
0

0 0
COMPUTER SYSTE·Ms·

META/MASTER
GENERAL .INFORMATION MANUAL

Note re scan: Several pa.ges were
m_issing from source material

.60236000
REVISION

REVISION
.

6-28-68 Original printing

'

•

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. Xo.60236000

@1968 Control Data Corporation
Printed in the t:nited States of America

RECORD
NOTES

.

~

Address comments concerning this .
manual to:

Control D~ita Corporation
Software D<>cunwntation
4201 North Lexington Avenue
St. Paul, :'IIinncsota ;).)112

or use Comment Sht..•et in the back of
this manual.

PREFACE

Readers unfamiliar with assemblers in general and meta-assemblers in particular may find
a small amount of background information helpful. During the relatively short history of
computers, ·computer languages have evolved from machine languages directly interpreted

. by the computer to symbolic languages .more meaningful to the programmer but requiring
conversion to the equivalent ma.chine language before execution of a program. The proces
sor that converts the symbolic language is one of two_ types, an assembler or a compiler.
Of the two languages, the assembler language most closely resembles the machine ladguage.
It is in this category that we find the 3300/3500 Meta-Assembler (META) although the Meta
Assembler offers features usually found only in more sophisticated compilers.

Early assemblers generated one instruction of machine language code from each symbolic
source language instruction. Relocation brought a new dimension to symbolic input and, as
assembler output format began to diverge to meet the needs of the relocatable loaders, the
role of the assembler increa~ed. At first, however, the ratio of input statements to output
instructions was still one-to-one. Then someone questioned this ratio. Why not change the
assembler so that a set of code could be called by a single sfatement? The answer came in
the form of pseudo instructions and macro instructions. Macros offer considerable para
meterization of code blocks. These instructions are directed more at the assembler than
at the machine for which the output is generated. They opened the door for further com
munications between the programmer and the assembler. But, for ·a time, conventional

· assemblers made little use of _this promising capability. Assembly essentially remained a
farily straightforward conversion of ·source statements to one or more lines of machine
language cod_e. In some assemblers, the programmer could direct the processor to con
ditionally skip statements or change the format and content"of the output listfog -"bltt not

· of the· code being generated.

Today, the meta-assembler frees the assembler from its dependence on a machine-oriented
input language yet still offers all the features of the conventional assembler. •

60236000 iii

CONTENTS

CHAPTER 1 INTRODUCTION 1

Features 1
Operating Sys tern 2

Configuration 2
Execution 2
Standard Input 3
Printer Output 3
Punch Output 3
Executable Output 3

Machine Language Instructions 4

CHAPTER 2 CODING CONVENTIONS 5

.
Source Statements 5

Continuation 5
Sequencing 5
General Format 5

Symbols 7
Symbol Definition 7
Attributes 7
Forward Reference 8
Current Address Symbol 8
Symbol Levels ·8

Elementary Items 8
Integer Notation 9
Character Notation 9
Real Notation 10

Expressions 11
Sets 11
Literals 13

CHAPTER 3 DIRECTIVES 15

Machine Definition (UNIT) 15
Symbol Definition 16

EQU 16
RDEF 17
NSET 17

Program Linkage (EXT /ENTRY) 18

"'
60236000 v

Repeat and Skip 18 .
RPT 18
GOTO 19
LNID 19

Location Control 20
SECD 20
SECP 21
ORG 22
LIT 23
RES/RE SB 23

Data Generation 24
GEN/GEND/GENB 24
TEXT/TEXTC/TEXTA 25
FORM . 26

Procedure Definition and Use 27
PROC 28
NAME 28
ENDS 29
Procedure Reference 29

'.LIBS 30
Function Defintion and Use 31

FUNC 32 41.- NAME 32
ENDS 33
Function Reference . 33

Listing Control 34
NOLIST/LIST · 34
SPACING 35
EJECT 35.
TITLE 36
DE TAIL/BRIEF 36

Assembly Termination 37
END 37
FINIS 37

CHAPTER 4 ATTRIBUTE FUNCTIONS_ 39

MDE 39
SZE 40
REL 40
NUM 41
BYT 41
WRD 41
SY:\I 42

APPENDIX A CHARACTER SET A-1

"'
APPEXDIX B OPERATORS B-1

vi
60236000

APPENDIX C

APPENDIX D

60236000

SAMPLE PROGRAM

3300/3000 MNEMONIC INSTRUCTIONS

C-1

D-i

vii

FEATURES

60236000

·INTRODUCTION

The 3300/3500 Meta-Assembler/MASTER provides users with a
versatile, extensive language for directing the generation of object code.
The assembler e?Cecutes on a CONTROL DATA® 3300 Computer System
or CONTROL DATA® 3500 Computer System under the supervision of
the 3300/3500 l\IASTER Multiprogramming Executive Operating System.

Meta-Assembler (META) allows the programmer to select a 3300/3500
relocatable binary output format acceptable for loading and execution
under MASTER or as a byte stream. \Vhen he chooses to generate a
byte f\tream he is not restricted to a 24-bit object word and can use the
Meta-Assembler to generate output for execution on some other comput
er. Thus, a meta-assembler language- is the ideal language in which to
code compilers and assemblers or to produce code for an alternate com
puter system, either real or simulated.

Source statements, called directives, are or~ented toward control of the
assembler itself and control the meta-assembler much the same as
machine ·language instructions control the computer.

The source program; which consists primarily of directives, can also
incl~de definitions of and references to procedures and functions. The
definitions are groups of source statements that the assembler interprets
each time the procedure or function is referenced. A reference to a
procedure definition, because it appears in the command field of a state
ment, can be likened to a macro call; a reference to a function, because
it can be an element in an expression, can be likened to a FORTRAN
function reference. There are significant differences, however, and it
is better to forget about macros when working with META.

Procedures and functions provide extensive parameterization of source
statements. For example, 3300/3'.jOO l\leta-Assembler/MASTER includes
standard procedures for the 3300/3500 mnemonic language instructions.

1

A source statement, consisting of a mnemonic instruction and parameters,.
calls one of these procc<lures. The a:-::s0mble r interprets the procedure
which genc::ates the equi\·alcnt 3300/:3300 rdoc~ta.1.1le binary object code.
Often used or standard procedures definitions can be placed in the li
brary.

1

j

OPERATING
SYSTEM

CONFIGURATION

EXECUTION

2

META is· a self-extending translator. Definition of procedures provides
a convenient means for the programmer to expand the l\IETA source lan
guage· or even define a new language (within tho synt~x of tl~e l\Ieta
Assembler).

For l\lETA, the ratio of lines of input to lines of output code is irrelevant.
If conditions warrant, a reference to a procedure may produce no code
at all. META generates code only when directed to by the programmer.

ME TA allows the user to define and. assign symbols to addresses, to
single values, or to s·ets (lists) of data. An entire set may be referred
to by a symbol; each element of a set may be referred to by adding one
or more subscripts to the symbol.

META recognizes as operands simple and complex expressions containing
any of a set of eighteen operators. Elements of expressions can be sym
bols, or constants expressed as octal or decimal integers, real (floating
point) values or as BCD or ASCII characters according to convenience.

A unique method of symbol definition allows the value of an expression to
be used as a symbol. An operand of a source statement can also be an
attribute of an expression, such as its size or type (character, octal,
decimal, etc.). ·

The Meta-Assembler language allows simple, brief notation as well as
complex exp·ressions involving nested procedures, functions, and sets.

META executes und~r control of the 3300/3500 MASTER Multiprogr~m
ming Executive Operating System.

The requirements for executing META on the 3300 or 3500 are the mini
mum required for the MASTER multiprogramming system.

META is called from the l\IASTER system libra.ry by a META task name
card. Parameters on the card define files used durin~ the assembler
run, such as the file containing source statements and the files to re
ceive the listable output, the load-and-go output, and the pm1Chable out
put. The programmer may optionally request that l\IF. T..-\ use files othc r
than the standard job files (INP, OUT, PUN) and the load-and-go file

60236000

.

STANDARD INPUT

PRINTER OUTPUT

PUNCH OUTPUT

EXECUTABLE
OUTPUT

G023GOOO

(LGO) but when he does, the programmer is responsible for .allocation of
the files and for printing or punching any ·output. All standard job files ·
are released at the end of the job or after processing by the MASTER
postprocessor.

The MASTER executive allocates channels as needed and performs all
input/output required during the assembly.

The Meta-Assembler source deck can be on the standard input card
reader or on some file, such as a magnetic tape file, specified by the
programmer. If it is on the card reader, the MASTER input preprocessor
transfers the deck from the standard input card reader onto a mass stor
age file (INP). The programmer has the option of bypassing this transfer
by placing a DIRECT card in front of his deck.

METl} interprets the source deck statement-by-statement from the file
specified. ·

META produces printer output containing a listing ~f each source state
ment. List control directives provide the programmer with the option of
obtaining a detailed listing as well. Errors detected by the assembler
are noted on the listing. This printer output for the Meta-Assembler
run .is nor.mally ~ccun;iulated on a mass storage file _and automatically
printed by a MASTER postprocessor when the run ls finished. The
programmer may request a simultaneous print through a parameter of a
MASTER DIRECT card or may request that the output be placed on some
other file (for which printing is not automatic) through a parameter of
the META card.

Similarly, MASTER accumulates data on a punch file for automatic post
job punching. The programmer may request direct punching or may
direct punch output to some other file for which punching is not auto
matic.

Upon programmer request, META allocates the LGO file to receive
relocatable binary output acceptable to the 3300/3500 l\IASTE R relocatable

3

MACHINE
LANGUAGE
INSTRUCTIONS

4

loader. When the assembler has completely proces_sed the source .d~ck,
the programmer m.ay call for loading and execution of the object program ·
from the load-and-go file. The J\·IASTE R loader· links the newly assem
bled program to any previously assembled programs referred to by the
new program. The programmer can designate whether or not the load
and-go file should be executed in spite of errors detected during assem
bly.

If he desires, the programmer can request binary output in the form of
a byte stream. This form of output is not acceptable to the MASTER
relocatable loader and is usually intended for further conversion for
loading on some other computer.

ME TA includes a set of procedµres for interpreting mnemonics for the
3300/3500 machine language instructions and generating equivalent code.
While these mnemonics resemble the 3300/3500 COMPASS repertoire,
differences in syntax and in notation used for operand fields and modifiers
cause incompatibilities between the two languages. In addition, META
does not recognize COl\TPASS macros, pseudo instructions, or numeric
operation codes. To cite a difference, the representation of an octal
number in the 3300 COMPASS language is a string of octal digits followed
by the letter B .. The representation of an octal number in the ME TA
language is the letter 0 followed by a string of octal digits enclosed in
apostrophes.

60236000

t
',. l:

1

f

I

SOURCE
STATEMENTS.

CONTINUATION

SEQUENCING

GENERAt FORMAT

60236000

CODING CONVENTIONS

A source program for the Meta-Assembler is a sequence of statements
punched onto 80-column cards, each statement requiring one or more
cards. Statements can be written as lines of code on a coding form: A
statement begins at character position 1 and may continue through char
acter position 71 of a line.

By inserting a semicolon in character position 72 of a line, a programmer
notifies the assembler that the next line is a continuation of the statement.
lnfor\!1ation continues in column 2 of the next line.

META does not examine information in character positions 73-80. Thus,
these card columns can be used for card seq~encing.

The general form of a statement is: •
j ...- label ~I 1..-command~I i-.-operand+j !...comments

,,,
two

spaces·

._,_..,
two

spaces

Each field terminates with two or more spaces.

,,,
two

spaces

A statement label (usually optional) begins in the first or second charac
ter position of a line and consists of a symbol.

The first nonblank character following the two spaces delimiting the
label field begins the command field. This field, which is mandatory,
contains a Meta-Assembler directive, a mnemonic language instruction,
or a reference to a defined format or procedure.

The first nonblank character following the two spaces delimiting the com
mand field begins either the operand field, which is usually required, or
the comment field, which is optional. The contents of the operand field
depend on the operand requirements of the command.

5

2

6

An operand field contains one or more expressions, each consisting of
one pr more symbols and elementary items joined by operators. For
directives, the operand field provides information .required by the
assembler to perform the designated operation. Operands of mnemonic
instructions and procedures generally represent addresses, constant
values, and evaluatable expressions.

In addition to using the comment field, the use·r can indicate that all
successive characters of a line are comments by beginning a field with
an asterisk.

Examples:

The following line contains all four fields.

label command operand comments

The following line has a blank label field and does not contain comments.

I , LDA1 i .L,fN; I ,S,
..._.,,- '-v-'

command operand

The following line is continued. ...---~'
.,,,..,.,,- ... ~,,~ ""'"\,

,/··

The following line contains a command and a comment.

G023GOOO

: (#..

I

SYMBOLS

SYMBOL DEFINITION

ATIRIBUTES

60236000

The following line is a comment line.

Symbo~s play a vital role in an assembly language. The power, versatility,
and flexibility of an assembler relate directly to its symbol handling
capability.

A symbol is 1-12 alphabetic characters or numbers. The first character
must be alphabetic (A-Z); the symbol represents an address, an arbitrary
value, or a list of values (a set). Symbols provide a programmer with a
convenient means of referring to these program elements.

' •·

Examples:

JOE
A3
B7A5

Each symbol used as a label for a source statement is assigned a value
or a set of values by META. Assignment depends on whether. the symbol
is to be assigned a. value representing a relocatable. address (one that may
change when the program is relocated) or is to be assigned a value or
set of values indicated by the operand field of the statement.

Symbol definition means that META enters the symbol in a table where it
maintains the value or set of values assigned to the symbol together with
known attributes of the symbol.

META permits the programmer to inquire about characteristics of the
value, such as its size in words or bytes and its mode of representation
(decimal, octal, character, etc.). These attributes can be referred to
through a type of symbolic reference knO\rn as an attribute function.
META arbitrarily assigns a value to each attribute of a symbol. For
example, a symbol defining a set element that is six ASCII characters

7

i

FORWARD
REFERENCE

CURRENT
ADDRESS
SYMBOL

SYMBOL LEVELS

ELEMENTARY
ITEMS

8

'

has a mode attribute of 7 and a size attribute (expressed in characters)
of 6. Attributes are discussed again in chapter 4.

Generally, META permits a reference to a symbol before it is defined
(a forward reference) if the term referred to does not effect location
counting. A forward reference to a value subsequently redefined nor
mally yields the last value assign~d.

The special symbol $ as an address operand represents the current
value of the location counter in use for the control section.

"ME TA recognizes 16 levels of symbol definition (0-15). Symbols defined
at a given level are available at the given level 3:nd all higher (or inner)
levels and cannot be referenced at lower levels.

Symbols m_ade external to the program are defined at level zero.

Symbols defined in the program but outside of procedures or functions are
at level one. Symbols defined within procedures or functions (nested)
are at level two or higher. For each nesting of the d~finition, one level
is added to the symbol definition.

If a programmer chooses, he can denote by means of a dollar sign ($)

immediately following the symbol in the label field that the symbol is to
be defined at the next lower level. He can use multiple dollar signs to
lower a symbol level by more than one, to a minimum of one level.

An item in an expression that has a value itself rather than representing
a value is a self-defining elementary item. META does not assign a
value to an elementary item; it is able to interpret the character string
comprising an elementary item without furthe.r; information. For exam
ple, the decimal integer 23 has the value 23. An elementary item has a
maximum precision of 48 bits.

l\IE TA recognizes three types of integer notation, three types of d1arac
ter notation, and a real (floating-point) notation for elementary items.

60236000

INTEGER
NOTATION

CHARACTER
NOTATION

6023GOOO

An elementary item can be used alone or can be combine4 with symbols,
operators, and other elementary items to form an expressi<?n.

The three types of notation for integers are decimal, octal, and BCD
decimal.

Decimal

Octal

BCD Decimal

A string of decimal digits.

Example:

429

The letter 0 followed by a string of octal
digits enclosed in apostrophes.

Example:

¢J'2777'

The letter D followed by a string of not more
than eight decimal digits enclosed in apostro
phes. This notation provides for 6-bit BCD
arithmetic. For a negative value, a minus
sign is placed with the rightmost character.

Examples:

D'4927'
-D'l23'

The two types of BCD character notation indicate whe~er the BCD charac
ter string is to be stored as· 6-bit characters right adjusted with the
remainder of the field filled with zeros or whether the character string is
stored left adjusted and the field filled with spaces (blanks).

A third type of character notation stores the character string in 8-bit
ASCII rather than BCD code. ASCII characters are stored right adjusted.
The remainder of the field is zero filled.

Because single apostrophes are delimiters, two apostrophes represent a
single apostrophe within the character string. The legal character set

9

I
I

I
f

I
I

I
~
l

REAL
NOTATION

10

for character s frings is given in appendix A. Note that a space is a
legal character.

BCD
Right Adjusted

BCD
Left Adjusted

.. ASCII

The letter C followed by ·a s tririg of not more
than eight BCD characters enclosed in apos
trophes, or simply a string of BCD characters
enclosed in apostrophes.

Examples:

C'AB$5'
'A'f\B"'

(4 characters: AB$5)
(5 characters: A'/\B')

The letter L followed by a string of not more
than eight BCD characters enclosed in apos
trophes.

Example:

L'ABC'

The letter A followed by a string of not more
than six ASCII character·s enclosed in apos
trophes.

Example:

A'AB$5'

.. ·

A real or floating-point number is defined by the appearance of a decimal
point somewhere in the value which optionally consists of an integer, a
fraction, or an E followed by an exponent (scale factor). It can be in
the range 10-308 to 10308.

Examples:

.35
l.E+2
1.14159E-3
4.79

(. 35)
(100)
(. 00114159)
(4. 79)

The value is converted to 3300/3500 48-bit internal floating·-point for
mat.

60236000

EXPRESSIONS

SETS

60236000

An elementary item or a ·symbol cari be used alone to ·rorm a .simple
expression or can be combined with operators to form ·complex expres
sions. Operations include addition, subtraction, multiplication,
division, binary and decimal scaling, and relational and masking opera
tions .• Appendix B summarizes the 18 operators recognized by META.
Note that for some operations META recognizes both mnemonic and
symbolic operators.

Generally, a single space has no significance in a field and serves only
to enhance the readability of an expression. However, when the opera
tor in an expression is mnemonic rather than a symbol, for example,
EQ rather than=, META requires spaces as separators.

Expressions can include references to set elements and functions.

The programmer can form subexpressions by using parentheses in the
normal role of arithmetic grouping.

' The assembler evaluates expressions from left to right perfor~ing the
operations with lower hierarchies first. It evaluates parenthetical
expressions first, expanding them from the inside out.

Examples of expressions:

Al+ 10

A*B

(A<B)++(C<D)

Indicates an address 10 words greater than
address Al.

Pro~uct of the :values of A and B ..

If both inequations are false, zero; otherwise
one.

Associated with each item in an expression is a mode that defines how
the value is to be interpreted for an arithmetic operation. Thus, META
discerns whether a value is an octal integer, a real or floating-point

·value, a character string {BCD or ASCII), or a relocatable address.
The mode determines whether the assembler will use integer, real, -or
decimal arithmetic when evaluating the expression. Normally, if all
the values are not of the same mode, the assembler uses a value of zero
for the expression and flags the error. The permitted mixing of octal
integers and real or floating-point values represents an exception to
this rule.

A set is a list of one or more elements separated by commas. Each list
element is an expression, a set name, or a subset (a set enclosed in
brackets). A null expression is interpreted as a zero.

11

"'
12

Examples:

1. 24, 4

X+5, [1. 25, 4]

X+5, B

3, 2, 1,

A set of two elements.

A set of two elements, the first of which is an
expression, the second of which is a set of
two elements. ·

A set of ~o elements, the first ~f which is an
expression, the second of which names a ·set.

A set of four elements, the fourth of which is
zero.

META includes directives that assign symbolic names to sets so that
elements of sets or entire sets can be referred to symbolically. To
refer to a defined set, the programmer simply writes the set name. If
he wishes to refer to an element, he follows the name with a pair of
brackets enclosing one or more expressions separated by commas.
"f!le subscript exp1·essions represent the element's ordinal location in
the set. From left to r.ight, they represent the level of the element in
a set containing subsets.

Example:

The symbol A is defined as the se~ 5, C, [9, [3, 4] J . The set has three
elements. The third element [9, [3, 4]] contains two elements, the
second of which also contains two elements [3, 4].

Reference Element ·Value·

A All 5,-C, [9, [3, 4]] ·

A(l] First element 5
of A

A[2] Second element c
of A

A[3] Third element 9, [3, 4]
of A

A [3, 1] First element of 9
subset of third
element of A

A [3, 2] Second element of 3,4
subset of third
element of A

A [3, 2, 1] First element of 3
subset of second
element of subset
of third element of A

60236000

LITERALS

60236000

In the preceding example, if C is a set name for a set consisting of the
list elements 7, 8, 6, elements of C could be referred to as follows:

Reference Element Value

A[2, l]or C [1] First element of C 7

A[2, 2] or c[2] Second element of C 8

A [2, 3] or c[3] Third element of C 6

The Meta-Assembler maintains information about a set and its elements
together with the symbol defining the set. The programmer can access
this information for use by the assembler through attribute function ref
erences. For example, the NUM attribute function supplies the number
of elements in the set.

A Hteral is an expression preceded by an equal sign. The asse~bler
assigns't.he value of the expression to a location in a literal table fol
lowing a control section as determined by a LIT directive.

Examples:

=0' 7070 7070'

·=A+ B - $

I

13

Mf~CHINE

DEFINITION
(UNIT)

60236000

DIRECTIVES

A programmer using the Meta-Assembler directs the assembly of object
code by using a set of nearly forty commands called directives. A
directive controls· the operation of the Meta-Assembler much the same

· as a machine language instruction directs the computer.

Through directives, a programmer can:

• Define the word size for obj~ct code when assembling code for a
machine other than the 3300 or 3500. · ·

• Define a symbol and assign a value or set of values to it for sub
sequent reference by the symbol.

• Specify that a symbol referred to by the program being assembled
' . is defined external to it, perhaps by a program previously assem

bled or, conversely, that a symbol defined in the program being
assembled can be referred to by some other program.

• ~onditionally repeat or skip source statements.

• Assign up to i 5 relocatable location control counters and one
absolute control counter for the Meta-Assembler to use for
address assignment.

• Generate code to be loaded and executed on the object computer
including. the ability to subdivide each word to.be gep.erated lnto
fields and assign values to the fields.

• Identify a group of statements as being a procedure and assign it one
or more names so that he can .subsequently call the procedure by a
name and pass it parameters.

• Identify a group of statements as being a function, assign it one or
more names, and.use a name as a value in an expression such that
the value varies according to parameters of the function reference.

• Control the format and content of the listing META produces during
assembly.

• Terminate assembly of a subprogram or group of subprograms.

At the beginning of his source statements, the programmer can issue a
directive that causes the assembler to generate words and bytes of a
correct size for some computer other than the :3300 or 3500.

15

3

SYMBOL
DEFINITION

EQU

16

Format:

label UNIT
(optional)

byte size, word size comments
(optional)

Byte size defines the number of bits per byte; word size defines the
number of bytes per word.

Example:

The object computer word is a 36-bit word comprised of six 6-bit bytes.

The directives that assign or reassign values to symbols and sets are
EQU, RDEF, NSET, PROC, and FUNC. (PROC and FUNC are discussed
later.) In most other directives a symbol in the label field is assigned
an address value depending on the counter used for maintaining addresses
for the program section.

• EQU directs META to assign the value and attributes of an expression
in the operand field to a symbol in the label field.

Format:

symbol EQU

Example:

expression comments
(optional)

6023GOOO

RDEF

NSET

60236000

RDEF directs :META to a_ssign the value and attributes of an expression
in the operand field to a symbol or set element refer.l"ed to Jn the ~abel field.
The directive can be the first definition of a symbol or it can be a re
definition of a symbol previously defined by an RDEF or an NSET.

Format:

symbol RDEF

Example:

expression comments
(optional)

First definition; EASY = 2

Redefinition; EASY = 3

NSE T directs ME TA to assign the symbol in the label field as. the set
name of the list of expressions in the operand field.

Format:

symbol

Examples:

NSET set comments
(optional)

17

PROGRAM
LINKAGE
{EXT /ENTRY)

REPEAT AND
SKIP

RPT

18

Two directives facilitate linkage between independently assembled programs.
EXT notifies the assembler of symbols defined by some program external
to the source program and referred to by the source program; ENTRY
notifies the assembler of symbols that are defined by the source program
and can be referred to by some program external to it.

Format:

label
(optional)

Examples:

EXT
ENTRY

symbOl 1 , ... , symboln comments
(optional)

Two directives conditionally repeat (RPT) or-skip (GOTO) source state- ·
ments.

A repeat directive (RPT) conditionally repeats SQurce statements a spec
ified number of times. A zero or negative repetition count causes the
source statements in the repeat range to be skipped. The repeat range
begins with the statement immediately following RPT and ends with a
statement specified by an operand of the RPT directive. If no end
statement is specified, only the line following the RPT directive is
repeated. The Meta-Assembler permits one RPT to lie within the
range of another. RPT directives can be nested to a level of six.

Format:

count symbol
(optional)

RPT expression, line id comments
(optional)

The syml~ol in the label field is optional. If present, it is assigned the
value of the repetition count. Its value is incremented with each repetition
of the source statements.

60236000

GOTO

LNID

60236000

Examples:

I~ I I

Statements through statement labeled JOE are repeated 10 times. XYS has
values 1, 2, ... , 10.

When A is less than or equal to B, the above repeat acts like a skip.

A skip, directive (GOTO) conditionally skips source statements. The
GOTO dlrective uses the value of an expression in the operand field as
an ~ndex to a list of line identifiers. For example, if the value of the
expression is 3, the third line id identifies the next statement to be
interpreted by the assembler. If the value of the expression is negative,
zero, or greater than ~e number of entries in the list, assembly con
tinues at the next statement.

Format:

label · GOTO ex'pression, line id1, line id2, ... , line id3 comments
(optional) (optional)

Example:

I I

The LNID directive allows a programmer to define a dummy label for line
identification purposes. The label has no value and no entry in the sym
bol table. It is especially useful for defining the range of an RPT since

19

I ;
~,

j

,.
·1

LOCATION
CONTROL

SECD

20

•

the use of normal labels in such instances could result in duplicate
symbol definitions. · ·

Format:

label LNID comments
(optional)

Example:

~AHH& LrNlQ ,{

META provides for one absolute and up to 15 relocatable location
counters. A program can be ~ssembled into one or more control sec
tions, each with its mvn counter. A symbol defined in a control sec
tion is not unique to it and can be referred to by any control section in
the program. Location counters are maintained as byte counts.

. . .
The programmer may refer to the current value of the location counter
in use by using a dollar sign ($) as an operand. It achieves the same
result" as if a symbol were placed in the label field and used as an
operand of tJ:ie same stateme~t .

Seven directives assign names and destinations to control sections and
values to location counters.

SECD

SECP

SECA

ORG

LIT

RES

RESB

..

The SECD directive specifies the control section name, chapte1· number-,
and maximum length for a labeled common block or a numbered common
block.

60236000

.&.

'j

SECP

60236000

Format:

label
(optional)

SECD symbol, chapter, size
(all optional)

comll)ents
(optional)

Symbol defines the common block as labeled, numbered, or blank (zero).
The chapter operand indicates whether the common block is to be located
in the first or second chapter of a MASTER program task. The size
operand provides an estimate of the size of the common block.

Examples:

I I

L, a 200-word labeled common block, is assigned to chapter two. A
subsequent SECD directive referring to L would not require the chap
ter and size operands.

Numbered common block 25 occupies 100 words in chapter one .

• The SE CP directive specifies a control section name for a relocatable
subprogram.

Format:

label
(optional)

Exa~ple:

SECP symbol

Subprogram is named PROGA.

comments
(optional)

21

SECA

ORG

22

The SE CA directive specifies a control section name for an absolute
subprogram. Location of this subprogram is controlled by the absolute
location counter.

Format:

label
(optional)

Example:

SECA symbol comments
(optional)

~I

The ORG directive tells the assembler to switch from the location counter
in use to a location counter for some other control section or to change
the counter in use to a specified value.

Format:

label
(optional)

ORG expression comments
(optional)

411f the expression contains a symbol naming a control section, ORG uses
the value of the location counter for that section in place of the symbol.

Example:

Program control section ALPHA.

Chapter one labeled common·
block COMM.

Resume program control section.

60236000
t

LIT

RES/
RESB

60236000

The LIT directive designates the location of literals. The assembler
places literals in the control section most recently specified by a LIT
directive, regardless of which control section contains the referesice.
In the absence of a LIT directive, the assembler appends the literals to
the first program control section. META makes only one entry for
identical literals in any given literal table.

Format:

label
(optional)

LIT symbol comments
· (optional)

Symbol names a previously defined control section after which the.lit
erals are to be placed.

Example!

Program control section named
ABLE.

Labeled common block BAKER.
1-L-1.-....a~.-J.ll!!:L...J.._..!.LiJl~a.JL:Jll...µJLll-~~~~.J.1-- Literals to follow ABLE.

1-'---'-....__..._.__._....__.__.__.__...__._...._.__-........._._......_... _.__...__..-t- The value of~ is the address of
1--1-_._...__.__._...__.___.__..___.___.__...__._......._..___.__.__ _.__.__._......,.. the literal left-adjusted BCD

value INP .
•

A programmer can change the contents of the current location counter
by issuing an RES or RESB directive.

Format:

label
(optional)

RES
RESB

expression
,
comments
(optional)

The value of the expression can be in words (RES) or bytes (RESB).

..

The label is assigned the value of the current location counter before the
addition.

23

\
l
!

DATA
GENERATION

GEN/
GEND/
GENB

24

Examples:

~ : ::: : t~ : : :: : : ~
Increment location counter
by four words (16 bytes).
Increment location counter
by 16 more bytes.

In the above example $ is word address and B is a byte address. Evalua
tion of the expression $ - B causes conversion of $ from a word address to
a byte address. Thus, $ = B + 16 bytes., and $ - B becomes (B + 16) - B,
or 16 bytes.

Seven directives generate words or bytes of information to be loaded into
tJie computer at execution time:

GEN

GEND

GENB

TEXT

TEX TC

TEXT A

FORM

The GEN, GEND, .and GEN'B directives generate one word, two words, or
one byte, respectively, for each element in the operand field set. A set
name may be used in lieu of a set. Subsets are not allowed.

Format:

label GEN
(optional)

Examples:

L &SM I

GEND
GENB

set comments
(optional)

Generates-three object computer \\'Ords.

60236000

TEXT/
TEXTC/
TEXT A

60236000

I I I I f ~I

Generates two object computer bytes. The value of an expression must not
exceed the number of bits per byte.

Generates two 2-word (double-precision) elements.

r:: ~::: ;,:,:~::: : : : : : : :f::::::
Generates three object computer words.

The TEXT, TEXTC, and TEXT A directives direct the assembler to
generate words of BCD text, characters of BCD text, and words of
ASCII text, respectively, from a. character string delimited by apos- · .
trophes given in the operand field. · · · ·

Format:

label
(optional)

Examples:

TEXT
TEXTC
TEXT A

'string' comments
(optional)

Generates a string of 6-bit character.s without padding the last word.

25

...

FORM

•

26

I 1{

If the object computer uses 24-bit words, generates four words containing
the internal BCD character string THIS IS TEXT left adjusted and the. last
word filled w·ith blanks.

l"ITIHI ds I "I 1 lsll"IT IElxlTl"l"l"I
word 1 word 2 word 3 word 4

, le TEKA

Generates a string of 8-bit characters and pads the last word with the
internal representation of ASCII blanks.

The FORM directive facilitates the generation of data by fields. It does
not generate data. It defines a data format from left to right in terms
of fields in orie or more bytes .

Format: ..
symbol FORM expression1 , expression2 , ... , expressionn comments

(optional)

The symbol is the nam_e by which the FORM is subsequently referenced.
Each expression in the operand field defines a field size in bits. The
total number of bits must be a discrete number of bytes.

A program.mer generates data specified by a FORM directive by placing
the label of the FORM directive in the command field of a source state
ment and supplying a set of expressions corresponding to the fields ·in
the operand field.

Format:

label
(optional)

form label set comments
(optional)

60236000

"' PROCEDURE.
DEFINITION
AND USE

602:36000

Examples:

Defines 4 fields in 4
bytes (one word) as
FORM named ITEM.

Generates word using
FORM named ITEM and
values supplied as
operands.

Defines four 6-bit fields
J.1111~6iiiilL..U1!¥~~.L..J.m,....ill~~lli-...L.JLL_L_LJ......L.LJ,. as FORM named CHARS.

Generates 6-bit fields
1--1-_._.....__.__.__.__....__.___..__.__.__._~ __._....._.......__.._....__.__._~ __._...&........I\- using FORM named

............ __._ ~...._..__.__._......_.__..._._...__.__.__.._..__.___._......__..__..._.__ __.__.._._.CHARS. Octal values of

L--L-L-.:.L.Jl-l...-1-JWDCll.f!ILtiilL-L_....__i::!f._4-L1m.0i!4.JLLJ!~.19!-l.l~Wt fields are:

21 77 17 12

A procedure definition consists of lines of source statements beginning
with a PROC directive and ending with an ENDS directive. The definition
includes at least one NAME directive giving a symbol by which the pro
cedure is subsequently referenced.

When the assembler encounters a procedure definition, it interprets only
the NAME directives in the code body. It compresses and stores the
remainder of the definition in an assembler table of definitions.

Each time the assembler interprets a reference to the procedure, it
temporarily defines as many as three sets and interprets. the body of
the .procedure. Statements within the procedure refer to these sets as
though they were defined by NSE T directives. The sets allow extensive
parameterization and conditional generation of code by a procedure.

The name of the first set is derived from the label field of the PROC
directive. The elements are taken from the operand field of the NAME
directive identified in the call.

The names of the ·second and third sets are derived from the command field
and operand field t1f the PROC directive. The elements are supplied in
the corresponding fields of the statement containing the procedure refer
ence.

27

I
l
:~

PROC

NAME

28

A procedure can contain other procedures, or references to other
procedures, nested to a level of 14.

Procedures can be stored on the system library or some other file for
later retrieval by a LIBS directive.

The Meta-Assembler includes a standard set of library procedures for the
3300/3500 mnemonic machine instructions (appendix D).

A PROC directive declares the beginning of a procedure and provides for
the definition of three sets used in the procedure.

Format:

setname1
* (optional)

PROC, setname2
(optional)

setname3, expression
(both optional)

comments
(optional)

The set names are optional. The expression in the· operand field of the
PROC directive must be nonzero for a procedure containing a forward
reference. It notifies the assembler that assembly of the procedure re
quires two passes. ·

Example:

X3300 names a set, the possible elements of which are in the operand
fields of the NAME directives; PR names a set, the elements of which
are in the operand field of the procedure reference statement.

4

Each NAME directive in a procedure provides a name (procname) by
which the procedure can be referenced and, opti~mally, supplies a NAl\IE-

1 dependent set of elements. The NAME directive acts as an entry point:
only statements following it are interpreted when a procedure is refer
enced by the procname.

60236000

ENDS

PROCEDURE
REFERENCE

60236000

Format:

procname

Example:

NAME set
(optional)

comments
(optional)

Procedure name LDA assigns
~~t.M.W...-L.ll:..il!:'.\..J~-1....JC..ft.YµLL.L_L.J.._j_L~

one-element set with value 208
a---.....__.L......J..__.__.,,_,._Lall:..a.ma........_...__,,..,__,.,-=_.__,'--'-_.___,___.,-+ to set named X3 3 0 0.

Procedure name STA assigns
11-1----1...-'--...1........J----1..-'--...1........Ji.--1..-'--...L.....J--'---L-...L.....J--'---L-...L.....J--'---L-.4- one-element set with value 40 8
1-J.-..L.....J.._.L......J..__J....-'--l-..J....-'--.L.--'_..._....J.._.L......J..__.__.__,.____.__.__ _..· to set named X3 3 0 0.

The statement that terminates a procedure is ENDS.

Format:

label
(optional)

ENDS comments
(optional)

After defining a procedure, the programmer can· refer 4> it by entering a
procname in the command field of a source statement. The procname
can be any of the procnames assigned by NAME directives in the def
inition. The reference optionally provides elements for two set names
in corresponding fields of the PROC directive.

Format:

label
(optional)

procname, set1 set2
(both optional)

comments
(optional)

After interpretation of a procedure, the assembler interprets the state
ment following the statement containing the procedure reference.

29

LIBS

30

Example:

""4~L-L...1..-L..L-L..J~lrll.l:i........J.........L-Ll~~i6alr.L-..L-L...1.......J........L-Ll.-L..1-L....L-L...L.L.J..-Jl.Procedure

'LDA.
tom-'LA::1-1-.J..-'-...L-L-.41:-=1L-1..-..-.1.-...L-L-J.....Jlf ~l....L1.llllP:..L--'-'-L.....J.......L-1-L.....J.......L-1-L.....J.......L-l-.,L-+

Procedure
STA.

Form
........... _.__.__.__.__.__._L-J,._._...._..._.__.__._..._.__.__._.__..._._....._ _.__.__..._.__.__._..._.__.__.__ _~reference

•

•

Code Generated:

•
20g (B3)
408 (B2)

23 1817 15 14
~-,,..-..

X3300(1) PR(2)

(TAG)

(BOB)

PR(l)

00

Procedure references:
each passes PR set
elements through
operand field and picks
up elements of NAME
dependent set X3300.
Neither reference
passed elements to
command field set X.

A programmer can retrieve predefined procedures from a libt•ary file or
some other file by issuing a LIBS clirectiYc. The procedures are stored
in the lib1·ary file by the l\IASTE R library generation program, GLIB.

60236000

·.-.

FUNCTION
DEFINITION
AND USE

60236000

Format:

label LIBS L'dsi', symbol1, ... , symbt>ln comments
(optional) (optional)

The symbols are procnames of procedures to be obtained from the 3300/
3500 MASTER file identified by its data set identifier, dsi.

Example:

I I

Obtain procedure definitions named ALPHA, BETA, and GAMMA from the
MASTER system library, *LIB. Note that if all three names are in the
same definition, the assembler loads only one definition.

Obtain PSI and OMICRON from file with MASTER data set identifier ABC.

A function definition consists of lines of source statements beginning with
a FUNC directive and ending with an ENDS directive. The definition in- ~

eludes at least one NAME :directive, giving a symbol by which the function
is subsequently referenced.

When the assembler encounters a function definition, it interprets only the
NAME directives in the code body. It compresses and stores the re- •
mainder of the definition in an assembler table of definitions.

Each time the assembler interprets. a reference to the function, it defines
up to two sets, interprets the body of the function, and returns information
to the statement containing the function reference. The sets allow exten
sive parameterizati~n 3:nd conditional generation of code.

The name of the first set is derived from the label field of the FUNC di
rective. The elements are taken from the operand field of the NAME
directive identified in the reference. The name of the second set is de
rived from the operand field of the FUNC directive. The elements are
supplied as parameters of the function reference enclosed in parentheses.

31

FUNC

"'

NAME

32

A function can contain other functions, or references to other functions,
nested to a level of 14.

The Meta-Assembler includes an intrinsic set of functions called attribu
functions (chapter 4).

After interpretation of a function, the assembler uses the information to
complete evaluation of the expression containing the reference .

..

A FUNC directive declares the beginning of a function and provides for
the definition of two sets used by the function.

Format:

setname1 FUNC setname2 comments
(optional) (optional) (optional)

Example:

lsx,r,rs,N ,f;U.~1 AIUMS J',

. .
· The function refers to sets named· BITTEN and NUMB.·

Each NAME directive in a function provides a name (funcname) by which
the function can be referenced and, optionally, ~upplies a NAME-dependent
set of elements. The NAME directive acts as an entry point; only state
ments following it are interpreted when a function is referenced by the
funcname.

·Format:

funcname NAl\JE set
(optional)

comments
(optional)

60236000

ENDS

FUNCTION
REFERENCE

60236000

Example:

Each name assigns a different one-elen:ient set to the set named BITTEN.

The statement that terminates a function is ENDS.

Format:

label
(optional)

ENDS expression comments
(optional)

The expression is either an expres~ion that defi_nes the function value or·
a set tha_t defines a set of values to be used "in the calling statem.ent.

Example:

After defining a function, a programmer can refer to it by using a function
name as a symbolic element in an expression. The function name can be
any of the funcnames assigned by NAME directiws in the definition.

33

LISTING
CONTROL

NOLIST/
LIST

34

Example:

Function named X.

Function named Y.

Reference to function X; in
crements location counter by 7.

Reference to function Y; in
crements location counter by 22.

Note that elements for set B are passed as parameters of the function
reference.

Seven directives provide progr.ammer control over the format and content
of the assembler-generated listing.

The NOLIST directive causes the assembler to discontinue generation of
the output listing, beginning with the NOLIST directive, until it encounters
a LIST directive.

Format:

fabel NO LIST
(optional) LIST

comments
(optional)

60236000

SPACING

EJECT

60236000

Example:

The SPAC.JNG directive causes the assembler to use the specified
spacing (single, double, or triple) until it encounters another SPACING
directive.

Format:

label
(optional)

SPACING expression comments
(optional)

The value of the expression can be. one, two,· or .three.

Example:

Double space listing.

Single space listing.

An EJECT directive causes the assembler to terminate listing on the
current page and resume listing at the top of the following page.

35

TITLE

DETAIL/
BRIEF

36

Format:

label
(optional)

EJECT comments
(optional)

The programmer can issue a TITLE directive to eject the current page
and begin the listing on the following page with a line of text supplied in
the directive. •

Format:

label
(optional)

TITLE

Text is a character string.

Example:

'text' comments
(optional)

The DETAIL directive causes the assembler to list all lines of generated
code and procedure and function expansions in addition to normal list
output until it interprets a BRIEF directive. A NOLIST directive takes
precedence over a DETAIL directive. If no DETAIL directive is issued,
the mode is BRIEF.

Format:

label DETAIL
(optional) BRIEF

comments
(optional)

60236000

-~

ASSEMBLY
TERMINATION

END

FINIS

60236000

Example: ,.

Begin detailed listing.
Produces two lines of print.

Begin brief listing.
Produces one line of print.

The programmer can independently assemble more than one subprogram
' during 11 Meta-Assembler run. Two directives indicate whether the

assembler is to terminate assembly of·a subprogram or terminate as
sembly completely.

The programmer issues an END directive at the end of each subprogram
being assembled. The. directive optionally specifies a symbolic location
at which program execution is to begin. ·

For~at:

label
(optional)

END symbol
(optional)

comments
(optional)

FINIS causes termination of the assembly process. The directive follows
the END directive for the final subprogram.

Format:

label
(optional)

Fii\TIS comments
(optional)

37

I ~1

. 1
· i
l

MDE

60236000

ATTRIBUTE FUNCTIONS

An attribute is an inherent characteristic of an expression symbol or set
such as its size or arithmetic mode. Seven intrinsic functions defined
by META provide the programmer with access to attributes which are
returned as values. An attribute function call consist~ of the function ·
name, used as an element of an expression, followed by an argument
enclosed in parentheses.

Ordinarily, a reference to an attribute function occurs in an operand
field.

The mode attribute function (MDE) returns the mode of the argument as
a decimal integer value.

Mode Value

No value 0

Integer value 1

Real value 2

BCD character string, right adjusted ·3

BCD integer string 4

BCD character string, left adjusted 5

ASCII character string 7

Word address 9

Byte address 11

Reference format:

MDE (expression)

4

1 ·
i
\

39

SZE

REL

40

Example:

For an integer value, assembly continues at B; for a real value, assembly
continues at C; etc.

The size of a defined symbol value is accessible through the size attri
bute function (SZE). This function returns the number of bytes occupied
by an address or an integer or real value, or it returns the number of
characters in a BCD or ASCII character string.

Referenc~ format:

SZE (expression)

Example:

r:~:~~:::{::: Real value, 2 words (8 bytes).

Reserve 8 bytes.

The relocation attribute function (REL) returns the number of the ~oca
tion counter used by the indicated control section.

Reference format:

·REL (expression)

Example:

The value assigned to CTR is a decimal integer designating the number
of the ·location counter (0-15) used by control section ALPHA.

60236000

I
\

NUM

BYT

WRD

60236000

The number of elements function (NUl\I) returns the number of elements
in the named set as an octal integer.

Reference format:

NUM (setname)

Example:

'·'

The value assigned to SETSIZE is the number of elements in the set
named BETA.

The byte address function (BYT) returns the byte address of the
argument expression.

Reference format:

BYT (expression)

Example:

~I I I

A is assigned the current value of the location counter currently in use
as a byte address plus one.

I~ I I

The word address function (WRD) returns the word address of the argu
ment expression. A byte address that does not correspond to a word
address is flagged as an error.

Reference Forniat:

WRD (expression)

41

SYM

42

Example:

If the current value_ of the location counter currently in use is a discrete
number of words, the number of words is assigned to FF. Otherwise,
an error results.

The symbol attribute function (SYM) permits the value of the argument
expression to be used as a symbol. The reference can occur in any field
of a statement.

Refer~nce format:

SYM (expression)

Examples:

The value of A is XYZ. The SYM reference to A causes XYZ to be
interpreted as a symbol in the EQU statement. Thus the symbol XYZ is
assigned the value 10. ·

The· symbol AAAA is assigned a value of 1.

60236000

{

60236000.

If the procedure is called by name CHAR, the statement labeled LAB
uses GE~B to generate bytes; if called by name WORD, the same state
ment generates words.

43

f.

f

. I
j.
t

I
• I

!

-·

CHARACTER SET A

Type of Printer Internal Card . f'
Character Graphic Code Octal Code ;

~
¥·
f' ;;

A 21 12, 1.
B 22 12,2 t·

t

c 23 12,3 ~

D 24' 12,4
E 25 12, 5.
F 26 12,6
G 27 12,7
H 30 12,8
I 31 12,9
J 41 11,1
K 42 11,2
L 43 11,3

" Alphabetic. <' M 44 11,4
N 45 11, 5

t 0 46 11, 6
. --

p 47 11, 7
Q 50 11, 8 I R 51 11, 9
s 62 0,2

'
T 63 . 0,3
u 64 0,4
v 65 0, 5
w 66 0,6
x 67 0,7
y 70 0,8
z 71 0,9
0 00 0
1 01 1
2 02 2
3 03 3

Numeric 4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
9. 11 9

~

60236000 A-1

Type of Printer .. Internal Card

Character Graphic Code Octal Code

Blank blank 60 v space

+ plus 20 v 12
minus 40 v 11

x times 54~ 11,4,8

I divide 61 v 0,1

= equals 13 3,8

< less than 32 12,0

> greater than 57V 11, 7, 8
period 33 V" 12,3,8
comma 73 0,3,8

(left parenthesis 74 v 0;4,8
) right parenthesis 34 12,4,8

% percent 16 v 6,8

Special $ dollar 53 .,/' 11,3, 8
apostrophe 14 4,8

s less or equal 15 5,8
'~ greater or equal 35 12, 5, 8
[left bracket 17 7,8

"
] right bracket 72 0,8,2

t decimal exponent 55 11, 5, 8

t binary exponent 56 11, 6, 8
, not 36 12·, 6, 8

semicolon 37 .,,,., 12,7,8
~ right arrow 75 0, 5, 8

- identity 76 0,6,8
colon 12v"' 2,8

v or 52 11,0

A and 77 0,7,8

.
;~·v

} .j x

A-2 60236000

"'

Symbol

+

t
i
*

I

+

<

>

**

++

OPERATORS

Alternate
Mnemonic

DS

BS

LT

EQ

NE

GT

LE

GE

AND

XOR

OR

Meaning

Unary plust

Unary minust

Decimal scaling

Binary scaling

Arithmetic product

Arithmetic quotient

Arithmetic additio~

Arithmetic subtraction

Less than (compare)

Equal (compare)

Not equal (compare)

Greater than (compare)

Less than or equal (compare)

Greater than or equal (compare)

Logical product (AND)

B

Logical difference (exclusive OR)

Logical addition (inclusive OR)

Unary equals t (literal)

Examples:

A>B has value 1 if the value of A is greater than the value of B; otherwise it has value 0.
Zero is greater than -0.
A GT B is an alternate representation of the above. A single blank separates 'A' and "GT"
and 'B".

t A unary operator has only one operand. It is most commonly used as the sign of a simple
expression.

60236000 B-1

I
{ . : ..

SAf.1PLE PROGRAM c

This sample program defines procedures for _3600 mnemonic instructions LDA, NOP, RTJ, and
UJP and illustrates how a program can be coded using the 3600 mnemonics. Because assembly is
for a machine other than the 3300 or 3500, output must be written on a permanent file. In this
example, a magnetic tape file is used.

~~END OF FILE

META SOURCE.DECK

OPEN MAGNETIC TAPE
UNIT FOR OUTPUT $META (X =SF, L, R}

SCHEDULE JOB
REQUIREMENTS

~ ~....__ ___________ ___,

$*DEF(U, , SF, 607, A205, 3600, ,.tn

~ $SCHED,CORE=30, SCR=5,607=1

$JOB, JR,41 L45

60236000 C-1

60236000

"'

'-'

3300/3500 MNEMONIC INSTRUCTIONS

A 3300/3500 META mnemonic instruction is a procedure reference in which the label field
optionally contains a symbolic address, the command field contains a mnemonic instruction and
modifiers, and the operand field contains operands that depend on the mnemonic.

Mnemonic instructions can be used in a program that does not contain a UNIT directive.

Abbreviated descriptions of the mnemonic language given here subscribe to the following conven
tions:

D

(>~< Indicates that the contents of one (or two consecutive) register, operand, or ad
dress field is replaced by the contents of another (or two consecutive) register,
operand, or address field. For example, (M)~(A) means "replace contents of
A register witl\ .~ontents of M operand field."

/\

v

Term

A

b

B

Bm

Br

BB

c

'-cm

E

E£

Eu

60236000

Indicates the logical sum (AND)

Indicates a logical OR

24-bit A register

Index register designator 1 to 3

Index register.defined by Bb

Meaning·

Index register flag, M = m+(Bm) for these instructions only

Index register flag; if Br= 1 or 3, R = r+ (B1); if Br = 2, R = r+ (B2); if
Br= 0, R =:= r

Index register flag; if B
8

= 1 or 3, S = s+ (Bl); if Bs = 2, S = s+ (B2); if
BS= 0, S = s

00-'778 BCD code of search c~aracter

·s-bit channel mask

48 (52)-bit E register

Lower half of 48-bit E register (bits 23-00)

Upper half of 48-hit E register (bits 47-24)

Increment or decrement, O to 7

..

D-1

f __ ·.'1· .. :·.·

t
t
t" i l
J,..,

"'
Term Meaning

k Shift count

2 Field length of block, 0-177 8

2r Number of characters in field R

2s Number of characters in field S

m 15-bit word address, first operand or jump address

M Actual operand or jump address as modified; M = m+ (Bb)

n Same as m, second operand address

p 15 (or 17)-bit P register

Q 24-bit Q register

r. 17-bit character address

R Actual character address as modified; R = r+ (Bb)

"
s Same as r, second operand address

s Same as R, second operand address; S = s+ (Bb) 01
v 6-bit address in register file

SC Scan character

w Page index file address

x Connect code or interrupt mask

y 15-bit operand

Modifiers Meaning

A Conversion

B Backward read or write

c Evaluate address expression modulo 217-1

de Delimiting character

EQ Equal

GE Greater than or equal

H Half assembly or disassembly

'-'
I Indirect addressing

D-2 60236000

'-'

~

Modifiers

INT

N

NC

NE

s

Command
Field

ACI

ADA,I

ADAQ~I

ADM

AEU

AIA

AIS

ANA

ANA,S

ANI

ANI

ANQ

ANQ,S

AOS

APF

AQA

6023GOOO

Meaning

Interrupt on completion

No assembly or disassembly

No conversion

Not equal

Instruction modifier denoting sign .. extension: S present, sign extended;
S omitted, no sign extension

Operand
Field Operation

(Aoo-02) -..channel index
register

m,b (A)+(M) --.. (A)

m,b (A,Q)+(M,M+l) -..(A,Q)

r, Br, Rr, Add field R to field S --...
s,Bs,Rs field S

(A) _..(Eu)

b (A)+(Bb) -..(A). sign of · .
(Bb) is extended prior to addition

(A00_02)-.. instruction
state register

y y A(A) -+-(A)
y yA(A) -..(A), sign of y extended
y No operation
y,b yA(Bb) ~(Bb)
y y A (Q) ._... (Q)

y yA(Q)-..(Q), sign o_f y extended

(Aoo-02)--+-operand state
register

w,2 (A00_11)--.. page file

(A)+(Q)--.. (A)

D-3

Command
Field

AQE

AQJ,EQ

AQJ,GE

AQJ,LT

AQJ,NE

ASE

ASE,S

ASG

ASG,S

ATD

ATD,dc

AZJ,EQ

AZJ,GE

AZJ,LT

AZJ,NE

CIA

D-4

Operand
Field

m

m

m

m

y

y

y

y

m·,Bm;2m,
s, Bs

m

m

m

m

Operation

(A, Q) -+-(Eu, EL)

If (A) = (Q), RNI m, otherwise,
RNI P+l

If (A) ~ (Q) RNI m, otherwise,
RNI P+l

If (A) < (Q), RNI m, otherwise,
RNI P+l

If (A)·::;: (Q), RNI m, otherwise,
RNI P+l

If y = (A00_ 14), RNI P+2, otherwise,
RN! P+l

If Y = (Aoo-14), RNI P+2, otherwise,
RNI P+ 1, sign of y is extended

If (A) ~ y, RNI P+2, otherwise,
RN! P+l

If (A) ~ y, RNI P+2, otherwise,
RNI P+ 1, sign of y is extended

Translate American Standard
Code field M --..BCD character
field S

·Trans.late American Standard
Code field M--+- BCD character
field S with delimiting character

. possibility

If (A)= 0, RNI m, otherwise,
RNI P+l

If (A)~ 0, RNI m, otherwise,
RNI P+l

If (A) < 0, RNI m, otherwise,
RNI P+l

If (A) "I= 0, RNI m, otherwise,
RNI P+l

0 ~(A), then channel index
register --+-(Aoo-02)

60236000

Command
Field

CILO

CINS

CLCA

CMP

CMP,dc

CON

COPY

CPR,!

CTI

60236000

•

Operand
Field

cm

ch

cm

x,ch

ch

m,b

Operation

Lockout external interrupt on
masked channels, cm, until
channel is not busy

Interrupt mask and internal
status--.L(A)

Clear the specified channel,·
but. not external equipment

Compare field R to field S,
exit upon encountering -:;t:.
characters

Compare field R to field C,
exit upon encountering ;F.

characters; delimiting character
possibility

If channel ch is busy, reject
instruction, RNI P+l. If
channel ch is not busy, send
12-bit connect code (x) on
channel ch with connect enable,
RNI P+2

External status code from I/O
channel ch--...(Aoo-11),
(interrupt mask

register) ~(A12-23), RNI P+l ·

(M) > (A), RNI P+l } (A) and
(Q) > (M), RNI P+2 (Q) are
(A)~ (M) ~ (Q), RNI P+3 unchanged

Set console
typewriter
input
Set console
typewriter
output

Beginning char
acter address
must he present
in location 23
of register file
and last char
acter +1 must be
present in loca
tion 33 of the
file

D-5

Command Operand
Field Field Operation

CVBD m,Bn,n,Bn Convert binary field M to ~

BCD_,.field N ! CVDB r, Br, ~r' Convert BCD field R to
~

m,Bm binary_,. field M

DINT Disable interrupt control
'!':

\j

DTA r,Br,~r• Translate BCD field R to ~ !}

m,Bm American Standard Code__,.
field M

DTA,dc r, Br,e r• Translate BCD field R to
m,Bm American Standard Code__.....

field M; delimiting character
possibility

DVA,I m,b (A,Q)/(M)-..(A), remainder
_.... (Q)

~ DVAQ,I m,b (A,Q,E)/(M, M+l) _.,...{A, Q),
remainder with sign extended

~} __.,...{E)

EAQ (Eu, EL)__.,... {A, Q)

ECHA r o___..{A), then r~(Aoo-16)

ECHA,S r O~(A), then r~ (Aoo-16),

• sign extended

EDIT r,Br,2r, Field R--... field S with COBOL f,
s, Bs, 28 type of editing specified by I picture previously stored in

field S I EINT Interrupt control enabled; allows
one more instruction to be
executed before interrupt

ELQ (EL)~(Q)

ENA y o__.,...{A), then y~(A00_14>

ENA,S y O__.,...(A), then y__.,...(A00_14),
sign extended

ENI y No operation

(

D-6 60236000

Command Operand
Field Field Operation

·ENI y,b 0-....(Bb), then y-....(Bb)
ENQ y o -....(Q), then y -....(Q00_

14
)

ENQ,S y O~(Q), then y -....(Qoo-14),
sign extended

EUA
(Eu) -+--(A)

EXS x,ch Sense external status; .if 1 bils
occur on status lines in any of
the same positions as 1 bits in
the mask, RNI P+ 1; if no com-
parison, RNI P+2

FAD,! m,b Floating-point addition of
(M,M+l) to (A,Q)~(A,Q)

FDV,I m,b Floating-point division of
(A, Q) by (M, M+l) -...(A, Q);

""
remainder with sign extended
~(E)

~MU,! m,b Floating-point multiplication
of (A, Q) and (M, M+l)
--+--(A, Q)

FRMT r, Br,2r, Moye field R-+- field S;
s, Bs,Qs replace leading zeros with

• blanks; insert a comma after
every three characters moved;
insert a decimal point in third
lowest order position in S field

FSB,I m,b Floating-point subtraction of
(M,M+l) from (A,Q) ~(A,Q)

HLT m Unconditional stop, RNI m
upon restarting

,JAi b (A)+(Bb) _,.. (Bb), sign. of Bb is
extended prior to addition

IAPR
Interrupt associated processor

IJD m No operation

IJD m,b If (Bb) = 0, RNI P+ 1; if (Bb) =I= 0,
(Bb) - 1 ~ (Bb), RNI m

"
60236000

_D-7

Command
Field

IJI

IJI

INA

INA,S

INAC,INT

INAW,INT

~ INCL

INI

INI

.INPC,INT,
B,H •

ISG

181

JAA

jl\fP, HI

J:'.\TP, LOW

D-8

Operand
Field

m

m,b

y

y

ch

ch

x

y

y,b

ch,r,s

y,b

y,b

m

m

Operation

No operation

If (Bb) - 0, RNI P+l; if (Bb) =/:. 0,
(Bb) + 1 ~ (Bb), RNI m

Increase (A) by y

Increase (A) by y, sign of y is
extended

(A) is cleared and a 6-bit• char
acter is transferred from a
peripheral device to the lower
6 bits of A

(A) is cleared and a 12- or 24-bit
word is read from a peripheral
device into the lower 12 bits or
all of A (word size depends on I/O
channel)

Interrupt faults defined by x are
cleared

No operation

Increase (Bb) by y, signs of y
and Bb extended

A 6- or 12-bit character is read
from a peripheral device and
stored in memory at a given
location ·.

If (Bb) ~: y, RNI P+2, otherwise,
RNI P+l

If (Bb) = y, clear Bb and RNI P+2;
if (Bb) t- y, (B~ + 1 ~ (Bb),
RNI P+l

Last executed jump address~

(Aoo-14)

Jump if BDP condition register
> 0 or+

Jump if BDP condition reg
ister > 0 or -

60236000

Command Operand
Field . Field

JMP,ZRO m

LACH r,1

LBR
m

LCA,I m,b

LCAQ,I m,b

LDA,I m,b

LDAQ,I m,b

LDI,I m,b

LDL,I m,b

LDQ,I m,b

~ IjPA, I
m,b

LQCH r,2

MEQ m,i

INPW,INT, ch,m,n
B,N

INQ y

INQ,S y

INS x,ch

G023GOOO

Operatiotl

Jump if BDP condition reg-
ister = 0

0-+-(A), (R)-... (Aoo-o s>

Load BDP conditions with the
contents of m

{Ki)-+-(A)

(M)-11-(A), (M+l)-+-(Q)

(M)-+-(A)

(M)--+-(A), (M+l)--+-(Q)

<Moo-14)--.. (Bh)

(M) /\ (Q)--.. (A)

(M)-+-(Q)

(M) /\ (A)-.. (A)

0~<Q), (R)--.. <Qoo-os>

(Bl) ~ i-...(Bl); if (Bl) negative,
RNI P+l; if (Bl) positive, test (A)
= (Q) /\ (M); if true, RNI P+2,

. if false, repeat sequence

Word address is placed in bits
00-14; 12- or 24-bit words are
read from a peripheral device
and stored in memory

Increase (Q) by y

Increase (Q) by y, sign of y
extended

Sense internal status; if 1 bits
occur on status lines in any of
the same positions a~ 1 bits in
the mask, RNI P+ 1; if no comparison,
RNI P+2

D-9

;

l
- ~

j

'

l
i

~-

Command
Field

INTS

IOCL

ISA

ISD

ISD

ISE

ISE

ISG

MOVE,INT

MTH

MUA,I

MqAQ,I

MVBF

MVE

l\IVE, de

D-10

•

Operand
Field

x,ch

x

y

y,b

y

y,b

y

Q,r,s

m,i

m,b

m,b

r,Br,Qr•
s,Bs,Qs

r, Br, s,
Bs, Qs

Operation

Sense for interrupt condition;
if 1 bits occur simultaneously
in interrupt lines and in the
interrupt mask, RNI P+ 1; if not,
RNI P+2

Clears I/ 0 channel or search/
move control as defined by bits
00-07, 08, and 11 of x

0 _..(A), instruction state
register --+-(A00_02)

If y = 0, fu~I P+2; if y -=I:- 0,

RNI P+l

If (Bh) = y, clear Bb and RNI P+2;
if (Bh) ":I= y, (Bb) - 1-

JOb), HNI P+ 1

If y - 0, RNI P+2, otherwise,
RNI P+l

If y = (13b), RNI P+2, otherwise,
RNI P+l

If y ~ 0, RNI P+2, otherwise,
RNI P:+l

Move Q characters from r to s;
0 ~ Q ~ 12710

(B2) - i--+-(B2), if (B2) negaUve,
RNI P+l; if (B2) positive, test
(A)~ (Q) /\ (M); if true, RNI P+2;
if false, repeat sequence

(A)* (M)-+-(Q,A)

(A, Q) * (M, M+l)-+- (A, Q, E)

l\fove characters from field R
--+-field ~; if field S > field
f{, blank fill

l\Io\'e characters from. field
R__,._ field S accordh:< to n:irameters

i.\Tow~ characters from field [{
---11o-- field S: clelimitin'.:~ char~1cter
pos :-; ihil i ty

60236000

-::.,
·-::.

Command Operand
Field Field Operation

MVZF r,Br,2r, Move characters from field R
s, Bs,2 s -+- field S; if field S > field R,

zero fill

MVZS r,Br,2r, Move characters from field R
s,Bs,Qs -+- field S; suppress leading zeros

MVZS,dc r,Br,s, Move characters from field R
Bs,2s -+-field S;· suppress leading

Zf;'ros; delimiting character
possibility

NOP No operation (COMPASS assembled
NOP)

OSA 0-+-(A); operand state register
-+- <Aoo~o2)

OTAC,INT ch Character from (Aoo-05) is sent

~
to peripheral device, (A) retained

OTAW,INT ch Transfers (Aoo-11) or (Aoo-23),
depending on type of 1/0 channel,
to a peripheral device

OUTC,INT, ch,r,s Storage words assembled into
B,H 6- or 12-bit characters and sent

to a peripheral device

OUTW,INT, ch,m,n Transfer 12- or 24-bit words from
B,N storage to a peripheral device

PAK r, Br, 2r, Convert and pack a 6-bit numeric
m,Bm BCD field R to a 4-bit numeric

BCD field and store· the result in
field M

PAUS x Sense busy lines; if 1 appears on a
line corresponding to 1 bits in x,
do not advance P; if P is inhibited
for longer than 40 ms, read re-
ject instruction from P+ 1; if no
comparison, RNI P+2

PFA w,2 0-.. (A), then page index file
-+- (Aoo-11)

PH.P x Same as PAUS, except real-time

"'
clock cannot increment during
the pause.

60236000 D-11

Command
Field

QEL

QSE

QSE,S

QSG

QSG,S

RAD,I

RCR

RIS

ROS

RTJ

SACH

SBA,I

SBAQ,I

SBCD

SBJP

SBM

SBR

SCA,I

SCAN, LR,
EQ,dc

D-12

•

Operand
Field

y

y

y

y

m,b

m

r,2,

m,b

m,b

m

~.b.

Operation

(Q)__...(EL)

If Y = (Qoo-14), RNI P+2, otherwise,
RNI P+l

If y - (Q), RNI P+2, otherwise,
RNI P+ 1; sign of y is extended

If (Q00_14> ~ y, RNI P+2, other
wise, RNI P+ 1

If (Q) ~ y, RNI P+2, otherwise,
RNI P+ 1, sign of y is extended

(M)+(A)__... (M)

Subcondition register--... con
dition register

Relocate to instruction state

· Relocate to operand state

(P)+l--+-(m00_14), RNI m+l

<Aoo-os>--+- (R)

(A) - (M)--+- (A)

(A, Q) - (M, M+l)-+- (A, Q)

Set BCD fault logic

Transfer system from monitor
state to program state when •
next jump occurs

Subtract field R from field S
---.. field S

Store BDP conditions in m

Where (M) contains a 1 bit, com -
plement the corresponding bit
in (A)

Scan fie lcl R from left to right,
stop on = condition; delimiting
character possibility

60236000

-~1
i
,1

. ""
Command Operand

Field Field aperation

SCAN, LR, r, Br, 2r, sc Scan field R from left to right,
NE,dc stop on ¢ condition; delimiting

character possibility

SCAN, RL, r, Br,2r, sc Scan field R from· right to left, .
EQ,dc stop on = condition; delimiting

character possibility

SCAN,RL, r, Br, 2r, sc Scan field R from right to left,
NE,dc stop on¢ condition; deli~iting

character possibility

SCAN,LR,EQ r,Br er,sc Scan field R from left to right,
stop on = condition

SCAN, LR,NE r, Br, Qr, sc Scan field R from left. to right,
stop on * condition

SCAN, RL,EQ r, Br,2r, sc Scan field R from right to left,
stop on = condition

SCAN, RL,NE r, Br, Qr, sc Sc.an field R from right to left,

" stop on ¢ condition
SCAQ k,b Shift (A, Q) left end around until

upper 2 bits of A are unequal;
residue K = k- shift count;
if b = 1, 2, or 3, K-.. (Bb); if
b = 0,. K is discarded

. SCHA,I m,b <Aoo-16> ~<Moo...:16) • SCIM,I x Selectively clear interrupt mask
register for each 1 bit in x;
corresponding bit in the mask
register is set to O

SDL Upon next LDA instruction:
1. (M)~(A)
2. 77777777 ~ (M)

SEL x,~h If channel ch is busy, read reject
instruction from P+l; if not busy,
send a 12-bit function code on
channel ch with a function enable,
RNI P+2

SFPF Set floating-point fault logic

~

60236000
D-13

~4 ,

"' l)

Command Operand
Field Field Opera won

SHA k,b Shift (A); shift count K=k + (Bb)
(signs of k and Bb extended); if
bit 23 of K=l, shift right; com-
plement of lower 6 bits equals
shift magnitude; if bit 23 of K=O,
shift left; lower 6 bits equal shift
magnitude; left shifts- end around;
right shifts end off

SHAQ k,b Shift (A, Q) as one register; shift
count K=k + (Bb) (signs of k and .
Bb extended); if bit 23 of K=l, shift
right and complement of lower 6
bits equals shift magnitude; if bit
23 of K = 0, shift left and lower
6 bits equal shift magnitude; left
shifts end around; right shifts
end off

~
SHQ k,b Shift (Q); shift count K=k + (Bb)

(signs of k and Bb extended); if Q
bit 23 of K = 1, shift right, com-
plement of lower 6 bits equals
shift magnitude; if bit 2 3 of K = 0,
shift left, lower 6 bits equal shift
magnitude;- left shifts end around;
right shifts end off

SJ! m If SELECT JUMP 1 is set, jump
tom

SJ2 m If SELECT JUMP 2 is set, jump
tom

SJ3 m If SELECT JUMP 3 is set, jump
tom

SJ4 m If SELECT JUMP 4 is set, jump
tom

· SJ5 m If SELECT JUMP 5 is set, jump
to m

SJ6 m If SELECT JU~IP 6 is set, jump
to m

SLS Program stops if selective stop
switch is on; upon restarting

~ RNI P+l

D-14 60236000

Command Operand
Field Field Operation

SQCH r,1 <Qoo-os>-.. (R)
SRA

O--.. (A); subcondition register
~<Aoo-02>

SRCE,INT c,r,s Search for equality of character
c in list beginning at r until an
equal character is found, or until
character at s is reached;
0 s c ~.6310

SRCN,INT c,r,s . Inequality search; same as SRCE
SSA,I m,b Where (M) contains a 1 bit, set

the corresponding bit in A to 1
SSH m Test sign of (m), shift (m) left

one place, end around and. replace
in storage; negative sign, RNI P+2,
otherwise RNI P+ 1

""
SSIM x Selectively set interrupt mask

register for each 1 bit in x; cor-
responding bit ~n the mask
register is set to 1

STA,I m,b (A)__...(M)
STAQ,I

m~b (A, Q)--.(M, M+l)
STI',I m,b (Bb)--.. (Moo-14>
STQ,I m,b (Q)__...(M)

SWA,I m,b
<Aoo-14> ~<Moo-14>

TAI b (A00_14) ~(Bb)~ becomes
a no-operation instruction if
b=O

TAM v (A)-..(v)
TIA b O--..(A), (Bb)~(Aoo-14);

if b = 0, O~(A)
TIM v,b (Bb)--.. (voo-14)
TMA v (v)~(A)

60236000

D-15

"' k ..
Command

Operand ·
Field

Field
Operation

TMAV

Initiate memory request; if reply
occurs within 5 usec, RNI P+2;
if not RNI P+l; storage address
is (Bb) with (operand state regis-
ter) or zero appended

TMI
v,b

(v00-14)~Bb TMQ
v

(v)~(Q)
TQM

v
(Q)~(v)

TST
r,Br,.er Test field R; -, 0, or+ ucs

UJP,I
Unconditional stop

m
Unconditional jump to M

UPAK
m,Bm¥s

Unpack 4-bit BCD field M
Bs.2 s . into 6-bit BCD field S

~
XOA

y
YV(A)~(A)

XOA,S

t-y
y V (A)-. (A), sign of y is extended XO!

y
No-operation

XOI
y,b

y V (Bb)-. (Bh)
XOQ

y y v (Q) --... (Q)
XOQ,s. • y

y v (Q)--...(Q), sign of y extended ZADM
r, Br, flr, Clear field S; field R ~
s, Bs,.2 s field S, right justify

D-16

60236000

COMMENT AND EVALUATION SHE.ET

3300/3500 META/MASTER

General Information Manual

Pub. No. 6023600 June 1968 _
THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BL.ANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLE~SE INCLUDE PAGE NUMBER REFERENCE •

•

BUSINESS

..

ADDRESS:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.
F'OLD ON DOTTED LINll'• ... ,...., --· -· -

1

STAPLE STAPLE

FOLD FOLD

D248
FOLD

STAPLE

BUSINESS REPLY· MAIL
NO POSTAGE STAMP NECESSAAV IF MAIL.ED IN u,s,A,

POSTAGE WILL 8£ PAID av

CONTROL DATA CORPORATION
Software Documentation
4201 North Lexington Avenue
Si. Paul, Minnesota 55112.

FIRST CLASS
PERMIT NO, 824t

MINNEAPOLIS, MINN.

+;

FOLD

STAPLE

