
60482900

CONTROL DATA
CORPORATION

SORT/MERGE
VERSIONS 4 AND 1
USERS GUIDE

0 ^ \

CDC® OPERATING SYSTEMS
NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD

Revision

A (05-15-79)

Descr ip t ion

Original re lease.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

^COPYRIGHT CONTROL DATA CORPORATION 1979
All Rights Reserved
Printed in the United States of America

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

i i 60482900 A

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina
tion rather than content has changed.

Page

Cover
Inside Cover
Title Page
ii
iii/iv
v thru viii
1-1 thru 1-4
2-1 thru 2-4
3-1 thru 3-4
4-1 thru 4-10
5-1 thru 5-7
6-1 thru 6-3
A-l thru A-4
B-l
B-2
C-l thru C-3
Index-1.
Comment Sheet
Mailer
Back Cover

Revision

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Page Revision Page Revision

60482900 A iii/iv

0 ^

PREFACE

This user 's gu ide prov ides an in t roduct ion to the
high-speed record processing facilities of Sort/Merge. It
is intended for students and others unfamil iar with
Control Data's Sort/Merge.

Sort/Merge is available under the following operating
systems:

Sort/Merge Version 4 operates under NOS 1 for the
CONTROL DATA ® CYBER 170 Series, CYBER 70
Models 71, 72, 73, 74, and 6000 Series Computer
Systems

Sort/Merge Version 4 operates under NOS/BE 1 for
the CDC ©CYBER 170 Series, CYBER 70 Models 71,
72, 73, 74, and 6000 Series Computer Systems

Sort/Merge Version 1 operates under SCOPE 2.1 for
the CONTROL DATA CYBER 170 Mode l 176 ,
CYBER 70 Model 76 and 7600 Computer Systems

This user's guide describes both Sort/Merge version 4 and
version 1 with primary emphasis on the description of
Sort/Merge 4 and the NOS operating system. Where
Sort/Merge 1 differs from Sort/Merge 4, a reference is
made to " the Sor t /Merge re fe rence manua l . The

differences in specification of NOS/BE control statements
are covered in appendix C.

If you are not an experienced programmer, you need not
read section 5. The ability to write owncode routines,
whether in COMPASS or FORTRAN Extended, is not
required in order to use Sort/Merge.

Those readers who wish to find precise definitions of the
var ious face ts o f Sor t /Merge shou ld re fe r to the
Sort/Merge reference manual. This user's guide is not
intended to precisely define the specific attributes of
Sort/Merge, but rather to provide an introduction to its
use and its application to problem solution. There should
be no conflicts between this user's guide and other CDC
publications. However, you should note that this user's
guide presents only part of the total overview presented in
the reference manuals.

If you follow the examples in this publication, you should
be able to create and run simple sort programs. You will
also be better prepared to use the information supplied in
the reference manual. If you are not familiar with your
operat ing system, you should consider reading the
applicable user's guides and reference manuals listed
below.

0^>\

Publication

Sort/Merge Versions 4 and 1 Reference Manual

NOS Version 1 Reference Manual Volume 1

NOS Version 1 Reference Manual Volume 2

NOS Version 1 Applications Programmer's Instant Manual

NOS Version 1 Batch User's Guide

NOS Version 1 Terminal User's Instant Manual

NOS Version 1 Time-Sharing User's Guide

NOS Version 1 Time-Sharing User's Reference Manual

NOS/BE Version 1 Reference Manual

NOS/BE Version 1 User's Guide

COBOL Version 5 Reference Manual

COBOL Version 5 User's Guide

COMPASS Version 3 Reference Manual

CDC CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual

CDC CYBER Record Manager Advanced Access Methods
Version 2 User's Guide

CDC CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual

Publication Number

60497500

60435400

60445300

60436000

60436300

60435800

60436400

60435500

60493800

60494000

60497100

60497200

60492600

60499300

60499400

60495700

60482900 A

CYBER Record Manager Basic Access Methods
V e r s i o n 1 U s e r ' s G u i d e 6 0 4 9 5 8 0 0

F O R T R A N E x t e n d e d V e r s i o n 4 R e f e r e n c e M a n u a l 6 0 4 9 7 8 0 0

F O R T R A N E x t e n d e d V e r s i o n 4 U s e r ' s G u i d e 6 0 4 9 9 7 0 0

C Y B E R C o m m o n U t i l i t i e s R e f e r e n c e M a n u a l 6 0 4 9 5 6 0 0

F O R M V e r s i o n 1 R e f e r e n c e M a n u a l 6 0 4 9 6 2 0 0

8 - B l t S u b r o u t i n e s R e f e r e n c e M a n u a l V e r s i o n 1 6 0 4 9 5 5 0 0

KJt ma?u~ 8.c? be ordered from Control Data Corporation Literature and Distribution Services,308 North Dale Street, St. Paul, Minnesota 55103.

60482900 A

CONTENTS

0$$^

1. INTRODUCTION

Computer Sorting
Purpose of Sort/Merge
Sort/Merge
Merging
Sort/Merge and the Operating System

CYBER Record Manager
Equipment Used for Data Entry
Storage of Data
Manipulation of Data
Accuracy of Data

2. INPUT PREPARATION

How It All Started
Record Design

Expanding Input
Major and Minor Sort Keys
Variable Length Records

Records and Files
How Sort Works

Sorted Files
What Fields Will I Sort On?

Character Sets
Display Code
ASCII Code

3. SORTING CONCEPTS

Sort Key Description
Types of Data to be Sorted

Logical Key
Integer Key
Display
Float
INTBCD

Collating Sequence
Selecting a Collating Sequence
Importance of Blanks

Alternate Specification of Key Types
Sort Order

Using Merge
Merging During a Sort
Merge Order

1-1 4. CONTROL STATEMENT SORTS 4-1

1-1 SORTMRG Statement 4-1
1-2 FILE Statement 4-1
1-2 Sort/Merge Directives 4-1
1-2 SORT 4-1
1-3 MERGE 4-1
1-3 FIELD 4-1
1-4 BYTESIZE 4-1
1-4 KEY 4-2
1-4 SEQUENCE 4-2
1-4 OPTIONS 4-2

Order 4-2
Dumps 4-2
Optimization 4-2

2-1 EQUATE 4-3
OWNCODE 4-3

2-1 FILE 4-3
2-1 TAPE 4-3
2-1 Job Examples 4-3
2-1 Combining Dissimilar Files Using FORM 4-8
2-2
2-2
2-2
2-2
2-3 5. OWNCODE 5-1
2-3
2-3 COMPASS Owncode 5-1
2-3 OWNCODE Exits 1 through 4 5-1

Example 5-1
OWNCODE Exit 5 5-5
OWNCODE Exit 6 5-5

3-1 How OWNCODE Works 5-5
FORTRAN Calls 5-6

3-1 Unique Uses of OWNCODE 5-6
3-1 Record Compaction 5-7
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4

6. RUNNING SORT/MERGE

Time-Saving Design
COBOL and Sort/Merge
FORTRAN Calls and Sort/Merge
Checkpoint/Restart
Tape Sorting
Tag Sort
Summary

6-1

6-1
6-1
6-2
6-2
6-2
6-2
6-3

APPENDIXES

A.
B.

Character Sets
Glossary

A- l
B-l

Running Sort/Merge Under the NOS/BE
Operating System C-l

INDEX

y fl $ ^ \
60482900 A

FIGURES

1-1 Simple Two-Way Tape Merge 1-3 4-8
4-1 Record Format 4-4
4-2 Input Records 4-5 4-9
4-3 Sort Directives 4-5 4-10
4-4 NOS Control Statements 4-5 4-11
4-5 Sort Output by Name 4-6 5-1
4-6 Creating a NOS Permanent File 4-7
4-7 Sort by Department, Name, and Salary 4-7

User Sequence Sort by Department,
Salary, and Age

Sort for Seniority List
Sort Using INTBCD Collating Sequence
Reformatting Records Using FORM
COMPASS Owncode Example to Convert

Leading Blanks to Zeros in Signed
Numeric Data

4-8
4-8
4-9
4-9

5-2

TABLES

3-1 Sign Overpunch Codes 3-2

60482900 A

INTRODUCTION

Sorting information is part of our everyday lives. Sorting
is the process of arranging information into a predefined
sequence so as to enhance its value. Sorted information is
easier to search. Imagine how useful a te lephone
directory or a dictionary would be if the information were
not sorted in alphabetical order.

Or imagine trying to make use of all of the raw data
collected during a nationwide census. The tremendous
volume of raw data collected represents little usable
information before it is sorted, totaled, and compiled into
meaningful statistics. Before the introduction of data
processing equipment, the time required to complete the
tabulation of these statistics was awesome.

One of the first card sorting machines was devised by
Herman Hollerith to help solve this problem. At the time
Mr. Holleri th worked for the Census Bureau, cards
containing all statistics were handwritten, hand sorted
into various categories and counted, resorted into other
categories and counted again, until all categories were
compiled. Hollerith's basic change was to use a hand
punch to punch the information into 240 separate areas of
a standardized card. Each area had a specific meaning,
such as age group, sex, and so on. His card reading
machine had forty dial counters. Whenever a hole was
encountered in the card in a specific area, the dial wired
to that hole would be incremented by 1. An entire card
could be read in only six passes. A card box with 26
separate compartments was attached to the card reader.
Depending on which connections were made, one of the
lids would open automatically to allow the reader operator
to drop the card in and then close the lid.

Approximately 100 of his machines were used to tabulate
the 1890 U.S. census. These machines are considered the
first of the data processing machines. Though slow and
tedious, they reduced the 1890 census tabulation effort
from an anticipated 7 years to less than 3 years. Because
these machines were hand-fed, they reached average
speeds of up to 20 cards per minute.

As the years passed, the card sorting machine was
improved by adding an automatic card feed. Later
improvements added chutes, gates, and multiple pockets
which received the cards. The importance of the card and
its position within the stack grew in relation to the
importance of the data contained in the card.

The basic concept of sorting cards changed to ordering all
of the cards based on the content of a single card column
as opposed to the individual value of each punch as used
previously. By defining a field, for example, as a numeric
amount contained in card columns 65 through 70, if all
cards were sorted on column 70 in the first pass,
column 69 in the second pass, and so on, all of the cards
would be in correct numerical sequence after column 65
had been sorted. Whether the amount field would be in
ascending or descending numeric order depended on the
order in which the card sorter operator had stacked them
after each pass. Considering that card sorters processed
about 300 cards per minute by 1930, and that a sort on a
6-column field required 6 passes, the time required to sort
a box of 2000 cards was about one hour.

Later improvements to the electromechanical card sorting
devices allowed them to reach speeds in excess of 1000
cards per minute, but still required that each column of a
field be sorted. And only after the cards were sorted
could the information they contained be totaled and
printed. The amount of hand labor required to sort and
print a few boxes of cards was staggering by today's
s tanda rds , ye t t he ca rd so r te r was cons ide red a
labor-saving device at the time.

The computers of the ear ly 1950s could store the
information from cards on magnet ic tape, sort th is
information into sequences, merge these sorted sequences,
and write the completely sorted information to tape for
subsequent tabulation and printing. Manual labor was no
longer needed to handle card decks for more than the
initial input pass.

Sorting information remains one of the major uses of
computers in business applications, such as credit card
processing. More importance is now attached to the
information the card contains than the card itself, yet in
numerous applications the cards themselves are stil l
physically sorted and returned to the customer. The
electromechanical card sorter still plays a role, though a
diminishing one, in present day operations. It is now
cheaper to read cards, sort the information, and punch
new cards rather than physically sort the input card file.

COMPUTER SORTING

The use of computers for sorting information has changed
the concepts originally applied to sorting. A record is no
longer considered limited to the information that can be
contained in a single card. A sort run is no longer
measured in terms of how many boxes of cards can be
sorted in one hour.

Much work has been done in the last 25 years to improve
computer sorting techniques. Many books discuss the
various techniques and their applications, and yet the use
of computers has not altered sorting procedures nearly as
much as it has emphasized the need for speed and the
ability to handle a very large number of records in one
sort.

Computer sorting can still be compared, in concept, to the
s o r t i n g o f p l a y i n g c a r d s . T h e f o l l o w i n g e x a m p l e
illustrates these concepts.

If a person is given one complete deck of playing cards
and asked to put them in order, the procedure is a simple
one. Most people will make an initial distribution by suit,
creating four files of equal size. After that, each file can
be sorted by holding the 13 cards of a suit in one hand
while the cards are shifted about and placed in order. As
soon as each of the four suits has been ordered, the four
are stacked together and the job is completed. In sort
terminology, this was accomplished by the following basic
sorting methods: a distribution, an internal sort, and then
a final merge of the four sorted files.

60482900 A 1-1

< K » j X

A more realistic picture of most sorting problems is
created if the above problem is complicated slightly.
Assume that 52 cards are taken from a stack of cards
which contains four decks. The procedure outlined above
might work for this case as well, but there are good
reasons to doubt that it will. It is extremely unlikely that
the initial distribution by suit will produce four groups of
equal size. In fact, there might not even be four groups or
files, and the cards selected might contain two to four
identical cards. If we also add the stipulation that 15 is
the maximum number of cards that can be held at one
time, the solution for the second case is considerably
more difficult. It can be solved by a combination of
methods, but either the sequence of operations will have
to be altered or the initial distribution will have to be
modified.

The foregoing example illustrates well one of the basic
problems of all sorting routines; as the number of records
to be sorted grows, the complexity of the sort grows even
faster. Unlike other aspects of cur modern age, larger is
not easier, nor less costly per item, when sorting records.

PURPOSE OF SORT/MERGE
The basic reason for sorting is to arrange items in order.
Ordered information makes reports more meaningful.
Order suggests cr i t ical relat ionships. Searches for
information, whether by humans or by machines, are
faster through ordered lists.

Sorting information into alphabetic and/or numeric order
is the simplest method of classifying items. For example,
many libraries use card files to aid users in finding
information. Most libraries maintain a card file by book
title and by author, but refer to the books by an assigned
number. An additional subject card file is often available
as a cross-reference aid. The books themselves are
usually classified according to other sorting systems, so
the assigned number is the key item in finding the book,
and the number is found from the card files. It is much
easier to search through the cards to find the book you
want than it would be to search through all of the books.
This method of assigning a number to an entity is referred
to as indexing, a concept often used in sorting very large
records. A computer sort of an index is much easier and
faster than a sort of the large records. The time saved in
sorting usually offsets the time spent in creating the index.

Repo r t s t ha t con ta i n a l a rge amoun t o f r andom
information or raw data are not very useful. Critical
relationships can be obscured by the sheer volume of
data. Sorted information offers immediate comparison.
For example, it might be of interest to a large corporation
to determine how wide a salary range exists for a given
pay grade in various geographical locations. A simple
report of all persons' records in that pay grade could run
on for many pages. Sorting the records by pay grade and
by region would give immediate comparison. More
complex sorts based on pay grade, region, age, sex, and so
forth, could offer much more information on reasons for
the disparities.

To find the record for one employee manually in a large
file usually requires a great deal of time. If the file were
in random order, the time required to perform such a
search would average one-half of the time required to
scan the entire file. If the file is ordered, search time can
be reduced considerably. This is as true of a computer
file as it is of a hand-sorted card file. For example, to
fi n d a r e c o r d i n a r a n d o m l y o r g a n i z e d fi l e o f

1-2

1000 records averages the time required to search 500
records. In a sorted file of the same size, the time
required would average the time to search 10 records.

SORT/MERGE
Sort/Merge is a generalized sorting and merging program
available on Control Data CYBER 170, CYBER 70, 6000
Series and 7000 Series computers.

The purpose of Sort/Merge is to rearrange records in the
sequence you speci fy. You must supply the basic
information about the records you wish to sort or merge
and how you wish them sorted; the Sort/Merge program
will then determine optimum internal settings to achieve
efficiently what you have specified and carry out that
function. Many types of data can be sorted, such as 60-bit
integers, 60-bit floating point numbers, and even unsigned
binary integers of any length.

The data can be alphabetic names, or codes consisting of
alphabetic, numeric, or other special characters. If, for
some reason, the standard order of the alphabet does not
suit your needs, you can specify your own order of
characters.

The order into which the characters are to be arranged is
called a collating sequence. Four standard collating
sequences are available, or you can create your own
collating sequence if you wish.

Up to 100 files can be sorted and merged into one output
file. You can supply your own procedures to be executed
at certain points during the sort or merge processes.

Sort/Merge is invoked with a single control statement
from a terminal or a batch job. Optional parameters
allow you to specify more complex operations as the need
arises.

Sort/Merge also provides a set of procedures that can be
called from a user program written in FORTRAN or in
COMPASS assembly language. The same Sort/Merge can
be called by use of the COBOL SORT verb.

MERGING
The merge has been used as the basis for many sorting
rout ines. The pr inciples of sort ing by merging are
relatively simple. A two-way tape sort was once the
popular method of sorting by merging and serves well to
illustrate this concept.

If a given computer has the ability to read and write
records from tape and select the smaller of the records
brought in, a series of random numbers can be sorted as
follows:

The first pass of the sort merges two single records
to create a sequence of two records.

The second pass using the output of the first pass as
input, merges a pair of these two-record sequences,
one from each of the two input tapes, and writes
four-record strings on the output tapes.

Repeating these merging passes will eventually place
all records in the file into one sequence.

60482900 A

/#^ \

Figure 1-1 shows how a set of numbers is gradually put
into sequence by use of a simple two-way merge. In the
first pass, the records are written out on tapes 1 and 2,
each of which will then contain two-record sequences at
the end of the first pass. The tapes are then rewound and
the output of the first pass becomes the input for the
second merge pass. The first two-record strings from
tapes 1 and 2 combine to make a four-record sequence
that goes onto tape 3. Then the second pair of two-record
sequences is merged and stored on tape 4. The merging
process for the third pass is like that for the second pass,
except that the sequences read in and written out are
twice as long as they were in the preceding pass; input
now comes from tapes 3 and 4 and output is written onto
tapes 1 and 2. Each new pass doubles the length of the
input sequences. The file is sorted when the number of
sequences is reduced to one. The final output will all be
on a single tape. In the example, the sorted records are
stored on tape 1 after four passes. More complex
examples are given in an appendix of the Sort/Merge
reference manual.

In a simple merge such as the one shown in figure 1-1, the
number of merging passes is determined by the number of
records to be sorted and the order of the merge. A
two-way merge without an internal sort will develop a
sequence of 2n records in n merging passes, or 8 items in
three passes, 16 in four, 32 in five, and 1024 in ten
passes. As the number of records to be sorted increases,
such as might be expected in data processing applications,
the number of passes becomes quite large.

SORT/MERGE AND THE
OPERATING SYSTEM

Sort and merge require that a value be specified for the
maximum record length, even for CYBER Record Manager
record types that do not require this specification. This
value can be specified either as the MRL or the FL
parameter on the FILE control statement. MRL means
maximum record length and FL means fixed length; both
specify the record length as a decimal number of 6-bit
characters.

CYBER RECORD MANAGER

Sort/Merge uses the file handling capabilities provided by
CYBER Record Manager. These same file handl ing
capabilities are also used by COBOL and FORTRAN, and
are available to users of a number of other products such
as COMPASS assembly language and the data management
products.

CYBER Record Manager provides a var iety of fi le
st ructures. The s tandard ized formats of these fi le
structures enhance the file interchange capabilities of
programs using CYBER Record Manager. For example,
standard formats make it easier for the programmer to
use files created by a FORTRAN program and sorted by
Sort/Merge as input to a COBOL program. CYBER
Record Manager requires that a FILE control statement
be included in the input file of any program that uses
CYBER Record Manager. The FILE control statement is
used to describe the file to the operating system. When
used in conjunction with any product that uses CYBER
Record Manager, the FILE control statement can change
the file processing that takes place during execution. As
a result of its use, tape files from other computers or
operating systems can be read, or it can be used to write
tape files in formajts not normally produced by the
operating system.

Sort/Merge operates as a separate product, much like a
compiler, under the NOS and NOS/BE operating systems.
Sort and merge capabilities are available through control
statements or procedure calls. A control statement sort
or merge uses the SORTMRG control statement and its
optional parameters and a directive file containing more
parameters.

Characteristics of the input and output data files must be
specified with the CYBER Record Manager FILE control
statement. Certain default file names can be used, such
as INPUT, OUTPUT, and PUNCH, without the need for a
FILE statement, but it is better programming practice to
always use the FILE statement.

Direct calls to CYBER Record Manager, the FILE control
statement, file creation capabilities and formats, and
other features are explained in the CYBER Record
Manager publications listed in the preface.

The examples in this publication are not intended to teach
the use of CYBER Record Manager. The examples include
only those CYBER Record Manager statements required
to obtain the desired results of the sort job to be run.

A full description of the interaction of Sort/Merge and
CYBER Record Manager appears in an appendix of the
Sort/Merge reference manual.

Figure 1-1. Simple Two-Way Tape Merge

r 60482900 A 1-3

EQUIPMENT USED FOR DATA ENTRY

Many storage mediums are available to Sort/Merge users.
Before the data can be manipulated, however, it must
first be entered into the computer. Punched cards are
probably still the most common method of preparing input
to the computer. Card punches are easily available,
inexpensive, and relatively reliable. Off-line terminals
such as key-to-tape and key-to-disk systems are rapidly
gaining in popularity. On-line data entry systems are also
growing in number. Whatever the entry medium, most
files are stored on magnetic tape or disk after they have
entered the computer.

STORAGE OF DATA

Magnetic tape offers low cost long-term storage of
information. The standard 2400-foot reel can contain a
large amount of information, is easi ly stored, and
withstands most hazards of transportation. Magnetic tape
is also a common method of transmitting information
between computer sites, and even between computers
using different character encoding.

MANIPULATION OF DATA

Records are usually sorted in memory, using as much
central memory as is specified. Disk storage provides
high-speed intermediate storage of records during the sort
and merge processes. When processing is complete, the
sorted file is usually output to disk or tape for subsequent
use or for storage.

CYBER Record Manager has made the use of different
files much easier for the computer user. It ensures that
card, tape, and disk file formats are compatible with each
other. Many magnetic tapes created on other computers,
even computers from other manufacturers, can be read on
CDC computers through the CRM interface. Those tapes
that are not compatible with CDC computers through
CRM can usually be reformatted through the use of FORM
or the 8-Bit Subroutines. Moreover, with FORM, records
using keys of the same length, but in different starting
positions, can be reformatted to make a subsequent sort
and merge possible. Additional information is available in
the CYBER Record Manager AAM and BAM reference
manuals and in the FORM and 8-Bit Subroutines reference
manuals.

ACCURACY OF DATA

The accuracy of the data collected and prepared for input
to the computer is the responsibi l i ty of the people
involved in these tasks. Various methods can be employed
during each phase of data handl ing to reduce the
possibility of error.

The collection of information is very much subject to
h u m a n e r r o r. W h e n t h e c o l l e c t i o n m e c h a n i s m i s
established, as many safeguards as possible should be
established to reduce the opportunity for error. For
example, if a record key field is established which can
only be alphabetic or numeric, a simple checking routine
can be written to ensure that these key fields contain only
alphabetic or numeric characters. Such a routine can be
used either as a separate process or incorporated into the
sort process as an owncode routine.

Other safeguards can include routines to count the records
both before and after processing to ensure that all records
have been processed, and routines such as file label
checking to ensure that the proper file is processed.
There is no limit to the ingenuity that can be applied to
reduce the possibility of error. One of the best methods
available to users of small files is to print out the file and
scan it for obvious errors.

Once the information has been entered into the computer
and has been determined valid, the possibility of further
error is reduced. Error checking, parity checking, and
other routines can help ensure that the handling of
information does not introduce errors. On the other hand,
it is possible to make tremendous blunders with a
c o m p u t e r t h r o u g h i n a c c u r a t e s p e c i fi c a t i o n o r
unintentional entry of commands. Such errors are usually
easily detected and the results are obviously so far afield
that they are of little danger. It is far more likely that an
insidious error, such as the transposition of digits, or the
misplacement of a decimal point, will cause errors more
difficult to pinpoint. These are the errors that preferably
will be eradicated through sufficient attention to checking
the input.

It is always a good idea to spot check the input against the
outpu t to ensure tha t you have no t inadver ten t ly
introduced errors.

1-4 60482900 A

INPUT PREPARATION

0$&\

/$$&**.

/#rs-.

r

Data preparation is extremely important. Collecting and
capturing data in a form compatible with all your future
needs requires a great deal of forethought. To simply
collect all available data into one file frequently results in
a huge file which, though perhaps complete, will prove
cumbersome in use. If you plan ahead and logically divide
potentially large files into smaller ones, and provide a
logically common field to correlate the records, you can
reduce the amount of time spent in handling the files. In
addition to keeping records as compact as possible, you
should also give due consideration to the files you work
with. File space is valuable. Files can be maintained in
an efficient manner by judicious procedures based on the
file content. Some files might be used more efficiently
when they are combined into a larger file if their use is
common to a program, whereas running some large files
costs more than is saved because the extraneous
information must be bypassed to find the records needed.

It has been found that the processing speeds achieved by
modem computers often mask the inefficiency of a
procedure. One method of planning efficient file usage is
to create a log of the files used and when they are
required. You might find that a different organization of
the file content would reduce the volume of information
to be sorted, searched, or copied. You might find that a
file is often not available when you need it and that a
scheduling problem could be avoided by changing part of
your present procedure.

Employee files are often a result of unrestrained growth.
Some such files suffer from poor maintenance. Others
only suffer from poor planning. Employee files can
usually be divided into smaller files based on their use;
each file is interrelated to the other files by a common
field such as the employee number or social security
number. Parts files are often interrelated by assembly
number; sales files are often interrelated by account
number, and so forth. Much time can be saved in sorting
and searching through files by careful planning in advance,
and continuing file maintenance.

HOW IT AU STARTED
Early attempts at collecting information for mechanized
sorting were limited to the size of the punched card. For
many years a record was limited to the length of one
80-column card. It was difficult to put all the information
desired into such a limited length record, so considerable
imagination was used to represent as much information as
possible in the space available. Much of this inventiveness
has been passed along to present users.

Early attempts at maintaining employee files determined
that an employee name and address almost filled one
punched card. As a result, name and address files were
(and still are) often treated as separate files. One method
of relating the address files to other employee records
was to make master and secondary (or auxiliary) records.
This method preceded the more modern computer methods
of relating records to one another by use of a common
field because a common field was of little value to card
processing machines which could not recognize such
fields. Attempts to maintain the master and secondary
card files separately, based on a common sequence, were

usually thwarted by machine malfunction and human
error. Similar concepts are now used occasionally because
manual handling is seldom required and machines are
much more reliable than they once were. Thus, some
concepts surface again when other factors permit.

RECORD DESIGN
Some characters supply no meaningful information and
should not be included in a record. In the case of Social
Security numbers, the two hyphens serve only a visual
function and need not be included in the record. Since
they traditionally occur in the same positions, they can be
ignored or added later on output if necessary. Such
traditional characters are rapidly disappearing; the slashes
or dashes in a date are seldom entered into a record. If
they are considered necessary, they can be preprinted on
an output form and the meaningful digits aligned with
them as part of the output formatting process. Most of us
no longer expect to see such unnecessary punctuation in
computer output. Reducing the size of the record speeds
processing and, in turn, changes our concept of the data.

Further attempts to condense record fields led to the use
of bit patterns as code to mean specific things. Some
items can be represented by a single bit, such as 0 for
male and 1 for female. One method of coding uses all 12
punches in a single card column to denote hair color; 11
punches denote color and the 12th signifies baldness.

EXPANDING INPUT
Many other methods of condensing information have been
devised. The time to create input is costly in terms of
manhours and machine avai labi l i ty. One method of
cutting input time is to prepare standard paragraphs that
can be called by a single letter designator. Other methods
of coding use a table look-up procedure to create more
lengthy output from short coded items. One application
allows a large number of text paragraphs to be assembled
to create a personal reply to correspondence. Again,
efficient use of the computer depends to a large degree on
the ingenuity of the users.

MAJOR AND MINOR SORT KEYS
All sort operations are based on the comparison of values
assigned to the characters to be sorted. We usually speak
of major and minor sort keys when we consider that the
first key specified will be the most important key, and the
rest wi l l be of lesser importance. In a manner of
speaking, even the major sort keys can be ranked by
c h a r a c t e r v a l u e f r o m l e f t t o r i g h t . T h e l e f t m o s t
character dominates the sort rank.

The alignment of all characters is very important in the
sort key field. All numbers are expected to be right
justified within the key field. All decimal points, explicit
or implied, must be aligned. All characters, other than
numbers, are expected to be left-justified in the key field.

60482900 A 2-1

The major difference between numeric and nonnumeric
data is the sign which requires that the sort order be
reversed when the sign changes. When numbers go from
positive to negative, or vice versa, the sort order must
change. The left column of table 3-1 illustrates this
change in sort order.

Input is often presorted into groups prior to sorting or
processing. For instance, all records can be presorted into
groups based on the first letter of the name or address,
and these groups can be processed on a regular calendar
basis, such as A through D on Monday; E through H on
Tuesday, and so forth.

/<W!8|N

VARIABLE LENGTH RECORDS

Record length can vary from very short to very long;
there is no length restriction cn the size of records, but
there are restrictions on the types of long records that
can be processed by Sort/Merge. These restrictions are
noted under Types of Data to be Sorted in section 3.

In other applications, all processing might be subject to
purely mechanical funct ion l imitat ions, such as the
number of records that can be processed in a single shift,
and work quotas can be established based on this number.
Presorting files to establish a logical work base, based on
name, region, or other logical basis defines a portion of
the work load for each shift, and ensures that the entire
file workload is completed in planned steps.

Records of variable length can occur in the same file;
however, the sort keys must be contained in that portion
of the record which contains fields common to the rest of
the file. For example, i f al l records in a file have
identical fields defined through character position 80, but
some of the records are 400 characters in length, the
records can be sorted only on the fields included in the
first 80 characters.

Also, i t is not necessary to output the remain ing
characters of the variable length records if they have no
value to the user of that output. An owncode routine can
be written to strip away the extraneous information
before it is sorted by using owncode exit 1, or by
reformatting the records in the file before sorting, you
can drop off the extra characters before sorting the file.

If, for example, a report is desired to compare only a few
fields, it could be advantageous to only output those few
fields. A chart to depict age and salary for a large
organization could be created from a payroll file, and only
those two fields need be obtained. The remainder of the
record would be superfluous. Again, an owncode routine
can be written for this purpose.

In the case of variable length records, it is always
preferable to specify the fixed length fields in the record
before the variable length fields. It is only possible to
sort records on those key fields which have a constant
position in relation to the beginning of the record.

RECORDS AND FILES
Files can be organized based on how often they will be
used. Some files need only be used on a monthly basis or
less, whereas others might be used daily. To search
through the records not needed, on a regular basis, is a
wasteful process.

Sorting can be an extremely time-consuming process.
Since sorting does not change or improve data, many
consider it a nonproductive process. All efforts toward
spending as little time possible in sorting records are
worthwhile. If a sort can be avoided either by entering
data in the desired order or by processing records in their
present order, the sort should be avoided. If sorting is
essential, it should be made as efficient as possible. Some
installations have found that much sorting can be avoided
or reduced, thus reducing the need for addi t ional
equipment and manpower, or even freeing present staff
for other, more productive, assignments.

HOW SORT WORKS
A record is composed of fields. A field is the smallest
amount of information you wish to sort. You define a
field by its length and its starting position within each
record. You can sort all of the records in a file based on
the content of a single field. That field is then called the
key field or sort key.

A file can be sorted on more than one key field, or on a
combination of key fields. For example, a payroll file can
be sorted on the name field, or by age (as the major key)
and salary (as the minor key). In the latter case, if two or
more employees are the same age, their records should
appear on the output file in order by salary. The sort
program compares the information in a key field with the
information in the same key field of all the records in the
file, and places all of the records in that file in the order
you have specified. If you specify ascending sequence, the
lowest number or the lowest character, according to the
collating sequence, will be output first, followed by the
next lowest, and so cn. I f you specify descending
sequence, the highest number or character will be output
first. If you are sorting signed numeric values, the order
will change when the sign changes.

Installations using extremely large files often divide the
workload so that a large file is only run in sections, and
the total file run is completed only once per week or once
per month. When the entire file is too large to run in one
pass, sections are run independently. For example, an
inquiry to IRS might result in the reply that names
beginning with S are run only on the 17th workday of each
month. In many cases where gigantic files are involved
and the workload precludes individual handling, such
division of jobs is common. To provide a more reactive
response would require such a large computer installation
that it would be cost-prohibitive.

SORTED FILES

A file is said to be a sorted file when all of the records
are in a defined sequence. This means that all of the
records are in order as defined by at least one key field.
Sorting a file on the first field, in the case of an employee
file, would result in a sorted file. Later rearrangement of
the file into the order of another field, such as Social
Security number or age, also results in a sorted file. The
only difference is that the file is sorted on another field.
A file can be sorted on as many fields as there are fields
in the record.

2-2 60482900 A

WHAT FIELDS WILL I SORT ON?

It is a good idea to consider all possible future uses of a
file you are creating. Will you be sorting on all of the
fields in each record? Will the file be compatible with
other files already created? Will there be a need to
merge this file with other files? What interrelationships
exist now — and what are other possible future needs?

You will probably sort a payroll file on name, salary, and
so forth more than on an address field. In fact, it is highly
unlikely that you will ever specify a street address as a
sort field, and only slightly more likely that a city or state
will ever be used as a sort key. On the other hand, the
postal ZIP code is gaining in importance and the reduced
postal rate for presorted mail makes it worthwhile to be
able to sort on ZIP codes for employee mai l ings.
Therefore, the ZIP code should be defined as a separate
field when creating records if you want to take advantage
of this reduced rate.

CHARACTER SETS
Four character sets are available on the Control Data
computer systems described in this user's guide:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

Only one of these character sets will be in use at your
installation. It was selected when the software was
installed. You cannot change it; but you must be aware of
the set in use so as to determine the type of output
translation you will receive. Please note the character
set in use at your installation on the inside of the front
cover for future reference.

To understand the meaning of a character set requires
that you recognize certain aspects of computer encoding.
No character enters the computer as a character, nor is it
stored as a character. When you punch the letter A in a
punched card, the letter is translated into the punch
combination 12-1. This means that a hole is punched in
rows 12 and 1 in the card column containing the letter A.
When this punched card is read by the card reader, the
12-1 punch combination, not the letter A, is translated
into a binary bit pattern of 000001 and sent to the
c o m p u t e r a l o n g w i t h o t h e r s i m i l a r l y t r a n s l a t e d
information from the card. Graphic characters, such as
the letter A, are recognized only by the card punch,
terminal, and line printer. All of the rest of the computer
equipment deals only with binary bit patterns.

DISPLAY CODE

Control Data computers are binary machines which use
display code representation. Most CDC computers use a
6-bit binary string to represent one character. Because
binary information is difficult for people to read, an
additional representation of the bit string is used: the six
binary digits are also recognized in groups of three, and
the result indicated in an octal (base eight) numbering
system. A character in display code is then a two-digit
number from 00 to 77. For example, the binary value
000001 represents the letter A in the computer. In display
code, the same value is expressed as 01 which represents
the letter A.

For a full overview of the character sets, see appendix A;
for a good explanation of the octal number system, see
the NOS/BE user's guide. The binary designations 000000
through 111111 are available using the 64-character sets.
The 000000 grouping is not used with the 63-character
sets.

ASCII CODE

Most of the characters available under the display code
character set are also available under the ASCII character
set. A few special symbols are not represented in both
character sets.

The ASCII (American Standard Code for Information
In te rchange) charac te r se t i s essent ia l l y an 8 -b i t
character set which defines only 128 of the possible 256
characters. It was developed as an industry standard,
c h i e fl y t o m a k e t h e i n t e r c h a n g e o f i n f o r m a t i o n
rep resen ted by d i f f e ren t compu te r manu fac tu re rs '
machines more compatible. All of the 128 defined ASCII
characters could be represented by seven bits. However,
since the Control Data character codes discussed here are
6-bit codes, all information input in ASCII format is
converted to 6-bit code between the input medium and
central memory — and is again converted between
memory and the output medium. ASCII input usually
comes on ly f rom tape, ASCI I -CRT and ASCI I -TTY
terminals; ASCII output is usually returned to the same
dev ices , p lus the ex tended charac te r se t p r in te r.
Obviously, only a subset of the 128 ASCII codes can be
represented by a 6-bit character set which only allows
representation of 64 characters.

Lowercase characters are treated as uppercase. The less
common characters are usually ignored or treated as
blanks. If the ASCII 8-bit characters must be maintained,
opt ions are avai lable through FORM and the 8-Bi t
Subroutines to support the remaining ASCII characters,
such as the 96-character subset, but these subsets are
limited to the applications which support them.

Minor discrepancies exist between the ASCII and display
code character sets; for example, when you specify a
quote (") on an ASCII input device, a not equal {-) symbol
is printed on a display code printer. Other differences are
noted in appendix A.

Characters in any standard CDC 6-bit format can be
sorted. Data on tape can be converted to CDC 6-bit
format either directly, or through use of one of the
available utility programs.

For example, tape files created on an IBM computer will
probably be in IBM standard EBCDIC 8-bit format. These
files could be converted on the same or a similar IBM
computer to ASCII 8-bit format for interchange with a
CDC computer. If this is done, the ASCII format will
allow the CDC computer to read and process the IBM
file. The ASCII output will be limited to the CDC 63- or
64-character set in use; the remaining characters will be
ignored. More likely, however, is the case where the
EBCDIC 8-bit tape appears at a CDC installation and the
intent is to merge the files contained on the tape with
certain other files on CDC 6-bit tape. To do this requires

/JE^™*k
60482900 A 2-3

the use of FORM or the 8-Bit Subroutines programs, or an The content of an EBCDIC print tape can be most easily
intricate owncode routine which must be created for this determined by printing at least part of the tape using the
p u r p o s e . F O R M i s t h e e a s i e s t u t i l i t y t o l e a r n t o u s e , a n d 8 - B i t S u b r o u t i n e s u t i l i t y C O P Y 8 P d e v e l o p e d f o r t h e ^ ^
c e r t a i n l y i s t h e e a s i e s t m e t h o d o f c o n v e r t i n g t h e e x p r e s s p u r p o s e o f p r i n t i n g I B M f o r m a t t a p e s . To u s e)
information to CDC format. Examples of this conversion COPY8P requires the use of an upper/lowercase print
and the exchanges possible are shown in the FORM train on a CDC 512 or 580 printer as described in the
r e f e r e n c e m a n u a l . 8 - B i t S u b r o u t i n e s r e f e r e n c e m a n u a l .

2 - 4 6 0 4 8 2 9 0 0 A

SORTING CONCEPTS

y ^ \

Sorting is the process of arranging items in order. Order
is defined by the person doing the sort ing, though
reasonable agreement exists as to the proper order of
things. We know we can sort all items into any order we
establish, and proceed on that basis.

Single alphabetic items can be sorted quite simply.
Everyone knows the alphabet. However, if we wish to
consider all letters, and do the job properly, then what is
to be done with letters from other languages such as 2 and
T, not to mention lowercase letters, special symbols, and
punctuation marks?

The decimal numbers 0 through 9 can be sorted quite
easily. A computer can handle this type of sorting with no
problem. The octal numbers 0 through 7 are also sorted
quite as easily by the computer, as are the binary numbers
0 and 1. Yet, if we encounter a value on a printout of
101101, do we really know what that value is? It could be
101101 decimal, or 45 decimal expressed in binary, or 55
octal (which is the blank in display code), or even 2D in
hexadecimal, or the minus sign in ASCII.

AU data must be described exactly. Otherwise the
computer will not process it correctly, nor will we be
satisfied with the result. Even blanks pose a problem.
Should they collate before or after letters or numbers?

Not all special characters can be processed by computer
due to the limited size of the character set. Sorting the
special characters is a matter of preference. The special
graphics are treated differently in the various character
sets and are collated in different order as well. For this
reason, they are considered arbitrary characters. It is
generally agreed that B should follow A, and that 3 should
follow 2, but you must decide whether you wish (3 to
precede or fol low^. Also keep in mind that not al l
special characters appear in all character sets. The
predefined collating sequences of the arbitrary characters
are shown in appendix A for the collating sequences
available. If these predefined collating sequences are not
suitable, you can create your own collating sequence.

SORT KEY DESCRIPTION
You must define every field to be used as a sort key. Sort
key descriptions include the following information:

Key length

Starting location of key within record

Type of data found in key field

Sort order

Collating sequence to be used (for character keys
only)

Key field length is specified as the number of bits and
bytes in the field; the default is a 6-bit character.

Starting position of a sort key field can be anywhere
within a record but it must be the same for all records of
all files to be sorted or merged.

Key type defines the type of data in each sort field as
described below.

TYPES OF DATA TO BE SORTED

Any meaningful data that can be logically translated into
a binary computer code can be sorted into the order you
s p e c i f y. C e r t a i n l i m i t a t i o n s a r e i n h e r e n t i n t h i s
statement. All character data to be sorted should be
limited to the 63 or 64 characters available; however,
data can be expressed in other forms as well, and need not
be limited to 6-bit binary values, as shown below. In some
cases you might wish to transform the keys into another
form to achieve your purpose. Tag sorting, for example,
is mentioned in section 6.

Logical Key

Unsigned binary integers of any length can be sorted. In
actuality, it is unimportant to the computer how the
binary integers are divided for human recognition. The
binary integers are assumed to be positive values and are
sorted by magnitude. This type of sorting data by actual
binary value is also of importance in sorting other types of
data as will be explained later. As an example, when you
specify a sort of DISPLAY characters with the DISPLAY
collating sequence, Sort/Merge automatically assumes
logical key sorting because it is faster.

Integer Key

Any 60-bit integer can be sorted in this manner. The CDC
computer word size is 60 bits, which is large enough for
most uses. The 60 bits you choose from the record to be
sorted need not start or end on a character or word
boundary. Any consecutive 60-bit value from any portion
of the record can be chosen. It is considered better
programming practice to restrict these 60-bit values to
word boundaries. This permits easier field specification
and promotes compatibi l i ty with other products that
might be used to handle the record.

Display
Most data in character form is written in display code; it
can be any number of 6-bit characters. Display code is
usually sorted by a predefined collating sequence as
defined in appendix A. Display code is the standard CDC
character code. The DISPLAY key should always be
specified when character data is used.

60482900 A 3-1

Signed Numeric Data

Numbers that require a sign to show they represent a plus
or minus value, such as debit or credit amounts in an
accounting file, are referred to as signed numeric values.
The sign, plus or minus, can appear in one of four places.
When the sign is plus it is often omitted because all values
are assumed to be positive unless otherwise specified.
The sign is often an overpunch representation over the
last (r ightmost) digi t in the field because previous
accounting systems used this method. Other accounting
systems used the sign as an overpunch over the first
(leftmost) digit, though this method was never as popular.
If the sign is not carried as an overpunch, it will appear
either as the first or last character in the numeric field.
When the sign is specified separately as the last
character, all values must carry the sign. In any case, the
sign position must be consistent throughout the file to be
sorted.

Sorting signed numeric data requires that the order,
ascending or descending, change at the point the sign
changes. If descending order was specified, positive
values are output in descending order. At the point the
values become negative, the numbers are output in
ascending order.

All signed numeric values must be stored internally as
display code. A numeric digit with an overpunch is
represented in display code as the character it becomes as
shown in table 3-1.

TABLE 3-1. SIGN OVERPUNCH CODES

Sign Value Key Punch Code from Equivalentof of Digit Punch and Display
Field Dig i t Sign Overpunch Code Character

+ 9 12-9
+ 8 12-8
+ 7 12-7
+ 6 12-6
+ 5 12-5
+ 4 12-4
+ 3 12-3
+ 2 12-2
+ 1 12-1
+ 0 12-0- 0 11-0- 1 11-1_ 2 11-2
- 3 11-3- 4 11-4- 5 11-5- 6 11-6- 7 11-7- 8 11-8" 9 11-9

The easiest format of signed numeric data to sort is one
which uses the leading sign as a separate character in a
constant position in a value with leading zeros, such as
-00153.62. Plus signs must be specified.

When sorting signed numeric data, you must specify
additional parameters in the FIELD directive. If the sign
is an overpunch, you must specify SIGN and LEADING or
TRAILING to identify the location of the overpunch. If
the sign is not an overpunch, you must also specify
SEPARATE. For example, if a separate sign character is

used as shown above, the last three parameters of the
FIELD directive must be ... ,SIGN,LEADING,SEPARATE.

Note that positive integers, display code numbers without
a sign, can be mixed with integers that have a sign
overpunch in an input file.

Float

If you are dealing with floating point numbers, you can
specify FLOAT. Any 60-bit normalized or unnormalized
floating point numbers can be sorted. They can start at
any bit position within the record. They are sorted only
by numeric value. Any floating point number written
under the CDC NOS or NOS/BE operating system by a
binary write can be sorted. See the Sort/Merge reference
manual for the permissible range.

INTBCD

The use of INTBCD is l imited to specific col lat ing
purposes. The internal BCD character code was common
to some CDC 3000 Series computers, and has fallen into
disuse in larger computers. One reason for this continued
capability is that it allows upward mobility of data from
smaller CDC computers. INTBCD should not be specified
as a key type unless you have a real need to use it and
understand exactly what you intend to do with it.

COLLATING SEQUENCE

Just as the character set determines what b inary
equivalent is assigned to the graphic character input to
the computer, the collating sequence determines the order
of each binary equivalent to one another. Thus, the
collating sequence determines the precedence given to
each character, whether it is in graphic or binary form.
The collating sequence usually specifies that B will follow
A and that 2 will follow 1, and so forth.

Changing the collating sequence specification changes the
order of the items output from a sort.

The collating sequence applies only to character data, not
to numeric data. The collating sequence can be any of the
following:

ASCII6

COBOL6

DISPLAY

INTBCD

OWN

The collating sequence can be specified as one of the
existing four collating sequences, or you can specify your
own col lat ing sequence i f you wish. The col lat ing
sequence chosen need not correspond to the character set
used in coding the data. The character set in use
determines the translation between the 6-bit binary value
and one of the letters, digits, and special characters
available as graphics. You cannot change the character
se t . The co l l a t i ng sequence , on the o the r hand ,
determines the precedence given to each character
already translated, when the key is sorted. You can select
the collating sequence.

yrfSslN

/ t * ^ \

3-2 60482900 A

0^&\

If you do not specify a collating sequence, a default
collating sequence will be assumed. For example, if the
character set in use at your installation is the CDC
character set, the default collating sequence will be
COBOL6. If the character set in use is the ASCII set, the
default collating sequence will be ASCII6.

If the file that is being sorted is subsequently to be
merged or compared with another file, it is essential that
the two files are arranged according to identical collating
sequences.

Selecting a Collating Sequence

The DISPLAY collating sequence usually is the default
collating sequence because the DISPLAY character set is
native to the CDC CYBER computers. This makes its use
much more efficient than COBOL6 or ASCII6. However,
the DISPLAY collating sequence orders blanks and special
characters after alphabetic and numeric characters. For
this reason it is not the best collating sequence for most
directory sequence applications.

If you compare the collating sequences in appendix A, you
will notice that the ASCII6 collating sequence orders
numbers ahead of letters, while COBOL6 orders letters
ahead of numbers. This difference in collating sequences
can at times be made to work to your advantage.

When selecting the collating sequence of a large data file,
there are a number of factors that should be carefully
considered. If there is a possibility the file will be used on
other computers , the 8-b i t ASCI I code is a more
f requent ly used code for in format ion in terchange.
Therefore, it could be advantageous to select the ASCII6
collating sequence now. When the file is converted, it will
be in the desired sequence without requiring a sort as part
of the conversion process.

One overriding consideration in selecting a collating
sequence is the sequence of any other file with which the
data is to be processed. When data is to be used with
another file, it must be in the same sequence as that file.
Advance planning to ensure the greatest degree of
compatibility between files that might be used together
can significantly reduce processing time.

Importance of Blanks

To fur ther demonstrate the d i f ferences among the
collating sequences, consider the following three names:

JOHNS AMOS
JOHNSON CLIFFORD
JOHNSTON ALFRED

When these names are input as shown, with a blank
be tween the l as t and fi r s t names , t hey w i l l so r t
differently depending on the collating sequence chosen.
The COBOL6 and ASCII6 collating sequences will order
them as shown above.

The DISPLAY collating sequence will arrange them as:

JOHNSON CLIFFORD
JOHNSTON ALFRED
JOHNS AMOS

The INTBCD collating sequence will arrange them as:

JOHNSON CLIFFORD
JOHNS AMOS
JOHNSTON ALFRED

The Sort/Merge reference manual describes how you can
create your own collating sequence.

ALTERNATE SPECIFICATION OF
KEY TYPES

There can be advantages in specifying a different key type
than the one you would expect to use under some
circumstances. Sort/Merge processes integer keys and
logical keys faster than floating point or character coded
keys. Thus, when possible, it can be to your advantage to
specify the key type which allows the faster sort. When
you have reached the level of expertise to want the
fastest possible sort, see the Sort/Merge reference manual
for additional information on this subject.

SORT ORDER

Most readers will agree that the normal order of the
alphabet is A through Z and the normal order of numbers
is 0 through 9. This order is often called ascending order
because it goes from the item of lowest precedence to the
item of highest precedence. To reverse this order of
precedence results in descending order.

Student grades are often given based on a scale of 0
through 100 or on the scale A through F. In the case of
numbers, 100 is the best possible mark, whereas in the
case of letter grades, A is the best possible mark. When
sorting a file of student grades, in order for the best
marks to appear at the top of the list, letter grades should
be sorted in ascending order and number grades in
descending order.

Sort/Merge allows you to specify the order you desire,
ascending or descending, for each key field to be sorted.

USING MERGE
A merge is simply the process of putting together two or
more files that are in the same sequence based on the
same key. A merge run results in one new file containing
all of the records from the input files in the same
sequence as they were supplied.

Merge is most commonly used to combine existing sorted
files. Whenever new data is to be added to existing files,
a merge is the most efficient method to use. (A merge
operation is almost as fast as a copy operation.) Merges
are also most useful in combining related sets of data,
such as address files with payroll files for employee
reports and tax reports.

If two files to be merged are not in the same sequence,
one of them must be sorted to match the other prior to
the merge. If files that are not in the same sequence are
merged, the entire resulting file will require sorting at
some future time. The time required to sort all of the
data compared to the time to sort and merge only part of
the data is the valid comparison. The larger the file, the
more time the sort takes.

/^P!v 60482900 A 3-3

The frequency with which files are merged depends on the
application. An airline ticket handling file might merge
updates to the file on very short notice, if not totally
interactively. Certain legal applications are based on
daily postings, such as the t i t le insurance for real
property. Al l transactions must be entered into the
master file by the start of the next business day. A merge
of the previous day's activity provides the best answer to
such a problem. A sort of the entire file is not necessary.

A large university might keep computer files on its
students that would only need to be updated once per
quarter or semester. State and Federal income tax files
are usually updated only once per year. The United States
census is only conducted every 10 years.

The basic process of a merge operation is to arrange data
from two or more ordered lists by interleaving the records
from the ordered lists.

In its simplest form, a merge is the process of taking the
next sequential item from one of two ordered lists,
moving that item to the output file, and repeating the
process. The term merge assumes that the input data has
been presorted.

The purpose of a merge is to create a single ordered
output list.

MERGING DURING A SORT

The process of merging is often performed as a part of the
process of sorting. Consider for instance that the amount
of central memory available for sorting can only contain
1000 records while the file to be sorted contains more
than 2000 records. The records cannot all fit into central
memory and be sorted in a single process. Thus, the input
is sorted into separate strings of a length that will fit into
the available central memory. These strings are usually
stored on a disk file for subsequent merging with other
sorted strings. A replacement technique that is used
during the formation of these strings allows them to

contain more records than can be contained in central
memory, but in this case there will be at least two strings
formed. These strings are then merged to form the final
output file of the sort.

MERGE ORDER

When only two strings are created, the merge order is
two. If three strings are created, the merge order is
three. There is a practical limit to the number of strings
that can be merged efficient ly. This number varies
according to several di fferent factors; i t is usual ly
between 2 and 64. The dominant factor in the selection of
a merge order is the amount of central memory available;
however, it can also be affected by the total number of
strings to be merged and the amount of disk activity
within the system.

If the number of sorted strings does not exceed the merge
order, all the strings can be merged and written to the
output file with no intermediate merge. If the number of
sorted strings is greater than the merge order, several
strings must be merged to form longer strings. This
procedure is repeated until the number of strings is less
than or equal to the merge order, at which time the
strings are merged onto the output file.

Merge order setting is applicable only to disk sorts. The
merge order for tape sorts is determined by the number of
tape dr ives avai lab le. The defaul t merge order is
computed by Sort/Merge for each sort based on algorithms
which y ie ld opt imum per formance for most users.
Sort/Merge users who frequently execute very similar
sorts of very large files might try to improve Sort/Merge
performance by selecting and specifying a merge order;
however, it is more likely that an inefficient merge order
will be chosen that will degrade Sort/Merge performance.
It is worthwhile to compare merge order settings only
when all other variables are unchanged.

/C."mi$K ■

The merge order formulas appear in appendix
Sort/Merge reference manual.

F of the

/ ^ \

3-4 60482900 A

CONTROL STATEMENT SORTS

j ^ ^

Control statement sorts are also known as directive sorts.
Either term is acceptable. Either term differentiates this
type of sort from the FORTRAN Extended cal ls to
Sort/Merge, the macro calls to Sort/Merge, and the
COBOL SORT verb. The sort directives specify exactly
what is to occur during the execution of the Sort/Merge
run. The directives are closely related to the file to be
sorted. They do not interface with the operating system.
As a result, the directives need not be changed if you run
the Sort/Merge job on the NOS or the NOS/BE operating
system.

SORTMRG STATEMENT
The SORTMRG control statement, on the other hand,
functions in the same manner as a compiler call. It is the
only Sort/Merge control statement. It is an operating
system cal l , which resul ts in the compi lat ion of a
Sort/Merge program based on the parameters specified, or
upon the default values assumed. It should be noted that
some default values, such as merge order, are not
preselected but are actually computed to determine the
most efficient setting.

FILE STATEMENT
Because Sort/Merge performs all input and output through
CYBER Record Manager, a CYBER Record Manager FILE
statement must be provided for every output file to be
processed by a directive sort or merge. A FILE statement
i s n o t n e e d e d f o r t h e fi l e n a m e d I N P U T. A f u l l
description of the required FILE statement appears in the
Sort/Merge reference manual. The FILE statement should
not be confused with the FILE directive.

Sort/Merge also requires, for internal use, that a value for
the maximum record length be set. This value can be
specified either by the MRL or the FL parameters on the
FILE control statement, or by the MRL parameter on the
OWNCODE directive. If the value is specified more than
once, the largest value specified is used by Sort/Merge as
the value for all files.

restrictions are placed on separators when used with
certain directives; these are explained with the directives
which restrict their use.

Use of the comma is recommended in all cases where a
choice of separators is allowed. Only the comma is used
as a separator in the following directive descriptions.
Blanks occurring before and after separators are ignored
by the system except in the case of the SEQUENCE
directive. Refer to the Sort/Merge reference manual for
a complete list of the restrictions on their use.

The Sort/Merge directives can be specified in any order,
except that END must be the last direct ive in the
sequence.

SORT

If you wish to sort records, the SORT directive must be
specified. The SORT directive usually has no parameters.
In the case of a tape sort, a parameter specifying the tape
sort is required. For Sort/Merge 1, an optional parameter
allows you to specify the amount of large central memory
to be used as a buffer area.

MERGE

The MERGE directive specifies merge-only processing.
Either SORT or MERGE can be specified, not both.
MERGE has no parameters.

FIELD

The key field on which you wish to sort must be defined
and named in the FIELD directive. Each field is given a
name and is identified by starting position, length, and key
type. At least one FIELD directive must be specified; up
to 100 fields are allowed.

SORT/MERGE DIRECTIVES
The Sort/Merge directives can fill all columns from 1
through 72 of a punched card or an input line. Directives
can be cont inued on the next l ine by start ing the
c o n t i n u a t i o n l i n e w i t h a c o m m a . T h e n u m b e r o f
continuation lines is not limited.

Comments can be entered by placing an asterisk in
column 1. Comments can be placed anywhere in the
Sort/Merge input deck. They are printed when they are
encountered during processing but they do not in any way
affect processing.

A number of special characters are reserved by the
Sort/Merge program as field or parameter separators for
d i r e c t i v e s . Te r m i n a t o r s (c h a r a c t e r s w h i c h e n d a
directive) are not required and are ignored. Additional

Additional parameters are available to specify a separate
+ or - sign for numeric data in display code, or as an

overpunch. These parameters are described in section 3
and in the Sort/Merge reference manual.

BYTESIZE

The size of the bytes referenced in the FIELD directive
for each job is predefined by the BYTESIZE directive. If
BYTESIZE is omitted, the default of 6 bits per byte is
assumed. BYTESIZE does not permit the use of 8-bit
bytes for character input. I t is provided only as a
convenience for specifying fields by byte and bit positions.

You can specify the starting position of the sort key by
byte, by bit, or a combination of the two. If you specify
by byte, the number of bytes from the beginning of the

60482900 A 4-1

record starts with 1. The same is true with bits; however,
ycu must preface the number of bits with a period. Or,
you can combine bytes and bits by separating them with a
period, such as 4.4, which means byte 4, bit 4 (the 22nd
bit in the record if BYTESIZE is 6—this could also be
specified by .22).

characters

binary 010100 001000 001001 010011
t

bit 22

For key types other than DISPLAY, you might wish to
specify words instead of bytes. One method of doing this
is to specify BYTESIZE equal to 60.

KEY

The KEY directive is required to specify the order and
collating sequence of the sort keys. As the FIELD
directive identifies the field to be sorted and gives it a
name, the KEY directive specifies the order and collating
sequence for the named key field.

A different sort order and collating sequence can be
specified for each key field identified by keyname. Up to
100 keys can be specified.

You can specify order, ascending or descending, by A or
D. If you do not specify order, ascending order is assumed.

The collating sequence can be one of the standard
collating sequences: ASCII6, COBOL6, DISPLAY, or
INTBCD; or your own collating sequence, which you must
define by use of the SEQUENCE directive. In any case,
you will only need to select a collating sequence if you
have defined the key type as INTBCD or DISPLAY on the
FIELD directive.

SEQUENCE

With this directive you can specify your own collating
sequence or change the default collating sequence to a
different standard collating sequence.

If you choose to specify your own collating sequence, you
can specify it in characters, octal values, or both. If you
use characters, they will refer to the binary equivalents
defined by the character set named in the FIELD
directive. Octal values refer to the binary value in the
character positions, regardless of the character set
specified in the FIELD direct ive. Octal values are
expressed as two-digit values; single digit values are
assumed to be characters. A blank is only allowed to
represent a blank in the SEQUENCE directives. The
special characters used as separators in the SEQUENCE
directive can only be specified as octal values in the new
collating sequence. See the Sort/Merge reference manual
for details.

OPTIONS

The OPTIONS directive allows you to exercise more direct
control over some parts of the Sort/Merge run. User
options can be divided into three categories: order,
dumps, and optimization.

Order

The RETAIN option allows you some control over sorting
records with identical sort keys. When this parameter is
specified, records with identical sort keys are output in
the same order as they were read, as specified by the
FILE directive. When this parameter is omitted, records
wi th ident ica l sor t keys are sequenced arb i t rar i ly.
RETAIN does not work with MERGE runs.

The VERIFY option, when specified, causes the output file
to be checked for correct sequencing. If the order of
records on the output file is incorrect, the job stops and
the output file is lost.

VERIFY is most often used to verify the order of records
from merged input files or records inserted through
owncode exits (exits 3, 4, 5). There is nothing to gain by
specifying VERIFY for a sort run with no owncodes.
Owncode is described in section 5.

When VERIFY is not specified, a sequence error during a
merge run with no records inserted results in only an error
message; all records are written to the output file, but
they need not be in order.

There can be an advantage to not specifying VERIFY when
you want to insert records, such as page headers, out of
sequence through use of owncode (exits 3 and 4); no
checking takes place and the records are inserted as
specified. Merge cannot use owncode exits 1 and 2.

Dumps

The VOLDUMP is a carryover from the days of tape
sorting, when it could be expected that some tapes would
be bad, and when power failures or machine malfunctions
were commonplace events. A checkpoint at the end of
each tape volume reduced reprocessing when such
problems occurred. A VOLDUMP now means that a
checkpoint will be taken at the end-of-volume on input
and at the new-volume condition on output whether on
tape or disk.

Checkpoint dumps can also be specified at specific
intervals such as after every 1000 records. The concept
of a checkpoint dump is a good idea, yet in actual practice
it is better to use other methods to achieve the same
result. Checkpointing requires that a dump be taken and
stored at regular intervals and that system resources be
tied up to manage this process. In practice, it is faster to
break up a large sort into smaller sort files because
overall sorting time is reduced and system overhead is
lower.

The option DUMP(nn) can be used to specify that a dump
be taken every time the specified decimal number of
records is read from the input file or written to the output
file. DUMP can also be specified without the specific
number appended, in which case a checkpoint is taken
after each group of 50 000 records by default.

The NODUMP option specifies that no checkpoint dumps
will be taken.

Op t im iza t i on

Three options are available to you in the form of directive
parameters: two influence the sorting process itself, and
one can be used to change the merge order.

4-2 60482900 A

05r&\

^ P K \

The COMPARE and EXTRACT options are mutually
exclusive within a sort. The key comparison technique
runs faster but requires more central processor time; the
key extraction technique runs slower but requires less
central processor t ime. If neither option is chosen,
Sort/Merge will choose the better technique according to
its own algorithm. This algorithm usually yields the
better choice, but should you wish to test the validity of
the algorithm for a particular sort run, you can make the
run twice, using both options, to satisfy your curiosity.
On sufficiently large sort runs, an occasional check of
both options is warranted to determine that time is not
being wasted.

The ORDER option allows you to specify the merge order
used during a particular sort run. Merge order determines
the number of merge buffers used during the intermediate
merge phase to merge sorted strings into longer sorted
strings, as described in section 3.

Merge order cannot be specified for COBOL sorts, nor can
merge order be specified for a tape sort since the number
of available tape drives determines the merge order.

Sort/Merge computes the most efficient merge order
based on formulas which should yield the most efficient
performance. Though it is possible that a user change in
merge order could produce a faster sort, it is more likely
that a user change to the merge order would degrade
Sort/Merge performance.

EQUATE
The EQUATE directive allows you to declare one or more
characters in a collating sequence equal to another
character in the collating sequence. For example, leading
blanks do not collate the same as leading zeros in numeric
data. This can be a problem, depending on the collating
sequence selected. To avoid this problem, you can equate
the blank to zero. However, equating the blank to zero
does not move the sign in signed numeric data (see
section 5). To equate the blank to zero, you can specify
e i ther the charac te rs o r the i r d isp lay code oc ta l
equivalents as shown below:

EQUATE,DISPLAY(,0)
or

EQUATE,DISPLAY(55,33)

Refer to the Sort/Merge reference manual before using
the EQUATE directive.

OWNCODE

If you have specified the owncode capabi l i t ies as
described in section 5, you must use the OWNCODE
directive to specify legal entry point names to relocatable
owncode exit routines. The OWNCODE directive should
not be confused with the SORTMRG control statement
parameter OWN which is also required when owncode
binaries are to be input on a file name other than INPUT.
Owncode is described in section 5.

FILE

In addition to the FILE control statement required by
CYBER Record Manager, you must also supply a FILE
directive to specify all of the input and output files to be
used during a sort run. For a merge run, you need only
specify the merge input files and the output file; for a

sort run, you can specify either INPUT or SORT and
OUTPUT. You must specify the name of the file as that
given on the FILE control statement. You can also
spec i f y t he sys tem ac t i on to be pe r fo rmed when
processing is complete, such as close and rewind or unload
the file.

A local (or a NOS indirect access permanent file) can be
sorted upon itself; that is, the output filename and the
input filename can be the same.

The order in which the input files are specified determines
the order in which they will be read. If you have specified
the RETAIN option, records with duplicate or equal keys
will be output in the order they were read.

TAPE

If you wish to use the tape version of Sort/Merge, you
must use the TAPE directive to specify the names of the
intermediate merge files. You must also specify a tape
parameter, either POLYPHASE or BALANCED, in the
SORT directive.

Tape sorting should be avoided if possible. If a tape sort
cannot be avoided, refer to the Sort/Merge reference
manual appendix on tape sorting. The difference between
BALANCED and POLYPHASE i s exp la i ned t he re .
POLYPHASE is usually the faster tape sort unless more
than eight tape drives are available. When 10 or more
drives are available, a BALANCED sort might be faster.

A simple tape sort is described in section 1. Do not
confuse a disk sort, using tape input and tape output, with
a tape sort. A disk sort stores the sorted strings on disk
as the intermediate storage medium. A tape sort stores
the sorted strings on tape. A tape sort is only chosen
when insufficient disk facilities are available.

JOB EXAMPLES
After you have created or selected the file you wish to
sort, you will need to write the specifications which will
direct the sort process. These specifications, called the
sor t d i rec t ives , a f fec t on ly the sor t p rocess. Sor t
directives do not change even when the sort is run on a
different CDC computer, or under either the NOS or
NOS/BE operat ing system. The control statements,
however, are different for the two operating systems.
Only the NOS operating system control statements are
given in the following examples. The NOS/BE control
statements are given in appendix C.

If you would like to practice running sort programs, you
might wish to create a file of punched cards similar to
that used in the examples which follow. Practice of this
nature can sharpen your abi l i ty to work wi th your
operating system as well as with Sort/Merge.

The record format shown in figure 4-1 is used for the
practice examples in this section. The input deck created
in this format is shown in figure 4-2.

Figure 4-2 gives the punched card input created for
practice with the following examples. These punched
cards are intentionally formatted in a manner similar to
the examples contained in section 4 of the Sort/Merge
reference manual.

The sort directives shown in figure 4-3 wil l put the
preceding records in alphabetical order by employee name.

60482900 A 4-3

24 26 27 33 39 41 42

Name Salary Start Date

Name

Job

23-character display coded field.

2-character display coded field containing a job grade identifier:

2
4

employee
foreman

6
8

10
12

supervisor
manager
general manager
director

Dept

Salary

Start Date

Age

Sex

1-character display coded field containing a department identifer:

A production department
B shipping department
C personnel department
D accounting department
E sales department

6-character display coded field with leading zeros.

6-character display coded field in the format mmddyy:

mm decimal number of month
dd decimal day of month
yy last two digits of calendar year

2-character display coded field.

1-character display coded field.

male
female

MS 1-character display coded field containing marital status:

M married
S single
D divorced

Figure 4-1. Record Format

These directives can appear in any order except that END
must appear last. The SORT directive declares that the
sort process is selected. The FILE directive declares that
input is to come from the card reader since the card
reader is the default input source. Output is to the file
NEW instead of OUTPUT, because the file must be
rewound and copied using COPYSBF (copy shifted binary
file) as shown in figure 4-4. If COPYSBF is not used, the
first character of each print line will be taken for the
printer carriage control character and thus disappear. In
addition to losing the first character of each line of
output, the output will appear in a strange format since
many of the first characters of each output line will cause
multiple line skips or skip to a new page. COPYSBF
causes the first character of each line to be blank which,
as a printer carriage control character, causes the printer
to space to the next line (single space). This example
shows output going to the file NEW which is rewound and
output after being shifted one position by COPYSBF.

The sort key field identified by the FIELD directive is
NAME starting in column 1, and extending 23 characters
in length, in display code. The key on which the file will
be sorted is the field NAME as identified in the FIELD
directive; output is to be in ascending order, and in display
code collating sequence.

Some directives require the use of certain characters that
would otherwise be allowed as general delimiters. These
characters must then be used only for their specified
func t ions . A l l o f the except ions are no ted in the
Sort/Merge reference manual; exceptions are noted here
only when encountered in the examples.

In addition to the sort directives, you will also need to
supply the operating system control statements. The NOS
control statements shown in figure 4-4 were prepared to
sort a deck of punched cards (figure 4-2) using the sort
direct ives given in figure 4-3. The NOS/BE control
statements are given in appendix C.

4-4 60482900 A

BOER,GEORGE A00079512237428MS
HANGiLXSA 000058511277723F5
OURANO,HEucN A00163509016836FO
MILLER,FLORLNCE A000610050378 22FS
POPOV,IVAN E00066 507097723MS
MARTIN,RICHARD A0Q092112157338MM
SOKOL,DONALD A0021C812C76346MM
JONES,CHERYL D00068508277524FM
LOPEZ, COSME A00367C030776 22MM
CHANG,ROBERT A0QJ6840 2017625MS
JOHNSON,ANNABcLLt C001472Q4036928FM
NEWMAN,ANDREW A00071007017724MM
WILSON,DOUGLAS £000910120573 36M0
OUBOIS,ANORL A000625031578 21MS
OAVIS .ROBERT £0010750 1C37335MS
TAYLOR,JENNIFER A0OG62510117722FS
MULDER,HE NK B00091104017441MM
BERNARD,JOHN A00062501157719MS
WILLIAMS,BENEDICT A0017210 81672 39MO
MEYER, WILLIAM A0008750 3Q17632MS
SMITH,JOHN A000810091373 48MM
PLTIT,ARNCLO A0Q0625Q 2217820MS
JOHNSON, AR MA ND E00141010207232MS
BROWN, JAMES a00070009117623MS
ANDERSON,TIMOTHY AQ0J70G05257526MM
LI, WANG A0007100 11077 31MS
CARLSON,JACK E031975083C7436MD
SMITH,ROBE RTA A00375011227527FS
COHEN,JOSEPH A0008750 40474 35MO
SCHULZ,CHARLES* AOOO€2«04017818MS
SMITH,MARGERY E00113502157528FS
KIM,LEE A00061011227719FS
BAKKER, JOACHIM 4Q0071001117624M3
IVANOV, LEONARD A00072 3081576 32MM
GOMEZ,LINDA C00063504217721FS
WILLIAMS,ROBERT A0007900 3157631MS
GARCIA,ARTHUR 800073302297634MM
JONES,FRANCES 900075 M.1037427FS
PETROV,GEORGE C000750Q6307629MD
FISCHER,OAVIO A00062506017821MS

Figure 4-2. Input Records

SORT
FILEJNPUT=INPUT,OUTPUT=NEW
FIELD,NAME{1,23,DISPLAY)
KEY. NAME (A.DISPLAY)
END

Figure 4-3. Sort Directives

For the NOS operating system you will need to supply the
typical job, user, and charge control statements, as shown
in figure 4-4. In addition, you must supply a CYBER
Record Manager FILE control statement in order to
change the default block type and record type, and specify
the length of the longest record, for the output file. If
you do not supply this information on a FILE control
statement, the job will either terminate with a fatal error
or yield unusable output. The reason for this problem is
that the CYBER Record Manager default for the file NEW
is BT=I,RT=W. Since NEW is to be listed on the printer,
the CYBER Record Manager FILE statement specifying
FILE(NEW,BT=C,RT=Z,FL=80) is required.

The block types and record types are explained in the
CYBER Record Manager publications listed in the preface.

jobcard.
USE R (usernum.passwrd)
CHARGE{accounting information)
FILE(NEW,BT=C,RT=Z,FL=80)
SORTMRG.
REWIND.NEW.
COP YSB F, N EW,0 UTPUT.
7/8/9 multipunched in column 1

sort directives (Figure 4-3)

7/8/9 multipunched in column 1

input records (Figure 4-2)

6/7/8/9 multipunched in column 1

Figure 4-4. NOS Control Statements

Because the input default is for card format, there is no
need to specify the FILE control statement for INPUT in
these examples.

The SORTMRG control statement is all that is needed to
call Sort/Merge. All of the necessary values are selected
by default or computed based on other parameters
supplied.

The output is rewound and all records shifted as a result
of the COPYSBF statement before being printed.

The resulting output should appear as shown in figure 4-5.
The header line states 7C DIRECTIVES which means that
Sort/Merge version 4 directives were used. Users of
directives in the Sort/Merge version 3 format will find 6C
DIRECTIVES in the header. The remainder of the header
line shows that Sort/Merge version 4.6 installed at level
495 as run on March 29, 1979 at 2.06 P.M. The sort
directives specified for this run are listed. No other
information appears on page 1. A horizontal line in the
figure indicates a page break.

Page 2 (and on) gives the printed sorted output. The last
page of output header gives the job name assigned by the
operating system as it appeared on the banner page, the
da te o f t he run , add i t i ona l i n fo rma t ion abou t t he
computer installation, the computer serial number and the
operating system used.

The dayfile indicates a successful run by not indicating
any errors. The job control statements are listed in the
order they were executed and the Sort/Merge statistics
are set off by asterisks. The key comparison technique
was selected by the program; no records were inserted or
deleted on input or on output; 40 records were input and
40 records were output. The merge order determined by
the Sort/Merge program for this job was 12. Accounting
information is printed to indicate the time and resources
used. Depending on the installation, this information is
also used to bill the group or project named in the
CHARGE statement.

The sorted output shown in figure 4-5 was cataloged as a
permanent file for future use as input to other practice
jobs. The SAVE,NEW. card in the job control statement
section causes the file NEW to be saved as a NOS indirect
access permanent file as shown in figure 4-6.

60482900 A 4-5

7 C D I R E C T I V E S SORT/MERGE 4 .6 L495 79 /03 /29 . 14 .06 .50 , PAGE

SORT
FILE, INPUT=I NPIT , OUTPU T= NEW
FIELD,NAME (1,23,DISPLAY)
KEY, NAMECA, DISPLAY |
ENO

ANDERSON,TIMOTHY
BAKKERt JOACHIM
BERNARD, JOHN
BOER,GEORGE
8R0HN, JAMES
CARLSON, JACK
CHANG, ROBERT
COHEN, JOSEPH
OA VIS,ROBERT
DUBOIS, AND RE
OURAND,HELEN
FISCHER, DAVID
GARCIA,ARTHUR
GOMEZ,LINOA
I VA NOV,LEONARD
JOHNSON, ANNA BELLE

AOO
AOO
AOO
AOO
AOO

8 E00
2 AOO

AOO
E00
AOO
AOO
AOO
aoo
coo
AOO
COO

070 00
07100
06250
079 51
07000
19750
068 40
087 50
10750
062 50
16 350
062 50
07380
06350
0 72 30
14720

5257526MM
11176 24 MS
1157719MS
22 3 74 28 MS
9117623MS
8 30 74 3 6 MO
20176 25 MS
40474 35 MO
10 3 73 35 MS
31578 21 MS
90168 36FO
6017821MS
229 76 34MM
4217721FS
815 76 32 MM
4036928FM

SMITH, ROBE RTA
SOKOL,OONALO
TAYLOR,JENNlFtR
WANG, LISA
WILLIAMS,BENEDICT
WILLIAMS,ROBERT
WILSON,DOUGLAS

4 A00075011227527FS
8 A00210 ei2076646MM
2 A00Q62510117722FS
2 000058511277723FS
6 A001721Q8167239MG
2 A00079Q03157631MS
2 E00091012057336MD

ACLYAFA. 79/03/29.(22) SVL SN6 14 NOS

14.06.45 .EXNRC.
1 4 . 0 6 . 4 5 . U C C R , 6 1 2 5 , 0 . 0 5 2 K C O S .
14. 06.45.USER (usernum.passwrd)
14. 06.45.CHARGE (accounting information)
14 .06 .45 .F lL£ (NEW,BTsC,RT=Z ,PL=80 l
14. 06.47.SORTMRG.
14.06.51.♦♦♦KEY COMPARISON USED
14.06.52. ♦♦ INSERTIONS OURING INPUT •♦••♦♦♦♦•o
14.06.52. ♦♦ DELETIONS OURING INPUT ♦ ♦•••••♦•(j
14 .06 .52 . ♦♦ TOTAL RECOROS SORTED • • •♦ •♦♦ •w
14.06.52. ♦♦ INSERTIONS OURING OUTPUT »*»*♦»♦♦•()
14.06.52. ♦♦ DELETIONS OURING OUTPUT ♦♦*♦***♦*<}
14.06.52. ♦♦ TOTAL RECORDS OUTPUT ♦•♦♦♦#»#<t0
14 .06 .52 . ♦♦ MERGE ORDER USED •♦♦♦♦♦♦»12
14.06.53. ♦♦ENO SORT RUN
14.06.53.REWINO,NEW.
14. 06. 53. COPYSBF, NEW, OUTPUT.
14.06.53. ENO OF INFORMATION ENCOUNTERED.
1 4 . 0 6 . 5 3 . U E A 0 , 0 . 0 0 2 K U N S .
1 4 . 0 6 . 5 3 . U E P F , 0 . 0 0 5 K U N S .
1 4 . 0 6 . 5 3 . U E M S , 0 . 5 6 4 K U N S .
1 4 . 0 6 . 5 3 . U E C P , 0 . 3 6 7 S E C S .
1 4 . 0 6 . 5 3 . A E S R , 2 . 6 3 4 U N T S .
1 4 . 0 7 . C 5 . U C L P, 6 1 2 2 , 0 . 2 5 6 K L N S .

/^^sk

Figure 4-5. Sort Output by Name

4-6 60482900 A

yfllS&E^

y ^ ^ V

EXNRC.
USER(usernum,passwrd)
CHARGE{accounting information)
FILE{NEW,BT=C.RT=Z,FL=80)
SORTMRG.
REWIND,NEW.
COPYSBF.N EW.OUTPUT.
SAVE,NEW.
7/8/9 multipunched in column 1

sort directives

7/8/9 multipunched in column 1

input records

6/7/8/9 multipunched in column 1

Figure 4-6. Creating a NOS Permanent File

Users of NOS permanent files will encounter both direct
and indirect access permanent files. Their use is quite
different. For purposes of these examples, only indirect
access permanent files are used. Large files might be
better served by using direct access permanent files. The
choice of type of NOS permanent file is described in the
NOS Time-Sharing user's guide.

By saving your input file as a permanent file, you can
access it time after time with a single control statement.
In this instance, it is very simple to input the card deck
created for practice examples (shown in figure 4-2), make
the file permanent with the SAVE,NEW control statement,
and refer to the permanent file in subsequent jobs by using
the GET,NEW control statement. You should purge the
permanent file when you no longer need it.

Figures 4-7 and 4-8 are quite similar to the examples
given in section 4 of the Sort/Merge reference manual.
Figure 4-7 illustrates a sort of the practice file based on
department. All of the names are sorted alphabetically;
identical names are further sorted on salary.

Some sort directives are arbitrarily continued on the next
line to fit the format of the example. These directives
are normally up to 72 characters in length.

Figure 4-8 illustrates the ease with which you can alter
the order of the departments by specifying your own
collating sequence for the sorting of the departments.

One method of creating a seniority list of employees is
illustrated in figure 4-9. Assuming this list will be used to
determine the order of employee layoffs should the need
arise, the last hired should be at the top of the list. The
major sort key is the employee start date, beginning with
the most recent. The secondary key is set by age, starting
with the youngest. Thus, if two or more employees
started on the same date, those who are younger will be
listed first.

The most notable aspect of this example is the manner in
which the sort on the start date should be specified. The
date consists of three separate parts. The most important
part is the year, second is the month, and last is the day
of the month. This sort format must be used to correctly
sort the dates. The date is divided into three keys in this
example. Each part is sorted as a separate field. This is
not really necessary; the date could be sorted on two keys,

1 S D ? T
2 FlLE, INPUT=INPUT,OUTPUT=NEW
3 F I E L D , N A M E (1 , 2 3 , D I S P L AY) , 0 E P T 1 2 6 . 1 ,
4 , 0 I S P L AY) , S A L A R Y (2 7 , 6 • DISPLAY)
5 K E f , D E P T (A , D I S P L AY) .NAHECA.OISPLAY),
6 , S A L A RY (D , D I S P L AY)
7 t < n

ANDERSON, TI1OTHY A0U07000 5257526MM
BAKKER,JOAC-iIM AOii071001117624MS
SERNAfcOtJOrH A0GQ625Q1157719MS
BOER, GEORGE A0C079512237*28MS
BROWN, J AMES A0C07QG09H7623MS
CHANG .ROBERT A0C06840 2017625MS
COHEN,JOSEPH A0G087504047435MO
OUBCIS.ANORE AOU062503157821HS
OURANO.HELE^ A0C16350SQ16836FD
FISCHER,DAVID A0u0625(i6017821MS
IVANOVtLEONARJ AQGQ7230815763ZMN
KIM,LEE AOC061J11227719FS
LI, WANG AQI.Q71001107731MS
LOPEZ ,C0SM£ AOQ0673Q30 77622MM
MARTIN,RICH^RJ •X AG3092112157338MM
MEYER,WILLIAM '•* A0038750 30l7e32MS
M l L L E f i » F L O * E ^ £ AOC061005G37822FS
NEW MAN, AN DREW AQ0071Q07017724MM
P£TIT,ARNOLJ A0QQ625a2217820HS
SCHULZ,CHA?_E5 AC3062504017818MS
SMITH «J0HN A0C081009187348MM
SMITH,ROBERTA AOu075011227527FS
SOKOL ,00 NAL J AQG210812076e46MM
TAYLOR, JENNIFER A0CQ62510117722FS
WILLIAMS, BENEDICT A00172108167239MO
WILLIAMS, ROBERT A0G879GQ3157631MS
GARCIA,ART-|JR BUC07360 2297634HM
JONES,FRANCES 80G375811037427FS
MULOES.HENK >* BQuQ91104Q17441MM
GOMEZ ,LIN DA C0C063504217721FS
JOHftSCN,ANN43ELLE CGG147204U36928FM
PETROV,GEORiE Cfli0750Q6307629MD
JONES ,CH£RY. D0C068508277624FM
WANG, LISA D00058511277723FS
CARLS ON,JAC< E0j1975Q8307436MO
0AVIS,R03E?T E0U075Q10 37335MS
JOHNS CN.ARMA.MO <♦ £ 0 : i 4 1 0 l 0 2 0 7 2 3 2 M S
POPOV,IVAN EOC06650 70 97723MS
SMITH,MARGERY *♦ E0G11350 2157528FS
WILSON,00 Ui.AS E00091012057336MO

Figure 4-7. Sort by Department, Name, and Salary

the first on the year and the second on the month and day
together as a four-digit field.

Dates specified in the form mmddyy require specification
of at least two fields, yy and mmdd. If the dates entered
into the file were formatted as yymmdd, only one sort key
field would be needed.

You might wish to note that another example, illustrated
in figure 4-10, shows that specifying the FIELD as
DISPLAY code and the KEY as INTBCD results in no
significant change to the alphabetic order of employee
names. This is because the alphabet runs in the same
order in both character sets and collating sequences. Such
specification on a sort key field which contained letters,
digi ts, and special characters would emphasize the
differences between the DISPLAY and INTBCD collating
sequences . The co l l a t i ng sequences a re g i ven in
appendix A.

60462900 A 4-7

1 SORT
2 FILE.INPUTsNEH,OUTPUT?:NEW
3 FIELD,0EPT(26,1, OISPLAY),SALARY(27,6,
4 .DISPLAY).AGE(39 .2,DISPLAY)
5 KEY.OEPT(A.OMN). SALARY(D.DISPLAY),
6 ,AGE(D,DISPLAY)
7 SEQUENCE,OWNCE.C , 0 , 8 , A)
8 ENO

CARLSON.JACK E00197508307436MO
JOHNSON,ARMANO E00141010207232MS
SMITH,MARGERY E00113502157528FS
OAVIS,ROBERT EO0107501037335MS
WILSON,OOUGLAS E00091012057336MO
POPOV,IVAN E0 00 66507097723MS
JOHNSON,ANNABELLE C00147204036928FM
PETROV.GEORGE C00075006307629MD
GOHEZ.LINOA C00063504217721FS
JONES.CHERYL 0000 68508277624FH
WANG.LISA 0000 58511277723FS
MULOER.HENK ** B00091104017441MM
JONES.FRANCES B00075811037427FS
GARCIA,ARTHUR 80007380229763%MM
SOKOL.OONALO A00210812076846HM
WILLIAMS.BENEDICT A00172108167239MD
OURAND,HELEN A00163509016836FO
MARTIN,RICHARD A00092112157338HM
COHEN.JOSEPH A00087504047435MO
MEYER,WILLIAM AQ0087503017632MS
SMITH,JOHN A0 0081009187348MM
BOER.GEORGE A00079512237428MS
WILLIAMS,ROBERT A00079003157631HS
SMITH.ROBERTA A00075011227527FS
IVANOV.LEONARD A00072306157632MH
LI .WANG A00071001107731MS
NEWMAN,ANDREW A000710Q7017724MH
BAKKER,JOACHIM A00071001117624MS
ANDERSON,TIMOTHY A00070005257526MM
BROWN.JAMES A00Q70009117623MS
CHANG.ROBERT A00068402017625MS
LOPEZ,COSME A00067003077622MM
TAYLOR,JENNIFER A00062510117722FS
DUBOIS.ANORE A00062503157821MS
FISCHER,OAVID A00062506017821MS
PETIT,ARNOLD A00062502217820MS
BERNARO.JOHN AQ0062501157719MS
SCHULZ,CHARLES A00062504017818MS
MILLER,FLORENCE A00061005037822FS
KIM,LEE A00061011227719FS

Figure 4-8. User Sequence Sort by Department,
Salary, and Age

COMBINING DISSIMILAR FILES USING FORM
One basic premise of sort files is that the key fields be
identical in length and starting position. A sort can only
be specified on these parameters.

In order to combine files, it is necessary that at least one
record field in each file match. If for example, you wish
to combine two large sorted files, such as university
student grade files, and different fields have been used for
similar information, you can use FORM to modify the
records in one of the files to match the records in the
other file. The FORM reference manual gives an example
of such use.

1 SORT
2 FILE.INPUT=NEW.OUTPUT=NEW
3 FIELD.START1I37.2, OISPLAY),
4 ,START2(33, 2, OISPLAY),
5 ,START3(35,2,OISPLAY),
6 ,AGE(39,2,DISPLAY)
7 KEY.STARTKO, DISPLAY),
8 ,START2(0,DISPLAY) ,START3(0,OISPLAY),
9 ,AGE(A,OISPLAY)

10 END

FISCHER,OAVID A00062506017821MS
MILLER.FLORENCE A00061005037822FS
SCHULZ,CHARLES A00062504017818MS
DUBOIS,ANDRE A00062503157821MS
PETIT,ARNOLD A00062502217820MS
WANG,LISA D00058511277723FS
KIM,LEE A00061011227719FS
TAYLOR,JENNIFER A00062510117722FS
POPOV,IVAN E00066507097723MS
NEWMAN,ANDREW A00071007017724MM
GOMEZ,LINDA C00063504217721FS
BERNARD,JOHN A00062501157719MS
LI.WANG A00071001107731MS
BROWN.JAMES A00070009117623MS
JONES.CHERYL O00066508277624FM
IVANOV,LEONARD A00072306157632MM
PETROV,GEORGE C00075006307629MD
WILLIAMS,ROBERT A00079003157631MS
LOPEZ,COSME A00067003077622MM
MEYER.WILLIAM A00087503017632MS
GARCIA.ARTHUR 800073802297634MM
CHANG.ROBERT A00066402017625MS
BAKKER,JOACHIM A00071001117624MS
SMITH,ROBERTA A00075011227527FS
ANDERSON,TIMOTHY A00070005257526MM
SMITH,MARGERY E00113502157528FS
BOER.GEORGE A00079512237428MS
JONES.FRANCES B00075811037427FS
CARLSON,JACK E00197508307436MD
COHEN,JOSEPH A00087504047435MO
MULDER,HENK B00091104017441MM
MART IN,RICHARD A00092112157338MM
WILSON,DOUGLAS E000910120 57336MO
SMITH,JOHN A0 0081009187348MM
DAVIS,ROBERT E00107501037335MS
JOHNSON,ARMANO E00141010207232MS
WILLIAMS,BENEDICT A00172108167239MO
JOHNSON.ANNABELLE C00147204036928FM
SOKOL,DONALD A00210812076846MM
OURAND,HELEN A00163509016836FD

Figure 4-9. Sort for Seniority List

In the following example, figure 4-11, the output file
which has been sorted on the name field only will be
r e f o r m a t t e d u s i n g F O R M t o i l l u s t r a t e t h e r e p o r t
formatting capabilities of FORM. The FORM directives
used are shown with the formatted output. FORM can be
used to expand the records by placing a row of blanks
between the key fields as shown here, or it can be used to
change the layout of the keyfields within each record so
as to match the format of other records if you wish to
merge files which are composed of identical key fields but
in different formats.

For some statistical reports only a small portion of a large
record needs to be extracted for sorting in order to

0 ^ ^ ! \

4-8 60482900 A

0 ^ \

1 S 3 ? T
2 F L E , I N P J T = N £ W , OUTPUT= MINE
3 F I E L 0 , N A 1 E (1 , 2 3 , D I S P L AY)
4 K E Y, N A M E I A , I N T B C D)
5 £>n

ANOERSON.TUDTHY A 0 0 0 7 0 0 0 5 2 5 7 5 2 6 M M
BAKKER, JOACHIM AQG071QQ111762 4MS
BERNARD, JOrM A 0 G 0 6 2 5 0 11 5 7 7 1 9 M S
80ER, GEORGE A 0 0 0 7 9 5 1 2 2 3 7 4 2 8 M S
BROWN,JAMES A0GG7000911762 3MS
CARLS ON, JAC< E0G1975083Q7436MO
CHANG,ROBERT A O Q 0 6 8 4 0 2 0 1 7 6 2 5 M S
COHEN,JOSEPH A 0 G 0 8 7 5 0 4 0 4 7 4 3 5 M D
OAV IS,ROBERT E 0 G 1 0 7 5 0 1 0 3 7 3 3 5 M S
OUBOIS,ANDRE A0G06250 3157821MS
DURANO.HELEN A 0 G 1 6 3 5 0 S 0 1 6 8 3 6 F O
F I S C H E R , O AV I D AQG0625G6017821HS
G A R C I A , A R T H J * B 0 0 0 7 3 8 0 2 2 9 7 6 3 4 M M
GOMEZ ,LINOA C 0 0 U 6 3 5 0 4 2 1 7 7 2 1 F S
IVANOV,LEONARD A0G07230 8157632MM
JOHNSON,ANNABcLLE C O G 1 4 7 2 0 4 0 3 6 9 2 8 F M
JOHNS ON, ARMANO E001(»1G10207232MS
JONES,CHERYL D 0 0 0 6 8 5 0 8 2 7 7 6 2 « * F M
JONES,FRANCES B 0 0 0 7 5 8 11 0 3 7 < t 2 7 F S
K I M , L E E A 0 0 0 6 1 0 11 2 2 7 7 1 9 F S
LI, HANG A 0 0 0 7 1 0 0 11 0 7 7 3 1 M S
LOPEZ,COSME A 0 0 0 6 7 0 0 3 0 7 7 6 2 2 M M
MARTIN, RICH4<U A 0 G 0 9 2 11 2 1 5 7 3 3 8 M M
M E Y E R , W I L L H M «♦ A 0 0 d 8 7 5 0 3 «) 1 7 e 3 2 M S
MILLER,FLORENCE A0GG610050 37822FS
MULDER,H£N< B0QG911040174H1MM
NEWMAN,ANOREW AQUG710G7017724MM
P E T I T, A R N O L D A0306250 2217820MS
PETROV,GEORiE COG07500630762 9MD
P O P O V, I VA N E0006650 7097723MS
SCHULZ,CHAR-ES A 0 0 Q 6 2 5 0 4 0 1 7 8 1 8 M S
S M I T H , J 0 H N A 0 0 0 8 1 G 0 9 1 8 7 3 4 8 M M
S M I T H , M A R 3 £ i Y E0011350 215752 8FS
SMITH .ROBERTA A 0 0 0 7 5 0 11 2 2 7 5 2 7 F S
SOKOL,OONALD AOQ2108120768h6MM
T A Y L O R , J E < m - £ R A 0 0 0 6 2 5 1 0 11 7 7 2 2 F S
WANG,L ISA O 0 O 0 5 8 5 11 2 7 7 7 2 3 F S
W I L L I A M S , B E N E D I C T A Q G 1 7 2 1 0 8 1 6 7 2 3 9 M D
W I L L I A M S , R 3 3 £ < T AOGQ79003157631MS
WILSON,DOUG.AS E000910120 57336MD

Figure 4-10. Sort Using INTBCD Collating Sequence

produce the desired results. For example, one such case
could be used where only three short fields from each very
long record are to be obtained, sorted, totaled, or
analyzed. This information could be arranged in order by
doing a normal sort of the file and then doing further work
by using another program thus ensuring the desired order
of the output. Such a sort alone would require a large
amount of time if the file itself were large. Another
method is available which could be used to avoid the
handling of such lengthy records.

Such might be the case where a student name, student
number, and grade point average are to be sorted based on
grade point above a certain level to determine the dean's
list, and below a certain level to determine first those on
probation and second, those to be dropped because of low
grades. If the list is to be prepared from the master file
of all student records, such records could easily be quite
large.

I N P (N E W)

QLT (FORMAT, 3G0 = X)

REF(FCRMAT, i<2 - ,X4= 2 4 X 3 , N < t - 2 7 N b , $ $,

N E - 3 3 K 6 , S S , X 3 = 3 9 X 2 , X 2 - 4 1 X 1 , X 2 = 4 2 X 1]

SUMMARY

I N P U T F I L E - N t W 40 RECORDS READ

O U T P U T F I L E - F O R M AT tO RECORCS WRITTEN

ENO OF RUN.

A N 0 E R o 0 N , T I 1 0 T H Y w7i iC G 5 2 5 7 5 2 6
BAKKER,JOACHIM u7 i . u 2 1 1 1 7 6 2<4
BERNASO.JOHM y 625 J 1 1 5 7 7 19
80£R, GEORGE g 7 9 5 1 2 2 3 7 * 28
BROWN, JAMES u 7Gc G 9 11 7 6 2 3
CnANG .ROBERT 1 6 8 4 G 2 0 1 7 6 2 5
COHEN,JOSEPH „ 8 7 5 C4U4 7<* 3 5
0 U 8 C I S , A N 0 R E u 6 2 5 C 3 1 5 7 8 2 1
OURAND,HELE^ 1 6 3 5 3 9 C 1 6 8 3 6
FISCHER, DAVlO - 6 2 5 C 6 0 1 7 8 21
l VA N O V, L E O N A R J u 7 2 J C 8 1 5 7 6 32
K I M , L E E j b l u 1 1 2 2 7 7 19
L I , WA N G „ 7 1 v G 11 0 7 7 31
LOPEZ,COSME w67«j C 3 j 7 7 6 2 2
MARTIN, RICHARD b 9 2 l 1 2 1 5 7 3 3 8
MEYER ,WILLI A1 1.875 S 3 C 1 7 b 32
M I L L E R , F L O R E N J E u o l u G5G378 2 2
NtWMAN.ANOREW u 7 1 - 0 7 0 1 7 7 2 4
PETIT .ARNOLD u 6 2 5 u 2 2 1 7 8 20
SCHULZ, CHAFES u 625 j t u l ? 9 1 8
S M I T H , J O H N u 8 l u G 9 1 8 7 3 4 8
SHITH,ROBERT A <♦ L 7 5 C 11 2 2 7 5 2 7
SOKOL .DONALD ^ 1 0 8 1 2 C 7 6 8 4 0
TAY L O R , J E N N I F i R itsaZa 1 0 1 1 7 7 2 2
WILLIAMS, BENEDICT 1 7 2 1 0 8 l b 7 2 3 9
WILLIAMS, ROBERT j 7 9 J u 3 l 5 7 b 3 1
G A R C I A , A R U J R U 7 3 8 C 2 2 9 7 6 3<t
JONES,FRANCES w 7 5 d 11G37H 2 7
MULDER,HEN< i . 9 11 C 4 0 1 7 h
GOMEZ,LIN OA o b35 u * 2 1 7 7 2 1
JOHNS CN,ANNABELLE 1**72 0 4 C 3 6 9 2 8
PETROV,GEORSE j 7 5 Q 0630 76 2 9
J O N E S , C H E R r. w 6 8 5 U 8 2 7 7 6 2 4
A AMG,LISA g 5 8 5 1 1 2 7 7 7 2 3
CARLSON,JAC< 1 9 7 s 0 8 3 0 7 ^ 3 6
O AV I S , R O B E RT i.G75 G 1 J 3 7 3 3 5
JOHNSON, ARM AN J 1 4 1 C L 0 2 0 7 2 32
P O P O V, I VA N o 665 0 7 0 9 7 7 2 3
SMITH .MARGERY 1 1 3 5 C 2 1 5 7 5 2 8
WILS0N,0DUj_ AS w 9 1 l 1205 73 3 6

Figure 4-11. Reformatting Records Using FORM

The easiest method would probably be to use FORM to
extract the desired fields (such as student name, student
number, and grades) from the master file to create a
shorter sort file. Then a sort of the new file could be used
to order all other records ranked by grade level, using an
owncode exit to discard all of the passing records of
students who had not made the dean's list.

60482900 A 4-9

The sorted file output in order of top grades could be
resorted for an alphabetical dean's list, and the lower
grades resorted again in student number order for the

mailing of required probation notices. Other examples of
FORM usage are illustrated in the FORM reference
manual.

4-10 60482900A

/ f& \
OWNCODE

/g?p*\

y0»&O\

This section will be of interest chiefly to experienced
programmers. Sort/Merge provides a record handling
capability which allows you to supply your own code for a
specific purpose. There are six exits available to gain
control of the sort or merge in progress to enter a routine
you have written. No owncode routines are supplied by
the Sort/Merge program. When your owncode routine has
achieved its purpose, a jump is made to Sort/Merge
processing at the exit point according to the address in
your entry point.

The first part of this section requires your ability to write
programs in the COMPASS assembly language. Although
owncode rout ines are not requi red for Sor t /Merge
execution, they provide the capability for you to insert,
substitute, modify, or delete input and output records.

Users of owncode when using the FORTRAN cal ls
described later in this sect ion can wri te their own
subroutines in FORTRAN. COBOL users are not provided
owncode exits. They can, however, use the INPUT
PROCEDURE and the OUTPUT PROCEDURE to achieve
similar results without leaving the COBOL program.

The Sort/Merge program provides a highly efficient
sorting and merging capability through the standard
Sort/Merge parameters. In order to maintain this level of
efficiency, the standard parameters limit the operations
that can be specified. Additional operations that you
might wish to perform on the records or files probably can
be done in conjunction with the sort or merge owncode
exits to access the record or file at the opportune point in
processing.

The reasons for wanting to use owncode can be as varied
as the owncode exits will allow. Many of the problems
you might encounter in attempting to sort a file are
a l l e v i a t e d b y p r o p e r u s e o f t h e s o r t d i r e c t i v e s .
Spec ifica t ion o f a d i f fe ren t co l la t ing sequence o r
character set, or changing the sequence and/or equating
characters to one another will solve many problems. Most
of the remaining problems which cannot be addressed by
the directives can be resolved through use of the owncode
exits. These allow you to exit sort or merge at an
appropriate point to enter an owncode subroutine in
COMPASS, or to enter a FORTRAN owncode subroutine
through a FORTRAN call.

The owncode exits do not supply the code to achieve a
specific purpose. You must supply your own subroutine to
be used when an owncode exit is taken. Sort/Merge will
deliver the record at the point in processing specified by
the owncode exit number.

COMPASS OWNCODE
AU COMPASS owncode subroutines must be assembled in
relocatable binary form prior to the Sort/Merge run and
placed in the input deck or made available from an
alternate source as specified by one of the SORTMRG
control statement parameter options.

Sort/Merge 4 provides six owncode exits that can be used
during processing. Sort/Merge 1 provides five owncode
exits. Each of the exits is numbered. Each exit serves a
specific function. Each exit is available after a specific
point in processing.

Owncode exits allow the examination and changing of
information at four critical points during the sort process,
and, in addition, allow handling of records with equal
keys. Only Sort/Merge 4 allows processing of nonstandard
labels.

OWNCODE EXITS 1 THROUGH 4
Owncode exits 1, 2, 3, and 4 allow you to insert, delete, or
change records. Exits 5 and 6 have special uses which are
explained later.

Operations include the use of exit 1 to edit input records
to make sorting easier; or exit 2 to add records prior to
the sort process.

After the sort, you can again change or add records
through use of exits 3 or 4.

E x a m p l e

An important use of owncode exit 1 can be illustrated in
the solution of a problem often encountered in sort
p rocess ing . Numer ic in fo rmat ion is o f ten prepared
without leading zeros in the sort key fields. Because
leading blanks collate differently than leading zeros, the
sorted output will not be in correct order. As mentioned
previously, the zero and the blank can be equated (by
directive) in many cases to avoid this problem. However,
in some cases, such as with signed numeric data, where
the position of the sign is not fixed, you will have to
resort to the owncode exit 1 capability to change the
leading blanks to zeros in order to fix the sign position to
ensure that the records will collate correctly.

The owncode example given in figure 5-1 shows one
method of solving the above problem using owncode exit 1
and a COMPASS subroutine. A number of various methods
can be used to reach the same goal; the method shown
here is one of the more simple means of converting
leading blanks to leading zeros and fixing the position of
the sign.

The sorting of dates is often more complicated than
expected as you might have noted in figure 4-9. Dates
are more easily sorted when their format is changed to
yymmdd so as to allow a sort on only one key field. This
format is not a common one, though it can easily be
achieved through use of an owncode table look-up routine.

Imagine trying to sort an existing file on a date field
created using letters and digits such as JUL041776. Such
dates can be changed (through use of a table look-up
procedure with owncode exit 1) to 17760704.

60482900 A 5-1

SAMPL, T10 ,P3.
Compass(s «0>
FILE(OUT♦ 6T*C,RT=Z»FL*80)
SORTMRS(OWN)

IDENT OWN
COL EQU
LEN EQU

IFLT COL.1,1
ERR COL MUST BE AT LEAST 1
IFLT LEN,1,1
ERR LEN MUST BE AT LEAST 1
IFGT LENt10, l
ERR LEN MUST 8E LESS THAN 11

O i l OWN1 - OWNCOOE EXIT 1 PROCESSOR
• CALLING SEQUENCE-« A2 = ADDRESS OF RECORD
» XO = 30/NWORDS, 30/NCHARACTERS
« OOES-» CONVERTS THE FIELD STARTING IN COLUMN <COL> OF LENGTH <LEN>
» FROM FORTRAN FORMATTED INTEGERS (I.E. LEADING BLANKS, OPTIONAL» NEGATIVE SIGN, DIGITS) TO A LOGICAL VALUE THAT
» PRESERVES NUMERIC ORDER
» XO « 30/NWORDS, 30/NCHARACTERS
» XI = 77777777777777777700B
o X2 = RECORD TO RIGHT OF FIELO« X3 » SIGN (ALL ZEROS MEANS ♦» ALL ONES MEANS -)
» X4 = WORD WITH CURRENT CHARACTER
« X5 = CURRENT CHARACTER» X6 = CURRENT BINARY VALUE
» X7 - CURRENT BINARY DIGIT
ft A2 = ADDRESS OF FIRST WORD OF RECORD« B5 = CURRENT CHARACTER» B6 = SCRATCH
« B7 = NUMBER OF CHARACTERS LEFT IN FIELD

ENTRY OWN I
OitfNl BSS

COL = 1 2 ... 10 11 12 ...
T SET COL-1 0 1 . . . 9 1 0 11 . . .
W SET T/10 0 0 . . . 0 1 1 . . .c SET COL-1-10<» W 0 1 . . . 9 0 1 . . .

SA4 A2*V GET WORD WITH FIRST CHARACTER
SAS A2*W*1 GET NEXT WORD
MX3 6»C ALIGN MASK AT START OF FIELD
BX4 -X3»X4 EXTRACT (FIRST PART OF) FIELD
BXS X3»X5 EXTRACT SECOND PART OF FIELD (MAYBE)BX4 X4*<5. COMBINE
LX4 6*C LEFT-JUSTIFY FIELD
MX2 6»LEN
BX2 -X2»X4 SAVE RECORD TO RIGHT OF FIELD
MXl - 6 77777777777777777700B
BX6 XO-XO CLEAR RESULT REGISTERMX3 GUESS THAT SIGN IS POSITIVE
S87 LEN SET NUMBER OF CHARACTERS LEFT

OtfNl] ZR B7.0WN1* IF NO MORE CHARACTERS IN FIELD
LX4 RIGHT-JUSTIFY NEXT CHARACTER
BXS -X1*X4 EXTRACT NEXT CHARACTER
SB5 X5
SB7 B7-1 DECREMENT COUNT OF CHARACTERS LEFT
SB6 1R
EQ B5,*6,0WN11 IF BLANK, LOOP
SB6 1R-
NE 85**6,OWN13 IF NOT -, SKIP
MX3 60 NOTE NEGATIVE SIGN

Figure 5-1. COMPASS Owncode Example to Convert Leading Blanks to Zeros in Signed Numeric Data (Sheet 1 of 3)

5 - 2 6 0 4 8 2 9 0 0 A

/ $ f ? ^ ^ .

0WN12 ZR B7.0WN14 IF END OF FIELD, JUMP
LX4 RIGHT-JUSTIFY NEXT CHARACTER
BX5 - X 1 * X 4 EXTRACT NEXT CHARACTER
SB5 XS
SB7 B7-1 DECREMENT COUNT OF CHARACTERS LEFT

0WN13 SB6 IRQ
LT B5»86»ERROR IF CHARACTER LESS THAN +0+, ERROR
SB6 1R9
GT 85,B6,ERROR IF CHARACTER GREATER THAN +9+, ERROR
SX7 10
1X6 X6«X7
SX7 8 5 - I R 0
1X6 X6*X7 RESULT * 10»RESULT ♦ DIGIT
EQ OWN 12 GO TRY FOR NEXT CHARACTER

OWN 14 BSS (HERE AT END OF FIELD)
BX6 X3-X6 APPLY SIGN TO RESULT
LX6 60-6»LEN LEFT-JUSTIFY RESULT
MX3
BX6 X3-X6 TOGGLE SIGN BIT
MX3 6»L£N
BX6 X3«X6 STRIP EXCESS ONES (IF NEGATIVE)
8X6 X6*x2 APPEND RECORD TO IMMEDIATE RIGHT OF FIELD
LX6 - 6 * C ALIGN FIELD
SA4 A2*4 GET WORD FOR FIRST CHARACTER
MX3 6*C MASK ALIGNED AT START OF FIELD
BX4 X3»<4 DELETE ORIGINAL FIELD
BX2 -X3»X6 INSERT CREATED RESULT
BX7 X4*X2 COMBINE
SA7 A<* STORE BACK
SAS A2*W*1 GET NEXT WORO. JUST IN CASE
BXS -X3«X5
BX2 X3*X6
BX7 X2*X5
SA7 A5
EQ OWN I GO BACK WITH RECORD

ERROR SAl OWN I
LXi 30
SB7 XI
JP B 7 * l
EJECT

«» 0WN3 - owncode EXIT 3 PROCESSOR

• C A L L I N G S E O U E N C E -
o A2 = ADDRESS OF RECORD• XO = 30/NWORDS, 30/NCHARACTERS
» D O E S -
i» CONVERTS THE FIELD STARTING IN COLUMN <COL> OF LENGTH <LEN>
» FROM THE FORMAT CREATED BY OWN1 TU FORTRAN FORMATTED INTEGERS
• (I . E . LEADING BLANKS, OPTIONAL NEGATIVE SIGN, DIGITS).
» XO = 30/NWORDS, 30/NCHARACTERS
» XI = 0 .10000000001» X2 - RECORf) TO IMMEDIATE RIGHT OF FIELD»' X3 = SIGN
» X4 = NUMBER AT START QF LOOP» XS = NEXT NUMBER
• X6 = CHARACTERS
• X7 = RIGHT-JUSTIFIED CHARACTER» A2 = ADDRESS OF FIRST WORD OF RECORD
o B7 = number of characters left in field

ENTRY OWN 3
0WN3 BSS
T SET COL-1
w SET T / 1 0C SET C O L - l - 1 0 fl

SA4 A2*W GET WORD WITH FIRST CHARACTER
SA5 A 2 * w * l GET NEXT WQrtD, JUST In CASEMx3 6*C MASK STARTIN6 AT FIELD
BX4 -X3«X4 DELETE BEFORE FIELD
BX5 X3*X5 DELETE AFTE* FIELD+9

Figure 5-1. COMPASS Owncode Example to Convert Leading Blanks to Zeros in Signed Numeric Data (Sheet 2 of 3)

60482900 A 5-3

BX4 X4*X5 COMBINE
LX4 6»C LEFT-JUSTIFY FIELD
MX2 6»LEN
BX2 -X2»X4 SAVE RECORD TO IMMEDIATE RIGHT OF FIELD
MX3 MASK FOR SIGN BIAS
BX3 -X4»X3 1 IFF NEGATIVE
AX3 59 777777777777777777776 IFF NEGATIVE
LX4 SHIFT TO EXTENDABLE SIGN
AX4 61-6»LEN EXTEND TO RIGHT
BX4 X4-X3 TAKE ABSOLUTE VALUE OF NUMBER
SB7 LEN NUMBER OF CHARACTERS LEFT TO SET UP
MX6 CLEAR RESULT REGISTER
SAl =0.10000000001

0 W N 3 1 P X S X4
NX5 (E . G .) 1 2 3 4 5 6 7 8 9 . 0
FX5 X5*X1 (E . G .) 1 2 3 4 5 6 7 8 . 9 0 1 2
UX5 X 5 , 3 5
LX5 X 5 , * 5 (E . G .) 1 2 3 4 5 6 7 8
1X7 X5 + X5 (E . G .) 1 2 3 4 5 6 7 8 * 2
LX5 (E . G .) 1 2 3 4 5 6 7 8 * 8
1X7 X5*X7 (E . G .) 1 2 3 4 5 6 7 8 0
AX5 (E . G .) 1 2 3 4 5 * 7 8
1X7 X4-X7 (E . G .) 9
SX7 X 7 * l R 0 CONVERT TO DIGIT CHARACTER
BX6 X6*<7 INSERT INTO RESULT
LX6 - 6 MAKE ROOM FOR NEXT CHARACTER
SB7 87-1 DECREMENT NUMBER OF CHARACTERS LEFT TO SET
BX4 X5 (E . G .) 1 2 3 4 5 6 7 8
NZ X4,0WN31 IF MORE DIGITS, LOOP

PL X3,QWN32 IF POSITIVE* SKIP
SX7 1R- INSERT NEGATIVE SIGN CHARACTER
BX6 X6*X7
LXb - 6
SB7 B7-1

0 W N 3 2 Z R B7,QWN33 if field already full* skip
SX7 1R insert a blank character
BX6 X6*X7
LX6 -6
SB7 B7-1
EQ OWN 32 GO TRY AGAIN

0 W N 3 3 B X 6 X6*X2 COMBINE LEFT-JUSTIFIED CHARACTERS AND
RECORD TO IMMEDIATE RIGHT OF FIELD

LX6 -6»C ALIGN FIELD WITH RECORD
SA4 A2*rf GET WORD FOR FIRST CHARACTER
MX3 6*C MASK ALIGNEO AT START OF FIELD
BX4 X3°X4 DELETE CREATED FIELD
BX2 -X3»X6 INSERT FORTRAN CHARACTERS
BX7 X4*X2 COMBINE
SA7 A4 STORE
SAS A2*W*1 GET NEXT WORD, JUST IN CASE
BXS -X3»X5
BX2 X3»X6
BX7 X2 + XS
SA7 A5
EQ OWN 3 EXIT

END
SORT
FILES»SORT=INPUT♦OUT»UT=OUT
F IELD ,< (3 ,9 ,LOGICAL)
KEYfK
0w>JCODE,l=OwNl,3 =OWN3
END

{Input Records here!

Figure 5-1. COMPASS Owncode Example to Convert Leading Blanks to Zeros in Signed Numeric Data (Sheet 3 of 3)

5-4 60482900 A

After sorting all of the records on the dates (as changed
for this sort run through use of owncode exit 1), an exit 3
table look-up owncode routine could be used to change the
format of the output date to July 4, 1776. Even though
this use of owncode appears complicated, it requires far
less processing time than a separate subroutine would
require to do a similar translation.

In most cases, files containing records modified through
use of owncode to simplify or speed the sort process are
not modified back to their original state; they are usually
left in their more easy to sort format to avoid duplicate
processing each time they are used. To illustrate, the
date that was originally stored as JUL041776 was changed
to 17760704 for sorting purposes and the file was stored in
this format. When this file is updated, any new input
should first be sorted using the same sort routine with its
owncode table look up code before merging the new input
with the existing file. Output returned to its initial state
through use of owncode exit 3 does not change the format
of the records stored on the sort input file.

Another variation on this change is even easier to use.
When the date is converted from the original format by
means of a table look-up procedure and owncode exit 1,
the new format is stored as part of the same record. In
this manner, you can sort the record based on the easily
sorted format and output the more easily recognized
format. Your record would change from JUL041776 to
3UL0417760704 as a result of the owncode exit 1. Thus,
you would sort this field on the last eight characters and
output the date as the first nine characters.

Variations of this concept allow you to sort any type of
information you might define because you can transform
any data into a sortable field tag and append the tag to
your original record.

Exits 1 and 2 owncode routines are not allowed in a
merge-only run to ensure that the input records remain in
sorted order. You can achieve the same purpose by using
either exits 3 and 4 in a merge-only run or exits 1 and 2 in
a sort run with supplementary merge files. If you specify
an exit 1 or 2 owncode routine in a merge-only run, the
exit is ignored and a nonfatal diagnostic message occurs.

OWNCODE EXIT 5
One typical use for the owncode routines is to handle
duplicate or equal keys. Equal keys can be duplicate keys,
or a key comprised of characters treated the same (as the
result of an EQUATE directive), or created equal because
of a signed numeric overpunch.

When equal sort keys are encountered in two or more
records, the method of handling such records often needs
to be defined. Just because the sort keys are equal does
not mean that the records are identical. In many cases,
you will want to be able to control the order of records
with equal keys. One of the controls available to you is to
output the records containing equal keys in the order they
were input. This control is avai lable by speci fy ing
RETAIN on the Sort/Merge OPTIONS directive. Owncode
is not required in such a case.

Using owncode exit 5 will allow you to stop and compare
records wi th equal keys. I f the records are exact
duplicates, you might wish to delete one record. In the
case where two identical orders were booked in one day
from one company, you would most likely wish to flag the
records to remind you to check the validity of both
orders. Owncode exit 5 allows you to modify or replace
either or both records or to retain both records without

modification. It is more difficult to delete both equal
records, but it can be done by having the owncode exit 5
routine signal an owncode exit 3 routine.

At times equal record keys are considered to indicate an
error, such as in a file that should only contain one entry
for each customer. In such files, it would be proper to
delete any duplicate records. Exit 5 can be used to
identi fy records with equal sort keys. I f the record
overlap is sufficient to ensure that a record is indeed a
duplicate, then deletion of the duplicate record is quite
simple. You merely need to provide the address and
length of the record you wish to keep in registers A2
and XO, and modify the return address.

Owncode rou t i nes can a l so be used t o w r i t e a l l
questionable records to an exception file for separate
processing. When this is done, the questionable records
are usually deleted from the file being processed. (The
file should be closed in the owncode exit 4 routine.) When
the exception file is corrected, it can be sorted and
merged with the original file.

Another use of duplicate key processing allows you to
count records. If, for example, you wanted to determine
the number of items of each particular size article sold
during a given period, you might specify sufficient sort
keys to uniquely identify the articles and sizes you wish to
tally, append a count field containing 1, and then use
owncode exit 5 to add the counts for each duplicate
record key found in the articles sold file. (The record
containing the appended count field is retained while the
other record is omitted.) The sort run will then list every
item sold, in the order specified, with total sales of each
item.

In cases where only the items that sold more than a
certain number are of interest, further owncode output
specification could be used to delete all records whose
numerical tally is below that level. Thus, in this manner,
you could create a base for next year's reorder levels, a
list of this season's most popular items, and so forth.

OWNCODE EXIT 6
Owncode ex i t 6 i s used fo r check ing or ver i f y ing
nonstandard labels on files. Most files wi l l not use
nonstandard labels; owncode exit 6 is not needed for these
files. I f your CYBER Record Manager FILE control
statement specifies LT=NS,ULP*NO, you will need to
refer to the Basic Access Methods reference manual
information on label processing. The use of the GETL and
PUTL macros described there requires a knowledge of
COMPASS assembly language.

Owncode exit 6 is only available to users of Sort/Merge 4;
this capability is not supported for Sort/Merge 1.

HOW OWNCODE WORKS
When you specify an owncode exit in your Sort/Merge
program, register A2 contains the address of the current
data record and register XO contains the record length. In
addition, during entry into owncode exit 5, registers A3
and X4 are used for the address and length of the second
record of a comparison involving equal sort key data.

Transfer from Sort/Merge to the owncode routines is
accomplished with a return jump (RJ) instruction which
fills the entry point of the owncode routine with a return
to the Sort/Merge program. To return to Sort/Merge
control (and leave the owncode routine), your code must

60482900 A 5-5

return to the entry point of the owncode routine. This is
the normal return address. You can request specific
processing action by altering the return address in the
entry point of the owncode routine. You will usually do
this by putting the normal return address in a B register,
Bn, and jumping to Bn+1, Bn+2, or Bn+3. (This operation is
often described in text but not in code as NR+1, NR+2, or
NR+3.) When the function you have chosen is complete, a
normal return address to the entry point of the owncode
routine causes a jump to Sort/Merge to continue normal
processing.

The specific owncode functions available to you are
described in detail in the Sort/Merge reference manual.
Fur ther de ta i l s o f the COMPASS ins t ruc t ions are
presented in the COMPASS reference manual.

FORTRAN CALLS

A set of library routines is provided for calling Sort/Merge
from a FORTRAN program. The use of Sort/Merge in
conjunction with FORTRAN provides a record and file
handl ing capabi l i ty often overlooked by the typical
programmer using FORTRAN. Calls to Sort/Merge allow
the FORTRAN programmer to use the Sor t /Merge
owncode exits to access records and files more easily than
is possible directly from FORTRAN.

Moreover, ca l ls to Sor t /Merge owncode a l low the
FORTRAN programmer to write subroutines in FORTRAN
instead of COMPASS, and use variables instead of
constants as parameters.

The FORTRAN calls require that all conventions for using
FORTRAN statements be observed when using these
calls. The more commonly used FORTRAN calls are
l i s ted be low w i th the i r co r respond ing Sor t /Merge
directives.

CALL SMSORT SORT directive
CALL SMMERGE MERGE directive
CALL SMFILE FILE directive
CALL SMKEY KEY directive
CALL SMSEQ SEQUENCE directive
CALL SMEQU EQUATE directive
CALL SMOPT OPTIONS directive
CALL SMEND END directive
CALL SMOWN OWNCODE directive
CALL SMRTN No corresponding directive

As with the Sort/Merge directives, the first call should be
to either SMSORT or SMMERGE; the last call must be to
SMEND, which initiates processing using the information
collected by the other calls. The SMSORT and SMMERGE
calls require that you specify the maximum record length,
in characters, of the records to be sorted as the first
parameter. You can also specify the number of CM words
to be used for working storage if you wish, though the
default of 22 000 octal words is usually sufficient.

The full list of FORTRAN calls and how to use them
appears in the FORTRAN Extended reference manual and
in the Sort/Merge reference manual.

The use of Sort /Merge owncode complements the
capabilities of FORTRAN; their combined use provides
both excellent record handling and computing power.

For example, consider a problem where a series of
worldwide experiments over a number of years has
resulted in the collection of voluminous amounts of data
concerning the effects of temperature and pressure on
radio waves. Though most of these readings were

recorded in metric measurement (Celsius and millimeters
of mercury), a great number were recorded in nonmetric
values (Fahrenheit and inches of mercury). One advantage
exists in that all records within each file are consistent;
all files are either metric or nonmetric. In order to
combine all of the data for input to a program written in
FORTRAN, the data must first be converted to all metric
equivalents and sorted into order based on temperature as
the major sort key and pressure as the minor sort key.

Convert the nonmetric information in each nonmetric file
to metric equivalents before combining all of the files.
The most straightforward method of combining and
sorting all of the data is to sort all files into order and
then merge them.

The FORTRAN call to Sort/Merge owncode exit 1 is one
of the best methods available for solving the problem of
conversion. Record manipulation is handled entirely by
S o r t / M e r g e . T h e o w n c o d e r o u t i n e i s w r i t t e n i n
FORTRAN; each temperature and pressure value is
converted to metric, the values in metric are sorted and
output to an intermediate file in one operation. When all
of the files to be converted are in metric, and all of the
metric files are sorted, all intermediate files are merged
to create the single input file for the processing program.

Such operations are not as easily managed if attempted
only within FORTRAN.

The following problem illustrates that raw input is of
little value before it has been organized into a more
usable form. The problem is to determine which zones of
a given real estate area are appreciating the fastest, the
frequency of sales in each zone, and how much each zone
has appreciated since last year. With thousands of real
property sales each year spread over hundreds of zones, it
becomes a task for the computer to determine such
statistics.

To obtain a sorted comparison, all sales within each zone
must be totaled and averaged. The averages for this year
must be compared to the averages for last year in order to
compute average appreciat ion. I f averages are not
available for last year, they too must be computed. Then
the difference between this year's average and last year's
average can be computed for each zone. The differences
are sorted in descending order by zone, along with other
desired information, to create a usable report.

One method of creating such a report is to use FORTRAN
to create records that contain the desired information,
s o r t t h e s e r e c o r d s b a s e d o n t h e p e r c e n t a g e o f
appreciation, add report headers through use of owncode,
and output a formatted report.

The sort specified would probably be made through a
FORTRAN call to the sort routine, and the owncode
exits 3 and 4 header additions would naturally follow.

UNIQUE USES OF OWNCODE
One unique use of the Sort/Merge owncode routines is to
sort text entries for an index or for a glossary. For an
index, it is possible to create a row of leading dots the
length of the index line, and overlay the initial portion of
the line with the entry and the final portion of the line
with the page reference to create a typical entry that
looks like this:

S y m b o l g e n e r a t o r 4 2

These lines can easily be sorted to create the index.

/^%.

5-6 60482900 A

For a glossary, you might consider a standard entry which
starts with the term to be defined, followed by a blank
line and then the descriptive text. The final output might
look like:

DIRECT! VES-
Instructions that supplement processing defined by
the SORTMRG control statement for execution of
Sort/Merge record processing.

To create a glossary that can be sorted, you will need to
create each glossary entry as a single continuous record.
Owncode exit 3 is then used, following the sort of the
records, to format the glossary entries.

O t h e r u s e s w h i c h a r e o f t e n o v e r l o o k e d i n c l u d e
preprocessing of input such as stripping away headings in a
report file for subsequent sorting, pagination of reports,
combination of entries, deletion of duplicate entries,
reformatting reports, adding headings, creating footnotes,
controlling page depth, blanking certain fields in reports,
and so on.

As a final note, if you have part of your information
already sorted, this can sometimes be made to work in
your favor. For example, when creating an index, page
number references will be in page number order in your
intermediate file. Thus, on output of mult iple page
references, you can first check to delete duplicates, and
the remaining references will remain in numerical order if
you have specified the RETAIN option throughout the run.

RECORD COMPACTION

Many var iat ions of compact ion are possib le. Using
owncode routines or FORM, you can extract the key fields
of interest from all the records in a file, and sort only the
new records. For example, you might wish to extract only
the age and salary fields from a payroll file to create an
age/salary profile chart.

You would probably find a number of identical short
records. Rather than keep each record separately, it
could be worthwhile to keep only one copy of each
identical record, with a count field appended to the record
to keep track of the number of times an identical record
is encountered. In this manner, the identical records can
be deleted, thus shortening the total length of the file.
Owncode exit 5 makes this process simple because the
exit is available on every duplicate key encountered. On
creat ion of the profi le char t , the ampl i tude of the
identical entries will have to be expanded by the number
of identical occurrences recorded in the appended count
field.

It might occur, for example, on a civil service or military
payroll profile that the number of unique salaries is quite
low but the number of identical records quite high. Thus,
the profile input file would be much shorter than the
original file. Not only would each record be shorter, but
the compacting of ichntical entries would substantially
reduce the number of records in the file.

60482900 A 5-7

RUNNING SORT/MERGE

0 ^ \

Time is one of the main considerations when sorting
r e c o r d s . S o r t i n g i s g e n e r a l l y a n e x t r e m e l y
time-consuming process. After the desired order of the
records has been established and the present condition of
the records is known, an efficient procedure should be
established to make the sort process as efficient as
possible. Establishing an efficient procedure is very
important because sorting can require large amounts of
computer time; moreover, most sort jobs are repeated on
a regular basis. A small saving on each run, therefore,
can compound to a significant saving over the course of a
year.

To establish an efficient procedure requires a great deal
of planning and checking. It includes all of the steps
involved in creating the records and files to be sorted, the
order of the output desired, the specification of the
Sort/Merge directives, and even the time of day the sort
is to be run. For example, if sort is to be run in a
multiprogramming environment, it can be beneficial to
run the sort program with certain types of jobs which will
not result in much competition for the system resources.
If jobs compete for resources, time can be lost through
the swapping in and out of one or more of the jobs. If
tremendously large sort jobs are to be run, you might
consider scheduling them for the hours of low system
activity to avoid such conflict or try to balance the job
mix to avoid conflict.

At the point the sort run is init iated, the avenues
available to you are limited in respect to time-saving
opportunities. There is usually little choice as to the
computer to be used, the sort program available, the form
of the existing input files, and the desired order of
output. The length of time required to sort any given file
depends on the characteristics of the records and the
characteristics of the computer to be used. Since these
are usually fixed, only a few options such as available
central memory and the possibility of additional hardware
devices can be controlled at this point. Most time-saving
methods must be considered before the records and files
to be sorted are created.

TIME-SAVING DESIGN
The length of records affects the sort process. Long
records require a larger amount of central memory,
reducing the number of records that can be stored as a
sorted string. Shorter records increase the number, thus
requiring fewer passes during the sort phase. The length
of the records can only be controlled during the process of
designing and creating the records as noted in section 2.
The size of the files to be sorted can also be reduced if
they are organized so that only active records are sorted;
inactive records can be relegated to another file. File
space is valuable so you should be careful that inactive or
useless information is either stored on another file,
archived, or purged when it is no longer of use. Such a
process is known as file maintenance. File maintenance
includes keeping the file up to date by adding records as
well as deleting or modifying them. It is also important to
monitor the use of each file to determine which files are
active and which should be reorganized. If the use of one

file often requires the use of another file, you should
cons ider consol idat ing the two fi les to reduce the
overhead associated with handling two files.

Extremely long records require a large amount of time
and memory to sort. It might be advantageous to create a
tag sort environment where only the key need be sorted,
thus reducing the time and central memory requirements.
Also, when a long record proves d i fficul t to read,
subsequent read attempts cost a great deal of time for a
long record, whereas for a short key, an added saving
accrues.

If you work with large files, you will be concerned about
possible machine malfunction, power failures, and other
potential problems. Checkpointing files being sorted is a
good idea which can work to your advantage; however,
dividing large files into smaller files makes them much
more manageable , and is a super ior insurance of
successful completion. Not only is sort time reduced, but
overhead is also reduced since no time is required for a
checkpoint dump nor is a device required to receive the
dump. Note that the checkpoint/restart option is not
available to tape sort users.

E f fi c i e n t o r g a n i z a t i o n o f r e c o r d s , e x c e l l e n t fi l e
management, working with smaller files, and a proven
procedure will make the required sort jobs run faster and
ensure optimum performance.

COBOL AND SORT/MERGE
The COBOL SORT verb cal ls the same Sort/Merge
program available under the operating system. Identical
input should result in identical output because there is no
difference between the sort program available under
COBOL and the sor t p rogram ava i lab le under the
operating system. The choice of which sort to specify, for
COBOL programmers, depends on other factors.

For a small sort job, it probably will not be advantageous
to leave COBOL to specify a sort under the operating
system. You won't need to store registers, variables, and
so forth. However, a COBOL SORT ties up the COBOL
field length which often reduces the amount of central
memory available to the sort process. When large files
are involved, you might well find an advantage in leaving
COBOL to take advantage of the additional field length
which could improve the speed and efficiency of the sort
program. This decision depends on the size of the file to
be sorted and the size of the COBOL program competing
for field length.

One point worthy of note is that a COBOL SORT is often
spec i fied because the COBOL p rog rammer i s no t
accustomed to specifying an operating system sort.

Actual specification of the COBOL SORT is different
from the specification of the operating system sort,
though the concepts are the same. For a complete
description of the COBOL Sort/Merge facility, see the
COBOL reference manual.

/pP'N

60482900 A 6-1

As a general rule, a sort which is not extremely large will
run just as fast under either COBOL SORT or the
operating system SORTMRG control statement. If youhave serious doubts whether there will be sufficient field
length under COBOL, then by all means consider using the
operating system Sort/Merge program.

Another effective method of reducing field length conflict
when using large files and a large COBOL program is to
segment the COBOL program and put the sort into a short
segment.

There are no owncode exits available to the COBOL
programmer such as those available to the COMPASS and
FORTRAN programmers. On the other hand, COBOL
programmers can use procedures to achieve most of the
s a m e r e s u l t s . C O B O L a l l o w s t h e u s e o f I N P U T
PROCEDURE and OUTPUT PROCEDURE phrases to
specify the procedure to be executed under system control
either at the time the SORT statement is executed or
a f t e r t he reco rds have been so r t ed . The INPUT
PROCEDURE can include statements to select, create, or
modify records before the sort process begins. Thus, the
same functions of Sort/Merge owncode are available to
the COBOL programmer though their specifications are
totally different.

When using the INPUT or OUTPUT PROCEDURE, the
COBOL programmer must be wary of the problems that
can be created. Changing the length of the record can
shift the position of the sort key fields so they no longer
match the original specification or the rest of the record
to be sorted. Extending the length of the records can
cause some records to exceed the record length specified.
Deleting records without being aware of a future need for
them can prove catastrophic.

Use of the COBOL SORT is described in the COBOL
reference manual and the COBOL 5 user's guide.

FORTRAN CALLS AND SORT/MERGE
FORTRAN cal ls al low the use and specificat ion of
owncode routines written in FORTRAN. The FORTRAN
calls are almost identical with the Sort/Merge directives.
They are described fully in the Sort/Merge reference
manual.

A number of the arguments concerning the advantages of
the COBOL SORT verb versus the operating system sort
hold true for the FORTRAN calls to Sort/Merge as well.
It can be advantageous to sort without leaving the
FORTRAN program; however, this convenience is not
without its cost in field length that otherwise might be
used by Sort/Merge for more efficient operation.

One method of avoiding a field length conflict between a
large FORTRAN program and large sort files is to use
separate job steps with control statements. Another
method is to use overlays and ensure that the sort occurs
in a short overlay.

CHECKPOINT/RESTART
The use of checkpoint/restart is recommended in many
applications to allow you to recover some of the work
already done in case of a power failure or machine
malfunction. In the case of Sort/Merge there are other
opt ions that you should consider. Checkpoint ing a
program requires that you specify a certain point or a
certain number of records after which the operating
system will take a dump of the work done to that point.

In case of job failure, you can return to that point in
processing rather than start anew.

A checkpoint dump requires that system resources such as
disk space or tape units be assigned for the dump. Such
resource allocation often reduces the resources available
to the Sort/Merge program.

As noted previously, reducing the size of the files you
wish to sort, sorting them, and then merging them can be
faster than sorting one large file. If you compare this
procedure with the checkpoint/restart procedure, you will
find that time is saved in sorting, and that the same
insurance against machine or system malfunction is
afforded.

Shorter files sort faster on a relative basis than do long
files, and reducing the system overhead associated with
checkpointing a file adds to the speed achieved by sorting
smaller files.

Refer to the Sort/Merge reference manual for details of
checkpoint/restart usage.

TAPE SORTING
The tape variant of Sort/Merge provides two forms of
processing, balanced and polyphase. A tape sort is not the
same as a disk sort with tape input and output. A tape
sort does not require disk units. Sort/Merge is most
efficient when the disk oriented version is used. Use of
tape sorts is discouraged when disk facilities are available
because tape is less reliable and is usually less efficient.
In cases where the size of records and the size of files
seems to require specification of a tape sort, you might
consider dividing the large files into smaller files to be
presorted and merged later rather than use the tape sort.

Other reasons for not specifying a tape sort include the
need for many tape units to contain all of the scratch
tapes required, and the added possibility for operator
error, in addition to the almost certain occurrence of tape
parity errors in a multireel environment. Also, a tape sort
cannot be checkpointed. Tape sorts are explained in the
Sort/Merge reference manual appendix.

Note that backup tape files are usually maintained in step
sequence, so that if any one operation is unsuccessful, you
can back up to the next previous step to recover. It is not
uncommon to see up to four levels of such backup files
being retained as insurance against loss of information on
tape.

The polyphase sort is usually more efficient than the
balanced sort. In a situation where you can have the
opportunity to try both types of tape sort on the same or
very similar files, the best way to determine the better
sort is to try both and compare. The number of tape
drives available best determines which tape sort is better;
the balanced sort becomes preferable when you can
commit eight or more tape drives to the sort.

TAG SORT
When records to be sorted are extremely large, it is
sometimes quite time-consuming or impossible to sort
them because few will fit into the memory available. It is
often easier and better to sort such large records by
creating a key which identifies the record and includes
sufficient information to link the key to the record, and
then sort only the keys. When they are in order, the

/,c^\

/̂ ™Hv

6-2 60482900 A

records can then be retrieved in sorted order from their
storage locations on disk in the order of the sorted keys.
This is called a tag sort.

Depending on the application, it is often advantageous to
never order the records themselves on disk, but rather to
order only the output.

Keys can be created in a number of ways depending on
your needs. One common method of creating keys is to
use an algorithm which extracts the sort key from the
record along with disk address values which identify the
location of the record and appends this value to the key
field to be sorted. When the keys are all sorted, the
records can be retrieved in sorted order from the disk
containing them. This type of sort technique is usually
only undertaken by systems programmers.

SUMMARY

The following points are offered for your consideration
before starting any sort or merge operation:

• I f y o u c a n a v o i d s o r t i n g i n f o r m a t i o n , y o u w i l l
probably save time.

• Sorting small files and merging sorted files is faster
than sorting one large file.

If possible, sort only the information you need, not
the entire record.

• Always sort f i les before merging them with larger
files.

It is always better to make smaller sort runs than to
checkpoint larger sort runs.

It is usually true that the time required to sort half
the records requires less than half the time needed to
sort all the records. A shorter sort is usually more
efficient. As the size of a sort grows, the number of
records sorted per second decreases.

Be very careful when using owncode to change record
size or sort key field position before sorting the file.

Always keep backup files. You can always go back if
you keep previous information. Some installations
keep up to four levels of backup files.

/ p p ? ^

60482900 A 6-3

0®%

CHARACTER SETS

r

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable
to ASCII-CRT and ASCII-TTY terminals.

STANDARD COLLATING SEQUENCES

/ $ $ $ £ \

The set in use at a particular installation was specified
when the operating system was installed. You cannot
change it.

Depending on another installation option, the operating
system assumes an input card deck has been punched
either in 026 or in 029 mode (regardless of the character
set in use).

Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7/9 card. In
addition, 026 mode can be specified by a card with 5/7/9
multipunched in column 1, and 029 mode can be specified
by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2. Under NOS/BE, the alternate mode
can be specified by a 26 or 29 punched in columns 79 and
80 of the job statement or any 7/8/9 card. The specified
mode remains in effect through the end of the job unless
it is reset.

If the installation character set is the CDC character set,
the co l la t ing sequence de fau l t i s COBOL6. I f the
installation character set is ASCII, the collating sequence
default is ASCII6.

COLLATION OF ARBITRARY CHARACTERS

Several graphics are not common for all codes. Where
these differences in graphics occur, arbitrary assignment
of collation positions and of translations between codes
must be made. For example, display code data that is
co l la ted in the ASCII6 co l la t ing sequence requi res
assignment of specific graphics. One of these graphics is
the identity character = (60) in display code that is
interpreted as the number character (/ /) in ASCII6
collating sequence in table A-2.

60482900 A A- l

TABLE A-l. STANDARD CHARACTER SETS

Display

CDC ASCII
Hollerith External

Code Graphic Punch BCD Graphic Punch Code
(octal) (026) Code Subset (029) (octal)

oof : (colon)ft 8-2 00 : (colon) ^ 8-2 072
01 12-1 61 12-1 101
02 12-2 62 12-2 102
03 12-3 63 12-3 103
04 12-4 64 12-4 104
05 12-5 65 12-5 105
06 12-6 66 12-6 106
07 12-7 67 12-7 107
10 12-8 70 12-8 110
11 12-9 71 12-9 111
12 11-1 41 11-1 112
13 11-2 42 11-2 113
14 11-3 43 11-3 114
15 11-4 44 11-4 115
16 11-5 45 11-5 116
17 11-6 46 11-6 117
20 11-7 47 11-7 120
21 11-8 50 11-8 121
22 11-9 51 11-9 122
23 0-2 22 0-2 123
24 0-3 23 0-3 124
25 0-4 24 0-4 125
26 0-5 25 0-5 126
27 0-6 26 0-6 127
30 0-7 27 0-7 130
31 0-8 30 0-8 131
32 0-9 31 0-9 132
33 12 060
34 01 061
35 02 062
36 03 063
37 04 064
40 05 065
41 06 066
42 07 067
43 10 070
44 11 071
45 12 60 12-8-6 053
46 11 40 11 055
47 11-8-4 54 11-8-4 052
50 0-1 21 0-1 057
51 0-8-4 34 12-8-5 050
52 12-8-4 74 11-8-5 051
53 11-8-3 53 11-8-3 044
54 8-3 13 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
57 . (period) 12-8-3 73 . (period) 12-8-3 056
60 0-8-6 36 8-3 043
61 8-7 17 12-8-2 133
62 1 t 0-8-2 32 11-8-2 135
63 % * t 8-6 16 % " 0-8-4 045
64 8-4 14 " (quote) 8-7 042
65 r - 0-8-5 35 (underline) 0-8-5 . . . 137
66 11-0 or 11-8-21u 52 12-8-7 or 11-0TTT 041
67 0-8-7 37 12 046
70 11-8-5 55 ' (apostrophe) 8-5 047
71 11-8-6 56 0 - 8 - 7 . . . 077
72 12-0 or 12-8-2m 72 12-8-4 or 12-0TTT 074
73 11-8-7 57 0-8-6 076
74 8-5 15 8-4 100
75 12-8-5 75 0-8-2 134
76 —1 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

Twelve zero bits at th e end of a 60-bit word in a zero b yte record are an e nd of record mark rather than
two colons.

TTlrt installations using a 63-graphic set. display code 00 rlas no associated graphic or card code; displaycode 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55o).

mThe alternate Hollerit h (026) and ASCII (029) punches are accepted for ir put only.

yCSi!^.

A-2 60482900 A

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUNCES

COBOL6t DISPLAY t INTBCD ASCH6+t

Graphics
DisplayCode Graphics

DisplayCode Graphics
CDC

INTBCD Graphics Sequence
blank 55 : t 00 + 00 blank 00
< 74t 01 01 01
%t 63 02 02 ii 02
[61 03 03 03
— 65 04 04 04
s 60 05 05 %t+ 05
A 67 06 06 06
t 70 07 07 07

71 10 10 10
> 73 11 11 11
> 75 12 12 12

—1 76 13 13 13
• 57 14 14 14
) 52 15 15 15
t 77 16 16 16
+ 45 17 17 17
$ 53 20 20 20
* 47 21 21 21
- 46 22 22 22
/ 50 23 23 23
» 56 24 24 24
(51 25 25 25
= 54 26 26 26
¥ 64 27 27 27
< 72 30 30 30
A 01 31 31 31
B 02 32 32 32
C 03 33 33 33
D 04 34 34 34
E 05 35 35 35
F 06 36 —l 36 36
G 07 37 37 37

/ffP^v

60482900 A A-3

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUENCE (Contd)

COBOL6 t

Graphics

H
I
V
J
K
L
M
N
O
P
Q
R

]
S
T
U
V
W
X
Y
Z

0
1
2
3
4
5
6
7
8
9

Display
Code

10
11
66
12
13
14
15
16
17
20
21
22
62
23
24
25
26
27
30
31
32
00 +
33
34
35
36
37
40
41
42
43
44

DISPLAY +

Graphics Disp layCode

blank

[
]
%t

V
A

t
i
<
>

<
>

INTBCD

Graphics
CDC

INTBCD
Code

40 40
41 41
42 42
43 43
44 •M 44
45 45
46 46
47 47
50 50
51 51
52 52
53 53
54 54
55 55
56 56
57 57
60 blank 60
61 61
62 62
63+ 63
64 64
65 65
66 66
67 67
70 70
71 71
72 72
73 73
74 74
75 75
76 76
77 77

ASCU6++

Graphics

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

Sequence

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

tUnder the CDC 63-character set, there is no percent graphic; the colon is display code 63. Display
Code 00 is not used.

ttUnder the ASCII 63-character set, there is no percent graphic; the colon collates in position 05, not
position 32.

A-4 60482900 A

GLOSSARY

J ^ N

/^PN

Advanced Access Methods (AAM) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations, and
supports the Multiple-Index Processor. (See CYBER
Record Manager.)

Balanced Tape Sort -
Sort that always keeps its intermediate tapes divided
into the same two groups. Sorted strings are merged
from one group to another as long as possible, then
the direction is reversed.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations. (See CYBER Record
Manager.)

Buffer -
An intermediate storage area used to compensate for
a difference in rates of data flow, or time of event
occurrence, when transmitting data between central
memory and an external device during input/output
operations.

Collating Sequence -
Sequence that determines precedence given to
character data for sorting, merging, and comparing.

CYBER Record Manager -
A generic term relating to the common products
AAM and BAM that run under the NOS and NOS/BE
operating systems and that allow a variety of record
types, blocking types, and file organizations to be
c r e a t e d a n d a c c e s s e d . T h e e x e c u t i o n t i m e
input/output of COBOL 4, COBOL 5, FORTRAN
Extended 4, Sort/Merge 4, ALGOL 4, and the DMS-170
products is implemented through CYBER Record
Manager. Neither the input/output of the NOS and
NOS/BE operating systems themselves nor any of the
s y s t e m u t i l i t i e s s u c h a s C O P Y o r S K I P F i s
implemented through CYBER Record Manager. All
CYBER Record Manager file processing requests
u l t imate ly pass th rough the opera t ing sys tem
input/output routines.

Direct Access File -
In the context of CYBER Record Manager, a direct
access file is one of the five file organizations. It is
characterized by the system hashing of the unique
key within each file record to distribute records
randomly in blocks called home blocks of the file.

In the context of NOS permanent files, a direct
access file is a file that is accessed and modified
direct ly, as contrasted wi th an indi rect access
permanent file.

Directives -
Instructions that supplement processing defined by
the SORTMRG control statement for execution of
Sort/Merge record processing.

F i l e -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. Starts at beginning-of-information and
ends at end-of-information.

FILE Control Statement -
A CYBER Record Manager control statement that
contains parameters used to build the file information
table for processing. Must be provided for every
input or output file to be processed by a directive
s o r t o r m e r g e . N o t t o b e c o n f u s e d w i t h t h e
Sort/Merge FILE directive.

File Information Table (FIT) -
A table through which a user program communicates
with CYBER Record Manager. All file processing
executes on the basis of fields in the table. Some
fields can be set by the Sort/Merge user in the FILE
control statement.

Key Comparison -
Internal technique of comparing sort keys that usually
requ i res l ess e l apsed t ime and more cen t ra l
processing time than key extraction.

Key Extraction -
Internal technique of comparing sort keys that usually
requires less central processing t ime and more
elapsed time than key comparison.

Macro -
Sequence of source statements that are saved and
then assembled when needed through a macro call.
Used when Sort/Merge functions as a COMPASS
sub rou t i ne f o r a COMPASS p rog ram o r as a
relocatable program generated for the COBOL SORT
verb.

Merge Order -
Internal parameter governing the number of buffers
used by Sort/Merge Version 4 in the intermediate
merge phase.

Owncode Routine -
Closed COMPASS subroutine written by the user that
provides the capability to insert, substitute, modify,
or delete input and output records during Sort/Merge
processing.

Polyphase Tape Sort -
Sort with only one intermediate output tape for each
merge phase; however, the output tape is changed for
each merge phase. A polyphase tape sort usually can
sort more records than a balanced tape sort in the
same amount of time and with the same number of
intermediate tapes.

Random File -
In the context of CYBER Record Manager, a file with
word addressable, indexed sequential, direct access,
or actual key organization in which individual records
can be accessed by the values of their keys.

60482900 A B- l

R e c o r d - S o r t K e y -
CYBER Record Manager defines a record as a group Field of information within each record in a sort or
of related characters. A record or a portion thereof merge input file used to determine the order in which
is the smal les t co l lec t ion o f in format ion passed records are wr i t ten to the output fi le .
be tween CYBER Record Manager and a user
p rog ram. E igh t d i f f e ren t reco rd t ypes ex i s t , as So r t Orde r -
defined by the RT field of the file information table. Order for sorting keys, either ascending or descending.

S i g n e d N u m e r i c D a t a - T a p e S o r t -
Integer data stored internally in display code. Sorts Sort that has its intermediate scratch files residing
accord ing to the magn i tude and the s ign o f the on tape ra ther than d isk . Or ig ina l input fi le and/or
i n t e g e r t h e d i s p l a y c o d e r e p r e s e n t s . fi n a l o u t p u t fi l e c a n r e s i d e o n d i s k o r t a p e .

S ^ ! \

B - 2 6 0 4 8 2 9 0 0 A)

RUNNING SORT/MERGE UNDER THE
NOS/BE OPERATING SYSTEM

r

00$>K.

This appendix illustrates the basic differences between
the NOS and the NOS/BE operating systems with respect
t o S o r t / M e r g e a n d i n c l u d e s t h e N O S / B E c o n t r o l
statements you will need to run the job examples given in
sect ion 4 i f your instal lat ion is using the NOS/BE
operating system.

As noted previously, the Sort/Merge directives need not
be changed because of a change of operating system.
Certain limitations apply if you are using Sort/Merge
Version 1 which is required i f your computer is a
CYBER 170 Model 176, a CYBER 70 Model 76, or a
7600. Refer to the Sort/Merge reference manual for
these limitations. Users of the remaining CYBER 170 and
CYBER 70 models and the 6000 Series computers will use
Sort/Merge Version 4 described in the same publication.

User programs can call Sort/Merge with COMPASS
assembly language macros, the FORTRAN Extended
interface routine calls, or through the COBOL language.
These uses are described in detail in the Sort/Merge
reference manual and in the respect ive language
reference manuals.

CONTROL STATEMENT FORMATS
The major differences between the control statements
required for the NOS and NOS/BE operating systems from
the Sort/Merge user's perspective are in the areas of the
job control statement including accounting information
and in the use of permanent files. Other important
differences are noted only where they apply to this user's
guide. You should refer to the user's guide and reference
manuals applicable to your operating system for all details.

ACCOUNTING INFORMATION
As you have noted in the practice examples, NOS usually
requires a USER and a CHARGE control statement
following the job control statement. These are used for
identification and accounting purposes. If these control
statements are not given, or are incorrect, the run will
t e r m i n a t e w i t h a m e s s a g e i n d i c a t i n g t h e e r r o r .
P r o c e d u r e s v a r y f r o m i n s t a l l a t i o n t o i n s t a l l a t i o n
depending on the accounting methods in use. Interactive
users at some installations are limited in the number of
attempts they are allowed when signing onto the system.

NOS/BE users are o f ten requ i red to inc lude the i r
accounting information on the job control statement
following the terminator. Other installations require this
information on a separate ACCOUNT control statement.
Security procedures usually terminate any unauthorized
job. You might wish to note the accounting information
required at your installation inside the front cover. You
should be careful with this information because your
account will be billed for all jobs run under this number.

PERMANENT FILES
Users of NOS permanent files will encounter both direct
and indirect access permanent files. Their use is quite
different. For purposes of these examples, only indirect
access permanent files are used. Large files might be
better served by using direct access permanent files. The
choice of type of NOS permanent file is described in the
NOS Time-Sharing user's guide. There is no NOS/BE
counterpart for direct and indirect access files.

If during a NOS job, you wish to save a file for future use,
such as for input to another job, a simple SAVE,filename
is the minimum control statement you can specify to
create an indirect access permanent file. This file will be
saved for the number of days your installation allows.
When you wish to use this file again in a subsequent job,
all you need enter to access the file is the control
statement GET,filename.

NOS/BE permanent files can be used in a similar manner.
NOS/BE requires that you enter CATALOG,filename,id to
m a k e a n e x i s t i n g l o c a l fi l e p e r m a n e n t a n d
ATTACH,filename,id to access an existing permanent
file. Before you can create the permanent file, however,
you must first allocate file space for it through use of the
REQUEST,*PF control statement. NOS/BE also allows
you to keep up to 5 cycles of one permanent file under one
file name; there is no NOS counterpart for this concept.

The" length of time that a NOS/BE permanent file is kept
depends on the time you specify, or on the operating
system default. At the installation where these jobs were
run, the default retention period is set at 5 days. By
running a job using the permanent file more often than
every 5 days, the 5-day period is renewed. When the file
is no longer needed, it is automatically purged from the
system 5 days later. If you specify a longer period, you
should purge the permanent file when you no longer need
i t .

JOB EXAMPLES
The following NOS/BE control statement examples will
allow you to run the practice examples given. For more
information on your operating system and the control
statements available, you should consult the NOS/BE
user's guide or the NOS Batch user's guide or the NOS
Time-Sharing user's guide.

The NOS control statements given in figure 4-4 can be
replaced with the NOS/BE control statements shown in
figure C- l . Each figure capt ion inc ludes the figure
number of the related NOS example.

Under NOS/BE, the T parameter on the job statement
specifies a time limit for the job in octal seconds. The
time limit also influences the priority given the job in the
input queue. Too high a limit can reduce the job priority.
Too low a limit can stop the job before it completes.
Refer to the NOS/BE user's guide for details.

60482900 A C - l

Figure C-2 is the NOS/BE counterpart of figure 4-5. The
explanations associated with figure 4-5 also apply here.

Figure C-3 illustrates how you can create a NOS/BE
permanent file of the sorted output file. When creating a
permanent file under NOS/BE, you must specify an ID for
the file and you can specify a retention period if you wish
as shown with the CATALOG statement in figure C-3. To
subsequently access this permanent file requires a
sta tement such as ATTACH,NEW,ID=ME. Both the
CATALOG and the ATTACH statements allow a large
number of parameters for various purposes. These
parameters are described in the NOS/BE user's guide and
the NOS/BE reference manual.

jobcard. user and accounting information
FILE(NEW,6T=C,RT=Z,FL=80)
SORTMRG.
REWIND.NEW.
COPYSBF.NEW.OUTPUT.
7/8/9 multipunched in column 1

sort directives

7/8/9 multipunched in column 1

input records

6/7/8/9 multipunched in column 1

Figure C-l. NOS/BE Control Statements (Figure 4-4)

r c n t p e c T I E S S O R T / M E R G E 4 . 6 L 4 9 7 0 3 / 2 9 / 7 9 1 4 . 1 9 . 1 1 . F A G E 1

t S O R T
? F I L E , T N P U Ts I N P U T t O U T P U T = N E *
* F I E L C f N A M E d , ? ? , D I S P L AY)
4 K E Y, M M E C A , D I S P L AY)
* E N O

AN0FPSON,TTM0 "MY A0O0700052«752*MM
BRKKFP, JOACHIf AnOO71Q011l7^2«.MS
BERNARD,JOHN ?. A000625011S7719MS
BOEo,GEORGE Ani)0 7<J5l223742«MS
BROWN,J AMES AOn070009117fi21MS
CP«»LSON,JACK E0019750830743€MD
CHAW,, ROBERT ?. A0OQ68402017e2RMS
COHEN,JOSEPH Ani)08 7«504n4743*MO
DAVIS ,ROBERT 7. E00107«Sni03733«;MS
DUBOIS,BNOPF A03n6??n3l578-?1MS
n U PAMP,H FL EN A0n i63509n i683 fFD
FISCHFR, OAVID Annn*i2506017821MS
GARCIA,ARTHUR B00073B022C761t»MM
G0ME7,LTNDA C0On635042t7721FS
I VA N O V, L E O N A R n An0072308157632MM
JOHNSON , ANNAB «H.LE CP0147204036928FM
JOHNSON, ARMANI" E001410102D7232MS

SMITH,ROBERTA A0007S011227S27FS
S 0 K O L , 0 n N A L 0 <* A00210812n7684eMM
TAY L O R , J E N N I F E R An0062c1011772?FS
MPNG,LTSA D000,»«511277721FS
M I L L I A M < * f B E N F r i C T A0017210816723PMD
WILLIAM?,ROBE FT A000^100315763tMS
WILSON, OO'JGLA 5 E000910120?7336MO

s^$$\

Figure C-2. NOS/BE Sort Output by Name (figure 4-5) (Sheet 1 of 2)

C-2 60482900 A

M F S N R 1 - f Y B 7 l , - < ; N i n P 6 R S V / I 2 C 0 3 / 1 6 / 7 9
14. in .nq.cxRC 1G* FROM
14,19.n*?. ip ronno44* word^ - F I L E I N P U T , D C 0 4
1 4 . 1 9 . 0 * . E X P C 1 , T 1 0 . u s e r a n d accounting nformation
1 4 . 1 Q . 0 9 . F I L E I N E W , R T = C , P T = Z , F L= 80)
14. l««. 10.SORT M?G.
14 . 1<» .12 ,»» *K 'Y COMPAPT^ON US?
1 4 . 1 9 . 1 ? . * * I N S E R T I O N S C U F I N G I N P U T «****♦» * »rj
1 4 . 1 9 . 1 « . * » T E L E T I O N S O U R I N G I N P U T » »***»*»»ri
1 4 . I P. 1 « : . ♦ • 1 0 TA L R E C O R D S S O R T E D * *»»*#»* i4 r j
1 4 . 1 * . 1 * . * * I N S E R T I O N S D U R I N G OUTPUT * ¥♦»*** xW(\
1 4 . 1 9 . 1 ? , ♦ » f E L E T I O N ? O U R I N G OUTPUT * « « * » * * * * {)
1 4 . 1 9 . 1 * 5 . • » TO TA L R F C O R O S O U T P U T T » * * + * * * { , f l

1 4 . 1 9 . I S . * * > E R G E O R O c o U S E O ♦»»♦*»♦»13
14 .1« .1 = . »»E^0 SORT FUN
1 4 . 1 9 . 1 « ? . R F W I f n , N E W .
1 4 . 1 9 . 1 « . C O P Y ^ B F t N E W, O U T P U T.
1 4 . 1 P. 1 « 5 . 0 P r 0 0 0 0 S l 2 W O R O S - FTLE CUTP 'JT , DC un
l f c . l 9 . 1 « ? . M 5 7 c 3 < » W O R O S (1 0 7 ? 2 MAX USED)
1 4 . 1 P . 1 C . C P A . 2 1 0 S F C . . 2 1 0 A O J .
1 4 . 1 < » . 1 * . C P B . 2 7 0 S E C . . 2 7 0 A D J .
l 4 . i q . 1 c . x o . 3 4 7 S E C . .3 ' . 7 ADJ.
1 4 . 1 9 . 1 5 . C M 1 4 . 6 0 1 K W S . . 8 0 1 A O J .
1 4 . 1 9 . 1 * . S S , 7 ? 0
1 4 . l Q . m . P P * . 0 5 « > S E C . DATE 0 1 / 2 9 / 7 9
1 « » . 1 P. 1 ? . E J c N O O F J O B , » •

Figure C-2. NOS/BE Sort Output by Name (figure 4-5) (Sheet 2 of 2)

r EXRC1.T10. accounting information
REQUEST,NEW,*PF.
FILE(NEW,BT=C,RT=Z,FL=80)
SORTMRG.
CATALOG,NEW,ID=ME,RP=10.
REWIND.NEW.
COPYSBF.NEW.OUTPUT.
7/8/9 multipunched in column 1

sort directives

7/8/9 multipunched in column 1

input records

6/7/8/9 multipunched in column 1

Figure C-3. Creating a NOS/BE Permanent
File (Figure 4-6)

60482900 A C-3

{*%:

0^,

INDEX

ACCOUNT C-l
ASCII code 2-3, A-l
ATTACH C- l

GET 4-7
Glossary B-l

00^*-.

Blanks, importance 3-3
Blanks, leading 5-1, 4-3

CATALOG C-l
Character sets 2-3, A-l
CHARGE statement 4-5
Checkpoint 6-2, 4-2
COBOL SORT 6-1
Collating sequence 3-2, A-3
COMPARE 4-3
COPYSBF 4-4
CYBER Record Manager 1-3, 4-5

Data input 1-4
Data storage 1-4
Directives

BYTESIZE 4-1
END 4-1
EQUATE 4-3
FIELD 4-1
FILE 4-3
KEY 4-2
MERGE 4-1
OPTIONS 4-2
SEQUENCE 4-2
SORT 4-1
TAPE 4-3
OWNCODE 4-3

Display code 2-3, A-l
DUMP 4-2
Dumps, checkpoint 4-2, 6-1

EBCDIC 2-4
Examples 4-3, C-l
EXTRACT 4-3

Hollerith, Herman 1-1

Input preparation 2-1
INTBCD 3-2, 4-7

Merge order 3-4

NODUMP 4-2
NOS/BE C-l

OWN 4-3
OWNCODE 5-1

Permanent files
NOS 4-5
NOS/BE C-l

Record design 2-1, 6-1
RETAIN 4-2, 5-7
REQUEST C-l

SAVE 4-5
Sign overpunch codes 3-2
Singed numeric data 3-2
SORT directive example 4-4
SORT keys 3-1
SORT order 3-3
SORTMRG statement 4-1

Tag sort 6-2
Tape sort 6-2

USER statement 4-5

FILE statement 4-1, 4-5
FORM 1-4,4-8
FORTRAN calls 5-6, 6-2

Variable length records 2-2
VERIFY 4-2
VOLDUMP 4-2

60482900 A Index-1

0*^1

COMMENT SHEET

MANUAL TITLE: Sort/Merge Versions 4 and 1 User's Guide

PUBLICATION NO.: 60482900

REVISION: A

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your eva luat ion o f th is manual . P lease ind ica te any er rors , suggested
additions or deletions, or general comments on the back (please include page number
r e f e r e n c e s) . °

Please reply

FOLD

No reply necessary

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FIRST CLASS
BUSINESS REPLY MAIL

P E R M I T N O . 8 2 4 1 M I N N E A P O L I S , M I N N .

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P.O. BOX 3492

Sunnyva le , Ca l i fo rn ia 94088-3492

\—
FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS;

CITY/STATE/ZIP:

TAPE TAPE

v_-

