
Control Data®

Basic Assembler
Reference Manual

September, 1964
Pub. No. 60057100

Any comments concerning this manual should be addressed to:

CONTROL DATA CORPORATION
Documentation Department
3145 PORTER DRIVE

PALO ALTO, CALIFORNIA

1S: 1964, Control Data Corporation

Printed in the United States of America

INTRODUCTION

BASIC Assembly provides an efficient method of putting machine language
programs into production and may be used with any configuration as a part of
the comprehensive BASIC system. The language includes mnemonic operation
codes, symbolic addressing techniques and a set of pseudo operations.

BASIC Assembly operates as a two-pass assembler with a symbol table retained
in storage between passes. During the first pass, source input is read, values
are assigned to location symbols, a check is made for doubly defined symbols
and the values are stored in the symbol table. During the second pass, source
input is read, the symbol table is searched for address terms, binary equiv­
alents are assembled for the source code line, and listable or binary output is
produced unless suppressed. If both list and binary output are assigned to the
same physical unit, a third pass is necessary to read the source input and pro­
duce binary output.

iii

CONTENTS

CHAPTER 1 BASIC LANGUAGE
Coding Format
Coding Fields
Typical Machine. Code
Typical Pseudo Operation
Coding Elements
Word and Character Addressing
Machine Instruction

CHAPTER 2 PROGRAM ASSEMBLY
Assembly Input
Pseudo Instructions
Assembly Output
Relocatable Binary Card Output
Paper Tape Output

CHAPTER 3 EXE CUTIVE PROCESSOR
Input/Output to BASIC Assembler
System Library
Control Program
System Initialization (SIN)
Relocatable Loader

APPENDIX A SAMPLE ASSEMBLY RUN

APPENDIX B BASIC UTILITY

v

1-1
1-1
1-1
1-2
1-3
1-3
1-7
1-17

2-1
2-1
2-1
2-10
2-12
2-18

3-1
3-1
3-3
3-5
3-6
3-7

A-1

B-1

, I n--r-r-" , I n

1,,'TT--l--;-'I'-TII

ITTII-r-n-r-r-TIT r,~, ~,'·,-T!,·,.-r-'r--:-i:--,',..-,---r.....,,!--,-,T~,.,-i
I I
""-'----,---,, ! I I "-11 'I I -'-'-'-'-"-111'-

I, II ~~, Ii 11,1

,I lTi'-;--'-~TJ-:-r-;-~~~', I! I I

iT-r--T+"ii" -r---j rr-r-:'-'-~-IT IT

, I I I I" -,--~"",-'r,!!' T "';-1 '--.,.: "~-T--~'IIIi ' I I I

,I I I r,-,,-,','- T'-:-]",---,--,r j-r "- -T-,,-'-r-r' T T'T'r-T~

I-r-r--r--r-,--,-,--+-,--,-.---,--r--r--,-,,-,-,-~--r---,-, -'-, -'-, "--'--1 ---r-;----~---r--r- r···-~~-----:-----.-----I-; --- ! ' T"I','T-,-T-1 i I

I-,,--r-.-.-,...,-+-.-,-,,-.-,-'-'-'--'-'-'---'--'---'-: ,...-,---;-,- i'---,·,-, r-;' ;---,'-- ---"--'--i""'~-----r-r I t I! t \ \ (

I , , , -:------;-r-,,',-,

'~--'!:-~t-;-'--: -r

--'--r-,'-,---'-;--r,-T'-'--'-Tl''-T-'''-'-'-T

rIi----;-"----'T ! i! I I

-;-_ .. _.- -'-, -, "'_.,_r·'Ti----r-"T--r,,-T-r-T I I I I I
I

~-,-,--,--r-r, -'-! 'TI ---,'.,,-----, I I I 111"''---'''-'

r';-,.....,"'TI.,.,----r-,~I-r-T-TT_,--,-IT IT TII-r-1

,..,,-~;-:--,---,--,T-,,--'-,-r-;----,-_.,_rIl~IT-,--,

,-, ~"j"i··-,~r"'-T'" IT! ITT-ri ~Ii-r-I

I:: "::: i:: ",: I::::::::': lIi----r-rrT'--,'--,-,T' I II, I I I I I I : I: II I II

. I I I, I I I I ' I I I I 1'-:---1. I'-T T I r , ;~ i I I I'-IT..,---",...,-,-.,,---,-r'-,'-T Til

I-,,--r-'---'---''-+-''''-'-,,-,---r, -rl -'---'-"-'-'-'I'~"I--r-.-~~~-~-:~-'~,--~~~~;-~~ I : ~~~~-~ I : : : ~'::~~-~-~fT~:~~-:~T
! . I

'-'--'--'-'-'--'--'-'-"--'---'--'-'''''-,- r-T,-' ,-,-rT'T-"T r-T-T',,-'--'~-'--'----'--I I I I I I I I I ITIIIrrr""-'T-rt-r-r'r,-TT---
; I I i

.--,--.....,..,..r-T-,--...,.,c:T'-,-.-.-~;m~e;T;;rg--;fi_;r;;T~.Tl·;r;-~·ro;T£(I,d .HI,(I 'it 1~[Tf·(Ti(-~gzl.tZ19zlr;zltzILGI al,z IOZIS! I ill £1 t 911 ~II ,,11 tIl z I~*
I

IN10i SlN1WW03 OHlJ SSlHOOV SH3\J100W 'NOll VH3dO N301

31VO NOI1\1~Od~OJ 3NIlnOH
39Vd
3WVN VIVO lOHIN03 WVH90Hd

W}JO:l ~NlaO) W31SAS SSVdWO) oo~£

e>

CODING
FORMAT

CODING
FIELDS

OPERATION
SUBFIELDS

ADDRESS
SUBFIELDS

BASIC LANGUAGE 1

The BASIC assembly format described here is used for all BASIC assembly
instructions, symbolic or octal machine instructions and pseudo instructions.

A code line is divided into five fields:

The location field begins with column 1 and ends with column 8. Column 9 must
be blank for BASIC assembly code lines.

The operation field begins with column 10.

The address field begins with the first non-blank column following the operation
field or column 20; it must begin before column 41 and is terminated with the
first blank or column 72, whichever occurs first.

The comments field begins with column 41 or the first non-blank column following
the address field and ends with column 72. When machine instructions have blank
address fields, comments may begin after the first blank following the operation
field.

The identification field, which is not printed on the output listing, appears in
column 73 to 80.

The operation and address field may each have several subfields.

The operation field has one or more subfields, separated by commas. The first
subfield, the operation code, specifies the operation to be performed. Succeed­
ing subfields are modifiers specifically relat ed to the operation code. Modifiers
indicate indirect addressing, sign extension, input/output options, character
addressing and jump conditions.

The address field has one to three subfields, separated by commas. Instructions
have implied subfields. If the address field is blank, each implicit subfield
assumes the value zero. An individual subfield may be skipped and assigned the
value zero by giving only its trailing comma or, if it is the last subfield in the
address field, by omitting both the value and the preceding comma.

1-1

TYPICAL
MACHINE
CODE

subfield

m or n

y

r or s

b

c

v

ch

x

a word address which specifies the location of full
word data

word data

a character address which specifies the location of
partial word or character data

specifies indexing or directs usage of the index
register

the character to be searched

the length of a character field to be moved

a register file location or character data

the number of the input/output channel

function code or comparison mask for input/output
instructions

an interval for search instructions

Machine instructions have one to three address subfields, separated by commas,
or they may be blank. Typical formats for address subfields are noted below:

operation subfields

TIA

TMA

ECHA,S

ENA

. AZJ, EQ

INAC

PAUS

LDA

LACH

ENI

TMI

MEQ

CON

MOVE

SRCE

INPC

INPW

SLS

1-2

address subfields

b

v

r

y

m

ch

x

m,b

r,l

y,b

v,b

m,i

x,ch

1, r, s

c,r,s

ch,r,s

ch,m,n

(blank) or remarks

TYPICAL
PSEUDO
OPERATION
CODE

CODING
ELEMENTS

Pseudo instructions have one or two address subfields, separated by a comma,
or they may be blank. Individual subfields are defined in Chapter 2. Typical
formats:

location
field

-a

b

operation
subfields

BSS

BSS,C

OCT

DEC

DECD

BCD

BCD,C

END

EQU

EQU,C

ORGR

LIST

NOLIST

REM

EJECT

SPACE

address
subfields

m

m

m

d

d

n, (4n characters)

n, (n characters)

m

m

r

m

(blank)

(blank)

(blank)

(blank) or m

The following elements of code are placed in operation subfields: machine or
pseudo operation mnemonics, and mnemonic modifiers. Address subfields may
contain numbers, symbols, a single asterisk or a combination of two of the fore­
going, a double asterisk or remarks.

1-3

MACHINE ~
INSTRUCTION .~

~';i; §
~ d)

$
HLT 00 Unconditional Stop SBAQ 33 Subtract from AQ

SJ1-6 Selective Jump 1-6 RAD 34 Replace Add

RTJ Return Jump SSA 35 Selectively Set A

UJP 01 Unconditional Jump SCA 36 Selectively Complement A

IJI 02 Index Jump, Incremental LPA 37 Logical Product A

IJD Index Jump, Decremental STA 40 Store A

AZJ 03 Compare A with Zero STQ 41 Store Q

AQJ Compare A with Q SACH 42 Store A, Character

ASE 04 Skip if (A) = Y SQCH 43 Store Q, Character

QSE Skip if (Q) = y SWA 44 Store Word Address

ISE Skip if (Bb) = y STAQ 45 Store AQ

ASG 05 Skip if (A) ~ Y SCHA 46 Store Character Address

QSG Skip if (Q) ~ y STI 47 Store Index

ISG Skip if (Bb) ~ Y MUA 50 Multiply A

MEQ 06 Masked Equality Search DVA 51 Divide A

MTH 07 Masked Threshold Search CPR 52 Compare

SSH 10 Storage Shift 53 Inter-Register Transfers, 24 Bit

ISI Index Skip, Incremental LDl 54 Load Index

ISD Index Skip, Decremental 55 Inter-Register Transfers, 48 Bit

ECHA 11 Enter A, Character Address MUAQ 56 Multiply AQ

SHA 12 Shift A DVAQ 57 Divide AQ

SHQ Shift Q FAD 60 Floating Point Add

SHAQ 13 Shift AQ FSB 61 Floating Point Subtract

SCAQ Scale AQ FMU 62 Floating Point Multiply

ENA 14 Enter A FDV 63 Floating Point Divide

ENQ Enter Q LDE 64 Load E

ENI Enter Index STE 65 Store E

INA 15 Increase A ADE 66 Add to (E)

INQ Increase Q SBE 67 Subtract from (E)

INI Increase Index SFE 70 Shift E

XOA 16 Exclusive OR of A and y EZJ E Zero Jump

X~ Exclusive OR of Q and y EOJ E Overflow Jump

XOI Exclusive OR of Index and y SET Set D Register

ANA 17 AND of A and y SRCE 71 Search Character Equality

ANQ AND of Q and y SRCN Search Character Inequality

ANI AND of Index and y MOVE 72 Move Data

LDA 20 Load A INPC 73 Input, Character Block to Storage

LDQ 21 Load Q INAC Input, Character to A

LACH 22 Load A, Character INPW 74 Input, Word Block to Storage

LQCH 23 Load Q, Character INAW Input, Word to A

LCA 24 Load Complement A OUTC 75 CAltput, Character Block from Storage

LDAQ 25 Load AQ OTAC CAltput, Character from A

LCAQ 26 Load Complement AQ OUTW 76 CAltput, Word Block from Storage

LDL 27 Load A Logical OTAW CAltput, Word from A

ADA 30 Add to A 77 Sense, Select, Interrupt and Control

SBA 31 Subtract from A Functions

ADAQ 32 Add to AQ

1-4

PSEUDO
INSTRUCTION
MNEMONICS

MODIFIERS

BCD Insert B CD characters

BSS Reserve blocks of storage

DEC Insert single precision decimal constants

DECD Insert double precision decimal constants

END Specify the end of a program

EQU Equate an undefined symbol to a defined
word address symbol

LIST Resume output listing

NOLIST Suppress output listing

OCT Insert octal constants

ORGR Set location counter

REM Insert remarks on the output listing

EJECT Eject page of output listing

SPACE Space output listing

Nap No operation

IDENT Program identification

EQ Equal

NE Not equal

GE Greater than or equal

LT Less than

I Indirect addressing

S Extend sign of operand to 24 bits

INT Interrupt on completion

NC No internal conversion

B Backward read or write

H Half assembly or disassembly (12-24)

N No assembly or disassembly

C Assign character address

A Internal BCD alteration

1-5

NUMBERS

SYMBOLS

A decimal number is represented by decimal digits only in an address subfield.
An octal number is represented by octal digits suffixed by a B in the address
subfield.

Examples

12370B

-12370B

2229

-2222

Result

12370

65407

04265

73512

A symbol is a combination of alphabetic (A to Z), numeric (1 to 9), or special
(a period) characters up to six in length. Each symbol must begin with a letter
of the alphabet. Imbedded blanks are illegal.

Examples:

Legal

A12345

ABLE

BAKER

B123.3

illegal

123456

.23456

B 1. 2

ASTERISK If the keypunch character, *, appears in column one of the card, the entire card
is treated as remarks. ill an address subfield, an asterisk implies self-reference.

EXPRESSION An expression is a number, a symbol, an asterisk, or two of these joined by a
plus or minus sign. If S represents a symbol and N represents a number, the
following combinations are permitted:

S±S N±N *±*
S±N N±*

S±*

1-6

DOUBLE
ASTERISK

REMARKS

WORD AND
CHARACTER
ADDRESSING

When two consecutive asterisk keypunch characters, ** are used, one bits are
inserted into a given size subfield.

Remarks are any combination of keypunch characters.

Address subfields may contain any legal code element which results in either a
character or word address. A 24-bit machine word is referenced by a 15-bit
word address. A 6-bit portion (character) of a machine word is referenced by a
17-bit address; the two extra bits indicate character position.

Character is a 6-bit configuration; each machine word contains four characters.

Character position is the place within a word occupied by a character; a character
may occupy position 0, 1, 2 or 3 as follows:

Bits 23 18 17 12 11 6 5 0

Character 0 1 2 3
Position

Word address is a coding element for address subfields which results in a 15-bit
value. The address represents the location of a 24-bit machine word or word
data.

Character address is a coding element for address subfields which results in a
17-bit value. The left 15 bits represent the location of the word containing the
character. The other 2 bits. represent the position of the character within the
word. The 17 -bit values indicate the position of the character as follows:

xxxxxxxxxxxxxxxOO

xxxxxxxxxxxxxxxO 1

xxxxxxxxxxxxxxx10

XXXXXXXXXXXXXXX1

character position 0

character position 1

character position 2

character position 3

The following are binary address of characters:

. 00000000100000000

00000000100000001

00000000100000010

00000000100000011

1-7

WORD
ADDRESS
REPRE­
SENTATION

In the first example, the left 15 bits indicate location 00100
8

, The last 2 bits in­
dicate position zero.

word 00100
8

LCharacter position 0

The next examples indicate location 00100
8

, character positions 1, 2 and 3.

l L LCharacter position 3

character po sition 2

character position 1

Word Instruction Machine instructions which require word addresses are indicated
by m, n or y subfields in Table 1. Word addresses are evaluated modulo 215.

Character Instruction Machine instructions which require character addresses
are indicated by an r or s subfield in Table 1. Character addresses are
evaluated modulo 217.

Word addresses (15-bit values) formed in m or n subfields result in the
following address types:

coding elements address t~]~e

decimal octal

octal octal

symbol relati ve or octal

expression relati ve or octal

* relati ve or octal

** special

Examples:

LDA m instruction

coding elements address tYQe

LDA 1908 relative

LDA 1772B octal

LDA ABLE relative

LDA ABLE+1772B relative

LDA * relative

LDA ** special

1-8

DECIMAL
ADDRESS

OCTAL
ADDRESS

SPECIAL

A decimal number is converted to an octal number right
justified in a 15-bit field with sign extended throughout the field.

LDA

LDA

LDA

m

1299

02423

instruction

relative address

result in octal

.An octal number is right justified in a 15-bit field with sign
extended throughout the 15 -bit field.

LDA

LDA

LDA

m

1277B

01277

instruction

octal address

result in octal

ADDRESS When an asterisk appears in a word address subfield, the 15-bit
current value of the location counter is assigned.

R'ELATIVE
ADDRESS

LDA

LDA

LDA

m

*

00100

instruction

relative address
(value of location counter is 00100

8
)

result in octal

When a double asterisk appears in a word address subfield, a 15-bit
value of all one hits is assigned.

LDA

LDA

LDA

m

**
77777

instruction

special address

result in octal

A symbol in an m or n address subfield must be defined elsewhere as
a location symbol. The 15-bit value assigned to that location symbol
is used as the value of the symbol when it appears in an address field.

LDA

LDA

LDA

m

ABLE

01277

instruction

symbolic tag
(ABLE previously assigned value 01277

8
)

result in octal

If the symbol were previously assigned a 17-bit value, the right 2 bits are lost;
an error diagnostic is given if the 2 bits are non-zero, and the remaining 15-bit
value is assigned to this symbol.

J-9

CHARACTER
ADDRESS
REPRE­
SENTATION

Coding

ABLE BSS,C 5B

LDA ABLE

The ABLE value assigned is 00000000100000010 or 001008 ,
character position 2. The result is:

T LDA 00100

(error code)

An expression results in the addition or subtraction of two 15-bit values. In the
following examples, ABLE is assigned the value 01234

8
and the current value

of the location counter is 00111
8

,

Examples:
LDA m instruction

Coding Result

LDA ABLE+12 LDA 01250
8

LDA ABLE-12 LDA 01220
8

LDA ABLE+* LDA 01345
8

LDA ABLE-* LDA 01123
8

LDA ABLE+12B LDA 01246
8

LDA ABLE-12B LDA 012228

LDA *+* LDA 002228

LDA * - * LDA 000008
LDA 129-12 LDA 00165

8

Character addresses (17 -bit values) are formed for elements of code placed in r or s
subfields or in address subfields of instructions with a C modifier. The coding ele­
ments result in the following address types; character address values are evaluated
module 217.

coding elements

symbol

expression

*
**

17
decimal value 2

octal value 21 7

1-10

address type

relative

relative

relative

special

SPECIAL
ADDRESS

RELATIVE
ADDRESS

Examples:

LACH r instruction

coding elements address type

LACH ABLE relative

LACH ABLE+ 1772B relative

LACH *

LACH **

BSS, C m

BSS,C ABLE

special

special

instruction

relative

An asterisk implies the 17 -bit current value of the location counter. If the
instruction containing an * in the address subfield is assigned to a full word,
character position zero is implied. If it is assigned to a partial word
(character), character position 0, 1, 2 or 3 may be implied (EQU, C pseudo
instruction only).

The code element, **, results in a 17 -bit value of all ones.

LACH r

LACH **
LACH 77777

position 3

instruction

special address

result

A symbol in an r or s subfield instruction with a C modifier must be defined
elsewhere as a location symbol. The 17 -bit value assigned to that location
symbol is assigned to this symbol also.

LACH r

LACH ABLE

instruction

relative address
(ABLE is 000000000000001 10

2
or 00001

8
, character position 2)

result LACH 000018
position 2

If the symbol were previously assigned a 15-bit value, 2 zero bits are added to
the right resulting in a 17 -bit value which is assigned to this symbol.

Coding

ABLE BSS ARRAY 1

LACH ABLE

The value assigned to ABLE is 00100
8

. The symbol ABLE in the address sub­
field of the LACH instruction is converted to 001008 , character position O. Char­
acter position 0 of that word is referenced by 00400

8
.

1-11

WORD TO
CHARACTER
ADDRESS
CONVERSION

LACH r

LACH *

instruction

special address
(current 17 -bit value of location counter
is 000000001000000002)

result LACH 00100
8 position 0

An expression in an r or s subfield results in the addition or subtraction of
two 17-bit values. ill the following examples, ABLE is assigned the value 01234 ,
position 1; the 17-bit current value of the location counter is 00014

8
, position 1. 8

Result
Coding {value of A} Position

A EQU,C ABLE+12 01237
8

1

A EQU,C ABLE=12 01231
8

1

A EQU,C ABLE-* 01220
8

0

A EQU,C ABLE+12B 01235
8

3

A EQU,C ABLE-12B 01231
8

3

A EQU,C *+12B 00016
8

3

A pseudo or machine instruction which requires a character address may contain
either a word or character address. A word address is converted to a character
address according to the following formula:

word address times 4 = character address

00123
8

times 4 = 0005148

ABLE LDA ARRAY 1

LACH ABLE

The load instruction is assigned to location 00100
8

. The symbolic address ABLE
of the LACH instruction is converted to a character address, 00400

8
, character

position O.

1-12

CHARACTER
TO WORD
ADDRESS
CONVERSION

OTHER
ADDRESS
REPRE­
SENTATION

INDEX
REGISTER

A pseudo or machine instruction which requires a word address may contain
either a word or character address. A character address is converted to a
word address by the assembler according to the following formula:

octal character address + 4 = octal word address

000514S +- 4 = 00123 S

ABLE BSS, C 10

LDA ABLE

The ABLE address is 00100
S

' character position O. The symbolic address
ABLE of the LDA instruction is converted to word address 00100

S
. If the original

character address contains ones in the last 2 bit positions before conversion, a
T error will be printed on the output listing.

Other subfields (b, v, ch, x, i, c and 1) may be represented by legal address
coding.

An index register designation is formed for the numbers 1,2 or 3, a double asterisk,
an expression, or a symbol equated to a numeral by the EQU instruction in the b
subfield.

LDA m, b typical instruction

In the following examples, ABLE is assigned value 00100
S

and SYMS is equated
elsewhere in the program to number 1.

Coding Re sul t (octal)

LDA ABLE, 1

LDA ABLE,SYMS

LDA ABLE, **
LDA ABLE,SYMS+l

1-13

The b subfield may specify indexing or direct usage of the index register; in
either case, evaluation must result in a value of 1, 2, or 3.

TIA b typical instruction

In the following example, B1 is equated to value 1 elsewhere in the program.

Coding Re sult (octal)

TIA Bl

REGISTER FILE A location in the register file is formed for a code element in the v subfield.

CHANNEL
NUMBER

Any coding element resulting in 00
8

through 778 may appear in the subfield.

TMA v typical instruction

In the following examples, ABLE is equated to 00118 elsewhere in the program.

Coding Result (octal)

TMA ABLE 11

TMA 77B 77

TMA ** 77

TMA ABLE+22B 33

A channel number (Input/Output) is formed for a code element in the ch sub­
field. The ch subfield may contain one number, 0 through 7, or any legal
coding element which results in 0 through 7.

INAC ch typical instruction

In the following examples, CHAN2 is equated to the value 2 elsewhere in the
program.

INAC CHAN2

INAC 7B

INAC **

1-14

word 1

2

3

word 1

2

3

word 1

2

3

Results (octal)

FUNCTIONAL
CODE OR
LOGICAL MASK

Coding

INAC CHAN2+2B word 1

2

3

Re sul ts (octal)

A function code or logical mask is formed for an element of code in the x
subfield. The resultant value must be equivalent to a 12-bit number.

CON x,ch typical instruction

In the following exa.-mples, LOGMSK is equated to OllIS elsewhere in the program.

Coding Results {octal)

CON LOGMSK,2 (\111
v.!..!..!.

CON LOGMSK+22,2 0133

CON 22B,2 0022

CON **,2 7777

INTERVAL An interval of 1 to S is formed for an element of code in the i subfield which
results in an octal value 0 to 7. A code element of S results in octal value 0
in the machine instruction.

MEQ m, i typical instruction

In the following examples, INTRVL is equated to 1 elsewhere in the program;
ABLE to 00100

S
•

Coding Results (octal)

MEQ ABLE,INTRVL

MEQ ABLE,INTRVL+1

MEQ ABLE,2

MEQ ABLE,S

MEQ ABLE,**

CHARACTER The 6-bit character to be searched for is formed for an element of code in
the c subfield.

SRCE c,r,s typical instruction

In the following examples, A is defined elsewhere in the program as the BCD
character A or octal value 21; ABLE and BAKER are defined as 00200 and
00100.

1-15

Coding Result (octal)

SRCE A,ABLE,BAKER word 1

2

3

SRCE 21B,ABLE,BAKER word 1

2

3

SRCE A+21B,ABLE,BAKERword1

2

3

LENGTH The length of a character field, 1 to 128, to be moved in placed in the ~
subfield. A field length coded as 128 is interpreted as zero, which directs
the computer to move 128 characters.

MOVE /,r,s typical instruction

In the following examples, ABLE is equated to 100
8

elsewhere in the program;
BAKER to 00200

8
.

Coding

MOVE, ABLE, BAKER, BAKER+100B

MOVE 128, BAKER, BAKER+128

MOVE 27B, BAKER, B'AKER+27B

MOVE **, BAKER, BAKER+ 100B

1-16

Results (octal)

word 1 72000300

2 20000200

3

word 1

2

3

word 1

2

3

word 1

2

3

MACHINE
OPERA TION FIELD I ADDRESS I INSTRUCTIONS FIELD

INSTRUCTION
i

00 HLT m Unconditional stop; read next instruction
from location m

SJl m Jump if key 1 is set

SJ2 m Jump if key 2 is set

SJ3 m Jump if key 3 is set

SJ4 m Jump if key 4 is set

SJ5 m Jump if key 5 is set

SJ6 m Jump if key 6 is set

RTJ m Return jump

01 UJP,I m,b Unconditional jump

02 IJI m,b Index jump; increment index

IJD m,b Index jump; decrement index

03 AZJ,EQ m

Compare A with ,ero; ~
jump if (A) = 0

NE jump if (A) f: 0

GE
jump if (A) ~ 0

LT jump if (A) < 0 \

AQJ,EQ m jump if (A) = (Q) (

NE

~
jump if (A) f: (Q)

GE Compare A with Q; jump if (A) ~ (Q)

LT jump if (A) < (Q)

04 ASE,S Y Skip next instruction, if (A) = Y

QSE,S Y Skip next instruction, if (Q) = Y

ISE y,b Skip next instruction, if (Bb) = Y

05 ASG,S Y Skip next instruction, if (A) ~ Y

QSG,S Y Skip next instruction, if(Q)~y

ISG y,b Skip next instruction, if (Bb)~ Y

06 MEQ m,i Masked equality search

07 MTH m,i Masked threshold search

10 lSI y,b Index skip; increment index

ISD y,b Index skip; decrement index

SSH m Storage shift

11 ECHA,S z Enter A with 17 -bit character address

12 SHA y,b Shift A

SHQ y,b Shift Q

13 SHAQ y,b Shift AQ

SCAQ y,b Scale AQ

14 ENA,S Y Enter A

ENI y,b Enter index

ENQ,S y Enter Q

15 INA,S Y fucrease A

INI y,b Increase index

INQ,S y fucrease Q

16 XOA,S Y Exclusive OR y and (A)

XOQ,S y Exclw,ive OR yand (Q)

XOI y,b Exclusive OR y and (B
b

)

17 ANA,S y Logical product (AND) of y and (A)

ANQ,S Y Logical product (AND) of y and (Q)

ANI y,b Logical product (AND) of y and (B
b

)

1-17

MACHINE ADDRESS
INSTRUCTIONS OPERA TION FIELD

FIELD
INSTRUCTION

(cont'd)

20 LDA,I m,b Load A

21 LDQ,I m,b LoadQ

22 LACH r, 1 Load A character

23 LQCH r,2 Load Q character

24 LCA,I m,b Load A complement

25 LDAQ,I m,b Load AQ (double precision)

26 LCAQ, I m,b Load AQ complement (double precision)

27 LDL, J m,b Load logical

30 ADA,I m,b Add to A

31 SBA,I m,b Subtract from A

32 ADAQ,I m,b Add to AQ

33 SBAQ, I m,b Subtract from AQ

34 RAD,I m,b Replace add

35 SSA,I m,b Selectively set A

36 SCA,I m,b Selectively complement A

37 LPA,I m,b Logical product with A

40 STA,I m,b store A

4;1 STQ,I m,b Store Q

42 SACH r,2 Store character froIfl A

43 SQCH r, 1 Store character from Q

44 SWA,I m,b store 15-bit word address from A

45 STAQ,I m,b Store AQ

46 SCHA, I m,b Store 17 -bit character address from A

47 STI,I m,b Store index

50 MUA,I m,b Multiply A

51 DVA,I m,b Divide AQ (48 by 24)

52 CPR,I m,b Within limits test

53 TIA b Transmit (Bb) to A

TAl b Transmit (A) to Bb

TMA v Transmit (high speed memory) to A

TAM v Transmit (A) to high speed memory

TMQ v Transmit (high speed memory) to Q

TQM v Transmit (Q) to high speed memory

TMI v,b Transmit (high speed memory) to Bb

TIM v,b Transmit (B
b

) to high speed memory

AQA Transmit (A) + (Q) to A

AlA b Transmit (A) + (Bb) to A

IAI b Transmit (Bb) + (A) to Bb

54 LDI,I m,b Load index

55 EUA Transmit (E upper) to A

ELQ Transmit (E lower) to Q

AEU Transmit (A) to E upper

QEL Transmit (Q) to E lower

EAQ Transmit (E upper) to A and (E lower) to Q

AQE Transmit (AQ) to E

1-18

MACHINE
!NSTRUCTIONS
(cant'd)

OPERA TION FIELD I

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77.0

77.1

77.20

77.2

77.3

77.4

77.50

77.51

77.52

77.53

77.6

77.~0

77.71

77.72

77.73

77.74

77.75

77.76

77.77

MUAQ,I

DVAQ, I

FAD,I

FSB,I

FMU,I

FDV,I

LDE

STE

ADE

SBE

SFE

EZJ,EQ

LT

EOJ

SET

SRCE, INT

SRCN, INT

MOVE, INT

INPC, INT, B, H

INAC,INT

INPW, INT, B, N

INAW,INT

OUTC, INT, B, H

OTAC, INT

OUTW, INT, B, N

OTAW, INT

CON

SEL

COpy

EXS

INS

INTS

INCL

IOCL

SSIM

SCIM

PAUS

SLS

SFPF

SBCD

DINT

EINT

CTI

CTO

UCS

ADDRESS
FIELD

m,b

m,b

m,b

m,b

m,b

m,b

r,l

r,2

r,3

r,3

y,b

m

m

y

c,r,s

c,r,s

l,r,s

ch,r,s

ch

ch,m,n

ch

ch,r,s

ch

ch,m,n

ch

x,ch

x,ch

x,ch x=O

x,ch x-p 0

x,ch

x,ch

x

x

x

x

x

1-19

INSTRUCTION

Multiply AQE (96 by 48)

Divide AQE (48 by 48)

Floating add to AQ

Floating subtract from AQ

Floating multiply AQ

Floating divide AQ

Load E

Store E

Add to E

Subtract from E

Shift E

Compare E with zero; jump if E = 0

Compare E with zero; jump if E < 0

Jump to m on E overflow

Set D to value of y

Search character equality

Search character inequality

Move y characters from m
l

to m
2

Input character block to memory

Input character to A

Input word block to memory

Input word to A

Output character block from memory

Output character from A

Output word block from memory

Output word from A

Connect

Select

Copy status

External sense

Internal sense

Interrupt sense

Interrupt clear

I/O clear

Selective set interrupt mask

Selective clear interrupt mask

Pause

Selective stop

Set floating point fault

Set BCD fault

Disable interrupt control

Enable interrupt control

Console typewriter in

Console typewriter out

Unconditional stop

ASSEMBLY
INPUT

IDENT

PROGRAM ASSEMBLY 2

Assembly input data is on cards or card images containing octal, mnemonic, or
pseudo instructions. A subprogram may begin with an IDENT instruction card
and terminate with an END card. Input decks for subsequent use with a monitor
system on larger equipment configurations also require IDENT and END cards.

m

IDE NT must be the first instruction of each subprogram; if it appears again any­
where else before an END instruction, -it will be flagged with an 0 error and
ignored.

The address field must contain a legal symbol. This symbol is the name of the
subprogram, and will appear with the length of the subprogram in the first card
(IDe) of the binary object deck. A symbol in the location field is not assigned a
value and should not be referred to in subsequent program instructions.

END m

PSEUDO
INSTRUCTIONS

OR6R

END, which signals termination of a subprogram, produces a TRA card as the
last card in .the.binary object deck. A symbol in the address field will appear as
the symbolic transfer address on the TRA card. If a symbol is in the location
field, it is not assigned a value and should not be referred to in subsequent pro­
gram instructions.

The follOwing pseudo instructions assign locations, define data, reserve sto:r:age,
simulate machine instructions with octal codes.

m

ORGR designates the value in the address field as the beginning location for sub­
sequent instructions. A symbol in the address field must be previously defined
elsewhere in the program as a location symbol.

2-J

DATA
DEFINITION

OCT

Example:

START

ORGR

LDA

00100

ABLE

LDA BAKER

In the above example, START is assigned value 00100 and START+1 is assigned
to 00101.

Constant data is assembled into a program with data definition pseudo instructions.
Binary coded decimal, octal, or decimal constants may be inserted into machine
words with OCT: BCD: DEC or DECD. Character positions (6 bits of a machine
word) may be filled with constants by the BCD, C pseudo instruction.

m

OCT stores an octal constant into a machine word. Although not required, a
constant may be preceded by a plus or minus sign; an unsigned constant is assumed
positive. A maximum of 8 octal digits may be contained in an octal constant. If
there are less than 8 digits, the constant is right justified in the word. A location
symbol defines a 15-bit word address:

Examples:

OCT 77777777

OCT +1

OCT -57

OCT 2040

results

word 1 77777777
~------------------~

2 00000001
~------------------~

3 77777720
~------------------~

4 00002040

DEC d

DEC converts a signed or unsigned fixed point decimal constant to binary and
stores it in a machine word.

Decimal Integer is a sign followed by 1 to 7 decimal digits. If the sign is
omitted, the integer is assumed positive. The decimal integer may be followed
by a decimal or a binary scaling factor or both in either order.

2-2

Decimal Scaling Factor consists of D±d. D indicates decimal scaling; d may'
not exceed two decimal digits. The largest practical decimal scaling factor is
14.

Binary Scaling Factor consists of B±b. B indicates binary scaling; b consists
of up to two decimal digits not greater in magnitude than 23.

23 The magnitude of the constant after scaling must be less than 2 . The conver-
sion is performed in three steps:

1.

2.

3.

The decimal integer is converted to a binary integer which must be
less than or equal to 223_1.

The binary integer is multiplied or divided by 10d (d is decimal
47 scaling factor). The magnitude of the result must be less than 2

If the decimal scaling factor is negative, a 47 -bit fraction or mixed
fraction is formed.

The result is shifted the number of bits specified by the binary scaling
factor. A negative factor produces a right shift; a positive scale factor
a left shift. If non-zero bits are lost fro111 the high order 24 bits of
the result, an error is flagged. Low order bits of the intermediate
result may be lost and not flagged.

Examples:

1 decimal integer

+2 decimal integer

-38 decimal integer

1D5 decimal integer, decimal scale factor

73D-2 decimal integer, decimal scale factor

-6D+ 1B4 decimal integer, decimal and binary scale factors

200B-7 decimal integer, binary scale factor

36B+2D1 decimal integer, binary and decimal scale factors

DECO d

DECD converts a signed or unsigned double precision decimal constant to binary
and stores it in two consecutive machine words. Fixed point or floating point
constants may be specified.

Floating point constant may be a. signed or unsigned decimal integer up to 14
digits. A decimal point, which may appear anywhere within the integer, identifies
it as a floating point constant. A decimal scale factor is permitted; the result308
after scaling must not exceed the capacity of the hardware (approximately 10±).
A binary scale factor is not permitted.

Fixed point constant format is identical to that of the DE C single precision
constants; however, magnitudes may be larger. ~ to 14 decimal digits may be
specified, expressing a value of not more than 24. Decimal and binary scale
factors may be used as in the DEC pseudo operation. Low order bits are not

2-3

lost; the signed 48-bit binary result is stored into two consecutive computer
words.

BCD converts keypunch characters to standard BCD code and stores them in con­
secutive 24-bit machine words. The address field consists of a decimal number
n, followed by a comma and the characters, including blanks; the character
string ends before column 73.

The result is n computer words each containing four BCD characters. .AiJ.y­
thing after 4n characters is treated as remarks. If the value of n exceeds the
number of punched characters on the card, blanks are filled in for the excess.
The location field may be blank or contain a symbol which is converted to a 15-bit
address.

Example: Octal contents of machine words:

BCD 2,ABCD word 1211-_2_1 __ 2_2 __ 2_3 ___ 2_4---1

. blanks

BCD 12,ABCDEFGHIJKLMNOPQRSTUVWXYZ=-+ +0 .)- -O$*(blank)

/,(12345678

Note 1: The characters in the above
line comprise the complete
BCD character set. Normally,
the code woold be cootained on
one line with no spaces be­
tween the characters except
for specified blanks.

Note 2: If this word instruction
follows any instruction
which left a partial word,
the balance of the partial
word is unused.

2-4

word 1

2

3

4

5

6

7

8

9

10

11

12

A
21
E
25

I
31
M
44

Q
50

U
64

y
70

+
20
-
40

b
60

1
01

5
05

B
22
F
26

J
41
N
45

R
51

V
65

Z
71

+0
32
-0
52

/
61

2
02

6
06

C
23
G
27

K
42
0
46

S
62

W
66

=
13

33
$
53

,
73

3
03

7
07

D
24
H
30

L
43
P
47

T
63

X
67

-
14

)
34

*
54

(
74

4
04

8
10

BCD,C

BCD, C converts keypunch characters to standard BCD code and stores them in
consecutive 6-bit portions of consecutive 24-bit machine words. This instruction
is similar to BCD except that a character is assigned to the next available 6-bit
portion of a machine word. The address field contains n, followed by a comma,
and n standard keypunch characters; the character string ends before column
73. If the value of n exceeds the number of punched characters on the card,
blanks are filled in for the excess. The location field may be blank or contain
a symbol which is converted to a 17 -bit character address.

Example:

BCD,C 4,ABCD

If this character instruction follows any instruction which left a
partial word, the filling of constants begi.-ns at the next unassigned
character pOSition- in the partial word.

Example:

Intersperse constants with machine instructions.

Coding

CONI

CON2

CON3

CON4

CON5

BCD

LDA

UJP

BCD,C

BCD,C

BCD,C

BCD,C

LDA

2-5

4,ABCDABCDABCDABCD

2200B

13B

I,A

2,BC

5,DEFGH

1,A

1500B

Re sults (octal
and mnemonic)

21 22 23 24

21 22 23 24

21 22 23 24

21 22 23 24

LDA 02200

UJP 00013

21 22 23 24

25 26 27 30

21 00 00 00

LDA 01500

AREA
RESERVATION The following pseudo instructions, BSS and BSS, C, reserve a block of data storage

as words or as characters. The resultant value of the address field must be
positive and non-relative.

BSS m

BSS reserves a block of consecutive, 24-bit machine words specified by m. The
address field contains any element of code which results in a positive integer. If
a symbol is used, it must be defined previously in the program. If m is zero,
the next storage assignment is forced to the beginning of a new word. Word
locations within the block may be established by address arithmetic or indexing.
The location field may be blank or contain a symbol which defines a 15-bit word
address representing the first location of the block.

Example: Reserve a block of 12 words.

ABLE BSS 12

ABLE

ABLE+1

ABLE+11

12
words

If the instruction preceding ABLE were assigned to location 777
8

, the 12-word

block would be assigned to locations 1000
8

through 1013
8

, The second word
within the block could be reached by the coding element ABLE+1 or by indexing.

BSS,C m

BSS, C reserves a block of character locations, 6-bit word portions; the address
field contains any element of code which results in a positive integer. If a symbol
is used, it must be defined previously in the program. m specifies the number
of consecutive character locations (4 m words) to be reserved within the block.
One location symbol may be assigned to the block; it defines a 17-bit character
address which refers to the first character position of the block. Character
locations within the block may be reached by address arithmetic or indexing.

2-6

Example: Reserve a block of 25 characters.

ABLE BSS, C 25

ABLE

ABLE+
1 __ r-

24 ABLE+

6 bits

1
25

characters

1
If the instruction preceding ABLE were assigned to word location 7778 (a 15-bit
address), the 25-character block would be assigned to word locations 10008 to
10068 which correspond to character locations 40008 to 40308, The second
character could be reached by the coding element, ABLE+1, and the last character
could be reached by the code element, ABLE+24. If the instruction preceding
ABLE were terminated before the last character location within a word (a 17 -bit
address), the 25-character block would be assigned to the next available character
location (17 -bit address).

Example: Reserve a 25-character block immediately following a 5'-character
block.

CAIN BSS, C 5

ABLE BSS, C 25

CAIN

Reserve an 8-character block in the character position 0 of a word following
a 5-character block.

CAIN BSS, C 5

BSS o CAIN

ABLE BSS, C 8

ABLE

2-7

EQUATE

EQU

The pseudo instructions EQU and EQU, C equate symbols to other symbols or to
values.

m

EQU equates a location symbol to an address field symbol or value. Address field
symbols must be previously defined (used as location symbols earlier in the pro­
gram). The location symbol defines a 15-bit word address.

Example: Equate a symbol to a previously defined symbol.

ABLE BSS 10

TIM EQU ABLE+4

LDA TIM

If ABLE were assigned to 010008' TIM would be assigned 010048,
If an instruction subsequent to EQU addresses TIM, 010048 will
be assigned.

Equate a symbol to a value.

TOT

ELDER

EQU

EQU

7B

99

RAD TOT

ADA ELDER

The symbol TOT is assigned the value 000078' any place subsequent
to the EQU instruction, TOT will be assigned 000078, The symbol
ELDER is assigned the value 001438' Any subsequent use of ELDER
in the address field results in the value 001438 being assigned.

EQU,C r

EQU, C equates a location symbol to an address field symbol or value. Address
field symbols must be previously defined (used as location symbols earlier in the
program). The location symbol defines a 17 -bit character address.

2-8

Examples:

Equate a symbol to a character address.

ARRAY BSS,C 10

CHAR5 EQU,C ARRAY+5

LACH CHAR5

If A.RRA,~ we::~~~signed.~? O~OO~§' p~sit.ion ?' C~5 wou~~ be
asslgnea to U.1UU.1S' pOSItIOn.1. 11 an mStruCtIOn sUDsequent to
EQU, C addresses CHAR5, 01001S' position 1 will be assigned.

Equate a symbol to a wprd address.

ARRAY BSS 10

CHAR5 EQU,C ARRAY+5

LACH CHAR5

If ARRAY were assigned to 01000S' CHAR5 would be assigned to
0100~. position O. If an instruction subsequent to EQU, C addresses
CHAR'5, 01005S' position 0 will be assigned.

Equate a symbol to a value.

ABLE

BAKER

EQU,C

EQU,C

LACH

LACH

777B

009

ABLE

BAKER

The symbol ABLE is assigned 00177, position 3. The symbol
BAKER is assigned 00002, position 1.

2-9

ASSEMBLY
OUTPUT

OUTPUT
LISTING

ERROR
CODES

LOCATION
FIELD
ERROR

Output from the assembly consists of two types:

Output listing

Binary output for subsequent loading and execution of the assembled
program

Binary output is a machine language program on cards or card images in relocat­
able binary format that may be loaded into any portion of storage at run time.

The listing contains error codes, machine locations, the assembled contents of
the machine location number, and the input coded machine, octal or pseudo
instructions (location, operation, address and comments fields).

The following error codes may appear in the leftmost columns of the assembly
listing:

A An illegal character or coding element in the address field.

D The same symbol is used in more than one location field term. Only
the first symbol is recognized.

F Symbol table is full. No more location field symbols will be recognized.

L A symbol appears in the location field when not permitted, a symbol is
missing in the location field when one is required, or an illegal location
symbol appears.

M A modifier appears in the operation field when not permitted, a mod­
ifier is missing in the operation field when one is required, or an
illegal modifier appears in the operation field.

o illegal operation code. Zeros are substituted for the operation code.

U Undefined symbol. The assembler assigns the symbol to a region
following the last program entry.

T A character symbol was used in an address subfield requiring a word
symbol. Significant bits are lost.

The EQU and EQU, C pseudo instructions must have a symbol in the location
field, otherwise the instruction is assigned an error code L. The following
pseudo instructions may have a location symbol; an error code L si gnifies an
illegal symbol:

2-10

ADDED
LISTINGS

LISTING
FORMAT

BSS

BSS,C

ORGR

BCD

BCD,C

OCT

DEC

DEeD

The program identification pseudo instructions (IDENT and END), the assembly
listing control pseudo instructions (EJECT, SPACE, LIST, NOLIST and REM),
and the pseudo instruction ORGR may have a valid symbol in the location field.
The assembler does not define a symbol placed in the location field of these in­
structions because they do not use storage space; that symbol is not assigned a
value. Subsequent instructions which refer to the symbol will be flagged with a
U error (undefined symbol). A symbol placed in the location field of one of
these instructions may be in the location field of other instructions and a D
error (doubly defined symbol) will not occur.

The assembler produces a list of undefined symbols, doubly defined symbols, the
length of the subprogram, and a count of the output lines which contain error
flags, and an indication of the presence of instructions in the code which may be
trapped.

Listable output format is as follows:

Column

1 carriage control

2-9 error codes

10 blank

11-16 octal location

17 blank

18-19 octal contents of operation field

20 blank

21 octal contents of field

22 blank

23-27 octal contents of address field

28 blank

29-108 source card

2-JJ

LISTING
CONTROL

RELOCATABLE
BINARY CARD
OUTPUT

The assembly listing may be controlled with EJECT, SPACE, NOLIST, LIST
and REM pseudo instructions. If a symbol appears in the location field of one of
the se instructions, that location symbol is not assigned a value and should not be
referred to in subsequent program instructions.

EJECT moves the paper to the top of the next page. The next instruction will
be printed as the top line on the next page.

SPACE spaces the output listing the number of lines specified in the address
field. If the spacing would cause an overflow at the bottom of the page,
the page is ejected to the top of the next page only.

NO LIST suppresses the printing of assembly lines until a LIST pseudo instruc­
tion is encountered. However, lines with error codes will be printed
and the NOLIST line will be printed.

LIST resumes printing. LIST is recognized by the assembler only if a
NOLIST has been encountered previously.

REM produces a printed line containing remarks only. All columns, except
9 to 13, from the assembly coding sheet are printed as remarks.

The relocatable binary card deck produced by the assembler may be used by the
relocatable loader or by a simple loader. The deck contains elements that enable
the loader to relocate coded information. The deck consists of the following card
types which are usually produced in the order listed:

IDC Program Identification Card

specifies the program and its length.

E PT Program Entry Point Card

contains the entry point, if a symbol appeared in the END
card.

RIF Relocatable Information Card

contains program information to be loaded into storage.

TRA Program Transfer Card

indicates the end of the program and contains the transfer
point.

2-l2

BINARY CARD
DESCRIPTION

(TRA

(binary program I-

(EPT
/ IDC

All binary cards contain a 7 and 9 punch in column 1. The first two columns
identify the type of card and provide a means of checking its contents.

12

II

o

2

3 3

~ 4

5

6

7

8

~

Computer
Card Word Bit

Mnemonic Rows Column Position Purpose

w 12,11,0-3 1 23-18 Word Count

a 4,5,6 1 17-15 }
Address, sequence
number, or program

12,11,0-9 2 11-0 length

b 7,9 1 14 and 7-9 punch
12

c 12,11,0-9 3 23-12 } 24-bit checksum
12,11,0-9 4 11-0

8 1 1 Ignore checksum

\
w

- A C c f
A

-
B
~

-
~ I B

\ ~ 8.9\ ~-------------------COLUMNS--------------------------~~~·
2 3 4

2-13

IDC Identifies the subprogram which follows and provides subprogram name.

Card Content:

Columns

1-2

3-4

5-8

9-80

Word Content:

Computer Word

1

2

3-4

5-40

Standard card type identification

Checksum

Program name in BCD

Unused

1

2

w = 41
8

, a = Subprogram length in words

c = Checksum

3-4 Program name in BCD t

5-40 Unused

This card contains program name: BARKLEYS

-..---
f(12

II

0
to B R L y -1 o:t

II

2 3:

(/) 3
3: - A C C 0
Q: 4

5 A

6
- A K E S

7 B
-

8
-

JJ 9 B

I.: 2 3 4 5 6 7 8 8,9 I
~·-'----------------------COLUMNS---~p~·

t The name is 8 characters or less, formed according to the
rules for symbols. Words 3 and 4 are used for the name;
trailing blanks are added.

2-14

E PT The program entry point card contains the symbolic entry point name and
its program address (relative). An EPT card is produced if a symbol
appears in the END card.

Card Content:

Columns

1-2

3-4

5-10

11-80

Word Content:

1

2

Computer Word

1

2

3-5

6-40

w = 42
8

, a = 1

c = Ch~cksum

standard card type identification

Checksum

Entry point (transfer point)
name and its program address

Unused

3-5 Entry point name and location

6-40 Unused

A 1 to 6 character name is followed by a record mark character (internal code
72

8
), and 18 bits of which the rightmost 15 specify the entry point address.

This card contains the entry point, BAKER.

12

II

0
IX)

C\!
V

" 3=
2

3
-

4

5 A

6
r-

7

8

9

A C C

B K

en
en
w
0=

I---+--+~ 0

A E

~ z
o

IX) D-

C\! >­
I'- 0=

~
Z
W

23456789

2-J5

80

RlF The relocatable information cards contain the binary representation of the
assembled program.

Card Content:

Columns

1-2

3-4

5-16

17-80

Word Content:

1

2

3-8

9-40

Computer Word

1

2

3-8

9-40

Standard card type identification

Checksum

Relocation bytes

Program information

w is the word count, 1 to 40
8

a is the load address of the first information word
on the card. Succeeding words are loaded into
sequential locations.

24-bit checksum

may contain up to 33 relocation bytes

contain the relocatable binary information to be loaded

A relocation byte, 4 /bits/byte, specifies the type of relocation to be applied to
the load address and the address field of each word on the card. The first bit
of each byte indicates whether the relocation is applied to a 15-bit (word) address
or a 17 -bit (character) address.

The following is a list of relocation codes:

XOOI Absolute reference (no relocation)

XOlO Program increment

XlOl Program decrement

XOOO Relocation error

2-16

2

o 0
o 0 x x
!! U

o 0

300
r-- A C C

4 I . 0

5 A o I

6 o 0
I--

r II
I I

I I
I

RELOCATABLE

INFORMATION

(six computer words)

I r

I

I

7 B
I--

I

1 0 I 0 I I

I ~ I~ I J II
I

8
I--

9 B I I
2 3 4 5 6 17 18 19 20 21 22 23 24 25 26 27 28

This card contains six words of relocatable binary information.

TRA The transfer card closes the binary program deck; it is produced by the
appearance of an END card in the assembly input deck.

Card Content:

Columns

1-4

5-10

Word Content:

1

2

Computer Words

1 and 2

3 through 5

standard card type identification

Entry point name of the starting
address of the program, in
Hollerith.
When there is no transfer name,
columns 5 through 10 are blank.

w = 448, a is the transfer address

c = Checksum; formed by computing the sum of all
binary card checksums. Computing is done
modulo 224_1.

2-17

PAPER
TAPE
OUTPUT The relocatable binary card format may be produced on paper tape, and the pre­

ceding format is retained except as follows:

Each card column is represented by 2 frames of paper tape using tracks 1
through 6. The first frame represents rows 12 through 3, the second frame
represents rows 4 through 9.

A seventh level punch appears in the first frame of each card image.

The number of frames punched for each card image is variable, consisting of the
control information and as many frames as needed to contain the data.

2-18

1t"..tPUT jOUTPUT
TO BASIC
ASSEMBLER

EXECUTIVE PROCESSOR 3

BASIC assembler consists of the assembly processor and a set of input/output
driver subroutines for physical units. The same input/output format is used by
the processor regardless of the peripheral equipment used. For example, a code
line punched on paper tape in standard Flex code is edited and recoded as an
80-column BCD card image.

A version of the BASIC assembler may be requested to include the drivers for
any combination of input and output units.

Magnetic Tape

Paper Tape Reader

Card Reader

Listable
Output

Magnetic Tape

Paper Tape Punch

Card Punch

Line Printer

Typewriter

Binary
Output

Magnetic Tape

Paper Tape Punch

Card Punch

The four types of I/ 0 driver subroutines provided by BASIC asse.mbler are
listed below:

I/o ~c
~~

0 fa'" o:\:r0 ~0'"
,

fa'" 0"'0-
Driver ~ '5,,0 fa'" ~0:\. ~ OJ ei

~'b'qgfa (;~ C?' ~'b'~ fa V~ ~0 ~~~ ~"lf rc~ Subroutine (;'b' tg"S ~'b'~
~'b'~ ~0 ~ .<f ~ ~'b' 00

V.<f0

BCD Input x x x 80

x x x 80
BCD Output

x x 120

Binary Out- x x x 80
put

Binary Input x x x 80

3-1

PARAMETER
ENTRIES

BCD and binary input driver subroutines provide a standard 80 character card
image. BCD output driver subroutines accept a standard 120 character print
image; binary output driver subroutines accept 80 columns of binary card
images. BCD output driver subroutines for card, paper tape and typewriter
process the first 80 characters only. The programmer specifies input and out­
put for the BASIC assembler at the halt preceding entry to the System Initializer
Routine of the control program.

Requests are made by entering parameters in the A register.

Parameters in Octal Physical Unit

OX

IX

20

30

40

50

60

77

Magnetic tape X on channel 0

Magnetic tape X on channel 1

Paper tape reader or punch

Card reader

Card punch

Line printer

Typewriter (console)

No physical unit

X range, 0-7

Examples:

Select magnetic tape 1, channel 0 as input unit, magnetic tape 2, channel 0
as listable output unit, magnetic tape 3, channel 0 as binary output unit.

I 0 ! 1 I 01 2 I 0 1 3 1 7 ! 7 r
A Register (octal)

'-v-' '-v-' '-v-' '-v-'

I LBO

Select a card reader as the input unit, a printer as listable output unit, and
a card punch as binary output unit.

1
3 i o

l
5

j
o l41017171

'-v-' '-.,,-' '-v-' '-v-'
I LBO

I = driver subroutine that reads one source card image (INPUT).

L = driver subroutine that processes listable output.

B = driver subroutine that processes binary output.

o = used by the relocating loader to load the BASIC assembler.

3-2

ENTRY TO
DRIVER
SUBROUTINES Entries may be made to driver subroutines by a return jump instruction after

first setting the A and Q registers and console jump switches. The A register
contains the unit identity in bits 5 through O.

CONSOLE
JUMP
SWITCHES

I/O HALTS

The operator may suppress the output list by settiag switch one or the binary out­
put by setting switch two.

II 0 halts may occur during the run of a BASIC assembly program. Either an
error is signaled after a reasonable attempt has been made to recover, or action
by the operator is requested. For any I/O halt, Q contains zeros, the unit is
identified in index register B3 and A contains the halt code.

__ .. - . I
Halt Code

00000040

00000041

00000042

00000050

00000051

00000052

00000053

00000054

00000060

Meaning

illegal function request (undefined function
code)

II 0 unit malfunction (parity errors, lost
data, compare errors)

illegal hardware reject of function request

Feed failure

Hopper empty

Stacker full

Out of paper tape

Out of paper

Reposition the input file

SYSTEM LIBRARY The BASIC system library is an autoloaded control program and a library of
routines in relocatable form. The system library may be recorded on cards,
magnetic tape, or paper tape. The Control Program (COP) is composed of card
images output by the Prepare Library Program (PLIB). The first card contains
a bootstrap loader which occupies the lowest portion of storage and reads in the
remainder of the Control Program.

The relocatable library contains driver subroutines for input/output devices, the
library preparation program (PLIB), and the BASIC assembly program with
related routines in relocatable binary format.

3-3

The system library unit is arranged as follows:

low order storage

Bootstrap Loader

Reloeatable Loader

Library Driver Routine

System Initializer

Transfer Table

Memory Table

Transfer Card (TRA)

Driver Subroutines

EOF

BASIC Assembler

PLm

high order storage

~-- Control Program
(COP)

~-- Reloeatable Library

J
Items from the system library are positioned in storage in the following order:

low order storage

Interrupt Cells

Transfer Table

Memory Table

Reloeatable Loader

Library Driver Routine

System Initializer

BASIC Assembly Program

Driver Subroutines

high order storage

3-4

CONTROL
PROGRAM

BOOT

TABLES

COP accomplishes the following:

• Bootstrap loads a relocatable loader

· Clears interrupt cell table

· Sets up and maintains storage limits

· Sets up II 0 driver requirements

· Loads and links the driver routines

· Loads and enters the BASIC assembly program

The bootstrap loader is read into low storage. BOOT receives control at location
00000 from the autoload sequence and begins to load the program which follows it
on the library unit. Only relocatable binary cards and a single transfer card are
loaded.

Two tables are maintained by the Control Program, the transfer and the memory
table.

Transfer Table records physical unit identification and driver entry point addres­
ses. A unit identification and entry point comprise one word in the table as
follows:

Unit Driver
(octal Entry
code) Point

Address

23 1817 1514 o

All entries in the table are initially set the same as location 00013 to point to
the library unit driver. Table entries at specific locations define t~e functions:

Location Function

00013 Library unit driver and identity

00014 Input unit driver and identity

00015 Listable output unit driver and identity

00016 Binary output unit driver and identity

00017 BASIC assembly program unit driver and identity

3-5

SYSTEM.

A 2-digit octal code indicates the. physical unit to be driven by the subroutine.

Memory Table indicates the current bounds of storage. Bits 14 through 0 of
location 000208 contain the address of the first available storage word; bits 14
through 0 of location 000218 ' the last available storage word.

INITIALIZATION SIN, the system initializer, is responsible for the following:

· Setting storage limits

· Determining II 0 driver subroutine requirements

· Loading driver subroutines and establishing linkage to
them in the Transfer Table

· Loading and entering the BASIC assembler routines

A programmed halt at the beginning of the system initialization phase permits
t.he operator to insert I/o unit identification in the A register. I/O unit
identities are processed in the A register in this order:

List- Main
Input able Binary pro-

output output gram

23 18 17 12 11 6 5 0

The system initializer stores the unit identities into corresponding Transfer
Table entries and searches the library for the required drivers. Drivers are
recognized from the name on the IDC card:

IOD.XO X represents the left most digit of the unit identifier
code. For example, a magnetic tape driver is identified
by the name, IOD.OO. Though tapes may have codes
ranging from 00 through 17, the identity or left most digit
is defined as a 0, not as a 0 or 1.

The system relocatable loader loads each driver and the transfer address returned
from the loader is entered into the Transfer Table entry for the system unit. If
any unit is specified that is the same as the library unit, no driver is sought; also,
no driver is sought for the library unit. If a required driver is not found before
the driver series ends on the library unit, an error stop occurs. An end-of-file
mark terminates the driver routines on the library unit; and when all drivers
have been loaded, the library unit is positioned past the end-of-file.

Main Program Loading

The BASIC assembly program is loaded and receives control from SIN, after the
I/O drivers have been loaded.

3-6

RELOCATABLE
LOADER

CALL
PARAMETERS

CARD
PROCESSING

System Initializer Re-entry

SIN may be re-entered through RTJ linkage set up by entry to the BASIC assem­
bler. Upon re-entry to SIN; the A and Q registers are cleared and halt occurs.
The operator may enter a quantity into the A register. When the program is
re-started, the A register is tested for zero; if it is non-zero a program is
loaded from the program unit.

Storage occupied by the previous program, not including V 0 drivers, is released.
Zero in the A register causes the program just executed to be re-entered. Only
SIN Re-entry is kept in storage during execution of the loaded program.

The relocatable loader loads the object program produced by the BASIC assembly
program. The loader may be called by SIN, BASIC assembler, or another pro­
gram.

Loader call parameters are entered into the A register and index register 3.
If bits 14-0 are zero, the IDC card has not been read; otherwise, bits 14-0
contain the first word address of the card image in storage. The unit containing
the program to be loaded is identified in index register 3 by the units index in
the Transfer Table (library unit = 0, input unit = 1, etc.) A number greater
than 4 is an error, and a halt occurs.

The loader is called to load the next program in sequence from the unit specified
in register 3. If an IDC card has been read, loading continues with the next
binary card images. If not, loading begins with the next encountered IDe card;
intervening card images are ignored.

Identification (IDC), relocatable binary (RIF), and transfer (TRA) cards are
processed.

IDC Card

The IDC card identifies the beginning of a program deck. The program length
contained on the card is used to assign an area of storage for the program, and
to form the relocation factors applied during loading. The high address of avail­
able storage, minus program length, plus one, is the relocation increment; the
complement of the increment is the program relocation decrement.

RIF Card

Relocatable binary information is loaded into sequential locations beginning at
the load address plus the program relocation increment. The number of words
to be loaded is indicated by the word count. Relocation bytes specify the type of
relocation for the word and load address portion of each instruction. The first
byte applies to the load address; its value must be 00102"

3-7

ERROR
DETECTION

TRA Card

A transfer card signals the end of a program. If there is no address on the card,
the first location of the program is the transfer address. If there is an address,
the address plus the program relocation increment is the transfer address. Be­
fore returning to the calling program, the transfer address is placed in bits
14 - 0 of the A register and the count of errors detected by the loader is placed
in the Q register.

Errors are detected during the several phases of the Control Program and Re­
locatable Loader. Error conditions discovered by the system result either in an
immediate halt or an increment of the error count. Error halt codes are dis­
played in the A register. The loader error halt is indicated by 0000003X8
where X is a digit 0 through 7 further identifying the error.

Halt

Bootstrap Loader Phase,
0000001X8

00000010
8

System Initializer Phase,
0000002X8

000000208

000000218

Relocatable Loader
Phase, 0000003X8

000000308

000000318

000000328

00000033
8

Reason

No transfer addre ss on
program read by BOOT.

Required driver not on
tape.

Loader errors.

Memory overflow.

Operator Action

IJ ob termination. Punch
Itransfer address.

I
Put required driver on
library tape. Restart.

Display errors count in
index register 3

Job termination. Restart
passes control to calling
program.

Program Checksum from Restart.
the TRA card does not Program resumed.
agree with checksum gen-
erated by the loader.

Multiple IDC cards.

II 0 unit error. Unit
number is greater than
4.

Job termination. There
should be one IDC card.

Display index register 3
for incorrect unit number.
Possible job termination.

3-8

Halt Reason

I
no halt Relocation Byte. Load

address relocation byte is
not 00102. illegal relo-
cation byte given for data
address. Error count in-
cremented; processing re-
sumed as if byte were
00102.

Input/ Output, 0000004X 8
Input/ Output Error. 00000040

8 illegal Function request.

(Parity error, lOSt data,
000000418 I/ 0 unit malfunction

etc.)

000000428 I/o error. illegal Hard-

I
ware reject of function
request.

0000005X8
00000050

8 I/o error. Feed failure.

000000518 I/ 0 error. Hopper empty.

000000528 I/o error. Stacker full.

I

I

00000053
8 I/o error. Out of Paper

Tape.

000000548 I/o error. Out of Paper.

00000060
8 I/ 0 error. Reposition

the input file.

3-9

Operator Action

None

Display index register 3
for unit identity. Job

I termination or restart

I
after correct function re­
quest inserted.

for unit iaentity. JOD
I Display i~dex regist~r 3

termination.

Display index register 3
for unit identity. Job
termination.

Display index register 3
for unit identity. (If
accompanied by hopper
empty, cards are all read;
if not, a feed problem
exists.)

Display index register 3
for unit identity. All cards
have been read.

Display index register 3
for unit identity. To pre-
vent a card jam, remove
accumulated cards from
stacker.

Display index register 3
for unit identity. Fill
paper tape reader.

Display index register 3
for unit identity. Load
paper into printing mech-
anism.

Display index register 3
for unit identity. Position
the Input File to the be-
ginning of the file.

I

I
I
I

I

I

SAMPLE ASSEMBLY RUN

Sample Assembly Run

HLT 0
Control

---~ Program
Reloca­
table
Loader

At HLT 0, operator entries to the
A Register are:

- I = Input (Source Deck)
L = Listable CMtput (Assembly

Listing)
B = Binary Output (Object Deck)
a = Library Medium (Basic Assem­

bly, relocatable loader, control
program, I/O drivers)

BASIC
Assem­
bler
(Pass
One)

BASIC
Assem­
bler
(Pass
Two)

to system

Sample Execution Run

HLT 0
Reloca­
table
Loader

....--_--1-_---.

At HLT 0, operator entries to the
A register .are:

I =: Input (Object Deck)
L, B = Programmer Usage

to system

a = Library Medium (Relocatable Loader, etc.)

A-I

Build
Symbol
Table

CMtput
Unit

CMtput
Unit

A

BASIC UTIL TV

The Autoload Utility System:

Loads and links routines

Contains resident routines for tape handling

Loads and links Central Input/Output (CIO) routines to loaded routines

Transfers control to routines

Provides drivers for magnetic tape, card reader, punch, printer, and
typewriter

Provides a limited facility for making unit assignments

Provides library routines for peripheral processing

B

Operator intervention is possible through typewriter or console entries as shown
below:

TYPEWRITER ENTRIES
If jump key one is not set, the programmer enters control information from the
typewriter as follows:

General Form: NAME, parameter list

NAME is the name of a resident routine of the system (e. g. REWIND,
UNLOAD) or the name of a routine which has been loaded previously by the
resident routine named FETCH (e. g. COPYS, VERIFY). NAME consists
of 1 to 8 BCD characters, alphabetic or numeric, excluding commas and
periods. A comma follows if a parameter list is applicable. A period
follows if there is no parameter list or no more parameters.

Parameter list is a list of the specific parameters required by the routine.
See the individual routines which follow:

Resident routines:

REWIND,n. Rewind Unit n.

UNLOAD,n. Unload Unit n.

BACKSPCE,n. Backspace Unit n.

SKFF,n. Skip one file forward on unit n.

8-1

SKFB,n.

WREOF,n.

ERASE,n.

CONTROL,n.

DUMP, addrl, addr2 ,no

ASSIGN, n, mnemonic.

Mnemonic

Mxyz

TPWR

CDRD

CDPU

PRNT

ASSIGN,n,m.

CHKDNS,n.

SETDNS, n, mnemonic.

Skip one file backward on unit n.

Write end of file on n.

Erase bad spot on n.

Instructs utility executive to receive next
control statement from unit n. If n = TYP,
unit is the typewriter; if n = CONSOLE, unit
is the console.

Dumps core from addrl (octal) to addr2 (octal)
on unit n (decimal).

Assign unit n to hardware designated by the
mnemonic.

Hardware

Magnetic tape, channel x, controller
y, unit z.

Console typewriter

Card reader

Card punch

Printer

Equate N to unit number m previously
designated

Check the density of unit n.

Set the density of unit n to mnemonic L = low,
M = medium, H = high.

FETCH,n,namel,name2, ... namem. Load and link the named routines
and their subroutines from unit n (decimal).
Routines must be in relocatable binary format.
Multiple calls to FETCH do not destroy pre­
viously loaded routines.

CLEAR.

FETCH,A.

FETCH,B.

The above two control statements executed in
sequence make A and B both available for
subsequent execution.

Restores UTILITY tables to resident routines
and stores UJP ABNORMAL throughout
available memory.

B-2

LIBRARY ROUTINES

COPYS, n1, n2. Copys 40 word binary records or up to 136
character BCD records from nl to n2.

COPYT, n1, n2, n3, n4. Copy n4 records from unit n1 to unit n2;
list on logical unit n3. Tape to tape copy.

VERIFY, n1, n2, n3, n4. Read and match records from unit n1 to unit
n2; write offending records on unit n3. IT n4
is omitted, one file only is verified. n4
specifies number of records.

COPYWS xxx, n1, n2, n3. Copies BCD records from n1 (tape or card
reader) to n2 and n3 (tape, printer, or punch).
Sequence numbers beginning at 00000 and in­
creased by 10 on each succeeding record are
placed in columns 76 to 80. xxx is placed in
columns 73 to 75.

COPYTSQ,xxxxxxxx,n1,n2,n3. Copies BCD card images from unit n1 to
units n2 and n3 until the sequence identifier,
xxxxxxxx, is found in columns 72 through 80.
n2 or n3 may be deleted or given the value
zero so that one destination tape is used. IT
both n1 and n2 are deleted or both given the
value zero, the input tape is positioned at the
record following the record containing the
sequence identifier.

8-3

CONSOLE ENTRIES

RESIDENT ROUTINES

Control statement:

REWIND

UNLOAD

BACKSPCE

SKFF

SKFB

WREOF

ERASE

DUMP

CONTROL

FETCH

ASSIGN

CHKDNS

SETDNS

CLEAR

LIBRARY FUNCTIONS

Control statement: t t

COPYS

COPYT

tt After a FETCH has been executed, the A
register contains the index of the loaded
routine and B2 contains 7777 7 . Enter
index of loaded routine into the A register.

t Density code 1 into B2 indicates high density;
code 2 into B2 indicates medium; code 3 into
B2 indicates low.

Console entries:

Enter 0 into A, n into Bl.

Enter 1 into A, n into Bl.

Enter 2 into A, n into Bl.

Enter 3 into A, n into Bl.

Enter 4 into A, n into Bl.

Enter 5 into A, n into Bl.

Enter 6 into A, n into Bl.

Enter 7 into A, addr1 into B1, addr2 into
B2, and n into B3.

Enter 10
8

into A, n into Bl.

Enter BCD code for name in AQ (left
oriented), n into B1, and 77777 into B2.

Enter 118 into A, n into Bl, BCD mnemonic
into Q.

Enter 12
8

into A, n into Bl.

Enter 13
8

into A, n into B1, density code
into B2. t
Enter 14

8
into A.

Enter nl into B1, n2 into B2.

Enter n1 into B1, n2 into B2, n3 into B3,
n4 into Q.

8-4

VERIFY

COPYWS

COPYTSQ

A

AQ

Bl

B2

B3

Enter nl into Bl, n2 into B2, n3 into B3,
n4 into Q.

Enter BCD mnemonic (right oriented) into
AQ, nl into Bl, n2 into B2, n3 into B3.

Enter BCD sequence identifier into EQ, nl into
Bl, n2 into B2, n3 into B3.

Register A

Register AQ

Index Register 1

Index Register 2

Index Register 3

Note: If switch one is set, enter information from console, otherwise, enter
information from the typewriter.

8-5

Added listings 2-11
Address subfields 1-1, 1-2, 1-3
Area reservation 2-6
Assembly input 2-1
Assemblyoutput 2-10
Assembly pseudo operations 2-1
Asterisk 1-6, 1-8, 1-10, 1-12

BCD 1-3, 2-4
BCD, C 1-3, 2-5
Binary card information 2-1 7
Binaryoutput 3-1, 3-2, 3-5
Binary scaling factor (DEC) 2-3
Bootstrap loader error 3-8
BSS 1-3, 2-6, 2-8
BSS, C 1-3, 2-6, 2-9
b subfield 1-2, 1-13

see Index register

Call parameters 3-7
Card checksum error 3-8
Card processing 3-7
Control program 3-4, 3-5
Card reader 3-2
Channel number 1-14
Character 1-7, 1-14
Character agdress 1-7, 1-12, 1-13
Character address representation 1-10

Relative address 1-11
Special address 1-11

Character instruction 1-8
Character position i-7, 1-13
ch subfield 1-2, 1-14

see Channel number
Coding clements 1-3
Coding fields 1-1
Coding format 1-1
Console jump switches 3-3
c subfield 1-2, 1-13, 1-1,5

see Character

Data definition 2-2
DEC 1-3, 2-3
DECD 1-3, 2-5
Decimal integer (DEC) .2-2, 2-3
Decimal number in address field 1-9
Decimal scaling factor (DEC) 2-3
Double asterisk 1-7, 1-8, 1-10, 1-12
Doubly defined symbols 2-11

INDEX

Driver subroutines 3-1
BCD input 3-1
BCD output 3-1
Binary input 3-1
Binaryoutput 3-1

Entry to 3-3
System library 3-4

EJECT 1-3, 2-12
END 1-3, 2-1
EQU 1-3, 2-8
EQU, C 1-3, 2-8
Equate 2-8
EPT card 2-12, 2-15
Error codes 2-10
Error detection 3-8
Expression 1-6, 1-8, 1-10, 1-12

Fixed point constant 2-3
Floating point constant 2-3
Function code or logical mask 1-15

IDC card 2-l2, 2-14, 3-7
Index register 1-13, 1-14
Input 3-1, 3-5
Input/Output 3-1

Listable output 3-1
Binaryoutput 3-1

Interval 1-15
I/O halts 3-3
i subfisld 1-2, 1-13, 1-15

see Interval

Length 1-16
LIST 1-3, .2-12
Listable output 3-1, 3-5
Listing control 2-12
Line printer 3-2
Location field error 2-10
1 subfield 1-2, 1-13, 1-16

see length

Magnetic tape I/O 3-2
Main program loading 3-6
Memory overflow error 3-8
Modifiers 1-2, 1-5
m subfield 1-2, 1-8, 1-9

see Word address representation
Multiple IDC cards (error) 3-8

index-1

NOLIST 1 ~3, 2-12
n subfield 1-2, 1-8

see Word address representation
Numbers, octal, decimal 1-6, 1-8

OCT 1-3, 2-2
Octal address 1-9
Operation code 1-2
Operation subfields 1-2
Output listing 2-10
ORGR 1-3, 2-1

Paper tape punch 3-2
Paper tape reader 3-2
Paper tape output 2-18
Parameter entries, input/output 3-2

Source card (I) 3-2
Listable output (L) 3-2
Binary output (B) 3-2

Program checksum error 3-8
Pseudo instruction mnemonics 1-5

Register file 1-14
Relative address 1-10, 1-11
Relocatable binary card output 2-12
Relocatable loader 3-7
Relocatable loader errors 3-8
REM 1-3, 2-12
Remarks 1-7
R1F card 2-12, 2-16, 3-10
r subfield 1-2, 1-10

see Character address representation

index-2

SPACE 1-3, 2-12
Special address 1-9, 1-10, 1-11
Symbols 1-6, 1-8, 1-10
System initializer error 3-8
System initializer 3-6
System library 3-3
System initializer reentry 3-7
s subfield 1-2, 1-10

see Character address representation

Table, Transfer 3-5
, Memory 3-6

TRA card 2-12, 2-17, 3-8
Typewriter 3-1
Typical machine code lines 1-2
Typical pseudo operation code lines 1-3

Undefined symbols 2-11

v subfields 1-2, 1-14
see Register file

Word address 1-7, 1-12, 1-13
Word address representation 1-8

Decimal address 1-9
Octal address 1-9
Relative address 1-9
Special address 1-9

Word and character addressing 1-7
Word instruction 1-8

x subfield 1-2, 1-15
see Function code or logical mask

y subfield 1-2

CONTROL DATA SALES OFFICES ALAMOGORDO. ALBUQUERQUE. ATLANTA. BOSTON. CAPE CANAVERAL

CHICAGO. CINCINNATI. CLEVELAND. COLORADO SPRINGS. DALLAS. DAYTON

DENVER. DETROIT. DOWNEY, CALIf •• HONOLULU. HOUSTON. HUNTSVILLE

ITHACA. KANSAS CITY, KAN •• LOS ANGELES. MINNEAPOLIS. NEWARK

Pub. No. 60057100

NEW ORLEANS. NEW YORK CITY. OAKLAND. OMAHA. PALO ALTO

PHILADELPHIA. PHOENIX. PITTSBURGH. SACRAMENTO. SALT LAKE CITY

SAN BERNARDINO. SAN DIEGO. SEATTLE. WASHINGTON, D.C.

INTERNATIONAL OFFICES FRANKFURT, GERMANY. HAMBURG, GERMANY. STUTTGARIjI", GERMANY

ZURICH, SWITZERLAND. MELBOURNE, AUSTRALIA. SYDNEY, AUSTRALIA

CANBERRA, AUSTRALIA. ATHENS, GREECE. LONDON, ENGLAND. OSLO, NORWAY

PARIS, FRANCE- STOCKHOLM, SWEDEN .. MEXICO CITY, MEXICO, (REGAL

ELECTRONICA DE MEXICO, S.A.). OTTAWA, CANADA, (COMPUTING DEVICES OF

CANADA, LlMiTED)- TOKYO, JAPAN, (C. ITOM ElECTRONIC COMFUTING

SERVICE CO., LTD.)

CONTROL DATA
CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55440

Litho in U.S.A.

	001
	002
	003
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	Index-01
	Index-02
	xBack

