address of the failing word. 

Under MCU program control, the MCU inputs the SCM section 0 through 4 parity error 

bits as bits 0 through 4 on MCU input channel 5. When set, the SCM parity error bits 

indicate bad parity for the following portions of the SCM word. 

Error Bit SCM Section 

4 4 (bits 48 through 59) 

3 3 (bits 36 through 47) 

2 2 (bits 24 through 35) 

1 1 (bits 12 through 23) 

0 0 (bits 0 through 11) 

The MCU program reads the SCM parity error address by selecting scanner channel 16 

and inputting address bits 0 through 11 on MCU input channel 7 and address bits 12 

through 15 on MCU input channel 3 (bits 0 through 3). 

Under MCU program control, the MCU inputs the LCM section 0 through 3 parity error 

bits as bits 5 through 8 on MCU input channel 5. When set, the LCM section parity 

error bits indicate bad parity for the following portions of the LCM word. 

60396300 A 4-13 



Error Bit 

3 

2 

1 

0 

LCM Section 

3 (bits 45 through 59) 

2 (bits 30 through 44) 

1 (bits 15 through 2 9) 

0 (bits 0 through 14) 

The MCU program reads bits 0 through 1 7 of the LCM parity error address by selecting 

scanner channel 17 and inputting address bits 0 through 11 on MCU input channel 7 and 

address bits 12 through 17 on MCU input channel 3 (bits 0 through 5). LCM address 

bit 18 bypasses the scanner and is received as bit 6 on input channel 3. 

The MCU clears both the SCM and the LCM parity error bits by outputting the CPU 

clear parity error signal as bit 3 on output channel 0. 

PPU PROGAM ERROR 

PPU instructions 00 and 77 cause the PPU program to stop and to indicate a program 

error condition. The MCU is able to sense this PPU program error by selecting the 

PPU via the scanner and reading the PPU program error as bit 4 on MCU input chan­

nel 3. The PPU can be restarted only when the dead start signal is received from the 

MCU. 

4-14 60396300 A 



CENTRAL PROCESSOR INSTRUCTIONS s 

This section describes the central processor instructions. The instructions tend to fall 

into two distinct categories, those causing computation and those causing storage refer­

ences or program branching. The instructions causing computation are generally 

executed in a fixed amount of time after they have issued from the CIW register. 

Instructions involving storage references for operands or program branching cannot 

be precisely timed. Program branching within the instruction stack causes no storage 

references, and small program loops can therefore be precisely timed. 

Careful coding of critical program loops can produce substantial improvements in 

execution time. Detailed timing information is provided in this section to allow a 

complete analysis of those situations warranting the programming effort. 

INSTRUCTION FORMATS 

Program instruction words are divided into 15-bit fields called parcels. The first 

parcel (parcel 0) is the highest order 15 bits of the 60-bit word. The second, third, 

and fourth parcels (parcels l, 2 and 3) follow in order. An instruction may occupy 

either one or two parcels, depending upon the type of instruction. The possible ar­

rangements of one- and two-parcel instructions are illustrated in Figure 5-1. If an 

instruction requires two parcels, it should not begin in the fourth parcel of the word. 

When a two-parcel instruction begins in the last parcel of an instruction word, it is 

executed as if there were a fifth parcel in the instruction word and this parcel con­

tained all zeros; it does not obtain its second half of the instruction word from the 

next instruction word. For example, an 02 jump instruction in the fourth parcel may 

be acceptable if the programmer wishes K to be zero. 

A one-parcel pass instruction may be used to complete a 60-bit word in order to place 

a particular instruction in the first parcel of a word. It may also be used to avoid 

starting a two-parcel instruction in the fourth parcel of a word. Note that 60, 61, 

and 62 instructions with i equal to zero become pass instructions. Since these are 

30-bit instructions, they may be used as two-parcel pass instructions. Pass instruc­

tions may be necessary for branch entry points because a branch instruction destination 

address must begin with a new word. 

ol.1396300 A 5-1 



INSTRUCTION COMBINATIONS 

,(PARCEL 0 

15 15 15 
59 

30 15 15 

15 30 15 

15 15 30 

30 30 

INSTRUCTION FORMATS 

h k 

3 3 3 15 BITS 

60 BITS 

OPERATION l 
CODE 

RESULT 
REGISTER 

(I OF Bl 

I ST OPERAND 
REGISTER 

II OF Bl 

0 

2ND OPERAND 
REGISTER 

OPERATION 

CODE 

3 

RESULT 
REGISTER 

(I OF Bl 

II OF BI 

3 

1ST OPERAND 
REGISTER. 
(I OF Bl 

K 

18 

2ND OPERAND 

ZAU14A 

Figure 5-1. Parcel Instruction Arrangements 

30 BITS 

0 

5-2 60396300 A 



INSTRUCTION ISSUE 

Program instruction words are read one at a time from the IWS into the CIW register 

for execution. An instruction issues from the CIW register when the conditions in the 

functional units and operating registers are such that the functions required for execu­

tion may be performed to completion without conflicting with a previously issued in­

struction. Once an instruction has issued, it must be completed in a fixed time frame. 

No delays are allowed from issue to delivery of data to the destination operating 

registers. 

Since each instruction word is divided into four 15-bit parcels, there may be as many 

as four instructions in the CIW register at one time. These instructions are executed 

in sequence (parcel 0 instruction first). The proper allowance must be made for the 

mixture of one- and two-parcel instruction formats. The five possible instruction 

arrangements are illustrated in Figure 5-1. 

PROGRAM BRANCHING 

When program execution reaches a branch instruction, the action taken depends upon 

whether the destination address is already in the IAS. If the destination address is in 

the IAS, the P register is altered to the new program address and the corresponding 

word is read from the IWS to the CIW register. The jump is then completed without 

an SCM reference for a new instruction word. 

If the destination address is out of the IAS, two new words, located at the destination 

address and the destination address plus one, are requested from SCM to begin the 

new program sequence. Instruction execution continues upon receipt of the words 

from SCM. 

DUPLICATE ENTRIES IN IWS 

It is possible for a branch out of IWS to occur when the destination address corre­

sponds to a program word that has already been requested from SCM as a result of 

the sequential two-word read ahead. If the word has not actually arrived at the IWS 

at the time of the branch test, the jump occurs and a duplicate of the first word in the 

new sequence is read from SCM. Execution of the new sequence begins as soon as 

the earlier word arrives at the IWS. 

60396300 A 5-3 



Duplicate entries in the IWS cause no problems unless an instruction is modified during 

execution. Since this modification occurs only in SCM and since duplicate entries are 

merged in a logical sum network, an erroneous instruction may result. Therefore, 

the IWS should be voided by executing a return jump (01) instruction after instruction 

modification has been performed. 

HOLES IN IWS 

Several small program sequences may reside in the IWS at the same time. Program 

execution may branch back and forth between two such sequences. The execution of 

the sequence occupying the lower ranks of the IWS may branch in such a way that 

sequential execution is continued into a program area not loaded into the IWS on the 

initial pass. When this happens, the next sequential instruction word may be missing 

in the IWS and no request has been made for it. 

This situation is equivalent to a branch out of IWS with no branch instruction involved. 

As soon as the missing word is detected, the hardware initiates a branch out of stack 

sequence which allows the program to continue with no loss of information. 

EXCHANGE JUMP 

The exchange jump is a mechanism for switching between programs. 

The execution of an exchange jump involves the simultaneous storing of all pertinent 

information in the CPU operating registers and control registers into SCM and writing 

new information from SCM into these same registers. This block of data is called an 

exchange package. An exchange package (Figure 5-2) provides the following information 

on a program to be executed. 

5-4 

Program address (P) - 18 bits 

Reference address for SCM (RAS) - 18 bits 

Field length of program for SCM (FLS) - 18 bits 

Reference address for LCM (RAL) - 19 bits 

Field length of program for LCM (FLL) - 19 bits 

Program status designation register (PSD) - 18 bits 

Normal exit address (NEA) - 16 bits 

Error exit address (EEA) - 1 7 bits 

60396300 A 



N 

N + 
N + 2 

N + 3 

N +4 

N + !5 
N +6 

N + 7 
SCM 

LOCATIONS N + 8 

N + 9 

N t 10 

N + 11 

N + 12 
N + 13 

N -+ 14 

N + 1!5 

~ 
§ 

[Il]] 

59 53 35 17 

~ 
p AO BPA 

RAS Al Bl 

~ FLS A2 82 

PSO A3 83 
I 1• 
t----i RAL A4 84 
F=1 14 FLL A!5 8!5 

ITIII ~ II NEA A6 86 I= 
II 

· EEA A7 87 i= 
XO 

XI 

X2 

X3 

X4 

X5 

X6 

X7 

NO HARDWARE REGISTERS EXIST; BITS NOT USED. 

HARDWARE REGISTERS EXIST; BITS NOT USED. 
THESE BITS ARE RESERVED FOR HARDWARE USE AND 
ARE NOT TO BE USED AS SOFTWARE FLAGS. 

0 

HARDWARE REGISTERS EXIST; BITS USED BY SOFTWARE. 
2AUl5A 

Figure 5-2. Exchange Package 

60396300 A 5-5 



NOTE 

Bit 53 is used as a flag and is not part of the 
address. For a description of its use, refer to 
the description of the MUX. 

Breakpoint address (BPA) - 18 bits 

Current contents of the eight A registers 

Current contents of the eight X registers 

Current contents of registers Bl through B7 

The period of time during which a particular exchange package resides in the CPU 

hardware registers is termed the execution interval. The execution interval begins 

with an exchange jump that reads the exchange package from SCM and enters these 

parameters into the CPU registers. It ends with another exchange jump that stores 
the exchange package back into SCM. 

Several instructions or conditions initiate exchange jumps and select the exchange 

package that is to begin execution. (Refer to appendix B for related information. ) 

Exchange exit instructions (013xx and 013jK) 

Error exit 

I /0 interrupt 

Real- time interrupt 

Program breakpoint 

Step mode 

EXCHANGE EXIT INSTRUCTIONS 

The normal termination for an exchange package execution interval is caused by an 

exchange exit instruction (013xx or 013jK) in the associated program. The exit mode 

flag in the PSD register determines the source of the exchange package. 

The exit mode flag is intended to indicate a privileged monitor program and is normally 

not set for an object program execution interval. When the flag is not set and the 

object program terminates the execution interval with an 013xx instruction, the NEA 

is the absolute address of the exchange package. When this flag is set and program 

5-6 60396300 A 



terminates the execution interval with an 013jK instruction, the absolute SCM address 

for the exchange package is formed by adding (Bj) + K + (RAS). 

An overflow of the lowest order 16 bits of this result causes an error condition that 

is not sensed in the hardware. If a program erroneously executes an exchange exit 

instruction with an overflow condition, the exchange jump sequence begins at the 

absolute SCM address corresponding to the lowest order 16 bits of this sum. 

ERROR EXIT 

An object program terminates execution with an exchange jump to the EEA upon en­

countering an error exit instruction (00) or under certain conditions defined by the PSD 

register. Some of these conditions may be selected by the programmer and some 

are unconditional. In general, errors caused by arithmetic overflow, underflow, or 

indefinite results during computation may be allowed to proceed through the calculation 

or may cause an error exit, depending upon mode selection. Errors caused by hard­

ware failure or program addressing out of an assigned field in storage cause uncondi­

tional error exits. In any error exit case, the programmer may allow the object 

program to continue where the error can be corrected or ignored. 

The error condition flags and mode selection flags are all contained in the PSD register, 

which is loaded from the exchange package for each program execution interval. The 

mode selections are made in the exchange package prior to the execution interval of 

the program. If an error condition occurs during the execution interval, the type of 

error can be determined by analyzing the terminating exchange package parameters. 

Each bit in the PSD register has significance either as a mode selection or an error 

condition flag. 

INPUT /OUTPUT INTERRUPT 

The MUX section of the central processor monitors I/O activity between the PPU and 

SCM. The MUX issues an interrupt request to the CPU when the threshold of an SCM 

input or output buffer is reached. A record pulse from a PPU also causes an interrupt 

request. When accepted, an I/0 interrupt request initiates an exchange jump to the 

CPU program. 

60396300 A 5-7 



REAL-TIME INTERRUPT 

Programs may be timed precisely by using the CPU clock period counter which is 

advanced one count each clock period of 27.5 nanoseconds. Since the clock advances 

synchronously with program execution, a program may be timed to an exact number 

of clock periods. 

The CPU clock period counter contains a 17-bit register that can be sensed by a read 

input channel (0) status instruction. An overflow of the highest order bit in this 

counter sets the real-time clock interrupt flag, which is actually the 18th bit of the 

register. 

The real-time clock interrupt flag attempts an interrupt of the program to absolute 

address 0020 in SCM every 3. 6 milliseconds (approximate). The real-time exchange 

package at this SCM address executes a program that performs operations associated 

with the clock. 

PROGRAM BREAKPOINT 

A program may be executed in small sections during a debugging phase by using the 

BPA register. This is a hardware register in the CPU that is loaded from the pro­

gram exchange package. A coincidence test is made between (BPA) and (P) as each 

program instruction word is read from the IWS. If coincidence occurs and no other 

exchange sequence is in process, the program execution terminates with an exchange 

jump to EEA. If (BPA) is equal to (P) in the initiating exchange jump package, no 

instructions are executed. Normally, no instructions are executed at BPA. 

STEP MODE 

A program may be executed in step mode by setting the step mode flag in the PSD 

register for the program execution interval. Step mode causes the program to be 

interrupted at the end of each program instruction word with an exchange jump to EEA. 

5-8 60396300 A 



FLOATING POINT ARITHMETIC 

FORMAT 

Floating point arithmetic expresses a number with the general expression kBn. where: 

k coefficient 

B base number 

n = exponent or power to which the base number is raised 

B is assumed to be 2 for binary-coded quantities. In the 60-bit floating-point format 

illustrated, the binary point is considered to be to the right of the coefficient. The 

lower 48 bits express the integer coefficient. which is the equivalent of about 15 

decimal digits. The sign of the coefficient is separated from the rest of the coefficient 

and appears in the highest order bit of the packed word. Negative numbers are repre­

sented in ones complement notation. 

COEFFICIENT 
SIGN 

1 rlAS 

59 58 

EXPONENT 

10 I 
48 47 

INTEGER 
COEFFICIENT 

48 

BINARY 
POINT 

0 

The exponent portion of the floating point format is biased by complementing the 

exponent sign bit. This particular format for floating point numbers is chosen so that 

the packed form may be treated as a 60-bit integer for sign. threshold, equality. and 

zero tests. 

Table 5-1 summarizes the configurations of bits 58 and 59 and the implications. 

regarding signs, of the possible combinations. 

TABLE 5-1. BITS 58 AND 59 CONFIGURATIONS 

Bit 59 Bit 58 Coefficient Sign Exponent Sign 

0 1 Positive Positive 

0 0 Positive Negative 

1 0 Negative Positive 

1 1 Negative Negative 

60396300 A 5-9 



PACKING 

Packing refers to the conversion of numbers in the form kBn to floating point format. 

A short-cut method of packing exponents can be derived by considering the representa­

tion of negative and positive zero exponents. Assuming a positive coefficient, zero 

exponents are packed as follows: 

Positive zero exponent = 2000X----------X 

Negative zero exponent 1777X----------X 

Since positive exponents are expressed in true form, begin with a bias of 2000 (positive 

zero) and add the magnitude of the exponent. The range of positive exponents is 0000 

through 1777. In packed form, the range is 2000 through 3777. 

When the coefficient is negative, the packed positive exponent is complemented to 

become 5777 through 4000. 

Negative exponents are expressed in complement form. Hence, begin with a bias of 

1777 (negative zero) and subtract the magnitude of the exponent. The range of negative 

exponents is -0000 through -1777. In packed form, the range is 1777 through 0000. 

When the coefficient is negative, the packed negative exponent is complemented to 

become 6000 through 7777. 

Examples of packed and unpacked floating point numbers are shown in octal 

notation to illustrate the packing process. Examples 1 and 2 are different forms of 

the integer + 1. Example 3 is +100 (decimal) and example 4 is -100 (decimal). 

Examples 5 and 6 are very large and very small positive numbers. The unpacked 

values are shown as they might appear in X and B registers prior to a pack operation. 

Note that the packed negative zero exponent is not used for normal operation in the 

machine. Instead, the value 1777 is used to indicate the special error condition of 

indefinite. 

5-10 

1. Unpacked coefficient 

Unpacked exponent 

Packed format = 

0000 0000 0000 0000 0001 

00 0000 

2000 0000 0000 0000 0001 

60396300 A 



2. Unpacked coefficient 0000 4000 0000 0000 0000 

Unpacked exponent 77 7720 

Packed format = 1720 4000 0000 0000 0000 

3. Unpacked coefficient = 0000 6200 0000 0000 0000 

Unpacked exponent = 77 7726 

Packed format = 1726 6200 0000 0000 0000 

4. Unpacked coefficient = 7777 1577 7777 7777 7777 

Unpacked exponent 77 7726 

Packed format = 6051 1577 7777 7777 7777 

5. Unpacked coefficient 0000 4771 3000 0044 7021 

Unpacked exponent = 00 1363 

Packed format = 3363 4771 3000 0044 7021 

6. Unpacked coefficient 0000 6301 0277 4315 6033 

Unpacked exponent = 77 6210 

Packed format = 0210 6301 0277 4315 6033 

OVERFLOW 

Overflow of the floating point range is indicated by an exponent value of +1777 (3777 or 

4000 in packed form). This is the largest exponent value that can be represented in 

the floating point format. This exponent value may result from the calculation in a 

floating point unit in which this exponent value, together with the computed coefficient 

value, is a correct representation of the result. This situation is called a partial 

overflow. An overflow error condition is not indicated by the functional unit generating 

this result. However, further computation in floating point functional units using this 

result generates an overflow. 

A complete overflow occ~rs whenever a floating point functional unit computes a result 

that requires an exponent larger than +1777. In this case, the functional unit indicates 

an overflow error condition and packs a complete overflow value for the result. This 

result has a +1777 exponent and a zero coefficient. The sign of the coefficient is the 

same as that which would have been generated if the result had not overflowed the 

floating point range. The packed floating point result is shown in the paragraph on 

Nonstandard Operands. The coefficient portion consists of all zeros regardless of the 

sign of the coefficient. 

60396300 A 5-11 



UNDERFLOW 

Underflow of the floating point range is indicated by an exponent value of -1777 ( 0000 

or 7777 in packed form). This is the smallest exponent value that can be represented 

in the floating point format. This exponent value may result from the calculation in a 

floating point unit in which this exponent value, together with the computed coefficient 

value, is a correct representation of the result. This situation is called a partial 

underflow. An underflow error condition is not indicated by the functional unit gener­

ating this result. However, further computation in floating point functional units using 

this result may be detected as an underflow. 

A complete underflow occurs whenever a floating point functional unit computes a result 

that requires an exponent smaller than -1777. In this case, the functional unit indicates 

an underflow error condition and packs a complete underflow value for the result. This 

result has a -1777 exponent and a zero coefficient. The packed floating point result is 

shown in the paragraph on Nonstandard Operands. This result consists of all zeros 

regardless of the sign which would have been generated if underflow had not occurred. 

INDEFINITE 

An indefinite result indicator is generated by a floating point functional unit whenever 

the calculation cannot be resolved. This is the case in division when the divisor is 0 

and the dividend is also 0. It is also the case in multiplication of an overflow number 

times an underflow number. The indefinite result indicator is a value that cannot occur 

in normal floating point calculations. This indicator corresponds to a -0 exponent and 

a 0 coefficient (177770 --- --- 0 in packed form). An indefinite error condition is 

indicated by the functional unit generating this result. 

Any floating point functional unit receiving an indefinite indicator as an operand generates 

an indefinite result no matter what the other operand value. Although indefinite indica­

tors are always generated with a positive sign by the floating point units, they may occur 

as operands with negative sign because of inversion in the boolean unit. 

5-12 60396300 A 



NON STAN OARD OPERANDS 

In summary, the special operand forms in octal are: 

Positive overflow (+ CO ) 

Negative overflow (-CO ) 

Positive indefinite (+IND) 

Negative indefinite (-IND) 

Positive underflow (+0) 

Negative underflow (-0) 

3777X------X 

4000X------X 

1777X--- ---X 

6000X------X 

OOOOX------X 

7 7 7 7X - - - - - - X 

When a floating point unit uses one of these six special forms as an operand, only the 

following octal words can occur as results, and the associated flag is set in the PSD 

register. 

Positive overflow (+CO ) 

Negative overflow (-CO ) 

Positive indefinite (+IND) 

Positive underflow (+O) 

Negative underflow (-0) 

37770------ 0 Overflow condition flag 

40000- - - - - - 0 Overflow condition flag 

17770------ 0 Indefinite condition flag 

00000------ 0 Underflow condition flag 

00000- - - - - - 0 Underflow condition flag 

The following tabulations indicate the resulting forms when various combinations of 

underflow, overflow, and indefinite forms are used in floating point operations. The 

designations W and N are defined as follows: 

W Any word except :t: co and :t:IND 

N Any word except :t: co , :t:IND, and :t:O 

60396300 A 5-13 



w 

+ Q'.) 

Xj 
- (X) 

:!: IND 

w 

+ (X) 

Xj 
- (X) 

:!: IND 

5-14 

Xj PLUS Xk 

(Instructions 30, 32, 34) 

Xk 

w +<D 

- +CD 

+<D +CD 

- (X) IND 

IND IND 

Xj MINUS Xk 

(Instructions 31, 33, 35) 

Xk 

w + (X) 

- - (X) 

+a> IND 

- (X) - (X) 

IND IND 

- (X) ±IND 

- Q'.) IND 

IND IND 

- (X) IND 

IND IND 

- Q'.) ±IND 

+ (X) IND 

+ Q) IND 

IND IND 

IND IND 

60396300 A 



Xj 

* 

Xj 

+N 

+N -
-N -
+o +o 

-0 -0 

+co +co 

- co - co 

:!:IND IND 

Xj MULTI PLIED BY Xk 

(Instructions 40, 41, 42) 

Xk 

-N +O -0 

- +O -0 

- -0 +O 

-0 jINTEGER* l 
+O 

LMULTIPLY J 

- co IND IND 

+co IND IND 

IND IND IND 

+co - co :tIND 

+co - CX) IND 

- CX) +co IND 

IND IND IND 

IND IND IND 

+co - CX) IND 

- CX) +CD IND 

IND IND IND 

If both operands used in the integer multiply are normalized, the integer 
multiply hardware will not be enabled and the underflow condition flag 
in the PSD register will be set. 

+N 

+N -
-N -
+O +o 

-0 -0 

+co j- co 

-'° - co 

:tIND IND 

Xj DIVIDED BY Xk 

(Instructions 44, 45) 

Xk 

-N +O -0 

- +co - CD 

- - CD +CD 

-0 IND IND 

+o IND IND 

- CD +CD - CD 

+CD - CD +CD 

IND IND IND 

+ CX) - CD :!:IND 

+O -0 IND 

-0 +O IND 

+O -0 IND 

-0 +o IND 

IND IND IND 

IND IND IND 

IND IND IND 

60396300 A 5-15 



NORMALIZED NUMBERS 

A floating point number in packed format is normalized if the coefficient sign bit is 

different from bit 4 7. This condition indicates that the coefficient has been shifted to 

the left as far as possible; therefore, the floating point number has no leading zeros 

in the coefficient. 

The normalize unit performs this function. The floating multiply and floating divide 

units deliver normalized results when provided with normalized operands. The floating 

add unit may deliver unnormalized results even when both operands are normalized. 

Therefore, it is necessary to perform the normalize operation in the normalize unit 

after each sequence of floating add or subtract operations if the result is to be kept in 

a normalized form. 

ROUNDING 

Optional floating point instructions are provided to round the results in single precision 

computation. These instructions are executed in the same amount of time as the un­

rounded versions. The operands are modified in the functional units to accomplish the 

rounding function. The amount of bias introduced by the rounding operation varies 

from unit to unit and is affected by the coefficient value in the operands. The descrip­

tions of the round instructions define the effects of rounding in detail. 

DOUBLE PRECISION RESULTS 

The floating point arithmetic instructions generate double precision results. Use of 

unrounded instructions allows separate recovery of upper and lower half results with 

proper exponents; rounded instructions allow only upper half results to be obtained. 

The position of the binary point and the exponent of the double precision result depend 

upon the arithmetic operation chosen. Two instructions, one single precision and one 

double precision, are required to retrieve an entire double precision result. 

To add or subtract two floating point numbers, the floating point add unit enters the 

coefficient having the smaller exponent into the upper half of an accumulator and shifts 

it right by the difference of the exponents. Then it adds the other coefficient into the 

upper half of the accumulator. The result is a double-length register with the following 

format. 

5-16 60396300 A 



MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS 

95 48.47 0 
'--~~~~~~~~-v-~~~~~~~~~~ 

UPPER HALF RESULT BINARY POINT LOWER HALF RESULT 

If single precision is selected, the upper 48 bits of the 96-bit result and the larger 

exponent are returned as the result. Selecting double precision causes only the lower 

48 bits of the 96-bit result and the larger exponent minus 60 (octal) to be returned as 

the result. The subtraction of 60 (octal) is necessary because the binary point is 

effectively moved from the right of bit 48 to the right of bit 0. 

The multiply unit generates a 96-bit product from two 48-bit coefficients. The result 

of a multiply is a double-length register with the following format. 

MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS 

95 48 47 o. 
UPPER HALF RESULT LOWER HALF RESULT 

BINARY POINT 

If single precision is selected, the upper 48 bits of the product and the sum of the 

exponents plus 60 (octal) are returned as the result. The addition of 60 (octal) is 

necessary because the binary point is effectively moved from the right of bit 0 to the 

right of bit 48 when the upper half of the 96-bit result is selected. If double precision 

is selected, only the lower 48 bits of the product and the sum of the exponents are the 

result. 

INTEGER ARITHMETIC 

There are no CPU integer multiply or divide instructions. Integer multiplication and 

division must be performed in the floating multiply and divide units. Integer arithmetic 

is accomplished by packing the integers into floating point format using the pack in­

struction with a zero-exponent value. 

In integer multiplication, a 48-bit product can be formed by using the double-precision 

multiply instruction. Both operands must have an exponent value of :1::0 and the coefficients 

both cannot be normalized. The result is sign- extended to 60 bits and sent to an X 

register. 

60396300 A 5-17 



In integer division, the divisor must be normalized but the dividend need not be normal­

ized. The resulting quotient must be unpacked and the coefficient shifted by the amount 

of the unpacked exponent using the left shift (22) instruction to obtain the integer quotient. 

INSTRUCTION TIMING 

Execution times for the central processor instruction are given in Table 5-2. The times 

listed in the Execution Time column assume that no conflicts will occur. However, a 

delay results unless all of the conditions listed in the Timing Notes column exist for that 

particular instruction. The Timing Notes are at the end of the table. 

TABLE 5-2. CENTRAL PROCESSOR INSTRUCTION TIMING 

Mnemonic Instruction Functional Execution Timing 
Code Code Description Unit Time (CP) Notes 

ES OOxxx Error Exit to EAA - - -
RJ OlOxK Return Jump to K - 13 1, 2. 3 

RL OlljK Block Copy (Bj) + K - (Bj) + K + 18 2. 3, 4, 5, 6, 
Words from LCM to 18, 20, 22 
SCM 

WL 012jK Block Copy (Bj) + K - (Bj) + K + 13 2. 3, 4, 5, 6, 
Words from SCM to 18, 21. 22 
LCM 

MJ 013jK Exchange Exit to (Bj) - 28 1, 2. 3, 4 
+ K (Exit Mode Flag Set) 

MJ 013xx Exchange Exit to NEA - 28 1, 2. 3, 4 
(Exit Mode Flag Not Set) 

RX 014jk Read LCM at (Xk) to Xj - 20 5,7,8,9,18 
(Xk Bit 20 Not Set) 

RX 014jk Special LCM Functions - 5 8, 19 
(Xk Bit 20 Set) 

wx 015jk Write Xj into LCM at - 5 5,7,8,18 
(Xk) 

RI 0160k Reset Input Channel - 4 8 
(Bk) Buffer 

IB 016jk Read Input Channel (Bk) - 3 8 
Status to Bj (j # O) 

TB 016j0 Read Real-Time Clock - 3 8 
to Bj 

RO 0170k Reset Output Channel - 16 8 
(Bk) Buffer 

5-18 60396300 A 



TABLE 5-2. CENTRAL PROCESSOR INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Functional Execution Timing 
Code Code Description Unit Time (CP) Notes 

OB 017jk Read Output Channel - 3 8 
(Bk) Status to Bj (j f 0) 

JP 02ixK Jump to (Bi) + K - 11 1.2.s.10 

ZR 030jK Branch to K if (Xj) = 0 - 11 1. 2. 10, 11 

NZ 03ljK Branch to K if (Xj) f 0 - 11 1. 2. 10. 11 

PL 032jK Branch to K if (Xj) - 11 1. 2. 10. 11 
Positive 

NG 033jK Branch to K if (Xj) - 11 1. 2. 10, 11 
Negative 

IR 034jK Branch to K if (Xj) - 11 1, 2.10.11 
In Range 

OR 035jK Branch to K if (Xj) - 11 1. 2. 10, 11 
Out of Range 

DF 036jK Branch to K if (Xj) - 11 1.2.10, 11 
Definite 

ID 037jK Branch to K if (Xj) - 11 1. 2. 10. 11 
Indefinite 

EQ 04ijK Branch to K if (Bi) = - 11 1. 2. 10, 11 
(Bj) 

NE 05ijK Branch to K if (Bi) f - 11 1. 2. 10. 11 
(Bj) 

GE 06ijK Branch to K if (Bi) > - 11 1. 2. 10, 11 
(Bj) -

LT 07ijK Branch to K if 
(Bj) 

(Bi) < - 11 1. 2.10.11 

BX lOijx Transmit (Xj) to Xi Boolean 2 2. 8, 12. 13 

BX 1 lijk Logical Product of 
(Xj) and (Xk) to Xi 

Boolean 2 2. a. 12. 13 

BX 12ijk Logical Sum of (Xj) Boolean 2 2. a. 12. 13 
and (Xk) to Xi 

BX 13ijk Logical Difference Boolean 2 2, a. 12, 13 
of (Xj) and (Xk) to 
Xi 

BX 14ixk Transmit Complement 
of (Xk) to Xi 

Boolean 2 2, 8, 12, 13 

BX 15ijk Logical Product of Boolean 2 2. a. 12. 13 
(Xj) and Complement 
of (Xk) to Xi 

60396300 A 5-19 



TABLE 5-2. CENTRAL PROCESSOR INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Functional Execution Timing 
Code Code Description Unit Time (CP) Notes 

BX 16ijk Logical Sum of (Xj) Boolean 2 2, 8, 12, 13 
and Complement of 

i 
(Xk) to Xi 

BX 17ijk Logical Difference Boolean 2 2, 8, 12, 13 
of (Xj) and Comple-
ment of (Xk) to Xi 

LX 20ijk Left Shift (Xi) by jk Shift 2 2, 8, 12, 13 

AX 2 lijk Right Shift (Xi) by jk Shift 2 2, 8, 12, 13 

' LX 22ijk Left Shift (Xk) Norn-
inally (Bj) Places to 

' Shift 2 2, 8, 12, 13 

Xi 

AX 23ijk Right Shift (Xk) Norn-
inally (Bj) Places to 

Shift 2 2, 8, 12, 13 

Xi 

NX 24ijk Normalize (Xk) to Normalize 3 2, 8, 12, 13 
Xi and Bj 

zx 25ijk Round Normalize 
(Xk) to Xi and Bj 

Normalize 3 2, 8, 12, 13 

ux 26ijk Unpack (Xk) to Xi Boolean 2 2, 8, 12, 13 
and Bj 

PX 27ijk Pack (Xk) and (Bj) Boolean 2 2, 8, 12, 13 
to Xi 

FX 30ijk Floating Sum of (Xj) Floating Add 4 2, 8, 12, 13 
and (Xk) to Xi 

FX 3 lijk Floating Difference Floating Add 4 2, 8, 12, 13 
of (Xj) and (Xk) to 
Xi 

DX 32ijk Floating Double Pre- Floating Add 4 2, 8, 12, 13 
cision Sum of (Xj) 
~nd (Xk) to Xi 

DX 33ijk Floating Double Pre- Floating Add 4 2, 8, 12, 13 
cision Difference of 
(Xj) and (Xk) to Xi 

RX 34ijk Round Floating Sum 
of (Xj) and (Xk) to 

Floating Add 4 2, 8, 12, 13 

Xi 

RX 35ijk Round Floating Differ-
ence of (Xj) and (Xk) 

Floating Add 4 2, 8, 12, 13 

to Xi 

IX 36ijk Integer Sum of (Xj) Long Add 2 2, 8, 12, 13 
and (Xk) to Xi 

5-20 60396300 A 



TABLE 5-2. CENTRAL PROCESSOR INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Functional Execution Timing 
Code Code Description Unit Time (CP) Notes 

IX 37ijk Integer Difference Long Add 2 2, 8, 12, 13 
of (Xj) and (Xk) to 
Xi 

FX 40ijk Floating Product of Multiply 5 2, 8, 12, 13, 14 
(Xj) and (Xk) to Xi 

RX 41ijk Round Floating Pro- Multiply 5 2, 8, 12, 13, 14 
duct of (Xj) and (Xk) 
to Xi 

DX 42ijk Floating Double Pre- Multiply 5 2, 8, 12, 13, 14 
cision Product of 
(Xj) and (Xk} to Xi 

MX 43ijk Form Mask of jk Shift 2 2, 8, 12, 13 
Bits to Xi 

FX 44ijk Floating Divide (Xj) Divide 20 2, 8, 12, 13, 15 
by (Xk) to Xi 

RX 45ijk Round Floating Divide Divide 20 2, 8, 12, 13, 15 
(Xj) by (Xk) to Xi 

NO 46xxx Pass - 1 -
ex 47ixk Population Count of Pop. Count 2 2, 8, 12, 13 

(Xk) to Xi 

SA 50ijK Set Ai to (Aj) + K Increment 8 2,8,16,17 

SA 51ijK Set Ai to (Bj) + K Increment 8 2, 8, 16, 17 

SA 52ijK Set Ai to (Xj) + K Increment 8 2,8,16,17 

SA 53ijk Set Ai to (Xj) + (Bk) Increment 8 2,8,16,17 

SA 54ijk Set Ai to (Aj) + (Bk) Increment 8 2,8,16,17 

SA 55ijk Set Ai to (Aj) - (Bk) Increment 8 2,8,16,17 

SA 56ijk Set Ai to (Bj) + (Bk) Increment 8 2, 8, 16, 17 

SA 57ijk Set Ai to (Bj) - (Bk) Increment 8 2,8,16,17 

SB 60ijK Set Bi to (Aj) + K Increment 2 2, 8, 12. 13 

SB 61ijK Set Bi to (Bj) + K Increment 2 2. 8, 12. 13 

SB 62ijK Set Bi to (Xj) + K Increment 2 2. 8, 12. 13 

SB 63ijk Set Bi to (Xj) + (Bk) Increment 2 2. a. 12. 13 

60396300 A 5-21 



TABLE 5-2. CENTRAL PROCESSOR INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Functional Execution Timing 
Code Code Description Unit Time (CP) Notes 

SB 64ijk Set Bi to (Aj) + (Bk) Increment 2 2. a. 12. 13 

SB 65ijk Set Bi to (Aj) - (Bk) Increment 2 2. a. 12. 13 

SB 66ijk Set Bi to (Bj) + (Bk) Increment 2 2. a. 12. 13 

SB 67ijk Set Bi to (Bj) - (Bk) Increment 2 2. a. 12. 13 

sx 70ijK Set Xi to (Aj) + K Increment 2 2. a. 12. 13 
I 

sx 71ijK Set Xi to (Bj) + K Increment 2 2. a. 12. 13 

sx 72ijK Set Xi to (Xj) + K Increment 2 2. a. 12. 13 

sx 73ijk Set Xi to (Xj) + (Bk) Increment 2 2. a. 12. 13 

sx 74ijk Set Xi to (Aj) + (Bk) Increment 2 2. a. 12. 13 

sx 75ijk Set Xi to (Aj) - (Bk) Increment 2 2. a. 12. 13 

sx 76ijk Set Xi to (Bj) + (Bk) Increment 2 2. a. 12. 13 

sx 77ijk Set Xi to (Bj) - (Bk) Increment 2 2. a. 12. 13 

TIMING NOTES 

1. All previous instruction fetches are completed. 

2. No SCM conflicts or SAS backup caused by SCM conflicts exist. 

3. No I/O word request occurs. 

4. All operating registers are free. 

5. LCM is not busy. 

6. All LCM banks have completed previously initiated read/write cycles. 

7. The requested LCM bank has completed a previously initiated read/write cycle. 

8. The requested operating register(s) is free. 

9. If the requested word is in an LCM bank operand register because of a previous 

reference, the minimum execution time is 6 clock periods. 

10. If the address is in the IAS, the execution time is 3 clock periods. 

11. If the branch conditions are not met. the execution time is 2 clock periods. 

12. The requested destination register(s) input data path is free during the required 

clock period. 

13. After the instruction has issued to the functional unit, no further delay is 

possible. 

5-22 60396300 A 



14. The multiply unit is free. 

15. The divide unit is free. 

16. If no storage reference is required (i=O), the execution time is 2 clock periods. 

17. After the instruction has issued to the increment unit, no further delays are 

possible in the delivery of data to the Ai register. However, SCM conflicts 

may delay the resulting storage reference. 

18. LCM is not being used by another processor. 

19. LCM flag register or locking registers are not being used by another processor. 

20. For 256K LCM, maximum transfer rate is 32 words per 64 clock periods. 

21. For 256K LCM, maximum transfer rate is 32 words per 65 clock periods. 

22. If (Bj)+K=O or an SCM or LCM range error occurs, the execution time is 

7 clock periods. 

DESCRIPTION OF INSTRUCTIONS 

This portion of the manual describes the central processor instructions in detail. Each 

instruction is described separately as to what it does, briefly how it does it, and what 

happens if unusual or special situations arise. Instruction designators are listed and 

defined in Table 5-3. 

TABLE 5-3. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS 

Designator Use 

gh 6-bit instruction code 

ghi 9-bit instruct ion code 

3-bit code specifying one of eight registers 

j 3-bit code specifying one of eight registers 

jk 6-bit code specifying amount of shift 

k 3-bit code specifying one of eight registers 

K 18-bit operand or address 

60396300 A 5-23 



TABLE 5-3. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS (Cont'd) 

Designator Use 

x Unused designator 

A One of eight 18-bit address registers 

B One of eight 18-bit index registers. BO is fixed and equal to 
zero 

x One of eight 60-bit operand registers 

( ) Contents of a register 

OOxxx ERROR EXIT TO EEA 

14 12 II 9 8 0 

This instruction is treated as an error condition and sets the program range condition 

flag in the PSD register. This condition flag then generates an error exit request 

which causes an exchange jump to address (EEA). All instructions which have issued 

prior to this instruction are run to completion. Any instructions following this instruc­

tion in the CIW are not executed. When all operands have arrived at the operating 

registers as a result of previously issued instructions. an exchange jump occurs to the 

exchange package designated by (EEA). 

The i, j. and k designators in this instruction are ignored. The program address 

stored in the exchange package on the terminating exchange jump is advanced one count 

from the address of the CIW. This is true regardless of which parcel of the CIW 

contains the error exit instruction. 

This instruction is not intended for use in normal program code. The program range 

condition flag is set in the PSD register to indicate that the program has jumped to an 

area of SCM which may be in range but is not a valid program code. This should 

occur when an incorrectly coded program jumps into an unused area of SCM or into a 

data field. The program range condition flag is also set on the condition of a jump to 

address zero or a jump beyond the SCM field length. These conditions can be deter­

mined by the system monitor program on the basis of the register contents in exchange 

package. The existence of an error exit condition resulting from execution of this 

instruction may thus be deduced by the monitor program. The program range condition 

flag may not be set if another interrupt condition occurs at the same time. 

5-24 60396300 A 



A special situation may occur when a program is terminated with an error exit instruc­

tion and a previously issued instruction stores a result operand in SCM. The error 

exit is treated as an SCM range error which blocks a write operation in SCM as soon 

as the error is detected. A legitimate SCM write operation may be blocked by the 

error condition even though the instruction causing the write issues substantially before 

the error exit. The timing depends upon the SCM bank conflicts which may have 

occurred. 

OlOxK RETURN JUMP TO K 

I g I h I i ~ K 

29 2726242321201817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an operand 

K. This instruction writes a special word into SCM at relative address K. The IWS 

is cleared, and the current program sequence is then terminated by a jump to address 

K + 1 in SCM. The word stored in SCM contains a jump instruction which causes an 

unconditional jump to the address of this return jump instruction plus one. 

This instruction is intended to call a subroutine and insert execution of this subroutine 

between execution of the CIW and the following instruction word. Instructions appearing 

after the return jump instruction in the CIW are not executed. The called subroutine 

exit must be at address K in SCM. The called subroutine entrance address must be 

K + 1 in SCM. 

This instruction stores a full 60-bit word at address K in SCM. The upper half of this 

word contains an unconditional jump instruction (0400) with an address which is equal to 

the current program address plus one. The lower half of the stored word is all zeros. 

The octal digits in the stored word then appear as illustrated with the xxx field indicating 

the location of the current program address plus one. 

K 

K + 1 

0400x xxxxx 00000 00000 

yyyyy yyyyy yyyyy yyyyy 

DESIGNATOR i NOT ZERO 

subroutine exit 

subroutine entrance 

The j designator is normally zero. However, a nonzero value has no effect on the 

results. 

60396300 A 5-25 



LAST PARCEL 

This instruction requires two parcels of an instruction word for normal use. If this 

instruction begins in the first, second, or third parcel of an instruction word, the 

following parcel completes the instruction. If this instruction begins in the last parcel 

of an instruction word, it is not continued in the following word. The instruction is 

executed as if there were a fifth parcel in the instruction word and this parcel contained 

all zeros. 

JUMP OUT OF RANGE 

If the value of K is greater than the SCM field length, the instruction is executed with 

the store of the exit word in SCM inhibited. The program address is altered to the 

value K and advanced by one count in a normal manner. The program range condition 

flag is set in the PSD register to indicate the jump out of range. The program sequence 

is then terminated with an exchange jump to (EEA). The resulting exchange package 

contains a program address equal to K + 1 and the program range condition flag set in 

the PSD register. 

JUMP TO ZERO 

If the value of K is zero, the instruction is executed in a normal manner. The exit 

word is stored at address zero in SCM. In the process of executing the instruction, (P) 

is momentarily set to zero. This is sensed as an error condition, and the program 

range condition flag is set in the PSD register. As a result, the program sequence is 

terminated at the completion of this instruction with an exchange jump to (EEA). The 

instruction will have advanced the program address one count so that the exchange 

package indicates a program address of one rather than zero. 

JUMP TO BREAKPOINT ADDRESS 

If the value of K is equal to (BPA), (P) is momentarily set equal to (BPA). This 

is detected as a breakpoint condition, and the breakpoint condition flag sets in the PSD 

register. This instruction advances (P) one count. This final value of (P) appears in 

the exchange package when the breakpoint interrupt occurs. 

ERROR CONDITION DURING EXECUTION 

A number of error conditions may occur during the execution of this instruction. Some 

possible conditions are arithmetic errors due to previously issued instructions and parity 

errors in SCM or LCM. If any error conditions occur, the proper flags are set in the 

5-26 60396300 A 



PSD register and the instruction is executed to completion in a normal manner. The 

program sequence is then terminated with an exchange jump to (EEA). The resulting 

exchange package contains a program address equal to K + 1 and one or more error 

flags set in the PSD register. 

1/0 INTERRUPT DURING EXECUTION 

An 1/0 interrupt request may occur during the execution of this instruction. In this 

case. the return jump instruction is completed, and an exchange jump to the proper 

1/0 channel exchange package occurs with the program address equal to K + 1. 

011 jK BLOCK COPY (Bil + K WORDS FROM LCM, TO SCM 

h K 

29 2728242321201817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an operand 

K. This instruction reads a sequence of 60-bit words from consecutive addresses in 

LCM and copies them into a block of consecutive addresses in SCM. The block of 

words begins at address (XO) in LCM. The words are stored in SCM beginning at 

address (AO). The number of words to be copied is the sum of (Bj) + K. This quantity 

cannot exceed 1777 (octal) words. If a larger quantity is used, LCM truncates the 

quantity to the 10-bit maximum. Thus. a block count of 3000 (octal) words transfers 

1000 (octal) words. No error indications are given when this occurs unless the field 

length is exceeded, causing a block range error. 

This instruction is intended to move a quantity of data from LCM into SCM as quickly 

as possible. All other activity. with the exception of 1/0 word requests. is stopped 

during this block transfer of data. All instructions which have issued prior to this 

instruction are executed' to completion. No further instructions are issued until this 

block transfer is nearly completed, As a result of these restrictions. the data flow 

from LCM to SCM can proceed at the rate of one 60-bit word each clock period. When 

an 1/0 word request for SCM occurs during this transfer, the data flow is interrupted 

for 1 clock period. The 1/0 word address is inserted in the stream of addresses to 

the SAS, and the addresses for the block transfer are resumed with a minimum of a 

1-clock-period delay. An additional delay occurs if the I/O reference causes a bank 

conflict in SCM. 

The length of the block is determined by adding K to (Bj). Either quantity may be used 

to increment or decrement the other. The addition is performed in an 18-bit ones 

60396300 A 5-27 



complement mode. The resultant sum is treated as an 18-bit positive integer. This 

18-bit quantity is truncated to 10 bits by LCM. A zero result causes this instruction 

to be executed as a pass instruction. 

Three of the parameters for this instruction reside in operating registers (AO, XO, and 

Bj). The contents of these registers is not altered by the execution of this instruction. 

(XO ) NEGATIVE OR GREATER THAN 19 SIGNIFICANT BITS 

The lowest order 19 bits of (XO) are used to determine the initial address in LCM for 

the block copy. The highest order bits are ignored. If (XO) is negative, the lowest 

order 19 bits are masked out and treated as a positive integer. 

LCM OUT OF RANGE 

A test against LCM field length is made at the beginning of the block copy sequence. 

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones 

complement mode. The resulting sum is treated as an 18-bit positive integer. This 

integer is added to the lowest order 19 bits of (XO), also treated as a positive integer, 

The resulting sum is compared with (FLL). If the resulting sum is greater than (FLL), 

the block copy is not executed, the LCM block range condition flag is set in the PSD 

register, and the instruction is issued as a pass. The exchange jump to (EEA) resulting 

from setting the LCM block range condition flag does not occur before execution of the 

next program instruction word unless a delay is introduced by subsequent instructions 

in the CIW. 

SCM OUT OF RANGE 

A test against SCM field length is made at the beginning of the block copy sequence. 

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones 

complement mode. The resulting sum is treated as an 18-bit positive integer. This 

integer is added to (AO), also treated as an 18-bit positive integer. The resulting sum 

is compared with (FLS). If the resulting sum is greater than (FLS), the block copy is 

not executed, the SCM block range condition flag is set in the PSD register, and the 

instruction is issued as a pass. The exchange jump to (EEA) resulting from setting the 

SCM block range condition flag does not occur before execution of the next program 

instruction word unless a delay is introduced by subsequent instructions in the CIW. 

BLOCK LENGTH NEGATIVE 

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones 

complement mode. The resulting sum is treated as an 18-bit positive integer. A 

5-28 60396300 A 



negative result therefore appears as a large positive integer. The SCM block range 

condition flag, and possibly the LCM block range condition flag, sets in the PSD register. 

The instruction issues as a pass. The exchange jump to (EEA) resulting from setting 

the SCM block range condition flag does not occur before execution of the next program 

instruction word unless a delay is introduced by subsequent instructions in the CIW. 

BLOCK LENGTH ZERO 

A zero block length is treated as a normal situation. No error flags are set. The 

block copy instruction is executed as a pass. 

LCM WORDS ALREADY IN BANK OPERAND REGISTER 

The LCM words required may already be in one of the LCM bank operand registers from 

the execution of a previous instruction. This situation is not sensed. The words are 

discarded and are reread from the LCM bank. 

LAST PARCEL 

This instruction requires two parcels of an instruction word. If this instruction begins 

in the first, second, or third parcel of an instruction word, the following parcel com­

pletes the instruction. If the instruction begins in the last parcel, it is not continued 

in the following word. The instruction is executed as if there were a fifth parcel in the 

instruction word and this parcel contained all zeros. 

ERROR CONDITION DURING EXECUTION 

An LCM or SCM parity error may occur during the execution of this instruction. An 

arithmetic error from a previous instruction may also occur during the beginning of the 

block copy sequence. If any error conditions occur, the proper flags are set in the 

PSD register and the instruction is executed to completion. There are no error condi­

tions which interrupt the instruction before completion. 

1/0 INTERRUPT DURING EXECUTION 

An I/O interrupt request may occur during the execution of this instruction. The inter­

rupt request is not honored until the block copy instruction has been completed and any 

subsequent instructions in the CIW have been completed. 

60396300 A 5-29 



012jK BLOCK COPY (Bj) + K WORDS FROM SCM TO LCM 

h K 

29 27262423 21~1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an operand 

K. This instruction reads a sequence of 60-bit words from consecutive addresses in 

SCM and copies them into a block of consecutive addresses in LCM. The block of 

words begins at address (AO) in SCM. The words are stored in LCM beginning at 

address (XO). The number of words to be copied is the sum of (Bj) + K. This quantity 

cannot exceed 1777 (octal) words. If a larger quantity is used, LCM truncates the 

quantity to the 10-bit maximum. Thus, a block count of 3000 (octal) words transfers 

1000 (octal) words. No error indications are given when this occurs unless the field 

length is exceeded, causing a block range error. 

This instruction is intended to move a quantity of data from SCM into LCM as quickly 

as possible. All other activity, with the exception of I/O word requests, is stopped 

during this block transfer of data. All instructions which have issued prior to this 

instruction are executed to completion. No further instructions are issued until this 

block transfer is nearly completed. As a result of these restrictions, the data flow 

from SCM to LCM can proceed at the rate of one 60-bit word each clock period. When 

an I/O word request for SCM occurs during this transfer, the data flow is interrupted 

for 1 clock period. The I/O word address is inserted in the stream of addresses to 

the SAS, and the addresses for the block transfer are resumed with a minimum of a 

I-clock-period delay. An additional delay occurs if the I/O reference causes a bank 

conflict in SCM. 

The length of the block is determined by adding K to (Bj). Either quantity may be used 

to increment or decrement the other. The addition is performed in an 18-bit ones com­

plement mode. The resultant sum is treated as an 18-bit positive integer. This 18-bit 

quantity is truncated to bits by LCM. A zero result causes this instruction to be 

executed as a pass instruction. 

Three of the parameters for this instruction reside in operating registers (AO, XO, and 

Bj). The contents of these registers are not altered by the execution of this instruction. 

5-30 60396300 A 



( XO) NEGATIVE OR GREATER THAN 19 SIGNIFICANT BITS 

The lowest order 19 bits of (XO) are used to determine the initial address in LCM for 

the block copy. The highest order bits are ignored. If (XO) is negative, the lowest 

order 19 bits are masked out and treated as a positive integer. 

LCM OUT OF RANGE 

A test against LCM field length is made at the beginning of the block copy sequence. 

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones 

complement mode. The resulting sum is treated as an 18-bit positive integer. This 

integer is added to the lowest order 19 bits of (XO). also treated as a positive integer. 

The resulting sum is compared with (FLL). If the resulting sum is greater than (FLL), 

the block copy is not executed, the LCM block range condition flag is set in the PSD 

register, and the instruction is issued as a pass. The exchange jump to (EEA) resulting 

from setting the LCM block range condition flag does not occur before execution of the 

next program instruction word unless a delay is introduced by subsequent instructions 

in the CIW. 

SCM OUT OF RANGE 

A test against SCM field length is made at the beginning of the block copy sequence. 

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones 

complement mode. The resulting sum is treated as an 18-bit positive integer. This 

integer is added to (AO). also treated as an 18-bit positive integer. The resulting sum 

is compared with (FLS). If the resulting sum is greater than (FLS), the block copy is 

not executed, the SCM block range condition flag is set in the PSD register, and the 

block copy instruction is issued as a pass. The exchange jump to (EEA) resulting from 

setting the SCM block range condition flag does not occur before execution of the next 

program instruction word unless a delay is introduced by subsequent instructions in the 

CIW. 

BLOCK LENGTH NEGATIVE 

The length of the block is determined by adding the quantity K to (Bj). The addition is 

performed in an 18-bit ones complement mode. The resultant sum is treated as an 

18-bit positive integer. Therefore, a negative result appears as a large positive integer. 

The SCM block range condition flag. and possibly the LCM block range condition flag, 

set in the PSD register. The instruction issues as a pass. The exchange jump to 

(EEA), resulting from setting the SCM block range condition flag. does not occur before 

execution of the next program instruction word unless a delay is introduced by subsequent 

instructions in the CIW. 

60396300 A 5-31 



BLOCK LENGTH ZERO 

A zero block length is treated as a normal situation. No error flags are set. The 

block copy instruction is executed as a pass. 

LAST PARCEL 

This instruction requires two parcels of an instruction word. If this instruction begins 

in the first, second, or third parcel of an instruction word, the following parcel com­

pletes the instruction. If the instruction begins in the last parcel, it is not continued 

in the following word. The instruction is executed as if there were a fifth parcel in 

the instruction word and this parcel contained all zeros. 

ERROR CONDITION DURING EXECUTION 

An SCM parity error may occur during the execution of this instruction. An 

arithmetic error from a previous instruction may also occur during the beginning of the 

block copy sequence. If any error conditions occur, the proper flags are set in the 

PSD register, and the instruction is executed to completion. There are no error condi­

tions which interrupt the instruction before completion. 

1/0 INTERRUPT DURING EXECUTION 

An I/O interrupt request may occur during the execution of this instruction. The inter­

rupt request is not honored until the block copy instruction has been completed and any 

subsequent instructions in the CIW have been completed. 

013jK EXCHANGE EXIT TO (Bj) + K (EXIT MODE FLAG SET) 

h K 

.29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an operand 

K. This instruction causes the current program sequence to terminate with an exchange 

jump to an address in SCM. The exchange package is located at relative address (Bj) 

+ K in SCM. The two quantities are added in an 18-bit ones complement mode. The 

result is treated as an 18-bit positive integer. This integer is added to (RAS), also 

treated as an 18-bit positive integer, to form the absolute address of the exchange 

package in SCM. 

5-32 60396300 A 



This form of the 013 instruction is used by the monitor program only. The exit mode 

flag in the PSD register is cleared during execution of object programs. The monitor 

program uses this instruction to exchange jump to one of a number of possible object 

program exchange packages. Each of these exchange packages normally specifies a 

cleared exit mode flag. A selected object program exchange package then returns to 

this same area of SCM and resumes the monitor program when its execution interval '• 

has been completed (refer to alternate form of 013 instruction). 

This instruction has priority over all other types of exchange jump requests. If an I /0 

interrupt request or an error exit request has occurred prior to the execution of this 

instruction, the request is denied. The rejected interrupt request is not lost since the 

conditions which caused it are reinstated when the exchange package enters its next 

execution interval. 

Any remaining instructions in the CIW are not executed. The program address stored 

in the exchange package is advanced one count from the address of the CIW. Therefore, 

the program continues at the first parcel of the following instruction word during the 

next execution interval for this exchange package. 

The current contents of the IWS are voided by the execution of this instruction. 

EXCHANGE ADDRESS OUT OF RANGE 

There is no protection for addressing out of the SCM field on this instruction. Any 

error in the calculation of the exchange package address. either in range or out of 

range, almost certainly results in complete system failure. The exchange package 

address is determined by adding K to (Bj) in a ones complement mode. The result 

is treated as an 18-bit positive integer and is added to (RAS), also treated as an 18-bit 

positive integer. The lowest order 16 bits of this last addition are used as the absolute 

address in SCM for the ,exchange package. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first. second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel of an instruction 

word, it is not continued in the following word. The instruction is executed as if there 

were a fifth parcel in the instruction word and this parcel contained all zeros. 

60396300 A 5-33 



ERROR CONDITION 

This instruction takes priority over an error exit request. The flag or flags associated 

with the error exit request are preserved in the exchange package. The error exit 

request is regenerated at the beginning of the next execution interval for the exchange 

package. This causes an error exit in the next execution interval for the exchange 

package before the execution of the first instruction. 

1/0 INTERRUPT 

This instruction takes priority over an I/O interrupt request. The 1/0 request is not 

honored until the exchange jump has been completed and a new exchange package has 

been generated. 

013xx EXCHANGE EXIT TO NEA (EXIT MODE FLAG NOT SET) 

h 
14 12 II 9 8 6 !5 3 2 0 

An exchange exit instruction executed in this mode causes the current program sequence 

to terminate with an exchange jump to address (NEA). This is an absolute address in 

SCM and is generally not in the SCM field for the current program. This mode makes 

no use of the j or k designators in the instruction. 

This instruction is the vehicle for switching rapidly from an object program to a monitor 

program. All operating register values, program addresses, and mode selections are 

preserved in this process in order that the object program may be continued at a later 

time. The program address in the object program exchange package is advanced one 

count from the address of the instruction word containing the exchange exit instruction. 

The monitor program normally resumes the object program at this address. 

This instruction is intended for use in calling the system monitor program for 1/0 

requests, library calls, storage assignments, and so on. The operating register values 

at the time of execution of this instruction are intended as the vehicle for parameter 

interchange between the object program and the monitor program. 

This instruction has priority over all other types of exchange jump requests. If an 1/0 

interrupt request or an error exit request has occurred prior to the execution of this 

instruction, the request is denied. The rejected interrupt request is not lost since the 

conditions which caused it are reinstated when the exchange package enters its next 

execution interval. 

5-34 60396300 A 



Any remaining instructions in the CIW are not executed. The program address stored 

in the exchange package is advanced one count from the address of the CIW. Therefore. 

the program continues at the first parcel of the following instruction word during the 

next execution interval for this exchange package unless the monitor program alters the 

exchange package. 

The current contents of the IWS are voided by the execution of th~s instruction. 

DESIGNATOR j, k, NOT ZERO 

A nonzero j or k designator has no effect on the results of this instruction. If the j 

designator is nonzero, a test is made for register Bj free. This may delay execution 

of the instruction but does not affect the results. 

(NEA) OUT OF RANGE 

There are no protective tests made on the exchange jump address for this instruction. 

The assignment of (NEA) is a responsibility of the system monitor program. Normally 

the SCM field for an object program does not include the address (NEA). If (NEA) has 

more than 16 bits of significance, considered as a positive integer. the upper bits are 

discarded and the lower 16 bits used as the absolute address in SCM for the exchange 

jump. 

ERROR CONDITION 

This instruction takes priority over an error exit request. The flag or flags associated 

with the error exit request are preserved in the exchange package. The error exit 

request is regenerated at the beginning of the next execution interval for the exchange 

package. This causes an error exit in the next interval for the exchange package 

before the execution of the first instruction. 

1/0 INTERRUPT 

This instruction takes priority over an I/O interrupt request. The I/O request is not 

honored until the exchange jump has been completed and a new exchange package has 

been generatea. The I/O request is then honored before execution of the first instruc­

tion in the new program. 

60396300 A 5-35 



014jk READ LCM AT (Xk) TO Xj (Xk BIT 20 NOT SET) 

' I h 1 I k I 
14 • 12 II t I I I I 2 0 

This instruction reads one word from LCM and enters this word in an X register. The 

word is read from LCM at relative address (Xk). The word is then entered in the Xj 

register. The SCM is not involved in this process. 

This instruction is intended for direct addressing of LCM of individual words. It may 

also be used to advantage in addressing a string of words in consecutive storage loca­

tions. This is particularly true if a string of .< ords is to be read, modified, and 

written back into the same storage locations. The process of reading and writing pro­

ceeds without an LCM read/write cycle delay until the addressing crosses an LCM bank 

boundary. If another processor references the same bank between requests, the data is 

lost and another read/write cycle is required. 

This instruction is buffered to the extent that it issues in 3 clock periods unless a pre­

vious LCM reference is in process. When this instruction issues (receives LCM prior­

ity), the LCM busy flag is set and remains set until the requested word has been 

delivered to the designated X register. This process differs from an SCM read refer­

ence in that only one LCM read or write may be in process at one time. 

(Xk) NEGATIVE OR GREATER THAN 19 SIGNIFICANT BITS 

The lowest order 19 bits of (Xk) are used to determine the address in LCM. The 

highest order bits are ignored. If (Xk) is negative, the lowest order 19 bits are masked 

out and treated as a positive integer. No error flags are set for these conditions un­

less the resulting address is out of range. 

ADDRESS OUT OF RANGE 

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested 

address is in the assigned LCM field. If the requested address is greater than or equal 

to (FLL), the LCM direct range condition flag is set in the PSD register. This flag 

causes an error exit request to interrupt the program with an exchange jump to address 

(EEA). The instruction is executed with an LCM read reference beyond the assigned 

field, and a zero word is entered in the Xj register. The absolute address in LCM is 

the lowest order 19 bits in the sum resulting from adding (RAL) to the lowest order 

19 bits of (Xk). The exchange jump resulting from the error exit request generally 

does not occur before one or more subsequent instructions has been executed. 

5-36 60396300 A 



USE OF THE XO REGISTER 

The XO register may be used for either Xj or Xk in this instruction. 

Xi AND Xk REGISTER 

If the j and k designators have the same value, the requested address is lost when the 

word arrives at the Xj register. 

READ FROM BLOCK COPY FIELD 

The requested word may reside in an LCM bank operand register as a result of a 

previous block copy instruction. This condition is sensed, and the word is read directly 

from the LCM bank operand register. 

014jk SPECIAL LCM FUNCTIONS (Xk BIT 20, SET) 

g h k 

14 12 II 9 8 6 5 3 2 0 

This instruction is used to execute two special LCM functions. One of these functions 

involves setting or clearing one of the three 1-bit locking registers in LCM access 

control. (Each access has a locking register.) The other function involves reading or 

modifying the common 48- or 96-bit LCM flag register. Special functions are selected 

by setting bit 20 of the Xk register. Also, either the exit mode flag or the monitor 

mode flag must be set in the PSD register. If selected, this instruction issues even 

through LCM may be busy performing a memory reference. This instruction may be 

executed in either the locked or unlocked mode. When this instruction is executed, the 

LCM access control decodes the contents of the Xk register as follows: 

SPECIAL 
FUNCTION 

FLAG 
FUNCTION 

CODE 

BYTE 
SELECT 

CODE 

59 212019 17 16 15 14 12 II 

FLAG 
WORD 

0 

Xk 

Bits 0 through 11 contain information to be placed in a selected 12-bit byte of the LCM 

flag register. This byte is determined by the byte select code in bit positions 12 through 

14 as follows: 

60396300 A 5-37 



Byte Select LCM Flag Register Bytes 
Code 48-Bit Register 96-Bit Register 

0 0-11 0-11 

1 12-23 12-23 

2 24-35 24-35 

3 36-47 36-47 

4 0-11 48-59 

5 12-23 60-71 

6 24-35 72-83 

7 36-47 84-95 

Bi ts 15 and 16 contain the following special function codes. 

Function Select Code 

0 

1 

2 

3 

Function 

Clear those bits in the selected LCM flag register byte in which 

the corresponding bits in the Xk register flag word are set. 

Set those bits in the selected LCM flag register byte in which 

the corresponding bits in the Xk register flag word are set. 

Clear the locking register. (A CPU connected to one of the 

LCM accesses may clear only its own locking register.) 

Set the locking register. (A CPU connected to one of the LCM 

accesses may set only its own locking register.) 

Upon completion of this instruction, the LCM access control returns a status word to 

the Xj register. The following is the Xj register format. 

LOCKING FLAG 
ACCEPT REGISTER REGISTER 

FLAG STATUS CONTENTS 

c I BI A I I Xj 
59 58 15 14 13 12 11 0 

Bits 0 through 11 represent the final contents of the selected LCM flag register word. 

Bits 12, 13, and 14 represent the state of the locking registers for LCM accesses A, 

B, and C, respectively. Bit 59 is an accept flag. If this flag is set, the requested 

action was performed. If clear, the request was aborted and neither the LCM flag 

register nor locking registers were altered. 

5-38 60396300 A 



ABORTED FUNCTIONS 

If function 0 is selected, all of the bits in the selected LCM flag register byte which 

are to be cleared must be in a set condition. If any of the bits are already cleared, 

the function is aborted. 

If function 1 is selected, all of the bits in the selected LCM flag register byte which 

are to be set must be in a cleared condition. If any of the bits are already set, the 

function is aborted. 

If function 2 is selected, the locking register which is to be cleared must be in a set 

condition. If it is already cleared, the function is aborted. 

If function 3 is selected, all three of the locking registers must be in a cleared con­

dition. If any of them are already set, the function is aborted. 

BOTH EXIT AND MONITOR MODE FLAGS CLEAR 

If the exit mode flag and the monitor mode flag in the PSD register are both clear, this 

instruction is issued as a pass. 

015jk WRITE Xj INTO LCM AT (Xk) 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction writes one word directly into LCM from an X register. The word is 

read from the Xj register and is written into LCM at relative address (Xk). The SCM 

is not involved in this process. 

This instruction is intended for direct addressing of LCM for individual words. It may 

also be used to advantage in addressing a string of words in consecutive storage loca­

tions. This is particularly true if a string of words is to be read, modified, and 

written back into the same storage locations. The process of reading and writing 

proceeds without an LCM bank read/write cycle delay until the addressing crosses an 

LCM bank boundary. If another processor references the same bank between requests, 

the data is lost and another read/write cycle is required. 

This instruction is buffered to the extent that it issues in 3 clock periods unless a pre­

vious LCM reference is in process. When this instruction issues, the LCM busy flag 

is set and remains set until the word has been delivered to the proper LCM bank oper­

and register. The following instruction may use either of the X registers designated in 

60396300 A 5-39 



this instruction without causing a register conflict. If the word cannot be entered 

immediately in the proper LCM bank operand register, it is held in the LCM write reg­

ister until the LCM bank operand register is free. This process differs from an SCM 

write reference in that only one LCM read or write may be in process at one time. 

(Xk) NEGATIVE OR GREATER THAN 19 SIGNIFICANT BITS 

The lowest order 19 bits of (Xk) are used to determine the address in LCM. The 

highest order bi ts are ignored. If (Xk) is negative, the lowest order 19 bits are masked 

out and treated as a positive integer. No error flags are set for these conditions 

unless the resulting address is out of range. 

ADDRESS OUT OF RANGE 

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested 

address is in the assigned LCM field. If the requested address is greater than or equal 

to (FLL), the LCM direct range condition flag is set in the PSD register. This flag 

causes an error exit request to interrupt the program with an exchange jump to address 

(EEA). The word is not written into LCM. The exchange jump resulting from the 

error exit condition generally does not occur before one or more subsequent instructions 

has been executed. 

USE OF THE XO REGISTER 

The XO register may be used for either Xj or Xk in this instruction. 

Xi AND Xk SAME REGISTER 

The j and k designators may have the same value in this instruction. In this case, the 

requested address is also the operand. 

0160k RESET INPUT CHANNEL (Bk) BUFFER 

g h I 1 k I 
14 12 II I I • 5 5 2 0 

This instruction resets the input channel (Bk) buffer in preparation for the next incoming 

record. The input channel (Bk) buffer address register is cleared to zero and the 

assembly register is reset to the first position. 

This instruction is intended for execution in the monitor program input routine which 

terminates a record of incoming data and prepares for the next record. The monitor 

5-40 60396300 A 



input routine is called by an I/0 interrupt request when the input record flag is set. 

The data in the buffer is then normally transferred to LCM, and this instruction is 

executed to clear the buffer for the next incoming record. 

This instruction is effective only if the monitor mode flag is set in the PSD register. 

If the monitor mode flag is cleared, this instruction becomes a pass instruction. There 

are no interlocks for this instruction other than the monitor mode flag. When this 

instruction issues, it executes the required channel functions without regard to the 

current status or activity of the channel. 

This instruction is normally not executed except in response to an I/ 0 interrupt request 

resulting from the setting of the input record flag. This flag is cleared when the inter­

rupt request is generated. Further entries to the buffer are not locked out by the inter­

rupt request flag in the channel access control during the execution interval for the inter­

rupt exchange package. The PPU must wait for a positive response from the monitor 

program over the output channel before beginning the next record. 

(Bk) NOT A VALID CHANNEL NUMBER 

The lowest order four bits of (Bk) are used in this instruction. The highest order bits 

are ignored. If highest order bits are set in (Bk), the lowest order four bits are 

masked out and used to determine the channel number. If (Bk) = 0, this instruction 

becomes a pass instruction. 

MONITOR MODE FLAG NOT SET 

If the monitor mode flag is not set in the PSD register when this instruction is executed, 

this instruction becomes a pass instruction. 

CHANNEL ACTIVE 

The input channel buffer is normally inactive when this instruction is executed because 

the PPU has transmitted a record pulse and is waiting for monitor response on the out­

put channel. If the PPU has continued transmitting data, a word may be waiting to enter 

the buffer and a word request flag may be set. These two operations may occur in the 

same clock period with conflicting commands to the registers from the channel access 

control. The commands associated with this instruction take priority. The result is a 

loss of data in the input buffer for the incoming record. The incoming record continues 

with no indication of error except that the record is shortened by the lost data. 

60396300 A 5-41 



CONSECUTIVE RESETS FOR DIFFERENT CHANNELS 

Two or more reset input buffer instructions may occur in consecutive program instruc­

tion locations referencing different channels. These instructions may issue in consecutive 

clock periods, and no interference results. 

CONSECUTIVE RESETS FOR SAME CHANNEL 

Two or more reset input buffer instructions may occur in consecutive program instruc­

tion locations referencing the same channel. These instructions issue in consecutive 

clock periods and repeatedly perform the same functions. No interference occurs other 

then the obvious repetitive functions. 

016jk READ INPUT CHANNEL (Bk) STATUS TO Bj (j ~ 0) 

h k 
14 12 II 9 8 8 5 3 2 0 

This instruction reads the current value of the input channel (Bk) buffer address register 

contents to the Bj register. The status of this buffer address register is not altered. 

This instruction is intended for use in monitoring the progress of the input channel buffer. 

The buffer area is divided into two fields by the threshold testing mechanism. The first 

half of the buffer area constitutes one field and the last half of the buffer area the other 

field. An I/O interrupt request is generated by the threshold testing mechanism when­

ever the input channel buffer address is advanced across a field boundary. This occurs 

at the center and at the end of the buffer area. 

This instruction is the only vehicle for a monitor program to determine whether an I/ 0 

interrupt request was generated by a buffer threshold test or by a record flag. The 

monitor program must retain the buffer address from one interrupt period to the next. 

If the buffer address is in the same field as for the previous interrupt, the interrupt 

request was from a record flag. If the buffer address is in the opposite field from the 

previous interrupt, the interrupt request was from a threshold test. 

This instruction has a special use if the channel number (Bk) is zero. There are no 

buffer areas for the MCU which use the I/O channel zero access position. In this case, 

the current contents of the CPU clock period counter is read into the Bj register. This 

is a 17-bi t counter which is advanced one count in a twos complement mode each clock 

period. This count is intended for timing measurements of programs. Timing consider­

ations for this special use are the same as the normal timing for an input channel buffer 

address register. 

5-42 60396300 A 



(Bk) NOT A VALID CHANNEL NUMBER 

The lowest order four bits of (Bk) are used in this instruction. The highest order bits 

are ignored. If highest order bits are set in (Bk), the lowest order four bits are 

masked out and used to determine the channel number. If (Bk) = 0, this instruction 

reads the contents of the CPU clock period counter. 

For systems using less than the full complement of I/O channels, this instruction can 

be used to determine whether an input channel exists. Execution of this instruction to 

a nonexistent input channel causes a status word of 400000 to be entered into Bj. 

CONSECUTIVE EXECUTIONS 

Two or more read input channel status instructions may occur in consecutive program 

instruction locations referencing the same or different channels. These instructions may 

issue in consecutive clock periods providing the Bj register reservations do not cause a 

delay. No interference results in the I/O access control. 

Ol 70k RESET OUTPUT CHANNEL (Bk) BUFFER 

h k 
14 12 II 9 8 3 2 0 

This instruction resets the output channel (Bk) buffer in preparation for the next record 

transmission. The output buffer address register is cleared to zero. A. record pulse 

is transmitted over the output channel data path. The output word request flag is then 

set to read the first word from the buffer. 

This instruction is intended for execution in the monitor program output routine to 

initiate a new record transmission over a channel output data path. The buffer is 

normally inactive when this instruction is executed. The buffer is loaded with the data 

for the next record, and then this instruction is executed to initiate the transmission. 

A record pulse is transmitted to indicate the beginning of a new record. The first word 

of data follows as soon as the output word request flag has caused the first word to be 

read from the output buffer to the disassembly register. 

This instruction is effective only if the monitor mode flag is set in the PSD register. 

If the monitor mode flag is cleared, this instruction becomes a pass instruction. There 

are no interlocks for this instruction other than the monitor mode flag. When this 

instruction issues, it executes the required channel functions without regard to the cur­

rent status or activity of the channel. The disassembly register is reset by the output 

word request flag. 

60396300 A 5-43 



(Bk) NOT A VALID CHANNEL NUMBER 

The lowest order four bits of (Bk) are used in this instruction. The highest order bits 

are ignored. If highest order bits are set in (Bk), the lowest order four bits are 

masked out and used to determine the channel number. If (Bk) = 0, this instruction 

becomes a pass instruction. 

MONITOR MODE FLAG NOT SET 

If the monitor mode flag is not set in the PSD register when this instruction is executed, 

this instruction becomes a pass instruction. 

CHANNEL ACTIVE 

The output channel buffer is normally inactive when this instruction is executed because 

the monitor program has detected completion of the previous record before beginning 

this routine. There are two methods that the monitor program can use to detect end 

of record. One method is to read the buffer address and compare it with a known 

record length. The other is a positive response from the PPU over the corresponding 

channel input data path. If the buffer is actively moving data over the channel output 

data path at the time this instruction is executed, conflicting commands may be sent 

to the channel registers. The commands associated with this instruction have priority. 

The result is a loss of data in the previous record. 

CONSECUTIVE RESETS FOR DIFFERENT CHANNELS 

Two or more reset output buffer instructions may occur in consecutive program instruc­

tion locations referencing different channels. These instructions may issue in consecu­

tive clock periods and no interference results. 

CONSECUTIVE RESETS FOR SAME CHANNEL 

Two or more reset output buffer instructions may occur in consecutive program instruc­

tion locations referencing the same channel. These instructions issue in consecutive 

clock periods and repeatedly perform the same functions. A record pulse is transmitted 

over the channel output data dath for each instruction execution. The buffer is repeated­

ly restarted, and a data word may be transmitted over the channel output data path 

depending upon the timing of the instructions and the conflicts that occur. 

5-44 60396300 A 



017jk READ OUTPUT CHANNEL (Bk) STATUS TO Bj (j ~ 0) 

h j k 
14 12 II I I • • 3 I 0 

This instruction reads the current value of the output channel (Bk) buffer address register 

contents to the Bj register. The status of the buffer address register is not altered. 

This instruction is intended for use in monitoring the progress of the output channel 

buffer. The buffer area is divided into two fields by the threshold testing mechanism. 

The first half of the buffer area constitutes one field and the last half of the buffer area 

the other field. An I/0 interrupt request is generated by the threshold testing mecha­

nism whenever the buffer address is advanced across a field boundary. This occurs 

at the center of the buffer area and at the end of the buffer area. 

(Bk) NOT A VALID CHANNEL NUMBER 

The lowest order four bits of (Bk) are used in this instruction. The highest order bits 

are ignored. If highest order bits are set in (Bk), the lowest order four bits are 

masked out and used to determine the channel number. If (Bk) = 0, this instruction 

reads all zeros into Bj. 

For systems using less than the full complement of I/O channels, this instruction can 

be used to determine whether an output channel exists, Execution of this instruction to 

a nonexistent output channel causes a status word of 000000 to be entered into Bj. 

CONSECUTIVE EXECUTIONS 

Two or more read output channel status instructions may occur in consecutive program 

instruction locations referencing the same or different channels. These instructions may 

issue in consecutive clock periods if the Bj register reservations do not cause a delay. 

No interference results in the I/O access control. 

02ixK JUMP TO (Bi) + K 

g h m IC 
29 2782423 21 201817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. This instruction causes the current program sequence to terminate 

with a jump to address (Bi) + K in SCM. 

60396300 A 5-45 



This instruction is intended as a vehicle to allow computed branch point destinations. 

This is the only instruction in which a computed parameter can specify a program 

branch destination address. All other jump instructions have preassigned destination 

addresses. Program modification to implement changes in a branch point destination 

address is not recommended in general because of the complications associated with 

the rws. 

The quantities (Bi) and K are added in an 18-bit ones complement mode. The result 

is treated as an 18-bit positive integer. This sum specifies the beginning address in 

SCM for the new program sequence. The remaining instructions. if any. in the CIW 

are not executed. The IWS is not altered by this instruction. 

DESIGNATOR i NOT ZERO 

The j designator in this instruction is normally zero. However. a nonzero value has 

no effect on the results. 

LAST PARCEL 

This instruction requires two parcels of an instruction word for normal use. If this 

instruction begins in the first. second. or third parcel of an instruction word. the 

following parcel completes the instruction. If this instruction begins in the last parcel 

of an instruction word, it is not continued in the following word. The instruction is 

executed as if there were a fifth parcel in the instruction word and this parcel contained 

all zeros. 

1/0 INTERRUPT OR ERROR CONDITION 

If an 1/0 interrupt or error exit request exists at the time this instruction is executed, 

the instruction is executed to completion before the interrupt occurs. 

PREVIOUS FETCH IS DESTINATION ADDRESS 

If the branch point destination address is not in the IAS at the beginning of this instruc­

tion. but is in process to the IAS as an instruction fetch address. this word arrives at 

the IWS and enters the CIW register in less than the minimum 11 clock periods normally 

required for a jump out of stack. The remainder of the instruction sequence is com­

pleted and a duplicate word is read to the IWS as a normal initial instruction fetch. 

This does not cause any special problems in the IWS. 

5-46 60396300 A 



JUMP OUT OF RANGE 

If the branch point destination address is greater than the SCM field length, the program 

range condition flag is set in the PSD register. The instruction executes to completion, 

but the first instruction word for the next program sequence is not read from the IWS 

to the CIW register. An error interrupt occurs as a result of the program range con­

dition flag, and an exchange jump occurs to address (EEA). The terminating exchange 

package contains the out-of-range address in the program address field. 

JUMP TO ZERO 

A jump to relative address zero in SCM is treated in the same manner as a jump out 

of range. The program range condition flag is set in the PSD register, and the pro­

gram is terminated with an error exit to address (EEA). The terminating exchange 

package contains a zero quantity in the program address field. 

JUMP TO BREAKPOINT ADDRESS 

A jump to address (BPA) sets the breakpoint condition flag in the PSD register. The 

instruction is executed to completion, and the exchange jump to address (EEA) occurs 

before the first instruction is executed at the branch point destination address. 

030jK BRANCH TO K IF (Xj) = 0 

h I< 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used as 

an operand K. Execution of this instruction causes the program sequence to terminate 

with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. The decision is not made and the instruc­

tion does not issue from the CIW register until the Xj register is free. The branch to 

address K occurs only on the following conditions. The current program sequence is 

continued for all other cases. 

Jump to K if: (Xj) = 0000 0000 0000 0000 0000 (plus zero) 

(Xj) 7777 7777 7777 7777 7777 (minus zero) 

This instruction is intended for branching on a zero result from either a fixed point or 

a floating point operation. 

60396300 A 5-47 



LAST PARCEL 

This instruction requires two parcels of an instruction word for normal use. If this 

instruction begins in the first, second, or third parcel of an instruction word, the 

following parcel completes the instruction. If this instruction begins in the last parcel 

of an instruction word, it is not continued in the following word. The instruction is 

executed as if there were a fifth parcel in the instruction word and this parcel contained 

all zeros. 

PREVIOUS FETCH IS DESTINATION ADDRESS 

If the branch point destination address is not in the IAS at the beginning of this instruc­

tion but is in process to the IAS as an instruction fetch address, this word arrives at 

the IWS and enters the CIW register in less than the minimum 11 clock periods nor­

mally required for a jump out of stack. The remainder of the instruction sequence is 

completed and a duplicate word is read to the IWS as a normal initial instruction fetch. 

This does not cause any special problems in the IWS. 

JUMP OUT OF RANGE 

If the branch point destination address is greater than the SCM field length, the program 

range condition flag is set in the PSD register. The instruction executes to completion, 

but the first instruction word for the next program sequence does not read from the IWS 

to the CIW register. An error interrupt occurs as a result of the program range con­

dition flag, and an exchange jump occurs to address (EEA ). The terminating exchange 

package contains the out-of-range address in the program address field. 

JUMP TO ZERO 

A jump to relative address zero in SCM is treated in the same manner as a jump out 

of range. The program range condition flag is set in the PSD register, and the program 

is terminated with an error exit to address (EEA ). The terminating exchange package 

contains a zero quantity in the program address field. 

JUMP TO BREAKPOINT ADDRESS 

A jump to address (BPA) sets the breakpoint condition flag in the PSD register. The 

instruction is executed to completion, and the exchange jump to address (EEA) occurs 

before the first instruction is executed at the branch point destination address. 

1/0 INTERRUPT OR ERROR CONDITION 

If an I /0 interrupt or error exit request exists at the time this instruction is executed, 

the instruction is executed to completion before the interrupt occurs. 

5-48 60396300 A 



031 jK BRANCH TO K IF (Xii':/; 0 

K 
29 2726242321201117 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence. 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The pro­

gram sequence is continued only on the following conditions. The branch to address K 

occurs for all other cases. 

Continue if: (Xj) = 0000 0000 0000 0000 0000 (plus zero) 

(Xj) 7777 7777 7777 7777 7777 (minus zero) 

This instruction is intended for branching on a nonzero result from either a fixed or a 

floating point operation. 

The special situations for this instruction are the same as those listed for the 030 

instruction. 

032jK BRANCH TO K IF (Xii POSITIVE 

. I CJ I h I I I j I K 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used as 

an operand K. Execution of this instruction causes the program sequence to terminate 

with a jump to address K in SCM or to continue with the current program sequence. 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The 

branch decision for this instruction is based on the value of the sign bit in (Xj). 

Jump to K if: 

Continue if: 

Bit '59 of (Xj) = 0 

Bit 59 of (Xj) 1 

(positive) 

(negative) 

This instruction is intended for branching on a positive result from either a fixed point 

or a floating point operation. 

The special situations for this instruction are the same as those listed for the 030 

instruct ion. 

60396300 A 5-49 



033jK BRANCH TO K IF (Xj) NEGATIVE 

K 

29 27 262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The 

branch decision for this instruction is based on the value of the sign bit in (Xj). 

Jump to K if: 

Continue if: 

Bit 59 of (Xj) 

Bit 59 of (Xj) 

1 (negative) 

0 (positive) 

This instruction is intended for branching on a negative result from either a fixed point 

or a floating point operation. 

The special situations for this instruction are the same as those listed for the 03 0 

instruction. 

034jK BRANCH TO K IF (Xj) IN RANGE 

K 

29 27262423 21201817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. Tre pro­

gram sequence is continued only on the following conditions. The branch to address K 

occurs for all other cases. 

Continue if: (Xj) 3777 xxxx xxxx xxxx xxxx 

(Xj) = 4000 xxxx xxxx xxxx xxxx 

(Xj) ~ 1777 xxxx xxxx xxxx xxxx 

(Xj) = 6000 xxxx xxxx xxxx xxxx 

5-50 

(positive overflow) 

(negative overflow) 

(positive indefinite) 

(negative indefinite) 

60396300 A 



This instruction is intended for branching on a floating point quantity within the floating 

point range, The value of the coefficient is ignored in making this branch test. An 

underflow quantity is considered ~n range for purposes of this branch test. 

The special situations for this instruction are the same as those listed for the 030 

instruction. 

035jK BRANCH TO K IF (Xj) OUT OF RANGE 

K 

29 27 26 2423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used as 

an operand K. Execution of this instruction causes the program sequence to terminate 

with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The 

branch to address K occurs only on the following conditions. The current program 

sequence is continued for all other cases. 

Jump to K if: (Xj) 3777 xx xx xx xx xx xx xx xx (positive overflow) 

(Xj) = 4000 xx xx xx xx xx xx xx xx (negative overflow) 

(Xj) 1777 xx xx xxxx xx xx xx xx (positive indefinite) 

(Xj) 6000 xx xx xxxx xx xx xx xx (negative indefinite) 

This instruction is intended for branching on a floating point quantity which is not in 

the floating point range. The value of the coefficient is ignored in making this branch 

test. An underflow qua~tity is considered in range for purposes of this branch test. 

The special situations for this instruction are the same as those listed for the 030 

instruction. 

60396300 A 5-51 



036jK BRANCH TO K IF (Xi) DEFINITE 

h K 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The 

program sequence is continued only on the following conditions. The branch to address 

K occurs for all other cases. 

Continue if: (Xj) = 1777 xxxx xxxx xxxx xxxx (positive indefinite) 

(Xj) 6000 xxxx xxxx xxxx xxxx (negative indefinite) 

This instruction is intended for branching on a floating point quantity which may be out 

of range but is still defined. The value of the coefficient is ignored in making this 

branch test. An overflow quantity or an underflow quantity is considered defined for 

purposes of this branch test. 

The special situations for this instruction are the same as those listed for the 030 

instruction. 

037jK BRANCH TO K IF (Xj) INDEFINITE 

K 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon the contents of the Xj register. This decision is not made and the 

instruction does not issue from the CIW register until the Xj register is free. The 

branch to address K occurs only on the following conditions. The current program 

sequence is continued for all other cases. 

5-52 60396300 A 



Jump to K if: (Xj) = 1777 xxxx xxxx xxxx xxxx 

(Xj) 6000 xxxx xxxx xxxx xxxx 

(positive indefinite) 

(negative indefinite) 

This instruction is intended for branching on a floating point quantity which is not 

defined. The value of the coefficient is ignored in making this branch ·test. An over­

flow quantity or an underflow quantity is considered defined for purposes of this branch 

test. 

The special situations for this instruction are the same as those listed for the 03 0 

instruction. 

04ijK BRANCH TO K IF (Bi)=(Bj) 

I< 
29 2726242321201817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon a comparison of the contents of the Bi and Bj registers. This decision 

is not made and the instruction does not issue from the CIW register until the Bi and 

Bj registers are free. The branch to address K occurs only if the two quantities are 

identical on a bit-by-bit comparison basis. The current program sequence is continued 

for all other cases. 

This instruction is intended for branching on an index equality test. A quantity consisting 

of all zeros and a quantity consisting of all ones are not equal for this test. 

DESIGNATORS i AND j HAVE THE SAME VALUE 

If the i and j designators have the same value, the designated B register is compared 

against itself. The branch condition test is made as if two different B registers were 

designated and the contents of the two B registers were identical. 

LAST PARCEL 

This instruction requires two parcels of an instruction word for normal use. If this 

instruction begins in the .first, second, or third parcel of an instruction word, the 

following parcel completes the instruction. If this instruction begins in the last parcel 

of an instruction word, it is not executed as if there were a fifth parcel in the instruc­

tion word and this parcel contained all zeros. 

60396300 A 5-53 



PREVIOUS FETCH IS DESTINATION ADDRESS 

If the branch point destination address is not in the IAS at the beginning of this instruc­

tion, but is in process to the IAS as an instruction fetch address, this word arrives at 

the IWS and enters the CIW register in less than the minimum 11 clock periods normally 

required for a jump out of stack. The remainder of the instruction sequence is com-

pleted and a duplicate word is read to the IWS as a normal initial instruction fetch. 

This does not cause any special problems in the IWS. 

JUMP OUT OF RANGE 

If the branch point destination address is greater than the SCM field length, the program 

range condition flag is set in the PSD register. The instruction executes to completion, 

but the first instruction word for the next program sequence is not read from the IWS 

to the CIW register, An error interrupt occurs as a result of the program range condi­

tion flag, and an exchange jump occurs to address (EEA). The terminating exchange 

package contains the out-of-range address in the program address field. 

JUMP TO ZERO 

A jump to relative address zero in SCM is treated in the same manner as a jump out 

of range. The program range condition flag is set in the PSD register, and the program 

is terminated with an error exit to address (EEA ), The terminating exchange package 

contains a zero quantity in the program address field, 

JUMP TO BREAKPOINT ADDRESS 

A jump to address (BPA) sets the breakpoint condition flag in the PSD register. The 

instruction is executed to completion, and the exchange jump to address (EEA) occurs 

before the first instruction is executed at the branch point destination address. 

1/0 INTERRUPT OR ERROR CONDITION 

If an I /0 interrupt or error exit request exists at the time this instruction is executed, 

the instruction is executed to completion before the interrupt occurs. 

05ijK BRANCH TO K IF (Bi) ~ (Bj) 

I< 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon a comparison of the contents of the Bi and Bj registers. This decision 

is not made and the instruction does not issue from the CIW register until the Bi and 

5-54 60396300 A 



Bj registers are free. The program sequence is continued only if the two quantities 

are identical on a bit-by-bit comparison basis. The branch to address K occurs for 

all other cases. 

This instruction is intended for branching on an index inequality test. A quantity con­

sisting of all zeros and a quantity consisting of all ones are not equal for this test. 

The special situations for this instruction are the same as those listed for the 04 

instruction. 

06ijK BRANCH TO K IF (Bi)~ (Bj) 

K 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon a comparison of the contents of the Bi and Bj registers. Both quantities 

are treated as signed integers. This decision is not made and the instruction does not 

issue from the CIW register until the Bi and Bj registers are free. The branch to 

address K occurs if the contents of register Bi is greater than or equal to the contents 

of register Bj. The current program sequence is continued if the contents of register 

Bi is less than the contents of register Bj. 

This instruction is intended for branching on an index threshold test. The test is made 

in a 19-bit ones complement mode. The quantity (Bi) and the quantity (Bj) are sign­

extended one bit to prevent an erroneous result caused by exceeding the modulus of the 

comparison device. The- quantity (Bj) is then subtracted from the quantity (Bi). The 

branch decision is based on the sign bit in the 19-bit result. A branch to address K 

occurs if the sign of the result is positive. The current sequence is continued if the 

sign of the result is negative. A positive zero quantity and a negative zero quantity 

are not treated as equal in this test. 

The special situations for this instruction are the same as those listed for the 04 

instruction. 

60396300 A 5-55 



07ijK BRANCH TO K IF (Bi< (Bj) 

K 

29 27262423 2120 1817 0 

This instruction is a two-parcel instruction in which the lower order 18 bits are used 

as an operand K. Execution of this instruction causes the program sequence to termi­

nate with a jump to address K in SCM or to continue with the current program sequence, 

depending upon a comparison of the contents of the Bi and Bj registers. Both quantities 

are treated as signed integers. This decision is not made and the instruction does not 

issue from the CIW register until the Bi and Bj registers are free. The branch to 

address K occurs if the contents of register Bi is less than the contents of register Bj. 

The current program sequence is continued if the contents of register Bi is greater than 

or equal to the contents of register Bj. 

This instruction is intended for branching on an index threshold test. The test is made 

in a 19-bit ones complement mode. The quantity (Bi) and the quantity (Bj) are sign­

extended one bit to prevent an erroneous result caused by exceeding the modulus of the 

comparison device. The quantity (Bj) is then subtracted from the quantity (Bi). The 

branch decision is based on the sign bit in the 19-bit result. A branch to address K 

occurs if the sign of the result is negative. The current sequence is continued if the 

sign of the result is positive. A positive zero quantity and a negative zero quantity 

are not treated as equal in this test. 

The special situations for this instruction are the same as those listed for the 04 

instruction. 

1 Oijx TRANSMIT (Xi) TO Xi 

h 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the boolean unit to read a 60-bit word from the Xi register 

and copy this word into the Xj register. 

This instruction is intended for moving data from one X register to another X register 

as rapidly as possible. No logical function is performed on the data. 

5-56 60396300 A 



DESIGNATOR k NOT ZERO 

The k designator in this instruction is normally zero. However, a nonzero value has 

no effect on the results. 

DESIGNATORS iAND i HAVE THE SAME VALUE 

If the i and j designators have the same value, this instruction reads a 60-bit word from 

the designated X register and then writes the same information back into that X register. 

The timing is the same as for the normal case, and no special conflicts occur. 

11 ijk LOGICAL PRODUCT OF (Xi) AND (Xk) TO Xi 

h k 
14 12 II 9 8 6 s 3 2 0 

This instruction causes the boolean unit to read operands from two X registers, operate 

upon them to form a result, and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical product of the two operands. Each of the 60 bits in (Xj) is 

compared with the corresponding bit of (Xk) to form a single bit in (Xi). A sample com­

putation is listed in octal notation to illustrate the operation performed and includes the 

four possible bit combinations that may occur. 

(Xj) 7777 7000 0123 4567 1010 

(Xk) 0123 4567 0077 7700 1100 

(Xi) 0123 4000 0023 4500 1000 

This instruction is intended for extracting portions of a 60-bit word during data proces­

sing as distinguished fro{ll numerical computation. This instruction, together with the 

other boolean and shift instructions, may be used to manipulate alphanumeric or other 

coded data not related to the 60-bit machine word length. 

DESIGNATORS i AND k HAVE THE SAME VALUE 

If the j and k designators have the same value, the designated X register contents is 

operated upon by a copy of this same quantity. The instruction degenerates into a copy 

instruction. The timing is the same as the timing for the normal case, and no special 

conflicts occur. 

60396300 A 5-57 



DESIGNATORS 1 AND 1 HAVE THE SAME VALUE 

If the i and j designators have the same value. the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the i and k designators have the same value. the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

12ijk LOGICAL SUM OF (Xi) AND (Xk) TO Xi 

h k 
14 12 II 9 8 6 ~ 3 2 0 

This instruction causes the boolean unit to read operands from two X registers. operate 

upon them to form a result. and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical sum of the two operands. Each of the 60 bits in (Xj) is com­

pared with the corresponding bit of (Xk) to form a single bit in (Xi). A sample compu -

tation is listed in octal notation to illustrate the operation performed and includes 

the four possible bit combinations that may occur. 

(Xj) = 0000 7777 0123 4567 1010 

(Xk) = 0123 4567 7777 0000 1100 

(Xi) = 0123 7777 7777 4567 1110 

This instruction is intended for merging portions of a 60-bit word into a composite word 

during data processing as distinguished from numerical computation. This instruction. 

together with the other boolean and shift instructions. may be used to manipulate alpha­

numeric or other coded data not related to the 60-bit machine word length. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the j and k designators have the same value. the designated X register contents is 

merged with another copy of the same quantity. The instruction degenerates into a copy 

instruction. The timing is the same as the timing for the normal case. and no special 

conflicts occur. 

5-58 60396300 A 



DESIGNATORS 1 AND 1 HAVE THE SAME VALUE 

If the i and j designators have the same value, the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

13ijk LOGICAL DIFFERENCE OF (Xj) AND (Xk) TO Xi 

h k 
14 12 II 9 8 3 2 0 

This instruction causes the boolean unit to read operands from two X registers, operate 

upon them to form a result, and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical difference of the two operands. Each of the 60 bits in (Xj) is 

compared with the corresponding bit of (Xk) to form a single bit in (Xi). A sample com­

putation is listed in octal notation to illustrate the ope ration performed and includes the 

four possible bit combinations that may occur. 

(Xj) 0123 7777 0123 4567 1010 

(Xk) 0123 4567 7777 3210 1100 

(Xi) 0000 3210 7654 7777 0110 

This instruction is intended for comparing bit patterns or for complementing bit patterns 

during data processing as distinguished from numerical computation. This instruction, 

together with the other boolean and shift instructions, may be used to manipulate alpha­

numeric or other coded data not related to the 60-bit machine word length. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the j and k designators have the same value, a logical difference is formed between 

two identical quantities. The result is a word of all zeros written into the Xi register. 

The timing is the same as for the normal case. 

60396300 A 5-59 



DESIGNATORS 1 AND 1 HAVE THE SAME VALUE 

If the i and j designators have the same value, the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

Uixk TRANSMIT COMPLEMENT OF (Xk) TO Xi 

h k 

14 12 II 9 8 • 5 3 2 0 

This instruction causes the boolean unit to read a 60-bit word from the Xk register, 

complement the word, and write the result into the Xi register. 

This instruction is intended for changing the sign of a fixed point or floating point 

quantity as quickly as possible. This instruction is also useful in data processing for 

inverting an entire 60-bit field. The result is usually returned to the same X register. 

DESIGNATOR 1 NOT ZERO 

The j designator in this instruction is normally zero. However, a nonzero value has 

no effect on the results. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

The i and k designators frequently have the same value in this instruction. The quantity 

read from the designated X register is complemented and returned to the same X 

register. The timing is the same. 

5-60 60396300 A 



15ijk LOGICAL PRODUCT OF (Xj) AND COMPLEMENT OF (Xk) TO Xi 

h k 
14 12 II 9 8 • 5 3 2 0 

This instruction causes the boolean unit to read operands from two X registers, operate 

upon them to form a result, and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical product of (Xj) and the complement of (Xk). Each of the 60 bits 

in (Xj) is compared with the corresponding bit of (Xk) to form a single bit in (Xi). A 

sample computation is listed in octal notation to illustrate the operation performed and 

includes the four possible bit combinations that may occur. 

(Xj) 7777 7000 0123 4567 1010 

(Xk) 0123 4567 0007 7700 1100 

(Xi) 7654 3000 0120 0067 0010 

This instruction is intended for extracting portions of a 60-bit word during data proces­

sing as distinguished from numerical computation. This instruction, together with the 

other boolean and shift instructions, may be used to manipulate alphanumeric or other 

coded data not related to the 60-bit machine word length. 

DESIGNATORS i AND k HAVE THE SAME VALUE 

If the j and k designators have the same value, a logical product is formed between 

two complementary quantities. The result is a word of all zeros written into the Xi 

register. The timing is the same as for the normal case. 

DESIGNATORS i AND j HAVE THE SAME VALUE 

If the i and j designatorie have the same value, the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS i AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

60396300 A 5-61 



16ijk LOGICAL SUM OF (Xi) AND COMPLEMENT OF (Xk) TO Xi 

h k 
14 12 II 9 8 • 5 3 2 0 

This instruction causes the boolean unit to read operands from two X registers, operate 

upon them to form a result, and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical sum of (Xj) and the complement of (Xk). Each of the 60 bits in 

(Xj) is compared with the corresponding bit of (Xk) to form a single bit in (Xi). A 

sample computation is listed in octal notation to illustrate the operation performed and 

includes the four possible bit combinations that may occur. 

(Xj) = 0000 7777 0123 4567 1010 

(Xk) = 0123 4567 7777 0000 1100 

(Xi) = 7654 7777 0123 7777 1011 

This instruction is intended for merging portions of a 60-bit word into a composite word 

during data processing as distinguished from numerical computation. This instruction. 

together with the other boolean and shift instructions. may be used to manipulate alpha­

numeric or other coded data not related to the 60-bit machine word length. 

DESIGNATORS i AND k HAVE THE SAME VALLIE 

If the j and k designators have the same value. a logical sum is formed from two com­

plementary quantities. The result is a word of all ones written into the Xi register. 

The timing is the same as for the normal case. 

DESIGNATORS i AND j HAVE THE S.AME VALUE 

If the i and j designators have the same value, the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS i AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

5-62 60396300 A 



17ijk LOGICAL DIFFERENCE OF (Xj) AND COMPLEMENT OF (Xk) TO Xi 

h " 14 12 II 9 8 6 5 3 z 0 

This instruction causes the boolean unit to read operands from two X registers. operate 

upon them to form a result. and deliver this result to a third X register. The operands 

for this instruction are (Xj) and (Xk). The resultant word delivered to the Xi register 

is the bit-by-bit logical difference of (Xj) and the complement of (Xk). Each of the 

60 bits in (Xj) is compared with the corresponding bit of (Xk) to form a single bit in 

(Xi). A sample computation is listed in octal notation to illustrate the operation per­

formed and includes the four possible combinations that may occur. 

(Xj) 0123 7777 0123 4567 1010 

(Xk) 0123 4567 7777 3210 1100 

(Xi) 7777 4567 0123 0000 1001 

This instruction is intended for comparing bit patterns or for complementing bit patterns 

during data processing as distinguished from numerical computation. This instruction. 

together with the other boolean and shift instructions. may be used to manipulate alpha­

numeric or other coded data not related to the 60-bit machine word length. 

DESIGNATORS j AND k HAVE THE SAME VALUE 

If the j and k designators have the same value. a logical difference is formed between 

two complementary quantities. The result is a word of all ones written into the Xi 

register. The timing is the same as for the normal case. 

DESIGNATORS i AND j HAVE THE SAME VALUE 

If the i and j designators have .the same value. the quantity (Xj) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the quantity (Xk) is replaced by the 

resultant quantity (Xi) at the end of the operation. No special conflicts occur as a 

result of this combination. 

60396300 A 5-63 



20ijk LEFT SHIFT (Xi) BY jk 

h jk 

14 12 11 9 8 6 s 0 
This instruction causes the shift unit to read one operand from the Xi register. shift the 

60-bit word left circularly by jk bit positions, and write the resulting 60-bit word back 

into the same Xi register. The designators j and k are treated as a single 6-bit posi­

tive integer operand in this instruction. 

A left circular shift implies that the bit pattern in the 60-bit word is displaced toward 

the highest order bit positions. The bits which are shifted off the upper end of the 

60-bit word are inserted in the lowest order bit positions in the same sequence. The 

resulting 60-bit word has the same quantity of bits with values of one and zero as in 

the original operand. 

A sample computation is listed in octal notation to illustrate the operation performed. 

Initial (Xi) 2323 6600 0000 0000 0111 

jk 12 (octal) 

Final (Xi) = 7540 0000 0000 0022 2464 

This instruction is intended for use in data processing as distinguished from numerical 

computation. This instruction, together with instruction 21, may be used whenever a 

data word is to be shifted by a predetermined amount. If the amount of shift is derived 

in the execution of the program, instruction 22 or 23 should be used. 

SHIFT COUNT IS ZERO 

If the j and k designators are zero, this instruction reads the operand from the Xi 

register and returns the result unaltered to the same register. The timing is the same 

as for the normal case. 

SHIFT COUNT IS GREATER THAN 60 (DECIMAL) 

If the shift count is greater than the 60-bit register length, the shift is performed mo­

dulo 60. For example, if the shift count is 63 (decimal), the result is a three-bit­

position shift. 

OPERAND ALL ONES OR ALL ZEROS 

An all ones or all zeros word is treated in the same manner as any other bit pattern. 

The timing is the same as for the normal case. 

5-64 60396300 A 



21 ijk RIGHT SHIFT (Xi) BY jk 

h jk 

14 12 II 9 8 0 

This instruction causes the shift unit to read one operand from the Xi register, shift 

the 60-bit word right with sign extension by jk bit positions, and write the resulting 

60-bit word back into the same Xi register. The designators j and k are treated as a 

single 6-bit positive integer operand in this instruction. 

A right shift with sign extension implies that the bit pattern in the 60-bit word is dis­

placed toward the lowest order bit positions. The bits which are shifted off the lower 

end of the word are discarded. The highest order bit positions are filled with copies 

of the original sign bit. 

Two sample computations are listed in octal notation to illustrate the operation performed. 

The first example contains a positive operand and the second example contains a negative 

operand. 

Initial (Xi) 2004 7655 0002 3400 0004 

jk 30 (octal) 

Final (Xi) 0000 0000 2004 7655 0002 

Initial (Xi) 6000 4420 2222 0000 5643 

jk 10 (octal) 

Final (Xi) 7774 0011 0404 4440 0013 

This instruction, together with instruction 20, may be used whenever a data word is to 

be shifted by a predeterR'lined amount. If the amount of shift is derived in the execution 

of the program, instruction 22 or 23 should be used. 

SHIFT COUNT IS ZERO 

If the j and k designators are zero, this instruction reads the operand from the Xi 

register and returns the result unaltered to the same register. The timing is the same 

as for the normal case. 

60396300 A 5-65 



SHIFT COUNT IS GREATER THAN 60 (DECIMAL) 

If the shift count is greater than the 60-bit register length, the resulting word contains 

60 copies of the sign bit. If the operand was positive, a positive zero word results. 

If the operand was negative, a negative zero word results. 

OPERAND All ONES OR All ZEROS 

An all ones or all zeros word is treated in the same manner as any other bit pattern. 

The timing is the same as for the normal case. 

22ijk LEFT SHIFT (Xk) NOMINALLY (Bj) PtACES TO Xi 

g h k 
· 14 12 II 9 8 6 5 3 2 0 

This instruction causes the shift unit to read a 60-bit operand from the Xk register, 

shift the data either left or right as specified by (Bj), and write the resulting 60-bit 

word into the Xi register. If (Bj) is positive, the data is shifted to the left in a circular 

mode the number of bit positions designated by (Bj). If (Bj) is negative, the data is 

shifted to the right with sign extension the number of bit positions designated by (Bj). 

A left circular shift implies that the bit pattern in the 60-bit word is displaced toward 

the highest order bit positions. The bits which are shifted off the upper end are inserted 

in the lowest order bit positions in the same sequence. The resulting 60-bit word has 

the same quantity of bits with values of one and zero as in the original operand, 

A right shift with sign extension implies that the bit pattern in the 60-bit word is dis­

placed toward the lowest order bit positions. The bits which are shifted off the lower 

end are discarded. The highest order bit positions are filled with copies of the original 

sign bit. 

Two sample computations are listed in octal notation to illustrate the operation performed. 

The first example contains a positive shift count resulting in a left circular shift. The 

second example illustrates the right shift with sign extension. 

(Xk) 2323 6600 0000 0000 0111 

(Bj) = 00 0012 

(Xi) 7540 0000 0000 0022 2464 

5-66 60396300 A 



(Xk) 1327 6000 0000 3333 2422 

(Bj) 77 7771 

(Xi) 0013 2760 0000 0033 3324 

This instruction is intended for use in data processing where the amount of shift is 

derived in the computation. This instruction is also useful for correcting the coeffi­

cient of a floating point number when the exponent has been unpacked into a B register. 

If (Bj) is zero (000000 or 777777), this instruction reads the operand from the Xk regis­

ter and copies it unaltered into the Xi register. The timing is the same as for the 

normal case. 

IB1) POSITIVE WITH MAGNITUDE GREATER THAN 60 (DECIMAL) 

If (Bj) is positive, only the lowest order six bits are used in determining the shift count. 

The highest order bits are ignored. The resulting 6-bit shift count is treated modulo 

60 (decimal). For example, a shift count of 63 (decimal) results in a left circular shift 

of three bit positions. 

IB1! NEGATIVE WITH MAGNITUDE GREATER THAN 60 (DECIMAL) 

If (Bj) is negative, only the lowest order 12 bits are used in determining the shift count. 

The highest order bits are ignored. The lowest order 12 bits of (Bj) are complemented, 

and the resulting positive integer determines the shift count. If this shift count is 

greater than 60 (decimal), the resulting word stored in the Xi register consists of 60 

copies of the original operand sign bit. 

OPERAND ALL ONES OR ALL ZEROS 

An all ones or all zeros word is treated in the same manner as any other bit pattern. 

The timing is the same as for the normal case. 

60396300 A 5-67 



23ijk RIGHT SHIFT (Xk) NOMINALLY (Bj) PLACES TO Xi 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the shift unit to read a 60-bit operand from the Xk register. 

shift the data either left or right as specified by (Bj), and write the resulting 60-bit 

word into the Xi register. If (Bj) is positive, the data is shifted to the right with 

sign extension the number of bit positions designated by (Bj). If (Bj) is negative, the 

rlata is shifterl to the left in a circular mode the number of bit positions designated 

by (Bj). 

A left circular shift implies that the bit pattern in the 60-bit word is displaced toward 

the highest order bit positions. The bits which are shifted off the upper end are 

inserted in the lowest order bit positions in the same sequence. The resulting 60-bit 

word has the same quantity of bits with values of one and zero as in the original 

operand. 

A right shift with sign extension implies that the bit pattern in the 60-bit word is 

displacerl towarrl the lowest orrler bit positions. The bits which are shifted off the 

lower end of the worrl are rliscarrled. The highest order bit positions are filled with 

copies of the original sign bit. 

Two sample computations are listed in octal notation to illustrate the operation per­

formed. The first example contains a positive shift count and results in a right shift 

with sign extension. The second example contains a negative shift count and results 

in a left circular shift. 

(Xk) 1327 6000 0000 3333 2422 

(Bj) 00 0006 

(Xi) 0013 2760 0000 0033 3324 

(Xk) 2323 6600 0000 0000 0111 

(Bj) = 77 7765 

(Xi) 7540 0000 0000 0022 2464 

This instruction is intended for use in data processing where the amount of shift is 

derived in the computation. This instruction is also useful for correcting the coeffi­

cient of a floating point number when the exponent has been unpacked into a B register. 

5-68 60396300 A 



(Bj) IS ZERO 

If (Bj) is zero (000000 or 777777). this instruction reads the operand from the Xk 

register and copies it unaltered into the Xi register. The timing is the same as for 

the normal case. 

(Bj) POSITIVE WITH MAGNITUDE GREATER THAN 60 (DECIMAL) 

If (Bj) is positive, only the lowest order 12 bits are used in determining the shift 

count. The highest order bits are ignored. If this resulting 12-bit shift count is 

greater than 60 (decimal), the resulting word stored in the Xi register consists of 60 

copies of the original operand sign bit. 

(81' NEGATIVE WITH MAGNITUDE GREATER THAN 60 (DECIMAL) 

If (Bj) is negative, only the lowest order six bits are used in determining the shift 

count. The highest order bits are ignored. The lowest order six bits of (Bj) arc 

complemented, and the resulting positive integer shift count is treated mociulo 60 

(decimal). For example, a shift count of 63 (decimal) results in a left circular shift 

of three bit positions. 

OPERAND ALL ONES OR ALL ZEROS 

An all ones or all zeros word is treated in the same manner as any other bit pattern. 

The timing is the same as for the normal case. 

24ijk NORMALIZE (Xk) TO Xi AND Bj 

h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the normalize unit to read one operand from the Xk register, 

perform a normalizing operation on this word in a floating point format, and deliver 

the normalized result to the Xi register. In addition, the normalize unit delivers a 

positive integer shift count to the Bj register. This shift count is the number of bit 

positions of shift required to normalize the original operand coefficient. 

SC396300 A 5-69 



The normalizing operation consists of repositioning the coefficient portion of the 

operand and then adjusting the exponent portion of the operand to leave the value of 

the resulting word unaltered. The coefficient is displaced toward the higher order 

bit positions of the word. The coefficient is shifted the minimum number of bit 

positions required to make bit 47 different from the sign bit 59. This places the 

most significant bit of the coefficient in the highest order bit position. The exponent 

is then decreased by the number of bit positions shifted. 

Two sample computations are listed in octal notation to illustrate the operation per­

formed. The first example involves a positive floating point number and the second 

example involves a negative number. 

(Xk) 2034 0047 6500 0000 2262 

(Xi) 2026 4765 0000 0022 6200 

(Bj) 00 0006 

(Xk) 5743 7730 1277 7777 5515 

(Xi) 5751 3012 7777 7755 1577 

(Bj) 00 0006 

This instruction is intended for use in normalized floating point computation in which 

rounding is not desired. If rounding is desired the 25 instruction should be used. 

SPECIAL CASE OPERAND 

The normalize unit makes a special case test on (Xk) at the beginning of execution for 

this instruction. If one of these special cases is present, the operand is copied unal­

tered to the Xi register. The shift count entered in the Bj register is zero for these 

cases. No condition flags are set in the PSD register by the normalize unit. The 

special case formats are listed and consist of partial overflow, complete overflow, and 

indefinite forms. 

(Xk) 3777 xxxx xxxx xxxx xxxx 

(Xk) 4000 xxxx xxxx xxxx xxxx 

(Xk) 1777 xxxx xxxx xxxx xxxx 

(Xk = 6000 xxxx xxxx xxxx xxxx 

COMPLETE UNDERFLOW 

A complete underflow occurs whenever (Xk) is not a special case and the normalizing 

process results in an unpacked exponent more negative than -1 777 (octal). The. 

5-70 60396300 A 



normalize unit output to Xi is blocked, which results in the Xi register rece1vmg all 

zero bits. The shift count delivered to the Bj register is a result of considering the 

coefficient of (Xk) without regard to the exponent. This quantity is the value which 

would be appropriate for normalizing the operand if the exponent were in range. There 

are no condition flags set in the PSD register. 

PARTIAL UNDERFLOW 

A partial underflow occurs whenever (Xk) is not a special case and the normalizing pro­

cess results in an unpacked exponent equal to -1777 (octal). The result is delivered to 

the Xi and Bj registers as for a normal case even though subsequent computation may 

detect this operand as an underflow case. 

COEFFICIENT IS ZERO 

The normalize unit treats an operand with a zero coefficient as a special underflow 

situation. This exists for either positive or negative numbers whenever the sign bit is 

the same as each bit in the coefficient and the exponent does not qualify the operand as 

a special case format. There is no possibility of creating a normalized coefficient for 

this case. The sign of the result is positive and the Xi register receives all zero bits. 

The shift count delivered to the Bj register is 48 (decimal) for this case. There are 

no condition flags set in the PSD register. 

UNDERFLOW OPERAND 

A special situation exists if (Xk) is in one of the following formats. 

(Xk) 0000 xxxx xxxx xxxx xxxx 

(Xk) 7777 xxxx xxxx xxxx xxxx 

These formats include positive apd negative numbers in either a partial or a complete under­

flow form. These cases are generally covered by one of the other special situations pre­

viously listed. If (Xk) is a partial underflow quantity and the coefficient is normalized, the 

execution proceeds as for a normal operand and the result is an unaltered copy of the original 

operand. The shift count delivered to the Bj register is zero. If (Xk) is a partial underflow 

quantity and the coefficient is not normalized, a complete underflow occurs. 

If (Xk) is a complete underflow quantity, the execution is dominated by the fact that the 

coefficient is zero (described under that heading). The result is a complete 

underflow quantity delivered to the Xi register and a shift count of 48 (decimal) delivered 

to the Bj register. 

60396300 A 5-71 



25ijk ROUND NORMALIZE (Xk) TO Xi AND Bj 

h k 

14 12 II 9 8 3 2 0 

This instruction causes the normalize unit to read one operand from the Xk register, 

perform a rounding and then a normalizing operation in floating point format, and 

deliver the round normalized result to the Xi register. In addition, the normalize unit 

delivers a positive integer shift count to the Bj register. This shift count is the num­

ber of bit positions of shift required to normalize the original operand coefficient. 

The rounding operation consists of adding a bit to the coefficient portion of the operand 

in a bit position immediately below the least significant bit position. This round bit 

has a value equal to the complement of the operand sign bit. The result is to increase 

the magnitude of the coefficient by one half the value of the least significant bit. 

The normalizing operation consists of repositioning the coefficient and adjusting the 

exponent to leave the value of the resulting floating point quantity unaltered. The co­

efficient is displaced toward the higher order bit positions. The round bit is shifted 

along with the coefficient. The displacement is the minimum number of bit positions 

required to make bit 47 different from the sign bit 59. This places the most signifi­

cant bit of the coefficient in the highest order bit position. The exponent is decreased 

by the number of bit positions shifted. 

Two sample computations are listed in octal notation to illustrate the normalizing 

operation performed. The first example involves a positive floating point number and 

the second example involves a negative number. 

5-72 

(Xk) 

(Xi) 

(Bj) 

(Xk) 

(Xi) 

(Bj) 

2034 0047 6500 0000 2262 

2026 4765 0000 0022 6240 

00 0006 

5734 7730 1277 7777 5515 

5751 3012 7777 7755 1537 

00 0006 

60396300 A 



SPECIAL CASE OPERAND 

The normalize unit makes a special case test on (Xk) at the beginning of execution. If 

one of these special cases is present. the operand is copied unaltered to the Xi regis­

ter. The shift count entered in the Bj register is zero for these cases. No condition 

flags are set in the PSD register, The special case formats are listed and consist of 

partial overflow. complete overflow. and indefinite forms. 

(Xk) 3777 xxxx xxxx xxxx xxxx 

(Xk) 4000 xxxx xxxx xxxx xxxx 

(Xk) 1777 xxxx xxxx xxxx xxxx 

(Xk) 6000 xxxx xxxx xxxx xxxx 

COMPLETE UNDERFLOW 

A complete underflow occurs whenever (Xk) is not a special case and the normalizing 

process results in an unpacked exponent more negative than -1777 (octal). The nor­

malize unit output to Xi is blocked. which results in the Xi register receiving all zero 

bits. The shift count delivered to the Bj register is a result of considering the coef­

ficient field of (Xk) without regard to the exponent. 

This quantity is the value which would be appropriate for normalizing the operand if the 

exponent were in range. No condition flags are set in the PSD register. 

PARTIAL UNDERFLOW 

A partial underflow occurs whenever (Xk) is not a special case and the normalizing 

process results in an unpacked exponent equal to -1777 (octal). The result is delivered 

to the Xi and Bj registers as for a normal case even though subsequent computation 

may detect this operand as an underflow case. 

COEFFICIENT IS ZERO 

A zero coefficient in the operand becomes nonzero with the addition of the round bit. 

The round bit is shifted to the left by 48 bit positions in the normalizing process to 

become the most significant bit of the result coefficient. The shift count delivered to 

Bj register is 48 (decimal) for this case. This case is superseded by one of the first 

two cases previously described if the operand is in a special case format. or if a 

complete underflow occurs. 

60396300 A 5-73 



UNDERFLOW OPERAND 

A special situation exists for executing this instruction if (Xk) is in one of the follow­

ing underflow formats. 

(Xk) 0000 xxxx xxxx xxxx xxxx 

(Xk) 7777 xxxx xxxx xxxx xxxx 

These formats include positive and negative numbers in either a partial or complete 

underflow form. These cases are generally covered by one of the other special situa­

tions previously listed. If (Xk) is a partial underflow quantity and the coefficient is 

normalized, the execution proceeds as for a normal operand and the result is an un­

altered copy of the original operand. The shift count delivered to the Bj register is 

zero. If (Xk) is a partial underflow quantity and the coefficient is not normalized, a 

complete underflow occurs. 

If (Xk) is a complete underflow quantity, the execution of this instruction is dominated 

by the fact that the coefficient is zero. The round bit is added and the shift count is 

48 (decimal). This causes a complete underflow, and the result delivered to the Xi 

register is positive zero. 

26ijk UNPACK (Xk) TO Xi AND Bj 

g h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the boolean unit to read one operand from the Xk register, un­

pnck this word from floating point format, and deliver the coefficient to the Xi register 

and the exponent to the Bj register. The 60-bit word delivered to the Xi register con­

sists of the lowest 48 bits unaltered from the original operand plus the upper 12 bits, 

each equnl to the original sign bit. This is a signed integer equal to the value of the 

coefficient in the original operand. The 18- bit quantity delivered to the Bj register is 

a signed integer equal to the value of the exponent in the original operand. The 11-bit 

exponent field in the operand is altered to remove the bias and then sign extended to 

fill out the 18-bit quantity. The sign of the coefficient is removed in this process. 

Four sample sets of opernnds and unpacked· results are listed in octal notation to illus­

trate the operation performed. These examples contain the four combinations of coef­

ficient sign and exponent sign. 

5-74 60396300 A 



(Xk) = 2034 4500 3333 2000 0077 

(Xi) 0000 4500 3333 2000 0077 

(Bj) 00 0034 

(Xk) = 1743 4500 3333 2000 0077 

(Xi) 0000 4500 3333 2000 0077 

(Bj) 77 7743 

(Xk) 5743 3277 4444 5777 7700 

(Xi) 7777 3277 4444 5777 7700 

(Bj) 00 0034 

(Xk) = 6034 3277 4444 5777 7700 

(Xi) 7777 3277 4444 5777 7700 

(Bj) 77 7743 

This instruction is intended for converting a number from floating point format to fixed 

point format as quickly as possible. This process is the reciprocal of the process 

used to implement the 27 instruction. 

There are no special case tests made in the execution of this instruction. There are 

no condition flags set in the PSD register by the boolean unit. The special operand 

formats are treated in the same manner as a normal operand. 

27ijk PACK (Xk) AND (Bj) TO Xi 

h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the boolean unit to read (Xk) and (Bj), pack them into a single 

word in floating point format, and deliver this result to the Xi register. The coeffi­

cient for (Xi) is obtained from (Xk) treated as a signed integer. The exponent for (Xi) 

is obtained from (Bj) treated as a signed integer. 

The lowest order 4 8 bits of (Xi) are copied directly from the lowest order 4 8 bits of 

(Xk). The sign bit in (Xi) is copied directly from the sign bit in (Xk). The exponent 

field in (Xi) is derived from (Bj) by extracting the lowest order 11 bits of (Bj) and 

modifying this quantity for exponent bias and coefficient sign. 

60396300 A 5-75 



Four sample sets of operands and packed results are listed in octal notation to illus­

trate the operation performed. These examples contain the four combinations of 

coefficient sign and exponent sign. 

(Xk) = 0000 4500 3333 2000 0077 

(Bj) 00 0034 

(Xi) 2034 4500 3333 2000 0077 

(Xk) 0000 4500 3333 2000 0077 

(Bj) 77 7743 

(Xi) 1743 4500 3333 2000 0077 

(Xk) 7777 3277 4444 5777 7700 

(Bj) 00 0034 

(Xi) 5743 3277 4444 5777 7700 

(Xk) 7777 3277 4444 5777 7700 

(Bj) 77 7743 

(Xi) 6034 3277 4444 5777 7700 

This instruction is intended for converting a number in fixed point format to floating 

point format as quickly as possible. This process is the reciprocal of the process 

used to implement the 26 instruction, 

1Xk' HAS MAGNITUDE GREATER THAN 48 BITS 

If (Xk) has more than 48 bits of significance, the higher order bits are ignored in 

packing this quantity into the floating point format. The lowest order 48 bits of (Xk) 

are masked out of the 60-bit word for the coefficient in (Xi), The sign bit in (Xk) is 

copied into (Xi) for the sign of the coefficient. The remaining bits of (Xk) are ignored, 

181 HAS MAGNITUDE GREATER THAN 10 BITS 

If (Bj) has more than 10 bits of significance. an erroneous exponent is packed into 

floating point format for (Xi). In this case, the lowest order 11 bits of (Bj) are 

masked out of the 18-bit quantity. The highest order of these 11 bits is interpreted as 

the sign bit for the exponent. No error condition flags are set in the PSD register. 

D~SIGNATOR 1 IS ZERO 

The j designator may be set to zero to pack a fixed point integer into floating point 

format without using one of the B registers. 

5-76 60396300 A 



PACKING AN INDEFINITE QUANTITY 

If the lowest order 11 bits of (Bj) all have a value of one, an indefinite quantity results 

in the floating point format. This is the case if (Bj) is a negative zero quantity. No 

error condition flags are set in the PSD register. 

PACKING AN UNDERFLOW QUANTITY 

An overflow quantity is generated in floating point format if (Bj) 

error condition flags are set in the PSD register. 

PACKING AN OVERFLOW QUANTITY 

An underflow quantity is generated in floating point format if (Bj) 

error condition flags are set in the PSD register. 

30ijk FLOATING SUM OF (Xj) AND (Xk) TO Xi 

Q h k 

14. 12 II 9 8 3 2 0 

001777 (octal). No 

776000 (octal). No 

This instruction causes the floating point add unit to read operands from two X regis­

ters, operate upon them to form a floating point sum, and deliver this result to a 

third X register. The operands for this instruction are (Xj) and (Xk). These operands 

are in floating point format and are not necessarily normalized. The result of (Xj) 

plus (Xk) is delivered to the Xi register in floating point format and is not necessarily 

normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format and the exponents compared. The unpacked coefficients are 

positioned in a 99-bit ones complement adder to align bits of corresponding significance. 

A double precision ones complement sum is formed. A 48-bit result coefficient is read 

from the upper half of this sum. If an overflow of the highest order coefficient bit 

occurred, the result coefficient is read with a one-bit displacement to include this over­

flow bit. The result is corrected by one count in this case. 

If the two operands have unlike signs, the result coefficient may have leading zeros. 

There is no normalize operation built into this instruction to correct this situation. A 

separate normalize instruction must be programmed if the result is to be kept in a 

normalized form. 

60396300 A 5-77 



This instruction is intended for use in floating point calculations where rounding of 

operands is not desired. This is the case in multiple precision arithmetic and in cal­

culations involving error analysis. 

CLEAN MISS 

If the exponents of the two operands differ by more than 48 (decimal), the coefficient of 

the operand with the smaller exponent is shifted off the end of the double precision 

adder. If the exponent difference is exactly 48 (decimal). the two coefficients are 

aligned in a 96- bit field in the double precision adder with no bits matched. In either 

of these cases. the result is a copy of the operand with the larger exponent. 

RESULT COEFFICIENT IS ZERO 

If the two operands are of equal magnitude and opposite sign. the resulting sum has a 

zero coefficient. The exponent delivered to the Xi register is the same as the ex­

ponent for the operands even though the coefficient is zero. The sign of the result is 

positive. No error condition flags are set in the PSD register. 

PARTIAL OVERFLOW 

If the two operands are both in floating point range and one operand is at the upper 

limit, the resulting sum may overflow. The resulting exponent indicates the overflow 

condition. The coefficient is processed in a normal manner and the result is correct. 

No error indication is made and no condition flags are set in the PSD register. How­

ever, subsequent use of this number in a floating point unit results in overflow detec­

tion. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero. coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH DIFFERENT SIGNS 

If both operands have overflow exponents and the operand coefficients have different 

signs, the resulting word is positive indefinite with a zero coefficient. The indefinite 

condition flag is set in the PSD register. 

5-78 60396300 A 



ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent and the coefficient signs agree, the 

result is a complete overflow word. The resulting sign is the same as the sign of the 

operand with the overflow condition flag is set in the PSD register. 

UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register. If both operands are zero, the result is a positive 

zero word. 

31ijk FLOATING DIFFERENCE OF (Xi) AND (Xk) TO Xi 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the floating point add unit to read operands from two X regis­

ters, operate upon them to form a floating point difference, and deliver this result to 

a third X register. The operands for this instruction are (Xj) and (Xk). These 

operands are in floating point format and are not necessarily normalized. The result 

of (Xj) minus (Xk) is delivered to the Xi register in floating point format and is not 

necessarily normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format and the exponents compared. The unpacked coefficients are posi­

tioned in a 99-bit ones complement adder to align bits of corresponding significance. 

A double precision ones complement difference is formed. A 48- bit result coefficient 

is read from the upper half of this difference. If an overflow of the highest order 

coefficient bit occurred, the result coefficient is read with one-bit displacement to in­

clude this overflow bit. The result exponent is corrected by one count in this case. 

If the two operands have like signs, the result coefficient may have leading zeros. 

There is no normalize operation built into this instruction to correct this situation. 

A separate normalize instruction must be programmed if the result is to be kept in a 

normalized form. 

60396300 A 5-79 



This instruction is intended for use in floating point calculations where rounding of 

operands is not desired. This is the case in multiple precision arithmetic and in cal­

culations involving error analysis. 

CLEAN MISS 

If the exponents of the two operands differ by more than 48 (decimal), the coefficient 

of the operand with the smaller exponent is shifted off the end of the double precision 

adder. If the exponent difference is exactly 48 (decimal), the two coefficients are 

aligned in the 96-bit field with no bits matched. In either of these cases, the result 

is· a copy of the operand with the larger exponent. 

RESULT COEFFICIENT IS ZERO 

If the two operands are identical, the resulting difference has a zero coefficient. The 

resulting exponent is the same as the exponent for the operands even though the co­

efficient is zero. The sign of the result is positive. No error condition flags are set 

in the PSD register. 

PARTIAL OVERFLOW 

If the two operands are both in floating point range and one operand is at the upper 

limit, the resulting difference may overflow. The resulting exponent indicates the 

overflow condition. The coefficient is processed in a normal manner and the result is 

correct. No error indication is made and no condition flags are set in the PSD regis­

ter. However, subsequent use of this number in a floating point unit results in over­

flow detection. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH SAME SIGN 

If both operands have overflow exponents and the operand coefficients have the same 

sign, the resulting word is positive indefinite with a zero coefficient. The indefinite 

condition flag is set in the PSD register. 

5-80 60396300 A 



BOTH OPERANDS OVERFLOW WITH DIFFERENT SIGNS 

If both operands have overflow exponents and the coefficient signs differ, the result is 

a complete overflow word. The sign of the resulting word is the same as the sign of 

(Xj). The overflow condition flag is set in the PSD register. 

ONE OPERAND OVERFLOW 

If either operand has an overflow exponent and the other operand is in floating point 

range or has an underflow exponent, the result is a complete overflow word. The sign 

of the resulting word is the same as the sign of the operand with the overflow exponent. 

The overflow condition flag is set in the PSD register. 

UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register. If both operands are zero, the result is a positive 

zero word. 

32ijk FLOATING DOUBLE PRECISION SUM OF (Xj) AND (Xk) TO Xi 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the floating point add unit to read operands from two X regis­

ters, operate upon them to form a double precision floating point sum, and deliver the 

lower half of this result to a third X register. The operands for this instruction are 

(Xj) and (Xk). These operands are in floating point format and are not necessarily 

normalized. The result of (Xj) plus (Xk) is delivered to the Xi register in floating 

point format and is not necessarily normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format and the exponents compared. The unpacked coefficients are then 

positioned in a 99-bit ones complement adder to align bits of corresponding significance. 

A double precision ones complement sum is formed. A 48-bit result coefficient is read 

from the lower half of this sum. The result exponent is exactly 48 (decimal) less than 

the exponent which would be delivered with the upper half of the double precision sum. 

60396300 A 5-81 



If an overflow of the highest order coefficient bit occurred, the result coefficient is 

read with a one-bit displacement to take into account the overflow bit. The result ex­

ponent is corrected by one count in this case. 

If the two operands have unlike signs, the double precision sum may have leading zeros. 

No normalize operation is built into this instruction to correct this situation. Whether 

this situation exists or not, there may be leading zeros in the lower half of the double 

precision sum. These zero bits are not detected. Therefore, the coefficient in the 

result may have leading zeros. 

This instruction is intended for use in floating point calculations involving double pre­

cision or multiple precision. This instruction, together with the 30 instruction, forms 

a double precision sum in two X registers with no loss of significance. 

CLEAN MISS 

If the exponents of the two operands differ by more than 48 (decimal), the coefficient 

of the operand with the smaller exponent is shifted off the end of the double precision 

adder. If the exponent difference is exactly 48 (decimal), the two coefficients are 

aligned in the 96-bit field with no bits matched. In either of these cases, the result 

contains a coefficient from the 48-bit field corresponding to the lower half of a 96-bit 

sum. The resulting exponent is exactly 48 (decimal) less than the exponent which would 

result from the upper half of the 96-bit sum. If the difference of the exponents is 

greater than 48 (decimal), the lower half of this 96-bit sum has leading zeros. If the 

difference of the exponents is 96 (decimal) or greater, the lower half of the 96-bit sum 

is all zeros. 

COEFFICIENT SUM IS ZERO 

If the two operands are of equal magnitude and opposite sign, the resulting coefficient 

sum is zero. This condition is not sensed, and the exponent in the result has the 

same value as for a nonzero coefficient. The sign of the resulting zero coefficient is 

positive. No error condition flags are set in the PSD register. 

PARTIAL OVERFLOW 

If the two operands are in floating point range and one operand is at the upper limit. 

the result may overflow and cause the exponent for the upper half to go out of range. 

This condition is not sensed. The exponent for the lower half is 48 (decimal) less 

than this overflow value. The result is processed as a normal floating point result and 

no error condition flags are set in the PSD register. 

5-82 60396300 A 



PARTIAL UNDERFLOW 

If the two operands are near the lower limit of the floating point range, the exponent 

for the lower half may be exactly -1777 (octal). This result is processed as a normal 

floating point number. No error condition flags are set in the PSD register. The re­

sulting coefficient may be nonzero even though the exponent indicates an underflow con­

dition. However, subsequent use of this number in a floating point unit may result in 

underflow detection. 

COMPLETE UNDERFLOW 

If the two operands are near the lower limit of the floating point range, the exponent 

for the lower half may be less than -1777 (octal). This results in a complete under­

flow word. The underflow condition flag is set in the PSD register. 

UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register if the other operand is sufficiently large so that the 

result does not underflow the floating point range. If the other operand is near the 

lower limit of the range, the result may be either a partial or a complete underflow. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH DIFFERENT SIGNS 

If both operands have overflow exponents and the coefficients have different signs, the 

resulting word is positive indefinite with a zero coefficient. The indefinite condition 

flag is set in the PSD register. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent and the coefficient signs agree, 

the result is a complete overflow word. The sign of the resulting word is the same 

as the sign of the operand with the overflow exponent. The overflow condition flag is 

set in the PSD register. 

60396300 A 5-83 



33ijk FLOATING DOUBLE PRECISION DIFFERENCE OF (Xj) AND (Xk) TO Xi 

v I h I - I 
14 12 11 9 I • 5 3 z 0 

This instruction causes the floating point add unit to read operands from two X regis­

ters, operate upon them to form a double precision floating point difference, and de­

liver the lower half of this result to a third X register. The operands for this in­

struction are (Xj) and (Xk), These operands are in floating point format and are not 

necessarily normalized. The result of (Xj) minus (Xk) is delivered to the Xi register 

in floating point format and is not necessarily normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format and the exponents are compared. The unpacked coefficients are 

positioned in a 99-bit ones complement adder to align bits of corresponding significance, 

A double precision ones complement difference is formed. A 48-bit result coefficient 

is read from the lower half of this difference. The result exponent is exactly 48 

(decimal) less than the exponent which would result from the upper half of the double 

precision difference, If an overflow of the highest order coefficient bit occurred, the 

result coefficient is read with a one-bit displacement to take into account the overflow 

bit, The result exponent is then corrected by one count in this case. 

If the two operands have like signs, the double precision difference may have leading 

zeros, No normalize operation is built into this instruction to correct this situation. 

Whether this situation exists or not, there may be leading zeros in the lower half of 

the double precision difference. These zero bits are not detected, and the coefficient 

in the result may have leading zeros. 

This instruction is intended for use in floating point calculations involving double 

precision or multiple precision. This instruction, together with the 31 instruction, 

forms a double precision difference in two X registers with no loss of significance. 

CLEAN MISS 

If the exponents of the two operands differ by more than 48 (decimal), the coefficient 

of the operand with the smaller exponent is shifted off the end of the double precision 

adder. If the exponent difference is exactly 48 (decimal), the two coefficients are 

aligned in the 96-bit field with no bits matched, In either of these cases, the result 

5-84 60396300 A 



contains a coefficient from the 48-bit field corresponding to the lower half of a 96- bit 

difference. The resulting exponent is exactly 48 (decimal) less than the exponent which 

would result for the upper half of the 96-bit difference. If the difference of the operand 

exponents is greater than 48 (decimal). the lower half of this 96-bit difference has 

leading zeros. If the difference of the operand exponents is 96 (decimal) or greater. 

the lower half of the 96-bit difference is all zeros. 

COEFFICIENT SUM IS ZERO 

If the two operands are identical, the result is zero. This condition is not sensed. 

The resulting exponent is the same value as for a nonzero coefficient. The sign of 

the resulting zero coefficient is positive. No error condition flags are set in the PSD 

register. 

PARTIAL OVERFLOW 

If the two operands are in floating point range and one operand is at the upper limit. 

the resulting double precision difference may overflow and cause the exponent for the 

upper half to go out of range. This condition is not sensed. The exponent for the 

lower half is 48 (decimal) less than this overflow value. The result is processed as 

a normal floating point result. and no error condition flags are set in the PSD register. 

PARTIAL UNDERFLOW 

If the two operands are near the lower limit of the floating point range. the resulting 

exponent for the lower half may be exactly -1777 (octal). This result is processed as 

a normal floating point number. No error condition flags are set in the PSD register. 

The resulting coefficient may be nonzero even though the exponent in the resulting word 

indicates an underflow condition. However. subsequent use of this number in a floating 

point unit may result in underflow rletection, 

COMPLETE UNDERFLOW 

If the two operands are near the lower limit of the floating point range. the resulting 

exponent for the lower half may be less than -1777 (octal). The result is a complete 

underflow word. The underflow condition flag is set in the PSD register. 

60396300 A 5-85 



UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register if the other operand is large enough so that the result 

does not underflow the floating point range. If the other operand is near the lower 

limit, the result may be either a partial or complete underflow. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH SAME SIGN 

If both operands have overflow exponents and the coefficient signs agree, the resulting 

word is positive indefinite with a zero coefficient. The indefinite condition flag is set 

in the PSD register. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent and the coefficient signs disagree, 

the result is a complete overflow word. The sign of the resulting word is the same 

as the sign of (Xj) if (Xj) has the overflow exponent. The sign of the resulting word 

is the complement of the sign of (Xk) if (Xk) has the overflow exponent. The overflow 

condition flag is set in the PSD register. 

34ijk ROUND FLOATING SUM OF (Xj) AND (Xk) TO Xi 

g h k 

14 12 11 9 8 6 5 3 2 0 

This instruction causes the floating point add unit to read operands from two X 

t'egisters, operate upon them to form a rounded floating point sum, and deliver this 

result to a third X register. The operands for this instruction are (Xj) and (Xk). 

These operands are in floating point format and are not necessarily normalized. The 

result is delivered to the Xi register in floating point format and is not necessarily 

normalized. 

5-86 60396300 A 



The floating point add unit unpacks the two operands from floating point format and 

compares the exponents. The unpacked coefficients are then positioned in a 99-bit ones 

complement adder to align bits of corresponding significance. The two coefficients are 

rounded according to the following rules. A double precision ones complement sum is 

formed. A 48-bit result coefficient is read from the upper half of this sum. If an 

overflow of the highest order coefficient bit occurred, the result coefficient is read 

with a one-bit displacement to include this overflow bit. The result exponent is cor­

rected by one count in this case. 

If the two operands have unlike signs, the result coefficient may have leading zeros. 

No normalize operation is built into this instruction to correct this situation. A 

separate normalize instruction must be programmed if the result is to be kept in a 

normalized form. 

This instruction is intended for use in floating point calculations involving single 

precision accuracy. For multiple precision calculations, the 30 and 32 instructions 

must be used. 

ROUNDING 

Rounding of the operand coefficients occurs just prior to the double precision add 

operation. At this time, the two 48-bit coefficients are positioned in the 99-bit ones 

complement adder with an offset corresponding to the difference of the exponents. A 

round bit is always added to the coefficient with the larger exponent. If the exponents 

are equal, the round bit is added to the coefficient for (Xk). The round bit is equal 

to the complement of the sign bit and is inserted immediately to the right of the lowest 

order bit in the coefficient. This increases the magnitude of the coefficient by 1 /2 of 

the least significant bit. A second round bit is added to the other coefficient if both 

operands were normalized or had unlike signs. 

The amount of error introduced by the rounding operation is a function of the relative 

magnitudes of the operands. If the two exponents differ significantly, the rounding is 

relatively free of bias and the maximum error is bounded by +1 /2 and -1 /2 of the least 

significant bit of the larger coefficient. If the exponents differ only slightly, the round­

ing introduces some bias because of the discrete combinations involved. An additional 

complication is introduced by the possibility of overflow. If an overflow occurs, the 

result coefficient is displaced by one bit position to include the overflow bit. This 

introduces a negative bias on the rounding operation whenever it occurs. 

60396300 A 5-87 



CLEAN MISS 

If the exponents differ by more than 48 (decimal), the coefficient with the smaller 

exponent is shifted off the end of the double precision adder. The result is a copy of 

the operand with the larger exponent. If the exponents differ by exactly 48 (decimal), 

the two coefficients are aligned in a 96-bit field with no bits matched. However, the 

round bit for the larger number is aligned with the highest order bit for the smaller 

number. The result is a rounded version of the operand with the larger exponent. 

RESULT COEFFICIENT IS ZERO 

If the two operands are of equal magnitude and opposite sign, the result has a zero 

coefficient. The resulting exponent is the same as the exponent for the operands even 

though the coefficient is zero. The sign of the result is positive. No error condition 

flags are set in the PSD register. 

PARTIAL OVERFLOW 

If the two operands are both in floating point range and one operand is at the upper 

limit, the result may overflow. The resulting exponent indicates the overflow condition. 

The coefficient is processed in a normal manner and the resulting floating point number 

is correct. No error indication is made and no condition flags are set in the PSD 

register. However, subsequent use of this number in a floating point unit results in 

overflow detection. 

ONE OPERAND INDEFINITE 

lf either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH DIFFERENT SIGNS 

If both operands have overflow exponents and the coefficients have different signs, the 

resulting word is positive indefinite with a zero coefficient. The indefinite condition 

flag is set in the PSD register. 

5-88 60396300 A 



.. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent and the coefficient signs agree, 

the result is a complete overflow word. The sign of the resulting word is the same as 

the sign of the operand with the overflow exponent. The overflow condition fiag is set 

in the PSD register. 

UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register. If both operands are positive or negative zero in 

any combination, the result is a positive zero word. 

35ijk ROUND FLOATING DIFFERENCE OF (Xi) AND (Xk) TO Xi 

h k 
14 12 II • 8 & 5 3 2 0 

This instruction causes the floating point add unit to read operands from two X 

registers, operate upon them to form a rounded floating point difference, and deliver 

this result to a third X register. The operands for this instruction are (Xj) and (Xk). 

These operands are in floating point format and are not necessarily normalized. The 

result of (Xj) minus (Xk) is delivered to the Xi register in floating point format and is 

not necessarily normalized. 

The floating point add unit unpacks the two operands from floating point format and 

compares the exponents. The unpacked coefficients are positioned in a 99-bit ones 

complement adder to align bits of corresponding significance. The two coefficients are 

rounded according to the following rules. A double precision ones complement differ­

ence is formed. A 48-bit result coefficient is read from the upper half of this differ­

ence. If an overflow of the highest order coefficient bit occurred, the result coefficient 

is read with a one-bit displacement to include this overflow bit. The result exponent 

is corrected by one count in this case. 

If the two operands have like signs, the result coefficient may have leading zeros. No 

normalize operation is built into this instruction to correct this situation. A separate 

normalize instruction must be programmed if the result is to be kept in a normalized 

form. 

60396300 A 5-89 



This instruction is intended for use in floating point calculations involving single 

precision accuracy. For multiple precision calculations, the 31 and 33 instructions 

must be used. 

ROUNDING 

Rounding of the operand coefficients occurs just prior to the double precision subtract 

operation. At this time, the two 48-bit coefficients are positioned in the 99-bit ones 

complement adder with an offset corresponding to the difference of the exponents. A 

round bit is always added to the coefficient with the larger exponent. If the exponents 

are equal, the round bit is added to the coefficient for (Xk). The round bit is equal 

to the complement of the sign bit and is inserted immediately to the right of the lowest 

order bit in the coefficient. This increases the magnitude of the coefficient by 1 /2 the 

value of the least significant bit. A second round bit is added to the other coefficient 

if both operands were normalized or had like signs. 

The amount of error introduced by the rounding operation is a function of the relative 

magnitudes of the operands. If the two exponents differ significantly, the rounding is 

relatively free of bias and the maximum error is bounded by +1/2 and -1/2 of the 

least significant bit of the larger coefficient. If the exponents differ only slightly, the 

rounding introduces some bias because of the discrete combinations involved. An 

additional complication is introduced by the possibility of overflow. If an overflow 

occurs, the result coefficient is displaced by one bit position to include the overflow 

bit. This introduces a negative bias on the rounding operation whenever it occurs. 

CLEAN MISS 

If the exponents differ by more than 48 (decimal), the coefficient with the smaller 

exponent is shifted off the end of the double precision adder. The result is a copy of 

the operand with the larger exponent. If the exponents differ by exactly 48 (decimal), 

the two coefficients are aligned in the 96-bit field with no bits matched. However, the 

round bit for the larger number is aligned with the highest order bit for the smaller 

number. The result is a rounded version of the operand with the larger exponent. 

RESULT COEFFICIENT IS ZERO 

If the two operands are identical, the result has a zero coefficient. The resulting 

exponent is the same as the exponent for the operands even though the coefficient is 

zero. The sign of the result is positive. No error condition flags are set in the PSD 

register. 

5-90 60396300 A 



PARTIAL OVERFLOW 

If the two operands are both in floating point range and one operand is at the upper 

limit, the resulting difference may overflow. The resulting exponent indicates the 

overflow condition. The coefficient is processed in a normal manner and the result 

is correct. No error indication is made and no condition flags are set in the PSD 

register. However, subsequent use of this number in a floating point unit results in 

overflow detection. 

One operand indefinite 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

BOTH OPERANDS OVERFLOW WITH SAME SIGN 

If both operands have overflow exponents and the coefficients have the same sign, the 

resulting word is positive indefinite with a zero coefficient. The indefinite condition 

flag is set in the PSD register. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent and the coefficient signs disagree, 

the result is a complete overflow word. The sign of the resulting word is the same 

as the sign of (Xj) if (Xj) has the overflow exponent. The sign of the result is the 

complement of the sign of (Xk) if (Xk) has the overflow exponent. The overflow con­

dition flag is set in the PSD register. 

UNDERFLOW OPERAND 

An operand with an underflow exponent is treated as a normal operand. No condition 

flags are set in the PSD register. If both operands are positive or negative zero in 

any combination, the result is a positive zero word. 

60396300 A 5-91 



36ijk INTEGER SUM OF {Xj) AND {Xk) TO Xi 

9 h j I II I 
14 12 u 9 • I S 3 2 0 

This instruction causes the long add unit to read operands from two X registers, 

operate upon them to form a 60-bit integer sum, and deliver this result to a third X 

register. The operands for this instruction are (Xj) and (Xk). These operands are 

signed integers. The resulting integer sum is delivered to the Xi register. 

The long add unit executes this instruction in a 60-bit ones complement mode. The 

two operands are read directly to a 60-bit integer adder. The resulting sum is 

delivered directly to the Xi register. Overflow is not detected. 

This instruction is intended for addition of integers too large for handling in the incre­

ment unit. This instruction is also useful in merging and comparing data fields during 

data processing. 

BOTH OPERANDS ZERO 

If both operands are zero, the result is zero. If either operand is positive zero, the 

result is positive zero. If both operands are negative zero, the result is negative zero. 

DESIGNATORS 1 AND k HAVE THE SAME VALUE 

If the j and k designators have the same value, the designated 60-bit operand is added 

to itself, and the resulting sum is delivered to the Xi register. 

DESIGNATORS i AND j OR k HAVE THE SAME VALUE 

If the i designator has the same value as the j or k designator, this instruction becomes 

a replace add instruction. The initial (Xi) is added to the other operand. The result 

is stored back in the Xi register. 

5-92 60396300 A 



37ijk INTEGER DIFFERENCE OF (Xj) AND (Xk) TO Xi 

·Q h [ j k 

14 12 II • • I 5 3 2 0 

This instruction causes the long add unit to read operands from two X registers, 

operate upon them to form a 60-bit integer difference, and deliver this result to a 

third X register. The operands for this instruction are (Xj) and (Xk). These 

operands are signed integers. The result of (Xj) minus (Xk) is delivered to the Xi 

register. 

The long add unit executes this instruction in a 60-bit ones complement mode. The 

two operands are read directly to a 60-bit integer adder. (Xj) is transmitted unaltered 

from the register to the adder. (Xk) is complemented in the transmission from the 

register to the adder. The resulting sum of (Xj) and the complement of (Xk) is 

delivered directly to the Xi register. Overflow is not detected. 

This instruction is intended for subtraction of integers too large for handling in the 

increment unit. This instruction is also useful in comparing data fields during data 

processing. 

BOTH OPERANDS ZERO 

If (Xj) is negative zero and (Xk) is positive zero, the result is negative zero. For 

the other three combinations of positive and negative zero operands, the result is 

positive zero. 

DESIGNATORS j AND k HAVE THE SAME VALUE 

If the j and k designators have the same value, the designated 60-bit operand is 

subtracted from itself. The result is positive zero. 

DESIGNATORS i AND j OR k HAVE THE SAME VALUE 

If the i designator has the same value as the j or k designator, this instruction 

becomes a replace subtract instruction. The initial (Xi) is read as an operand, and 

the resulting difference is then stored in the same register. 

60396300 A 5-93 



40ijk FLOATING PRODUCT OF (Xj) AND (Xk) TO Xi 

I CJ h k -1 
14 12 II 9 I I 5 3 2 0 

This instruction causes the multiply unit to read operands from two X registers, 

operate upon them to form a floating point product, and deliver this result to a third 

X register. The operands for this instruction are (Xj) and (Xk). These operands are 

in floating point format and are not necessarily normalized. The result is delivered 

to the Xi register in floating point format. If both operands are normalized, the result 

is also normalized. If both operands are not normalized, the result is not normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format. The exponents are added with a correction factor to determine 

the exponent for the result. The coefficients are multiplied as signed integers to form 

a DB-bit integer product. The upper half of this product is extracted to form the 

coefficient for the result. An alternate output path provides a one-bit displacement to 

normalize the result coefficient if the original operands are normalized and the product 

has only 05 significant bits. The resulting exponent is corrected by one count in this 

case. 

If the two operands are not both normalized, the resulting double precision product has 

less than 96 significant bits. No test is made for the position of the most significant 

bit. The upper 48 bits are read from the double precision product register. Leading 

zeros occur in this result coefficient. The alternate path is not used even though the 

one-bit displacement may have normalized the result. 

This instruction is intended for use in floating point calculations where rounding of 

operands is not desired. This is the case in multiple precision arithmetic and in 

calculations involving error analysis. 

RESULT COEFFICIENT IS ZERO 

If the two operands are not both normalized, the upper half of the double precision 

product may be all zeros. This situation is not sensed. The exponent for the result 

is processed without regard to the zero coefficient. This results in a zero coefficient 

and a nonzero exponent. No error flags are set in the PSD register. 

PARTIAL OVERFLOW 

A partial overflow occurs whenever the resulting exponent is +1777 (octal) and the 

double precision product has 96 bits of significance. No error condition flags are set 

in the PSD register. The result is delivered to the Xi register in a normal manner. 

However, subsequent use of this result in a floating point unit results in overflow 

5-94 60396300 A 



detection. If the resulting exponent is +1777 (octal) and the alternate output path is 

used, the exponent is reduced one count and the result is in floating point range. 

COMPLETE OVERFLOW 

A complete overflow occurs whenever the resulting exponent is greater than +1777 (octal), 

This results in a complete overflow word with the sign being calculated the same as 

for a result that is in floating point range. The overflow condition flag is set in the 
PSD register. 

PARTIAL UNDERFLOW 

A partial underflow occurs whenever the resulting exponent is -1776 (octal) and the 

alternate output path is used to normalize the coefficient. The exponent is reduced one 

count to create an underflow exponent with a valid coefficient. No condition flags are 

set in the PSD register. However, subsequent use of this result in a floating point unit 
may result in underflow detection. 

COMPLETE UNDERFLOW 

A complete underflow occurs whenever the resulting exponent is less than -1776 (octal). 

This results in a complete underflow word, The underflow condition flag is set in the 
PSD register. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 
PSD register. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent, the result is a complete overflow 

word. The sign of the result is calculated the same as for operands in range. The 

overflow condition flag is set in the PSD register. 

UNDERFLOW TIMES OVERFLOW 

If one operand has an underflow exponent and the other operand has an overflow exponent, 

the result is indefinite, The resulting word is positive indefinite with a zero coefficient. 
The indefinite condition flag is set in the PSD register. 

60396300 A 5-95 



ONE OPERAND UNDERFLOW 

If one operand has an underflow exponent ( ::t:_ 0) while the other operand exponent is 

in range (an indefinite, overflow, or underflow does not exist) the result is a complete 

underflow word, This causes the underflow condition flag in the PSD register to set. 

BOTH OPERANDS UNDERFLOW 

If both operands have an underflow exponent (±. O) and both coefficients are normalized, 

the result is the same as described for One Operand Underflow, 

If both operands have underflow exponents and both coefficients are not normalized, the 

integer multiply hardware is enabled. In this case, the underflow condition flag in the 

PSD register is not set and the integer result delivered to Xi is 48 bits with sign 

extension to 60 bits, 

Since the result would be taken from the upper half of the 96-bit coefficient product, 

the result delivered to Xi will be all zeros unless the integer product exceeds 42 bits, 

The 42 instruction, which returns the lower 48 bits of the 96-bit product, is the most 

applicable instruction for integer multiply. The 40 instruction may be used to check 

for coefficient overflow. This is an integer product exceeding 48 bits. 

5-96 60396300 A 



41ijk ROUND FLOATING PRODUCT OF (Xj) AND (Xk) TO Xi 

h j k 
14 12 II 9 8 6 5 3 z 0 

This instruction causes the multiply unit to read operands from two X registers, 

operate upon them to form a rounded floating point product, and deliver this result to 

a third X register. The operands for this instruction are (Xj) and (Xk). These 

operands are in floating point format and are not necessarily normalized. The result 

is delivered to the Xi register in floating point format. If both operands are normal­

ized, the result is also normalized. If both operands are not normalized, the result 

is not normalized. 

The multiply unit unpacks the two operands from floating pointing format. The exponents 

are added with a correction factor to determine the exponent for the result. The 

coefficients are multiplied as signed integers to form a 96-bit integer product. A 

rounding bit is added in bit position 46 of this product. The upper half of this product 

is extracted to form the coefficient for the result. An alternate output path provides a 

one-bit displacement to normalize the result coefficient if the original operands are 

normalized and the product has only 95 significant bits. The resulting exponent is 

corrected by one count in this case. 

If the two operands are not both normalized, the resulting double precision product has 

less than 96 significant bits. No test is made for the position of the most significant 

bit. The upper 48 bits are read from the double precision product register. Leading 

zeros occur in this result coefficient. The alternate path is not used even though the 

one-bit displacement may have normalized the result. 

This instruction is intended for use in single precision floating point calculations. For 

multiple precision calculations, the 40 and 42 instructions must be used. 

Hounding of the result coefficient occurs in the final addition of the partial products to 

form a 96-bit double precision result. The rounding is accomplished by adding a bit 

in position 46 of the adder. This additional bit reduces the maximum amount of trunca­

tion error and also the average bias. 

The special situations for this instruction are the same as the special situations for the 

40 instructions. 

5-97 
60396300 A 



42ijk FLOATING DOUBLE PRECISION PRODUCT OF (Xi) ANO (Xk) TO Xi 

h k 'I 
14 12 II 9 I 6 5 5 2 0 

This instruction causes the multiply unit to read operands from two X registers. 

operate upon them to form a floating point double precision product, and deliver the 

lower half of this result to a third X register. The operands for this instruction are 

(Xj) and (Xk). These operands are in floating point format and are not necessarily 

normalized. The lower half of the double precision product is delivered to the Xi 

register in floating point format and is not necessarily normalized. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format. The exponents are added to determine the exponent for the result. 

The result exponent is exactly 48 less than the exponent for a 40 instruction. The 

coefficients are multiplied as signed integers to form a 96-bit integer product. The 

lower half of this product is extracted to form the coefficient for the result. An 

alternate output path provides a one-bit displacement when both operands are normalized 

and the double precision product has only 95 significant bits. The resulting exponent is 

corrected by one count if this path is used. 

If the two operands are not both normalized. the resulting double precision product has 

less than 96 significant bits. The alternate output path is never used in this case. No 

test is made for the position of the most significant bit in the product. The lower 48 

bits are always read from the 96-bit product register in this case. 

This instruction is intended for use in multiple precision floating point calculations. 

This instruction is also intended for integer multiplication where both operands have an 

exponent value of ± zero anq the coefficients are not both normalized. 

result sent to the Xi register is 48 bits with sign extension to 60 bits. 
The integer 

If the result 

exceeds 48 bits (coefficient overflow), the hardware does not detect this overflow. A 

coefficient overflow check can be made by executing a 40 or 41 instruction using the 

same two operands. If the result is nonzero, a coefficient overflow condition exists. 

An integer multiply operation is not intended to be used with normalized operands. If 

both operands are normalized, the integer multiply hardware is not enabled and under­

flow condition flag is set in the PSD register. 

5-98 

NOTE 

To ensure that floating point operands are not 
mistaken for integers. normalize all floating 
point quantities that are used as operands. 

60396300 A 



PARTIAL OVERFLOW 

A partial overflow occurs whenever the resulting exponent is +1777 (octal) and the 

double precision product has 96 bits of significance. No error condition flags are set 

in the PSD register. The result is delivered to the Xi register in a normal manner. 

However, subsequent use of this result in a floating point unit results in overflow 

detection. If the resulting exponent is + 1777 (octal) and the alternate output path is 

used, the exponent is reduced one count and the result is in floating point range. 

COMPLETE OVERFLOW 

A complete overflow occurs whenever the resulting exponent is greater than +1777 

(octal). This results in a complete overflow word with the sign being calculated the 

same as for a result that is in floating point range. The overflow condition flag is 

set in the PSD register. 

PARTIAL UNDERFLOW 

A partial underflow occurs whenever the resulting exponent is -1776 (octal) and the 

alternate output path is used. The exponent is reduced one count and creates an 

underflow exponent with a valid coefficient. No condition flags are set in the PSD 

register. However, subsequent use of this result in a floating point unit may result 

in underflow detection. 

COMPLETE UNDERFLOW 

·A complete underflow occurs whenever the resulting exponent is less than -1776 (octal). 

This results in a complete underflow word. The underflow condition flag is set in the 

PSD register. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 

PSD register. 

ONE OPERAND OVERFLOW 

If either (or both) operand has an overflow exponent, the result is a complete overflow 

word. The sign of the result is calculated the same as for operands in range. The 

overflow condition flag is set in the PSD register. 

60396300 A 5-99 



ONE OPERAND UNDERFLOW 

If one operand has an underflow exponent (_: O) while the other operand exponent is in 

range (an indefinite, overflow, or underflow does not exist) the result is a complete 

underflow word. This causes the underflow condition flag in the PSD register to set. 

BOTH OPERANDS UNDERFLOW 

If both operands have an underflow exponent (~ 0) and both coefficients are normalized, 

the result is the same as described for One Operand Underflow. 

If both operands have underflow exponents and both coefficients are not normalized, the 

integer multiply hardware is enabled. In this case, the underflow condition flag in the 

PSD register is not set and the integer result delivered to Xi is 48 bits with sign ex­

tension to 60 bits. 

UNDERFLOW TIMES OVERFLOW 

If one operand has an underflow exponent and the other operand has an overflow 

exponent, the result is indefinite. The resulting word is positive indefinite with a 

zero coefficient. The indefinite condition flag is set in the PSD register. 

43ijk FORM MASK OF jk BITS TO Xi 

h jk 

14 12 II I 8 6 5 0 

This instruction causes the shift unit to generate a masking word using the j and k 

designators as parameters. No operands are read from operating registers. The j 

and k designators are treated as a single 6-bit quantity to designate the width of the 

masking field. A field of ones, beginning at the highest order end of the word, is 

extended downward on a background of zeros. The completed masking word consists 

of one bits in the highest order jk bit positions and zero bits in the remainder of the 

word. This masking word is then delivered to the Xi register. The following are 

sample parameters. 

j = 2 

k = 4 

(Xi) = 7777 7760 0000 0000 0000 

This instruction is intended for generating variable width masks for logical operations. 

This instruction. together with a shift instruction, generally creates an arbitrary field 

mask faster than reading a pregenerated mask from storage. 

5-100 60396300 A 



DESIGNATORS i AND k ARE ZERO 

If the j and k designators are zero, a word containing all zero bits is written into the 

Xi register. The timing is the same as for the normal case. 

QUANTITY jk GREATER THAN 60 (DECIMAL) 

If the quantity jk is 60 (decimal) or greater, a word containing all one bits is written 

into the Xi register. 

44ijk FLOATING DIVIDE (Xj) BY (Xk) TO Xi 

h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the divide unit to read operands from two X registers. operate 

upon them to form a floating point quotient. and deliver this result to a third X register. 

The operands for this instruction are (Xj) and (Xk). These operands are in floating 

point format. The result of dividing· (Xj) by (Xk) is delivered to the Xi register. If 

both operands are normalized. the quotient is also normalized. The remainder from 

the division process is discarded. 

The operands are not rounded in this operation. The two operands are unpacked from 

floating point format. The exponents are subtracted with a correction factor to deter­

mine the exponent for the result. The coefficient from (Xj) is positioned in a dividend 

register. The coefficient from (Xk) is trial subtracted repeatedly from the dividend, 

and the dividend is shifted to form the quotient bits. The quotient bits are assembled 

in a quotient register. When 48 bits of the quotient have been assembled, they are 

packed with the result exponent into floating point format and delivered to the Xi 

register. 

If the dividend is not normalized, the quotient may not be normalized. However, the 

quotient is correct even though there may be leading zeros in the coefficient. ·If the 

divisor is not normalized, the quotient may be incorrect. If the coefficient for (Xj) 

is larger than the coefficient for (Xk) by a factor of two or more, the quotient is 

incorrect. 

This instruction is intended for use in floating point calculations where rounding of 

operands is not desired. In multiple precision division. this instruction must be 

followed by a multiplication of the quotient by the divisor and subtracted from the 

dividend in order to reconstruct the remainder. 

60396300 A 5-101 



QUOTIENT IS INCORRECT 

If the divisor is not normalized and ·the dividend coefficient is larger than the divisor 

by a factor of two or more, the quotient coefficient is incorrect. The quotient is 

disregarded and the resulting word is positive indefinite with a zero coefficient. The 

indefinite condition flag is set in the PSD register. 

PARTIAL OVERFLOW 

A partial overflow occurs whenever the resulting exponent is +1777 (octal), No error 

condition flags are set in the PSD register, and the result is delivered to the Xi register 

in a normal manner. However, subsequent use of this result in a floating point unit 

results in overflow detection. 

COMPLETE OVERFLOW 

A complete overflow occurs whenever the resulting exponent is greater than +1777 

(octal), This results in a complete overflow word with the sign being calculated the 

same as for a result that is in floating point range. The overflow condition flag is set 

in the PSD register. 

PARTIAL UNDERFLOW 

A partial underflow occurs whenever the resulting exponent is -1777 (octal). No error 

condition flags are set in the PSD register, and the result is delivered to the Xi 

register in· a normal manner. However, subsequent use of this result in a floating 

point unit may result in underflow detection. 

COMPLETE UNDERFLOW 

A complete underflow occurs whenever the resulting exponent is less than -1777 (octal). 

This results in a complete underflow word. The underflow condition flag is set in the 

PSD register. 

ONE OPERAND INDEFINITE 

If either (or both) operand is indefinite, the result is indefinite. The resulting word is 

positive indefinite with a zero coefficient. The indefinite condition flag is set in the 
PSD register. 

5-102 60396300 A 



(Xj) IS OVERFLO~ WORD 

If (Xj) has an overflow exponent and (Xk) is in range or has an underflow exponent. the 

result is a complete overflow word. The sign of the result is calculated the same as 

for operands in range. The overflow condition flag is set in the PSD register. 

(Xj) IS UNDERFLOW WORD 

If (Xj) has an underflow exponent and (Xk) is in range or has an overflow exponent. the 

result is a complete underflow word. The underflow condition flag is set in the PSD 

register. 

(Xk) IS OVERFLOW WORD 

If (Xk) has an overflow exponent and (Xj) is in range. the result is a complete under­

flow word. The underflow condition flag is set in the PSD register. 

(Xk) IS UNDERFLOW WORD 

If (Xk) has an underflow exponent and (Xj) is in range. the result is a complete over­

flow word. The sign of the result is calculated the same as for operands in range. 

The overflow condition flag is set in the PSD register, 

UNDERFLOW DIVIDED BY UNDERFLOW AND OVERFLOW DIVIDED BY OVERFLOW 

These combinations result in a positive indefinite word with a zero coefficient. The 

indefinite condition flag is set in the PSD register. 

60396300 A 5-103 



45ijk ROUND FLOATING DIVIDE (Xi) BY (Xk) TO Xi 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the divide unit to read operands from two X registers, operate 

upon them to form a rounded floating point quotient, and deliver this result to a third 

X register. The operands for this instruction are (Xj) and (Xk). These operands are 

in floating point format. The result of dividing (Xj) by (Xk) is delivered to the Xi 

register. If both operands are normalized, the quotient is also normalized. The 

remainder from the division process is discarded. 

The two operands are unpacked from floating point format in this operation. The 

exponents are subtracted with a correction factor to determine the exponent for the 

result. The coefficient from (Xj) is positioned in a dividend register. This quantity 

is modified by adding a round bit just below the lowest order bit of the coefficient 

from (Xj). This round bit increases the magnitude of the dividend by 1 /2 the value 

of the least significant bit. The coefficient from (Xk) is trial subtracted repeatedly 

from the dividend, and the dividend is shifted to form the quotient bits. The quotient 

bits are assembled in a quotient register. When 48 bits of the quotient have been 

assembled, they are· packed with the result exponent into floating point format and 

delivered to the Xi register. 

If the dividend is not normalized, the quotient may not be normalized. However, the 

quotient is correct even though there may be leading zeros in the coefficient. If the 

divisor is not normalized, the quotient may be incorrect. If the coefficient for (Xj) is 

larger than the coefficient for (Xk) by a factor of two or more, the quotient is in­

correct. 

This instruction is intended for use in single precision fioating point calculations where 

rounding of operands is desired to reduce truncation errors. 

The rounding step occurs in the dividend register just prior to the first trial subtraction. 

A round bit is added to the dividend which has the effect of increasing the dividend by 

1 /2 the value of the least significant bit. The effect on the quotient varies depending 

upon the value of the divisor and upon the truncation point in the quotient. If the 

dividend is smaller than the divisor, the quotient is truncated one bit position lower 

than if the dividend is equal to or larger than the divisor. These effects cause the 

rounding to vary in the quotient from a value of 1I4 of the least significant bit in the 

result to almost one. 

5-104 60396300 A 



The special situations for this instruction are the same as the special situationE\ listed 

for the 44 instruction. 

A6xxx PASS 

h 

14 12 II 9 8 0 

This instruction causes no action in any functional unit. It is used to fill program 

instruction words where necessary to match jump destinations with word boundaries. 

The i, j, and k designators are normally zero in this instruction. However, these 

designators are ignored and a nonzero value has no effect. 

A7ixk POPULATION COUNT OF (Xk) TO Xi 

g h 
14' 12 II 9 8 & s 3 2 0 

This instruction causes the population count unit to read one operand from the Xk 

register, count the number of one bits in this word, and store this count in the Xi 

register. The word delivered to the Xi register is a positive integer. If (Xk) is a 

word of all ones, a count of 60 (decimal) is delivered to the Xi register. If (Xk) is 

a word of all zeros, a zero word is delivered to the Xi register. 

This instruction is intended for use in data processing where a degree of coincidence 

is desired. 

DESIGNATOR i NOT ZERO 

The j designator is normally zero. However, a nonzero value has no effect on the 

results. 

DESIGN A TORS i AND k HAVE THE SAME VALUE 

If the i and k designators have the same value, the operand is read from the designated 

X register and the count is stored back in the same X register. The timing is the 

same as for the normal case. 

60396300 A 5-105 



50ijK SET Ai TO (Aj) + K 

K 

29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an 

operand K. This instruction causes the increment unit to read an operand from the 

Aj register, form the sum of (Aj) + K, and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCM using this. resulting 

sum as the relative storage address. The type of storage reference is a function of 

the i designator value. 

0: No storage reference 

1, 2, 3, 4. 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register 

The increment unit forms the sum of (Aj) + K in an 18-bit ones complement mode. 

The resulting sum is simultaneously delivered to the Ai register and to the SAS, if 

required. The SAS treats this quantity as an 18-bit positive integer address. This 

address is relative to the beginning of the SCM field for the current program. If the 

i designator value causes a read from SCM, the result arrives at the Xi register a 

minimum of 6 clock periods later than the result delivered to the Ai register. This 

X register is reserved until the data arrives from storage. If the i designator value 

causes a write into SCM, the 60-bit word being stored is read from the Xi register 

into SCM in the same clock period in which this instruction issues. This X register 

may be used for unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruc­

tion begins in the first, second, or third parcel of an instruction word, the following 

parcel completes the instruction. If this instruction begins in the last parcel, it is 

not continued in the following word. The instruction is executed as if there were a 

f~fth parcel in the instruction word and this parcel contained all zeros. 

5-106 
60396300 A 



SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range, the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM, the memory sequence is aborted. 

DESIGN A TORS i AND j ARE THE SAME 

If the i and j designators have the same value, the initial contents of the designated A 

register is sent to the increment unit and the result is stored back into the same A 

register. 

51 ijK SET Ai TQ (Ii) + K 

K 

29 27 26 2423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an 

operand K. This instruction causes the increment unit to read an operand from the 

Bj register, form the sum of (Bj) + K, and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCM using this resulting 

sum as the relative storage address. The type of storage reference is a function of 

the i designator value. 

0: No storage reference 

1, 2, 3, 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register 

The increment unit forms the sum of (Bj) + K in an 18-bit ones complement mode. 

The resulting sum is simultaneously delivered to the Ai register and to the SAS, if 

required. The SAS treats this quantity as an 18-bit positive integer address. This 

address is relative to the beginning of the SCM field for the current program. If the 

i designator value causes a read from SCM, the result arrives at the Xi register a 

minimum of 6 clock periods later than the result delivered to the Ai register. This 

:\ register is reserved until the data arrives from storage. If the i designator causes 

a write into SCM, the 60-bit word being stored is read from the Xi register into SCM 

. 60396300 A 5-107 



in the same clock period in which this instruction issues. This X register may. be 

used for unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruc­

tion begins in the first, second, or third parcel of an instruction word, the following 

parcel completes the instruction. If this instruction begins in the last parcel, it is 

not continued in the following word. The instruction is executed as if there were a 

fifth parcel in the instruction word and this parcel contained all zeros. 

SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range, the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM, the memory sequence is aborted. 

52ij K SET Ai TO (Xi) + K 

K 

29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an 

operand K. This instruction causes the increment unit to read an operand from the 

Xj register, form the sum of (Xj) + K, and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCl\1 using this resulting 

sum as the relative storage address. The type of storage reference is a function of 

the i designator value. 

0: No storage reference 

1. 2, 3, 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register. 

5-108 60396300 A 



The increment unit forms the sum of (Xj) + K in an 18-bit ones complement m6de. 

Only the lower order 18 bits of (Xj) are transmitted to the increment unit. The 

resulting sum is simultaneously delivered to the Ai register and to the SAS, if required. 

The SAS treats this quantity as an 18-bit positive integer address. This address is 

relative to the beginning of the SCM field for the current program. If the i designator 

value causes a read from SCM, the result arrives at the Xi register a minimum of 6 

clock periods later than the result delivered to the Ai register. This X register is 

reserved until the data arrives from storage. If the i designator value causes a write 

into SCM, the 60-bit word being stored is read from the Xi register into SCM in the 

same clock period in which this instruction issues. This X register may be used for 

unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruc­

tion begins in the first, second, or third parcel of an instruction word, the following 

parcel completes the instruction. If this instruction begins in the last parcel, it is 

not continued in the following word. The instruction is executed as if there were a 

fifth parcel in the instruction word and this parcel contained all zeros. 

SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range, the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM, the memory sequence is aborted. 

DESIGNATORS i AND j ARE THE SAME 

If the i and j designators have the same value, the initial contents of the designated 

X register is sent to the increment unit. The resulting sum may then be used as an 

address for an SCM reference which reads a word from storage into this same X 

register. 

60396300 A 5-109 



(Xj) HAS MORE THAN 18 SIGNIFICANT BITS 

If (Xj) is not an integer with less than 18 bits of significance, the lower order 18 bits 

are extracted and treated as an integer. The higher order bits in (Xj) are ignored. 

53ijk SET Ai TO (Xii + (Bk) 

h k 

14 12 11 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Xj and Bk 

registers, form the sum of (Xj) + (Bk), and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCM using this resulting 

sum as the relative storage address. The type of storage reference is a function of 

the i designator value. 

0: No storage reference 

1. 2, 3, 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register. 

The increment unit forms the sum of (Xj) + (Bk) in an 18-bit ones complement mode. 

Only the lowest order 18 bits of (Xj) are transmitted to the increment unit. The 

resulting sum is delivered simultaneously to the Ai register and to the SAS, if required. 

The SAS treats this quantity as an 18-bit positive integer address. This address is 

relative to the beginning of the SCM field for the current program. If the i designator 

value causes a read from SCM, the result arrives at the Xi register a minimum of 

6 clock periods later than the result delivered to the Ai register. This X register is 

reserved until the data arrives from storage. If the i designator value causes a write 

into SCM, the 60-bit word being stored is read from the Xi register into SCM in the 

same clock period in which this instruction issues. This X register may be used for 

unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

5-110 60396300 A 



SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM. the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range. the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register. a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM. the memory sequence is aborted. 

DESIGN A TORS 1 AND 1 ARE THE SAME 

If the i and j designators have the same value, the initial contents of the designated 

X register is sent to the increment unit. The resulting sum may then be used as an 

address for an SCM reference which reads a word from storage into this same X 

register. 

(Xj) HAS MORE THAN 18 SIGNIFICANT BITS 

If (Xj) is not an integer with less than 18 bits of significance, the lowest order 18 bits 

are extracted and treated as an integer. The highest order bits in (Xj) are ignored. 

54ijk SET Ai TO (Ai) + (Bk) 

0 h k 

14 12 11 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk 

registers. form the sum of (Aj) + (Bk), and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCM using this resulting 

sum as the relative storage address. The type of storage reference is a function of 

the i designator value. 

0: No storage reference 

1, 2, 3. 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register 

60396300 A 5-111 



The increment unit forms the sum of (Aj) + (Bk) in an 18-bit ones complement .mode. 

The resulting sum is delivered simultaneously to the Ai register and to the SAS, if 

required. The SAS treats this quantity as an 18-bit positive integer address. This 

address is relative to the beginning of the SCM field for the current program. If the 

i designator value causes a read from SCM, the result arrives at the Xi register a 

minimum of 6 clock periods later than the result delivered to the Ai register. This 

X register is reserved until the data arrives from storage. If the i designator value 

causes a write into SCM, the 60-bit word being stored is read from the Xi register 

into SCM in the same clock period in which this instruction issues. This X register 

may be used for unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and 

for delivering results back into storage. 

SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range, the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM, the memory sequence is aborted. 

DESIGNATORS 1 AND 1 ARE THE SAME 

If the i and j designators have the same value, the initial contents of the designated 

A register is sent to the increment unit and the result is stored back into the same 

A register. 

55ijk SET Ai TO (Aj) - (Bk) 

g h k 
14 12 11 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk 

registers, form the difference of (Aj) - (Bk), and deliver this result to the Ai register. 

If the i designator is nonzero, a storage reference is made to SCM using this result 

5-112 60396300 A 



as the relative storage address. The type of storage reference is a function of the 

i designator value. 

0: No storage reference 

1. 2, 3, 4, 5: Read from SCM to the Xi register 

6. 7: Write into SCM from the Xi register 

The increment unit forms the difference of (Aj) - (Bk) in an 18-bit ones complement 

mode. The result is delivered simultaneously to the Ai register and to the SAS. if 

required. The SAS treats this quantity as an 18-bit positive integer address. This 

address is relative to the beginning of the SCM field for the current program. If the 

i designator value causes a read from SCM. the result arrives at the Xi register a 

minimum of 6 clock periods later than the result delivered to the Ai register. This 

X register is reserved until the data arrives from storage. If the i designator value 

causes a write into SCM, the 60-bit word _being stored is read from the Xi register 

into SCM in the same clock period in which this instruction issues. This X register 

may be used for unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and 

for delivering results back into storage. ' 

SCM ADDRESS OUT OF RANGE 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range. the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. ff the reference involved writing into 

SCM. the memory sequence is aborted. 

DESIGNATORS i AND j ARE THE SAME 

If the i and j designators have the same value. the initial contents of the designated 

A register is sent to the increment unit and the result is stored back into the same 

A register. 

60396300 A 5-113 



56ijk SET Ai TO (lj) + (lk) 

Q h k I 
14 12 II 9 8 6 5 ! 2 0 

This instruction causes the increment unit to read operands from the Bj and Bk 

registers, form the sum of (Bj) + (Bk), and deliver this result to the Ai register. If 

the i designator is nonzero, a storage reference is made to SCM using this result as 

the relative storage address. The type of storage reference is a function of the 

i designator value. 

0: No storage reference 

1, 2, 3, 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from the Xi register 

The increment unit forms the sum of (Bj) + (Bk) in an 18-bit ones complement mode. 

The result is delivered simultaneously to the Ai register and to the SAS, if required. 

The SAS treats this quantity as an 18-bit positive integer address. This address is 

relative to the beginning of the SCM field for the current program. If the i designator 

value causes a read from SCM, the result arrives at the Xi register a minimum of 

6 clock periods later than the result delivered to the Ai register. This X register is 

reserved until the data arrives from storage. If the i designator value causes a write 

into SCM, the 60-bit word being stored is read from the Xi register into SCM in the 

same clock period in which this instruction issues. This X register may be used for 

unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address 

is out of range, the SCM direct range condition flag is set in the PSD register. This 

flag causes the current program sequence to terminate with an exchange jump to (EEA). 

If the reference involved writing into an X register, a positive zero word is written 

into the X register before the interrupt occurs. If the reference involved writing into 

SCM, the memory sequence is aborted. 

5-114 60396300 A 



57ijk SET Ai TO (Bj) - (Bk) 

a h II 

14 12 II I I • 5 3 2 0 

This instruction causes the increment unit to read operands from the Bj and Bk regis­

ters, form the difference of (Bj) - (Bk), and deliver this result to the Ai register. 

If the i designator is nonzero, a storage reference is made to SCM using this result as 

the relative storage address. The type of storage reference is a function of the i desig­

nator value. 

0: No storage reference 

1, 2, 3, 4, 5: Read from SCM to the Xi register 

6, 7: Write into SCM from register 

The increment unit forms the difference of (Bj) - (Bk) in an 18-bit ones complement 

mode. The result is delivered simultaneously to the Ai register and to the SAS, if 

required. The SAS treats this quantity as an 18-bit positive integer address. This ad­

dress is relative to the beginning of the SCM field for the current program. If the 

i designator value causes a read from SCM, the result arrives at the Xi register a 

minimum of 6 clock periods later than the result delivered to the Ai register. This 

X register is reserved until the data arrives from storage. If the i designator value 

causes a write into SCM, the 60-bit word being stored is read from the Xi register into 

SCM in the same clock period in which this instruction issues. This X register may be 

used for unrelated computation in the next clock period. 

This instruction is intended for fetching operands from storage for computation and for 

delivering results back into storage. 

If this instruction makes a storage reference to SCM, the address is compared with 

(FLS) to determine if the reference is within the assigned SCM field. If the address is 

out of range, the SCM direct range condition flag is set in the PSD register. This flag 

causes the current program sequence to terminate with an exchange jump to (EEA). If 

the reference involved writing into an X register, a positive zero word is written into 

the X register before the interrupt occurs. If the reference involved writing into SCM, 

the memory sequence is aborted. 

60396300 A 
5-115 



60ijK SET Ii TO (Ai) + K 

K 

29 27 26 2423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Aj reg­

ister, form the sum of (Aj) + K. and deliver this result to the Bi register. 

The increment unit forms the sum of (Aj) + K in an 18-bit ones complement mode. 

This instruction is intended for address modification in the increment registers. 

DESIGNATOR i IS ZERO 

If the i designator is zero, this instruction becomes a pass instruction. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel, it is not contin­

ued in the following word. The instruction is executed as if there were a fifth parcel 

in the instruction word and this parcel contained all zeros. 

61 ijK SET Bi TO (Bj) + K 

g h j K 

29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Bj reg­

ister. The increment unit forms the sum of (Bj) + K in an 18-bit ones complement 

mode. 

DESIGNATOR i IS ZERO 

If the i designator is zero, this instruction becomes a pass instruction. 

5-116 60396300 A 



LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel, it is not contin­

ued in the following word. The instruction is executed as if there were a fifth parcel 

in the instruction word and this parcel contained all zeros. 

621jK SET Ii TO (Xii + K 

K 

29 27 26 2423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Xj reg­

ister, form the sum of (Xj) + K, and deliver this result to the Bi register. The incre­

ment unit forms the sum of (Xj) + K in an 18-bit ones complement mode. 

DESIGNATOR i IS ZERO 

If the i designator is zero, this instruction becomes a pass instruction. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel, it is not contin­

ued in the following word. The instruction is executed as if there were a fifth parcel in 

the instruction word and this parcel contained all zeros. 

(Xj) HAS MORE THAN 18 SIGNIFICANT BITS 

If (Xj) is not an integer with less than 18 bits of significance, the lower order 18 bits 

are extracted and treated as an integer. The higher order bits in (Xj) are ignored. 

60396300 A . 5-117 



63ijk SET Bi TO (Xi) + (Bk) 

0 h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Xj and Bk reg­

isters, form the sum of (Xj) + (Bk). and deliver this result to the Bi register. The 

increment unit forms the sum of (Xj) + (Bk) in an 18-bit ones complement mode. Only 

the lower order 18 bits of (Xj) are transmitted to the increment unit. 

DESIGNATOR i IS ZERO 

If the i designator is zero, this instruction becomes a pass instruction. 

(Xj) HAS MORE THAN 18 SIGNIFICANT BITS 

If (Xj) is not an integer with less than 18 bits of significance, the lower order 18 bits 

of (Xj) are extracted and treated as an integer. The higher order bits in (Xj) are 

ignored. 

64ijk SET Bi TO (Al) + (Bk) 

0 h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk registers, 

form the sum of (Aj) + (Bk), and deliver this result to the Bi register. The increment 

unit forms the sum of (Aj) + (Bk) in an 18-bit ones complement mode. If the i desig­

nator is zero, this instruction. becomes a pass instruction. 

65ijk SET Bi TO (Aj) - (Bk) 

h k 

14 12 II 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk registers, 

form the difference of (Aj) - (Bk), and deliver this result to the Bi register. The in­

crement unit forms the difference of (Aj) - (Bk) in an 18-bit ones complement mode. 

If the i designator is zero, this instruction becomes a pass instruction. 

5-118 60396300 A 



66ijk SET Ii TO (lj) + (lk) 

h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Bj and Bk registers, 

form the sum of (Bj) + (Bk),. and deliver this result to the Bi register. The increment 

unit forms the sum of (Bj) + (Bk) in an 18-bit ones complement mode. If the i desig­

nator is zero, this instruction becomes a pass instruction. 

67ijk SET Bi TO (lj) . (Bk) 

Q h k 

14 12 II 9 8 3 2 ·o 

This instruction causes the increment unit to read operands from the Bj and Bk registers, 

form the difference of (Bj) - (Bk), and deliver this result to the Bi register. The in­

crement unit forms the difference of (Bj) - (Bk) in an 18-bit ones complement mode. 

If the i designator is zero, this instruction becomes a pass instruction. 

70ijK SET Xi TO (Ai) + K 

K 

29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Aj reg­

ister, form the sum of (Aj) + K, and deliver this result to the Xi register. The incre­

ment unit forms the sum of (Aj) + K in an 18-bit ones complement mode. The resulting 

18-bit quantity is sign extended by copying the highest order bit of the result into the 

upper 42 bit positions in the Xi register. 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel, it is not continued 

in the following word. The instruction is executed as if there were a fifth parcel in the 

instruction word and this parcel contained all zeros. 

60396300 A 5-119 



71 ijK SET Xi TO (lj) + K 

I( 

29 27262423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Bj reg­

ister, form the sum of (Bj) + K, and deliver this result to the Xi register. The incre­

ment unit forms the sum of (Bj) + K in an 18-bit ones complement mode. The resulting 

18-bit quantity is sign extended by copying the highest order bit of the result into the 

upper 42 bit positions in the Xi register. 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the fo~lowing parcel 

completes the instruction. If this instruction begins in the last parcel, it is not contin­

ued in the following word. The instruction is executed as if there were a fifth parcel 

in the instruction word and this parcel contained all zeros. 

72ijK SET Xi TO (Xj) + K 

g h I j I( 

29 27 26 2423 2120 1817 0 

This is a two-parcel instruction in which the lower order 18 bits are used as an oper­

and K. This instruction causes the increment unit to read an operand from the Xj reg­

ister, form the sum of (Xj) + K, and deliver this result to the Xi register. The incre­

ment unit forms the sum of (Xj) + K in an 18-bit ones complement mode. Only the 

lower order 18 bits of (Xj) are transmitted to the increment unit. The 18-bit result is 

sign extended by copying the highest order bit of the result into the upper 42 bit positions 

in the Xi register. 

LAST PARCEL 

This instruction normally requires two parcels of an instruction word. If this instruction 

begins in the first, second, or third parcel of an instruction word, the following parcel 

completes the instruction. If this instruction begins in the last parcel, it is not continued 

in the following word. The instruction is executed as if there were a fifth parcel in the 

instruction word and this parcel contained all zeros. 

5-120 60396300 A 



(Xj) HAS MORE THAN 18 SIGNIFICANT BITS 

If (Xj) is not an integer with less than 18 bits of significance, the lowest order 18 bits 

are extracted and treated as an integer. The higher order bits in (Xj) are ignored. 

73ijk SET Xi TO (Xj) + (Bk) 

0 h k 
14 12 II 9 8 6 5 3 2 0 

This instruction causes the increment unit to read operands from the Xj and Bk registers, 

form the sum of (Xj) + (Bk), and deliver this result to the Xi register. The increment 

unit forms the sum of (Xj) + (Bk) in an 18-bit ones complement mode, Only the lower 

order 18 bits of (Xj) are transmitted to the increment unit. The 18-bit result is sign 

extended by copying the highest order bit of the result into the upper 42 bit positions in 

the Xi register. 

If (Xj) is not an integer with less than 18 significant bits, the lower order 18 bits are 

extracted and treated as an integer. The higher order bits in (Xj) are ignored. 

7-'ijk SET Xi TO (Aj) + (Bk) 

h k 
14 12 II 9 8 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk registers, 

form the sum of (Aj) + (Bk), and deliver this result to the Xi register. The increment 

unit forms the sum of (Aj) + (Bk) in an 18-bit ones complement mode. The 18-bit result 

is sign extended by copying the highest order bit of the result into the upper 42 bit 

positions in the Xi register. 

60396300 A 5-121 



75ijk SET Xi TO (Ai) - (lk) 

h k 
14 12 II 9 8 6 s 3 2 0 

This instruction causes the increment unit to read operands from the Aj and Bk registers, 

form the difference of (Aj) - (Bk), and deliver this result to the Xi register. The incre­

ment unit forms the difference of (Aj) - (Bk) in an 18-bit ones complement mode. The 

18-bit result is sign extended by copying the highest order bit of the result into the 

upper 42 bit positions in the Xi register. 

76ijk SET Xi TO (Ii) + (Bk) 

0 h k 
14 12 II 9 8 6 s 3 2 0 

This instruction causes the increment unit to read operands from the Bj and Bk registers, 

form the sum of (Bj) + (Bk), and deliver this result to the Xi register. The increment 

unit forms the sum of (Bj) + (Bk) in an 18-bit ones complement mode. The 18-bit 

result is sign extended by copying the highest order bit of the result into the upper 

42 bit positions in the Xi register. 

77ijk SET Xi TO (Bj) - (Bk) 

h k 

14 12 II 9 8 6 s 3 2 0 

This instruction causes the increment unit to read operands from the Bj and Bk registers, 

form the difference of (Bj) - (Bk), and deliver this result to the Xi register. The in­

crement unit forms the difference of (Bj) - (Bk) in an 18-bit ones complement mode. 

The 18-bit result is sign extended by copying the highest order bit of the result into the 

upper 42 bit positions in the Xi register. 

5-122 60396300 A 



PERIPHERAL PROCESSOR UNIT INSTRUCTIONS 6 

This section describes the PPU instructions. Most of these instructions involve manip­

ulation of internal registers in the PPU. The timing of execution for these instructions 

is dominated by the access time of the core storage banks. There are two independent 

banks of storage. One bank contains all of the even storage addresses and the other 

bank contains all of the odd storage addresses. If references to storage alternate 

between even and odd addresses, each reference requires 5 clock periods. If two even 

references (or two odd references) occur consecutively, the storage read/write cycle 

for the first reference must be completed before the second reference can begin. In 

this case, a storage reference requires 10 clock periods. As a result, the execution 

time for most of the PPU instructions is a multiple of 5 clock periods with variation in 

increments of 5 clock periods depending upon the storage addresses involved. 

INSTRUCTION FORMATS 

An instruction may have a 12-bit (Figure 6-1) or a 24-bit (Figure 6-2) format. The 

12-bit format has a six-bit operation code f and a six-bit operand or operand address 

code d. The 24-bit format uses the 12-bit quantity m, which is the contents of the 

next program address (P + 1), with d or the contents of location d to form an 18-bit 

operand or a 12-bit operand address. 

OPERATION 
CODE ___ ,,,,,,A ___ .. 

(P) l.__ __ f __ _.l..,._ __ d __ _. 

II 6 5 0 

DIRECT MODE: 
d =MEMORY ADDRESS OF OPERAND 

INDIRECT MODE: 
d= MEMORY ADDRESS OF THE 

ADDRESS OF THE OPERAND 

NO ADDRESS MODE: 
d=6-BIT OPERAND OR SHIFT COUNT 

2AUl6A 

Figure 6-1. PPU 12-Bit Instruction Format 

60396300 A 6-1 



OPERATION 
CODE 

A 

<P> ..... I __ , ___ l ___ d __ I 
II 6 5 0 

(P +I) .... I ______ m _____ ___.I 
II 0 

INDEXED MOOE: 
d :ADDRESS OF THE INDEX FOR MODIFYING 

THE ADDRESS OF THE OPERAND 

m: BASE ADDRESS OF THE OPERAND 

(d) + m: ADDRESS OF OPERAND 

CONSTANT MODE: 
dm: 18-BIT OPERAND 

2AU17A 

Figure 6-2. PPU 24-Bit Instruction Format 

ADDRESS MODES 

Program indexing is accomplished and operands manipulated in several modes. The 

12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and 

6-bit or 12-bit addresses. Table 6-1 summarizes the addressing modes used for the 

various PPU instructions. 

TABLE 6-1. ADDRESSING MODES FOR PPU INSTRUCTIONS 

Instruction Addressing Mode 
Type Direct Indirect Indexed No Address Constant 

Load 30 40 50 14 20 

Add 31 41 51 16 21 

Subtract 32 42 52 17 

Logical Difference 33 43 53 11 23 

Store 34 44 54 

Replace Add 35 45 55 
--~-- ~- ------- -- - - - -- -

Replace Add One 36 46 56 
t---- -

Replace Subtract One 37 47 57 

Long Jump 01 

Return Jump 02 

Unconditional Jump 03 

Zero Jump 04 

Nonzero .Jump 05 

Positive Jump 06 

Negative Jump 07 

Shift 10 

Logical Product 12 22 

Selective Clear 13 

Load Complement 15 

6-2 60396300 A 



NO ADDRESS MODE 

In this mode. d is taken directly as an operand. This mode eliminates the need for 

storing many constants in storage. The d quantity is considered as a six-bit operand 

or shift count. 

CONSTANT MODE 

In this mode, dm is taken directly as an operand. This mode also eliminates the need 

for storing many constants in storage. The dm quantity uses d as the upper six bits 

and m as the lower 12 bits of an 18-bit constant. 

DIRECT ADDRESS MODE 

In this mode, d is used as the address of the operand. The d quantity specifies one of 

the first 64 addresses in memory (0000 through 0077). 

INDEXED DIRECT ADDRESS MODE" 

In this mode, m + (d) is used as the address of the operand. The d quantity specifies 

the contents of one of the first 64 addresses in memory (0000 through 0077). The m 

quantity is a base address that is added to the contents of d to form a 12-bit address 

for referencing all possible memory locations but one (0000 through 7776), It is not 

possible to reference address 7777. If d is nonzero. the contents of address d is added 

to m to produce a 12-bit operand address (indexed addressing). If d is zero, m is 

taken as the operand address. 

INDIRECT ADDRESS MODE 

In this mode, d specifies an address. The contents of location d is the address of the 

desired operand. Thus, d specifies the operand address indirectly. Indirect addressing 

and indexed addressing require an additional memory reference over direct addressing. 

60396300 A 6-3 



EXAMPLES OF ADDRESS MODES 

Given: 

Then: 

d = 25 

m 100 

Contents o( location 25 = 0150 

Contents of location 150 

Contents of location 250 

Mode 

No address (6-bit operand) 

Constant (18-bit operand) 

Direct address 

Indexed direct address 

Indirect address 

7776 

1234 

RESTRICTIONS ON INSTRUCTION LOOPS 

Instruction A Register 

1425 000025 

2025 250100 

0100 

3025 000150 

5025 001234 

0100 

4025 007776 

Program loops in the PPU must be four instruction words or longer. Also. there is a 

restriction on the number of memory references allowed within the instruction loop. 

The following criteria may be used for any size instruction loop. 

The number .of clock periods required to execute each pass through the instruction loop 

must be equal to or greater than 15N. 

N the number of memory references in the instruction loop to any one 

stack, including the· references to obtain instructions in that stack. 

In the following example. there are seven references to bank 1, stack 1. The total 

execution time for the pass is 80 clock periods. Since 15N equals 105 clock periods, 

this instruction loop violates the restriction. 

Address Instruction Time (CP) Location 

1000 4023 25 0023=1023 

1001 4133 25 0033=1033 

1002 4243 25 0043=1043 

1003 0474 5 

6-4 60396300 A 



The restriction may be ignored if the number of passes through the loop does not exceed 

2000/N. In the previous example. the loop may be used if the number of passes does 

not exceed 2000/7 or 285, 

The restrictions ensure that the PPU memory stacks do not exceed a duty cycle of 
I 

66- 2/ 3 percent. or if this limit is exceeded. the stack is not referenced more than 

2000 times at this duty cycle. 

INSTRUOION TIMING 

Execution times for the PPU instructions are listed in Table 6-2. The Timing Notes 

column indicates the assumptions made for the time listed in the Execution Time column 

for that instruction. The Timing Notes are at the end of the table. 

TABLE 6-2. PERIPHERAL PROCESSOR UNIT INSTRUCTION TIMING 

Mnemonic Instruction Execution Timing 
Code Code Description Time (CP) Notes 

ESN OOxx Error Stop - -
LJM OlOOm Long Jump to m 10 or 15 1. 2 

LJM Oldm Long Jump to m + (d) 15. 20. or 25 1. 2 

RJM 0200m Return Jump to m 15 or 20 1. 2 

RJM 02dm Return Jump to m + (d) 20. 25 or 30 1. 2 

UJN 03d Unconditional Jump d 7 or 10 2 

ZJN 04d Zero Jump d 5 3, 4 

NJN 05d Nonzero Jump d 5 3 

PJN 06d Positive Jump d 5 3 

MJN 07d Negative Jump d 5 3 

SHN lOd . Shift (A) by d 6 5 

LMN lld Logical Difference (A) and d 5 6 

LPN 12d Logical Product (A) and d 5 6 

SCN 13d Selective Clear (A) by d 5 6 

LDN 14d Load d 5 6 

LCN 15d Load Complement d 5 6 

ADN 16d Add (A)+ d 5 6 

SBN 17d Subtract (A) - d 5 6 

LDC 20dm Load dm 10 1, 6 

ADC 21dm Add (A)+ dm 10 1. 6 

LPC 22dm Logical Product (A) and dm 10 1. 6 

LMC 23dm Logical Difference (A) and dm 10 1. 6 

60396300 A 6-5 



TABLE 6-2. PERIPHERAL PROCESSOR UNIT INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Execution Timing 
Code Code Description Time (CP) Notes 

PSN 24xx Pass 5 6 

25xx ' Pass 5 6 

26xx Pass I 5 6 

27xx Pass 5 6 

LDD 30d Load (d) 15 7 

ADD 3ld Add (A) + (d) 15 7 

SBD 32d Subtract (A) - (d) 15 7 

LMD 33d Logical Difference (A) and (d) 15 7 

STD 34d Store (A) at (d) 15 7 

RAD 35d Replace Add (A) + (d) 25 7 

AOD 36d Replace Add One (d) 25 7 

SOD 37d .~eplace Subtract One (d) 25 7 

LDI 40d . Load ((d)) 15 or 25 2 

ADI 4ld Add (A) + ((d)) 15 or 25 2 

SBI 42d Subtract (A) - ((d)) 15 or 25 2 

LMI 43d Logical Difference (A) and ((d)) 15 or 25 2 

STI 44d Store (A) at ( (d)) 15 or 25 2 

RAI 45d Replace Add (A) + ((d)) 25 or 35 2 

AOI 46d Replace Add One ((d)) 25 or 35 2 

SOI 47d Replace Subtract One ((d)) 25 or 35 2 

LDM 5000m Load (m) 20 1, 7 

LDM 50dm Load (m + (d)) 20 or 30 1, 2 

ADM 5100m Add (A)+ (m) 20 1, 7 

ADM 51dm Add (A) + (m+(d)) 20 or 30 1, 2 

SBM 5200m Subtract (A) - (m) 20 1, 7 

SBM 52dm Subtract (A) - (m + (d)) 20 or 30 1, 2 

LMM 5300m Logical Difference (A) and (m) 20 1, 7 

LMM 53dm Logical Difference (A) and (m+(d)) 20 or 30 1, 2 

STM 5400m Store (A) at (m) 20 1, 7 

STM 54dm Store (A) at (m + (d)) 20 or 30 1, 2 

RAM 5500m Replace Add (A) + (m) 30 1, 7 
RAM 55dm Replace Add (A) + (m + (d)) 30 or 40 l, 2 

AOM 5600m Replace Add One (m) 30 1, 7 

AOM 56dm Replace Add One (m + (d)) 30 or 40 1, 2 

SOM 5700m Replace Subtract One (m) 30 1, 7 

SOM 57dm Replace Subtract One (m + (d)) 30 or 40 1, 2 

FIM 60dm Jump to m if Channel d Input 
Word Flag Set 10 1. 8 

6-6 60396300 A 



TABLE. 6-2. PERIPHERAL PROCESSOR UNIT INSTRUCTION TIMING (Cont'd) 

Mnemonic Instruction Execution Timing 
Code Code Description Time (CP) Notes 

EIM 6ldm Jump tom if Channel d Input 
' Word Flag Not Set 10 1. 8 

IRM 62dm Jump tom if Channel d Input 
Record Flag Set 10 1. 8 

NIM 63dm Jump to m if Channel d Input 
Record Flag Not Set 10 1. 8 

FOM 64dm Jump tom if Channel d Output 
Word Flag Set 10 1. 8 

EOM 65dm Jump tom if Channel d Output 
Word Flag Not Set 10 1. 8 

ORM 66dm Jump to m if Channel d Output 
Record Flag Set 10 1. 8 

NOM 67dm Jump to m if Channel d Output 
Record Flag Not Set 10 1. 8 

IAN 70d Input to A on Channel d 9 9 

IAM 7ldm Input (A) Words to m on 
Channel d 24 or 42 1. 10 

OAN 72d Output from A on Channel d 9 11 

OAM 73dm Output (A) Words from m on 
Channel d 34 1. 12 

RFN 74d Set Output Record Flag on 
Channel d 5 6 

75xx Pass 5 6 

76xx Pass 5 6 

ESN 77xx Error Stop - -

TIMING NOTES 
1. The storage reference for the second word of the current instruction word must 

be to the alternate bank. 

2. The shorter time is obtained when full use is made of bank phasing (back-to­

back storage references to alternate banks). 

3. The time listed assumes that the jump conditions are not met. If the jump is 

taken, the time is the same as for the 03d instruction. 

4. The d designator cannot be 00 or 77. 

5. The time listed assumes that d equals three or less. The time increases by 

1 clock period for each shift beyond three. The maximum time is 34 clock 

periods. 

60396300 A 6-7 



6. The storage reference(s) following the one for the current instruction word must 

be to alternate bank(s). 

7. The storage reference(s) following the one for the current instruction word may 

be to either bank. 

8. The time listed assumes that either the jump conditions are not met or the 

jump is taken to the alternate bank. If the jump is taken to the same bank, 

the time is 15 clock periods. 

9. The time listed assumes that channel d input word flag is set. If not set, add 

the time waiting for the flag to set. 

10. The first time listed is for a two-word block input terminated by reducing (A) 

to zero. The following assumptions are made. 

a. A count of 2 is in the A register. 

b. The channel d input word flag is initially set. 

c. The first data storage reference is to the alternate bank. 

d. There is a 2-clock period response time between the resume pulse and the 

setting of the input word flag. 

The second time listed is for a three-word block input terminated by setting the 

channel d input record flag. The following assumptions are made. 

a. The channel d input word flag is initially set. 

b. The first data storage reference is to the alternate bank. 

c. There is a 2-clock period response time between the resume pulse and the 

setting of the input word flag. 

11. The time listed assumes that the channel d output word flag is clear. If not clear, 

add the time waiting for the flag to clear. 

12. The time listed is for a three-word block output. The following assumptions are 

made. 

6-8 

a. A count of 3 is in the A register 

b. The channel d output word flag is initially clear. 

c. The first data storage reference is to the alternate bank. 

d. The device has a 2-clock period response time from receipt of word pulse 

to transmission of resume pulse. 

60396300 A 



DESCRIPTION OF INSTRUCTIONS 

This part of the manual describes the PPU instruction in detail. Each instruction is de­

scribed separately. Instruction designators are listed and defined in Table 6-3. 

TABLE 6-3. PPU INSTRUCTION DESIGNATORS 

Des~nator Use 

f 6-bit instruction code 

fd 12-bit instruction code 

d 6-bit operand or address 

m 12-bit operand or address 

dm 18-bit operand 

(d) Contents of location specified by d 

((d)) Contents of location whose address is contained in location specified by d 

(m) Contents of location specified by m 

x Unused designator 

A Arithmetic register 

(A) Contents of A register 

60396300 A 6-9 



OOxx ERROR STOP 

f 
II • 5 0 

This instruction causes the PPU program execution to stop and to indicate a program 

error condition to the MCU. The PPU can be restarted only by a dead start condition. 

OlOOm LONG JUMP TO m 

I f d m 
,23 1117 121\11 o, 

" " (P) (P+ I) 

This instruction terminates the current program sequence with a jump to a new sequence 

beginning at address m. The value of d must be zero for this instruction. The instruc­

tion begins by reading the quantity m from storage location (P) + 1 to the X register. 

The address for the new program sequence is formed by adding (X) to a zero value in 

the Q register. This address is then used to fetch the first word of the new program 

sequence. 

01 d m LONG JUMP TO m + (d) 

f d m 

,~2-3 ____ ,_•~w-r _____ 12J,,~1_1 ____ """"'" ______ 0_, 

(P) (P+ I) 

This instruction terminates the current program sequence with a jump to a new sequence 

beginning at address m + (d). The value of d must be nonzero for this instruction. 

The instruction begins by reading the quantity m from storage location (P) + 1 and hold­

ing this quantity in the Q register. The contents of location d is then read into the 

X register. The address for the new program sequence is formed by adding (Q) to (X) 

in a 12-bit ones complement mode. The resulting address is used to fetch the first 

word of the new program sequence. 

6-10 60396300 A 



0200m RETURN JUMP TO m 

f d m 
23 18 17 12 II 0 
'----..----\""---.... ----' 

(P) (P+ I) 

This instruction interrupts the current program sequence and inserts the execution of a 

subroutine between the current instruction in the present sequence and the following 

instruction. The called subroutine must have a common exit point in the form of a long 

jump to m instruction preceding the entry point. The return jump instruction inserts 

the exit address in the m location of the subroutine exit and then jumps to the entry 

point in the following word. 

The value of d in this instruction must be zero. The instruction begins by reading the 

quantity m from storage location (P) + 1 to the Q register. This quantity is then used 

as a storage address to store (P) + 2 at storage location m. The first word of the new 

program sequence is then read from storage location m + 1. 

02dm RETURN JUMP TO m + (d) 

I f d m 
,23 18 17 

y 12 "" y 
o, 

(P) (P +I) 

This instruction interrupts the current program sequence and inserts the execution of a 

subroutine between the current instruction in the present sequence and the following in­

struction. The called subroutine must have a common exit point in the form of a long 

jump to m instruction preceding the entry point. The return jump instruction inserts 

the exit address in the m location of the subroutine exit and then jumps to the entry 

point in the following word. 

The value of d in this instruction must be nonzero. The instruction begins by reading 

the quantity m from storage location (P) + 1 to the Q register. The contents of location 

d is then read into the X register. The address for the new program sequence is 

formed by adding (Q) to (X) in a 12-bit ones complement mode. The resulting address 

is used to store (P) + 2 in the m field of the called subroutine exit instruction. The 

first word of the new program is then read from the following storage location. 

60396300 A 6-11 



03d UNCONDITIONAL JUMP d 

f d 
II I S 0 

This instruction interrupts the current program sequence with a jump to a new sequence 

beginning at an address incrementally related to the current program address. The 

d designator may specify a new sequence which begins at an address either forward or 

backward from the current address by an amount no greater than 31 (decimal) locations. 

The d designator is considered as a six-bit ones complement number in determining the 

increment for the jump. 

As an example, consider a d value of 16 (octal). The new program sequence in this 

case begins with an instruction word located .16 (octal) locations beyond the location of 

the 03d instruction. Now consider a d value of 55 (octal). The new program sequence 

in this case begins with an instruction word located 22 (octal) locations before the loca­

tion of the 03d instruction. Values of 00 and 77 for the d designator must not be used 

with this instruction. These two values cause the PPU program to lock up and require 

dead starting the system with a new program. 

04d ZERO JUMP d 

f d 
II 6 s 0 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the contents of the A register. 

If (A) = 000000, the current program sequence is terminated with a jump to an address 

specified by the d designator. If (A) ~ 000000, the current program sequence continues 

with the execution of the next instruction. A value of (A) = 777777 is not considered as 

zero for this instruction. 

If the jump is taken, the new program sequence begins at an address either forward or 

backward from the current address by an amount not greater than 31 (decimal) locations. 

The d designator is considered as a six-bit ones complement number in determining the 

increment for the jump. (Refer to instruction 03d for examples.) 

6-12 60396300 A 



05d NONZERO JUMP d 

f d 
II I S 0 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the contents of the A register. 

If (A) f- 000000, the current program sequence is terminated with a jump to an address 

specified by the d designator. If (A) = 000000, the current program sequence continues 

with the execution of the next instruction. A value of (A) = 777777 is not considered as 

zero for this instruction. 

If the jump is taken, the new program sequence begins at an address either forward or 

backward from the current address by an amount not greater than 31 (decimal) locations. 

The d designator is considered as a six-bit ones complement number in determining the 

increment for the jump. (Refer to instruction 03d for examples.) 

06d POSITIVE JUMP d 

f d 
II I S 0 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the contents of the A register. If 

the highest order bit in the A register has a zero value, the current program sequence 

is terminated with a jump to an address specified by the d designator. If the highest 

order bit in the A register has a one value, the current program sequence continues 

with the execution of the next instruction. 

If the jump is taken, the new program sequence begins at an address either forward or 

backward from the current address by an amount not greater than 31 (decimal) locations. 

The d designator is considered as a six-bit ones complement number in determining the 

increment for the jump. (Refer to in~truction 03d for examples.) 

60396300 A 6-13 



07d NEGATIVE JUMP d 

f d 
II 6 5 0 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the contents of the A register. 

If the highest order bit in the A register has a one value, the current program sequence 

is terminated with a jump to an address specified by the d designator. If the highest 

order bit in the A register has a zero value, the current program sequence continues 

with the execution of the next instruction. 

If the jump is taken, the new program sequence begins at an address either forward or 

backward from the current address by an amount no greater than 31 (decimal) locations. 

The d designator is considered as a six-bit ones complement number in determining the 

increment for the jump. (Refer to instruction 03d for examples.) 

1 0 d SH I FT (A) BY d 

f d 

II 6 5 0 

This instruction shifts the contents of the A register either to the right open ended or 

to the left circularly as specified by the d designator. The d designator is treated as 

a six-bit ones complement number in this instruction. If the highest order bit in the 

d designator is zero, the contents of the A register is shifted circularly to the left by 

the number of bit positions indicated in the value of the d designator. If the highest 

order bit in the d designator· is one, the contents of the A register is shifted open ended 

to the right by the complement of the value of the d designator. 

In a left circular shift, the contents of the A register is shifted one bit position at a 

time. In each shift, the lowest order bit position in the register is filled by the bit 

previously held in the highest order bit position. No bits are lost in this process but 

are repositioned toward the higher order bit positions. A d designator value of 00 

causes no shift to take place. A d designator value greater than 18 (decimal) causes 

the contents of the A register to shift completely around the register. A maximum of 

31 (decimal) shift count may be used. 

6-14 60396300 A 



In a right open ended shift. the contents of the A register is shifted one bit position at 

a time toward the lower order bit positions in the register. The highest order bit 

position in the A register is filled with a zero value as each shift occurs. The lowest 

order bit in the A register is discarded as each shift occurs. A maximum of 31 

(decimal) shift count may b~ used. For all shift counts larger than 17 (decimal), the 

final A register value is 000000, A designator value of 77 causes no shift to take place. 

lld LOGICAL DIFFERENCE (A) AND d 

f d 
II • 5 0 

This instruction forms in the A register the logical difference of the original (A) and 

the d designator considered as a six-bit positfve integer. The highest order 12 bits in 

the A register are not affected by this operation. 

The logical difference is the result of a bit-by-bit comparison of the two binary quanti­

ties. If two corresponding bits are equal. the resulting bit is zero. If unequal. the 

result is one. 

12d LOGICAL PRODUCT (A) AND d 

f d 

II • 5 0 

This instruction forms in the A register the logical product of the original (A) and the 

d designator considered as a six-bit positive integer. The highest order 12 bits in the 

A register are always cleared to zero by this instruction. 

The logical product is the result of a bit-by-bit comparison of the two binary quantities. 

If two corresponding bits are ones. the resulting bit is one. If not. the result is zero. 

60396300 A 6-15 



13d SELECTIVE CLEAR (A) BY d 

f d 
II 6 !5 0 

This instruction forms in the A register the logical product of the original (A) and the 

complement of the d designator considered as a six-bit positive integer. The highest 

order 12 bits in the A register are not affected by this instruction. 

The selective clear is a bit-by-bit comparison of the two binary quantities. Any of the 

lower six bits in the A register are cleared if the corresponding bits of d are set. 

14d LOAD d 

f d 
II I 5 0 

This instruction enters in the A register a copy of the d designator considered as a 

six-bit positive integer. The highest order 12 bits in the A register are always cleared 

to zero by this instruction. 

15d LOAD COMPLEMENT d 

I f d 
II 6 !5 0 

This instruction enters in the· A register a complemented copy of the d designator. The 

highest order 12 bits in the A register are always set to one by this instruction. The 

lowest order six bits are bit-by-bit complements of the corresponding bits in the d des­

ignator. 

6-16 60396300 A 



16d ADD (A) + d 

This instruction adds the d designator, considered as a six-bit positive quantity, to the 

current contents of the A register. The result is left in the A register. The addition 

is performed irr an 18-bit ones complement mode. An 18-bit operand is formed from 

the d designator by adding 12 higher order zero bits. 

17d SUBTRACT (A) - d 

f d 
II I 5 0 

This instruction subtracts the d designator, considered as a six-bit positive quantity, 

from the current contents of the A register. The result is left in the A register. An 

18-bit operand is formed from the d designator. This operand consists of 12 one bits 

in the highest order bit positions and six lowest order bits which are bit-by-bit comple­

ments of the corresponding bits in the d designator. This 18-bit operand is added to 

the original contents of the A register in an 18-bit ones complement mode. 

20dm LOAD dm 

f d m 
23 18 17 12 II 0 

(P) (P + •> 

This instruction clears the A register and enters an 18-bit operand consisting of the d 

and m designators. The d designator is inserted in the highest order six-bit positions 

and the m designator is inserted in the lowest order 12-bit positions. 

60396300 A 6-17 



21dm ADD (A) + dm 

f I . d m 

\~2_3 _____ 1a~.-'1 _____ 12_,\~1i ______ ·~------o~, 
(P) · (P+I) 

This instruction adds an 18-bit operand consisting of the d and m designators to the 

current contents of the A register. The result is left in the A register. The addition 

·is performed in an 18-bit ones complement mode. The d designator forms the highest 

order six bits and the m designator completes the lowest order 12 bits. 

22dm LOGICAL PRODUCT (A) AND d m 

f d m 
23 18 17 12 II 0 
\~------~vr------'"~----~vr------'' 

(P) (P+IJ 

This instruction forms the logical product of (A) and an 18-bit operand consisting of 

the d and m designators. The result is left in the A register. The d designator forms 

the highest order six bits and the m designator completes the lowest order 12 bits. 

The logical product is the result of a bit-by-bit comparison of the two binary quantities. 

If two corresponding bits are ones, the resulting bit is one. If not, the result is zero. 

23dm LOGICAL DIFFERENCE (A) AND dm 

I f 
1817 

y 
(P) 

d 

12,\~1_1 ____ .....,., ______ o..6, 
(P +I) 

This instruction forms the logical difference of (A) and an 18-bit operand consisting of 

the d and m designators. The result is left in the A register. The d designator forms 

the highest order six bits and the m designator completes the lowest order 12 bits. 

The logical difference is the result of a bit-by-bit comparison of the two binary quan­

tities. If two corresponding bits are equal, the resulting bit is one. If unequal, the 

result is zero. 

6-18 60396300 A 



2.4xx PASS 

25xx PASS 

26xx PASS 

27xx PASS 

f 
II 6 5 0 

These four instructions are identical and perform no logical function. Each instruction 

results in a 5-clock-period delay. 

30d LOAD (d) 

f d 
II 6 5 0 

This instruction clears the A register and enters a 12-bit operand from location d. The 

operand is entered in the A register as a 12-bit positive int'eger. The highest order 

six bits in the A register are always cleared by this instruction. 

31d ADD (A) + (d) 

.I f d 
II 6 5 0 

This instruction adds the contents of location d, considered as a 12-bit positive quantity, 

to the current contents of the A register. The result is left in the A register. The 

addition is performed in an 18-bit ones complement mode. An 18-bit operand is formed 

from location d contents by adding six higher order zero bits. 

60396300 A 6-19 



32d SUBTRACT (A) - (d) 

f d 
II I 5 0 

This instruction subtracts the contents of location d, considered as a 12-bit positive 

quantity, from the current contents of the A register. The result is left in the A reg­

ister. The operation is performed by adding the complement of location d contents to 

(A) in an 18-bit ones complement mode. An 18-bit operand is formed for the addition 

by forcing the highest order six bits to a one value. The lowest order 12 bits are the 

bit-by-bit complement of location d contents. 

33d LOGICAL DIFFERENCE (A) AND (d) 

I f d 
II 6 5 0 

This instruction forms in the A register the logical difference of the contents of location 

d, considered as a 12-bit positive quantity, and the original (A). The highest order 

six bits in the A register are not affected by this operation. 

The logical difference is the result of a bit-by-bit comparison of the two binary quan-
' tities. If any corresponding bits are equal, the resulting bit is zero. If unequal, the 

result is one. 

34d STORE (A) AT (d) 

f d 
II 6 5 0 

This instruction stores the lowest order 12 bits of (A) in location d. The contents of 

the A register is not altered in this process. 

6-20 60396300 A 



35d REPLACE ADD (A) + (d I 

f d 
II • 5 0 

This instruction adds the contents of location d, considered as a 12-bit positive quantity, 

to the current contents of the A register. The result is left in the A register and is 

also stored in location d. The addition is performed in an 18-bit ones complement 

mode. An 18-bit operand is formed from location d contents by adding six higher order 

zero bits. The result stored in location d is the lowest order 12 bits of the resulting 

18-bit sum. 

36d REPLACE ADD ONE (d) 

f d 
II I !5 0 

This instruction increases the contents of location d by one count. Execution begins by 

clearing the A register and entering a value of plus one. The contents of location d is 

read from storage to the X register and then added to (A) in an 18-bit ones complement 

mode. The location d value is treated as a 12-bit positive quantity in this process. 

An 18-bit operand is formed from (X) by adding six higher order zero bits. The result 

is left in the A register, and the lowest order 12 bits are 'stored in location d. Note 

that the arithmetic is essentially twos complement as viewed by location d, and the 

quantity in the A register is not necessarily equal to the result in location d. 

37d REPLACE SUBTRACT ONE (d) 

f d 
II I 5 0 

This instruction decreases the contents of location d by one count. Execution begins by 

clearing the A register and entering a value of minus one. The contents of location d 

is read from storage to the X register and then added to (A) in an 18-bit ones comple­

ment mode. The location d value is treated as a 12-bit positive quantity in this process. 

An 18-bit operand is formed from (X) by adding six higher order zero bits. The result 

is left in the A register, and the lowest order 12 bits are stored in location d. Note 

60396300 A 6-21 



that the arithmetic is essentially twos complement as viewed by location d, and the 

quantity in the A register is not necessarily equal to the result in location d. 

40d LOAD ((d)} 

f d 
II 6 !5 0 

This instruction clears the A register and enters a 12-bit operand from storage. The 

highest order six bits in the A register are always cleared by this instruction. 

Instruction execution begins with a storage reference to location d. The contents of 

this location is read into the X register. A second storage reference is then made 

using (X) as the storage address. This operand is read into the A register, and the 

highest order six bits in the A register are cleared. A third storage reference is then 

initiated to read the next instruction word. 

41d ADD (A) + ((d)) 

f d 
II 6 !5 0 

This instruction reads an operand from storage and adds it to the current contents of 

the A register. The addition is performed in an 18-bit ones complement mode. An 

18-bit operand is formed from the 12-bit storage operand by adding six higher order 

zero bits. The address for the operand is contained in location d. 

Instruction execution begins with a storage reference to location d. The contents of this 

location is read into the X register. A second storage reference is then made using 

(X) as the storage address. This operand is read into the X register and then added 

to the contents of the A register. A third storage reference is then initiated to read 

the next instruction word. 

6-22 60396300 A 



.42d SUBTRACT (A) - ((d)) 

f d 
II I 5 0 

This instruction reads an operand from storage and subtracts it from the current con­

tents of the A register. The result is left in the A register. The address for the 

operand is contained in location d. The operation is performed by adding the comple­

ment of the operand to (A) in an 18-bit ones complement mode. An 18-bit operand for 

the addition is formed from the 12-bit storage operand by forcing the highest order six 

bits to a one value. The lowest order 12 bits are the bit-by-bit complement of the 

storage operand values. 

Instruction execution begins with a storage reference to location d. The contents of 

this location is read into the X register. A second storage reference is then made 

using (X) as the storage address. This operand is read into the X register and then 

subtracted from the contents of the A register. A third storage reference is then 

initiated to read the next instruction word • 

.43d LOGICAL D.IFFERENCE (A) AND ((d)) 

f d 
II 8 I 0 

This instruction forms in the A register the logical difference of an operand read from 

storage and the original (A). The highest order six bits in the A register are not 

affected by this operation. The storage address for the operand is contained in loca­

tion d. 

The logical difference is the result of a bit-by-bit comparison of the two binary quan­

tities. If the corresponding bits are equal, the resulting bit is zero. If unequal, the 

result is one. 

Instruction execution begins with a storage reference to location d. The contents of 

this location is read into the X register. A second reference to storage is made using 

(X) as the storage address. This operand is read into the X register, and the logical 

difference is then formed and entered into the A register. A third storage reference 

then reads up the next instruction word. 

60396300 A 6-23 



.Ud STORE (A) AT ((d)) 

.1 f d 
II 6 5 0 

This instruction stores the lowest order 12 bits of (A) in a storage location specified by 

the contents of location d. The contents of the A register is not altered in this process. 

Execution begins with a storage reference to location d. The contents of this location 

is read into the X register. A second reference to storage is made using (X) as the 

storage address. The data read from storage is discarded in this reference, and the 

lowest order 12 bits of (A) are stored. A third storage reference then reads up the 

next instruction word. 

45d REPLACE ADD (A) + ((d)) 

I f d 
II 6 5 0 

This instruction reads an operand from storage and adds it to the current contents of 

the A register. The result is then left in the A register and is also stored in the same 

memory location from which the operand was read. The addition is performed in an 

18-bit ones complement mode. An 18-bit operand is formed from the 12-bit storage 

operand by adding six higher order zero bits. The result returned to storage is the 

lowest order 12 bits of the final (A). The storage address for reading the operand and 

storing the result is contained in location d. Note that the result stored is not neces­

sarily equal to the result left in the A register. 

There are four storage references required in the execution of this instruction. The 

first reference reads the contents of location d into the X register and then into the 

Q register. A second storage reference is made using (X) as the storage address. This 

operand is read into the X register and then added to (A). A third storage reference 

stores the lowest order 12 bits of the resulting sum using (Q) as the storage address. 

The fourth storage reference reads up the next instruction word. 

6-24 60396300 A 



46d REPLACE ADD ONE ((d)) 

f d 

II I 5 0 

This instruction reads an operand from storage, increases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is contained in location d. The result is left in the 

A register as well as in storage. 

Execution begins by clearing the A register and entering a value of plus one. The 

operand is then read from storage and added to (A) in an 18-bit ones complement mode. 

The operand is treated as a 12-bit positive quantity in this process. An 18-bit operand 

is formed from the 12-bit storage operand by adding six higher order zero bits. The 

result is left in the A register, and the lowest order 12 bits are returned to storage. 

Note that the arithmetic is essentially twos complement as viewed from storage, and 

the quantity in the A register is not necessarily equal to the result in storage. 

There are four storage references required in the execution of this instruction. The 

first reference reads the contents of location d into the X register and then into the 

Q register. A second storage reference is made using (X) as the storage address. 

This operand is read into the X register and then added to (A). A third storage refer­

ence stores the lowest order 12 bits of the resulting sum using (Q) as the storage ad­

dress. The fourth storage reference reads up the next instruction word. 

47d REPLACE SUBTRACT ONE ((d)) 

f d 

II 6 5 0 

This instruction reads an operand from storage, decreases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is contained in location d. The result is left in the 

A register as well as in storage, 

Execution begins by dearing the A register and entering a value of minus one. The 

operand is then read from storage and added to (A) in an 18-bit ones complement mode. 

60396300 A 6-25 



The operand is treated as a 12-bit positive quantity in this process. An 18-bit operand 

is formed from the 12-bit storage operand by adding six higher order zero bits. The 

result is left in the A register, and the lowest order 12 bits are returned to storage. 

Note that the arithmetic is essentially twos complement as viewed from storage, and 

the quantity in the A register is not necessarily equal to the result in storage. 

There are four storage references required in the execution of this instruction. The 

first reference reads the contents of location d into the Q register. A second storage 

reference is made using (X) as the storage address. This operand is read into the 

X register and then added to (A). A third storage reference stores the lowest order 

12 bits of the resulting sum using (Q) as the storage address. The fourth storage refer­

ence reads up the next instruction word. 

5000m LOAD (m) 

f 

• 

1817 
y 

( P) 

d m 
12,\~1_1 _____ , ______ o_, 

v 
(P+ I) 

This instruction clears the A register and enters a 12-bit operand from storage. The 

address for the operand is contained in the m designator for this instruction. The oper­

and is entered in the A register as a 12-bit positive integer. The highest order six bits 

in the A register are always cleared. 

Instruction execution begins with a storage reference for the m designator. This quan­

tity is read into the X register. A second storage reference is then made using (X) as 

the storage address. This operand is read into the X register and then entered in the 

A register. A third storage· reference is made to read the next instruction word. 

6-26 60396300 A 



50dm LOAD (m + (d)) 

f d m 
Z3 18 17 12 II 0 
--~~~.,...~~--\~~~~.~~~~-'' 

(P) '(P +I) 

This instruction clears the A register and enters a 12-bit operand from storage. The 

address for the operand is formed by adding the m designator and the contents of loca­

tion d in a 12-bit ones complement mode. The operand is entered in the A register as 

a 12-bit positive integer. The highest order six bits in the A register are always 

cleared. The d designator must have a nonzero value for this instruction. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q) + (X) as a storage address for the operand. This quantity is read 

into the X register and then entered in the A register. The fourth storage reference 

reads the next instruction word • 

• 

5100m ADD (A) + (m) 

f d m 
\23 18 17 12" II 

v v 
o, 

( P) (P+ I) 

This instruction reads an operand from storage and adds it to the current contents of 

the A r·egister. The addition is performed in an 18-bit ones complement mode. An 

lB-hit operand is formed from· the 12-bit storage operand by adding six higher order 

zero bits. The storage address for the operand is contained in the m designator for 

this instruction. 

Instruction execution begins with a storage reference for the m designator. This quantity 

is read into the X register. A second storage reference is then made using (X) as the 

storage address. This operand is read into the X register and then entered in the 

A register. A third storage reference is made to read the next instruction word. 

60396300 A 6-27 



51dm ADD (A) + (m + (d)) 

f d m 
23 18 17 12 II 0 

\._ ____ v, ___ _,H._ ____ v.-----' 
(P) (P+ I) 

This instruction reads an operand from storage and adds it to the current contents of 

the A register. The addition is performed in an 18-bit ones complement mode. An 

18-bit operand is formed from the 12-bit storage operand by adding 6 higher order zero 

bits. The storage address for the operand is formed by adding the m designator and 

the contents of location d in a 12-bit ones complement mode. The d designator must 

have a nonzero value for this instruction. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q} + (X) as a storage address for the operand. This quantity is read 

into the X register and then entered in the A register. The fourth storage reference 

reads the next instruction word . 
• 

6-28 60396300 A 



520.0m SUBTRACT (A) - (m) 

f d m 
23 18 17 12 II 0 
----v----.1 '---.... v----.J' 

(P) (P +I) 

This instruction reads an operand from storage and subtracts it from the current con­

tents of the A register. The result is left in the A register. The storage address for 

the operand is contained in the m designator for this instruction. The operation is per­

formed by adding the complement of the operand to (A) in an 18-bit ones complement 

mode. An 18-bit operand for the addition is formed from the 12-bit storage operand by 

forcing the highest order six bits to a one value. The lowest order 12 bits are the 

bit-by-bit complement of the storage operand values. 

Instruction execution begins with a storage reference for the m designator. This quan­

tity is read into the X register. A second storage reference is then made using (X) as 

the storage address. This operand is read into the X register and then subtracted in 

the A register. A third storage reference is made to read the next instruction word. 

52dm SUBTRACT (A) - (m + (d)) 

f d m 
23 18 17 12 II 0 

(P) ( P+ I) 

This instruction reads an operand from storage and subtracts it from the current con­

tents of the A register. The result is left in the A register. The address for the 

operand is formed by adding the m designator and the contents of location d in a 12-bit 

ones complement mode. The. arithmetic operation is performed by adding the comple­

ment of the operand to (A) in an 18-bit ones complement mode. An 18-bit operand for 

the addition is formed from the 12-bit storage operand by forcing the highest order six 

bits to a value of one. The lowest order 12 bits are the bit-by-bit complement of the 

storage operand values. The d designator must have a nonzero value for this instruction. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q) + (X) as a storage address for the operand. This quantity is read 

into the X register and then subtracted in the A register. The fourth storage reference 

reads the next instruction word. 

60396300 A 6-29 



5300m LOGICAL DIFFERENCE (A) AND (m) 

f d m 
23 18 17 12 II 0 

(P) o( P+ I) 

This instruction forms in the A register the logical difference of an operand read from 

storage and the original (A). The highest order six bits in the A register are not 

affected by this operation. The storage address for the operand is contained in the 

m designator for this instruction. 

The logical difference is the result of a bit-by-bit comparison of the two binary quan­

tities. If two corresponding bits are equal, the resulting bit is zero. If unequal, the 

result is one. 

Instruction execution begins with a storage reference for the m designator. This quan­

tity is read into the X register. A second storage reference is then .made using (X) as 

the storage address. This operand is read into the X register and the logical difference 

entered in the A register. A third storage reference is made to read the next instruc­

tion word. 

53dm LOGICAL DIFFERENCE (A) AND (m + (d)) 

I f d m 
23 18 17 12 11 0 

(P) ( P+ I) 

This instruction forms in the A register the logical difference of an operand read from 

storage and the original (A). The highest order six bits in the A register are not 

affected by this operation. The address for the operand is formed by adding the m 

designator and the contents of location d in a 12-bit ones complement mode. The 

d designator must have a nonzero value for this instruction. 

The logical difference is the result of a bit-by-bit comparison of the two binary quanti­

ties. If two corresponding bits are equal, the resulting bit is zero. If unequal, the 

result is one. 

6-30 60396300 A 



There are four storage refer:ences required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q) + (X) as a storage address for the operand. This quantity is read 

into the X register and the logical difference entered in the A register. The fourth 

storage reference reads the next instruction word. 

5400m STORE (A) AT (m) 

f d m 
23 18 17 12 II 0 
._~~~v-~~~~'~~~---v--~~.-J' 

(P) (P +I) 

This instruction stores the lowest order 12 bits of (A) in a storage location specified 

by the m designator. The contents of the A register is not altered in this process. 

Execution begins with a storage reference for the m designator. This quantity is read 

into the X register. A second storage reference is made using (X) as the storage ad­

dress. The lowest order 12 bits of (A) are stored during this storage cycle. A third 

storage reference is then made to read the next instruction word. 

54dm STORE (A) AT (m + (d)) 

f d m 
23 18 17 12 II 0 

( p) ( p +I) 

This instruction stores the lowest order 12 bits of (A). The storage address is formed 

by adding the m designator and the contents of location d in a 12-bit ones complement 

mode. The d designator must have a nonzero value for this instruction. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q) + (X) as a storage address for storing the lowest order 12 bits of 

the A register. The fourth storage reference reads the next instruction word. 

60396300 A 6-31 



5500m REPLACE ADD (A) + (m) 

f d m 
23 . 18 17 12 II 0 
-----~----J\"'"----~v~---...1' 

(P) ( P+ I) 

This instruction reads an operand from storage and adds it to the current contents of 

the A register. The result is left in the A register and is also stored in the same 

memory location from which the operand was read. The addition is performed in an 

18-bit ones complement mode. An 18-bit operand is formed from the 12-bit storage 

operand by adding six higher order zero bits. The result returned to storage is the 

lowest order 12 bits of the final (A). The storage address for reading the operand and 

storing the result is contained in the m designator for this instruction. Note that the 

result stored is not necessarily equal to the result left in the A register. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and the Q register. A sec­

ond reference is made using (X) as the storage address. This operand is read into the 

X register and is added into the A register. A third reference stores the lowest order 

12 bits of (A) using (Q) as the storage address. The fourth reference reads up the 

next instruction word. 

55d m REPLACE ADD (A) + (m + (d)) 

f d m 

12 II 0 I 
-----......----\"'"----..v.-------' 
23 18 17 

(P) .( P+ I) 

This instruction reads an operand from storage and adds it to the current contents of 

the A register. The result is left in the A register and is also stored in the same 

memory location from which the operand was read. The addition is performed in an 

18-bit ones complement mode. An 18-bit operand is formed from the 12-bit storage 

operand by adding six higher zero bits. The result returned to storage is the lowest 

order 12 bits of the final (A). The storage address for reading the operand and storing 

the result is formed by adding the m designator to the contents of location d in a 12-bit 

ones complement mode. Note that the result stored is not necessarily equal to the 

result left in the A register. 

6-32 60396300 A 



There are five storage references required in the execution of this instruction. The 

first reference reads the m designator into the X register and then into the Q register. 

The second reference reads the contents of location d into the X register. The third 

reference uses (Q) + (X) to read the operand into the X register. The addition is per­

formed in the A register. , The quantity (Q) + (X) is entered in the Q register at this 

same time. The fourth storage reference stores the lowest order 12 bits of (A) using 

the new (Q) as a storage address. The last storage reference reads the next program 

instruction word. 

5600m REPLACE ADD ONE (m) 

f d m 
\ ... 2_3 ___ 1e ..... vr-11 ___ 12 __ ,\ ... '-'--_,,v ___ o __ , 

( P) (P + I) 

This instruction reads an operand from storage, increases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is contained in the m designator for this instruction. 

The result is left in the A register as well as in storage. 

Execution begins by clearing the A register and entering a value of plus one. The oper­

and is then read from storage and added to (A) in an 18-bit ones complement mode. The 

operand is treated as a 12-bit positive quantity in this proc,ess. An 18-bit operand is 

formed from the 12-bit storage operand by adding six higher order zero bits. The 

result is left in the A register, and the lowest order 12 bits are returned to storage. 

Note that the arithmetic is essentially twos complement as viewed from storage, and the 

quantity in the A register is not necessarily equal to the result in storage. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator from storage into the X register and then into 

the Q register. A second storage reference is made using (X) as the storage address. 

This operand is read into the X register and is added into the A register. A third 

reference stores the lowest order 12 bits of (A) using (Q) as the storage address. The 

fourth reference reads up the next instruction word. 

60396300 A 6-33 



56'dm REPLACE ADD ONE (m + (d) ) 

I f d m 
18 17 

y 
12,_1_1 ___________ 0~ 

(P) , ( P +I) 

This instruction reads an operand from storage, increases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is formed by adding the m designator to the contents of 

location d in a 12-bit ones complement mode. The result is left in the A register as 

well as in storage. 

Execution begins by clearing the A register and entering a value of plus one. The 

m designator is read from storage and entered in the X register and then into the 

Q register. A second storage reference reads the contents of location d into the X reg­

ister. A third reference reads the operand into the X register using (Q) + (X) as the 

storage address. The· quantity (Q) + (X) is entered in the Q register at this same time. 

The operand is then added into the A register in an 18-bit ones complement mode. An 

18-bit operand is formed from the 12-bit storage operand by adding six higher order 

zero bits. The result is left in the A register, and the lowest order 12 bits are re­

turned to storage using (Q) as the storage address. Note that the arithmetic is essen­

tially twos complement as viewed from storage, and the quantity in the A register is not 

necessarily equal to the result in storage. A fifth storage reference reads up the next 

instruction word. 

5700m REPLACE SUBTRACT ONE (m) 

f d 
23 18 17 12 II 0 

(P) ( P+ I) 

This instruction reads an operand from storage, decreases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is contained in the m designator for this instruction. The 

result is left in the A register as well as in storage. 

Execution begins by clearing the A register and entering a value of minus one. The 

operand is then read from storage and added to (A) in an 18-bit ones complement mode. 

6-34 60396300 A 



The operand is treated as a .12-bit positive quantity in this process. An 18-bit operand 

is formed from the 12-bit storage operand by adding six higher order zero bits. The 

result is left in the A register, and the lowest order 12 bits are returned to storage. 

Note that the arithmetic is essentially twos complement as viewed from storage, and 

the quantity in the A registe,r is not necessarily equal to the result in storage. 

There are four storage references required in the execution of this instruction. The 

first reference reads the m designator from storage into the X register and then into 

the Q register. A second storage reference is made using (X) as the storage address. 

This operand is read into the X register and is added into the A register. A third 

reference stores the lowest order 12 bits of (A) using (Q) as the storage address. The 

fourth reference reads up the next instruction word. 

57d m REPLACE SUBTRACT ONE (m + (d)) 

f d m 
23 18 f7 12 II 0 

(P) ( P + I) 

This instruction reads an operand from storage, decreases its value by one count, and 

returns the result to the same storage location. The storage address for reading the 

operand and storing the result is formed by adding the m designator to the contents of 

location d in a 12-bit ones complement mode. The result ir;; left in the A register as 

well as in storage. 

Execution begins by clearing the A register and entering a value of minus one. The 

m designator is read from storage and entered in the X register and then into the Q reg­

ister. A second storage reference reads the contents of location d into the X register. 

A third reference reads the operand into the X register using (Q) + (X) as the storage 

address. The quantity (Q) + (X) is entered in the Q register at this same time. The 

operand is then added into the A register in an 18-bit ones complement mode. An 18-

bit operand is formed from the 12-bit storage operand by adding six higher order zero 

bits. The result is left in the A register, and the lowest order 12 bits are returned to 

storage using (Q) as the storage address. Note that the arithmetic is essentially twos 

complement as viewed from storage, and the quantity in the A register is not necessarily 

equal to the result in storage. A fifth storage reference reads up the next instruction 

word. 

60396300 A 6-35 



60dm JUMP TO m IF CHANNEL d INPUT WORD FLAG SET 

f d m 
,23 18 11 12,"._1_1 __ .... ___ o..J, 
"--~---..v-~~-- - v 

!Pl ( P+ll 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d in­

put word flag. A new program sequence is initiated beginning at address m if the chan­

nel d input word flag is set. The current program sequence is continued if the flag is 

not set. 

61dm JUMP TO m IF CHANNEL d INPUT WORD FLAG NOT SET 

f d m 

23 18 17 12 II 0 
,,_~----..,....----_.1\~·--~--v~-------' 

(P) ( p +I) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d in­

put word flag. A new program sequence is initiated beginning at address m if the chan­

nel d input word flag is not set. The current program sequence is continued if the flag 

is set. 

62d m JUMP TO m IF CHANNEL d INPUT RECORD FLAG SET 

f d .m 
1817 

y 
12,\_!_1 _____________ 0_, 

y 
(P) (P+ I) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d in­

put record flag. A new program sequence is initiated beginning at address m if the 

channel d input record flag is set. The current program sequence is continued if the 

flag is not set. 

6-36 60396300 A 



63d m JUMP TO m IF CH ANN EL d INPUT RECORD FLAG NOT SET 

f d m 
23 18 17 12 II 0 

'------..... v.----1\-----vr-----'' 
(P) ' (P+ I) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence. depending upon the condition of the channel d in­

put record flag. A new program sequence is initiated beginning at address m if the 

channel d input record flag is not set. The current program sequence is continued if 

the flag is set. 

64dm JUMP TO m IF CHANNEL d OUTPUT WORD FLAG SET 

f d m 
23 18 17 12 II 0 
----... .----'-----v.----' 

( P) ( P+ IJ 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d out­

put word flag. A new program sequence is initiated beginning at address m if the chan­

nel d output word flag is set. The current program sequence is continued if the flag is 

not set. 

65dm JUMP TO m IF CHANNEL d OUTPUT WORD FLAG NOT SET 

f d m 

,23 18 17 -----v 12"_n _____ v ____ o __ , 

(P) (P +I) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d out­

put word flag. A new program sequence is initiated beginning at address m if the chan­

nel d output word flag is not set. The current program sequence is continued if the 

flag is set. 

60396300 A 6-37 



66dm JUMP TO m IF CHAN~EL d OUTPUT RECORD FLAG SET 

f d m 
, .... 2_3 ___ 1e ... v,..11 ___ 12_,,\._1_1 ---v,_ ___ o_,, 

( P) (P+ I) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d out­

put record flag. A new program sequence is initiated beginning at address m if the 

channel d output record flag is set. The current program sequence is continued if the 

flag is not set. 

67dm JUMP TO m IF CHANNEL d OUTPUT RECORD FLAG NOT SET 

f d m 
\_2_3 ___ 1e ... v,_11 ___ 1_2_,n_1_1 ---v,.. ___ o,J, 

( P) ( P + I ) 

This is a conditional branch instruction which continues the current program sequence 

or jumps to a new program sequence, depending upon the condition of the channel d out­

put record flag. A new program sequence is initiated beginning at address m if the 

channel d output record flag is not set. The current program sequence is continued if 

the flag is set. 

70d INPUT TO A ON CHANNEL d 

f ·d 

II 6 s 0 

This instruction reads one word from input channel d and enters the word in the A reg­

ister. This instruction is not executed until the channel d input word flag is set. If 

the flag is not set at the time the instruction is read from storage, the PPU program 

stops with the instruction in the fd register and waits until the flag is set by an external 

signal. The channel d input record flag does not affect execution of this instruction. 

This instruction clears the channel d input word flag and transmits a resume signal over 

the input cable after the word has been read into the A register. (Refer to appendix B 

for related information. ) 

6-38 60396300 A 



71 d m INPUT (A) WORDS T() m ON CHANNEL d 

f d m 
23 18 17 12 II 0 

(P) , ( p +I) 

This instruction reads a block of data arriving on input channel d and stores the data 

in consecutive address locations in storage. The initial storage location for the block 

is specified by the m designator. The length of the block is specified by the initial 

contents of the A register or by a record flag on the input channel. 

Instruction execution begins with a storage reference for the m designator. This quan­

tity is read into the X register and then entered into the Q register. The Q register 

now contains the address for the first word of the data block. The d designator speci­

fies the channel number, and the A register contains a word count for the block. If 

(A) is zero at this time, the instruction sequence is terminated and the next instruction 

word is read from storage. 

The channel d input word flag must be set before the first word of the block can be 

entered in storage. If this flag is not set when the instruction is initiated, the PPU 

program stops with the instruction in the fd register and waits until the flag is set by 

an external signal. The presence of a channel d input record flag is ignored for the 

first word of the block. 

When the channel d input word flag is set, the word on the input channel data lines is 

read into PPU storage at location (Q). The contents of the A register is reduced by 

one count. The contents of the Q register is increased by one count in a 12-bit ones 

complement mode. The channel d input word and record flags are cleared, and a 

resume pulse is transmitted over the input cable. If the contents of the A register is 

now zero, the instruction sequence is terminated and the next instruction word is read 

from storage. If (A) is not zero, the PPU program waits for the setting of the channel 

d input word flag for the next word of the block. 

The setting of the channel d input record flag terminates the block input at any word 

after the first word. The sequence is terminated with (A) decremented by the number 

of words actually transmitted over the input channel. A noise word is entered in the 

next sequential storage location in the PPU block input storage area. The remaining 

locations in the PPU storage area are unaltered. 

60396300 A 6-39 



72d OUTPUT FROM A ON CHANNEL d 

f d 
II 6 5 0 

This instruction transmits one word over output channel d from the lowest order 12 bits 

of (A). The A register contents is not altered in the process. This instruction is not 

executed while the channel d output word flag is set. If the flag is set from a previous 

output instruction, the PPU program stops with this instruction in the fd register and 

waits for an external resume signal to clear the channel d output word flag. When this 

instruction is executed, the output word flag is set and a word pulse is transmitted over 

the output channel d cable. 

73dm OUTPUT (A) WORDS FROM m ON CHANNEL d 

f d m 
23 18 17 12 II 0 

(P) ( P+ I) 

This instructioh transmits a block of data over output channel d from consecutive stor­

age locations beginning at address m. The length of the block is specified by the initial 

contents of the A register. A zero length causes the instruction to be executed as a 

pass instruction. 

Instruction execution begins with a storage reference for the m designator. This quan­

tity is read into the X register and then entered into the Q register. The Q register 

now contains the address for the first word of the data block. The d designator speci­

fies the channel number, and the A register contains the word count for the block. If 

(A) is zero at this time, the instruction sequence is terminated and the next instruction 

word is read from storage. 

The channel d output word flag must be cleared before the first word of the block can 

be transmitted over the channel. If this flag is set when the instruction is initiated, 

the PPU program stops with the instruction in the fd register and waits until the flag is 

cleared by a resume pulse over the output channel d cable. The presence of the chan­

nel d output record flag has no effect on the execution of this instruction. 

6-40 60396300 A 



When the channel d output WQrd flag is cleared, a word is read from storage location 

(Q) and is entered into the channel d output register. The channel d output word flag 

is set, and a word pulse is transmitted over the output cable. The contents of the 

A register is reduced by one count. The contents of the Q register is increased by 

one count in a 12-bit ones, complement mode. If the contents of the A register is now 

zero, the instruction is terminated and the next instruction is read from storage. If 

(A) is not zero, the PPU program waits for the channel d output word flag to clear and 

repeats the sequence for the next word of the block. 

74d SET OUTPUT RECORD FLAG ON CHANNEL d 

f d 
i I 6 5 0 

This instruction sets the channel d output record flag and transmits a record pulse over 

the output channel d cable. The previous status of the flag is ignored in this process. 

The instruction is executed and a record pulse transmitted even though the channel d 

output record flag was already set. 

75xx PASS 

76xx PASS 

II 

f 
6 5 0 

These two instructions are identical and perform no logical function. Each instruction 

results in a 5-clock-period delay. 

77xx ERROR STOP 

f 

II 6 !5 0 

This instruction causes the PPU program to stop and indicate a program error condi­

tion to the MCU. The PPU can be restarted only by a dead start condition. 

60396300 A 6-41 



6000 /7000 RESULT DIFFERENCES A 

1. A difference exists in ·the way in which a round divide is handled on a 6000 machine 

and on a 7000 machine. The 6000 performs a 1I3 round on the divide, and the 

7000 machine performs a 1I2 round. The 7000, therefore, can give a different 

answer from the 6000 when using certain operands. 

Example: 45012 

where: Xl 2057 7223 2220 7175 5360 

X2 1347 4255 6115 0364 7225 

7000 result: XO 2400 6557 3505 0613 2701 

6000 result: XO 2400 6557 3505 0613 2700 

2. An error exit instruction (OOxxx) in the 7000 machine causes an exchange jump to 

the error exit address (EEA) and does not halt the CPU. An error exit instruction 

in the 6000 machine causes the CPU to stop executing until a PPU exchange jump 

causes the CPU to reinitiate, 

3, A difference exists when an exponent overflow of a floating product occurs and the 

coefficient result requires a left shift of one to give a normalized answer. The 

7000 tests for the overflow condition by checking for the exponent being greater 

than + 1777 before correction, if any, is made for a left shift of one. Thus, even 

though the left shift of one may cause the exponent to equal exactly + 1 777 (partial 

overflow), this condition is treated as a complete overflow and the result is the 

overflow exponent with a zero coefficient. The 6000 machine tests for the overflow 

condition by checking for· the exponent greater than +1777 after correction, if any, 

is made for a left shift of one. In this case, if the resulting exponent is equal to 

exactly +1777 (partial overflow), the result is the overflow exponent with the com­

puted coefficient. 

60396300 A A-1 



Example: 40012 

where: Xl = 3700 4000 0000 0000 0000 

X2 = 2020 4000 0000 0000 0000 

7000 result: XO = 3777 0000 0000 0000 0000 
' 

6000 result: XO = 3777 4000 0000 0000 0000 

A similar situation exists when an exponent underflow of a floating product occurs 

and the coefficient result does not require a left shift of one to give a normalized 

answer. The 7000 tests for the underflow condition by checking for the exponent 

being less than -1776 before correction, if any, is made for a left shift of one. 

Thus, although no left shift of one is performed, an exponent of -1 777 (partial 

underflow) is treated as a complete underflow and the result is the underflow ex­

ponent with a zero coeffident. The 6000 machine tests for the underflow condition 

by checking for the exponent less than -1777 after correction, if any, is made for 

a left shift of one. In this case, if the resulting exponent is equal to exactly -1 777 

(partial underflow), the result is the underflow exponent with the computed coefficient. 

Example: 40012 

where: Xl 0647 7777 7777 7777 7776 

X2 1050 4444 4444 4444 4444 

7000 result: XO 0000 0000 0000 0000 0000 

6000 result: XO 0000 4444 4444 4444 4442 

A-2 60396300 A 



4. A difference exists when. an exponent underflow of a floating double precision sum 

occurs and the coefficient result requires a right shift of one because coefficient 

overflow occurred. The 7000 tests for the underflow condition by checking for the 

exponent being less than -1777 before correction, if any, is made for a right shift 

of one. Thus, even tl;lough the right shift of one may cause the exponent to equal 

exactly -1777 (partial underflow), this condition is treated as a complete underflow, 

and the result is the underflow exponent with a zero coefficient. The 6000 machine 

tests for the exponent underflow condition by checking for the exponent less than 

-1777 after correction, if any, is made for a right shift of one. In this case, if 

the resulting exponent is equal to exactly -1777 (partial underflow), the result is 

the underflow exponent with the computed coefficient. 

Example: 32012 

where: Xl 0057 4000 0000 0000 0001 

X2 0057 4000 0000 0000 0000 

7000 result: XO 0000 0000 0000 0000 0000 

6000 result: XO 0000 4000 0000 0000 0000 

5. When instruction 22 or 23 is used for a right shift, the 7000 checks bits 6 through 

11 for a shift greater than or equal to 64 (decimal) and ignores bits 12 through 16. 

For these instructions, the 6000 checks bits 6 through 10 and ignores bits 11 through 

16. 

6. A difference exists between the 6000 and 7000 in signaling a divide fault condition 

on a floating divide instruction. If a divide fault is sensed in the 7000, an indefinite 

condition is indicated only if no overflow or underflow condition also exists. If an 

overflow or underflow condition exists, the divide fault situation is ignored. If a 

divide fault is sensed in the 6000, it is always identified as an indefinite condition. 

Example: 44012 

where: Xl 3700 0222 0000 0000 0000 

X2 1600 0022 0000 0000 0000 

7000 result: XO 3777 0000 0000 0000 0000 (overflow condition) 

6000 result: XO 1777 0000 0000 0000 0000 (indefinite condition) 

60396300 A A-3 



7. The 7000 floating add unit may generate a different result from the 6000 floating 

A-4 

add unit when at least one operand has a zero coefficient and the difference between 

the exponents is greater than or equal to 128 (decimal). 

Example: 30012 Flqating Add 

where: Xl 4277 7777 7777 7777 7777 

X2 5277 5555 5555 5555 5555 

7000 result: XO 3500 0000 0000 0000 0000 

6000 result: XO 4277 7777 7777 7777 7777 

Reversing the operands (30021) gives the same results as indicated previously. 

Example: 31012 Floating Difference 

where: Xl 4277 7777 7777 7777 7777 

X2 2500 2222 2222 2222 2222 

7000 result: XO 3500 0000 0000 0000 0000 

6000 result: XO 4277 7777 7777 7777 7777 

Example: 31012 Floating Difference 

where: Xl 5277 5555 5555 5555 5555 

X2 3500 0000 0000 0000 0000 

7000 result: XO 3500 0000 0000 0000 0000 

6000 result: XO 4277 7777 7777 7777 7777 

Reversing the operands (31021) on either of the examples for a floating difference 

gives compatible results on the 6000 and 7000 machines. The result on both ma­

chines is 3500 0000 0000 0000 0000. 

60396300 A 



PROGRAMMING CONSIDERATIONS B 

CPU PROGRAMMING CONSIDERATIONS 

1. When the monitor mode nag is set in the PSD register. no interrupt requests will 

be honored (no I/O channel interrupt requests nor real time clock interrupt requests). 

When the monitor mode nag is clear, all interrupt requests will be honored (in 

priority order); I/O channel interrupt requests and real time clock interrupt requests. 

2. I/O channel interrupt exchange packages must have the monitor mode flag bit set 

in PSD. If this bit is not set. the I/O channel interrupt request will cause repeated 

interrupts of the interrupt program. 

3. The CPU dead start exchange jump is the result of the CPU dead start (master 

clear) signal clearing the. entire I/O channel interrupt request register. This results 

in a channel O interrupt request which causes an exchange jump when the CPU dead 

start signal drops. This exchange jump uses the package at SCM absolute address 

O. Because the CPU dead start exchange jump is the result of an I/O interrupt 

request, the dead start exchange package must have the monitor mode flag bit set 

in PSD. If this bit is not set, the CPU dead start program will be re-interrupted 

by the channel 0 interrupt request. 

4. Like other exchange jump sequences, the CPU dead start exchange jump swaps 

register data with SCM exchange package data (locations 0 through 17). All exchange 

data swapped into SCM will be as it was in the CPU registers except for the PSD 

register data. The PSD bits will be correct except for the unconditional clearing of 

the monitor mode flag arid the unconditional setting of the program range error flag. 

The program range error flag is set because of the time delay between the dropping 

of the CPU dead start signal and the setting of the request interrupt flag (RIF). 

5. In the CPU hardware there is more than one P register. There are six P registers. 

each containing the same value at all times. The different P registers feed different 

circuits. Care should be taken to ensure that all P registers contain the same value 

when working on P related problems. 

60396300 A B-1 



6. The P register is 18 bits in length and can contain an 18-bit program (P) address. 

The IAS registers are 18 bits in length, but bits 16 and 17 are always forced to 

zero. Therefore, the IAS registers contain only 16 usable bits. The NSA and IFA 

registers are only 16 bits in length • 

. 
As long as proper programming is used and the FLS is never set to a value larger 

than 177777 (octal), no problems will occur if a P address larger than 177777 (Octal) 

is generated. A P address larger than 177777 (octal) would result in program 

termination because of an SCM direct range error (P GTE FLS). However, if FLS 

is set to a value larger than 177777 (octal), such as 400000 (octal), it is possible 

to hang up the CPU by generating a P address larger than 177777 (octal) but smaller 

than FLS (ie: P = 200000). This hang-up will occur because there can never be 

coincidence between IAS and P. This results in no instruction word being sent to 

CIW and instruction fetch control continually referencing SCM for the instruction 

word at P = 200000. Since NSA is set to 000000 (16 bits) and P is set to 200000, 

there will never be instruction address coincidence. The address sent to SCM will 

be actually 000000, since IFA is only 16 bits. 

7. The 00 instruction can be blocked from setting the program range error flag (PSD) 

under the following condition. 

If an I/O interrupt request sets the RIF at the same time as the 00 instruction is 

entered into the translation bits of the CIW (top bits), the setting of the program 

range error flag is blocked by RIF. The P register will have been advanced to 

the next location. If the next location contains legal instruction code, the I/O 

interrupt program will return control to this instruction word and the 00 instruc­

tion will have been missed since the program range error flag was never set. 

8. A master clear of the CPU can cause an SCM parity error. To prevent a parity 

error caused by a master clear from being confused with a parity error caused by 

a system failure, check SCM after each master clear to verify that it is free of 

parity errors. Verify the existence of any parity errors by reading all addresses. 

Eliminate any parity errors by writing into the affected addresses. 

B-2 60396300 A 



PPU PROGRAMMING CONSIDERATIONS 

1. PPU memory parity errors can be caused by dead starting a PPU while it is 

executing a program. To eliminate the sensing of such parity errors (false parity 

errors), the MCU PPU dead start and loading program should do one of two things. 

Either the PPU' s memory can be completely loaded, PPU resident padded out with 

zero words, and then the PPU clear parity sent, or the PPU resident can sweep the 

remainder of the PPU memory, and then allow the PPU clear parity signal to be 

sent by the MCU program. 

2. If a data sample occurs at the same time that data is changing on the line during 

a block input, a parity error is likely to take place in the PPU memory. 

3. If a MDX output channel is reset at the same time that the PPU is doing a read 

from the MUX, a parity error is likely to occur in the PPU memory. 

4. Dead starting a PPU while it is executing a program will normally wipe out one 

or two words of the program. This is due to the dead start signal clearing the 

X register when the PPU is in the process of a memory read/write cycle. A zero 

word will replace the word just read from memory. 

5. The dead start signal should be applied for a minimum of 32 10 clock periods when 

performing a dead start or dead dump operation on a running PPU. Since the 

dead start signal does not clear the shift count register, application of the signal 

for at least 32 clock periods (allows for maximum number of shifts) ensures that 

shift operations are completed prior to the end of the dead start or dead dump 

operation. If the dead start signal were to drop before the shift count register 

has cleared itself, the contents of the A register would shift and become incorrect 

data. 

6. The dead start signal from the MCU to the PPU (through the scanner) clears the 

PPU' s input and output channels word and record flags. While the dead start 

signal is up, all of the PPU' s input channel resume flags are forced to ones. 

60396300 A B-3 



7. A PPU is set up for being dead dumped by sending the dead start signal, dropping 

the dead start signal, sending the dead dump signal and dropping the dead dump 

signal. This order of events is required to ensure that all PPU memory locations 

are dumped (excluding location 7777 octal). 

8, If an input record flag is forced to a 1 during a block input, the block input 

instruction exits. The PPU processes only the data which was on the input channel 

at the time of the forced record flag. 

9. Input channels with forced input word flags can be responsible for PPU parity 

errors. This problem occurs when reading data from such a channel directly into 

memory (71 instruction). This problem is alleviated if all such channel data is 

input to the A register (70 instruction), and then written into memory from the A 

register. 

10. If a status word is entered into the A register while the channel input word flag is 

in a forced 1 condition, there is always the possibility that the word was in a 

transitional state at the time of entry. To allow for this possibility, consecutively 

input the status word twice and then compare the two inputs to make sure that they 

are the same, 

11. When a block input instruction is terminated by a record pulse, the input record 

flag will remain set until the next input instruction has input at least one word. 

The last word received during the block input will be' duplicated in the last block 

location + 1. 

12. When terminating a block output by sending an output record pulse, the output 

record pulse should not be sent until the resume for the last word sent has been 

received. If this is not done (the output record pulse is sent before the resume 

is received), the receiving device (PPU or equipment) may lose the output record 

pulse and hang up waiting for another output record pulse. 

13. When the PPU is not selected through the scanner (scanner channel selected for a 

different PPU), the PPU' s output channel 0 will receive a constant output resume. 

14. It is impossible for a PPU program to reference memory location 7777 (octal). 

15. PPU program loops should not be smaller than four words, Program loops 

smaller than four words may cause marginal memory operation (bit dropping) due 

to core overheating. 

B-4 60396300 A 



GLOSSARY 

Central Processor 

AO-A7 

BO-B7 · 

BPA 

CIW 

CPU 

EEA 

FLL 

FLS 

IAS 

IWS 

LCM 

MUX 

NEA 
p 

PSD 

RAL 

RAS 

SAS 

SCM 

XO-X7 

Peripheral Processor Unit (PPU), Maintenance 
Control Unit (MCU) 

A 

fd 
p 

Q 
x 

60396300 A 

Address Registers 

Index Registers 

Breakpoint Address Register 

Current Instruction Word Register 

Central Processing Unit 

Error Exit Address Register 

Field Length-LCM Register 

Field Length-SCM Register 

Instruction Address Stack 

Instruction Word Stack 

Large Core Memory 

I/ 0 Multiplexer 

Normal Exit Address 

Program Address Register 

Program Status Designator Register 

Reference Address-LCM Register 

Reference Address-SCM Register 

Storage 'Address Stack 

Small Core Memory 

Operand Registers 

Arithmetic Register 

Instruction Register 

Program Address Register 

Working Register 

Memory Read Register 

Glossary-! 



COMMENT SHEET 

MANUAL TITLE CONTROL DATA® 7700 Dual-Processor Computer System 

Hardware Reference Manual 

PUBLICATION NO. __...6 .... 0..-3 .... 9 .... 6 .... 3o __ o ______ _ REVISION __ ........ A ___ _ 

FROM: NAME:--------------------------------------------------------------~ 

BUSINESS ADDREss: ______________________________________ ___ 

COMMENTS: 
This form is not intended to be used a& an order blank. Your evaluation of this manual will be welcomed 
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may 
be made below. Please include page number references and fill in publication revision level as shown by 
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged 
to use the TAR. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A. 
FOLD ON DOTTED LINES AND STA .. LE 



STAPLE STAPLE 

FOLD FOLD 

----------------------------~--------------~ 

MD 220 

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
Technical Publications Department 
4201 North Lexington Ave. 
Arden Hills, Minnesota 55112 

FIRST CLASS 
PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

FOLD 

... 
z 
::; 
C> 
z 
g 
< ... 
::> 
u 



·. 

CONTROL DATA 


