

-

y

CONTROL DATA®

6000 SERIES TIME-SHARING

KRONOS

SATCH USER'S

REFERENCE MANUAL _
CORPORATION

RECORD OF REVISIONS

Revision Notes

A Released 2-27-70

Address comments concerning this manual to:

KRONOS
Batch User's Reference Manual
Publication Number 59150600
Copyright © Control Data Corp., 1970
Printed in the United States of America

ii

Control Data Corporation
Business and Industrial Systems Division
Technical Publications
4201 North Lexington Avenue
St. Paul, Minnesota 55112

59150600 Rev. A

PREFACE

The KRONOS Time-Sharing System was developed by the Business and Industrial Systems

Division of Control Data Corporation. KRONOS processes jobs from a maximum of 384

time-sharing terminals, central site batch jobs, and remote batch jobs.

This manual describes the external features of the KRONOS Operating System for the batch

user. It does not contain a detailed internal description of the associated software nor a

description of the time-sharing commands.

For further information concerning Control Data® 6000 Series computers and the KRONOS

Time-Sharing System, consult the following manuals:

Title

Control Data 6400/6500/6600
Computer Systems
Reference Manual

Time -Sharing FOR TRAN
Reference Manual

FOR TRAN Translator (FTNTRAN)
Reference Manual

EXPOR T /IMPOR T
Reference Manual

BASIC
Reference Manual

ALGOL
Reference Manual

Text Editor (EDIT)
Reference Manual

KRONOS Operating Guide

Control Data MODIFY
File Editing System
Reference Manual

Instant KRONOS

Time-Sharing User's
Reference Manual

KRONOS Terminal User's
Instant Manual

59150600 Rev. A

Publication Number

60100000

59150900

59151000

59150500

59150800

59151200

59150700

59151600

59151100

59152100

59151300

59152000

iii

CONTENTS

2-1

2-1

2-1

2-2

2-2

3-1

3-1

3-1

3-2

3-2

3-2

3-3

3-3

3-3

3-4

3-4

3-4

3-4

3-4

3-4

3-5

3-5

3-5

3-5

3-6

3-6

3-6

3-7

3-8

3-9

3-11

3-11

3-12

Program Execution
Control Cards. . . .

LOAD Card .

SATISFY Card .

EXECUTE Card.

PROGRAM CALL Card ..

FORTRAN Card. ·

COMPASS Card.

MODIFY Card ...

NOGO Card. · · ·

File Management Control
Cards · · · · · · · · · · .

REQUEST Card

3 ... CONTROL CARDS

Job Control Cards

JOB Card .

ACCOUNT Card .

ONSW Card .

OFFSW Card

MODE Card.

COMMENT Card .

EXIT Card.

MAP Card.

PARTIAL MAP Card

NOMAP Card.....

REDUCEFL Card ..

NOREDUCE Card

ROLLOUT Card.

SPTPR Card.

SETTL Card.

2 ... JOB PROCESSING.

Job Input ...

Job Execution · ·

Job Output .. ·

Control Card Translation

1-2

1-1

1-1

1-3

1-3

1-3

1-3

1-4

1-4

1-4

1-5

1-5

1-5

1-5

1-5

1-5

1-6

1-6

1-7

1-7

1-7

1-8

1-8

1-8

1-8

1-9

1-10

1-10

1-10

Conversion .

INPUT File.

OUTPUT File

PUNCH File ..

PUNCHB File .

P8 File

Logical Records

Data Formats ...

Mass Storage

A ddress Mode ..

Index Mode ..•

Coded Punched Cards .

Introduction ...•..

Hardware /Software
Integration. . • 1-1

Central Processor Unit ... 1-2

Peripheral Processor
Units ...•...

Central Memory
(60-Bit Words) · ·

Multiprogramming · ·

Control Points ·

Control Point A rea

Control Point Number ..

Files .

File Names

Binary Punched Cards

Printed Data .

Carriage Control ·

Standard Format
Magnetic Tape .

Unblocked External BCD
Format Magnetic Tape

Blocked External BCD
Format Magnetic Tape

Permanent Files .

1 ... SYSTEM DESCRIPTION

59150600 Rev. A v

CONTENTS (Cont'd)

7-4

7-2

7-5

7-5

7-1

7-6

7-6

7-5

7-6

7-7

7-5

7-3

7-3

7-4

7-7

7-8

7-8

5-3

5-3

5-4

5-4

5-4

5-4

5-6

5-6

6-1

6-2

6-4

7-1

7-1Library Routines · · .

Generate User Library
File (LIBGEN) ...•...

Edit User Library
File (LIBEDIT) · · · · · · · · .

Convert UPDATE Library to
MODIFY Library (UPMOD)

Catalog File Set (CATALOG)

Compare Records (VERIFY)

Compare Library Files
(VFYLIB) .

Extract External
Documentation (DOCEXT)

Generate System Symbol
Cross Reference (SYSREF)

Copy Routines ... · · · · .

Copy through Empty File
(COpy). ..•.........

Copy Binary File (COPYBF)

Copy Binary Record
(COPYBR) .

Copy Coded File (COPYCF)

Copy Coded Record
(COPYCR) ...•......

Copy Shifted Binary File
(COPYSBF) ..•.•

Copy to Terminator
(COPYX)•.•

File Manipulation Routines

Loader Directives

OVER LAY Card.

Overlay Decks ..

Overlay Format

Memory Allocation

System .

User .

Memory Map

6 ... DECK STRUCTURES

COMPASS Decks ..

FORTRAN Decks · .

7 ... UTILITY PROGRAMS

3-15

3-15

3-16

3-16

3-16

3-17

3-17

3-17

3-13

3-14

3-14

3-14

3-15

3-15

3-15

3-15

FIRST

ASSIGN Card

SETID Card ..

COMMON Card

RE LEASE Card.

LOCK Card ..

UNLOCK Card.

MACE Card.

SCOPE Card

System Information

FET Creation Macros ..

LIMIT

OUT. ·

IN. · ·

Permanent File Control
Cards · · . · ..

Circular Buffers

File Environment Table

SAVE Card ·

GET Card ·

REPLACE Card· .

PURGE Card ·

PERMIT Card ·

APPEND :ard·

CA T LIST Card · · · · ·

. PROGRANI/SYSTEM
COMMUNICATION. ·

4 .•
4-1

4-1

4-1

4-2

4-2

4-3

4-3

User Information · . · ... · 4-4

4-4

4-7

Coded File (Sequential) 4-7

Binary File (Sequential) 4-7

Coded File (Random) .. 4-7

Binary File (Random) · · 4-7

User /System Communication
Subroutines· · · · · · · · 4-8

Job Action Requests · · · · · · · 4-8

File Action Requests 4-17

Transfer Data Requests .. 4-22

Position File Requests · · · 4-29

5 ... LOADER OPERATION · · 5-1

Overlays 5-2

vi 59150600 Rev. A

CONTENTS (Cont'd)

Input/Output Routines. · 7-10

Load Binary Corrections
(LBC) 7-10

Write Empty Records
(WRITER) 7-12

Request File Length (RFL) 7-13

Dump Storage (DMP) 7-13

Unload File (UNLOAD) ... 7-8

Rewind File (REWIND) .7-8

Skip to End-of-
Information (SKIPEI). . 7-9

Skip File Forward
(SKIPF) · · • .7-9

Skip File Backward
(SKIPFB). · · · · · . · . . 7-9

Skip Record Forward
(SKIPR,) · ·7-9

Backspace Logical
Records (BKSP) · . . . 7-10

Return Files (RETURN) .. 7-10

Load Octal Corrections
(LOC) .

Punch Binary Cards (PBC)

Read Binary Record (RBR)

Write BinaryRecord (WBR)

Write File Marks (WRITEF)

. 7-11

7-11

7-11

7-12

7-12

APPENDICES

· . B-5

· · B-5

· · C-1

· C-1

· · C-1

· · C-1

· . D-1

· . E-1

· . F-1

Replication Table •. ·

Transfer Table

C ... CARD FORMAT

Column 1 · ·

Binary Card

Coded Cards

D... ERROR DIAGNOSTIC
MESSAGES

E CONTROL CARDS

F CHARACTER SET

· · B-1

· · B-1

· B-2

. B-2

. B-3

. . B-3

. · B-4

Identification Word

Program Identification and
Length (PIDL) Table

Entry Point (ENTR) Table

Text Tables

Fill Table ..

Link Table

A I/O CODES · · · · · · · · · A-1

B RELOCATABLE SUBROUTINE
FORMATS. · .

FIGURES

· . COMPASS Assemble and
Execute Deck .. · · •.. · . 6-2

6-3 ... COMPASS Assemble, Execute
and Punch Binary Output Deck 6-3

6-4... FORTRAN Compile and
Execute Deck · · · · · · · · . .. 6-4

6-5... FORTRAN Load and Run Deck 6-5

6-6. . FORTRAN Overlay
Preparation Deck 6-6

· . 4-2

... 4-2

· 4-3

4-3

. 6-1

. Circular Buffer ·

· . Write Operation ·

. Read Operation ·

· . System File Environment Table

· . Basic Job Deck .

4-1.

4-2.

4-3.

4-4.

6-1.

6-2.

TABLES

1-1 ... Carriage Control Characters · · 1- 9 B-1 ... Identification Word
Parameters B-1

59150600 Rev. A
vii

SYSTEM DESCRIPTION

INTRODUCTION

The KRONOS Time-Sharing System coordinates multiple-user access to one CDC 6000

Series computer. Programs can be submitted from:

• Time-Sharing Terminal

• Central Site

• 200 User Terminal

1

The user can submit his job to KRONOS from a time-sharing terminal. The terminal re­

sponds as if it were a small computer console to which the user has sole access. However,

the 6000 Series computer at the central site allocates only a small portion of its total time

to process the requests of each individual terminal in succession. Hence, KRONOS is a

time-sharing system.

A user can also enter his program at the computer center. He can then use all the equip­

ment attached to the computer; i. e., card reader, punches, line printers, tapes, and other

peripheral devices.

The user can also communicate with the 6000 Series computer from a 200 User Terminal

at his own site. One or more jobs are collected into a job stack which is sent to the com­

puter center over telephone lines. K:RONOS processes the job stack in a manner similar

to that of local batch processing. The system transmits the resulting output to the remote

site.

KRONOS operation and performance depend directly on the system resources available for

job processing. The job types, the number of time-sharing users, and the remote batch

terminals determine the minimum hardware configuration necessary for system operation.

HARDWARE/SOFTWARE INTEGRATION
KRONOS uses the ten Peripheral Processor Units (PPUs) for system and input/ output tasks,

and the Central Processor Unit (CPU) to execute the user's jobs. Central Memory (CM) con­

tains the user programs and a system software area called Central Memory Resident (CMR).

When the term "system" appears in this manual, it is the equivalent of the KRONOS operat­

ing system. When lower case letters appear in format descriptions, they represent user­

supplied values. Capital letters and punctuation markst represent themselves.

t The exception is the ellipsis (. ..)

59150600 Rev. A 1-1

CENTRAL PROCESSOR UNIT

The CPU performs computational tasks but has no input/output capability. It communicates

with the outside world through central memory. Under KRONOS, the CPU is used almost ex­

clusively for program compilations, assemblies, and executions. The CPU program makes

request of the system through the CPU Request register which is the Reference Address

plus one (RA+l) of the current program.

PERIPHERAL PROCESSOR UNITS

The ten peripheral processors (PPO, PP1, ... , PP9) are identical and perform a variety

of tasks. However, the PPUs cannot assemble, compile, and execute user programs effi­

ciently. Under KRONOS, the PPus are assigned various tasks such as system housekeep­

ing, job processing, and input/ output.

PPU number 0 contains the Monitor Program (MTR) that oversees or controls all other

system activities. PP9, under the supervision of MTR, permanently drives the console

typewriter and display scopes. The remaining PPUs, 1 through 8, are initially assigned

to read their input registers (specific locations in central memory) over and over. To

make a request, the monitor inserts a significant word into the input register of a PPU.

When the PPU reads its input register, it obeys the request (or determines that it cannot

do so), sets a drop PPU request in its output register to indicate to the monitor that the

PPU has processed the request, and returns to its idling state. When idling, pool PPUs

continually read their input registers. Thus, all requests to a PPU (other than PPO) are

communicated through the input register of that PPU.

Each PPU (other than PPO) uses its output register (another locatio~ in central memory)

for requests to the monitor and for completion status of the requests. The monitor peri­

odically searches the PPU output registers for requests. The monitor zeros certain bits

in the PPU output registers when the requests have been processed.

Although the primary task of a PPU is to act on requests from MTR, a PPU most occasion­

ally request the cooperation of another PPU. PPUs request these additional PPUs through

the monitor and must request permission from the monitor before using an input/ output

channel. Since each PPU is capable of connecting itself to any channel, only one PPU can

use a specific channel at one time. To avoid two PPUs attempting to use the same channel

(which would hang up both PPUs and the channel), the monitor maintains a list of channels

and their status. Whenever a PPU requires a channel, it must first request the monitor to

assign that channel for its exclusive use. When finished with the channel, the PPU specifies

to the monitor that the channel is free.

1-2 59150600 Rev. A

CENTRAL MEMORY (60-BIT WORDS)

A number of programs can be executed concurrently under KRONOS. These programs are

stored in central memory (user area) along with a set of necessary data for system opera­

tion (central memory resident). Central memory is accessible to both the CPU (within the

field length of a given program) and the PPUs, and thus forms the communications link be­

tween the 11 processors and the system.

Central memory resident contains the library directory, system communication area, sys­

tem tables, the CPU resident routine, and information about each job currently being exe­

cuted. The user area contains the programs currently being executed for each job.

Central memory words are 60 bits in length and contain five 12-bit PPU memory words.

These five PPU words, called bytes, are numbered 0 through 4:

59 47 35 23 11 0

1 b_y_t_e_o_....I__b_y_te_l_-J,.I__b_yt_e_2_---L...I__b_y_te_3_---1..I b_y_te_4_----J1

Central Memory Word

MULTIPROGRAMMING

CONTROL POINTS

The system can execute several jobs simultaneously. During execution, these jobs are

numbered (l-n). The index of each job is called a control point. When the system has se­

lected a job for execution, it assigns the job to a control point. The control point number

identifies and differentiates the job from the other jobs in execution. Each control point ,has

a control point area in central memory that contains all of the information necessary for

KRONOS to define and process the a~signed job.

CONTROL POINT AREA

When a job is in central memory, the control point area to which it is assigned contains

such information as job name, length, starting address in CM, elapsed time, assigned I/O

equipment, and control statements. The control point area also contains a 16-word section

called the exchange package. The exchange package contains all necessary information for

starting or resuming a CM program - the contents of all registers used in executing a pro­

gram.

Under KRONOS, control point 1 is dedicated to TELEX, the CPU executive for the REMOTE

teletypewriter communication package. Control point n is reserved for the EXPORT /IM­

PORT executive.

59150600 Rev. A 1-3

CONTROL POINT NUMBER

In the control point system, a 5-bit number identifies a job in process. For example, a

user's program requests the system to read a magnetic tape. This request generates

several internal requests (which the PPUs pass back and forth). Each of these requests

requires only five bits to identify the user's job.

FILES

A file is an organized collection of data. The file name identifies it to the user and to the

system. KRONOS, the jobs it processes, and intermediate results are files or parts of

files. A file consists of one or more logical records. Each logical record contains one

or more Physical Record Units (PRUs) of data.

Files can be transferred from one device to another since equivalent formats are used for

files on cards, printer, disk, and magnetic tape. The information in a file is stored seri­

ally. An object program can operate on named files and the actual medium of a file can

be specified on control cards; disk storage is assumed if no medium is specified.

Coded information is stored internally in display code on either a disk sector or a mag­

netic tape record. The concept of logical records makes it possible to have equivalent

forms of a file on several media, without losing the advantages of each form of storage.

For example, several cards constituting a logical record can be transferred to an equi­

valent form on disk storage where they are blocked in sectors.

FILE NAMES

File names consist of one to seven alphanumeric characters.

Input and output operations of a central program involve a named file - a disk, magnetic

tape, punched card, or printer file. The physical unit associated with a file name is con­

trolled by the job control cards and is not a function of the central program coding directly.

The operating system provides a common interface between the central program and the

peripheral programs which drive the equipment.

The special files named:

• INPUT

• OUTPUT

• PUNCH

• PUNCHB

• P8

1-4 59150600 Rev. A

are supplied to each job by the system. The user should not try to assign these names to

other temporary or I/O files.

INPUT FILE

The file named INPUT is the file from which the job can be read after it has been assigned

to a control point. Before a job is at a control point, the job file is identified by the job name.

OUTPUT FILE

The file named OUTPUT contains the results which are to become printed copy when the job

terminates. During job processing, the file OUTPUT collects records which are to be

printed. When job processing is completed, the name of this file changes from OUTPUT to

the job name.

PUNCH FILE

The file named PUNCH contains the data which is to become Hollerith punch card output

when the job terminates. When job processing is completed, the name of this file changes

from PUNCH to the job name.

PUNCHB FILE

The file named PUNCHB contains the data which is to become binary punch card output when

the job terminates. When job processing is completed, the name of file PUNCHB also

changes to the job name.

pa FILE

The file named P8 contains the data which is to become 80-column binary punch card output

when the job terminates. When job processing is completed, the name of file P8 also

changes to the job name.

LOGICAL RECORDS

All files under the KRONOS system are organized into logical records. Input files are organ­

ized into logical records by the language translator or other program producing the output.

Otherwise, the user must generate logical records.

Since the logical record is defined for each type of peripheral device, files retain their

structure when transferred between devices. The physical format of a logical record is

determined by the device on which the file resides. The physical record unit size is the

59150600 Rev. A 1-5

smallest amount of information the system transfers during a single physical read or write

operation for each device.

Logical records consist of one or more PRUs, the last of which is short- or zero-length.

For mass storage and tape, a physical record unit that contains less than the normal amount

of data marks the End-of-Record (EOR). Card data has a special EOR mark. An EOR is

written on tape or mass storage as a zero-length PR U if the logical record data is an even

multiple of the PRU size, or if a write operation was requested when no data was in the

buffer. A zero-length PRU is a PRU containing no data.

DATA FORMATS

Data within the system can be binary or coded. Binary records can be of any length. Coded

records are lines of display-coded characters. Binary data is in images of central memory

but is blocked into physical records. The data block lengths are device -dependent.

Each line of coded data begins at the first byte of a word and continues two characters per

byte to the end of a line. The line can be of any length, but should be of a size correspond­

ing to the device to which the line will be written. The last CM word of the line is completed

with at least one cleared byte. A cleared byte is the End-of-Line designation.

Coded data on mass storage or odd parity tape has the same format as binary data, and can

be grouped into records. The following paragraphs describe data formats for each device.

MASS STORAGE

All data on a mass storage device is in 64 CM word PRUs. Each PRU is preceded by two

bytes of control information which is available to the system only. Files on mass storage

can be randomly accessed (logical records of mass storage can be read or written directly

without reading or writing the entire file). Under KRONOS, a user can access a random file

record by address or by record index. In Address mode, a user can access any randorrl

access file. In Index mode, a user can access only those random access files which have a

list of record names or numbers as the first logical record. The addressing structure

allows random access files to be temporarily stored on non-random devices without losing

their random access characteristics.

After an initial random access read request for a file or End-of-Information has been writ­

ten, the system treats a random access file like a sequential file. Subsequent read or write

requests occur at the current file position.

The RPHR and WPHR macros can be used to randomly read or write a PR U of data.

1-6 59150600 Rev. A

KRONOS allows a random access file to be used as a sequential file. However, a user should

not assume that a rewritten random access file is in any particular order.

ADDRESS MODE

The Address mode of random access allows the user to read or rewrite any group of PRUs.

The user specifies the address of the first PRU to be read or rewritten. The length of the

buffer or data in the buffer determines the number of PRUs to be read or rewritten. There­

fore, the rewrite feature should be used carefully because it is possible to overwrite into

the next block of data if a user requests a random write when more data is in the buffer than

in the original block. Also, End-of-File (EOF) and End-of-Record write requests can cause

control PRUs to overlap into following data.

To request A.ddress mode random access processing, set the random access bit (r), set the

first sector number in the random request field of the File Environment Table (FET) (Sec­

tion 4), and set bit 17 of the random request field.

INDEX MODE

The Index mode of random access requires a table of record names or numbers with the

associated first sector numbers. When an indexed random access file is to be saved, the.

system writes this table as the last logical record of the file.

A table of record names requires two words per record. A table of record number requires

one word per record.

All random write requests on an indexed file occur at the End-of-Information mark. There­

fore, when a record on an indexed file is rewritten, it can differ in size from the original

record. The system writes the new record at the End-of-Information (EOI) mark and does

not release the space reserved for the old record.

KRONOS provides system macros for Index mode random access (Section 4).

CODED PUNCHED CARDS

Coded cards are in Hollerith code, 80 characters per card. The system reads data

from cards, converts it to display code, deletes trailing spaces, and packs it into a line of

up to nine CM words. The system punches data for a card until an End-of-Line mark or the

80th character appears. If an End-of-Line mark does not appear after 80 characters, data

is lost. Since the search for an End-of-Line mark terminates when 14 CM words have been

checked, a maximum of 60 characters can be lost if this condition occurs.

59150600 Rev. A 1-7

CONVERSION

Conversion can be specified by the code card. This card has a 5-7-9 punch in column 1.

Column 2 specifies the conversion.

Column 2

blank

9

8

Conversion

026

029 FORTRAN

029 COBOL

Conversion is initially set to 026. A conversion code remains in effect until changed or

until an End-of-Information mark is read, whichever occurs first.

BINARY PUNCHED CARDS

Binary cards contain:

• up to 15 words per card,

• a 7-9 punch in column 1,

• word count of card in column 1, rows 0, 1, 2, 3,

• an ignore checksum punch in column 1, row 4,

• the checksum modulo 4,095 in column 2,

• the binary sequence number in columns 79 and 80, and

• a blank in column 78.

An End-of Record mark has a 7-8-9 punch in column 1. An End-of-File mark has a 6-7-9

punch in column 1. An End-of-Information mark has a 6-7-8-9 punch in column 1.

PRINTED DATA

All printed data is in coded format. The system extracts data to be printed until an End-of­

Line mark or the 136th character appears. If an End-of-Line mark does not appear after

136 characters, data is lost. Since the search for an End-of-Line mark terminates when

14 eM words have been checked, up to four characters can be lost.

CARRIAGE (ONTROl

The system recognizes the first character in a line as the carriage control character. If the

first character is a carriage control character (Table 1-1), it is not printed. When the

system recognizes a carriage control character, it prints a line containing a maximum of

135 characters. Print mode is normally Auto Eject mode (single-space and bypass paper

1-8 59150600 Rev. A

crease). This is the only carriage control command that remains in effect until changed.

All other carriage control commands must be given for each line that they control.

TABLE 1-1. CARRIAGE CONTROL CHARACTERS

Character Command

space Single-space

1 Eject page before print

o Skip one line before print (double space)

- Skip two lines before print (triple space)

+ Suppress space before print

/ Suppress space after print

2 Skip to last line of form before print t
8 Skip to format channel 1 before print t

7 Skip to format channel 2 before print t
6 Skip to format channel 3 before print t
5 Skip to format channel 4 before print t
4 Skip to format channel 5 before print t
3 Skip to format channel 6 before print t
H Skip to format channel 1 after print

G Skip to format channel 2 after print

F Skip to format channel 3 after print

E Skip to format channel 4 after print

D Skip to format channel 5 after print

C Skip to format channel 6 after print

Q Clear Auto Eject

R Set Auto Eject

S Select 6 lines

T Select 8 lines

t No space after print

STANDARD FORMAT MAGNETIC TAPE

The standard KRONOS magnetic tape format is 7-track J 1/2-inch tape. The system writes

to tape in odd parity; 512 eM word PRUs. An EOR mark is a short PHU (less than 512

words) and an EOF mark is a tape file mark. Data is in central memory image.

59150600 Rev. A 1-9

UNBLOCKED EXTERNAL BCD FORMAT MAGNETIC TAPE

Unblocked External BCD format is 7-track, line or card image 1/2-inch tape. The system

writes to tape in even parity, 136 character PRUs unless the user specifies another PRU

size on an ASSIGN or REQUEST card. Both EOR and EOF marks are represented by tape

file marks. The system converts data to display code, deletes trailing spaces, and stores

ten characters per CM word for a read operation. For a write operation, the system con­

verts data to External BCD, adds trailing spaces if necessary, and writes the characters in

a coded line, discarding characters that occur after the specified number.

BLOCKED EXTERNAL BCD FORMAT MAGNETIC TAPE

Blocked External BCD format is 7-track, 1/2-inch tape. The system writes to tape in even

parity, 150 character PRUs unless the user specifies another PR U size on an ASSIGN or

REQUEST card. Both EOR and EOF marks are represented by tape file marks. The sys­

tem converts data to display code and stores ten characters per CM word for a read opera­

tion. If necessary, the system completes the last word with spaces. For a write operation,

the system converts data to External BCD and writes the characters in a coded line, dis­

carding the characters that occur after the specified number.

PERMANENT FILES

Under KRONOS the user has access to permanent files - files which cannot be lost by a dead­

start operation. Permanent files can be accessed in any available system mode (Address

or Index) once the file has been retrieved from permanent file storage and is available at

the user's control point.

1-10 59150600 Rev. A

JOB PROCESSING 2

A job consists of one file of punched cards or card images. The first logical record of a job

file contains the control cards that specify the job's processing requirements. The system

processes jobs in three sequential but independent stages:

• Input

• Execution

• Output

Many jobs can be in the input and output stages of processing but only n jobs (one for each

control point) can be in the execution stage. Each job must begin with a job card and end

with an End-of-Information card. All other control cards follow the job card directly. The

end of the control cards is signified by a 7-8-9 card (End-of-Record) or a 6-7-8-9 card

(End-of-Information) if the job consists of control cards only.

JOB INPUT

The system reads an entire job from the card reader and stores it on mass storage in the

input queue. A typical job file has three logical records: control cards, program cards,

and data cards.

JOB EXECUTION

The system executes a job by:

• bringing the job to a control point,

• following the directives of the control cards, and

• accumulating data for the output stage of job processing.

A job is executed only when it is assigned to a control point. One job is assigned to each

control point. When a control point becomes available, the system selects a job from the

input queue and assigns it to the free control point.

After a job is assigned to a control point, KRONOS advances the job according to the job control

cards. These control cards contain directives (such as LOAD or EXECUTE) that are inter­

preted and obeyed, one at a time, in the order they appear in the job file. For example, a

compilation is achieved by a load and execute of the desired compiler program.

59150600 Rev. A 2-1

During execution, the system accumulates the output data (if there is any) in files on the

system mass storage device.

JOB OUTPUT

When the system has obeyed the last control card for a job, it enters the files of accumulated

output data into the output queue. The system selects files from the output queue and pro­

cesses them according to file type (punched cards, printer listings, etc.).

CONTROL CARD TRANSLATION

KRONOS translates a control statement by:

1. Reading the statement from the control point control card buffer. If necessary, the

system reloads control statements from the file INPUT.

2. Deleting all spaces between the beginning of the statement and the termination char­

acter (a period or a right parenthesis). KRONOS allows only standard FORTRAN

characters to appear before the termination character, although other characters

can appear in the comment field.

3. Searching the list of control card names and comparing them with the name of the

card being processed. If the card name is on the list, the system processes the

control statement according to the parameters. If the card name is not on the list,

the system searches further.

4. Searching the File Name Table with the first characters (seven or less up to the

separator character) for a file assigned to the control point with a name identical

to the first characters of the control statement. If the system finds such a file on

a mass storage device in absolute format, the system reads the file into central

memory as a CPU program. If the file resides on a non-mass storage device, KRONOS

aborts the job. If the file is in relocatable format on a mass storage device, the

system transfers control to the loader (Section 5), extracts the arguments from the

control statement, stores them in RA+2 through RA+(n+1), and requests the CPU

to begin program execution.

5. Searching the Chippewa Library Directory for a program name that coincides with

the card name. If the system finds such a program, it loads the program, stores

the arguments in RA+2 through RA+(n+1), and requests the CPU to begin program

execution.

2-2 59150600 Rev. A

6. Searching the SCOPE Library Directory for a program name that coincides with

the card name. If the system finds such a program in absolute format, the system

proceeds as for a Chippewa Library program (Step 5). If the program is in relocat­

able format, the system transfers control to the loader (Section 5).

7. Searching the Peripheral Library Directory if the statement name is three charac­

ters long and begins with a letter. If the system finds such a program, it constructs

a call to a PPU using the name and arguments from the control statement.

If KRONOS cannot process the control statement during these steps, it declares the control

statement illegal, issues a dayfile message, and aborts the control point job.

59150600 Rev. A 2-3

CONTROL CARDS

As introduced in Section 2, control cards direct job execution. KRONOS recognizes four

types of control cards:

• Job
• Program Execution

• File Management

• Permanent File

3

All control cards, except the job card and program call cards, have two fields. The first

field contains the card name, beginning in column 1. Card names described in this section

are reserved for the system and cannot be used as program call names. The second field

is optional; it can contain one or more parameters separated by commas. The two fields

are separated by a separator character: + - " / = , (or $.

The parameter field is terminated by a period or right parenthesis. A terminator must be

present, even though no parameters are. specified.

The card names on job cards and program call cards contain the name of the job and the

name of the program, respectively.

JOB CONTROL CARDS

JOB CARD

Control card format: jobname, Tt, CMfl, Pp. or
jobname, p, t, fl.

jobname Alphanumeric job name (one to seven characters) must begin with a

letter. To assure unique job names, KRONOS replaces the last three

characters with a system-generated value.

t Central processor time limit in octal seconds (maximum 777708).

This time limit must suffice for compilation and execution of the job.

If t is absent, KRONOS assumes t=100a (100
8

seconds ~ 1 minute).

fl Total central memory field length of the job; a maximum of six octal

digits. The system rounds the field length (storage requirement) to

a multiple of 1008 . This field length cannot exceed:

59150600 Rev. A 3-1

p

• 360,0008 on a 131K machine

• 163,0008 on a 65K machine

• 61,0008 on a 32K machine

If fl is absent, KRONOS assumes fl=50, 000
8

.

Priority level (octal) at which job enters the system;

1 ~ p ~ 17. If p is absent, KRONOS as sumes p~ 10.

The first control card for a job indicates the job name, priority, CPU time limit, and

memory requirements. Commas separate the fields and a period terminates the job card.

Blanks have no meaning. Fields other than jobname can appear in any order when identified

by the leading characters in the field.

ACCOUNT CARD

Control card format: ACCOUNT, xxxxxxx, pswd.

xxxxxxx user account number
pswd user password

The second card in the control card record must be the ACCOUNT card. It specifies the

user's account number. This account number is used in system bookkeeping as well as for

user access to permanent files.

ONSW CARD

Control card format:

n·
1

Pseudo-sense switch number; 1 ~ n ~ 6.

The ONSW control card sets pseudo-sense switches for reference by the user's program.

The system stores the sense switch settings in the control point area and copies them to

address RA of the user's area for use by the central program. The system operator can

change these switch settings by console command.

OFFSW CARD

Control card format:

n.
1

Pseudo-sense switch number; 1 ~ n ~ 6.

The OFFSW control card clears pseudo-sense switches for reference by the user's program.

The system stores the sense switch settings in the control point area and copies them to

address RA of the user's area for use by the central program. The system operator can

change these switch settings by console command.

3-2 59150600 Rev. A

MODE CARD

Control card format: MODE(n)

n

o

1

2

3

4

5

5

7

Exit Condition

Disable Exit mode; no selections made

Address is out of range because:

• Attempt was made to reference central memory or
extended core storage outside established limits

• Word count in extended core storage communication
instruction is negative

• Attempt was made to reference last 50-bit \vord
(word 7) in relative address FL ECS

Operand out of range; floating-point arithmetic unit received an

infinite operand

Address or operand is out of range

Indefinite operand; floating-point arithmetic unit received an
indefinite operand

Indefinite operand or address is out of range

Indefinite operand or operand is out of range

Indefinite operand, operand is out of range, or address is out of

range

The MODE control card selects the exit or stop conditions for the CPU program. When MTR

executes an exchange jump, the exit selection code enters the CPU. The exit occurs as soon

as the selected condition arises. If the user does not specify an error mode, the system

assumes n=7.

COMMENT CARD

Control card format: COMMENT. comments or
*:comments

comments Combination of characters the user wishes to display

The system displays the combination of characters following the period or asterisk on a

COMMENT control card and enters them into the dayfile.

EXIT CARD

Control card format:

59150600 Rev. A

EXIT.

3-3

The EXIT card separates the control cards for normal execution from those used when an

error exit occurs. When the error exit condition occurs, the system searches the control

card record for the next EXIT card. If the record does not contain an EXIT card, the sys­

tem terminates the job. If the system finds an EXIT card, it clears the error condition and

obeys the subsequent control cards. Appendix D describes the error messages.

MAP CARD

Control card format: MAP.

The MAP card sets the Loader Map flag for the control point. The loader will generate a

core map for the job.

PARTIAL MAP CARD

Control card format: MAP{P)

The MAP card with a defined parameter sets the Partial Map flag for the control point. A

full MAP card or NOMAP card clears the Partial Map flag.

NOMAP CARD

Control card format: NOMAP.

The NOMAP card clears the Loader Map flag for the control point. The loader w·ill not

generate a core map for the job.

REDUCEFL CARD

Control card format: REDUCEFL.

The REDUCEFL card clears the No Reduce FL flag for programs which normally reduce

field length for the job.

NOREDUCE CARD

Control card format: NOREDUCE.

The NOREDUCE card sets the No Reduce FL flag for the job.

ROLLOUT CARD

Control card format: ROLLOlJT.

The ROLLOUT card requests that the user's job be rolled out so that all memory assigned

to the job (except the control point area) can be released.

3-4 59150600 Rev. A

SETPR CARD

Control card format: SETPR(p)

p priority level; 1 ~ P ~ 17.

The SETPR control card allows the user to specify a new priority level for his job.

SETTL CARD

Control card format: SETTL(t)

t Central processor time limit in octal seconds (maximum 777708)

The SETTL control card permits the user to specify a new time limit for his job.

PROGRAM EXECUTION CONTROL CARDS
These control cards direct loading and execution of files. Program execution control cards

have the general format:

name list comment

The card is a unit record of up to 80 characters, including freely interspersed spaces.

The name and list fields are required and comment is optional. The name is a string of one

to seven alphanumeric characters. The comment is a string of Hollerith characters.

The list contains parameters to be used by the program being loaded. The contents of the

list can vary greatly, depending on the requirements of the program being loaded. If para­

meters are not required, list is simply a period. Parameters can be enclosed in parentheses

or preceded by a comma and terminated by a period. The list can contain as many para­

meters as fit on one card. The program being loaded dictates the form of the parameters

to be used. The parameters can specify the type of information flow, input BCD output,

binary output, special information, or the name of a file involved.

LOAD CARD

Control card format: LOAD (lfn1) or

LOAD (lfn1' Ifn2 ,

Ifn1

Ifn2-lfnn

Name of file to be loaded

Names of library files (other than the system library) from v/hich

to satisfy external references of Ifn1 (0 ~ n ~ 50)

T he LOAD card directs the system to load the file lfn1, and the programs from files Ifn2

through lfnn required to satisfy external references occurring in Ifn1 into central memory.

59150600 Rev. A 3-5

Files Ifn2 through lfnn must reside in mass storage. Loading begins from the current file

position. Loading of IfnI terminates when the EOI mark or an empty record appears. The

user can load segments and relocatable binary decks with the LOAD control card.

Use a LOAD card for each complete file required. The first record of the first file deter­

mines the kind of loading for subsequent LOAD cards.

SATISFY CARD

Control card format:

Names of library files (other than the system library) from

which to satisfy external references

For the SATISFY card, the system loads the programs from files IfnI through lfnn required

to satisfy external references in a file that the system has already loaded into central mem­

ory as a result of a LOAD card.

File Ifni must reside in mass storage when a SATISFY card appears.

EXECUTE CARD

Control card format:

name Program entry point where execution is to begin. If name is absent,

the system uses the last transfer address (XFER) encountered

List of parameters

The EXECUTE card causes the loader to complete program loading. This includes filling

all unsatisfied references with entry points from the system library except where inhibited

by segment parameters.

For segment or overlay operations, program execution begins in the first segment or the

main overlay.

PROGRAM CALL CARD

Control card format:

lfn

p.
1

Program name and entry point where execution is to begin

List of parameters

The system searches the File Name Table /File Status Table for a file named lfn. If it finds

file lfn, it loads the file subprograms and bypasses any routines already loaded by LOAD

cards. The system rewinds the file before loading begins. If the system does not find the

3-6 59150600 Rev. A

file named lfn in the FNT /FST, it searches the system library and loads a subprogram with

the same lfn name. When the system completes loading, and if it finds no fatal errors, it

passes the parameters to the requested program and begins execution at the entry point

named lfn.

Examples:

LOA,D (ESTE)
EXECUTE.

is equivalent to: ESTE.

To replace one subprogram with a subprogram of the same name from another

file, the sequence could take the form:

LOAD (HOST)
GUEST.

The subprograms will be loaded from the file HOST and the system bypasses

the subprograms of the same name on GUEST.

FORTRAN CARD

Control card format: RUN (cm, fl, bl, if, of, rf, lc, as, cs)

cm Compiler mode option; if omitted, the system assumes cm = G;

if unrecognizable, the system assumes cm = S.

G

S

P

L

M

Mode

Compile and execute; do not list unless explicit
LIST cards appear in the deck

Compile with source list; do not execute

Compile with source list and punch deck on file
PUNCHB; do not execute

Compile with source and object list; do not execute

Compile with source and object list; produce a
punch deck on file PUNCHB; do not execute

fl Object program field length (octal); if omitted, the system sets fl

field length at compile time.

bl Object program I/O buffer length (octal); if omitted, the system

sets bl = 20228

if Name of file containing compiler input; if omitted, the system

assumes if = INPUT

of Name of file to receive computer output; if omitted, the system

assumes of = OUTPUT

rf Name of file to receive binary information; if omitted, the

system assumes rf = LGO

59150600 Rev. A 3-7

lc

as

cs

Line limit (octal) of the object program OUTPUT file; if omitted,

the system assumes lc = 1000S; if the line count exceeds the line

limit, the system terminates the job

ASA switch; if non-zero or non-blank, causes ASA. I/O list/format

interaction at execution time.

Cross reference switch; produces a cross reference listing

The RUN control card calls the FORTRAN compiler to the job control point.

COMPASS CARD

Control card format:

Parameters; can be in the following format:

a
a = fname
a 0

Option

A

B

B=O

B=fname

D

LO

LO=O

lVleaning

Source is MODIFY compressed symbolic. If A. is

omitted, no A option is assumed.

Binary on file LGO. If no B parameter is supplied,

this option is assumed.

No binary.

Binary on file fname.

Generates binary even if there are assembly errors.

If D is omitted, no D option is assumed.

Select list options: CFGX.

Normal list options. Options Land R are set.

LO=chars Select list options according to the character string

"chars" .

3-S

Character

L
R
G
A
C
D
E
F
M
S
X

Lists

Normal listing
Reference information
Lines that result in code generation
Lines with -or =I marks removed
EJECT, SPACE, and TITLE control cards
Detailed code not normally listed
All iterations of duplicated code
Lines skipped by IF-tJ{pe instructions
Lines generated by macro calls
Lines generated by systems macros
Lines generated by XTEXT instruction

59150600 Rev. A

I

I=fname

L

L=O

L=fname

o

0=0

O=fname

P

S

S=O

S=sname

x

X=fname

Input from file COMPILE.

Input from file fname.

When the I parameter is omitted, the system assumes

I=INPUT"

Long list on file OUTPUT. When the L parameter is

omitted, this option is assumed.

No long list.

Long list on file fname.

Short list on file OUTPUT. When the 0 parameter is

omitted, this option is assumed.

No short list.

Short list on file fname.

Select consecutive page numbering. When P is

omitted, no P option is assumed.

System text name SYSTEXT. When S is omitted., this

option is assumed.

No system text.

System text name sname.

External text from file OPL. When X is omitted, this

option is assumed.

External text from file fname.

The COMPASS control card calls the COMPASS assembler to the job control point.

MODIFY CARD

C;ontrol card form.at:

p.
1

Parameters; can be in the following general formats:

a
a = fname
a = 0

Options Specify

59150600 Rev. A

I

I=fname

1=0

Use directive input from file INPUT

Use directive input from file fname

Use no directive input

3-9

Options Specify

P Use file OPL for old program library

P=fname Use file fname for old program library

p=o Use no old program library file

C Write compile output to file COMPILE

C =fname Write compile output to file fname

C=O Write no compile file

N Write new program library on file NPL

N=fname Write new program library on file fname

N=O Write no new program library

S Write source output on file SOURCE

S=fname Write source output on file fname

S=O Write no source output

L List output on file OUTPUT

L=fname List output on file fname

L=O List no output information

LO Select list options: ECTMWDS

LO=chars Select list options according to the character
string "chars":

Character

E
C

T
M
W
D
S
I
A

Lists

Errors
Directives other than INSERT,
DELETE, RESTORE
Input text
Modifications made
Compile file directives
Deck status
Statistics
Inactive cards
A ctive cards

3-10

A

D

F

U

NR

X

Any combination of characters selects the

combination of list options.

Write compressed compile file

Ignore errors

Modify all decks

Modify only decks mentioned on DECK directives;
F overrides U option

Do not rewind compile file

Rewind input and output files, set A option, and call
COMPASS assembler when modification is completed

59150600 Rev. A

X=prog

X=O

Rewind input and output files, set A option, and call
the prog processing program when modification is
completed

Do not call another processing program

The following options apply only if the X option is selected.

CB Set assembler argument B=LGO

CB=name Set assembler argument B=name

CB=O Set assembler argument B=O

CL Set assembler argument L=OUTPUT

CL=name Set assembler argument L=name

CL=O Set assembler argument L=O

CS Set assembler argument S=SYSTEXT

CS=name Set assembler argument S=name

CS=O Set assembler argument S=O

With the MODIFY control card, the user calls the MODIFY program to his control point to

edit a library file. The parameter list specifies additional information to MODIFY. The

parameters can be in any order and are not mandatory. For any or all parameters omitted

from the control card, the system uses a default value:

I INPUT LO = ECTMWDS NR deselected

P OPL A deselected X = 0

C COMPILE D deselected CB

N 0 F deselected CL = 0

S 0 U deselected CS

L OUTPUT

NOGO CARD

Control card format: NOGO.

When the loader encounters a NOGO card, it processes the loaded program in the same

manner as for an EXECUTE card; however, it does not execute the program. This card

permits program mapping, execution bypassing, and continuation of other portions of the job.

FILE MANAGEMENT CONTROL CARDS

The file management control cards permit the user to:

• request a file in a particular type of output,

• assign a file to a particular device,

58150600 Rev. A 3-11

• route a file to a particular destination,

• create a COMMON file,

• attach a COMMON file,

• change a LOCAL file to a COMMON file, and

• release a COMMON file.

If a file is not specifically assigned to a REQUEST or ASSIGN card, the system assigns it

to disk storage. A job does not assign the card reader, printer, or punch for normal input/

output from such things as compilations or assemblies since the system does this automati­

cally. In addition, any file named OUTPUT, PUNCH, or PUNCHB will always be printed,

punched, or punched binary by the system at job completion. The REQUEST card is used

for large installations where the operator can best assign the available equipment when any

peripheral device of a particular type is suitable. The ASSIGN card is for smaller installa­

tions and situations where only one particular peripheral device is suitable.

REQUEST CARD

Control card format:

lfn

x.
1

Logical file name; one to seven digits or letters. This is the name of

the file to which equipment is to be assigned, and the name by which the

user refers to the file within his program. A REQUEST card must have

at least one parameter; the first parameter is the lfn.

Any of the following:

LO

HI

HY

X

B

C=xxxx

Density = 200 bpi

Density = 556 bpi

Density = 800 bpi

Process coded data in unblocked External BCD (136
characters /PR U unless otherwise specified). (Section 1)

Process coded data in blocked External BCD (150 char­
acters /PRU unless otherwise specified). (Section 1)

Set External BCD character count per PRU=xxxx;
1 ~ xxxx .~ 4,096. Any value not in this range is
ignored without comment and standard values are
used

The user can fill his REQUEST card with x. parameters. If parameter commands conflict,
1

TSOS ignores all except the last parameter given.

The REQUEST card directs the system to display (at the system console) the user's request

to assign a file to a peripheral device. The comment on the REQUEST card can specify the

3-12 59150600 Rev. A

acceptable type of device. When the system operator assigns the peripheral equipment, job

execution commences. Any equipment the user wishes to use must be requested on a RE­

QUEST card or assigned on an ASSIGN card.

Because the system processes control cards in order, the REQUEST card must appear be­

fore the user references the file. If a parameter appears more than once or is illegal, the

system issues a message and aborts the job.

ASSIGN CARD

Control card format:

nn Ordinal in equipment Status Table (EST) of peripheral device or

equipment type:

Type

CP

CR

DA

DB

DC

DD

DE

DF

DG

LP

MT

Equipment

Card punch

Card reader

6603 disk·

6638 disk

863 drum

854 disk drive

Extended core storage

814 disk

Disk drive group

Line printer

1/2 -inch magnetic tape

lfn

x.
1

Name of file to be assigned

Any of the following:

59150600 Rev. A

LO

HI

HY

X

B

C=xxxx

Density = 200 bpi

Density = 556 bpi

Density = 800 bpi

Process coded data in unblocked External BCD (136
characters/PRU unless otherwise specified). (Section 1)

Proces s coded data in blocked External BCD (150 char­
acters/PRU unless otherwise specified). (Section 1)

Set External BCD character count per PRU=xxxx;
1 ~ xxxx ~ 4, 096. Any value not in this range is
ignored without comment and standard values are
used

3-13

Control card format:

The user can fill his ASSIGN card with xi parameters. If parameter commands conflict,

KRONOS ignores all except the last parameter given.

The ASSIGN card directs the system to assign equipment nn to file lfn. The system will

refuse to assign the equipment if the user is not allowed to use the device or the file is

already assigned to another device.

SETID CARD

SETID (IfnI = aI' Ifn2 = a 2 , · · · , lfnn = an)

Logical file name

a·1 New area code for file

The SETID card assigns a new area code or changes the area code for file lfn. The area

code allows the user to route his file to a particular output device or device group because

of proximity or other considerations.

COMMON CARD

Control card format: COMMON (lfn l , Ifn 2 , ... , lfn
n

)

Ifni Name(s) of COMMON file(s)

If file Ifni is a COMMON file in the FNT /FST and is not being used by another job, the sys­

tem assigns it to this job. If the file is being used by another job or is not a COMMON file,

the job must wait until the file is available.

If file lfn appears as a LOCAL file for the job, the system changes it to a COMMON file in

the FNT /FST and it becomes available to any succeeding job after the current job terminates.

However, if a COMMON file of the same name already exists, the system rejects the COM­

MON request and allows the job to continue.

If the file resides on a non-allocatable device such as magnetic tape, the equipment is re­

served until the user releases the COMMON file.

RELEASE CARD

Control card format: RELEASE (IfnI' Ifn2, ... , lfnn)

Logical file name

For the RELEASE card, the system changes COMMON file Ifni' currently assigned to the

job, to a LOCA L file in the FNT /FST. The file is then discarded at the end of the job unless

the user program changes the file type by a subsequent file manipulation request.

3-14 59150600 Rev. A

LOCK CARD

Control card format: LOCK (lfn1, lfn2, · · . , lfnn)

Logical file name of a LOCAL file

With the LOCK card, the user can set the write lockout for local file lfn. Subsequently, the

system allows only read operations on the file.

UNLOCK CARD

Control card format: UNLOCK (lfn1 , lfn2 , · · · , lfnn)

Logical file name of a LOCAL file

With the UNLOCK card, the user can clear the write lockout (rescind a LOCK command for

10cal file lfn).

MACE CARD

Control card format: MACE.

The MACE card clears the SCOPE bit for loading of a file.

SCOPE CARD

Control card format: SCOPE.

The SCOPE card sets the SCOPE bit for loading of a file.

PERMANENT FILE CONTROL CARDS

SAVE CARD

Control card format: SAVE, lfn1 = pfn1, · .. , lfn
n

= pfn
n

lfn.
1

pfn.
1

Local file name; name of the file to be saved

Permanent file name; name under which the file is to be

stored on the permanent file device. (If omitted, pfni = Ifni)

The SAVE control card permits the user to retain files in the permanent file system. As

many files as can be specified on one control card can be retained with each SAVE command.

59150600 Rev. A 3-15

GET CARD

Control card format:

lfn.
I

xxxxxxx

GET, Ifn1 = pfn1, ... , lfnn = pfn
n

, ACCOUNT = xxxxxxx .

Local file name; name given to the file when in use

Permanent file name; name of the permanent file to be

retrieved. (If omitted, pfni = Ifni)

The user number of another user; given when a user wishes to re­

trieve the file(s) of another user (provided permis sion has been granted)

Control card fornlat:

The GET control card enables the user to retrieve a file from permanent file storage. As

many files as can be specified on one control card can be retrieved with each GET command.

REPLACE CARD

REPLACE, Ifn1 =pfn1, ... , lfnn=pfnn , ACCODNT=xxxxxxx.

Local file name; name of the new file that will be placed on the

permanent file device

pfn.
I

xxxxxxx

Permanent file name; name of the file that is replaced

(If omitted, pfn. = lfn.)
I I

The user number of another user; given when the user wishes to

replace the file(s) of another user (provided permission has been

granted)

The REPLACE control card permits the user to substitute a new file for an old file on the

permanent file device. As many files as can be specified on one control card can be re­

placed with one REPLACE command.

PURGE CARD

Control card format: PURGE, pfn1, ... , pfnn , ACCOUNT = xxxxxxx.

pfn.
I

xxxxxxx

Permanent file name; name of the file to be removed from the

permanent file system

The user number of another user; given when a user wishes to re­

move a file of another user from the permanent file system (provided

permission has been granted)

The PURGE control card permits the user to remove a file from the permanent file device.

A s many files as can be specified on one control card can be purged with one PURGE card.

3-16 59150600 Rev. A

PERMIT CARD

Control card format: PER MIT, pfn, MODE = y, accnum1, ... , accnumn ·

pfn

y

accnumi

Permanent file name; permanent file on which permission is to

be granted.

Permission level. The possible permission levels are:

A - append only

E - execute only

N - none, removes previously granted permission

R - read and / or execute

W - write, read and/or execute

The user numbers of persons to be granted access to file pfn

Control card format:

The PERMIT control card allows a user to grant file access to other users. As many users

can be granted permission as user numbers can be contained on one control card.

APPEND CARD

APPEND, Ifn1 J pfn
1

J ••• J lfn
n

, pfn
n

, ACCOUNT = xxxxxxx.

Name of the local file to be appended to the permanent file

Name of the permanent file to which the local file is to be appended

xxxxxxx The user number of another user; given when a user wishes to

append the file(s) of another user

The APPEND control card permits the user to attach supplementary information to an exist­

ing file. The files lfn. and pfn. must always appear in pairs.
1 1

CATllST CARD

Control card formats: CAT LIST. or
CAT LIST ~ F. or
CAT LIST, xxxxxxx.

F

xxxxxxx

Specifies a full listing including the file length, creation date,

and last access date of each permanent file

User number of another user; allows a user to obtain a listing

of the files he can access in the catalog of user xxxxxxx.

The permanent file catalog control cards permit the user to obtain information about the

files to which he has access. If a user has been granted access to the permanent files of

user xxxxxxx (through the use of the PERMIT card), he can obtain a listing of the files to

which he has access by specifying the user number xxxxxxx.

59150600 Rev. A 3-17

PROGRAM/SYSTEM COMMUNICATION 4

In addition to control cards, KRONOS provides a comprehensive set of system macros that the

user's program can call to control input/output operations, request file manipulations, and

communicate with the system at execution time. Input/output is accomplished via circular

buffers.

During program execution, the system performs three types of operations as the result of

macro calls:

• System operations; initiated by job action requests

• Input/output operations; initiated by file action requests

• File manipulations; initiated by file action requests

For file manipulation and input/output operations, the user must establish a File Environ­

ment Table (FET) for the pertinent file. The FET contains the circular buffer parameters

for the operation. For FORTRAN or other compiler language input/output, the user should

not be concerned about circular buffers and FET's as the compiler automatically provides

these.

Moreover, the system does not require the FET to process job action requests.

This section describes circular buffers, File Environment Table, user / system communica­

tion subroutines, job action requests, and file action requests.

CIRCU LAR BU FFERS

A circular buffer is a temporary storage area in central memory that contains data during

input/output operations. It is called circular because routines that process input/output

treat the last word of the buffer area as contiguous to the first word of the buffer area. The

buffer parameters (FIRST J IN J OUT J and LIMIT) in the FET describe the circular buffer

(see Figure 4-1).

FIRST

FIRST is the first word address of the buffer area. Routines that process I/O never change

the value of FIRST.

59150600 Rev. A 4-1

LIMIT

LIMIT is the last word address plus one of the buffer area. Data is not stored in LIMIT.

When LIMIT is reached, the next available address for storage is FIRST. Routines that

process I/O likewise never change the value of LIMIT.

CIRCULAR BUFFER
FIRST

DATA

FILE ENVIRONMENT TABLE (FET)

F I L E NAME CODE a STATUS

OUT

OUT

LIMIT

IN

J,

OUT

J,

LIMIT

Figure 4 -1 . Circular Buffer

SPACE FOR DATA

DATA

OUT is the next location to read to remove data from the circular buffer. Either the system

or the calling program changes OUT depending on whether the operation is a write or a

read (see Figure 4-2).

CALLING

PROGRAM

IN

)

OUT

----~) SYSTEM ----~)

4-2

Figure 4-2. Write Operation

59150600 Rev. A

IN

IN is the next location to write data into the circul9-r buffer. Either the system or the call­

ing program changes IN depending on whether the operation is a read or a write (see Figure

4-3). When IN = OUT, the buffer is empty. When IN = OUT-l,the buffer is full.

CALLING

PROGRAM
(

OUT IN

(SYSTEM ~(---

Figure 4-3. Read Operation

That is, one location is left empty in a full buffer to distinguish an empty buffer from a full

buffer. A buffer is normally initialized with IN = OUT = FIRST., and IN and OUT circle the

buffer as data is inserted and extracted.

FILE ENVIRONMENT TABLE

As introduced, the FET is a user-initiated communication area. The system and the user

interrogate and update the FET during job execution. An FET within the user's field length

must be initiated for each file of the user's job. The PPU I/O routine (CIa), CPU I/O sub­

routines, and the user's program access the system portion of the FET. A user section

can be appended to the system FET to centralize other pertinent file information. The

format of the system FET is shown in Figure 4-4.

59 47 44 35 32 29 23 17 0 Words

Logical File Name (lfn) Code and Status

Device Type FIRST 2

0 IN 3

0 OUT 4

FNT Pointer
Record Bloc k

LIMIT 5
Size

Working Storage Working Storage 6
fwa I wa +1

Current Random Address Random Request/ Return Information 7

Figure 4-4. System File Environment Table

59150600 Rev. A 4-3

The following lists describe the user and system information that appear in the system

portion of an FE T:

USER INFORMATION

Parameter

device type

record block size

physical record
unit

SYSTEM INFORMATION

Parameter

logical file name

4-4

Word (Bits)

2 (48-59)

5 (33-47)

5 (18-32)

Word (Bits)

1 (18-59)

Description

The system sets the device type in this byte
when the user's program rnakes an OPEN
request.

Possible device types are:

Code Device

0401 6603 disk unit
0402 6638 disk unit
0403 836 drum
0404 854 disk drive
0405 Extended core storage
0406 814 disk
0407 Disk drive group
5524 1/2 -inch magnetic tape
5420 Line printer
4322 Card reader
4320 Card punch

The device code is the display code for the
device mnemonic with the most significant
bit set for non -allocatable devices.

If the file resides in allocatable storage, the
system returns the size of the device record
block in this fie ld at OPEN time. It is the
number of physical record units in a record
block. If the number of PRU's is not defined
or is variable, the field is zero.

KRONOS returns the physical record unit size of
the device to which the file is assigned in this
field at OPEN time. It is the number of
central memory words in a PR U.

Description

The lfn field contains one to seven alphanu­
meric display code characters, left-justified;
unused characters are zero-filled. This field
is a common reference point for the CPU pro­
gram and PPU I/O routines. The lfn para­
meter, declared in an FET creation macro, is
also the location symbol associated with the
first word of the FET. Thus, a reference to lfn
in a file action request is a reference to the
base address of the FET.

59150600 Rev. A

Parameter

code and status

r

up

ep

59150600 Rev" A

Word (Bits)

1 (0 -1 7)

1 (9-13)

1 (1-8)

1 (1)

1 (0)

2 (47)

2 (45)

2 (44)

2 (18-23)

Description

The code and status field communicates requested
function codes and resulting status between the
CPU program and the PPU I/O routines. The
CPU program sets the request code in this field
when it encounters a request for this file. The
request codes are defined in the file action re­
quest descriptions and summarized in Appendix C.
This field is initialized to one.

Status information when request is complete;
zero field indicates normal completion; non­
zero field indicates abnormal completion (not
necessarily an error).

Request code for PPU call; these codes are
defined in the file action request descriptions.

File mode; 0 = coded, 1 = binary.

Completion bit; 0 = busy or not complete,
1 = not busy or complete.

Random access bit; set to 1 if this is a random
access file.

User processing bit; set to 1 to notify the calling
program an End-of -Reel condition has been en­
countered during a 1/2-inch magnetic tape oper­
ation. If the up bit is set to 0, tape swapping
proceeds automatically without notification to the
calling program. The system completes the
function being processed on the alternate tape
reel.

When the up bit is set to 1, and an End-of-Reel
condition arises during a 1 /2-inch magnetic tape
operation, the system sets an End-of-Reel status
(028) in bits 9-13 of the code and status field.

Error processing bit; set to 1 to notify calling
program of error conditions. If ep bit is set to
0, the operator must correct fatal errors when
they arise.

FET length; FET first word address +5+1 = last
word address + 1. The minimum FET length is
five words (1 = 0). If the minimum FET is used,
only the logical file name, code and status field,
FIRST, IN, OUT, and LIMIT are relevant. KRONOS
does not set or check any other field. A length of
six words is used if a working storage area is
needed for blocking/deblocking. A length of eight
words is used if the r bit is set, indicating a
random file.

4-5

Parameter

FNT pointer

FIRST

IN

OUT

LIMIT

working storage
fwa

working storage
lwa+ 1

current random
address

random request /
return information

4 ... 6

Word (Bits)

5 (48-59)

2 (0 -1 7)

3 (0-17)

4 (0-1 7)

5 (0-17)

6 (30-47)

6 (0-17)

7 (36-59)

7 (0-35)

Description

KRONOS sets the address of the corresponding FNT/
FST entry for the file in this byte when it pro­
cesses a file action request for the file. If the
FET is of minimum length, the system does not
set this pointer.

The first word address of the buffer area; rou­
tines that process I/O never change the value of
FIRST.

The next location to write data into the circular
buffer; either CIa or the calling program changes
IN depending on whether the request is for a read
or a write operation. When IN =OUT, the buffer is
empty. When IN=OUT-1, the buffer is full; that
is, one location remains empty in a full buffer to
distinguish it from an empty buffer. The upper
bits of location 3 of the FET are zeros to elimin­
ate the need for masking.

The next location to read or remove data from
the circular buffer; either CIa or the calling
program change OUT depending on whether the re­
quest is for a write or a read operation. The
upper bits of location 4 of the FET are zeros to
eliminate the need for masking.

The last word address plus one of the buffer area;
no data is stored at address I-JIMIT. When LIMIT
is reached, the next available address for reading
or writing is FIRST. Routines that process I/O
never change the value of LIMIT.

First word address of a working storage area
from which data can be blocked into or deblocked
from the circular buffer.

Last word address plus one of the working
storage area (above).

Specifies file position if the file is a mass
storage random access file.

Used for communication between the random
access functions and the PPU I/O routines;
initially set to zero.

59150600 Rev,. A

FET CREATION MACROS

System macros in the COMPASS language facilitate generation of the system FET. The

following paragraphs describe FET creation macros.

CODED FILE (SEQUENTIAL)

lfn FILEC fwa, f, (WSA. = addr , 1), UPR, EPR, (FET= If)w w

BINARY FILE (SEQUENTIAL)

lfn FILEB fwa, f (WSA = addr ,I), UPR, EPR, (FET= If)w w

CODED FILE (RANDOM)

lfn RFILEC fwa, f, (WSA = addr , 1), (IND = addr., 1.), UPR, EPR, (FET= If)
w W 1 1

BINARY FILE (RANDOM)

lfn RFILEB fwa, f, (WSA = addr ,1), (IND = addr., 1.), UPR, EPR, (FET= If)
w W 1 1

The last five subfields (WSA, IND, UPR, EPR, and FET) are order-independent (order is

fixed within the subfield). Upper case characters designate actual subfield content; lower

case characters indicate parameters to be supplied by the user. All parameters except lfn,

fwa, and f are optional.

lfn

fwa

f

WSA

addr
w

1w

IND

addr.
I

1.
I

UPR

EPR

FET= If

Examples:

File name

Substituted in FIRST, IN, and OUT

fwa + f substituted in LIMIT

Working storage area parameters

First word address of working storage area

addr + 1 = last word address + 1 of working storage area
w w

Index buffer parameters

First word address of index buffer

Length of index buffer

User desires processing at End-of-Reel

User desires to handle error conditions

Length of FET if desired

To create a rrlinimum FET for the standard INPUT file:

59150600 Rev. A 4-7

INPUT FILEC BUFFER, LBUFFER

To create an FET for a binary random file:

FILEABC RFILEB BUFFER, LBUFFER, (IND = INDEX, LINDEX)

USER/SYSTEM COMMUNICATION: SUBROUTINES
The user communication subroutines provide the linkage between user programs and the

operating system. All file action requests and job action requests are processed by library

subroutines, which the system loads with the user program within the field length of the job.

The program communicates with the subroutines through macro requests and the FET. The

subroutines communicate with KRONOS through hardware registers and by setting and checking

RA+I.

An exit from the system subroutine returns control to the object program at the point follow­

ing the macro request, and does not save registers. However, the macro descriptions include

the register usage for the convenience of the user. If the user specifies a macro parameter

value that is the same as the contents of the register by which the parameter is passed, KRONOS

does not generate code to set the register to the parameter value. Therefore, suitable

choice of registers improves the generated code.

JOB ACTION REQUESTS

Job action requests use the AI, Xl, A6, X6 registers unless otherwise specified in the

descriptions. Job action requests are:

• MEMORY • CLOCK • EREXIT

• RECALL • DATE • OVERLAY

• MESSAGE • SYSTEM • ROLLOUT

• ENDRUN • CONSOLE • MODE

• ABORT • ONSW • SETPR

• TIME • OFFSW • SETTL

• RTIME

When a job action request parameter represents an address expression, the parameter can

be:

4-8

•
•
•
•

a register name,

a relocatable address,

an external symbol name, or

an absolute address.

59150600 Rev. A

MEMORY FUNCTION

Using the MEMORY function, the user's program can determine or change the length of

central memory assigned to the job control point. Before issuing the MEMORY request,

the user should establish a one-word parameter list at location stat:

59 29 0

II..-s_t_a_t _~I__o__o_o_o__o_o__o_o__o.....!l_o__o_o_o__o_o__o_o__o_0__0__1

words

Set non-a;ero on completion.

Macro format:

LOCATION OPERATION ADDRESS

type

stat

r

words

CM or null

Address of status word

If non-null, indicates recall status

Desired new field length

RECAll FUNCTION

Using the RECALL function, the user can relinquish the CPU until:

• an I/O proces s is completed, or

• the next time through the monitor loop,

depending on the form of the request. If the lfn parameter is included in the macro call,

control does not return to the relinquishing program until the completion bit in the FET for

file lfn is set. If the lfn is not included in the macro call, the user relinquishes the CPU

only until the next time through the monitor loop.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name (optional)

59150600 Rev. A 4-9

MESSAGE FUNCTION

Using the MESSAGE function, the user can display a message on the console scope and enter

it in the dayfile.

The maximum message length is 40 10 characters. The message ends at the first word with

all zeros in bits 0-11 or at the 40th character, whichever comes first. Before issuing the

MESSAGE function, the user should pack his message (in display code) from higher-numbered

bits to lower-numbered bits in sequential locations starting with location addr.

Macro format:

LOCATION OPERATION ADDRESS

addr

x

r

Beginning address of list containing the message

Message route

x 0; message to system dayfile

xI; display on line 1

x 2; display on line 2

x 3; message to user's dayfile only

If non-null, indicates recall status

ENDRUN FUNCTION

By issuing an ENDRUN function, the applications program requests normal termination of

a run. KRONOS examines the control card record of the job deck and begins execution with the

next unused control card. If there are no more control cards, or if the next card is an EXIT

card, the system terminates the job.

Macro format:

LOCATION OPERATION ADDRESS

4-10 59150600 Rev. A

ABORT. FUNCTION

When an error such as an out-of-bounds memory reference occurs, the user can request

the monitor to terminate the job abnormally by using the ABORT function. If the control

card section of the job deck contains an EXIT card, the system continues processing the

job with the control card immediately following the EXIT card.

Macro format:

LOCATION OPERATION ADDRESS

TIME FUNCTION

For the TIME function, the system returns the central processor time used by the job in

location stat:

stat

59

I undefined

35

seconds

11 0

I milliseconds I

Macro format:

LOCATION OPERATION ADDRESS

stat Address to receive the CPU time

RTIME FUNCTION

For the RTIME function, the system. returns the real-time clock reading in location stat.

59 35 11 0

stat 1 u_n_d_e_f_i_n_e_d__----LI s_e_c_o_n_d_s__--JI__m_i_l_ll_'s_e_c_o_n_d_s--JI

59150600 Rev. A 4-11

Macro format:

LOCATION OPERATION ADDRESS

stat Address to receive the clock reading

CLOCK FUNCTION

For the CLOCK function, the system returns current reading of the system clock in location

stat:

59 0

stat

Macro format:

1 h_h e m_m e s_s e_1

LOCATION OPERATION ADDRESS

stat Address to receive the clock reading

DATE FUNCTION

For the DATE function, the system returns the current date typed by the operator in loca­

tion stat:

stat

Macro format:

59

mm / dd yy

o

• I

LOCATION OPERATION ADDRESS

stat

4-12

Address to receive the clock reading

59150600 Rev. A

SYSTEM FUNCTION

With the SYSTEM function, the user can request the system to:

• recall the central processor,

• terminate the current CPU program,

• abort the control point job, and

• return time information.

The SYSTEM function requires the X2 register.

Macro format:

LOCATION OPERATION ADDRESS

r , IP ,11, ,P ,2, I I , , , I , I

req Three character system request

r If non-null, indicates recall status

p1 Bits 0-17 of the request

p2 Bits 18-35 of the request

Example: If a user wishes to dump the contents of location 1000 to 4000 octal and recall the

CPU when the dump is completed, the SYSTEM request is:

SYSTEM DMP, R, 4000B, 1000B

CONSOLE FUNCTION

The CONSOLE function sets the K display control word to the area defined by addr.

Macro format:

LOCATION OPERATION ADDRESS

, I I I I I I I I I I ,

addr Area containing address to receive the display control card

59

input buffer address

59150600 Rev. A

35

right screen
buffer address

17

left screen buffer
address

o

4-13

ONSW FUNCTION

The ONSW function sets the sense switches corresponding to bits 0- 5 in n.

Macro format:

LOCATION OPERATION ADDRESS

n Word containing sense switch references in bits 0-5.

OFFSW FUNCTION

The OFFSW function clears the sense switches corresponding to bits 0-5 in n.

Macro format:

LOCATION OPERATION ADDRESS

n Word containing sense switch references in bits 0-5.

EREXIT FUNCTION

The EREXIT function sets the error exit return address equal to addr.

Macro format:

LOCATION OPERATION ADDRESS

4-14

addr Address set to error exit return address.

return (RA) =
59 47 29 23 0

I I
Address

I
Error I

IFlag

59150600 Rev. A

OVERLAY FUNCTION

The OVERLAY function loads an overlay from the system library or from file n. If it is not

a 0,0 level overlay, the overlay entry address is returned in Xl.

Macro format:

LOCATION OPERATION ADDRESS

n

1

system

fwa

Name of either a file or an overlay, depending on whether the
system parameter is present.

Name of overlay to be loaded from file n if the system parameter
is not present.

Specifies that the overlay is to be loaded from the system library.
When omitted, the overlay is loaded from file n.

Specifies the address at which the overlay is to be loaded. When
omitted, the overlay is loaded at the overlay origin.

ROLLOUT FUNCTION

The ROLLOUT function rolls out the user's job and releases all memory assigned to the job

(except the control point area).

Macro format:

LOCATION OPERATION ADDRESS

MODE FUNCTION

The MODE function requests exit mode n.

59150600 Rev. A 4-15

Macro format:

LOCATION OPERATION ADDRESS

n

o

1

2

3

4

Exit Condition

Disable Exit mode; no selections made

Address is out of range because:

• Attempt was made to reference central memory or
extended core storage outside established limits

• Word count in extended core storage communication
instruction is negative

• Attempt was made to reference last 60-bit word
(word 7) in relative address FL ECS

Operand out of range; floating-point arithmetic unit received an infinite

operand

Address or operand is out of range

Indefinite operand; floating-point arithmetic unit received an indefinite

operand

SETPR FUNCTION

The SETPR function sets a new priority level for a job.

Macro format:

LOCATION OPERATION ADDRESS

p

4-16

Priority level. 1 ~ n ~ 17.

59150600 Rev. A

SETTl FUNCTION

The SETTL function permits the user to specify a new time limit for a job.

Macro format:

LOCATION OPERATION ADDRESS

t Central processor time limit in octal seconds

FILE ACTION REQUESTS
File action requests are:

• RETURN • STATUS • WRITER • SKIPFF

• EVICT • UNLOCK • WRITEF • SKIPEI

• ASSIGN • READ • WPHR • BKSP

• COMMON • RPHR • WRITEC • BKSPRU

• LOCK • READe • WRITEH • SKIPB

• RELEASE • READH • WRITES • SKIPFB

• RENAME • READS • WRITEW • REWIND

• REQUEST • READW • SKIPF • UNLOAD

• SETID • WRITE

A file action request results in a return jump to a system subroutine. Subsequent actions

depend on the state of the file. The subroutine can post a request to KRONOS. After

KRONOS accepts the request, control returns to the calling program if the recall bit r is

equal to zero, or after KRONOS completes the request if r is equal to one. For macro

specifying the optional final recall parameter, r is set to one when recall is present (the

recall parameter is non-null in the macro call). FileactionrequestsusetheA1, Xl, A2, X2,

A6, X6, A7, X7 registers except when otherwise specified. The logical file name is always

passed by the X2 register.

When a file action request parameter represents an address expression, the parameter may

be:

• a register name,

• a relocatable address,

• an external symbol name, or

• an absolute address.

59150600 Rev. A 4-17

The logical file name is the base address of the FET that controls the file for which the

operation is being requested.

RETURN FUNCTION

The RETURN function returns file lfn to the system. If lfn is a COMMON file on which the

system allows other than read operations, RETURN makes the file available to other users.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

EVICT FUNCTION

The EVICT function releases to the system all space occupied by a file on disk. It is then

available for use by either the releasing program or other programs. If the file is a COM­

MaN file on which the system allows other than read operations, this function returns the

file to the system. It is then available to other users.

Macro format:

LOCATION OPERATION ADDRESS

I I I , , I I I I , , , I I

lfn Logical file name

r If non-null, indicates recall status

ASSIGN FUNCTION

The A.SSIGN function assigns common file lfn to the job.

4-18 59150600 Rey. A

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

COMMON FUNCTION

The COMMON function enters file lfn as a COMMON file available to any succeeding job

after the current job terminates.

Macro format:

LOCATION OPERATION ADDRESS

Ifn Logical file nan1.e

LOCK FUNCTION

The LOCK function sets the write lockout bit for the specified local file.

Macro format:

LOCATION OPERATION ADDRESS

Ifn

r

Logical file name

If non-null, indicates recall status

RELEASE FUNCTION

The RELEASE function releases file lfn according to the type specified.

59150600 Rev. A 4-19

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

type Indicates the type of release. If omitted, the system assumes

type COMMON.

Type

COMMON

PRINT

PUNCH

PUNCHB

P8

Action Taken

sets file type to local

releases file to PRINT queue

releases file to PUNCH queue

releases file to PUNCHB queue

releases file to P8 queue

r If non-null, indicates recall status

RENAME FUNCTION

The RENAME function replaces the name of file lfn with the ne\\T name specified.

Macro format:

LOCATION OPERATION ADDRESS

lfn

name

r

Logical file name

New name to be given lfn. If name is not present, the new file

name is taken from address Ifn+6

If non-null, indicates recall status

REQUEST FUNCTION

The REQUEST function displays a message which asks the operator to assign equipment to

file lfn.

4-20 59150600 Rev. A

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

SETID FUNCTION

The SETID function sets the identification code for the specified file.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

n Identification code for file lfn

l' If non-null, indicates recall status

STATUS FU NCTION

The STATUS function returns the status of the specified file.

Macro format:

LOCATION OPERATION ADDRESS

lfn

random

r

Logical file name

If random is present, the current file position is returned to (lfn+6)

If omitted, the current status is returned in bits 0-8 of (FET)

If non-null, indicates recall status

59150600 Rev. A 4-21

UNLOCK FUNCTION

The UNLOCK function clears the lockout bit for the specified file.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

TRANSfER DATA REQUESTS

READ FUNCTION

The READ function reads information into the circular buffer. If there is room in the

circular buffer for at least one physical record unit, the system initiates reading and con­

tinues until:

• the buffer is full,

• an End-of-Record or End-of-File mark appears, or

• an End-of-Information mark appears.

This status information is returned as follows:

• Xl contains 0 if a transfer is complete

• Xl contains -1 if an EOF mark was encountered

• Xl contains the address of the last word transferred into the working

buffer if an EOR mark was detected before the transfer was completed

Data is not transferred after an EOR or EOF mark is encountered.

4-22 59150600 Rev. A

Bit 1 in word 1 of the FE T determines the mode.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

RPHR FUNCTION

The RPHR function reads the next physical record on the input device into the circular

buffer. Bit 1 in word 1 of the FET determines the mode.

If the physical record is too big for the circular buffer, the system writes as many words

as possible into the buffer.

The system returns an End-of-File response if the physical record is an EOF mark. The

buffer will then be empty.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

READC FUNCTION

With the READe function, the user can transfer one coded line from a file to a working

buffer. The system transfers data up to the next End-of-Line mark (12-bit zero byte) or

until the working buffer is full. When READe exits, (X7)=(B6)=last word of data transferred.

59150600 Rev. A 4-23

Macro format:

LOCATION OPERATION ADDRESS

, b l.lJ f l ,1 I} 1 I l-J-l I 1 I I I

lfn Logical file name

buf Address of first working storage word to receive the coded line

n Number of words in working storage area

READH FUNCTION

With the READH function, the user can transfer one coded line from a file to a working

buffer and fill in trailing spaces. The system transfers data up to the next End-of - Line

mark (12-bit zero byte) or until the working buffer is full. When READH exits, (X7)=(B6)=

last word of data transferred.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

buf Address of first working storage word to receive the coded line

n Number of words in working storage area

READS FUNCTION

With the REA.DS function, the user can transfer coded data from a file to a working string

buffer. The system unpacks the data and stores it one character per word in the string

buffer. Zero characters are stored as blanks (55). If the coded line terminates (12-bit

zero byte appears) before the specified number of characters have been transferred, the

system fills the remaining words with space codes. When READS exits, (X7) = (B6) = last

word of data transferred.

4-24 59150600 Rev. A

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

buf Address of the first working storage word to receive the character string

n Number of characters to be transferred

READW FUNCTION

With the READW function, the user can fill a working buffer from the specified file. When

READW exits, (X7) = (B6) = last word of data transferred.

Macro format:

LOCATION OPERATION ADDRESS
t--I~,...-,...-.....,...........,--,-r-+""'I"i'-"'~"""''''''''-+-'''''''''''''~'''''''''''-'''''''--''''''''''''''''''''''-'-''''''''''''''''''''''''-''''''~

I 2 3 ~L:l ~ J :" lBJ:<_ ,!i~ J. :L'7t~j~:t_: 16 !~_ I~.L-~L-.J.---L--L~-.L..--L-....L.-....L.-....L.-+-~.L--.L..-..L----L----'-""""

iLl j i ~rEl~ll~V\fLl 1 f n , b ~I I I I I I I I I I I

lfn Logical file name

buf Base address of working buffer

n Number of words in working buffer

WRITE FUNCTION

This function writes information from the circular buffer if there is sufficient information

in the buffer to fill one or more physi9al record units. Writing continues until the buffer is

empty, or the buffer contains insufficient data to fill a PRU. Bit 1 in word 1 of the FET

determines the mode.

59150600 Rev. A 4-25

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

WRITER FUNCTION

The WRITER function is like a WRITE function, except that the system writes a short or

zero length PRU at the end of the data containing an End-of-Record mark.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

WRITEF FUNCTION

The WRITEF function directs the system to write a logical EOF mark. When the user issues

a WRITEF function, the system first writes any data present in the buffer and terminates it

with an EOR mark.

Macro format:

LOCATION OPERATION ADDRESS

lfn

r

4-26

Logical file name

If non-null, indicates recall status

59150600 Rev. A

WPHR FUNCTION

The WPHR function directs the system to write the information in the circular buffer as a

single PRU on the output device. Bit 1 in word 1 of the FET determines the mode.

If the buffer contains less than one PRU, a WPRR function effects no action.

If the buffer contains more than one PR U when the user issues this request, the system

writes the first PR U and sets the IN and OUT pointers to show that words remain in the

buffer.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

WRITEC FUNCTION

With the WRITEC function, the user can transfer one coded line from a working buffer to

the specified file. The system transfers data up to the next End-of-Line mark (12-bit zero

byte). When WRITEC exits, (X7) = (B6) = last word of data transferred.

Macro format:

LOCATION OPERATION ADDRESS

, b ljf I I I I I I I I I I I I I

lfn Logical file name

buf Address of first word of working storage that contains the coded line

WRITEH FUNCTION

With the WRITER function, the user can delete trailing spaces and transfer one coded line

from a working buffer to the specified file. When WRITER exits, (X7) = (B6) = last word of

data transferred.

59150600 Rev. A 4-27

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

buf Address of first word of working storage that contains the coded line

n Number of words in working storage area

WRITES FUNCTION

With the WRITES function, the user can transfer data from a working string buffer to the

specified file. The system deletes trailing space codes and packs the characters, ten per

word, before transferring them to the file. When WRITES exits, (X7) =(B6) =last word of

data transferred.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

buf Address of first word of working string buffer that contains the coded data

n Number of characters to be transferred

WRITEW FUNCTION

With the WRITEW function, the user can transfer a certain number of words from a working

buffer to the specified file. When WRITEW exits, (X7) = (B6) = last word of data transferred.

Macro format:

LOCATION OPERATION ADDRESS

lfn

buf

n

4-28

Logical file name

Base address of working buffer

Number of words to be transferred

59150600 Rev. A

POSITION FILE REQUESTS

SKIPF FUNCTION

The SKIPF function directs the system to bypass one or more logical records in the forward

direction. The user's program can issue this request at any point in a logical record. The

n parameter of the macro call specifies the number of logical records to skip.

If the system finds an End-of-Information mark before it satisfies the macro request, the

system will leave the file at the EOI mark and return EOI status.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

n Number of logical records to skip; I ~ n ~ 7777778
If n is null, number is assumed to be one (passed via Xl)

r If non-null, indicates recall status

SKIPFF FUNCTION

The SKIPFF function directs the system to bypass one or more files in the forward direction.

The user's program can issue this request at any point in a file. The n parameter in the

macro call specifies the number of files to skip.

If the system finds an End-of-Information mark before it satisfies the macro request, the

system will leave the file at the EOI mark and return EOI status.

Macro format:

LOCATION OPERATION ADDRESS

n , I r , I I I I I I I I I I I I

lfn Logical file name

n Number of files to skip (passed via Xl)

r If non-null, indicates recall status

59150600 Rev. A 4-29

SKIPEI FUNCTION

The SKIPEI function directs the system to bypass, in the forward direction, all information

in the specified file to an End-of-Information mark.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

BKSP FUNCTION

The BKSP function directs the system to bypass one logical record in the reverse direction.

The request can be issued at any point in a logical record. The system will not backspace

past the beginning of the file.

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

r If non-null, indicates recall status

BKSPRU FUNCTION

The BKSPRU function directs the system to bypass one or more PRUs in the reverse

direction. The request can be issued at any point in a logical record.

If n appears, n PRUs are bypassed. If n is null, one PRU is bypassed.. The system will

not backspace past the beginning of the file.

4-30 59150600 Rev. A

Macro format:

LOCATION OPERATION ADDRESS

lfn Logical file name

n Number of PRUs to skip; if n is null .. the number is assumed to

be one (passed via Xl)

r If non-null .. indicates recall status

SKIPB FUNCTION

The SKIPB function directs the system to bypass one or more logical records in the reverse

direction. The user's program can issue this request at any point in a logical record. The

macro parameter n specifies the number of logical records to skip. If the system encoun­

ters a Beginning-of-Information mark before it satisfies the macro request .. the file remains

positioned at the Beginning-of-Information and returns Beginning-of-Information status. The

system will not backspace past the beginning of the file.

Macro format:

LOCATION

lfn Logical file name

OPERATION ADDRESS

n , \ r\ \ \ \ \ I \ \ I I I I I

n Number of logical records to skip, 1 ~ n ~ 3777778

If n is null, the number is assumed to be one (passed via Xl)

r If non-null, indicates recall status

SKIPFB FUNCTION

The SKIPFB function directs the system to bypass one or more files in the reverse direction.

The user's program can issue this request at any point in a file. The macro parameter n

specifies the number of files to skip. The system will not backspace past the beginning of

the file.

59150600 Rev. A 4-31

Macro format:

LOCATION OPERATION ADDRESS

n , Irl I I I II I I I I I I I

lfn

n

r

Logical file name

Number of files to skip (passed via Xl)

If non-null, indicates recall status

REWIND FUNCTION

For a REWIND function, the system positions the file at the beginning of the first data record

or at the beginning of the current reel. A REWIND function for a rewound file has no effect.

Macro format:

LOCATION OPERATION ADDRESS

lfn

r

Logical file name

If non-null, indicates recall status

UNLOAD FUNCTION

The UNLOAD function causes the same system action as REWIND function. If the file re­

sides on magnetic tape, the tape is unloaded.

Macro format:

LOCATION OPERATION ADDRESS

I I I I I I I I I I I I I I

lfn

r

4-32

Logical file name

If non-null, indicates recall status

59150600 Rev. A

LOADER OPERAT10N 5

The KRONOS Loader provides high-speed transfer from input or storage devices to central

memory. The loader can be called by control cards or from the text of an object program.

The loader can load and link subprograms assembled or compiled independently (in absolute

or relocatable binary) to one another or to library subprograms. The loader issues diag­

nostic messages via the dayfile and prints memory maps when requested.

The loader can generate overlays which are written to a specified file in absolute format.

The system then loads these overlays without the extra memory and time required to pro­

cess relocation and linkage.

These operations are governed by control cards, loader requests from object programs,

and the standard relocatable subprogram format.

The loader has the following features:

1. A control card request from the user's program initiates the loader call.

2. Loader requests can be used to:

• Prepare overlays and write them to a defined file

• Load relocatable program texts

• Load overlays

3. The loader can load programs from more than one file (including the system

library) for a single job.

4. During loading, the loader links all external reference and entry points.

5. When the loader completes loading, it fills all unsatisfied references from the

system library, a user file, or by a diagnostic routine that traces calls to such

references.

6. During loading, the loader creates a memory map of all programs for which

the user requests such a map.

7. The loader completes loading when an EXECUTE or NOGO card appears. NOGO

inhibits program execution and is used primarily to provide a map of the program.

59150600 Rev. A 5-1

Subsequent loading following the N()(}O begins as if no programs had been loaded

prior to the NOGO command. An EXECUTE card transfers control directly to

the loaded programs.

8. The loader does not prohibit loading of overlays by normal jobs, or the converse.

However, the user must be extremely careful in the allocation of core and in com­

munication between component programs. The loader also permits loading of

absolute "original" code but complex situations can arise if it is in overlay format.

9. The system reduces the job field length allocation for the loader when the loader

completes loading unless a user's request (NOREDUCE control card) prohibits this

action.

OVERLAYS

The loader provides the facility to subdivide a large task into portions called overlays, and

write them in absolute format. These overlays are then loaded at execution time without a

relocatable loading operation. The loader generates overlays by processing control cards

(loader directives).

An ordered pair of octal numbers (0-77 8) identifies each overlay. The ordered pair is

written generally as (m, n). An overlay can be at one of three levels:

• main (0,0),

• primary (i, 0), or

• secondary (i, j).

A main overlay has a designation in which m and n are zero. A primary overlay has a

designation in which n is zero and m is non-zero. A secondary overlay has a designation

in which both m and n are non-zero.

Only one overlay at each level resides in central memory at one time.

The main overlay (0,0) can remain in memory throughout the job. Loading any other main

overlay will destroy a previously loaded one.

Primary overlays all begin at the same point immediately following the main overlay (0,0).

The loading of a primary overlay will destroy any other primary overlay. All overlays in a

particular program must have unique identifiers.

The origin of secondary overlays immediately follow the associated primary overlay and

they can be loaded only by their primary overlay or by the main overlay. Loading a second­

ary overlay destroys any previously loaded secondary overlay.

5-2 59150600 Rev. A

When the loader detects illegal overlays during preparation (because of erroneous identifica­

tion or size), it aborts the job.

The following diagram shows the storage allocation in core storage resulting from several

overlay loading operations:

Ordinal of First Second
Loading Overlay Overlay Contents of User's Area After this
Request Number Number Overlay has been Loaded

1 0 0 (0,0) Must be the first overlay

2 1 0 (0, 0) (1, 0) loaded

3 1 1 (0, 0) (1, 0) (1, 1)

4 1 3 (0, 0) (1, 0) (1, 3)

5 2 0 (0, 0) (2,0)

6 2 2 (0, 0) (2, 0) (2, 2) I
7 2 1 (0,0) (2, 0) (2, 1) I
8 4 0 (0, 0) (4,0)

LOADER DIRECTIVES

The system interprets the following control cards as directives for loader execution. The

user can intersperse control cards with tables but cannot intersperse them with cards

making up a table.

OVERLAY CARD

Control card format: OVERLAY (lfn, a, b, Cnnnnnn)

lfn Name of the file for which this overlay is to be written. The first overlay

card must have an lfn. Subsequent cards can omit lfn, indicating that the

overlays are related and are to be written in the same lfn. A different lfn

on subsequent cards results in generation of overlays to the file having

the new name.

a First overlay number, in octal.

b Second overlay number, in octal.

Cnnnnnn Indicates the number (nnnnnn, in octal) of words from the start of blank

common storage for the loader to load the designated overlay. This param­

eter is optional. This feature allows the user to change the size of blank

common storage at execution time. This parameter cannot be included in a

main overlay directive. If this parameter is omitted, the loader uses the

previously declared size for blank common storage.

59150600 Rev. A 5-3

OVERLAY DECKS

The data (relocatable binary decks) immediately following the OVERLAY card up to the next

OVERLAY card or an End-of-File mark, make up the overlay deck. When the loader has

loaded the overlay deck, the loader satisfies the undefined external references from the sys­

tem library. It writes the overlay and the overlay identification as the next logical record

in the file.

Each overlay has a unique entry point which is the last transfer address (XFER) that the·

loader encounters in the overlay subprograms when it is preparing the overlay. External

references that the loader cannot satisfy, even from the system library, result in job termi­

nation after the loading operation terminates and the loader has produced maps for all of the

overlays. The user can reference entry points in the main overlay from primary and

secondary overlays. He can reference entry points in a primary overlay only from an

associated secondary overlay.

OVERLAY FORMAT

Each overlay consists of a logical record in absolute format. The first word is the identifi­

cation word. Subsequent words through end-of-Iogical record are data words.

First
word:

59 47 41 33 1 7 0

1'---_50_00_-'------1_b---,-I__a --,---I__fw_a_~I ea r

a First overlay number

b Second overlay number

fwa First word address of the overlay (the overlay is loaded starting

at fwa)

ea Address of the entry point to the overlay

MEMORY ALLOCATION

SYSTEM

The operating system requires storage space within the user's declared field length in con­

tiguous memory locations. It automatically assigns the first 1008 locations:

5-4 59150600 Rev. A

RA
RA+ 1
RA+ 2

59 53 32 23 17

Reserved for Use During Execution

Parameters from the Program Call Card

(Avai la ble to User During Execution)

o

RA + 63
RA + 64

RA+ 65

RA+ 66

RA + 67

RA+ 70

RA+ 77

Parameter Bit

Prog ram Ca II or File Name

FWA - Loader

Tables

fp enr c

Image of Card which Calls for

Program Execution

Description

No. of Parameters
Next Available
Location

FWA- Object

Program

FWA of LOADER

f

p

e

n

r

c

32

31

29

28

27

24-26

No Reduce FL bit; set if loader is not to reduce field

length for the job.

Partial map bit; set if loader is to output a single

line header instead of a complete map.

End-of-load bit; set if LDR has completed the re­

quested load.

NOMAP flag; set if the loader is not to output a

memory map.

RSS bit; set if operation is in RSS mode.

Code indicates last control card interpreted:

000 program call card

001 LOAD card

010 EXECUTE card

100 NOGO card

The system establishes loader tables at the high end of the user's field length. The user

must provide space for the loader and the loader tables in his field length declaration. Blank

59150600 Rev. A 5-5

common can overlay the loader tables. Conversely, if the user calls the loader again,

they can overlay blank common. The user must assure that his field length is long enough

to accommodate the loader tables and blank common if he wishes to preserve his data.

The system cannot guarantee that the applications program cannot destroy the loader tables.

USER

The loader assigns memory to subprograms and associated labeled common blocks as it

encounters them. The loader preserves blank common relocation information until it has

completed loading, at which time it allocates blank common following the last loaded pro­

gram or labeled common block.

Declarations of blank common

determines the actual allocation.

MEMORY MAP

vary between subprograms, but the largest declaration

Following completion of the loading, the loader can produce a map of the user's area in the

OUTPUT file. The map includes:

• Total length of all loaded programs and common blocks

• Length of the loader and its tables

• Names and locations of programs loaded, and the name of the file

from which they are loaded

• Names and locations of common blocks

• Names and locations of entry points with a sublist of all programs

referencing the entry point

• Unsatisfied external references

During generation of an overlay, the loader provides the record of a new overlay each time

a call is made to the CPU loader program. The user can suppress the generation of this

map by setting the NOMAP bit in the loader parameters to one.

5-6 59150600 Rev. A

DECK STRUCTURES

This section illustrates sample decks for:

• COMPASS language programs

• FORTRAN language programs

A card with a 7-8-9 punch in column 1 separates logical records. A card with a 6-7-9

punch in column 1 separates files. A. card with a 6-7-8-9 punch in column 1 marks the

End-of-Information. Figure 6-1 shows a basic job deck.

6

1
DATA

RECORD
I

PROGRAM
RECORD

CONTROL
CARD

RECORD

6

7 END-OF - INFORMATION
8

9
/

/
/

I
~

/
I

7

8 RECORD SEPARATOR

9

l-

I

-- I

(: RECORD SEPARATOR

-

I

/ ACCOUNT CARD
-

JOB CARD

~

I--

Figure 6-1. Basic Job Deck

59150600 Rev. A 6-1

COMPASS DECKS
Figures 6-2 and 6-3 illustrate typical COMPASS language decks. Figure 6-2 shows a deck

for KRONOS to assemble with listing and binary output, and execute the subprogram using

the included input data.

1
DATA

RECORD

PROGRAM
RECORD

CONTROL
CARD

RECORD

6

7

8

9
F

/
F

I I--

/
I

7

8
9

/
10-

END MEL. ~

1
~ I

/ IDENT. MEL.

r.....- (:
~ VLGO.

jCOMPASS.

/ ACCOUNT, ABCDEFG TUVWXYZ.
I--

MAEANN, TIOOO, CM35000, P3.

I--

~

~

r
SUBPROGRAM MEL

*

Figure 6-2. COMPASS Assemble and Execute Deck

6 -2 59150600 Rev. A

Figure 6-3 shows a deck for KRONOS to assemble with listing and binary output, punch the

binary output, and execute the first program.

f
SUBPROGRAM CDA

_l

f
SUBPROGRAM ANN

-t
SUBPROGRAM MAE

~

6

7

8
9

/

(: ~

/ END CDA.

/
/

/ ~
/

/IDENT
l---

COA.

7

8

9
I--

~

END ANN. I-

---- IDENT ANN.

END MAE.

"""-- 1
.... 1

.... /IOENT MAE
I.-- (:lo-

l-

I COPYBR (LGFILE 2, PUNCHB)

I REWIND (LG FILE I)

/LGFILE I.

I COPYBR
~

(LG FILE I, PUNCHB)

jREWI NO (LGFILE 2)

IREWIND (LGFILE I)

/ COMPASS
~

(B=LGFILE 2)

/ COMPASS (B = LGFILE I)
~

-
/ ACCOUNT ABCOEFG TUVWXYZ. ---MAEANN, T500, CM40000, PIO. -

~

I--

~

1

CONTROL

CARD

RECORD

PROGRAM
RECORDS

DATA RECORD

Figure 6-3. COMPASS Assemble, Execute and Punch Binary Output Deck

59150600 Rev. A 6-3

FORTRAN DECKS

Figures 6-4 through 6-6 illustrate various structures of FORTRAN language decks. These

decks have various requirements for computation, user output, and overlay preparation.

1
DATA

RECORD

PROGRAM
RECORD

CONTROL
MRD

RECORD

6
7

8

9
I

/
I

/ ~
I

7

8

9

I

I
'---

"- (:
'--'I RUN (G 20000)

/ ACCOUNT, ABCDEFG, TUVWXYZ.

MOTHER, PIO, T1000 , CM 60 000.
~

~

!o---

f
DATA CARDS

*

+
SOURCE CARDS

*

Figure 6-4. FORTRAN Compile an,d Execute Deck

6-4 59150600 Rev. A

1
DATA

RECORD

PROGRAM
RECORDS

CONTROL
CARD

RECORD

6

7

8

9

/
/

/ -

(7

8

9
F

/
/ ~

I

7 ~

8

9

I
IF I

II
""-- I

PROGRAM ALFRED (INPUT, OUTPUT,
TAPE I, TAPE 5, TAPE 6)

"- (:--
VLGO.

/LOAD (INPUT)

jRUN (S)
~

/ REQUEST, TAPE I, WT, Rp, N.

/REQUEST, TAPE 5 , WT.

/REQUEST, TAPES, WT.
~

/ACCOUNT ABCDEFG, TUVWXYZ.
~

AMANDA, P2, T400, CM40000.
~

~

-
~

0--

Figure 6-5. FORTRAN Load and Run Deck

r
BINARY

DECK

SOURCE
DECK

59150600 Rev. A 6-5

1
DATA

RECORDS

PROGRAM
RECORD

CONTROL
CARD

RECORD

6

7

8

9
f

f

(: -
f

f
/

IIIf -
7

~

~

8 END.
9 :

I

PROGRAM MEL.

--- OVERLAY (FRANKl, I, I,)

END.
"'-

GC,All OVERLAY (FRANK!, I, 1,0)-0-

0-

/--- /

VPROGRAM RAY.

jOVERLAY (FRANKI, 1,0)
f

I

f
~

/ SUBROUTINE BROUCH (X)

END. I -
l--

CALL OVERLAY (FRANK!, I, 0, o)
~

CALL GROUCH (40 0)

I
I

PROGRAM LEO (INPUT, OUTPUT)- OVERLAY (FRANKl, 0, 0)
'-

--- n....
.....

---VFRANKL

/LGO.

/ RUN (M, 10000) -
/ACCOUNT ABCDEFG TUVWXYZ.

MTILDE,PI7, T 500, CM 30000.

~

~

~

--

Figure 6-6. FORTRAN Overlay Preparation Deck

r
SOURCE

DECK

SOURCE
DECK

i
SOURCE

DECK

_L

6-6 59150600 Rev. A

UTILITY PROGRAMS

The KRONOS library contains a set of PPU and CPU utility programs which the user can

call with control cards. The system provides for card-to-tape, tape-to-tape, tape-to-

print, card-to-central storage, central storage-to-punch, file editing, and general file

manipulation operations. KRONOS performs utility operations on named files, each of

which designates a specific peripheral device such as a card reader, tape unit, printer,

card punch, or disk.

7

Before the first reference to any named file, the operator assigns a device to it with the

ASSIGN command in response to a REQUEST control card, or by an ASSIGN card; otherwise,

the system assigns the file to a disk unit. All files, except those on disk, specify a unique

peripheral device and all references to the specific device are made through the file name.

Utility jobs conform to the normal deck structure (Section 6). If the user has only utility

programs to run, the job card can specify a short field length. In all copy operations, the

system automatically sets up the central memory buffer to use the entire field length of the

job. Some operations between high-speed devices run faster with a large buffer.

The user's program should request the operator to assign equipment to all necessary files

which do not reside on the disk. The system will rewind and position tapes upon request.

The user can call each utility program by specifying its name, starting in column 1. Param­

eters for execution of the program appear in parentheses after the name.

LIBRARY ROUTINES

GENERATE USER LIBRARY FILE (LIBGEN)

Control card format: LIBGEN (L=library, N=name, I=input)

library Name of library file; if undefined, the system assumes LIBRARY

(file is not rewound).

name Name of file identifier; this parameter is necessary if the user

library file is to reside on the system library tape. If undefined,

the system assumes ULIB.

input Name of file containing input data; if undefined, system assumes

LGO (file is rewound).

59150600 Rev. A 7-1

With the LIBGEN card, a user can generate a library file. The input file supplies the sub­

programs to be included in the file.

LIBGEN reads the input file and creates a directory of entry points. When a zero-length

record or End-of-File mark appears, LIBGEN terminates the directory and rewinds the

input file. LIBGEN then writes the directory and copies the input file to the library file.

A zero-length record followed by a file mark terminates the library file.

EDIT USER LIBRARY FILE (.LIBEDIT)

Control card format: LIBEDIT (Pl' P2' · · · , Pn)

p. Parameters; can be any of the following in any order:
1

Option

I = 0

I = fname

OLD = 0

OLD = fname

NEW = fname

L=O

L = 1

LO = fname

LGO = 0

LGO = fname

C

V

R

Specify

Use no correction file input

Use file fname for correction file input

Use no old file

Use file fname for old file

Use file fname for new file

Print no correction listing

Print only the changes made

Use file fname as output file

Generate no default correction file

Use file fname for default correction file

Copy file NEW to OLD

Verify files OLD and NEW

Do not rewind OLD and NEW

By calling the LIBEDIT utility program, the user can edit a library file. Specific LIBEDIT

directives, which appear in the program record, include:

*INSERT

*DELETE

*IGNORE

*ADD

*RENAME

~~REPLACE

*COpy

*BEFORE

See the KRONOS external documentation for the current capabilities of these directives.

7-2 59150600 Rev. A

CONVERT UPDATE LIBRARY TO MODIFY LIBRARY (UPMOD)

Control card format: UPMOD (PI' P2' · · · , Pn)

p. Parameters; can be any of the following in any order:
1

Option

P

P = fname

N

N = fname

M

M = lname

F

F=x

Specify

UPDATE program library is on file OLDPL

UPDATE program library is on file fname

MODIFY program library is on file OPL

MODIFY program library is on file fname

MODIFY program library name is OPL

MODIFY program library name is lname

Convert to file mark

The UPMOD utility program converts program libraries that have been maintained by UP­

DATE to program libraries that can be maintained by MODIFY. Unless the F option is

selected, UPMOD converts one logical record. For parameters omitted from the control

card, the system assumes:

P = OLDPL

N = OPL

M= OPL

CATALOG FILE SET (CATALOG)

Control card format: CATALOG (files, N=n, L=list)

files

n

list

Name of file set to be cataloged

Number of files to catalog; if n=O, all files are cataloged until

an empty file is found

Name of file to receive catalog information

The CATALOG card lists catalog information on file "catalog" for n files of the file set.

For each file, CATALOG lists the:

•
•
•

file name,

current file number,

record number,

•
•
•

record type,

record length, and

checksums for the records.

The listing for each file begins on a new page.

59150600 Rev. A 7-3

COMPARE RECORDS (VERIFY)

Control card format:

file 1

file 2

p.
1

Name of first file; if omitted, the system assumes TAPE 1.

Name of second file; if omitted, the system assumes T~~PE2.

Parameters; can be any of the following:

Option

N=x

E = x

L = fname

A

Specify

Verify x files. If x = 0, terminate operation on the

first empty file from either medium. If N is omitted,

the system assumes N = 1.

List first x errors in comparison; if omitted, the

system assumes E = 100.

List output on file fname; if omitted, the system

assumes L=OUTPUT.

Abort if errors occur. If omitted, the system will

not abort.

The VERIFY program compares data on two files, word for word, in Binary mode. When­

ever words on the two files do not match, VERIFY lists:

• the record number,

• the word number within the record, and

• the words from both media that do not match.

The E option can save the system much wasted effort if the files are drastically dissimilar.

COMPARE LIBRARY FILES (VFYLI8)

Control card format: VFYLIB (old, new, output, r)

old

new

output

r

Name of old library file; if omitted, the system assumes OLD

Name of new library file; if omitted, the system assumes NEW

Name of file to receive output; if omitted, the system assumes OUrfPUT

If set, old and new are not rewound.

The VFY LIB program compares an old library file with a new one and lists:

• replacements,

• de letions ,

on the output file.

7-4

•
•

insertions, and

changes in residence

59150600 Rev. A

EXTRACT EXTERNAL DOCUMENTATION (DOCEXT)

Control card format: DaCEXT (s file, 1. file)

sfile Name of program source file; if omitted, the system assumes COMPILE

1. file Name of file on which to list documentation; if omitted, the system

as sume s OUT PUT

The DOCEXT program extracts the external documentation - the lines that begin with three

asterisks and all contiguous comment lines - from the source file and lists the documenta­

tion on the output file.

GENERATE SYSTEM SYMBOL CROSS REFERENCE (SYSREF)

Control card format: SYSREF (PI' P2' · · · , Pn)

p.
1

Parameters; can be any of the following:

Option

P

P = fname

L

L = fname

S

S = 1.name

Specify

Old program library input from file OPL.

Old program library input from file fname

List output on file OUTPUT

List output on file fname

System text from overlay SYSTEXT

System text from overlay 1.name

The SYSREF program generates a cross reference list of system symbols used by decks on

a specified old program library file.

COpy ROUTINES

COpy THROUGH EMPTY FILE (COpy)

Control card format:

filel

file 2

x

Name of file to copy from

Name of file to receive copy

If present, rewind and verify both files

The COpy routine copies filel to file2 through an empty file in filel_ It then backspaces

file2 over the last file mark. If the file names are omitted, the system assumes INPUT,

OUTPUT.

This routine can be used to copy a tape even if the number of files on the tape is not known,
providing the tape terminates with an empty file.

59150600 Rev. A 7-5

COpy BINARY FILE (COPYBF)

Control card format:

file 1 Name of file to copy from

file 2 Name of file to receive copy

n Number (decimal) of binary files to copy; if absent, the system

assumes n=1

The COPYBF routine copies n binary files from file1 to file2_ If the first and second

parameters are omitted, the system assumes INPUT, OUTPUT_

COpy BINARY RECORD (COPYBR)

Control card format:

file 1 Name of file to copy from

file 2 Name of file to receive copy

n Number (decimal) of binary records to copy; if absent, the system

assumes n=1

The COPYBR routine copies n binary records from file 1 to file2_ If the first and second

parameters are omitted" the system assumes INPUT, OUTPUT_

The COPYBR operation terminates when COPYBR has read the required number of records (n)_

COpy CODED FILE (COPYCF)

Control card format: COPYCF (file 1, file2" n" fchar" lchar)

file1

file2

n

fchar

J.char

Name of file to copy from

Name of file to receive copy

Number (decimal) of BCD files to copy; if absent, the system assumes n=1

First character of each line to copy; if omitted, the system assumes fchar=1

Last character of each line to copy; if omitted" the system assumes lchar=136

The COPYCF routine copies n coded (BCD) files from file1 to file2_ If the first and second

parameters are omitted, the system assumes INPUT, OUTPUT _ If the first and second

parameters are the same, the system skips n files_

7-6 59150600 Rev_ A

COpy CODED RECORD (COPYCR)

Control card format: COPYCR (file1' file 2 , n, fchar, lchar)

file 1

file 2

n

fchar

1 char

Name of file to copy from

Name of file to receive copy

Number (decimal) of coded records to copy; if absent, the system assumes

n = 1

First character of each line to copy; if omitted, the system assumes

fchar = 1

Last character of each line to copy; it omitted, the system assumes

1 char = 136

The COPYCR routine copies n logical records from file1 to file2. If the first and second

parameters are omitted, the system assumes INPUT, OUTPUT. If the first and second

parameters are the same, the system skips n records.

The COPYCR operation terminates when COPYCR has read the required number of records

(n).

COpy SHIFTED BINARY FILE (COPYSBF)

Control card format: COPYSBF (file1' file 2 , n)

file 1

file2

n

Name of file to copy from

Name of file to receive copy

Number (decimal) of coded records to copy; if absent, the system assumes

n = 1

The COPYSBF routine copies n files of coded information from filel to file2, shifting each

line one character and adding a leading space. If the parameters are omitted, the system

assumes INPUT, OUTPUT, 1.

This routine is used to format a print file where the first character of each line is not a

control character and is to be printed. The added space character results in single line

spacing and a page eject at the beginning of each record when the system prints the file.

59150600 Rev. A 7-7

COpy TO TERMINATOR (COPYX)

Control card format: COPYX (file 1' file 2 , term, bksp)

file 1

file2

term

Name of file to copy from; if undefined, system assumes INPUT

Name of file to receive copy; if undefined, system assun1es OUTPUT

Terminator type:

term = n; copy n records

term = 00; copy to zero-length record

term = cccccc; copy until record named cccccc appears

If term is undefined, the system assumes term = 1

bksp Backspace command:

bksp = 0; no backspace

bksp = 1; backspace file1

bksp = 2; backspace file2

bksp = 3; backspace both files

If bksp is undefined, the system assumes bksp = 0

COPYX copies binary records to the specified terminator and then backspaces the file or

files according to the parameters given.

FILE MANIPULATION ROUTINES

UNLOAD FILE (UNLOAD)

Control card format:

The UNLOAD routine rewinds and unloads file1' file2, ... , file n but does not dissociate

the files from the control point.

REWIND FILE (REWIND)

Control card format: REWIND (file 1' file 2, · · · , filen)

The REWIND routine rewinds file 1 , file 2, ... , filen .

7-8 59150600 Rev. A

SKIP TO END·Of.INfORMATION (SKIPEI)

Control card format: SKIPEI (file1)

file 1 Name of the file to be positioned; if omitted, the system assumes FILE.

The SKIPEI card directs the system to reposition file 1 to the End-of-Information symbol.

This card can only be used with mass storage devices.

SKIP fiLE fORWARD (SKIPf)

Control card format: SKIPF (file1' n)

file
l

Name of file set to be positioned; if omitted, the system assumes FILE

n Number (decimal) of files to skip; if omitted the system assumes n = 1

The SKIPF card directs the system to bypass one or more files, in the forward direction

to file1.

SKIP fiLE BACKWARD (SKIPfB)

Control card format: SKIPFB (file 1, n)

file 1 Name of file set to be positioned; if omitted, the system assumes FILE

n Number (decimal) of files to skip; if omitted, the system assumes n=1

The SKIPFB card directs the system to bypass one or more files, in the reverse direction,

to file 1 .

SKIP RECORD fORWARD (SKIPR)

Control card format: SKIPR (file l' n)

file 1 Name of file to be positioned; if omitted, the system assumes FILE

n Number (decimal) of logical records to skip; if omitted, the system

assumes n=1

The SKIPR card directs the system to position file 1 forward n logical records.

59150600 Rev. A 7-9

BACKSPACE LOGICAL RECORDS (BKSP)

Control card format: BKSP (file l' n)

file 1 Name of file to be backspaced; if omitted, the system assumes FILE

n Number (decimal) of logical records to backspace; if omitted, the

system assumes n=l

The BKSP routine backspaces file 1 n logical records. Backspacing terminates if file
1

becomes rewound.

RETURN F-ILES (RETURN)

Control card format: RETURN (file 1 , file 2 , ... , filen)

file i Names of files to be returned

The R·ETURN card returns files to the system. If a file named is a COMMON file on which

the system allows other than read operations, it becomes available to other users. Other­

wise, the system disposes of the files according to file types.

INPUT/OUTPUT ROUTINES

LOAD BINARY CORRECTIONS (LBC)

Control card format: LBC, addr. or
LBC.

addr Address (octal) relative to RA at which binary load begins; if absent,

LBC begins at RA

The user can call the LBC peripheral program with a control card. LBC reads binary

corrections from the INPUT file and enters them in central storage. If addr is specified

in the program call, binary cards are loaded beginning with that address; otherwise, load­

ing begins at the reference address. LBC reads only one record from the INPUT file. The

user must make an LBe call for each record of data to be loaded. This program is intended

for loading cards punched by the PBC routine.

7-10 59150600 Rev. A

LOAD OCTAL CORRECTIONS (LOC)

Control card format: LOC (fwa, lwa) or

LOC (lwa) or

LOC.

fwa

lwa

Address (octal) relative to RA at which octal load begins; if absent, LOC

begins at RA

Last word address plus one (octal) of the buffer area in which to load octal

cards; if absent, LOC reads all correction cards in the next INPUT file

record

The user can call the LOC peripheral program with a control card. LOC reads octal

corrections from the INPUT file and enters them in central storage. The octal correction

cards must be in the following format:

1 7

145020 04000 00042 000441

Address begins in column 1; leading zeros can be omitted. The data word begins in column

7; spacing in the data word is not important but the word must contain 20 digits.

PUNCH BINARY CARDS (PBC)

Control card format: PBC (fwa, lwa) or

PBC (lwa) or

PBC.

fwa

lwa

Address (octal) relative to RA at which the binary deck begins; if absent,

PBC uses RA

Last word address plus one (octal) of the binary deck; if absent, RA con­

tains the number of words in the lower 18 bits

The PBC routine punches a deck of binary cards directly from central memory and does

not modify central memory.

READ BINARY RECORD (RBR)

Control card format: RBR, n.

n Specifies fifth character of file name (1-7); first four characters are TAPE

59150600 Rev. A 7-11

The RBR routine loads one binary record from the file specified by the user. Loading begins

at RA. RBR uses central memory locations FL-5 through FL-1 for buffer parameters and

destroys the original contents of these locations.

WRITE BINARY RECORD (WBR)

Control card format: WBR, n. rl.

n

rl

Specifies fifth character of file name (1-7); first four characters are TAPE

Record length in words; if absent, length is taken from the lower 18 bits

of RA

The WBR routine writes a binary record from central memory to the file specified by the

user. WBR begins writing from RA. WBR uses central memory locations FL-5 through

FL-l for buffer parameters and destroys the original contents of these locations.

Example:

To write a program on tape after patching it:

REQUEST TAPE5.

REQUEST TAPE2.

REWIND (TAPE5).

REWIND (TAPE2).

RBR, 5.

LOC.

WBR,2.

WRITE FILE MARKS (WRITEF)

Control card format: WRITEF (file 1' n)

file 1 Specifies the file to be written on

n Number of file marks; if omitted, the system assumes n=l

The WRITEF card instructs the system to write n file marks on a file.

WRITE EMPTY RECORDS (WRITER)

Control card format: WRITER (file 1' n)

7-12

file 1

n

Specifies the file to be written on

Number of blank records; if omitted, the system assumes n=1

59150600 Rev. A

The WRITER card instructs the system to write n empty records on a file.

REQUEST FIELD LENGTH (RFL)

Control card format: RFL, nfl

nfl New field length (octal)

The RFL routine changes the field length for the execution of a program. This routine is

also used internally by the RUN compiler. For a short 50008 word program, storage would

be used most efficiently by calling RFL.

DUMP STORAGE (DMP)

Control card format: DMP (fwa, lwa) or

DMP (lwa) or

DMP.

fwa

lwa

First word address of memory to be dumped; if five digits are prefixed

by a 4, fwa is absolute first word address; otherwise, fwa is relative to

R,A,. If fwa is absent, Dump mode depends on the presence or absence of

lwa

Last word address plus one of memory to be dumped; if five digits are pre­

fixed by a 4, lwa is absolute last word address plus one; otherwise, lwa is

relative to RA. If lwa alone is present, DMP assumes fwa = RA. If neither

fwa or lwa is present, DMP dumps the exchange package and 100 locations

before and after the stop location

The user can call the DMP peripheral program with a control card. The DMP routine

dumps central memory according to the DMP call parameters.

59150600 Rev. A 7-13

I/O CODES

Code Macro Order

00 RPHR Read one PRU from file

04 WPHR Write one PR U to file

10 READ Read to CM

14 WRITE \Vrite until short PRU

24 WRITER Write to End-of-Record

30 SKIPFF Skip forward n logical files

34 WRITE Write a file mark

40 BKSP Backspace one logical record

44 BKSPRU Backspace n logical PRUs

50 REWIND Rewind file

60 UNLOAD Unload tape file

70 RETURN Return file to system

114 EVICT Release allocatable storage

130 SKIPFB Skip backwards n logical files

200 - Read to End-of-Information

240 SKIPF Skip forward n logical records

640 SKIPB Skip backwards n logical
records

59150600 Rev. A

A

A-1

RELOCATABLE SUBROUTINE FORMATS B

In order to be externally compatible with SCOPE versions of COMPASS and other language

translators, KRONOS subscribes to the SCOPE relocatable subroutine format. Hence, the

logical record of output (subroutine) consists of an indefinite number of tables. Each table

in this appendix is a subdivision of a logical record.

IDENTIFICATION WORD

The first word of each table identifies the table to the system. That is, it indicates the kind

of information that the table contains. The format of the identification word is:

59 53 4,--7 35 ~26=-- ..=-1....:.....7-------"--0

j en~ words ~ reloe I address I
The parameters of the identification word are:

TABLE B-1. IDENTIFICATION WORD PARAMETERS

Code Number
(en) Table reloc address words

34 Program not used 0 Number of words
Identification in table (not count-
and Length ing identification

word)

36 Entry Point not used not used

40 Text reloc=O, relative to RA load

reloc=l, relative to pro- address

gram origin

reloc=3-778' relative to
labeled common
block M, where
M is in position
LR-2 of LCT

42 Fill 0 0

43 Replication not used not used

44 Link not used 0

46 Transfer not used not used

77 Prefix not used not used

59150600 Rev. A B-1

PROGRAM IDENTIFICATION AND LENGTH (PIDL) TABLE
59 17

word 1 I name of subprogram I pI

o

name of subprogram

pI

May be 7 display code blank characters

Program length

59 1 7 0

words 2 - we 1 n_a_m_e_o_f__c_o_m_m_o_n_b_lo_C_k ~I b_l ----il
wc Word count

name of common block May be 7 display code blank characters

bl Block length

If wc = 1, no common references appear in the program. The subprogram length is relevant

only in the first Program Identification and Length Table. All PIDL tables must appear

prior to the display of any other tables associated with a given subprogram. The names of

common blocks cannot be duplicated in a PIDL table. The list of common block names is

called the Local Common Table (LCT). Since the relocation of addresses relative to com­

mon blocks is designated by the positions in the LCT, the order of the common block names

is significant. (The first word in the LCT is referred to as position 1.)

ENTRY POINT (ENTR) TABLE

The Entry Point (ENTR) Table contains the names of the entry points to the subprogram

and its associated labeled common blocks. The ENTR Table must immediately follow the

PIDL tables.

59 26 1 7 0
wordsl-we----~~

~~.__r_I__C=lOC~

B-2

rl

loc

Relocation of the address specified by LOC

o absolute, relative to RA (no relocation)

1 program address

3-778 relative to common block M, where M is in position rl-2 of LCT
(M must not refer to blank common)

Address of data word to be modified

59150600 Rev. A

TEXT TABLES

Text tables, which can appear in any order and any number, contain subprogram data and

relocation information for the data. Each table includes an origin for the data, the data

itself, and relocation indicators.

The relocation word (first word), which is a series of 4-bit bytes, describes relocation of

the three possible memory address references in a 60-bit data word. Relocation is deter­

mined relative to either the program origin or the complement of the program origin (nega­

tive relocation). T he value and relocation for each byte is as follows:

OOOX

10XX

11XX

010X

011X

1X10

1X11

0010

0011

no relocation

upper address, program relocation

upper address, negative relocation

middle address, program relocation

middle address, negative relocation

lower address, program relocation

lower address, negative relocation

same as 1X10

same as 1X11

These designations permit independent and simultaneous relocation of both upper and lower

addresses.

Data words (words 2-wc, wc:S: 208) are loaded consecutively beginning at the load address

L, and their addresses are relocated as specified by the corresponding byte in the reloca­

tion word.

All addresses are relocated absolutely or relative to the program origin. They are never

relocated relative to a labeled common block.

FILL TABLE
Words 1-wc are partitioned into sets of 30-bit contiguous bytes consisting of one control

byte followed by an indefinite number of data bytes. The last byte can be zero. The con­

trol byte holds information concerning each of the subsequent data bytes until another

control byte is encountered.

59150600 Rev. A B-3

A zero byte is treated as a control byte in the format:

29 8 0

~_a_r__1

ar Relocation of the value in address position of word specified

in succeeding data bytes:

o absolute, relative to RA (no relocation)

1 program relocation

2 negative relocation

3 -778 relative to common block M, where M is in position
ar-2 of LeT

T he data byte format is:

29 26 17 0
~I~.-rl--r---I--l-oc--I

p

rl

loc

LINK TABLE

Word format:

Position within word of address specified by rl and loc

10 upper

01 middle

00 lower

Relocation of address specified by loc

Address of data word to be modified

59 17 0
Ir------n-a-m-e-o-f-e-x-t-e-r-n-a-l-S-y-m-b-O-l----..,-,.~

Names of external symbols (7 characters) must begin with a character for which the display

code representation has a high order bit equal to zero. The data bytes have the form:

29 26 17 0
[lEJr----r-l--r-I--lOC--'

p Position within the word of the reference to the external symbol:

B-4

10

01

00

upper

middle

lower

59150600 Rev. A

rl

loc

Relocation of address specified by loc

o absolute, relative to RA

1 program relocation

3-778 relative to common block M where M is in position
rl-2 of LCT

Address of the word containing the reference to the external symbol

REPLICATION TABLE

Each entry in the Replication Table is in the following format:

59 41 26 1 7 0

i

sr

s

c

b

dr

d

Increment d by this value before each data block is repeated; first

repetition of block is at d, second at d+1, etc. The data block (B­

long) with origin at s is repeated c times beginning at d the first

time, and beginning at the previous origin plus i thereafter. If i=O,

i is interpreted as b.

Relocation of the address specified by s:

o absolute, relative to RA

1 program relocation

3-778 relative to common block M where M is in position sr-2
of LCT; must not refer to blank common

Initial address of the source data; must be non-zero

Number of times data block is to be repeated; if c=O, c is interpreted as 1

Size of data block; if b=O, b is interpreted as 1

Relocation of address specified by d

Initial address for destination of data; if d=O, d is interpreted as s+b

TRANSFER TABLE

Each entry in the Transfer Table is in the following format:

59 17 0

11..- e_n_t_r_y_p_O_i_n_t_n_a_m_e --J~

This table indicates the end of a subroutine and a pointer address. The entry point name

need not be in the subprogram. If name is blank, there is no named transfer.

59150600 Rev. A B-5

CARD FORMAT

COLUMN 1
Column 1 indicates the kind of data that might appear on a card:

c

Punch

7, 8, 9

6" 7, 9

5, 7, 9

6, 7, 8, 9

7, 9

Not 7 and 9

COLUMNS

2 3 4 5

Represents

End-of-Record mark

End-of-File mark

Change code conversion

End-of-Information mark

Binary card

Coded card

77 79 80

12

II

0

I

2
en :3
~
0 40:::

5

6

7

8

9

"-'-

~~
I--- -- - Column Binary Informat ion - ~

:>..- '"
~ ~

0 0c en c .=:::J
0 0 ~ ~

u ~ - -
~

~

~
CD CD

~
~

0 ~ E E
~ :::J

~~
~ :::J :::J

"0 C Z Z
""'-- 0 0

~
CD

(Ii CD 0- 0 c:- c CDCD
:::J :::J

E CT CT

~ :::J CD Q)

U) C/) C/)
~

0
~~ CD ~oJ:

U 0 0
u ~

I---

I---
~

BINARY CARD

A binary card can contain up to 15 central memory words of data starting with column 3.

Column 1 also contains a central memory word count in rows 0, 1, 2, and 3 plus a checksum

indicator in row 4. If row 4 of column 1 is unpunched, column 2 can be used as a checksum

for the card. If row 4 is punched, column 2 is not an accurate checksum for the card.

Column 78 is blank. Columns 79 and 80 contain the card sequence number in binary.

59150600 Rev. A C-1

CODED CARDS
Coded cards are in Hollerith code of up to 80 characters per card. When the system reads

coded cards, it converts the data to display code and packs it 10 columns per CM word and

deletes trailing blanks'. Code conversion can be specified.

When the system punches coded cards, it extracts data from a line to an End-of-File mark

or to the 80th character converting from display code to Hollerith.

C-2 59150600 Rev. A

Message

ARITH. ERROR.

ERROR DIAGNOSTIC MESSAGES

Explanation

The system monitor has detected an arithmetic error
condition in the last executing CPU program.

D

CHARACTER LIMIT ERROR.

CLL. ARG. ERROR. xxxxxx.

CLO ARG. ERROR.

CPxx. COMPARE ERROR.

CRxx, BINARY CARD ERROR.

DISK x PARITY ERROR
Tyyy Gz Swww.

DMP ARG. ERROR.

DRUM x PARITY ERROR
Uy Gzz Awwwww.

ECS ABORT Axxxxxxx.

END OF FILE.

EQxx TRACK LIMIT.

ERROR IN ARGUMENTS.

59150600 Rev. A

The number of the first character to copy cannot be
greater than the number of the last character; nor can
the last character number be greater than 150.

The argument xxxxxx is (a) equal to or greater than the
field length minus two, or (b) the upper address of the
argument is equal to or greater than the field length, or
(c) the first address is equal to or greater than the
upper boundary address.

The CLO argument address is greater than or equal to
the field length.

Card punch xx has mispunched a card. Operator action
is not required since the card punch offsets the bad card
and the card following it, and repunches both of these
cards.

The card reader xx has detected a binary checksum
error on the last card read.

While loading from the disk, a 6603 or 6638 driver has
detected an unrecoverable parity error on disk x, track
yyy, group z, and sector www.

The user has requested a dump of an area in central
memory, the limits of which are outside the user field
length.

A 3436/863 driver has detected an unrecoverable parity
error on unit y, of drum system x, at address wwwww,
of head group zz.

An ECS abort occurred while a program was referenc­
ing the data beginning at address xxxxxxx.

An End-of-File mark was found before a copy operation
was complete.

All tracks on device xx are reserved. Hence, none are
available for processing of the user file.

Check the control card syntax as described in Sections 3
and 7.

D-1

Message

FATAL LOAD ERROR xx.

ffffffNOT ON SYSTEM.

FILE ALREADY ASSIGNED.

FILE NAME CONFLICT.

FILE NA,ME IN USE.

FILE NOT CREATED.

FILE NOT IN MASS
STORAGE.

FILE PROTECTED.

FL TOO SHORT FOR
CATALOG.

FL TOO SHORT FOR COPY.

FL TOO SHORT FOR DOCEXT.

FL TOO SHOR,T FOR LOADER.

FL TOO SHORT FOR MODIFY.

FL TOO SHOR,T FOR VERIFY.

FORMAT ERROR ON
CONTROL CARD.

ILLEGAL CHARACTER
NUMBER.

ILLEGA,L CONTROL CARD.

ILLEGAL EQUIPMENT.

ILLEGAL FILE COUNT.

ILLEGAL PRIORITY.

D-2

Explanation

KRONOS has detected a fatal load error, number xx, dur­
ing the current load operation. The system aborts the job.

File ffffff does not reside on the system mass storage
device.

The control statement has requested a file which is
already assigned to the job.

Check the preceding control card. Two names are
identical which -KRONOS does not allow.

The file name on a COMMON or RESERVE request is
currently used by a COMMON file.

A control statement has attempted to declare a non­
existent file as COMMON.

The file requested for program execution does not re­
side on a mass storage device.

An attempt was made to release a "read only" file.

Provide at least 6,2008 locations for the CATALOG
program.

Provide at least 4,60008 locations for the COpy
operation.

Provide at least 6,2008 locations for the DOCEXT
program.

There is not enough memory space in the user's field
length for LOADER.

Provide at least 24, 0008 locations for MODIFY opera­
tions.

Provide at least 6, 3008 locations for the VERIFY pro­
gram.

A system routine has found a format error on a control
card. The bad card precedes this message in the dayfile.

The character count on a control card must be a numeric
character.

The control statement could not be identified.

A control card has attempted to assign or request a
non-existent peripheral device to a user file.

The file count on a control card must be a numeric
character.

Do not request a priority of less than one or greater
than 17.

59150600 Rev. A

Message

ILLEGAL RECORD COUNT.

ILLEGAL RECORD FORIVIAT.

IMPROPER PACKAGE
LABEL.

INVALID PARAMETER IN
PROGRAM.

JOB CARD ERROR.

LBC ARG. ERROR.

LIBRARY OVERFLOW.

LOADER NOT IN LIBRARY.

LOADER TEXT BAD.

LOC ARG. ERROR.

MSG ARG. ERROR.

MTxx, READ PARITY
ERROR.

MTxx, WPE RECOVERED.

MTxx, WPE UNRECOVERED.

NO DATA IN FILE.

OPE ARG. ERROR

59150600 Rev. A

Explanation

The record count on a control card must be a numeric
character.

Records on the source file from which to generate user
libraries must be in relocatable form.

The called PPU package name is in improper format
for insertion in RPL.

An illegal call to the ALGOL routine finder (ALG) has
been generated.

KRONOS has detected an error on a job card.

The LBC argument address is greater than the field
length.

The system cannot make another entry in the library
directory.

A program has written other information in the system
library area and destroyed the loader.

The routine LOD was unable to properly load the
system loader.

In an attempt to load octal corrections to central mem­
ory, the operator has done one of two things:

a. addressed an area outside his field length, or

b. his FIRST address is greater than his LIMIT
address.

A dayfile message specifies an address that is greater
than or equal to the field length of the user's control
point.

The system has detected a parity error after eight re­
read attempts. The operator should either type n. GO
(in which case the record containing the parity error is
lost) or type n. DROP.

The system has recovered a write parity error located
on magnetic tape unit xx. The job continues.

The system has not recovered a write parity error
(located on magnetic tape unit xx) after eight rewrite
attempts and one Skip Bad Spot function. The operator
should type either n. GO or n. DROP.

The file requested for execution contains no data.

The address of the File Environment Table in the call
to Open File Routine (OPE) is greater than or equal to
the FET field length minus five.

D-3

Message

OPERATOR DROP.

PBC ARG. ERROR.

PBC RANGE ERROR.

PP CALL ERROR.

PROGRAM NOT
AVAILABLE.

PROGRAM NOT ON MASS
STORAGE.

PROGRAM TOO LONG.

RBR ARG. ERROR.

RECORD LENGTH TOO
LONG.

RECORD TOO LONG.

REQ ARG. ERROR.

REQ. ILLEGAL EQUIPMENT
REQUEST.

REQ, ILLEGAL FILE NAME.

RFL ARG. ERROR.

ROLLIN FILE BAD.

RPL ARG. ERROR.

TIME LIMIT.

TOO MANY ARGUMENTS.

D-4

Explanation

The system monitor has set the Operator Drop error
flag.

The first address specified in calling PBC is greater
than the terminal address.

The terminal address (second paralneter) is outside the
user field length while in a call to the Punch Binary
Card (PBC) routine.

The system monitor has detected an error in the last
CPU request for PPU action.

The system was unable to find the specified program
in any of the system tables.

The program does not reside on a mass storage device.

The program does not fit in the storage area available.

The fifth character of the file name, called by the Read
Binary Record routine, is greater than seven.

The requested record length is greater than or equal
to the field length minus five (buffer parameter area)

The length of the record is greater than the job length.

Check the syntax for the REQUEST control card in
Section 3.

Control card bears a request for a non-existent type
of equipment.

File name required to process REQUEST card is not
left-justified alphanumeric characters with zero fill.

The quantity of central memory requested exceeds that
available, or the reference address is beyond the
terminal address for the user's job.

The system has encountered an error in the format
of the job file while rolling in the job.

The package entered into the resident peripheral
library is greater than or equal to the area in central
memory allotted for it.

The job has exceeded the requested time limit. KRONOS
aborts the job.

The number of arguments on the control statement is
greater than the number allowed by the program.

59150600 Rev. A

Message

TRACK LIMIT.

UNIDENTIFIED PROGRAM.

WBR ARG. ERROR.

xxx TOO LONG.

xxx NOT IN PP LIB.

814 xx PARITY ERROR
Tyyy Szzzz.

854 xx PARITY ERROR
Cyyy Szzz.

59150600 Rev. A

Explanation

The system monitor has set the Track Limit error flag.

A program was not a PPU, a SCOPE, nor a Chippewa
program.

The fifth character of the file name is greater than
seven.

The PPU package xxx exceeds 1,314 central memory
words (the maximum PPU package size in length).

KRONOS has assigned program xxx to a PPU for execu­
tion, but program xxx is not in the system library.
Typically, this happens when the user puts garbage in
location RA+1.

An 814xx (each half of the 814 is considered as one
device) has detected an unrecoverable parity error at
sector zzzz of track yyy.

A 3234/853/854 driver has detected an unrecoverable
parity error at sector zzz of cylinder yyy.

D-5

CONTROL CARDS E

Control Card Function

ACCOUNT, xxxxxxx.

APPEND, lfn1, ... , lfnn ,
ACCOUNT = xxxxxxx.

ASSIGN (nn, lfn, x)

BKSP (file l' n)

CATALOG (filea, num, fileb)

CATLIST. or
CAT LIST , F. or
CATLIST, xxxxxxx.

COMMON (lfn)

COMMENT. comments

COMPASS (P1' P2'
Pn)

COpy (file 1 ' file 2)

COPYBF (file1, file2' n)

COpy BR (file 1 ' file 2 ' n)

COPYCF (file1' file 2 , n)

COpy CR (file 1, file2' n)

COPYSBF (filel' file2' n)

COPYX (file1, file2, term,
bksp)

DMP (fwa, lwa) or
DMP (lwa) or
DMP.

DOCEXT (sfile, P.file)

EXECUTE (name, Pl'
P2' ... , Pn)

EXIT.

59150600 Rev. A

Specifies the user's account number

Appends information to an existing permanent
file

Assigns peripheral equipment

Backspaces n logical records

Makes a catalog for filea

Lists a catalog of the permanent files

Creates or attaches a COMMON file

Enters the dayfile message "comments"

Calls COMPASS assembler

Copies to an empty file

Copies n binary files

Copies n binary records

Copies n BCD files

Copies n BCD records

Copies n shifted binary files

Copies binary records to terminator and
backspaces

Dumps storage

Calls the DOCEXT program which extracts the
external documentation

Executes starting at entry point "name"

Control cards to obey in case of error follow

E-1

Control Card

GET, Ifn1 = pfn1' ... , lfnn = pflln'
ACCOUNT =xxxxxxx.

LBC, addr. or
LBC.

LIBEDIT (P1' P2' ... ,Pn)

LIBGEN (library, name, input)

LOAD (lfnl) or (lfn l, Ifn2, ... '
lfnn)

LOC (fwa, lwa) or
LOC (lwa) or
LOC.

LOCK (lfnl' ... , lfnn)

MACE.

MAP.

MAP (P)

MODE(n)

MODIFY (Pl' P2' ... , Pn)

NOGO.

NOMAP.

NOREDUCE.

OFFSW (nl' , nn)

ONSW (nl' , ~)

OVERLAY (lfn, a, b, Cnnnnnn)

PBC (fwa, lwa) or
PBC (lwa) or
PBC.

PERMIT, pfn, MODE =y,
accnum1J ... , accnu~.

PURGE, pfnl' ... , pfnn ,
ACCOUNT = xxxxxxx.

RBR,n.

REDUCEFL.

E-2

Function

Retrieves a file from permanent storage

Loads binary corrections

Calls the LIBEDIT program

Generates a user library file

Loads lfnl' satisfies references from Ifn2 ­
lfnn

Loads octal corrections

Sets the write lockout for file lfnl

Clears the SCOPE bit for loading a file

Sets Map flag

Sets Partial Map flag

Sets error mode = n

Calls MODIFY

Finish loading process, do not execute

Clears Map flag

Sets No Reduce FL flag

Clears pseudo-sense switches

Sets pseudo-sense switches

Initiates an overlay for file lfn

Punches binary cards

Grants permanent file access to other users

Purges a permanent file

Reads n binary records

Clears No Reduce FL flag

59150600 Rev. A

Control Card

RE LEASE (lfn)

Function

Changes status of a file from COMMON to
LOCAL

REPLACE, lfnl = pfnl'
lfnn = pf~,

ACCOUNT = xxxxxxx.

REQUEST (lfn, x)

RESERVE (lfn)

... , Substitutes a new file for an old permanent
file

Requests an operator to assign equipment

Changes status of a file to COMMON

RETURN (filel' file2'
file n)

REWIND (file l' file 2, · · · ,
filen)

RFL, nfl.

ROLLOUT.

RUN (cm, fl, bl, if, of, rf,
lc, as, cs)

SATISFY (lfn l , Ifn2'
lf~)

SAVE, lfnl = pfnl , ... ,
lfnn = pfnn ·

SCOPE.

SETID (lfnl = al' ... ,
lf~ = an)

SETPR (p)

SETTL (t)

SKIPEl (file l)

SKIPF (file l, n)

SKIPFB (file l' n)

SKIPR (file l' n)

SYSREF (PI' P2' · · ., Pn)

UNLOAD (file l , file2' ... , filen)

UPMOD (PI' P2'···' Pn)

59150600 Rev. A

Returns files to the system

Rewinds files

Changes the field length

Rolls out user's job

Calls FORTRAN compiler

Satisfies external references from lfnl

Retains files in the permanent file system

Sets SCOPE bit for loading a file

Assigns area code for file IfnI

Sets priority level

Sets time limit

Skips to End-of-Information

Skips n files forward

Skips n files backward

Skips n records forward

Generates a list of system symbols

Unloads and rewinds files

Converts program libraries maintained by
UPDATE to libraries that can be maintained
by MODIFY

Compares data in two files

E-3

Control Card Function

VFY LIB (old, new, output, r) Compares old library file with a new one

WBR, n, rl. Writes n binary records

WRITE F (file 1 ' n) Writes n file marks on a file

WRITER (file, n) Writes n empty records on a file

E-4 59150600 Rev. A

CHARACTER SET F

EXT lINT EXT INT
Char. Display Hollerith BCD BCD Char. Display Hollerith BCD BCD

A 01 12-1 61 21 6 41 6 06 06

B 02 12-2 62 22 7 42 7 07 07

C 03 12-3 63 23 8 43 8 10 10

D 04 12-4 64 24 9 44 9 11 11

E 05 12-5 65 25 + 45 12 60 20

F 06 12-6 66 26 - 46 11 40 40

G 07 12-7 67 27 ..." 47 11-8-4 54 54','"

H 10 12-8 70 30 / 50 0-1 21 61

I 11 12-9 71 31 (51 0-8-4 34 74

J 12 11-1 41 41) 52 12-8-4 74 34

K 13 11-2 42 42 $ 53 11-8-3 53 53

L 14 11-3 43 43 = 54 8-3 13 13

M 15 11-4 44 44 space 55 space 20 60

N 16 11-5 45 45 , 56 0-8-3 33 73

0 17 11-6 46 46 57 12-8-3 73 33

P 20 11-7 47 47 - 60 0-8-6 36 76--
Q 21 11-8 50 50 [61 8-7 17 17

R 22 11-9 51 51] 62 0-8-2 32 72

S 23 0-2 22 62 63 8-2 00 12

T 24 0-3 23 63 f 64 8-4 14 14

U 25 0-4 24 64 ---+ 65 0-8-5 35 75

V 26 0-5 25 65 A 66 11-0 52t 52
v

W 27 0-6 26 66 67 0-8-7 37 77

X 30 0-7 27 67 t 70 11-8-5 55 55

Y 31 0-8 30 70 ~ 71 11-8-6 56 56

Z 32 0-9 31 71 < 72 12-0 72tt 32

0 33 0 12 00 > 73 11-8-7 57 57

1 34 1 01 01 ~ 74 8-5 15 15

2 35 2 02 02 ~ 75 12-8-5 75 35

3 36 3 03 03 ---, 76 12-8-6 76 36

4 37 4 04 04 , 77 12-8-7 77 37

5 40 5 05 05 0/0 00 8-6 16 16

t 11-0 and 11-8-2 are equivalent
tt 12-0 and 12-8-2 are equivalent

59150600 Rev. A F-l

ABORT Function~ 4-8~ 4-11

ACCOUNT Card~ 3-2

Action Requests~ Fi1e~ 4-17

Action Requests, Job~ 4-8

Address Mode, 1-7

Al1ocation~ Memory~ 5-4

APPEND Card~ 3-17

Area~ Control Point, 1-3

ASSIGN Card, 3-13

ASSIGN Function, 4-17~ 4-18

Backspace Logical Records

(BKSP)~ 7-10

BCD Format Magnetic Tape~

Unblocked External~ 1-10

BCD Format Magnetic Tape,

Blocked External, 1-10

Binary Card, C-l

Binary File (Random)~ 4-7

Binary File (Sequential) ~ 4-7

Binary Punched Cards~ 1-8

(BKSP) Backspace Logical

Records, 7-10

BKSP Function, 4-17~ 4-30

BKSPRU Function, 4-17, 4-30

Blocked External BCD Format

Magnetic Tape, 1 -10

Buffer, Circular, 4-1

Call Card, Program, 3 - 6

Card, ACCOUNT, 3-2

Card, APPEND, 3-17

Card~ ASSIGN, 3-13

Card~ Binary, C-l

Card, Binary Punched~ 1-8

Card, CATLIST, 3-17

Card, COMMENT, 3-3

Card, COMMON~ 3-14

Card, COMPASS, 3-8

Card, Control, E-1

Card, EXECUTE, 3-6

Card, EXIT ~ 3-3

Card, Format, C-1

Card, FORTRAN, 3-7

Card, GET, 3-16

Card, Job~ 3-1

Card, Job Control, 3-1

Card, LOAD~ 3-5

59150600 Rev. A

INDEX

Card~ LOCK~ 3-15

Card, MACE~ 3-15

Card, MAP, 3-4

Card, MODE, 3-3

Card, MODIFY ~ 3-9

Card, NOGO, 3-11

Card, NOMAP~ 3-4

Card, NOREDUCE, 3-4

Card~ OFFSW, 3- 2

Card, ONSW ~ 3-2

Card, Overlay, 5-3

Card, Partial Map, 3-4

Card, PERMIT, 3-17

Card, Program Call~ 3 - 6

Card, PURGE, 3-16

Card, REDUCEFL~ 3-4

Card, RELEASE~ 3-14

Card, RE-PLACE, 3-16

Card, REQUEST, 3-12

Card~ ROLLOUT~ 3-4

Card, SATISFY, 3-6

Card~ SAVE, 3-15

Card, SCOPE ~ 3-15

Card, SETID, 3-14

Card~ SETPR~ 3-5

Card~ SETTL, 3-5

Card Translation, Control~ 2-2

Card, UNLOCK~ 3 -15

Cards, Coded, C - 2

Cards, Coded Punched~ 1-7

Cards ~ Control, 3-1

Cards ~ File Management

Control~ 3-11

Cards ~ Permanent File Control~

3-15

Cards, Program Execution

Control, 3-5

Carriage Control, 1-8

(CATALOG) Catalog File Set~ 7-3

Catalog File Set (CATALOG)~ 7-3

CATLIST Card, 3-17

Central Memory, 1- 3

Central Processor Unit, 1-2

Character Set, F-1

Circular Buffer, 4-1

CLOCK Function, 4-8, 4-12

Coded Cards, C-2

Coded File (Random), 4-7

Coded File (Sequential), 4-7

Coded Punched Cards, 1- 7

Codes, Input/Output, A-I

COMMENT Card~ 3-3

COMMON Card, 3-14

COMMON Function~ 4-17~ 4-19

Communication~ Program/System~

4-1

Communication Subroutines ~ User /

System, 4-8

Compare Library Files (VFYLIB)~

7-4

Compare Records~ (VERIFY), 7-4

COMPASS Card, 3-8

Compass Decks, 6-2

CONSOLE Function~ 4-8~ 4-13

Control Card, E-1

Control Card Translation, 2-2

Control Cards, 3-1

Control Cards, File Management,

3-1'1

Control Cards, Job, 3-1

Control Cards, Permanent File,

3-15

Control Cards, Program

Execution, 3-5

Control, Carriage, 1-8

Control Point Area, 1-3

Control Point Number, 1-4

Control Points, 1-3

Conversion~ 1-8

Convert Update Library to Modify

Library (UPMOD), 7-3

(COPYBF) Copy Binary File, 7-6

Copy Binary File (COPYBF)~ 7-6

Copy Binary Record (COPYBR)~

7-6

(COPYBR) Copy Binary Record~

7-6

Copy Coded File (COPYCF), 7-6

Copy Coded Record (COPYCR)~

7-7

(COpy) Copy Through Empty

File, 7-5

(COPYCF), Copy Coded File, 7-6

(COPYCR), Copy Coded Record~

7-7

Copy Routines. 7 - 5

Index-1

(COPYSBF), Copy Shifted Binary

File, 7-7

Copy Shifted Binary File

(COPYSBF), 7-7

Copy Through Empty File

(COPY), 7-5

Copy to Terminator (COPYX), 7-8

(COPYX), Copy to Terminator, 7-8

Creation Macros, FET, 4-7

Data Formats, 1-6

Data Printed, 1-8

Data Requests, Transfer, 4-22

DATE Function, 4-8, 4-12

Deck Structures, 6-1

Decks, Compass, 6-2

Decks, FORTRAN, 6-4

Decks, Overlay, 6-5

Description, System, 1-1

Diagnostic Messages, Error, D-l

Directives, Loader, 5':'3

(DMP), Dump Storage, 7-13

(DOCEXT), Extract External

Documentation, 7- 5

Dump Storage (DMP), 7-13

Edit User Library File (LIBEDIT),

7-2

ENDRUN Function, 4-8, 4-10

(ENTR) Entry Point Table, B-2

Entry Point Table (ENTR), B-2

Environment Table, File, 4 - 3

EREXIT Function, 4-8, 4 ... 14

Error Diagnostic Messages, D-l

EVICT Function, 4-17, 4-18

EXECUTE Card, 3-6

Execution Control Cards, Program,

3-5

Execution, Job, 2-1

EXIT Card, 3-3

EXPORT/IMPORT, 1-3

External BCD Format Magnetic

Tape, Blocked, 1 ... 10

External BCD Format Magnetic

Tape, Unblocked, 1-10

Extract External Documentation

(DOCEXT), 7-5

FET, see File Environment Table

FET Creation Macros, 4-7

FILE, 1-4

File Action Requests, 4-17

File Control Cards, Permanent,

3-15

File Environment Table, 4-3

Index-2

INDEX (Cont'd)

File, Input, 1- 5

File Management Control Cards,

3-11

File Manipulation Routines, 7-8

File Name, 1-4

File, Output, 1-5

File, P8, 1-5

File, Punch, 1- 5

File, Punchb, 1-5

File (Random), Binary, 4-7

File (Random), Coded, 4-7

File Requests, Position, 4-29

File, REWIND, 7-8

File (Sequential), Binary, 4-7

File (SequentiaU, Coded, 4-7

File, UNLOAD, 7-8

Files, Permanent, 1-10

Files, RETURN, 7-10

Fill Table, B-3

FIRST, Location, 4-1

Format, Card, C-1

Format Magnetic Tape, Blocked

External BCD, 1-10

Format Magnetic Tape, Standard,

1-9

Format Magnetic Tape, Unblocked

External BCD, 1-10

Format, Overlay, 5-4

Formats, Data, 1-6

Formats, Relocatable Subroutines,

B-1

FORTRAN Card, 3-7

FORTRAN Decks, 6-4

Function, ABORT, 4-8, 4-11

Function, ASSIGN, 4-17, 4-18

Function, BKSP, 4-17, 4-30

Function, BKSPR U, 41-7, 4-30

Function, CLOCK, 4-8, 4-12

Function, COMMON, 4 -1 7, 4 -19

Function, CONSOLE, 4-8, 4-13

Function, DATE, 4-8, 4-12

Function, ENDRUN, 4-8, 4-10

Function, EREXIT, 4-8, 4-14

Function, EVICT, 4-17, 4-18

Function, LOCK, 4-17, 4-19

Function, MEMORY, 4-8, 4-9

Function, MESSAGE, 4-8, 4-10

Function, MODE, 4-8, 4-15

Function, OFFSW, 4-8, 4-14

Function, ONSW, 4-8, 4-14

Function, OVERLAY, 4-8, 4-15

Function, READ, 4-17, 4-22

Function, READC, 4-17, 4-23

Function, READH, 4-17, 4-24

Function, READS, 4-17, 4-24

Function, READW, 4-17, 4-25

Function, RECALL, 4-8, 4-9

Function, RELEASE, 4-17, 4-19

Function, RENAME, 4-17, 4-20

Function, REQUEST, 4-17, 4-20

Function, RETURN, 4-17, 4-18

Function, REWIND, 4-17, 4-32

Function, ROLLOUT, 4-8, 4-15

Function, RPHR, 4-17, 4-23

Function, RTIME, 4-8, 4-11

Function, SETID, 4-17, 4-21

Function, SETPR, 4-8, 4-16

Function, SETTL, 4-8, 4-17

Function, SKIPB, 4-17, 4-31

Function, SKIPEI, 4-17, 4-30

Function, SKIPF, 4-17, 4-29

Function, SKIPFB, 4-17, 4-31

Function, SKIPFF, 4-17, 4-29

Function, STATUS, 4-17, 4-21

Function, SYSTEM, 4-8, 4-13

Function, TIME, 4-8, 4-11

Function, UNLOAD, 4-17, 4-32

Function, UNLOCK, 4-17, 4-22

Function, WPHR, 4-17, 4-27

Function, WRITE, 4-17, 4-25

Function, WRITEC, 4-17, 4-27

Function, WRITEF, 4-17, 4-26

Function, WRITEH, 4-17, 4-27

Function, WRITER, 4-17, 4-26

Function, WRITES, 4-17, 4-28

Function, WRITEW, 4-17, 4-28

Generate System Symbol Cross

Reference (SYSREF), 7-5

Generate User Library File

(LIBGEN), 7-1

GET Card, 3-16

Hardware /Software Integration, 1-1

Identification Word, B-1

IN Location, 4- 3

Index Mode, 1-7

Information System, 4-4

Information, User, 4-4

Input File, 1 - 5

Input, Job, 2-1

Input/Output Codes, A-I

Input/Output Routines, 7-10

Integration, Hardware /Software,

1-1

Introduction, 1-1

Job Action Request, 4-8

Job Card, 3-1

59150600 Rev. A

Job Executionl 2-1

Job Input l 2-1

Job Outputl 2-2

Job Processingl 2-1

(LBC)I Load Binary Corrections l

7-10

(LIBEDIT)I Edit User Library

File l 7-2

(LIBGEN)I Generate User Library

File I 7-1

Library Routines l 7-1

LIMIT, Locationl 4-2

Link Table l B-4

Load Binary Corrections (LBC) I

7-10

LOAD Cardl 3 - 5

Load Octal Corrections (LOC), 7-11

Loader l 5-1

Loader Directives l 5-3

Loader Operationl 5-1

(LOC)I Load Octal Corrections l 7-11

Locationl FIRST I 4-1

Locationl INI 4-3

Locationl LIMIT I 4-2

Locationl OUT I 4-2

LOCK CardI 3-15

LOCK Functionl 4-17 1 4-19

Logical Records I 1- 5

MACE Cardl 3-15

Macros l FET Creationl 4-7

Magnetic Tape l Blocked External

BCD Formatl 1-10

Magnetic Tape I Standard Formatl

1-9

Magnetic Tape l Unblocked External

BCD Formatl 1-10

Management Control Cards, File,

3-11

Manipulation Routines l File l 7-8

MAP Cardl 3-4

Map Cardl Partiall 3-4

Mapl MemorYI 5-6

Mass Storage l 1-6

Memory Allocationl 5-4

MemoryI Central, 1- 3

MEMORY Function, 4-8 1 4-9

Memory Mapl 5-6

MESSAGE Functionl 4-8 1 4-10

Message, Error Diagnostics, D-1

Mode, Address l 1-7

MODE Cardl 3-3

MODE Functionl 4-8 1 4-15

Mode I Indexl 1- 7

59150600 Rev. A

INDEX (Cont'd)

MODIFY Cardl 3-9

Multiprogramming, 1-3

Name, File, 1-4

NOGO Cardl 3-11

NOMAP Card, 3-4

NOREDUCE Card, 3-4

Number I Control Point, 1-4

OFFSW Cardl 3-2

OFFSW Functionl 4-8, 4-14

ONSW Card, 3-2

ONSW Function, 4 - 8I 4 -14

Operation, Loader, 5-1

OUT Locationl 4- 2

Output File l 1-5

Output Job l 2-2

Overlay Cardl 5-3

Overlay Decks l 5-4

Overlay Format, 5-4

OVERLAY Functionl 4-8 1 4-15

Overlays, 5-2

P8 File l 1-5

Partial Map Card, 3-4

(PBC), Punch Binary Cards, 7-11

Peripheral Processor Unit, 1-2

Permanent File Control Cards, 3-15

Permanent Files, 1-10

PERMIT Cardl 3-17

(PIDL), Program Identification and

Length Table, B-2

Point Areal Control, 1-3

Point Number I Control, 1-4

Points, Control, 1- 3

Position File Requests l 4-29

Printed Datal 1-8

Processingl Job l 2-1

Processor Unit l Centrall 1-2

Processor Unit, Peripherall 1-2

Program Call Cardl 3-6

Program Execution Control

Cards l 3-5

Program Identification and Length

Table (PIDL)I B-2

Program/System Communication,

4-1

Program, UtilitYI 7-1

Punch Binary Cards (PBC)I 7-11

Punch File I 1- 5

Punchb File I 1-5

Punched Cards l Binary, 1-8

Punched Cards I Codedl 1-7

PURGE Cardl 3-16

(Random), Binary File, 4-7

(Random)1 Coded File l 4-7

(RBR), Read Binary Recordl 7-11

Read Binary Record (RBR) I 7-11

READ Function, 4-17, 4-22

READC Functionl 4-17, 4-23

READH Functionl 4-17 1 4-24

READS Function, 4 -1 7, 4 - 24

READW Function, 4-1 71 4-25

RECALL Function, 4-8 1 4-9

Records, Logicall 1-5

REDUCEFL Card, 3-4

RE LEASE Cardl 3 -14

RE LEASE Function, 4 -1 7I 4 -19

Relocatable Subroutine Formats, B-1

RENAME Function, 4-1 71 4-20

REPLACE Card, 3-16

Replication Table l B-5

REQUEST Card, 3-12

Request Field Length (RFL), 7 -13

REQUEST Function, 4-17, 4-20

Requests l File Action, 4-17

Requests l Job Action, 4-8

Requests l Position File, 4-29

Requests l Transfer Data, 4-22

RETURN Files, 7-10

RETURN Functionl 4-17, 4-18

REWIND File I 7-8

REWIND Functionl 4-17, 4-32

(RFL)I Request Field Length, 7-13

ROLLOUT Cardl 3-4

ROLLOUT Functionl 4-8, 4-15

Routines, Copy, 7-5

Routines I File Manipulation, 7- 8

Routines, Input/Output l 7-10

Routines l Library, 7-1

RPHR Function, 4-17 1 4-23

RTIME Function, 4-8 1 4-11

SATISFY Card, 3-6

SAVE Cardl 3-15

SCOPE Cardl 3-15

(Sequential), Binary File, 4-7

(Sequential), Coded File, 4-7

Setl Character I F-1

SETID Cardl 3 -14

SETID Functionl 4-17, 4-21

SETPR Cardl 3-5

SETPR Functionl 4-8, 4-16

SETTL Cardl 3-5

SETTL Functionl 4-8 1 4-1 7

Skip File Backward (SKIPFB), 7-9

Skip File Forward (SKIPF), 7- 9

Skip Record Forward (SKIPR), 7-9

Skip to End-of-Information

(SKIPEI) I 7-9

Index-3

SKIPB Function l 4-1 7

SKIPEI Function l 4-17 1 4-30

(SKIPEI) Skip to End-of-

Information l 7- 9

SKIPF Function l 4-17 1 4-29

(SKIPF) Skip File Forward l 7-9

SKIPFB Function l 4-17 1 4-31

(SKIPFB) Skip File Backward l 7- 9

SKIPFF Function l 4-17 1 4-29

(SKIPR) Skip Record Forward l 7-9

Standard Format Magnetic Tape l 1-9

STATUS Function l 4-17 1 4-21

Storage I MassI 1-6

Structure l Deck l 6-1

Subroutine Formats I

Relocatable I B-1

Subroutines I User System

Communication l 4-8

(SYSREF)I Generate System Symbol

Cross Reference I 7- 5

System l 1-1 1 5-4

System Description l 1-1

SYSTEM Function l 4-8 1 4-13

System Information l 4-4

Table l (ENTR)I Entry Point l B-2

T able I File EnvironmentI 4 - 3

Table I Fill l B-3

Index-4

INDEX (Conttd)

Table l (PIDL)I Program

Identification and Length l B-2

Table l Replication l B-5

Table l Transfer l B-5

Tables l Text l B-3

Tape I Blocked External BCD

Format Magnetic l 1-10

Tape I Standard Format

Magnetic I 1 - 9

Tape l Unblocked External BCD

Format Magnetic l 1-10

TELEX, 1-3

Text Tables l B-3

TIME Function l 4-8 1 4-11

Transfer Data Requests l 4-22

Transfer Table l B-5

Translation l Control Card l 2-2

Unblocked External BCD Format

Magnetic T ape I 1-10

UnitI Central Processor I 1-2

Unit, Peripheral Processor I 1-2

UNLOAD File l 7-8

UNLOAD Function l 4-17 1 4-32

UNLOCK Card l 3-15

UNLOCK Function l 4-17 1 4-22

(UPMOD) Convert Update Library

to Modify LibrarYI 7-3

User l 5-6

User Information l 4-4

User /System Communication

Subroutines I 4-8

Utility Programs l 7-1

(VERIFY)I Compare Records l 7-4

(VFYLIB)I Compare Library

Files l 7-4

(WBR)I Write Binary Record, 7-12

Word l Identification l B-1

WPRR Function, 4-17 1 4-27

Write Binary Record (WBR)I 7-12

Write Empty Records (WRITER),

7-12

Write File Marks (WRITEF), 7-12

WRITE Function l 4-17 1 4-23

WRITEC Function l 4-17 1 4-27

WRITEF Function l 4-17, 4-26

(WRITEF) Write File Marks l 7-12

WRITER Function, 4-17, 4-27

WRITER Function l 4-17, 4-26

(WRITER), Write Empty Records,

7-12

WRITES Function, 4-17 1 4-28

WRITEW Function l 4-17, 4-28

59150600 Rev. A

COMMENT SH'EET

MANUAL TITLE __C..:...::O;..::N;.;..T.::..::.R:...:O::..:L~D::::..:::.;A;;;;;..:T::..:A~®--=.:K::.:;R..;;,..O~N,;,.;O;;..:;S=-=B::.;:a:::..;t;..;:c~h::.....;::::U-=s;..;:e;.=.r_'.:::.s _

Reference Manual

PUBLICATION NO. --::;.5,.;:;,9...;;;;.1..:.5..;:::;0..:.6..;:::;0..;:::;0 _ REVISION A....... _

FROM: NAME: _

BUSINESS
AOORESS: _

LLI
Z
:J
(!)

z
9
«
....
::>
o

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Pleas e include page number referen~es and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO 'POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE SiAPlE

I
I
I
I
I
I

FOLD FOLD I
--~

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
4201 NORTH LEXINGTON AVENUE

ST. PAUL, MINNESOTA 55112

ATTN: BISD PUBLICATIONS

w
Z
~

C)
Z
o....
~

....
~

U

--,FOLD FOLD
I
I
I
I
I

.'.CONTROL DATA
CORPORATION

'''''' • II .' , : II

• I I .- ' .

	Cover

	Revision Record

	Contents

	1 System Description

	2 Job Processing

	3 Control Cards

	4 Program/System Communication

	5 Loader Operation

	6 Deck Structures

	7 Utility Programs

	Appendix

	A I/O Codes

	B Relocatable Subroutine Formats

	C Card Format

	D Error Diagnostic Messages

	E Control Cards

	F Character Set

	Index

	Comment Sheet

