
/ "'\

o
\.. .-I

o
COMPUTER SYSTEMS

MASTER
REFERENCE MANUAL

CONTROL DATA
- - .

COMPUTER SYSTEMS
MASTER

REFERENCE MANUAL

CONTROL DATA
CORPORATION

December, 1966
Pub. No. 60176800

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales

office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE
PALO ALTO. CALIFORNIA

@1966, Control Data Corporation
Printed in the United states of America

FOREWORD

This manual is directed to programmers using MASTER Operating System in a­
closed shop computer center. It discusses basic principals, features, methods
and techniques available to all users.

The manual assumes the reader has a basic knowledge of the 3300/3500 COM­
PASS Assembly Language and is familiar with the 3300/3500 Computer.

III

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Features 1-1
1.2 Computer 1-2
1.3 Systems Communications 1-5
1.4 Library 1-5
1.5 Real-Time Routines 1-6
1.6 Installation Parameters 1-7
1.7 Macros 1-7
1.8 File Summary 1-9
1.9 File Maintenance Routines 1-11

CHAPTER 2 JOB FLOW

2.1 Autoload 2-1
2.2 Job Input 2-1
2.3 Preprocessing 2-1
2.4 Job Initiation 2-4
2.5 Processing 2-5
2.6 Postprocessing 2-5

CHAPTER 3 MEMORY

3.1 Physical Memory 3-1
3.2 Logical Address 3-5
3.3 Chapters 3-7
3.4 States 3-7
3.5 Relocatable Loader 3-10

CHAPTER 4 TASKS

4.1 Type of Tasks 4-1
4.2 Task Assignment 4-1
4.3 Task Calls 4-2
4.4 Task Origin 4-2
4.5 Task Names 4-3
4.6 Task Priority 4-4
4.7 Inter-Task Communication 4-4
4.8 Multiprogramming 4-7
4.9 Overlay Tasks 4-8
4.10 Task Entrance/Exit 4-9
4.11 Task Status 4-10

v

CHAPTER 5 MASS STORAGE

5.1 File Structure 5-1
5.2 File Environment 5-3
5.3 Job Files 5-5
5.4 Mass Storage and Permanent Files 5-10

CHAPTER 6 MASS STORAGE I/O

6.1 Logical I/O 6-1
6.2 Blocker and Deblocker 6-1
6.3 Physical I/O 6-14

CHAPTER 7 UNIT RECORD DEVICES

7.1 Unit Record Definition 7-1
7.2 MIOCS 7-6

CHAPTER 8 INTERRUPTS

8.1 Internal Faults 8-1
8.2 Floating Point 8-2
8.3 Requests 8-2
8.4 Clock 8-2
8.5 I/O 8-2
8.6 Dedicated Channel 8-3
8.7 Manual 8-3
8.8 Other 8-3

CHAPTER 9 EXECUTIVE REQUEST MACROS

9.1 Task Linkage 9-1
9.2 Deferred Waits 9-4
9.3 Interrupt Control 9-5
9.4 Console Typewriter Output 9-7
9.5 Time and Date 9-8
9.6 Limit Task Time 9-9
9.7 Abort Job or Suppress Task 9-10
9.8 Copy Common 9-11
9.9 Bypass File 9-11
9.10 Reserve File 9-12
9.11 Copy Directory 9-14
9.12 Ascertain Device Type 9-16
9.13 Check File Status 9-17
9.14 Dump Request 9-17

VI

CHAPTER 10

CHAPTER 11

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

GLOSSARY

INDEX

SUBMITTING JOBS

10. 1 Control Cards
10.2 Binary Cards
10. 3 Deck Preparation
10. 4 Loader Errors

TRANSFER ROUTINE

11. 1 Task Calls
11. 2 Special Forms
11. 3 Blocking/Deblocking Conventions
11. 4 XFER Error Conditions

HINTS AND CAUTIONS

GENERAL FILE INFORMATION

SYSTEM TO OPERATOR MESSAGES

FATAL CONDITIONS DETECTED BY EXEC

10-1
10-19
10-29
10-34

11-1
11-3
11-5
11-6

A-I

B-1

C-l

D-l

Glossary-l

Index-l

Vll

1.1
FEATURES

INTRODUCTION 1

MASTER is a highly versatile multiprogramming computer system for the
Control Data 3300 and 3500 Computers. Its task orientation is particularly
adaptable to multi-access and multi-processing applications. The basic
design permits expansion to multiple on-line remote stations and to multiple
central processing units (CPU's).

MASTER accepts a wide variety of real-time applications.

MASTER achieves its primary purpose -- increased efficiency of the com­
puting system -- by minimizing the idle time of the various processors:
compute modules and data channels. This it accomplishes by simultaneously
considering more than one job so that activities can be found for processors
as they become idle.

MASTER consists of a system executive and an operating system. The
operating system accepts jobs and translates them into executable entities
called tasks, which are manipulated by the system executive. The system
executive administers requests made by tasks for the execution of other tasks
and assigns tasks to processors whenever they become idle. Interrupts are
the mechanism for entering the system executive, which operates in the
monitor state. The operating system, which consists of tasks administered
by the system executive, operates in program state.

The MASTER computing system:

• Overlaps compute and I/O operations from several jobs, surpassing
the throughput obtainable from a serial batch processing system.

• Features a centralized, file-oriented, input/output control system.
This system, which is used by the operating system as well as
users' jobs, is easily adapted to various hardware configurations,
including mass storage and non-mass storage equipment.

• Completely protects programs and files through a combination of
hardware and software.

1-1

1.2
COMPUTER

1-2

• Loads, links and executes system programs and object programs
from the library or from some programmer-defined file. Pro­
grams may be loaded and linked from several files and written on
permanent mass storage as an absolute file for rapid reloading.

• Segments programs into non-contiguous pages of core memory.

• Permits users to reserve one to four data channels for real-time
application with priority interrupt handling for these channels.

• Transmits console typewriter statements to the operator from a job
or the system operator and waits for and returns responses upon
request.

• Includes a number of installation parameters enabling the system
to be tuned to a particular installation's requirements. If not
specified, certain values are assumed for these parameters.

• Automatically processes input and output files from jobs in such a
manner that it optimizes the use of peripheral equipment and
simplifies the disposition of files by the operator.

• Facilitates generating and updating the standard system library or
a user library, and permits several versions of the system library
on mass storage, with the desired version called by the operator at
system start-up time.

• Includes debugging aids such as recovery and snapshot dumps, and
octal correction cards.

• Recognizes a versatile set of user macro requests of the system.

• Includes a set of file maintenance routines that perform house­
keeping operations on the mass storage files.

• Includes a routine (XFER) that facilitates transfer of information
from one mass storage or record device to another.

MASTER operates on either the CONTROL DATA 3300 or 3500 Computer
equipped with the executive mode and relocation features (Multiprogramming
Option).

1.2.1
CONFIGURATION

Executive Mode

Executive mode, selected from the console, consists of two states:

• Monitor state which allows execution of all instructions. (Master
clear initially sets monitor state when the computer is in executive
mode; thereafter it is entered through any interrupt condition.)

• Program state which prohibits execution of certain instructions
reserved for the monitor (such as I/O). It is entered only through
execution of a boundary jump by the system executive (EXEC)
operating in the monitor state.

An attempt to execute the below instructions while MASTER is in the program
state causes an interrupt.

• Halt and pause

• I/O operation initiation

• I/O status interrogation

• Interrupt selection

• Inter-register transfers that might alter the contents of register
file locations 00 -37.

Relocation

Relocation in the 3300 and 3500 Computer System contributes two vital features
to MASTER: It makes it possible to expand core memory storage to a maximum
of 262,144 words, and provides protection of the many user and operating
system programs currently residing in core memory.

Core memory is divided into pages of 4000
8

words.

MASTER operates with the following minimum configuration:

32K Core Memory

One 3304 or 3504 Central Processor

One 3311 or 3511 Multiprogramming Option

One 405 Card Reader and buffered controller

1-3

1.2.2
PERIPHERAL
EQUIPMENT

1.2.3
EXPANDABILITY

1-4

One 501 or 505 Line Printer and buffered controller

One 415 Card Punch and buffered controller

Two 3306 or 3307 (3506 or 3507) Communications (Data) Channels

2.5 million words of mass storage. This may be obtained by:

Five 852 Disks

Three 853 Disks

Two 854 Disks

One 813 Disk

One 814 Disk

Three 863 Drums

or any combination of the above that totals 2.5 million words.

A recommended configuration (page 1-13) includes four to eight magnetic
tape units (none required), additional core memory, and an additional
printer.

The efficiency of any time-sharing program hinges on optimum use of
peripheral equipment. In the typical system, MASTER uses a disk or drum
for system storage and temporary storage of user programs; for user files,
it uses disk storage. In systems with only one card reader, users do not
have direct access to it because one card reader is required for input file
preparations. MASTER reserves printers and card punches for processing
of output files, but releases them on request.

All I/O channels are pooled; each channel is assigned to a task as it becomes
idle. Requests for I/O have priority although the actual I/O task does not.

The system can be expanded to include up to eight channels, new input/output
equipment, Satellite®computers, additional compute modules, and core
memory up to 262K.

1.2.4
RELIABILITY

1.3
SYSTEMS

Continuous operation is essential when concurrently processing a number of
jobs. To attain this end, MASTER provides automatic recovery procedures
for hardware errors.

COMMUNICATIONS A user communicates directly with MASTER through

1.4
LIBRARY

• control cards

• binary object program

• typewriter responses

and indirectly through source language programs which MASTER compilers
and assemblers convert to binary object decks. The COMPASS assembler,
in particular, generates code for over 50 macro instructions interpreted
and acted on by MASTER. A user program may communicate with the
operator by typing messages on the console typewriter. A user receives
a standard printer output for each job which includes:

• accounting information

• printouts of control cards

• memory maps

• diagnostic and routine messages

• recovery information

When MASTER detects a condition requiring operator action, it types a
request for action on the console typewriter.

In addition, it types informative messages that do not require responses.
For example, it logs the beginning and ending of each job.

The MASTER library maintained on a mass storage file contains:

The system executive

Operating system tasks

Absolute records or binary card images of routines, subroutines,
and tasks

Standard system tasks such as FORTRAN and COMPASS

1-5

1.5
REAL-TIME
ROUTINES

1-6

All assemblers and compilers operating under MASTER generate binary
object decks acceptable to the MASTER relocatable loader. Information
about standard language systems is given in the reference manuals for each
system.

A MASTER library task, GLIB, provides a means of generating a new, re­
vised or unrevised copy of the old library. GLIB can be run in a multi­
programming batch. Several versions of MASTER may be available on
different editions of the library; the one selected at system start-up is the
one used for the duration of a MASTER run.

For details of library generation, refer to the MASTER Installation Manual.

MASTER includes a facility which permits several user-supplied, real-time
routines to be linked into the system executive at library generation time.
These routines operate in the Monitor state with all its privileges; they drive
equipment on reserved or dedicated channels not accessible to the MASTER
I/O Control System (MIOCS).

Interrupts on dedicated channels have high priority and are disabled only a
minimal time within EXEC. A real-time interrupt receives early considera­
tion by EXEC which routes control to the user-supplied routine. This rou­
tine may also be executed when a program task requests its execution of
EXEC.

Through the real-time facility, a user may add special-purpose or non­
standard drivers regardless of whether or not the equipment being driven
has stringent real-time requirements; but all such equipment must exist by
itself on a dedicated data channel.

A real-time routine cannot perform 1/0 on any channel not assigned to it.
Because it is not a task, it may not use any of the MASTER macros described
in this manual. Instead, it has available a special set of requests through
which it communicates with EXEC. One such request permits a real-time
routine to call a program task to manipulate its data. The MASTER
Installation Manual describes these requests as well as installation pro­
cedures required for adding a real-time routine to MASTER EXEC.

1.6
INSTALLATION
PARAMETERS

1.7
MACROS

Installation parameters permit a system to be adjusted to meet the particular
needs of any installation. An installation parameter is assigned a nominal
value when the system is generated but may be modified at any installation
in one of two ways:

• Through use of the SET control card when a new library is
generated. (See MASTER Installation Manual)

• Through use of the SET command from the operator whenever the
system is initialized. (See MASTER Operating Guide)

Parameters mentioned in this manual are:

tmin minimum time for special jobs

tmax maximum time for special jobs

tl time limit

1 line limit

class job class

core core requirement

scr scratch requirement

cycle time limit cycle

dt device type if not specified

MASTER recognizes a versatile set of I/O and special-purpose macro re­
quests. These requests originate in a user program and result in transfer
of control to the System Executive (EXEC) through use of coded halt in­
structions. When execution of the halt instruction is attempted, an interrupt
occurs returning the computer to the monitor state. EXEC processes the
interrupt and either performs the requested function or calls a task to per­
form the function. It then selects a task and executes a boundary jump to it,
returning control to the pro gram state.

1-7

1-8

All MASTER macros are in standard COMPASS language format:

1

LOCATION OPERATION, MODIFIERS ADORESS FIELD COMMENTS

8 10 120 141

macro I(Pl'P2'··· ,p)
I
I 1 n
I

macro

PI - Pn

is the name of a MASTER macro, such as CALL, MODIFY, etc.

is a parameter list composed of alphanumeric strings.

See also, 3100/3200/3300/3500 Compatible COMPASS Language Reference
Manual, Pub. No. 60174000.

Alphanumeric Strings

In this manual, the term "alphanumeric strings" defines a parameter at a
string of alphabetic characters and/or numeric characters excluding the
comma (,), left and right parenthesis (), oblique (/), dash (-), and
space (A) where "is a blank. A parameter consisting of the single character
zero, will be treated as blank.

Legal Alphanumeric Strings

156A

ABE25

SAM*

Parameter Lists

Illegal Alphanumeric Strings

1 A 56

A, A B

CDI A,

Any of the following forms in parameter lists in a call is interpreted as
null or blank:

,0,

(0,

,0)

, ,

,)

(,

Each parameter must be in its correct relative position. If several null
parameters follow a legal parameter, the correct position must be estab­
lished by commas. Thus, a macro call of the form:

1.8
FILE SUMMARY

1.8.1
FILES

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 141

LIBM IMO~IFY I
I

I I
MODIFY I (W,DEPT238,SAMJONES,O~,Q32,X578"",O,0513167)

modifies the protection of a file and the expiration date but nothing else
since the intervening parameters 7-11 are null.

When the parameter list terminates before the last possible parameter, all
remaining parameters are considered null or blank. Thus, a call of the form:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 141

LIBM IMODIFY
I

1 I
MODIFY I (W,DEPT238,SAMJONES,O~,Q32,X478"BILLSMITH)

modifies only the file name. In this example, parameters 1-7, and 9 are
specified; parameters 8, 10, 11, 12 are omitted. (For details of MODIFY
macro, refer to section 5.4.2.)

In MASTER's file-oriented input/output, each unit record device such as a
printer, punch, magnetic tape unit, etc., and each file definition for mass
storage devices (disks and drums) has associated with it a unique file
identifier called its data set identifier. The following discussion summarizes
material presented in detail in Chapters 5, 6, and 7.

System files, all on Class A mass storage, divide into those owned by MSIO
and those owned by MASTER. MASTER owns a library file, a library
directory file, and a pool made up of segments from one or more standard
files. This pool provides segments that make up the standard job input,
output, punch, and scratch files. Of these, only the scratch files are
managed by users.

The remaining mass storage on Class A and B devices, and all unit record
devices are available for user files.

1-9

1.8.2
SCHEDULE UNIT
OR RESERVE SPACE

1.8.3
FILE DEFINITION
HANDLING

1.8.4
DA TA TRANSMISSION
FUNCTION

1.8.5
DIRECT
STANDARD FILES

1-10

Space on Class B mass storage devices, and units to be used as files must
be scheduled for all user files. MSIO and MASTER reserve their own space
for the system files.

A user must estimate lines of printer output and number of cards to be
punched for MASTER to allocate a corresponding amount of space for the
OUT and PUN files. The user must schedule mass storage scratch file
requirements if the job requires more than the standard amount allocated.
This scheduling is done through JOB card line and punch limits, and SCHED
card SCR estimates.

Functions that manage file definitions include allocation and release of space,
modification of labels, expansion of defined file size, and opening and
closing of files. MSIO and MASTER library definitions cannot be altered by
users. They are managed by GLIB and *FMU (Generate Library and File
Maintenance Utility Routines) and by the system initialize routine. Job
lNP, OUT, and PUN files cannot be directly defined by users.

Users manage their job scratch file definitions through System OCARE; the
mass storage files through a set of file function routines called OCAREM;
and the unit record device files only through open and close of OCAREM.

The blocker and deblocker routines are convenient for transferring data to
or from files with a minimum of physical transfers. They are also available
for standard blocking. Users may also directly call MIOCS macros for data
transmission and related functions on their files.

A DIRECT card substitutes a card reader, printer, or punch to be used in
place of mass storage for a job's lNP, OUT, or PUN file. The user refers
to the file as if it were on mass storage; it is blocked in standard format.

1.9
FILE MAINTENANCE
ROUTINES A comprehensive set of file maintenance routines on the MASTER library

permits installation personnel to:

• Obtain a listing of one or all entries on the Mass Storage Directory.

• Obtain a listing of one or all entries on the File Label Directory.

• Enter a new disk pack specifying device type, number, mode, and
class on the Mass Storage Directory and write a device label on
the disk pack.

• Remove an entry from the Mass Storage Directory.

• Scan the File Label Directory and list any file having an
expired date.

• Obtain on magnetic tape, a copy of files (Class A or B) which may
then be reloaded onto mass storage.

Some file maintenance utility routines require the entire computer and must
be run in a multiprogramming batch. For use of File Maintenance utility
routines, refer to the MASTER Operator's Guide or MASTER Installation
Manual.

1-11

TYPES of

DEVICES

FILES

SCHEDULE UNIT {
or SPACE

FILE DEFINITION {
HANDLING

DATA
TRANSMISSION
FUNCTIONS
USED

DIRECT
STANDARD
FILES

{

DIS K S or DR U M S

SCHEDULED

MAINTAINED BY

GLIB a FMU

FILES >-

NOT C
(/) 0
w

AVAILABLE Q .J

TO
c:(LL
1IJ

USERS a::

t Input card reader not available
for use as user file

S C

ROUTINE S
OCAREM

BLOC KER AND DEB

ROUTINES AND/OR

a..
Z

(D

0 -,

FILE SUMMARY

H E D C A R D

a C

t- Z Z
:::> :::> :::>
0 a.. a..
N N
(D (D (D
0 0 0 -, -, -,

NOTES:

• Number and assi9nment of data channels varies
between systems.

• The 3310 Floating Point and 3312 Business Data
ProcessinQ Modules are optional.

• More disks, readers, punches, printers, magnetic
tape units, etc. may be incorporated.

• Memory consists of combinations of modules
such as the 3302 and 3309.

3306 or 3307

CO MMUN ICATIONS

CHANNEL

3306 or 3307

COMMUNI CATIONS

C HANNE L

501 or 505

LIN E

PRINTER

3306 or 3307

COMMUNICATIONS

CHANNEL

3301 CONSOLE

501 or 505

LIN E

PRINTER

3306 or 3307

COMMUNICATION S

CHANNEL

342X

3304
CENTRAL

PROCESSOR

3311 MULTIPROGRAMMING TA PE
CONTROLLER

65K

3310 FLOATING POIN T

3312 BUSINESS DATA
PROCESSI NG

RECOMMENDED EQUIPMENT
CONFIGURATION

FOUR TO

EIGHT

UNITS

2.1
AUTOLOAD

2.2
JOB INPUT

2.3
PREPROCESSING

JOB FLOW 2

The following discussion on job flow outlines the stages through which a job
progresses in the MASTER system. Most of these stages involve calls for
program tasks, some of which are permanently allocated and others which
are loaded as part of the job. In all cases, the tasks executed in the progress
of a job are multi -programmed with all other tasks currently active in the
system; and the execution of these tasks proceeds on a priority basis.

The operator begins a MASTER run by autoloading a version of MASTER from
the library. The portions of MASTER that are autoloaded include the system
initialization routine and permanently resident portions of MASTER, such as
EXEC, its tables, and MIOCS.

MASTER automatically begins executing the initialization routine at which
time the operator enters time and date and may enter BET commands chang­
ing system installation parameters from the console typewriter or card reader.
When all SET commands have been entered, the system establishes its system
files, and transfers control to the input backgrounder, which prepares job files
for MASTER.

All user job decks, consisting of control cards and possibly program and data
decks, are presented serially to MASTER through the input card reader. The
input backgrounder writes card images of a user's deck on a job INP file on
the disk. This transfer is bypassed on a job basis when CR is specified on a
DIRECT card. Jobs can be transferred continuously to job INP files by the in­
put backgrounder until there are no more jobs on the input card reader or until
the pool from which INP files are formed is depleted.

After the input backgrounder transfers a job to its INP file it calls the job
scheduler, an operating system task, and passes to it the information obtained
from the DIRECT, JOB, and SCHED cards. The scheduler checks and assigns
job classes as outlined below. Classifying the job and listing it as a candidate
for initiation constitute scheduling.

2-1

/--.~

I Card (I-----~
~eader VI

Initiate Job;
Establish

Job Monitor

Input Backgrounder
reads jobs in and

places them on INP files

Job is scheduled
and classified

Wait
for

initiation

Terminate

Job

~~--~~--~---'itor

j..=:::::... __ ...r'-----L.-----, itor n

.-L------'-......;;...---, ito r 3

Monitor
2

Us r Fi es

2-2

r-----------.----.,

Output Backgrounder

processes

Mass Storage

OUT and PUN

Files

Mass
Storage
INP Files

Punch

Printer

Data

Control

2.3.1
JOB CLASSES Each job submitted to MASTER is assigned a job class by the user or the job

scheduler. Class determines when a job is initiated and the priorities of its
tasks. The job initiator looks at job classes when seeking work. Job classes,
from highest to lowest are:

Emergency

Background

Special

Input/Output

Compute

Emergency

Emergency jobs are submitted in the same way as all other jobs. A job is
classified as an emergency job if (1) the user has declared it as class E on the
SCHED card or (2) the job deck is preceded by a DIRECT card, and MASTER
has reclassified the job as emergency.

Background

A job primarily intended to drive slow-speed peripheral equipment can be de­
clared as class B on the SCHED card. Background jobs generally use little
compute time and when ready, require attention quickly to drive their equip­
ment at full speed.

Special Job

Upon receiving a job declared by the user to be an I/O or compute job, MASTER
determines if the job qualifies as special. For a job to be reclassified as
special, the user must supply on the SCHED card a time estimate (te) that lies
within a range determined by installation parameters Tmin and Tmax, where

Tmin :s te < Tmax.

The special class provides fast turnaround time to average length jobs. With
this scheme, several jobs are likely to pass through the system during the pro­
cessing of an I/O or compute job. The class is eliminated if the upper param­
eter for the range is zero.

2-3

2.4
JOB INITIATION

2-4

Input/ Output

A job is classified by MASTER as an input/output job if it does not qualify as
special and the user declared it as I on the SCHED card or the installation
parameter was used in lieu of a declaration.

compute

A job is classified by MASTER as a compute job if it does not qualify as spe­
cial and the user declared it as C on the SCHED card or the installation param­
eter was used in lieu of a declaration.

Whenever possible, MASTER seeks a new job. It considers such variables
as job class, equipment and core requirements, and wait time. All required
core and I/O devices, such as tapes, card readers, and printers must be
available before a job is initiated.

MASTER first looks for emergency jobs waiting for initiation; and if equip­
ment requirements can be met for one, MASTER initiates it. When MASTER
initiates a job, it types B i on the console typewriter where i is the job
identifier taken from the JOB card.

Except when emergency jobs are active or waiting, MASTER attempts to keep
active at least one job from each of the four regular job classes (background,
special, input/output, and compute). Another job from the same class is ini­
tiated only if no scheduled jobs from other classes are capable of being initiated.

Within a class, jobs are initiated on a first-in-first-out basis. However, the
first job in the list might not always be the first initiated if core and I/O re­
quirements cannot be satisfied by the available equipment and storage; a job
submitted later may be initiated first. On the other hand, no job can be re­
fused initiation because of lack of equipment more than a certain number of
times as determined by an installation parameter. When this limit is reached
the job's class is changed to emergency and no non-emergency job is initiated
until the equipment required by the waiting job is released by terminating jobs.

When its requirements can be met, the waiting job is initiated and normal job
initiating resumes. The job initiator loads a copy of the blocking and deblock­
ing routines into memory for the job and calls the job monitor, an operating
system task. The job monitor is then loaded and established.

2.5
PROCESSING

2.6
POSTPROCESSING

Mter initiation, the job monitor processes control statements from the job's
INP file. These control statements result directly or indirectly in the loading
(when necessary) and execution of program tasks.

A task is a direct part of a job when loading and execution is directly called
for by a Task Name control card or by a task of the job currently in execution.
Tasks resulting indirectly from a job are those required by the operating sys­
tem in processing tasks directly resulting from the job.

Once the job is initiated, its priority is set according to its class. Any task
having inherited priority inherits this job priority (4.6).

Tasks which require loading, including the job monitor and relocatable loader,
occupy core scheduled for the job. The loader, as do most tasks, releases
core upon completion of the operation.

When a task and all of the tasks it called are completed, it returns to its caller.
If the task is called by a control card, the caller is the job monitor. Process­
ing of a job ends when its job monitor, seeking more work in the job's INP file,
detects an end-of-file condition.

Processing can also be terminated by the operator or when a returning task
notifies the job monitor of an abnormal condition. Upon abnormal termination
if the user requested ABORT on the SCHED card, a recovery dump is written
on the job's OUT file. Otherwise, the user receives only a dump of the console
registers, and locations 408 through 778 of the register file, if used.

At job end, any open files are closed. All scratch files, the INP file, core,
and any scheduled devices are released. The output backgrounder is requested
to process the OUT and PUN files when no DIRECT processing takes place.
For a DIRECT job, the direct unit file is closed and the device returned to the
output backgrounder.

When MASTER closes a job it types T i, where i is the identifier taken from
the JOB card.

The output backgrounder drives all available printers and punches at full speed
as long as there are OUT and PUN files to be processed. All printers and
punches are controlled by the output backgrounder which may relinquish con­
trol of an idle printer or punch upon receiving a request from a job. This re­
quest results directly from processing a user's OPENU request for a printer or
punch and indirectly from processing of a DIRECT card specifying PR or PU.

2-5

JOB ACCOUNTING INFORMATION

NAME=xxxxxxxx r. '~ C T = X X X X X X X X

TIME USED

COMP= HH/MM/S SSS

C HAN = H H/ MM/ S S , S S S

FACILITIES NOT USED

CORE=xxx

SCR =xxx

IAC=

**** JOB ABORTED ****

TASK SCOOP

NAME=XXXX

A=XXXXXXXX

P=XXXXX STATUS=XXX CALLER=XXXX

Q=XXXXXXXX 81=XXXXX 82=XXXXX 83=X):XXX

*** REGISTER FILE ***

IM=XXXX SR=X IS=X

xx XXX XXX xx xxxxxxxx XXXXXXXX XXXXXXXX XXX)(XXXX XXXXXXXX XXXXXXXX xxxxxxxx
xx XXXXXXXx XXXXXXXX XXXXXXXX xxxxxxxx XXX)<XXXX XXXXXXXX XXXXXXXX xxxxxxxx
xx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXX XXX XX XXXXXXXX XXXXXXXX xxxxxxxx
xx XXXXXXXX XXXXXXXX XXXXXXXX XXX XXX XX XXX)<XXXX XXXXXXXX xxxxxxxx xxxxxxxx

TASK SCOOP

NAME=xXXX

A=XXXXXXXX

xxxxx
x

p=XXXXX STATUS=xxx

Q=xxxxxxxx B1=XXXXX

CALLER=xxxx

B2=XXXXX B3=xXXXX

*U MEMORY ***

xxxxxxxx
X

XXXXXXXX

XXXXXXXX

XXXXXXXX

x xxx

XXXXXXXX

xxx X

XXX:o:xxx

:(XXXX

IM=XXXX

XXXXXXXX

XXXXX

SR=X

XXXXXXXX

XXXXXXX

IS=X

XXXXXXXX

XXXXX

OS=X

OS=X

JOB ACCOUNTING INFORMATION

NAME

COMP

CHAN

CORE

Identifier taken from JOB card

Central processor time used by job in
hours, minutes, seconds and milliseconds.

Sum of time consumed on each I/O channel
used by job in hours, minutes, seconds and
milliseconds.

Number of quarter pages reserved in excess
of those used; the difference between the core
estimated on SCHED card and the maximum
used at anyone time.

SCR - Number of scratch area segments reserved
in excess of those used; the difference be­
tween scratch-file estimate on SCHED card
and maximum number of segments used at
anyone time.

***** JOB ABORTED *****
IAC abort message.
or If abort was at task's request (voluntary)
V AC lAC is replaced by VAC. IAC abort mes­

sage inserted by EXEC (Appendix D)

*** REGISTER FILE ***
Contents of locations 40

8
-77

8
of register file.

*** MEMORY ***

***** OUT FILE OVERFLOW *****
Abort dump exceeds scheduled space.

TASK SCOOP

NAME

STATUS

CALLER

P

A

Q

Bl

B2

B3

1M

SR

IS

OS

Task's name.

Task status when terminated.

Caller of terminated task.

Register contents at termInation.

Interrupt mask of internal faults
selected by the task.

The subcondition register indicates
whether operand addresses were
routed through operand or instruction
state register.

Instruction state last assigned to task.

Operand state last assigned to task.

2.6.1
OUT FILES

2.6.2
PUN FILES

2-8

When the output backgrounder is requested to process an OUT file and no
printer is available for assignment, the backgrounder places the file in a
file disposition list which it processes on a first-in-first-out basis. OUT
files are printed on the standard form for the installation. (See XFER,
chapter 11).

An OUT file begins with a heading --- or for a direct OUT job, ends with
a trailer --- of the form shown. IT the job ends normally, only the account­
ing information is printed. If the job terminates abnormally the information
under JOB ABORTED is printed. The register file and MEMORY are print­
ed according to SCHED card options.

The backgrounder then prints information placed on OUT by the user and
the job monitor.

When output backgrounder is requested to process a PUN file and no punch
is immediately available, the background routine places the job 1 sPUN
file in a file disposition list which it processes on a first-in-first-out basis.
PUN files are punched on standard cards for the installation.

When the backgrounder detects an end-of-file condition, it punches and off­
sets the end-of-job card. On a DIRECT job, the end-of-job card is punched
and offset before the backgrounder processes the next PUN file.

;. n 1111111111111111111 I ~ _~~ WOIlD uuo " TYPE 41
... : .a _

~" <vo
,. ,.

3.1

MEMORY 3

This chapter discusses addressing schemes and how loading and execution of
one and two chapter tasks are implemented in MASTER in conjunction with
the 3300/3500 relocation and paging features. Users should be familiar
with the techniques described herein to better understand and make use of
the task-oriented structure of MASTER. Paging and relocation are com­
pletely automatic.

PHYSICAL MEMORY The minimum core requirement for MASTER is 32,768 twenty-four bit words.
Systems may have core added up to an allowable maximum of 262,144 loca­
tions.

777777 PAGE 177

07777 AGE 17

000000 PAGE 00

MEMORY

3-1

3.1.1
PAGE STRUCTURE

3.1.2
PAGE MAP

3-2

A page is an addressable block containing 2048 memory locations. A
fully expanded system contains 128 of these pages. Individual pages may
be subdivided into four partial pages of 512 address locations each.
Programs may be allocated full pages, 3/4 page, 1/2 page or 1/4 page of
memory.

XX3777
,--

I I I
I

I

QUARTER PAGE
ADDRESSES

XX3000

XX2777

XX2000

XX17 7 7

XX1000

XX0777

XXOOOO

512 LOCATIONS

I
512 LOCATIONS

I

\--------- I
I I

512 LOCATIONS
I

I·~ : 12 ~ o:m:::- j 1/4

I

COMPLETE PAGE

I

I
I

FLiLL PAGE
---v I I

I I

I I

I 3/4 PAGE

I I r 1/2 PAGE

1

I I

j j
PAGE

1

When EXEC or a job calls for loading of a program task, one of the MASTER
loaders (relocatable or absolute) loads the task into available pages of
physical memory where it resides until its memory is released by the job
or by MASTER.

During loading, the loader generates either one page map for the program
and common area or two separate maps for the task's program and common
areas. A task that has separate page maps for program and common is also
referred to as a two-chapter task (3.5). The page maps are retained by
MASTER for as long as the task is in core.

A page map consists of 16 page indexes of the following form:

1 1 09 02 00

I e I pi po pp

e Exclusion bit: 0 indicates task can read or write in
page; 1 indicates task can only read page.

pI Page length:

o task uses all of page pa

1 task uses 1/4 of page pa

2 task uses 1/2 of page pa

3 task uses 3/4 of page pa

pa Page address designator, the number of the physical page used
by the task. pa can be 0 to the maximum number of pages in
the system.

pp Partial page designator

o task addressing starts at top of page; logical 0 equals
physical 0 for page

1 task addressing starts at 1st quarter page; logical 0
starts at physical address 01000 for page

2 task addressing starts at 2nd quarter page; logical 0
starts at physical address 02000 for page

3 task addressing starts at 3rd quarter page; logical 0
starts at physical address 03000 for page.

3-3

3-4

STARTING QUARTER ---,)I

STARTING QUARTER ---,)I

STARTING QUARTER ---,)I

STARTING QUARTER ~

PHYSICAL

QUARTER

DESIGNATOR

!
4TH QUARTER

3RD QUARTER

2ND QUARTER

1ST QUARTER

4TH QUARTER

3RD QUARTER

2ND QUARTER

1ST QUARTER

4TH QUARTER

3RD QUARTER

2ND QUARTER

1ST QUARTER

4TH QUARTER

3RD QUARTER

2ND QUARTER

1ST QUARTER

RELATIVE QUARTER

IN RESPECT TO THE

STARTING QUARTER

+
4

3 PP=O

2

3

2 PP=1

4

2

4

3

PP=2

4 PP=3

3

2

aUARTER PAGE IN RELATION TO PP DESIGNATOR

When a task requires fewer than 16 indexes, the remaining indexes in its
page map have the exclusion bit set. Any reference by the task to an ex­
cluded page index results in an interrupt causing the job associated with the
task to be terminated. A message on the job's OUT file notifies the user of
the system action.

3.2
LOGICAL ADDRESS

1 7 1 3 164 0

0 0 047 0

0 0 046 0

0 0 045 0

0 0 043 0

0 0 042 0

1

1

1
'---L./'" --.,

o 031 3

00 o 0 032 o

PAGE MAP

A task cannot reference any physical memory not assigned to it by EXEC;
this assures complete memory protection between tasks.

A program address of a loaded task has the following significance:

PAGE INDEX LOGICAL ADDRESS

14 10 00

page index

location
address

Octal location in the page map of the indexed page
containing the instruction or operand

Address in the page relative to its logical zero. To
obtain the physical address, the hardware logically adds
bits 09, 10 of the logical address to the pp bits of the
index.

3-5

3-6

Example:

INDEX

17

, 6

----.. 15

, 4

13

, 2

03

02

0'
00

1 a 017 a
0 0 024 0

a 2 041 1 ,
1

ll----- ~

,.------1-----"-----,
1 ,
a 2 077 1

6 5 5 3 21
RELOCATED

ADDRESS
(AS IT APPEARS

IN P REGISTER)

PAGE MAP FOR TSKA

The upper four bits of Address are 1101, indexing entry 15 in Page
Map. Thus, Address is for page 41.

The lower 11 bits of Address refer to logical address 1532 of page 4l.

pp is 1 indicating that logical 0 for the page 41 is at 01000. Adding
pp to bits 09, 10 of address produces physical page address 2532.
This, added to the page number produces the IS-bit physical memory
address:

, 7 00

3.3
CHAPTERS

3.4
STATES

Logical address 00000 through 03777 index entry 00, addresses 04000-
07777 index entry 01, and so on up to 74000 through 77777, which index
entry 17. A complete set of logical addresses is a chapter.

When the P register is incremented past an index boundary, for example from
73777 to 74000, the hardware automatically indexes up to the next entry.
This indexing does not occur on quarter page boundaries. Operand addresses
cause similar indexing.

To simplify addressing for the user, MASTER memory is represented as two
blocks, each with 32K consecutive logical addresses, called chapters. Binary
object programs generated by compilers and assemblers, absolute records,
and all program listings and program memory maps reflect chapter
addressing. Addresses in a chapter range from 00000 to 77777.

A MASTER user writing a one-chapter task can use 30K words for program,
common, and data areas assuming a corresponding amount of physical memory
is available in the system. For a two-chapter task, however, he can use
one set of 30K for the program and data areas, and a second set of 32K for
the common area. Or he can put common in the first chapter and reserve
the right to use a second chapter to receive another task's common.

A task may be designated as a two-chapter task with common assigned to
chapter one. In this case, the task may reference its own common in chapter
one and the common passed to it in chapter two.

In this manner, programs and subprograms within a task can communicate
through the task's chapter one common and tasks of a job can communicate
through their chapter two common areas.

Each time a task is placed into execution, its page map must be written into
one of the eight areas--called states--of the Page Index File so that the
physical page assignments are available to the 3300/3500 hardware. Hard­
ware refers to the page map through a state register containing the state
number. For a two-chapter task both page maps must be written into two
separate states.

3-7

3-8

PAGE INDEX

FILE EACH PAGE INDEX MAY

ACCESS ANY PAGE IN

17 MEMORY MEMORY

00

1

STATE 6

PAGE MAP

00

STATE 7 PAGE 177

16 MEMORY

PAGE INDEX PAGE 176

REGISTERS MEMORY

STATE 5

1 6

PAGE INDEX

REGISTERS

STATE

16

PAGE INDEX

REGISTERS

STATE 0

16

PAGE INDEX

REGISTERS

PAGE 175

MEMORY

PAGE 174

MEMORY

PAGE 173

MEMORY

PAGE 172

MEMORY

MEMORY

PAGE 4

MEMORY

PAGE 3

MEMORY

PAGE 2

MEMORY

PAGE

MEMORY

PAGE 0

When a task is to be placed into execution, MASTER assigns a state for
each chapter present (two maximum). The state assigned to Chapter One is
written into the Instruction State Register (ISR); the state assigned to Chapter
Two is written in the Operand State Register (OSR). For a one-chapter task,
the ISR and OSR are set equal. The user must execute an ROS instruction to
reference Chapter Two.

A user task requires a state only when it is active, that is, in execution or
has some I/O operation in progress. Hardware is then using the map and
it cannot be disturbed. It is possible for all eight states to be active. When
a task is inactive, its state is inactive; the page map can be written over
with a new map of a task to be executed.

7-BIT PAGE FILE ADDRESS

CONSISTING OF 3-BIT

STATE NUMBER PLUS 4-8IT

PAGE MAP INDEX

{r------'/\'-------\ ADD RES S

,
PAGE INDEX FILE

1

0

1 I 2 1

3

1 4 I 5 1

6

1 7 I

12-BITIINDEX
BIT 2 BITS 7 BITS

ILLEGAL

WRITE

1 7

2 BITS

1 1 08

RELATIVE

POSITION

l8-BIT RELOCATED MEMORY ADDRESS

3-9

00

4.1
TYPE OF TASKS

4.2
TASK ASSIGNMENT

TASKS

MASTER deals with basic entities known as tasks, of which there are two
types: program tasks and I/O tasks. Tasks are executed on processors,
of which there are two corresponding types: central processors (CPU's)
for program tasks and data channels for I/O tasks.

Program Tasks

4

A program task consists of one or more subprograms and associated rou­
tines. To be recognized by MASTER, it must be in relocatable binary format
as are programs produced by compilers and assemblers operating in con­
junction with MASTER, or in absolute format having undergone loading and
relocation with the results recorded in absolute format.

A program task can be loaded into available memory from the library or
any file open to the job when MASTER operation begins, when needed by the
operating system, or when requested in a job. Active jobs can continue to
call for tasks as long as they do not exceed their scheduled storage require­
ments. When a task that is not permanently allocated completes its work,
its core can be released and assigned to another task.

The operating system includes program tasks such as a scheduler, initiator,
monitor, loader, etc. The operating system accepts jobs from users and
subdivides them into a collection of program tasks, such as a compilation
task and execution task.

I/O Tasks

Requests for I/O from operating system tasks or user tasks result in the
execution of I/O tasks, or in data channel activity.

All current program and I/O tasks are contained in task lists and have prior­
ities assigned to them. MASTER assigns I/O tasks to data channels and pro­
gram tasks to the CPU, on priority basis, in such a manner as to maximize
the work load on the computing system. (See priorities, 4.6). In general,
when EXEC is entered on an interrupt, it processes the interrupt, updates
accounting information, initiates as many I/O tasks as possible, and transfers
control to the highest priority program task ready to execute.

4-1

4.3
TASK CALLS

4.4
TASK ORIGIN

4.4.1
LIBRARY TASKS

4.4.2

When a program task in execution requests execution of another program task
or I/O task (calls a file), it calls EXEC which routes control to the called task.
When a program task which has been called by another task has completed
operation, it relinquishes control by issuing a return to EXEC which notifies
the caller of the completion. Both the call and the return are EXEC requests
and as such are accomplished by generation of an interrupt (Chapter 8) .

When a job calls for execution of a program task by means of a Task Name
control card (10.1. 4), the job monitor issues the call to EXEC. Then, when
the callee returns, EXEC routes control to the job monitor.

Program tasks can bc on the library or any file accessible to the user. Those
on the library are library tasks; those on other files are user-supplied. I/O
tasks result from calls for I/O operations on a file.

Tasks may be placed on the system library file during library generation
(GLIB execution), either as absolute records or relocatable binary card images.
A library task is identified and called by a task name. It may be restricted
to operating system use only. Permanently allocated library tasks are loaded
during MASTER initialization and remain in core throughout the MASTER run.
Each library task has a priority (inherited, inherent, or both) used by MASTER
to determine which task to place in execution. For generation of library tasks,
refer to the MASTER Installation Manual.

A typical library task is XFER, described in chapter 11. For correct task
usage of systems such as FORTRAN and COMPASS, refer to the related pub­
lication.

USER-SUPPLIED TASKS Tasks on files other than the library can be called by control cards or from
within the program in the same way as library tasks except that thc file con­
taining j;he task must be declared in the call. The called task mayor may not
require a TASK card (10.1. 5). A user-supplied task consists of subprograms
in the form of:

4-2

card decks

card images

absolute records

4.5
TASK NAMES

4.5.1
COPIABlE TASKS

4.5.2
ONE-COPY TASKS

A user task in absolute format has a name permanently associated with it.
A relocatable binary task, however, acquires a name only when called. The
Task Name control card or macro call supplies a unique temporary name
that EXEC uses in the monitoring of the task; no other task in the job can have
that name.

Each program task has a name of 1-4 alphanumeric characters that identifies
it when called. For library tasks, the names are assigned at G LIB (library
generation) time, for example:

Name

GLIB
*DEF
RLDR
FTN
CMP

Task

Library generation program
Operating system task for file processing (section 5. 4)
Relocatable loader
FORTRAN
COMPASS

User-supplied relocatable binary tasks have no permanently assigned names.
A user assigns a task namr the first time he calls a task in a job, and the
name exists for that task for its lifetime in the job. As an example, when a
job consists of compile and execute, execution of the compiled program is
called for with a Task Name card that assigns it a name. An absolute task,
on the other hand, acquires a name from an RLDR card.

I/O tasks are named by MASTER which uses the data set identifier assigned to
the file when it is opened (Chapter 5).

Any task with a name that does not begin with an * is copiable. Each job that
calls a copiable task will have its own copy loaded into its available memory.
If it calls the task several times, however, it will not receive a new copy if
the old one is still in core. Instead, if the task is busy, additional calls must
wait for it to become available. That is, they are queued on the task. XFER,
described in chapter 11, is one example of a task that can be called many times
by a job.

A task with a name that begins with * is not copiable. When it is called and a
copy is in core, the call is queued on a priority basis. The operating system
and all jobs calling the task must use the one task. (MASTER has no re-entrant
tasks.) *DEF, described in section 5.4 is an example of a one-copy task.

4-3

4.6
TASK PRIORITY

4.7

INTER-TASK
COMMUNICATION

4.7.1

The priority of a program task is computed as

priority = a' i +b

a inherited priority multiplier

priority of caller

b inherent priority

If a = 1 and b = 0, the copy of the task inherits the priority of its caller; but,
if a = 0 and b f- 0, the task has a fixed or inherent priority equal to b. Several
other combinations of inherited and inherent priority are also possible. If the
computed priority exceeds six bits (a· i+b:S77 8)' it is set to 77.

When EXEC seeks a task to place in execution, it looks among the ready tasks
for the one with the highest priority.

Parameters a and b are set for library tasks at GLIB (library generation) time.
User-supplied task parameters are set at a = 1 and b = 0 unless superseded by
TASK card parameters (10. 1.5). The inherited priority, i, is the priority
computed for the calling task. When the caller is the job monitor, i reflects
the priority of the job class (3. 1) .

A request for an I/O task inherits the priority of the program task with which
it is associated.

Tasks within a job may communicate with each other by passing parameters,
transferring common, and using the register file.

PARAlv'\ETER PASSI~"'G A caller can pass parameters (511 maximum) to its callee and the callee may

4-4

return parameters to its caller as a function of the CALL and RE TURN macros
(9.1). A caller cannot pass more parameters than a callee is prepared to re­
ceive. Nor can a callee return to its caller more parameters than it received.
A task that is to receive or return parameters requires a non-standard copy
of the user interrupt control routine (4.10).

A caller may pass parameters through the console registers; however, the
callee cannot return parameters through console registers.

4.7.2
COMMON Two-chapter tasks within a job can communicate with each other through

Chapter Two common (3.5.2). The operating system passes Chapter Two
common as a single contiguous block of logical addresses starting at address
00000. The user is responsible for linking common addresses since there is
no symbolic linking at the time common is passed. For example, when Task
A calls Task B, it may pass to B a beginning address as a parameter.

According to a parameter of the CALL, the callee may use common passed to
it as read only or as both read and write. Another parameter of the call spec­
ifies whether the caller is passing its own common or common of the task that
called it. As an example, assume three, two-chapter tasks, each having its
own Chapter Two common.

Case 1:

In calling Task B, Task A requests that its common be passed to B. Then,
when B is placed in execution, the page map for A! s Chapter Two is copied
into the state in the page index file assigned to B! s Chapter Two (3. 5. 2) .

TASK A A CALLS B TASK B
AND

CHAPTER ONE PASSES A~S CHAPTER ONE

PAGE MAP COMMON PAGE MAP

CHAPT ER TIAJO CHAPT ER TIAJO

REFER ENCES REFER ENCES

(RO 5) (RO 5)
TASK A

~ ... ""'-, -..

CHAPTER T~O

PAGE MAP

4-5

4-6

Case 2:

Task B calls Task C and passes its caller's common. Thereafter, when
Task C references Chapter Two, it accesses the memory assigned to Task
A's Chapter Two.

TASK A TASK 8 TASK C
A CALLS B B CALLS C .. -CHAPTER AND PASSES CHAPTER AND PASSES CHAPTER

ONE A'S COMMON ONE B 's COMMON ONE
PAGE PAGE PAGE

MAP MAP MAP

CHAPT ER Tv.JO CHAPT ER Tv.JO CH-APT ER TW
REFER ENCES REFER ENCES REFER ENCES

~

TASK A

... CHAPTER -
Tv.JO

PAGE

MAP

o

Case 3:

Task B calls Task C and passes its own common. Thereafter, when Task C
references Chapter Two it accesses the memory assigned to Task B's Chapter
Two. Note that, after B has been called by A, although it may not itself
reference the common assigned to it at load time, B may pass its own common
to its callees.

TASK A TASK B TASK C
A CALLS B B CALLS C

CHAPTER AND PASSES CHAPTER AND PASSES CHAPTER
ONE AfS

,

ONE B'S COMMON COMMON ONE
PAGE PAGE PAGE

MAP MAP MAP

CHAPT ER TltIIO CHAPT ER TltIIO CHAPT ER TltII 0

4.7.3
REGISTER FILE

4.8

REFER

MULTI­
PROGRAMMING

ENCES REFER ENCES REFER ENCES

if

TASK A TASK B

... CHAPTER CHAPTER

TltIIO TltIIO

PAGE PAGE

MAP MAP

All tasks of a job can communicate through locations 408-778 of the register
file. When register file usage is declared on the SCHED card, the contents
of the register will be maintained for the job (10. 1. 3) .

A programmer may segment a job into tasks to accomplish parallel execution
among several tasks. Thus, Task A may call Task B and assume ready status.
They may then time share the computer with one task executing while the other
is waiting for 1/0.

4-7

4.9
OVERLAY TASKS

4-8

A user with a job too large for existing core, should segment it into tasks.

For example: A user has a main task, A, and two overlay tasks, Band C.
Task C in turn has two segment tasks, D and E. Task A calls Task B, which
later returns and releases its core (9.1).

Task A then calls C, which can occupy the core previously occupied by B.
Task C may then call D and E returning and releasing core in the same manner
as Task B. Thus, E overlays D. The overlaying of subordinate tasks may be
carried to any level. That is, Tasks D and E may in turn overlay subordinate
tasks.

AVAILABLE
CORE

t--------T I M E--------~>

A

C

B

D E

A subordinate task (B in the example) can be called several times by the
main task (A) throughout the execution of a job. If Task B is to be loaded
each time it is called from the file named in the CALL macro, the user may
choose to expedite the processing, by creating an absolute file. (See RLDR).

4.10
TASK ENTRANCE/
EXIT Each task must incorporate a library routine known as User Interrupt Control

(UIC) that provide s the task with:

• an entrance

• an exit

• a reserved area for parameter passing

• internal fault selection

A task begins at address tpep, the task's primary entry point, which consists
of a jump to **.

Task

LOCATION OPERATION, MODIFIERS ADDRESS "ELD COMMENTS

1 8 10 '20 141

tpep UJP I*-;~
I
I

I I I

A call to a task connects with the mc routine which contains a return jump to
tpep. The return address is inserted into ** as a normal function of a return
jump execution. The return address in **, +1, is the first word address of
parameters passed in the call.

A task can return to its caller through a jump to tpep or through a RE TURN
macro coded in the program.

A user may obtain a standard or non-standard copy of mc. The standard copy
does not include a parameter passing area and the RETURN included in UIC has
no parameters. A standard copy of UIC includes a copy of the fault selection routine.

The non-standard copy may include parameters. It will not include a copy of
the fault selection routine unless requested.

To obtain a standard copy of UIC, the programmer coding the task must declare
VIC as an external symbol:

4-9

4.11
TASK STATUS

4-10

LOCATION OPERATIO", ODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

EXT IUle I . I I
1 I

The FORTRAN compiler, as a standard function of compilation, declares
mc as an external symbol; the COMPASS assembler does not. The user must
declare the symbol.

To obtain a non-standard copy of mc, the task programmer must use the fol­
lowing macro:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

1 1
Ule Ule I (n,F,NR) I

I 1

n Maximum number (0 to 511) of parameters task may receive or re­
turn to its caller.

F Task requires fault selection routine in UIC. \Vhen F is omitted the
task cannot select faults (SELECT, section 9.3.1)

NR The task is not to be released from core. When NR is omitted, the
task is released after its execution.

When a task requires a non-standard UIC, the task programmer must also de­
clare mc (as well as tpep) as an entry point.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

ENTRY IUle

II

During its life in the system, a task may repeatedly pass through many of the
status conditions listed below. EXEC maintains and uses status in its admin­
istration of tasks. The code appears on the OUT file when the job terminates
abnormally.

Octal
Code

00

01

02

03

04

05

06

07

10

11

12

13

14

15

Status

Inactive

Wait

Deferred
Wait

Wait I/O

Deferred
Wait
I/O

Table Wait

File Wait

Read
Lockout

Write
Lockout

Call

Finis

Select

Ready

Busy I/O

Significance

The task has completed its work and returned to
its caller. Status remains inactive until the task
is called again (RETURN). t

The task has called another task and, as a param­
eter of the call, requested that it (the caller)
not be permitted to resume execution until its
callee has returned. (CALL) t

The task has called other tasks, resumed ex­
ecution and then requested that it not be permit­
ted to continue execution until one of a set of
callees returns (DW AIT) . t

The task has called for an I/O task and, as a
parameter of the call requested that it not be
permitted to resume execution until the I/O
task has been completed. (Data Transmission
Macros, Chapters 6 and 7).

The task has called I/O tasks, resumed ex­
ecution and then requested that it not be permit­
ted to continue execution until one of the set of
I/O tasks has been completed. (DWAITIO).t

The task is waiting for access to a table being
used by another task.

The caller is waiting for access to a file being
used by another task (OCARE M, Chapter 5) .

The task has called the job copy of the deblocking
routine while another task was using it.

The task has called the job copy of the blocking
routine while another task was using it.

The task has called another task. Until the call
can be connected, the caller remains in call
status; it cannot resume execution.

The task has completed its work and is waiting
to return to its caller (TASK has outstanding
callees) .

The task has been called and is waiting to be
loaded.

The task may begin or resume execution or is in
execution.

The task is not in execution but has I/O going on.

4-11

5.1
FILE STRUCTURE

5.1.1
DEVICES

5.1.2
DEVICE LABElS

MASS STORAGE 5

The efficiency of MASTER's time sharing and multiprogramming depends
on optimum random access of mass storage. A comprehensive set of MASTER
routines efficiently manages and processes files on mass storage. This
chapter describes the structure of mass storage files, their establishment,
and access. Chapter 6 describes the processing of mass storage files.

The MASTER system operates in an environment in which all files have an
identical basic structure. All of mass storage for MASTER is subdivided in
two levels. The device level is the higher; the units of allocatable storage
level is the lower.

Mass storage devices are hardware entities with independent schemes of
addressing. MASTER distinguishes between Class A devices which are logi­
cally or physically affixed to drives, and Class B devices which are remo­
vable.

All drives not mounted with Class A devices are available for any Class B
device. Since Class A devices are drive associated, they constitute mass
storage that is always on-line. Files of importance to MASTER itself are
maintained on Class A devices.

MASTER uses device labels in identifying all mass storage devices. Each
removable disk pack, as well as each drum and non -removable disk, has
a device label written on track 0 (or the first hardware address) of its first
allocatable unit. Device labels are written by MASTER utility routines
prior to the use of the device.

5-1

5.1.3
FILES

5.1.4
FILE LABELS

5.1.5

Device labels contain information relating to mass storage devices including
a device number that relates to a numer in an external label, such as a label
on a disk pack.

Because files may extend over more than one mass storage hardware unit,
not all of which may be on-line, MASTER checks device numbers in each
call. If the call involves a device that is not on-line, MASTER issues a
message requesting the operator to mount that device on a specified drive.
The content and format of device labels are described in Appendix B, operator
messages in Appendix C.

All data operated on by the MASTER system must be in entities of logical
block structure. These entities are called files.

MASTER files are subdivided into groups that have identical logical block
sizes. A logical block size is the number of 6-bit characters in each block.
Logical block sizes may vary among files, but no file may exceed MSIO speci­
fied limits (Appendix B). Each logical block starts at the beginning of a
physical hardware record, and may not exceed 131071 characters.

File labels are tabulated entries in system files (Appendix B) that identify
and describe space on mass storage. A mass storage file exists in the
system when the user defines a label (allocates). The user must provide
information (file identification) that uniquely identifies and describes a file
each time he makes a definition.

CREATING FILE LABELS The important prerequisite to using MASTE R' s mass storage is that space

5-2

for files must be labeled and reserved. The user makes calls to the MASTER
operating system (*DEF task) to create a file label. These calls provide file
identification, security codes, block size, block count, etc. MASTER, in
turn, assembles this user-provided information, a mass storage map, and
related information from various internal tables, into entries in system files
(section 5. 2) .

5.1.6
FILE IDENTIFICATION

5.1.7
FILE SECURITY

5.2

The concatenation of owner, file name, and edition number make up a file
identification. Each file definition (file label) includes unique file
identification, an access security code, and a modification security code.
The file label retains the file identification for MASTER comparison during
label handling calls(RELEASE, EXPAND and MODIFY, section 5.4.2).
If identification in a call does not match identification in a label, an error
results.

Each file label has a provision for security codes. The user may supply an
access security code, a modification security code, or both in a label
definition call. The access security code protects a file from unauthorized
use. If the access security code in an access call(OPEN)does not match one
in a file label, the call is rejected. Similarly, mismatched modification
security codes reject cor'respondent label handling calls RE LEASE, EXPAND
and MODIFY. Label access and modification codes can be overridden through
use of the master access and modify codes in the call.

When space must be segmented to satisfy a file definition call, MASTER
maintains a threaded map of segments and inserts it in the file label. One
or more segments of a file may be on one or more physical units. *DEF
allows files to be segmented up to a maximum of 63 segments per file.

FILE ENVIRONMENT In order for MASTER to run and start job processing it needs a file environ­
ment. The user establishes the file environment by autoloading MASTER.
The autoload program enters an intialize routine that generates nine mass
storage files making up the initial file environment for MASTER. The table
that follows outlines each of these nine system files.

5-3

SYSTEM FILES

COMMON NAME MASS STORAGE FILE LABEL DIRECTORY FILE
DIRECTORY FILE FILE LABEL FILE FILE IDENTIFIER FILE

FILE IDENTIFICATION
OWNER MSIO MSIO MSIO
FILENAME MSDFILE LABELFILE IDFILE

EDITION NO. 00 00 00

SECUHITY CODES
4

ACCESS MODI FICA-
TION

BLOCKSIZE 4 variable (See Summary)

DATA SET *MSD * LAB *IDF
IDENTIFIERt

Contents copies of all device labels of all the file identification
(See details in labels for all mass files in the and security codes from
Summary) storage devices in mass storage all file labels in the

the system; there- system mass storage system
fore, a complete
mapping of all mas s
storage

Status after opened and assigned opened and opened and assigned
Initialize data set identifier assigned data data set identifier

*MSD set identifier *IDF
* LAB

The data set identifier (dsi) is a shorthand file identification that the system and user employs
in accessing files after their definition (Allocation). Thus, a file definition will be known to
the system by only its dsi, eliminating the time-consuming use of the full file identification
and, in the case of the job file pool, eliminating time-consuming disk accesses.

MASTER UBR A HY MASTER UBRAR Y
FILE

MASTER
UBRARY

00-99

master securit
by installation

*UB

y
(S

complete libra ry
for MASTER

See Summary

opened and as-
signed data set.
identifier * UB

DIRECTORY FILE

MASTER
UBRARY DIREC-

TORY
00-99

codes as specified
ee Summary)

*DIR

a directory of
the MASTER
library

opened by and
assigned data
set identifier
*DIR

JOB FILE POOL
INPUT OUTPUT PUNCH SCRATCH

MASTER MASTER MASTER MASTER
SYSTEM SYSTEM SYSTEM SYSTEM
INPUT OUTPUT PUNCH SCRATCH

00 00 00 00

-

fixed length segments •
(See Summary)

INP, OUT, PUN (See Summary)

a pool of permanently allocated contiguous
mass storage that will be managed by EXEC
for each job in the system

See Summary

allocated by operating system task and seg-
ment maps read into EXEC tables. Managed
by system OCARE on a job basis through
user and operating system calls.

5.2.1
SYSTEM FILES
SUMMARY

5.3
MASS STORAGE
AND JOBS

5.3.1
JOB FILES

In general, the nine system file s exist throughout the life of MASTE R. They are
maintained on permanently on-line (Class A) mass storage.

Among the five mass storage and library files, block sizes vary, according to
the nature of their content, within the block size limitations of MSIO specifica­
tions (Appendix B). The size of each file in the job file pool is always in seg­
ments; length will vary according to each installation. Each file may be up to
63 segments, and will always be at least one.

Three system files (*MSD, *LAB, and *IDF) are involved with the management
of the mass storage system. Their dsi's indicate that they may be accessed by
the operating system only. The library files (*LIB and *DIR) are accessible
by any job and task in the system in addition to the system itself. The files
of the permanently allocated job file pool are accessible by both the system and
user for jobs running in the system.

To make the most efficient use of time sharing and multiprogramming capa­
bilities, MASTER automatically file orients each job presented to it for pro­
cessing.

Each job presented to MASTER will automatically obtain a set of associated
job files. MASTER operating system tasks (Job Flow, Chapter 2) make calls
to a set of MASTER executive routines (System OCARE) that allocates, from
the job file pool, files for each job. Each job may have the following files:

An input file, INP, which contains the job's input deck.

A printer output file, OUT, which receives the job's listable output.

A punch output file, PUN, which receives the job's punch output
(providing a punch limit is specified on the JOB card.

Scratch files which the user must schedule and manage through calls
to System OCARE.

Each of the above files exists only for the life of a job; all are manipulated
through the MASTER operating system. The user is mainly concerned with
the job's scratch. As the system completes a job, it closes and releases the
input file (INP), closes and releases scratch files (if the user does not call
System OCARE to do this, the system handles it automatically), and closes the
printer and punch (OUT and PUN) files passing through to the operating system
(Output Backgrounder) for listing and punching.

5-5

5.3.2
SYSTEM OCARE

5.3.3
MANAGING
JOB SCRATCH

SALOCATE

5-6

System OCARE is a set of file management routines that manipulates the job
file pool files. Since the pool is permanently allocated, and its segment maps
are present in executive tables upon initialization, no new mass storage
accesses are necessary to manage them. A job file exists only as a dsi
(e.g., INP, OUT and PUN) relating to a segment map in MASTER executive
tables.

As the user is responsible for scheduling and managing each job's scratch
requirements, he makes macro calls from his own program to System OCARE.
All macros must meet the specifications for macros outlined in 1. 7. If a call
is unsuccessful (function re ject), an error code specifying the nature of the
failure returns in the A register. The calls to System OCARE, and the resul­
ting function of each call, for managing job scratch are described as follows:

As a result of the system allocate call a scratch file is allocated, opened and
ass igned a data set identifier. The function manipulates segments from the
standard file pool into a scratch file definition. SALOCATE sets the block
count to one.

MACRO call format:

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

SALOCATE ;C ds i, block size,block;count)

dsi

block size

block count

I

Data set identifier (1-4 alphanumeric characters)
to be associated with the file; it must not start with *.
The dsi is the only identification the file has while it
exists in the current job.

Number of characters (1 to 131072) per block in this file.

Number of blocks (1 to 511) to be allocated to the file.

System OCARE allocates by segments. It computes the number of segments
from block size and block count. The file may have from 1 to 63 segments.

Reject Codes

(A) = xOOOOOOO

x = 3

1

5

6

Requested more than 63 segments, or exceeded scratch
segment count on schedule card (10.1. 3).

Tried to allocate a file with dsi PUN, INP, or OUT.

dsi already in use, by *DE F OPE N call, for another
open file in the job.

block size is zero.

If no room is available in the MASTER executive tables, or no segments are
available, the calling task is placed in table-wait status until the condition
clears. If the file has already been allocated, an attempt will be made to
open it. All SALOCATE calls cause the file to be allocated and opened. It is
ready for data transmission (Chapter 6) .

SOPEN The system open call reopens a file previously allocated by SALOCA TE . The
OPEN call identifies the file through the dsi declared in the SALOCATE request,
and prepares it for data transmission. SOPEN sets the block count to one.
See Chapter 6.

MACRO call format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10

SOPEN

dsi

block size

'20 141

I(dsi, block size) I
I I

Data set identifier associated with the file; must be
the same as in SALOCA TE request.

Number of characters (1 to 131071) per block in this file.
(This may differ from the block size in SALOCATE
request; however, the total number of characters alloca­
ted for the file does not change) .

5-7

SEXPAND

5-8

Reject Codes

(A) = xOOOOOOO

x=4

1

5

6

No file with this dsi has been allocated by SALOCATE.

dsi is PUN, INP, or OUT.

File is already open in this job, by a *DE F OPE N call.

Block size is zero.

If the system executive tables are full, the calling task is placed in table -wait
status until table space is available. If the file is already opened by SOPEN
or SALOCATE, the request is a do nothing request.

A system expand call increases the job's scratch file by one segment.

MACRO call format:

LOCATION OPE~ATION, MODIFiERS ADDRESS FIELD COMMENTS

1 8 10 :20 '41

SEXPAND ;Cdsi)
I

I
I I

dsi Data set identifier of the file.

Unlike *DEF expand (5.4.1) which allows expansion only on closed files,
system expand can be made on either open or closed scratch files.

Reject Codes

(A) = xOOOOOOO

x=l

4

3

Tried to expand PUN, INP; or OUT.

No file with this dsi has been allocated by SALOCA TE.

Tried to expand beyond 63 segments or used up
number of segments scheduled for this job.

If no segments are curlently available, the calling task is put into table-wait
status until the condition clears.

SCLOSE

SRELEASE

This call removes the job's scratch file definition (dsi) from the MASTER.
executive tables, preventing data transmission until it is reopened by SOPEN.

MACRO call format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 141

SCLOSE (dsi)
I

I ,

dsi Data set identifier of file.

Reject Codes

(A) = xOOOOOOO

x = 1 Tried to close PUN, INP, or OUT file.

4 No file with this dsi has been allocated by SALOCATE .

The system release function releases the segments of mass storage asso­
ciated with the dsi and returns them to the job file pool. The job's scratch
files must be closed with SCLOSE before they can be released.

MACRO call format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10

~RELEASE

dsi

Reject Codes

(A) = xOOOOOOO

x = 1

4

2

'20 :41

(dsi) I

I I

Data set identifier of the file.

Tried to release PUN, INP, or OUT files.

File with this dsi was never allocated.

File has not been closed by SeLOSE.

5-9

5.4
MASS STORAGE
AND PERMANENT
FILES

5.4.1
*OEF

5-10

I

Permanent files are user files. The user has full control of creation, label
manipulation, access, and life term. The manipulation of permanent files
is determined by the user, and is limited only by the range of functions
(*DEF) provided by the system.

The MASTER operating system contains a task (*DEF) for handling perma­
nent files that is callable by any other operating system task, library tasks,
or program tasks. *DEF is a package of routines (OCAREM) that the user
calls to manage mass storage.

*DEF is callable in either of two ways:

1. By call macros from within a dynamic program.

2. By Task Name control card calls (where the task name
is *DEF) preceding or following a dynamic program.

General format of call macro:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 :41

function I(wait,) 1
I

I I

Macro calls are standard COMPASS library macros that reference library
macros the user establishes in LIBM statements at the beginning of his
program.

5.4.2
LABEL HANDLING
FUNCTIONS

Task Name cards are described in section 10. 1. 4. The general form of the
*DEF Task Name control card call is:

(' $* DE F (function, wait,,, ,)

In both types of *DE F call formats:

function

wait

Specifies the *DEF routine being called.

Defines action to be taken when the call causes a
conflict with the use of the file across jobs. The wait
parameter may be W or R.

W If a conflict occurs between jobs *DEF places the
calling task in file wait status. When the conflict
is resolved, it honors the call automatically. If
the conflict is within a job, the call is rejected.

R If a conflict occurs on a macro request, *DEF
rejects the call, and returns a reject code to the
caller. If the conflict occurs when the R parameter
is used on a Task Name control card call, *DEF
terminates the job making the call with an error
message to the operator.

Other If wait is other than W or R, MASTE R interprets
it as W.

*DEF functions may be divided into two subgroups -- label handling and data
transmiss ion.

One subgroup of *DEF (OCAREM) supplies the user with a broad range of
functions for manipulating the permanent file definitions. In a sense, these
functions manipulate file definitions (file labels) external to MASTER. The
user may call any of these functions to create a file definition to build
entries in system files (* LAB, *MSD, and :ttIDF) , reserve additional mass
storage for a definition, remove the definition from all system files and
tables, or change the definition itself. The permanent file label handling
functions of *DEF (OCAREM) are described below:

5-11

ALLOCATE

5-12

The ALLOCATE function of *DEF uses the information supplied in the call
to build entries in the *LAB, *IDF (thereby creating a file definition in the
system). The function also updates *MSD to reflect the units of mass storage
allocated to the definition, and builds entries in executive tables.

MACRO call format: t

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 141

~LLOCATE ;(wait,owner,fi1ename,fdition,acsc,mdsc,
~LLOCATE ,(bksize,nbks,expdate,f,c,dt,dn, ••. ,dn)

Task Name control card format:

r
$*DEF(A, wait, owner, filename, edition, acsc, mdsc, bksize,

) nbks, expdate, s, c, dt, dn, .. . , dn)

The parameter groupings in both formats are described below:

File identification information

owner

filename

edition

1 to 8 alphanumeric characters

1 to 30 alphanumeric characters

1 to 2 alphanumeric characters

File security information:

acsc

mdsc

Access security code 1 to 4 alphanumeric characters.

Modification security code 1 to 4 alphanumeric
characters.

File structure spec ification:

bksize

nbks

Number of 6-bit characters per logical block, decimal
constant 1 to 131071.

Default: On control card call, the job containing the
call is terminated. On macro call, fault
diagnostic code 70 returns in the status word.

Number of logical blocks in the file, decimal constant
1 to 8388607.

t Macro continuation line required if information extends beyond column 72.

File expiration date:

expdate

Default: On control card call, the job containing
the call is terminated. On a macro call,
fault diagnostic code 70 returns in the
status word.

Expiration date of file in the form yymmdd; yy is year,
mm is month, and dd is day.

Default: Current date will be used.

Hardware specification:

s

c

dt

dn

S: File is to be allocated on devices formatted in
sector mode.

T: File is to be allocated on devices formatted in
track mode.

Default: File will be allocated on devices formatted
in sector mode, if applicable to specified
devi ce type.

C: File must be allocated to contiguous area (one
segment) .

S: File segmenting is permitted.

Default: Segmenting is permitted.

852
853
854
813t
863

} Model number of disk on which file must
be allocated.

File is to be allocated on drum.

Default: File is allocated to models specified in an
installation parameter. tt

Device numb~rs (Class B) to be used for allocation of
the file numbers are considered in the order listed.
The list may have a maximum of 9 device numbers;
each may range from 1 to 262143.

Default: File is automatically allocated on Class A
devices of type specified. Error code 58 indio­
cates no Class A devices are available.

t Two 813's constitute an 814 in a single cabinet.

rr May be changed by the installation at library generation time, see MASTER
Installation Manual.

5-13

5-14

Additional file label entries made on ALLOCATE request:

File protection:

Usage count:

Creation date:

Automatically set to 0 (INPUT and/or OUTPUT) on
an allocate request, but can be changed to I (INPUT
only) on modify request.

Automatically set to zero.

Automatically set to current date.

Last access date:
Automatically set to 00 00.

File identification must be unique or a master file identification. Allocation
may not be across storage classes (part on Class B and part on Class A).
If device numbers are listed, they must all be Class B mass storage with a
specified hardware type and mode.

Allocation Algorithms

Class A storage:
This algorithm minimizes the number of segments
per file. *DEF checks *MSD map to find the smallest
contiguous area large enough to satisfy the request.
If such an area does not exist, the largest available
area becomes the first file segment followed by the next
largest, etc.

Class B storage:
This algorithm searches maps of each device in the
device number list. The search proceeds serially
(starting with device containing the most available
storage) to minimize the number of devices per file.

Error processing:
Error processing during an allocate call varies with
the format of the call. An error prevents allocation.

Errors occurring in the course of a call using a *DEF(A, ...) control card
terminate the job making the call. The condition is reported through an error
message. If errors occur in the course of a macro call, an error code returns
in the status word of the call as follows:

Error Code

52

54

Condition

Calling sequence contains an illegal device
type and/or recording mode.

Requested file size exceeds the MSIO speci­
fication limits.

MODIFY

Error Code

55

56

57

58

59

60

70

Condition

File identifier already exists.

*LAB and *IDF are full. Operator is informed
through a diagnostic message.

No device of requested type and mode in system.

Not enough space available to allocate a file of
this size.

Maximum segment count would have been
exceeded. if allocation was completed.

User requested contiguous space, but no conti­
guous block of sufficient size was available.

User omitted bksize or nbks parameter in call.

Through the MODIFY call, the user may change elements of a permanent
file definition that do not concern the mapping of the definitions' structure.
He may change owner's name, file name, edition, access security code,
modification security code, and file protection or expiration date.

MACRO call formatt:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 '41

MODIFY '(wait, owner, filenam+, edition, acsc, mdsc,
~ODIFY pew owner, new filen~e, new edition, new acsc,
~DIFY pew mdsc, new protectron, new expdate)

Task Name control card format:

$*DEF(M, wait, owner, filename, edition, acsc, mdsc, new owner,

new filename, new edition, new acsc, new mdsc, new protecti on,

J new expdote)

t Macro continuation line required if information exceeds column 72.

5-15

5-16

The following parameters are mandatory in both formats.

File identification information for the file to be modified:

owner Owner of file

filename Name of file

edition Edition number

File security information:

acsc

mdsc

Access security code

Modification security code

The following parameters are optional, and specify any changes to be made
to the file label in *LAB and *IDF. A null or blank parameter specifies no
change in that field of the label.

new owner

new filename

new edition

newacsc

new mdsc

new protection

newexpdate

New owner identification; 1 to 8 alphanumeric
characters.

New filename identification; 1 to 30 alphanumeric
characters.

New edition identification; 1 to 2 characters.

New access security code; 1 to 4 characters.

New modification security code; 1 to 4 charac­
ters.

0:

I:
blank:
other:

file may be used for input and/or output.
file may be used for input only.
the protection does not change.
the file is input only.

New expiration date in the form yymmdd where
yy is the year, mm is the month , and dd is the
day.

The file identification and the access and modification security codes
(of the file to be modified) must match those in an entry in *LAB and *IDF.
If wait is requested and the file is open for data transmission in another job,
the call will be completed as soon as the file is closed; otherwise, the call
is rejected in spite of wait request. The modified file label identification must
be unique (not the same as an existing file) .

Error Processing

Error processing during a MODIFY call varies with the format of the call. If
errors occur, modification is not done. If errors occur when the *DE F
(":\'1, •••) control card is used, the job making the call is term inated; the
condition is reported through an error message. If errors occur in the

EXPAND

I

course of a macro call, an error code returns in the status word of the call
as follows:

Error Code

55

61

62

63

Condition

New file identifier is not new, already exists
for a file other than the one being modified.

Original file identification not present in *LAB
and *IDF.

The file to be modified is open in the same
job that is making the call.

One, or both, security code s do not match the
security codes in the file. The access and
modification security codes must match the
corresponding fields in the label or the master
access and modification security codes.

The user may make EXPAND calls to *DEF to enlarge the amount of mass
storage space for an existing definition. The user specifies how many
additional blocks are needed (optionally the device numbers) .

MACRO call format: t

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

~XPAND ~wait,owner,filename,~dition,acsc,mdsc,nbks,
~XPAND ~eg,dn, .•• ,dn) I

Task Name control card format:

$* DEF(E, wait, owner, filename, edition, acsc, mdsc, nbks, seg, dn, ... ,dn)

The following parameters identify the file to be expanded:

owner Owner of file.

filename Name of file.

edition Edition number.

t Macro continuation line required if information exceeds column 72.

5-17

5-18

File security information:

acsc

mdsc

Access security code.

Modification security code.

Expansion specifications:

nbks

seg

dn

Number of blocks to be added to the file using the block
size specified in the label. A decimal integer from 1 to
n, where n plus the number of blocks already in the file
must not exceed 8388607.

Default: No expansion will be done.

C: Blocks to be added to the file must be contiguous (with
each other, not necessarily with the original file).

S: Additional portion may be segmented.

Default: Assume segmenting permitted.

Device numbers to be used for the expansion; refer
to Class B devices, and are considered in the order
listed. The list may have a maximum of nine device
numbers. Each device number may range from
1 to 262143.

Default: If original definition was on Class A devices,
expansion will be on Class A. If original def­
inition was on Class B devices, same devices
(device numbers) will be used for the expansion.

The number of blocks specified in the call does not actually reserve as many
blocks, but it specifies an amount of mass storage that is to be added to the
mass storage map of a file definition. The additions may be contiguous with
each other, or segmented, but not necessarily contiguous with the original
definition. If wait is requested and the file is open for data transmission
in another job, the call will be completed as soon as the file is closed;
otherwise, the call is rejected in spite of wait request. The file identification,
access security code, and modification security code in the EXPAND call
must match an entry in *LAB and *DEF, or the call is rejected.

Error Processing

Error processing in an EXPAND call varies with the format of the call. If
errors occur, expansion is not done, and the original file definition is not
disturbed. Errors occurring in the course of a call using a *DEF (E, ...)
control card terminate the job making the call. The condition is reported
through an error me ssage. If errors occur in the course of a macro call, an
error code returns in the status word of the call as follows:

RELEASE

I

Error Code

54

57

58

59

60

61

62

63

Condition

File size, if expanded, would exceed the limits
of MSIO specifications.

The call listed an illegal device number.

Additional mass storage is not available.

MSIO limitations on segment count would have
been exceeded if'the expansion had been
completed.

Caller requested contiguous space, but no
contiguous area big enough was available.

File identification in the call does not match
any in *LAB or *IDF.

File with this definition is open for data
transmission in the same job.

One, or both, security code s do not match the
codes in the file label or master security codes.

The user may remove the definition of a permanent file from MASTER
executive tables, *LAB, and *IDF by calling the RELEASE function. The
space associated with the definition returns to the mapping of mass storage
in *MSD.

MAC RO call format:

LOCATION OPERATION, MODiFIERS ADDRESS FiELD COMMENTS

8 10 '20 141

RELEASE I(wait ,owner, filename "dition,acsc ,mdsc ,amount)
I I

Task Name control card format:

$*DEF(R .. wait, owner, filename, edition, acsc, mdsc, amount)

5-19

5-20

File identification information:

owner

filename

edition

Security information:

acsc

mdsc

Release specification:

amount

Owner.

N arne of file.

Edition number.

Access security code.

Modification security code.

ALL:

UNUSED:

1 to 7
decimal
digits:

Other:

Release the definition and all associated mass
storage.

Release all of the blocks above the last block
written.

Specifies the number of trailing blocks to
to be released.

Causes error.

The file identification and the access and modification security codes, of the
definition undergoing release, must match entries in * LAB and *IDF or the
call is rejected. If wait is requested and the file is open for data transmission
in another job, the call will be completed as soon as the file is closed; other­
wise, the call is rejected in spite of wait request. A zero or a blank in the
release specification field (amount) of the call is a no operation.

Error Processing

Error processing during a release call varies with the format of the call.
If errors occur; release is not. done. Errors occurring in the course of a
call using a *DEF(R, ...) control card terminate the job making the call,
and inform the user of the condition through an error message. If errors
occur in the course of a macro call, an error code returns in the status
word of the call as follows:

Error Code

61

62

Condition

File identification in the call does not match
a * LAB entry.

Definition to be released is open for data
transmission in the job making the call.

5.4.3
TRANSMISSION
PREPARATION
FUNCTIONS

OPEN

Error Code

63

70

Condition

Both security codes do not match any security
codes * LAB and *IDF entries.

Call contains an illegal control value.

A second functional subgroup of the *DEF task (OPEN and C LOSE) is callable
to establish a file definition in MASTER executive tables. It sets up the record
keeping that prepares a definition for data transmission; or it removes a defin­
ition from the executive tables so that no further data transmission may be
done.

The user may call the OPEN function of *DEF to prepare existing file defin­
itions for data transmission. The OPEN function sets up internal tables and,
where necessary, requests the operator to prepare mass storage devices assoc­
iated with the file definition. When open, a file may be involved in data
transmission functions (refer to Chapter 6). The OPEN function opens both
Class A and Class B mass storage, which can be mounted on-line together.
MASTER puts all mass storage devices, associated with a file definition,
on-line during an OPEN call.

MACRO call format: t

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 f41

OPEN l(wait,dsi,owner,filen~me,edition,acsc,usage,S,
OPEN block,bypass) I

Task Name control card format:

$*DEF(OJ wait, dsi, owner, filename,edition, acsc, usage, s,

}block, bypass)

dsi Data set identifier, 1 to 4 alphanumeric characters, may
not be blank or start with *. In lieu of total identification,
*DEF uses a data set identifier in referencing file defini­
tions to reduce the number of disk accesses which reduces
the total time requirements with mass storage.

t Macro continuation line required if information exceeds column 72.

5-21

5-22

File identification:

owner Owner of file.

filename Name of file.

edition Edition number.

File security information:

acsc Access security code.

usage 0: File may be used for output, or input and output.

I: Designates an input only file.

Defaults: Assumed input only file.

The following two parameters specify partial opening of a definition. Only
one device, associated with a definition, will be put on-line at a time.
Only definitions allocated on Class B mass storage may be opened partially.
Definitions on Class A mass storage are always completely on -line.

S

block

Definition will be partially opened. When S is omitted,
definition will be opened normally.

This parameter is used only if S is used. It may be an
unsigned decimal integer in the range 1 to 8388607.
The device containing this block number is put on-line.

The user calls the OPENSEG (open segment) function when it becomes
necessary to open a new segment of a definition, and the new segment is on
a different device. The user must specify a new block number on the device.

bypass B:

Other:

Bypass all input and output requests.

Process normally (do not bypass) .

The file identification and access security code in the OPEN call must match
an entry in *LAB and *IDF or the call is rejected. If drive requirements for
definitions on Class B storage are not scheduled in advance of OPE N calls,
the calls are rejected. The usage specified must not conflict with protection
specified in the original definition. If the dsi matches a dsi already open in
the same job, the conflict terminates the job making the call. If the dsi
matches a dsi open in another job, no conflict occurs since dsi's are further
qualified by MASTER. A partial OPEN call has no meaning for definitions on
Class A mass storage. It is treated like a normal OPEN request. The block
number on a partial OPEN must be in range 1 to n, where n is the highest
block number of the allocated file.

OPENSEG

Error Processing

Error processing during an OPEN call varies with the format of the calL
If errors occur, opening is not done. Errors occurring in the course of a
call using a *DEF (0, ...) control card terminate the job making the call,
and inform the user of the condition through an error message. If errors
occur in the course of a macro call, an error code returns in the status
word of the call as follows:

Error Code

61

63

64

67

69

71

72

73

Condition

File identification specified in the call does
not match any in *LAB and *IDF.

Access security code in the call does not
match any *LAB and *IDF. This error also
occurs when the operator does not respond
to a MASTER request to mount a file.

Data set identifier is illegal, i. e., already in
use in the same job, contains an * as its first
character, or is blank.

Usage specified in call conflicts with usage
spec ified in the original definition.

Scheduling error - not enough drives to put a
Class B definition on-line.

Definition open in this same job, which is in
job wait status.

No drives available. This system error may
occur if the operator, or the system, marks a
scheduled unit as down and not available after
job initiation.

Block number out of range on partial OPEN call.

The user may make an OPE NSEG call to open a new segment of a definition
after a partial OPEN call (an OPEN call to *DEF) ,on that same definition. If
the user requests data transmission to or from a block, that is part of a

partially open file not currently on-line, the MASTER I/O Control System
rejects the call, and reports the condition with a code and the block number
of the last call. In such case, the user can call the open segment function
of *DEF, providing the dsi and block number in the new segment to be put
on-line, and then request data transmission on that block. t

t This technique should be used only on sequentially processed files. Ra ndom
accessing degrades system performance because a great deal of operator action
is necessary to continually mount new devices.

5-23

CLOSE

5-24

MACRO call format:

LOCATION OPERATION, MODIFIERS ADDRESS ,'ELD COMMENTS

1 8 10 120 141

\ALLOCATE I(wait,dsi, block) T
I

I I

Task Name call format:

($*DEF(S. wait, dsi, block)

dsi

block

Data set identifier of definition opened with partial
OPEN.

Number of the block in the segment to be put on­
line.

The dsi in the call must match the dsi of a definition opened with a partial
OPEN request. The block number in the call must be in the range 1 to n
where n is the highest block number allocated to the file. Segments of
partially open files do not have blocks which cross from a segment on one
device to a segment on the next device because the MASTER Input/Output
Control System is not able to read such blocks.

Error Processing

Error processing during an OPEl'\SE G call varies with the format of the
call. If errors occur, the open segment is not done. Errors occurring in
the course of a call using a *DEF(S, ...) control card terminate the job
making the call. The user is informed through an error me ssage. If the
errors occur in the course of a macro call, an error code returns in the
status word of the call as follows:

Error Code Condition

73 Block number out of range.

75 Illegal dsi - no definition with this dsi open
in this job, or definition is not partially open.

The close call to *DEF removes a file definition from MASTER executive
tables. The definition is then no longer available for data transmission
under MASTE R .

5.4.4
CAll CONFLICTS

MAC RO call format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 141

CLOSE 1 (wait, dsi)
I

1
1 1

Task Name control card format:

($*DEF(C, wait, dsi)

dsi Data set identifier of file to be closed. If blank,
the request closes all files associated vdth the job
making the request except INP, OUT, PUN, and job
scratch.

The C LOSE call inserts information pertaining to the use of the definition
in *LAB, i. e. , last access date, usage count, and number of highest block
written. CLOSE calls on non-existent dsi's (definitions not open) are re­
jected with an error code. CLOSE calls on system files or job files (INP,
OUT, PUN, or job scratch) are no operations.

Error Processing

Error processing during a C LOSE call varies with the format of the call.
If errors occur, closing is not done. Errors occurring in the course of
a call using a *DEF(C, ...) control card terminate the job making the
call. The condition is reported in an error message. If an error occurs
in the course of a macro call, an error code returns in the status word of
call as follows:

Error Code

64

Condition

dsi in the call does not match any open in the
same job.

MASTER provides alternatives for handling calls which it cannot honor be­
cause they conflict with previous calls (generally from another job) vet
outstanding. MASTER honors calls on the basis of a parameter (\vait-reject
option) in each call. Tasks containing calls to *DEF are automatically put
in file-wait status. If a call cannot be completed at the time it is made, one
of the following actions is taken (in accordance with the wait-reject parameter):

5-25

5-26

1. If wait is chosen, the calling task is left in file-wait status,
and an entry is made in the file-wait table. When the conflict
clears (another job closes it), the file is returned to ready status,
and the call is reissued automatically.

2. If reject is chosen, the calling task is immediately put into ready
status, and the operator is informed of the reject in a status para­
meter. It is then up to the calling task to determine whether or not
the call should be reissued and when. t If a conflict occurs during a

Task Name control card call and reject is chosen, the job con tain­
ing the calling task is terminated.

The following conflict conditions make use the wait- reject option:

1. A RE LEASE, EXPAND, or MODIFY call on an open definition for
any job in the system,

2. Arw OPEN call on a definition already open for output only in any
job in the system.

3. An OPE N call for output only on a definition already open in any
job in the system.

4. A partial OPEN call on a definition open in any job in the system.

5. Any OPEN call OL a definition open under the partial or segmented
option in any job in the system.

6. An OPEN call when there is no space in the MASTER executive
tables to make entries to complete the call.

Any call going into wait status on a definition open in the same job will be
rejected with an error code in the status area of the call. The call request
is not put into wait status, regardless of the wait parameter.

Reject Code

62

65

66

Condition

Definition open when a RE LEASE, EXPA:t'-.'U,
or MODIFY call occurs.

No system table space is available (closing a
definition may clear space).

The definition is busy as in conditions 2,3,4,
and 5 above.

t This option requires more machine time to process the request.

6.1
LOGICAL I/O

6.2
BLOCKER AND
DEBLOCKER

MASS STORAGE I/O

MASTER provides comprehensive I/O facilities to complement its mass
storage management. These facilities are divided into two interdependent
levels; logical I/O uses the physical I/O for actual reading and writing.

6

MASTER moves logical records to and from a buffer area, and automatically
transmits buffers to or from an I/O medium when the buffer is full or empty.

Logical I/O, called blocker and deblocker, consists of a set of MASTER
library routines (four in blocker and four in deblocker) callable through
a set of system macros from any task in a job. The entire set of routines
and a set of buffers are loaded once for each job. A job should use blocker
and deblocker for I/O operations on its standard files (INP, OUT, and PUN).
Each task may use the blocker and deblocker for user files. The ability
to perform I/O with logical records in a reduced number of data transfers
results in more efficient use of the MASTER I/O system.

For a working understanding of the blocker and deblocker, the user should
be familiar with block format, buffers, and buffer formats.

The block format is characterized by an alternate series of header records
and record data areas, ending with a zero header record. The block format,
applicable to both job files (INP, OUT, and PUN) and permanent (user) files,
appears as follows:

Record Header

Record
Data

Record Header

Record
Data

Record Header = 0

6-1

6-2

A record header is a 24-bit data word containing information about the record
data area that follows it. A record header appears as follows:

Ilx I I Record Length

Record Length Count of 24-bit words of record data in bits 0-14.

x Mode of record data in bit 22:

o BCD

1 Binary

A block for a job file is always 1280 characters from the first record header
to the zero record header inclusive. The size of a user file block varies
according to the size of the buffer area.

The blocker and deblocker uses a buffer in each Ilo operation. Each job
file (INP, OUT, and PUN) has a permanently assigned buffer within the job's
protected core area. The user must establish buffers for non -job files
(user files) within the program area of a calling task.

The format of a job file buffer is the same as a job file block (1280 characters)
preceded by a pointer word. A user file buffer has the same basic format,
but varies in size according to the user's specification. The basic format of
a buffer appears as follows:

Pointer

Record Header

Record Header

Record Header

Record Header = 0

The pointer uses one word of the buffer to point to available space or a
new logical record in the block. The file never contains the pointer.

6.2.1
BLOCKER

PACK DEFINE

The blocker is a set of four routines, callable by system macros (PACKD,
PACK, PACKC and PACKR) that perform blocking on job files and user
files. All files to be blocked must have been previously opened.

The user may call this function to define, within the calling task, the blocking
area (buffer) to be associated with a non-standard file dsi. The blocker's
file definition table has space for ten output file entries (dsi' s) . All tasks
in a job may request definition of not more than ten output user files at one
time. t

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10

PACKD

dsi

reject
address

bfwa

blength

'20 141

I(dsi,reject address,Hfwa,blength) ,
I ,

Data set identifier for a user file, 1 to 4 BCD characters.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

First word address of buffer area to be used by the
blocker.

Length of the block area in words.

The following is an example of calling pack define on a user file named NSDF:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 :20 141

PRG I 1

LIBM 'PACKD
,

BLAREA 00 I~"+l
,

00 '0
,

BSS 1499 I

'249
I

RCDAREA BSS I I

IpiCKD
I ,
I I

Defines file. ,(NSDF ,REJECT 1, BLAREA, pO 1)

t Exercise caution when making a PACK call on a user file because the task
calling pack define is the only task defining the block area for the call.
Any task other than making a PACK call on a user file may destroy the job.

6-3

PACK

6-4

If errors occur, pack define makes an error return and reports an error
code in the Q register, Q = XOOOOOOO as follows:

Error Code

x = 2

3

4

5

Explanation

dsi already defined.

Blocker's file definition table full (10 output files
have been defined) .

dsi never opened.

Defined block area out of bounds, and within blocker
and deblocker area.

If the user does not totally define the block area within the calling task,
pack may terminate the job. The user must set the first word of the block
to zero, and place the address of BFWA + 1 in the buffer's pointer before
making a pack define call.

The user may call the blocker pack function to move a record to the file's
block area. In moving a record, pack removes trailing zeros (if the record
is binary) or trailing blanks (if the record is BCD), but does not remove
them from the caller's record buffer. If packing a record would cause the
buffer area to overflow, pack writes the existing block on the file and
then packs the record into the empty buffer.

Macro format:

I

LOCATION OPERATIO~. MODIF,ERS ADDRESS FIELD COMMENTS

8 10 '20 '41

PACK I (dsi,mode,reject adduess,fwa,rlength)
I I

dsi Data set identifier of receiving file, 1 to 4 BCD characters.

mode

reject
address

fwa

rlength

o BCD

1 Binary

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

First word address of record to be moved.

Number of words in the record.

PACK CLEAR

Following is an example of calling PACK to block a binary record for a user
file called ABLE:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 :41

LIBM ,PACK I
I

ABLE 1 BSS '100 I , ,
I 1

PACK ,(ABLE, 1 ,RERROR,ABLEI ,i\.00)

If errors occur, pack makes an error return, and reports an error code in
the Q register, Q = XOOOOOOO, as follows:

Error Code

x = 1

2

4

6

7

Explanation

Pack reached allocation limits on an output file.
Last record passed not accepted, and block
area still contains records.

Word count too large to fit block area (after
removal of trailing blanks or zeros). For
user files, depends on size of block area.

dsi not previously defined by a pack define
call, or file not open.

Pack was unsuccessful in trying to mount a
new segment on a file.

Defined user file block area out of bounds to
calling task.

If the user calls PACK on a partially open file, PACK automatically requests
mounting of necessary files that are not on-line.

The user may call the blocker's pack clear function to write a block (on
a user file) before its block area is full.

6-5

PACK REMOVE

6-6

Macro format:

LOCATION OPERATIOIll, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10

PACKC

dsi

reject
address

120 141

; (dsi,reject address) ;

I 1

Data set identifier of user file, 1 to 4 BCD characters.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

Following is an example of calling pack clear to write an incomplete block
on a user file named JIM:

LOCATION OPERATIOIll, 'IOD''''ERS ADDRESS FIELD COMMENTS

I 8 10 120 141

LIBM IpACKC I
I I

PACKC
1

(JIM,RERROR1)
I

If errors occur, pack clear makes an error return and reports an error
code in the Q register, Q = XOOOOOOO, as follows:

Error Code

x = 4

1

Explanation

dsi not previously defined.

Pack clear reached allocation limits when
attempting to write the current block on an
output file, the buffer cannot accept the last
record passed, and the block area still contains
records.

The user may call the blocker's pack remove function to remove a user file
definition (dsi) from the pack table. For instance, if an I/O operation is
necessary and the pack table is full (10 files defined), he may call pack
remove to provide room for a new entry.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10
PACKR

dsi

reject
address

'20 141

I (dsi,reject address) ;

I I

Data set identifier of the file.

If errors occur, a return jump is done to this
address. If blank, the program continues in
normal sequence.

If an error occurs, pack remove makes an error return and reports an
error code in the Q register, Q = XOOOOOOO, where X = 2 indicating that a
file with this dsi was never opened.

Following is an example of defining a file and block area, packing a binary
record, clearing the block, and removing the definition from pack's table,
for a user file named TAPE.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41

PRG
, I

LIBM : PACK,PACKD,PACKC,PAC~R
BLOCK 00 1';'(+1 I

00 10 I

BSS 1999 I

RECORD BSS 1800 I

I
,

I
I

PACKD ,(TAPE,REJECT1,BLOCK,lb01) Defines file called TAPE.
PACK I(TAPE,1,REJECT2,RECO~,800) Blocks a binary record.
PACKC I (TAPE ,REJECT3) I Writes block even though it is

I ! not full.
PACKR I (TAPE ,REJECT4) I Removes file from the tables;

I I it cannot be referenced by
I I PACK call until it has been

a

I def1ned aga1n.

6-7

6.2.2
BLOCKER SUMMARY

6.2.3
DEBLOCKER

PICK DEFINE

6-8

Blockers functions affect job output files (OUT and PUN) only.

In all functions, the blocker sets bit 23 in the first record header if it
cannot write the block without errors. If a pack writes a defective block
(bad spot), the blocker will automatically complete the write, clear bit 23,
and issue a new write of the same information in the next block.

The deblocker is a set of four routines, callable by system macros (PICKD,
PICK, PICKC, and PICKR), that perform deblocking on job files and user
files. All files to be deblocked must have been previously opened.

The user may call the pick define function to: define a user file dsi, and its
associated buffer area, in the calling task, into which blocks will be read for
deblocking. The deblocker's file definition table has space for 10 entries
for input files (dsi' s). All tasks in a job may not ask for deblocking on more
than 10 input files at a time. t

Macro format:

LOCAT,O"< CPERAT'O"<, "'ODIF'ERS AJDRESS "'ELD COMMENTS

1 8 10

PICKD

dsi

reject
address

bfwa

blength

'20 '41

I (dsi,reject address,Hfwa,blength)
I

I I

Data set identifier for a user file, 1 to 4 BCD characters.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

First word address of area used to deblock.

Length of deblocking area in words.

t Exercise caution when making a pick define call on a user file, because
the task making a pick define is the only task defining the deblocking
area for the call. A task making a PICK or pick clear calIon a non­
standard file, other than the task defining the deblocking area, may be
destructive to the entire job.

Following is an example of calling pick and pick define to deblock a user
file named NSDF:

LOCATION PPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 '41

PRG I I

LIBM IpICK,PICKD I

BLAREA 00 '*+1
,

00 '0 I

BSS '499
,

RCDAREA
I 1

BSS 1249 1
I I
I \

PICKD I(NSDF ,REJECT1,BLAREA,50l) Defines file.

PICK :(NSDF,O ,REJECT2 ,RCDA~A,249) Deb10cks a recor d and
places it in RCDAREA.

If errors occur, pick define makes an error return and reports an error
code in the Q register, Q = XOOOOOOO, as follows:

Error Code

X=2

3

4

5

Explanation

dsi already defined.

Deblocker's file definition table full; 10 input
files have been defined.

dsi never opened.

Defined block area out of bounds and within
blocker and deblocker area.

Pick define uses the buffer pointer to point to the next logical record to be
picked. The user must set the first word of the deblocking area to zero,
and place the address of bfwa + 1 in the buffer's pointer before making a
pick define call.

PICK The user may call the pick function to move a record from the file buffer into
the user's record area or pass a pointer to the record to the caller. If
the caller does not want the record moved, he receives the first word
address of the corresponding record header in the Q register. t

t Exercise care when the task using pick is not to receive the record. If
another task is using INP, the record in the block area (not passed in the
preceding task) could be destroyed.

6-9

6-10

If the caller requests passage of the record and the record is smaller than
the record area, the pick function fills the remainder of the record area
with blanks (BCD) or zeros (binary). Pick truncates the record if it is
larger than the user's record area. If pick returns normally from handling
a binary record, it sets bit 23 of the Q register. For a BCD record, bit

1

1

23 of the Q register is not set.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

PICK I(dsi,key,reject address,fwa,rlength)
1 I

dsi Data set identifier for a file, 1 to 4 BCD characters.

key Record passing specification:

reject
address

fwa

rlength

o record is passed.

1 fwa of header is passed.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

First word address of buffer to receive record.

Size of buffer in words.

Following is an example of picking and passing a record for a file named
ABLE.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

LIBM ;PICK
I

I
ABLEI BSS 1100 I

I

I (ABLE, a ,REJECTI ,ABLE 11, 100)
I I

In the following variation of the above, the fwa of the header record is
passed to the caller:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 141

ABLE 1 ; 100
T

BSS I
1 1
I

PICK (ABLE,1,REJECT2)
I

PICK CLEAR

If errors occur, pick makes an error return, and reports an error code
in the Q register, XYOOZZZZ, as follows:

Error Code

x = 1

4

5

6

7

Y=4

5

ZZZZ

Error Summary

Explanation

Pick reached the end of an input file (block buffer is
empty and no record has been passed) and tried to
read a block that was never written, or tried to
read beyond allocation in a user file.

dsi not previously defined by a pick define.

Defined record area within blocker and deblocker
area.

Pick unsuccessfully tried to mount a new segment
on a file.

Defined block area out of bounds to calling task.

Irrecoverable read error where records are in the
block, none were passed; and as far as can be
determined, their word counts are not affected.

Irrecoverable read error where the records are in
the block, none were passed, and the word count on
one or more is bad.

Contains a count of the number of records in the block
at the time of an error only if error involves records
without bad word counts.

If a pick causes an irrecoverable read error, but word counts are good,
the next pick will read the first record of the bad block. If a pick causes
an irrecoverable read error, but one or more word count is bad, the next
pick will read a new block. If the user requests a pick of partially open
file, pick requests that the operator mount all needed files not on-line.

The user may call the pick clear function to read a record from a new
block before all records have been read from the last block on a user file.

6-11

PICK REMOVE

6-12

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141
f ,

PICKC I (dsi,reject address) I
f I

dsi

reject
address

Data set identifier for a user file, 1 to 4 BCD characters.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

The following is an example of a pick clear on user file named JIM:

LOCATION OPERATlCN, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 141

LIBM IPICKC I
I I

PICKC I (JIM,RERROR)
I

If errors occur, pick clear makes an error return, and reports an error
code in the Q register, Q = XYOOZZZZ, representing the same error codes
and causes as apply in the pick description.

The user may call the pick remove function to remove a user input file
buffer definition from pick's tables. If an I/O operation is necessary when
the pick table is full (10 input files defined), the user may call pick remove
to get room for a new entry.

1

1

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10

PICKR

dsi

reject
address

'20 141

I (dsi,reject address) :
I 1

Data set identifier of file being removed.

If errors occur, a return jump is done to this address.
If blank, the program continues in normal sequence.

If an error occurs, pick remove makes an error return, and reports an
error code in the Q register, Q = XOOOOOOO, where X = 4 indicating this
file was never opened.

Following is an example of calling pick functions to define a file, pick a
record, clear the block (read in a new block), pick a record, and remove
the file from pick's tabLe. The functions involve a user file named TAPE.
The records will be passed.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 :20 :41
PRG I

I
LIBM IPICK,PICKD,PICKC,PICKk

~LOCK 00 1*+1 ' I OCT 10 1
BSS ,999 I

~CORD1 BSS 1800 !
~CORD2 BSS 1800 I I

PICKD '(TAPE,REJECT1,BLOCK,~001) Defines file called TAPE
PICK I (TAPE,0,REJECT2,RCORD1,800) Picks a record.
PICKC I (TAPE,REJECT3) , Reads a new block before last

1 1 . d
J one was empt~e .

PICK I(TAPE,O,REJECT3,RCORDt ,800) Picks a record.
PICKR I (TAPE,REJECT4) I Removes file from the table;

, I it cannot be referenced by
I 1 a PICK call until it has
I I been defined again.

6-13

6.2.4
DEBLOCKER SUMMARY

6.3
PHYSICAL I/O

6.3.1
MASS STORAGE I/O

F()RMAT

6-14

The MASTER operating system employs the deblocker only on the job input
file (INP). In all deblocking functions, the deblocker uses bit 23 in the
first header record to check for read errors. If a pick reads a block with
bit 23 set in the first header, it will ignore that block and issue a new read
on the next block.

The physical I/O for mass storage is a part of the system I s total I/O
facility called the MASTER I/O Control System (MIOeS). MIOeS, in turn,
is a part of the MASTER executive that the operating system, blocker and
deblocker, and user employ for I/O on all equipment in the system.

The user may directly control his I/O on mass storage; he may bypass the
blocker and deblocker and issue his own read and write commands. Although
the operating system always uses blocker and deblocker on its job files,
the user may elect physical I/O on his own files.

A subset of the system macros available for I/O under MIOeS may be used
in I/O on mass storage. The user can call MIOeS mass storage I/O rou­
tines, from within his own program, with a set of call macros. Each exe­
cuted call establishes an I/O task. When the task is completed, a return
is made to the calling task or if the call is to be buffered, the status of the
I/O task is set to be terminated. All calls for physical I/O on mass storage
must be on files that have been opened or the job is terminated. The
following macros make up the set of physical I/O functions available for
mass storage.

The user may call the MIOeS format function to set up various conditions
under which future I/O functions will operate.

Macro format:

LOCATiO~ OPERATIO,,", MOD:FiERS ADDRESS ~!ELD COMMENTS

1 8 10 '20 141

FORMAT I(dsi,comp,bninc,endb~ock,rec"",statadr)
I 1

READ WRITE,
and COMPARE

dsi

comp

bninc

Data set identifier of a file, 1 to 4 alphanumeric characters.

Compare alternative after every WRITE:

SCOMP

UCOMP

MIOCS automatically compares.

User may compare with COMPARE calls.

Block number pointer incrementing alternative after I/O
function (READ, WRITE, or COMPARE):

SBNINC

UBNINC

MIOCS automatically increments the block
number pointer adding number of blocks
processed to block pointer.

User increments the block pointer through
LOCATE call.

endblock Alternative in reading and writing beyond the end of a block:

SENDBLK MIOCS will not process past the end of a
block. (e. g., if a WRITE of 20 words is
attempted into a 15-word block, only 15
words are written. The NUM field in the
status words will so indicate.)

UENDBLK User instructs system to process beyond end
of block if required. In previous example,
20 words would be written, requiring two
blocks.

rec Error recovery handling specification:

statadr

SREC

DREC

System performs automatic error recovery.

User handles own error recovery.

Address where status of the I/O operation will return:

non-zero First word address where two words of
status return.

zero or
blank

status returns to tag + 2 and tag + 3, where
tag is the location of the call.

The user may make calls to three MIOCS functions (READ, WRITE, and
COMPARE) to establish correspondent I/O functions on mass storage. The
call formats of these three functions are comparable.

6-15

6-16

Macro format:

LOCATION OPERATION, MODIFIERS ADORESS FIELD COMMENTS

I 8 10

func

func

dsi

fwca

n

char

chap

statadr

buf

120 141

I(ds i, fwca, n, char, chap~ statadr, buf)
1

READ

I

Read forward from a mass storage user file
according to parameters.

WRITE Write on a mass storage user file according
to parameters.

COMPARE Compare a record in core, with a block in a
mass storage user file according to parameters.

Data set identifier of file to be read, written or compared,
1 to 4 alphanumeric characters.

First word addresst of a core buffer that MIOCS will
use in the read, write, or compare.

Number of words involved in the read, write, or compare.

Mode of read, write, or compare. Will be blank or zero
to indicate only word mode allowed on mass storage.

Chapter location of the buffer employed in read, write,
or compare:

C2 Buffer in program task Chapter Two.

zero or blank Buffer in Chapter One.

Address where the status of the read, write, or compare
returns:

non-zero First word address where two words of
status return.

zero or blank Status returns to tag + 2 and tag + 3; where
tag is the location of the call.

Status of calling task after connecting I/O call:

BUF Enters ready status and continue:;; execution.

zero or blank Enters wait status until I/O is complete.

t Since MASTER does not permit character I/O on mass storage, all calls
involving a word/character parameter must specify word I/O only.

LOCATE

POSITION

The user may call the MIOCS locate function to change the value in the block
pointer; and thereby specify a new location to begin I/O on mass storage.

Macro format:

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

LOCATE I (dsi,t,n,statadr) I
I I

dsi Data set identifier of mass storage file to be relocated,
1 to 4 alphanumeric characters.

t Relocation specification that may be:

n

statadr

FORWARD Locate forward n blocks.

BACKWARD Locate backward n blocks.

BLOCK Locate to block number n.

NEXTAVAL Locate to block following the last
block written.

Number of blocks of relocation, 0:::: n :::: 8388607

Address where the status of relocation returns:

non-zero First word address where two words of
status return.

zero or blank status returns to tag + 2 and tag + 3, where
tag is the location of the call.

The user may call the MIOCS position function to ascertain the current value
of the position counter during an I/O operation. The value is returned in an
address specified in the call.

Macro form at:

LOCATION OPERATION, MODIFIERS ADORESS FIELD COMMENTS

I 8 10 120 141

I I

POSITION I (dsi,fwa,chap,statad~)
I I

6-17

6.3.2

dsi Data set identifier of the mass storage file in question,
1 to 4 alphanumeric characters.

fwa Address where value of block pointer returns.

chap Chapter location fwa:

statadr

C2 Chapter Two.

zero or blank Chapter One.

Address where status of the position I/O operation returns:

non-zero First word address where two words
of status return.

zero or blank Status returns to tag + 2 and tag + 3, where
tag is the location of the call.

MIOCS CALL SUMMARY In all mass storage calls to MIOCS, the user must specify the address for the
two status words. A parameter in the statadr field of each call tells MIOCS
where to return a general status description (two computer words). It can

6-18

be declared in either of two ways:

A non -zero value in this field of the call is the first word address where the
status words return. If this field is zero or blank, status returns to tag + 2
and tag + 3, where tag is the location of the call.

The format of these two status words, regardless of where they are located,
is as follows:

E E E
RS 0 0 0 I L NUM

F D A

EC I HS

RS Status of the call in bits 22-23 are represented as:

00 Call terminated normally.

01 Call terminated abnormally; the other fields
(EOF, EOD, EOA, I, L, EC) will clarify
the status.

10 Call is in active status.

Word One

Word Two

EOF End-of-written file indicator in bit 21.

o No end-of-written file.

1 End-of-written file condition detected.

An end-of-written-file may occur on mass storage in a READ or COMPARE
call on the highest +1 data block written in the file. For example, if blocks
1, 2, and 6 have been written during random processing, and the user called
a read or compare function on block 7, MIOCS would set EOF to 1.

EOD End-of-mass-storage-device indicator in bit 20.

o No end-of-device

1 End-of-device condition detected.

An end-of-device may occur in a READ, WRITE, or COMPARE call, on a re­
cord block of a disk pack not mounted on a drive. For example, if record
blocks 1-100 are on pack 1, blocks 101-200 are on pack 2, not mounted on a
drive, a READ call on block 105, will set EOD to 1.

EOA End-of-allocated-area indicator in bit 19.

o No end-of-allocation-area.

1 End-of-allocated-area detected.

An end-of-allocated-area may occur when a LOCATE call block number is
greater than the number originally allocated to the file.

I Irrecoverable-error indicator in bit 18.

o No error.

1 One of the following irrecoverable errors was detected:

lost data
parity error
non -operable condition
compare error on automatic compare after a write

If any of the preceding errors occur even though system error recovery
was not selected (see FORMAT call) I will be set equal to 1. (See Error
Processing.)

6-19

6.3.3
ERROR PROCESSING

6-20

L File accessibility indicator in bit 17.

o File accessible.

1 File inaccessible because of hardware malfunction
such as:

Reject on connect instruction (CON).
Reject on select instruction (SEL).
Reject on I/O instruction (INPC OUTC

INPW OUTW).
Not ready.

NUM Number of words involved in the called function in bits 16-00.

EC Contains error codes in bits 23-12. (See Error Processing.)

HS Status of the mass storage hardware during I/O operation, unedited.

The user may specify status of his calling task in three (READ, WRITE,
and COMPARE) MIOCS calls on mass storage. This is specified by the buf
parameter, in each call, as follows:

zero or blank Calling task enters wait status during the called
function. As soon as the I/O operation is completed,
the calling task enters ready status, and continues
executing.

BUF Calling task enters wait status, but only until the call
is completed; at which point, the calling task resumes
execution and continues while I/O continues. If the
calling task executes another I/O call on the same
file, it (the calling task) automatically queues on
the file until the previous I/O operation is complete.

Two alternatives are available for processing errors that may occur during
MIOCS calls on mass storage. The user may initiate his own error pro­
cessing by interpreting the EC field of the status word and call his own
recovery procedures, or he may allow MASTER to interpret errors and
initiate automatic recovery through the mass storage driver exec.

Two general categories of errors may occur in MIOCS calls on mass
storage; program errors, and hardware errors.

Program Errors

All possible program errors, during I/O functions on mass storage, may be
categorized in three groups.

Errors involving illegal function requests:

Code

1

2

3

4

5

Explanation

Illegal function code (may be for nOn-mass storage).

Memory addresses for data transfer (fwa to fwa + 1)
not in allowable range.

Illegal value in type (t) field of LOCA TE call.

LOCATE call on a new block number of less than 1.

A WRITE called on a read only file.

Errors involving invalid parameters in the call:

Code

30

31

32

33

34

Explanation

Illegal error recovery selection (REC) in FORMAT call.

Illegal selection of automatic COMPARE after WRITE in
FORMAT call.

Illegal selection of automatic update current block number
after READ, WRITE, or COMPARE, in FORMAT call.

Illegal selection of transfer data only up to end of record
block in FORMAT call.

Illegal selection of character I/O in POSITION call.

Errors involving file references:

Code

40

41

42

43

Explanation

READ or COMPARE call referenced a block greater than, or
equal to, the next available block (nab), where nab is the
number of the block one greater than the highest block written.

LOCA TE calion a new block number that is greater than
the number of blocks allocated.

READ, WRITE, or COMPARE call referenced a block outside
the area allocated to the file.

Call on a file segment on an unmounted disk pack.

6-21

6-22

Hardware Errors

The mass storage driver exec will interpret, and attempt recovery for,
various hardware errors that may occur during MIOCS calls on mass
storage. If automatic recovery is unsuccessful, the EC and I field of the
status words are set as follows:

Code

50

51

52

53

54

55

56

Explanation

Transmission parity error on READ, WRITE, or COMPARE
call.

Hardware reject error such as reject on select for a READ,
WRITE, or COMPARE call.

Lost data during a READ, WRITE, or COMPARE.

Parity error during a READ or COMPARE.

Non-operable device containing a file with READ, WRITE,
or COMPARE call.

Hardware compare error during an automatic COMPARE
after WRITE.

Drive busy when READ, WRITE, or COMPARE call is
issued.

57 Drive not ready when READ, WRITE, or COMPARE call
is issued.

58 No COMPARE requested but hardware compare occurred.

Program and Hardware Error Summary

Some of the previously described errors set fields in the status words as
follows: For programming errors resulting from illegally referencing
files, error 40 sets EOF, errors 41 and 42 set EOA, and error 43 sets
EOD. Hardware error 52 will set I after unsuccessful automatic recovery.

Error Recovery

In the rec field in each FORMAT call, the user may select one of two
methods of MIOCS recovery procedures for hardware errors that occur
during MIOCS functions on mass storage. The user of the mass storage
driver exec may attempt recovery for any of the previously described
hardware errors.

User

If a hardware error occurs when UREC is specified in the rec field of a
FORMAT call, the user must interpret EC of the statadr, and call the
necessary recovery procedure from the General Automatic Error Recovery
Procedures, Appendix B.

Automatic

If a hardware error occurs when SREC is specified in rec of a FORMAT call,
control passes to the mass storage driver exec, which determines the nature
of the error, and automatically initiates recovery procedures. Recovery
procedures vary according to the error, but they do not deviate from the
recovery procedures described in Appendix B. The sequence of automatic
error recovery for hardware errors during MIOCS operation is given below:

1. Hardware error occurs.

2. Control transfers to mass storage driver exec.

3. Driver exec determines exact nature of error, and outputs a
diagnostic message (System to Operator Messages, Appendix C).

4. Driver exec calls and initiates applicable error recovery proce­
dures given in Appendix B.

5. If recovery procedures are successful, control returns to the
user, and execution continues.

6. If recovery procedures are not successful, the driver exec outputs
a diagnostic message, declares the error irrecoverable, sets the
I field in statadr of the call, and returns control to the user.

6-23

7.1
UNIT RECORD
DEFINITION

7.1.1
OPEN UNIT

UNIT RECORD DEVICES 7

Effective use of unit record devices such as the card reader, printers,
punches, and magnetic tape units contribute greatly to the efficiency of
MASTER's multiprogramming. The background.ers automatically use record
devices (card reader, printer, and punch) to process job files (INP, OUT,
and PUN). The backgrounder's pool consists of all devices of types specified
by the installation. Upon an open request for a backgrounder unit, the back­
grounder will relinquish a unit after completing the current file and before
beginning the next. Not+lly, when a user is opening a unit of a back­
grounder type, he sets the wait parameter to W. Units not reserved by the
backgrounder are assign~d to a job when the job is initiated.

A user specifies a unit record device on a SCHED card. He defines the device
as a file according to the device types reserved for the job. He may then
request the *DEF task of the MASTER operating system to make the devices
available to him, perform operations on them, and return them to the system.

The user defines his scheduled unit record devices by making calls to the
*DEF task of the MASTER operating system. There are two methods of
calling *DEF:

*DEF control cards inserted in input decks

C all macros in a program

MASTER's *DEF task is called for two functions (open and close) on unit
record devices.

The *DEF open unit function associates a data set identifier with a unit
record device (card reader, punch, printer, or tapes) making the unit
available for I/o.

7-1

7-2

I

Macro format:t

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

; (wait,dsi,dt,ree1
I

OPENU id~fi1e name,edition,ree1 no
OPENU I usage,bypass) I

I

Control card format:

$*OEF(U, wait, dsi, dt , reel, id, fi Ie, name, edition, reel no, usage, bypass)

wait defines the action to be taken when a call is on a device in the
background pool. This parameter may have either of the
following values:

W: If the back grounder is using all of the devices of the type
requested, *DEF places the calling task in file wait status
until a device becomes available, and then honors the re­
quest automatically. It means the same in both call formats.

R: If this condition occurs on a macro request, *DEF rejects
the request, and sends a reject code to the caller. If it
occurs when the R parameter is in a control card call, *DEF
terminates the job with an error message.

other: If wait is other than W or R, MASTER interprets it as W.

dsi Data set identifier to be associated with unit device (card reader,
magnetic tape punch or printer); 1 to 4 alphanumeric characters,
first character cannot be *.

dt type of unit record device

405 Card Reader (must be more than one card reader in
configuration)

415 Card Punch

501 } Line Printer
505

::: }MagnetiC Tape Units

607

t Macro continuation line required if information extends beyond column 72.

The following parameters appear in an open unit call only if dt is a magnetic
tape unit (see Summary), and should be null for other unit record devices.

reel id Reel identifier of tape for mounting on magnetic tape dt;
1 to 5 alphanumeric characters.

file name Tape label association; 1 to 4 alphanumeric characters
corresponding to a file name field of a tape label.

edition Tape label association; 1 or 2 alphanumeric characters
corresponding to an edition field of a tape label.

reel no Tape label association; 1 or 2 alphanumeric characters
corresponding to a reel number field in a tape label.

If the above four parameters are blank the tape is assumed to be a scratch
tape.

The following is examined only for magnetic tapes having one or more of
the four preceding parameters. It is assumed 0 for scratch tapes:

usage Unit record usage may be either of the following:

0: Input and/or output

I: Input only

other: Interpreted as input only; usage is set on I

This parameter applies to all unit record devices:

bypass Specifies how device is to handle I/O calls:

B: Bypass all I/O calls

other: Do not bypass calls

Open Unit Summary

If the user specified the device as magnetic tape (dt is 603, 604, 606 or 607)
MASTER immediately checks magnetic tape parameters and reacts as
follows:

1. If reel id, file name, edition, and reel no parameters are blank,
*DEF assumes that the tape is a scratch tape and has no label;
it automatically sets usage to 0 (input and/or output) .

7-3

7-4

2. If the file name, edition, and reel number are not blank MASTER
checks them against those in the standard magnetic tape label for
validity. If file name, edition, reel number are all blank, *DEF
assumes that the tape is not labeled and sets usage according to
the usage parameter.

3. If the tape is unlabeled, it is left at load point. A labeled tape is
left at the first record following the label.

MASTER provides no other handling of standard magnetic tape headers and
trailer labels.

When]\-:IASTER processes a valid open unit call, it logs the request by job
identifier, data set identifier, hardware type, and connect code on the
console typewriter (See System to Operator Messages, Appendix C). If
device type (dt) is magnetic tape and there is a reel id in the request, the
message includes the reel id. 'Vhen a write ring is to be inserted WR is
appended to the message.

After the operator mounts a tape, MASTER

1. Rewinds it.

2. Confirms that the operator mounted a tape on the specified unit.

3. Confirms write ring status as follows:

If a write ring is on the tape, and usage is I, MASTER repeats
logging.

If the tape has no write ring, and usage is 0, MASTER repeats
logging.

4. Verifies the label for a tape having one, and sets tape unit to
proper density.

If MASTER notes an error in any of the preceding, it repeats logging until:

The error condition is corrected,

The operator indicates he did not honor the request,

The request has been repeated five times, then returns an error
indication.

After an open unit request is processed the physical unit assignment cannot
be changed by attempting to dial in another unit.

7.1.2
CLOSE UNIT

I

Error Processing

Error processing during an open unit call depends on the format of the call.
If an error occurs, the unit is not opened. Errors occurring in a call made
by a *DEF control card terminate the job, and a standard job termination
message is typed to the operator. If an error occurs in a macro call, one
of the following error codes returns in the status word of the call:

Error Code

61

64

69

72

Explanation

Operator would or could not comply with logging requests.

Illegal data set identifier, i. e., already in use in this
job, too long, or contains a * as its first character.

Scheduling error, not enough drives (magnetic tape)
to mount requested devices.

No drives available, system error occurring when
operator or system marks a scheduled unit as down
and unavailable, after the job is initiated.

The close function of *DEF removes the definition of a unit record device
from MASTER executive system tables making the device unavailable for
I/O.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141
T

CLOSE 1 (wait,dsi) 1
I I

Control card format:

($*DEF(C, wait ,dsi)

wait See wait parameter explanation in OPEN UNIT discussion.

dsi Dataset identifier of unit record device to be closed. If
blank, *DEF closes all unit record devices opened in the job.

*DEF ignores all requests for closing system files or job files (INP,
OUT, and PUN).

7-5

7.2
MIOCS

7.2.1
UNIT RECORD I/O

7-6

Error Processing

Error processing during a CLOSE call varies with the format of the call.
An error prevents closing. An error occurring during a call using *DEF
control card, terminates the job; a message is typed to the operator. If the
following error occurs in the course of a macro call, its code returns in
the status word of the call:

Code

64

Condition

dsi is not legal (i. e. , no such dsi currently exists for
this job).

The MASTER I/O Control System (MIOCS) makes available a comprehensive
I/O facility for all equipment (unit record devices and mass storage). MIOCS
does the following:

• Processes I/O calls from program tasks

• Assigns equipment and channels to I/O tasks

• Initiates physical I/O requests

• Processes all non-real-time interrupts

• Processes all operating system I/O requests

It is available to library tasks, operating system tasks, and user tasks.

To perform I/O on unit record devices,a user makes macro calls to MIOCS
functions (or the blocker or deblocker). MIOCS establishes the called I/O
tasks on respective unit record devices. Each device on which I/O is being
called must have been scheduled and opened, or the I/O call is rejected.

The following describes the various I/O macros for:

Magnetic Tape Units

Card Readers

Card Punch

Line Printer

FORMAT

Magnetic Tape Units

MIOCS performs the following I/O functions on magnetic tape units open to
the job: FORMAT, READ, WRITE, LOCATE, UNLOAD, ERASE, and WEOF.

The magnetic tape format function sets conditions under which I/O will
be performed.

Macro format:

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 :20 141

IFORMAT
I I

I (dsi""rec,den,modeL"statadr)
I I

dsi Data set identifier of schedule and opened magnetic tape unit.

rec Error recovery procedure to be employed with each I/O call:

den

mode

statadr

SREC Automatic system recovery.

UREC User will handle own recovery.

Magnetic tape density (bits per inch)

556 See footnote t
SOO}
200

Specifies recording mode on magnetic tape:

BCD

BIN

Binary coded decimal}

B
' See footnote t
mary

Address to which word one of status of the I/O returns. When
no address is given (statadr is zero or blank), status returns
to tag + 2 and tag + 3, where tag is the location of the macro,

t Mode and density specifications may be changed from those in initial
format requests, by specifying them differently in new format requests on
the same dsi. Once specified, their omission in new format requests means
that their original specifications hold true, If never specified, MIOCS
assumes 200 bpi density, and normal magnetic tape mode which is binary.

7-7

READ, READB, WRITE

7-8

The user has three MIOCS I/O call macros (READ, READB, and WRITE) for
MIOCS functions on magnetic tape units.

Macro format:

I

lDCATION

8

func

OPERATION, MOOIFIERS ADDRESS FIELD COMMENTS

10 :20 :41

func I (dSi,fwca,n,CH,C2,st~tadr,BUF)

READ

I .

Read forward on an open magnetic tape according
to parameters.

READB Read backward on an open magnetic tape according
to parameters.

WRITE Write on an open magnetic tape according to
parameters.

dsi Data set identifier of a magnetic tape file, 1 to 4 alphanumeric
characters.

fwca First word or character address of a buffer, in core, that
will be employed in reads or writes.

n The number of words, or characters, to read or write.

CH The mode of the read or write will be character. When CH

C2

statadr

is omitted (blank, zero, or other),MIOCS assumes word mode.

The buffer to be employed in the read or write is in Chapter
Two. When C2 is blank or zero, the buffer is in Chapter One.

Address to which word one of the status of the read or write
returns. When no address is given (statadr is zero or blank),
status returns to tag + 2 and tag + 3, where tag is the location
of the macro request.

BUF Specifies that the status of the calling task be ready upon
completing connection of the READ or WRITE call: When the I/O
call connects, the calling task enters ready status and may
continue execution. When BUF is omitted (zero or blank),
the calling task enters wait status until the reads or writes are
completed.

LOCATE

UNLOAD, ERASE,
WEOF

The magnetic tape locate function moves (drives) a tape to a new position.

I

I

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 T20 141

LOCATE I (dsi,t,n,statadr) I
I

I I

dsi Data set identifier of the magnetic tape unit

t Change position:

n

statadr

FORWARD Forward n blocks

BACKWARD Backward n blocks

BLOCK Locate to block number n. (If n = 1, the tape is
rewound; any other value results in an illegal
request reject).

FMF Forward n file marks

FMB Backward n file marks

zero Rewind

Number of blocks to position,O to 8388607

Address to which word one of the status of the read or write
returns. When no address is given (statadr is zero or blank),
status returns to tag + 2 and tag + 3, where tag is the location
of the call.

Three MIOCS call macros (UNLOAD, ERASE, and WEOF) request comparable
functions on magnetic tape.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 '41

func I (dsi,statadr,BUF) I
I I

7-9

7.2.2
CARD READER

FORMAT

7-10

func.

UNLOAD

ERASE

WEOF

Unloads the magnetic tape specified by the dsi.

Erases six inches of the magnetic tape
specified by the dsi.

Writes an end-of-file mark on the magnetic
tape specified by the dsi.

dsi Data set identifier of the magnetic tape unit, 1 to 4 alpha-

statadr

BUF

numeric characters.

Address to which word one of the status returns. When no
address is given (zero or blank) status returns to tag + 2 and
tag + 3, where tag is the location of the call.

Specifies that calling task enter ready status upon completing
connection of an UNLOAD, ERASE or WEOF call. Upon call
connection, the calling task enters ready status and continues
execution.

When BUF is omitted (zero or blank) the calling task enters
wait status until the 110 is complete.

In computer configurations having two or more card readers, the user may
call two MIOCS functions (format and read) on an open card reader. Do not
use these functions when card reader is an INP file for a DIRECT job.

The user may call the MIOCS card reader format function to set conditions
under which II 0 will operate.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 '20 '41
, I

FORMAT I (dsi"""mode,blk,,~tatadr)
I I

READ

dsi Data set identifier of the card reader file to be formatted,
1 to 4 alphanumeric characters.

mode Specifies mode of I/O on the card reader:

BCD

BIN

Binary coded decimal} See footnote t
Binary

blk Blocking specification:

statadr

NONBLK MIOCS is to read one card on each read call,
and pass it to the caller.

BLK MIOCS is to read several cards on each read
call, and block them in standard format. Blocking
will continue until the buffer specified in a read
call is full.

Address to which word one of the status of the called I/O
returns. When no address is given (statadr is zero or blank),
status returns to tag + 2 and tag + 3, where tag is the location
of the request.

The read function reads cards from a card reader open to the job.

Macro format:

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

I I

READ I (dsi,fwca,n,CH,C2,statadr,BUF)
I I

dsi Data set identifier of card reader file to be read.

fwca First word or character address of a buffer in core into
which data will be read.

n Number of words or characters to read.

t Mode specification may be changed from that in an initial format request by
specifying it differently in new format requests. Once specified, its
omission in new format requests means that its original specification holds
true. If never specified, MIOCS assumes the normal mode of a card reader
which is BCD.

7-11

7.2.3
CARD PUNCH

FORMAT

7-12

Cll The mode of the read will be character. When Cll is omitted,
blank, zero, or other, MIOCS assumes word mode.

C2

statadr

The read buffer is in Chapter Two. When C2 is omitted
(blank or zero), the buffer is in Chapter One.

Address to which word one of status of the read returns.
When no address is given, (statadr is zero or blank) status
returns to tag + 2 and tag + 3, where tag is the location of
the call.

BUF Specifies that the calling task enter ready status upon com­
pleting connection of read call. When the READ call is connected,
the calling task enters ready status and may continue execution.
When BUF is omitted (zero or blank), the calling task enters
wait status until the read is completed.

The user may call two MIOCS functions (format and write) on an open card
punch. Do not use these functions when card punch is a PUN file for a
DIRECT job.

The format macro sets I/O conditions:

Macro format:

LOCATION

I 8

dsi

mode

OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

10 120 141

FORMAT ;(dsi"""mode,blk"s~atadr)
I I

Data set identifier of the card punch, 1 to 4
alphanumeric characters.

Specifies the mode of I/O on the card punch:

BCD

BIN

Binary coded decimal} S f t t t ee 00 no e
Binary

t Mode specification may be changed from that in an initial format request
by specifying it differently in new format requests. Once specified, its
omission in new format requests means that its original specification holds
true. If never specified, MIOCS assumes the normal mode of a card punch
which is BCD.

WRITE

blk A blocking specifier:

statadr

NONBLK MIOCS accepts one record on each write request,
and punches it.

BLK MIOCS unblocks a standard buffer from the user,
and punches until the buffer is empty.

Address to which word one of the status of the format call
returns. When no address is given (statadr is zero or blank),
status returns to tag + 2 and tag + 3, where. tag is the location
of the call.

The card punch write function punches cards on a card punch open to the job.

Macro format:

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

WRITE I (dsi,fwa,n,CH,C2,st~tadr,BUF)
I I

dsi Data set identifier of an open card punch file.

fwca First word or character address of a buffer in core that will
be employed in the write.

n The number of words or characters to be punched.

CH Mode of punching will be character. When CH is omitted,
(blank or zero) MIOCS assumes word mode.

C2 Specifies the write buffer is in Chapter Two. When C2 is
omitted, blank or zero, the buffer is in Chapter One.

statadr Address to which word one of the status of the write returns.
When no address is given (statadr is zero or blank) status
returns to tag + 2 and tag + 3, where tag is the location of
request.

BUF Specifies that the calling task enter ready status upon com­
pleting connection of the write call. The calling task enters
ready status and may continue execution. When BUF is
omitted (zero or blank) the calling task enters wait status
until the write is completed.

7-13

7.2.4
LINE PRINTER

FORMAT

1

7-14

MIOCS may be called to format and write on a line printer open to the job.
Do not use these functions when line printer is an OUT file for a DIRECT job.

The line printer format function sets a series of conditions for I/O.

Macro format:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

FORMAT l(dsi""",b1k,cc,st~tadr)
I I

dsi Data set identifier of a line printer file

blk A blocking specifier:

NONBLK System accepts one record on each write request,
and prints it.

BLK System unblocks a standard buffer from the user,
and prints until the buffer is empty.

cc A carriage control code specifying paper handling during
printing on 501 or 505 printers coded as follows:

Octal Control Code Action

zero blank or omitted Program carriage control

01 Select single space

02 Select double space

03 Select advance to last line of form

04 Select page eject

05 Select automatic page eject

06 Select suppress space

10 Clear format selections

11 Select format level 1 for postprint spacing

12 Select format level 2 for postprint spacing

13 Select format level 3 for postprint spacing

14 Select format level 4 for postprint spacing

WRITE

Octal Control Code Action

statadr

15

16

20

21

22

23

24

25

26

Select format level 5 for postprint spacing

Select format level 6 for postprint spacing

Select preprint spacing

Select format level 1 for preprint spacing

Select format level 2 for preprint spacing

Select format level 3 for preprint spacing

Select format level 4 for preprint spacing

Select format level 5 for preprint spacing

Select format level 6 for preprint spacing

Address to which word one of the write status returns. When
no address is given (statadr is zero or blank), status returns
to tag + 2 and tag + 3, where tag is the location of the call.

The user may specify the MIOCS line printer write function on a line printer
open to the job.

Macro format:

1

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 :41

WRITE I (ds i, fwca, n, CH, C2, s titadr, BUF)

I 1

dsi Data set identifier of the printer file.

fwca First word or character address of a buffer in core that
is to be printed.

n Number of words or characters to print·

CH Mode of printing will be character. When CH is omitted
(blank or zero), MIOCS assumes word mode.

C2 Specifies the location of the buffer is Chapter Two. When
C2 is omitted (blank or zero), the buffer is in Chapter One.

7-15

7-16

statadr Address where word one of the printing status returns. If
zero or blank, status returns to tag + 2 and tag + 3, where
tag is the location of the request.

BUF Specifies the calling task is to enter ready status upon com­
pleting connection of a WRITE call. The calling task enters
ready status and continues execution. When BUF is omitted
(zero or blank) the calling task enters wait status until I/O
is completed.

In the FORMAT call, the user may specify control of paper movement during
printing (cc). If he specifies program control (zero or blank in the cc field),
the printer driver interprets but does not print the first character of a print
line. It interprets the character as follows:

control Character Action Before Print Action After Print

A Space 1 Page Eject
B Space 1 Skip to Last Line
C Space 1 Skip to Level 6
D Space 1 Skip to Level 5
E Space 1 Skip to Level 4
F Space 1 Skip to Level 3
G Space 1 Skip to Level 2
H Space 1 Skip to Level 1
1 Page Eject No Space
2 Skip to Last Line No Space
3 Skip to Level 6 No Space
4 Skip to Level 5 No Space
5 Skip to Level 4 No Space
6 Skip to Level 3 No Space
7 Skip to Level 2 No Space
8 Skip to Level 1 No Space
o (zero) Space 2 No Space
+ No Space No Space

Space 3 No Space
(blank) Space 1 No Space

Q Clear Auto Page Eject No Print
R Select Auto Page Eject No Print

7.2.5
MIOCS
CALL SUMMARY In all MIOCS calls on unit record devices, the user may specify an address

for the first of two status words. A parameter in the statadr field of each
call tells MIOCS where to return a general status description (in two computer
words) of a called function. It can be declared in either of two ways:

A non-zero value in this field of the call is the first word address
where the status returns.

If this field is zero or blank, status returns to tag + 2 and tag + 3,
where tag is the location of the macro call issue.

The general format of these two status words, regardless of where they
are returned, is as follows:

E E E

HORD ONE RS 0 0 0 I L NUM

F D A

HORD T~O EC HS

RS Status of the call (bits 22 -23)

00 Call terminated normally.
01 Call terminated abnormally.
10 Call is in active status.

If RS=Ol, the other fields (EOF, EOD, I, L, EC) will clarify
the status.

EOF End-of-file in bit 21:

o No end-of-file
1 End-of-file condition detected.

An end-of-file condition occurs on a card reader or magnetic
tape unit when a READ call encounters an end-of-file card
or an end-of-file mark.

7-17

7.2.6
ERROR PROCESSING

7-18

EOD End-of-device indicator in bit 20:

o No end-of-device.
1 End-of-device condition detected.

An end of device condition occurs on a magnetic tape unit when
a READ or WRITE call encounters an end-of-tape reflector.

EOA End-of-allocated-area indicator applies to mass storage only
(bit 19). (See Chapter 6.)

I Irrecoverable error indicator in bit 18.

o No error·
1 An irrecoverable error was detected on the device. (See

Error Processing.)

Occurrence of a hardware error, even though system error
recovery was not selected in the FORMAT function, sets I to 1.
(See Error Processing.)

L File accessibility indicator in bit 17.

NUM

o Unit record device accessible.
1 Unit record device inaccessible because of hardware

malfunctions such as:

Reject on connect instruction (CON)
Rej ect on select instruction (SE L)
Reject on I/O instruction (INPC OUTC INPW OUTW)
Not ready

Number of words involved in the called function in bits 16-00.

EC Contains error codes in bits 23-12. (See Error Processing.)

HS Unedited status of unit record hardware during I/O operation.

The processing of errors occurring during I/O on unit record devices, either
by the user or the corresponding driver relates to two categories, program
errors, and hardware errors. All error codes return (in binary coded
decimal) in the EC field of the status words for the requested function.

Program Errors

Program errors occurring during Ilo functions on unit record devices are
grouped in two areas; program errors applicable to all unit record devices,
and program errors applicable to magnetic tape only.

Program errors involving illegal function requests on all devices:

Error Code

1

2

3

4

5

6

7

Explanation

Illegal function code, request not possible on this
unit record device t
Memory addresses for data transfer (fwca to
fwca + n-1) not in the range assigned to the program.

Illegal value in type (t) field on

Locate attempted a backward motion at load point
on magnetic tape.

Attempted writing end-of-file on a read only file.

Logical record within a block exceeds the maximum
size allowable for unit record devices (40 words for
punch) (34 words for printer).t

Data transmission request had word count of zero.

Program errors involving illegal function calls on magnetic tape:

Error Code

20

21

Explanation

Illegal reverse read call on 603 or 606 tape unit.

Illegal density selection in FORMA T request on
603 or 606 tape unit.

22 Requested fewer than six characters output on a write.

Unit Hecord Hardware Errors

With the exception of userl system recovery options on magnetic tape units,
drivers and driver EXEC handle hardware errors and recovery on all unit
record devices. The following describes the possible hardware errors and
corresponding recovery procedures for the unit record devices:

t Applicable device driver sets I in status word.

7-19

7-20

Magnetic Tape

If the user specifies SREC in a magnetic tape FORMAT call as he normally
does, the magnetic tape driver and driver EXEC handle recovery for the
following hardware errors:

Parity errors

Lost data conditions

Hardware rej ects

The driver employs the automatic recovery procedures described in Appendix
B, and considers a record of fewer than six characters a noise record.

If the magnetic tape driver's automatic error recovery is unsuccessful, the
error is declared irrecoverable. The calling task is informed of an
irrecoverable error condition in the "I" field in its status word. The opera­
tor is also informed of an irrecoverable error condition on magnetic tape
through a message that declares the particular channel, equipment, and unit
(System to Operator Messages, Appendix C).

The user may select his own error recovery (URE C in rec field of FORMA T
request) on magnetic tape only. Hardware errors and subsequent recovery
procedure for the card reader, punch, and line printer are the joint responsi­
bility of the driver and driver EXEC with corrective action on the part of the
operator. If the user selects his own error recovery (UREC) on magnetic
tape, and the driver EXEC detects a parity error, error code 50 returns on
the EC field of the status. The user must interpret this code in conjunction
with the HS and I fields of the status word, and initiate his own recovery.

If the user selects automatic error recovery (SREC) on magnetic tape, the
magnetic tape driver and driver EXEC perform the automatic recovery pro­
cedures described in Appendix B.

Card Reader

The card reader driver and EXEC can detect the following hardware errors:

Compare

Preread

Fail-to-feed

Stacker-full

Hopper-empty

Recovery varies with the nature of the error. In general, compare and
preread error conditions are followed with a compare error diagnostic
message on the console typewriter. The operator takes corrective action
by re-inserting the last card at the head of the input stack. If the operator
does not take corrective action the card is lost.

A fail-to-feed, stacker-full, or hopper-empty condition produces a READY
CARD READER message on the console typewriter. The operator takes the
necessary corrective action, and then readies the card reader as requested.
Reading continues when the card reader is ready ..

Card Punch

The card punch driver and driver EXEC can detect the following hardware
errors:

Compare

F ail-to -feed

Stacker-full

Hopper-empty

For a compare error, the card reader driver attempts automatic recovery
through the offset card option. Because the error condition occurs after the
card (following the mispunched card) is punched, both cards are offset.
Both cards are then repunched, and the system informs the operator (System
to Operator Messages Appendix C) of the error condition. The operator may
remove the offset cards at any time. Punching is not interrupted.

In the event of a fail-to-feed, stacker-full, or hopper-empty error condition,
the operator is informed through a READY PUNCH message on the console
typewriter. When MIOCS receives a ready interrupt, it takes the proper
corrective action, with no further operator intervention.

Printer

The printer driver and EXEC can detect only an out-of-paper condition. The
condition produces a console typewriter message requesting the operator to
ready the printer. The message specifies the channel, equipment and unit
number. Normal operation continues when the operator corrects the condition
and readies the printer.

7-21

8.1
INTERNAL FAULTS

INTERRUPTS

All interrupts cause the computer to enter Monitor State and execute the
System Executive, EXEC. After MASTER operation has begun, interrupts
provide the only entrance to EXEC.

8

An interrupt is processed by a portion of EXEC known as External Interrupt
Control (EIC) , which saves register contents, decodes the interrupt, and
depending upon the interrupt, routes control to a section of EXEC.

After EXEC processes an interrupt, it transfers control to Assign a Pro­
cessor which places a program task into execution.

EXEC recognizes eight types of interrupts:

Internal Fault Interrupts

Trapped Instruction (Floating Point Instruction)

Request Interrupts (Halts)

Clock Interrupt

I/O Interrupts (Other than real-time)

Dedicated Channel Interrupts (Real-time)

Manual Interrupt

Other:

Associated Processor

Illegal

User Interrupt Control (UIC) , a routine that resides as part of a task (section
4.10), processes all user fault selections such as arithmetic overflow. When
a selected fault occurs, EXEC routes control to the portion of UIC that inter­
prets the interrupt and performs a return jump to the task's interrupt routine.
Because UIC is a portion of the task, there is no EXEC intervention upon exit
from an internal fault routine. mc routes control to the task at the interrupted
location.

For fault selection, refer to section 9.3. 1.

8-1

8.2
FLOATING POINT

8.3
REQUESTS

8.4
CLOCK

8.5
I/O

8-2

The floating point instructions may be simulated at the option of the installa­
tion. When floating point hardware is not in the system, the instructions be­
come trapped and are processed by the simulation package, FDPBOXS.
When required, FDPBOXS is a resident part of EXEC. If arithmetic faults
are to be processed, they must be selected in the same manner as if the
floating point hardware were present.

Simulated instructions include:

ELQ
EUA
EAQ
QEL

AEU
AQE
MUAQ
DVAQ

FAD
FSB
FMU
FDV

All requests of EXEC from a program task result in an illegal instruction,
which causes EXEC to perform the function requested or route control to the
appropriate task.

When EXEC places a task in execution, it sets a time limit which may cause
a clock interrupt. The time set is the smallest of:

Time remaining in job time limit (10. 2)

Time remaining in LIMIT request (9.6)

Time of execution cycle (maximum time a task is allowed to be
executed without interruption)

When a clock interrupt occurs, it is processed to determine which time expired.
If it is the job or LIMIT time, the job is terminated. If it is the execution cycle
time, EXEC places the next highest priority task in execution.

Cycle time is an installation parameter that prevents anyone task from oc­
cupying the compute module indefinitely.

Upon detection of an I/O interrupt, EIC routes control to the appropriate
MIOCS routine (Chapters 6 and 7). The three types of I/O interrupts are:

Channel Equipment I/O Call

8.6
DEDICATED
CHANNEL

8.7
MANUAL

8.8
OTHER

Whenever an interrupt occurs on a dedicated channel, EIC routes control to a
user-supplied real-time routine, which is, in fact, an extension to EXEC. See
MASTER Installation Manual.

When a manual interrupt occurs, EIC routes control to the operator­
communication routine that processes requests from the operator. See section
9. 4 and MASTE R Operator's Guide.

The associated processor interrupt is not used. An illegal instruction inter­
rupt (other than defined requests) terminates the job that caused it.

A block diagram of interrupt processing follows.

8-3

00
I
~

I
DEDICATED MANUAL

CHANNEL L I
REAL l::ERATOR j
TIME COMMUNICATION

CLOCK

CYCLE

INTERRUPT

ENTRY

EXTERNAL

INTERRUPT

CONTROL

HALT

REQUEST

PROCESSOR

ASSIGN

A

PROCESSOR

-

- - --

T
CHAI 'II'

EQUIF

J

IE L

'MENT

I/I CALL

1
Q CO

S Y ~ J ROL

EM

31

/ C
NT

:iT

I
- - --

I
TRAPPED

INSTRUCTION

OR

INTERNAL

FAULT

I
USER

INTERRUPT

CONTROL

I
I
I
I

I
_..J

OTHER

9.1
TASK LINKAGE

9.1.1
CALL

EXECUTIVE REQUEST MACROS

An executive request is a request that a task makes of the MASTER EXEC
routine either because it cannot itself perform the requested operation in
the program state or because the request involves linkage with another
task.

9

MASTER EXEC recognizes two types of executive requests: those directly
coded as illegal instructions and those coded as macros which generate a
coded halt. All macros must be coded to meet the specifications for macros
outlined in 1. 7 •

Executive requests include the following types:

Task Linkl:\,ge

Deferred Wait

Interrupt

Typewriter Output

Time and Date

Time Limit

Abort Job or Suppress Task

Copy Common

Bypass File

Reserve File

Copy Directory Entry

Ascertain Device Type

Two macros establish or remove linkage between tasks. With the CALL
macro, one task requests execution of another, and with the RETURN macro,
a called task indicates to its caller that its work is completed.

A task that requires execution of some other task issues a call for that task,
optionally passing parameters and common to it. The caller may issue many
calls. If the callee is already active (has not completed execution of an
earlier call), the caller is queued on a priority basis. The call is connected
when the callee becomes inactive. The caller remains in call status until
the call is connected. Then, according to a parameter of the call, the caller
may be multiprogrammed with its callee, or may wait for the callee to
complete its work before resuming execution.

9-1

I

9-2

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

CALL l(name,dsi,num,fwa,co~,R,A)
I I

name Task name of callee

dsi File containing callee. When the callee already resides in core
the dsi is ignored; the task is not reloaded. When dsi is omitted
callee is assumed to be on library.

num Number of 24-bit words of parameters (0 to 511) to be passed
to callee.

fwa Address containing first word of parameter list.

com Chapter Two common passage (4.7).

blank

OC

OCR

CC

CCR

No common passed.

Pass own common as read and write.

Pass own common as read only.

Pass caller's common as read and write.

Pass caller's common as read only.

R Indicates that the task containing the call is to be placed in
ready status upon call connection and may continue processing
multi-programmed with its callee. When R is omitted, the
caller assumes wait status.

A Abandon parameter used only by an operating system task. It
indicates that the caller does not require notification of callee
completion. (See MASTER Installation Manual).

A task that has requested ready status may check the status bit of the call
(bit 0 at the address containing the CALL request) to determine if the callee
has returned. If this bit is not set, the callee has not returned; if the status
bit is set, the callee has returned. A task should not loop and test the
status bit continuously, however, since the time consumed could be used by
another task. By issuing a DWAIT (9.2), the CPU becomes available for
reassignment to another task, possibly the task for which the caller is
waiting.

9.1.2
RETURN

I

I

Rules:

1. Only two-chapter tasks may pass or receive common.

2. A callee may not call its caller nor maya caller call itself
(circular calls).

3. When parameters are to be passed, the callee must include a non­
standard copy of UIC (4.10).

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

I I · · I · I

CALL '(KEN,,18,PLIST)
,

· , . I
, · , ·

Callee

LOCATION PPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

LIBM IUIC
I · ·

,
· · · I · I · · :(18) · ,

UIC UIC
· I

· I · I
I I

4. If the caller is to receive parameters on a return from its callee,
it must pass parameters to the callee, since parameters are re­
turned to the same area from which they are passed. Referring
to the example under Rule 3, KEN can return no more than 18
parameters to the caller.

Every task must contain a RETURN request through which it directly or
indirectly notifies its callert of completion.

A task may directly return to its caller or may request that a callee of its
own handle its return. That is, if Task B, the completed task had pre­
viously called Task C which is still active, it can request that Task C return
to the original caller (Task A) rather than to B. This is called transfer of
call end. One advantage of transferring call end is to free Task B for a call
by a queued caller.

t When the user requested the task by a Task Name control card, the job
monitor generated the call for the task and is notified of the return.

9-3

9.2
DEFERRED WAITS

9-4

When the returning task has active callees, its return is delayed until all
calless (other than the one to which call end is transferred) have returned.

When a task returns, EXEC releases any files the task may have reserved
(9.10) .

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

RETURN I (num,fwa,ca,NR,R) I
I

1 I

num Number of 24-bit words of parameters to be returned to caller.
It is limited by number of parameters in CALL since parameters
are returned to the area within the caller from which they are
passed to the callee.

fwa Address containing first word of parameter list.

ca Address at which this task made a call for a task to which call
end is to be transferred. When a callee transfers call end, it
cannot return parameters to its caller.

NR Indicates that this task is not to be released from core. When
NR is omitted, the task is to be released.

R Used only by operating system tasks; R indicates that this task
will continue executing although it has notified its caller of
completion. (See MASTER Installation Manual.)

The UIC routine which must be a part of each task contains a RETURN
request (4.10).

A task that has called one or more subordinate program or 110 tasks and is
being multiprogrammed with them may reach a point beyond which it should
not continue until one of its callees has completed. It can issue a deferred
wait request which places the caller in deferred wait status until one of the
callees designated in the request returns. If any of the named tasks has
already returned, or was never called, the caller immediately assumes
ready status. Otherwise, it must wait for one of the designated callees
to return.

9.3
INTERRUPT
CONTROL

I

I

For Program tasks, the macro is:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 :41

DWAIT I (ad r 1 ' ••• ,ad r 7) I

I
I

adr Addresses (1-7) at which task issued calls.

For I/O tasks, the macro is:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

DWAITIO I (d s iI' ••• ,d s i7) I
I

I I

dsi Files (1-7) identifying I/O calls for which the program
task is to wait.

A task may check the status of an I/O call at any time by testing the RS bits
in Status Word One (Chapter 6).

If more than one task or I/o call is mentioned in the wait request, the caller
must determine which callees are completed by testing the status bits of the
task CALL (9.1.1) or I/O call (Chapter 6).

Four interrupt macros give users limited control of interrupts:

SELECT
CANCEL
DINTS
EINTS

9-5

9.3.1
SelECT AND CANCel

9.3.2
DINT AND EINT

9-6

The SELECT request directs EXEC to route control to the user-specified
address upon occurrence of the designated internal fault condition. CANCE L
removes the directive. SE LECT is in effect only for the requesting task.

I

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD

.8 10 '20

SELECT I (fault,adr)
I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD

8 10 :20

CANCEL

I I
: (fault)

fault Interrupt condition

AROV
DIVIDE

EXOV

Arithmetic overflow
Divide fault
Exponent overflow

COMMENTS

141

I
I

COMMENTS

'41
I

I

adr Address to which control is to be transferred upon the
occurrence of fault.

DINT and EINT are COMPASS instructions, not macros. An attempt to exe­
cute either DINT or EINT in the program state causes an interrupt returning
control to EXEC which then executes a DINT or EINT for the task.

The disable interrupts (DINT) instruction causes a logical lockout of all user
SE LECT requests. That is, all internal fault selections from this job made
previous to DINT or while the DINT is in effect, are temporarily cancelled.
Any internal faults occurring while the DINT is in effect are lost. A DINT
request is ignored if one is already in effect when it occurs.

The DINT is in effect only for the task making the request.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41
I I

DINT I I
I I

9.4
CONSOLE
TYPEWRITER
OUTPUT

The enable interrupts request (EINT) cancels a DINT request. EINT restores
any uncancelled SELECT requests made prior to or while a DINT request is
in effect.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

EINT I I
I I

A task uses the TYPE macro to send a message to the operator and receive
one in return.

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10

TYPE

mesnum

mesfca

resnum

resfca

120 :41

l(mesnum,mesfca,resn~,reSfca)
I I

Number of characters (1-127) in message to be typed.

First character address of message.

Number of characters (0-127) in message to be returned
by operator.

First character address of buffer receiving response.

When a response is designated, MASTER assigns one of the response codes
(RO-R9) to the message, returns the carriage, and types

Rr, <message at mesfca>

The task cannot resume execution until the operator types the requested
response message

Rr, <message to be transferred to resfca>

9-7

9.5
TIME AND DATE

9-8

The response parameters are optional. For example:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41
I J

I I
I • I

TYPE 1(18, MESS~OCA) I .
I I

MASTER returns the typewriter carriage and immediately types the 18-
character message beginning at MESSLOCA without assigning a response
code. The task may resume execution as soon as the message is sent.

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41

TIME I I
1 I

Upon receiving the TIME request EXEC presents the task with the time of
day in the A and Q registers in the format:

(AQ) = hr/mn/sc

hr BCD codes or the hour of the day (0-24)

/ BCD code for a slash

mn BCD codes for the minute of the hour (0-60)

sc BCD codes for the second of the minute (0-60)

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 '41

DATE
I I

I I , ,

9.6
LIMIT TASK TIME

I

Upon receiving a DATE request EXEC presents the task with the date in the
A and Q registers in the format:

(AQ) = mo/dy/yr

mo BCD codes for month (1-12)

/ BCD code for a slash

dy BCD codes for day (1-31)

yr BCD codes for year (00-99)

A user may set a time limit for execution of a task or a portion of a task
by using the LIMIT macro.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

LIMIT I (hr/mn/sc) I
I I

hr Hours (0-24)

mn Minutes (0-60)

sc Seconds (0-60)

/ Slash

Only one limit per job can be in effect at anyone time; a later LIMIT request
takes precedence over an earlier request. A job is terminated when LIMIT
time expires (Chapter 8).

A FREE request removes the time restriction set by LIMIT. It does not
alter the job limit.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 141

FREE I I
I I

9-9

9.7
ABORT JOB OR
SUPPRESS TASK

9-10

When a failure occurs, the user can stipulate that subsequent tasks of the
job not be executed or that the job be terminated.

The ABORT request may be inserted into a task which may encounter a
condition requiring job termination.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 :41

ABORT I (fwa, nc , STO , ND) I
I

I I

fwa First-word address of diagnostic message (0-56 characters)
to be printed on job's OUT file (2.6.1).

nc Number of characters to be output (56 maximum).

STO Diagnostic message is to be output on console typewriter as
well as on the user's OUT file. When STO is omitted, the
message is written on OUT file only.

ND Indicates core dump is to be suppressed regardless of ABORT
parameter on the SCHED card. When ND is omitted, taking
of a core dump depends on the ABORT parameter,

The SUPPRESS request may be made by an assembler or compiler task when
it detects a condition that should prevent execution of the task. It causes
the Job Monitor to ignore any additional Task Name cards except those which
call a task contained in a table of task names maintained by the Job Monitor.
This table contains names of assemblers and compilers, such that assemblies
and compilations may proceed for the job although object tasks may not
execute.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

SUPPRESS I
I
I

I I'

9.8
COpy COMMON

9.9
BYPASS FILE

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41

COPYCOM I I
I I

A COPYCOM request permits a two-chapter task to transfer its Chapter Two
common to Chapter One. Chapter One initially contains program and data
areas.

7777

UNASSIGNED

COMMON

00000

CHAPTER Tv-JO

77777

"}PREVIOUSLY
UNASSIGNED

'---____ ..J 00000

CHAPTER ONE

Following a COPYCOM request, Chapter Two still contains its common.
The Chapter One page map contains the page indexes for Chapter Two
common as well as the program and data areas. COPYCOM permits the
task to reference Chapter Two common without relocating to operand state,
and to pass and receive common in Chapter Two.

If logical common addresses overlap the program and data addresses or if the
task already has a Chapter One common area, the job is terminated.

A user may direct MIOCS to ignore all I/O operations for a specific file
requested by any task of the job.

9-11

I

9.10
RESERVE FILE

9-12

I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

BYPASS ; (dsi)
I

I
I 1

dsi File other than system file

When MIOCS detects a reference to a bypassed file, it ignores the request
and sets RS in status Word One as completed (Chapter 6).

A bypass is in effect for all tasks of the job containing the request.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

RESERVE ; (d~i)
I

I . I . I

RELRESV
I • I ,(dsi) I

dsi File reserved to task

A task may reserve an I/O file for I/O operations.

No other task may perform I/O on a reserved file until the task that reserved
it issues a RELRESV remove file reservation request. If a task attempts to
perform I/O on a file reserved for another task, the call is queued until the
reserved file is released.

In this discussion:

A global file may be referenced by system or user tasks of any job.

A system file may be referenced by sY!3tem tasks only.

A job file may be referenced only by tasks associated with the job.

A sequential file is processed sequentially; no locates need be performed
on sequential files.

A random file is processed randomly. Users must locate to position
file before I/o operation.

If a task is to perform I/O on a global random file, the order of events should
be as follow s :

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 :41

I · I

RESERVE I (dsi) · I
I

(I/O Opetations) I
RELRESV I (dsi) 1 . I I

I · I
I

Rules:

1. Do not leave a global file in RESERVE status when the I/O operations
are completed. If a task never releases the reserve, the file re­
mains reserved until the task returns to its caller.

Careless reserving of a user file decreases job efficiency but has
no effect on the remainder of the system.

2. A job is terminated if one of its tasks requests wait status or de­
ferred wait status while it has a file reserved.

If a random file is not reserved, there is no way to guarantee that
its position has not changed between a task's LOCATE and the next
I/O operation. This is true whether processing is random or
sequential.

9-13

9.11
COpy DIRECTORY
ENTRY

9-14

The COPYDIR request permits a user to obtain a copy of a library directory
entry for a specified task in order to locate the task on the library. This
information may be required by a task such as FORTRAN or COMPASS so
that it can read in its own overlays from the library. The macro format
for the request is:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

COPYDIR I (name, loc) I

name

loc

loc
loc + 1
loc + 2
loc + 3
loc + 4

I
I I

Name of task for which directory entry is requested.

First word address of five locations in the requesting task
to which the directory entry is to be copied.

23 17 14 11 05

Word Bits Field Signific anc e

loc 23-00 name

14-00 fwa

loc 1

4-character BCD name of task, record, or
routine.

Logical first word address of absolute record
in core; fwa applies only to absolute records
(Ida on LTASK card).

00

23-15 aloc Used only for absolute tasks, aloc contains the
number of unused locations in the last quarter
page assigned to the task.

loc + 2

14-00 block addr Task's block address on library.

17-15 Unused; zero.

23 -18 a priority Inherited priority multiplier of library task
(a on LTASK card).

Word Bits Field

14-00 ept

16-15

loc + 3 17 abs fig

23-18 b priority

05-00 kind

loc + 4

11-06 nc 2

17-12 nc 1

23-18 ntask

Significance

Entry point address for task or routine.

Unused; zero.

If abs flg is 1, task is an absolute record on
the library; if abs flg is 0, task is in relocatable
format.

Inherited priority (b on LTASK card).

6-bit field flagging kinds of restrictions to
which task may be subjected.

bit = 1

00 real-time task (RT on LTASK card)

01 linked to resident tables (TL on
LTASK card)

02 requires two chapters (2CH on
LTASK card)

03 permanently allocated (PA on
LTASK card)

04 operating system task (OS on
LTASK card)

05 may not be aborted during execution
(ABT on LTASK card)

Number of quarter pages required for Chapter
Two common.

Number of quarter pages required for Chapter
One common.

Number of quarter pages required for task
itself.

For library entry and library task generation and use of LTASK card, see
MASTER Installation Manual.

9-15

9.12
ASCERTAIN
DEVICE TYPE

9-16

The TYPEIO macro ascertains the device type to which a file is assigned.
The macro format is:

LOCATION OI'ERATION, MODIFIERS ADDRESS FIE~D COMMENTS

I 8 10 '20 141

TYPE 10 I I
I I

When the macro is executed, the Q register must contain the dsi of the file
in question, left justified with blank fill (60' s). The macro returns the hard­
ware connect code (c e uuu) in bits 20-06 and the hardware type code in bits
05-00 of the A register. After this request is executed, the A register
contains the following information right justified.

~c I e uuu I ht
23 20 17 14 05 00

c 3-bit channel number. First channel on which the unit associated
with the file is connected.

e 3 -bit equipment number. First equipment to which the unit
associated with the file is connected.

uuu 9-bit unit number. Unit currently assigned to the file.

ht 6-bit hardware type code. The hardware type codes associated
with the different device types are listed below.

Code Device Code ~

01 405 33 603
05 415 40 1311
11 501 41 852
13 505 50 853
30 607 51 854
31 606 60 813 or 814
32 604 70 863

When the named dsi has been equated to another dsi (10.1. 6), the primary
dsi (used to open the file) is returned in the Q register in place of the
named dsi. Otherwise, the Q register contains the named dsi.

9.13
CHECK FILE
STATUS

9.14
DUMP REQUEST

I

I

TYPEIO sets bit 23 of the A register when the named dsi is undefined
(never been opened or equated to an opened dsi) .

Example:

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 '41
, I

I I .
1=~47644560 I (Q)=PUN LDQ

TYPE 10 I I

I I
I I

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 '20 '41

STATUS I (dsi,adr) I
I

I I

This macro returns to adr and adr + 1 the status of the last operation on
the named file. Status words are interpreted in 7. 2. 3.

With the PROGDUMP macro, a user may request a periodic printout by the
SNAPSHOT dump routine of contents of selected sections of memory.

During COMPASS assembly, the PROGDUMP macro results in a call to
SNAPSHOT being generated into the binary object deck. At execution time
the SNAPSHOT routine.is automatically loaded and linked to the subprogram.
Because instructions are inserted in the object code, PROGDUMP should not
be used immediately following conditional skips or tests involving more than
one word of memory.

The requested dump may be in octal, character, or decimal floating point.

Each time it is called, the routine writes on the job OUT file a line containing
the 1-4 character BCD dump identifier, the location of the call to SNAPSHOT,
and contents of the A and Q registers and the three index registers. When
the register file option is selected, SNAPSHOT prints the subheading
REGISTER FILE, followed by the contents of the last 32 highspeed registers.
SNAPSHOT then dumps the selected portions of memory.

9-17

9-18

The memory dump consists of 8-word lines of data printed in the designated
mode and preceded by the 1-4 character identifier, the absolute octal address
of the first words of the line. When SHAPSHOT detects a line that contains
words all identical to the last word of the preceding line, the line is sup­
pressed. Suppressed lines are noted with the word GAP on the listing.

I

The macro format is:

LOCATION IoPERATION, MODIFIERS ADDRESS FIELD COMMENTS

8 10 120 141

PROGDUMP ; (fwa,lwa,mode,id,chag)
I I

fwa, lwa Beginning address and ending addresses (specified as a
symbol ± a constant). If thcy are the same or f\va is
greater than lwa, the dump produces only the contents of
console registers. If fwa is greater than lwa, a message
is written on the job OUT file.

mode Digit that specifies the format of the memory dump:

1 Octal

2 Character (6-bit BCD)

3 Floating Point

4 Register file

5 Register file and octal dump

6 Register file and character: dump

7 Register file and floating point dump

other Message ILLEGAL MODE written on the OUT
file. The request is ignored.

id 1~4 BCD characters printed on each line of the output to
identify the dump.

chap Optional parameter

2 Area to be dumped is in Chapter Two.

0, 1 or blank Area to be dumped is in Chapter One.

other Message ILLEGAL CHAPTER chap written
on OUT file

To insert temporary calls to SNAPSHOT into a loaded program see SNAP
card, 10.1. 9.

10.1
CONTROL CARDS

SUBMITTING JOBS 10

A user submits a job to MASTER as a set of control cards which may be
accompanied by source language decks, binary object decks, and data. The
control cards are described below. Source lan~age decks are described
in the compiler and assembler reference manuals, and binary object decks
(generated by compilers and assemblers for execution under MASTER) are
described in section 10. 2.

Through the control cards, programmers provide the information MASTER
needs to allocate storage and equipment, schedule a job and initiate its tasks,
assign priorities, and perform other job-monitoring functions. A MASTER
control card, with the exception of an end-of-file card, is identified by a $
in column 1. When a control card is transferred to a JOB's INP file, any
extra spaces are removed.

When a control card is interpreted, it is copied on the job's standard output
file. If a control card is out of sequence or contains an e'rror, the job is
terminated and a message is written on the job's OUT file.

Sample MASTER Control Cards

10-1

10.1.1
DIRECT

10-2

The DIRECT control card is optional; it permits a job to use directly the
card reader for input, a printer or a punch for standard output without first
transferring the data to files on mass storage. When used, the DIRECT
card precedes the JOB card; it is the first card in the job deck.

~$DIRECT.CR.PR.PU

CR When the job is to be initiated, MASTER does not transfer
the job deck to an INP file on disk, but makes the input
card reader the JOB's INP file. No other job can be trans­
ferred to mass storage while the card reader is so occupied.
When CR is omitted, normal job input and transfer to mass
storage takes place.

PR Standard printer output for the job goes directly to a printer
without first being transferred to the OUT file for the job.
The job will not be initiated until a printer is available.
When PR is omitted, normal transfer of standard output to
the OUT file takes place.

PU Standard punch output for the job goes directly to a card
punch without first being transferred to the PUN file for the
job. The job will not be initiated until a punch is available.
When PU is omitted, normal transfer of standard punch output
to the PUN file takes place. If PU appears, a p limit must
also appear on the JOB card.

The parameters are free field and may appear in any order. A parameter
and its comma may be omitted. Equipment reserved for a job by a DIRECT
card is released when the job terminates.

If a parameter on a DIRECT card is not in correct form, the input back­
grounder skips the erroneous parameter and types the following message on
the console typewriter:

I JOBi *BKI 01

i identifies the last job read in. Normal job processing continues.

DIRECT makes possible the running of a job with input or output that exceeds
available mass storage. A printer or a punch acquired with a DIRECT card
must be scheduled on a SCHED card (10.1. 3).

10.1.2
JOB A JOB card must appear in a job deck either as the first card or, if DIRECT

is used, as the second card. It can be followed by a SCHED, Task Name,
TASK, or RLDR control card. The system ignores any additional JOB cards
detected before an end-of-file card.

($J 08, C, i, II, I, P

c 1 to 8 BCD characters indicating account to be charged;
may not be omitted.

i 1 to 8 BCD characters identifying originator of the job;
may not be omitted.

tl Limit:s 1440 minutes, for job execution beyond which
MASTER terminates the job. The limit does not include
background processing of files. If tl is omitted but one of the
other limits is specified, its comma must appear.

A line printer limit :s 99999 for the OUT file, beyond which
MASTER terminates the job. If line limit is omitted but punch
limit is specified, its comma must appear.

p A punched card limit for the PUN file (0 to 99999) beyond
which MASTER terminates the job. Comments may follow
the p field when it is terminated with a comma.

All limits are optional. When they are not specified, MASTER uses in­
stallation parameters for time and line limits. When no punch limit is
specified, the job will not have a PUN file.

Example:

$JOB,421,BT2,15,150,100,COMMENTS APPEAR HERE

10-3

10.1.3
SCHED
CONTROL CARD

10-4

SCHED cards, of which there may be two per job, immediately follow the
JOB card in the job deck. Correctly used, the SCHED cards promote
efficient MASTER operation. Chapter 2 describes how the MASTER job
scheduler uses information obtained from the cards. SCHED information
can be continued on second SCHED card. SCHED cards are followed by a
Task Name, XFER, FILE, TASK, or an RLDR card.

$'5 C HE D, TIM E = t e ,C LAS S = c I ,C 0 R E = q p , S C R = 5 e 9 ,

All fields are optional; they may appear in any order on either card. If a
field other than peq is inadvertently repeated, (two TllvIE fields for instance)
the second entry has precedence. When a peq field is repeated (two entries
for 501=u), the first entry has precedence. A field cannot be continued
from one card to- the other.

DO NOT SCHEDULE MORE THAN A JOB NEEDS. A job that requests
unneeded core, mass storage, and peripheral equipment may needlessly
wait for these facilities, which must be available before the job can be
initiated. Also, when the job is processed, the idle facilities are withheld
from other jobs requesting them.

~

TIME=te

CLASS=cl

Estimated running time (0 to 99999 minutes). MASTER uses it
to determine if the job is special (section 2.3.1). When this
field is omitted, the job cannot qualify as a special job. te is
not a limit; for time limit, see JOB card.

.£l Class

E Emergency
B Background
I Input/Output
C Compute

When both TIME and CLASS fields are specified and te lies in
the special class range, the job acquires the higher class as
determined by both fields. If the job is specified as E or B
which are higher than special, it will maintain its specified
class, but if it is specified as lor C, which are lower than
special, it is reclassified as special.

When the CLASS field is omitted and the job does not qualify
as special, it becomes I or C depending upon an installation
parameter.

CORE=qp

SCR=seg

Estimate of the maximum amount of core in quarter pages used
by tasks residing in core simultaneously. An estimate includes
requirements of library tasks such as compilers and assemblers.
Estimates for obj ect decks must allow for expansions of pseudo
instructions, macros, library routines, etc.

A job cannot exceed its estimated core. When the loader
determines that a requested task exceeds the estimate, it
terminates the job and writes a message on the OUT file.

When the CORE field is omitted, qp is set by an installation
parameter.

Number of segments (250 maximum) of mass storage scratch
area required. Each segment is 10,000 words.

If the sum of the mass storage requirements as indicated by
the line and punch limits (JOB card) and the SCR and ABORT
requests (SCHED card) exceed the storage reserved for these
files, the job is not initiated. A diagnostic message is typed
on the console typewriter and the INP file containing the job is
released.

When the SCR field is omitted, seg is set by an installation
parameter.

ABORT=dl Requests a recovery dump of task. dl specifies number of lines
to be dumped if the job is abnormally terminated. MASTER
reserves mass storage for dl lines of dump. When dl is 0 or
the field is omitted, the user obtains only the dump described
in section 2. 6. 1 and not a dump of his task.

RF=fig Non-zero fig indicates that the job will use the register file.
When any task of the job is interrupted, the contents of file
registers 40-77 will be saved. When a task of the job is again
placed in execution, the contents will be restored.

When flg is zero, or the field is omitted, the register file
contents are not saved.

All peripheral equipment required by a job must be scheduled.
The parameter peq identifies the hardware type; u designates
the number of units or drives required.

10-5

10-6

~ Hardware Type

405 card reader

415 punch

501 printer

607 607 tape unit

606 606 tape unit

604 604 tape unit

603 603 tape unit

852 852 disk drive

853 853 disk drive

854 854 disk drive

813 813 disk drive

814 814 disk drive

863 863 drum

Examples of peq fields:

~$SCHED.501=1.607=3.852=2

This card will reserve one 501 printer, three 607 tape units,
and two 852 disk drives.

Mass storage drives need be scheduled only for files on remov­
able Class B devices

A printer or punch required by a DIRECT job must be scheduled.

If peq requirements exceed system capacity, the job cannot be
scheduled. The message D JOB i *SCH 07 is typed, the job is
abnormally terminated,and its INP file is released.

A job can be initiated when all peq requirements ~re satisfied.

Any attempt by a job to use a device not scheduled causes job
termination with a message on the job's OUT file.

10.1.4
TASK CALLS

To summarize, when no SCHED card is used, the job cannot be classified
as special, installation parameters are used for class, core, and scratch,
no recovery dump will be given on abnormal termination, and the job cannot
use the register file.

A Task Name control card directs MASTER to call and load the named
program task from the specified file (or from the library if no file is
specified), to pass the parameter string if one is given on the control card,
and to begin execution of the task. Usually at least one Task Name card
will follow the SCHED cards for a job.

A Task Name card has one of the following forms:

$name

$name, dsi

$name, dsi (parameters)

($ name l parameters)

name

dsi

parameter
string

1-4 alphanumeric characters identifying the task to be called;
name is the only required parameter.

The dsi of an opened file from which the named task is to be
loaded. When the dsi is 0 or the field is omitted, MASTER
will look for the task on the system library.

Parameters used by the called task, for example the *DEF
parameters specified in 5. 4. 1. MASTER removes any spaces
in the parameter string before passing the string, with
parentheses, to the called task.

When dsi is INP, the binary object deck for the task, which mayor may
not begin with a TASK card, (10.1.5) immediately follows the Task Name
card. When dsi is other than INP or *LIB, the loader relocates to block 1
for mass storage or rewinds the tape.

A source or data deck required by the task may follow the Task Name card
on the INP file.

10-7

10.1.5
TASK

10-8

Examples of Task Name cards:

$J081,INP
$GLIB(, LIB2, DIR2)

$*DEF(O,W, 10", I)
$FTN(L,A,X)

A user may precede the first IDC card (10.2.2) of a task with a TASK card.

($TASK,a,b,2CH

a Inherited priority multiplier

b Inherent priority

The priority of the task is computed as priority=a*I+b where I
is the priority of the caller of the task. a and b are integer
quantities such that priority~ 63. When a is I and b is 0, the
task inherits the priority of its caller. When a is 0 and b is non­
zero, the task priority is inherently fixed at b.

2CH Two-chapter task; omitted indicates a one-chapter task.

When a binary object deck follows a Task Name card on the INP file, and
no TASK card precedes the IDC card of the deck, the task is a one-chapter
task and has inherited priority (a=l, b=0).

The first TASK card through the first EW card (10.2.8) or end-of-file
card (10.1. 11) are processed as the called task. Any additional TASK
cards are ignored.

When a TASK card follows a Task Name card on the INP file, it overrides
a TASK card on the specified dsi.

TASK CARD ~ $TASK,1,0,2CH
TASK NAME -+ $EXMP,LGO

CARD

10.1.6
FILE

10.1.7

RLDR

I

A F~E control card indicates to MASTER that dSi2 , defined earlier in the
job, can also be referred to as dsi1 . They are the same physical file;
thus, two tasks of the same job can refer to the same file by different names.
When dSi2 is INP, OUT, or PUN, FILE can immediately follow SCHED.
otherwise, it must come after the *DEF control card, FILE card, or task
that defines dSi2 (5.4). For example, TSKA, below, refers to file DATA
for its input. The data can be entered on the INP file by using:

/,,- - - - - - - -"
" ' , I, ' ______ ,
I' (DA TA) I
'$TSKA(PARAMETERS) ~

$FILE,DATA=INP
$SCHED

/ --------,

With the RLDR control card, a user can obtain an absolute record of his
program task so that it can be called and loaded by the absolute rather
than the relocatable loader.

$RLDR (nome, odsi, idsi l, idsi 2, idsi 3)

10-9

10.1.8
EXTERNAL SYMBOL

10-10

When MASTER detects the RLDR card, it calls the relocatable loader which
loads and links programs from input files idsi with object routines on the
library that satisfy external symbols. The loaded task, preceded by a
header record that includes the task name, is written as an absolute record
on odsi. Thereafter, when a programmer calls the task from odsi, it will
be loaded by the absolute rather than the relocatable loader.

External symbol cards provide the programmer with a means of declaring
or equating external symbols after a task has been assembled or compiled.

A card contains one of two types of declarations:

External symbol declaration

($EXS. symbol I •...• symbol
n

Symbol! through symboln are external symbols not defined in the program
decks. The loader seeks them as entry points to library subprograms
causing the subprograms in which they appear to be loaded.

External symbol equivalence

$ E X 5, symbol l ' ... ,symbol n = symbol x

Symbol! through symbol are equated to symbol. Symbol must be defined n x x
somewhere in the program or appear on the library file as an entry point to
a library routine. It need not be defined prior to processing of the EXS
card.

The external symbols may appear anywhere in the program. Symbol must x
not appear on the left of = on another EXS card. If it does, the equivalence
string forms a closed loop.

Symbols are separated with commas. EXS cards are placed between the
IDe and ELD cards in a binary deck. Their quantity is limited only by the
size of the loader symbol table.

10.1.9
SNAP Through use of a SNAP control card, a user may request a periodic printout

by the SNAPSHOT dump routine of contents of selected sections of memory.
The requested dump may be in octal, character, or decimal floating point.

Each time it is called, the routine writes, on the job OUT file, a line con­
taining the 1-4 character BCD dump identifier, the location of the call to
SNAPSHOT, and contents of the A and Q registers and the three index registers.
When the register file option is elected, SNAPSHOT prints the sub-heading
REGISTER FILE, followed by the contents of the last 32 highspeed registers.

The memory dump consists of 8-word lines of data printed in the designated
mode and preceded by a 4-character identifier (provided by the user), the
absolute octal address of the first word of the line, and its relocatable word
address. When SNAPSHOT detects a line that contains words all identical
to the last word of the preceding line, the line is suppressed. The suppressed
line or lines are noted with the word GAP on the listing.

SNAP control cards may be inserted in a job input deck after a Task Name
control card if the named task is not on the INP file,after an ELD card if
the task named is on the INP file, or after an OCC control card. They
cannot follow binary card images on a file other than the INP file. For
each SNAP card, a calling sequence to SNAPSHOT is created and stored in
available memory. An instruction in the task specified on the SNAP card
is replaced with a return jump to the calling sequence. The instruction is
saved within the calling sequence and executed after the dump is taken.
Because this instruction is not executed in its normal location, it must not
be modified by the program and it must not involve more than one word such
as skips, indirectly addressed instructions, and searches.

$SNAP, {subp)n, fwo, Iwa, mode, id , chap

(subp)n

fwa, lwa

Location of the instruction to be replaced. The name (1-8
BCD characters) of the subprogram containing the instruction
appears within the parentheses. n is an address of not more
than 5 octal digits to be added to subp to obtain the relative
address of the instruction.

Beginning and ending addresses of the area to be dumped.
lwa must exceed or be the same as fwa, otherwise the
SNAP statement is ignored, and an error message is
written on the OUT file. If they are the same, the dump
produces only the contents of console registers. fwa and
lwa must both assume one of the following forms:

10-11

10-12

mode

id

D/id/n Dump begins or ends with octal location
n (0 to 77777) in the data area specified
by 1-8 character id.

Cn Dump begins or ends with octal location
n (0 to 77777) in the common area.

(subp)n Dump begins or ends with octal location
n (0 to 77777) in subprogram subp.

The area to be dumped must reside entirely
within data area D/id, the common area (C),
or the subprogram area (subp) of subprogram
memory.

Format of the dump; if mode is illegal the SNAP card is
bypassed, and an error message is written on the OUT
file.

o

C

F

R

OR or RO

CR or RC

FR or RF

Octal

Character (6-bit BCD)

Floating point

Register file

Octal; register file

Character; register file

Floating point; register file

1-4 BCD characters identifying the dump. These four
characters precede each line of output on the dump.

chap 1 Blank, or omitted; dump area is in Chapter One.

2 Dump area is in Chapter Two.

Rules:

1. To prevent excessive printout, avoid calling SNAPSHOT within a
loop.

2. The location at which the SNAP occurs must not be altered during
execution or by acc (octal correction) cards (10.1. 10).

3. Do not replace the following types of instructions:

Instructions involving more than one word such as searches
and skips

Indirectly addressed instructions

Instructions modified by program execution

10.1.10
OCC

4. Before a SNAP card is read, the loader must have processed an
XNL card (10.2.6) or an EXS card (10.1. 8) declaring SNAPSHOT
as an external symbol. Otherwise, the SNAPSHOT routine will not
be loaded with the task containing the calling sequence.

Example:

$SNAP,(NTEST)23,C01000,C02215,O,COMM,2

Locations 01000 through 02215, subprogram NTEST Chapter Two
common will be dumped in octal mode each time instruction 238 of
program NTEST is executed.

With an octal correction card, a user may change a loaded task by altering
contents of locations or adding octal instructions or data. Corrections may
apply to any of the subprograms making up the task; but they apply only to
Chapter One of two-chapter tasks. OCC cards may be inserted in a job
input deck after a Task Name control card if the task is not on the INP
file, after an ELD card if the task is on the INP file, or after a SNAP
control card. They cannot follow binary card images on a file other than
INP. When SNAP and OCC cards are intermixed, an OCC statement must
not destroy the jump to the SNAP calling sequence. An error on an OCC
card produces a message on the job OUT file. Although all the OCC cards
are processed, an error prevents task execution.

The location field (first parameter on OCC card) indicates whether the acc
card:

1. Sequentially corrects program instructions beginning at word
location n (0 to 77777) in named subprogram (1-8 BCD characters)

10-13

10-14

2. Sequentially corrects data words starting at word location n
(0 to 77777) in the specified task data area

($ ace, 01 i dIn , C I' ... , ex

3. Extends program execution area by n word locations (0 to 77777).
If n exceeds available memory for task, program area is extended
only by the amount of memory available; a message is written on
the aUT file specifying actual extension length.

4. Places information in extension area starting at word location n.
This acc card must be preceded by the card described in 3. If
n is larger than the previously defined area, the corrections are
not loaded.

5. Continues corrections to program or data area begun on card
described in 4 starting at n addresses (0 to 77777) beyond last
correction on preceding acc card. When only + appears, no
addresses are skipped.

Octal correction fields separated by commas. A field may be
blank or omitted (two contiguous commas) or may contain a
1- to 8-digit octal value which may be accompanied by a
positive or negative relocation factor.

Each octal value is stored right justified in a computer
word. When the value occupies fewer than 8 digits (leading
zeros omitted), the loader zero-fills the remainder of the
word. Blanks in a correction field are ignored; when a field
is blank or omitted, the location represented by the field is
unchanged.

The loader stores a correction as it appears, or with word
or character relocation of the address, into the memory word
determined by the location field and the position of the
correction field on the card.

Fields may be combined:

correction stores correction by word address as it
appears in field without address relocation.

correction reloc factor Stores correction by word address relocating
address field positively relative to relocation
factor.

correction -reloc factor Stores correction by word address re­
locating address field negatively relative
to relocation factor.

correction reloc factor e Stores correction by word address positively
relocating address field as character
address relative to relocation factor.

correction -reloc factor e Stores correction by word address nega­
tively relocating address field as character
address relative to relocation factor.

Relocation factors:

(subp) 1-8 character subprogram name enclosed in parentheses.
The loader relocates the address field relative to the first word
address of the named subprogram (Example 2).

* The loader relocates the address field relative to the first word
address of the last subprogram named in this series of ace
cards (Example 1).

e The loader relocates the address field relative to absolute
address OOOOO.(Example 6).

10-15

10-16

D/id/ Loader relocates the address field relative to the first word
address of a data block identified by 1 to 8 BCD character id
(Example 6).

X Loader relocates the address field relative to the first word
address of the program extension area (Example 6).

Examples:

1. Enter octal correction 200xxxxx at address 00070 relative to sub­
program PROG1. The * tells MASTER to relocate address 00100
relative to subprogram PROG1. MASTER loaded PROG1 at
address 73355.

/50CC, (PROG 1)70,200001 00 *
r

Result: (73445) = 20073455

2. Enter octal correction 200xxxxx in location SUB1 +77 of subprogram
SUB1; relocate 00100 relative to subprogram SUB1. Enter
correction 400xxxxx in location SUB1+100 of subprogram SUB1;
relocate 00101 relative to subprogram SUB2. MASTER loaded
SUB1 beginning at address 63652 and SUB2 beginning at 44711.

$OCC, (SUB 1)77,200001 00 *,40000101 (SUB2)

Result: (63751) = 20063752
(63752) = 40045012

3. Enter the octal value 00000036 into locations 20,21,22,23,24,25 of
subprogram SUB1; because values are right justified, all the octal
corrections 00000036, 0000036, ... are stored as 00000036.
MASTER loaded SUB1 beginning at address 63652.

$OCC(SUB1)20,00000036,000036,00036,0036,036,36

Result: (63672)
(63373)
(63674)
(63675)
(63676)
(63677)

= 00000036

4. Assign 208 locations to the program extension area. Enter infor­
mation into the first four locations of the extension area relocated
relative to subprogram B1 which MASTER loaded at address 56345.

Continue loading the program extension area; relocating the next
two corrections relative to subprogram SUB2, the last two relative
to subprogram SUB3.

Load the corrections pertaining to subprogram SUB4 and subprogram
SUB5 into program extension location 10.

$OCC,XtO,2000620(SUB4),4000062t*,20000622(SUB5),40000623*

$OCC,+,20000400(SUB2),40000401*,20000402(SUB3),4000403*

$ 0 C C , X, 200001 00 (SUB 1), 40000 tOt * , 200001 02 *,40000 t 03*

$OCC,X20

5. Enter four octal values in successive data area locations starting
at first word. Skip 2 addresses. Enter four more values. MASTER
assigned the data area to address 30000.

$OCC,+,73535353,1060

$OCC,D/DBLOCK/,4,10,14,20",57632,1114567

10-17

10.1.11
END-OF-FILE

10-18

Result: (30000) 00000004
(30001) 00000010
(30002) 00000014
(30003) 00000020
(30004) = unchanged
(30005) = unchanged
(30006) 00057632

(30007) 01114567
(30010) 73535353
(30011) 00001060

6. Enter correction 010xxxxx into location 70 of Bl; xxxxx is 00001
modified relative to the address of the program extension area.
Enter 200xxxxx into B1 +71; xxxxx is modified relative to the fifth
address in the common area. Put 400xxxxx into B1 +72; xxxxx is
00007 relocated relative to the seventh address in data area. Skip
2 addresses; put 200xxxxx into B1+75. xxxxx is 00007 character­
relocated relative to B1.

$OCC, + 2, 20000007(81)C

$ 0 C C , (8 1) 70, 0 1 00000 1 X, 20000005 C , 400000070/8 L 0 C K/

A job is terminated with an end-of-file card characterized by 7,8 punches
in columns one and two. This card has the same format as an end-of-file
card that terminates PUN output (2.6.2). Columns 3-80 may contain
comments.

11 2 3 " 5 6 1 • 91011121314 Ij 1617 111920 21 212J2~ 2S 16 27 ~.2S 3D 31 32lJ 34 3j3S 37 28~a'0414~4344.54647 4UiSD5t 5253 5455~& ~75'5HlJ'162 636465 6661&16970 n ri7l1. 7516 n 1179,.

, I 2 5 " ~ • " • , 10 ij 12 13 14 15 I' 11 II 18 zo 2t U 13 24 25 tI 11 28 t9 JI 31 .u 33 34 l:i 3C 31 31 .u 40 CI 42 43 44 45 41 41 41 41 50 !II .52 ~~. ~ ~~ ~; J!".~

00
123'51711~"Uo«.wn •• m~nnu~anaa~nn~~~~n~~~~u~~~q~qU~~~DM"~n~"u~ua~~"~""mnnn~~Nnnn.
11111111111111;111

22
123"'71In"»O"aannn.~nn~~anaa.nnn~~~nx~~~uu~U.UqU.~~DM~~n ••• ~uaM •• ~u.nnnnunNnnn.
33

444~44444444444444444444444444444444
1 23'51111."UQ".an •• annn~aan.a»nnn~~.n ••• ~CG~ •• ~q •• n~DM •• ~ ••• ~aaM~.~.unnnn"nNnnn.
55S5555555555555555555555555555555

66& 6 & 6 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 & 6 6 6& 66 6 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 & 6 6 6
123'11111."UU"n.n ••• nnDM.anaa.nnn~ •• n.~.~CG~ •• ~ ••• nRDM •• n ••• ~a.M •• a ••• nnnMn.n.n.
11111111111111117 111 71177177177 17 7 7 11 7 7 7 77 7 77 1 77 7 7 1 7 17 7 17 1 77 111111111 77 117 1117 11

11111 III lIS 111
123'11111."UU"a.".ft.nnn~.an.a.nnnM~.n.~.~CG~6.Q ••• nRDM •• n ••• ~a.M •• a •• nnnnMnNn.n.
9 9 39 9 9 9 9 9 9 ~ 99

MC-TOOU

10.2
BINARY CARDS

10.2.1
GENERAL
SPECIFICA TIONS

The MASTER relocatable loader (section 3.5) accepts relocatable binary
information in the form of decks or card images. Compilers and assemblers
operating in conjunction with MASTER generate binary decks that meet the
specifications outlined below.

Binary card types, and the order in which the loader seeks them:

Subprogram Identification Card (IDC)

Block Common Table Cards (BCT)

Subprogram Entry Point Cards (EPT)

Relocatable Information Cards (RIF)

External Name and Linkage Cards (XNL)

Transfer Card (TRA)

End Loading Card (E LD)

An IDC card through TRA card and the cards between, make up a subprogram
deck.

W, WORD COUNT (RIF) OR TYPE 41 IDC 42 EPT 43 XNL 44 TRA 45 LRL I 4(\ RIF50 MAIN 'I OYERL" 52 SEC"IT 54. LED 55 EXS
, , I I I I I I' 'II I' , I I I I I I I

• ~ :"",,, " " " " ,,,,,, " " "I" """ "I" " " "I" " "" " " """ " ..I"" " J. ,,,,,,,. " ,,', " ",' " '," " " "" " "" " "." . "" ".,,,, " ,
'2)-

:~
~~
~m
U w
<t::'

~8
..Jr!I
go J>
.... 0
zN
8t'l

(J)

I C

l ~,'.~ :!, :;,J, :~:'''.'': """ "" ""'''",'' """" ", """ "JJ" '" ,,,,,.,,,,,,1",,,,,,,,,,,,,,,,,,,, :,:::::'.: '; :1: ,,,. ,

The fields in columns 1-4 of all but the ELD card meet the following
specifications.

10-19

10-20

Columns 1, 2 form one 24-bit word with the following format:

Word One:

~~-----COLUMN 1-----t------COLUMN 2----~~
W IA 1 4 - 1 21s II Is A 1 1 - 00

23 18 IS

W = 2-octal digits identifying card type; on RIF card it also
indicates word count

A = Bits 17-15, 11-00, form a 15-bit value the significance of
which is card dependent

B = Bits 14 and 12 (7,9 punch in column 1) are always punched; they
identify card as part of binary deck

I = Bit 13 (8 punch in column 1)

blank

punched

checksum used by loader

checksum ignored by loader

Columns 3,4 form one 24-bit word with the following format:

Word Two:

00

I ~E--------COLUMN 3------------~~~E------------COLUMN 4------------~~
CHECKSUM

23 00

Checksum 24-bit sum with end-around carry of
all other columns on card (1, 2, 5-80)

Columns 5-80 contain information relevant to the card type.

10.2.2
IDC The Subprogram Identification card gives the length and name of the sub­

program to be loaded.

If. -:'il' , , , , , , , I I I I I I I I I I I
!i~ :.wOFO COUNT (RIF) OR TVPE 141 :~NL 4'" DI I Fn ;'\ FX.

!.~: ,,,"'''''"'''''',,',,',,,,',,, .. ,,,,',,''''""".,,.,'''' .511131< 11111 'I' Iii 11"" 'I""" I II
~; ~ 1t·~ •• '."to +IA e DIE FIG ~ < - J K . M N 0 P QIR V II * II> b/S T U VW x viz ('fl

Ii'· :
!

@ II':'. It.:\ Ir::-, :~ ,c, ~ r.;::., I~ Ie-. b '= i= ~
r.;., 1,:;";\ = ,Q

I'V 1'-.:/ I\,J 'C' x..:/ 'C' 1"'-' I=' P ,= I"::> = 1= <::;/ 1=

.
~ Ul

8 c

I ~
CI

""'
0

1

2

3

i8
19

\.. t.lL!.'?i ICco'"
Inlu~~~"aunnunH"HHH~n~M~H~H~Q~I2~U~iI~QQH~51~I<~II"~~"~Il.".iI~nun :~:: 1l,~I'~'~IJl '.11111 ~

W= 418

A = Number of words, in octal, in the subprogram (0-77777)

Card columns 5-8 form computer words three and four. Each 1/2 column
contains one 6-bit BCD character of the subprogram name of 1-8 alphanumeric
characters. Card columns 9-80 are unused.

Example:

4 0 S y
()

1 6 ::I:
rn
()

" (J)

0 2 c A 6
~

3

23 4 S 6 7 8 9 80

The subprogram, named SAMMY6, is 623
8

words long.

.. Word 3 ·III~ Word 4 ~I
S A

II
M M Y 6 II unuled I

10-21

10.2.3
BeT

10-22

The Block Common Table card gives the length of each common and data
block area declared in the subprogram.

W= 478

A = Sequence number, right justified in field, when deck contains
more than one BCT card. First BCT card has sequence number O.
BCT cards must be sequential in the deck.

Columns 5-80 contain as many fields as there are common and data blocks.
A field is not continued to the next BCT card. Each field contains the name
in BC D code of the block of common and data, and their length in octal. A
name that begins with a number identifies numbered common; when it begins
with a letter, it identifies labeled common, or data. It may be 1 to 8
characters long. When it is fewer than 8 characters it is separated from
length by #(72 8),

Length is an 18-bit value. The least significant 15 bits give the length of
common. When length occupies fewer than 15 bits it is right justified in
the field and zero filled. The most significant bit indicates chapter one
common (0) or chapter h'lO common (1).

Example:

~ a A c E a 2 F # a
() f--

7 0 :J: 0 0 0
fTl
()

" (J)

0 0 c B D# 0 E G 0 3
~ -I a a a a

I

2345678910111213 80

10.2.4
EPT

Sequence number is 0

Labeled common block named ABCDE is 16 words (20S); EFG is 24 words.
Both are in Chapter One. Columns 13-S0 are unused.

An Entry Point Name card may appear in any position in the deck. It
defines entry point names of the subprogram.

/ .. 11......--.·····,·····:·1 1 1 1 1 1 1 1 1 1 1 1 1:1 1 1 1 I I I I ~ ~:wOfID COUNT (RIFlOR TYPE 41: IDe !42:~PTI14"'~!: XN .. I'L!44:· ... TDRAI·"A4·5:LIDR'Lh·.It':R'I'!w:lAAII:N!11 omlAY "'''''' ~r I.. vo

In

W= 42S

A = Sequence number right justified in field when deck contains more
than one EPT card. First EPT card has sequence number O. Cards
must be sequential in deck.

Each field in columns 5-S0 consists of an entry point name in BCD and its
address. A field is not continued to the next EPT card. A name may be
l-S alphanumeric characters; when it is fewer than S characters, it is
separated from address by #(72S)' Address is right justified in an lS-bit
field. If the most significant bits are non-zero, the loader converts the
address to a character address; if zero, the address remains a word
address. The remainder of the field is zero-filled.

When the loader reads a name of fewer than S characters, it left justifies
it, removes spaces and fills the remaining character positions with blanks
(60S)' It then places the S-character name in a symbol table.

10-23

10.2.5
RIF

10-24

Example:

~ 0
I-- (')

2 0 :I A P A
ITI

I--
(')

:A
(f)

0 0 c

1l
3:

0 L H 2 #

Sequence number is 0

Entry Point Name

ALPHA 21

BETA

GAMMARAY

ZED

0 , 7

0
-

0

3

4 E A

B T #

Address

70034

60162

55473

57675

0 6

6 2 A M

0
-

1 G M A

~
5 0
~

R Y 4 2 0 5

0 7 7

** -
A 5 3 E 6

A Relocatable Information card contains program information in the form
of relocation bytes and data words. RIF cards are not sequenced.

7

5

W = 1-368; number of words on card

A = load address of first word

Columns 5-20 'contain up to 31 6-bit relocation bytes. The first applies to
the load address in A. Each of the others applies to the address field of a
machine word in columns 21-80. A byte has the following format:

WORD/, INCREMENT/' 18 AIS EI

CHARACTER DECREMENT
I I I
I I I

5 a

Word/Character

o relocation factor applies to 15-bit word address

1 relocation factor applies to 17-bit character address

Increment/Decrement

o increment relocation counter (numbered common)

1 decrement relocation counter (program or labeled common)

Base Address to be relocated relative to subprogram or one of 14
possible common blocks (numbered or labeled)

o no relocation

1 Subprogram

2 to 178 Common block 1-14

Columns 21-80 contain up to 30 words of data (labeled common) or machine
instructions to be loaded after the corresponding relocation factor is applied
to the address portion of each word.

10-25

10.2.6
XNl

10-26

The external name and linkage card indicates external references made by
the subprogram.

::::

~~~: ~ ~~; t::,,·: ·:·f: .~~:~.; :I:~:;:~::;; i· :~: ;.~:; .Jt:::::: ::\: ::::: :::+?::::~::::::: ::~::: ::F::::jl::::::;:;: ~:::: :;1=):::::::1: 

:::::::: :::::::: 

::: 

::: 

• 
:;:;: 1 
;;; 2 
::: 
::: 3 
::: 
::: 4 

5 
::: 

I " _]'-:tt __ -'mru~;:~Jill J 

I!::'~:::::I::::::I:::: :::: 

W=438 

A = Sequence number right justified in field when deck contains more than 
one XNL card. First XNL card has sequence number 0; cards must 
be sequential in deck. 

The field in columns 5-80 each consist of an external name in BCD and its 
address. A field is not continued to the next XNL card. 

A name may be 1-8 alphanumeric characters; when it is fewer than 8 
characters, it is separated from address by #(728)' 

Address (low order 15 bits of 18-bit field) indicates location containing a 
reference to the external name. 

The address field of the \\lord at that location may specify another location 
within the subprogram at which a reference is made to the external name, 
and so on. Such a series of addresses is called an external string. The low 
order 15 bits of the last entry in the string contains 777778 , This string 
may run in any order through the subprogram. If no reference to the external 
name is made in the subprogram, the address on the XNL card is 777778" 

When the loader reads a name of fewer than 8 characters, it left justifies it, 
removes any spaces it contains and fills the remaining character positions 
with blanks (6°8), It then places the 8-character name in a symbol table. 

All external references are to subprogram relocatable word addresses. How­
ever, the external reference may be made either from a word or character 
type instruction or string. All entries in a string correspond to references 
from word type instructions, or all are from character type instructions. 



10.2.7 
TRA 

The upper 3 bits of the address field following the external name flag the 
type of string. If the string is word-oriented, the upper three bits are 
zero; if the string is character-oriented, they are non-zero. 

An external name may be specified more than once in a subprogram deck; 
each occurrence has its own string. Multiple strings for a single name of a 
type are tied together by the loader. 

The XNL cards may be in any but the first position in the subprogram deck. 
An external string may refer to previously encountered external symbols only 
after the relocatable information has been loaded for them. 

The transfer card indicating the end of the subprogram appears at the end of 
the subprogram deck. 

Columns 5-8 give the transfer point symbol in column binary (internal BCD). 
Columns 9-80 are unused. 

The transfer point symbol must appear as an entry point name in the loaded 
program deck or in a library subprogram. After loading, MASTER transfers 
control to the last encountered transfer point. If no transfer point symbol 
is given, or if more than one appears, the loader indicates an error; the first 
TRA card terminates loading of the subprogram from the library. 

10-27 



10.2.8 
ELD 

10-28 

'" 1 r-- I I I I I I I I I I I I 
44\R' 

I I I I I I 
55 :IExsJ 

I 

-
W- WORD COUNT (RIF) OR TYPE 41: IDC 42:EPT 43:XNL 45:LRL -4t':RiF 5O:MAIN 51 . D~[lLAY 52.SflallElT 54: LED 

0 

J I 
I II 11 tl' 1112111. a 'i 1111 "HUl' 2]2' 25 11 H 11 2']1 llUIl14 ]slIHlI ]lU'1 t2 U U 45 '6 41 410 SC 5152 51 ~ 55 ~ 51 Sf )!"'112 53 U '5 '5 ,1 U U II 1172 13 U 15151111 I,a; 

'Nd~~~tL. 
1 

~ -
1'1 ••• 0/.[ +AB C DE F G HI < • » ; - J K LMN0P QRV 1*' +> b / S TUVWX y Z ] • ( •• 1\ 

2 

:1-
0 

l\~ ~ ~ :~ :8 i@ ~ k0 ~ ~ I@ ~ ig iSf---~ ~ @f---~ ~:@ 
3 

0 
I--- I--- f- r- r- f-- I--- r- f- f- ~ ~ f-- f-- f....-

0 .'- 4 
..JCD 

~g » l~ ;:,- 5 
zN III 
811) > . 

I 
c 

1 
SO; I ,,-.• ill I I I I I I I I I I I I I I I I I I I I I 'II I I I I I I I I I, 

~ ~ · I 1 J LJ! ):,),),,11 JI11.1s, 11111.1 Je J, JI J 11111 J, 1. 1111 ~ll J,.l ~L~~I .J~)~ ,1./ ~ 

W =77 

Columns 2-80 are unused. 

An E LlJ card signals the end of the program deck. When assembling 
several subprograms into a task, remove any extra ELD cards generated 
by the compilers or assemblers. Leave only one at the end of the deck. 



10.3 
DECK PREPARATION Decks portrayed in this section represent general job applications of 

MASTER. The operator submits decks in sequence on the input card reader. 

10.3.1 
COMPllA TION 
AND EXECUTION The user with a source language program, such as a set of FORTRAN 

statements, to be compiled and executed prepares his deck as shown below. 
In the example, LGO is a scratch file allocated and opened by the first com­
piler or assembler of a job using System OCARE. It is not closed until the 
end of the job. 

(77 
88 

INSERT ANY ~> """" *DEF CARDS ( DA TA ) 

REQUIRED ~ /$X,LGO 

~ BY X 

~) (SOURCE LANGUAGE DECK) 

V$FTN( L,A,X) 
/$SCHED,CORE=20,TIME=10,CLASS=C,ABORT=100,SCR=5 

r--
$JOB,2635,DEV,15,1000 

-
f--

-

10-29 



10.3.2 
OBJECT DECK 
EXECUTION 

10.3.3 
MULTIPROGRAMMING 
A JOB 

10-30 

To load and run a binary object deck generated by a MASTER compiler or 
assembler, organize the deck similar to the example below. Schedule all 
peripheral equipment required and, if the program itself does not do so, 
insert control cards to allocate and open files used by the program. 

77 
88 

( DATA) 

~ ~I-D-C------(-8-I-N--A-R-Y--O-B-J-E-C-.-T--D-E-C-K-)------------~ 
V" $XIXX, INP 

~$SCHED,TIME=2,CLASS=C,CORE=10 
$JOB,241,GKL,5 

-

When a job consists of several Task Name cards, the named tasks will not 
be multiprogrammed within the job. 

ALLOCATE AND OPEN ANY 

FILES PGM REFERS TO 

THAT IT DOES NOT 

OPEN WITH MACRO 

CALLS. 

77 
88 

$PGM,LGO 

( DA TA ) 

(SOURCE DECK) 

(SOURCE DECK) 

$FTN{L,A,X) 

$SCHED ••• 
$J OB ••• 

w 
W 
0:: OJ 

}~: 
o 

} ~ ; 
w 
z OJ 
o 0 



10.3.4 
SERIALLY 
DEPENDENT JOBS 

In this job, the FORTRAN compiler will not be multiprogrammed with the 
COMPASS assembler. Subtasks of anyone task, in this case FORTRAN, 
COMPASS, or PGM, can be multiprogrammed on an internal basis. Each 
may consist of several tasks to be multiprogrammed or processed 
sequentially. The user may be unaware of the existence of such tasks. 
Internal structuring of tasks within a task is accomplished through the 
COMPASS CALL macro described in section 9.1.1. In the above example, 
the COMPASS source deck being assembled into PGM may contain calls 
for other tasks. 

If the output from one job is required before a second job can proceed, the 
second job must not be submitted to the system before the first has reached 
completion. There is no way in which the two jobst can be linked so that one 
will wait for the other. Some serially dependent jobs can be made serial 
tasks of the same job so that the system will not time share them. In the 
example, task B which uses the output from task A, \\111 not be initiated 
until task A has been completed. 

$SCHED, ••• 

$JOB, ••• 

ELD 

77 

88 

(BINARY OBJECT DECK Bl 

(DATA FOR A) 

(BINARY OBJECT DECK Al 

J 
TASK BUSES 

DATA FROM 

FILE X 

TASK A 
~ITH DATAJ 

OUTPUT GOES 
TO FILE X 

t A job begins with a JOB or DIRECT card and terminates with an end-of­
file card. 

10-31 



10.3.5 
GENERATE AND 
CAll ABSOLUTE TASK 

10-32 

In this example, TSKB is loaded and linked from a binary deck on the INP 
file and binary card images onFl. It is then written in absolute on F2. 

The second part of the job calls for the loading from the INP file and 
execution of TSKA. TSKA, in turn, repeatedly calls TSKB using a CALL 
macro. 

(77 
88 

/( ELD) 

TSKA ~ "" REPEATEDLY ~ (TSKA BINARY DECK) f---

CALLS TSKB~ I /$TASK,1,U,ZCH I 
$TSKA,INP 1 

/1 ELD) 

"'-- ~ 
"-

W 
r- ~ ~ CTSKB BINARY DECK) 
::::l tIl 
.....J ~ 
o Ul 

~ r-
<[ u.. 

o 
W 
r-O 
<[ 0:: 
0::0 
wu 
ZW 
wO:: 
(!) 

< 

.... 

'-----1/ $ T ASK, 1 , 0 , 2 C H 

/$RLDR( TSKB,F2,INP,Fl ) 

/$*DEF( O,W,Fl ,RRD, TASKA,,,I) 

/$*DEF(O,H,F2,RRD,TASKB) 

/$*DEF( A,W,RRD, TASKB) 

/$SCHED,TIME=5,CLASS=I,CORE=12,607=1, ••• 

$JOB,73,JACKS,5 

I--

f--

I--

I--

r--

-
-



10.3.6 
INSERT SNAP 
AND OCC CARDS In this example, PGMA is loaded from file N56. Before it is executed, PGMA 

is corrected and has a SNAPSHOT call inserted. After PGMA is executed, 
control returns to the job monitor which interprets the PGMB task name 
control card. PGMB is loaded from the INP file and has corrections and 
a SNAPSHOT call inserted. Data for PGMB follow the oee and SNAP cards. 

ALLOCATE AND 

OPEN FILES PGMB 

REQUIRES THAT IT 

DOES NOT DEFINE 

V'JITH MACRO CALLS 

)70,01000001 * 

IDC (BINARY DECK) 

$PGMB,INP (PARAMETERS) 
------------

(PGMA DATA) 

$OCC, ( PROG 1 )70,20000100 '* 
$ S NAP, ( N TE S J ) 2 3, CO 1 000, C02 21 5 

$PGMA,N56 
/ 

/ 

,- - -

/ 
/ 

I OTHER CONTROL 
+--
I CARDS (JOB J 

SCHED, ETC.) 

10-33 



10.4 

LOADER ERRORS 

10.4.1 
ERROR 
MESSAGE FORMATS 

10-34 

The loader audits and evaluates input during loading. It diagnoses errors 
and writes messages on a job's standard output file and also on the console 
typewriter---if the job terminates because of the error. 

The format of the error depends on the error type and card format. 

checksum 

format 

symbolic address and linkage 

deck and subprogram sequence 

r/o errors caused by faulty information, hardware failures or 
improper input formats 

A loader error causes a message to be written on the OUT file in one of the 
following formats: 

Binary Card 

Hollerith Card 

Symbol 

Mis cellaneous 

Error codes for the following formats are given in 10.4.2. 

Binary Card Error 

pppppppp cc ww aaaaa 

p Subprogram Name 

c Error Code 

w Word Count 

a Card Address Field 

Example: 

PROGRAM1 IlL 05 06421 



Hollerith Card Error 

pppppppp cc ww hhhhhhhh 

p Subprogram Name 

c Error Code 

w Word Count 

h Hollerith (columns 2-9) 

Example: 

PROGRAMl CS 66 SPEC,4,2 

S;ymbol Error 

pppppppp cc ssssssss 

p Subprogram Name 

c Error Code 

s Symbol, when applicable 

Example: 

PROGRAMl DS TAG4A 

Miscellaneous Errors 

pppppppp ccc ct xx 

p Subprogram Name 

c Error Code 

ct Card Type 

x Information pertinent to card type 

Examples: 

PROGRAMl TR 03 

PROGRAMl I/O 60 

10-35 



10.4.2 
ERROR CODES Formats: B Binary; H Hollerith; S Symbol; M Miscellaneous 

Error 
Code 

(c) Meaning Format w, ct or s Card in Error Error 

CB Common S Block name Undetermined Named common block exceeds 
Block previously defined block. 

(Only the last common block 
may be expanded by subse-
quent programs.) 

CC Control M RLDR $RLDR Format er' Jr indicated by xx: 
Card 

01 No task name xx = 
xx = 02 No input dsi 
xx = 03 No output dsi 

TASK I $TASK Format error indicated by xx: 

xx = 01 Computed priority 
exceeds 77

8
, 

CF Card B 44 TRA Only one transfer card allowed. 
Format 

CK Card B 448 TRA Subprogram checksum is in 
Checksum error. 

blank or Undetermined Loader checksum disagrees 
other with card checksum. 

CS Card B 01-30 Determined No IDC card follows last 
Sequence 42, 43 8 from word TRA card. 

count 

Undefined Undetermined Card type unrecognizable; card 
is copied on job's OUT file. 

418 IDC Two I DC cards read with no 
intervening TRA card. 
Loader processes second IDC 
card as if it followed TRA card. 

478 BCT BCT cards out of sequence; 
must follow IDC card and pre-
cede RIF card. 

M TASK $TASK TASK card must precede IDC 
card. 

DB Data Block B 01-368 RIF or BCT Named data block is larger than 
previously defined block. 

10-36 



Error 
Code 

(c) Meaning Format w, ct or s Card in Error Error 

DS Duplicate B 428 EPT Named entry point has been 
Symbol previously defined as an entry 

point. 

ELD End of M ELD End of load card was encountered 
Load at illegal point during loading of 

this subprogram. 

EOF End of M Undetermined End of allocated file condition is 
File encountered during data trans-

mission on dsi named. 

LX External S External $EXS Named external symbol is 
Symbol Symbol equated so that it forms a 
Loop symbol loop. 

MA Memory S Undetermined Program task exceeds available 
Allocation memory; system error. 
Error 

OV Memory B 418 $SCHED Subprogram exceeds memory 
Overflow scheduled for job. 

478 Common exceeds memory 
scheduled for job. 

RE Read M Irrecoverable error during 
Error loading of task from named dsi. 

RL Relocation M 01-308 RIF Load address relocation byte 
not defined. 

SL String S 438 XNL String of addresses for symbol 
Loop given causes a loop. 

TR Transfer S 448 TRA The count of transfer symbols 
Symbol in subprograms is not 1. 

x = number of symbols encountered. 

WE Write S Undetermined Irrecoverable error detected 
Error while writing task in absolute 

on dsi named on R LDR card. 

UD Undefined S 438 XNL External or transfer symbol was 
Symbol not an entry point or equated to 

448 TRA defined entry point in any sub-
program. Symbol does not exist 

$EXS as entry point in non-system 
directorJl. 

10-37 



11.1 
TASK CALLS 

TRANSFER ROUTINE 11 

Users of MASTER can call from the library a general-purpose copy routine 
(XFER) that enables them to create, maintain, and dispose of standard and 
nonstandard files. XFER transfers files from one medium to another. It is 
useful for conversion of nonstandard files to MASTER standard blocked format, 
transfer of tasks to files, preparation of large volumes of data, transfer of a 
file to special forms on the printer or punch, etc. 

A call to XFER can be made with a Task Name control card or with an XFER 
macro coded into a user's program task. 

Control Card 

1 

$XFE R (ids i , n, odsi, m, f, S S ) mod e , N 

LOCATION 

8 

OPERATION, MODIFIERS ADDRESS FIELD COMMENTS 

10 

XFER 

120 '41 

I (R,idsi,n,odsi,m,f,S$,BN,N) 
I 

I I 

R (Macro only) Caller assumes ready status and 
can resume execution without waiting for XFER 
completion. However, R should not be used if 
the caller uses either file in the transfer, as 
they are not available until XFER is complete. 
When R is omitted, the caller assumes wait 
status; it will not re sume execution until the 
XFER is completed. 

idsi Data set identifier of the input file. \Vhen idsi 
is not spec ified, the input file is INP. 

11-1 



11-2 

n Number of words per input block (1 to standard 
block size). When n is not specified, block size 
is standard. 

odsi Data set identifier of output file. When odsi is 
not specified, the output file is OUT. 

m Number of words per output block (1 to standard 
block size). When n is not specified, block size 
is standard. 

f A form number, 1 to 8 alphanumeric characters, 
defined at an installation that identifies a punched 
card form, printer form, or printer tape format 
to be mounted for odsi. 

SS 

mode 

Appears only when odsi is a printer and indicates 
that printer carriage control is single space. 
When SS is omitted, carriage control is program­
controlled. 

Specifies mode of output; overrides mode parity 
of odsi. 

BN Binary 
BD BCD 

When mode parameter is omitted, output is in 
mode of input. 

N Appears for a mass storage file when idsi was 
prepared by other than a standard blocking routine 
(PACK) or the input backgrounder. Otherwise, 
N is omitted. N specifies standard error re­
covery if input is mass storage, since special 
recovery is performed for records prepared by 
PACK or the input backgrounder. 

Parameters must appear in the order shown. A comma must appear for an 
unspecified field if any fields appear to its right. otherwise; the right paren­
thesis suffices. For example: 

($XFER ( TAPE" PRNT) or LOCATION OPERATION, MODIFIERS ADDRESS FIELD 

I 8 10 '20 

LIBM I XFER I 
: · I 

XFER I (R, TAPE, ,PRNT) 

· I · · · . · 1 · 



11.2 
SPECIAL FORMS 

Using limited blocking and deblocking, XFER copies file idsi until it reads 
an end-of-file. Both files must have been opened prior to the transfer. Also 
any unit devices required must have been scheduled on the SCHED card 
(10. 1.3) ; for example, a tape drive and printer must be scheduled for a tape­
to-print operation. To transfer directly from the card reader, the job must 
be declared a DIREC T job (10. 1. 1) . 

A single user cannot have several XFER' s occurring simultaneously. A 
single non-re-entrant copy of the XFER task is loaded on a call to XFER. 
When several calls to XFER occur in a program, the calls are queued on this 
single copy for the job. XFER is copiable to the extent that each job can have 
its own copy of the routine. 

When XFER is called by control cards and the transfer is unsuccessful, the 
job containing the card is terminated; a message typed on the console type­
writer and written on the job's OUT file. If idsi or odsi is a system scratch 
file, it is released. 

For the macro, upon ret¥rn from XFER, the contents of macro tag + 5 are 
zero if the transfer was ·~uccessfully completed and non-zero if the XFER was 
abnormally terminated. 

The printing or punching of files requiring special forms such as checks re­
presents one of the most useful applications of XFER. Instead of putting the 
print file on OUT for automatic printing by the output backgrounder, which 
makes no allowance for special forms, the user may create a special output 
file and call XFER to print it. 

When the form parameter is used, the operator is directed to change to the 
specified form with the message: 

Rr XFER 01 (MOUNT FORM f ON htCcEeUuuu) 

The operator can indicate compliance or refusal. If he complies, the files 
are processed. If he refuses, the files are not processed; the contents of 
macro tag + 5 are set non-zero (macro request) or the job is terminated 
(control card request) . 

When the transfer is complete, the operator is directed to return to the 
standard form for the installation with the message ~ 

Rr XFER 02 (REMOVE FORM f FROM htCcEeUuuu) 

XFER execution cannot resume until the operator responds. 

11-3 



11-4 

PRINT FILE ON SPECIAL FORMS 

RELEASE INPUT FILE~ 
(77 

88 

/$*DEF( R ••• ) 

CLOSE INPUT AN~/$*DEF( C ••• ) 

OUTPUT FILES 7' $*DEF(C ••• ) 
--

/$XFER( PAY,160,CHKS,80,A6) 

/$*DEF( U, ••• ) 
r-----

/$*DEF( 0, ••• ) --
/$SCHED,501=1,CLASS=I, ••• 

$JOB,637,PAYROLL,20,~000 t---

r---
~ OPEN INPUT A 

r--- OUTPUT FILES 
ND 

-
~----------------~~ 

GENERATE A TASK 

IDSI IS INP FILE 

ALREADY OPENED 

77 
88 

IDC 
BY JOB MONITOR (BINARY OBJECT DECKS) 

$TASK,1,,2CH 

$XFER( "PGMA ) 

$*DEFlO, •• ) 

$SCHED, •• 

$JOB,521~,SIS, •• ALLOCATE 

AND OPEN 

FILE FOR 

TASK 



11.3 
BLOCKING/ 
DEBLOCKING 
CONVENTIONS 

Example: 

LOCATION PPERATION, MODIFIERS ADDRESS FIELD COMMENTS 

1 8 10 '20 141 

LIBM ,XFER 
I , 

, I 
XFER , (R, TEMP, ,CHKS, ,18161532 ,SS, ,N) 

I I 

An installation can also designate form numbers that specify changes of the 
format tape for the printer. 

When input and output block sizes differ, some form of blocking takes place 
on an XFER. Deblocking is restricted to files being transferred to the printer 
or to the punch when the input file is assumed to be in MASTER standard block­
ed format (Chapter 6) . 

Deblocking takes place if the specified input block size is larger than the spec­
ified output block size (n>m). 

Blocking takes place if the specified input block size is smaller than the spec­
ified output block size as shown below: 

1) Card reader 

The specified input block size indicates that blocking is required; 
40-word reads are given, and the hardware determines whether the 
card is binary or BCD. The count is adjusted accordingly. The block 
is filled until the remaining area defined by input block size cannot 
hold another 40 -word image. 

2) Magnetic tape 

The input block size specifies the largest record appearing on the 
tape. XFER uses this value in the request itself, although it uses 
the word count of the read to determine the actual record length. A 
block is filled until the remaining area cannot hold another record of 
the specified input size. 

3) Disk 

The input block size specifies the actual size to be read. The block 
is filled until the remaining area cannot hold another input block. 

11-5 



11.4 
XFER ERROR 
CONDITIONS 

11-6 

XFER blocking is useful for converting nonstandard files to standard 
MASTER format. 

Conditions detected by XFER that result in termination of the task produce 
the following message on the console typewriter and the codes on the job's 
OUT file: 

D JOBi XFER 03 (SEC=xx XEC=yy) 

xx System error codes (7. 2) 

yy XFER error codes 

01 disk format error 
02 XFER reached end of allocated file 
03 file lockout condition 
04 XFER unable to define abnormal condition 
05 write attempted on read-only file 
06 end-of-tape condition 
07 irrecoverable error 



3.5 
RELOCA TABLE 
LOADER 

3-10 

Input to the relocatable loader is binary object decks generated by compilers 
and assemblers according to specifications outlined in Section 10.2. This 
loader is called when a job requires loading of task in relocatable format. 
The MASTER relocatable loader automatically performs the following 
services: 

1. Loads relocatable binary information into memory from a file 
named in the call. 

2. Links independently compiled or assembled subprograms that 
reference each other through symbolically named entry points. 
Several symbols can be equated to the same entry point. 

3. Loads and links into a task any externally referenced library 
routines. 

4. Detects and records format errors or violations of loading 
procedures. 

5. Assigns the task's common area to chapter 2, upon request. 

6. Prepares a memory map. 

Upon option, the relocatable loader can be called by an RLDR control card 
(10.2.7). Then, the relocatable loader generates an absolute record of a 
task after loading and linking its relocatable subprograms, and stores the 
task on a user specified file. 

During program loading, the loader generates a table of declared external 
symbols and entry points. When the last card of a task is sensed, any 
external symbols not matched to entry point symbols defined in the task 
are sought as entry points to library subprograms. The loader then loads 
and links the required subprograms. 

The memory allocator makes physical memory available on a page basis 
to the program and data area as the task is being loaded and on a quarter­
page basis to the common area after the entire task has been loaded. At 
the time, the common area is assigned to physical memory, and the memory 
assigned to the loader has been released to the system and may be used 
for common. Allocated core is zeroed when assigned. 

Each task of a job will have as its last entry in its chapter-one page map 
the page containing the job's copy of the blocker / deblocker routines. In 
the example, a copy of the blocker/deblocker for JOB1 is in page 164. 



3.S.1 
SUBPROGRAM 
ELEMENTS 

1 7 13 164 0 

00 047 a 
00 046 0 

1 7 1 3 164 a 045 a 
00 070 043 0 

1 7 
~~ 

13 164 0 

00 053 a ~~ 
10 052 0 032 0 

---1 
,.-/ 

1 TASK C 

1 
~-

61 a 
...... -
oo~ T~SK B 

TASK A 

Chapter One Page Maps for Tasks A, B, and C of JOBl 

The subprogram elements recognized by the loader are entry points, ex­
ternal names, and data and common blocks. 

Entry Point 

An entry point consists of a name and an address. The name, one to eight 
alphanumeric characters the first of which is alphabetic, specifies a 
location in a subprogram which may be referenced by another subprogram. 
The entry point address specifies the computer location assigned to the 
name. One subprogram may have any number of entry points (10.2.4). 

External Names 

An external name, one to eight alphanumeric characters, specifies a loca­
tion symbol which is external to a particular subprogram. That is, it is not 
a defined symbol in the subprogram in which it is declared as external, but 
appears as an entry point name for another subprogram. The external 
linkage information given with the name specifies locations referencing an 
external name (10.2.6). 

3-11 



3.5.2 
MEMORY MAP 

3-12 

Data Block 

The data block is an area of memory that may be shared between subprograms 
of one task, but not between tasks. It may be preloaded with data at load 
time. It is assigned logical memory addresses in the same manner as a 
subprogram upon being encountered the first time. Thereafter, its declared 
length must not exceed the assigned length. Data blocks are sometimes re­
ferred to as labeled common (10.2.3). 

When a subprogram does not refer to the data block, the length of its data 
block is zero. For a task consisting of two subprograms, S1 and S2, and a 
data block, logical memory assignment appears as: 

74000 S, 

DATA 

S2 

00000 

Common Block 

The common block is an area of memory that may be shared between sub­
programs of one task. It may also be shared between two-chapter tasks 
of a job. The common block is always assigned logical memory beginning 
at address zero. This block may not be preloaded with data, because it 
is not assigned physical memory until loading is complete. The declared 
length of the common block may vary from one subprogram to another; it 
is restricted by the amount of logical memory addressing assigned to it 
and the physical memory available. A common block is sometimes referred 
to as numbered common (10.2.3). 

When a task is relocated, the programmer obtains on his standard output 
file (OUT) a memory map of logical (chapter) memory allocated to a loaded 
program. The information for the map is obtained from the loader symbol 
table. Map headings have the following significance: 



Heading 

SUBP 

ENTR 

COMM 

DATA 

Example: 

MEMORY MAP 

SUBP 

73025 

ENTR 
73030 

COMM 

NONE 

DATA 

NONE 

Significance 

Below SUBP are listed absolute addresses, and names 
of subprograms as stated on the IDC card. It does not 
show addresses reserved for the blocker/deblocker. 

Below ENTR are listed the entry point symbols as taken 
from EPT cards and the absolute address of each entry 
point declared in any subprogram loaded for the run. 
It should always show an entry point for UIC. 

Under COMM is given the name of the common area and 
its length. The common area derives its name from the 
chapter to which it is assigned. That is, name can be 
1 or 2. NONE indicates the task has no common area 
of its own. 

Under DATA is given the absolute addresses and names 
of the data areas. NONE indicates that the task has 
no data areas. 

NONSDTST 72666 SDTST 

TESTI 72727 TES T2 72666 

3-13 

UIC 



3.5.3 
ONE-CHAPTER TASK 

3-14 

For a one-chapter task, the loader reserves addresses 76777 down to 
74000 for the job's copy of the blocker/deblocker. It assigns addresses 
from 73777 downward to subprogram and data blocks as they are loaded 
and linked according to requirements indicated on Identification cards (IDC) 
and Block Common Table cards (BCT). Common addresses it assigns 
upward from 00000. At the end of loading, an address gap will usually 
occur between the top of common and the bottom of the program and data 
addresses. This gap is not assigned physical memory and the core it 
represents should not be scheduled by the user when he estimates core 
requirements for a job. 

76777 

74000 

00000 

PROGRAM 

AND 

DATA 

COMMON 

UNASSIGNED 

ADDRESSES 

ADDR~SSING OF ONE-CHAPTER TASK 



EXAMPLE 

TASK SAM CONSISTS OF SUBPROGRAMS 

NTEST AND PCHCK. IN THIS EXAMPLE 

SAM IS A ONE-CHAPTER TASK. 

MEMORY MAP 

SUBP 

73725 NTEST 73444 PCHCK 

EN TR 

73730 NEXT 73445 PICK 

73444 VIC 

COMM 

02215 

DATA 

73670 NDAT 72165 PDAT 

MEMORY MAP 

LOGICAL CHAPTER 

PAGE 177 

176 

175 

174 

173 

172 

7fo777 171 

170 

167 

166 

74000 

73725 065 

73670 064 

73444 

72165 

13 

12 

11 

10 

7 

02215 6 

00000 6 

4 

CHAPTER ONE 3 

2 

PAGE 

ONE CHAPrER TASk 

MEMORY 

77777 

1 3 064 a 
0 0 172 0 

1 

1 

1 
____ l..---~------

11,.--~r---

1 

1 

1 

0 012 

CHAPTER ONE 

PAGE MAP 

2ND QUARTER 
UNAVAILABLE 

00000 

PHYSICAL PAGES 

2 

rTJ 
X 
n 
r 
C 
VJ 
H 
o 
Z 

CD 
H 

-4 
VJ 

VJ 
rTJ 
-4 



3.5.4 
TWO-CHAPTER TASK 

3-16 

For a two-chapter task with its common in Chapter Two, the relocatable 
loader reserves addresses 76777 down to 74000 for the job's copy of the 
blocker/deblocker and assigns addresses 73777 downward to program and 
data as it does for a one-chapter task. Program and data can extend down 
to 00000, however, in which case the entire 32K chapter is assigned and will 
require 16 physical pages. Common addresses the loader maintains 
separately; it assigns addresses upward from 00000 to a maximum of 77776 
in Chapter Two. Usually, parts of both chapters remain unassigned and 
the core represented will not have to be included in the core estimate for 
the job. 

76777 

74000 

00000 

DATA 

CHAPTER 

ONE 

76777 

00000 

COMMON 

CHAPTER 

TWO 

When a two -chapter task has its own common in Chapter One. Loading is 
the same as for a one-chapter task. 



EXAMPLE 

TASK SAM CONSISTS OF 

SUBPROGRAMS NTEST AND 

PCHCK. IN THIS EXAMPLE 

SAM IS A T~O-CHAPTER TASK. 

MEMORY MAP 

'3 UBP 

73725 

ENTR 

73730 

73444 

COMM 

02215 

DATA 

73670 

NTEST 73444 PCHCK 

NEXT 73445 PICK 

UIC 

2 

NDAT 72165 PDAT 

MEMORY MAP 

LOGICAL CHAPTERS 

CHAPTER ONE 

COMMON 

CHAPTER T~O 

7,777 

74000 

73725 

73670 

73444 

72165 

00000 

77777 

02215 

00000 

PAGE 177 

176 

175 

174 

173 

172 

1 71 

170 

167 

166 

065 

064 

13 

12 

11 

10 

7 

6 

5 

4 

3 

2 

PAGE 1 

THO-CHAPTER TASK 

77777 

17 

00 

1 3 064 0 

0 a 172 0 

1 

1 

1 
"--l..--'~"""""" 
hr--'~r---

1 

1 , 
1 

CHAPTER ONE 

PAGE MAP 

~===~i'f:--2 ND QU ARTER 

MEMORY 

UNAVAILABLE 

'7 

00000 

00 

, 
1 , 
1 
~'----

h---~----
, 
1 , 
a 3 012 

CHAPTER T~O 

PAGE MAP 

2 

PHYSICAL PAGES 

, .... 

> 

I' 

> 

fTI 
X 
\) 

r 
c 
VI 
H 
o 
Z 

(D 

H 
-i 
VI 

VI 
fTI 
-i 

fTI 
X 
\) 

r 
c 
VI 
H 
o 
Z 

(D 

H 
-i 
VI 

VI 
fTI 
-i 



APPENDIX SECTION 



HINTS AND CAUTIONS A 

1. Schedule only core and equipment required by the job. 

2. When using the XFER routine remember scratch files are released upon job termination. 

3. Whenever possible, avoid using DIRECT cards. 

4. Remember the console typewriter is shared; over-using it could radically slow 
down a job. 

5. Use XFER for special forms. 

6. The printer driver uses pre-print spacing rather than post-print spacing used by previous 
3200 systems. That is, the paper is spaced before a line is printed rather than after the 
line is printed. This allows overprinting of the previous line. 

7. The offset function of the card punch is used by the background output routine to signal 
job end and compare errors. Writing on the PUN file is implemented with mass storage 
functions - not punch functions. 

8. Character I/O is not allowed on any mass storage devices. 

9. Program overlays are prepared and processed differently by MASTER than by other 
CONTROL DATA operating systems (Chapter 4). 

10. Using blocking and deblocking routines for data transmission is the easiest and most 
efficient method of I/O for mass storage. 

11. A task that is to be repeatedly called within a job should be self-initializing because, 
even though it may request release on return, a queued caller may be connected to it 
before it is released. 

12. When programming the parameter receiving area for a task to be called by a control card, 
allow for the parentheses enclosing the parameter string on the control card because 
they are passed with the string. 

13. A Class B mass storage file opened partially and in segments should not have blocks 
that cross from a segment on one device to a segment on the next device. 

A-I 



GENERAL FILE INFORMATION B 

MASS STORAGE 

The following is general information concerning mass storage files. 

MASS STORAGE GENEOlOGY 

CLASS A DEVICES 

Permanent On-Line 

User Files (A life expectancy of longer 
than one job) 

1. 

2. 

3. 

4. 

ALLOCATE/OPEN/CLOSE/EXPAND/ 
MODIFY/RELEASE by *DEF only 

Files on Class A store may be 
opened in: 

a. Normal mode only 

Drives needed for Class A devices 
(packs) are not scheduled for the job. 
The device label contains a bit set to 
indicate that these devices are not to 
be removed. 

The allocation algorithm assigns 
Class A storage to a file by finding 
the largest area in which the file 
will fit; or it works from the largest 
available area to the smallest in 
building segments of the file (minimizes 
number of segments needed for file). 
(See Note 1.) 

CLASS B DEVICES 

Non-Permanent On-Line 

User Files (A life expectancy of longer 
than one job) 

1. 

2. 

3. 

4. 

ALLOCATE/OPEN/CLOSE/EXPAND/ 
MODIFY/RELEASE by *DEF only 

Files on Class B store may be 
opened in: 

a. Normal mode 
b. Segmented mode 

Drives needed for Class B devices 
(packs) must be scheduled with the job 
using them. 

The allocation algorithm assigns as much 
of the file to one device as possible before 
continuing on the next device (minimizes 
number of drives needed for file). (See 
Note 1.) 

Note 1: A file cannot be allocated on different classes of devices. 

B-1 



System Files 

MSIO Files: 

*MSD (Mass Storage Directory) } 
*FLD (File Label Directory) (See Note 2) 
*FID (File Identifier Directory) 

MASTER Files: 

*LIB (System Library File) } (See Note 2) 
*DIR (Library Directory File) 

Standard Files 

INP } 
OUT 
PUN 

SCR} 

created from a pool of segments, 
and managed by the operating 
system through system OCARE 

created from a pool of segments, 
and managed by the user through 
system OCARE 

MASS STORAGE LIMITS 

Maximum Block Length (Characters) 

Maximum Number of Blocks Per File 

Maximum Number of Physical Records 
(i. e. , tracks or sectors) per Block 

Maximum Number of Physical Records 
(i. e. , tracks or sectors) per File 

131,071 

8,388,607 

4,095 

8,388,607 

Note 2: All system files are opened at autoload time, and remain open while MASTER is in operation. 
System files may be referenced by operating system tasks only. 

B-2 



MASS STORAGE DEVICE LABEL 

1 D E V 1 

2 DT Device Number 

3 DTM External 

4 Identifier DC 

5 Low MSIO Address 

6 High MSIO Address See Table 

7 Label Directory Address 

8 

32 

B-3 



DEVICE LABEL FIELDS 

Field Name Number of Characters Description 

DEVI 4 A standard 4-character identifier which is prefixed 
to device labels. 

DT I A 6-bit code to represent device type. DT = 

octal 40 for 852 disk packs. 

DN 3 An I8-bit device number that matches an external 
number on each device. 

DTM I A 6-bit device type modifier. The only values 
defined for 852 disk packs are: 

I I XXXXXO this device is recorded in track mode. 
XXXXXI this device is recorded in sector mode. 

External 6 Any alphanumeric characters. This field corresponds 
Identifier to an external identifier on each device. 

DC I A 6-bit device class identifier. 

XXXXXO this is a Class B device. 
XXXXXI this is a Class A device. 

Low MSIO 4 The lowest hardware address (binary) that can be 
Address accessed by MSIO. 

High MSIO 4 The highest hardware address (binary) that can 
Address be accessed by MSIO. 

Directory 4 The binary hardware address at which the file label 
Address directory is stored. This is the low address of the 

LABE LFILE and is present only on the device which 
contains the label directory. 

B-4 



ENTRY IN MSD 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

n 

D 

DT 

DT MOD 

E v 
DN 

External 

Identifier 

Low MSIO Address 

Hi h MSIO Address 

Label Director Address 

Total Available Space 

11111111 

(852,853) 
Storage Map 

checksum 

1 

DC Device Label 

Word 8 contains the number of unassigned tracks. Words 9-n -1 contain a bit mapping of the tracks 
on the device and represent tracks zero through 999 of the disk. A bit set to one indicates the 
corresponding track is assigned. A bit set to zero indicates the corresponding track is available. 
The correspondence between bits and tracks is~ 

Bit Number Word Number Track Number 

0 9 0 
1 9 1 

- - - - - - - - -
23 9 23 

0 10 24 
1 10 25 

- - - - - - - - -
i j 24(j-9)+i 

- - - - - - - - -
14 50 998 
15 50 999 

Bits 16 through 23 of word 50 are set to l' s. 

B-5 



MASS STORAGE FILE LABEL 

See 
Table 

1 
2 
3 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

48 
49 

50 

51 

52 

53 

Owner 
Identification 

File 

Name 

l Edition # 

Aocess Security 

Modification Security 

Blocks Allocated 

* Block Size 

Block Count 

Usage Count 

Creation Date 

Expiration Date 

Last Access Date 

DT SC P * 
DTM * * * 

* Reserve 

File Size 

Checksum 

Low Se ment Limit 

Segment Length 

* Denotes Reserve 

B-6 

} 

File Identifier 

Reserved for Logical 
Record Des criptions 

These 3 Words are 
Repeated for Each 
Segment of the File 



FILE LABEL FIELDS 

Field Name 

File Identifier 

Access Security 

Modification 
Security 

Block Size 

Block Count 

Usage Count 

Creation Date 

Expiration Date 

Last Access Date 

Number of Characters Description 

40 Uniquely identifies a file in the label directory. 

4 

4 

3 

4 

4 

4 

4 

4 

The standard identifier consists of: 
Owner Identification - 8 characters 
File Name - 30 characters 
Edition Num ber - 2 characters 

The 40-character field may be divided otherwise 
at installation option. 

This field is supplied when the file is allocated; 
it must be supplied for each succeeding OPEN 
request. 

This field is supplied when the file is allocated; 
it must be supplied for each RELEASE, EXPAND, 
and MODIFY request. 

This field contains, as a binary integer, the 
number of 6-bit characters in each record block 
(0 < Block Size < 131072). 

This field contains, as a binary integer, the number 
of the highest block written. If the file is processed 
sequentially, this corresponds to the number of 
blocks written into the file (0 :s Block Count < 223). 

Binary count of the number of times the file has 
been opened. 

This date is supplied by the I/O system when the 
file is allocated; it is stored as a binary integer 
in the form yymmdd. 

This date is supplied by the user when the file is 
allocated; it is stored as a binary integer in the 
form yymmdd. This field determines when a file 
may be deleted. 

This date is supplied by the I/O system each time 
the file is opened or changed; it is stored as a 
binary integer in the form yymmdd. 

B-7 



FILE LABEL FIELDS 

Field Name Number of Characters Description 

DT (Device Type) 1 6 -bit code to indicate the type of mass storage 
device containing the file. Octal 40 indicates an 
852 disk pack. 

SC (Segment Count) 1 Contains, as a binary integer, the number of seg-
ments in the file (0 < SC < 64). 

P (Protection) 1 Contains protection flags for use by the 110 system. 
The only values currently defined are: 

0 file may be read or written. 
1 file may not be written. 

DTM 1 6-bit code which provides further device information. 
(Device Type The only values currently defined are: 
Modifier) 

XXXXXO Track Mode 
XXXXXI Sector Mode 

Blocks Allocated 4 This field contains as a binary integer the number 
of blocks allocated to the file. 

File Size 4 Contains, as a binary integer, the number of 
allocatable units (tracks) assigned to the file 
(0 < File Size < 223). 

Checksum 4 24-bit binary checksum of the entire label. This 
field is checked by the 110 system to detect 
accidental modification of the label. 

Device Number 3 Number of the device on which this file segment is 
stored. This field is checked against the device 
label to assure that proper packs are mounted. 

Low Segment Limit 4 Binary hardware address at which this file segment 
begins. 

Segment Length 4 Number of allocatable units (tracks) in this segment. 

* 117 These fields are reserved for future use by the 
(Reserved) 1/0 system. 

B-8 



MAGNETIC TAPE 

GENERAL HEADER LABElS 

All header label records are 80 characters (480 bits) long, and are unblocked. They are recorded 
in even parity at the same density as the remainder of the data file. Header records are separated 
from succeeding data records by an inter-record gap only. Header label record fields are defined 
below; they are positioned as shown within the physical record. Values that may be used within 
these fields are also specified. 

Starting (If used) 
Character Length in Defined Values 

Field Name Position Characters BCD Characters Only Function 

Densityt 1 1 2, 5, 8 Specifies density of 
recording file 

Header Label 2 2 ( ) Identifies record as 
Identifier header label record 

Logical Unit No. 4 2 As applicable Specifies logical unit to 
which file is assigned 

Retention Code 6 3 000-999 Specifies, in days, the 
retention period of the file 

File Namet 9 14 Any combination of Identifies the file 
legal BCD characters 

Reel Number t 23 2 01-99 Identifies sequence of 
reels for multi -reel files 

Date Written 25 6 Any legal numeric Identifies date written; 
date, expressed as used with retention period 
mmddyy to determine release date 

of file 

Edition Numbert 31 2 00-99 or blank Identifies a single file set 

User Supplied 33 48 Any combination of User comments field 
Information legal BCD characters 

t Used by *DEF open unit function (7.1). 

B-9 



ERROR RECOVERY PROCEDURES 

The following tabulates standard hardware errors and error recovery procedures used by MASTER 
EXEC on mass storage devices and magnetic tape units. 

Device 

B-l0 

Error Function 

Read/Compare Parity Error 

Lost data 

Non -operable status; 
COMPARE after WRITE 
errors, transmission 
parity errors, hardware 
rejects 

Recovery Procedure 

1. Execute a direct seek. 
2. Execute function request and follow with an error detect. 
3. If error persists, repeat steps 1 and 2 four times. 
4. Execute a normal seek. 
5. Execute a direct seek. 
6. Execute function request and follow with an error detect. 
7. If error persists, repeat steps 5 and 6 four times. 
8. If error persists, it is declared irrecoverable. 

Read/Compare Parity Error 1. Execute a load address. 

Lost data 

Non -operable status; 
COMPARE after WRITE 
errors, transmission 
parity errors, hardware 
rejects. 

Parity errors, lost data, 
non -operable status, 
transmission parity error 
and hardware rejects 
during a forward read 
function 

2. Execute function request and follow with an error detect. 
3. If error persists, repeat steps 1 and 2 nine more times. 
4-. If error persists it is declared irrecoverable. 

1. Execute a backspace. 
2. Execute a read followed by an error detect. 
3. If the error persists, repeat steps 1 and 2 three more 

times. 
4. If error persists backspace three records (to insure 

that error record passes under the tape cleaner) check 
for load point after each record. 

5. Execute up to three reads (depending on load point) 
non-stop if possible, transmitting the record contents 
only during the last read. 

fj. Check for a read error of the last transmission. 
7. If error persists, repeat steps 4 through fj up to four 

more times. 
8. If the error persists, it is declared irrecoverable. 



Device Error Function Recovery Procedure 

Any of the preceding errors l. Execute a clear reverse read. 
during a reverse read 2. Execute a forward read followed by an error detect. 

Ul function 3. Execute a backspace and a set reverse read. 
Q) 

4. Insert the order of the words that make up the record ~ 
E-t in core. 
I:.) 5 . If error persists, repeat steps 1-4 up to four more times • r-! 
~ 
Q) 6. If error persists it is declared irrecoverable. Sn ro 
~ Any of the preceding errors l. Execute the sequence of commands backspace, write, 
t-

during a write function and detect two times. 0 
~ 

~ 2. If error persists, execute a backspace and SKIP BAD 
0 SPOT command. 
~ 3. Execute a write, followed by an error detect. 0 
~ 4 . If error persists, repeat steps 1 through 3. 
.,; 5. If error persists, repeat step 1. 0 
~ 6. If error persists, it is declared irrecoverable. 
M 
0 
~ 

B-11 



SYSTEM-TO-OPERATOR MESSAGES 

MASTER communicates with the operator by means of the console typewriter, and most system 
messages are in standard format: 

xy JOB i ssss nnn (des) 

xy Message type: 

D De structive 
I Informative 
A Operator action required, no response 
Rr Operator decision and response required; r (0-9) is the 

message number assigned by the system (appears optionally) 

i Job identifier taken from JOB card 

ssss Name of task; 4 characters maximum 

nnn Message number relative to the task 

(des) Optional description enclosed in parentheses; maximum 65 characters 

The System Executive and all tasks associated with MASTER may type non-destructive messages. 
MASTER types a job abort message when a system error or malfunction occurs external to the 
user's task, and job termination results. 

File Logging 

vVhen *DEF opens a file, it logs hardware assignments in the following format: 

Rr JOB i *DEF LOGGING 

dsi = hhhh, yyyyyy, CcEeUuuu, WR 

yyyyyy, CcEeUuuu, 

END LOG i 

etc. (One line for each device not currently on line 
required for the file) 

i Job identifier taken from JOB card 

dsi Data set identifier 

hhhh Hardware type 

c 

C-I 



yyyyyy Device number or device identifier (blank for scratch tapes and 
unit record) 

CcEeUuuu Channel, equipment, and unit 

WR Insert write wring of tape for which output is requested; otherwise 
omitted from message. 

The operator must type a response confirming that he has readied the file as requested. This 
response may be Rr, OK if the requested devices are ready, or Rr, NO if the request cannot be 
honored. The latter response causes a reject of the user's request. 

Begin and Terminate Messages 

B i is typed when job i is initiated 

T i is typed when job i is terminated 

System Messages 

The following table lists all job abort and non-destructive messages typed on the console typewriter. 
Symbols in the messages are defined as follows: 

c channel number 

e equipment number 

ht hardware type 

uuu unit number 

C-2 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator action 

0 EXEC 00 (MEMORY PARITY ERROR) System incurred a Restart the computer. 
memory parity error. 

I EXEC 71 (ILL R -T INT xxxx) Interrupt within EXEC was 
not real-time, MANDA L, 
or associated processor. 

I EXEC 72 (ASSOC PROC INT) Associated processor 
interrupt when no pro-
cessor was present. 

A EXEC 101 (ht CcEe Uuuu CR Connect reject Dial in the correct equipment 
E Sxxxx ISxxxx) E Sxxxx - 12 bit external and unit. If this cannot be 

status done or is already done, 
ISxxxx - 12 bit internal only the real-time program 

status can continue. System must 
be restarted. 

I EXEC 102 (ht CcEeDuuu SRyyyy Select reject 
E Sxxxx ISxxxx) SRyyyy - 12 bit select 

code 
ESxxxx - 12 bit external 

status 
ISxxxx - 12 bit internal 

status 

A EXEC 103 (ht CcEeUuuu RDY) Hardware is not in ready Place the unit in ready 
status. status. 

I EXEC 104 (ht CcEeUuuu DWN) Hardware is inoperable. 
System or operator has 
removed the unit from the 
available list. 

(1 
I 

VJ 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator action 

I EXEC 105 (ht CcEeUuuu FLO Reference was made to a 
FI = dsi JI = i) file on an inoperable unit. 

JI i-identifier from 
JOB card of job 
making request. 

FI dsi - data set identifier 
of file to which 
request was made. 

I EXEC 111 (UNDEF INT xxxx) Interrupt was not expected 
by the I/O system. 
xxxx - interrupt code. 

OOLCht External interrupt 
010Ch I/O channel 

interrupt 
0110 Real-time clock 

interrupt 
0111 Arithmetic over-

flow fault 
0112 Divide fault 
0113 Exponent over-

flow fault 
0114 BCD fault 
0115 Search/move 

interrupt 
0116 Manual interrupt 
0117 Associated pro-

cessor interrupt 

I EXEC 112 (PAR ERR CHAN c) Number of consecutive 
parity errors on channel 
c exceeded the installation 
defined maximum. 

t L = line 0-7 and Ch = channel designator, 0-7 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator Action 

I EXEC 151 (MT CcEeUuuu System recovery procedur( 

~ ESxxxx FI = dsi JI = i) 
cannot recover from error 
on magnetic tape. 

F - Error occurred on 
first try 

I - System has not re-
recovered 

A EXEC 161 (CR CcEeUuuu CMP ERR) Read compare error on Remove the last card from the 
last card read from card output stacker and place it as 
reader. the first card in the input 

stacker; press the READY 
button on the card reader to 
re-read card. 

I EXEC 162 (CP CcEeUuuu CMP ERR) Punch compare error on 
card punch. Punch back-
ground routine auto-
matically offsets the card 
in error and the following 
card and repunches both. 

I EXEC 171 (DP CcEeUuuu 
F 
I Error on mass storage 

A=xxxxx ESxxxx ECxx device. 
DRx FI=dsi JI=i) 

F - Error occurred on 
first try 

I - System has not 
recovered 

A~-Address at which 
error occurred 

ESxxxx-12-bit external 
status of unit 
(Control Data 3000 
Series Peripheral 

o Equipment Refer-
I 

01 ence Manual) 

171 Continued on next page 



MESSAGE TO OPERA TOR 

Type Job Task nnn Optional Message Cause Operator action 

I EXEC 171 
F 

(DP CcEeUuuu I ECxx-Error code (See 
(Cont'd) A=xxxxx ESxxxx ECxx 7.2. ) 

DRx FI=dsi JI=i) DRx - Driver code (MAS-
TER Operator's 
Guide) 

FI=dsi - File Identifier 
JI=i - JOB identifier 

I JOB i *BKI 01 A parameter on DIRECT 
card following job i is not 
in correct form. Param-
eter is ignored and normal 
processing continues. 

D JOB i *BKI 02 Source deck of job i is too 
big for mass storage. 
The job is not run; it may 
be resubmitted as a 
DIRECT job. 

I JOB i *BKI 03 Card following source deck 
of job i was not a JOB or 

DIRECT. Cards are 
passed up to next JOB 
or DIRECT card. 

A JOB i *BKO 01 Irrecoverable error when Mark deck as having an 
reading JOB i punch file error card in it. 
from mass storage" An 
error card is inserted 
in job's punch deck. 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator action 

D JOB i *DEF 56 (MAXIMUM FILE COUNT JOB i was terminated 
EXCEEDED) because it requested 

that a file be allocated 
when the system had no 
more room in the file 
label directory. 

I JOB i *DEF 63 (FILE SECURITY CODE A task in JOB i made 
ERROR) request to *DEF 

giving incorrect se-
curity code. 

D JOB i *DEF 77 (I/O ERROR ON *LAB/ JOB i was terminated 
*MSD/*IDF) because *DEF encountered 

irrecoverable errors on 
label directory file, mass 
storage directory file, or 
label id file while pro-
cessing a request. 

D JOB i *EST 000 (*LIB, NAME) JOB i was terminated 
because of irrecoverable 
read errors on library 
file during loading task 
name. 

D JOB i *EST 001 (*LIB, NAME) JOB i was terminated be-
cause it attempted to call 
task name from library 
when the task was not de-
fined in the library direct-
ory. 

('1 
I 
-J 



C1 MESSAGE TO OPERATOR 
I 

00 

Type Job Task nnn Optional Message Cause Operator action 

D JOB i *EST 005 (*LIB, CODE) JOB i was terminated 
because a locate error 
occurred when trying 
to load from library. 
CODE is the error code 
returned to *EST from 
the Ilo system. (See 
MS status codes) 

D JOB x *SCH 00 Job card is missing 
or unreadable; x is 
meaningless. 

D JOB i *SCH 01 No account number on 
job card. JOB i will 
not be run. 

D JOB i *SCH 02 Illegal separator on the 
job card. JOB i will 
not be run. 

D JOB x *SCH 03 No job identifier on job 
card; x is meaningless. 
Job will not be run. 

D JOB i *SCH 04 Time field on job card is 
not in correct form. 
JOB i will not be run. 

D JOB i *SCH 05 Segments requested by 
SCR parameter, for mass 
storage scratch, exceed 
the system capacity. 
JOB i will not be run. 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator action 

D JOB i *SCH 06 Space requested by CORE 
parameter for the job ex-
ceeds system capacity. 
JOB i will not be run. 

D JOB i *SCH 07 Peripheral requirements on 
the SC HE D card exceed 
the system capacity. 
JOB i will not be run. 

D JOB i *SCH 08 The JOB card OUT file limit 
exceeds the maximum mass 
storage segment limit for a 
file. 

D JOB i *SCH 09 The JOB card PUN file limit 
exceeds the maximum mass 
storage segment limit for 
a file. 

Rr XFER 01 (MOUNT FORM f ON ht 1. Mount requested form. 
CcEeUuuu) 2. Press MANUAL INTERRUPT. 

3. Type Rr, OK on console. 
4. Press FINISH, 

or if operator does not 
mount form, 

1. Press MANUAL INTERRUPT. 
2. Type Rr, NO. 
3. Press FINISH. 

Rr XFER 02 (REMOVE FORM f FRON 1. Remove requested form. 
ht CcEeUuuu) 2. Press MANUAL INTERRUPT. 

3. Type Rr, OK. 
4. Press FINISH. 

(1 
I 
~ D JOB i XFER 03 (SEC=xx XEC=y) XFER requested termina-

tion 
xx - System code (7. 2) 

Y - XFER code (11. 4) 



MESSAGE TO OPERATOR 

Type Job Task nnn Optional Message Cause Operator action 

R SINT 007 (DATE) MASTER date 1. Type mmddyy mm = month 

initialization 2. Pre ss FINISH dd = day 
yy = year 

R SINT 008 (TIME) MASTER time 1. Type hhmmss hh = hour 
initialization 2. Pre ss FINISH mm = minute 

R SINT 009 (SET) Enable operator to To change parameters see 
change system parame- MASTER Operators Guide; 
ters otherwise press FINISH when 

no parameters are to be altered. 

R SINT 015 (EDITN) Enable operator to 1. Type ee ee = edition number 
select edition of MASTE R 2. Press FINISH of MASTER 
library library 



FATAL CONDITIONS DETECTED BY EXEC o 

When the System Executive encounters a fatal condition, it includes an involuntary job abort code 
(lAC) in the standard output listing. These codes are listed below: 

Code 

EOO 

EOI 

E02 

E03 

E04 

E05 

E09 

ElO 

Ell 

El2 

El3 

El4 

El5 

El6 

El7 

El8 

El9 

E20 

E21 

E22 

E23 

E24 

E25 

Description 

Memory parity error. 

Task has attempted to perform a request restricted to an operating system task. 

Job contains an illegal function code. 

Job contains an illegal request code. 

Illegal write into protected memory has been requested or reference has 
been made to excluded memory. 

Operator has terminated the job. 

Illegal blocking or deblocking request. 

Task not in the operating system has attempted a call with abandon specified. 

Parameter receiving area of callee is out of bounds. 

Parameter receiving area of callee is too small to receive the caller's 
parameter string. 

One-chapter task has attempted to pass common. 

Two-chapter task has attempted to pass common to a one-chapter task. 

Both passing of parameters and transfer of call end exist on a return request. 

Parameter receiving area of caller is too small to receive callee I s parameter string. 

DW AIT request did not include parameters. 

Wait status was requested while files were reserved for a task. 

Backgrounder flag table is full. 

LIMIT time for this job has elapsed. 

JOB time limit has been exceeded. 

Interrupt address on the SELECT request is illegal. 

Error in COPYCOM request; the task already has Chapter One common. 

Error in COPYCOM request; the task program plus Chapter Two exceeds 30K. 

Buffer is out of bounds on COPYDIR request. 

D-l 



Code 

E50 

E51 

E52 

E53 

E54 

E55 

D-2 

Description 

Dsi in DWAITIO request is not defined. 

Dsi in 1/0 request is not defined. 

Dsi in 110 request is restricted to the system. 

Illegal file disposition request (BYPASS, RESERVE, or RELRESV) 

There has been a request to a file which is in the process of being closed. 

Bounds error on the status area of 110 call. 



GLOSSARY 

TERMS 

Definitions preceded by an asterisk are from the proposed "Vocabulary for Information 
Processing" of the American Standards Association, which has gr~ted permission to reprint 
them. These definitions have not been adopted as standard and are subject to change, modifi­
cation, and withdrawal in part or whole by the ASA. 

ABNORMAL DUMP 
A dump occurring immediately following abnormal termination of a program. 

ABORT 
To terminate a program when a condition (hardware or software) exists from which the pro­
gram or computer cannot recover. 

ABSOLUTE BINARY PROGRAM 
A program that must be loaded according to specific logical addresses. 

ABSOLUTE CODE 
A code using absolute operators and addresses, i. e., a code using machine language. 

ALLOCATE 
To reserve an amount of some resource in a computing system for a specific purpose (usually 
refers to a data storage medium). 

ALPHAMERIC 
See alphanumeric. 

ALPHANUMERIC 
Pertaining to the character set that contains alphabetic letters, numerical digits, and special 
characters which are usually machine processable. 

ASSEMBLE 
To prepare an object language program from a symbolic language program by substituting 
machine operation codes for symbolic operation codes and absolute or relocatable addresses 
for symbolic addresses. 

ASSEMBLER 
A computer program that generates machine instructions from symbolic input data through 
translating symbolic-operation coding into computer operating instructions, assigning locations 
in storage for successive instructions, or computing absolute addresses from symbolic 
addresses. An assembler generates machine instructions from symbolic codes and produces 
as output nearly the same number of instructions or constants as were defined in the input. 

Glossary-l 



BINARY 
A characteristic property, or condition having two alternatives; a numbering system based on 
2 rather than 10 and using only 0 and 1. 

BLOCK 
Consecutive machine words or characters considered or transferred as a unit, particularly 
applicable to input and output. 

BLOCKING 
Combining of two or more numbers (records) into one block to reduce the number of physical 
operations. 

BLOCK LENGTH 
Number of records, words, or characters in one block. 

BOOTSTRAP 
A technique or device that brings itself into a desired state through its own action. A loading 
routine the first few instructions of which bring the rest of the routine into core memory. 
This usually involves using the AUTOLOAD key on the console. 

BUFFER 
A magnetic core buffer external to core memory to compensate for speed differences between 
peripheral devices and the processor. Operations can then be overlapped with all devices 
operating simultaneously at rated speeds. Buffering eliminates the need for more expensive, 
multiple I/O channels, and reduces programming having complex I/O timing considerations. 

BUFFERING 
Overlapping execution of one or more I/O tasks with the program task that called them. 

*CALL 
To transfer control to a specified closed subroutine or program task. 

CALLEE 
The task called by a caller. 

CALLER 
A task that calls another. 

CARD COLUMN 
A vertical line of punching positions on a punch card. 

CARD IMAGE 
A representation in storage of the holes punched in a card such that holes are represented by 
one's and unpunched spaces are represented by zeros. In machine language, a duplication of 
the data on a punched card. 

CARD ROW 
A horizontal line of punching positions on a punched card. 

Glossary- 2 



CHAPTER 
32K consecutive logical addresses; the addresses that can be referenced through one state in 
the page file. 

COMMON AREA 
An area of memory that may be shared between subprograms of one task or between two­
chapter tasks of the same job. A two-chapter task may have its own Chapter One common 
through which its subprograms communicate, and a Chapter Two common through which 
two or more tasks communicate. 

COMPILER 
A program which translates a programmjng language such as FORTRAN or COBOL into an 
assembly language and, often, into machine language. A compiler may generate many 
machine instructions for a single symbolic statement. 

COpy 
To transfer data to a new location within a computer system without altering the original 
data. 

COPIABLE TASK 
A program task of which more than one copy may exist in memory concurrently, each copy 
receiving requests from a separate job. 

DATA AREA 
An area of memory that may be prestored with data at load time and shared between 
subprograms of one task, but not between tasks. 

DA TA SET IDENTIFIER 
One to four characters used to identify a file. 

DECK 
A collection of punched cards that have a definite service or purpose. 

DRIVER 
A program that controls the use of a peripheral device. 

DUMP 
To copy the contents of all or part of a storage device, usually from internal storage into 
external storage; the process of performing the above; or the resulting document. 

END-OF-FILE 
Termination or point of completion of data. 

END-OF-FILE INDICATOR 
A signal supplied by an input or output unit that makes an end-of-file condition known to the 
routine or operator controlling the device. 

Glossary - 3 



END-OF-FILE MARK OR CONDITION 
A code or condition which signals that the last record of a file has been read. 

EQUIPMENT 
An interface between a data channel and a unit. 

ERROR 
Any deviation of a computed or a measured quantity from the theoretically correct value. 

ESTABLISHMENT 
The process of locating, loading, and preparing a program task for execution. 

EXECUTE 
To carry out an instruction or perform a routine. 

EXTERNAL INTERRUPT 
An interrupt occurring as a result of conditions within peripheral devices or their immediate 
interfaces. 

Note: Interrupts occurring as a result of conditions within a data channel are 
classified external or internal in keeping with specifications set forth 
in individual hardware system reference manuals. 

FAULT 
1. A physical condition that causes a device, a component, or an element to fail to perform 

in a required manner, e. g., a short circuit, a broken wire, an intermittent connection, 
synonymous with malfunction. 

2. An operation whose r~sults exceed the capacity of one or more registers and which is 
detected by the hardware. 

FIELD 

FILE 

FLAG 

In a record, a specified area used for a particular category of data, e. g., a group of card 
columns used to represent a wage rate or a set of bit locations in a computer word used to 
express the address of the operand. 

1. 

2. 

1. 
2. 

3. 

4. 

A collection of related records treated as a unit, e. g., in inventory control, one line of 
an invoice forms an item, a complete invoice forms a record, and the complete set of 
such records forms a file. . 
A peripheral device uniquely identified by a data set identifier used by a computing system 
for the purpose of storing data. 

Any of various types of indicators used for identification, e. g., a wordmark. 
A character or bit that signals the occurrence of some condition, such as the end 
of a word. 
An indicator (program or hardware initiated) used frequently to tell some later part of a 
program that some condition occurred earlier. 
To generate a flag (1, 2,3) . 

Glossary- 4 



FLOW 
A general term to indicate a sequence of events. 

INITIALIZE 
To set counters, switches, and addresses to zero or some other starting value at the 
beginning of or at prescribed points in a program. 

INITIATION 
The process of activating a previously scheduled job when its requirements can be met. 

INPUT 
Information or data transferred from an external storage device into computer memory. 

INPUT/OUTPUT 
The bidirectional transmission of information to or from computer memory to or from 
peripheral devices. 

INTERLEAVE 
A technique in multiprogramming whereby segments of one program are inserted into another 
program so that the two programs can, in effect, be processed simultaneously. 

INTERNAL INTERRUPT 
An interrupt occurring as a result of conditions within computer mainframe or immediate 
interfaces. 

INTERRUPT 

JOB 

1. A break in the normal flow of a system or routine such that the flow can be resumed 
from that point at a later time. An interrupt is usually caused by a hardware-generated 
signal. 

2. To cause an interrupt. 

A deck consisting of control cards and possibly program and data decks presented serially 
to MASTER through the input card reader and recognized by MASTER as a piece of work. 
A job can consist of several tasks. 

JOB CLASS 
A classification assigned to a job by the job originator or by MASTER so that MASTER can 
more efficiently multiprogram its work load. 

JOB MONITOR 
A system program task that reads and interprets job control cards. 

LIBRARY 
An organized collection of standard, checked-out programs, routines, and subroutines 
which can be used to solve many types of problems and parts of problems. 

Glossary - 5 



LINKAGE 
The interconnections between a main routine and a closed routine, i. e. , the entry into the 
closed routine and the exit back to the main routine. 

LOCATION 
A position in storage where one computer word can be stored and which is usually identified 
by an address. 

LOGICAL ADDRESS 
An address in a chapter. The address that appears in the program address register when in 
Executive Mode. 

MACRO INSTRUCTION 

*MAP 

An instruction in a source language that is equivalent to a specified sequence of machine 
instructions. Usually, a symbolic mnemonic type instruction that a programmer can write 
in a source program to call for library or special routines. 

To establish a correspondence between the elements of one set and the elements of another set. 
In MASTER, a listing that correlates symbolic relocatable addresses and logical addresses 
for a run. 

MASS-STORAGE CAPABILITY 
The executive and operating system is designed to provide effective and efficient use of 
available mass storage devices. The result is a lightening of operator duties thus eliminating 
many of the errors believed inherent in large-scale software systems. The system provides 
for the moaintenance of permanet data and program files on mass storage devices with full 
facilities for modification and manipulation of these files. Security access codes prevent 
unauthorized use. 

MASS STORAGE (ON-LINE) 
High-capacity data storage accessible to the central processing unit. 

MEMORY PROTECT 
Hardware that protects EXEC and all other programs. 

MULTI-ACCESS 
The capability of a computing system to collect and distribute data through several terminals. 

MULTIPROCESSING 
The use of two or more computers to logically or functionally divide jobs or processes and to 
simultaneously execute various programs or segments of programs asynchronously. 

MULTIPROGRAMMING 
A technique for processing numerous routines or programs simultaneously by overlapping or 
interleaving their execution; multiprogramming permits more than one program to time-share 
a machine component. 

Glossary- 6 



OBJECT LANGUAGE 
The language that is the output of a given translation process, i. e., the language into which an 
assembler or compiler translates a source language. 

OFFSET STACKER 
A card stacker that can stack cards selectively under computer control so that they protrude 
from the balance of the deck to give physical identification. 

OPERATING SYSTEM 
An organized collection of programmed techniques and procedures for operating a computer. 

ORDINAL 
The location of an entry in a table. 

ORIGIN 
1. The absolute address of the beginning of a program or block. 
2. In relative coding, the absolute address to which addresses in a 

region are referenced. 

OUTPUT 
Information transferred from memory to secondary or external storage; information transferred 
to any device exterior to the computer. 

OVERLAY 

PAGE 

A technique for bringing routines into high -speed storage from some other form of storage 
during processing so that several routines will occupy the same storage locations at different 
times. An overlay is used when the total storage requirements for instructions exceed available 
physical or logical memory. 

One of a number of blocks of arbitrarily predetermined uniform size into which core memory 
is divided. Paging is a technique in which pages are used to facilitate the dynamic allocation 
of data in storage. 

PAGE FILE 
On the 3300 computer., a set of 128 12-bit registers divided into 8 states of 16 registers. Each 
register indexes all or part of a page. 

PAGE MAP 
A set of 16 page indexes each reflecting 2K of a 32K chapter. The page map correlates 
logical addresses with physical page assignments. 

PARAMETER 
1. A variable that is given a constant value for a specific purpose or process. 
2. A quantity in a routine which specifies a machine configuration, subroutines 

to be called, or other operating conditions. 

Glossary - 7 



PHYSICAL MEMORY 
Actual memory that can be referenced only through the page file. 

PRIORITY 
A scheme for determining that one task can be executed before another. 

PROCESSOR 
A device capable of receiving data, manipulating it, and supplying results. 

PROGRAM 
1. The precise sequence of coded instructions necessary to solve a problem. 
2. To plan the procedures for solving a problem. This may involve, among other 

things, analyzing the problem, preparing a flow diagram, providing details, 
developing and testing subroutines, allocating storage, specifying input and 

READ 

output formats, and incorporating a computer run into a complete data processing 
system. 

To transfer information, usually from an input device, to internal storage. 

REAL TIME 
Pertaining to a program for which time requirements are particularly stringent, 
that is, the data processing must keep up with a physical process within a time 
period of seconds or less. 

RECORD 
1. A collection of related items of data treated as a unit. Contrast with file. 
2. To put data into a storage device. 

RE-ENTRANT 
Capable of being called into use while in use. 

RELOCATABLE BINARY SUBPROGRAM 
A program that can be contiguously loaded with the aid of a loader program into available 
logical memory. 

RESIDENT, CORE MEMORY 
That part of the system residing in core memory at all times. 

RETURN 
To transfer control back to a point in a program or program task from which a call was 
issued. 

*ROUTINE 
A set of instructions arranged in proper sequence to cause a computer to perform a desired 
task. 

Glossary- 8 



SCHEDULE 
The acceptance of jobs from the input card reader and the inclusion of them into a list of 
scheduled jobs. EXEC refers to the jobs scheduled to determine the next job to be 
initiated. 

PAGING 
A technique permitting numerous jobs in memory at one time. Memory is divided into pages 
which can be subdivided into halves and quarters. A job need not be loaded into contiguous 
physical pages but can be loaded into any available (unused) pages where it is referenced 
through logical addresses. 

*SNAPSHOT DUMP 
A selective dynamic dump performed at various points in a machine run. 

*SOURCE LANGUAGE 
A language that is an input to a given translation process. 

STATUS 
A state or condition of hardware or task; e. g., busy or not busy. 

SUBPROGRAM 
A part of a larger program which can be converted into machine language independently. 

SUBROUTINE 
1. A portion of a routine that causes a computer to carry out a well-defined mathematical 

or logical operation. 
2. A routine arranged so that control may be transferred to it from a master routine and 

so that, at the conclusion of the subroutine, control reverts to the master routine. 
Such a subroutine is usually called a closed subroutine. 

TASK, I/O 
Work to be performed on a file. Execution of an I/O task may result in transmission of data 
over a channel; e. g. , READ, WRITE, or in preparation of that file by the System Executive 
for a subsequent data transmission; e. g., FORMAT, LOCATE. 

TASK, PROGRAM 
A program and any number of subprograms requiring the intervention of the executive system. 

TIME -SHARING 
The capability of a computing system to accommodate more than one user during the same 
interval of time without apparent restriction by the existence of other users. In time-sharing, 
a given device is used in rapid succession by a number of other devices or various units of a 
system are used by different users or programs. 

TRAPPED INSTRUCTION 
1. An instruction that is executed by a software routine if the necessary hardware is 

lacking or if the central processor is not in the required state. 
2. An instruction whose execution is blocked. 

Glossary - 9 



UNIT 
A peripheral device capable of storing, receiving, transmitting, or interpreting data. 

UNLOAD 
To remove a tape from ready status by rewinding beyond the load point; the tape is then no 
longer under control of the computer. 

UPDATE 
1. To modify a file with current information according to a specified procedure. 
2. To modify an instruction so that the addresses it contains are changed by a stated 

amount each time the instruction is performed. 

UTILITY ROUTINE 
A routine in general support of the operation of a computer, e. g., an input/output, diagnostic, 
tracing, or monitoring routine. 

WRITE 
To transfer information, usually from internal storage, to an output device. 

Glossary - 10 



SYMBOLOGY t 

ABORT 

ALGOL 

ALLOCATE 

BCD 

BCT 

*BKO 

*BKI 

BYPASS 

CALL 

CANCEL 

CLOSE 

COBOL 

COMPARE 

COMPASS 

COPYCOM 

CP 

CR 

DATE 

*DEF 

DINT 

*DIR 

DWAIT and DWAITIO 

EINT 

ELD 

EOF 

EOJ 

EOT 

EPT 

Abort executive request macro 

Algorithmic language compiler 

Allocate file macro 

Binary coded decimal 

Block common table loader cards 

Output backgrounder 

Input backgrounder 

Bypass file I/O requests macro request 

C all task mac ro 

Cancel interrupt selection macro 

Close file macro 

Common Business Oriented Language Compiler 

Compare I/O macro 

Comprehensive Assembly System 

Copy common macro 

Card punch 

Card reader 

Date macro request 

File definition functions routine and control cards 

Disable interrupt request 

Library directory file 

Deferred wait macro request 

Enable interrupt request 

End loading card 

End-of-file mark or condition 

End-of-job card 

End-of-tape mark 

Loader subprogram entry point cards 

t This glossary does not include COMPASS pseudo instructions, machine language instructions, pro­
grammer control cards, operator control statements, or diagnostics. 

Glossary - 11 



ERASE 

EXEC 

*EST 

FCA 

FDPBOXS 

*FMU 

FORMAT 

FORTRAN 

FREE 

FWA 

FWCA 

GLIB 

IA 

IC 

IDC 

*IDF 

1M 

INP 

*INT 

I/O 

ISR 

JOB 

JMTR 

LCA 

*LAB 

LGO 

*LIB 

LIMIT 

LOCATE 

LWA 

MAP 

MIOCS 

MODIFY 

Glossary - 12 

Erase I/O macro 

MASTER executive routine 

Establisher operating system task 

First character address 

Floating point simulation package 

File maintenance utility requests 

Format I/o macro 

Formula Translation compiler 

Remove time limit macro request 

First word address 

First word or character address 

Library generation task 

Interrupt address 

Interrupt condition or code 

Subprogram identification card 

Label ID file 

Interrupt mask 

Standard input file 

Job initiator operating system task 

Input/Output 

Instruction state register 

JOB control card 

Job monitor operating system task 

Last character address 

Label directory file 

Load-and-go unit 

Library file 

Set time limit macro request 

Locate I/O macro 

Last word address 

Memory Allocation Print 

MASTER input/output control system 

Modify file label macro 



*MSD 

MT 

ND 

OCC 

OPEN, OPENSEG, 
OPENU 

OSR 

OUT 

PACK, PACKC, 
PACKD, PACKR 

PICK, PICKC, 
PICKD, PICKR 

PR 

PU 

PUN 

READ 

READB 

RELEASE 

RELRESV 

RESERVE 

RETURN 

RIF 

RLDR 

SALOCATE 

SCLOSE 

*SCH 

SCHED 

SELECT 

SET 

SEXPAND 

SNAP 

SOPEN 

SRELEASE 

Mass storage directory file 

Magnetic tape 

No dump 

Octal correction control card 

Open file macro 

Operand state register 

Standard output file 

Blocking macros 

Deblocking macros 

Printer 

Punch 

Standard punch file 

Read file I/o macro 

Read file backward I/o macro 

Release file macro 

Remove file reservation macro 

Reserve file macro request 

Return to caller macro request 

Relocatable information loader cards 

Absolute task generation control card or routine 

System file allocate macro 

System file close macro 

Job schedular operating system task 

Schedule equipment control card 

Select interrupt macro request 

Set control card 

System expand mac 1'0 

Snapshot dump control card 

System open macro 

System file release macro 

Glossary - 13 



SUPPRESS 

TASK 

TRA 

*TRM 

UIC 

TIME 

TYPE 

UNLOAD 

WEOF 

XFER 

XNL 

Glossary - 14 

Suppress object deck execution macro request 

TASK priority control card 

Transfer address loader card 

Job terminator 

User interrupt control routine and macro 

Time macro request 

Console typewriter input/output macro request 

Unload tape I/O macro 

Write end of file I/O macro 

Interdevice transfer routine and macro 

External name and linkage loader cards 



INDEX 

ABORT macro 9-10 
ABORT on SCHED card 2-5; 10-5 
ABS control cards (See 1M) t 
Absolute format programs 3-27, 7, 10; 

4-2, 3, 8; 10-9,32 
Access code 5-2 
Account number 10-3 
Accounting printout 2-7 
Add device to F LD (See OG and 1M) t 
Address 3-3, 5, 7, 13, 14, 15, 16, 17 

absolute 10-15 
chapter (see absolute) 
character 10-23, 25 
first character 9-7 
first word 9-2, 4, 10, 14, 15; 

10-11, 15, 16 
last word 10-11 
logical (see absolute) 
page 3-2, 6 
physical 3-6 
relocatable 3-10; 10-19 
return 9-6 
word 10-23, 25 

Allocate macro 5-13 
Alphanumeric string 1-8 
Autoload 2-1; 5-3 
Available memory 2-5, 7; 3-7, 10, 14; 4-2, 8; 

10-5 (see core estimate) 

Background job 2-3 
BCD control card (See 1M) t 
BCT 10-22 
Binary deck 3-10; 10-19, 30 
Binary cards 

general specification 10-19 
BCT 10-22 RIF 10-24 
ELD 10-28 TRA 10-27 
EPT 10-23 XNL 10-26 
IDC 10-21 

Block common table card 10-22 
Blocker/deblocker routines 2-4; 3-10; 6-1 
Blocker 6-1 
Boundary jump 1-7 
Busy I/o status 4-11 
BYPASS macro 9-11 
Bytes, relocation 10-24 

CALL macro 4-5, 8; 9-1 
CALLRT macro (See 1M) t 
Call status 4-11 
CANCEL macro~ 9-5, 6 
Card 

binary 10-19 
control 10-1 
correction 10-13 
*DEF 7-1 
library preparation (See 1M) t 
loader 10-19 

Channel, real-time (See IM)t 
Channel interrupt 8-2 
Chapter 3-7 
Checksum, on binary card 10-19 
Circularity of calls 9-3 
Class of jobs 2-1, 3 
Class A files 5-1, 4, 5, 14 
Class B files 5-1, 4, 14 
CLRT macro (See 1M) t 
Clock interrupt 8-2 
CLOSE macro 5-24; 7-5 
Closed loop 10-10 
Commands, operator (See OG)t 
Common 

allocation of 3-10 
block 3-12; 10-22 
Chapter One 3-14 
Chapter Two 3-15; 4-5; 9-11 
labeled 10-22, 25 
length of 10-22 
on BCT card 10-22 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-l 



Common (Cont'd) 
numbered 10-22, 25 
in chapter 3-7 
transfer of 4-4, 5, 7; 9-1, 2, 3 

COMPARE macro 6-15 
COMPASS 4-10 

macro 1-8 
Compute job 2-4 
Configuration, hardware 1-3 
Console scoop 2-5 
Console registers 2-5; 4-4, 7 
Console typewriter 

TYPE macro 9-5 
manual interrupt (See OG) t 
messages on. Appendix C 

Continuation card 
BCT 10-22 
EPT 10-23 
OCC 10-14 
SCHED 10-5 
XNL 10-26 

Control cards 10-1 
interpretation of 2-5 

Copiable task 4-3 
COPYCOM macro 9-11 
COpy DIR macro 9-13 
Copy routine (See XFER) 
COpy macros 9-11, 14 
Copy on-line files (See OG and 1M) t 
Core, release of 2-5 
Core requirements 2-4 
Core estimate 3-14, 15; 10-5 
Correction of loaded program 10-13 
Correction of data area 10-14 
Correction of common area 10-14 
Creation date 5 -14 

Data area 
allocation of 3-10 
correction of 10-14 
in chapter 3-7, 12 
labeled common 10-22, 25 
length of 10-22 
on BCT card 10-22 
preset 10-25 

Data transfer functions 6-1, 20; 7-8 
Data set identifier 1-9; 5-21; 7-1 
Data word 10-24 
DATE macro 9-8 
Date, entered by operator (See OG and 1M) t 
Deblocking routines 6-8 
Dedicated channel 8-3 (See 1M) t 
Deck, job 2-1; 10-1 
*DEF 5-10; 7 -1; 10-9 

examples of cards 10-32; 11-4 
Deferred wait requests 9-4 
Deferred wait status 4-11 
Delete MSD entry (See OG and 1M) t 
Devices 5-1 

Class A 5-1 
Class B 5-1 

Device of file 
ascertain (See TYPEIO) 

Device labels 5-1 
Device, unit 7-2 
DINTS 9-5, 6 
*DIR, Library Directory File 

entry on (See TYPEIO) 
DIRECT card 2-1, 3, 5; 10-2 
DIRECT job 10-1 
Directory, library 

COPYDIR macro 9-14 
DSI control card (See 1M) t 
Dump, recovery 2-5; 10-5 

snapshot 10-11 
DWAIT macro 9-4 
DWAITIO macro 9-5 

EIC 8-1, 3 
EINTS 9-5 
ELD card 10-8, 28 
Emergency job 2-3, 4; 10-4 
End-of-file card 10-18 
End-of-file condition 2-5, 8 
End-of-job card 2-6 
End loader declaration card 10-28 
Entry point 

to task 3-11; 4-9 
to subprogram 10-27 

Entry point name card 10-23 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-2 



EOS 
End-of-job card 2-6 

EPT 10-23 
Equating files 10-9 
Equating external symbols 10-10 
Equipment interrupt 8-2 
Equipment requirements 2-4 

scheduling of 10-5 
ERASE macro 7-10 
Errors 

binary card 10-34 
Hollerith card 10-35 
I/O. Chapters 6 and 7 
loader 10-34 
Miscellaneous 10-35 
Symbol 10 -3 5 

Error codes 
input/output. Chapters 6 and 7 
loader 10-36 

Error processing 6-20; 7-5, 18 
Error recovery procedures 

magnetic tape 7 -4, 7, 20 
mass storage 6-22 
card reader 7 -20 
card punch 7 -21 
printer 7 -21 

ESE P card (See 1M) t 
Exclusion bit 3-3 
EXEC 2-1; 4-2, 4, 10; 8-1, 3; 9-1, 4 
Executive mode 1-2 
Executive request macros 9-1 
Execution cycle 8-2 
EXPAND macro 5-17 
Expandability 1-4 
Extend program area 10-14 
External name 3-11; 10-26 
External name and linkage card 10-26 
External string 10-26 
External symbol 4-9; 10-10 
External symbol card 8-2; 10-10 
EXS card 10-10 

FDPBOXS 8-2 
File card 10-9 
File disposition list 2-6 
File environment 5-3 
File expiration date 5-13 
File maintenance routines 1-11 

(See OG and 1M) t 
File protection 5-14 
File wait status 4-11 
Files 

allocation of 5-6, 12 
closing 2-5; 5-9, 24 
data transmission on. Chapters 6 and 7 
expansion of 5-8, 17 
identification of 5-3, 12 
job 5-5 
labels for 5-2 
mass storage. Chapters 5 and 6 
MASTER 5-2 
modification of 5-15 
MSIO 5-1 
names of 5-3 
opening 5-7, 21 
releasing 2-5; 5-9, 19 
scratch 5-6 
security of 5-3, 12 
summary of 1-9, 12 
system 1-9; 5-4 
unit devices. Chapter 7 

FINIS control card (See IM) t 
Finis status 4-11 
Floating-point simulation 8-2 
* FMU (See OG and IM) t 
FORMAT macro 6-14, 15; 7-7, 11, 13 
FORTRAN 4-10, 29, 30 
FREE macro 9-9 
Fault selection routine 4-9, 10 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-3 



GAP 
in recovery dump 10-11 
in logical addressing 3-6 

GLIB 1-6; 4-3 (See IM)t 
G LIB control cards (See 1M) t 

Hardware specification of 
mass storage file 5-13 

IDC loader card 10-8, 21 
Identification; program 10-19 
IDFILE (See 1M) t 
Inactive status 4-11 
Initialization of MASTER 2-1 (See OG and 1M) t 

of real-time pro gram (See 1M) t 
INP file 2-1,5; 5-5; 10-2,6,7,8,9,11 
Input backgrounder 2-1 
Input card reader 2-1; 10-2 
I/Ojob 2-4 
I/O task 4-1 
I/O interrupt 8-2 
I/O call 8-2 
Installation parameters 2-1, 3, 4; 10-3, 5, 7; 

(See also OG and 1M) t 
Instruction state register 3-8 
*INT (Job initializer) 2 -3, 4 
Interrupt 

Job 

as coded halt 1-7 
internal 8-1 
equipment 8-2 
channel 8-2 
unassigned 8-3 
I/O 8-2 
I'eal-tinlC 8-3 
background 8-3 
dedicated channel 8-3 
illegal instruction 8-2 
Clock 8-2 
manual 8-3 

class of 2-3, 4; 4-4; 10-4 
compute 2-4; 10-4 
I/O 2-4; 10-4 

background 2 -3; 10-4 
special 2-3; 10-4 
emergency 2-3; 10-4 

JOB card 2-1, 4 
example of 2-5; 10-3, 29, 30, 32; 11-4 

JOB file 9-12 
Job flow 2-1 
.Job identifier 2-4, 5; 10-3 
Job initiation 2-4 
Job monitor 2-4; 4-4; 9-10 
JMTR (Job monitor) 2-4 
Job stack 2-1 

deck preparation 10-29 
Job termination 

byend-of-file 10-18 
by operator (See OG) t 
by request of task 9-10 

Label handling 5 -11 
Labels, standard 3000. Appendix B 
LGO 

Load-and-go file 10-29, 30 
LIB control card (See 1M) t 
Library 1-5, 6; (See also 1M) t 
Library directory (See 1M) t 
Library generation 4-2, 4 
Library subprograms 3-10 
Library task 4-2; 10-7; (See also 1M) t 
LIMIT macro 9-9 
Listing of F LD (See OG and 1M) t 
Listing of MSD (See OG and 1M) t 
Loader 3-10 

cards 10-19 
errors 10-34 

LOCATE macro 6-17; 7-9 
Logical block size 5-2 
Logical I/O 6-1 
LTASK card (See 1M) t 

Macros 
data transmission functions 6-16; 7-8 
EXEC request 9-1 
file processing. Chapters 5 and 7 

library 1-7 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-4 



Magnetic tape 
as file 7-2 
functions on 7-7 

Manual interrupt 8-3 
MAP 

memory 3-12 
page 3-2 

Mass storage 5-1 
data transfer on 6-1 

MASTER 
configuration 1-3, 4, 13 
file structure 5-1 
initialization of (See OG) t 
input/output routine. Chapters 6 and 7 

library preparation (See 1M) t 
memory requirements 1-3 
relocatable loader 2-5; 3-5 
resident (See 1M) t 
task orientation 4-1 

Memory Allocation Print 3-12 
MAP 3-12 

Memory protection 3-5 
Messages, see errors 
MIOCS 1-6; 2-1; 6-14; 7-6; 8-2; 9-1 
Modification code 5-3 
MODIFY macro 5-15 
Monitor state 1-1, 3, 7 
MSIO 6-14; Appendix B 
Multi access capability 1-1 
Multiprogramming 

computer system 1-1 
on job basis 2-1 
of program tasks 4-7; 9-1, 4; 10-30 

Multiprocessing capability 1-1 

OCARE 5-6 
OCAREM 5-10 
OCC card 10-13, 33 
Offset card 2-6 
One-copy task 4-3 
OPEN macro 5-21 
OPENSEG macro 5-23 
OPEN U macro 2-5; 7-1 

(see also *DEF) 

Operand state register 3-8 
Operation 

of MASTER 1-1; (See OG) t 
OUT file 2-5, 8; 3-4, 12; 4-10; 5-5; 

10-2, 6, 9, 11, 13, 34; 11-3 
Output Backgrounder 2-5, 8 
Overlays 4-8 

PACK macro 6-4 
PACKC 6-5 
PACKD 6-3 
PACKR 6-6 
Page address 3-3 
Page index 3-3; 9-11 
Page length 3-3 
Page map 3-2, 7; 9-11 
Page structure 3-2 
Parameter passing 4-4; 9-1, 2, 3 
Parameters, macro 1-8 
Partial page designator 3-3 
Peripheral equipment 10-5 
Physical I/O 6-14; 7-1 
Physical memory 3-1, 5, 10, 14, 15 
PICK macro 6-9 
PICKC 6-11 
PICKD 6-8 
PICKR 6-12 
POSITION macro 6-17 
Priority of tasks 2-3,5; 4-4; 10-8 
PROGDUMP 9-17 
Program area 3-7 

allocation of 3-14~ 15 
placing on library (See 1M) t 
length of 3-14, 15; 10-14 

Program state 1-1, ~~, 7 

Program task 2-5; 4-1 
PUN 

card limit 10-3 
changed by DIRECT card 10-1 
file 2-5; 5-5; 10-2, 3, 9 
processing of 2-6 

Punches 
used by backgrounder 2-4; 7-1 

Postprocessing 2-5; 10-2 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-5 



Queuing of callers 4-3; 9-1, 3; 11-3 

Random file 9-12 
READ macro 6-15; 7-8, 12 
READB 

Read backward macro 7-8 
Read lockout status 4-11 
Ready status 4-4,7,11; 9-2 
Real-time 

capability 1-1 
execs 1-6; (See 1M) t 
programs 1-6; (See 1M)t 
tasks 1-6 

Recovery dump 9-17; 10-11 
Re-entrant task 4-3 
Register file 2-5; 10-5, 11 
REL control cards (See 1M) t 
RE LEASE macro 5-19 
Release memory 9-4 
Release out-of-date files (See OG and 1M) t 
Relocatable address 3-10 
Relocation factor 

on OCC card 10-15 
on R1F card 10-25 

Relocatable information card 10-24 
Relocatable loader 3-10; 10-10 
Relocatability 1-3 
Relocation bytes 10-24 
RELRESV macro 9-12 
REQRT macro (See 1M) t 
Request interrupts 8-2 
RESERVE macro 9-12 
Response code 9-7; Appendix C 
RETURN macro 4-9; 9-2 
Rewind of magnetic tape 7-9 
R1F loader card 10-24 
RLDR card 3-10; 4-3; 10-9, 32 
ROS instruction 3-8 

SALOCATE macro 5-6; (See also 1M)t 
*SCH 

Job Schedular Operating System Task 2-1 

SCHED card 2-1, 3, 5; 4-7; 10-2, 4 
example of 10-29, 30, 32; 11-4 

Scheduling required equipment 10-2, 5 
SCLOSE macro 5-9; (See also 1M)t 
Scratch files 2-5; 5-6; 10-5 
Security codes 5-3 
Segments of overlays 4-8 
SELECT macro 9-5 
Select status 4-11 
Sequential file 9-12 
SENRT macro (See 1M) t 
SETRT macro (See 1M) t 
SEP01NT card (See 1M) t 
Serial jobs 10-31 
SET command 2-1; (See OG and 1M) t 
SET control card (See OG a..l1d 1M) t 
SEXPAND macro 5-8; (See also l.lVI) t 
Simulation-Packages 8-2 
SNAP card 10-11, 33 
SNAP dump 10-11 
SNAPSHOT 10-11 
SOPEN macro 5-7; (See also 1M) t 
Special forms 11-1, 3 
Special job 2-3 
SRELEASE macro 5-9; (See also 1M)t 
State 3-7 
States 

instruction 3-9 
operand 3-10 
zero 3-11 

Status macro 9-17 
Status of tasks 4-11 
Subprogram elements 3-10 
SUPPRESS macro 9-10 
System allocate 5-6 
System close 5-9 
System expand 5-8 
System file 9-12 
System OCARE 5-6 
System open 5-7 
System release 5-9 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-6 



Tables (See 1M) t 
Table wait status 4-11 
TASK card 10-7, 8,32 
Task 

assignment of 4-1 
callee 4-2; 9-1, 4 
caller 4-2; 9-1, 4 
calls 4-2 
communication between 4-4 
copiable 4-3 
entrance 4-9 
exit 4-9 
multiprogramming of 4-7, 8; 9-1, 4 
name of 4-3; 10-7 
one-chapter 3-14; 10-8 
one-copy 4-3 
origin 4-2 
priority of 2-3, 5; 4-3, 4; 10-8 
release of 9-4 
status of 4-10 
two-chapter 3-15; 10-8 
user supplied 4-2; 10-8 

Task linkage macros 9-1 
Task Name card 2-5; 10-7, 8 

example of 10-29, 30, 31, 32, 33; 
11-4 

Task primary entry point 4-9 
Termination 

by operator (See OG) t 
by task request 2-7; 9-10 

Time, entered by operator (See OG and 1M) t 
Time 

cycle limit 8-2 
estimate 10-4 
job limit 10-3 
request 9-7 
special job 2-3 
task limit 9-9 

Time macro 9-8 
TRA loader card 10-27 
Trapped instructions 8-2 
Transfer common 4-4 
Transfer call end 9-3 

Transfer card 10-27 
TYPE macro 9-7 
TYPEIO macro 9-15 

UIC macro 4-10 
UIC routine 4-4, 9; 8-1, 2; 9-3, 4 
Units 

as files 7-1 
UNLOAD macro 7-10 
Usage count 5-14 
USER interrupt control 4-9 
Utility routines See XFER; (See also OG and 1M) t 

Wait status 4-11 
WEOF macro 7-10 
Word count, on binary card (See each binary 

card) 
Write lockout status 4-11 
WRITE macro 6-15; 7-7, 14, 16 

XFER 
task. Chapter 11 
control card 11-1 
macro 11-1 
examples of 11-4 

XNL loader card 10-26 

t 1M designates Installation Manual; OG designates Operator's Guide. 

Index-7 



FROM 

CONTROL DATA 
CORPORATION 

COMMENT AND EVALUATION SHEET 

3300/3500 Computer Systems 
MASTER Reference Manual 

Pub. No. 60176800 December, 1966 
THIS FORM IS.NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION 
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY 
ERRORS. SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY 

BE MADE BELOW. PLEASE INCLUD E PAGE NUMBER REFERENCE. 

NAME: ______________________________________________________________ ___ 

BUSIt-..:ESS ADDRESS: ____________________________________________________________ __ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE 

LD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PA 10 BY 

CONTROL DATA CORPORATION 
Documentation Department 
JUS PORTER DRIVE 

PALO ALTO, CALIFORNIA 

STAPLE 

FOLD 

FIRST CLASS 
PERMIT NO. 824' 

I 
M INNEAPOL IS, MINNo' 

)LD FOLD 

STAPLE STAPLE 



Pub. No. 60176800 

CONTROL DATA 
CORPORATION 

CORPORATE HEADQUARTERS. 8100 34th AVE. SO •• MINNEAPOLIS, MINN. 55440 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

litho in U.S.A. 


	000
	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	A-00
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Glossary-14
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB
	xBack

