(G5 CONTROL DATA

60459680

NOS VERSION 2
REFERENCE SET

Volume 3

SYSTEM COMMANDS

CDC® COMPUTER SYSTEMS:

CYBER 180
CYBER 170
CYBER 70
MODELS 71, 72, 73, 74
6000

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects NOS Version 2 at PSR level 562. This manual documents
(04-26-82) parameter—prompting procedures and the following new commands: ALTER, CFO, DELETE, Detach, DMB,
DROP, DUP, GO, LIBTASK, MOVE, PAUSE, QGET, READ, SCOPY, SETFS, SETJOB, UPROC, WHATJSN, WRITE, WRITEN.
B This manual reflects NOS 2.1 at PSR level 580. This revision incorporates the MFLINK, MFQUEUE,
(01-27-83) SHELL, and new terminal definition commands; menu-generating procedures and new procedure
directives; support of 885-42 disk drives; as well as numerous usability changes. Because of
extensive changes to this manual, change bars and dots are not used. This manual obsoletes all
previous editions.
C This manual reflects NOS 2.2 at PSR level 596. This revision incorporates the following features:
(10-11-83) enhanced system security; service class assignment by users; a multihost network; full screen
editing; screen mode input for procedures and other applications; an expansion of online help,
including online manuals; equipment status table expansion; project prologues and epilogues; SCOPE 2
station; and the Interactive Transfer Facility (ITF). Because of extensive changes to this manual,
change bars and dots are not used. This revision obsoletes all previous editions.
D This manual reflects NOS 2.3 at PSR level 617. This revision incorporates the following features:
(10-05-84) 834 disk subsystem support; 639 magnetic tape unit support; PSU printer support; FSE enhancements;
NOS procedure enhancements, and the following new system commands: BLOCK, EFFECT, ERRMSG, LISTLID,
RECLAIM, REDO, SHOW, and TDU. This manual obsoletes all previous editioms.
E This manual reflects NOS 2.4.1 at PSR level 630. This revision documents the KEY command and the
(03-28-85) following new features: support of CYBER 180 Models 840, 850, and 860; 895 disk subsystem support ;
5870 Non-Impact Printer support; NOS/VE dual-state support; and NOS procedure enhancements.
F This manual reflects NOS 2.4.3 at PSR level 647. This revision documents the APPSW command, the RC
(12-16-85) terminal definition command, and the following features: support of CYBER 180 model 990; support of
836 disk subsystem; enhancements to 533/536 printer support; support of CDCNET version 1; disk error
recovery enhancements (ENQUIRE output); AUTO command internal 0003 byte processing.
G This manual reflects NOS 2.5.1 at PSR level 664, This revision documents the XMODEM and DROPDS
{09-30~-86) command and the following features: support of print train images, security enhancements, and
miscellaneous technical corrections.
H This manual reflects NOS 2.5.2 at PSR level 678, This revision documents support for the Televideo
(04-23-87) terminal and the 585 printer, new user messages related to enhancements to tape error recovery,
changes to several procedure directives, and the addition of the .SET directive and the STR, STRB,
and STRD functions.
J This manual reflects NOS 2.5.3 at PSR level 688. This revision documents support of magnetic tape
(09-23-87) as an alternate storage medium for permanent files, the 537 printer, and drops documentation of the
Mass Storage Subsystem (MSS).
K This manual reflects NOS 2.6.1 at PSR level 700. This revision documents CHARGE enhancements, a
(04-05-88) new PASSWOR parameter, the LVL function, the .F7 directive, the LIBEDIT directive (*/), new RECLAIM
options, and STORNET, a new type of extended memory.
L This manual reflects NOS 2.7.1 at PSR level 716. This revision documents support of CYBER 180
(12-08-88) Models 960 and 994, support of the 9853 disk subsystem, enhancements to the CATLIST, PURGALL, TDUMP,
PDU, and TDU commands, new RECLAIM options, new permanent file command (FTP), new diagnostic
messages, and miscellaneous technical corrections.
Publication No.
60459680

REVISION LETTERS 1, 0, Q. S, X AND Z ARE NOT USED.

© 1982, 1983, 1984, 1985, 1986, 1987, 1988 4201 N. Lexington Avenue ’
by Control Data Corporation Arden Hills, MN 55126-9983

All rights reserved

Printed in the United States of America or use Comment Sheet in the back of

Address comments concerning this
manual to:

Control Data
Technical Publications

this manual.

JJ

PROCEDURE DIRECTIVES
Directive Page
.CC 4-33
«CORRECT 4-23
«DATA ' 4-34,2
+ELSE ' 4-38
« ENDHELP 4=-24
«ENDIF 4-39
-ENTER 4=24
+EOF (or .EOP) 4-38
+EOR (or .EOS) 4-38
+EX 4-39
<EXPAND 4-33
.Fn 4=24.1
-F7 4-24.2

F <HELP 4=25
- | .1C 4-34
.IF (or .IFE) 4=40
+«NOCLR 4=31
-NOTE - 4=-31
«PAGE 4=32
+PROC 4-11, L-1
« PROMPT 4-32
+SET 4-34
o* 4-40.1

60459680 K

LIST OF EFFECTIVE PAGES

and additions to information in this manual, are indicated by bars in the margins or by a dot
ected. A bar by the page number indicates pagination rather than content has changed.

New features, as well as changes, deletions,
near the page number if the entire page is aff

>
“ AT AARMAR A AARMO DI MMIEADIKROKHSEKRITIOOACANAAKAMNMANOERKARAATIALQAAT AL
o~
!
o~ [=]
. 5

& iy 2

< 2 ~

e o I o 345678900-1236567890123

S - ™~
A R R I 1o g1 n e s 3T T TIT105909T9599%9¢%¢
[}
>
“.u- MADMMMMOAOAZNQARMNERAROAZINIIAQARMKEAITAANAAMMAAKRK AAAAQNMMMMMNAAARAAANMIAA®N
(2] o~ o~ o~
: : : :
™~ Ale] ~N [=]
7 T 3§ 3

w ~ ~ M~ ~

o ~ ~ ~ ~

< — - - —

: . : .

e — O AN NNMNMITITNOONDODAOTNNNITINONOAO 1 NMINONOANO A NMITINONDOANODD — M T
R S AN SRR RS R RS RS S S R S R S R 6 b 6 b S S
677

>

“ TAMONIANMIDTAAMIAZAMMEMMMEARAEI D IEES A dO0NMMMAMMMMANMMEMNRRARAADAQAQATA

L PAGE

o~

.

o o~

~r 3

[} -}

=]

~ ©°

ol ~ ~- N — N M T

. — . e o s e

O=ANMINONDOANO =M . COO—ANMNITIINWOWOOOVONNDAOD~NMINONDNHO
T IITITITIITNNNDN AN LTVON AN T U O 0000 O ot oot # ot d i vttt o=l —d o = NN NN NN NN N M
U R R L L L R N L N N S N N R R R R
I.-.A.A-I.—.444&444446455555556666666666666666666666666666666666666

R

i&

AOOURMOVVUVVDVVVUVAANIEENPININEREXMMEMIETN MMM TN EON I MO MIERNN M MMM A MMM

o~ o~

. .

o 5

T T

g g

~ ~

— — N - -~

. « . . [

O NMITNONOOR O=NMIMONOANCONNNNTITITNOROONO~NMNITITINONDNMNO

R i i A SO SO R R R R R SR SR R R
3333333333333/44/4/.—.444/444/.—./4/444'44/4/4/4/4/4444444644444444444444444

REV I PAGE

| Al Al ARl AR AN MMMYNMY Al A T RO A0 OEOOUROR I ARBHUOUNHUONANE IOV

PAGE

o~

- ;

v o (=
[VIS) —
> D e [V]
QO Weg ¥ o ~N
C.mecxP ~

[T P -
800 KRy @ V-] . -
nmr.l a6 = — O O mi N M T N O~ . .
o AA MO 0 ~ 123/....5 1234547891]111111112365666
- O o ~ 0123/45789012314_.__%____________~__-______.__
O BNMOITNNON At At A et A At QANNNN ot A A A " N NNNNNNNNNNNNNNNNNAOMO®OO®®O

60459680 L

PAGE REV PAGE REV PAGE HEQ L PAGE REV PAGE REV
8-34 K 9-52 F 10-29 D 12-26 c 15-44 G
8-35 E 9-53 F 10-30 L 13-1 c 15-45 G
8-36 G 9-54 D 10-31 L 13-2 c 16-1 H
8-37 D 9-55 D 10-32 L 13-3 c 16-2 F
8~38 G 9-56 D 10-32.1/ 13-4 c 16-3 F
8-39 D 9-57 D 10-32.2 L 14-1 K 16-4 C
8-40 D 9-58 D 10-33 D 14-2 D 16~5 c
8-41 D 9-59 D 10-34 H 14-3 D 16-6 C
8~42 D 9-60 H 10-35 L 14-4 E 16-7 C
8-43 D 9-61 D 10-36 L 14-5 F 16-8 [
8-44 D 9-62 L 10-36.1/ 14-6 K 16-9 J
8-45 D 9-63 L 10-36.2 L 14-7 D A-1 c
8-46 D 9-64 L 10-37 L 14-8 D A-2 C
8-47 D 9-64.1/9-64.2| L 10-38 L 14-9 D A-3 H
8-48 D 9-65 D 10-38.1 H 14-10 L A-4 E
8-49 D 9-66 D 10-38,2 H 14-11 L A-5 C
8-50 D 9-67 D 10-39 K 14-12 J A-6 C
8-51 D 9-68 D 10-40 L 14-13 C A-7 c
8-52 D 10-1 L 10-40.1/ 14~14 c A-8 c
9-1 E 10-2 J 10-40.2 L 14-15 C A-9 c
9-2 L 10-3 L 10-41 H 14-16 C A-10 C
9-3 K 10-4 L 10-42 L 14-17 c A-11 c
9-4 c 10-4.1 L 10-43 L 14~-18 D A-12 D
9-5 c 10-4,2 L 10-44 H 14-19 L A-13 E
9-6 C 10-4.3 L 10-44,1/ 15~1 K A-14 c
9-7 D 10-5 J 10-44.2 H 15-2 K A-15 c
9-8 C 10-6 C 10-45 E 15-3 K B-1 L
9-9 D 10-7 J 10-46 J 15-4 K B-2 L
9-10 D 10-8 J 10-47 L 15-5 C B-3 L
9-11 C 10-8.1/10-8.2] J 10-48 L 15-6 E B-4 L
9-12 [10-9 J 10-49 D 15-7 K B-5 L
9-13 F 10-10 L 11-1 G 15-8 c B-6 L
9-14 F 10-11 L 11-2 C 15-9 c B-7 L
9-15 F 10-12 L 11-3 c 15-10 c B-8 L
9-16 F 10-13 L 11-4 C 15-11 L B-9 L
9-17 c 10-14 L 11-5 H 15~12 L B-10 L
9-18 F 10-14.1 L 11-6 H 15-12.1/ B-11 L
9-19 H 10-14.2 L 11-6.1/11-6.2| H 15-12.2 L B-12 L
9-20 KX 10-14.3 L 11-7 H 15-13 c B-13 L
9-21 K 10-14.4 L 11-8 c 15-14 c B-14 L
9-22 K 10-15 J 11-9 c 15-15 E B~15 L
9-23 L 10-16 G 11-10 c 15-16 G B-16 L
9-24 K 10-17 F 12-1 C 15-17 K B-17 L
9-25 L 10-18 J 12-2 c 15-18 K B-18 L
9-26 D 10-19 D 12-3 E 15-19 K B-19 1
9-27 E 10-20 J 12-4 L 15-20 K B-20 L
9-28 D 10-20.1 L 12-5 H 15-20.1/ B-21 L
9-29 D 10-20.2 L 12-6 H 15-20.2 K B~22 L
9-30 D 10-20.3 L 12-7 c 15-21 G B-23 L
9-31 F 10-20.4 L 12-8 D 15-22 G B-24 L
9-32 D 10-20.5 L 12-9 H 15-23 c B-25 L
9-33 H 10-20.6 L 12-10 H 15-24 c B-26 L
9-34 G 10-20.7 L 12-10.1/ 15-25 C B-27 L
9-35 D 10-20.8 L 12-10.2 H 15-26 c B-28 L
9-36 D 10-20.9 L 12-11 H 15-27 K B-29 L
9-37 D 10-20.10 L 12-12 H 15-28 K B-30 L
9-38 D 10-20.11 L 12-13 c 15-29 K B~31 L
9-39 D 10-20.12 L 12-14 D 15-30 K B-32 L
9-40 D 10-20.13 L 12-15 H 15-31 K B-33 L
9-41 D 10-20.14 L 12-16 H 15-32 J B-34 L
942 D 10-20.15 L 12-16.1/ 15-33 G B-35 L
9-43 D 10-21 J 12~16.2 H 15-34 K B-36 L
9-44 H 10-22 J 12-17 E 15-35 D B-37 L
9-45 H 10-22,1/ 12-18 c 15-36 J B-~38 L
9-46 J 10-22,2 J 12-19 H 15-37 J B-39 L
9-47 F 10-23 F 12-20 c 15-38 J B-40 L
9-48 J 10-24 E 12~-21 K 15-39 J B-41 L
9-48.1/9-48.2| K 10-25 J 12-22 c 15-40 J B-42 L
9-49 H 10-26 J 12-23 H 15-41 J B-43 L
9-50 X 10-27 J 12-24 D 15-42 L B-44 L
9-51 F 10-28 J 12-25 C 15-43 G B-45 L
4 60459680 L

J D

J)

>
w
[+ 4
w
S
<
o
>
w
[+ 4
w
(L]
<
o
>
E PMMM A3 a32aa03
-
v
o
< ~
w 7] o
OO - >
[NN U DM 00 Ot ot ot~ WO
< L T T O T O O R T T T O T I T~ 1
a LR R R EREEEEEREEEERE
eeeeeeeeeeeeeeemak
YWY WUUYUTUYULTUOUYUY BEX U
EEEEEEESE RS S CRE O]
[e N B I I N N 5] [-<]
>
“ nnJ.JCCCCGDCDDHnuFHCCHGuuGHDHHnnnnnnnu.l.HHHHGGCDKKCCCCCJCCCCCCCCCCLJCHGGKGGGGGGK
w
(2] —
a5 %
o O NNITNONONO - NMTINONDONO (]
OO AR i 1 O A I I AN A R M OROBOR R A OB SR R Al Al A B B S R A
e ekl e R R e R R R R R R R R R e R N N e R N B N N N N N N W W WY KKLLLLLLLLLMMMMM MMMNNOOOPPPPPPPPI
>
“ LLLLLLLLLLLLLLLLLLLLLLLCGGGGCCCDCCFCCHCCCCHCCCCCCCCCCCCCCCLLCCHJJKJJJDD
~
.
4)
[C] =
< <
P -— - N
OMNONO = ANMNMITNNONONO ~Mg NGO~ Q=N Mg O - . .
A e A 1 0 O NN e B 6 B M R I A i i 0 S S b b S Al
BBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCDDDDEEFFFFFFFGGGGGGGGGGGHHHHHHHHH

C

5/6

60459680 L

20

PREFACE

“

This manual describes the CONTROL DATA® Network Operating System (NOS) Version 2. NOS can
operate on the following computer systems:

CDC® CYBER 180 Computer Systems
Models 810, 830, 835, 840, 845, 850, 855, 860, 870, 960, 990, 994, and 995

CDC CYBER 170 Computer Systems
Models 171, 172, 173, 174, 175, 176, 720, 730, 740, 750, 760, 815, 825, 835, 845, 855,
865, and 875

CDC CYBER 70 Computer Systems
Models 71, 72, 73 and 74

6000 Computer Systems

AUDIENCE
Volume 1, Introduction to Interactive Usage (60459660), is written for the novice.

Volume 2, Guide to System Usage (60459670), is written for the applications or systems
programmer who is unfamiliar with NOS.

Volume 3, System Commands (60459680), is written for all NOS users.

Volume 4, Program Interface (60459690), is written for the experienced COMPASS applications
programmer or systems programmer.

The reader of each volume should have a knowledge of the material contained in the previous
volumes.

ORGANIZATION

The NOS reference set describes the external features of NOS 2. This reference set
comprises four separate volumes.

Volume 1, Introduction to Interactive Usage, shows a user at an interactive terminal how to
enter, run, and correct programs, and how to create, retrieve, and maintain permanent
files. Other topics covered include physical terminal comnection, and login/logout
procedures.

Volume 2, Guide to System Usage, describes the general concepts of NOS and some of the
utilities used with NOS. Topics included are job processing, file concepts, procedures,
magnetic tape processing, Modify, and file loading. This volume is a learning tool and does
not contain comprehensive descriptions of all NOS commands.

60459680 L 7

Volume 3, System Commands, describes the system commands that form the user interface to NOS.

Volume 4, Program Interface, describes the COMPASS program interface to NOS. Detailed
descriptions of function processors and macros available to COMPASS user programs are
included.

SUBMITTING COMMENTS

The last page of this manual is a comment sheet. Please use it to give your opinion on the
manual”s usability, to suggest specific improvements, and to report any errors. If the
comment sheet has already been used, you can mail your comments to:

Control Data

Technical Publications ARH219
4201 Lexington Avenue North
St. Paul, MN 55126-6198

Additionally, if you have access to SOLVER, an online facility for reporting problems, you
can use it to submit comments about the manual. Declare your problem type as DOC and use
NS2 as the product identifier.

Address questions about physical packaging and/or distribution of printed materials to
Literature and Distribution Services at the following address:

Control Data

Literature and Distribution Services
308 North Dale Street

St. Paul, MN 55103-2495

or you can call (612) 292-210l. If you are a Control Data employee, call (612) 292-2100.

CYBER SOFTWARE SUPPORT HOTLINE

Control Data”s CYBER Software Support maintains a hotline to assist you if you have trouble
using our products. If you need help beyond that provided in the documentation or find that
the product does not perform as described, call us at one of the following numbers and a
support analyst will work with you.

From USA and Canada: (800) 345-9903
From other countries: (612) 851~4131
CONVENTIONS

REFERENCES TO OTHER MANUALS IN THE NOS REFERENCE SET
Throughout this manual, references to Volumes 1, 2, and 4 of the NOS Reference Set are in

the form: refer to section n, (volume name). If a volume number is not specified, the
reference is to Volume 3.

8 60459680 L

J)

J)

180-CLASS MAINFRAMES

Some of the CYBER 170 Computer Systems share many of the functional and architectural
attributes of the CYBER 180 Computer Systems. Specifically, CYBER 170 Models 815, 825, 835,
845, and 855 fall into this category. It is sometimes convenient to refer to the CYBER 180
models and these CYBER 170 models collectively. This manual uses the term 180-class
mainframes to refer to this collection.

EXTENDED MEMORY

Extended memory for the CYBER 180-class machines and models 865 and 875 is unified extended
memory (UEM) and may also include extended core storage (ECS), extended semiconductor memory
(ESM), or STORNET. Extended memory for model 176 is large central memory extended (LCME)
and may include ECS, ESM, or STORNET. Extended memory for all other NOS computer systems is
either ECS, ESM, or STORNET.

In this manual, ECS refers to ECS, ESM, and STORNET. Extended memory refers to all forms of
extended memory unless otherwise noted. However, when referencing extended memory in the
context of an ECS multimainframe complex, distributive data path (DDP), or low—speed port
(LSP) access, UEM and LCME are excluded. ECS, ESM, and STORNET are the only forms of
extended memory that can be shared in ECS multimainframe complex and can be accessed by a
DDP or LSP. For CYBER 180-class machines, only UEM may be accessed directly fr»m CPU
programs as extended field length; similarly, om the model 176, only LCME may be accessed
directly from CPU programs. The other forms of extended memory are supported only as mass
storage devices on these machines.

Programming information for the various forms of extended memory can be found in the COMPASS
Version 3 Reference Manual and in the appropriate computer system hardware reference manual.

60459680 L 9

CYBER 70 COMPUTER SYSTEMS REFERENCES

References to the CYBER 70 Computer Systems pertain only to models 71, 72, 73, and 74.

CONTROL STATEMENT

The manuals of many NOS products use the term control statement instead of the term command.
This manual uses the term command almost exclusively. You can consider the two synonymous.

EXAMPLES
The following conventions apply to examples that appear in this manual:

e Examples of actual terminal sessions that appear in this manual were produced on a
display terminal in NORMAL character mode unless otherwise specified. Uppercase
characters represent terminal output; lowercase characters represent user input
unless otherwise noted. (However, user input that is displayed within the text of
this manual is shown in uppercase characters). The vertical spacing in examples
does not necessarily coincide with the spacing that appears on your terminal.

® Program examples are written either in FORTRAN 5 or BASIC 3 (hereafter referred to
as just BASIC).

e This manual uses commas to delimit command parameters and periods to terminate
commands. For clarity, however, commands that appear in text use an opening
parenthesis for their initial delimiter and a closing parenthesis for their
terminator.

COMMAND FORMAT

Interpret uppercase characters within command formats literally. Lowercase characters are
variables and are described immediately following the line that shows the command format.

SPECIAL KEYBOARD ENTRIES
This manual uses special notation to represent certain keyboard entries:

° denotes the message transmission key on the keyboard. Depending on the terminal
class, this key may be the RETURN, CR, CARRIAGE RETURN, NEW LINE, SEND, or ETX key.
For some terminal classes, the RETURN or NEW LINE key also denotes a message
terminator, but the message is kept in the terminal buffer until the corresponding
SEND or ETX key is pressed, sending -all messages in the buffer to IAF. Appendix K
supplies more information. IAF and the network respond to the GD by positioning the
carriage to the first character position on the next line.

e «—designates the backspace character.
e The notation CTRL/x directs you to press the control key (which is labeled CTRL,
CNTL, CNTRL, or similar characters) on the terminal and, while holding this key

down, press the key specified by x. For example, CTRL/H means press and hold the
control key while you press the H key.

10 60459680 H

JJ

D)

é&**

RELATED PUBLICATIONS

You may want to consult the following Control Data manuals for information related to topics

discussed in this manual. For your convenience, these manuals are listed by category:

CDCNET manuals, hardware manuals, NOS 2 manuals, and optional product manuals.

If you need a brief description of the NOS product commands and their parameters, refer to

the NOS Version 2 Applications Programmer”s Instant (60459370).

descriptions of all NOS operating system and NOS product set manuals are available in the
NOS System Information manual. You access this online manual by logging into NOS and

entering the EXPLAIN command.

Control Data manuals are available through Control Data sales offices or through Literature

Distribution Services:

Control Data

Literature and Distribution Services
308 North Dale Street

St. Paul, MN 55103-2495

CDCNET MANUALS

In addition, brief

The following manuals describe the Control Data Distributed Communications

Network (CDCNET).

Control Data Publication

CDCNET Access Guidet

CDCNET Batch Device User Guide

CDCNET Conceptual Overview

CDCNET Configuration and Site Administration Guide
CDCNET Terminal Interface Usage

CDCNET TCP/IP Usage

T Online manual only. Enter EXPLAIN,M=manual.

60459680 L

Publication
Number
CDCNETA
60463863
60461540
60461550
60463850

60000214

11

HARDWARE MANUALS

The following manuals describe Control Data computer systems and related
equipment.

12

Control Data Publication

CYBER 70 Model 71 Computer System Hardware Reference Manual
CYBER 70 Model 72 Computer System Hardware Reference Manual

CYBER 170 Computer Systems Models 171 through 175
(Levels A, B, C) Model 176 (Level A, B, C)
Hardware Reference Manual

CYBER 170 Computer Systems Models 720, 730, 740, 750, and 760
Model 176 (Level B/C) Hardware Reference Manual

CYBER 170 Computer Systems Models 815 and 825
Hardware Reference Manual

CYBER 170 Computer Systems Models 835, 845, and 855
CYBER 180 Computer Systems

Models 835, 840, 845, 850, 855, 860, and 990

CYBER 990E and 995E Computer Systems CYBER 170 State
Hardware Reference Manual

CYBER 170 Computer Systems Models 835, 845, and 855
CYBER 180 Computer Systems Models 835, 845, and 855
Hardware Operator”s Guide

CYBER 170 Computer Systems Models 865 and 875
Hardware Reference Manual

CYBER 180 Models 810 and 830 Computer Systems
Hardware Reference Manual

CYBER 840A, 850A, 860A, and 870A Computer Systems
Hardware Reference Manual

5870 Printer User”s Reference Manual

Publication
Number

60453300

60347000

60420000

60456100

60469350

60469290

60458390

60458920

60469420

60463560

60462720

60459680 K

J)

J)

NOS 2 MANUALS

The following manuals describe NOS 2.

Publication
Control Data Publication Number

Common Memory Manager Version 1 Reference Manual 60499200
COMPASS Version 3 Reference Manual 60492600
CYBER Loader Version 1 Reference Manual 60429800
CYBER Record Manager Advanced Access Methods Version 2

€@§h Reference Manual 60499300

\ CYBER Record Manager Basic Access Methods Version 1.5
Reference Manual 60495700
FORM Version 1 Reference Manual 60496200
Modify Version 1 Reference Manual 60450100
NOS Online Maintenance Software Reference Manual 60454200
NOS Version 2 Administration Handbook 60459840
NOS Version 2 Analysis Handbook 60459300
NOS Version 2 Applications Programmer”s Instant 60459360
NOS Version 2 Diagnostic Index 60459390
NOS Version 2 Full Screen Editor User”s Guide 60460420
NOS Version 2 Installation Handbook 60459320
NOS Version 2 Operations Handbook 60459310
NOS Version 2 Reference Set, Volume 1
Introduction to Interactive Usage 60459660

NOS Version 2 Reference Set, Volume 2, Guide to System Usage 60459670

NOS Version 2 Reference Set, Volume 4, Program Interface 60459690
NOS Version 2 Screen Formatting Reference Manual 60460430
NOS Version 2 Security Administrator”s Handbook 60460410
NOS Version 2 System Overview 60459270
NOS Version 2 Systems Programmer”s Instant 60459370
SYMPL Version 1 Reference Manual 60496400

f 60459680 K

OPTIONAL PRODUCT MANUALS

The following manuals describe optional products.

14

Control Data Publication

APEX IV Reference Manual
APL Version 2 Reference Manual

Automatically Programmed Tooling System
(APT IV) Version 2 Reference Manual

BASIC Version 3 Reference Manual
COBOL Version 5 Reference Manual

CYBER Database Control System 2 Database Administrator
Reference Manual

CYBER Database Control System 2 Database Application
Programming Reference Manual

CYBER Interactive Debug Version 1 Reference Manual
Data Catalogue 2 Version 1 Reference Manual

Data Catalogue 2 Version 2 Reference Manual

DDL Version 3 Reference Manual, Volume 1

DDL Version 3 Reference Manual, Volume 2

DDL Version 3 Reference Manual, Volume 3

FORTRAN DataBase Facility Version 1 Reference Manual

FORTRAN Extended Version 4 Common Library
Mathematical Routines Reference Manual

FORTRAN Extended Version 4 Reference Manual

FORTRAN Extended Version 4 to FORTRAN Version 5 Conversion
Aids Program Version 1 Reference Manual

FORTRAN Version 5 Common Library Mathematical Routines
Reference Manual

FORTRAN Version 5 Reference Manual

General Purpose Simulation System V (GPSS)
General Information Manual

Publication
Number
84002550

60454000

17326900
19983900

60497100

60485200

60485300
60481400
60483200
60483350
60481900
60482000
60482100

60482200

60498200

60497800

60483000

60483100

60481300

84003900

60459680 K

J

J)

Optional Product Manuals (Continued)

Control Data Publication

Information Management Facility Version 1
Application Programming Reference Manual

Message Control System Version 1 Reference Manual

Network Access Method Version 1
Host Application Programming Reference Manual

Network Access Method Version 1
Network Definition Language Reference Manual

Network Access Method Version 1/Communications Control
Program Version 3 Terminal Interfaces Reference Manual

NOS Version 2 Tape Management System (TMS)
Site Operations Manual

NOS Version 2 Tape Management System (TMS)
User Reference Manual

Pascal Version l.1 Reference Manual

PERT/Time Version 2 Reference Manual

Query Update Version 3 Reference Manual

Remote Batch Facility Version 1 Reference Manual
Remote Host Facility Access Method Reference Manual
Remote Host Facility Usage

Sort/Merge Version 5 Reference Manual

TAF Version 1 Reference Manual

TAF Version 1 User”s Guide

TAF/CRM Data Manager Version 1 Reference Manual
TOTAL-CDC Version 2 Reference Manual

Update Version 1 Reference Manual

XEDIT Version 3 Reference Manual

8-Bit Subroutines Version 1 Reference Manual

60459680 K

Publication
Number

60484500

60480300

60499500

60480000

60480600

60463350

60463110
60497700
60456030
60498300
60499600
60459990
60460620
60497500
60459500
60459520
60459510
76070300
60449900
60455730

60495500

15716

CONTENTS

1. SYSTEM DESCRIPTION

System Hardware
Central Processor Unit
Central Memory
Job Field Length
Central Memory Resident
Extended Memory
Peripheral Processors
Peripheral Equipment
System Software
User Programs
Operating System
CYBER Loader
CYBER Record Manager

2. FILES

File Names
File Structure
CYBER Record Manager File Structure
NOS File Structure
Physical File Structure
Card Files
Mass Storage Files
Magnetic Tape Files
File Types
Input Files
Queued Files
Local Files
Primary Files
Direct Access Files
Library Files
Permanent Files
Indirect Access Permanent Files
Direct Access Permanent Files
Mass Storage File Residence
Family Devices
Auxiliary Devices
Alternate Storage
Libraries
User Name Library
Program Libraries
User Libraries

3. JOB FLOW AND EXECUTION

Job Initiation and Termination

60459680 K

Batch Jobs
Interactive Jobs
Login
Logout and Application
Switching Procedure
Submitting Jobs to Remote Hosts
Job Origin Types
Job Service Classes
Job Names

Job Sequence Name (JSN)
User Job Name (UJN)
Validation
Accounting

Job Scheduling
Job Control
Field Length Control
Input File Control
Time Limit Control
SRU Limit Control
Command Limit Control
Rollout Control
Error Control
Security Features
Memory Protection
System and File Access Controls
Security Access Levels
Security Access Catagories
Responsibilities for Data Security
Security Conflict Processing
Job Completion

4, PROCEDURES

Procedure File Residence and Search
Order
Procedure Structure
Procedure Processing
Interactive Parameter Entry
Procedure Expansion
+EXPAND Directive
Inhibit Character
Concatenation Character
«EX Directive
Execution of the Command Record
Procedure Directives
Procedure Header (.PROC) Directive
Interactive Format
Checklist Entries
Special Values

4=2
4=2

44
4=4

4=6
4-8

4-9
4-9
4-11
4-11
4-13
4-14

17

Checklist Patterns
Menu Format
Formatting and Help Directives
+CORRECT Directive
+ENDHELP Directive
+ENTER Directive
.Fn Directive
.F7 Directive
+HELP Directive
+NOCLR Directive
+NOTE Directive
+PAGE Directive
+«PROMPT Directive
Expansion Control Directives
+CC Directive
+EXPAND Directive
«IC Directive
+SET Directive
File Directives
«DATA Directive
«EOF (or .EOP) Directive
.EOR (or .EO0S) Directive
Branching Directives
+ELSE Directive
«ENDIF Directive
+«EX Directive
.IF (or .IFE) Directive
.COMMENT (.*) Directive
Calling a Procedure (BEGIN Command)
Requesting Help on Procedure Calls
Ending a Procedure (REVERT Command)
Parameter Matching Modes
Order-Dependent Mode
Order-Independent Mode

5. COMMAND PROCESSING

Command Format
Command Processing Flow
Exit Processing

6. FLOW CONTROL COMMANDS

Command Syntax
Operators
Arithmetic Operators
Relational Operators
Logical Operators
String Operators
Order of Evaluation
Operands
Constants
Numeric Strings
Literals
Symbolic Names
Functions

18

4-16
4-22
4-23
4-23
4=24
4-24
4=24.1
4-24.1
4-25
4-31
4-31
4-32
4-32
4-33
4-33
4-33
4-34
4-34
4-34.1
4-34.2
4-38
4-38
4-38
4-38
4-39
4-39
4-40
4-40.1
4=41
4-46
4-51
4-53
4-53
4-53

6-2
6-2
6-2
6-3
6-4
6-4
6-5
6-5
6-5
6-5
6=5
6-7
6-12

FILE Function
DT Functiomn
LEN Function
LVL Function
NUM Function
STR Function
STRB Function
STRD Function
Command Descriptions
BEGIN Command
DISPLAY Command
ELSE Command
ENDIF Command
ENDW Command
EXIT Command
IF (or IFE) Command
MODE Command
NOEXIT Command
ONEXIT Command
REVERT Command
SET Command
SKIP Command
WHILE Command

7. JOB CONTROL COMMANDS

BLOCK Command

CFO Command

CHARGE Command

CHVAL Command

CLASS Command

COMMENT Command

CTIME Command

DAYFILE Command

DROP Command

ENQUIRE Command

ENTER Command

ERRMSG Command

GO Command

HTIME Command

Job Command

LDI Command

LENGTH Command

LIMITS Command
Resource Limits
Other Characteristics
User Permissions
Network Applications
Local Applications
Privileged Network Applications
Shell Permissions
Security Permissions
Security Access Categories
Security Access Levels
Service Classes
Default Service Classes

LISTLID Command

6-12
6-14
6-16
6-16
6-16.1
6-16.1
6-16.2
6-16.3
6-16.3
6-16.3
6-16.4
6-17
6-18
6-19
6-19
6-20
6-22
6-24
6-24
6-24
6-25
6-30
6-31

7=2
7-3
-4
7-5
77
7-9
7-10
7-10
7-12.1
7-13
7-21
7=22
7-22
7-22.1
7-23
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-32
7-32
7-32
7-33
7-33
7-33
7-33
7-33
7-36

60459680 K

J)

R
-~

é@k‘
é@aﬁ

MACHINE Command

MFL Command

NORERUN Command

NOTE Command

OFFSW Command

ONSW Coummand

PASSWOR Command

PAUSE Command

PROTECT Command

QGET Command

QUEUE7 Command

REDO Command

RERUN Command

RESOURC Command
Deadlock Prevention
Single Resource Use
Tape Units
Resource Overcommitment
Altering Resource Requirements
Unit Assignment

RFL Command

ROLLOUT Command

RTIME Command

SETASL Command

SETCORE Command

SETJAL Command

SETJOB Command

SETJSL Command

SETPR Command

SETTL Command

SHELL Command

STIME Command

SUBMIT Command

SWITCH Command

UPROC Command

USECPU Command

USER Command

8. COMMANDS FOR INTERACTIVE JOBS

Terminal Control Commands
ASCII Command
AUTO Command
BRIEF Command
CSET Command
EFFECT Command
KEY Command
LINE Command
NORMAL Command
SCREEN Command
TDU Command
TIMEOUT Command
TRMDEF Command

Using TRMDEF with NAM/CDCNET

Examples
Subsystem Selection Commands
ACCESS Command

60459680 K

7-39
7-39
7-40
7-40
7-41
7-42
7-42
7-44
7-44
7-=45
7-46
7-50
7-50.1
7-50.1
7-52
7-54
7-54
7-55
7-56
7-57
7=57
7-58
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-64
7-66
7-67
7-68
7-73
7-73
7-74
7-74

8-1

8-2
8-2
8-3
8-4
8-4
8-4
8-5
8-6.1
8-7
8-7
8-8.1
8-9
8-9
8-10
8-11
8-11
8-12

BASIC Command
BATCH Command
EXECUTE Command
FORTRAN Command
FTNTS Command
NULL Command
Interactive Status Commands
Detach Command (ctD)
Immediate Job Status
Command (ctE)
Abbreviated Job Status
Command (ctS)
Job Processing Commands
APPSW Command
BYE Command
DIAL Command
EXPLAIN Command
GOODBYE Command
HELLO Command
HELLO7 Command
HELLO7 Directives
HELP Command
HELPME Command
LIB Command
LIST Command
LOGIN Command
LOGOUT Command
NOSORT Command
RECOVER Command
RUN Command
Secure Login Command
SHOW Command
TEXT Command
WHATJSN Command
X Command
XMODEM Command
Primary File Editing Commands
Parameter Format
Suppressing Editing Responses
Line Number Overlap
Inserting Lines
ALTER Command
DELETE Command
DUP Command
LIST Command
MOVE Command
READ Command
RESEQ Command
WRITE Command
WRITEN Command

9. FILE MANAGEMENT COMMANDS

ASSIGN Command
BKSP Command

8-12
8-13
8-13
8~14
8-15
8-15
8-16
8-16

8-17

8-17
8-18
8-18
8-19
8-20.1
8-20.1
8-21
8-21
8-22
8-22
8-26
8-26
8-26
8-28
8-28
8-29
8-29
8-30
8-35
8-36
8-36
8-37
8-37
8-38
8-38
8-39
8-40
8-41
8-41
8-42
8-42
8-44
8-45
8-46
8-48
8-49
8-51
8-51
8-52

19

CLEAR Command
COPY Command
Copy Termination
Block Sizes
Processing Options
COPYBF Command
COPYBR Command
COPYCF Command
COPYCR Command
COPYEI Command
COPYSBF Command
COPYX Command
DOCMENT Command
EVICT Command
FCOPY Command
LIST80 Command
LOCK Command
L072 Command
MFQUEUE Command

Parameter Descriptions
The Routing Directive

NEW Command

OUT Command
OVWRITE Command
PACK Command
PRIMARY Command
RENAME Command
REQUEST Command
RESEQ Command
RETURN Command
REWIND Command
ROUTE Command

Parameter Descriptions

Implicit Routing
SCOPY Command
SECHDR Command
SETFAL Command
SETFS Command
SKIPEI Command
SKIPF Command
SKIPFB Command
SKIPR Command
SORT Command
TCOPY Command
TDUMP Command
UNLOAD Command
UNLOCK Command
VERIFY Command
WRITEF Command
WRITER Command

10. PERMANENT FILE COMMANDS

Common Parameters
APPEND Command
ATTACH Command

20

10-1

10-2
10-7
10-8

CATLIST Command
CHANGE Command
COMMON Command
DEFINE Command
DROPDS Command
FTP Command

FTP Directives

APPEND_FILE Directive
CHANGE_AUTO_LOGIN_MODE
Directive

CHANGE_BELL MODE Directive
CHANGE_DEBUG_MODE Directive
CHANGE_FILE NAME Directive
CHANGE_INPUT_FILE Directive
CHANGE_OUTPUT_FILE Directive
CHANGE_PORT_COMMAND MODE

Directive

CHANGE TRANSFER_TYPE
Directive

CHANGE_VERBOSE_MODE
Directive

CREATE HOST_CONNECTION
Directive

DEFINE_AUTO_LOGIN Directive

DELETE_FILE Directive
DELETE_HOST CONNECTION
Directive

DISPLAY COMMAND INFORMATION

Directive

DISPLAY_DIRECTORY Directive
DISPLAY FILE NAMES Directive

DISPLAY FTP_OPTIONS
Directive

DISPLAY_ LOCAL HELP Directive

DISPLAY REMOTE_ HELP
Directive

GET_FILE Directive

LOGIN USER Directive

QUIT Directive

REPLACE FILE Directive

SEND_FTP_COMMAND Directive

GET Command
MFLINK Command

MFLINK Directives
APPEND Directive
ATTACH Directive
CHANGE Directive
CHARGE Directive
DEFINE Directive
DROPDS Directive
GET Directive
PACKNAM Directive
PERMIT Directive
PURGE Directive
REPLACE Directive
SAVE Directive
USER Directive

Interactive Use of MFLINK

10-20.5
10-20.6

10-20.6
10-20.7
10-20.7

10-20.8

10-20.8
10-20.8
10-20.9

10-20.9
10-20.9

10-20.10
10-20.10
10-20.12
10-20.13
10-20.14
10-20.15
10-21
10-22
10-23
10-24
10-24
10-24
10-25
10-25
10-25
10-25
10-25
10-26
10-26
10-26
10-26
10-26
10-27

60459680 L

J)

JJ

6@%\
éﬁa\

€ﬁﬁ§
6&#\

OLD Command
PACKNAM Command
PERMIT Command
PURGALL Command
PURGE Command
RECLAIM Command
Magnetic Tapes
Command Format
RECLAIM Output
REPLACE Command
SAVE Command
SETPFAC Command
SETPFAL Command

l1l1. LOAD/DUMP MEMORY COMMANDS

DMB Command
DMD Command
DMDECS Command
DMP Command
DMPECS Command
LBC Command
LOC Command
PBC Command
RBR Command
WBR Command

12. TAPE MANAGEMENT

Tape Assignment
Command Rules
Processing Options
ASSIGN Command
BLANK Command
LABEL Command
LISTLB Command
REQUEST Command
VSN Command

13. CHECKPOINT/RESTART

CKP Command
RESTART Command

14, SYSTEM UTILITY COMMANDS

EDIT Command
FSE Command
KRONREF Command
MODIFY Command
OPLEDIT Command
PDU Command

60459680 L

10-28
10-29
10-30
10-31
10-32.1
10-33
10-34
10-35
10-44
10-45
10-46
10-48
10-49

11-1

11-1
11-5
11-6
11-6.1
11-7
11-8
11-8
11-9
11-9
11-10

12-1

12-1
12-2
12-3
12-5
12-9
12-11
12-19
12-21
12-25

14-1

14-1
14-2
14-4
14-5
14-8
14-10

PROFILE Command
UPDATE Command
XEDIT Command

15. LIBRARY MAINTENANCE

Library File Access Methods
Library Record Types
CATALOG Command
COPYL and COPYLM Commands
GTR Command
ITEMIZE Command
LIBEDIT Command
Command Format
LIBEDIT Directives
ADD Directive
BEFORE Directive
BUILD Directive
COMMENT Directive
COPY Directive
DATE Directive
DELETE Directive
FILE Directive
IGNORE Directive
INSERT or AFTER Directive
LIBGEN Directive
LIST Directive
NEW Directive
NOINS Directive
NOREP Directive
NOREW Directive
OLD Directive
RENAME Directive
REPLACE Directive
REWIND Directive
TYPE or NAME Directive
VFYLIB Directive
*/ Directive
(Comment Directive)
LIBEDIT Output
LIBGEN Command
ULIB Command
VFYLIB Command
Library Processing Examples
LIBRARY Command
Maximum Size of Global Library
Set
Library Search Order
Examples

16. TERMINAL INPUT/OUTPUT

Terminals
Input/Output Conventions
Input From Terminal
Length of Output/Input Lines

14-11
14-14
14-18

15-1

15-1

15-2

15-5

15-7

15-11
15-14
15-17
15-18
15-20
15-23
15-24
15-24
15-25
15-25
15-25
15-26
15-26
15-27
15=27
15-28
15-28
15-28
15-28
15-29
15-29
15-29
15-29
15-30
15-30
15-30
15-31

15-31
15-31
15-32
15-34
15-35
15-37
15-43

15-43
15-44
15-44

16-1
l16-1
16-2

16-2
16-3

21

Terminating Input Line
Correcting Input Line
Deleting Input Line

Entering Input Before Prompts
Page Wait

Suspending Output

A. CHARACTER SETS

Character Set Anomalies
Character Set Tables
Interactive Jobs
Batch Jobs
Jobs Using Line Printers
Jobs Using Magnetic Tapes

B. DIAGNOSTIC MESSAGES
C. GLOSSARY
D. SAMPLE JOB OUTPUT

E. TERMINAL CHARACTER CONVERSION

Data Input
Data Output

F. CARD FILE DATA CONVERSION

Input Card File Formats
Coded Cards
Conversion Modes
Literal Input
Binary Cards
Summary
Punch File Formats
Coded Cards (Punch)
Binary Cards (Punch B)
Absolute Binary Cards (P8)

G. ANSI TAPE LABEL FORMATS

Required Labels
VOL 1 - Volume Header Label
HDRl - First File Header Label
EOFl - First End-0f-File Label
EOV]1 - First End-0f-Volume Label

Izz

16-3 Aborting Output Block 16-5
16-3 Interrupting Job Step 16-6
16-4 Terminating Job Step 16-6
16-4 Continuing a Suspended Job 16-7
16-5 Using ATTN on IBM 2741 Terminals 16-8
16-5 Control Bytes 16-9
APPENDIXES
A-1 Optional Labels G-10
HDR2 through HDR9 - Additional
A-2 File Header Labels G-10
A-2 EOF2 through EOF9 - Additional
A-3 End-0f-File Labels G-10
A-3 EOV2 through EOV9 - Additional
A-3 End-0f-Volume Labels G-10
A-12 User Labels G-11
B-1 H. LINE PRINTER CARRIAGE CONTROL H-1
Printed Data H-1
c-1 Paper Length H-1
580 Line Printers H-1
533/536, 537, and 585 Printers H-2
D-1 Carriage Control H-2
Format Channel Selection on
Non-PFC Printers H-4.2
E~-1 Format Channel Selection on
533/536, 537, and 585 Printers H-4.2
E-1 Carriage Control Arrays H-7
E-2 Array Syntax H-7
Reserved Format Channels for
VFU Processing H-9
F-1 Example
H-9
F-2
F-3
F-3 I. OBSOLETE TAPE FORMATS I-1
F-3
F-5 B (Blocked) Format I-1
F-5 E (Line Image) Format I-2
F-5 X (External) Format -3
F-6 End-of-Tape/End-of-Reel Conditions 1-3
F-6
F-7
J. NAM/CCP TERMINAL DEFINITION
COMMANDS J-1
G-1
Introduction J=-1
G-1 Terminal Definition Command Format J-3
G-2 Restrictions J-4
G-4 Terminal Definition Commands J=4
G-8 (AB) - Abort Output Block
G-9 Character J-5
60459680 L

J)

J)

6@@&

K‘

(AR) - Automatic Character
Recognition

(BF) - Blocking Factor

(BR) - Break Key as User Break 1

(BS) - Backspace Character

(B1) - Interruption or

User Break 1 Character
(B2) - Termination or
User Break 2 Character

(CH) - Display Terminal
Characteristics

(CI) - Carriage Return Idle Count

(CN) - Cancel Character

(CP) - Cursor Positioning after
Input

(CT) - Network Control Character

(DL) - Delimiters for Single-
Message Transparent Input Mode

(EB) - End-of-Block Character

(EL) - End-of-Line Character

(EP) — Echoplex Mode

(FA) - Full-ASCII Input Mode

(HC) - Host Connection

(HD) - Display of Host Nodes

(HN) - Host Node Selection

(HS) - Host Selection

(IC) - Flow Control for Input
Devices

(IN) - Input Device and
Transmission Mode

(LI) - Line Feed Idle Count

(LK) - Lockout of Unsolicited
Messages

(MS) - Message to Network
Operator

(0C) - Flow Control for Output
Devices

(OP) - Output Device Selection

(PA) - Parity Processing

(PG) - Page Waiting

(PL) - Page Length

(PW) - Page Width

(RC) - Reset Terminal
Characteristics

(SE) - Special Editing Mode

(TC) - Terminal Class Command

(TM) - Terminating a Terminal-
Host Connection

(XL) - Multimessage Transparent
Mode

DELIMITING AND TRANSMITTING
TERMINAL INPUT

Physical End-of-Line (Line Feed)
Logical End-of-Line (Carriage Return)
Message Transmission

60459680 L

J-21

J=-21
J=-21
J-22
J-23
J-23
J=-24

J-24
J-24
J=25
J-26

J=-27

K-1
K-1
K-1

L. PASSIVE PROCEDURES

«PROC Directive
Procedure and Parameter Descriptions
Parameter Matching
Order-Dependent Parameter
Matching Mode
Order-Independent Parameter
Matching Mode

M. PAPER TAPE OPERATIONS

General Description
Teletypewriter

Control Characters
Input Lines

Punching Tape Off-Line
Tape Mode

Punching a Tape On-Line
Corrections

N. MASS STORAGE DEVICE STATISTICS

0. INTERACTIVE TRANSFER FACILITY
(1ITF)

Selecting the ITF Application
Selecting a Remote CYBER 200 System
Processing Your Job on the

Remote CYBER 200
Terminating Your ITF Session

P. FILE TRANSFERS USING XMODEM

XMODEM Command
Using XMODEM in Prompting Mode
Sending a File from a CYBER
Receiving a File from a Micro
Configuration File
File Transfer Notes
Text Files
CYBER Binary
Micro Binary
Limitations and Considerations

M-1

M-1
M-1
M-2
M=2
M-3
M-3
M-4
M-4

| L UL
NOoOOOoOOoOsPsWW

'd"U’U"d"F"U"U"d’U"U

[\
w
]

[}
[l

NN -
[UL LU
=R W SN - WN -

\ltﬁbbb-lb#‘wwNN

~N o~
11
w N

Central Memory Allocation

Logical Structure of Files

NOS and CRM File Terminology

Sample Card File Structure

Use of ANSI Labels

FORTRAN Compile and Execute Deck

Submitting Jobs to Remote Hosts

Procedure File Structure

TESTPN with Valid Entry

TESTPN with Invalid Entry

Summary of Checklist Entries

Calling a Procedure

NOS Command Processing Flow

QUEUE7 Execute Queue Sample
Listing

QUEUE7 Input Queue Sample Listing
QUEUE7 Output Queue Sample Listing

Physical File Structure on
Different Devices

Data Representation on
Magnetic Tape

User Job Access Levels

Procedure Directives

Programmable Function Keys for
Procedures

Help on Procedure Calls

Range of Permissible Formats
for the COPY Command

Code Set-Line Terminator
Reference Chart

Compatible File Structures for

the VERIFY Command
Access Mode Granted When

Attaching a Currently Attached
Direct Access File

Character Sets for Interactive
Jobs

Character Sets for Batch Jobs

INDEX
FIGURES
1-3 7-4

2-2
2-3 15-1
2-6 15-2
2-8 15-3
3-2 15-4
3-6.1
4-3 F-1
4=5
4-5 H-1
4-15
4=41 H-2
5-6
L-1
7-47
7-48 L-2
7-49
TABLES

A-3
2-5

A4
2-7
3-15 A-5
4-10

A-6
4-25
4-48 H-1
9-6 H-2
9-24 J-1

J-2
9-67

K-1
10-9 L-1
A-5 L-2
A-7

Resource Commitment Processing

(Simplified) 7-53
Random Access File Structure 15-2
LIBEDIT Input and Output 15-18
User Library Structure 15-33
Maximum Size of Global Library

Set 15-43
Examples of Coded Card

Conversion F-4
Carriage Control Tape Format

(Standard Paper Length; 6LPI) H-5
Carriage Control Tape Format

(Short Paper Length; 8LPI) H-6
Keyword Substitution in Two

Procedures L-5
Keyword Substitution in

Nested Procedures L-9
ASCII to 6/12-Bit Display Code

Conversion A-10
Nine-Track ASCII Coded Tape

Conversion A-13
Nine-Track EBCDIC Coded Tape

Conversion A-14
Seven—Track Coded Tape

Conversions A-15
Carriage Control Characters for

512/580 and 5870 Printers H-3
Carriage Control Characters for

585 Printers H-4
Default Terminal Definitions J-28
Parameter Ranges for Terminal

Definition Commands J-29
Default Message Delimiters

and Transmission Keys K=-2
Parameter Substitution in

Order-Dependent Mode L-4
Parameter Substitution in

Order-Independent Mode L-8

60459680 L

J D

™

SYSTEM DESCRIPTION 1

“

NOS is capable of several concurrent processing modes. The following are the processing
modes available.

° Local batch.
) Remote batch.
° Transaction.

° Interactive.

The network processing modes (remote batch, transaction, and interactive) operate through
the Network Access Method (NAM) communications software. These processing modes are
implemented, respectively, by the following NAM applicatioms: Remote Batch Facility (RBF),
Transaction Facility (TAF), and Interactive Facility (IAF).

The primary emphasis of this manual is interactive and local batch processing. For the
other processing modes, consult the appropriate manuals listed in the preface.

NOS, like all operating systems, is the interface between you and the capabilities of system
hardware components. The remainder of this section describes the hardware and software that
make up a NOS-controlled computer system. In most cases, you need not understand the

operation of system hardware or the internal operation of system software. This manual
describes these topics only as general background for understanding NOS commands.

SYSTEM HARDWARE

NOS can operate within the CYBER 180, CYBER 170, CYBER 70, and 6000 Computer Systems (refer
to the preface for an exhaustive list of model numbers). The primary hardware components of
each system are the following.

e Central processor unit(s).
e Central memory.

o Extended memory (optional).
e Peripheral processors.

e Peripheral equipment.

60459680 E 1-1

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) executes imstructions and manipulates and stores data
retrieved from central memory. The number and type of CPUs within a mainframe vary with the
machine model. As a result, some models can execute additional instructions. These model
differences do not affect applications written in higher level languages.

CENTRAL MEMORY
The primary functions of central memory (CM) are:
e To buffer data to and from the peripheral processors.

° To transfer instructions and data to and from the CPU.

Job Field Length

The job field length is the portion of central memory that is assigned to your job. Several
jobs can reside in CM simultaneously. Each job is assigned a starting CM address (its
reference address or RA) and is allocated an initial field length (the CM words in which the
job resides and executes). The field length is adjusted during job execution as described
in section 3. Figure 1-1 shows a job field length within CM.

A reference to an address outside the job’s field length range causes a hardware error
condition and job termination.

The maximum field length depends on the CM size and installation parameters used to control
memory usage. The system assigns the CPU to jobs requiring CPU activity. Rapid switching
of CPU control between jobs enables them to execute concurrently. The exact amount of time
allowed for each job depends on system activity and system parameter settings. Thus, the
time required to complete a job may vary from run to run, although the actual CPU execution
time is similar.

When a job completes, aborts, or rolls out (that is, its execution is suspended), the field
length is released, cleared, and made available to another job.

1-2 60459680 C

JJ

J)

CENTRAL

MEMORY
CENTRAL
MEMORY
RESIDENT
ABSOLUTE REFERENCE > == = =
ADDRESS ADDRESS (p)
RA 0 —— — — — FIELD
RA +p 0<p<FL oeR LENGTH
3 RA + FL FL - - (FL
e P
Figure 1-1. Central Memory Allocation

Central Memory Resident

The portion of CM reserved for system use is called central memory resident (CMR).
contains system tables, directories, and the CM portion of the system monitor (CPUMIR),

EXTENDED MEMORY

Extended memory for NOS computer systems (refer to preface), can be used for the following

purposes.

® As a directly accessible memory device via FORTRAN or COMPASS statements for

It

extended memory data storage and retrieval (refer to the FORTRAN 5 Reference Manual
or appendix D of Volume 4, Program Interface).

® As storage for frequently accessed small files (refer to ASSIGN command in section 7
and Permanent File Commands in section 9).

® As an alternate system device for storing copies of frequently used routines.

® As a link between mainframes in a multimainframe configuration.T

You must be authorized to use extended memory (refer to LIMITS command in section 7).

TModel 176 cannot use extended memory to link mainframes.

60459680 H

1-3

PERIPHERAL PROCESSORS

The peripheral processors (PPs) process communications between CM and individual peripheral
devices. They also perform system control functions. A peripheral processor can:

°® Read and write CM.

. Read and write extended memory indirectly via CM or directly via the distributive
data path (DDP) or low-speed port (LSP).

e Transfer data to and from peripheral devices through the data channels.
NOS supports a variety of PP configurations. Each computer system supports a different

range of configurations. To determine the configurations supported by your computer system
consult the appropriate system hardware reference manual listed in the preface.

PERIPHERAL EQUIPMENT
Peripheral equipment varies among installations but usually includes card readers and
punches, line printers, mass storage devices, and magnetic tape units. NOS supports the
following equipment models.

e 405 Card Reader

e 415 Card Punch

e 533/536 Printer

e 537 Printer

e 580-12, 580-16, and 580-20 Line Printers

e 585 Printer

e 5870 Non-Impact Printer

e 834/836 Disk Storage Subsystem

e 844-2]1 Disk Storage Subsystem

e 844-41/44 Disk Storage Subsystems

e 885-11/12 Disk Storage Subsystems

e 885-42 Disk Storage Subsystem

e 887 Disk Storage Subsystem

e 895-1/2 Disk Storage Subsystem

e 819 Disk Storage Subsystem

e 9853 Disk Storage Subsystem

e 7990 Mass Storage Extended Subsystem (MSE)

e 639, 667, 669, 677, 679, and 698 Magnetic Tape Units

1-4 60459680 L

J)

2)

-

255x Network Processing Units
26xx Device Interfaces
380-170 Network Access Device

6683 Satellite Coupler

SYSTEM SOFTWARE

Software executed within a computer system can be divided between software that is built
into the system during system initialization and software that executes as jobs within the
running system. Software present when the system begins running includes the operating
system and products such as compilers, CYBER Loader, and CYBER Record Manager.

USER PROGRAMS

A user program is a group of CPU instructions that perform a certain task or calculate a
result. A user program can be written in a language at any of three levels.

e Compiler languages provide you with a language suited to your particular needs. The
program statements are translated by the appropriate compiler (FORTRAN, COBOL,
ALGOL, and so on), which generates assembler language or machine language
instructions. Programs written in compiler languages may be machine-independent.

e Assembler languages provide a one-to-one relationship between instructions and
machine operation. Mnemonics are provided for each instruction. These languages
are machine-dependent. Much of the NOS system is written in COMPASS, the assembler
language of the CYBER 180, CYBER 170, CYBER 70, and 6000 Computer Systems.

) Hardware instructions are interpreted directly by the computer. Each hardware
instruction is a binary number. Most users are rarely concerned with instructions

written at this level except when program debugging requires interpreting memory
dumps.

OPERATING SYSTEM
NOS is a group of programs that supervise and coordinate the operation of system hardware
and the execution of products and user programs. The following lists some of the functions
of NOS.

e Loading and scheduling of user programs.

e Job validation and accounting.

° Command translation.

° File retrieval, manipulation, routing, and storage.

e Job input and output.

e Normal and abnormal job termination.

° Memory dumps.

60459680 G 1-5

CYBER Loader

CYBER Loader prepares programs for execution. Following your directions, it allocates
memory for a program, loads the program modules into their appropriate locations, generates
a load map, and initiates program execution. It can load subdivided programs for more
efficient use of memory. Refer to the CYBER Loader Reference Manual for more information.

CYBER Record Manager

CYBER Record Manager (CRM) is the interface between program input/output (I/0) functions and
NOS physical I/0 functions. NOS commands do not use CRM. Some of the products that use CRM

are COBOL 5, FORTRAN Extended 4, FORTRAN 5, Sort/Merge 5, PL/I (Programming Language I), and
DMS-170.

The functions of CRM are divided between the Basic Access Methods (BAM) and Advanced Access
Methods (AAM). BAM handles sequential and word-addressable file organizations; AAM handles
indexed sequential, direct access, and actual key file organizations. Refer to the
appropriate CYBER Record Manager manual listed in the preface.

60459680 C

J)

J)

€Wﬁ\
C@*\

FILES 2

A file is a collection of information addressable by name. All NOS data processing involves
operations performed on files. Files can be differentiated by their name, structure, or
file type or by whether they are assigned to a job (NOS jobs are described in section 3).

FILE NAMES

A file name consists of unique string of seven or less alphanumeric characters. Although
NOS allows file names that begin with a digit, many of its products (FORTRAN 5 and COBOL 5,
for example) do not support such file names. Refer to the product reference manual listed
in the preface for details.

Examples:
A Al TAPE DUMP12 COMPILE

NOS uses many internal scratch files. Most of these scratch files have names beginning with
the letters ZZ or SCR. Avoid using a name starting with these letters for any of your files.

The following file names are significant because they are associated with system-managed
files that are assigned to your job.

INPUT OUTPUT PUNCH PUNCHB P8

Refer to the description of File Types for more information.

FILE STRUCTURE

A file consists of a well-defined set of data. Its physical representation varies markedly
with the device upon which it resides. For instance, the physical structure of a file on
magnetic tape is only remotely similar to its physical structure on disk. To facilitate the
manipulation of file data by user and system programs, the system imposes a logical
structure on a file that does not vary with device residence.

A logical file consists of a contiguous series of data (physically, the data is not always
contiguous). A file always has a beginning of information and an end of information. It
can be subdivided into a maximum of three levels. Figure 2-1 illustrates the structure of a
file with one, two, and three levels of subdivisions. NOS and its products (refer to
section 1) all use this basic structure for a logical file.

T There are differences in logical structure that depend on device residence, but these
differences are of interest only to a COMPASS programmer. These differences are described
in Volume 4, Program Interface.

60459680 H 2-1

NOS and some of its products do differ in both the levels of file subdivision they recognize
and the names of the subdivisions. One of the most prominent of these products is CYBER
Record Manager (CRM). It handles input and output for some widely used products like
FORTRAN 5 and COBOL 5. The next two subsections contrast the treatment that NOS and CRM
give a logical file.

Beginning of End of
Information Information

Third-tevel Subdivision Data

0000400 CCCCCCCCICCCC|CCCCCCJCOCCCCCCCCCC ccccccc

Second-level Subdivision

chCCCClCCl CCCICCICCJ cececceccecececceccecjccecececececececcecceccjcccecccecceccc

First-level Subdivision

cclcccclccccl cccccccc CCCCCCCCICC'CCCCCCCCI ccclccccl

Figure 2-1. Logical Structure of Files

2-2
60459680

J)

J)

CYBER RECORD MANAGER FILE STRUCTURE

CRM recognizes all three levels of file subdivision. It calls a first-level subdivision a
partition, a second-level subdivision a section, and a third-level subdivision a record.
Through CRM, you can specify a file organization, a blocking type, and a record type for
your data. The file organization determines how records are accessed, the blocking type
determines how CRM records are grouped on their storage media, and the record type defines
the smallest unit of data CRM can retrieve. Refer to the CRM manuals listed in the preface
for a detailed description.

NOS FILE STRUCTURE

NOS recognizes only two levels of file subdivision, the first and second levels.T NOS calls
a first-level subdivision a file and a second-level subdivision a record. The record is the
smallest recognizable unit for both CRM and NOS but the term does not always refer to the
same subdivision for the two processors. Figure 2-2 illustrates the differences in
terminology.

file first-level second-level third-level
processor subdivision subdivision subdivision
NOS file record = 0| @ eeeece—e———
CRM partition section record

Figure 2-2. NOS and CRM File Terminology

Since NOS terms a first level subdivision a file, a NOS file can contain more than one
logical file; if it does, it is called a multifile file. A multifile file begins at
beginning-of-information (BOI) and ends at end-of-information (EQI). A file within a
multifile file begins either at BOI or after the end-of-file (EOF) of the preceding file.
It ends at its EOF,

Each file consists of zero or more logical records of information. A record is zero or more
60-bit CM words. A record begins at the BOI, after an EOF, or after the end-of-record (EOR)
of the preceding record. It ends at its EOR. The following is the structure of a
single-record file.
BOI data EOR EOF EOI
or

BOI data EOR EOI

Most simple files, like text files, have one of these two formats.

fThis is true for NOS commands but, at the program level, NOS does recognize third-level
subdivisions.

60459680 C 2-3

The following is the structure of a multirecord, multifile file.

BOI data EOR data EOR EOF data EOR data EOR EOF EOI

The last EOF in a file may or may not be present depending upon the program used to create
the file.

PHYSICAL FILE STRUCTURE

When NOS stores a file, it automatically converts the file to a structure that will conform
to the physical characteristics of the storage medium. The logical file and record marks
are converted to physical BOI, EOR, EOF, and EOI indicators.

The basis of all physical file structures is the physical record unit (PRU), the minimum
amount of data that can be read or written in a single device access. Table 2-1 lists the
PRU size, and record and file mark indicators for each supported storage device.

60459680 C

J)

J)

Table 2-1,

Physical File Structure On Different Devices

Record and File Mark Indicators

REQUEST command.

Device PRU Size BOI EOR EOF EOI
Magnetic disk 64 CM words. PRU 1 or random PRU of less Zero-length Zero—-length
or extended address 1 of than 64 words PRU (no data) PRU with no
zemOTYy the disk (count- | with a link to with special forward link.
ing from 0). the next PRU. link to next
PRU.
Card deckst One card. First card in Card with a Card with Card with
the deck. 7/8/9 punch 6/7/9 punch 6/7/8/9 punch
in column 1. in column 1.TT in column 1.
Remote Batch RBF /HASP can
Facility also use /*EOI.
(RBF)/HASP can
also use /*EOR.
On input, one
nonnull line of | On input,
data with EOR one null line
Interactive Terminal One line. None. level 1. of 1input. None.
512 CM words; If labeled, tape | A PRU of less Z2ero-length Tape mark fol-
I each PRU in- mark following than 512 words PRU whose lowed by an
(Internal) cludes a 48-bit | HDR1 label. If with level terminator EOF1 label.
terminator. unlabeled, load number of O. contains a
point It level number
of 178.
512 CM words; If labeled, tape | A PRU of less Zero-length Tape mark fol-
ST each PRU of mark following than 512 words PRU whose lowed by an
(System lesg than 512 HDR]l label. If with level terminator EOF1 1label.
internal) words has a unlabeled, load number between contains a
48-bit point.t1t 0 and 16g. level number
terminator. of 17g.
Magnetic Maximum of 512 If labeled, tape | End of each Tape mark.Tit If labeled, a
tapetttt CM words; (refer| mark following PRU. tape mark fol-
S to BS parameter | HDRl1 label. If lowed by an
(Stranger) on COPY command | unlabeled, EOF1 label. If
in section 9 load point.ft unlabeled, there
and to appendix is no EOI in-
J in volume 4). dicator.
No maximum If labeled, tape | End of each Tape mark. /111t | If labeled, a
defined (refer mark following PRU. tape mark fol-
L to BS param- HDR1 1label. lowed by an
(Long block eter on COPY 1f unlabeled, EOFl label. 1If
stranger) command in load point.TTt unlabeled, there
section 9 and is no EOI in-
to appendix J dicator.
in volume 4).
Determined by Load point. None. Tape mark. None.
C or FC param-
F eter on ASSIGN,
(Foreign) LABEL, or

tFor more information, refer to appendix F.
T1The 6/7/9 card is not recognized in a remote batch job.
7/8/9 punch in column 1 and a level number of 17g in columns 2 and 3.
columns 1 through 5 and a level number of 17g in columns 6 and 7.
tt1In the case of multivolume tape files, BOT is the HDR]1 label of the first volume.
BOI is the HDRl label associated with the beginning of the multifile.
tt1tFor more information, refer to section 12 and appendix G.
ttttton 1labeled tapes, interchange standards require that tape marks be used only to delimit tape label groups.

In an RBF job the end-of-file marker is a card with a
RBF/HASP can also use a card with /*EOR in

In the case of an ANSI multifile,

60459680 E

Card Files

The physical file and record indicators in a card file are shown in figure 2-3 and listed in
table 2-1. Although card decks do not have a defined PRU size, a card is the minimum data
unit, NOS can read and punch cards in coded (Hollerith), binary, and absolute binary
formats as described in appendix F. Coded cards are punched in 026 or 029 keypunch mode.
The system uses the installation default keypunch mode (chosen by the installation) for
reading cards unless a 26 or 29 is punched in columns 79 and 80 of a job, EOR, or EOF card,
indicating that the subsequent cards are punched in that mode. NOS can punch up to 80
characters on a coded card and up to 150 characters (15 CM words) on a binary card.

Figure 2-3. Sample Card File Structure

Mass Storage Files
Mass storage files are stored on disk or extended memory.

To use NOS, you do not need to know the physical structure of mass storage; you do need to
know its logical structure, which contains the concepts of logical devices and logical
tracks. A logical device is one or more physical disk units known to the system as a single
device. A logical track is a file allocation unit determined by the device type.

T Keypunch mode selection is not supported for jobs entered through a 200 User Terminal or
similar remote batch terminal except for HASP.

2-6 60459680 C

JJ

AGQ)
M‘hﬂ

€@§x

Each permanent file on mass storage is accessed via a catalog track containing the permanent
file catalog of its owner. Indirect access files (refer to Permanent Files) must reside on
the same device as their catalog; direct access files may reside on another device. Space
is allocated for mass storage files in units called reservation blocks. An indirect access
file reservation block is always 64 words (one PRU). A direct access file reservation block
is a logical track. The maximum size of your mass storage file is determined by your
validation limits (refer to LIMITS Command in section 6).

Magnetic Tape Files

You may write information on magnetic tapes in either coded mode or binary mode. Coded mode
operations iuvolve data conversion from NOS-supported character sets to external character
sets as shown in table 2-2. Coded mode is applicable largely for S and L tape formats.

Binary mode operations copy files with no character set conversion and can be used for any
tape format.

The term coded mode should not be confused with coded line. A coded line is defined as a
line of 160 characters or less, terminated by a zero byte. Similarly, coded and binary mode
should not be confused with coded and binary files. A coded file is a NOS system file coded
in 6-bit display code, 6/12-bit display code, or 7-bit ASCII code. A binary file is simply
a file containing binary information. Coded files can be copied in coded or binary mode;
binary files can be copied only in binary mode.

The only NOS commands recommended for coded mode operations are COPY, FCOPY, and TCOPY. Any
of the copy commands can be used for binary mode copies. For CYBER Record Manager (CRM)
files, the CM parameter on the FILE command is used to select coded or binary mode. For
FORTRAN programs, use the BUFFER OUT(n,l) statement to select binary mode and the BUFFER
OUT(n,0) statement to select coded mode. For COBOL programs, use either the RECORDING MODE
IS BINARY statement or the RECORDING MODE IS CODED statement.

The representation of data in memory and on tape depends on the number of tracks (seven or

nine), the recording mode (binary or coded), and the specification of the CV=cv parameter on
the LABEL command. Table 2-2 shows how the data representation varies with these factors.

Table 2-2. Data Representation on Magnetic Tape

Number of
Tracks Binary Mode Coded Mode
1. 0dd parity. 1. 0dd parity.

9 2. Groups of four 6-bit 2. Each 6-bit character in
characters in memory are memory is translated into
written without conversion an 8-bit equivalent on tape.
on three—-frame units on tape. You can choose EBCDIC

or ASCII by specifying
CV=EB or CV=AS on a LABEL
command .

1. 0dd parity. 1. Even parity.

7 2. Each 6-bit character in 2. Each 6-bit character in
memory is written without memory is translated to
conversion. its BCD equivalent on

tape. The % character is
lost in the translation.

60459680 E 2-7

Tape Density

You can select 200- (read only), 556-, or 800-characters-per-inch (cpi) density for

seven—-track tapes or 800-, 1600-, or 6250-character-per-inch (cpi) density for nine-track
tapes, provided these densities are available with the site hardware.
processes tape parity errors and end-of-tape conditions unless you select other processing

options (refer to Processing Options in section 12).

by using the EO parameter on a FILE command.

Tape Labels

Tape labels identify and delimit tape volumes and tape files.
tape labels.

NOS processes ANSL standard and nonstandard labeled tapes.

assignment statement specifies the LB=NS parameter (refer to section 12),

NOS automatically

You can also control error processing

Tape marks begin and end most

A tape mark is a special bit sequence written and recognized by a tape unit.

after the first tape mark is then handled as data.
tape mark are handled as appropriate for the tape format (refer to table 2-1).

Nonstandard labeled tapes are
those whose format or content do not conform to the ANSI standard described in appendix G.
NOS skips to the first tape mark when reading a nonstandard labeled tape if the tape

All information

Any tape marks occurring after the first

File set canfigurations (* means tape mark):

Volume
1

Volume
2

Volume

Volume

Volume
3

Single file on single volume

(A) (A)
VOL1|{HDR1|* File A data 2{ *1 EOF1|*|*
Single file on more than one volume

(A)

VOL1|HDR1}* File A data {{ *EOV1|*|*

(A) (A)
VOL1|HDR1|* File A data ég *| EOF1|*|*
More than one file on a single volume

(A) (A) {B) (B)
VOL1| HDR1|* File A dat:?? *I EOF1|*| HDR1|* File B data *| EOF1}*|*
More than one file on more than one volume

(A) (A) (B)

VOL1{ HDR1|* File A data}z *| EOF1|*|HDR1|* File B data *| EOV1]**

(B)

VOL1|HDR1|* File B data ?{ *| EOVT | *]|*

(B) (8) (C) (C)
VOL1|HDR1|* File B data 2{ *| EOF1{*| HDR1|* File C data *| EOF1|*|*

Figure 2-4,

Use of ANSI Labels

60459680 H

J)

J)

Gﬁ*m

ANSI standard labels as defined by NOS are those that conform to the American National
Standard Magnetic Tape Labels for Information Interchange X3.27-1969 standard. NOS can
create or verify ANSI labels if the LABEL command assigns the tape file. Label verification
ensures that the correct volume has been mounted. ANSI labels separate multifile set files
and indicate if a file continues on another volume.

The ANSI label EOF indicates end-of-information for a file within a file set. The use of
ANSI labels to delimit files within file sets is illustrated in figure 2-4,

An ANSI-labeled tape must have the following labels. Other optional labels are described in
appendix G.

Label Location
VOL1 Beginning of volume.
HDR1 Beginning of information. If the file continues on to another volume, the

HDR1 label is repeated. It must follow the VOLl label and precede the
continuation of the file information.

EOF1 End of information.
EOV1 End of volume (required only if the file continues on another volume).

Appendix G gives the tape label formats.

60459680 J 2-9

Tape Data Formats

NOS can read and write data on magnetic tape in any of the following formats.

Format Mnemonic
Internal (NOS default) 1
System internalt SI
Stranger S
Long block stranger L
Foreign F

These data formats differ in their PRU (block) size and in their record and file mark
indicators (refer to table 2-1). Other format differences are as follows:

Tape Tape
Format Labels 1/0 Mode Parity Noise Sizeff
1 Labeled or unlabeled Binary or 0dd Seven-track: <eight frames
coded 11t
0dd Nine-track: <six frames
SI Labeled or unlabeled Binary onlyttit 0dd Seven—track: <eight frames
0dd Nine-track: <{six frames
S Labeled or unlabeled Binary 0dd User-selected;
Coded 7-track Even default is < 18 frames
Coded 9-track 0dd
L Labeled or unlabeled Binary 0dd User-selected;
Coded 7-track Even default is < 18 frames
Coded 9-track 0dd
F Unlabeled (labels read Binary 0dd User—selected;
as data) Coded 7-track EvenTttit default is < 18 frames

TNOS/BE system default tape format (binary mode only).

TTTape blocks read that are smaller than the noise size are discarded. An attempt to
write a block smaller than the noise size produces an error message. Refer to the
NS=ns parameter of the LABEL command.

TttSpecification of coded mode aborts the job step; refer to TCOPY Command in section 9.

T1111/0 mode bit is ignored.

t11111/0 mode on write for F format is specified in the control word and is returned in the

control word on read.

2-10 60459680 J

JJ

JJ

NOS terminates all blocks on I format tapes and all blocks that are not a full PRU on SI
format tapes with a 48-bit block (PRU) terminator. The terminator contains the total number
of 12-bit bytes in the block (including the terminator itself), the number of blocks since
the last HDRl label, and the level number of the block. This terminator enables read
operations on I format tapes to check whether the number of bytes read and the block number
expected match the byte count and block number in the terminator. If either does not match,
the system attempts to recover the missing data. This feature prevents dropped or
fragmented blocks and provides a higher degree of reliability than other data formats.

Tapes should be read with the same format specified as when they were written. Data is then
recovered in its original form. For some formats, NOS writes extra bits which are discarded
when the tape is read. I format nine-track tapes are always written with an even multiple
of 12-bit bytes per block. SI format nine-track tapes may have an extra 4 bits written per
block to preserve the lower 4 bits of a CM word. (A 60-bit CM word would be written in
eight frames, 8 bits per frame.)

All nine-track tapes are written with odd parity. Binary seven—track tapes have odd parity;
coded seven-track tapes have even parity. If a parity error is detected on an F format
seven—track tape, the recording mode (binary or coded) is automatically switched to allow
reading of mixed mode tapes.

Volume 4, Program Interface, describes tape formats in greater detail.

60459680 J 2-10.1/2-10.2

~

30

-
éﬁﬁk

FILE TYPES

The system maintains several tables for each job. Every file assigned to a job has an entry
in one or more of these tables. A table entry for a file includes the file name, the device
on which the file resides, file type, and its current position and status.

The system assigns one or more of the following file types to files associated with a job:

Input file type

Queued file type

Local file type

Primary file type
Direct access file type
Library file type

iNPUT FILES

An input file is also called a job file because it contains user-supplied commands and data
for a job (refer to section 3). Initially, input files exist on mass storage in the input
queue. A file enters the input queue directly when a local or remote batch job enters the
system or indirectly when a user job submits another job via an LDI, ROUTE, or SUBMIT
command. The input file for an interactive job is normally assigned to the terminal and is
used by an interactive job to read data entered at the terminal into the program. A user
job refers to its input file by the file name INPUT (refer to Input File Control in section
3.

QUEUED FLES
A file is queued as a result of ome of the following events:

® Generally, whenever you enter a LDI, OUT, ROUTE, MFQUEUE, or SUBMIT command. Refer
to the description of each individual command for cases where the command fails to
queue a file.

e Job termination. The system automatically queues files named OUTPUT, PUNCH, PUNCHE,
and P8; deferred routed files; and other system-reserved output files if they are
assigned to the job. In interactive jobs, however, the files OUTPUT, PUNCH, PUNCHB,
and PB are not automatically queued.

A queued file can have one of five dispositions:

° Input
° Plot
° Print

° Punch

. Wait

60459680 D 2-11

Your job's origin type determines the default processing of your queued job output. Jobs
originating at a central site card reader are queued to a line printer with the same
system—defined identifier as the card reader. Similarly, the system queues remote batch

output to the remote batch terminal where the job originated. The system gives each remote
batch terminal a unique terminal identifier (TID) when it logs inm and uses this TID for

queueing files originating from the terminal. You can determine the default destination of
batch output for your jobs by using the ENQUIRE command and specifying either the JSN=jsn or
UJN=ujn parameter. ENQUIRE shows the default destination in the DS field of its display.

RB indicates remote batch routing and BC indicates routing to the batch devices at the
central site.

You can override the default queueing of job output with the LDI, QGET, ROUTE, SETJOB, or
SUBMIT command (refer to section 7).

Queuved files with an input disposition wait until they are scheduled for execution. The
service class of the job determines the scheduling priority of an input file.

For queued files with plot, print, or punch dispositions, their priority grows as they wait
in the queue. Such files are processed when the appropriate device becomes available and
when the file's priority is higher than all other files queued to that device. Refer to the

ROUTE command in section 9 for an enumeration of disposition codes for plotting, printing,
and punching.

A file with a print disposition must be formatted for line printing. Most system utilities
format file OUTPUT for printing, but you must include the appropriate printer control
characters when you create a file to route to a printer (refer to the COPYSBF command and to
appendix H). Files with uppercase and lowercase characters require special processing
(refer to the FCOPY command). Appendix D contains the printer output from a sample job.

A queuved file with a wait disposition awaits further specifications from you. The system
queues output from detached interactive jobs with a wait disposition unless you specify a

different disposition. You can explicitly queue files with a wait disposition with the LDI,
ROUTE, SETJOB, and SUBMIT commands.

A file remains queued on mass storage until one of the following occurs:

o The system resource it requires becomes available and the file's priority is the
highest of all queued files with the same disposition.

® You remove the file with the QGET or DROP command.
e Site personnel remove it if it resides in the queue too long (site—determined).

You can get a list of your queued files with the ENQUIRE command {(refer to section 7).

LOCAL FILES

Files of local file type are temporary files. Although all files assigned to a job are
considered local to the job, the local file type includes only those files assigned to your
job that are not given one of the other file types.

You can create a local file in many ways. The following list shows some implicit methods of
creating a local file:

@ Name the file for the first time in a copy command or in a read or write command

within a program. A local file created in this manner always resides on mass
storage.

2-12 60459680 E

JJ

J)

e Name the file for the first time in an ASSIGN or REQUEST command that assigns the
local file to mass storage or to an interactive terminal or name the file in an
ASSIGN, LABEL, or REQUEST command that assigns the local file to magnetic tape.

® Name the file in a GET command generating a local mass storage file.

¢ Name the file as the output file in a compiler-or assembler-call command.

e Name the file as the list or output file in one of the file editing commands (MODIFY
or EDIT, for example).

To save the contents of a local mass storage file, you issue a SAVE or REPLACE command to
copy the local file to a permanent indirect access file or an APPEND command to copy the
local file onto the end of an existing permanent indirect access file. Data written on a
local file assigned to magnetic tape is written on the tape for later access. Local files
are released upon job completion.

PRIMARY FILES

The primary file is a temporary mass storage file designated as the primary file by a
PRIMARY, NEW, or OLD command. Only one primary file can exist for a job at a time. Some
commands use the primary file as the default file when a file name is not specified. NOS
rewinds the primary file before each job step.

DIRECT ACCESS FILES

You assign a direct access permanent file to your job by issuing an ATTACH or DEFINE
command. When you define the file or when you attach the file in a mode permitting file
modification, you can write on the permanent file. Refer to Permanent Files in this section.

LIBRARY FILES

A library file is a read-only file that several users can access simultaneously. This file
type should not be confused with system library programs or with public permanent files
stored under user name LIBRARY. Refer to Libraries in this section for a description of the
uses of the term library in NOS.

You must be authorized to access a library file.

If authorized, you can read a library file after naming it in a COMMON command.

PERMANENT FILES

Your permanent files reside on mass storage until you purge them or until your site archives
them (contact your computer center for their archiving procedures). The system maintains a
separate permanent file catalog for each user name and it contains entries for all of your
permanent files created under the user name you are using to access the system. A catalog
entry includes the file name, its location on mass storage, its length, permission modes,
and access history. Unless another user name is specified, the system directs all permanent
file requests to the files of the user specified on the last USER command (or specified in
the login of an interactive job).

60459680 E 2-13

User names (refer to Validation in section 3) that contain asterisks represent users with
automatic read-only permission to files in the catalogs of other users. The user name must
match the other user name in all characters not containing asterisks. For example, the user
with user name *AB*DE* can access the catalogs of the following users.

e UABCDEF
e UABDDEE
e MABCDEl

The device residence of permanent files and their backup copies are described under Mass
Storage File Residence in this section.

The two types of permanent files, indirect access permanent files and direct access
permanent files, are described in the following paragraphs.

INDIRECT ACCESS PERMANENT FILES

You access an indirect access permanent file by naming it in an OLD or GET command. The
system copies the permanent file from mass storage to a temporary file (primary or local
file type). To alter an indirect access permanent file, you make the changes to the
temporary copy and then enter the REPLACE command which writes the temporary copy over the
indirect access permanent file. You create an indirect access permanent file by naming a
temporary file in a SAVE or REPLACE command.

Mass storage for indirect access permanent files is allocated in 640-character blocks (64 CM
words). Because of its small allocation block size, indirect files are most economical for
relatively small files.

The maximum size of an indirect access file is determined either by your validation limits
(refer to the LIMITS command), or by the device limitations described in Mass Storage Files
in this section.

DIRECT ACCESS PERMANENT FILES

You access a direct access permanent file directly, not through a temporary copy. Data is
written directly on the permanent file.

You create a direct access permanent file with a DEFINE command, which determines its name
and residence and the default access mode available to other users. Other users may, if you
permit, access the file with an ATTACH command. A number of users can attach the file
concurrently, but only one user at a time can change the file. To change the file, you must
attach it in modify, update, append, or write access mode. If you attach the file in write
mode, no other user can attach that file concurrently.

Even if a file is currently attached to a job, you can purge the file from the permanent
file catalog with a PURGE command. However, the purged direct access file remains attached
to the job until it is released by a RETURN, CLEAR, UNLOAD, OLD, or NEW command or until the
job ends.

2-14 60459680 C

J)

Mass storage for direct access permanent files is allocated in large blocks; the block size
depends on the mass storage device type on which the file resides (refer to Mass Storage
Files in this section). Because of their large allocation block size and the write
interlock feature, direct access files are often used for database files.

The maximum size of a direct access file is determined by your validation limits (refer to
LIMITS Command in section 7), or by the device limitations described in Mass Storage Files
in this section.

MASS STORAGE FILE RESIDENCE

For most mass storage file operations, you need not be concerned about the specific device
on which your file resides. However, under certain circumstances, you may wish to override
the default device residence for local or permanent files.

With the ASSIGN command, you can assign a local file to either a specific device or to a
device category if you are so authorized.

Every permanent file you create resides either in your family of permanent file devices, on
an auxiliary device, or on alternate storage. Unless you specify otherwise, all permanent
files are saved in your family. Refer to the NOS 2 Analysis Handbook for further details.

FAMILY DEVICES

A family consists of a set of mass storage devices. Normally, a system has only one family
(the default family) of permanent file devices. However, because families are
interchangeable between NOS systems, several families may be active on one system, or a
system may be part of a multimainframe system. For example, consider an installation with
two systems, A and B. System B provides backup service to system A. If system A failed,
its family of permanent file devices could be introduced into system B without interrupting
current operations on system B.

You identify your family by supplying a one- to seven-character family name. You can
specify a family name on the USER command. If you are authorized to use secondary USER
commands (refer to the USER command), you also specify a family name on a USER command in
interactive jobs. If your family is the system”s default family, you may, but need not,
supply the family name. When the family name is omitted, the system uses the system default
family name. If your family has been introduced into another system, you must supply your
family name.

If you choose to save files on family devices, you have the option of either using the
system default device type or specifying another type of permanent file device.

60459680 J 2-15

AUXILIARY DEVICES

An auxiliary device is a supplement to the mass storage provided by family devices. It is
identified by a one-to-seven-character pack name. An auxiliary device is not necessarily a
disk pack that can be physically removed as the pack name implies. Rather, an auxiliary
device can be any mass storage device supported by the system and defined as such by the
installation. Each auxiliary device is a self-contained permanent file device; all direct
and indirect access files represented by the catalogs on the device reside on the device.
Auxiliary devices may be defined as public or private. Anyone who supplies the appropriate
pack name can create, replace, and access files on a public device. Only one user, the
owner, can create and replace files on a private auxiliary device, but others may access or
replace those files as permitted by the owner.

ALTERNATE STORAGE

Disk is the usual residence of permanent mass storage files. However, your site may choose
to move some files from disk to alternate storage (either to a cartridge alternate storage
subsystem such as MSE or to tape alternate storage). Alternate storage is well suited for
the storage of files that are accessed infrequently. Accessing a file residing on alternate
storage takes extra time, because the file must be retrieved and copied (staged) to disk.
You can specify the preferred residence of your permanent files with the PR parameter on the
DEFINE, CHANGE, or SAVE commands. You can ascertain the residence of your files with the
CATLIST command. In the CATLIST output, file names surrounded by parentheses indicate that
these files reside on alternate storage rather than on disk.

Usually, when attaching a file from alternate storage, the system suspends the job until the
file has been staged and assigned to the job. (You can determine the status of your staging
request for an alternate storage file with the ENQUIRE or cE command.) However, if you
specify the RT parameter on the ATTACH, GET, or OLD command, the job will be allowed to
continue processing while the file is being staged to disk. You must then issue a second
ATTACH, GET, or OLD command to assign the file to your job after staging. If you specified
the RT parameter you can then check whether the file has been attached by using either the
FILE function (refer to section 6) or a LENGTH or ENQUIRE command.

If a permanent file is lost or destroyed, site personnel can recover the file by loading its
backup copy. Generally, sites perform regular dumps of permanent files to magnetic tape to
serve as the permanent file backup. By specifying the BR parameter on the DEFINE, CHANGE,
or SAVE command, you can choose to have a tape backup copy of your file kept even if the
file resides on alternate storage. You also can choose to have the alternate storage file
copy serve as a backup, or you can require no backup copy of your file.

2-16 60459680 J

J)

D)

LIBRARIES

As defined in the glossary (appendix C), the term library has several meanings. The
applicable meaning for the term must be determined from its context. The following
describes some NOS libraries.

USER NAME LIBRARY

Files stored under user name LIBRARY need not be libraries themselves. An installation
saves programs or text as files under user name LIBRARY so that authorized users can access
them from a centralized location. You can access those files by specifying the file name
and the alternate user name LIBRARY on their permanent file request or by issuing a LIB
command for indirect access files.

PROGRAM LIBRARIES

A program library is a collection of compressed source deck images stored in Modify or
Update format. You access these compressed source decks through MODIFY or UPDATE commands
(refer to section 15).

USER LIBRARIES

User libraries are the files named in the LIBRARY, SATISFY, LIBLOAD, or LDSET loader command
or in program binaries. These files are searched by CYBER Loader to satisfy external
references within a program it is loading. They contain compiled or assembled routines.
The first record of a user library is a ULIB record; the last record is an OPLD record.
Section 15 describes commands that create, catalog, and manipulate user libraries.

60459680 G 2-17

JOB FLOW AND EXECUTION 3

“

The primary job types are batch and interactive. A batch job is a file of commands and
data. 1Its first record, called the command record, contains lines of text that specify NOS
commands. Every batch job begins with a Job command and a USER command. The end of the
command record is marked by an EOR (or an EOI if there is no data in the job).

If records follow the command record, they contain program, data, or directive input for the
commands. As each command requiring user input is processed, the system reads the next
record in the input file (unless the command specifies otherwise). These records must be in
the same order as the commands that use them.

For example, figure 3-1 illustrates a job file. 1In this job file, the first two commands
are processed by system routines that require no additional user input. The third command,
FTN5(GO), requests the compilation and execution of a FORTRAN 5 program. The compiler reads
the FORTRAN 5 source program from the second record of the input file. After successful
compilation, the system executes the program. Because the program reads data from the input
file, it takes input data from the third record of the input file. Normal job termination
occurs when the system reads the command record EOR (the first 7/8/9 card).

You can also consider an interactive job to be a file of commands and data. You do not
submit the file to the system as a unit, but enter input one command at a time from a
terminal. Generally, the system processes each command as soon as you enter it. However,

you may group commands in a procedure and those commands are executed together when you call
the procedure.

JOB INITIATION AND TERMINATION

The methods of job entry and termination differ for interactive and batch jobs.

BATCH JOBS
You can enter a batch job in the following ways:
e Enter a job file through a local card reader.
. Enter a job file through a remote batch terminal.

. Enter a job file using the HELLO7, LDI, MFQUEUE, ROUTE, or SUBMIT command from an
interactive or another batch job.

To enter a job file through a remote batch terminal, you must use the Remote Batch Facility
(RBF). Consult the Network Products Remote Batch Facility Version 1 Reference Manual for
details. Section 7 describes the LDI and SUBMIT commands. Section 9 describes the MFQUEUE
and ROUTE commands.

Unless abnormally terminated, your batch job ends after the system executes the last command
in the command record of your job file.

60459680 H 3-1

] 6
7
8
9
DATA Y — ———
RECORD |
4 i
||| <—— pATA DECK
7
8
9
PROGRAM ABC ' |l
PROGRAM . ||Ii <——SOURCE DECK
RECORD
7
8
9
FTN5,GO.
CHARGE,".
USER,NAM,PASS.
COMMAND FTNJOB. :
RECORD

Figure 3-1. FORTRAN Compile and Execute Deck

INTERACTIVE JOBS

To enter an interactive job, you must use the Interactive Facility (IAF). Volumes 1l and 2

of this reference set give a more detailed description of login and logout procedures for
interactive jobs. Section 16 describes terminal and input/output conventions.

Login

Before you can login to a host computer, you must establish a connection with the network
software. If you need information on how to connect to Communications Control Program (CCP)

software, refer to Volume 2, Guide to System Usage. If your network uses CDCNET, refer to
the CDCNET Access Guide.

Once you have established a network connection, you can begin the login sequence.

3-2 ' 60459680 L

J)

J

The following example shows an abbreviated login sequence.T Your entries appear in
lowercase characters.

WELCOME TO THE NOS SOFTWARE SYSTEM.
COPYRIGHT CONTROL DATA 1978,198X.

YY/HUM/DOD. HH,MM,SS TO2A57

NETWORK OPERATING SYSTEM NOS 2
FAMILY: ,usernam,passwrd,iaf

YOUR PASSWORD WILL BE EXPIRED YY/MM/DD

JSN: AEYT, NAMIAF

READY.

The second line of the login sequence gives the original copyright date of NOS software and

the copyright date of your version of NOS. The third line gives the current date and time
and the name of your terminal.

After the system validates your user name and password, it assigns your job a job sequence
name (JSN). The JSN in this example is AEYT.

Tf you have recoverable jobs in the system, the system initiates a recovery dialogue with
you immediately after it logs you in.

Using a network to recover a job other than
the one you were using before the job was
disconnected may not always work. For this
reason, we recommend that you always use
the same network to recover a job.

T This manual assumes that your system does not require the entry of a personal identifier.

For more information about the personal identifier refer to Volume 2 of the NOS 2
Reference Set.

60459680 H

The following example shows a login sequence where you have recoverable jobs.T Again, your
entries appear in lowercase characters.

WELCOME TO THE NOS SOFTWARE SYSTEM.

COPYRIGHT CONTROL DATA 1978, 198X.

YY/MM/DD. HH.MM.SS TO1A7S

NETWORK OPERATING SYSTEM NOS 2
FAMILY: ,usernam,passwrd,iaf

YOUR PASSWORD WILL BE EXPIRED YY/MM/DD

JSN: ADYE, NAMIAF

RECOVERABLE JO0B(S)

JSN UJN STATUS TIMEOUT
AARQ AN2A SUSPENDED 26 MIN.
AASF AN2A SUSPENDED 28 MIN.

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: go

READY.

Additionally, some sites may require you to enter charge information during login (refer to
CHARGE command in section 7).

Logout and Application Switching Procedure

When you have finished using IAF, you can either log out or switch to another application.
The logout procedure disconnects you from the host. Application switching ends your session
with TAF but allows you to continue processing under the control of another application
(such as RBF).

To terminate your terminal session, enter one of the following:

GOODBYE or BYE or LOGOUT

The system responds by printing:

UN=username LOG OFF hh.mm.ss.
JSN=jsn SRU-S S.SSS
CHARACTERS=xxxxxKCHS

IAF CONNECT TIME hh.mm.ss.

LOGGED OUT.

This display is followed by additional logout information provided by network software.

T This manual assumes that your system does not require the entry of a personal identifier.
For more information about the personal identifier refer to Volume 2 of the NOS 2
Reference Set.

3-4 60459680 H

J)

J)

éﬁﬁ\
6@#\

F&?&

The following is a description of the variable items in the logout display:

Item Description
username User name you entered during login.
hh.mm.ss. The first occurrence of hh.mm.ss. indicates the time of

logout. The second occurrence indicates the length of time
your terminal was connected to IAF.

jsn Your job sequence name.
S.888 A measure of the system resources used while connected to IAF.
XXXKXXXX A count of the total number of input and output characters read

from, or written to, your terminal.

ct The network control character for your terminal. (The network
control character for specific terminal models are listed in
Table J-1.)

had The host availability display (HAD). The HAD appears if you

have enabled it with the HD terminal definition command (refer
to appendix J) or if you are operating in a multihost
environment.

IAF automatically logs out the terminal if no activity has been registered in a site—-defined
timeout period (the default is 10 minutes), unless you have a no-timeout terminal status.
Refer to the discussion of the LIMITS command for further information.

When IAF logs out a dial-up terminal to the system, the system automatically disconnects the
terminal after a site-determined period of time (2 minutes is the default). You may wish to
log out without disconnecting the terminal. To log out of the system and reinitialize the
login sequence, enter:

HELLO
or
LOGIN
IAF logs out the current job, issues the normal logout messages, and then causes the network

to initiate a new login sequence. Any terminal characteristics, such as page width or
terminal class set in the previous job, remain in effect.

60459680 H 3-5

If you wish to leave the IAF application but remain connected to the network and use another
application, you can enter one of the following:

BYE ,application
GOODBYE,application
HELLO,application
LOGIN,application
LOGOUT,application

In these commands, the term application means a product that uses the network for terminal
communications. Other applications include TAF, MCS, TVF, PNI, and RBF (refer to the BYE
command in section 8). Other site-provided applications may also be available. All
terminal characteristics in effect under IAF remain in effect under the new application.

After you enter one of the above commands, the system prints the logout message and
disconnects the terminal from IAF, If the site has authorized you to access the
application, the system connects the terminal to the named application. If the named
application is not present or if the site has not granted you access to this application,
the system issues an error message and the prompt:

terminalname ~ APPLICATION:
where terminalname is the name the network has given your terminal.

You can again enter the name of an application, or you can enter BYE or LOGOUT to log out or
HELLO or LOGIN to reinitiate the login sequence.

SUBMITTING JOBS TO REMOTE HOSTS

Some sites use multiple host network configurations in which you can log in to a host
mainframe and then submit jobs to other mainframes (remote hosts) in that computer system.
There are various ways in which sites can configure these computer systems, and the means by
which you submit jobs to a remote host depend on your system configuration, the type of
remote host, and the nature of the jobs. In all cases, however, you must have special
authorization to submit such jobs (refer to the LIMITS command in section 7).

In general, you can submit a batch job to a remote host by specifying the remote host with
the ST=1id parameter of the Job command or the ROUTE command. If the remote host is a
SCOPE 2 system and the batch job requires interactive input or output, use the HELLO7
command. If the remote host is connected through the Queued File Transfer Facility (QTF)
and the batch job has special routing requirements (requirements not provided by ROUTE
parameters), use the MFQUEUE command. If you want to retrieve or change the attributes of
permanent files on such a remote host, you need not submit a complete batch job. You can
use the MFLINK command from a job on your host mainframe.

If you want to connect your interactive terminal to a Virtual Storage Operating System
(operable on a CYBER 200 computer system), select the Interactive Transfer Facility (ITF)
during login or with the BYE, GOODBYE, HELLO, LOGIN, or LOGOUT command.

In a dual-state system, you can submit a batch job from the NOS system to the NOS/VE system
using the ROUTE command. The ROUTE ST=1id parameter routes a NOS file to the NOS/VE batch
input queue. The file must be written in 6/12-bit display code.

3-6 60459680 G

J

J)

Figure 3-2 summarizes the methods of submitting jobs to remote hosts.

Special Host Type/

Command/Application Type of Job Being Submitted Connection Type
Job Command Batch No special
(ST=1id parameter) requirements.

ROUTE Command
(ST=1id parameter)

HELLO7 Command Batch (with interactive I/0) SCOPE 2 system.
MFQUEUE Command Batch (with special routing requirements)| RHF (LCN, CDCNET,
or CCP).
(ITF Application Interactive VSOS system
(CYBER 200).
MFLINK Command Part of a batch or interactive job RHF (LCN, CDCNET,
(permanent file manipulations) or CCP).

Figure 3-2., Submitting Jobs to Remote Hosts

60459680 G 3-6.1

JOB ORIGIN TYPES

When a job enters the system, the system determines the job origin type according to the
means used for job initiation. Its origin identification remains with the job throughout
job processing. The job origin type determines how the job is handled and how it exits from

the system,

The four origin types and their system symbols are as follows (system symbols are described

in section 6):

Origin Type Symbol
System SYO
Interactive IA0
Local batch BCO
Remote batch RBO

System origin jobs originate at the system console, interactive jobs all enter through IAF,
local batch jobs enter through central site batch devices, and remote batch jobs enter

through RBF.

If you are so authorized (refer to the LIMITS command), you can also initiate jobs using the

HELLO7, MFQUEUE, LDI, ROUTE, or SUBMIT commands.

Depending on how you specify the

parameters of these commands, the resulting jobs can either be local batch or remote batch

in origin type.

JOB SERVICE CLASSES

Every job in the system is assigned a service class.
job”s scheduling priority as the job flows through the system.

This service class determines the
You can make this service

class assignment or you can let the system assign it a default service class based on the
job”s origin type and your validation limits (the privileges your site has granted you).

Unless changed by your site, the system has the following 14 service classes:

Service Class
Deadstart
System
Local batch
Remote batch
Interactive
Detached interactive
Network supervisor
Subsystem
Maintenance

3-6.2

Two—character
Mnemonic

DS

SY

BC

RB

TS

DI

NS

Ss

One—-character
Mnemonic

A

S

60459680 G

J)

Two-character One-character
Service Class Mnemonic Mnemonic
Communication task CT C
Installation class O 10 0
Installation class 1 11 1
Installation class 2 I2 2
Installation class 3 13 3

The scheduling priority associated with each service class is site-determined. You can
ascertain how your site has prioritized the service classes you are authorized to use for
each origin type by using the CLASS command. To determine the service class of a job, use
the ENQUIRE command. The system denotes the service class with a one-character mnemonic in
the SC field of the ENQUIRE output.

Your site allows you to use only a subset of the service classes. The LIMITS command shows
you which service classes you can use. Further, your site can restrict the use of certain

service classes to jobs of certain origin types. The CLASS command displays this
information.

You can assign a service class to a job in the following ways:

e Use the CHVAL command to specify default assignments for your jobs according to
origin type. The system uses one of these default assigmnments if you do not
otherwise make a service class assignment in a job. The LIMITS command shows what
your default service class assigmments are for each origin type.

o Use the SC=class or P=priority parameter of the Job command for batch jobs.
) Use the CLASS command to change the service class of your current job.

e Use the SCL=scl parameter of the ROUTE command for jobs to be initiated by that
command .

JOB NAMES

Every job in the system receives a job sequence name (JSN) and a user job name (UJN). This
includes not only your job file, but files you explicitly route for disposal during your
job, such as files routed to a line printer. These job names are the primary job
identifiers for both the system and you. Many system commands use the JSN and UJN as
parameters. You can get a list of the JSN and UJN of all your active jobs by using the
ENQUIRE command.

JOB SEQUENCE NAME (JSN)

The system assigns every job a unique JSN. Each JSN consists of four alphabetic
characters. The banner page of batch output prominently displays the job’s JSN: the JSN
appears as the last four characters of the eight characters in block letters (refer to
appendix D for a sample banner page).

60459680 D 3-7

USER JOB NAME (UJN)

The UJN is for your convenience. You can select a meaningful name (a maximum of seven
characters) by which to identify your jobs. For batch jobs, you can set the UJN with the
SETJOB or ROUTE command. If not otherwise specified, the UJN for batch jobs defaults to the
UJN specified on the Job command. For interactive jobs, you can specify the UJN with the
SETJOB command. The UJN for interactive jobs defaults to the user index hash (refer to the
ENQUIRE command).

VALIDATION

In batch jobs, the USER command follows the Job command and is used to identify you as an
authorized user. If you are an authorized user, a set of control values associated with
your user name is used by the system to control all system requests from your job. If you
are not permitted to perform specific functions (such as access nonallocatable devices) and
you attempt to use them, your job will be terminated.

To get a listing of resources at your disposal and of special permissions you possess, enter

the LIMITS command. To change your resource allocation or to get additional permissions,
contact installation personnel.

ACCOUNTING

The unit of accounting for the system is the system resource unit (SRU). The SRU is a
composite value of central processor time, I/0 activity, and memory usage. SRU operations
are initiated at the beginning of a job and reinitiated whenever another CHARGE command is
encountered. SRU information includes:

e Central processor time

e Mass storage activity

e Adder activity (fixed charges for some system requests whose resource requirements
are highly variable and beyond your control)

e Magnetic tape activity

° Permanent file activity

e Central memory and extended memory usage

° SRU value

e Matrix Array Processor (MAP) activity

o Application account chargest
This information is written to the job’s dayfile at the end of the job or whenever this
job’s service class changes. You may request SRU information to be written to your output

file at any time during the job by issuing the ENQUIRE command. The format of SRU
information written in the dayfile is given under Job Completion in this section.

tNot currently supported by the system but reserved for future use.

3-8 60459680 C

2 J

K%»

JOB SCHEDULING

When a job enters the system, it is queued for input and waits for the required system
resources to become available or its priority to grow. The job’s priority depends on its
service class. The system priorities are system-defined and can be altered only by the
system operator. The scheduling priority of the job is advanced as the job waits. The
priority ages to a system-defined limit. The job scheduler periodically scans the queued
jobs and active jobs to determine whether action is necessary to ensure that the highest
priority jobs are being serviced. This action may include rolling out low priority jobs or
rolling in higher priority jobs. The job scheduler is also activated to analyze the system
status whenever there are changes (for example, when the field length of a job is released,
a job is queued, or a job completes).

Once a job is scheduled for execution, normal command processing begins. The general flow
of the command processing is illustrated in figure 5-1.

JOB CONTROL

While the job is executing, the system exercises the following controls over the job.

FIELD LENGTH CONTROL

The system controls the field length (central memory) assigned to a job, adjusting it
according to the requirements of each job step. CYBER Loader further adjusts the field
length during both program loading and program execution. Memory may be added or removed as
the needs of the program change. Refer to the description of the REDUCE command in the
CYBER Loader Reference Manual. You can further influence the field length assigned to your
job by using the CM parameter of the Job command and the MFL and RFL commands.

The maximum field length for a job (MAXFL) is set at the smallest of the following values.
o The value of the CM parameter of the Job command if specified
e Maximum field length you are authorized to use
e Maximum field length available for user jobs (dependent on machine size)

For any job step, the maximum field length is the smaller of MAXFL or the value you
specified with the MFL command.

The running field length (RFL) is initially set to zero, indicating system control of field
length. The RFL command changes RFL. RFL cannot exceed the current MFL.

To set the initial field length for a job step, the system uses the first value set by one
of the following.

® Predefined initial field length for a system routine or on a global library set
(RFL = special entry point).

° Highest high address (HHA) from EACP loader table (54 table) (refer to the CYBER
Loader Reference Manual).

60459680 C 3-9

° RFL value, if nonzero.

° The smaller of the MFL or the installation-defined default value (release value

50000B).

The system automatically assigns a field
length for CM only. To set the initial
field length for a job step in extended
memory, use the RFL command or the MEMORY
macro (refer to Volume 4, Program
Interface).

The following example shows a command record, the MAXFL, MFL, and RFL settings, and the
actual field length (expressed in octal) used to process each command.

Command

JOB,CM60000.
USER,USERABC, 1234,

GET,ABSPROG,RELPROG.

RFL,40000.

ABSPROG.

MFL,50000.

RELPROG.

Field
MAXFL MFL RFL Length
60000 60000 0 3200
60000 60000 0 3200
60000 60000 0 2500
60000 60000 0 2300
60000 60000 40000 40000
60000 60000 40000 2300
60000 50000 0 50000

Explanation

The CM parameter sets
the MAXFL and MFL
values. The system
sets the field length
as required for pro-
cessing the command.

GET command retrieves
copies of an absolute
program and a relocat-—
able program.

The user issues an
RFL command to set

the field length for
execution of the abso-
lute program that
follows.

The absolute program
on file ABSPROG is
executed within a
40000-word field
length.

The user issues an
MFL command to set

the maximum field
length for the follow-
ing relocatable load.

If more than a 50000-
word field length is
required, the job
aborts.

60459680

J D

6@9\
G@Em

INPUT FILE CONTROL

Batch jobs, when initiated, have a file named INPUT (input file type). This file contains
the commands and other input records required for job execution. INPUT is a locked file.

As a result, you may read from it and reposition it, but the system does not allow you to
write on it. If for some special reason you need to write on a file named INPUT, you should
first issue a RETURN(INPUT) command. This command changes the name of the file from INPUT
to INPUT* and leaves it assigned to your job. You may then write on file INPUT. The change
of name caused by the RETURN command applies only if the file has an input file type (refer
to File Types in section 2).

For interactive jobs, file INPUT* is present at the beginning of the session and cannot be
returned with a RETURN command. You can create and manipulate a file called INPUT at any
time, although various products, such as the Full Screen Editor, require special processing
in order to handle files named INPUT or OUTPUT as data files.

TIME LIMIT CONTROL

The system sets a default time limit for each job step unless the Job command or the SETTL
command specifies a job step time limit. This time limit is the amount of central processor
time that any one job step is allowed. You cannot increase the limit beyond that for which
you are authorized.

While a job is using the central processor, the CPU time is accumulated and checked against
the time limit for each job step. If the job's origin type is not interactive, the job in
execution terminates or enters exit processing when the time limit is reached. Interactive
jobs are suspended, after which you can increment the time limit and resume execution from
the point of suspension (refer to SETTL Command for an example). In the case of a detached
interactive job, the system suspends or terminates the job according to the parameter values
of the SETJOB command. You cannot resume jobs suspended in this fashion from the point of
suspension; they enter exit processing.

SRU LIMIT CONTROL

The system sets a limit on the number of system resource units (SRU) that a job step or an
account block can accumulate. An SRU includes central processor time, central memory usage,
permanent file activity, and mass storage and tape I/0. An account block is that portion of
a job from one CHARGE command to the end of the job or to another CHARGE command. You may
alter these limits through the SETJSL and SETASL commands or macros; however, you may not
set either limit beyond that for which you are validated.

While a job is in the system, SRUs are accumulated and checked against the SRU step and
account block limits. If either limit is reached, the system treats the job as if it
exceeded its time limit for a job step, which is described in the preceding subsection.

COMMAND LIMIT CONTROL

The system sets a limit on the number of commands you can enter in a job. You can ascertain
this limit by entering the LIMITS command. If your job exceeds this limit, the system so
informs you and allows you seven additional commands before terminating your job. The
ENQUIRE,U command gives the number of commands you have entered in your job.

60459680 E 3-11

ROLLOUT CONTROL

Each executing program is allowed to reside in CM for a certain amount of time before
relinquishing its space to another program. When this CM time slice is exceeded, the
program may be rolled out. This means that the contents of the job field length (both CM
and extended memory), the job control area, and the control registers (exchange package) are
written to mass storage. The program remains on mass storage until it is rolled back into
memory. Execution resumes from the point where rollout occurred. The amount of time the
job is allowed to occupy CM is called the central memory time slice. The central memory
time slice is a system parameter that can be changed only by the system operator; time
slices vary for each origin type. Whether a job is rolled out when its time slice expires
depends on several factors.

e Whether there are jobs waiting for execution.
° Whether the jobs that are waiting have a higher priority.

¢ UWhether jobs that are waiting require more field length than would be available if
all jobs of lower priority were rolled out.

When a job is rolled out, it is assigned a priority. The priority assigned is a system
parameter that depends on a job’s service class and can be changed only by the system
operator. The job’s priority increases while the job waits. Normally, all other factors
being equal, the job with the highest priority is selected to be rolled in.

ERROR CONTROL

When job step activity ceases, the system must determine the next command to process. If
activity ceased due to normal termination, the next command processed is the next command in
sequence. If an error caused activity to cease, the system issues the appropriate dayfile
message and exits from the job.

Errors may be detected by system software or hardware. When the system hardware detects an
error condition, NOS issues two or more dayfile messages. The first message gives the
address where the error was detected; the second and following messages give the types of
errors that occurred. NOS then dumps the exchange package for the job either to OUTPUT, for
local batch and remote batch origin jobs, or to local mass storage file ZZZDUMP, for
interactive jobs (refer to sectiom 14). ZZZDUMP is not rewound before or after the dump.

After issuing the appropriate dayfile message(s) for the error(s), the system searches for
an EXIT command. If an EXIT command is found, processing continues with the command
following EXIT. If an EXIT command is not encountered, the system terminates the job.
(Exit processing is further described in section 5.) If a NOEXIT command is in effect, the
system does not search for an EXIT command on subsequent errors, and processing continues
with the next command.

You can specify the error exit mode on which the system is to abort a job step with the MODE
command. For example, you can specify that address out of range,’ operand out of range,
and/or indefinite operand errors are allowed and program execution continues (refer to
section 6). The default error exit mode specifies that all errors terminate the job.

The EREXIT, RECOVR, REPRIEVE, and MODE macros control error processing in COMPASS programs..
The SETLOF macro specifies file completion procedures when a job step abort occurs. These
macros are described in Volume 4, Program Interface.

tNot applicable to model 176.

3-12 60459680 C

J)

D)

6&55
f@*m

SECURITY FEATURES

A NOS computer system provides extensive protection of information contained in your jobs
and files. Most notably, it protects the central memory associated with your active jobs
and it enforces job and file access controls.

MEMORY PROTECTION
A job cannot dump or directly change the contents of the job field length immediately after
a protected command or a user program. The following is a list of protected commands and a

list of load/dump memory commands:

Protected Commands

APL COPYCF IF or (IFE) PASSWOR SECHDR
APPEND COPYCR LABEL PERMIT SET
ASSIGN COPYEL LDSET PROFILE SETFS
ATTACH COPYSBF LIBEDIT PURGE SKIP
BEGIN COPYX LIBLOAD RECOVER SORT
BLANK DAYFILE LIBTASK REDUCE SUBMIT
CATALOG DEFINE LIMITS REPLACE TCOPY
CATLIST DISPLAY LOAD REQUEST UNLOAD
CHANGE EDIT MAP RESOURC UPROC
CHARGE ELSE MFLINK RESTART USER
CHVAL ENDIF MFQUEUE RETURN VERIFY
CLASS ENDW NEW REVERT VFYLIB
CLEAR ENQUIRE OLD REWIND VSN
CoPY EXECUTE T ouT SATISFY WHILE
COPYBF FSE OVWRITE SAVE

COPYBR GET PACKNAM SCOPY

Load/Dump Memory Commands

CKP DMD DMP LBC PBC WBR
DMB DMDECS DMPECS LOC RBR

In an interactive job, you cannot enter a load/dump memory command individually or as the
first command of a procedure. If you attempt to change or dump protected memory, the system
issues an informative message to the dayfile and terminates the job step.

This form of memory protection does not apply if the job is of system origin or if you have
system origin privileges and debug mode has been set at the system console.

SYSTEM AND FILE ACCESS CONTROLS

NOS operates in either secured or unsecured mode, depending on the option selected by your
site. On an unsecured system, the primary control of system access is based on user names
and user passwords. NOS may also require certain users to enter a personal identifier in
addition to their user name and password to gain system access. Additionally certain users
may also be restricted to a single terminal session at a time.

t This applies to EXECUTE when used as a loader command. It does not apply to EXECUTE when
used to select the execute subsystem in an interactive job.

60459680 G 3-13

The system further restricts the use of certain system resources (for example, applications
and special commands) to those explicitly granted that privilege by your site. NOS enforces
file access controls based on user names, file passwords, and permissions granted by the
owner of the file. The controls based on file passwords and permissions are discretionary;
they are set at the discretion of the file owner.

In a secured system, NOS enforces an additional set of access controls based on security
access levels and categories. These controls limit access to information based on the
user”s validated clearance level and need-to-know categories versus the security access
level and category markings associated with each file. These mandatory controls take
precedence over the discretionary controls, which also remain available.

You must be validated to use one or more security access levels and zero or more security
access categories. Every file on a secured system has a single security access level and
may have one or more access categories associated with it. To access a file, the user job
must be validated for the file”s security access level and for all of the file”s access
categories.

SECURITY ACCESS LEVELS

A security access level limits the disclosure of sensitive information to persons who are
authorized to access information at the level of sensitivity indicated by that access
level. A secured system supports up to eight security access levels. The number of access
levels to be used, the names of those levels, and the degree of sensitivity associated with
each level are selected by your site. The access levels are ordered so that the most
sensitive information is associated with higher access levels. (The access levels have
numerical values of 0 through 7; the corresponding released default names are LVLO through
LVL7.) You are validated for a set of security access levels (normally a contiguous range
of levels, such as LVLO through LVL4).

The system associates a set of access levels with each job. This set is the intersection of
your validated set of access levels, the range of levels currently valid for the system, the
range of access levels allowed for your job”s origin type, and, if specified by the system,
the range of access levels allowed over your communication line to the computer. For
interactive jobs, your job”s initial access level is the lowest level in the set of access
levels for your job. For batch jobs, the initial access level is the access level of the
local file that initiated the job.

Example 1: You are validated to use levels LVLO through LVL5, the system is currently
validated for levels LVLO through LVL7, your job origin type has an access level range
of LVLl through LVL4, and your communication line has an access level range of LVLO
through LVL3. As shown in table 3-1, your job will have an access level set of LVLI
through LVL3 and the job”s initial access level will be LVLl. If this job is initiated
via a ROUTE or SUBMIT of a local file with access level LVL2, that will be the job“s
initial access level,

3-14 60459680 G

J

»@)
™

65@\
égm\

Table 3-1. User Job Access Levels

LVLO LVL1 LVL2 LVL3 LVL4 LVL5 LVL6 LVL7
User X X X X X X
System X X X X X X X X
Job Origin X X X X
Communication X X X X
Line
User Job X X X

Each file has a security access level. Unless you specify otherwise, each file you create
will have the same access level as your job at the time you create the file. You can always
raise the access level of your files (refer to the SETFAL and SETPFAL commands) to any level
for which your job is validated, but you must have special permission to lower the access
level of your files. However, the access level of direct access files or tape files cannot
be changed while they are assigned to your job. If the access level of such a file is lower
than that of your job, you can always read information from the file but can only write
information to it if you have special authorization. The access level of a local file is
automatically raised to the current job access level whenever an operation is performed on
the file (this includes your primary file).

Your job“s access level is automatically raised whenever you read information from a file
that has a higher access level than your job”s current access level (within your job’s
validated set of access levels). You can always raise your job”s access level using the
SETJAL command to any level for which your job is validated, but you must have special
permission to lower the access level of your job.

Example 2: 1In the job referred to in example 1, you attach a file that has access level
LVL3 and read information from that file. The access level of your job is immediately
raised from LVLl to LVL3.

Example 3: 1In the same job, you attempt to set your job”s access level to LVL5 using
the SETJAL command. This attempt fails because LVL5 is not in your job”s validated set
of access levels,

Unless you are specifically validated, a secured system does not allow you to write
information from a file with a higher access level into a file with a lower access level.

Example 4: You attempt to copy a portion of a file whose access level is LVL2 to a file
whose access level is LVL3. A secured system allows this operation.

Example 5: You attempt to copy a portion of a file whose access level is LVL3 to a file

whose access level is LVL2. A secured system does not allow this operation (unless you
possess special validation).

60459680 G 3-15

On an unsecured system, you may set access levels on your files (for informational purposes),
but the system does not use those levels to restrict access to the files, nor does it
propagate those levels to your job or to other files. No job has an access level on an
unsecured system.

SECURITY ACCESS CATEGORIES

A secured system supports up to 32 security access categories. The number of categories to
be used and the names of those categories are selected by your site. The access categories
have numerical values of O through 31; the corresponding released default names are CATOO
through CAT3l., Each user is validated for subset of the site-defined access categories.
Your job”s access category set is the intersection of this subset and the set of categories
currently valid for the system.

When you create a permanent file (using the SAVE or DEFINE command), the file is automati-
cally assigned all of the access categories in your job”s access category set. You have the
choice to explicitly assign all, any, or none of these categories to each of your permanent
files (refer to the SETPFAC command). Access categories restrict the access of your
permanent files to those users who are validated for all of the categories you have set for
the files.

Example 6: You are validated for the categories CATOl, CATO6, CAT18, and CAT22. Using
the SETPFAC command, you assign the categories CAT06 and CAT22 to permanent file ABC,
which has an access level of LVL3. You then make file ABC public. Any user in your
family who is validated for access level LVL3 and the categories CAT06 and CAT22 can
then access file ABC.

On an unsecured system, you may assign access categories to your permanent files for
informational purposes, but the system does not use those categories to restrict access to
the files.

RESPONSIBILITIES FOR DATA SECURITY

In a secured system, security access levels and categories are checked whenever a user
accesses a file, begins a job, or attempts to alter the security parameters of a file or
job. This ensures that only those persons who are validated for the access levels and
categories you have assigned to your files can access them. A secured system thus provides
continuous protection of your data.

Although the system will automatically assign an access level and an access category set to
each file you create, you are responsible for ensuring that the access level and access
category set assigned to each of your files is appropriate., Your site should provide
guidelines for the use of the different access levels and categories it has established.

All of the NOS security mechanisms depend on the protection of your user password. NOS
provides the following mechanisms to help protect your password during interactive login:

® You should always use the secure login procedure (described in section 8) to ensure
that you are communicating with the system-supplied login mechanism.

3-16 60459680 G

D J

J)

6@““
Ggﬂh

e If possible, you should set your terminal to full duplex and enable echoplex mode
(refer to the EP terminal definition command). The network temporarily disables
echoplex when you enter your password during login. If you use the abbreviated
login sequence, all fields in the line containing your password will be masked.
This NOS security feature prevents display of your user password at your terminal.

) A warning message stating when your user password is going to expire is displayed at
your terminal and is issued to the job dayfile.

Although NOS encrypts your user password after login, the programs you execute can affect
the security of your files and validation information. When you execute a program, it can

access the command record of your job. It is possible that a program belonging to another
user can obtain privileged information like your user name and charge numbers.

SECURITY CONFLICT PROCESSING
When your job attempts to perform an operation that could violate system security, the
system identifies the operation as a security conflict and issues a SECURLTY CONFLICT
message. A security conflict causes the job step to be aborted and decrements your security
count (you are given a specific security count by the site security administrator). If your
security count is decremented to zero, your current job or interactive session is terminated
without EXIT processing. You are not allowed any additional jobs or logins until the
security administrator resets your security count.
On an unsecured system, a security conflict occurs in the following cases:

° An incorrect secondary USER command.

. A job file submitted with a SUBMIT or ROUTE command has an incorrect USER command.

On a secured system, a security conflict arises in the following cases in addition to those
listed above:

] An attempt to set an invalid access level on a file or job.

® An attempt to access one of your permanent files from a job that is not validated
for the access level or access category set of the file.

® An attempt to write data on a tape file or an attached direct access file when the
access level of your job is higher than the access level of the file.

e An attempt to set an access level for a file or job which is lower than the current
access level of the file or job. T

JOB COMPLETION

When there is no more activity at a control point, no outstanding central processor
requests, and no commands to process, the job is completed in the following manner.

1. All CM assigned to the job is released.

2. Extended memory assigned to the job is released.

tThis action does not constitute a security conflict if you have special authorization to
do so (refer to the LIMITS command).

60459680 G 3-17

3. All equipment assigned to the job is released.
4. All library files attached to the job are released.
5. All scratch (local) file space used by the job is released.

6. All direct access permanent files attached to the job are released; the status
information for these files is updated.

7. The following summations of job activity are added to the end of the job dayfile.
This information is also issued to the associated account dayfile for site usage.

® Adder activity in kilounits (incremented by USER commands, CHARGE commands,
and resource assignments).

hh.mm.ss.UEAD, xxxxxx.xxxKUNS.

° Permanent file activity in kilounits:
hh.mm.ss.UEPF, xxxxxx.xxxKUNS.

® Mass storage activity in kilounits:
hh.mm.ss.UEMS, xxxxxx.xxxKUNS.

° Magnetic tape activity in kilounits:
hh.mm.ss . UEMT, xxxxxx.xxxKUNS.

e Accumulated central processor time in seconds:t
hh.mm.ss.UECP, XXXxxxX.xxxSECS.

] SRU value in units for total job usage including CPU time, I/O activity, and
memory usage:

hh.mm.ss.,AESR, xXXXXXX.xxxUNTS.

® Matrix Array Processor (MAP) III accumulator:
hh.mm.ss.AEMP, xXxXXXXX.xxxUNTS.

° Application activity:

hh.mm.ss.UEAC, XxXXXxX.xxxUNTS.

f1f the installation defines a CPU multiplier value, the value given is the product of the
actual CPU seconds and the multiplier. The installation may assign a different CPU
multiplier value to each CPU within a dual-processor machine (refer to the NOS 2
Administration Handbook).

3-18 60459680 G

JJ

JJ

8. The following information is printed at the end of files queued for printing.
[Lines printed in kilolines:
hh.mm.ss.,UCLP, mi,es, xxxxxx.xxxKLNS.
or
hh.mm.ss . UCLV, mi,es, xxxxxx.xxxKLNS.
mi Machine identifier.
es Equipment status table (EST) ordinal of the output device.

The UCLV summation is issued if the V carriage control character was used
(refer to appendix H).

9. The following information is issued to the account dayfile only.
e Cards punched in kilocards:
hh.mm.ss.jsn. UCPC, mi,es, xxXxxxX.xxxKCDS.

10. For batch jobs, the job dayfile is copied to the end of file OUTPUT. If OUTPUT does
not exist or if it is a deferred routed file with EC=AY specified, the dayfile is
copied to another file that the system queues for printing.

11. All deferred routed files are queued for disposal. The files named OUTPUT, PUNCH,

PUNCHB, and P8 are also queued for disposal in batch jobs. The system does not
automatically queue files OUTPUT, PUNCH, PUNCHB, and P8 in interactive jobs.T

T This step is done only if job output is to be queued. You can prevent the queueing of job
output by specifying the appropriate parameter on the SETJOB, ROUTE, SUBMIT, or LDI
command.

60459680 G 3-19

20

PROCEDURES 4

L e - __ .

A NOS procedure is a sequence of NOS commands, residing in a separate record or file, that
performs a specific task or sequence of tasks. A procedure header directive identifies the
file as a procedure file, and a number of other procedure directives allow you to control
additional procedure processing options.

Once you have created a procedure and stored it in a permanent file, the procedure 1is
available to you at any future time. To execute the procedure, you must call the procedure
using an appropriate form of the BEGIN command, which we describe later in this section.
Procedures that you create yourself can be called from a local file, a permanent file
(direct or indirect access), or from a local or global library set. Your site may also
provide procedures of general use that you can call from system libraries or from user name
LIBRARY. A procedure can be called from another procedure up to a maximum of 50 nested
procedures.

A procedure called from a batch job functions much like a program subroutine. You can pass
parameters to the procedure on the procedure call (BEGIN command). The procedure accepts
any data passed to it, performs its processing functions, and returns control to the calling
job or procedure.

When called from an interactive job, a NOS procedure functions like a user—defined system
command. Once you have made the procedure file local to your job, you can execute the
procedure simply by entering the procedure or file name, followed by any parameters you may
have defined for the procedure.

Although NOS supports both interactive and noninteractive procedure formats (noninteractive
procedures are also called passive procedures), any NOS procedure can be called from either
a batch or interactive job. The interactive procedure formats described in this section
differ from the noninteractive format (described in Appendix L) in that the interactive
formats provide the end user with various types of interactive help and parameter prompts.

The major features of NOS interactive parameter formats are:

Two Interactive Formats

As the procedure writer, you can choose between the parameter—prompting (*I) or the menu
(*M) interactive formats. The parameter-prompting format prompts the user to enter
required parameter values. The menu format displays a list of possible parameter values
and prompts the user to select one of the values by number.

Procedure Prompting

If the user fails to enter a required parameter value, or enters an invalid value, the
system prompts the user to enter a correct value.

60459680 D 4-1

Interactive Help

Both interactive formats give the user easy access to system-generated, as well as
procedure-defined help for a procedure and its parameters.

Parameter Validation

The interactive formats provide an easy way of defining the types of parameter values
that can be entered for any particular parameter. The system will not execute an
interactive procedure until the user has entered a valid value for each required
parameter.

PROCEDURE FILE RESIDENCE AND SEARCH ORDER

A procedure is stored as a separate record on a file. Several procedures, or a collection
of procedures and programs, can exist on the same file. Procedures can be stored on local
files, indirect access or direct access permanent files, system libraries, or user name
LIBRARY. Procedures can also reside on magnetic tape as well as mass storage.

The procedure search order is dependent on the form of the BEGIN command used to call the

procedure., For more information on the search order, refer to the BEGIN command description
in this section.

PROCEDURE STRUCTURE

A procedure file can be divided into five sections, as shown by the example in Figure 4-1.
The first four sections comprise the procedure itself (the procedure begins with the
procedure header (.PROC) directive and ends with a REVERT command at the end of the command
section). The fifth (Data) section may contain programs, procedures, or other data to be
referenced by the procedure.

The first line or lines of a procedure is the procedure header, which consists of a single
procedure header (.PROC) directive. The procedure header names the procedure, indicates
whether the system will prompt for required parameter values, defines what the prompts will
consist of, and defines any restrictions on the types of values that can be entered for each
parameter. The .PROC directive and all other procedure directives are listed in summary
form in Table 4-1 and are described in detail under Procedure Directives in this section.
Procedure directives are identified by the period (.) before the directive name.

The formatting section contains directives which alter the default text and format of user
prompts. This section of the procedure body is optional, as the system does provide default
text and format for all prompts. If you do specify directives in this section, the
formatting directives must immediately follow the procedure header directive.

The help section contains directives and text which define the help to be provided for
procedure parameters and for the procedure itself. This section of the procedure is
optional, as the system can generate help from the information in the procedure header. If
you do specify any directives in this section, you must include a .ENDHELP directive to end
the section.

4-2 60459680 D

D J

™
‘6%3

.PROC, TESTPN*1I

,PN"Enter project number"= Procedure Header
(*S10(ABCDEFGHIJKLMNOPQRSTUVWXYZS$/$1234567890)) .

«NOCLR, Executing - Please wait. Formatting Section
<HELP

TESTPN requests that you enter a valid
project number for this application.
-HELP,PN Help Section
Enter a project number
(Maximum of 10 characters)
-ENDHELP.
-IF,SPN$.NE.$SPRJ/2201% ,LABEL1.
NOTE./INVALID PROJECT NUMBER/
REVERT,NOLIST.
-ENDIF,LABEL1.
RETURN,LISTFIL,LGO. Command Section
FTN5,I=APPL ,L=LISTFIL,B=LGO.
LGO.
REVERT ,NOLIST.
EXIT.
REVERT,ABORT.TESTPN
.DATA _ APPL.
PROGRAM APPL
PRINT*,'APPL COMPLETE' Data Section
END

Figure 4-1. Procedure File Structure

The command section consists of procedure directives and system commands you want to be
executed. Most system commands are allowed within a procedure. The exceptions are
primarily the commands restricted to entry from interactive terminals (refer to section 8).
The data section consists of information you want written to a local file or files so that
you can reference it while the procedure executes. You can also reference the data section

in the procedure header. A separate ,DATA directive identifies each local file to be
created.

PROCEDURE PROCESSING

The system performs interactive procedure processing in three stages:
° Interactive parameter entry
e Procedure expansion

. Execution of the command record

60459680 J 4-3

INTERACTIVE PARAMETER ENTRY

During interactive parameter entry, the system processes the procedure header directive and
all directives in the formatting and help sections.

The system prompts the user for all required parameter values as specified in the procedure
header. Each value the user enters is verified against the validation requirements
specified in the procedure header. If any value fails to meet the validation requirements,
the system prompts the user to enter a corrected value.

The correction prompt and other interactive prompts can be modified by directives in the
formatting section.

It the user requests help for the procedure or for a parameter (by entering a ? following
the procedure call or following a parameter prompt), the system displays the applicable
system default help text, if any, followed by procedure-defined help text.

The interactive parameter entry portion of procedure processing is completed when the user
enters a carriage return after having correctly entered all required parameter values. Tf
the user correctly enters all required values on the procedure call, no formatting or help
directives (except .NOTE and .NOCLR) are processed, and procedure expansion begins
immediately.

PROCEDURE EXPANSION

Procedure expansion is performed only on the procedure command and data sections. During
procedure expansion, the system:

° Processes all directives in the command and data section.

. Substitutes parameter values specified by the user, or by the .PROC directive, for
each occurrence of the corresponding parameter keyword in the command and data
sections.

L] Creates a scratch file, called the procedure command record, which contains the NOS
commands from the procedure command section as modified by directive processing and
parameter substitution.

. Creates a separate local file for each .DATA directive processed during expansion of
the procedure.

At completion of expansion processing, the calling user”s job has assigned to it a scratch
file (the procedure command record), containing NOS commands ready to be executed, and a
local file for each .DATA file referenced in the command record.

The procedure command record created during expansion processing is simply the sequence of
NOS commands to be executed. Although procedure directives are used to define and create
the command record, directives themselves do not appear in the command record since they are
not executable system commands.

The procedure command record may not include all system commands from the procedure command
section. This is determined by processing of the .IF, .ELSE, and .ENDIF directives. The
+IF directive functions similarly to the IF command. In the same way that the IF command
determines whether the following sequence of commands will be executed, the ,IF directive
determines whether the following sequence of commands is written to the procedure command
record. In other words, if the expression in the .IF directive is true, the commands placed
between .IF and .ELSE or .ENDIF are written to the command record; if the expression is

b= 60459680 H

JJ

D J

false, these same commands are not written to the command record. To see the results of the

+IF directive, look at figures 4-2 and 4-3. These figures show the command records
resulting from valid and invalid entries for the procedure in figure 4-1.

Note that at the end of processing in either figure 4-2 or 4-3, a listing of the user’s
local jobs would show a file called APPL. This file is created as a result of the .DATA
directive in procedure TESTPN from figure 4-1,

Procedure Command record:

RETURN,LISTFIL,LGO.

FTNS5, I=APPL ,L=LISTFIL,B=LGO.
LGO.

REVERT,NOLIST.

Dayfile:

testpn,prj/2201

APPL COMPLETE
/dayfile,fr=testpn, op=m
10.18.53.TESTPN,PRJ/2201.

10.18.54 .RETURN,LISTFIL,LGO.
10.18.55.FTN5,I=APPL L=LISTFIL ,B=LGO.

10.18.55. 62700 CM STORAGE USED.

10.18.55. 0.009 CP SECONDS COMPILATION TIME.
10.18.55.L60.

10.18.56. END APPL

10.18.56. 14300 MAXIMUM EXECUTION FL.
10.18.56. 0.007 CP SECONDS EXECUTION TIME.

10.19.21.DAYFILE,FR=TESTPN,OP=M
USER DAYFILE PROCESSED.

Figure 4-2. TESTPN with Valid Entry

Procedure Command record:

NOTE./INVALID PROJECT NUMBER/
REVERT,NOLIST.

Dayfile:

testpn,888
INVALID PROJECT NUMBER

/dayfile,fr=testpn,op=m
10.19.51.TESTPN,888.
10.19.51.NOTE./INVALID PROJECT NUMBER/
10.20.03.DAYFILE,FR=TESTPN,OP=M
USER DAYFILE PROCESSED.

/

Figure 4-3. TESTPN with Invalid Entry

60459680 E

Following are some tools you can use to further control procedure expansion:
[«EXPAND Directive
e Inhibit Character
[Concatenation Character

° .EX Directive

.EXPAND Directive

The .EXPAND directive allows you to suspend expansion processing for one or more lines of a
procedure. Inserting a .EXPAND,OFF directive suspends directive processing and parameter
substitution for subsequent lines of the procedure until the end of the procedure or until a
.EXPAND,ON directive appears.

An especially useful application of the .EXPAND directive is to inhibit expansion of a
procedure in a .DATA file. Normally, calling a procedure file initiates expansion of the
entire file, including the data section. However, if the data section contains another
procedure file, you may not want the .DATA file to be expanded until it is called by a BEGIN
command. Inserting a .EXPAND,OFF directive before the .DATA directive prevents the creation
of the .DATA file. Inserting a .EXPAND,OFF directive immediately after the .DATA directive
causes the .DATA file to be created but remain unchanged by expansion of the original
procedure.

Inhibit Character

Like the EXPAND directive, the inhibit character also inhibits parameter substitution or
directive processing during procedure expansion. In general, the scope of the inhibit
character is more limited than that of the EXPAND directive. The default inhibit character
is # (or = if you are using a CDC graphic character set). You can define a different
inhibit character using the ,IC directive.

Usage rules for the inhibit character are:

o The inhibit character placed before a parameter keyword in the command or data
section inhibits substitution of that keyword.

e The inhibit character placed before a procedure directive (including a .DATA
directive) in the command or data section inhibits expansion processing of that
directive.

e The inhibit character placed before a concatenation character inhibits processing of
the concatenation operation; the concatenation character remains intact. In this
case, the inhibit character does not prevent parameter substitution of a keyword
following the concatenation character.

e The inhibit character placed before a second inhibit character causes the second
inhibit character to remain intact and not be recognized as an inhibit character.
In this case, parameter substitution of a keyword following the second inhibit
character 1s not prevented.

4-6 60459680 J

J J

‘Ws)

° Expansion processing strips all inhibit characters from the procedure command record
except for those appearing in a sequence of two or more inhibit characters. When
they appear in sequence, only the odd numbered inhibit characters in the sequence
are acted upon and omitted from the procedure command record.

The inhibit character is often used to allow use of the same character string for both a
parameter keyword and value. For example, if an input file parameter is written as #I=I,
procedure expansion removes the #, leaves the first I intact, and performs normal
substitution on the second I.

If a keyword or directive is subject to expansion processing more than once, you can control
when it is processed by inserting one or more inhibit characters before the keyword or
directive. In the following example, expansion of procedure PROCl creates one local file
called DATAL and strips the # from the second .DATA directive. Since the # character is no
longer present when PROC2 is executed, PROC2 expansion creates local file DATA2.

-PROC,PROCT*I.

REVERT.
.DATA,DATA1.
.PROC,PROC2+I.

REVERT.
#.DATA,DATA2

Following is an example of inhibit character usage.

In this example, procedure INHIBIT resides on file PROCFIL.
«PROC,INHIBIT*I,I=(*N=TEST).
GET,I.
FTNS,#1=1,L=0
LGO.
COMMENT. I, #I, I#I, HIHI.

If procedure INHIBIT is called by the command:
begin,inhibit

The resulting dayfile segment is:

10.31.00.BEGIN, INHIBIT.

10.31.00.GET, TEST.
10.31.00.FTN5, I=TEST,L=0

10.31.00. 56000 CM STORAGE USED.

10.31.00. 0.011 CP SECONDS COMPILATION TIME.
10.31.00.L60.

10.31.01. STOP

10.31.01. 5600 FINAL EXECUTION FL.
10.31.01 0.000 CP SECONDS EXECUTION TIME.
10.31.01.COMMENT. TEST, I, TESTI, 1II.
10.31.01.8REVERT.CCL

60459680 J 4=7

Concatenation Character

The concatenation character allows parameter substitution for a substring of a character

string. The default concatenation character is _ (or 7 if you are using a CDC graphic
character set).

Usage rules for the concatenation character are:

. Expansion processing removes all concatenation characters from the procedure file

except those included in a $-delimited literal string and those preceded by a #
character.

e After removal of a concatenation character, the preceding and following character
strings are concatenated by shifting the remainder of the line one character to the
left. For example, if PROG is a parameter keyword for which the user enters a value
of NEW, the string PROG_B becomes NEWB after expansion processing.

Following is an example of concatenation character usage.

Procedure LINK resides on file FILEI,

-PROC,LINK*I,SUFFIX"FOR COPY"=(*N=,BF,BR,CF,CR,EI,SBF,X),LFN1=(*F) ,LFN2=(*F).
REWIND,LFN1.
COPY_SUFFIX,LFN1,LFN2.

In the following example, the first BEGIN command does a COPYSBF of file PLAN to file
SCHEME. The next BEGIN command does a COPYEI of file MAZE to file TAXES. Each resulting
dayfile follows the BEGIN command.

begin,link,filel,suffix=sbf,1fnl=plan,lfn2=scheme.

08.00.17.3BEGIN,LINK,FILE1,SUFFIX=SBF,LFN1=PLAN,LFN2=SCHEME.
08.00.18.REWIND ,PLAN.

08.00.18.COPYSBF,PLAN,SCHEME.

08.00.18. EOI ENCOUNTERED.

08.00.18.8REVERT. CCL

begin,link,filel,suffix=ei,lfnl=maze,lfn2=taxes.

08.03.23.$BEGIN,LINK,FILET,SUFFIX=EI,LFN1=MAZE,LFN2=TAXES.
08.03.23.REWIND ,MAZE,

08.03.24.COPYEI ,MAZE, TAXES.

08.03.24. EOI ENCOUNTERED.

08.03.24.$REVERT.CCL

4-8 60459680 J

J

J)

.EX Directive

The .EX directive immediately terminates expansion processing and executes the command
included in the directive. No further expansion processing is performed, and the procedure
command record is not executed.

The most common use of .EX is to initiate immediate processing of a menu procedure option as
shown in the following example:

«PROC,APROC*M
,PARM=
(1"orT1",
2"opT2",
3"0PT3").
-EX.BEGIN,PARM,LIBFILE.

EXECUTION OF THE COMMAND RECORD

At completion of expansion processing, the system increments the procedure nesting level
count and begins execution of the procedure command record.

When all commands in the procedure command record have been processed, the system executes a
system— or user-supplied REVERT command, decrements the procedure nesting count, and returns
control to the calling job or procedure.

PROCEDURE DIRECTIVES

Procedure directives have these general syntax features:
e They all have a period as a prefix character.
e You can use a comma or an opening parenthesis as a separator within directives.

. You can use a period or a closing parenthesis as a terminator. You must use a
period or closing parenthesis as a terminator if you append comments to the
directive.

° A procedure directive can span more than one line. No line can contain more than
150 6-bit characterst and each line to be continued must either end with a nonblank
separator or the succeeding line must begin with a nonblank separator.

e Unless otherwise stated, the system reads the characters you enter in directives as
6-bit display code (uppercase characters only). You can enter the text for help
information and prompts in uppercase and lowercase characters (6/12-bit display
code).

tThis value can be changed during installation.

60459680 J 4-9

The detailed descriptions of the procedure directives later in this section include any
exceptions to the general syntax features just cited,

Procedure directives can be grouped by function into six basic types. The directives are
listed by type in table 4-1.

Table 4-1. Procedure Directives

Directive Type Directive Function
Procedure header «PROC Specifies the procedure name, defines parameters, and
enables parameter prompting.
Formatting .CORRECT Specifies the prompt to follow an incorrect parameter
entry,
+ENTER Specifies the prompt to appear before a parameter entry
is made.
.Fn Specifies a label for programmable function key Fn.
« NOCLR Inhibits the automatic clearing of the screen while the
procedure executes,
«NOTE Specifies a message to appear on the screen while the
procedure executes.
+PAGE Specifies the string to precede the page number on the
screen.
« PROMPT Specifies the text for the general request for input.
Help - ENDHELP Marks the end of the help section of the procedure.
+HELP Specifies help text for the procedure or a parameter.
Expansion .CC Specifies the concatenation character to be used in the
Control procedure body.
.ELSE Terminates skipping initiated by a matching .IF or
initiates skipping until a matching .ENDIF is found.
.ENDIF Terminates skipping initiated by a matching .IF or
.ELSE,
.EX Submits a single command to the system for immediate
execution.
+EXPAND Terminates or restores procedure expansion for
subsequent lines of the procedure.
JIF Allows conditional expansion of the procedure body.
.IC Specifies the inhibit character to be used in the
procedure body.
File «DATA Creates a local file,
<EOF Tnserts an end-of-file mark in a (.DATA) file created
by the procedure or in the procedure command record.
.EOR Inserts an end-of-record mark in a (.DATA) file created
by the procedure or in the procedure command record.
Comment o* Identifies comments in the procedure.
4-10 60459680 F

J D

J)

PROCEDURE HEADER (.PROC) Directive

Every procedure begins with a procedure header (.PROC) directive. The .PROC directive names
the procedure, controls parameter prompting, and defines any restrictions on values that can
be entered for the parameters.

The .PROC directive must be the first line of the procedure and must begin in column 1. It
can be continued on one or more succeeding lines by ending the continued line, or beginning
the continuation line, with a non-blank separator character. The .PROC directive must end
with a period (.).

This section describes the interactive and menu formats of the .PROC directive. The
noninteractive format is described in appendix L.

Interactive Format

This directive enables interactive processing of a procedure call (refer to Requesting Help
on Procedure Calls later in this section). The directive:

e Designates procedure parameters as optional or required.

° Designates permissible values and correct syntax for each parameter through a
checklist.

e Describes each parameter to be used in prompting the procedure caller.
Format:

«PROC,pname*I"title" ,p},p2,«e.,pn-cke.

Parameter Description
pname Specifies the procedure name. pname can be one to seven alphanumeric

characters. The procedure name should begin with an alphabetic
character. You must append *I to the procedure name to enable
parameter prompting.

title Specifies the procedure title. The system assumes that your title is
in 6/12-bit display code, which supports uppercase and lowercase
characters. The title string can be a maximum of 40 lowercase
(12-bit) characters, 80 uppercase (6-bit) characters, or any
combination of lowercase and uppercase characters that does not exceed
480 bits. The title field can be null ("") or omitted. If omitted,
the default title used in the screen mode parameter display is the
procedure name pname.

The system displays the title whenever the procedure is called and
required parameters are not supplied.

60459680 E 4-11

Parameter Description
Pi Specifies optional parameters. The maximum number of parameters is

50. Each parameter pj has the following form:

keywrd"description”=(checklist)
or
keywrd”description”=(checklist)

keywrd Specifies the keyword of the parameter. keywrd
can be a string of 1 to 10 alphanumeric
characters. The occurrences of keywrd in the
procedure body are replaced by a value that
conforms to the specifications made in the
checklist. This value is specified by a
parameter on the procedure call or by default
according to checklist specifications.t

If keywrd is surrounded by dollar signs
($keywrd$), any dollar symbols that surround or
are contained within the parameter value are
retained as a part of the value. Note that when
the user is prompted for the value in screen mode,
the value entered is treated as a literal value
even if it is not surrounded by dollar symbols.

If the specified value is not surrounded by dollar
signs, the system converts it to a literal format
(by appending prefixing and suffixing dollar signs
and replicating any dollar signs that occur within
the value) before substituting the value in the
body of the procedure.

description Specifies an optional text string that the system
displays when prompting for a parameter. The
title string can be a maximum of 40 lowercase
(12-bit) characters, 80 uppercase (6-bit)
characters, or any combination of lowercase and
uppercase characters that does not exceed 480
bits. In screen mode, the system displays a
maximum of 40 characters. The description field
may be null or omitted.

You must enclose the text string in quotation
marks or apostrophes. If you use quotation
marks, the default prompt for the parameter pj
has the following format:

Enter keywrd description?

If you use apostrophes, the system uses only your
description string in the prompt:

description?

Two examples of these prompting formats appear
under the description of the .HELP directive.

tThere is a seven—character restriction on the length of the keyword if the name call
format of the BEGIN command is to be used, the keyword is to be specified on the call, or
the procedure is a local file.

4-12 60459680 K

x

J

JJ

Parameter Description
checklist Specifies a list of the acceptable values and

syntax for pj. The checklist must be enclosed

in parentheses. The value specified for a
parameter in a procedure call is compared to each
of the entries in the checklist in left to right
order and a match must occur for a value to be
acceptable. If more than one match occurs, the
first match determines the substitution.

If the checklist is omitted, the system assumes
that any 0- to 40-character value is valid. The
detailed description of acceptable checklist
entries is in the following paragraphs.

ck Specifies a 1- to l0-character comment keyword. The keyword must be
immediately preceded and followed by periods with no intervening
spaces. This is an optional parameter. The system substitutes
comments specified on the procedure call for the comment keyword in
the procedure body. The system substitutes a null value for the
comment keyword if no comments are on the procedure call. If you do
not specify a comment keyword, the system ignores comments made on the
procedure call.

Note that the system treats the comment keyword ck as a contiguous
string upon substitution. If ck is concatenated to another long
string in the procedure body, this substitution could produce a line
that exceeds the line length limit (150 6=bit characters).

A comma must separate .PROC and the procedure name. The separator between the procedure
name and the procedure parameters can be a comma, reverse slant (\), or slant (/). Reverse
slants and slants have special significance as described under Parameter Matching Modes
later in this sectionm.

CHECKLIST ENTRIES

Entries in the parameter checklist are of three types: simple values, equivalenced values,
and checklist patterns. A single checklist can contain any combination of entry types and
multiple entries of the same type.

A simple value is an entry of the form:

pstring

where pstring is any 0- to 40-character string. If pstring contains nonalphanumeric
characters other than asterisks (*), it must be enclosed in literal delimiters ($).

A simple value specifies that if the user enters a value of pstring on the BEGIN command,
pstring is substituted for the parameter keyword in the procedure body.

60459680 K 4-13

An equivalenced value is an entry of the form:

pstring=pvalue

where pstring and pvalue are 0- to 40-character strings. If either pstring or
pvalue contains nonalphanumeric characters other than asterisks (*), it must be
enclosed in literal delimiters (§).

An equivalenced value specifies that if the user enters a value of pstring on the BEGIN
command, pvalue is substituted for the parameter keyword in the procedure body.

There are several patterns that can be used in the checklist. Each pattern defines a set of
restrictions to be placed on values entered by the user. The checklist patterns are
summarized in figure 4-4 and are described in detail on the following pages.

Most checklist pattern have three forms:
*p
*p:
*p=pvalue

where p is a character identifying the checklist pattern and pvalue is any 0- to
40-character string. If pvalue contains nonalphanumeric characters other than
asterisks (*), it must be enclosed in literal delimiters ($).

The *p form specifies that a parameter value entered by the user is substituted for the
parameter keyword if the value meets the requirements defined by *p.

The *p= form specifies that a null substitution occurs if the value entered by the user
meets *p requirements. In other words, all occurrences of the parameter keyword are omitted
from the procedure command record.

The *p=pvalue form specifies that pvalue is substituted for the parameter keyword if the
value entered by the user meets the requirements of the *p pattern.

Special Values

There are three special values that can be specified in an equivalenced value entry in a
*p=pvalue checklist pattern. These special values are:

Special Value Significance

#DATA Specifies the name of the local file created by an unlabeled .DATA
directive (that is, a .DATA directive on which the 1fn parameter is
omitted). Note that there can be no more than one unlabeled .DATA
directive in a procedure. The actual file name used is ZZCCLAA,
ZZCCLAB, ZZCCLAC, or so on, depending on the nesting level of the

procedure.
#FILE Specifies the file containing this procedure.
#PRIMARY Specifies the primary file.

J J

60459680

)

D

Checklist Pattern

*Am..nt

*Am,.n=f
*Am. .n=valuetf

*Fm..nt
*Fm..n=T
*Fm..n=valuef

*K
*K=
*K=value

*N or *D
*N= or #*D=
*N=value
or
*D=value

*Pm. .nT

*Pm. on=t
*Pm. .n=valuet

*R

*Sm..n(chars)t
or
*Sm..n/kt

*Sm. .n(chars)=¥
or
*Sm. .n/k=T

*Sm..n{ chars)=valueT

or
*Sm..n/k=valuet

pstring
pstring=
pstring=pvalue

Description

Allows entry of any character string up to 40 characters. The
string replaces keyword.

Entry of character string causes a null substitution.

Entry of character string replaces keyword with value.

Allows entry of valid NOS file name. File name replaces keyword.
Entry of a file name causes a null substitution.
Entry of a file name replaces keyword with value.

Allows keyword to be entered as a value. No substitution results.
Entry of the keyword causes a null substitution.
Entry of the keyword replaces keyword with value.

Specifies that parameter is optional. No substitution results.

Specifies that omission of parameter causes null substitution.

Specifies a default value for the parameter. Omission of
parameter replaces keyword with value.

Allows entry of a valid NOS file name that does not begin with a
digit. The file name replaces keyword.

Entry of a file name causes a null substitution.

Entry of a file name replaces keyword with value.

Specifies a restricted parameter whose values are not displayed in
the dayfile. Substitution is not affected.

Allows entry of any characters selected from chars or from the set
represented by k. These characters replace keyword.
chars defines all allowable alphanumeric or special characters.
k can be any of the following mnemonic abbreviations:

A Any alphabetic characters

B Any octal characters

D Any decimal characters

AB Any alphabetic and octal characters
AD Any alphabetic and decimal characters

To include an asterisk (*) as a member of the set, append an
asterisk to the mnemonic. For example, D* specifies any decimal
character and * as allowable characters.

Entry of allowable characters causes a null substitution.

Entry of allowable characters replaces keyword with value.

Entry of string pstring replaces keyword with pstring.
Entry of string pstring causes a null substitution.
Entry of string pstring causes pvalue to replace keyword.

tThe specification m..n is optional and defines the minimum and maximum length of the

character string or file name that can be entered for the parameter value.
are 0 to 40 for *A, 1 to 7 for *F and *P, and 1 to 40 for *S.
value is specified, it is assumed to be the maximum.

Valid ranges
If only a single length
For example, *Al0 allows entry of

any string from 0 to 10 characters long.

60459680 K

Figure 4-4. Summary of Checklist Entries

4-15

Checklist Patterns

Checklist Pattern

*Am. .n=value
*Am, .n=
*Am..n

*Fm..n=value
*Fm..n=
*Fm.,.n

Description

Specifies the substitution for keywrd regardless of the specifica-
tions for p; on the procedure call. m..n specifies the minimum
and maximum values for the length of the entry on the procedure
call. The default value for m is 0 and for n is 40, The maximum
value for n is 40. If *Am..n=value is in the checklist, value
replaces keywrd in the procedure body regardless of what is
specified on the procedure call.

You can specify any string of O to 40 uppercase characters for
value. You must delimit special characters, other than asterisks
(*), with dollar signs.

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If value is #PRIMARY,
all occurrences of keywrd in the procedure body are replaced by the
current primary file.

If *Am..n= is in the checklist, a null value replaces keywrd. If
*Am..n is specified, whatever is specified on the procedure call
replaces keywrd.

If you specify some form of the *A entry more than once in a single
checklist, the system uses the leftmost entry.

Example:
«PROC,EBOC*I,P1=(*A5),P2=(*A10,.15),P3=(*A20..).

In this procedure header directive, Pl allows entry of a character
string 0 to 5 characters long, P2 allows a string 10 to 15
characters long, and P3 allows a string 20 to 40 characters long.

Specifies that the parameter entry for pj on the procedure call be

a file name that conforms to the operating system format for a loecal
file name. m..n specifies the minimum and maximum length of the
file name. The default value for m is 1 and for n is 7. If
*Fm..n=value is in the checklist, value replaces keywrd in the
procedure body when a file name is specified on the procedure

call. You can specify any 0- to 40-character string for value.

You must delimit special characters, other than asterisks (*), with
dollar sigus.

60459680 H

JJ

J)

30

Checklist Pattern

*K=value
*K:
*K

60459680 H

Description

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If value is #PRIMARY,
all occurrences of keywrd in the procedure body are replaced by the
current primary file.

If *Fm..n= is in the checklist, a null value replaces keywrd. If
*Fm..n is specified, the file name specified on the procedure call
replaces keywrd.

If you specify some form of the *F entry more than once in a single
checklist, the system uses the leftmost entry.

Example:
Procedure EXEC is on local file EXEC:

.PROC,EXEC*I,I=(*F4..7),B=(*N=LGO,*F) L= (*F=0UTPUT).
FTNS,#I=1,#8=8,#L=L.

EXEC is called:
EXEC,I=CARDS,L=PRINT.

The procedure body becomes:

FTN5,I=CARDS,B=LG0,L=0UTPUT.

Specifies the substitution for keywrd when the parameter entry for
Pi on the procedure call is only the keyword keywrd or if the
keyword is entered in response to an interactive prompt. If
*K=value is in the checklist, value replaces keywrd in the
procedure body. You can specify any string of 0 to 40 uppercase
characters for value. You must delimit special characters, other
than asterisks (*), with dollar signs.

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keyword is replaced by a null value. If value is
#PRIMARY, all occurrences of keywrd in the procedure body are
replaced by the current primary file.

4-18

Checklist Pattern

Description

If *K= is in the checklist, a null value replaces keywrd. If *X is

in the checklist, no substitution occurs.

Specifying some form of the *K entry more than once in a single
checklist is an error. However, you can specify another pattern
that is equivalent. Refer to procedures SUBNl and SUBN2 in the
following examples.

Examples:

Procedure KEY is on local file PROCFIL.

«PROC ,KEY*I ,P1=(*K) ,P2=(*K=X) ,P3=(*K=).
COMMENT. #P1=P1, #P2=P2, #P3=P3

KEY is called:
BEGIN,KEY, ,P1,P2,P3,
The procedure body becomes:
COMMENT. P1=P1, P2=X, P3=
The following calls to procedures SUBN1l and SUBN2 illustrate the
left-to~right checking of the checklist and the use of equivalent

patterns. Procedures SUBN1 and SUBN2 are on local files by those
same names and have the following lines, respectively:

-PROC,SUBN1*I,P1=(*K=KEYWORD,P1=STRING,*N=DEFAULT}.
NOTE. +#P1=P1

«PROC,SUBN2*I ,P1=(*N=DEFAULT,P1=STRING,*K=KEYWORD).
NOTE.+#P1=P1

Procedure SUBN1 is called:
subn1,p1

The system writes:
P1=KEYWORD

Procedure SUBN2 is called:
subn2,p1

The system writes:

P1=STRING

60459680 F

2 J

J

Gﬁ@\

6@”\

Checklist Pattern

*N=value
*N=

*N
*D=value
*D=

*D

60459680 K

Description

A *K checklist pattern applies only when the keyword is entered by
itself, or in response to an interactive prompt. It does not apply
when an equivalenced value matching the keyword is entered as shown
in the following call to procedure SUBNI:

subn1,P1=p1
The system writes:
P1=STRING

Specifies the substitution for keywrd when there is no parameter
entry for pj on the procedure call. If *N=value or *D=value is

in the checklist, value replaces keywrd in the procedure body. You
can specify any string of 0 to 40 uppercase characters for value.
You must delimit special characters, other than asterisks (*), with
dollar signs.

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If value is #PRIMARY,
all occurrences of keywrd in the procedure body are replaced by the
current primary file.

If *N= or *D= is in the checklist, a null value replaces keywrd.
If *N or *D is in the checklist, no substitution occurs.

If no format of the *N or *D entry is in the checklist, Pi is a
required parameter and interactive prompting occurs when it is
omitted from the procedure call. However, if the only entry in the
checklist is a form of *N or *D, any value supplied for it on the
procedure call is ignored and interactive prompting does not

occur. Specifying some form of the *N or *D entry more than once
in a single checklist is an error.

Example:
Procedure SUB is on local file PROCFIL.

.PROC,SUB*I,P1=(*N) ,P2=(*N=X) ,P3=(*N=).
COMMENT. #P1=P1, #P2=P2, #P3=P3, P4

SUB is called:
BEGIN,SUB.
The procedure body becomes:

COMMENT. P1=P1, P2=X, P3=, P4

4-20

Checklist Pattern

*Pm. .n=value
*Pm. .n=
*Pm. .n

Description

*N and *D values are displayed under different conditions. *D
values are always displayed when screen mode interactive prompting
is required and a non-null value has not been entered for the
parameter. *D values are always accepted if entered. *N values
are displayed in screen mode only when they are valid according to
another checklist pattern which has no replacement value. If an *N
value matches more than one checklist pattern, the first checklist
pattern determines whether the value is displayed.

Specifies that the parameter entry for pj on the

procedure call may be a file name that does not begin

with a digit and that conforms to the operating system format for a
local file name. m..n specifies the minimum and maximum length of
the local file name. The default value for m is 1l and for n is 7.
If *Pm..n=value is in the checklist, value replaces keywrd in the
procedure body when a file name is specified on the procedure

call. You can specify any O- to 40-character string for value.

You must delimit special characters, other than asterisks (*), with
dollar signs.

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If value is #PRIMARY,
all occurrences of keywrd in the procedure body are replaced by the
current primary file.

If *Pm..n= is in the checklist, a null value replaces keywrd. If
*Pm..n is specified, the file name specified on the procedure call
replaces keywrd.

If you specify some form of the *P entry more than once in a single
checklist, the system uses the leftmost entry.

Example:

Procedure EXEC is on local file EXEC:

.PROC,EXEC*I,I=(*P4..7) ,B=(*N=LGO,*P) ,L=(*P=0UTPUT).
FTNS,#1=1,#B=8,#L=L.

60459680 K

J

J)

*R

EXEC is called:

EXEC,I=CARDS,L=PRINT.

The procedure body becomes:

FTN5,I=CARDS,B=LG0O,L=0UTPUT.

Specifies that the parameter entry for Pi on the procedure
call is restricted and is not to be displayed in the job or
system dayfiles. When *R is part of the checklist, any value
supplied for p; is removed from the command before it is
placed in the dayfile.

*Sm..n(chars)=value Specifies that the parameter entry for pj on the procedure call

*Sm, .n(chars)=

*Sm. .n(chars)
or

*Sm. .n/k=value

*Sm..n/k=

*Sm. .n/k

60459680 K

may consist of a string of characters selected (in any order) from
the set of characters represented by chars or from the set of
characters represented by k. m..n specifies the minimum and
maximum values for the length of the string entered on the
procedure call. The default for m is 1 and for n is 40. The
maximum value for n is 40. chars represents a set of up to 40
uppercase alphanumeric and/or special characters. Special
characters other than asterisks must be $-delimited. k selects one
of the following sets:

k. Characters

A All alphabetic characters

B All octal characters

D All decimal characters

AB All alphabetic and octal characters
AD All alphabetic and decimal characters

To include one or more asterisks as members of the set, append an
asterisk to the mnemonic. For example, AB* specifies all
alphabetic and octal characters and asterisks are allowed.

If *Sm..n(chars)=value or *Sm..n/k=value is in the checklist, value
replaces keywrd in the procedure body when 1 to n characters from
chars are specified on the procedure call. You can specify any
string of 0 to 40 uppercase characters for value. You must delimit
special characters, other than asterisks (*), with dollar signs.

If value is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
value is #FILE, all occurrences of keywrd in the procedure body are
replaced by the name of the file that contains the procedure. Any
data read from this file begins with the record immediately
following the record that houses the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If value is #PRIMARY,
all occurrences of keywrd in the procedure body are replaced by the
current primary file.

4-20.1/4-20.2

CC

Checklist Pattern

60459680 H

Description

If *Sm..n(chars)= or *Sm..n/k= is in the checklist, a null value is
substituted for keywrd. If *Sm..n(chars) or *Sm..n/k is in the
checklist, the parameter entry for pi on the procedure call
replaces keywrd.

Example:

Procedure COPIL is on local file COPI:
«PROC,COPIL*I,0"OLD FILE NAME"=(xF,*N=0LD),
R'REPLACEMENT FILE NAME"=(xF,*N=LGO),

N""NEW FILE NAME"=(xF,*N=NEW),
L"LAST RECORD'"=(*F,*N=),
F"FLAG"= (%S4 (ARTE) ,*N=) .

COPYL,O,R,N,L,F.
REVERT.

COPIL is called:

BEGIN,COPIL ,COPI 0=0LD ,R=MODIFID,
N=NEW,F=AE.

The procedure body becomes:
COoPYL ,OLD ,MODIFID ,NEW,,AE.
Procedure COPIL will accept one to four letters for the F parameter.

More than one set may be specified for a parameter. For example,
procedure SET has two sets specified for the P parameter.

.PROC,SET*I,P=(xS3(ABC) ,*S3/D).

Parameter entries could include P=BB, P=BCA, or P=901 but not
P=XZY, P=AZ, P=P or P=A2,

Null sets are not allowed. For example, all the set entries for Pl
in the following procedure header are in error.

.PROC,ERROR*I,P1=(*S,*S (), *S3).

4-21

Checklist Pattern

pstring=pvalue
pstring=
pstring

Menv Format

Description

Specifies the substitution for keywrd when the parameter entry for
py on the procedure call matches pstring. pstring must be O to 40
uppercase characters. Special characters must be $—delimited. If
pstring=pvalue is in the checklist, pvalue replaces keywrd in the
procedure body when pstring is specified on the procedure call.
You can specify any string of 0 to 40 uppercase characters for

pvalue. You must delimit special characters, other than asterisks (*)

with dollar signs.

If pvalue is #DATA, all occurrences of keywrd in the procedure body
are replaced by the name of the data file created by the .DATA
directive (refer to .DATA Directive for the name of this file). If
pvalue is #FILE, all occurrences of keywrd in the procedure body
are replaced by the name of the file that contains the procedure.
Any data read from this file begins with the record immediately
following the record that contains the procedure. If the procedure
resides on a library and is called by a name call form of the BEGIN
command, keywrd is replaced by a null value. If pvalue is
#PRIMARY, all occurrences of keywrd in the procedure body are
replaced by the current primary file.

If pstring= is in the checklist, a null value replaces keywrd. If
pstring is in the checklist, pstring replaces keywrd.

Example:

Procedure LABL on a global library file:
«PROC,LABL*I FN"FILE NAME"=(*F),
VSN "VSN OF TAPE"=(*A),
WRITE "YES OR NO"=(YES=W,NO=R).

LABEL ,FN,#VSN=VSN,#PO=WRITE,WRITE.
REVERT.

Procedure LABL is called:

LABL ,FN=STATS ,VSN=TAPE24 ,WRITE=NO.
Procedure body becomes:

LABEL ,STATS,VSN=TAPE24 ,PO=R,R.

This format of the .PROC directive generates a menu when you call the procedure and make no
menu selection, when you make an incorrect selection, or when you request help information
(refer to Requesting Help on Procedure Calls). The presence of the NOLIST parameter on the
.HELP directive suppresses the menu display when you request .HELP information.

4-22

60459680

2 J

R

Format:

+PROC,pname*M"title" ,keywrd=(selections).ck.

Parameter

pname

title

keywrd

selections

ck

60459680 H

Description

Specifies the procedure name. pname must be a l- to 7-character
string of alphanumeric characters. Make the first character of pname
an alphabetic character to avoid inadvertent editing of the primary
file on name calls to procedures. You must append *M to pname to
enable menu generation.

Specifies the menu title. The title string can be a maximum of 40
lowercase (12-bit) characters, 80 uppercase (6-bit) characters, or any
combination of lowercase and uppercase characters that does not exceed
480 bits. The title field can be null (") or completely omitted. If
you omit title, the system uses the procedure name pname as the title
when the procedure is called in screen mode. The title appears
whenever the system displays the menu.

Specifies the keyword in the procedure body for which the system
substitutes one of the selections. keywrd can be a string of 1 to 10
alphanumeric characters.

Defines the menu selections. A maximum of 50 selections can be
defined for a menu. The definitions must have the following format:

numl"descriptl",...,numn"descriptn"

numy Defines an integer number that identifies the menu
selection in the screen display. num; can be any
integer up to 10 digits in length. Menu selections
appear in the screen display in the order they are
defined in the .PROC directive, not necessarily in the
order defined by the selection numbers.

descripti Describes the menu selection. The description can be
a maximum of 40 lowercase (12-bit) characters, 80
uppercase (6-bit) characters, or any combination of
lowercase and uppercase characters that does not
exceed 480 bits. In screen mode, the system will
display a maximum of 40 characters. You can also
specify a null description ("") or omit this field.
This description appears whenever the system displays
the menu.

Specifies a l- to 10-character comment keyword. This is an optional
parameter. A period must follow the comment keyword. The system
substitutes comments specified on the procedure call for the comment
keyword in the procedure body. The system substitutes a null value
for the comment keyword if no comments are on the procedure call. If
you do not specify a comment keyword, the system ignores comments made
on the procedure call.

Note that the system treats the comment keyword ck as a contiguous
string upon substitution., If ck is concatenated to another long
string in the procedure body, this substitution may produce a line
that exceeds the line length limit (150 6-bit characters).

4-22.1

A menu has the following format:

title

numq . descript1
numy. descript,

num, . descriptn
SELECT BY NUMBER OR TYPE Q@ TO QUIT?

where title, numy, and descript; conform to the descriptions given them previously. You
can specify the prompt for a selection using the .PROMPT directive. TIf you do not, the

system uses a default prompt as just shown. Additionally, the system centers all lines when
in screen mode.

The Q option aborts the procedure call and initiates a search for an EXIT command in the
procedure. If the procedure was called from another procedure, the EXIT commands in the
calling procedure or procedures are also processed.

4-22.2 60459680 G

J)

J I

FORMATTING AND HELP DIRECTIVES

Along with the procedure header, the formatting and help directives further define the
parameter prompts and help information that appears at the terminal. The formatting
directives, if present, must follow the procedure header. Comment directives (beginning
with .*) may be interspersed among the formatting directives. Help directives and help text
follow the formatting directives. Comment directives placed in the help section are
considered a part of the help text.

.CORRECT Directive
The .CORRECT directive specifies the first field of the prompt that follows a set of
incorrect parameter entries. When the system prompts the procedure caller for corrections
to an incorrect entry, the prompt has the following three fields:

text parameter descriptionT
This directive specifies the text field.

Format:

.CORRECT, text.
.CORRECT=text .

Parameter Description
text Specifies a 1- to 80-character text string that appears on the

screen. The system interprets your string in 6/12-bit display code,
which supports uppercase and lowercase characters.

In the first format, any alphanumeric or special characters may be
used except a period or right parenthesis (. or)). Special
characters need not be enclosed in $ signms.

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
$ signs.

In screen mode, the default text string is:
Please correct
In line mode, the default string is:
Correct
In screen mode, if the prompt is too long, the system truncates the prompt and indicates the
truncation with an ellipsis (no truncation occurs in line mode). You can suppress display
of the parameter field of the prompt by using apostrophes rather than quotation marks around
the description in the procedure header. In screen mode, the prompt appears left-justified

on the top line of the screen.

This directive does not apply to menu procedures.

t The description field does not appear in screen mode.

60459680 H 4-23

.ENDHELP Directive

The .ENDHELP directive specifies the end of the help section of the procedure body. You
must include an .ENDHELP directive if there are any help directives in the procedure. Only
one .ENDHELP directive is allowed in a procedure.

Format:
LENDHELP.
.ENTER Directive

The ENTER directive specifies the text for the initial prompt for a parameter. When the
system initially prompts the user for a parameter, the prompt has the following three fields:

text parameter description
This directive specifies the text field.
Format:

.ENTER, text.
+ENTER=text.

Parameter Description

text Specifies a l- to 80-character text string that appears on the
screen, 1In the first format, any alphanumeric or special characters
may be used except a period or right parenthesis (. or)). Special
characters need not be enclosed in $ signs.

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
$ signs.
The system interprets your string in 6/12-bit display code, which
supports uppercase and lowercase characters. The default for the
screen mode is:

Please enter

The default for line mode is:

Enter

In screen mode, if the prompt is too long, the system truncates the prompt and indicates the
truncation with an ellipsis (no truncation occurs in line mode). You can suppress display
of the text and parameter fields of the prompt by using apostrophes around the description

in the procedure header. 1In screen mode, the prompt appears left—justified on the top line
of the screen.

This directive does not apply to menu procedures.

4-24 60459680 H

J

J)

.Fn Directive

The .Fn directive specifies a label for one of the six programmable function keys (Fl
through F6) you can use with screen mode parameter displays.

Format:

.Fn,text,
.Fn=text.

where n is one of the integers 1 through 6.

Parameter

text

Description

Specifies a label string of not more than eight characters. You can
specify lowercase and uppercase characters.

In the first format, any alphanumeric or special characters may be used
except a period or right parenthesis (. or)). Special characters need
not be enclosed in dollar signs ($).

In the second format, any characters may be used (including a period or
right parenthesis), but special characters must be enclosed in
dollar signs.

The function and default label of each of the programmable function keys are given in table

4-2,

.F7 Directive

The .F7 directive enables you to use function key 7 (F7) instead of the NEXT or RETURN key
to execute screen mode parameter displays and menu selections. When you specify this
directive, the system displays the F7 key along with the other programmable keys. If you do
not label the key, the system labels it EXECUTE.

Format:
0F7 .
.F7,text.
.F7=text .

Parameter

text

60459680 K

Description

Specifies a label string of not more than eight characters. You
can specify lowercase and uppercase characters.

If you enter the first format and omit text, EXECUTE is displayed
(refer to table 4-2).

In the second format, any alphanumeric or special characters may
be used except a period or right parenthesis (. or)). Special
characters need not be enclosed in dollar signs ($).

In the third format, any characters may be used including a period

or right parenthesis, but special characters must be enclosed in
dollar signs.

4-24,1/4=24,2

G@@\
C@@\

Table 4~2. Programmable Function Keys for Procedures

Key Default Label Function

Fl FWD Pages forward through screens of parameters or menu
selections.

F2 BKW Pages backward through screens of parameters or menu
selections.

F3 HELP FWD Pages forward through screens of .HELP text.

F4 HELP BKW Pages backward through screens of .HELP text.

F5 HELP Displays .HELP text at the bottom of the screen.

F6 QUIT Aborts the procedure call and initiates search for an
EXIT command in the current procedure and (if nested) in
the calling procedures.

F7 EXECUTE Initiates execution of the procedure if all required
values are supplied.

.HELP Directive

The .HELP directive indicates that the text that follows is information about the procedure
itself or its parameters. The procedure caller can access this information by entering a
question mark as a parameter in a procedure call or by appending a question mark to the
procedure name or a parameter name. When the system encounters a question mark in a
procedure call, it stops processing the call and starts help processing. Therefore,
anything entered after the question mark is not read. Refer to Requesting Help on Procedure
Calls later in this section. If specified, .HELP directives must immediately precede the
.ENDHELP directive.

Formats:
+HELP.
+HELP, ,NOLIST.
-HELP, parm.
-HELP,parm,NOLIST.
Parameter Description
NOLIST Suppresses display of some .HELP text during help processing.
parm Specifieé one of the parameter keywords in an interactive procedure

(*1I) or specifies one of the menu selections (choicej) in a menu
procedure (*M).

The first and second formats indicate the text that follows the directive describes the
procedure. For interactive procedures in line mode, the NOLIST parameter suppresses the
display of a parameter list when the caller requests information about the procedure. For
menu procedures, the NOLIST parameter suppresses the display of the menu in line mode.

For interactive procedures, the third and fourth formats indicate the text that follows the
directive describes the parameter associated with the keyword parm. The NOLIST parameter
suppresses the display of acceptable parameter values as given in the parameter”s checklist.

6@“\
6@“\

60459680 K 4-25

For menu procedures, the third and fourth formats indicate that the text following the
directive describes the specified menu selection. The NOLIST parameter suppresses the
display of the menu after the display of the .HELP text.

The text information starts on the line following the .HELP directive. The text can span
multiple lines and must end with either another .HELP directive or an .ENDHELP directive.
Parameter substitution does not occur within the .HELP text.

The system assumes that your .HELP text is in 6/12-bit display code, which supports

uppercase and lowercase characters. In batch jobs, the system displays .HELP text in
uppercase only.

Interactive (*1) Help

When you request help information about an interactive procedure, the system displays the
following:

e The text following the procedure”s .HELP directive.

e The parameters that follow the procedure name on the .PROC directive unless
suppressed by the NOLIST parameter of the ,HELP directive (.HELP,,NOLIST).

e A prompt for a value. The prompt includes the descriptive string specified with the
parameter in the .PROC directive.

When you request information about a particular parameter of an interactive procedure, the
system displays the following:

e Parameter values that are acceptable according to the parameter”s checklist (the
presence of NOLIST on the parameter”s .HELP directive suppresses the display of
these values).

e The text that follows the parameter”s .HELP directive.

e The current value, if any, of the parameter.

e A prompt for a value. The prompt includes the descriptive string specified with the

parameter on the .PROC directive.

Menu (*M) Help

When you request help information about a menu procedure, the system displays the following:
e The text following the procedure”s HELP directive.

e The menu unless suppressed by the NOLIST parameter of the .HELP directive
(.HELP, ,NOLIST).

e A prompt for a menu selection.

When you request information about a particular menu selection, the system displays the
following:

e The text following the .HELP directive for that menu selection.
. The menu unless suppressed by the NOLIST parameter of the .HELP directive.
e A prompt for a menu selection.

4-26 60459680

D D)

J)

CQEA
6@*\

Line Mode Example:

Procedure PRINT (on file PRINT) verifies that the selected file is local before it routes
the file to a printer.

The .HELP text uses lowercase and uppercase
characters.

«PROC,PRINT*I,F"FILE NAME"=(*F),

DC"DISPOSITION CODE"=(*N=LP,LP,PR,LR,LS,LT).

-HELP.

This procedure routes a permanent file to the selected line printer.
<HELP,F.

The name of the permanent file to be routed.

-HELP,DC.

The disposition code. DC accepts only the Line printer options.
-ENDHELP.

.IF,FILE(F,.NOT.LO) ,PF.

GET,F.

-ELSE,PF.

REWIND,F.

.ENDIF,PF.

COPYSBF,F,Z.

ROUTE,Z,#DC=DC.

REVERT,NOLIST.

To get a description of procedure PRINT, either append a question mark to the file name or
enter a question mark as the first parameter. 1If PRINT is a local file, you can get such a
description by entering any of the following:

PRINT?
PRINT,?
BEGIN,PRINT,PRINT?
BEGIN,PRINT,PRINT,?

If PRINT is not local, enter any of the following:
BEGIN,PRINT,PRINT?

or
BEGIN,PRINT,PRINT,?
or
GET,PRINT
PRINT,?
or
GET,PRINT
PRINT?

60459680 H 4-27

The following is a sample of the dialogue generated by the .PROC and .HELP directives:

/begin,print,print?

This procedure routes a permanent file to the selected Line printer.
PARAMETERS FOR PRINT ARE F, DC

ENTER F FILE NAME? ?

ALLOWABLE VALUE(S)

MUST BE A FILE NAME

The name of the permanent file to be routed.

ENTER F FILE NAME? datafil
ENTER DC DISPOSITION CODE? ?
ALLOWABLE VALUE(S)
LP
PR
LR
LS
LT
PARAMETER MAY BE OMITTED
The disposition code. DC accepts only the line printer options.

ENTER DC DISPOSITION CODE? pr

To illustrate the effect of enclosing the description string for a parameter in aposttrophes
instead of quotation marks, we use the same procedure as in the previous example and replace
the quotation marks with apostrophes:

.PROC,PRINT*I, F'FILE NAME'=(xF),
DC'DISPOSITION CODE'=(*N=LP,LP,PR,LR,LS,LT).

Note the difference in the prompts.

/begin,print,print?

This procedure routes a permanent file to the selected Line printer.
PARAMETERS FOR PRINT ARE F, DC

FILE NAME? ?

ALLOWABLE VALUE(S)

MUST BE A FILE NAME

The name of the permanent file to be routed.

FILE NAME? datafil
DISPOSITION CODE? ?
ALLOWABLE VALUE(S)

LP

PR

LR

LS

LT
PARAMETER MAY BE OMITTED

The disposition code. DC accepts only the line printer options.

DISPOSITION CODE? pr

4-28 60459680

J)

JJ

Screen Mode Example:

It you are at a terminal supported by the full-screen display products and your terminal is
in screen mode, the system can use full-screen displays to prompt you for parameters and to
provide you with help information.

The following screen results if you call procedure PRINT (as defined in the previous
example):

/ PRINT

F FILE NAME:
DC DISPOSITION CODE: LP

Specify values and press NEXT when ready

Fs [wece] Fe [aurT]

If you press the HELP key while the cursor is positioned in the input field for first
parameter, you get the following screen:

~ ™

F FILE NAME:
DC DISPOSITION CODE: LP

Specify values and press NEXT when ready
F FILE NAME

ALLOWABLE VALUE(S)
MUST BE A FILE NAME
The name of the permanent file to be routed.

N o [e @m

60459680 H 4-29

C@ﬁ\
6@@“

If you press the HELP key while the cursor is positioned in the input field for the second
parameter, you get the following screen:

PRINT

F FILE NAME:
DC DISPOSITION CODE: LP_

Specify values and press NEXT when ready
DC DISPOSITION CODE

ALLOWABLE VALUE(S)
PR
LR
LS
LT
PARAMETER MAY BE OMITTED

The disposition code. DC accepts only the line printer options.

To get help iuformation about the procedure itself, you can append a question mark to the

name of procedure on the call or press the HELP key again after you get help for any of the
parameters.

/ .

F FILE NAME:
DC DISPOSITION CODE: LP_

Specify values and press NEXT when ready
PRINT

This procedure routes a permanent file to the selected Line printer.

F5 [HELP] Fe

Refer to Volume 2 for a detailed description of calling procedures in screen mode.

4-30 60459680 H

)

D)

.NOCILR Directive

The .NOCLR directive inhibits the system from automatically clearing the screen at the end
of the procedure call (once all required parameters are supplied). You can also specify a
message to appear at the top of the screen. Unless specified to do otherwise, the system
clears the screen at the end of the call, and the screen is blank until the procedure
completes execution or sends output to the terminal.

The .NOCLR directive must be placed before any .HELP directives in the procedure.

Format:
+-NOCLR,message.
.NOCLR=message.
Parameter Description
message Specifies a 1- to 40-character text string that appears at the top of
the screen. You can use uppercase and lowercase characters in the
string.

In the first format, any alphanumeric or special characters may be
used except a period or right parenthesis (. or)). Special
characters need not be enclosed in dollar signs ($).

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
dollar signs.

This directive applies only if the procedure is executed in screen mode.

.NOTE Directive

The .NOTE directive specifies the message that appears on the screen and in your dayfile at
the end of the procedure call (once all required parameters are supplied). Unless specified
to do otherwise, the system clears the screen at the end of the call (refer to the .NOCLR
Directive), and the screen is blank until the procedure completes execution or sends output
to the terminal.

Format:
+«NOTE,message.
-NOTE=message.
Parameter Description
message Specifies a 1= to 40-character text string that appears on the screen

and in your dayfile. You can use uppercase and lowercase characters
in the string.

In the first format, any alphanumeric or special characters may be
used except a period or right parenthesis (. or)). Special
characters need not be enclosed in dollar signs ($).

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
dollar signs.

This directive applies only if the procedure is executed in screen mode.

60459680 K 4-31

.PAGE Directive -

The .PAGE directive specifies the string that precedes the page number for procedure
displays that require more than one screen.

Format:

«PAGE, text.
«PAGE=text.

Parameter

text

.PROMPT Directive

Description

Specifies a 0- to 40-character text string. You can use uppercase and
lowercase characters in the string. The default is:

Page

In the first format, any alphanumeric or special characters may be
used except a period or right parenthesis (. or)). Special
characters need not be enclosed in dollar signs ($).

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
dollar signs.

When a procedure is called in screen mode, the .PROMPT directive defines the last line of
the screen, assuming no .HELP text is being shown. By default, this line tells the
procedure caller how to proceed. For menu procedures, the input field immediately follows

this prompt. In line mode, this directive applies only to menu procedures, where the system
produces a screen—like display.

Format:

.PROMPT, text.
.PROMPT=text .

Parameter

text

4-32

Description

Specifies a 0= to 40-character text string that appears as the prompt
on the screen. The text string can be a maximum of 40 lowercase
(12-bit) characters, 80 uppercase (6~bit) characters, or any
combination of lowercase and uppercase characters that does not exceed
480 bits. :

In the first format, any alphanumeric or special characters may be
used except a period or right parenthesis (. or)). Special
characters need not be enclosed in dollar signs ($).

In the second format, any characters may be used (including a period
or right parenthesis), but special characters must be enclosed in
dollar signs.

60459680 H

J D)

J)

Parameter Description

If the text parameter is omitted, the system issues the following
prompts:

Mode and
Procedure Format Prompt

Screen mode

Interactive

procedure Specify values and press NEXT when ready.

Menu procedure Select from the list above and press NEXT.
Line mode

Interactive

procedure (Not applicable)

Menu procedure SELECT BY NUMBER OR TYPE Q TO QUIT.

EXPANSION CONTROL DIRECTIVES

The expansion control directives allow you to control certain aspects of procedure
expansion. These directives allow you to inhibit expansion of portions of a procedure, to
change the inhibit and concatenation characters, and to skip portions of the procedure when
writing lines to the procedure command record.

.CC Directive

The .CC directive specifies the character used to concatenate character strings during
procedure expansion. The new concatenation character remains in effect until the procedure
terminates or until you enter another .CC directive. The default concatenation character is
the ASCII character _ or the CDC graphics character ®. The .CC directive can be placed
anywhere in the procedure.
Format:

.CC(n)

Parameter Description

n Specifies the new concatenation character.

.EXPAND Directive

The .EXPAND directive terminates or restores procedure expansion for subsequent lines of the
procedure. The .EXPAND directive can be used anywhere in the procedure following the
formatting and help directives.

Format:

EXPAND,option

60459680 K 4-33

Parameter Description

ON Specifies that subsequent lines of the procedure are expanded
normally. This is the default value.

OFF Specifies that no parameter substitutions or directive processing is
performed on subsequent lines. In other words, any subsequent
commands or procedure directives are written to the command record
just as they appear in the procedure file.

.IC Directive

The .IC directive specifies the character used to inhibit parameter substitution or
directive processing during procedure expansion. The new inhibit character remains in
effect until the procedure terminates or until you enter another .IC directive. The default

inhibit character is the ASCII character # or the CDC graphics character —. The .IC
directive can be placed anywhere in the procedure.

Format:
. IC(n)
Parameter Description
n Specifies the new inhibit character.
.SET Directive

The .SET directive allows you to build new parameters using strings and substrings created
by the STR, STRB, and STRD functions and concatenation operations, which are described in
section 6.

Format:

-SET,keywd]=strexp], ...,keywdy=strexpg.

Parameter Description
keywdy Defines a new keyword or references an existing keyword, either from

the .PROC header or from an earlier .SET directive. keywdj can be
substituted in subsequent statements as if it were a formal parameter
in the .PROC header.

If keywdj is an existing keyword, it is prefixed with an inhibit
character to avoid unwanted substitution of the existing value.

If keywdy is enclosed in dollar signs, values substituted for

keywdj in subsequent statements remain in or are converted to the
literal format (by appending prefixing and suffixing dollar signs and
replicating any dollar signs that occur within the values).

strexpj May be any valid CCL expression, usually but not necessarily an
expression that produces a string result. If the result of strexpj
is not a string but a value, the value is left-justified and
considered a string. The resulting string in either case is
substituted for any occurrences of keywdj in subsequent statements
of the procedure.

4-34 60459680 K

J)

J)

Example 1:

.PROC,CATTER*I,P1=(*A) ,P2=(*S3/D).
.SET,K9=STR($P1$,1,4)//STRD(P2,~1) .
.IF,$K9%.EQ.$G00D13,G0.

NOTE./THE 1ST 4 CHAR OF P1 AND THE LAST OF P2 = K9.
.ELSE,GO.

REVERT,EX.DISPLAY,STR(3SORRY, K9 IS NOT GOOD1$).
.ENDIF,GO.

In this example, two substrings were concatenated to produce one string in the .SET
expression. Every occurrence of keyword K9 in the lines following the .SET directive is
replaced by the string resulting from the concatenation of substrings Pl and P2. 1If GOODY
and 101 were supplied as values for Pl and P2, the value of K9 would be set to GOODI. (For
a detailed explanation of how the STR and STRD functions operate, refer to section 6.) The
subsequent .IF statement would be true, causing the NOTE command to be included and
executed. If BADNEWS were substituted for Pl, the .IF statement would be false, resulting
in the execution of the REVERT command and then the DISPLAY command.

Example 2:

«PROC ,VALUES*I ,P1=(*S/D) ,P2=(*S/D).

-SET,V1=STRD (P1+P2) ,V2=STRD (P1*P2) ,V3=STRD (P1**P2) .
- IF,V1=V2=V3.NOTE./SUM, PRODUCT AND POWER ARE EQUAL.
NOTE./THE SUM OF P1 AND P2 IS V1.

NOTE./THE PRODUCT OF P1 AND P2 IS V2.

NOTE./P1 TO THE POWER OF P2 IS V3.

As this example demonstrates, the .SET directive along with the STRD function can create new
keywords that make it possible to include arithmetic values as strings in subsequent
commands and directives.

Example 3:

.PROC,LITKW*I,P1=(*A),$P23=(*A) .

NOTE./ #P1(P1) #P2(P2) #P3(P3) HP4(P4)
.SET,P3=$GHIS, $P4LS=SJKLS.

NOTE./ #P1(P1) #P2(P2) #P3(P3) #P4(P4)
.SET,$#P1$=8P1$, #P2=P2, $H#P33=3P33, #P4=P4.
NOTE./ #P1(P1) #P2(P2) HP3(P3) #P4(P4)
REVERT. LITKW COMPLETED.

Execution of procedure LITKW using a BEGIN command produces:

07.16.51.BEGIN, ,LITKW,ABC,DEF.

07.16.52.NOTE./ P1(ABC) P2(SDEF$) P3(P3) P4(P4)
07.16.52.NOTE./ P1(ABC) P2(SDEF$) P3(GHI) P4 ($JKLS$)
07.16.52.NOTE./ P1($ABCS) P2(DEF) P3($GHIS) P4 (JKL)
07.16.52.REVERT. LITKW COMPLETED.

This example illustrates the creation of keywords not previously defined, redefinition of
existing keywords, and changing the literal keyword characteristics of existing keywords.

FILE DIRECTIVES

The file directives either create local files during procedure expansion time or place file
marks in the procedure command record.

60459680 K 4-34.1

.DATA Directive

A .DATA directive in a procedure marks the beginning of a sequence of data lines to be
written to a separate file when the procedure is called. The data file can contain program
source code, other NOS procedures, or any other type of data.
Format:

«DATA,1fn.

Parameter Description

1fn Specifies the name of the file on which the data lines are to be
written. If a file named 1fn is already assigned to the job, it is
returned, and new local file 1fn is created. You cannot specify INPUT
for 1fn. If 1fn is not specified, the .DATA file can be referenced in
the procedure header using the special symbol #DATA.

The default for 1lfn depends on the nesting level of the procedure. At
the first procedure level, the system calls this file ZZCCLAA; at the
second procedure level, it is ZZCCLAB; and so on.

You can use the .IF, .ELSE, and .ENDIF directives within the data lines following the .DATA
directive to conditionally include lines in the data file.

File marks generated by .EOR and .EOF directives can subdivide the lines written to the data
file into records or files. The sequence of data lines is terminated by one of the
following:

e Another .DATA directive.
e An end-of-record (not an .EOR directive) in the procedure file.
o An end-of-file (not an .EOF directive) in the procedure file.
e An end-of-information in the procedure file.
The data file created does not include the .DATA directive. Keyword substitution continues

within the data file unless you insert a .EXPAND directive to suspend expansion processing.
After the data file is written, it is rewound.

4-34.2 60459680 K

J)

J

The following examples show three different ways of inserting a FORTRAN 5 program into a
procedure.

Example l: Procedure accesses program data with .DATA directive

The following procedure is on an indirect access permanent file named DATAFIL.

.PROC, ALPHA*I,
P1=(*F, *N=#DATA) ,
LSTFILE=(*F,*N=FTNOUT) .
FINS,I=P1,L=LSTFILE.
LGO.
REPLACE,LSTFILE.
.DATA

PROGRAM APROG

- :

statements
END]
The following BEGTN command in 2 command record of the job accesses procedure ALPHA on file
DATAFIL.
BEGIN,ALPHA,DATAFIL.
€@R\ A sample of a resulting dayfile is:

11.07.59.8EGIN,ALPHA, DATAFIL.
11.07.59.FTN5,I=ZZCCLAA,L=FTNOUT.

11.08.00. 61000 CM STORAGE USED.
11.08.00. 0.015 CP SECONDS COMPILATION TIME.
11.08.00.LG0.
11.08.00. STOP
11.08.00. 5600 FINAL EXECUTION FL.
11.08.00. 0.000 cP SECONDS EXECUTION TIME.
11.08.00.REPLACE, FTNOUT.

€ﬁk\ 11.08.01.3REVERT. CCL

All input after the .DATA directive (the FORTRAN 5 source program) is written onto the
default temporary file ZZCCLAA. Parameter substitution is performed on the FORTRAN program
prior to its being written to ZZCCLAA.

60459680 E 4-35

Example 2: Procedure accesses program data with #FILE

The following procedure is on an indirect access perma

nent file named PFILE. The record

immediately following procedure BETA contains the program data. The #FILE default tells the

FTNS compiler to search for input from the next record

.PROC,BETA*I,
P1=(xF, *N=#FILE),
LSTFILE=(*F,*N=FTNOUT) .
FTNS,I=P1,L=LSTFILE.
LGO.
REPLACE,LSTFILE.
-EOR-

PROGRAM BPROG

statements

END
The following call accesses procedure BETA on file PFI
BEGIN,BETA,PFILE.

The following is a segment of the resulting dayfile.
the procedure but not within the FORTRAN 5 program.

11.08.35.BEGIN,BETA PFILE.
11.08.36.FTN5,I=PFILE,L=FTNOUT.

11.08.36. 61000 CM STORAGE USED.
11.08.36. 0.013 CP SECONDS COMPILATION TIME.
11.08.36.L60.
11.08.37. sTOP
11.08.37. 5600 FINAL EXECUTION FL.
11.08.37. 0.000 CP SECONDS EXECUTION TIME.
11.08.37.REPLACE, FTNOUT
11.08.37. SREVERT.CCL

4-36

on file PFILE.

LE.

Parameter substitution occurred within

60459680 E

D J

J)

Example 3: Procedure accesses program data from another file

A procedure may access data outside of the procedure file. The following procedure is in
the default file PROCFIL. It uses a GET command to access the program data on file TEST and
writes the binary output.

.PROC, GAMMAXI,P1= (*F) ,X= (*N=FTNOUT) .
GET,P1.

FTNS,I=P1,L=X.

LGO.

REPLACE,X=LISTFIL.

The following call accesses procedure file GAMMA.
BEGIN,GAMMA, ,P1=TEST.

6@““
\ Parameter substitution occurs within the procedure but not within the FORTRAN 5 program, as
’ shown in the following dayfile segment.

11.06.48.BEGIN, GAMMA, ,P1=TEST.
11.06.48.GET,TEST.
11.06.49.FTN5, I=TEST ,L=FTNOUT.

11.06.50. 61000 CM STORAGE USED.
11.06.50. 0.073 CP SECONDS COMPILATION TIME.
11.06.50.LG0.
11.06.51. STOP
N 11.06.51. 5600 FINAL EXECUTION FL.

éﬁm\ 11.06.51. 0.000 CP SECONDS EXECUTION TIME.
11.06.51 .REPLACE , FTNOUT=LISTFIL.
11.06.51. SREVERT. CCL

(60459680 D 4-37

.EOF (or .EOP) Directive

The .EOF (or.EOP) directive generates an end-of-file on the data file created with a .DATA
directive. Wherever an .EOF appears, an actual end-of~file is recorded when the data file
is written on the file specified in the .DATA directive. The system always writes an
end-of-record at the end of a data file. If you want an end-of-file also, you must end the
file with an .EOF directive. The .EOF directive is valid only after a .DATA directive. The
+EQP directive may be used interchangeably with the .EOF directive.

Format:

.EOF.
.EQP.

.EOR (or .EOS) Directive

The .EOR (or .E0S) directive is used to separate records in a data file created with a .DATA
directive. Wherever an .EOR is placed, an actual end-of-record is recorded when the data
file is written on the file specified in the .DATA directive. The system always writes at
least one end-of-record at the end of a data file, whether or not you specify an .EOR
directive. The .EOR directive is valid only after a .DATA directive. The .EOS directive
may be used interchangeably with the .EOR directive.

Format:

<EOR.
.Eos.

BRANCHING DIRECTIVES
The branching directives provide conditional inclusion of commands, other directives, or
data lines in the procedure. The function of the .ELSE, .ENDIF, and .IF directives is much

like that of their command equivalents. The branching can appear in any of the four
sections of the procedure body.

.ELSE Directive

The .ELSE directive in conjunction with the .IF directive either terminates or initiates the
skipping of lines in the procedure body.

Format:
.ELSE,label.
Parameter Description
label Specifies a 0- to l0-character alphanumeric string. The string must

begin with an alphabetic character unless it is a null string.

If the condition in the matching .IF directive is true, the .ELSE directive initiates the
skipping of the lines between itself and the next matching .ENDIF directive (two directives
match only if their label parameters are identical). If the condition in the matching .IF
directive is false, the .ELSE directive terminates the skipping that the .IF directive
initiated. An .ELSE directive cannot terminate the skipping initiated by another .ELSE
directive.

4-38 60459680 K

J)

2)

.ENDIF Directive

The .ENDIF directive terminates skipping initiated by a matching .IF or .ELSE directive
(directives match only if their label parameters are identical).

Format:
.ENDIF,label.
Parameter Description
label Specifies a 0- to l0-character alphanumeric string. The string must
begin with an alphabetic character unless it is a null string.
.EX Directive

The .EX directive submits a single command to the system for immediate execution. The
system performs keyword substitutions in the command before executing the command. No
further procedure directives are normally processed. Although .DATA files are created, the
command record is never executed. Since the command record is not executed, the procedure
nesting level of your job is not incremented.

Format:

«EX.command.

Parameter Description
command Any valid command. The length of the expanded command cannot exceed

80 characters.

If the command entered by .EX aborts, the system responds as though the command had been
entered from the calling job or procedure. For example, assume that procedure A calls
procedure B and that procedure B contains a .EX directive. If the command entered by the
.EX directive is erroneous, the system immediately suspends command processing and begins
searching for an EXIT command in procedure A.

The .EX directive is most often used in menu procedures in which the command executed by .EX
is a call (BEGIN command) to another procedure. Since the purpose of the menu procedure is
merely to prompt for a single item of user input, the most efficient way of calling the
resulting procedure is in a .EX directive.

Example:

The following menu procedure initiates one of three nested procedures, (EXECl, EXEC2, or
EXEC3) depending on the menu item selected.

+PROC,FIX*M, P=
(1"OPTION 1",

2"OPTION 2",

3"OPTION 3'").
-EX.BEGIN,EXEC_P,PFILE.
REVERT ,NOLIST.

60459680 K 4-39

F (or .IFE) Directive

The .IF directive conditionally writes lines from the procedure body to the procedure
command record or the file associated with the .DATA directive. The .IF directive is to the
procedure command record as the IF command is to the job command record (refer to the IF
command). Before evaluating the conditional expression, the system performs parameter
substitution for the portion of the directive that follows the .IF. Since the system
processes the .IF directive at procedure expansion time, the .IF directive cannot depend
upon the effects of commands in the procedure body.

Formats:

.IF,expression.command.
. IF,expression,label.

Parameter Description

expression Specifies an expression that is either true or false (refer to Command
Syntax in section 6). The separator following expression in the first
format must be a terminator.

command Specifies any valid system command.

label Specifies a 0- to 10-character alphanumeric string. The string must
begin with an alphabetic character unless it is a null string. An
identical string must appear in a subsequent .ELSE or .ENDIF directive.

If expression is true, the first format writes command in the procedure command record while
the second format processes all lines between the .IF directive and the first matching .ELSE
or .ENDIF directive (two directives match only if their label parameters are identical).

If expression is false, the system does not write command in the procedure command record
(for the first format) nor does the system write and process the lines between the .IF
directive and the first matching .ELSE or .ENDIF directive (for the second format).

When using the first format (.IF,expression.
command.), values for .command. that match a
relational, logical, or string operator

(such as .EQ. or .OR.) are interpreted as
operators, causing the procedure to abort.

To write a valid .IF directive when .command.
matches an operator, terminate the expression
or command with a right parenthesis instead
of a period.

4-40 60459680 K

J)

JJ

COMMENT (.*) Directive

The .* directive enables you to document a procedure with internal comments. These comments
do not appear in the dayfile when the procedure is processed. The comment, which follows
the .*, can contain any combination of characters.

Format:
.*comment
Parameter Description

comment Represents your comments.

The comment directive can appear anywhere in the procedure body. However, a comment
directive inserted in the help section is considered as part of the help text.

S

60459680 H 4-40.1/4-40.2

C O

CALLING A PROCEDURE (BEGIN COMMAND)

The BEGIN command initiates execution of a procedure. When a BEGIN command is entered, the

system begins executing the specified procedure and continues until a REVERT command is

entered. The REVERT command causes the system to return to the command record of the calling
job or procedure. The system then continues execution with the first command following the
BEGIN command. Procedures can be nested up to a level of 50 nested procedures.

Figure 4-5 shows a diagram of a procedure call from a batch job and from an interactive job.
The interactive example also diagrams a first level nested procedure call.

Batch Job File

AJOB.
USER ,USERNAME, PASSWORD.

BEGIN, APROC. /

Interactive Command

BEGIN,BPROC

Procedure

.PROC, APROC*I.

REVERT.

Procedure

«PROC,BPROC*T., Procedure

. ———’—‘——’——’____y- . PROC, CPROC*1I.
BEGIN, CPROC.

REVERT.

Figure 4-5.

60459680 D

Calling a Procedure

4-41

You can alter the contents of a procedure by passing parameters to the procedure through the
BEGIN command. The system substitutes the parameter values into the procedure body according
to the rules specified in the procedure header (refer to .PROC Directive earlier in this
section).

The system allows you to input the parameters from a full-screen format if the following
conditions are true:

e Your terminal supports full-screen input for procedures.

e Your terminal is in screen mode (refer to the SCREEN command).

° The procedure is interactive; that is, the .PROC directive contains a *M or *I.
e You do not supply all the required parameters on the procedure call.

Formats:

BEGIN, pname,pfile,p),p2,...,pg.comment

or

—pname,pfile,p),p2,«..,pn.comment
or
pname,pj,p2, «e.,pp.comment
or
pfile,p1,p2, ¢+ ,pn.comment
The first format is the full BEGIN command format that can be used in either batch or
interactive jobs. When you use this format, the system uses the following search order when
attempting to locate file pfile:
e local files
° indirect access files in your permanent file catalog
o direct access files in your permanent file catalog
e indirect access files under user name LIBRARY

e direct access files under user name LIBRARY

The second format can be used only from an interactive job. It uses the same search order
as the first format.

The third and fourth formats are the name call formats in which the command name BEGIN can
be omitted.

4-42 60459680 K

J)

J)

The third format can be used from a batch or interactive job if one of the following is true:

e pname is a procedure within a record in a file called pname. The system locates
this procedure record and executes it.

¢ pname is a procedure in a global library set.

° pname is a procedure in the system library.

The fourth format can be used from a batch or interactive job. pfile is the name of a local
file. The system executes the first procedure on pfile.

Parameter

pname

pfile

Pi

comment

60459680 G

Description

Specifies the procedure name from the procedure header directive. If pname
is omitted from the first format, two consecutive commas must be specified.
The default procedure is the record at the current position of pfile. If
pfile is at its end-of-information, the system rewinds pfile and uses the
first procedure on pfile. If pfile is INPUT, the file is not rewound.

Specifies the name of the file containing the procedure. The file name
pfile must be inserted as the second parameter in the first format. Its
omission is indicated by two consecutive commas following pname. To get a
description of the procedure pname, you can append a question mark to pfile
(refer to Requesting Help on Procedure Calls later in this section). File
pfile is not automatically returned after the procedure executes.

If pfile is omitted from the first format, the installation-defined default
file name is used (PROCFIL is the default).

Specifies an optional parameter that may affect the substitution to be made
for a keyword used in the procedure. The value you specify is compared to
the appropriate checklist specified for this parameter in the procedure
header. The checklist entries are checked in a left—-to-right fashion and
the first match determines the substitution. Refer to the .PROC Directive
in this section for more details on parameter substitution. The specific
formats for pj are described later in this subsection.

If you are using the third or fourth format of the BEGIN command as
previously shown, there is a 7-character restriction on both the keyword
portion and the value portion of the parameter pj,

Specifies the value associated with the comment keyword (ck) on the
procedure header., The value consists of any characters you specify
following the terminator. If the ck keyword appears on the procedure
header, the system substitutes your comment for the comment keyword ck in
the procedure body. Otherwise, the system ignores this comment,

4-43

For interactive procedures (*I), optional parameters pj can have the following formats:

4=44

Pi

keywrd

keywrd?
or

keywrd=

keywrd=val

Description

Specifies a parameter identical to a keyword on the procedure header.
Substitution is controlled by the *K entry in the checklist for the
parameter,

Specifies interactive BEGIN processing (refer to Requesting Help on
Procedure Calls later in this section).
Removes keywrd in the procedure body (null substitution) unless overridden
by a checklist specification.
Allows order-independent substitution (refer to Parameter Matching Modes in
this section). val replaces keywrd in the procedure body unless the
associated checklist specifies otherwise. val can be a l- to 40-character
symbolic name or value. Section 6 describes symbolic names. val can
contain special characters (nonalphanumeric) if they are delimited by dollar
signs. Asterisks are the exception; they can appear without dollar sign
delimiters.,
This parameter format has the following valid variations:
Format Meaning

keywrd=val Substitutes the string val for keywrd.

keywrd=val+ Substitutes the decimal value of val for keywrd.

keywrd=val+D Same as keywrd=val+.

keywrd=val+B Substitutes the octal value of val for keywrd.
When calling a procedure, a keyword can be named more than once if the
keywrd=val parameter format is used each time. The system issues a message

informing you that a keyword is named more than once on the command. It
uses the value specified with the last occurrence of the keyword.

60459680 H

JJ

D)

6ﬁm\
6@**

Pi Description

val Unless overridden by a checklist specification, assigns this 0- to
40-character (uppercase only) symbolic name or value to the keyword whose
position in the procedure header parameter list matches the position of this
parameter in the BEGIN command parameter list (refer to Parameter Matching
Modes in this section). Special characters (nonalphanumeric), other than
asterisks (*), must be delimited by dollar signs. This parameter format has
the following variations:

Format Meaning

val Substitutes the string val itself.

val+ Substitutes the decimal value associated with val.
val+D Substitutes the decimal value associated with val.
val+B Substitutes the octal value associated with val.

If you specify a parameter p; on a name
call to a local file, neither the keyword
keywrd or the value val can exceed seven
characters.

For menu procedures (*M), the procedure call can contain only one substitution parameter
Pj+ On such calls, p; can have one of the following formats:

Py Description

choice Specifies a menu selection that appears on the procedure header. The menu
selection must be an unsigned integer.

choice? Specifies interactive help processing (refer to Requesting Help on Procedure
or Calls later in this section).
?
If you omit pi, the system displays the menu and prompts for a menu selection.

Example:

The following procedure is accessed by a sequence of BEGIN commands in the command record of
the job.

.PROC, TEST1*I , FK.
COMMENT. FK

60459680 H 4-45

The resulting dayfile shows each BEGIN command and the substitutions made. The relevant
segment of the dayfile is as follows:

10.15.26.BEGIN, TEST 1, FKTEST, 20.
10.15.27.COMMENT . 20
10.15.27.REVERT . CCL
10.15.27.SET,R2=100.

10.15.27.BEGIN, TEST1,FKTEST, FK=R2+.
10.15.28. COMMENT . 100
10.15.28.REVERT. CCL
10.15.28.BEGIN, TEST1, FKTEST, FK=R2+D.
10.15.29.COMMENT. 100
10.15.29.REVERT. CCL

10.15.29.BEGIN, TEST1,FKTEST, FK=R2+B.
10.15.30. COMMENT . 144
10.15.30.REVERT. CCL
10.15.30.BEGIN, TEST1, FKTEST, FK.
10.15.31.COMMENT. FK
10.15.31.REVERT.CCL

10.15.31.BEGIN, TEST1,FKTEST, FK=.
10.15.32. COMMENT .
10.15.32.REVERT.CCL
10.15.32.BEGIN, TEST1, FKTEST, VALUE.
10.15. 33.COMMENT. VALUE
10.15.33.REVERT.CCL

10.15.34.BEGIN, TEST1,FKTEST, SVALUE-2$.
10.15.34. COMMENT . VALUE-2
10.15.34.REVERT . CCL
10.15.35.BEGIN, TEST1, FKTEST *.
10.15.35.COMMENT . *
10.15.35.REVERT.CCL

REQUESTING HELP ON PROCEDURE CALLS
After you call a procedure interactively but before the system executes the specified
procedure, you can have a dialogue with the system about the procedure. This is possible
only if the procedure writer appended the *I or *M to the procedure name in the procedure
header (refer to the .PROC directive described in this section). You can do any of the
following:

. Request help information about the procedure itself.

e Request help information about a procedure parameter.

. Supply omitted parameters.

¢ Reenter parameter values that are in error.
If the parameter specifications in the procedure call are incorrect or incomplete, the
system initiates the dialogue. You can also initiate the dialogue by requesting a

description of the procedure or parameters in one of the following ways:

e Append a question mark to the procedure file name.

e Append a question mark to the name of a procedure parameter for *I procedures or to

a menu selection for *M procedures.

b-46 60459680 D

J J

JJ

eﬁﬁ\
F@h\

e Enter a question mark as a parameter on the procedure call.
e Enter a question mark in response to an interactive prompt.

® Press the HELP key any time after you call the procedure if your terminal is in
screen mode.

If you omit required parameters or if any parameter is in error on the procedure call, the
system prompts you for the required parameters and those in error. If the system prompts
you for a parameter that need not be specified and you want to use the default for that
parameter, enter a carriage return. If the format of a parameter entry is not correct or
the parameter entry is not specified on the procedure header directive, you are reprompted
for the parameter. Prompting for parameters terminates when:

e You satisfy all parameter requirements.

e You enter a parameter followed by a terminator (a period or a right parenthesis), or
enter just a terminator. If all required parameters have been entered, the system
executes the procedure. Otherwise, the system continues prompting until all
required parameters are satisfied.

o It is a menu procedure executing in line mode and you enter Q. The system does not
execute the menu. For nested menu procedures, entering Q causes the system to
discontinue expansion of the current procedure and begin searching for an EXIT
command in the calling procedure.

e Your terminal is in line mode and you enter the termination or interruption
character for your terminal (refer to appendix J). The BEGIN command processing
ends and the system does not execute the procedure. For nested procedures,
terminating the dialogue in this way causes the system to search for an EXIT command
in the calling procedure.

® Your terminal is in screen mode and you press the QUIT key. The system does not
execute the procedure. For nested procedures, terminating the dialogue in this way
causes the system to search for an EXIT command in the calling procedure.

As with all commands, you can always append a comment after the terminator on the call.
Additionally, you can append a comment to a parameter entry made during a parameter-—
prompting dialogue. Still, the comment must follow a terminator (refer to the last example
in this subsection).

60459680 E 4-47

The procedure calls in table 4-3 illustrate the various methods of requesting help on

procedure calls.,

For convenience, we show the name call format of the BEGIN command.

Table 4-3., Help on Procedure Calls

Procedure Call

Result

Interactive
Procedure (*I)

Menu
Procedure (*M)

pname

pname?

pname,?

pname,keywrd?

pname,choice?

The system prompts for
required parameters or
parameter values in error.

The system provides any
LHELP text about the pro-
cedure itself and then
prompts for parameters.,

Same as pname? .

The system provides any
LHELP text for the
parameter associated
with keywrd and then
prompts for parameters,

Not applicable.

The system displays the
menu and prompts for a
selection.

The system provides any
.HELP text about the proce-
dure itself, displays the
menu, and prompts for a
selection.

Same as pname,? .

Not applicable.

The system provides any

.HELP text for that menu
selection, displays the

menu, and prompts for a

selection.

4-48

60459680 H

D J

J D

If your job is a batch job and you request a description of the procedure or its parameters,
the system writes the description in the job dayfile. 1If any of the required parameter
specifications are in error, error messages appear in the dayfile. 1In either case, the
system does not execute the procedure.

The following example shows the interactive entry of parameters.
Example:
Procedure F5 resides on local file F5.

«PROC,FS*I, I"INPUT "= (* F , *N=INPUT) ,
B"BINARIES''= (*F,*N=LG0),

L"OUT PUT ' (x F ,#N=0UT PUT) ,

LO"LIST OPTIONS"=(*N=0,0,0,R,A,M,S).
FTNS, #1=1,#8=B, fL=L, #L0=L0.

REVERT.

To elicit prompts for the parameters on the procedure, the user enters

5,7
The following dialogue ensues:

PARAMETERS FOR F5 ARE I, B, L, LO
ENTER I INPUT? test

ENTER B BINARIES ? bfile

ENTER L OUTPUT ? Llisting

ENTER LO LIST OPTIONS? s

REVERT.

The following example is the same as the previous example, except that apostrophes replace
the quotation marks in the procedure header:

.PROC, FS*I, I'INPUT '= (*F, *N=INPUT),

B 'BINARIES '= (* F,*N=LG0) ,

L"OUT PUT *= (*F,*N=0UT FUT),

LO'LIST OPTIONS '=(#N=0,0,0,R,A,M,S).
FTNS,#1=1,#8=8,#.=L,#.0=L0.

REVERT.

To elicit prompts for the parameters on the procedure, the user enters

£5,7

The following dialogue ensues:

PARAMETERS FOR F5 ARE I, B, L, LO
INPUT? test

BINARIES ? bfile

OUTPUT ? Listing

LIST OPTIONS? s
REVERT.

60459680 D 4-49

The following example shows help processing with a menu procedure:

The .HELP text uses lowercase and uppercase
characters.

/list, f=menu

-PROC,MENU*M"' SAMPLE MENU",OPT ION=

(1"OPTION 1",2"OPTION 2", 3"OPTION 3'").COMMENT.
.HELP

This procedure shows the structure of a menu procedure.
.HELP,1

This is HELP text for option 1.

. HELP,2

This is HELP text for option 2.

. HELP,3

This is HELP text for option 3.

« ENDHELP.

«IF,OPTION.EQ.1.NOTE.+YOU CHOSE #OPTION 1 COMMENT.
«IF,0PTION.EQ.2.NOTE. +YOU CHOSE HOPTION 2 COMMENT.
- IF,OPTION.EQ. 3. NOTE.+YOU CHOSE HOPTION 3 COMMENT.
REVERT,NOLIST.

/menu?

This procedure shows the structure of a menu procedure.
SAMPLE MENU

1. OPTION 1
2. OPTION 2
3. OPTION 3

SELECT BY NUMBER OR TYPE Q TO QUIT ? 12
This is HELP text for option 1.

SAMPLE MENU
1. OPTION 1
2. OPTION 2
3. OPTION 3

SELECT BY NUMBER OR TYPE Q@ TO QUIT ? 27
This is HELP text for option 2.

SAMPLE MENU
1. OPTION 1
2. OPTION 2
3. OPTION 3

SELECT BY NUMBER OR TYPE Q@ TO QUIT ? 3?2
This is HELP text for option 3.

4-50 60459680 D

J)

)

SAMPLE MENU

1. OPTION 1
2. OPTION 2
3. OPTION 3

SELECT BY NUMBER OR TYPE Q@ TO QUIT ? 1. finally

YOU CHOSE OPTION 1 FINALLY.
/menu,2
YOU CHOSE OPTION 2.

ENDING A PROCEDURE (REVERT COMMAND)

The REVERT command terminates procedure processing.

Format:
REVERT,option.command
Parameter Description
option Controls the revert options and whether the REVERT command appears at
the terminal and in the job dayfile.

option Meaning

ABORT Returns control to the next EXIT command in the command
record unless a NOEXIT command has been processed.
This parameter sets EF=CPE (CPU abort). It returns
control to the command following the calling BEGIN
command if a NOEXIT command has been processed. This
parameter causes the REVERT command to appear at the
terminal and in the job dayfile.

EX Returns control to the command record of the calling
procedure and executes the command parameter as if the
command had actually appeared in the calling
procedure. The EX parameter causes the REVERT command
to appear in the job dayfile but not at the terminal.

NOLIST Returns control to the command following the calling
BEGIN command and suppresses the display of the REVERT
command at the terminal and in the dayfile.

If you omit option, control returns to the command following the
calling BEGIN command. The REVERT command appears in the job dayfile
but not at a terminal unless you are under the batch subsystem and the
REVERT is not within a nested procedure call.

command Specifies a comment when used with the EX option. Otherwise, it

specifies a comment.

The system always appends the following commands to a procedure record.

$REVERT.CCL
$EXIT.CCL
$REVERT,ABORT.CCL

These commands terminate procedure processing if no user-supplied REVERT commands are

processed.

60459680 K

4=51

Example:

The following procedure (REVTST) is on a file called PROCFL.

It reverts to the job calling

it if the named file has no read permission and aborts {(causing control to be transferred to
the job EXIT command) if the named file has no read modify permission.

.PROC,REVTST*I,LFN1,LFN2.
.IF,FILECLFN1,RD) ,LABEL1.

TDUMP, I=LFN1.
.ELSE,LABEL1.

REVERT.NO READ PERMISSION
.ENDIF,LABEL1.
.IF,FILECLFN1,RM) ,LABEL2.

COPY,LFN2,LFN1.
-ELSE,LABEL2.

REVERT,ABORT. NO READ/MODIFY PERMISSION
.ENDIF,LABEL2.

The following two jobs (REVJOBl and REVJOB2)
execute-only file; REVJOB2 attaches a read o

REVJOB1.
USER,USERNAM,PASSWRD , FAMNAME.
ATTACH,FILE1/UN=ALTUSER,PW=PW1 ,M=E.
BEGIN,REVTST,PROCFL,FILE1,XFIL.

COMMENT. RETURNS HERE
EXIT.
COMMENT. EXIT ON ERROR

The following are the dayfile segments produ
processes the REVERT command and terminates
REVERT,ABORT command and terminates by error

17.03.53.REVJOB1.
17.03.53.USER,USERNAM, , FAMNAME.
17.03.53.CHARGE , *.

17.03.53.% CHARGE(1514,5612PAY)

17.03.56 . ATTACH, FILE1/UN=ALTUSER,M=E.
17.03.56.BEGIN,REVTST,PROCFL,FILE1 ,XFIL.
17.03.56.REVERT.NO READ PERMISSION
17.03.56.COMMENT. RETURNS HERE
17.03.56.EXIT.

4-52

call the REVTST procedure. REVJOBl attaches an

r execute file,

REVJOB2.

USER,USERNAM,PASSWRD ,FAMNAME.
ATTACH,FILE2/UN=ALTUSER,PW=PW2 ,M=R.
BEGIN,REVTST,PROCFL,FILE2,XFIL.
COMMENT. RETURNS HERE

EXIT.

COMMENT. EXIT ON ERROR

ced by REVJOBl and REVJOB2, REVJOBI
normally. REVJOB2 processes the
processing.

17.05.05.REVJ0B2.

17.05.05.USER,USERNAM, , FAMNAME

17.05.05.CHARGE *.

17.05.05.% CHARGE(1514,5612PAY)

17.05.13.ATTACH,FILE2/UN=ALTUSER,M=R.

17.05.13.BEGIN,REVTST,PROCFL ,FILE2 XFIL.

17.05.13.TDUMP, I=FILE2.

17.05.13. TDUMP COMPLETE.

17.05.13.REVERT,ABORT. NO READ/MODIFY
PERMISSION

17.05.13.EXIT.

17.05.13.COMMENT. EXIT ON ERROR

60459680

J)

J

PARAMETER MATCHING MODES

When you call a procedure, the system must match each parameter on the BEGIN command with a
parameter on the procedure header. The system uses two methods of parameter matching,
order-dependent and order-independent.

ORDER-DEPENDENT MODE

In order-dependent mode, the system compares in order each parameter on the procedure call
with the parameter in that position on the procedure header. If any parameter entries do
not conform to the restrictions in the parameter checklist or required parameters are
omitted on the procedure call, the system prompts you for them. After all required
parameters are entered, the system substitutes the selected keywords into the procedure body
according to the checklists in the .PROC directive.

Exa?ple:
Procedure ITEM is on a global library file:

-PROC, ITEM*I, F"LOCAL FILE NAME'S (N=LGO,*xF),

L"NAME OF LIST OUTPUT FILE"= (*N=OUTPUT ,*F),

BL"EACH FILE START ON NEW PAGE? YES OR NO'= (YES=$,BLS$, NO=,#N=),
NR"REWIND BEFORE & AFTER? YES OR NO"=(YES=,NO=$,NRS$,*N=).
ITEMIZE,F,#L=L_BL_NR.

REVERT.

The procedure is called:
ITEM,LIST,,NO,NO.
The parameters are matched in order-dependent mode and the procedure body becomes:

ITEMIZE,LIST,L=0UT PUT,NR.
REVERT.

In order-dependent mode, the system treats excess parameters on the BEGIN command as a
nonfatal error.

ORDER-INDEPENDENT MODE

For each BEGIN command, parameter matching always starts in order-dependent mode. The
system switches to order-independent mode if, in the comparison of a BEGIN command parameter
and a procedure header parameter, one of the following occurs.

e A parameter on the procedure call is in the format keyword=value.

e A reverse slant (\) precedes the parameter on the ,PROC directive or the BEGIN
command .

e A slant (/) precedes the parameter on the .PROC directive.

® A slant precedes the parameter on the procedure call and a slant separates any two
parameters on the .PROC directive.

60459680 D 4-53

However, if a slant is specified on the procedure call and not on the .PROC directive, the
slant is not treated as a separator, but as part of the parameter value.

Parameter matching mode cannot switch back from order-independent to order-dependent mode.

Once in order-independent mode, the system matches each successive keyword on the procedure
call or interactive entry to the identical keyword in the procedure header directive,
regardless of the order of the procedure header parameters or the order of specification on
the procedure call.

To show order-independent parameter matching, the preceding example is slightly modified.
An *K entry has been added to the BL parameter checklist to make BL a valid parameter
entry. A reverse slant is used as a separator before the NR parameter to ensure
order-independent mode.

.PROC,ITEMT*I,F"LOCAL FILE NAME"=(*N=LGO,*F),

L"NAME OF LIST OUTPUT FILE"=(*N=OUTPUT,*F),

\NR"REWIND BEFORE & AFTER? YES OR NO"=(YES=,NO=$,NRS,*N=),

BL"EACH FILE START ON NEW PAGE? YES OR NO"=(YES=$,BL$,NO=,*N=,*K=$,3BL).
ITEMIZE,F,#L=L_BL_NR.

REVERT.

The procedure call (ITEMl is on a global library file):
ITEM1,LIST, ,BL,NR=NO.

starts parameter matching in order-dependent mode. The reverse slant in the procedure
header switches parameter matching to order-independent mode. BL and NR are matched in
order—independent mode. In order-independent mode you must specify all parameters in the
form keyword=value, unless there is an *K entry in the parameter checklist. Then you can
specify just the keyword as the parameter entry. Since *K is specified in the BL parameter
checklist, the system accepts BL as a parameter entry. The NR parameter must be specified
as NR=value or omitted.

After the substitution, the procedure body becomes

ITEMIZE,LIST,L=0UTPUT ,BL,NR.
REVERT.

4-54 60459680 H

J J

J)

COMMAND PROCESSING

\

Jobs entering the system consist of one or more logical records. The first logical record

contains system directives (commands) which describe the processing that is to occur in the

job file. In interactive jobs, you enter the commands directly at the terminal. This

section describes command processing and how the commands affect other aspects of job
processing.

The operating system recognizes four types of commands.

® Local File Commands These commands call programs or procedures on
files that are assigned to the job. The name of
the command is simply the name of the file. LGO
is an example. It is the system default local
file used for retaining object code generated by
one of the language processors.

® Global Library File Commands These commands call programs or procedures on
files that have been specified in a LIBRARY
command.

® System Commands These commands are divided into 10 categories.

Flow control commands

Job control commands

Special commands for interactive jobs
File management commands

Permanent file commands

Load and dump central memory commands
Tape management commands

System utility commands

Library utility commands

Loader commandsT

® Product Set Commands The product set commands call the various produc
available under NOS. Their formats are given in

ts

the applicable product reference manual and in the

NOS 2 Applications Programmer’s Instant.

Since your executing programs can access the command record of your job, it is possible that

they might manipulate items like user names and passwords. Hence, your executing programs
can affect system security.

TRefer to the CYBER Loader Reference Manual.

60459680 D

5-1

COMMAND FORMAT

All commands consist of from one to four fields. The first field is optional. It is a § or
/ prefix character which precedes the program name. If a § is present, it indicates that
the specified program to be executed must be loaded from the system library. Therefore,
even 1f a local file of the same name is present or a program or procedure of the same name
resides on one of your global library files, the system program, not the local program or
global library program, is executed. In all interactive subsystems except the batch
subsystem, the system places a $ in the first field of all commands. Even in the batch
subsystem, the system places a $ in front of the file editing commands ALTER, DELETE, DUP,
LIST, MOVE, READ, WRITE, and WRITEN.

If you use a slant in the first field of local file or global library file commands, the
system processes the parameters in operating system format. For global library file
commands, the presence of an NPC= entry point in the specified library also forces the
system to process the parameters in operating system format (refer to Volume 4, Program
Interface). Otherwise, the system processes local file and global library file commands in
product set format.

The slant option is ignored for command calls to programs residing on the system library.
For those types of calls, parameters are processed in the operating system format unless the
SC directive of SYSEDIT has been entered. Refer to the SYSEDIT command in the NOS 2 System
Maintenance Reference Manual for a description of the SC directive.

Example:
If file EXTRACT is a local file and you enter
/EXTRACT,A,B,10.

the system treats the file as a local file command. The parameters are processed in
operating system format because of the leading slant.

The second field contains the name of the program to be executed. The command name can be
any valid file name.

The third field (optional) contains parameters which further define the operation to be
performed. The parameter field is set off from the name field by a separator character. A
valid terminator character must follow the third field (or the second field if no parameters
are present). In interactive jobs, the terminator is optional.

The fourth field consists of a comments field. The comments field follows the terminator.
In general, the system ignores this field. However, some commands (MODIFY, FSE, GTR,
LIBEDIT, and the like) read this comments field for directives.

In general, commands may not be continued beyond a single line. Exceptions are the

execution control commands (described in section 6) and tape management commands (described
in section 12).

Global library file commands containing an ARG= entry point (ARG= is described in Volume 4,
Program Interface) are not required to follow either the operating system or product set
format. The only syntax requirements enforced by the system for these commands is that the
command name must be a valid file name followed by a separator. The command itself may have
additional syntax requirements.

The following 1s a comparison of the operating system and product set formats (refer to the
NOS 2 Applications Programmer's Instant for commands using the product set format).

5-2 60459680 E

) J

J D

Operating System Format

Valid separators are
+-"/=’(

and any other character with a display
code value greater than 44g except
*) $§ . and blank.

Valid terminators are
.)

Letters, numbers, and the * are

the only characters allowed in the
parameter field. The one exception
to this rule is the use of literals
(that is, character strings delimited
by dollar signs). Characters other
than letters, numbers, and the * can
be included in literals. No char-
acters within a literal have special
meanings; the system merely checks
the syntax of the literal. The
called program must do its own
processing of the literal.

All embedded blanks within a command
except those appearing in literals
are ignored.

Comments may appear on the command
but they must follow the terminator.
They may contain any character.
Comments are not printed for some
commands.

Parameters, separators, and termi-
nators are stored in the job's field
length beginning at RA+2. The char-
acters , . and) are stored as binary
zero. For all parameters and all valid
separators except the comma, their dis-
play code equivalent is stored. Refer
to section 10 of Volume 4, Program
Interface, for more information.

60459680 E

Product Set Format

Same as for the operating system
format.

Same as for the operating system
format.

Same as for the operating system
format.

Same as for the operating system
format.

Same as for the operating system
format.

Parameters are stored in their dis-
play code equivalent beginning at
RA+2. Separators and terminators are
stored as follows:

Character Code (Octal)
> 1
= 2
/ 3
(4
+ 5
- 6

5-3

Operating System Format Product Set Format
Character Code (Octal)
5 10
) or . 17
Other valid 16
separators

Refer to section 10 of Volume 4,
Program Interface, for more

information.
7. File names are one to seven alpha- 7. File names are one to seven alpha-
numeric characters. numeric characters. In some products,

file names beginning with a numeric
character are invalid.

8. Not NOS/BE compatible. 8. NOS/BE compatible.

In general, no parameter can contain more than seven characters. The exceptions include

procedure calls, flow control commands, some tape management commands and system or global
library file commands with an ARG= entry point.

Depending on the program, the parameters can appear in either order—dependent or order-
independent format. Order—-dependent parameters are required when the parameters must be
passed in a specific order. An example of order-dependent parameters is:

RESEQ,MYFILE,B, ,20.

In this example, the system expects the resequencing increment to be passed as the fourth
parameter; therefore, a separator must be present for the parameter not specified.

Order-independent parameters may be passed in any order. This is made possible by the use
of keywords. A keyword is an identifier which has meaning either by itself or when used in
conjunction with an option. Usually, keywords are passed with an option and a separator.
The separator must not be a comma. When the list of parameters is passed to the called
program, all separators except commas are also passed.

Some programs require specific separators (usually =), and others merely require that a
separator be present. Examples of keyword notation are:

1. COBOLS5,I=SFILE,B=BFILE.
2. COBOLS5,B=BFILE,I=SFILE.
3. COBOL5,L=0,E,EL.

4. JOBX,TI10,CM45000.

In examples 1 and 2, both parameters and separators are passed to the COBOL 5 compiler.
Since these parameters are order independent, both commands produce the same result.

In example 3, two keywords are passed with no separator character. In example 4, the

keyword is the first character of the first parameter and the first two characters of the
second parameter.

5-4 60459680 E

2)

J)

The parameters and an image of the command being processed are writtenm in the job
communication area (refer to section 10 of volume 4). The job communication area is the
first 100g words of your job”s field length, from RA through RA+77g. Section 1 and
appendix E in Volume 4, Program Interface, describe this area.

The following commands produce the same image in the job communication area. Both commands
are processed using operating system format.

PERMIT,FILEABC,USERAAA=R,USERBBB=W.

$PERMIT,FILEABC,USERAAA=R, USERBBB=W.

COMMAND PROCESSING FLOW

The system translates a command by the following steps (figure 5-1 shows the processing
flow).

1. Reads the command from the job”s command record or interactive terminal.
2. Verifies the format of the command as described in Command Format.

3. 1If the command is from an interactive terminal, the system compares the command with
the list of special interactive command names. (See section 8 for a list of these
commands.) If the command name is in this list, the command is processed by IAF.

4. Compares the specified command names with the list of command names. If the command
name is CTIME, HTIME, RTIME, *, or STIME, the system processes the command.

5. Searches the job”s file name table (FNT) for a file assigned to the job with a name
identical to the name of the command. However, if a $ precedes the program name,
this step is skipped. If an identical name is found, the program is loaded into
memory. The arguments are extracted from the command and stored in RA+2 through
RA+n+l (n is the number of parameters) unless the command is a system or global
library file command with an ARG= entry point. The CPU is requested to begin
execution unless special loader commands follow.

6. Searches the global library directory for a program name that matches the command
name. If a $ precedes the command name, this step is skipped. If the program is
found, the system proceeds as in step 5; otherwise, the system searches further.

7. Searches the central library directory (CPU library) for a program name that matches
the command name. If the name is found, the system proceeds as in step 4;
otherwise, the system searches further.

8. If the command name is a three-character name with the first character alphabetic,
and if there are no more than two parameters (each of which is an octal number), the
system searches the peripheral processor library directory (PP library) for a
program name that matches the command name. If found, the name is placed as a
peripheral processor request.

9. 1If the system does not find the command name during any of the searches, it declares
the command invalid and aborts the job.

A command is normally echoed to the dayfile
except for system commands or global library
commands containing an SDM= entry point in
the entry point list.

60459680 K 5=5

JJ

STAATS
< O,
! PROCESSES FIELD
P! LenGTHCONTROL
{SEE SECTION 3)
LOADS PROGAAM
v SEARCHES GLOBAL TO CENTRAL
SEARCHES LIST OF prainds LIBRARY SET FOR MEMORY
SPECIAL INTERACTIVE h COMMAND NAME
COMMAND NAMES FOR 3
SPECIFIED COMMAND
NAVE > STORES COMMAND
| AND COMMAND
ARGUMENTS IN
SEARCHES CPU JOB'S FIELD LENGTH
YES PROCESS LIBRARY FOR =
INTERACTIVE COMMAND NAME
COMMAND /
EXECUTES
NO PROGRAM
3
CHECKS IF CTIME,
HTIME, RTIME, OR
STIME COMMAND USES NOS FORMAT
LIBAARY PR NAME FOR PROCESSING
g PARAMETERS
IF NAME IS VALID
vES PROCESSES PP PROGRAMNAME T
FOUND » seeca ||
? REQUEST
PLACES NAME WITH s
No FOUND YES UP TO TWO OCTAL
? 7| ARGUMENTSASA ’
s PP REQUEST
PRESENT YES
BEFORE COMMAND > o
NAME
2 DECLARES
NO COMMAND
: INVALID
PRESENT vES USES NOS FORMAT
BEFORE COMMAND »{ FOR PROCESSING
w%i///’ PARAMETERS
No Y
4 2314
SEARCHES T
FNT FORFILE)
ASSIGNED TO
THIS JOB

Figure 5-1. NOS Command Processing Flow

™
‘ﬁhx

60459680 K

f@ﬁ\

EXIT PROCESSING

When an error condition occurs during a job, the system searches the command record for an
EXIT command.f If the record does not contain an EXIT command, the system terminates the
job if the job is not interactive or returns control to the terminal if the job is
interactive. If the system finds an EXIT command, it clears the error condition and
processes the commands that follow the EXIT command. If the error was a time limit error,
the limit is reset to the time used plus eight seconds. This gives you time for post-error
cleanup operations. If the error was an SRU limit error, the limit is reset to the SRUs
used plus eight SRUs.

1f a NOEXIT command has been processed, normal error processing is not performed. That is,
if the no exit flag has been set by the NOEXIT command prior to the error, the error flag is
cleared, no search is made for an EXIT command, and processing continues with the next
command. An ONEXIT command can be used to return to error processing mode; it clears the no
exit flag.

The following sequence of commands illustrates this exit processing.

JOBCCC.
USER,SMITH22,SMA1.
NOEXIT.

GET,A,B.

ONEXIT.
ATTACH,MASTER/M=W.
SKIPEI,MASTER.
COPYBF,A,MASTER.
COPYBF,B,MASTER.
PACK,MASTER.
COPYSBF ,MASTER.
EXIT.

ENQUIRE, F.

-EOR-

-EOI-

This job attempts to make local copies of two indirect access permanent files and adds them
to a direct access file. The NOEXIT command suspends error processing, and the job
continues even if file A or B is not found. The ONEXIT command turns error processing back
on. If any error occurs thereafter, processing skips to the EXIT command and continues with
the ENQUIRE command. If no error occurs after the ONEXIT command, processing continues
until reaching the EXIT command and then the job terminates (ENQUIRE command is not
processed).

T after a security conflict, the system does not always allow EXIT processing. Refer to
Security Features in section 3.

60459680 E 5-7

FLOW CONTROL COMMANDS 6
“

Flow control commands control the processing sequence of commands within the command record
of a job. They can insert commands from a procedure file, conditionally or unconditionally
skip commands, and control error processing. To determine the conditions for transfer of
control, you can use error flags, file attributes, or other job attributes. The flow
control commands and a brief description of each appear in the following list:

Command Description

BEGIN Initiates processing of a procedure.t

DISPLAY ?vgluates an expression and displays the result in the dayfile of the
job.

ELSE Terminates skipping initiated by a false expression within an IF command
or initiates skipping to a matching ENDIF command.

ENDIF Terminates skipping initiated by a matching IF, SKIP, or ELSE command.

ENDW Establishes the end of the loop.

EXIT Controls the command flow in the event of errors.

IF(or IFE) Conditionally skips one or more commands.

MODE Specifies the type of errors the system recognizes for EXIT processing.

NOEXIT Disables EXIT error processing.

ONEXIT Enables EXIT error processing.

REVERT Returns processing from a procedure to the command'record of procedure

that called it.

SET Assigns values to special symbolic names.
SKIP Skips to the first matching ENDIF command.
WHILE Establishes the beginning of a loop. If the associated expression is

true, the loop is processed; if it is false, the loop is not processed.

t Section 4 contains a detailed description of this command.

{ 60459680 D 6-1

COMMAND SYNTAX

The syntax for these commands is similar to the syntax of all other commands as described in
section 5. However, these are some significant differences.

o Functions, arithmetic expressions, relational expressions, and logical expressions
can appear in parameters of certain commands.

° A right parenthesis ending an expression within a command cannot also serve as the
command terminator. You must include an additional right parenthesis or period to
terminate the command.

. Parentheses can nest expressions within expressions.
® A parameter can consist of more than seven characters.

e A command can be longer than 80 characters if its parameter specifications require
such. It can extend over more than one line if each line to be continued contains
no more than 80 characters and ends with a separator.

The following subsections describe the command syntax, including the operators, operands,
and functions which make up valid expressions. Following that is a discussion of each
command.

OPERATORS

Operators separate operands in a expression. There are four types of operators:

arithmetic, relational, logical, and string. Operators are used in the expressions within
the IF, WHILE, DISPLAY, and SET commands and the FILE, STR, STRB, and STRD functions.

ARITHMETIC OPERATORS

Integer arithmetic is used in each step of the evaluation of an expression. Division,
mz%tiplication, and exponentiation produce a zero result if the absolute value exceeds
2%%-1. The accuracy of computations depends on whether the operands are binary or

decimal. Binary operands (specified using a postradix of B) are restriced to 9 digits not
including the postradix; results involving binary operands are restricted to 16 digits.
Decimal operands and displayed decimal results are restricted to 10 digits (the system
interprets each digit as a 6-bit quantity). For both binary and decimal operands, overflow
is ignored.T

tIf an operand is one of the symbolic names Rl, R2, R3, or RIG, there are further
restrictions. Refer to the SET command in this section.

6-2 60459680 L

o J

2)

(@m\
ﬂ@?\

The following are the arithmetic operators.

Operator

+

/

*%x

Leading -

Leading +

Operation
Addition.
Subtraction.
Multiplication.
Division.
Exponentiation.

Negation. This operator may be used to obtain

Ignored.

RELATIONAL OPERATORS

a one”s complement.

A relational operator produces a value of 1 if the relationship is true, and 0 if it is
The following are the relational operators (either form may be used).

false.
Operator
= .EQ.
.NE.
< .LT.
> .GT.
£ .LE.
2 «GE.

60459680 H

Operation
Equal to.
Not equal to.
Less than.
Greater than.
Less than or equal to.

Greater than or equal to.

6-3

LOGICAL OPERATORS

When an expression contains a logical operator, the system evaluates all bits of each
operand. Each bit of the first operand is compared to the corresponding bit of the second
operand. If the comparison is true, the corresponding bit in the result is set to 1. If
the comparison is false, the corresponding bit in the result is set to 0. The operator
.NOT. is a special case, operating on a single operand. If the operand is nonzero, the
corresponding bit is set to O. If the operand is 0, the corresponding bit is set to l.

I1f neither of the operands in a logical operation is a string operand, the result of a
logical operation is a 60-bit quantity. If one or both is a string operand, the result of
the logical operation is a string whose length depends upon the result of the operation.
The shorter of the two strings is logically extended with binary zero—fill to the length of
the longer string for the logical operation, and trailing binary zero characters are
truncated from the result string.

Operator Operation
.EQV. Equivalence (complement of the logical sum).
.OR. Inclusive OR (logical sum).
.AND, AND (logical product).
+XOR. Exclusive OR (logical difference).
.NOT. NOT.
STRING OPERATORS

String operators operate on string operands. A string operand is the result of one of the
functions STR, STRB, STRD, or of a logical operation involving one or more string operands.

Operator Operation
// .CAT. Concatenation of two strings into one string. (Either // or .CAT. may
be used.)
Example:

- PROC, CATTER*I ,P1=(*A) ,P2=(*S3/D).
.IF,STR($P1%,1,4)//STRD (P2,-1) .EQ.STR ($G0OD1$) ,GO.
NOTE./THE 1ST 4 CHAR OF P1 ARE GOOD AND P2 ENDS IN 1
.ELSE,GO.

REVERT,EX.DISPLAY,STR (3SORRY, P1 IS NOT GOODS$).
.ENDIF,GO.

In this example, two substrings were concatenated to produce one string in the .IF
expression. If GOODY and 101 were supplied as values for Pl and P2, the .IF statement would
be true, and the NOTE command would be included and executed. If BADNEWS were substituted
for Pl, the .IF statement would be false, resulting in the execution of the REVERT command
and then of the DISPLAY command.

64 60459680 L

J

“hﬁ
=

ORDER OF EVALUATION
The order in which operators in an expression are evaluated is:
l. Exponentiation.
2. Multiplication, division.
3. Addition, subtraction, negation, concatenation.
4, Relations,
5. NOT.
6. AND,
7. Inclusive OR.
8. Exclusive OR, equivalence.

Operators of equal order are evaluated from left to right.

OPERANDS

One or more operands separated by operators make up an expression. Expressions are used
within the IF, WHILE, DISPLAY, and SET commands. An expression within an expression must
begin with a left parenthesis and end with a right parenthesis. There is no limit on the
length of an expression, except that a period or a right parenthesis (not acting as a
command terminator) must appear within the first 50 operands. Expressions can contain
operands of one or more types, There are three types of operands: constants, symbolic
names, and functions.

CONSTANTS

A constant is a string of 1 to 10 characters that the system processes as an integer. The
constant can be a numeric string or a literal.

Numeric Strings

Each character in the string must be a digit (0 through 9), except the final character. The
final character can be a postradix of D or B to indicate the number base of the constant. A
postradix of B denotes an octal integer. D or an omitted postradix denotes a decimal
integer.

Literals
A literal is a $-delimited string of characters or a string containing a $-delimited
string. The literal can be a null string ($$). The maximum length for a literal is 10

characters, unless it appears within the STR function, in which case it may be any length up
to the maximum length of the line.

60459680 H 6-5

Special characters can appear in literals but they must appear in the $-delimited portion of
the string. To represent a dollar sign within a literal, you must use double dollar signs.

Valid Literal Invalid Literals
SLITERALIS LITERALIL
$SLITERALS $LITERAL2
$*LITERALS LITERAL3$S
SSSLITERALS *SLITERALS
88 $S*LITERALS
$SLITERALS
§$$$

When a literal appears as an operand in a command, a function, or an expression, the system
processes it as an integer whose value is equal to the display code representation of the
literal value rather than as a character string.

A non-numeric string that appears in an expression to be evaluated must be entered as a
literal; otherwise, the system treats it as an erroneous symbolic name.

Example.

/1F,AF ILE. EQ. AF ILE , LABEL.
CCL157~ UNKNOWN NAME - AFILE

The above command will execute successfully if the file names are entered as literals
(that is, as integer values):

/1F ,$AF ILES. EQ. SAF ILES, LABEL.

When you instruct the system to display or compare the value of a literal string, the system
right-justifies the display code value of the string and treats it as a numeric value. If
the string is the result of the STR, STRB, or STRD function, it is left—justified and
treated as a character string. As a result of this different treatment, a literal string
within the STR function does not compare equally with the same literal string outside the
STR function. In other words, STR($ABCS) is not equal to $SABCS.

Example:

/display,lit

49748 1411248
/display,$a%

1 1B
/display,1

1 18
/display,$13

28 348
/display,$$3%

43 538
/display ,literal

CCL157- UNKNOWN NAME - LITERAL

/display,STR(SREALLY A STRINGS).
REALLY A STRING ’
/

6—-6 60459680 L

D J

J

€@m\

As noted in the previous example (DISPLAY,LITERAL), nonnumeric strings that are not
$-delimited cannot appear as operands. If they appear as such, the system treats them as
erroneous symbolic names. You can, however, use such strings as parameter values for
procedures.

SYMBOLIC NAMES

A symbolic name is a system-defined string of characters to which the system or you can
assign a value. The symbolic names represent job or system attributes. You can ascertain
and sometimes change these attributes by using these symbolic names (refer to the various
commands and functions described later in this section).

Most symbolic names have an initial value of zero. The exceptions are shown in the
following list:

Name Description
CSET Terminal character set mode (NORMAL=0 or ASCII=1).
cs Connection status,
DATE The date in the form yymmdd.
DAY The day of the month.
DAYS Number of days since January 1, 1977.
HID Two-character machine identifier (6-bit display code).
MONTH The month of the year.
NWK Terminal network connection.
oT Your job“s origin type.
PD Page density (default=6 lines per inch; allowable values are 6 or 8).
PL Page length (default=60 lines, minimum=16, maximum=255).
PS Page size (same as page length).
PW Page width (default=136 characters, minimum=40, maximum=255).
SC Your job”s service class,
SL Terminal display mode.
SS Your current subsystem for interactive jobs.
TIME Current time of day in the form hhmm.
VER Operating system version number (6-bit display code).
VERCCL CYBER control language release level displayed as a numeric value.
WEEKDAY The day of the week returned as a numerical value.

60459680 H 6-7

The following lists contain the valid symbolic names and a brief description of each. The
lists do not contain the symbolic names you can use with the FILE and DT functions. Those
symbolic names appear with the descriptions of the functionms.

e Symbolic names whose values are passed to, but not from, a procedure (refer to
section 4). When a procedure reverts, they are restored to the values they held

when the procedure was called.

Name Description

DSC Flag determining whether skipped commands are entered in the
dayfile (refer to SET Command in this section).

EF Previous error flag.

R1 Control register 1l contents,
R2 Control register 2 contents.
R3 Control register 3 contents.

e Symbolic names whose values you can set with SET command or the SETJCI macro (refer
to Volume 4, Program Interface).

Name Description

DSC Flag determining whether skipped commands are entered in the
dayfile.

EF Previous error flag.

EFG Global error flag.

EM Current exit mode (refer to MODE Command, later in this section).

Rl Control register 1 contents.

RIG Global control register 1 contents.

R2 Control register 2 contents.

R3 Control register 3 contents.

SS Subsystem for an interactive job.

6-8 60459680 H

J J

D)

e Symbolic

60459680 L

Name

CMN

Cs

CSET

DATE

DAY

DAYS

DSC

ECN

EF

FAMILY

FL

HID

JSN

MFL

MFLL

MONTH

oT

PACK

PFDT

sC

SL

SPS

SPW

SPD

names whose values are set by the operating system.

Description

Central memory RFL setting divided by 100g (refer to RFL Command

in section 7).

Connection status.

Terminal character set mode (NORMAL=0 or ASCII=l).
The date in the form yymmdd.

The day of the month.

Number of days since January 1, 1977.

Flag indicating that skipped commands are to be entered in the

dayfile.

Extended memory RFL setting divided by 1000g (refer to RFL

Command in section 7).
Previous error flag.
Current family name.
Current CM field length.

Two—character machine identifier (6-bit display code).

Four-character job sequence name that uniquely identifies this job

(6-bit display code).

Maximum CM field length.

Maximum extended memory field length.

The month of the year. (January = 1, February = 2, etc.)

Network type. Possible values for NWK are:

0 = Terminal not connected to NAM.
1 = Terminal connected to NAM/CCP.
2 = Terminal connected to NAM/CDCNET.

Job origin type.

Current pack name.

Permanent file device type (DJl, DL2, and so on) possibly set by

the PACKNAM command.

Service class of the job.

Terminal display mode (LINE or SCREEN).
System page size (in lines).

System page width (in characters).

System page density (in lines per inch).

6-8.1/6-8.2

Name Description

SSM Operating system security mode (0 means unsecured; 1l means secured).
SYS Host operating system.

TIME Current time of day (hhmm).

Ul User index associated with the current user name.

UJN User job name assigned to this job. It defaults to the user index

hash for interactive jobs, or it may be set by SETJOB or by the UJN
parameter of the ROUTE command for batch jobs initiated by ROUTE.

VER Operating system version number (6-bit display code).
USER Current user name.
WEEKDAY The day of the week (Monday = 1, Tuesday = 2, etc.).

Symbolic name whose value is set by the calling or termination of a procedure.

Name Description
PNL Procedure nesting level (0 when processing the original command

record, 1 when processing a first level procedure, and so forth).
Its maximum value is 50.

Symbolic name whose value can be set by the termination of a procedure (refer to SET
Command in this section).

Name Description
EFG Global error flag.

Symbolic names with fixed values that can be compared with the error flag value (EF
or EFG) within an expression. These values correspond to error code values. In an
expression, you can check the error flag (EF) for a nonzero value. A nonzero value
indicates an error, and a zero value indicates no error. For detailed error
examination, you can compare EF with a particular symbolic name or its error code
value. You are encouraged to use the symbolic name, because the numeric values can
change in future releases of NOS. The following list contains the errors that allow
exit processing.

Name Value (Octal) Description

ARE 3 Arithmetic error.

CPE 7 CPU abort.

DRE 37 Deadstart rerun.

ECE 30 Extended memory parity error.

FLE 16 File limit error.

FSE 22 Forced error; set by operator entry of ERR. under DIS
utility.

60459680 L 6-9

6-10

Name Value (Octal)
IDE 25
ITE 4
JSE 41
MLE 14
MXE 47
ODE 24
OKE 35
ORE 46
PCE 10
11
PEE 44
PPE 6
PSE 5
RAE 40
RCE 23
RRE 34
RSE 31
SPE 26
SRE 20
SSE 32
STE 27
SVE 42
SWE 45
SYE 43
TAE 2
TIE 1
TKE 17
TLE 15

Description
Idledown.
SCP invalid transfer address.
Job step abort.
Message limit.
Maximum number of error flags.
Operator drop.
Operator kill.
Override error condition.
PPU call error.
Reserved for installation.
CPU parity error.
PPU abort.
Program stop error.
Recovery abort.
Job hung in auto recall.
Operator rerun.
Recovered system (level 3).
Reserved for your site.
SRU limit error.
Subsystem aborted.
Suspension timeout.
Security conflict.
Software error.
System abort.
User break 2.
User break 1.
Track limit error.

Time limit error.

60459680

g

J)

J)

6@”‘
€ﬁ@\

fﬁ“
6@%\

e Symbolic names with fixed values that can be compared with the job”s connection

status (CS) value within an expression.

Name Value Description
NICS 0 Not interactive.
DTCS 1 Detached.

0LCS 2 Online.

® Symbolic names with fixed values that can be compared with the terminal

set-mode (CSET) value within an expression.

Name Value Description
NORMAL 0 Uppercase characters only.

ASCII 1

Uppercase and lowercase characters.

character

[Symbolic names with fixed values that can be compared with the month of the year

(MONTH) value within an expression.

Name Value Description
JAN 1 January.
FEB 2 February.
MAR 3 March.
APR 4 April.
MAY 5 HMay.

JUN 6 June.

JUL 7 July.

AUG 8 August.
SEP 9 September.
0CT 10 October.
NOV 11 November.
DEC 12 December.

60459680 L

6-10.1 I

6-10.2

Symbolic names with fixed values that can be compared to the terminal”s network
connection (NWK) value within an expression.

NONE 0
ccp 1
CDCNET 2

Description

Terminal has no NAM connection.

Terminal is connected using NAM/CCP.

Terminal is connected using NAM/CDCNET.

Symbolic names with fixed values that can be compared with the origin type (OT)

value within an expression.

Name Value
BCO 1
IAO 3
RBO 2
SYO 0

Description
Local batch origin.
Interactive origin.
Remote batch origin.

System origin.,

Symbolic names with fixed values that can be compared with the service class (SC)

value within an expression:

Name Value
SYsC 1
BCSC 2
RBSC 3
TSSC 4
DISC 5
NSSC 6
SSSC 7
MASC 10
CTsC 11
I0SC 12
I1sC 13
128C 14
13sC 15
DSSC 77

Description
System service class.

Local batch service class.

Remote batch service class.

Interactive service class.

Detached interactive service class.

Network supervisor service
Subsystem service class.

Maintenance service class.
Communication task service
Installation service class
Installation service class
Installation service class
Installétion service class

Deadstart service class.

class.

class.

60459680 G

J D

J)

e Symbolic names with fixed values that can be compared with the terminal display mode
(SL) value within an expression.

Name Value
LINE 0
SCREEN 1

Description
Line mode.

Screen mode.

) Symbolic name with a fixed value that can be compared with the host operating system
(SYS) value within an expression.

Name Value
NOS 6
NOSB 4
SC2 2

[Symbolic names with a fixed value that you can compare with the subsystem for an

interactive job (SS).

Name Value
ACCESS 6
BASIC 1
BATCH 5
EXECUTE 4
FORTRAN 2
FTINTS 3
NULL 0

60459680 G

Description
Network Operating System.
Network Operating System/Batch Environment.

SCOPE 2 Operating System.

Description
The access subsystem.
The BASIC subsystem.
The batch subsystem.
The execute subsystem.
The FORTRAN 5 subsystem.
The FORTRAN Extended 4 subsystem.

The null subsystem.

6-11

e Symbolic names with true or false values. True is l; false is O.

Name
F
FALSE

SWn

T

TRUE

Description
Fixed value of 0 (false).
Fixed value of 0 (false).
One of six sense switches (n can be from 1 to 6). Their values
?§e set by the OFFSW, ONSW, and SWITCH commands (refer to section

Fixed value of 1 (true).

Fixed value of 1 (true).

® Symbolic names with fixed values that can be compared with the day of the week
(WEEKDAY) value within an expression.

FUNCTIONS

Name
MON
TUE
WED
THU
FRI
SAT

SUN

Value Description

1 Monday.

2 Tuesday.

3 Wednesday.
4 Thursday.

5 Friday.

6 Saturday.

7 Sunday.

Functions are used as expressions or operands within expressions in commands. Functions are

not commands.

FILE Function

The functions are FILE, DT, LEN, LVL, NUM, STR, STRB, and STRD.

The FILE function determines whether a local file has a specified attribute. The systenm
returns a value of 1 (true) or 0 (false) depending upon whether the file has or does not
have the specified attributes. Only the equipment number (EQ) and file size (FS) attributes
can return values other than 1 or 0. The list of file attributes follows the description of
the FILE function format.

The FILE function must be used as an expression or as a part of an expression in a command.
A left parenthesis must appear before the file name, a comma must appear between the file
name and the expression, and a right parenthesis must appear after the expression.

6-12

60459680 K

J

J

Format:

FILE(1lfn,expression)

Parameter Description

1fn Name of the local file for which attributes are being determined.

expression Either a special FILE function attribute or an expression, consisting
of logical operators and special FILE function attributes. The
expression must be appropriate for the command in which the FILE
function appears. If the FILE function is part of an IF command or
.IF directive, the expression should be one that can be evaluated as
true or false. If the FILE function is part of the DISPLAY command,
the expression could have a numeric value other than a true or false
value.
The expression within a FILE function cannot include the NUM function,
the symbolic name SS, or another FILE function. The DT function or
the following symbolic names can be used within the expression.

Parameter Description

AP File has append permission.

AS File is assigned or attached to your job.

BOI1 File is positioned at BOI. This is effective only for
a file on mass storage.

EOF Last operation was a forward operation, which
encountered an EOF and is now positioned at that EOF.
This is effective only for a file on mass storage.

EOI Last operation was a forward operation, which
encountered an EOI and is now positioned at that EOI.
This is effective only for a file on mass storage.

EQ EST ordinal of the equipment on which the file
resides. If the file is not assigned to a device, it
has an EST ordinal of zero.

EX File has execute permission.

FS File size in PRUs.

GL File is a global library.

IN File type is input.

LB File is on a labeled tape.

LI File is a system library file.

60459680 K 6-13

Parameter Description
LO File type 1is local.
MD File has modify permission.
MS File is on mass storage.
oP File is opened.
PM File is an attached direct access permanent file.
PT File type is primary.
QF File type is queued.
RA File has read append permission.
RD File has read permission.
RM File has read modify permission.
RU File has read update permission.
TP File is on magnetic tape.
TT File is assigned to a terminal.
up File has update permission.
WR File has write permission.
ZL File has zero length.

Any other symbolic name within the expression is treated either as an implicit DT function
(refer to DT Function, which follows) or as an unidentified variable.

Example:

The following job segment shows the FILE function being used inside an IF command. The FILE
function determines if file ACCT is not at the beginning-of-information (BOI). If ACCT is
not at BOI, the IF command is true and the system rewinds ACCT before copying it onto ITEM.
If ACCT is at BOI, the IF command is false and the system skips to the ENDIF command and
copies ACCT onto ITEM. In both cases, ACCT is copied to ITEM and is replaced.

IF,FILECACCT,.NOT.BOI) ,LABEL1.
REWIND,ACCT.

ENDIF,LABEL1.

COPY,ACCT,ITEM.

REPLACE,ITEM.

DT Function

The DT function determines the device type on which a file resides. DT can be used only
within a FILE function. The value of the DT function is true if the two-character mnemonic
included in the function is equal to the two-character device type. The operating system
defines the mnemonics.

6-14 60459680 K

J J

J)

Format:

FILE(1fn,DT(dt))

Parameter

60459680 L

1fn

dc

Description

Name of the file for which device residence is being determined.

A two-character mnemonic identifying the device, which may be any one
of the following:

Type

DB
DC
DD
DE
DF
DG
DH
DI
DJ
DK
DL
DM
DN
DP
DQ
DV
DW
MT
NE
NT

IT

Equipment
885-42 Disk Storage Subsystem (full-track).
895-1/2 Disk Storage Subsystem (full-track).
834 Disk Storage Subsystem (full-track).
Extended memory.
887 Disk Storage Subsystem (4K sector; full-track).
836 Disk Storage Subsystem (full-track).
887 Disk Storage Subsystem (16K sector; full-track).
844-2]1 Disk Storage Subsystem (half-track).
844-41/44 Disk Storage Subsystem (half-track).
844-21 Disk Storage Subsystem (full-track).
844-41/44 Disk Storage Subsystem (full-track).
885-11/12 Disk Storage Subsystem (half-track).
9853 Disk Storage Subsystem (2K sector; full-track).
Distributive data path to extended memory.
885-11/12 Disk Storage Subsystem (full-track).
819 Disk Storage Subsystem (single—density).
819 Disk Storage Subsystem (double-density).
Magnetic tape drive (7-track).
Null equipment.
Magnetic tape drive (9-track).

Interactive terminal.

6-15

Example:

The following dayfile segment shows that TAXES is on a nine-track magnetic tape, so it is
copied to output and then unloaded. If the DT function was false, TAXES would be unloaded
without being copied.

14.00.45.1F ,FILECTAXES,DT(NT)) ,LABL1.
14.00.46.COPY ,TAXES,OUTPUT.
14.00.46.E0I ENCOUNTERED.
14.00.46.ENDIF,LABLT.
14.00.46.UNLOAD , TAXES.

LEN Function

The LEN function returns the length of a specified string.

Format:
LEN(string)
Parameter Description
string A string of any length up to the maximum length of a line. If the

string is a literal, the length returned is the length of the string
after the removal of the surrounding dollar signs ($) and of any extra
dollar signs within the string.

LVL Function

The LVL function returns the PSR level (or equivalent) for the NOS operatiné system or the
CYBER Control Language.

Format:
LVL(name)

Parameter Description

name Specifies one of the following symbolic values:
name Description
SYS Network Operating System
NOS Network Operating System
CCL CYBER Control Language, the set of

commands that determines the
processing sequence within the command
record

Default is SYS. Symbols for other operating systems
that use the CYBER Control Language are recognized, but
return a value of zero.

6-16 60459680 K

o J

J)

NUM Function

The NUM function determines whether a character string is numeric. It evaluates the
character string as true (1) if it is numeric or false (0) if it is not. NUM must be used
as an expression or as part of an expression.

Format:
NUM(string)
Parameter Description

string A string of 1 to 40 characters. If the string contains one or more
special characters, it must be delimited by dollar signs (for example,
$***5), If delimited by dollar signs, the string is always evaluated
as non—numeric.

f@k\ Example:

The following procedure uses the NUM function to ensure that the passed parameter, NUMBER,

is numeric. If a non-numeric value is passed, the procedure terminates with an appropriate
message.

«PROC,PROCT*I, NUMBER.

. IF,NUM(NUMBER) ,QUIT.
WHILE,R1.LE.NUMBER,LOOP.
SET,R1=R1+1.

y ENDW,LOOP.

REVERT. PROCESSING COMPLETED
.ENDIF,QUIT.
REVERT,ABORT. NONNUMERIC PASSED

STR Function

The STR function produces a left—justified string of any length up to the maximum line
length. The STR function makes it possible to manipulate character strings greater than 10
characters in length. An STR function result may be compared or combined with the results

, of STRB, STRD or other STR functions in a variety of ways.
C@m\ Format:
STR(strexp,lc,re)
Parameter Description
strexp May be any legal expression, usually but not necessarily a literal.

Literals are left—justified, and may be any length up to the maximum
line length. Nonliteral values are treated normally during evaluation
of the expression. However, a numeric result will be left~justified
and treated as a string.

lc Must be an expression producing a numeric result, either positive or
negative. 1lc indicates which character of strexp is to be the
leftmost character of the string produced by STR, counting from the
left if 1lc is positive or from the right if negative. A value of zero
or a negative value which exceeds the length of strexp is treated as
equivalent to l. A positive value greater than the length of strexp
produces a null string. lc may be omitted if it would reference the
leftmost chara<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>