
COMPUTER SYSTEMS
FORTRAN

REFERENCE MANUAL

CONTROL DATA
CORPORATION

August, 1966
Pub. No. 60057600, Rev. B

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales

office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE

PALO AL TO, CALIFORNIA
© 1966, Control Data Corporation

Printed in the United States of America

PREFACE

This reference manual was written for programmers using the FORTRAN
system. The manual assumes a basic knowledge of the FORTRAN language
although it includes a section on general properties for users, less familiar
with the construction of the FORTRAN language.

The manual contains information required to produce and run a FORTRAN
job.

III

.CONTENTS

ClLl\.PTER 1 3100/3200/3300/3500 FORTRi\N SYSTEM 1-1

1.1 Machine Configuration 1-1

1.2 Optional Outputs 1-1

1.3 Expressions 1-2

1.4 Statements 1-2

1.5 Source Programs 1-3

1.6 Coding 1-3

1.7 Coding Forms 1-4

CHAPTER 2 ELEMENTS OF FORTRAN 2-1

2.1 Constants 2-1

2.2 Variables 2-3

CHAPTER 3 EXPRESSIONS 3-1

3.1 Arithmetic Expressions 3-1

3.2 Mixed-Mode Arithmetic 3-7

3.3 Logical Expressions 3-10

3.4 Relational Expressions 3-12

3.5 Masking Functions 3-16

CHAPTER 4 REPLACEMENT STATEMENTS 4-1

4.1 Replacement Statement 4-1

4.2 Multiple Replacement Statement 4-1

4.3 Mixed-Mode Replacement Statement 4-2

v

CHAPTER 5 DECLARATIVE STATEMENTS 5-1

5.1 Type Statements 5-1

5.2 Dimension Statement 5-2

5.3 Common Statements 5-4

5.4 Equivalence Statement 5-7

5.5 Data Statement 5-10

CHAPTER 6 CONTROL STATEMENTS 6-1

6.1 GO TO Statements 6-1

6.2 IF Statements 6-2

6.3 DO Statement 6-3

6.4 CONTINUE Statement 6-7

6.5 PAUSE Statement 6-7

6.6 STOP Statement 6-8

CHAPTER 7 FUNCTION AND SUBROUTINE SUBPROGRA.MS 7-1

7.1 Main Program and Subprograms 7-1

7.2 Subroutine Subprogram s 7-1

7.3 Function Subprograms 7-5

7.4 External Statem ent 7-9

7.5 Entry St at em ent 7-9

7.6 Entry Call or Reference 7-10

7.7 Return Statement 7-11

7.8 End Statement 7-11

7.9 Program Arrangement 7-11

CHAPTER 8 UBRARYSUBPROGRAMS 8-1

8.1 Subroutine Library 8-1

8.2 Function Library 8-1

8.3 Overlay and Segment 8-3

8.4 FORTRAN Dump 8-6

8.5 Machine Condition Subprograms 8-9

VI

CHAPTER 9 INPUT/OUTPUT FORMAT SPECIFICATIONS 9-1

9.1 I/O List 9-1

9.2 FORMA T Statement 9-4

9.3 Conversion Specifications 9-5

9.4 Editing Specifications 9-18

9.5 Repeated Specifications 9-22

9.6 Variable Format 9-24

9.7 Carriage Control 9-26

CHAPTER 10 INPUT/OUTPUT STATEMEl'J"TS 10-1

10.1 Output Statements 10-1

10.2 Input statements 10-5

10.3 Buffer Statements 10-7

10.4 Partial Record 10-10

10.5 Tape Handling Statements 10-10

10.6 Status Checking 10-11

10.7 Internal Transmission 10-14

CHAPTER 11 PROGRAM OPERATION 11-1

11.1 Control Cards 11-1

11. 2 Equipment Assignment 11-5

11. 3 Deck structure 11-8

APPENDIX A CHARACTER CODES A-I

APPENDIX B STATEMENTS B-1

APPENDIX C CALLING SEQUENCES C-1

APPENDIX D DIAGNOSTICS D-1

INDEX Index-l

Vll

1.1

MACHINE
. CONFIGURATION

1.2

OPTIONAL
OUTPUTS

3100/3200/3300/3500 FORTRAN SYSTEM 1

The FORTRAN system provides a convenient language for expressing mathe­
matical and scientific problems in familiar notation.

A set of FORTRAN statements, presented as a source program to the
FORTRAN compiler, produces an object program that contains the
machine language commands for solving a problem. Compilation progresses
sequentially, from one subprogram to the next; each subprogram is independ­
ently compiled. Once compiled, a program may be repeatedly loaded and run on
the computer with varying sets of data. The compiler operates in conjunction
with the SCOPE monitor system of a Control Data® 3100, 3200, 3300 or 3500
computer. It generates programs to be executed under SCOPE control.
Source programs require little modification to be accepted by FORTRAN com­
pilers for larger CONTROL DATA computers.

Basic configuration for compiling a source program:

8K memory unit

Magnetic tape library unit

Input device (card reader or magnetic tape unit)

Output device (printer or magnetic tape unit)

Punch output unit (card punch or magnetic tape unit)

Two magnetic tape scratch units

Outputs that may be selected by the programmer include:

Relocatable binary cards or card images

Source program listing

Assembly language listing of machine instructions

Load-and-go object program for immediate execution

Diagnostic messages are printed when the compiler detects coding errors.

1-1

1.3

EXPRESSIONS

1.4
STATEMENTS

1-2

An expression is a constant, variable (simple or subscripted), function, or
any combination of these separated by operators and parentheses, written in
compliance with the rules for constructing a particular type of expression.

The four kinds of expressions in FORTRAN are: arithmetic and masking
(Boolean) expressions, which have numerical values, and logical and relational
expressions which have truth values. For. each type of expression there is an
associated group of operators and operands.

The FORTRAN elements - expressions, operators, and operands - may be
combined to form two types of statements, executable and non-executable. An
executable statement performs a calculation or directs control of the program;
a non-executable statement provides the compiler with information regarding
variable structure, array allocation, and storage-sharing requirements. A
group of FORTRAN statements make up a source program.

statements can be divided Lllto four classes:

Declarative

Replacement

Control

Input/ Output

Declarative statements permit a programmer to (a) define the mode of a vari­
able as character, real, integer, or other; (b) enter data; (c) reserve storage
common to more than one subprogram or main program; and (d) overlay the
same storage locations with variables and arrays during program execution.

Arithmetic replacement statements incorporate expressions for addition,
subtraction, multiplication, division, and exponentiation. Logical replacement
statements may include relational and logical operators.

Control statements alter the sequence of program execution conditionally or
unconditionally.

Input/Output and encode/decode statements permit transfer of data from one
storage location to another, or between computer storage and external equip­
ments. Conversion and editing specifications provide diversity in input/output
formats.

Masking operations are available through the FORTRAN library routines;
internal and external machine conditions may be tested by FORTRAN library
functions.

1.5

SOURCE
PROGRAMS

1.6

CODING

A source program consists of one main program and/or several subprograms;
they may be compiled individually and run as single programs.

The following chapters review characteristics of constants, variables, opera­
tors, operands, and expressions; set forth rules and conditions for use of
FORTRAN statements; and describe organization of source decks.

Each FORTRAN program and subprogram is constructed of symbolic characters,
identifiers, and operators arranged in statements to be punched on standard 80-
column cards. Coding uses the following character set:

Alphanumeric characters:

letters A through Z
numbers 0 through 9

Special characters:

1\ blank
equals

+ plus
minus

* multiplication
** exponentiation
/ division or inter-record spacing
(left parenthesis
) right parenthesis

comma or separator
decimal point

$ delimits multiple statements written on same line

Blanks may appear anywhere in a source statement. They are significant only
in Hollerith constants or FORMAT specifications.

1-3

1.7

CODING FORMS

1-4

Coding is written on forms with the following format:

Columns

1-5

6

7-72

73-80

1

2-72

73-80

or

Content

statement label

Continuation designator (non-zero character)

Statements

Identification and sequencing

C - Comment designator

Comments

Identification and sequencing

A line contains a string of up to 72 FORTRAN characters. The character
positions in a line, columns, are numbered consecutively, 1 through 72.

A C in column 1 identifies the line as a comment; comments are for the con­
venience of the programmer and permit him to describe the program steps;
they do not influence the program. A comment may be inserted at any point in
the program. Comment cards are listed along with the source statements when
the source list option is selected.

Columns 1 through 5 may be blank or may contain a label that identifies the
line for reference elsewhere in the program. A statement number (label)
must be unique within a subprogram, and in the range 1 through 32767.

A statement that is labeled and never referenced (a nUll) causes an informative
diagnostic during compil~tion but does not inhibit execution of the compiled
program.

The compiler ignores blanks and leading zeros in statement numbers.

statements in the formats outlined in this manual appear in columns 7 through
72. A statement that exceeds the 66 characters allowed on a single card may
be continued on successive cards.

The size of a source statement and, consequently, the number of allowable
cards per statement are limited according to the equation:

2n + m:S 500 characters

n = number of identifiers

m = number of symbols and constants

This permits at least five cards (4 continuation cards) per statement with the
worst case being 167 single-character identifiers and 164 operators. Continua­
tion cards may not be labeled; columns 1 through 5 must be blank. A character
other than zero in column 6 designates continuation.

More than one statement may be written on a line (card) by using the $ to
separate the statements, subject to the following rules:

The statement following $ may not be labeled.

The $ may not be used with FORMAT statements or continuations of
FORMAT statements.

A statement ends when the compiler reads a $ or a new record having column 6
blank.

The compiler does not interpret column 73 through 80. These columns are for
sequencing or program identification.

SAMPLE FORTRAN CARDS

2 5 6 7 72 73 80
TOTAL + DATA(I) 33

NPLUS + 1 32

IIF(DATA(I)) 4,16,12 31
I

I

Three statements are shown, one on each card. One is labeled; all three are
sequenced. Because no statement is continued, column 6 is blank.

1-5

SAMPLE FORTRAN CODING FORM

1-6

5 7

PROGRAM BIGJOB
DIMENSION DATA(800)
SQUARE = O.
TarAL = O.
NPLUS = 0
NZERO = 0
DO 20 I = 1, 800
IF (DATA(I)) 4,16,12

12 NPLUS = NPLUS + 1
TarAL = TOTAL + DATA(I)

4 SQUARE = SQUARE+DATA(I)*DATA(I)
GO TO 20

16 NZERO = NZERO + 1
20 CONTINUE

B = NPLUS

72

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

80

2.1

CONSTANTS

2.1.1

INTEGER

2.1.2

OCTAL

ELEMENTS OF FORTRAN 2

FORTRAN accepts four basic types of constants: integer, octal, real, and
Hollerith. The type of a constant is determined by its form. Each real con­
stant occupies two consecutive computer words (24 bits per computer word).
Each of the other three types occupies only one computer word.

If a constant exceeds the allowed range, the statement in which it is used is
rejected during compilation and a diagnostic is provided.

An integer constant consists of up to 7 decimal digits in the range _223 < n< 223
(from -8,388,607 to 8,388,607).

Examples: 63 -3141592 8388607
247 3674631 -464646

The structure of the translated constant is:

value

2322 o

s = 1; value is complemented (negative)
0; value is uncomplemented (positive)

An octal constant consists of up to 8 octal digits terminated by a B in the form

A minus sign before the octal number designates the seven's complement.

Examples: OOB
00077777B

23232323B
77B

77777700B
-3l3l4672B

2-1

2.1.3
REAL

2.1.4
HOLLERITH

2-2

The structure of the translated constant is:

I OC11 OC2 1 OC31 OC41 OcS I OC6 1 0'71 OCsl
23 0

OCi is a 3-bit octal digit.

A real constant is represented by a string of up to 11 digits in the range
0::5 n ~ 236 _1. It may be expressed with a decimal point or with an exponent
representing a power of ten or both in the forms:

nE
n.n

nE±s
n. nE±s

n.
.n

n.E±s
.nE±s

s is the exponent to the base 10. The range of s is 0 through 308. The constant
may be signed. The maximum value is .68719476735E308.

Examples: 3.1415768
. 31415E1
-.31415E+01

-314.
3459E05

Structure of translated constant:

first word

.0749162
31. 41592E-01

second word

Is I Biased
Exponent Fraction I IL....-_____ F_r_a_c_tl._. o_n _____ ~

2322 1211 o 23

s = 1; fraction and biased exponent are complemented
0; fraction and biased exponent are uncomplemented

o

A Hollerith constant is a string of characters of the form nHw; n is an unsigned
decimal integer, 1 through 4, that represents the length of the field, w. Spaces
are significant in the field. When n is less than 4, the word is left-justified
with BCD blanks (608) filling the remainder of the word. When n is greater
than 4, the statement is rejected and a diagnostic is provided.

2.2

VARIABLES

2.2.1

SIMPLE VARIABLES

An alternate form of a Hollerith constant is nRw. When n is less than 4, the
comp,lter word is right-justified with zero fill. When n is lireater than 4, the
statement is rejected and a diagnostic is provided.

Examples: 2HOK
4HERGO

3HSUM
4R3600

structure of translated word:

23

Chi is a 6-bit BCD character.

3ROUT
IH)

o

A Hollerith constant occupies one computer word and is represented by internal
BCD codes treated as integers.

Variable names are alphanumeric identifiers that represent specific storage
locations.

The FORTRAN compiler recognizes simple and subscripted variable names.
A simple variable name represents a single quantity; a subscripted variable
name represents a single quantity within an array of quantities. The variable
type is designated explicitly in a type declaration (Chapter 5) or implicitly by
the first letter of the variable name. A first letter of I, J, K, L, M, or N
indicates a fixed point (integer) variable; any other first letter indicates a
floating point (real) variable.

A simple variable name identifies the location in which a variable value can be
stored. Any integer value in the range Inl 5 223_1 may be referenced by a
simple integer variable name.

Examples: N
K2S04

LOX
NOODGE

M58
M 58

Because spaces are ignored in variable names, M58 and M 58 are identical.

2-3

2.2.2

SUBSCRIPTED

VARIABLES

2.2.3
SUBSCRIPT FORMS

2-4

Any signed value from 10-
308

to 10
308

may be referenced by a simple floating
point variable.

Examples: VECTOR
BAGELS

A65302
BATMAN

An array is a block of successive memory locations comprising the elements
of the array. Each element of an array is referenced by the array name plus
a set of subscripts. The type of an array is determmed by the array name or
a type declaration. Arrays may have one, two, or three dimensions; the
maximum number of array elements is the product of the dimensions. The
maximum number of words used in an array cannot exceed 32767. The array
name and its dimensions must be declared at the beginning of the program in
a DIMENSION or COMMON statement.

A subscript has one of the following forms; c and d are integer constants and
I is a Simple integer variable.

(c*I±d)
(I)

(I±d)
(c)

(c*I)

More than three subscripts cause a compiler diagnostic. Program errors may
result if subscripts are larger than the dimensions initially declared for the
array. A single subscript notation may also be used for a two- OT three­
dimensional array if it is the structural location of the variable. However,
the elements of a single-dimensioned array A(d1) may not be referred to as
A(I, J, K) or A(I, J). Diagnostics will occur if this is attempted.

Examples: A(I, J)
P(KLIM, J, LIM+5)

B(1, 2, 3)

B(I+2, J+3, 2*K+l)
SAM (J-6)

A(233)

Q(14)
A(133)

At no time during program execution can a simple integer variable used as an
index variable take on a value greater than 32767.

2.2.4
ARRAY STRUCTURE Elements of an array are stored by column in ascending storage locations.

Type real arrays require two storage locations for each array element; type
character arrays, however, are stored 4 array elements per location.

The location of an array element with respect to the first element is deter­
mined by the maximum array dimensions and the type of the array.

The first element of array A(I, J, K) is (1,1,1). The location of element
A(i, j, k) with respect to A(I, 1,1) is

Loc A(i,j,k) = Loc A(I,I,I) +~i-I)+(j-I)*1+(k-I)*1*JJ*E

The quantity in braces is the subscript expression. E is the element length
(the number of storage locations required for each element of the array). For
integer arrays, E = 1; for real arrays, E = 2; for character arrays, E = 1/4.
Subscripts i, j, k may be any of the allowed subscript forms.

Factoring the expression produces

a base address:

a constant addend:

an index function:

S, the first word of A(I, 1,1)

-(1-1+ 1*J) *E

(i+ 1*j+ 1*J*k) *E

When i,j,k are other than simple variables, for example, c*l±d, constants
such as d appear in the constant addend.

Example: In the array declared as A (3, 3, 3) :

AlII AI21 AI31 1=3; i=I, 2, 3

A2I1 A221 A231
J=3; j=I, 2, 3
K=3; k=I, 2, 3

A3I1 A321 A331

AII2 AI22 AI32

A212 A222 A232

A312 A322 A332

AII3 AI23 AI33

A213 A223 A233

A313 A323 A333

2-5

2-6

The elements of this real array are stored two words per element starting
with A(I, 1, 1) in S, the lowest location reserved for the array.

locations

S, S+1
8+2, S+3
8+4, S+5
8+6, 8+7
S+8, S+9
S+10, 8+11
8+12, S+13

8+48, 8+49
S+50, 8+51
8+52, 8+53

array element
Ai,j,k

AlII
A211

A3l1
A121
A221
A321
A131

Referring to the example, if Loc A (1, 1, 1)=S: the locations of A (2,2, 3) with
respect to A(1, 1,1) are:

Loc A(2, 2,3) = Loc A(I, 1,1) + [(2-1)+(2-1)*3+(3-1) *3*3] *2 = 8+44, 8+45

The following relaxation on the representation of subscripted variables is per­
missible:

then A(I, J, K) implies A(I, J, K)

A(I, J) implies A (I, J, 1)
A (I) implies A(I, 1,1)
A implies A(1, 1,1)

Similarly, for A(d1 , d2)

A(I, J) implies A(I, J)
A(I) implies A(I, 1)
A implies A(l, 1)

and for A(d1)

A implies A(I)

di are integer constants

3.1

ARITHMETIC

EXPRESSIONS

EXPRESSIONS 3

An expression can be a constant, a simple or subscripted variable, a function,
or any combination of these separated by operators and parentheses. It can
contain non-standard and mixed modes of arithmetic; however, when non­
standard or mixed modes are used, special rules apply to operators. Non­
standard arithmetic requires that the programmer add special COMPASS
routines to the FORTRAN library.

The following operators are used in arithmetic expressions:

Symbol Function

+ addition

subtraction

* multiplication

/ division

** exponentiation

Arithmetic elements are:

Examples:

Constants

Variables (simple or subscripted)

Functions

A

3.141592

B+16.8946

(A - B(I, J+2»

G*C(J)+4.1/(Z(J,3*K))*SINF(V)

3-1

3.1.1
ORDER OF
EVALUATION

3-2

Rules:

1. In an arithmetic expression do not use adjacent arithmetic operators;
X op op Y; or adjacent arithmetic elements; A(B+C)D.

2. If X is an expression, then (X), «X)), et cetera, are expressions.

3. If X, Y are expressions, the following are expressions:

X+Y X/Y

X-Y X*y

4. Expressions of the form X**y and X**(-y) are legitimate, subject to the
restrictions in section 4.2, rule 4.

5. There is no implied multiplication.

X(Y) does not imply X*(y)

Constant (X) does not imply constant * (X).

The hierarchy of arithmetic operations is:

** exponentiation class 1

/ division I class 2
* multiplication

+ addition
class 3

subtraction

In an expression with no parentheses or within a pair of parentheses, in which
unlike classes of operators appear, evaluation proceeds from left to right.
The first operator of such an expression is compared against the second. H
the first operator takes precedence over the second, the operation is scheduled
for execution. If the second operator takes precedence over the first, or is
equal to the first, the first operation is delayed and the second operator is
compared against the third.

Example:

(A+B*C**D)

+ < *
* < **

** last operator

A+B delayed

B*C delayed

C**D scheduled for execution

R indicates an intermediate result, not necessarily a temporary storage.

The operations that were delayed are then scheduled for execution in
reverse order:

If an expression contains consecutive operations involving operators of like
class (A+B+C, A*D*F, A-B+C), the left to right evaluation is modified. (This
does not apply for A *BI C, A/B*c , AlBic, or A **B**C.) The first operation,
plus subsequent operations, will be delayed until the end of the statement is
reached or an operator of unlike class is encountered.

Examples:

(A + B+C+ D+ E+ F)

(R+S+T-U - V -W)

(A+B-C-D+E*R)

When the end of the statement is reached, the delayed operations are scheduled
for execution in reverse order and the final expression is the last to be executed.

Examples:

3-3

3-4

order established by scan

+1 = +2

+2 = +3

+3 = +4

+4 = +5

+5

A + B delayed

B + C delayed

C + D delayed

D + E delayed

evaluation

D + E ~R1

C + R1 ~R2

B + R2~R3

A+R3~Ri

Ri + F~R5

If an unlike operator of greater precedence is encountered within a sequence of
like operators (A+1B+2C*D+3E+4F), the evaluation will proceed as follows:

order established by scan

* > +3

+3 = +2

+3 = +1

+3 = +4

+4 last operator

A + B delayed

B + C delayed

C * D scheduled for execution

B + C scheduled for execution

A + B scheduled for execution

D + E delayed

D + E scheduled

E + F scheduled

evaluation

C * D~Rr
B+R1~R2

A + R2-'> R3

R3 + E ~R4

R4 + F ~R5

If the unlike operator is of less precedence the evaluation will be as follows:

order established by scan

*1 = *2

*2 > +

*1 > +

+ < *3

*3 = *4

*4 last operator

A * B delayed

A * B scheduled for execution

B * C scheduled for execution

C + D delayed

D * E delayed

D * E scheduled for execution

C + D remains delayed

E * F scheduled for execution

C + D scheduled for execution

evaluation

A * B ~R1

R1 * C ~R2

D * E ~R3

R3 * F~Ri
R4 + R2~R5

An expression of the form (A+B+C*D*E**F+G+H) would be evaluated in the
following manner:

order established by scan

+1 = +2

+2 < *1

*1 = *2

*2 < **

** > +3

*2 > +3

+3 = +4

+4 last operator

+4 = +3

A + B delayed

B + C delayed

C * D delayed

D * E delayed

E ** F scheduled for execution

D * E scheduled for execution

C * D scheduled for execution

B + C scheduled for execution

A + B scheduled for execution

F + G delayed

F + G scheduled for execution

G + H scheduled for exeC"l..l., :on

evaluation

E ** F~Rl

D * Rl --;.R2

C * R2~R3
B + R3~R4

A + R4~R5

R5 + G~R6

R6 + H-.;>R7

The use of additional parentheses will alter the order of evaluation and will
greatly affect the results when working with mixed mode.

In parenthetical expressions within parenthetical expressions, evaluation begins
with the innermost expression; they are evaluated as encountered in the left to
right scanning process.

Examples:

In the following examples, R indicates an intermediate result in evaluation:

1. A**B/c+D*E*F-G is evaluated:

A ** B -;;.oRl

R1/c ~R2

D * E~R3
R3 * F -;;.oR4

R4 + R2 ~R5

R5 - G ~R6

3-5

3-6

2. A**B/ (C+D)*(E*F-G) is evaluated:

A ** B -+Rl

C + D~R2

Rl/R2....:;.R3

E * F ~R4

R4 - G-+R5

R3 * R5 ~R6

3. When the expression contains a function, the function is treated as a
parenthetical expression.

H(13)+C(I, J+2) *(COSF(Z)) **2 is evaluated:

COSF(Z) ~Rl

Rl ** 2 ~R2

R2 * C (I, J+2) -+R3

R3 + H(13) ~ R4

Examples 4 and 5 are examples of expressions with embedded parentheses.

4. A * (B+ «C /D) - E)) is evaluated:

C/D --,> Rl

Rl - E -:;.R2

R2 + B~R3

R3 *A~R4

5. A*(SINF(X)+1.)-Z/ (C*(D-(E+F))) is evaluated:

SINF(X) ~Rl

Rl + 1. ~R2

R2 * A ~R3

E + F~R4

-R4 --,>R4

R4 + D~R5

R5 * C ~R6

-Z/R6 ~R7

R7 + R3~R8

3.1.2
TYPE REAL
ARITHMETIC

3.1.3

TYPE INTEGER

ARITHMETIC

3.1.4
TYPE CHARACTER

ARITHMETIC

3.2
MIXED-MODE
ARITHMETIC

Expressions containing only type real constants and variables accept all stand­
ard operators and require no special rules.

Integer expressions are processed from left to right and modified by delayed
operations. Also, dividing an integer quantity by an integer quantity yields a
truncated result; thus 11/3 = 3. The expression I*J/K may yield a result
different from the expression I*(J/K).

4*3
I*J/K = -= 6

2
4*3

I*(J/K) = - = 4
2

FORTRAN includes routines that load, store, complement, add, and subtract
CILA.RACTER constants and variables. Routines in COMPASS language may be
supplied by the user. Characters dimensioned in an array are assigned four
to a computer word. Simple variables are assigned one storage location per
variable in the upper 6 bits (18 to 23) of the computer word. The compiler
generates code which performs CHARACTER arithmetic in the lower 6 bits of
the arithmetic registers and stores as the result the lower 6 bits of the A
register.

Example:

5 7

CHARACTER B, C, RESLT
RESLT = B+C

B=8 1101001001001
C=9 111100100100/

RESLT=A 1211001001001

For character arithmetic, Simple character values are used as 6-bit integer
quantities, right justified. The result, the lower 6 bits of the A-register, is
stored in the high order 6 bits of the computed variable.

Arithmetic expressions can contain mixed types of constants and variables.
Mixed -mode arithmetic is accomplished through the special library conversion
subroutines (Appendix C).

3-7

3-8

The three standard operand types are real, integer, and character. The
programmer may define one non-standard type per subprogram. Type declara­
tions are covered in Chapter 5.

The following rules establish the relationship between the type of an evaluated
expression and the types of the operands it contains.

Rules:

1. The order of dominance of the operand types within an expression
from highest to lowest is:

Non -standard

Real

Integer

Character

2. The dominant operand type determines the type of an evaluated arith­
metic expression.

3. A non-standard type may be mixed with any or all of the standard
types.

4. In expressions of the form A**B, the following rules apply:

. When A or B is type other or character, the user must provide
the conversion routines.

. For the standard types the mode/type relationships arc:

~ Tyie A Character Integer Real

Character Character Integer Real

Integer Integer Integer Real

Real Real Real Real

For example, when A is real and B is integer, the mode of A**B is real.

In mixed mode arithmetic, the mode used to evaluate any portion of an expres­
sion is determined by the dominant type thus far encountered within the
expression and the normal hierarchy of arithmetic operations; integer, mode
will be used when an integer type is first encountered and will be converted to
real mode when a real type is encountered.

Examples:

1. Given A, B type real; I, J type integer. The mode of evaluating the
expression (A *B-I+J) will be real because the dominant operand is
type real. It is evaluated:

A * B ~R1 real

Convert I to real

R1 - I~R2 real

Convert J to real

2, The use of parentheses can change the evaluation. A, B, I, J are
defined as above. (A*B-(I-J» is evaluated:

A * B~R1 real

I - J ~ R2 integer

Convert R2 to real

R1 - R2 ~R3 real

3. Given C, D type character and I type integer, the mode of evaluating
expression (C-D+I) is integer.

character

Convert R1 to integer

R1 + I~ R2 integer

4. In the expression (I+C-D) variables C, D are character; I is integer.
Evaluation proceeds:

Convert C to integer

1+ C ~R1 integer

Convert D to integer

R1 - D ~R2 integer

When an operation is to be performed on operands of different modes, conver­
sion is implemented during the normal evaluation. When integer and real
modes are mixed, FORTRAN will perform the conversion and the operation for:

add

subtract

multiply

divide

exponentiate

store

3-9

3.3
LOGICAL

EXPRESSIONS

3-10

The generated calls and their descriptions are contained in Appendix C.

When integer and character, or real and character modes are mixed, FORTRAN
generates code that performs the conversion and operation for:

add load

subtract complement

store

If other operations (multiply, divide, exponentiate) are to be performed, the
necessary conversion routines must be supplied by the user (Appendix C).

For mixed integer and character, the add and subtract routines are imple­
mented during the evaluation, and no reference is made to external routines.

A logical expression has the general form

in which ri are simple variables, arithmetic expressions, or relational
expressions; and op is either the logical operator. AND. indicating conjunction
or . OR. indicating disjunction.

The value of a logical expression is either true (I) or false (0).

Logical expressions are generally used in logical IF statements (section 6.2).

Rules:

1. Precede and follow logical operators. AND. and . OR. with either a
relational or an arithmetic expression.

2. Precede. NOT. only with. OR., . AND. or the beginning of the
expression.

r I .AND .. NOT. r2

rI . AND. r2

. NOT. rI

rI . OR. r2 . AND. r3

3. If op is either . AND. or . OR. do not use a logical expression of the
form rI op op r2'

4. Do not enclose logical operators within parentheses.

5. Do not nest logical expressions.

6. Each logical operator applies to the relational expression up to the
next logical operator orto the end of the logical expression, except in
an expression of the form:

r 1 . AND .. NOT. r
2

. OR. r3

· NOT. refers to r 2

· AND. refers to . NOT. r 2

· OR. refers to r 3

7. • NOT. may appear in combination with . AND. or . OR. only as follows:

.AND .. NOT. r1

. OR .. NOT. rl

8. Logical statements are evaluated from left to right.

9. The logical operators are defined as follows:

Examples:

.NOT. r 1

r1 .AND. r2

r1 . OR. r2

is false if r 1 is true

is true only if r1 and r2 are true

is false only if r1 and r2 are false

1) R = A • OR. B • OR. C .OR. D . AND. E .AND. F .AND. G

R=D.AND. E.AND. F.AND. G.OR. A.OR. B.OR. C.OR. D

These two statements provide the same results, but the first process may be
faster since the truth value of A, B, or C eliminates the need for evaluating
D, E, F, and G.

2) FORTRAN does not permit the form R = . NOT. (. NOT. (. NOT. (A. AND. B)
. AND. C) . OR .. NOT. (B. AND. C. OR. A)). The same results may be
obtained, however, by one of the following methods:

The example may be reduced using the rules of Boolean logic, to:

R = . NOT. A . AND. B .AND. C • OR. A .AND .. NOT. B .AND. C

3-11

3.4

RELATIONAL
EXPRESSIONS

3-12

The single statement may be replaced with a series of statements
representing the nested groups:

x = A.AND. B

X = .NOT.X.AND.C

R = B.AND.C.OR.A

R = • NOT.X. OR .. NOT.R

R = .NOT.R

A relational expression has the form:

The q I S are arithmetic expressions; op is an operator belonging to the set:

Operator Meaning

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

A relation is true if ql and q2 satisfy the relation specified by OPe A relation
is false if ql and q2 do not satisfy the relation specified by OPe

Relations are evaluated as illustrated in the relation, p . EQ. q. This is
equivalent to the question, does p-q = O?

The difference is computed and tested for zero. If the difference is zero, the
relation is true. If the difference is not zero, the relation is false. Relational
expressions are converted internally to arithmetic expressions according to
the rules of mixed mode arithmetic. These expressions are evaluated and
compared with zero to determine the truth value of the corresponding relational
expression.

Rules:

1. Use a relational operator between two arithmetic expressions.

2. In a relational expression, do not use more than two arithmetic
expressions connected by a single relational operator; q1 op q2 op q3
is not allowed.

3. Separate two relational expressions with a logical connector, . AND.
or . OR., in the forms:

J
.AND. t q2 0 P% . OR.

\.AND.~
~ q3 op q4
(.OR.

4. An arithmetic expression, by itself, is a relational expression. It is
considered TRUE if the resultant value is non-zero.

5. The following relational expressions are equivalent.

q1 op q2

q1 op (q2)

(q1) op (q2)

(q1) op q2

6. Do not enclose relational operators with parentheses.

7. Do not nest relational expressions.

3-13

3-14

Examples:

Simple relational expressions

A .GT. 16.

(D-Q(I)*Z). LE. 3.141592

(B+C). LT. (A-D)

Evaluation of expressions

1) A*B. GT .16 .. AND. C. EQ. 3.141519

A*B-16.- Ll

C-3.141519 - L2

No

2) A(I). GT. 0 . OR. B(J) . LT. 0

3) L2. OR •. NOT. L3

3-15

3.5
MASKING
FUNCTIONS

3-16

4) L2. OR. . NOT. L3 . AND. . NOT. L6 . OR. L5

No

No

Yes

Masking expressions are formed with the aid of system library functions.
Masking operations are performed bit-by-bit on the actual parameters of the
function reference. The parameters may be constants, variables, functions,
or expressions of integer type.

Although names of masking functions are nearly identical in appearance to
logical operators, their meanings are different.

The masking functions listed below may be referred to in any expression. The
resulting value is supplied in an expression wherever the masking function and
arguments appear.

NOT (a)

AND (a, b)

Form in the accumulator the complement of the integer
operand.

Form in the accumulator the bit-by-bit logical product of
the integer operands.

OR (a,b)

EaR (a, b)

Form in the accumulator the inclusive OR of the integer
operands.

Form in the accumulator the exclusive OR of the integer
operands.

Scanning of the e:h.-pression is left to right and masking functions in ex-pressions
are evaluated as they are encountered.

Operations performed by the functions:

a b

1 1

1 0

I 0 I 1

o o

Examples:

a = 77770000

b = 77777777

c = 00001763

d = 20045000

NOT (a)

AND (a,d)

OR (c,d)

EOR (b,c)

NOT (a) AND (a, b) OR (a, b)

0 1 1

0 0 1

1 I 0 I 1

1 o o

I octal forms of integer values

is 00007777

is 20040000

is 20045763

is 77776014

EaR (a, b)

0

1

I 1 I

o

3-17

4.1
REPLACEMENT
STATEMENT

4.2

MULTIPLE
REPLACEMENT
STATEMENT

REPLACEMENT STATEMENTS 4

The general form of the arithmetic replacement statement is

v=e

e is an arithmetic, logical, or relational expression and v is any variable name,
simple or subscripted. The operator = means that v is replaced by the value
of expression e, with conversion for mode if necessary.

Examples:

I. J I_
I

RESLT = X+Y-2. *R
SUMX = X+Y+Z
ARG (LAB) = 2. *X+COMP**2
SCEL = BIG .LE. SMALL
TAB = .NOT. X .OR. Y • OR. Z • AND. A
EE = AA.GE.BB.OR.CC.GE.DD

The multiple replacement statement is an extension of the arithmetic replace­
ment statement:

a must be an arithmetic expression. ri are simple or subscripted variables
and may be any of the standard or non-standard types.

The multiple replacement statement indicates that each of the variables,
rl ... r n , will be replaced with the value of a in a manner analogous to that
employed in mixed mode arithmetic statements.

4-1

4.3

MIXED-MODE
REPLACEMENT

STATEMENT

4-2

Examples:

5 7

I R=4.6
4.6---R
4 ~1

7

1= R= -14.6
-14.6~R

-14 ~1

5 7

c= I 123
123-1
59~C

I integer
R real
C character

The numbers in the examples
represent the evaluations of
expressions

Example:

Problem Convert radians to degrees and minutes

Solution

EG1=IDEG=DEG=BETA*57.296
1MIN= (DEG-DEG1) *60

BETA = 2.6 radians
DEG = 148. 9696 degr~es
IDEG = 148 degrees
DEGI = 148. 0000 degrees
IMIN = 58 minutes

(real)
(real)
(integer)
(real)
(integer)

Result 2.6 radians = 148 degrees 58 minutes

Although the type of an evaluated expression is determined by the type of the
dominant operand, this does not restrict the types that identifier a may assume.
The following chart shows the a to e relationship for all of the standard modes.

Arithmetic Replacement Statement: a = e

a is an identifier

e is the evaluated arithmetic expression

~
y-pe I

Type of e I REAL
of a

i

I REAL I store e in a.

INTEGER Truncate e to
an INTEGER.
Store in a.

CHARACTER Convert e to

Examples:

an INTEGER
and store the
6 low-order
bits in a.

1) 5 7

CHARACTER C, D
DIMENSION C(2)

D = C(1)+C(2)

I
INTEGER

Convert e to
REAL. Store
in a.

Store e in a.

Store the 6
low-order
bits of e in a.

CHARACTER

Convert e to
REAL and
store in a.

e is stored as
an INTEGER
in a.

Store the 6
low-order
bits of e in a.

I

C(l) and C(2) are added in character arithmetic. The low order 6 bits
of the sum are stored as a character in D.

2) 5 7

CHARACTER C
DIMENSION C(2)
I = C2-C1

The expression (C2-C1) is evaluated in character arithmetic. The
result is converted to integer and stored in I.

3) 5 7

CHARACTER C
DIMENSION C(3),I(3)
J = I(1)-C(3)+I(3)

The evaluated expression I(1)-C(3)+I(3) is integer (Section 3.2).

Convert C (3) to integer
I(1)-C(3) R1 integer
R1+I(3) R2 integer
J = R2 integer

4-3

4)

5)

6)

4-4

5 7

CHARACTER D
DIMENSION 1(2)
D = 1(1)*1(2)

The expression (1(1)*1(2» is evaluated in integer arithmetic. The
low-order 6 bits of the result are stored as a single character in D.

J = B(1)/a(2)*(B(3)-B(4))+I(1)-(I(2)*B(5))

The expression is evaluated as follows

B(3)-B(4);.R1 real
B(2) *R1 ~R2 real
B(1)/R2 ~R3 real
Convert 1(2) to real
1(2)*B(5) ~R4 real
Convert 1(1) to real
I(1)-R4 ~R5 real
R3+R5 ~R6 real

The real value R6 of the expression is converted to integer and
stored as J.

nAAAAcrER A, C
= AlB

II

The compiler generates a call to an external subroutine (supplied by
user) that divides character variable A, by real variable B.

AlB ~R1 real

The result is converted to an integer and the lower 6 bits of the 24-bit
word are stored in C.

5.1

TYPE 5T ATEMENT5

DECLARATIVE 5T A TEMENT5 5

Declarative statements are non-executable statements that:

Assign word structure to variables (TYPE)

Reserve storage for arrays and single variables (DIMENSION, COMMON)

Designate shared storage (COMMON, EQUN ALENCE)

Assign initial values to variables (DATA)

The declarative statements may be placed in any order prior to the first exe­
cutable statement of a program or subprogram.

Unless prestored with a DATA statement, each word of reserved storage

non-zero.

A type statement designates the word structure of variable and function iden­
tifiers. FORTRAN recognizes three standard types with fixed word sizes and
one non-standard type, the word size of which is defined by the programmer.
Special compiler routines supplied by the user translate all expressions con­
taining non-standard variables.

Type Declaration

REAL list

INTEGER list

CHARACTER list

TYPE other (w) list

Word Storage

2 words/element

1 word/element

6 bits/element

w words/element

List is a string of unsubscripted identifiers separated by commas. For
example: A, Bl, CAT, D36F, EUPHORIA

The designator, other, is any alphanumeric identifier that identifies the non­
standard type. The number of words per element for each non-standard
variable in the list is specified by the integer w.

5-1

5.2

DIMENSION
STATEMENT

5-2

Rules:

1. Type declarations must appear with other declarative statements prior
to the first executable statement in a program or subprogram.

2. Unless declared, a variable is integer if the first character of its
identifier is I, J, K, L, M, N and real if the first character is any
other letter.

3. Only one TYPE other is allowed in a subprogram; more cause diag­
nostics.

4. An identifier declared more than once assumes the highest type
declared.

TYPE other

CHARACTER

INTEGER

REAL

(highest)

(lowest)

5. An array identifier in iist designates the entire array.

Examples:

5 7

AL EL, CAMINO, REAL, IDE63
INTEGER QUID, PRO, QUO

HARACTER ALPHA, BETA, GAMMA
YPE COMPLEX (4) AI47, K156

The non-executable statements DIMENSION and COMMON reserve storage for
arrays. A subscripted variable in an expression represents an element of an
array of variables.

An array name, vi, has up to three ll..l1signed integer subscripts. si' separated
by commas.

The number of storage locations reserved for a given array is determined by
the product of the subscripts in the subscript string, and the number of words
per type. An array may occupy a maximum of 32,767 words.

DIMENSION statements must appear with other declarative statements prior to
the first executable statement in the program.

Example:

5 7

REAL HERCULES
CHARACTER BEAT
DIMENSION HERCULES (10,20), BEAT (5,3)

The array HERCULES has 200 elements. Two locations are used to store
each real element; the number of locations reserved is 400.

Character variables are dimensioned 4 characters per word in 6-bit elements,
left to right, in each computer word.

The 15 elements in the array BEAT occupy 4 sequential words:

IE 4 characters "I

word 1 2 3 4

The label, BEAT, is

word + 1 5 6 7 8
equated to the
location of the first
character.

word + 2 9 10 11 12

word + 3 13 14 15

I'" 3 characters ::.1

The number of locations for an integer array equals the number of elements
specified by the subscripts.

5-3

5.3
COMMON
STATEMENTS

5-4

A program may be divided into independently compiled subprograms that use
the same data. The COMMON statements reserve storage areas - numbered
or labeled - that can be referenced by more than one subprogram.

COMMON/DATA/list

Assigns labeled common storage locations to variables and arrays designated
in the list. Values in labeled common may be preset with a DATA statement.

COMMON list

Assigns numbered (blank) common locations to variables and arrays designated
in the list. These may not be preset with data.

Rules:

1. COMMON statements are placed with other declarative statements
prior to the first executable statement in the program.

2. The identifier, DATA, for labeled common is fixed; any other identi­
fier causes a diagnostic.

3. List is composed of subscripted or non-subscripted variable identifiers.
If a non-subscripted array name appears in the list, the dimensions
must be defined by a DIMENSION statement in the subprogram. Array
names may be dimensioned by the COMMON statement. If dimen­
sioned in both statements, those in the DIMENSION statement are used.

4. Attempting to list an identifier in both labeled and numbered common
doubly defines the variable, and causes a diagnostic.

5. The order of identifiers in the COMMON statement determines their
order in the common storage block.

6. At the beginning of program execution, the contents of numbered and
labeled common (if not preset with a DATA statement) are undefined
and non-zero.

7. The type and quantity of identifiers determine the length of the common
block.

8. A subprogram may re-arrange the allocation of storage locations in
common.

9. A subprogram may not increase the length of a labeled common block
assigned by the first program. However, it may use less common
than the first program.

10. When a subprogram does not need all of the locations reserved in
common, dummy variables in the COMMON statement achieve cor­
respondence of reserved areas.

Examples:

1) Labeled Common

5 7

cOMMON/DATA/D(15),F(3,3)
COMMON/DATA/DATA (10)

The label DATA does not restrict use of "DATA" as an identifier.

7

INTEGER Q, R
cOMMON/DATA/Q(4), R(4), 8(2)

origin Q(I)
Q(2)
Q(3)
Q(4)
R(I)
R(2)
R(3)
R(4)
8 (1)
8 (1)
8 (2)
8 (3)

2) Numbered Common

5 7

OMMON A,B(2),K
OMMON I(2),J(2)

Real variables each require
two computer words .

5-5

5-6

origin A(1)
A(1)
B(1)
B(1)
B(2)
B(2)
K(1)
1(1)
1(2)
J(1)
J(2)

3) Rearrangement of Common.

4)

MAIN PROGRAM

The labeled common occupies 40 storage locations.

SUBPROGRAM

7

COMMON/DATA/A(10), 1(10), K(10)

Labeled common is 40 storage locations. The first 20 locations (10 ele­
ments of array A) of the block are real elements. Array I occupies the
next 10 locations and array K the last 10 locations.

Correspondence

MAIN PROGRAM

I' , ~OMMON/DATA/ A, B, C

SUBPROGRAM

I' ~I r ~OMMON/DATA/E, F, G

Only the values of E and G are used in the subprogram; F is a dummy
variable that spaces over the area initially reserved for B.

5.4

EQUIVALENCE
STATEMENT The EQUIVALENCE statement permits storage locations to have several names.

(a., b., ...) defines equivalent groups of two or more identifiers.
1 1

The first elements of arrays may be aligned by equivalencing the array names;
elements of integer or real arrays may be aligned by equivalencing singly sub­
scripted variables. Array lengths need not be equal.

When element A(i, j, k) of array A (I, J, K) is to be aligned with an element in
another array, the subscript, s, is determined by:

s = i+(j-1)*I+(k-1)*I*J

Example:

5' '7

DIMENSION A(2,3,4),B(3)
QUIVALENCE (A(7),B)

in which,A(7) represents element A(l, 1,2) of array A and aligns it with element
B(l) of array B.

loc P
loc P+1

loc P+12
loc P+13

loc P+14
loc P+15

loc P+16
loc P+17

A (1 , 1 , 1) = A (1)

A (1 , 1 ,2) = A (7) = B(l)

A (2, 1 ,2) = A (8) = B(2)

A(l, 2,2) = A(9) = B(3)

5-7

5-8

Rules:

1. EQUIVALENCE statements must appear with other declarative state­
ments prior to the first executable statement in the program or
subprogram .

2. No more than one element of an EQUIVALENCE set may belong to
common.

3. An identifier used as a formal parameter cannot also be used in an
EQUIVALENCE statement.

4. For CHARACTER and TYPE other, use only array names and simple
(non-subscripted) variable names in EQUIVALENCE sets.

5. EQUIVALENCE cannot re-arrange common. However, arrays may
be equivalent so that they change the length of the common block.
See example 2.

6. Attempting to change the origin of a common block causes a diagnostic.
See example 3.

7. An identifier may appear more than once in an EQUIVALENCE state­
ment. See example 4.

8. An identifier in a COMMON statement used in an EQUIVALENCE set
is the base identifier for the EQUIVALENCE statement. When none
in the set belongs to common, the identifier with the lowest address
becomes the base identifier. All other elements in the set are refer­
enced to the base identifier.

Examples:

1) Align first elements of two arrays.
5 7

DIMENSION A(lO,lO), 1(200)
EQUIVALENCE (A,I)

READ (Kl, 10)A
READ (Kl,20)I

The EQUIVALENCE statement assigns the first half of the first element.
of real array A and the first element of integer array I to the same storage
location. The READ request at statement 5 directs that the values of
array A be stored in consecutive locations. Before statement 6 is executed
all operations using the values of array A must be complete. The values
of array I will be read by statement 6 into the storage locations previously
occupied by A. (For READ statements, refer to Section 10.2.)

2) Change the length of common.

5 7

COMMON A
IMENSION A(S), B(S)
QUIVALENCE (A(3),B(1)

loc.P Al
loc.P+2 A2
loc.P+4 A3 Bl

A4 B2
AS B3

B4
BS

3) Illegal attempt to change origin of common .

•

COMMON I
DIMENSION 1(5), R(3)
EQUIVALENCE 1(2), R(2)

I : :} Rl lac. P II
lac. P+l 12 R2
lac. P+2 13
lac. P+3 14 R3
lac. P+4 IS

4) Multiple use of identifiers.

5 7

QUIVALENCE (A,B), (C,D), (E,F), (A,F), (B,D)

interpreted as

5 7

QUIVALENCE (A,B,C,D,E,F)

5-9

5.5

DATA STATEMENT

5-10

DATA statements permit variables in labeled common to accept constant values
prior to program execution.

DATA (il =list) , (i2=list), ...

DATA (i(j,k,I)=list)

DATA ««i(1, J, K), l=nl' n2)' J=ml' m2) K=£I' ~)=list)

i is an identifier representing a simple variable, array name, or a variable
with integer constant (i, j ,k) or integer variable (1, J, K) subscripts.

For implied DO loops, subscript I ranges from integer nl to n2; subscript J
ranges from ml to m2' K ranges from £1 to £2'

List contains constants in the form:

r is an integer constant repetition factor that causes the parenthetical list
following it to be repeated r times. A non-integer r produces a compiler
diagno stic .

Rules:

1. DATA statements must appear with other declarative statements prior
to the first executable statement of the program or subprogram.

2. Because only identifiers in labeled common may be preset, each
identifier appearing in a DATA statement must also be in a labeled
common statement.

3. Implied DO-loop notation is permissible with the restriction that DO
indexing parameter, m3 (Section 6.3), cannot appear. Implied DO
loops are useful for storing constants in arrays. See example 1.

When the number of list elements exceeds the range of the implied DO,
a diagnostic is given and compilation of the DATA statement terminates.
If the list is too short, the compiler gives a diagnostic but continues
processing.

4. A constant preceded by a minus sign is complemented during conver­
sion.

5. The structure of the constant rather than the type of the identifier
determines the type of the stored constant. See examples 2, 3, and 4.

6. When CHARACTER variables are to be preset, each constant in the
list fills one entire storage location. See example 5.

7. Ideally, there should be a one-to-one correspondence between the
identifier locations and list elements. An array name specifies the
first element address. The entire array may be prestored.

Examples:

1) Implied DO loop

5 7

COMMON/DATA/GIB
~TA «GIB(I),I=1,10)=1., 2., 3., 7(4.32))

Result: GIB contains 1.
GIB+1 " 2.
GIB+2 " 3.
GIB+3 " 4.32
GIB+4 " 4.32
GIB+5 11 4.32
GIB+6 fI 4.32
GIB+7 " 4.32
GIB+8 " 4.32
GIB+9 " 4.32

2) A storage location accepts any type of constant regardless of the type of
the identifier.

I' 1 ~ATA (A=2)

Result: Contents of the first word of real element A becomes an integer
2 - not a real 2 as might be expected from the type of the iden­
tifier.

A= o 0 o 0 0 0 o 2 I:}~'{{:::: (":. u'· nchanged ., •... ,., .. ,.' .. : ... ,,:.',":.':,.': .. ,.:, .. :.,.': ',.",'.,.:','.: .. : .0:: <{t" ..•.. ,.,., ... , .. ,'" ... ,.:-,.:-, ... ,.,.. : .. ' •.•.•• , .. ', .. :.,: •. ,.,','., .•• '.:.,': •. ,'., .. ,' i(?:):::': :::-':':::::,:,:. _

first word second word

5-11

5-12

3) Store Hollerith constants in an integer array.

COMMON/DATA/MESSAGE (3)
ATA (MESSAGE = 3HWHO, 2HIS, 4HJOAN)

Result: MESSAGE contains WHOA
MESSAGE+1 " IS A A
MESSAGE+2 If JOAN

4) An erroneous attempt to store real constants in an integer array produces
the results shown below.

5 7

OMMON/DATA/KILO(4)
ATA(KILO = 2.6, 3.2E10)

Result: KILO contains the upper half of 2.6 in floating point
KIL0+1 contains the upper half of 3. 2E10 in floating point
KIL0+2 contains the lower half of 3. 2EIO
KIL0+3 is unchanged

5) DATA constants fill entire, not partial, storage locations. Thus,
CHARACTER data may be pre-set in labeled common but the values are
not necessarily packed. The examples show the wrong and right ways to
pack CHARAC TER data.

WRONG

I
~OMMON/DATA/BOX(3 ,4)
rATA(BOX = 3(1, 2, 3, 4))

Result: The constants 1, 2, 3, and 4 are repeated 3 times and stored in
the low order 6 bits of 12 consecutive storage locations. Since
BOX is dimensioned as 12 characters in 3 words, the results are
erroneous.

RIGHT

5 7

HARACTER BOX
OMMON/DATA/BOX (3,4)

and
(BOX = 3(4H1234)

or
(BOX = 3(01020304B)

Result: BOX contains 01 02 03 04
BOX+1 IT 01 02 03 04
BOX+2 IT 01 02 03 04

6) Use extra care when presetting arrays with data.

5 7

COMMON/DATA/A(3), X
DATA (A = 1., 2., 3., 4.)

Result: A contains 1.
A+1 IT 2.

II 3. A+2
X II 4. Contents of X are changed with or without the

knowledge of the programmer.

5 7

COMMON/DATA/C(3)
ATA(C=1., 2.)

Result: C contains 1.
C+1 II 2.
C+2 is left undefined.

5-13

6.1

GO TO
STATEMENTS

6.1.1

UNCONDiTiONAL

GO TO

6.1.2
COMPUTED GO TO

CONTROL STATEMENTS 6

Program. execution normally proceeds from one statement to the next in the
program.. Control statements are used to alter the sequence or cause a number
of iterations of a program. section.

GO TO statements transfer control within a program or subprogram.

GO TOn

Discontinues the current sequence of execution and resumes execution at the
statement labeled n.

GO TO (n1' n2"" ,nm), e

GO TO (n1,n2"" ,nm)e

Is a many-branch GO TO in which arithmetic expression e is evaluated prior
to branching; ni are statement numbers.

e is reduced to an integer value, j. If j < 1, n1 is executed next; if j >m, nm
is executed next; otherwise, j = i, and ni is executed next.

6-1

6.2

IF S1 ATEMENTS

6.2.1

THREE-WAY IF

6-2

Example:

5 7

=1
B=2
C=1

o TO (10,20,30), A*B-C

1 =A+1
GO TO (11,12,31), A*B-C

Control transfers to statement 10 and then to statement 31 (not shown).

Two- and three-branch IF statements conditionally transfer control.

Control transfers according to the value of the arithmetic expression e.

e < 0

e=O

e > 0

statement n1 is executed next

statement n2 is executed next

statement n3 is executed next

In the test for zero, 0 = -0.

Examples:

7

IF(A*B-C*SINF(X))10,10,20
IF(I)5,6,7
IF (AI B7~*2) 3 , 6 , 6

6.2.2

LOGiCAL iF

6.3

DO 5T A TEMENT

Arithmetic, logical, or relational expression £. is true (non-zero) or false
(zero). If £. is true, statement nl is executed next; if P.. is false, statement n2
is executed next.

Examples:

5 7

IF(A .GT. 16 .. OR. I .EQ. 0)5,10
IF(A .AND. B)1,2
IF(C-D .LE. D+E)4,6
IF(X-Y)5,10
IIF (TCOU1lT) 10,11

IIIF (. NOT .A) 5,6

The DO statement causes a predetermined sequence of instructions to be
repeated a prescribed number of times, with the stepping of a simple integer
variable after each iteration.

Groups of statements are repeated according to the value of simple integer
variable i which increases after each repetition. The DO loop terminates at
statement number n. Indexing parameters mk are unsigned integer constants
or simple integer variables. i is initially set equal to m1; after each execution of
the DO loop, ID3 is added to i. (When omitted, m3 assumes a value of 1.)
When i becomes greater than m2' the DO loop is satisfied.

A DO loop is composed of the DO statement, terminating statement n, and any
intermediate statements. The range of a DO loop includes all of the statements
following the DO statement down to and including the statement that terminates
the loop. Statement n cannot be an IF, GO TO, or DO statement.

6-3

6.3.1

Rules:

1. Indexing parameters mk may be unsigned integer constants or simple
integer variables not greater than 32,767.

2. Constant parameters must be positive; when m3 is zero an informative
diagnostic is given.

3. When indexing parameters ml and m2 are variables, they may be
positive, negative, or zero. Indexing parameter m3 may be a variable
but must be positive.

4. When the values of m2 and m3 are changed during the execution of the
DO loop an informative diagnostic is provided.

5. i is initially equal to ml; as soon as i exceeds m2' looping terminates.

6. DO loops may be nested to a maximum of 10 deep.

DO lOOP EXECUTION The initial value of i, ml' is compared with m2; if it does not exceed m2, the
loop is executed. i is increased by m3 and again compared with m2' The
process continues until i exceeds m2' Control then passes to the statement
immediately following statement n, and the DO loop is satisfied. Should ml
exceed m2 on the initial entry to the loop, the loop is not executed and control
passes to the statement after n.

6-4

6.3.2
DO NESTS

Execute Statements
in loop including

statement N.

No

When the DO loop is satisfied, the index variable i is no longer defined. If a
transfer out of the DO loop occurs before the DO is satisfied, the value of i is
preserved and may be used in subsequent statements.

A DO loop containing another DO loop is a DO nest. The last statement of a
nested DO loop must either be the same as the last statement of the outer DO
loop or occur before it. Di represent DO statements; the subscripts indicate
that Dl appears before D2 and D2 appears before D3, et cetera. ni represent
the corresponding limits of Di; nm must not appear after nm-l; n2 must not
appear after nl .

6-5

6-6

Examples: Nested DO loops

5 7

DO 1 1=1,10,2

DO 2 J=1,5

DO 3 K=2,8

3 CONTINUE

2 CONTINUE

DO 4 L=1,3

4 CONTINUE

1 CONTINUE

I liDO 10 1=1,10
I i I •

I Iro ~o J-1,10
101 iCO~INUE

I ro ~o H1,K2

2°lfO~INUE

1001fo~INUE

5 7

1=1,5
J=I,10

o 5 K=J,15

5 ONTINUE

D1-----,
D2-

n2-

D4~
n4

n1-----'

Dl~

D2~ I

D3-:J
n2,n3

D4~
n4

nl--~

D1=:J D2
D3

n1,n2,n3

6.3.3
DO lOOP TRANSFER

6.4
CONTINUE
STATEMENT

6.S

In a DO nest, control transfers from one DO loop into a DO loop containing it,
or out of a DO nest completely. Leaving a nested DO loop and then returning
to the nest is a special case. In a DO nest, when the range of i includes the
range of j, and a transfer out of j occurs, control may transfer back into the
range of i or j.

In the following diagram, EXTR represents a portion of the program outside
of the DO nest.

i

I
I ~t

I

:;.

c=J I

I ~ '[
I

l= I

CONTINUE

Acts as a do-nothing instruction; control passes to the next sequential program
statement. The CONTINUE statement is frequently used as the last statement
of a DO loop to provide a loop termination when a GO TO or IF would normally
be the last statement of the loop.

PAUSE STATEMENT PAUSE

PAUSE n

The PAUSE statement transfers control to a system or user-supplied subrou­
tine; PAUSE n halts the computer with n (1 to 5 octal digits) displayed in the A
register on the console. When the START key on the console is pressed, pro­
gram execution proceeds with the statement immediately following PAUSE.
PAUSE (n omitted) halts the computer with zeros displayed in the A register on
the console. An n greater than 5 octal digits causes an informative diagnostic.

6-7

6.6
STOP STATEMENT

6-8

STOP

STOPn

STOP n halts the computer with n (1 to 5 octal) displayed in the A register on
the console. When the START key on the console is pressed, control transfers
to the SCOPE monitor. STOP (n omitted) causes immediate exit to monitor.
An n greater than 5 octal digits causes an informative diagnostic.

7.1
MAIN
PROGRAM AND
SUBPROGRAMS

7.1.1

PROGRAM

STATEMENT

7.2

SUBROUTINE
SUBPROGRAMS

FUNCTION AND SUBROUTINE SUBPROGRAMS 7

A main program may be written with or without references to subprograms.
Subprograms (functions and subroutines) are sets of instructions that may be
written and compiled separately from the main program and may be referred
to by the main program.

The name of a function determines the type of the subprogram in the same way
that names determine types of variables. Names of subroutine subprograms
are not classified by type. A subroutine or function name must be unique within
the subprogram.

A calling program is a main program or subprogram that refers to subroutines
and functions.

In each main program, the first statement must be of the following form where
name is a 1- to 8-character alphanumeric identifier beginning with a letter.

PROGRAM name

PROGRAM name may be used only once in a main program, segment, or
overlay. An overlay or segment requires use of PROGRAM nam e in an entry
subprogram written in FORTRAN.

A subroutine subprogram is composed of a set of FORTRAN statements,
bounded by a SUBROUTINE statement and an END statement. A subroutine
subprogram performs operations or calculations that mayor may not return
values to the calling program.

Subroutine subprograms are compiled independently of the main program and
may be compiled in a separate run.

7-1

7.2.1
SUBROUTINE
STATEMENT

7.2.2

CALL STATEMENT

7-2

A subroutine begins with the statement

SUBROUTINE name
or

SUBROUTINE name (PI' P2' ... Pn)

A subroutine name contains up to eight characters, the first of which is alpha­
betic. The name must not appear in a declarative statement or within the
subroutine subprogram.

A subroutine statement can contain from I to 63 formal parameters, Pi; they
may be array names, non-subscripted variables, or names of other function
or subroutine subprograms. Formal parameters must not appear in any of the
following declarative statements within the subroutine subprogram:

EXTERNAL
COMMON
DATA
EQUIVALENCE

A formal parameter representing an array, must be declared in a DIMENSION
statement within the subroutine subprogram; otherwise, only the first element
of the array is available to the subroutine subprogram.

A reference to a subroutine is a call upon a computational or operational pro­
cedure. No resultant value is identified or associated with the name of the
subroutine. The subroutine subprogram returns values, if any, to the main
program through formal parameters or common. The executable statement in
the calling program for referring to a subroutine is:

CALL name
CALL name (PI' P2' ... Pn)

The CALL statement transfers control to the subroutine named. A RETURN
or END statement in the subroutine subprogram returns control to the calling
program. A called subroutine may not call the calling program or itself.

The actual parameters, Pi' of a subroutine call must agree in order, number
1 to 63, and type with the formal parameters of the subroutine subprogram.
The following forms are acceptable for actual parameters:

arithmetic expression

constant

variable, simple or subscripted

array name

function reference

subroutine name

Logical expressions may not be actual parameters. A function reference, used
as an actual parameter, must also be used in an EXTERNAL statement in the
calling program.

When a subroutine is used with a parameter list, the subroutine name and its
parameters must appear as separate actual parameters.

Examples:

1 \
.J..} Subroutine Subprogram

I'
SUBROUTINE ISHTAR (Y,Z)
COMM:ON X(100)

=0

ND

Calling Program Reference

COMM:ON A(100)
XTERNAL PRNTIT

CALL ISHTAR (PRNTIT, SUM)

The formal parameters, Y and Z, in the subroutine subprogram, are
replaced by PRNTIT and SUM. CALL Y is a call to subroutine PRNTIT;
PRNTIT must appear in an EXTERNAL statement for the compiler to
recognize it as a subroutine name.

7-3

7-4

2) Subroutine Subprogram (Matrix Multiply)

5 7

SUBROUTINE MATMULT
COMMON/DATA/X(20,20),Y(20,20),Z(20,20)
DOIOI=1,20
DOIOJ=1,20
Z(I,J)=O
DOIOK=1,20

1 Z(I,J)=Z(I,J)+X(I,K)*Y(K,J)
TURN

Calling Program Reference

5 7

COMMON/DATA/A(20,20), B(20,20), C(20,20)

CALL MATMULT

3) Subroutine Subprogram

5 7

UBROUTINE BLVDLDR (A,B,W)
= 2.*B/A

ND

Calling Program References

5 7

CALL BLVDLDR (X(I), Y(I), W)

CALL BLVDLDR (X(I)+H/2.,Y(I)+C(1)/2. ,W)

CALL BLVDLDR (X(I)+H,Y(I)+C(3),Z)

7.3

FUNCTION
SUBPROGRAMS

7.3.1
FUNCTION

STATEMENT

A function subprogram is composed of a set of FORTRAN statements, bounded
by a FUNCTION statement and an END statement. A function subprogram
calculates a single value used in evaluat'J.D.g an expression.

Function subprograms are independently compiled of the main program and
may be compiled in a separate run.

A function subprogram begins with the statement:

FUNCTION name (PI' P2' ... Pn) 1:5 n~ 63

A function name contains up to eight characters, the first of which is alphabetic.
The type (real, Ll1teger) of the result of a function is determined by the name
of the function. The type may be implicitly defined as real or integer by its
name (Section 2. 2) or it may be explicitly defined by a TYPE statement
(Section 5. 1) .

The function name may not appear in any of the following declarative statements:

DIMENSION
COMMON
EQUIVALENCE
EXTERNAL
DATA

A function name must appear at least once within the function subprogram as
one of the following:

the lefthand identifier of a replacement statement

an element of an input list

an actual parameter of a subprogram call

Formal parameters, Pi' may be array names, non-subscripted variables, and
names of other function or subroutine subprograms. Within function subpro­
grams, formal parameters must not appear in any of the following declarative
statements:

EXTERNAL
COMMON
DATA
EQUIVALENCE

7-5

7.3.2
FUNCTION
REFERENCE

7-6

A formal parameter representing an array must be declared in a DIMENSION
statement within the function subprogram. Otherwise, only the first element
of the array is available to the function subprogram.

A function must have at least one parameter.

A reference to a function is a call upon a computational procedure for the
return of a single value. The value returned is identified by and associated
with the function identifier. The form of the function reference is:

A function reference may be used in expressions in the same way as variable
identifiers; name is the function name.

The actual parameters, Pi' in a function reference must agree in order, number
(1 to 63), and type with the formal parameters of the function subprogram.

Rules:

1. The following forms for actual parameters are permissible:

arithmetic expression

constant

variable, simple or subscripted

array name

function reference

function or subroutine name

2. Logical expressions are not allowed as actual parameters.

3. When the name of a function subroutine appears as an actual parame­
ter, the name must also appear in an EXTERNAL statement in the
calling program.

Examples:

1) Function Subprogram

UNCTION PHI (ALFA,PHI2)
HI=PHI2(ALFA)
ND

Calling Program Reference

I' 1 ~XTERNAL SINF
II :
//C=D-PHI(Q(K) ,SINF)

From its call in the main program, the formal parameter ALF A is
replaced by Q(K), and the formal parameter PHI2 is replaced by SINF.
PHI will be replaced by the sine of Q (K) •

2) Function Subprogram

5 7

FUNCTION PSYCHE (A,B,X)
CALL X
PSYCHE = A/B*2.(A-B)
END

Function Subprogram Reference

7

EXTERNAL EROS

R=S-PSYCHE (TLIM,ULIM,EROS)

In the function subprogram, TLIM and ULIM replace A and B. The
CALL X is a call to a subroutine named EROS. EROS appears in an
EXTERNAL statement so that the compiler recognizes it as a subroutine
name rather than a variable identifier.

7-7

7-8

3) Function with Subroutines as Parameters

The subprograms are defined by statements:

SUBROUTINE ~IRT(A, B)
FUNCTION ZEBRA(X, Y, Z, XX)
SUBROUTINE DONE(R,X, T, U, V)

7

EXTERNAL SQIRT

QX=ZEBRA (SQIRT, ARGl, ARG2, OK)

CALL DONE(SQIRT,ONE,TWO,C,D)

ARGI and ONE represent formal parameter A; ARG2 and TWO represent
formal parameter B of SUBROUTINE ~IRT.

4) Function subprogram

FUNCTION AL(W,X,Y,Z)
CALL W(X,Y,Z)
L=Z**4.

TURN

Function &1bprogram Reference

5

EXTERNAL SUM

G = AL(SUM, E, v, H)

7.4
EXTERNAL
STATEMENT

7.5

When a CALL statement or function reference contains the name of a subroutine
or function in its list of actual parameters, the name must be declared in an
EXTERNAL statement in the form:

EXTERNAL namel' name2' ... nameu

namei is a function or subroutine name used as a parameter.

The EXTERNAL statement must precede the first executable statement of any
program in which it appears.

Example:

To make a function reference PHI(Pl' P2) in the statement C = D-pm
(Q (K), SIN F) : Function SINF is an actual parameter of the function PHI
and must be declared in EXTERNAL statement.

PHI, the function originally referenced, begins with the following state­
ments:

UNCTION PHI(ALFA,PHI2)
HI=PHI2 (ALFA)

Formal parameter ALFA takes the value Q(K); formal parameter PHI2
calls for SINF. Thus, the function subprogram PHI calculates the sine of
Q(K).

ENTRY STATEMENT ENTRY name

Identifies an alternate entry point in a subprogram to be entered if the name
of the entry point rather than the normal function name is referenced in a
statement. ENTRY may not be labeled nor be within a DO loop.

7-9

7.6
ENTRY CALL OR
REFERENCE

7-10

To enter a subprogram at the ENTRY statement, the name of the entry point is
called (subroutine) or referenced (function) in the same way as a subroutine or
function.

ENTRY names must agree with the type of the function name when used in a
function subprogram.

The actual parameters with the ENTRY statement must agree in type and mode
with the formal parameters in the FUNCTION or SUBROUTINE statement for
the subprogram.

Example:

Subprogram execution would begin at ENTRY JAM in the subprogram.

'[IIFUNCTION JOE (X, Y)
101 JOE=X+Y

'IRETURN
ENTRY JAM
IIF •..

END

7.7
RETURN
STATEMENT

7.8

RETURN

A subprogram normally contains one or more RETURN statements to indicate
the end of logic flow within the subprogram and return control to the calling
program.

In function references, control returns to the statement containing the function.
In subroutine subprograms, control, in most cases, returns to the calling
program. A RETURN statement in the main program causes an exit to the
monitor.

END STATEMENT END

7.9
PROGRAM
ARRANGEMENT

The ENv statement marks the physical end of a program, subroutine subpro­
gram, or function subprogram. If the RETURN statement is omitted from a
subprogram, END acts as a return to the calling program or function reference.

FORTRAN compilation assumes that all statements and comments inserted
between a PROORAM, SUBROUTINE, or FUNCTION statement and an END
statement belong to one program. Comments inserted between END and a
SUBROUTINE or FUNCTION statement are associated with the preceding
program. A blank card is required between subprograms and a FINIS card
follow s the last subprogram.

7-11

Example:

7-12

END
<blank card>

SUBROUTINE Sl

END
<blank card>

SUBROUTINE S2

ENl?blank card>
FUNCTION Fl(...)

EN..Pblank card>
FUNCTION F2(...)

}
}
}
}
}

Main Program

Subprogram

Subprogram

Subprogram

Subprogram

8.1

SUBROUTINE
LIBRARY

8.2

LIBRARY SUBPROGRAMS 8

The FORTRAN library of subroutine subprograms includes:

Subroutine

SLITE (i)

SLITET (i, j)

SSWTCH (i, j)

DVCHK (i)

EXFLT (i)
'-

OVERFL (i)

EOFCK (i,j)

IOCHK (i,j)

UNITST (i, j)

OVERLAY (0,

SEGMENT (0,

s, i)

s, i)

FORTDUMP (b, e,m,d)

Definition

set sense light i

test sense light i

test sense switch i

check divide fault

check exponent fault

check overflow fault

test for end -of-file on unit i

test for parity error on unit i

test status of unit i

load and execute overlay

load and execute segment

system dump routine

Parameter i specifies the unit or component number and j specifies the location
of the result. See Chapter 9, Machine Condition Subprograms. For Overlay
and Segment, 0 specifies the overlay identification, and s the segment.

FUNCTION LIBRARY The following FORTRAN library functions are pre-defined and may be refe:r;­
enced by any program or subprogram. X represents real values; I represents
integer values. F is optional as a final character in most function names.
For machine conditions, i designates the component or unit number.

8-1

8-2

Function

ABS(X); ABSF (X)

IABS(I) ; XABSF (I)

ALOG(X); LOGF(X)

ATAN(X); ATANF(X)

COS(X); COSF(X)

EXP(X); EXPF(X)

FLOAT(I); FLOATF(I)

IFIX(X); XFIXF(X); FIXF(X)

SIGN (Xl , X2); SIGNF(Xl, X2)

ISIGN(Il' 12); XSIGNF(Il' 12)

SIN (X); SINF(X)

SQRT (X); SQRTF (X)

SLITEF (i)

SLITETF (i)

SSWTCHF (i)

DVCHKF (i)

EXFLTF (i)

OVERFLF (i)

EOFCKF (i)

IOCHKF (i)

UNITSTF (i)

LENGTHF (i)

NOT (a)

AND (a,b)

OR (a, b)

EOR (a, b) l

Definition

absolute value

natural log of X

arctangent of X radians

cosine of X radians

e to xth power

integer to real conversion

real to integer conversion

sign of X2 times Xl

sign of 12 times II

sine of X radians

square root of X

set sense light i

test sense light i

test sense switch i

check divide fault

check exponent fault

check overflow fault

test for end-of-file on unit i

test for parity error on unit i

test status of unit i

words in last BUFFER IN on unit i

integer masking functions

The functions XABSF, LOGF, FIXF and XSIGNF must appear in a TYPE
declaration to indicate the correct mode of the result.

8.3
OVERLAY AND
SEGMENT With the library subroutines OVERLAY and SEGMENT, a FORTRAN source

program can call from an overlay tape portions of a program too large for
available storage. OVERLA Y and SEGMENT do not partition a program or
prepare an overlay tape. Each subprogram loads the called overlay or segment
into storage and transfers control to the entry point address.

For preparation of overlay tapes, refer to the 3200 SCOPE/COMPASS Refer­
ence Manual, Publication No. 60057700.

The overlay structure consists of a MAIN program and associated overlays
and segments. The MAIN program can call OVER LA Y to load a particular
overlay; the overlay can call SEGMENT to load its associated segments. The
main program resides in memory throughout the entire execution.

A segment may reference subprograms (entry points) in its associated overlay
or main program. An overlay may reference subprograms (entry points) in

When an error occurs during calling or loading overlays and segments, a
diagnostic message is written and the job terminates abnormally.

FORTRAN source subprograms use the followiD:g call statement to load and
execute overlays and segments:

CALL OVERLAY (0, s, i)
or

CALL SEGMENT (0, s, i)

0, s, and i are integer constants or variables. All must be present.
Their order is fixed. 0 and s may be 0 through 99.

o overlay identification number for overlay and its segments

s segment identification number; s = 0 for CALL OVERLAY

i number of the logical unit on which overlay tape is mounted

An overlay or segment is entered and left through a return jump instruction.
Other exits may be taken to the calling program or main program but bookkeep­
ing in the loader prevents loading of a new overlay or segment until an exit is
made through the entry point of the overlay or segment. Therefore, an alter­
native exit from an overlay or segment should be a CALL name statement
(FORTRAN) or a return jump (COMPASS) - either of which returns control to
the calling segment or overlay. The called subprogram, if called by an over­
lay may not call an overlay; if called by a segment, it may not call a segment.

8-3

8-4

CALL OVERLAY appears only in the main program. In an overlay, CALL
SEGMENT calls segments belonging to the overlay. In the main program, use
of CALL SEGMENT applies only in the special case in which an overlay has
called the main program. Execution may then proceed from main program to
overlay to segment. The segment called from the main program must belong
to the overlay that called the main program.

Example:

1)

I

I

Main Program

5 7

PROGRAM MAIN

CALL OVERLAY (3,0,25)

FORTRAN OVERLAY 3 on Logical Unit 25

PROGRAM OVRLY

kALL: SEGMENT

IICALL: SEGMENT

I l .
jTURN

(3,16,25)

(3,12,25)

Program MAIN calls OVRL Y (Overlay 3 of logical unit 25). OVERLA Y
loads OVRLY and transfers control to it. In OVRL Yare calls for segments
of Overlay 3. Segment 16 is called, loaded and executed. Not until after
it returns control to OVRLY can Segment 12 be called, loaded and executed.
When execution of OVRLY is completed, control returns to program MAIN.
Until OVRLY returns control to MAIN, a second overlay cannot be called.

2) Special case in ·which main program can properly call a segment.

I,

MAIN PROGRAM

PROGRAH MAIN

CALL OVERLAY (3,0,25)

SUBROUTINE PLUS (A,X,K)

CALL SEGMENT (3,4,25)
TURN

FORTRAN OVERLAY 3 on Logical Unit 25

ROGRAH OVRLY

ALL PLUS (ALPHAI, BABY I , LINKI)

(3,16,25)

ETURN

Program MAIN calls OVRLY which is loaded and executed. In OVRLY is
a call to PLUS, a subprogram of MAIN! (Overlays and segments can
reference entry points of the main program.) Because it was called by
Overlay 3, PLUS can call any segments of Overlay 3. In this example,
PLUS calls Segment 4 of Overlay 3. After Segment 4 is executed, control
returns to PLUS which may then call another segment or return control to
OVERLAY 3 (OVRL y). OVRL y, when it resumes control may call seg­
ments of Overlay 3, subprograms, or may return control to MAIN. When
MAIN resumes control, it may call another overlay.

8-5

8.4

FORTRAN DUMP

8-6

3) A segment incorrectly attempting to call another segment.

In example 2, OVRLY called Segment 16 of Overlay 3. Segment 16 cannot
appear as shown below:

FORTRAN SEGMENT 16 of OVERLAY 3

ROGRAM SGMNT

(ALPHA, BABY, LINK)

ETURN

In SGMNT is a call to subprogram PLUS. In PLUS, the call for Segment 4
of Overlay 3 cannot be honored because a segment is calling another seg­
ment. A diagnostic occurs.

The FORTDUMP subroutine permits a programmer to request a printout of the
contents of variables in octal, character, or decimal floating point.

Each time it is called, the routine prints, on the standard output unit, a line
containing (1) dump identification, (2) the COMPASS address of the calling
sequence, and (3) contents of the A and Q registers, the three index registers,
and the interrupt mask register. When the register file option is elected,
FORTDUMP prints REGISTER FILE followed by the contents of all 64 high­
speed registers.

The memory dump consists of 8-word lines of data printed in the designated
mode and preceded by the absolute octal address of the first word on the line.
When FORTDUMP detects a line that contains words all identical to the last
word of the preceding line, the line is suppressed. The suppressed line or
lines are noted with the word GAP on the listing.

To call FORTDUMP, use the statement

CALL FORTDUMP(b, e, m, d)

b = simple or subscripted variable identifier of first word to be dumped

e = simple or subscripted variable identifier of last word to be dumped

m = mode; an octal constant or a variable identifier for location of the octal
constant

Octal Constant

1

2

3

4

5

6

7

Mode

Octal

Character

Floating point

Register file

Octal; register file

Character; register file

Floating point; register file

d = Hollerith or octal (internal BCD) constant, or the variable identifier
giving the location of 4 BCD characters that identify the dump

Rules:

1. To prevent excessive printout, avoid calling FORTDUMP within a loop.

2. A first word address (b) greater than the last word address (e) pro­
duces a diagnostic message on the printout.

3. When character or octal modes are used for type REAL variables,
only the upper half of the last word will be printed.

4. Floating point mode for REAL variables converts two words of memory
at a time to decimal output in the form

-. xxxxxxxxxx-eee

Examples:

1)

5 7

ODE = 1
IDENT = 3HK+l
CALL FORTDUMP (MATRIX,MATRIX(16),MODE,IDENT)

MATRlX contains 41 MATRlX+6 contains 47
MATRlX+1 " 42 MATRlX+7 " 0

MATR1X+2 " 43 MATRlX+8 " 0

MATRlX+3 I, 44
MATRlX+4 IT 45
MATR1X+5 " 46 MATRIX+15 TT 0

8-7

8-8

Result:

K+l LaC 77625 A 42200160 Q 00000000 B1 00000 B2 77562 B3 00144 IMR 0017
OCTAL MEMORY
77324 00000051 00000052 00000053 00000054 00000055 00000056 00000057 00000000
GAP

2) 5 7

aMMON (A,B,C,D)

CALL FORTDUMP (A,D,7,4HK+12)

A contains -6.75432
B " 354. 0000
C " . 01
D " 6.754 El

Result:

K+12 LaC 77663 A 42017600 Q 00000023 B1 06734 B2 00144 B3 00000 IMR 2020
REGISTER FILE
00000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

00070 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
FLOATING POINT MEMORY
77470 -.6754320000 001 .3540000000 003

END
.1000000000=001 .6754000000 002

8.5

MACHINE
CONDITION
SUBPROGRAMS

8.5.1

SENSE LIGHT

CONTROL

8.5.2

SENSE LIGHT TEST

Library functions and subroutines exist in FORTRAN that will test and modify
sense lights, switches, and fault conditions. Most machine conditions may be
tested or modified by either a subroutine or a function subprogram. The two
methods differ primarily in the way a resulting value (if any) is stored for use
by the program. The parameters must be of type integer. A subroutine is
referenced with a CALL statement:

I' 1 ~ALL S=CH (I,J)

A function is referenced the same as other library functions.

I' I IGO TO (la, 20) SSWTCHF(I)

Each function reference has at least one parameter even though it is not always
used; DVCHKF, EXFLTF, and OVERFLF do not use input parameters.

subroutine SLITE (i)
function SLITE F (i)

For i equals 1 through 24, either subprogram turns on sense light i. For i
equals zero, the subprogram turns off all sense lights. For i other than 0
through 24, the subprogram provides a diagnostic. Neither subprogram re­
turns results to the caller.

subroutine SLITET (i, j)

function SLITETF (i)

For i equals 1 through 24, either subprogram tests sense light i. If sense
light i is on, the subroutine or :function turns it off. The subroutine then stores
a one in variable j; the function returns a one (in the A register) to the refer­
encing statement. If sense light i is off, a two is stored or returned.

For i other than 1 through 24, the subprogram provides a diagnostic.

8-9

8.5.3
SENSE SWITCH TEST

8.5.4

DIVIDE FAULT CHECK

8.5.5
EXPONENT FAULT

TEST

8.5.6
OVERFLOW TEST

8-10

subroutine SSWTCH (i, j)
function SSWTCHF (i)

i may be 1 through 6 representing one of the 6 console sense switches. Either
subprogram tests sense switch i. If sense switch i is on, the subroutine stores
a one in variable j; the function returns a one (in the A register) to the refer­
encing statement. If sense switch i is off, a two is stored or returned.

If i is other than 1 through 6, the subprogram provides a diagnostic.

subroutine DVCHK (j)
function DVCHKF (i)

Either subprogram tests and turns off the divide fault indicator. If the indicator
is on, the subroutine stores a one in variable j; the function returns a one (in
the A register) to the referencing statement. If the indicator is already off, a
two is stored or returned. (The i in the function reference is a dummy para­
meter that is required but not used.)

subrou tine EXF LT (j)
function EXF L TF (i)

Either subprogram tests and turns off the exponent fault indicator. If the
indicator is on, the subroutine stores a one in variable j; the function returns
a one (in the A register) to the referencing statement. If the indicator is
already off, a two is stored or returned. (The i in the function reference is a
dummy parameter that is required but not used.)

subroutine OVERFL (j)
function OVERFLF (i)

Either subprogram tests and turns off the overflow indicator. If the indicator
is on, the subroutine stores a one in variable j; the function returns a one (in
the A register) to the referencing statement. If the indicator is already off,
a two is stored or returned. (The i in the function reference is a dummy
parameter that is required but not used.)

9.1

I/O LIST

9.1.1
DO-IMPLYING
SEGMENTS

INPUT/OUTPUT FORMAT SPECIFICATIONS 9

Data transmission and conversion between storage and external units require
format lists and I/O control statements (Chapter 10). The I/O statements
specify the input/output device and process, and list the data to be moved. For
binary information, no format list is required. Format lists are provided in
FORMA T statements or in specially prepared variable arrays.

The list portion of an II 0 control statement indicates the data elements and the
order of transmission from left to right. Elements are simple variables or
array names (subscripted or non -subscripted). All variables in the list must
be standard types. A type other variable produces a compiler diagnostic.
List elements are separated by commas; their order must correspond to the
order of the format list.

Examples:

A, B, R(I), Q(3,4)

SPECS

A, DELTAX(J+1)

«BUZ(K,2*L), K=1,5), L=1,13,2)

Q(3), Z (2,2), (TUP(3*I -4), 1=2,10)

(RAZ(K) , K=l, LIM1, LIM2)

A DO-implying segment consists of one or more list elements and indexing
values. Dimensioned arrays may appear in the list with values specified for
the range of the subscripts in an implied DO loop.

The general form for a DO-implying segment is:

mk, nk"" zZk are unsigned integer constants or predefined positive
integer variables. When the third indexing parame­
ter (m3' n3"" zz3) is omitted, a one is used for
incrementing.

'Y i are index variables.

9-1

9-2

A list element may be a simple variable, a dimensioned variable, or an
array name.

The first index variable (:I'i) defined in the list is incremented first. Data
named in the implied DO loops is transmitted by increments of m3 until m2 is
exceeded. (When m3 is omitted, the increment value is 1.) When the first
index variable reaches m2 , it is reset; the next index variable to the right (1'2)
is then incremented and the process is repeated until the last index variable.
hi) has been incremented.

The general form for arrays is:

I, J, K are subscripts of A and must be of the standard form.

A DO-implying segment for an array may replace a nest of DO loops of the form:

In~
10 'Y3=P1, P2 , P3

10 'Y2=lll' ll2' ll3

IDO 10 'Y l=m1 , m2 , m3

1

~ransmtt list elements

CONTINUE

AiJ. implied DO loop may also be used to transmit a simple variable, a sequence
of variables, or an array a number of times. In the segment (A, K=I, 10) A
will be transmitted 10 times.

The limit to which implied DO loops may be nested is determined by the length
of the statement.

Examples:

1) Example of a DO-implying segment nested 5 deep:

««(A(I,J,K), B(M), C(N), N=I,10,1), M=I,5), K=KK(I), KK(2) , KK(3»,
J=I,60,15),I=I,10,1)

During execution each subscript (index variable) is set to the initial index
value: 1=1, J=I, K=KK(I), M=I, N=1. The segment replaces a DO
loop nest of the form:

I

0 15 1=1,10,1
DO 15 J=I,60,15
DO 15 K=KK(I). KK(2). KK(3)

liDO 15 M= 1,5 , , " ,

I Ina ?5 N= 1 , 10, 1

IITra~smit A(I,J ,K), B(M), C(N)

1~ ~O~INUE
2) Elements of A, a 3 by 3 matrix, will be transmitted by columns using:

«A(1, J), 1=1, 3), J=I, 3)

3) Elements of A will be transmitted by rows using:

«A(1, J), J=I, 3), 1=1,3)

4) In the list segment (B(J), L, (A(I, L), 1=1, L), J=3, 9,3), L must have a
value before it can be used as an index variable. The segment replaces a
DO loop nest of the form:

5 7

DO 11 J=3,9,3

ransmit B(J) and L

DO 11 I=I,L

Transmit A(I,L)

11 CONTINUE

5) CAT, DOG, and RAT will each be transmitted 10 times with the segment

(CAT, DOO, RAT, 1=1,10)

9-3

9.1.2
TRANSMISSION
OF ARRAYS

9.2

FORMAT
STATEMENT

9-4

In an I/O list, an array name without subscripts causes the entire array to be
transmitted.

Examples:

5 7

DIMENSION SPECS (7, 5, 3)

Transmit SPECS

transmits the array SPECS as if under control of the nested DO loops

DO 10 J=1,5

~
o 10 1=1,7
ransmi t SPECS

10 ONTINUE
(I,J,K)

or as if under control of an implied DO loop

... , «SPECS(I, J, K), 1=1,7), J=l, 5), K=l, 3), ...

The binary coded decimal (BCD) I/O control statements require a format list
for internal/external conversion of the I/O list elements. The list is usually
given with a FORMAT statement:

FORMA T (specl' ... kx(specm , ...), kyspecn , ...)

speci are format specifications. The repetition factors ki must be un­
signed integer constants. When k is outside the parenthesis, the specifi­
cations within are all repeated k times. (Section 9.5)

The FORMAT statement is nonexecutable and can appear anywhere in the
program. The word FORMAT is reserved and cannot be used as an identifier.

9.3
CONVERSION
SPECIFICATIONS

9.3.1
Ew.d OUTPUT

Data elements in Ilo lists are converted according to format lists that contain
conversion specifications and editing codes.

FORTRAN conversion specifications:

Ew. d Single precision floating point with exponent

Fw. d Single precision floating point without exponent

Iw Decimal integer conversion

Ow Octal integer conversion

Aw Alphanumeric conversion (left justification with blank fill)

Rw Alphanumeric conversion (right justification with zero fill)

FORTRAN editing codes:

wX Intra-line spacing

wH Heading and labeling

I Begin new record

Both w and d are unsigned integer constants. w'specifies the field width, the
number of character positions in the record; d specifies the number of digits
to the right of the decimal point within the field.

The Ew. d specification converts floating point numbers in storage to the BCD
character form for output. The field occupies w positions in the output record;
the corresponding rounded floating point number appears right justified in the
field as

~ a. a ... aE~ee when leel s 99

II a. a ... aEeee when 99 < eee s 308

!J. a. a . .. a-eee when -308::: eee < -99

a. u .. . a are the most significant digits of the integer and fractional part; eee
are the digits in the exponent. If d is zero or blank, the decimal point and
digits to the right of the decimal do not appear. The fractional part contains
a maximum of 11 digits. Field w must be wide enough to contain the integer
portion, signs, decimal point, E and the exponent.

9-5

9-6

When the field is not wide enough to contain the output value, digits are dropped
from the right of the fraction and the fraction sign may be lost. An asterisk is
inserted immediately before exponent designator E if the negative sign is lost.
A w field width less than 5 causes a format error. If the field is longer than
the output value, the quantity is right justified with blanks in the excess posi­
tions to the left. For negative exponents that occupy 3 digits, E is suppressed.

Examples (TAPE1 and OUT are integer variables):

1) Proper use of Ew. d specification

RIGHT

RITE (TAPE 1 , 10)A
ORMAT (E10.3)

A contains -67. 32 or +67. 32

2) Minus sign not provided for

WRONG

J ~ITE (TAPE 1, lO)A
1 FORMAT (E8.3)

A contains +67. 32 or -67. 32

Result: 6. 73E 1\01 or 6. 7*E/\Ol

3) w is larger than required

5 7

RITE (OUT, 25) A
2 FORMAT (E14.4)

A contains 412.679

Result: /\/\1\1\ 4. 1268EI\02

4) E suppressed

5 7

RITE (OUT, 16)X
16 ORMAT (E11.4)

X contains 4.12673 x 10-200

Result: 1\4.1267-200

9.3.2
Ew.d INPUT The Ev/. d input specification converts the number in the input field to real and

stores it in the appropriate location in memory.

w specifies the total number of characters in the input field. In the left-to­
right scanning process, blanks in the field are interpreted as zeros.

The subfields for an input value may include integer, fraction, and exponent in
the forms:

n.mEsss n.m sss

n.m .m sss

. mEsss

n

.m

Esss

Subfield structure of the input field:

input field

I.
integer L fraction

decimal point

exponent

For an integer (n) input value with no decimal point indicated, the E conversion
specification scales the value.

An integer subfield begins with a sign (+ or -) or a digit followed by a string of
digits and ends with a decimal point, E, sign, or end of w.

A fraction subfield begins with the decimal point, includes a string of digits,
and ends with a sign, E, or the end of w.

An exponent subfield may begin with E or a sign. When it begins with E, the
sign may appear between E and the digits in the exponent. The digits in the
exponent must be less than or equal to 308; the entire input quantity must be in
the range of ± 10308.

When no decimal point is present, d in the Ew. d specification is a negative
pow'er factor of ten. The intern'al representation of the input quantity becomes:

(integer subfield) x 10-d x 10(exponent subfield)

9-7

9-8

For example, if the specification is E7. 8, the input quantity 3267+05 is con­
verted and stored as 3267x10-Bx105 = 3.267.

When E conversion is specified, and a decimal point occurs in the input constant,
the decimal point overrides d. The input quantity 3.67294+5 may be read by any
specification allotting necessary field length but will always be stored as
3. 67294x105.

When d does not appear it is assumed to be zero.

w field length must be the same as the length of the input field. When w is too
long, incorrect numbers may be read, converted, and stored as shown below.
When w is too short, a portion of the input field may be left unread. The w
field includes significant digits (maximum of 11), signs, decimal point, E, and
exponent.

Example:

INPUT CARD

INCORRECT SPECIFICATION

5 7

AD 20, A,B,C
2 ORMAT (E9.3, E7.2, EIO.3)

Reading proceeds as follows:

\+6. 47E-01-2. 36+5. 321E +0 2""

+6.47E-0 -2.36+5. 321E+02""

+6. 47E-01-2. 36+5. 321E+02""~

First, +6. 47E-01 is read, converted, and placed in location A.

Next, -2.36+5 is read, converted, and placed in location B. The number
desired was -2.36 but the specification error (E7. 2 instead of E5. 2)
caused the two extra characters to be read. The number read (-2.36+5)
is legitimate under the definitions and restrictions.

9.3.3
Fw.d OUTPUT

Finally, . 321E+0200 is read, converted, and placed in location C. Here
again, the input number is legitimate although it is not the number desired.

In this example, numbers are incorrectly read, converted, and stored, yet
there is no immediate indication that an error has occurred.

Examples:

Ew.d Input
Input Field Specification

+143. 26E-03 Ell. 2

-12. 437629E+1 E13.6

8936E+OO4 ES.I0

327.625 E7.3

4.376 E5

-.0003627+5 Ell. 7

-.0003627E5 Ell. 7

lEI E3.0

E+06 E10.6

1.E1 E6.3

Converted
Value

.14326

:-124.37629

.008936

327.625

4.376

-36.27

-36.27

10.

O.

10.

Remarks

Subfields all present

Subfields all present

L""1put number converted as
8936xl0-10+4

No exponent subfield

No d in specification

Integer subfield contains
only minus

Integer subfield contains
only minus

Input number converted as
1. xlOl

No integer or fraction sub­
field. Zero stored regard­
less of.exponent

Blanks interpreted as zeros

The Fw. d specification converts floating point numbers in storage to BCD
form for output. The field occupies w positions in the output record; the cor­
responding list element must be a floating point quantity that is converted and
rounded to a decimal number, right justified in the w field, as:

o represents the most significant digits of the number (maximum 11). The
number of decimal places to the right of the decimal is specified by d. If d is
zero or omitted, the decimal point and digits to the right do not appear. If the
number is positive, the + sign is suppressed.

9-9

9-10

If the field is too short to accommodate the number, high-order digits are
discarded from the left, the sign is suppressed, and an asterisk appears in the
rightmost character position to indicate the deletion.

If the field w is longer than required to accommodate the number, it is right
justified with blanks occupying the excess field positions to the left.

Examples (TAPE1 and OUT are integer variables):

1) Proper Specification

5 7

RITE (TAPE 1 , 10)A
10 ORMAT (FlO.5)

A contains +123.45678 or -123.45678

Result: ;\123.45678 or -123.45678

2) w too small to accommodate integer portion

5 7

RITE (TAPE 1 , 10)A
10 ORMAT (F8.5)

A contains +123.45678

Result: 23.4567*

3) w too small to accommodate sign

5 7

RITE (42, l2)A
12 ORMAT (F6.3)

A contains -67.460

Result: 67.46*

4) w larger than required

RITE (OUT, 25)A
ORMAT (FlO.3)

A contains 412.6727

Result: 1\ /\ /\ 412.673

9.3.4
Fw.d INPUT The Fw. d specification converts a number in an input field (specified by w) to

real and stores it in memory. The input field consists of an integer and a
fraction subfield. An omitted subfield is assumed to be zero.

Permissible subfield combinations are:

Integer fraction

Integer by itself

Fraction by itself

An integer subfield begins with a digit, + or -; blanks in the field are interpreted
as zeros. The integer field is terminated by a period, or by the end of the input
field.

A fraction subfield begins with a decimal point; it is terminated by the end of
the input field.

In the Fw. d specification, d acts as a negative power factor of ten when the
fraction subfield is not present. The internal representation is: (integer sub­
field) x 10-d. For example, the specification F4. 4 causes the input quantity
3267 to be converted and stored as 3267 x 10-4 = .3267.

A decimal point in the input quantity causes d to be ignored. For example,
3.6789 may be read under any F6. d specification but will always be stored as
3.6789.

When d does not appear it is assumed to be zero. For example, the input
quantity +14. 62 is read into memory as 14.62 by the specification F6.

The maximum number of significant digits that may appear in the combined
integer-fraction field is 11. Excess digits are discarded from the right during
the conversion process.

The field length specified by w in Fw. d should always be the same as the actual
length of the input field containing the input number. When it is too long,
incorrect numbers may be read, converted and stored. When it is too short,
significant digits may be lost.

9-11

9.3.5
iw OUTPUT

9-12

Examples:

Fw.d Input Converted
Input Field Specification Value Remarks

367.2593 FS.4 367.2593 Integer and fraction field

37925 F5.7 . 0037925 No fraction subfield . Input
number converted as 37925
x 10-7

-4.7366 F7 -4.7366 No d in specification

.62543 F6.5 .62543 No integer subfield

.62543 F6.d .62543 Decimal point overrides d
of specification

+144. 15E-03 F11. 2 .14415 Exponents are legitimate in
F input

The Iw specification converts decimal integer values in the output list to BCD
character form for output. The output quantity occupies w output record posi­
tions; it will appear right justified in the field w, as:

0i represent decimal digits (maximum 7) of the integer. When the integer is
positive the + sign is suppressed.

When the field w is larger than required, the output quantity is right justified
with blanks occupying excess positions to the left. When the field is too short,
characters are discarded from the left; an asterisk inserted at the right indi­
cates deletion.

9.3.6
Iw INPUT

Example:

5 7

JRITE (Kl, 10) J,K,L
10 FORMAT (I8, II0, I5)

J contains -3762
K contains +4762937
L contains +13

Result:

The Iw input specification converts the input field to a decimal integer. The
field is w characters in length and the corresponding list element must be a
decimal integer quantity.

Input field w consists of an integer subfield that contains only a plus or minus,
o through 9, or blank, interpreted as zero. When a sign appears, it must pre­
cede the first digit in the field. The value is stored right-justified in the
specified variable.

Example:

Input Card

~

~:~~~1:~~~~~1

5 7

READ (K3, 10) I,J,K,L,M,N
10 FORMAT (I3,I7,I2,I3,I2,I4)

Result: I
J
K

contains 139
!I

IT

-1500
18

L contains 7
M IT 3
N II 104

9-13

9.3.7
Ow OUTPUT

9.3.8
Ow INPUT

9-14

The Ow output specification converts internal binary to BCD octal integers.
The output quantity occupies w output record positions and appears as:

0i represent octal digits (maximum 8 for types integer and character, 16 for
type real). No sign appears; a negative octal number is represented as it
appears in storage in one's complement form. If w is greater than required, the
number is right justified. If w is too small, the rightmost octal digits in stor­
age occupy the output field; the left portion of the word is lost.

Example:

7

RITE (K1, 12) I,J,K,A
12 FORMAT (03,08,04,018)

I contains 000001448 = 10010
J "000024508 = 132010
K "000000448 = 3610
A " 2012452275000000 = 1124.5728 = 596.73910

Result: 1441\1\1V\24501V\44/\I\2012452275000000

~3+-8 -+4 +-18~

The Ow input specification provides a method of entering octal quantities into
storage. The input field w has a maximum of 8 octal digits for character or
integer and 16 for real. The string of octal digits may be preceded by a sign;
a negative sign causes the one's complement of the quantity to be stored.
Blanks in the field are interpreted as zeros. Only octal digits (0-7) may
appear.

9.3.9
Aw OUTPUT

Example:

Input Card

37373737-44AA201245227500000066441A444036

~ 8 -t3·1~ 18 ~IE 12 ~

I.

READ (K1, 10) K,L,P,M
1 FORMAT (08,03,018,012)

Result: K contains 37373737
L " 77777733
p II 20124522
M " 10444036

(complement form)
75000000

J~~ A A 1 _ _ .L\

\OO'±'± IVb"}

With the Aw output specification internal BCD (Appendix A) is converted to
external alphanumeric characters.

Qli represent alphanumeric characters. Maximum is 4 characters for types
integer; 8 for type real. When w is larger than required, the character string
is right justified with blank fill to the left. When the field is too small, the
leftmost characters appear in the output field; any other characters are lost.

Example:

5 7

INTEGER A,B,C
RITE(KS,14) A,B,C,R,Q

1 FORMAT (2A4, A3, A4, 2A8)

A contains 66302545 = WHEN
B "60314560 = 1\ IN 1\

C "63662560 = THE 1\

R " 6346245122656046 = COURSE 1\ 0
Q II 5301061105330710 = $1695.78

9-15

9.3.10
Aw INPUT

9-16

Result:

WHEN/\IN/\THECOUR$1695.78

w too Small;J w too ~
/\ 10 st SE/\ 0 10 st

The Aw input specification accepts up to four 6-bit characters for types integer
and character variables, and eight 6-bit characters for type real variables. A
blank in the input field is converted to the 6-bit equivalent BCD code for blanks
(60). If w exceeds the allowed number of characters (4 or 8), only the right­
most characters are stored in the variable defined in the 110 list. If w is less
than the allowed number, the characters in the input field are stored left
justified in the variable with blank fill to the right.

Example:

Input Card

5 7

. INTEGER A,B,C
I READ (K4,10) A,B,C,R,Q

19 FORMAT (2A4,A3,Af,A8)

Result:

A contains 66302545
B " 60314560
C " 63662560
R " 64516225

incorrect specification

WHEN
AINA
THEA (left justified with blank fill)
URSE (CO lost)

Q If 5301061105330710 $1695.78

9.3.11
Rw OUTPUT The Rwoutput specification is similar to the Aw specification for converting

internal BCD words (Appendix A) to external alphanumeric characters. The w
output field is:

Oi represent alphanumeric characters (Maximum is 4 characters for types
integer; 8 characters for type real.) When w is larger than required to repre­
sent the characters, the character string is right justified with zero fill at the
left. When the field is too small, the rightmost characters appear in the output
field; any other characters are lost.

Example:

5 7

A contains 66302545 = WHEN
B !I 60314560 = /\IN /\
C !I 63662560 = THE/\
R !I 6346245122656046 = COURSE/\ 0
Q !I 5301061105330710 = $1695.78

9-17

9.3.12
Rw INPUT

9.4
EDITING
SPECIFICATIONS

9.4.1
SPACE (wX)

9-18

The Rw input specification, like the Aw specification, accepts up to four 6-bit
characters for types integer and character variables and eight 6-bit characters
for type real variables. A blank in the input field is converted to the 6-bit
equivalent BCD code for blanks (60). If w exceeds the allowed number of
characters (4 or 8) only the rightmost characters are stored in the variable
defined in the I/O list. If w is less than the allowed number, the characters in
the input field are stored right justified with zero fill at the left.

Example:

Input Card

5 7

INTEGER A,B,C
READ (K4,10) A,B,C,K,Q

1 FORMAT (2R4,R3,R6,R8)
II ,/ incorrect specifications

Result:

A contains 66302545 = WHEN
B !I 60314560 = "IN"
C II 00636625 = OTHE (right justified with zero fill)
K II 64516225 = URSE (CO lost)
Q II 5301061105330710 = $1695.78

Editing specifications define spacing between characters and lines, skip records,
begin new records, and provide a method of adding headings and comments.

The wX specification produces blanks in an output record or skips w characters
on input to permit spacing of input/output quantities. If w is zero or blank, a
value of 1 is assumed. The comma after X is optional; see example 2.

Examples:

1) Output Spacing

~~
NTEGER A
RITE (K 1 , 10) A , B , C

1 FORMAT (I2,6X,F6.2,6X,EI2.5)

A contains 7
B II 13.6
C II 1462.37

Result: 1\ 7J\J\J\1\J\J\J\ 13. 60MI\I\I\I\J\1. 4623 7E+ 03

~2~6+6+6 -I- 12-----1

2) Skipping on Input

Input Card

5 7

READ (K3,II)R,S,T
11 FORMAT (F5.2,3X,F5.2,6X,F5.2)

or
11 FORMAT (F5.2,3XF5.2,6XF5.2)

Result: R contains 15.62
S " 13. 78 (M$ spaced over)
T II 15.97 (I\COSTI\ spaced over)

9-19

9.4.2
wH OUTPUT

9.4.3
wH INPUT

9-20

The wH output specification provides a method of including a set of w 6-bit
Hollerith characters (Appendix A) in the output record in the form of comments,
titles, headings, and carriage control characters.

An unsigned integer w specifies the number of characters to the right of H to
be included in the output record. If w = 0, or is missing, a value of 1 is
assumed. The comma following the wH specification is optional.

Examples:

1) No I/O List

5 7

RITE (K7,20)
20 FORMAT (28H BLANKS COUNT IN AN H FIELD.)

Output record: " BLANKS" COUNT" IN A AN A H AFIELD.

2) Mixed Specifications

5 7

RITE (K4,30)A
30 FORMAT (6H LMAX=,F5.2)

A contains 1. 5

Output record: /\LMAX=/d.50

With the H specification, a new heading is read into an existing H field. When
the new characters on an input record are read, the corresponding characters
are placed into the format list designated in the I/O statement. A subsequent
output statement puts the new characters in the output record. w specifies the
number of characters in the input field.

9.4.4

NEW RECORD (j)

Example: Input Card:

Input Card

col.l
'-y--I

/\THISj\IS/\A/\ VARIABLE/\HEADING

I ~ 27 cols. .1
5 7

READ (K4,10)
10 FORMAT (27HAAAAAAAAAAAAAAAAAAAAAAAAAAA)

: I- 27 spaces .1 II' . .
I fRITE (KS, 10)

A slash, signaling the end of a BCD record, may appear anywhere in the spec­
ifications list. It need not be separated from other list elements by commas;
consecutive slashes may appear. During output, it is used to start new records,
cards, or lines. During input, / specifies the beginning of the next card or
record.

Example:

1)

5 7

RITE (K2, 10)
FORMAT (20X,7HHEADING///6X,SHINPUT,19X,6HOUTPUT)

Output Record:

/\/\/\/\A/\/\AAAA/\AA/\A/\/\AAHEADING

AAAAAAINPUTAA/\AA/\AAAAAAAAAAAAAOUTPUT

line 1
line 2
line 3
line 4

Each line corresponds to a BCD record. The second and third records
are null and produce the line spacing illustrated.

9-21

9.5

REPEATED
SPECIFICATIONS

9-22

2) A contains -11. 6
B " .325
C
D

"
"

5 7

46.327
-14.261

RITE (Kl,ll) A,B,C,D
1 FORMAT (2EI0.2/2F7.3)

Result: ,,-1. 16E"OI",,3. 25E-Ol
/\ 46.327 -14.261

5 7

RITE (K2, 11) A,B,C,D
11 FORMAT (2EI0.2/ /2F7.3)

/\46.327-14.261

3) AMAX contains 3. 62
AMAX+l " -4.03
AMAX+2 " -9.78

RITE (Kl,15) (AMAX(I),I=I,3)
1 FORMAT (8~ANSWERS2 (/) 3F8.2)

Result: /\ ANSWERS

1\/\/\/\3.62/\/\/\-4.031\/\/\-9.78

Line 1
Line 2

line 1
line 2
line 3

line 1
line 2
line 3

A Format specification may be repeated by using an unsigned integer constant
k as a repetition factor as follows:

k (spec)

spec may be any conversion specification.

For example, if two quantities K, L are to be printed, the program could

be written:

~ ~RITE (Kl, lO)K,L
1 IFORMAT (I2,I2)

II

Since the specifications for K, L are identical, the FORMA T statement may be
written:

(2I2)

When a group of format specifications repeats itself, as in

FORMAT (E15. 3, F6.1, 14, 14, E15. 3, F6.1, 14, 14)

the use of k produces:

FORMAT (2(E15. 3, F6.1, 214))

The parenthetical grouping of the format specifications is called a repeated
group.

Repeated groups may not be nested; nor may parentheses be used within re­
peated groups.

Examples:

1) ILLEGAL:

5 7

1 ORMAT (lHl, S(2SX, (F6.2)))
1 ORMAT (ES.4,3(4X, FS.1, 2(E6.2)))

2) LEGAL:

(lHl(2SX,S(F6.2)))

9-23

9.6

VARIABLE FORMAT

9-24

Format lists need not be provided with FORMAT statements; instead, they can
be placed in arrays. Placing format lists in arrays and referencing the arrays
instead of the FORMAT statement permits the programmer to change, index,
and specify formats at the time of execution.

Format arrays are prepared by storing a format list, including left and right
parentheses, as it would otherwise appear with a FORMAT statement. Variable
specifications can be read in from cards, changed with replacement statements,
or preset in labeled common with a DATA statement.

Examples:

1) Prepare an array for format list

(E12. 2, F8. 2 ,17, 2E20. 3, F9. 3,14)

5 7

DIMENSION IVAR (8)
I AD (K 1 , 1) (I VAR (I), I I rORMAT (8A4)

1,8)

Result: 1VAR contains (E12
1VAR+l " .2, F

1VAR+4 contains E20.
1VAR+5 " 3, F9

IVAR+2 " 8.2,
1VAR+3 " 17,2

1VAR+6
1VAR+7

"
"

When using the specifications, reference the array:

WRITE (K2, IVAR (1» A,B,I,C,D,E,J

IWR~~E (K2, IVAR) A,B,I,C,D,E,J

.3, I
4)/\/\

Specifications can be changed with replacement statements:

removes 17 from the format list, permitting

r 511~ITE (K2, !VAR) A,B,C,D,E,J

2) Prepare two lists that can be selected by indexing at time of execution.

7

Lists: (E12.2, FS.2, 217)
(F8.2, E12.2, 217)

COMMON/DATA/LAIS (S)
DATA (LAIS = 4H(E12,4H.2,F,4HS.2,4H217),4H(FS.,4H2,El,4H2.2,4H217)

Result: LA1S contains (E12 LA1S+4 contains (FS.
LA1S+l II .2, F LA1S+5 II 2, El
LA1S+2 II S.2, LA1S+6 II 2.2,
LA1S+3 II 217) LA1S+7 II 217)

These could be referenced as:

5 7

I = 1
16

ITE (K3, LA1S (I)) A,B,1,J

9-25

9.7
CARRIAGE
CONTROL

9-26

Result: When I = 1

When 1=5

The first character of a listable output record is used for printer carriage
control, and is not printed. Usually, this character is an H format in a
FORMA T specification which is used by a PRINT or WRITE on OUT state-
ment.

Character Action Before Print Action After Print

1 Skip to format level 8 Space one line
2 Skip to format level 7 Space one line
3 Skip to format level 6 Space one line
4 Skip to format level 5 Space one line
5 Skip to format level 4 Space one line
6 Skip to format level 3 Space one line
7 Skip to format level 2 Space one line
8 Skip to format level 1 Space one line
A No space Skip to format level 8
B No space Skip to format level 7
C No space Skip to format level 6
D No space Skip to format level 5
E No space Skip to format level 4
F No space Skip to format level 3
G No space Skip to format level 2
H No space Skip to format level 1

blank No space Space one line
o (zero) Space one line Space one line

Space two lines Space one line

* No space No space
other No space Skip to format level 1

10.1

OUTPUT
STATEMENTS

10.1.1
PRINT RECORD

INPUT/OUTPUT STATEMENTS 10

Input/ output statements control the transfer of information between the storage
unit and an external device.

In the I/O control statements:

i indicates the logical unit number; must be a simple integer variable
or an integer constant.

n identifies the format list. It is either a FORMAT statement number
or the name of the variable containing the format list. Binary data
transmission does not require n.

list indicates the I/O list (Section 9. 1)

Binary data is transmitted with odd parity-checking bits; BCD with even parity­
checking bits.

PRINT n, list

Transfers information from the storage locations in list to the standard output
unit. This information is transferred as line printer images, 136 characters
or less per line, in accordance with format list n. The maximum record length
is 136 characters, but the first character of every record is used for carriage
control on the printer and is not printed.

10-1

Example:

5 7

PRINT 16, A
16 FORMAT (10HARESULTA=A, F7.3)

PRINT MESS, ADDR

Array ME SS is a variable format list. It currently is:

MESS contains (lOH
MESS+l " "ERR
MESS+2 " ORAA
MESS+3 " T",O
MESS+4 " 8)1\ 1\

10.1.2

PUNCH CARD RECORD PUNCH n, list

10.1.3

Transfers information from the memory locations given by the list to the
standard IXlnch unit. This information is transferred as Hollerith images, 80
characters or less per card in accordance with the format list n. A maximum
of 80 characters is permitted on one card.

WRITE BINARY RECORD WRITE (i) list

10-2

WRITE TAPE i, list

Transfer binary information from the storage locations given by the list iden­
tifiers to the specified logical unit (i may be 1-55). If the list is omitted, the
statement acts as a no operation.

10.1.4

WRITE BCD RECORD

The number of elements in the list determines the number of physical records
to be written 011 the unit. A physical record contains a maximum of 128 words;
the first word is a count word, the remaining 127 words contain the transmitted
data. The last physical record may contain from 2 to 128 words. The physical
records written by one write binary record statement constitute one logical
record. Information is recorded in odd parity (binary mode), as illustrated in
figures 1a and lb.

For k physical records in the logical record, the first word of all records
except the kth contains zero; the first word of the kth record contains the
integer k. If there is only one physical record, the first word contains the -
integer 1.

Examples:

DIMENSION A(260), B(4)

I
RITE (10) A, B

or
~IT~ TAPE 10, A, B

5 f~IiEI(:)IA~(I)'(M(I'J)' J=I,5)
or

RITE TAPE 6, AMAX(I),(M(I,J), J=I,5)

WRITE (i, n) list

WRITE OUTPUT TAPE i,n,list

Transfer information from storage locations given by identifiers in the list to
tape unit (i) according to the format list n. i may be 1 to 55, 59, 61, or 62.

A logical record containing up to 136 characters is written on magnetic tape ~
even parity (BCD mode). Each logical record is one physical record. The
number of elements in the I/o list and the format list (n) determines the number
of records to be written on a unit. If the logical record is less than 136 char­
acters, the remainder of the record is filled with blanks to the nearest multiple
of 4 characters.

When the tape is to be printed the first character of a record is a printer COl1"::-­

tro1 character that will not be. printed. If the programmer fails to allow for a
printer control character, the first character of the output data is lost on the
printed listing.

10-3

I
a

a +k-l

10-4

WRITE: BINARY (ODD PARITY) k WORDS

Is k" 127

No

fJ+l

: =;'>

Yes

a+k-l fJ +k

a represents a word in storage

fJ represents the first word of
a physical record on tape

Figure la

MEMORY TAPE SCHEMATIC

MEMORY

128
WORD

BUFFER

fJ
fJ+l

fJ +127

MAGNETIC TAPE

/
\

II
~_,.oro

127 wds

!
rec gap

t
128

1
WdS

J
rec gap

0

3

,

Data Words

}

TYPICAL
PHYSICAL
RECORD

Number of
Phys ical Rec.

LLast physical

LOGICAL
RECORD

record 128 words

Figure Ib

10.2

INPUT STATEMENTS

10.2.1

READ CARD RECORD

10.2.2

Examples:

5 7

RITE (10,20) A,B,C or
WRITE OUTPUT TAPE 10,20,A,B,C

or
WRITE OUTPUT TAPE 4,21

21 FORMAT (33H THIS STATEMENT HAS NO DATA LIST.)

READ n, list

Reads one or more card images from the standard input unit, converting the
information, from left to right, in accordance with format list n, and stores
the converted data in the locations named in the 110 list. The images read may
come from SO-column Hollerith cards or from magnetic tapes prepared off-line
containing SO-character records in BCD mode.

Example:

I
' 117 READ 10, A,B,C

1 FORMAT (3F10.4)

READ BINARY RECORD READ (i) list

READ TAPE i, list

Transfer one logical record of information from logical unit i (1 through 55) to
storage locations named by the list identifiers.

The record being read must have been written in binary mode by a WRITE (i)
list 9r WRITE TAPE i, list statement. The word count is not transmitted to
the input area. The number of words in the list must be equal to or less than
the number of words in the corresponding write statement.

When the list is omitted, the binary read statement spaces over one logical
record.

10-5

10.2.3

READ BCD RECORD

10-6

Examples:

5 7

DIMENSION C(264), BMAX(10), M2(10,5)
READ (10) C

or
EAD TAPE 10, C

DO 7 1=1,10
7 READ TAPE 6, BMAX(I),(M2(I,J), J=L,5)

READ (5) (skip one logical record on unit 5)
READ (6) «A(I,J),I=1,100),J=1,50)

or
READ TAPE 6, «A(I,J),I=1,100),J=1,50)

READ (i, n) list

READ INPUT TAPE i, n, list

Transfer one logical record of information from logical unit i (1 through 55,
58, 60) to storage locations specified in the list according to format list n.

The number of words in the list and the format specifications must conform to
the record structure on the logical unit (up to 136 characters in BCD mode).
The record being read must have been written in BCD mode; reading a binary
record with a BCD read statement causes a parity error.

Examples:

INPUT TAPE 10, 11, x, Y, Z
or

AD (10,11) X, Y, Z

(3F10.6)

1=5
READ (2, MB(I)) (Z(K), K = 1,8)

10.3

BUFFER
STATEMENTS

Array MB contains indexed variable specifications

MB (1) contains (FlO
MB (2) II .4)/\
MB (3) It (FlO
MB (4) II .3)/\
MB (5) IT (F7.
MB (6) II 2) 1\ /\

Because I = 5, the input format of array Z is F7. 2

Primary differences between the buffer and read/write I/O statements are:

1. In a buffer control statement, parity must be specified by a parity
indicator. The mode of transmission (BCD or binary) for read/write
statements, however, is tacitly implied by the form of the control
statement.

2. The buffer control statements are not associated with I/o or format
lists; data transmission occurs (without conversion) to or from one
area in storage. Read/write control statements, however, are asso­
ciated with I/O lists and, in BCD transmission, with format lists.

3. Only one physical record is transferred per buffer request.

4. A buffer control statement initiates data transmission and then returns
control to the program, permitting the program to perform other tasks
while data transmission is in progress. Before buffered data is used,
the status of the buffer operation should be checked.

5. Buffer statements permit reverse reading.

10-7

10.3.1

BUFFER IN

10.3.2
BUFFER OUT

10-8

BUFFER IN (i, p) (a, b)

i logical unit (1 to 55)

p direction and mode;
p = 0 forward read, BCD mode

1 forward read, binary mode
2 reverse read, BCD mode
3 reverse read, binary mode

a first variable of the block to be transmitted

b last variable of the block to be transmitted

This statement transmits one physical record of information in mode p from
unit i to storage locations a through b. If the tape being read was written by a
BCD write statement, only one physical record (136 characters or less) is
read. Provision must be made for the count word which is buffered in with the
data written with binary write statements. When p = 2 or 3, the record is
read in reverse and the words stored from b to a.

When BUFFER IN requests transmission of more words than are on the record,
the words are stored from a to k, where k is less than b and contains the last
word on the record, regardless of the direction of the read.

A magnetic tape written in binary mode must be read in odd parity; a tape
written in BCD mode must be read in even parity.

The first word address (a) must be less than or equal to the last word
address (b) or the job is terminated.

BUFFER OUT (i, p) (a, b)

i logical unit (1 to 55)

p 0 BCD mode
1 binary mode

a first variable of block to be transmitted

b last variable of block to be transmitted

The statement transmits information from storage locations a through b and
writes one physical record on logical unit i in mode p. The physical record
contains all the words from a to b. Attempting to reverse BUFFER OUT by
using P = 2 or 3 causes a diagnostic.

BUFFERED ·WRITE: BINARY OR BCD

BUFFER OUT (i,p) (A, B)

Yes

WRITE k WORDS i logical unit 11
I [binary or BCD] P recording mode

ON UNIT i a even-BCD
1 odd binary
A first "Word
B last "Word

MAGNETIC TAPE

A

B

MEMORY

k "Words
PHYSICAL RECORD
=LOGICAL RECORD

10-9

10.4

PARTIAL RECORD

10.5

TAPE HANDLING
STATEMENTS

10-10

The first word address (a) must be less than or equal to the last word address
(b) or the job is terminated.

After a BCD or binary read, the tape always moves to the next logical record;
after a BUFFER IN statement, the tape moves to the next physical record even
though the entire record may not have been transmitted. Consequently, the
next READ or BUFFER IN statement does not read the remainder of the record.
For a reverse BUFFER IN, the tape moves to the beginning of the same physical
record.

Example:

5 7

DIMENSION C(10~)D(120) ""'+~""""" __ """'IJ 10 characters

110 characters
=] transmitted

READ (3, 10) C not transmitted
1 FOR}1AT (lOAl)

I
READ (3, 12) D ~~-......-----t

12 FORMAT (12FIO.2)
II

logical
record

rec.gap

120 characters
transmitted

When a REWIND or a BACKSPACE is the next I/O operation after a write
operation, the FORTRAN I/O routine writes an end-of-file, backspaces over
it, and then executes the command.

The logical unit number, i, is an integer variable or an integer constant.

10.5.1

REWIND

10.5.2

BACKSPACE

10.5.3

ENDFILE

10.6

ST ATUS CHECKING

10.6.1

END-OF-FILE CHECK

REWIND i

Rewinds the magnetic tape mounted on unit i (1 to 55) to the load point. When
the tape is already rewound, the statement acts as a do-nothing statement.

BACKSPACE i

Backspaces the magnetic tape mounted on unit i (1 to 55, 60, 61, or 62) one
logical record. (A logical record is a physical record except for tapes written
by a WRITE (i) list or WRITE tape i, list statement.) When the tape is already
at the load point (rewou.l'1d) BACKSPACE i acts as a do-nothing statement.

ENDFILE i

Writes an end-of-file on the magnetic tape mounted on unit i (1-55). A diagnos­
tic is provided if i is not a magnetic tape unit.

The FORTRAN library contains functions and subroutines that check status
after I/O operations.

All parameters must be type integer.

EOFCK and IOCHK are used with read/write I/O control statements. When
they reference buffered units, the job terminates abnormally.

subroutine EOFCK (i, j)
function EOFCKF (i)

Either subprogram checks the status of the previous 1/0 request on logical
unit i. If an end-of-file was encountered while trying to read, the subrou­
tine stores a one in variable j; the function returns a one (in the A register) to
the calling statement. A two is stored or returned if the condition did not
occur.

10-11

10.6.2

PARITY CHECK

10.6.3

UNIT STATUS TEST

10.6.4

LENGTH TEST

10-12

subroutine IOCHK (i, j)
function IOCHKF (i)

Either subprogram checks the status of the previous 110 request on logical
unit i to determine if a parity error has occurred. When an error has occurred,
the subroutine stores a one in variable j; the function returns a one (in the A
register) to the calling statement. A two is returned when no parity error has
occurred.

subroutine UNITST (i, j)

function UNITSTF (i)

Either subprogram checks the status of the last buffer operation on logical
unit i. For the subroutine, a value is stored in j; for the function, a value is
returned in the A register where it is used by the calling statement. The value
is determined accordingly:

j = 1 if the previous buffer operation is not complete.

2 if the buffer operation is complete with no errors.

3 if the buffer operation is complete, but an end -of-file has been
sensed.

4 if the buffer operation is complete, but a parity error occurred.

function LENGTHF (i)

Determines the number of words transferred during the last BUFFER IN opera­
tion on unit i. A unit status test must precede a length test. Call UNITST or
UNITSTF to insure that the last operation on the unit is complete prior to
calling LENGTHF. The number of words is returned in the A register for use
by the calling statement.

Example:

J = 1
BUFFER IN (10,0) (A,Z)

Set flag 1
Initiate buffered read for
logical unit 10, even parity.
The first word of the block
is A; the last Z

4 GO TO (5, 6, 7, 8), UNITSTF (10) Check transmission status
5 GO TO (50, 4), J Read not finished: perform

other calculations at
statement 50

50 com~utation not involving
I information in locations A-Z

IJ 2

pO TO 4
7 FERR = LENGTHF (10)

ITE (21, 70)
70 FORMAT (12H EOF UNIT 10)

GO TO 200
ERR = LENGTHF (10)

RITE (21,80)
80 FORMAT (12HPARITY ERROR)

200 REWIND 10
STOP

6 CONTINUE

Calculations complete;
increase flag by 1

KERR will contain number
of words read
Error message
End-of-file error

KERR will contain number
of words read

BUFFERED transmission
complete; continue
program

10-13

10.6.5
ERROR PROCEDURES

FOR TAPES

10.7

INTERNAL
TRANSMISSION

10-14

Attempting to read past an EOF without checking for EOF causes job term ina -
tion. For BCD or binary operations, EOFCK or EOFCKF sense the condition;
for BUFFER IN, UNITST or UNITSTF sense the condition.

EOF should be checked before parity. For read parity errors, the input routine
retries the read three times. If the error persists, a diagnostic is provided
and control returns to the program.

On write parity errors, the output routine attempts to rewrite the record by
backspacing over the last physical record, erasing 6 inches of tape, and writing.
For BCD or binary operations, IOCHK or IOCHKF sense for parity errors; for
BUFFER IN, UNITST or UNITSTF check parity.

The ENCODE/DECODE statements are comparable to the BCD write/read
statements with the essential difference that no peripheral equipment is used in
the data transfer. Information is transferred under format specifications from
one area of storage to another.

In the following descriptions:

n is a FORMAT statement number, a variable identifier or a formal
parameter representing the associated format list.

list is the input/output list.

v is a variable identifier or an array identifier that supplies the
starting location of the records. The identifier may be subscripted.

c is an unsigned integer or an integer variable (simple or subscripted)
specifying the length of a record. c may be an arbitrary number of
BCD characters. The first record starts with the leftmost charac­
ter of the location specified by v and contains c BCD characters.

10.7.1

ENCODE

10.7.2

DECODE

ENCODE (c, n, v) list

Converts the information in the list according to format list n and stores it in
locations starting at v, c BCD characters per record. If the format list
attempts to convert more than c characters per record, a diagnostic occurs.
If the number of characters converted by the format list is less than c, the
remainder of the record is filled with blanks.

When c is not a multiple of 4, the last record does not fill a computer word;
the remainder of the word is blank-filled.

DECODE (c, n, v) list

Converts a..l1d edits in-.iormation from records consisting of c consecutive BCD
characters (starting at address v) according to format list n and stores it in
the 110 list. When the format list specifies more than c characters per record,
a diagnostic is provided. If DECODE attempts to process a character illegal
under a given conversion specification, a diagnostic occurs. When fewer than
c characters are specified, the remainder of the word is ignored.

Examples:

1) The following illustrates a method of packing partial contents of two words
into one word. Information is stored in core as follows:

LOC(1) contains SSxx

LOC(6) IT xxNN

To form SSNN in NAME:

5 7

DECODE (4,1,LOC(6)) TEMP
FORMAT (2X,A2)
ENCODE (4,2,NAME) LOC(l),TEMP

2 FORMAT (2A2)

The DECODE statement places NN, the last, two BCD characters of
LOC(6) into the two leftmost character positions of TEMP, the temporary
storage. The ENCODE statement packs SS, the first two characters of
LOC(1) into the left of NAME and packs NN to the right of SSe

10-15

10-16

By using the R specification, the program can be shortened to:

5 7

ENCODE (4,I,NAME) LOC(1),LOC(6)
FORMAT (A2,R2)

2) DECODE can be used to calculate a field definition in a format specification
during program execution. At some point in the program, m is to be spec­
ified in the statement FORMAT (2A8, 1m). m is subject to the restriction
2:S: m>9.

5 7

DIMENSION JSPEC (2)

IF (M .LT. 10 . AND. M .GT. 1) 1, 2
1 ENCODE (8,100,JSPEC) M

101 FO~T (6H(2AH,I,11,lH»

I RITE (lO,JSPEC) ,A,B,J

The field definition, M, is tested to insure that it is within limits. If not,
control goes to statement 2 which may be an error routine. When M is
within limits, ENCODE prepares a format list including m in JSPEC. The
6H format transmits (2A8, I to the left of JSPEC; I1 packs m in the next
character position; 1H) closes the list with a right parenthesis. After
ENCODE, JSPEC contains (2AS, 1m).

A write statement referring to format JSPEC writes A and B under spec­
ification AS, and the quantity J under specification 1m, where m may vary
from 2 to 9.

3) ENCODE can be used to re-arrange and change information in a record.

3HBCD
IA = 1H1

NCODE (8,10,B)I,IA,I
10 FORMAT (A2,A1,R2)

ITE (10,II)B
11 FORMAT (020)

I contains 22232460
IA IT 01606060

A2 selects 2223 from I and packs it in the left of B.

Al selects 01 from IA and packs it to the right of 2223.

R2 selects 2460 from I and packs it to the right of 222301.

Because the format list converts fewer than c characters per record, 3
blanks are placed in the remainder of the record.

After the ENCODE, B contains 2223012460606060 = BCIDA"A"

Printout:

1\/\/\/\ 2223012460606060 (the octal equivalent of BCIDMJ\/\)

10-17

11.1

CONTROL CARDS

11.1.1

JOB CARD

PROGRAM OPERATION 11

The SCOPE-32 loader is called into storage by the executive routine whenever
programs are to be loaded. The loader:

Loads re10catab1e binary information

Links independently compiled subprograms

Loads and links library routines referenced by aloaded program

Selects and loads required 110 drivers from the library tape

Assigns equipment to logical units

A main program may be written with or without references to subprograms.
In all cases; the first statement of the main progra...'TI must be a PROGRAJVI
statement.

Compilation and execution of FORTRAN programs under SCOPE control re­
quires SCOPE control cards, identifiable by a 7,9 punch in column 1. The
name of the control statement followed by any necessary parameters begins
in column 2. Control card name and parameters must be contained on a sing1~
80-co1umn card.

Control statements may be read in sequence from the standard input unit, or
may be serially presented by the operator. The operator enters them through
the comment-from -operator unit - usually the console typewriter.

FORTRAN jobs submitted for processing under SCOPE require a JOB state­
ment that supplies information to the installation accounting routine, identifies
the programmer, and sets a job-processing time limit. The JOB card must be
immediately preceded by a SEQUENCE statement. JOB-card format is:

7 NS
9JOB, c, i, t, or, ND

NP

11-1

11.1.2

FORTRAN

CONTROL CARD

11-2

c charge number, 0-8 characters

i programmer identification; any number of characters although the
accounting routine uses only the first four.

t time limit in minutes for the entire job, including idle time for
setup as well as running time. The time is interpreted by the
installation accounting routine.

NS indicates a single, non-stacked job. Use of NS implies NP as well.
Prior to execution of the job, all system tape units are rewound and
unloaded making all I/o units available to the programmer---with
no system unit protection.

NP suppresses system I/O protection. To prevent unintentionally
writing on system units, do not use NP when executing FORTRAN
programs.

ND inhibits post-execution dump. If this field is blank or omitted, a
dump will be taken.

The c, i, and t fields are fixed; they can be blank except for commas. The
NS/NP field and the ND field are interchangeable (free field), and may be
omitted.

Example:

1964,CW,20,ND

FORTRAN is a SCOPE library program; to be called, loaded, and executed,
it requires a SCOPE library control card.

(~FORTRAN'L'A'X,P

L list source language on standard output unit

A list assembly language on standard output unit

X write load-and-go on standard load-and-go unit

P punch relocatable binary deck on standard punch unit

11.1.3

LOAD CARD

Parameters can be interchanged or omitted. A parameter can be one or more
characters in length; only the first character - L, A, X, or P - is significant.

Example:

gFOR ,LIST ,ASSEMBLY ,XECUT ,PUNCH

The assembly listing and source language listing will be on the standard output
unit. The load-and-go and the punch output will be processed on standard units.

This statement loads binary object subprograms into storage.

h f gLOAD,ul,u2,u3

ui identify the logical unit numbers, 1-56, previously defined by
an EQUIP statement (section 11. 2) for this run. If logical units
are not specified, the loader attempts to load from logical unit
60, standard input (INP). No more than three units may be
specified.

An end-of-file terminates loading from each unit. SCOPE loads from the un.its
in the order specified and then loads binary information from INP if any exists.

With or without a LOAD statement, unless preceded by a control statement
such as XFER (3200 SCOPE COMPASS Reference Manual), a binary object
program on the standard input unit is loaded into memory when encountered by
the monitor system.

Example:

11-3

11.1.4

RUN CARD

11.1.5

FINIS CARD

11-4

The RUN statement initiates program execution by transferring control to the
object program in memory. It is required for all program runs and follows the
relocatable binary deck if the program is on INP or the LOAD statement if the
program is on an input tape other than INP.

~RUN,t'NM

t is the execution time limit in minutes (0 to 999) used by the account­
ing routine. If t is omitted, the accounting routine assumes blanks.

NM suppresses the memory map that would otherwise be written on the
standard output unit (OUT). The map is a list of memory alloca­
tions of a loaded program prior to execution. When NM is omitted,
a map is prepared.

Example:

The estimated execution time is 2 minutes; a memory map will be prepared.

The FINIS card notifies the compiler that there are no more decks to be com­
piled. The word FINIS must begin in column 10:

1 10

(FINIS

11.2

EQUIPMENi

ASSIGNMENT SCOPE assigns physical equipment at run time. All references to I/o units
are by logical unit numbers. The programmer must declare logical unit num­
bers on EQUIP cards placed after the JOB card or before the RUN card.

Hardware Definition

(~EQUIP' xr-hh

This statement assigns logical unit xx to available equipment of hardware type
hh. A diagnostic is provided if specified hardware is unavailable.

hh= MT Magnetic tape

CR Card Reader

PR Printer

CP Card Punch

TY Console Typewriter

TS Channel Typewriter

Equating Units

Once defined, a logical unit may be equated with others. The second statement
equates logical units xxi. Specifying a system unit (56-63) on the left side ter­
minates a job. xx2 may be a system unit.

Example:

5 7

11-5

11-6

Physical Unit Assignment

(~EQUIP' xx=hhCcEeUuu

xx logical unit number

hh hardware type mnemonic

c channel number 0-7, prefixed by C

e equipment number (controller) prefixed by E

uu unit number (device), prefixed by U

The table illustrates the variety of formats permitted for this statement. An
x indicates use of a parameter; a blank indicates its omission.

hh Co Ee Uuu
x

x x
x x x
x x x x

x x x
x x

Specification of a non-existent channel, equipment, or unit number causes
job termination accompanied by a diagnostic.

Example:

11.2.2
LOGICAL UNITS PROGRAMMER UNITS:

Logical units 1 through 49, retained throughout each job for reference by the
programmer.

SCRATCH UNITS:

Logical units 50 through 55, held for temporary use during execution of each
program. These units are released after execution of each program.

SYSTEM UNITS:

&,istem units (logical units 56-63) are standard units defined by SCOPE. The
physical assignments of units differ according to the installation.

unit 56 Lo ad -and -go (LGO)

Binary information may be stored here prior to loading and executing.

unit 57 Accounting Record (ACC)

Job statements and total time used by the jobs are recorded on this unit.
Each installation must provide the accounting routine.

unit 58 Input Comment (CFO)

Comments from the operator to the monitor system are made on this unit.

unit 59 Output Comment (CTO)

statements from the monitor system to the operator are made on this unit.
This unit may be used by the programmer for output.

unit 60 standard Input (INP)

Jobs to be processed by SCOPE are placed on this unit by the operator.

unit 61 standard Output (OUT)

Accounting information, diagnostics, dumps, and job control statements
are recorded on this unit in BCD mode. The programmer normally uses
this unit for off-line listable output.

unit 62 standard Punch Output (PUN)

Output for punching is recorded on this unit. All records are written in
binary mode unless otherwise specified.

11-7

\

11.2.3

EQUIPMENT

REQUIREMENTS

11.3

DECK STRUCTURE

11-8

unit 63 SCOPE Library (LIB)

The SCOPE library contains the monitor system and all of the programs
and subprograms which operate under the control of SCOPE; such as,
FORTRAN, COMPASS, COBOL.

The FORTRAN jobs require a minimum system consisting of:

1 input unit (card reader)

1 output unit (printer)

3 magnetic tapes

This configuration will compile and execute a job containing single or multiple
subprograms. During compilation, the system employs:

LU55 Scratch

LU56 Load-and-go and scratch

LU63 SCOPE Library

The examples illustrate deck arrangements for compilation and execution of
FORTRAN programs and subprograms.

COMPlLA TION ONLY

(FINIS

1 END

! PROGRAM MAIN

{~FORTRAN ,L ,A -

~JOB,42567,CEW,15
-

EXECUTION ONLY

Execute directly from the standard input unit:

~~(~~U~N'5~~~~JI
(FORTRAN binary object deck

7
9JOB ,42567,CEW,15

Execute time does not include load time. For this example, execution
time limit is 5 minutes; job limit is 15 minutes.

Execute from programmer unit number 49 in addition to the standard
input unit:

data I
7 9RUN ,5 I

- (FORTRAN binary object deck rLOAD ,49

(~EQUIP , 49=Mr

~JOB,42567,CEW,15
-

f--

11-9

11-10

COMPILATION OF FORTRAN MAIN PROGRAM WITH SUBPROGRAMS

7 RUN
9 I

7

I 9LOAD ,56
~

FINIS I
END

L-.--

~ Function subprogram deck l I '---
blank

I...- (, END

(Subroutine subprogram deck
nk card in Bla

pIa
car

ce of FINIS
d

I

(
--"'-'
---{

END

PROGAA~l t~JAI:N

~FORTRAN,L,P

I
~EQUIP,62=Mr

I
I I

I ~JOB,42567,CEW,lO
I

blank

I
I

II
J-

I

I
1

II~
1\1

~

FORTRAN PROGRAM WITH COMPASS S"0BPROGRAM

(data

(~RUN,5

0LOAD ,56

I FINIS
(END

1I1~ COMPASS source program
IDENT TWO

U 7 9COMPASS,I,X,L

! / FINIS

I END

J FORTRAN source program

(PROGRAM MAIN

9FORTRAN,A,~,X (7
~JOB,42567,CEW,20

r---

I

r--

I

r--

-

r- Thi

I jco
s card calls the
MP ASS assembler.

II

-
~

11-11

APPENDIX SECTION

CHARACTER CODES A

Source BCD Punch po sition Source BCD Punch position
Language (Internal in a Hollerith Language (Internal in a Hollerith
Character only) * Card Column Character only) * Card Column

A 21 12-1 Y 70 0-8

B 22 12-2 Z 71 0-9

C 23 12-3 0 00 0

D 24 12-4 1 01 1

E 25 12-5 2 02 2

F 26 12-6 3 03 3

G 27 12-7 4 04 4

H 30 12-8 5 05 5

I 31 12-9 6 06 6

J 41 11-1 7 07 7

K 42 11-2 8 10 8

L 43 11-3 9 11 9

M 44 11-4 / 61 0-1

N 45 11-5 + 20 12

0 46 11-6 40 11

P 47 11-7 blank 60 space

Q 50 11-8 33 12-8-3

R 51 11-9 34 12-8-4

S 62 0-2 $ 53 11-8-3

T 63 0-3 * 54 11-8-4

U 64 0-4 73 0-8-3

V 65 0-5 74 0-8-4

W 66 0-6 13 8-3

X 67 0-7 -I 14 8-4

*Magnetic Tape Codes same as 1604.

A-I

Subprogram Statements

Entry Points

Inter-subroutine

Transfer Statements

Data Declaration and Storage Allocation

Type Declaration

Storage Allocations

*N Non-executable; E Executable

STATEMENTS

PROGRAM name

SUBROUTINE name

SUBROUTINE name (P1,P2°'··· ,Pn)

FUNCTION name (P1'P2,··· ,Pn)

ENTRY name

EXTER...NAL name1 ' name
2

, ... , name
n

CALL name (c1 ,c
2
,··· ,c

n
)

RETURN

REAL list

INTEGER list

CHARACTER list

TYPE other (w) list

N*

N

N

N

N

N

E

E

N

N

N

N

DIMENSION vI (sl' s2' S3)' v2(S4' s5' S6)'· . • N

COMMON list N

COMMON/DATA/list N

EQUIVALENCE (aI' b
1

, ...), (a
2

, b
2

, ...), ... N

DATA (i1 =list) , (i2 =list). . . N

DATA (i(j, k, 1,)=list) N

DATA «(i(I,J),I=i
1
,i

2
),J=m

1
,m

2
)=list) N

B

B-1

Symbol Manipulation, Control and I/O

Replacement v=e E

rn=rn_I=···r2=rl=a E

Intra-program Transfers GO TOn E

GO TO (nl ,··· ,nm),e E

IF (e) n
l

,n
2

,n
3

E

IF CO n
l

,n
2

E

Loop Control DO n i=m
l
,m

2
,m

3
E

Miscellaneous Program Controls CONTINUE E

PAUSE; PAUSE n E

STOP: STOPn E

I/O Format FORMAT (spec I , spec
2
···) N

I/O Control Statements READ (i, n) list E

WRITE (i, n) list E

READ n, list E

READ (i) list E

READ INPUT TAPE i, n, list E

READ TAPE i, list E

WRITE OUTPUT TAPE i, n, list E

WRITE TAPE i,list E

WRITE (i) list E

BUFFER IN (i,p)(a,b) E

BUFFER OUT (i, p) (a, b) E

PRINT n, list E

PUNCH n, list E

B-2

I/O Tape Handli..llg

Internal Data Manipulation

Program and Subroutine Termination

ENDFILE i

REWIND i

BACKSPACE i

ENCODE (c, n, w) list

DECODE (c, n, w) Ust

END

E

E

E

E

E

N/E

B-3

MIXED MODE

CALLING SEQUENCES

The form of the external call is:

77 loc parameter word

op two BCD characters representing operation to be performed:

AD add
SB subtract
ST store

MU multiply
DV divide
EX exponentiate

c

\ single BCD character representing type of value in accumulator

t2 single BCD character representing type of operand value

t1 and t2 may be: I
R
X

loc address of operand

integer
real
character

If the operand is an element of an array, the parameter word indicates the
index register that contains the increment value to obtain the proper element.
If the array is non-character, any index register may be used. For a char­
acter array, the index register is:

B2 for add, subtract, and store operations
B1 for all other operations

The following routines are implemented for mixed mode:

Q1QEXRR real ** real
Q1QEXRI real ** integer
Q1QEXlR integer ** real
Q1QEXlI integer ** integer
Q1QADIR integer + real
Q1QADXR character + real
Q1QADRI real + integer
Q1QADRX real + character
Q1QSBIR integer - real
Q1QSBXR character - real
Q1QSBRI real - integer
Q1QSBRX real - character

C-l

TYPE CHARACTER

C-2

QIQMUIR
QIQMURI
QIQDVIR
QIQDVRI
QIQSTXR
QIQSTRI
QIQSTRX
QIQSTIR

integer * real
real * integer
integer / real
real / integer
convert character to real and store
convert real to integer and store
convert real to character and store
convert integer to real and store

The form of the external call is the same as for mixed mode arithmetic. The
operations represented by op are:

MU multiply
DV divide
EX exponentiate

The address of the operand value may be a 17 -bit address.

Example:

I'r ICHARACTER L, M, N, P
I IlL = M~"N+P

The compiler generates a call to an external routine that performs the
multiplication. (Operand M is in the A register when the return jump is
executed.)

RTJ QIQMUXX
77 N

To multiply character variables, the user must provide a COMPASS
routine that has Ql QMUXX as its entry point.

TYPE OTHER

Example:

511~cmA' c C = AlB

The compiler generates a call to an external routine that performs the
division. (Operand A is in the A register when the return jump is executed.)

RTJ QIQDVXR
77 B

To divide character variables, the user must supply the external routine.

The form of the external call is:

RTJ nnn

77 loc

nnn

op

parameter word

three BCD characters representing the type of operation.
The first character is the first letter of the non-standard
name (C for complex). The second character is either the
second letter of the non-standard name or a period. The
third character is always a period.

two BCD characters representing operation to be performed.

LD load AD add
LN load negative SB subtract
ST store MU multiply
CM complement DV divide

EX exponentiate

represent the accumulator and operand values:

R real
I integer
X character
o other

The parameter word serves the same purpose as it does in mixed mode.

C-3

STANDARD

SUBPROGRAM
CALLING
SEQUENCE

C-4

The external call for complement is not followed by a parameter word. The
return is to the instruction following the RTJ instruction.

Example:

5 7

TYPE COMPLEX (4) A,B,C
INTEGER D
A = B+C*D

The compiler generates the following calls to external routines, which
must be supplied by the user.

RTJ CO.LDOO routine to load C
77 C
RTJ CO. MUOI routine to multiply
77 D
RTJ CO.ADOO rou tine to add B
77 B
RTJ CO. STOO routine to store
77 A result in A

The standard calling sequence recognized by FORTRAN subroutines and func­
tions is:

77 L(P)
n

The subprogram being referenced is identified by name. L(Pi) is the address
of the ith parameter. If name is a FORTRAN subprogram, it must appear in a
SUBROUTINE or FUNCTION statement as

SUBROUTINE name (PI' ... ,Pn)
or

FUNCTION name (PI' ... ,Pn)

A FORTRAN program may reference a COMPASS subprogram by a function
reference or subroutine call which produces the above calling sequence.

Example:

CALL NAME (PI'· .• ,Pn)

compiles to: RTJ
77

77

FORTRAN produces code that saves and restores contents of index registers
for subroutines and functions.

C-5

DIAGNOSTICS D

COMPILATION

At the completion of compilation of each subprogram, any errors encountered during compilation are
indicated on the standard output unit. A diagnostic in one of the following forms is printed with the
error message.

ERROR TYPE xxxx DETECTED AT n STATEMENTS BEYOND NO. m

ERROR TYPE)CXXX DETECTED AT STATEMENT ill

xxxx 4-digit error code

m a source statement label, or 0 - the first statement of the subprogram

Example:

ERROR TYPE 0156 DETECTED AT 13 STATEMENTS BEYOND STATEMENT NO. 0
COMMON NAME DOES NOT START WITH AN ALPHABETIC CHARACTER

Error messages are informative (1), destructive (D), or fatal (F).

A type I error produces an informative message, only. The erroneous statement is compiled ane
the program is executed.

A destructive error prevents the statement from being compiled. Compilation resumes with the
next statement but execution is inhibited.

Detection of a fatal error in a statement causes immediate termination of compilation of the program
or subprogram. Compilation resumes with the next subprogram but the compiled programs are not
executed.

D-l

Error
Code

0000

0001

0002

0003

0004

0005

0010

0011

0012

0013

0014

0015

0020

0021

0022

0030

0031

0032

0033

0034

0035

D-2

Message

PROGRAM TOO LARGE FOR COMPILER TABLES.
SEGMENT AND RE -COMPILE

FIRST STATEMENT NOT PROGRAM, SUBROUTINE, OR FUNCTION-­
ASSUME PROGRAM JOB

PROGRAM FORMAT ERROR--ASSUME PROGRAM JOB

PROGRAM NAME DOES NOT START WITH AN ALPHABETIC
CHARACTER--ASSUME PROGRAM JOB

PROGRAM STATEMENT OUT OF ORDER

LABELED DECLARATIVE STATEMENT

FUNCTION OR SUBROUTINE FORMAT ERROR

NO FORMAL PARAMETERS IN FUNCTION STATEMENT

FUNCTION NAME DOES NOT START WITH AN ALPHABETIC CHARACTER

FORMAL PARAMETER DOES NOT START WITH AN ALPHABETIC
CHARACTER

SUBROUTINE STATEMENT OUT OF ORDER

MORE THAN 63 FORMAL PARAMETERS

SUBROUTINE FORMAT ERROR

SUBROUTINE NAME DOES NOT START WITH AN
ALPHABETIC CHARACTER

FUNCTION STATEMENT OUT OF ORDER

DIMENSION FORMAT ERROR

ILLEGAL USE OF NAME IN DIMENSION
STATEMENT

DIMENSION NAME DOES NOT START WITH AN
ALPHABETIC CHARACTER

SUBSCRIPT IS NOT AN INTEGER CONSTANT
LESS THAN 32768

FORMAT ERROR IN DIMENSIONING

MORE THAN THREE SUBSCRIPTS

F

I

I

I

I

I

D

D

D

D

D

D

D

D

D

F

F

F

F

F

F

0130

0131

0132

0150

0151

0152

0153

0154

0156

0157

0160

0161

0240

0241

0242

0243

0244

0245

0246

0247

0250

0300

0301

Ex""TE&.i\JAL FORMAT ERROR

EXTERNAL NAME DOES NOT START WITH AN
ALPHABETIC CHARACTER

ILLEGAL USE OF NAME IN EXTERNAL

LABELED COMMON FORMAT ERROR

COMMON FORMAT ERROR

ILLEGAL USE OF NAME IN COMMON STATEMENT

MORE THAN THREE SUBSCRIPTS IN COMMON
STATEMENT

IDENTIFIER APPEARS MORE THAN ONCE IN
COMMON

COMMON NAME DOES NOT START WITH AN
ALPBABETIC CHARACTER

TWO ELEMENTS IN A SET ARE IN COMMON

BLOCK NAME OTHER THAN DATA

MORE THAN 253 IDENTIFIERS IN LABELED
COMMON OR IN BLANK COMMON

IDENTIFIER IN TYPE STATE:MENT IS PROGRAM
OR SUBROUTINE NAME

TYPE FORMAT ERROR

MORE THAN ONE TYPE OTHER

TYPE OTHER FORMAT ERROR

TYPE OTHER SIZE IS NOT AN INTEGER
CONSTANT LESS THAN 32768

CONFLICT IN SIZE FOR TYPE OTHER STATEMENTS

ZERO WORD LENGTH FOR TYPE OTHER

TYPE OTHER NAME DOES NOT START WITH AN
ALPHABETIC CHARACTER

NAME TO BE TYPED DOES NOT START WITH AN
ALPHABETIC CHARACTER

EQUIVALENCE FORMAT ERROR

SUBSCRIPT FOR TYPE OTHER OR CHARACTER

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D-3

0302

0304

0306

0400

0401

0402

0403

0404

0405

0406

0407

0411

0412

0413

0414

0415

0416

0420

0421

0422

0423

0461

0477

0501

D-4

ILLEGAL USE OF NAME IN EQUIVALENCE

EQUIVALENCE RELATION ERROR

NAME IN EQUIVALENCE DOES NOT START WITH
AN ALPHABETIC CHARACTER

DATA FORMAT ERROR

SUBSCRIPT NOT INTEGER VARIABLE OR
INTEGER CONSTANT LESS THAN 32768

TOO MANY SUBSCRIPTS FOR DIMENSIONED
VARIABLE

FIRST USE OF IDENTIFIER

NAME NOT SIMPLE OF DIMENSIONED VARIABLE
AND IN LABELED COMMON

MORE THAN ONE CONSTANT IN DATA LIST FOR
SIMPLE VARIABLE

SUBSCRIPT NOT INTEGER CONSTANT LESS THAN
32768

SUBSCRIPT EQUALS ZERO

DATA LIST TOO LONG

CONFLICT IN USE OF NAMES OR VARIABLES IN
DO IMPLYING LOOP

N2 LESS THAN Nl I = Nl, N2

ILLEGAL USE OF NAME IN DATA STATEMENT

FORMAT ERROR IN DATA LIST

ATTEMPTED NEST OR REPEATS IN DATA LIST

K = 0 USED FOR REPEAT

DATA LIST TOO SHORT

--APPEARS IN DATA LIST

-(APPEARS IN DATA LIST

MORE THAN 64 DECLARATION STATEMENTS

NO LABELED COMMON FOR DATA

PARENTHESES DO NOT MATCH.

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

I

D

D

F

D

D

0502

0503

0504

0505

0506

0507

0510

0511

0512

0513

0514

0515

0516

0520

0521

0522

1000

1001

1002

LABEL ON C01~I1~ATION CARD OR COLUMN
S IX OF LABELED STATE:MENT MISPUNCHED

STATE:MENT LABEL NOT IN SPECIFIED FORMAT.
ALPHABETIC CFARACTER, NON-INTEGER NUMBER,
OR THE LABEL IS GREATER THAN 32767

LABEL ON THIS STATEMENT HAS BEEN USED
PREVIOUSLY.

IDENTIFIER OF MORE THAN EIGHT CHARACTERS.

IDENTIFIER NA:ME FOLLOWED BY PERIOD.
POSSIBLE ERROR IN LOGICAL OPERATOR
OR OMISSION OF SEPARATOR OR ARITHMETIC
OPERATOR BEFORE A CONSTANT.

STATEMENT TOO LONG FOR COMPILER TABLES.

HORE THAN 20 CHARACTERS HAVE BEEN USED IN A
NUMERIC CONSTANT FIELD.

THE FIRST CONSTANT IN THIS STATEMENT IS
INCORRECT

I/O STATEMENT IS NOT CORRECT IN FORM.

R OR H FIELD OF HOLLERITH CONSTANT
NOT SPECIFIED CORRECTLY OR FIELD TOO
LONG.

CANNOT IDENTIFY STATEMENT TYPE.
STATEMENT NAME MIS-SPELLED OR MISUSED
OR AN EQUAL SIGN IS MISPLACED.

SYNTAX ERROR IN FORMAT SPECIFICATION.

CONSTANT IN STOP OR PAUSE STATE:MENT
SHOULD BE 5 OR LESS DIGITS.

COMPUTED GOTO EXPRESSION CONTAINS A
LOGICAL OPERATOR

MULTIPLE REPLACE:MENT STATEMENT CONTAINS
LOGICAL OPERATOR

FORMAT STATEMENT NOT LABELED

COMPUTED GO TO LABEL LIST NOT IN CORRECT
FORMAT.

LABEL REFERENCED IN NOT AN INTEGER NUMBER.

IF STATEME1~ WITHOUT RIGHT PARE1~HESIS
AFTER EXPRESSION.

D

D

D

D

D

D

D

D

D

D

D

D

I

D

D

D

D

D

D

D-5

1003

1004

1005

1006

1007

1010

1011

1012

1013

1014

1015

1016

1017

1020

1022

1024

1025

1026

1027

D-6

INCORRECT NUMBER OF LABELS IN IF STATEMENT.

LABEL LIST IN INCORRECT FORMAT IN IF
STATEMENT.

LABEL REFERENCE NOT INTEGER NUMBER OR NOT
LESS THAN OR EQUAL TO 32767.

THIS STATEMENT IS TOO LONG TO FIT IN
PI LIST.

LEFT S IDE OF REPLACEMENT STATEMENT NOT
IN CORRECT FORMAT.

AN ILLEGAL FORM OF SUBSCRIPTING HAS
OCCURRED IN THIS STATEMENT.

SUBSCRIPT IS NOT A SIMPLE INTEGER
VARIABLE.

SUBSCRIPT MODIFIER IS NOT AN INTEGER
CONSTANT OR IS GREATER THAN 32767.

DIMENSIONED VARIABLE WITH TOO MANY
SUBSCRIPTS APPEARS IN THIS STATE~iliN~.

AN ILLEGAL FORM OF SUBSCRIPTING HAS
OCCURRED IN THIS STATEMENT.

CONSTANT ADDEND OF A DIMENSIONED VARIABLE
IS GREATER THAN 32767.

MORE THAN 63 INDEX FUNCTION GENERATED.

POSSIBLE MACHINE OR COMPILER ERROR. I-BIT
SET IN FORMAT PARAMETER IDLIST ENTRY BUT
NO DIMENSIONED VARIABLE IN IDLIST.

PROGRAM OR SUBROUTINE NAME MAY NOT APPEAR

INDEX FUNCTION MULTIPLIER GREATER THAN
32767.

SUBROUTINE NAME IN CALL STATEMENT USED
BEFORE AS A SIMPLE OR DIMENSIONED VARIABLE.

INCORRECT FORM OF PARAMETER LIST IN
A CALL STATEMENT.

ENTRY STATEMENT USED BEFORE AS A SIMPLE
OR DIMENSIONED VARIABLE.

ENTRY STATEMENT CANNOT APPEAR IN A MAIN
PROGRAM.

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

1030

1031

1032

1033

1034

1035

1036

1037

1040

1041

1042

1043

1044

1046

1047

1050

1052

1053

1054

1055

DO STATEMENTS NESTED MORE THAN 10 DEEP.

RUNNING INDEX OF A DO NOT A SIMPLE
INTEGER VARIABLE.

EQUAL SIGN DOES NOT FOLLOW THE RUNNING
INDEX OF A DO.

FIRST QUANTIFIER IN A DO NOT FOLLOWED
BY A COMMA.

DO STATEMENT DOES NOT END AFTER THIRD
QUANTIFIER.

QUANTIFIER IN DO STATEMENT IS NOT AN
INTEGER CONSTANT OR SIMPLE INTEGER
VARIABLE.

SECOND QUANTIFIER IN A DO STATEMENT NOT
FOLLm\~D BY A COMMA OR END OF STATEMENT.

DO STATEMENT WHICH TERMINATES AT THIS
STATEMENT NUMBER IS OUT OF ORDER.

ENTRY NAME USED ELSEWHERE IN THE PROGRAM.

AN ENTRY STATEMENT CANNOT BE LABELED.

ENTRY NAME USED ELSEWHERE IN PROGRAM.

AN ENTRY STATEMENT CANNOT APPEAR WITHIN
A DO LOOP.

REFERENCE TO A STATEMENT LABEL OF ZERO
IS ILLEGAL.

THE RUNNING INDEX IN A DO MAY BE CHANGED
WITHIN THE LOOP.

THE UPPER LIMIT VARIABLE (M2) OF THE DO
MAY BE CHANGED WITHIN THE LOOP.

DO INCREMENT VARIABLE (M3) MAY BE CHANGED
WITHIN THE LOOP.

DO QUANTIFIER GREATER THAN 32767

DO INCREMENT (M3) IS ZERO.

ALL DECLARATIVE STATEMENTS MUST APPEAR
BEFORE THE FIRST EXECUTIVE STATEMENT.

DO STATEMENTS MAY NOT TERMINATE ON A
TRANSFER STATEMENT.

D

D

D

D

D

D

D

D

D

D

D

D

D

I

I

I

D

I

D

D

D-7

1056

1057

1060

1500

1510

1520

1530

1540

1550

1560

1570

2001

2002

2003

2004

2005

2006

2007

2010

2011

2012

D-8

FUNCTION SUBPROGRAM NAME NOT DEFINED.

THE DO STATEMENT THAT TERMINATES ON THIS
LABEL IS NOT TERMINATED BEFORE END CARD.

LOGICAL OPERATORS MAY NOT APPEAR IN
ACTUAL PARAMETERS.

INTEGER NUMBER GREATER THAN 2**23-1.

NO DECIMAL DIGITS PRECEDING OR FOLLOWING
THE DECIMAL POINT.

ILLEGAL OCTAL CHARACTER

MORE THAN ONE DECIMAL POINT

THE REAL NUMBER HAS MORE THAN ELEVEN
DIGITS OR HAS EXCEEDED 2**36-1 IRRESPECTIVE
OF THE DECIMAL POINT.

ILLEGAL CHARACTER IN EXPONENT OR EXPONENT
TOO LARGE.

ILLEGAL DECII~L CHARACTER

MORE THAN 8 OCTAL CHARACTERS IN STRING

NO REPLACEMENT VARIABLE IN LOGICAL
REPLACEMENT STATEMENT.

NO REPLACEMENT OPERATOR IN LOGICAL
REPLACEMENT STATEMENT.

LEFT PAREN MUST ENCLOSE LOGICAL IF

RIGHT PAREN MUST CLOSE LOGICAL IF

LOGICAL OR RELATIONAL OPERATOR
OCCURRED WITHIN PARENTHESES

AN EXPRESSION MUST PRECEDE .AND.,
.OR., OR END OF STATEMENT

TWO CONSECUTIVE RELATIONAL OPERATORS

A LOGICAL OPERATOR MUST APPEAR BETWEEN
TIW NOTS

AN EXPRESSION ~~Y NOT PRECEDE .NOT.

AI'·; EXj?RESS ION :'fLJS'I FOLLOW A RELATIONAL
OPEP';'~TOR

I

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

2013

2014

2500

2501

2502

2503

2504

2505

2506

2507

2510

2511

2512

2513

2700

3000

3001

3002

3021

STATE}lliNT LABEL USED IN LOGICAL IF IS
UNDEFINED

MORE THAN 4096 LA BELS HAVE BEEN GENERATED
IN A LOGICAL EXYRESSION

WRONG FORMAT OF 1/0 STATEMENT,
I/O LIST NOT YET PROCESSED.

PARITY DESIGNATOR IN I/O STATEMENT MUST
BE A SIMPLE INTEGER VARIABLE OR
NUMBER EQUAL TO 0 OR 1

FORMAT ERROR OF DO-IMPLYING INDEX.

THE PARAMETERS OF A DO-IMPLYING LOOP
MUST BE UNSIGNED INTEGER CONSTANTS OR
SIMPLE INTEGER VARIABLES.

THE CONSTANT PARAMETERS OF A DO-IMPLYING
LOOP MUST BE LESS THAN 32768.

UNIT NUMBER MUST BE A SIMPLE INTEGER
VARIABLE OR INTEGER CONSTANT LESS THAN 64.

MORE THAN 145 LEFT PARENTHESES HAVE BEEN
ENCOUNTERED IN AN I/O DATA LIST. REMOVE
REDUNDANT PARENTHESES AND RESUBMIT.

TYPE OTHER VARIABLES MAY NOT APPEAR IN
AN I/O DATA LIST.

A VARIABLE MUST PRECEDE THE DO-IMPLYING
INDEX IN AN I/O DATA LIST.

THE RUNNING SUBSCRIPT IN A DO-IMPLYING
LOOP MUST BE A SIMPLE INTEGER VARIABLE.

WRONG FORMAT OF I/O DATA LIST OR ILLEGAL
ENTRY IN I/O DATA LIST.

ILLEGAL MODE OF I/O PARAMETER.

THE FORMAT STATEMENT REFERENCED DOES NOT
APPEAR IN THE SOURCE PROGRAM.

FUNCTION NAME USED AS REPLACEMENT
VARIABLE.

CO:M}'1A APPEARS ON PARENTHESES LEVEL ZERO

ILLEGAL USE OF ACTUAL PARAMETER

OPERATOR MISSING IN ARITHMETIC EXPRESSION

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D-9

3026 / - APPEARS IN ARITHMETIC EXPRESSION D

3060 FUNCTION TERMINATES ARITHMETIC EXPRESSION D

3061 ILLEGAL USE OF FUNCTION IN ARITHMETIC D
EXPRESSION

3065 FUNCTION + APPEARS IN ARITHMETIC EXPRESSION D

3066 FUNCTION - APPEARS IN ARITHMETIC EXPRESSION D

3067 FUNCTION * APPEARS IN ARITHMETIC EXPRESSION D

3070 FUNCTION / APPEARS IN ARITHMETIC EXPRESSION D

3071 FUNCTION ** APPEARS IN ARITHMETIC EXPRESSION D

3072 FUNCTION = APPEARS IN ARITHMETIC EXPRESSION D

3112 CONSTANT = APPEARS IN ARITHMETIC EXPRESSION D

3114 NUMBER (APPEARS IN ARITHMETIC EXPRESSION D

3120 + TERMINATES ARITHMETIC EXPRESSION D

3125 + + APPEARS IN ARITHMETIC EXPRESSION D

3126 + - APPEARS IN ARITHMETIC EXPRESSION D

3127 + * APPEARS IN ARITHMETIC EXPRESSION D

3130 + / APPEARS IN ARITHMETIC EXPRESSION D

3131 + ** APPEARS IN ARITHMETIC EXPRESSION D

3133 + APPEARS IN ARITHMETIC EXPRESSION D

3135 +) APPEARS IN ARITHMETIC EXPRESSION D

3140 - TERMINATES ARITHMETIC EXPRESSION D

3145 - + APPEARS IN ARITHMETIC EXPRESSION D

3146 - - APPEARS IN ARITHMETIC EXPRESSION D

3147 * APPEARS IN ARITHMETIC EXPRESSION D

3150 - / APPEARS IN ARITHMETIC EXPRESSION D

3151 - ** APPEARS IN ARITHMETIC EXPRESSION D

3153 APPEARS IN ARITHMETIC EXPRESSION D

3155 -) APPEARS IN ARITHMETIC EXPRESSION D

D-IO

3160 * TE~~NATES ARITP~TIC EXPRESSION D

3165 * + APPEARS IN ARITHMETIC EXPRESSION D

3166 * - APPEARS IN ARITHMETIC EXPRESSION D

3170 * / APPEARS IN ARITHMETIC EXPRESSION D

3173 * APPEARS IN ARITHMETIC EXPRESSION D

3175 *) APPEARS IN ARITHMETIC EXPRESSION D

3205 / + APPEARS IN ARITHMETIC EXPRESSION D

3207 / - APPEARS IN ARITHMETIC EXPRESSION D

3210 / / APPEARS IN ARITHMETIC EXPRESSION D

3211 / ** APPEARS IN ARITHMETIC EXPRESSION D

3213 / , APPEARS IN ARITHMETIC EXPRESSION D

3215 /) APPEARS IN ARITHMETIC EXPRESSION D

3225 ** + APPEARS IN ARITHMETIC EXPRESSION D

3226 *·k _ APPEARS IN ARITHMETIC EXPRESSION D

3227 ** * APPEARS IN ARITHMETIC EXPRESSION D

3230 ** / APPEARS IN ARITHMETIC EXPRESSION D

3231 ** *"k APPEARS IN ARITHMETIC EXPRESSION D

3233 ** APPEARS IN ARITHMETIC EXPRESSION D

3235 **) APPEARS IN ARITHMETIC EXPRESSION D

3240 = TERMINATES ARITHMETIC EXPRESSION D

3247 * APPEARS IN ARITHMETIC EXPRESSION D

3250 / APPEARS IN ARITHMETIC EXPRESSION D

3251 ** APPEARS IN ARITHMETIC EXPRESSION D

3252 = = APPEARS IN ARITHMETIC EXPRESSION D

3253 APPEARS IN ARITHMETIC EXPRESSION D

3255 APPEARS IN ARITHMETIC EXPRESSION D

3260 , TERMINATES ARITHMETIC EXPRESSION D

D-ll

3267

3270

3271

3272

3273

3275

3300

3307

3310

3311

3312

3313

3315

3334

3500

3501

3502

3503

3504

3505

3506

3507

3600

5001

5002

D-12

* APPEARS IN ARITHMETIC EXPRESSION

, / APPEARS IN ARITHMETIC EXPRESSION

** APPEARS IN ARITHMETIC EXPRESSION

= APPEARS IN ARITHMETIC EXPRESSION

, , APPEARS IN ARITHMETIC EXPRESSION

,) APPEARS IN ARITHMETIC EXPRESSION

TERMINATES ARITHMETIC EXPRESSION

* APPEARS IN ARITHMETIC EXPRESSION

/ APPEARS IN ARITHMETIC EXPRESSION

'";~* APPEARS IN ARITHMETIC EXPRESSION

(= APPEARS IN ARITHMETIC EXPRESSION

(, APPEARS IN ARITHMETIC EXPRESSION

APPEARS IN ARITillLETIC EXPRESSION

(APPEARS IN ARITHMETIC EXPRESSION

STATEMENT NOT LABELED AND IS PRECEDED
BY ANON -RETUR.l\J TRANSFER. STATEMENT
CAN NOT BE EXECUTED.

INCORRECT STATEMENT FORMAT

N IS NOT AN INTEGER NUMBER IN A STOP OR
PAUSE

ENTRY STATEplliNT CAN NOT BE LABELED

STATEMENT LABEL REFERENCED IN UNDEFINED

NO LEFT PAREN IN ARITHMETIC IF

CALL STATEMENT MUST TERMINATE WITH A
RIGHT PAREN

NO EXPRESSION IN ARITHMETIC IF

POSSIBLE MACHINE ERROR. RECOMPILE JOB.

FORTRAN I/O ERROR REWIND REJECT LUN 55

FORTRAN I/O ERROR READ REJECT LUN 60

D

D

D

D

D

D

D

D

D

D

D

D

D

D

I

D

D

D

D

D

D

D

F

F

F

5004

5005

5006

5007

5010

5011

5012

5013

5014

5015

5016

5017

5030

5031

5032

FORTRAN II 0 ER..~OR HRITE REJECT LUN 55

FORTRAN I/O ERROR WRITE REJECT LUN 56

FORTRAN I/O ERROR BINARY CARD LUN 60

FORTRAN I/O ERROR END OF FILE LUN 60

FORTRAN I/O ERROR END OF TAPE LUN 55

FORTRAN I/O ERROR WRITE ERROR LUN 55

FORTRAN I/O ERROR END OF TAPE LUN 56

FORTRAN I/O ERROR WRITE ERROR LUN 56

FORTRAN I/o ERROR READ ERROR LUN 60

FORTRAN I/O ERROR READ ERROR LUN 55

FORTRAN I/O ERROR READ ERROR LUN 56

POSSIBLE MACHINE ERROR--ENDPI

LABELED COMMON REQUIRES MORE THAN 32768 WORDS OF
STORAGE

NUMBERED COMMON REQUIRES MORE THAN 32768 WORDS OF
STORAGE

PROGRAM LENGTH EXCEEDS 32768. SEGMENT AND RECOMPILE

1/ 0 DIAGNOSTICS

F

F

F

F

F

F

F

F

D

F

F

F

F

F

F

The standard format used in printing the majority of diagnostics from the object time I/o routines
is the following:

ERROR IN rrrrrrrr CALLED FROM xxxxx z ... z
n

rrrrrrrr name of the routine in which the error occurred

xxxxx address from which the routine was last called

error message

D-13

Message

PARITY ERROR ON LU xx

END OF TAPE ON LU xx

LOST DATA ON LU xx

ILLEGAL 110 ON LU xx

UNCHECKED EOF ON LU xx

STANDARD REF TO BUFFER
TAPE xx

RECORD OVERFLOW LU xx

LIMITS ON BUFFER I/O
INCONSISTENT

LIST EXCEEDS DATA

SYNC ERROR

D-14

Description

A persistent parity error occurred on logical unit xx;
execution continues. This condition can be sensed by
using IOCHK or IOCHKF.

An end of tape condition was sensed on logical unit xx.
The unit is unloaded and the next READ or WRITE tape is
mounted. Execution continues.

A lost data condition was encountered on logical unit xx;
the job will be terminated abnormally.

An illegal 110 operation was requested on logical unit xx.

a) Logical unit is not in the defined range for the
particular I/O operation.

b) SCOPE rejected the I/o request, such as reading
from the printer or writing on the card reader, or
attempting to write a tape which does not have a write
enable ring.

On the last read operation, an end of file was encountered
on logical unit. xx and no check has been made.

A standard data transmission operation has been requested
on logical unit xx where the previous operation was a
buffer.

A BCD read or write request calls for input or output
of data outside of the defined record area. For BCD
read or write, the record limit is 136 characters; for
ENCODE/DECODE, the record limit is c characters.

The first word and last word addresses of the BUFFER
IN/BUFFER OUT statement do not comply with the rule
that first word address must be less than or equal to
last word address.

The list of a binary read request called for more data
than was in the logical record.

During a binary tape read, an end of file was encountered
in the middle of a logical record. Since this cannot be
generated by the binary write routine, an error has
occurred.

Message Description

ILLEGAL CODE ON INPUT An illegal character was encountered in the input field;
for example, an 8 or 9 in an octal field or an alphanumeric
character in a numeric field.

INTEGER INPUT GE 2**23

EXPONENT OVERFLOW

An Iw input field contained a number exceeding the
range of integer constants (greater than 223_1).

A calculation during conversion overflowed the limits
of the floating point format.

TOO MANY DECIMAL PTS More than one decimal point encountered in an Ew. d or
Fw. d input field.

FORMAT STATEMENT DIAGNOSTICS

Errors encountered during interpretation of forlrlat lists result L~ the follovving diagnostic:

FORMA T ERROR x - zzzzz

x numeric error code
zzzzz first word address of the format statement in which the error occurred.

x Description

1 Format list does not begin with a left parenthesis.

2 Illegal repeat factor was encountered.
a) repeat factor equals zero
b) repeat factor is not an integer

3 Unrecognizable format conversion; the format conversion is designated by
a symbol other than E, F, I, A, R, 0, H, X.

4 Illegal field width or missing field width.
a) field width equals zero
b) no field width present
c) illegal character in field width specification

5 A number precedes a slash, comma, or right parenthesis.

6 Parenthesis error
a) repeat groups may not be nested
b) a parenthetical grouping may not appear within a

repeat group.

7 Improper format of numeric field within format statement.
a) more than one decimal point appears in the numeric field
b) numeric value exceeds 215_1

D-15

OVERLAY - SEGMENT DIAGNOSTICS

An error detected while calling or loadirig a segment or overlay causes the job to terminate
ahnormally. A message is written in the form:

xx ERROR IN OVERLAY -SEGMENT

Error Code
xx

D-16

EX

MR

MT

01

OM

00

OS

RD

SI

SZ

Meaning

Exit made from main program.

Read error; or overlay or segment cannot be
found.

Logical unit (parameter i) is not a magnetic
tape unit.

Parameter 0 in CALL OVERLAY is not 1 through 99.

Overlay which called segment is not in core.

Overlay called by overlay or segment.

Segment called out of order.

Read error from tape unit.

Parameter s in CALL SEGMENT is not 1 through 99.

Parameter s in CALL OVERLAY is not zero.

Aw conversion 9-4, 9-15, 9-16
Alphanumeric characters 1-3
AND 3-16

AND. 3-10
Arithmetic, masking 3-16

type character 3-7
type integer 3-7
type other 3-8
type real 3-7
mixed-mode 3-7

Arithmetic elements 3-1
Arithmetic expressions 3-1

order of evaluation 3-2
hierarchy of operators 3-2
mixed-mode 3-8

Arithmetic IF 6-2
Arithmetic operators 3-1
Arithmetic replacement statement 4-1
Array - see Subscripted variable

subscripts 2-4
elements 2-5, 5-7
structure 2-5
dimensions 2-3, 5-2, 5-3
transmission 9-1, 9-2

Assembly language
listing 1-1, 11-3

BACKSPACE 10-11
Buffer statements

BUFFER IN (i, p) (list) 10-8
BUFFER OUT (i, p) (list) 10-8

CALL statement 7-2
Calling program 7-2
Carriage control 9-20, 9-26, 10-1
CHARACTER 5-1
Character codes A-I
Character data, preset 5-10
Character operations provided 3-7

INDEX

Character variables, dimensioned 5-3
Character, explicit 5-1
Characters, FORTRAN 1-3
Check end-of-file 10-11
Check parity 10-12
Coding form 1-4
Coding line 1-3
COMMON 5-4, 5-8

blank 5-4
labeled 5-4
numbered 5-4
length 5-5

Comment, designated by C 1-4
Compilation diagnostics D-1
Computed GO TO 6-1
Constants

integer 2-1
octal 2-1
real 2-2
Hollerith 2-2
word size and structure 2-1, 2-2

CONTINUE 6-7
Continuation lines 1-4
Control statements 6-1
Conversion specifications 9-5

/DATA/ 5-4
DATA 5-10
Data, preset 5-10

character preset 5-12
Declarations, type 5-1
DECODE (c, n, v) list 10-15
Diagnostics

compilation D-1
execution D-13, D-15, D-16
format D-15
I/O D-13
overlay segment D-16

DIMENSION 5-2
Divide fault 8-10

Index-l

DO loop, execution 6-3
properties 6-3
transfer 6-7

DO nests 6-5

E conversion 9-5, 9-7
Ew. d 9-5, 9-7
Editing specifications 9 -18
Element of array 2-5

location 2 -5, 5-7
Elements, arithmetic 3-1
ENDCODE (c,n, v) list 10-15
END 7-11
ENDFILE 10-11
End-of-file check 10-11
ENTRY statement 7 -1 0
EOR 3-17
. EQ. 3-12
EQUIP card 11-5
EQUIVALENCE 5-7
Evaluation, arithmetic expression 3-2

mixed mode 3-7
Execution diagnostics D-13, D-15, D-16
Explicit type definitions 5-1
Exponent fault 8-10
Expressions, general description of 1-2
Expression, arithmetic 3-1, 4-1

relational 3-12, 4-1
EXTERNAL statement 7-9

F conversion 9-9, 9-10
Fw. d 9-9, 9-10
FINIS card 11-4
Fixed point -- see Integer variable
Floating point -- see Real variable

conversion 9-5, 9-6
FORMAT statement 9-4

diagno stic s D -15
specifications 9-5

FORTDUMP 8-6
FORTRAN card 1-5

characters 1-3
statements 1-2

Function subprogram 7-5
reference 7-6

Index-2

Function, library 8-1, 8-2
masking 3-16

. GE. 3-12
GO TO, computed 6-1

unconditional 6-1

wH constants 2-2
wH editing specification 9 -20
wX editing specifications 9-18
Heading specification 9 -20
Hierarchy, arithmetic operations 3-2

operand types 3-8
type declarations 5-1

Hollerith constants 2-2

Iw conversion 9-11, 9-12
110 statements 9-1

list 9-2
Identification, program 1-4
IF, three branch (arithmetic) 6-2

two branch (logical) 6-3
Implemented routines, character 3-7, 3-10

type other 3-7
mixed mode 3-8

Implicit type definitions 2-3
Implied DO-loop 9-1
Implied multiplication 3-2
INTEGER 5-1
Integer, constants 2-1

variable, simple 2-3
implicit 2-3
explicit 2-3, 5-1
truncation 3-7, 3-8
conversion 3-10, 9-12, 9-13

Internal transmission 10-14
Iw 9-12, 9-13

JOB card 11-1

Label, statement 1-4
Labeled COMMON 5-4
. LE. 3-12

Length test 10-12
Library functions 8-1, 8-2
LOAD card 11-3
Load-and-go object program 1-1, 11-2
Logical expression 3-10

operator 3-11
IF 6-3
units 8-1, 10-1, 11-5

· LT. 3-12

Machine condition subprograms 8-9
Machine configuration 1-1
Masking function 3 -16

arithmetic 3 -16
Mixed mode arithmetic 3-7

arithmetic expression 3-8
order of evaluation 3-5
replacement statement 4-2

Multiple replacement statement 4-1

· NE. 3-12
New record specification 9-21
Non-standard arithmetic 3-8, see type other
NOT 3-16

· NOT. 3-10

Ow conversion 9-14
Octal constants 2-1
Operands, mixed mode 3 - 8
Operators, arithmetic 3-1

logical 3-10
relational 3-12
replacement statement 4-1

OR 3-17

· OR. 3-10
Order of evaluation 3-2

mixed mode 3-7
arithmetic expressions 3-2

Output options 1-1
Output statements 10-1
Overlays 8-3

Parity check 10-12
PAUSE 6-7
PRINT n, list 10-1
Procedures for tape errors 10-14
PROGRAM statement 7-1
Program identification 1-4, 7-1

sequencing 1-4
PUNCH n, list 10-2

Rw conversion 9-17, 9-18
Read statements 10-5, 10-6

READ (i, n) list 10-6
READ (i) list 10-5
READ INPUT TAPE i, n, list 10-6
READ TAPE i, list 10-5
READ n, list 10-5

REAL 5-1
Real constants 2-2

variable, simple 2-3, 5-1
Real, implicit 2-3

explicit 5-1
Relational expression 3-12

operators 3-12
Reloc atable binary 1-1, 11-2
Repeated specifications 9-22
Replacement statement, arithmetic 4-1

multiple 4-1
mixed mode 4-2

Reserved storage 5-3
Reserved word 9-4
RETURN 7-11
REWIND 10-11
RUN card 11-3

SCOPE control cards 11-1
Segments 8-3
Sense light 8-9
Sense switch 8-9
Sequencing, program 1-4
Simple variables 2-3
Source program 1-3
Source program listing 1-1, 11-2

Index-3

Space specification 9-18
Statement, general description of 1-2
Statement label 1-4

continuation 1-4
Status checking 10-11
STOP statement 6-8
Storage allocation 5-2, 5-4

sharing -- see EQUIVALENCE
Storing array elements 5-2, 5-4
Subprogram, function 7-5
Subroutine 7-1
Subroutine library subprogram 8-1
Subroutine statement 7-2
Subscripted variable 2-4
Subscripts, array 2-4

Tape error procedures 10-14
handling statements 10-10

Test unit status 10-12
Three branch IF 6-2
Transmission of arrays 9-4
Truncation of integers 3-7
Two branch IF 6-3
Type character arithmetic 3-7
Type declarations 5-1

hierarchy 3-8
Type statements 5-1
TYPE other 5-1

Unconditional GO TO 6-1
Unit status test 10-12

Variables
simple 2-3
subscripted 2-4 see also
subscripted variable

Variable format 9-24

Index-4

wH specifications 9-20
Write statements

WRITE (i, n) list 10-3
WRITE OUTPUT TAPE, i, n, list 10-3
WRITE (i) list 10-2
WRITE TAPE, i, list 10-2

wX editing specifications 9-18

CONTROL DATA
CORPORATION

COMMENT AND EVALUATION SHEET
3100/3200/3300/3500 COMPUTER SYSTEMS

FORTRAN Reference Manual

Pub. No. 60057600, Rev. B August, 1966

THIS FORM IS. NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS, MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUD E PAGE NUMBER REFERENCE.

FFK)~ NAME: __ _

BUSINESS
ADDRESS: __ ___

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

FOLD

STAPLE

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MA ILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department
3US PORTER DRIVE

PALO ALTO, CALIFORNIA

STAPLE

FOLD

FIRST CLASS
PER M IT NO. 8241

M INNEAPOL IS, MINN.

FOLD

STAPLE

.... CUT OUT FOR USE AS LOOSE-LEAF BINDER TITLE TAB

Pub. No. 60057600 Rev. B.

~

CONTROL DATA
CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	A-00
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

