
COMPUTER SYSTEM
SCOPE/COMPASS

REFERENCE MANUAL

CONTROL DATA
CORPORATION

September 1964
Pub. No. 60057700

Any comments concerning this manual should be addressed to:

CONTROL [)Al'A CORPORATION
Documentation Department
3145 PORTER URI\I'E

PALO ALTO, CALifORNIA

© 1964, Control Data Corporation

Printed in the United States of America

CONTEN:TS

--__ -----, .. ~~

CHAPTER 1 INTRODUCTION 1-1

SCOPE 1-1

COMPASS 1-3

CHAPTER 2 COMPASS PROGRAMMING 2-1

SUBPROGRAM 2-1

ASSEMBLY FOR STORAGE 2-1

COMPASS INSTRUCTION FORMAT 2-2

ADDRESS OF ASSEMBLED INFORMATION 2-7

ADDR ESS SUBFIE LDS 2-9

EVALUATION OF ADDRESS EXPRESSIONS 2-12

NON-RELOCATABLE SYMBOLS 2-13

INTERCHANGE OF WORD AND CHARACTER ADDRESSES 2-13

CHAPTER 3 ASSEMBLY OF MACHINE LANGUAGE INSTRUCTIONS 3-1

INS TR UC TION FORMATS 3-8

CHAPTER 4 COMPASS PSEUDO INSTRUCTIONS 4-1

SUBPROGRAM CONTROL 4-1

PROGRAM STORAGE AREAS 4-2

STORAGE RESERVATION 4-4

SUBPROGRAM COMMUNICATION AND LINKAGE 4-6

SYMBOL DEFINITION BY EQUATING 4-7

COMPASS ASSEMBLY OF CONSTANTS 4-9

VARIABLE FIE LD DEFINITION 4-14

CHAPTER 5 MACRO USE IN COMPASS 5-1

ASSEMBLY OF MACROS AND MACRO CALLS 5-1

MACRO INSTRUCTION 5-1

MACRO INSTRUCTION PROTOTYPE 5-3

MACRO CALLS 5-4

iii

MACRO NAME ADDRESS FIELDS 5-5

CONDITIONAL PSEUDO INSTRUCTIONS 5-8

CHAPTER 6 COMPASS OUTPUT LISTING 6-1

OUTPUT LISTING F'ORMA T 6-1

LISTING CONTROL 6-.3

COMPASS ERROR MESSAGES 6-5

COMPASS CONTROl, STATEMENT 6-6

CHAPTER 7 SCOPE OR GANIZA TI0N OF I/O 7-1

PROGRAMMER UNITS 7-1

SCRA TCH UNITS 7-1

SYSTEM UNITS 7-2

INPUT/OUTPUT BEQUESTS 7-4

INOUT /OUTPUT CONTHOL 7-11

CHAPTER 8 SCOPE CONTROL STATEMENTS 8-1

SCOPE CONTROL CARDS 8-1

INPUT DECK STRUCTURES 8-2

LOAD 8-9

CHAPTER 9 OPERATOR CONTROL OF SCOPE 9-1

OPERATOR CONTROL STATEMENTS 9-1

CHAPTER 10 ORGANIZATION OF MEMORY 10-1

AVAILABLE MEMOHY ORGANIZATION 10-1

ASSIGNMENT OF AVAILABLE MEMORY 10-5

RELOCATABILITY 10-5

CHAPTER 11 SCOPE BINARY SUBPROGRAM 11-1

LOADER CONTROL CAHDS 11-1

LOADER CARDS 11-2

OBJECT SUBPROGRAM STRUCTURE 11-2

CHECKSUM IN BINAHY DECKS 11-3

LOADER CARD FORlv.IAT 11-4

LOADER CONTROL CAHDS 11-13

LOADER ERRORS 11-16

LOADER INPUT 11-16

iv

LOADER ERROR MESSAGES 11-17

ERROR MESSAGE FORMATS 11-21

CHAPTER 12 OVERLAY PREPARATION 12-1

OVERLAY PROCESSING 12-1

USE OF OVERLAYS 12-2

OVERLAY TAPE FORMATS 12-2

OVERLAY AND SEGMENT EXECUTION 12-3

MAPPING OF OVERLAY AND SEGMENTS 12-4

OVERLAY CONTROL CARDS 12-5

CHAPTER 13 PROGRAM DEBUGGING 13-1

DUMP ROUTINES 13-1

MEMORY ALLOCATION PRINT 13-1

SYSTEM DUMP ROUTINE 13-2

ERROR MNEMONICS 13-5

SNAP 13-6

SYSTEM DUMP PRINT MODES 13-7

RECOVERY DUMP 13-9

OCTAL CORRECTION OF LOADED PROGRAMS 13-9

DEFINITION OF PROGRAM EXTENSION AREAS 13-9

ERRORS IN SCOPE DEBUG STATEMENTS 13-11

ERROR MESSAGES 13-12

APPENDIX A BINARY CONTROL .cARDS A-I

APPENDIX B INSTALLA TION ACCOUNTING B-1

APPENDIX C SCOPE TABLES C-1

APPENDIX D INTERNAL INTERRUPT CONTROL D-1

APPENDIX E PRELIB CONTROL STATEMENTS E-1

APPENDIX F TYPICAL DECK STRUCTURES F-1

APPENDIX G STANDARD LABELS 3000 SERIES MAGNETIC TAPES G -1

APPENDIX H OPERATOR CONTROL STATEMENTS & GENERALIZED FLOW H-1

v

SCOPE

SCOPE OPERATION

INTRODUCTION 1

This manual deals with machine language programming of the Control Data 0
3200, 3100, and 3300 computers and the use of the monitor system, SCOPE, which
controls job processing. SCOPE supervises the operation of the comprehensive
library of utility programs provided by Control Data, including FORTRAN,
COBOL, ALGOL, PERT, SORT and COMPASS, the flexible machine language
assembler. The user may add programs to the SCOPE library through PRELIB,
a SCOPE library program.

SCOPE loads and supervises the execution of user programs and provides map­
ping and debugging facilities, which include a selective dump routine called at
the source or object language levels. Recovery from program failure is also
provided by SCO PE .

This manual does not repeat the detailed information in the programming ref­
erence manual; when feasible, however, it summarizes pertinent information
concerning hardware.

Description of problem oriented languages such as FORTRAN and COBOL will
be found in separate manuals. The hardware assembler language, COMPASS,
is described here.

SCOPE provides supervisory control of program execution. SCOPE includes
processors for the following:

Stacked or single job processing
Loading relocatable programs
Input/output control
Interrupt control
Debugging aids
Library preparation and editing
Forming and executing overlay programs
Calling and executing utility routines

The operator loads SCOPE from the library and provides information about date,
time and the input/output configuration for the immediate system. SCOPE will
process signal decks of proper structure or several decks from different
programmers.

1-1

JOBS

RUNS

The programmer may select a library program for operation or load and
execute his own subprograms. The operator may call library programs for
execution.

The sets of tasks as signed to SCOPE by the programmer are called jobs. A
job may be stacked or non-stacked as indicated by a parameter in the JOB
statement.

In a non-stacked job, SCOPE releases the system input/output, and when the
job is complete, halts the computer. To process another job after a non­
stacked job, SCOPE must be reloaded by the operator.

Stacked jobs afford greater convenience to the programmer and the operator,
but they impose limits on the input/output requirements, which non-stacked jobs
do not. Stacked jobs are processed in the order they appear on the standard
input unit, except as otherwise directed by the operator. Regardless of the
successful completion of the job, SCOPE will normally retain control of the
system, log off the completed job and process another job in the stack.

Non-stacked and stacked jobs may be mixed onthe standardinput unit. More
efficient use of the system results if non -stacked jobs are segregated, however.

A job is preceded by a JOB statement which follows a SEQUENCE statement.
SCOPE control statements, object subprograms, input to library programs and
input to object prol~rams may appear after the job statement. The job termi­
nates with the occurence of another SEQUENCE statement.

A non-stacked job consists of only one run. A stacked job may consist of one
or more runs. A run consists of the execution of a complete program under
SCOPE control; there are two types of runs.

A library run consists of the operation of a library program under SCOPE con­
trol. The library run is chosen by a library name statement such as COMPASS,
COBOL or FORTRAN.

The requested library program is loaded and operated. If errors are encoun­
tered during loading, the entire job is terminated. If errors occur during;
operation ot the library program, subsequent programmer runs in the same
job may be inhibited. A programmer run occurs when relocatable binary sub­
programs followed by a RUN statement are loaded during a job. A programmer
run may be prevented by errors in loading subprograms or errors during pre­
vious library runs in the job. A programmer run may be successful or not. If
a programmer run is inhibited or unsuccessful, the remainder of the job is not
processed.

1-2

ASSEMBLER

PROGRAM STRUCTURE

SUBPROGRAM

COMPASS

The COMPASS assembly program converts programs written in COMPASS
source language into a form suitable for execution under the monitor system.
Source programs may consist of punched cards or BCD card images. The
output from the assembler includes an assembly listing and a relocatable
binary object program for immediate execution or punching.

Source programs may be divided into subprograms which are assembled inde­
pendently. All symbols are local to the subprogram in which they appear,
unless they are declared as external symbols. Locations which will be ref­
erenced by other subprograms are declared as entry points. When an entry
point is found which matches an external symbol, linkage is established. The
library tape is searched for routines with the names of the unmatched symbols.
If unmatched symbols remain, the job is terminated and an error message
produced.

Throughout the discussion of SCOPE and COMPASS, the term "subprogram"
will be encountered; it refers to the smallest unit which can be handled by
COMP ASS or the SCOPE loader.

COMPASS is the comprehensive assembly system for CONTROL DATA com­
puters. Operating under the SCOPE monitor system, COMPASS facilitates the
writing of machine language programs through mnemonic instructions and
symbolic addresses.

The COMPASS language includes the following features:

Address arithmetic

Character addressing

Preloaded data

Common aSSignments

1-3

Constants, symbolic addresses, and arithmetic
expressions may be used for addresses.

Symbols may be assigned to character locations
and character designators may be suffixed to
word addresses.

Data areas may be specified and loaded with data
in the source program.

Common areas may be designated to simplify
communication between subprograms.

Data defi.nitions

Library routines

Listing control

Diagnostics

Macro instructions

1-4

Integer, floating point, and BCD constants may
be designated in familiar notation.

Routines may be summoned from LIB during
loading using source language statements.

The format of the assembly listing may be
controlled.

Diagnostics for source program errors are
included with the output listing.

Sequences of instructions defined in a program
will be inserted by the assembler whenever the
macro name appears in an operation field.

COMPASS PROGRAMMING 2

..

SUBPROGRAM

ASSEMBLY FOR
STORAGE

In COMPASS source language, the programmer writes machine language instruc­
tions in mnemonic/symbolic form, specifies constants, exercises control over
subprogram communication and controls the assembly process with a powerful
set of pseudo instructions.

The programmer is assumed to be coding subprograms for assembly which are
to be linked at load time and executed as a single unit. Thus, problems are
expected to be solved by several subprograms or a program. This distinction
is made for convenient discussion. The size of subprograms and the magnitude
of the problems solved by a subprogram is at the discretion of the programmer.

A subprogram consists of an IDENT pseudo instruction and subsequent lines of
code until and including and END pseudo instruction. The internal logical organ­
ization is at the discretion of the programmer so long as a few simple rules are
followed. These rules are developed in the discussion of pseudo instructions.

Programmers using SCOPE and preparing subprogram in COMPASS or other
source language must consider what happens when a subprogram is assembled
or compiled, loaded and run.

When writing machine language programs, a programmer must not exceed the
capabilities of the hardware. Similarly, restrictions are imposed by the
manner in which SCOPE and COMPASS or a compiler process subprogram
information. Subprograms compiled or assembled independently may be linked
by the loader. Thus, it is impossible for COMPASS or a compiler to anticipate
all of the requirements for loading and execution. The responsibility for the
structure of the program when loaded and the responsibility for correct execu­
tion must remain with the programmer.

Subprograms are assembled for an object machine with a storage element div­
ided by convention into three areas:

Data area
Subprogram area
Common area

2-1

COMPASS
INSTRUCTION
FORMAT

A fourth area is encountered only if octal corrections are entered for the object
program. This area is called the program extension area.

The first three areas within a single source subprogram are defined at assembly
time. Three pseudo instructions, DATA, COMMON and PRG, allow the pro­
grammer to use these- areas freely. When more than one subprogram is loaded
for execution at run time, the areas for storage of all subprograms must be
considered. The data area is the same for all subprograms at run time and
must be of sufficient length to contain all of the information assigned to it by
all subprograms. The programmer must also organize the information to be
stored in the data area by the loader so that it will not conflict with information
destined for the shared data area from other sUbprograms.

COMPASS object code contains relocatable addresses, which are modified by a
relocation factor during loading, to obtain the actual address in the computer
memory.

When assembling Elubprograms, COMPASS assumes that the initial location in
each of the three areas, data, common and subprogram has a relocatable
addres s of zero.

Locations are assigned sequentially from zero unless the pseudo instruction
ORGR is encountered. ORGR instructs COMPASS to assign the value in the
address field of OnGn as the relocatable address of the following instruction
and assign storage- sequentially from that relocatable address.

Each area recognized by COMPASS has its own address counter and the counter
affected by ORGR depends on which counter COMPASS is using at the moment.
The descriptions of the pseudo instruction DATA, COMMON, PRG and ORGR
elaborate on this point.

The address counter 'Llsed by COMPASS for a given area is the same throughout
the subprogram. If set by ORGR, the particular counter remains set until a sub­
sequent ORGR. All counters are initialized before assembling a new subprogram.

Instructions in subprograms to be assembled by COMPASS are written on cod­
ing forms. The information on the coding form will be punched into cards or
prepared on other suitable media for input to COMPASS. There is a one·-to-one
correspondence between columns on the coding sheet and card columns.

Each line on the coding sheet is normally punched into a single card. Each line
of code is divided into four fields and all instructions are discussed in terms of
what may be placed in these fields.

2-2

COMPASS CODING FORM CONTROL DATA NAME
PROGRAM PAGE
ROUTINE DATE
lOCATIH 'iii OPUAlIOlI,MODIFlERS lIDlESS flUB COMMEIITS IDENT

, I' " •• , • ~.o 11,.,'1411 "" 'I 1.1.0111 1111'.15"1''''''01' un ulfu ... O
I
., 4I.'44.~""4I4I&Oer nUH •• allf O 15 .. " .. " '07' rr15"15 "'."71 "10

f-L-.L.L...L..l....L4ilil~: ..LJ.-LJ~L..L..LJ....L.J~L..L.L.L...L..l....LLL.L.L...L1....LLL.L.L...L..l'-"....LL..L.L, -L' .J.'-LJLL' L' .L.L' -L' ...L.J....LL..L' .L' ...L1-'-LL' L' .L' -L' -' .L ~L J 1 L J __ 1

I I I I I I I

f-L-.L.L...L..l-'-4iP...L..l-'-LL.L.L...L1-'-LLL.L..LJ....L.JL.LL..L..LJ....L.J~L..L..LJ....L.J....LL..L.L.L...L.J....LLL.L.L...L..l....LL.L.l! 1_.l~ ___ L .. L .. L.J..-.1 L.L_I J

f-L-.L.L...L..l-'-4iP...L..l-'-LL.L.L...L1-'-LLL.L..LJ....L.JL.LL..L..LJ....L.J....LL.L . ..LJ.-"-"~L..L.LL' .J.' -"-"LLL.L..LJ....L.JL.LL..L' .L' -L' -"-"--'-' _..LJ..~ .. I 1

1-'-.L..l.-'--'--'-LfiP..L..l--'-LL.L..l.-'--'--'-LL.L..l...LJ.-LJ~L..L..LJ.-LJ~LL' .L' -L' -"-"_'LL' L' .L.L...L.J....LLL.L' -1.' ...L..l....LL' L'L I _L_LLL...L....L_L.LLl IL. I I L I 1 .1
I

~.L.L...L..l-'-LBP...L..l-'-LL.L.L...L1-'-LLL.L..LJ....L.J....LL.L..LJ....L.J..J..J.L.J..J..J... ,

~.L.L...L..l....LL...ftp...L..l-'-LL.L.L...L..l-'-LLL.L..LJ.-LJL.LL.L..LJ....L.J'-'-'-'I--'-L..L.1 .1-' ..LJ.-L.J'_'LL.L' ~.L-L_L..L_L..L.L.J._~L....l.....l_l_"Ll.J .1

I! I I I I ! I I "1 I I I I

~.L.L...L..l....LL...ftp...L..l--'-LL.L.L...L..l....LLLL.L..LJ.-LJL.LL.L..LJ....L.JL.LL.L..LJ.-LJL.LL.L..LJ....L.JL.LL..L.L.L...L..lL.LLLl.L..L.LLL1_1. LL I I

I-'-.LL-'--'--'-Lf'P-'--'--'-LL.L..l....L..l--'-LL.L..l...LJ.-LJL.LL.L..LJ.-LJL.LL.L..LJ....lI-"LLI L.LI .L1...L..l-'I-"LLI L.L..LJ.-LJLLL.L..LJ.I-.l..-" L .. L. __ LL~ I I

I
f-L.L.L-'--'--'-4liHf-L-'--'--'-LL.L..L-'--'--'-LL.L..l..L...l-'-'LL.L..l...LJ.-'-'LLl~--L-LL_l_LL.L.-LJ_-.l._LJ .. _L_L . ..L_t J _ L.J L I _-1. __ 1 __ L L L J ILl 1 L J _-.1 L_

I I
I 2 J " , • f I II '2 15 •• II " ., " " 10 ., 12 II •• II U If tI II 10 51 '2 !J ,4 n 51 Sf 51 n 40 •• 42 4J "4 .~ 4t 47 4' 4' ~o 51 52 n U 55 51 If 51 U 10 " If IS l4 n .. 17 .. II TO 1. 72 n 14 71 7t n " " 10

CDC 366

Field Columns

location 1-8 inclusive, 9 always blank.

operation begins in column 10 and continues until the first
blank column.

address may begin after the column terminating the opera­
tion field; it must begin before column 41. The
address field terminates with the first blank, or
column 73.

comments or remarks

identification or
sequence number

are written between the end of the address field
and column 73.

73-80 treated as a comment by COMPASS.

2-3

LOCATION FIELD

OPERATION FIELD

The type of instruction determines the legal content of the location field. For
most instructions, the location field may contain a symbol or be blank. How­
ever, the use of symbols in the location fields of pseudo instructions is res­
tricted; see the secti.on on pseudo instructions for specific rules.

A location field symbol is composed of one to eight characters placed anywhere
in the field. The first character must be alphabetic; subsequent characters
mflY be alphabetie, numeric or a period. Imbedded blanks are illegal. An
illegal symbol is flagged as an L error on the assembly listing.

The location field symbol may represent a 15-bit relocatable address, a 17-bit
address, or a 15-- or 17-bit nonrelocatable value. If the symbol represents an
address, it is defined under control of one of the three address counters except
for the special case of equating. The symbols defined under control of an add­
ress counter references the first word or character position occupied by the
particular instruetion.

When an asterisk appears in column 1, columns 2 through 72 are treated as a
comment.

The operation field may contain mnemonic machine instruction codes or' pseudo
instruction mnemonics, with specific, related modifiers, macro instruction
names, or the octal values, 00-77.

The field begins in column 10 and is terminated by the first blank. If column
10 is blank, an operation code of 00 is assembled. An illegal operation field
is flagged as an 0. error on the assembly listing. Modifiers are separated
from operation codes by commas.

The following are examples of acceptable operation fields:

BSS, C
BSS
LDA
INPC, INT, B, H
MACRO
74

2-4

ADDRESS FIELD

SYMBOLS

CONSTANT

The address field of machine or pseudo instructions may contain one or more
subfields separated by commas. The address field begins with the first non­
blank character following the operation field and is terminated by a blank column
or before column 73. It must begin before column 41. Address fields or sub­
fields may contain symbols, constants or expressions.

The address field of a machine instruction has one or more subfields separated
by commas. Machine instructions have implied subfields. A subfield may be
assigned the value zero by giving only its trailing comma or, if it is the last
subfield in the address field, by omitting both its content and the preceding
comma.

A symbol in the address field may occupy the entire field or subfield of' may be
only one element in the field or subfield.

Any symbol used in an address field must be defined by appearance in the loca­
tion field of an instruction in the subprogram, or be declared as external. A
symbol in the address field is formed and expressed exactly like a location
symbol. A symbol in the address field may be relocatable or non-relocatable.

A non-relocatable symbol is defined or equated to a value which may be a num­
ber of either 15 or 17 bits. The value assigned to the non-relocatable symbol
will not be modified during loading.

A relocatable symbol represents either a 15- or 17-bit address. Relocatable
addresses are values related to a memory area which will be incremented or
decremented by the loader prior to storage of the instruction in which the
address occurs,

Relocatable symbols are local or external to a subprogram and are equated to a
15-bit word address or a 17-bit character address. Relocatable symbols maybe:

subprogram relocatable
external symbols
data relocatable
common relocatable

The address field may contain signed or unsigned decimal or octal integers. If
the sign is not present, the integer is understood positive. Octal integers are
suffixed by the character, B.

2-5

SPECIAL CHARACTERS Two special entries, a single or a double asterisk, may be made in address
field.

* The special character, * may be placed in the address field and used as any
symbol. The * is interpreted as the momentary value of the COMPASS address
counter in effect when the * is encountered. The * may result in either a 15-bit
or 17 -bit address. If the machine instruction consumes two words, * is the
address of the first word.

** The special character, **, may be used as the only entry in a field or subfield.
The ** yields a subfield containing a one in each bit position. Normally, the
field represented by the double ** will be modified during execution of the pro­
gram and the double asterisk provides a convenient way to ascertain the mod­
ification transpired.

LITERALS If the address field or subfield of an instruction refers to an operand which may be
a'single or double precision value, the entry may be a literal expressed as: == mv.

The equal Sign denotes that the field contains a literal; m denotes the mode of
the literal; v is the literal. Single precision literals are expressed as above,
double precision literals are expressed = 2mv; the digit, 2, preceding mode
denotes a double precision field (48 bit) is to be established.

The mode of a literal may be decimal, octal or Hollerith.

Decimal Literals: = Dv
The value, v, of the literal is expressed in decimal. The decimal value is
expressed in the sarne manner as described for address subfields in DEC and
DECD pseudo instruetions.

Octal Literals: = Ov
The value of the octal literal is written in the same manner as a subfield for an
OCT pseudo instruction except that 16 octal digits may be stated to obtain a
double precision constant.

Hollerith Literals: := Hv
The Hollerith literal is expressed as a string of either 4 or 8 characters. The
column following a Hollerith literal must be blank or a comma.

During assembly, a literal is converted to binary and assigned a relocatable
address which is substituted for the literal in the object code. Literals are
assigned to contiguous storage locations at the end of the subprogram. Literals
of the same value and size are not duplicated in the object subprogram. Each
time COMPASS encounters a literal, the value is compared against the value of
all previously assembled literals and if an identical value exists, the address of
the previously assigned literal is substituted in the object code.

2-6

ADDRESS EXPRESSION

ADDRESS OF
ASSEMBLED
INFORMATION

In an address field or subfield, symbols, the special character, *, and numeric
constants may be combined with the operators, plus or minus, to form an
address expression. The value of the expression is calculated by substituting
the numeric value of the symbol and performing 15- or 17-bit arithmetic using
the operators. External symbols, the double asterisk, and literals may not
appear in an address expression.

If relocatable symbols are part of an address expression, the result of the
evaluated expression must be relocatable within a ~ingle area. Subprogram,
data or common relocatable symbols may be mixed:

non-relocatable value

D-C+C positive data relocatable value

C-p-C negative subprogram relocatable value

D, P and C are data, subprogram and common relocatable addresses,
respectively.

In an expression containing relocatable symbols, the algebraic sum of the
relocation indicators must be either an area relocation increment, an area
relocation decrement, or no relocation designator and, therefore, a non­
relocatable value.

The result of an address arithmetic expression depends on the number of bits
assigned to the subfield in the object code.

The hardware storage element consists of 24-bit words. Each word is divided
into four 6-bit character positions. The entire word or any character in the
word is addressable. Machine language instructions and pseudo instructions
may require either a word or character address. The character address
consists of 17 bits in positions 16-0 of the word in storage. The word address
consists of 15 bits in positions 14-0. Word or character addresses may be
expressed in the same manner using COMPASS symbolic addressing techniques.

Only the most significant 15 bits of a character address are relocated during
loading.

2-7

FIELD DEFINITIONS FOR COMPASS INSTRUCTIONS

Bit
Number Postt.ions

of in Computer
Symbol Meaning Literal Expression Absolute Re1ocatab1e External Bits Word

b Index designator 1 to 3 yes yes 2 16-15 or 17

i interval, o to 7 yes yes 3 17-15

c character count yes yes 7 17-23
c or character yes yes 6 18-23

ch channel designator yes 2

m first operand word address yes yes yes yes yes 15 14-0

n second operand addL'et;t; yet; yet> yet> yes yes 15 14-0

I:\:) r first operand character
I address yes yes yes yes yes 17 16-0 co

s second operand character
address yes yes yes yes yes 17 16-0

v register file address,
o to 778 yes yes 6 5-0

x connect code or interrupt
mask yes yes 12 11-0

Y IS-bit operand or shift
count yes yes yes yes yes 15 14-0

z 17-bit operand yes yes yes yes yes 17 16-0

ADDRESS
SUBFIELDS

m andn

y

rand s

z

b

The address field entries m and n for machine instructions may be represented
by a symbol, external symbol, literal, constant, expression or the special
characters, * and **. The m and n subfields are generally operand addresses
and always occupy bit positions 14-0 in the assembled instruction.

The y subfield may be represented by a symbol, external symbol, literal, con­
stant, expression or the special characters, * and **. The y subfield repre­
sents an operand which occupies bit positions 14-0 in the assembled instruction.

Machine language instructions using a 17 -bit character address contain r or s
subfields which may be represented as a symbol, literal, constant, external
symbol, expression, or the special characters, * and **. These subfields
occupy bit positions 16-0 of the assembled instruction.

A 17-bit operand, z, may be represented by a symbol, constant, literal, expres­
sion or special characters, * and **. The z field occupies bits 16-0 of the
assembled instructions.

The b subfield may be represented by a digit 1, 2, 3, a symbol equated to 1, 2,
or 3, an expression whose value is 1, 2, 3, or **. The b subfield designates
an index register. A b subfield is interpreted as follows:

If it is used with m and n subfields; mnemonic operation codes may be 1, 2,
or 3, and occupies bit position 16-15 in the assembled instruction. If an octal
operation code is used, b may be 0-7 occupying bits 17-15 in the assembled
instruction.

If it is used with rand s subfields, b depends on the particular instruction; it is
restricted by the instruction to only one digit and represents bit 17 of the
assembled word.

The i subfield occurs in the MEQ and MTH instructions; it may be a symbol,
constant or expression which results in a value from 1 to 8, or **. The i
subfield occupies bit positions 17-15 in the assembled instruction.

In the following example ABLE = 1008, INTERVAL = 1.

Coding: Results (in octal)

MEQ ABLE, INTERVAL 06 1 00100

MEQ ABLE, INTERVAL+1 06 2 00100

MEQ ABLE,2 06 2 00100

MEQ ABLE, 8 06 0 00100

MEQ ABLE,** 06 7 00100

2-9

v

x

ch

c

The v subfield in a rnaehine language instruction denotes a location in the reg­
ister file. It may be any sumbol, constant or expression which results in a
value 0 to 778, or **. The v subfield occupies bit position 5-0 in assembled
ins truc tions.

The connect code for input/output units or the comparison mask for interrupt
instructions is represented by x. May contain a symbol," constant, or expres­
sion which results in a value 0::; x ~ 2 12 - 1, or **.

This subfield contains the channel designator for input/output instructions. May
contain a symbol, constant or expression which results in a value 0 ::; ch ~ 3,

or **.

In the following examples, ABLE is equated to the value 00118 elsewhere in the
program.

Coding: Results (in octal)

TMA ABLE 53 0 2 ... 11

TMA 77B 53 0 2 ... 77

53 0 2 ... 77 TMA **
TMA ABLE+~!2B 53 0 2 ... 33

The c subfield spectfies the length of a character field or represents a search
character.

MOVE: The c subfield may be a symbol or an expression which results in an
absolute value from 1 to 128, or **.

SRCE or SRCN: The c subfield may be any symbol, constant, or ** which
represents the 6-bit character code of the character for which the search is
made.

2-10

In the following examples, ABLE is equated to the value 100
8

elsewhere in the
program; BAKER to 00200

8
,

Coding: Results (in octal)

MOVE ABLE,BAKER,BAKER+100B word 1 72000300

2 40000200

3

MOVE 128 ,BAKER ,BAKER+128 word 1 72000400

2 00000200

3

MOVE 27B,BAKER,BAKER+27B word 1 72000227

2 13400200

3

MOVE **, BAKER, BAKER+ 100B word 1 72000300

2 77400200

3

2-11

EVALUATION OF
ADDRESS
EXPRESSIONS

In the following examples, A is defined elsewhere in the program as the octal
value 21; ABLE and BAKER are defined as 00200

8
and 00100

8
,

Coding: Result(in octal)

71 00100

~ 21 00200

SRCE A,ABLE,BAKER word 1

2

3

71 00100

~ 21 00200

SRCE 21B,ABLE ,BAKER word 1

2

3

SRCE A+21B,ABLE, BAKER word 1 71 00100

2 42 00200

3 --

Address expressions are evaluated as a word address (15 bits) or a character
address (17 bits). All a.ddress expressions are converted to binary numbers of
modulus 215 -1 or 217 -1, and stored in the proper subfield. No size check is
made for 15 or 17-bit subfields by COMPASS.

The location terms of aU instructions except BCD, C, BSS, C and EQU, Care
evaluated as word addresses.

subfield type

word address,
15 bits

m, n, y,

i, x, v, ch, b

2-12

character address
17 bits

r, s, z,

c

NON­
RELOCATABLE
SYMBOLS

INTERCHANGE
OF WORD AND
CHARACTER
ADDRESSES

Symbols defined as non-relocatable values are treated as integers. If the most
significant bit of a non-relocatable value is one, the integer is assumed to be in
complement form. If a 17-bit non-relocatable value is placed in an ro, n or y
subfield, it is reduced modulo 215 -1.

A word address may be placed in a character address field or vice versa. If a
symbol defined as a word address is placed in a subfield which consists of 17
bits, the assigned binary value is shifted left two places.

If a symbol defined as a character address is placed in a subfield which has
only 15 bits, the 17 bit character address will be shifted right two places. If
a one bit is lost by the shift, a T error occurs.

2-13

ASSEMBLY OF MACHINE
LANGUAGE INSTRUCTIONS

3

The Control Data instruction repertoire for data processing, scientific and
logical programming contains optional sets of BCD t floating point and double
precision instructions for the hardware. All of these, including the optional
commands, may be coded in the COMPASS language using convenient mnemonic
codes and comprehensive symbolic programming techniques. The purpose of
this discussion is to describe how machine language instructions are expressed
in COMPASS, how COMPASS assembles them, and how they appear in the ob-
j ect pro gram.

Control Data provides a set of simulation routines for the optional instructions.
For any optional set not included at an installation, simulator routines may be
placed on the library tape and called as subroutines. COMPASS will output the
required XNL cards. Therefore, a programmer may use the mnemonics in the
source subprogram as if the hardware were present.

The 24 bits of the instruction may be expressed as 4 fields:

operation code field, bits 23-18
designator field, bit 1 7
index or interval field, bits 16-15
address field, bits 14-0

Over half of the instructions are in this format, consisting of a mnemonic oper­
ation code; an indirect addressing indicator, or a condition or sign extension
designator; an index register designator; and an address or operand. However,
in order to obtain the power of the repertoire, it was necessary to introduce
other formats.

To obtain the convenience desirable for symbolic programming and to exploit
features of the computer, a flexible set of mnemonic codes and symbols was
adopted for COMPASS.

There are eight formats for machine language instructions. Five of these for­
mats require one computer word of 24 bits. Three are unique to the Block
Class, and consist of two 24-bit computer words. In the machine reference
manual, these are referred to as three-word instructions. When coding in
COMPASS, the Block instructions are written as one line of code which will
yield two 24-bit words in the object program. The programmer must produce
the third word for the reject instruction on a separate line.

3-1

-

A

b

B

x

E

H

i

1.

m

M

n

P

Q

r

R

s

S

v

u

y

z

c

ch

Instruction fields may be optional or mandatory. Limits exist on all fields in
any instruction; an optional field may be expressed or not, as the programmer
requires. The indirect addressing field, bit 17, and the b field, bits 16-15
are optional. Mandatory fields must be present and contain only stated options.
The conditional modifiers for the AZJ instruction are an example of a mandatory
field.

The codes used in the list of available instructions are explained below:

Meaning

denotes the 24-bit A register

index register designator L to 3

denotes index register definecl by Bb

connect code or interrupt mask

denotes the 48 (52)-bit E register

instruction modifier for UPC, OUTC indicating 6 or 12 bit I/O

increment or decrement,O to 7

instruction modifier denotLng indirect addressing

present, indirect addr(;'ssing is selected and bit 17 = 1
omi tted, direct add reSE; ing is selected and bi t 17 = 0

subscript representing low·ar half of the 48-bi t E register, as E 1.

15-bi t word address, first op(;,rand or jump address

actual operand or jump address as modified

same as m, second operand address

15 or (17)-bit P register

24-bit Q register

17-bit character address

actual character address as modified

same as r, second operand address

instruction modifier denoting sign -extension

S present, bit 17 = 1, sign extended
S omitted, bit 17 = 0, no sign extended

6-bi t address in register fi1(;" 0 to 77

subscript representing the upper half of 48-bit E register, as Eu

IS-bit operand or shift count

17-bit operand

den01:es a character code or fi.e1d in type Vb or Vc instruction

denotes channel

3-2

Bit
Positions in

Instruction

16-15

12-0

18 (word 2)

17-15

17

14-0

14-0

16-0

16-0

17

5-0

14-0

16-0

23-17 or
23-18

23-21

Instruction
Modifiers

EQ

NE

GE

LT

S

INT

A

B

H

N

C

NC

OCTAL
OPERATION

CODE

00.0

00.1

00.2

00.3

00.4

OO.S

00.6

00.7

01.1-3

02.0

02.1-3

02.4-7

03.0

03.1

03.2

03.3

03.4

03.S

03.6

03.7

04.0

04.1-3

04.4

04.S

04.6

04.7

equal

not equal

greater than or equal

less than

indirect addressing

extend sign of operand to 24 bits

interrupt on completion

conversion

backward read or write

half assembly or disassembly (12-24)

no assembly or disassembly

assign character address

no conversion

SYMBOLIC INSTRUCTION FORMAT

MNEMONIC

HLT

SL1

SL2

SL3

SL4

SLS

SL6

RTJ

UJP,I

ADDRESS FIELD
INDEXING

m

m

m

m

m

m

m

m

m, b

no operation (see 14.0)

IJI

IJD

AZJ,EQ

AZJ,NE

AZJ,GE

AZJ,LT

AQJ,EQ

AQJ,NE

AQJ,GE

AQJ,LT

ISE

ISE

ASE,S

QSE,S

ASE

QSE

m, b

m, b

m

m

m

m

m

m

m

m

y

y, b

y

y

y

y

OPERATION PERFORMED

Unconditional stop RNI m

If key 1 is set, jump to m

If key 2 is set, jump to m

If key 3 is set, jump to m

If key 4 is set, jump to m

If key S is set, jump to m

If key 6 is set, jump to m

(p) ~ (m14 _ O~' RNI m + 1

RNI m

If (Bb) 0, RNI p + 1

If (Bb) F 0, (Bb) + 1 ~ (Bb) , RNI m

If (Bb) 0, RNI P + 1

If (Bb) F 0, (B
b

) - 1--+-- (B
b

) RNI m

If (A) 0, RNI m, otherwise RNI p + 1

If (A) F 0, RNI m, otherwise RNI p + 1

If (A) ~O, RNI m, otherwise RNI p + 1

If (A) < 0, RNI m, otherwise RNI p + 1

If (A) (Q), RNI m, otherwise RNI p + 1

If (A) F (Q), RNI m, otherwise RNI p + 1

If (A) ~ (Q), RNI m, otherwise RNI p + 1

If (A) < (Q), RNI m, otherwise RNI p + 1

Ify

If y

0, RNI P + 2, otherwise RNI p + 1

(Bb) , RNI p + 2, otherwise RNI p + 1

If y (A), RNI p + 2, otherwise RNI p + 1 sign
extended

If Y = (Q), RNI p + 2, otherwise RNI p + 1 sign
extended

Ify
A

If Y
Q

(A), RNI p + 2, otherwise RNI p + 1
bits 14-0

(Q), RNI P + 2, otherwise RNI p + 1
bits 14-0

3-3

INSTRUCT ION
TYPE

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ia

Ia

Ia

Ia

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ia

Ia

Ib

Ib

Ib

Ib

05.0

05.1-3

05.4-7

05.5

05.6

05.7

06.0-7

07.0-7

10.0

10.1-3

10.4-7

11.0

11.4

12.0-3

12.4-7

13.0-3

13.4-7

14.0

14.1-3

14.4

14.5

14.6

14.7

ISG

ISG

ASG,S

QSG,S

ASG

QSG

MEQ

Ml'H

SSH

lSI

ISD

ECHA

ECHA,S

SHA

SHQ

SHAQ

SCAQ

NOP

ENI

ENA,S

ENQ,S

ENA

ENQ

15.0 no operation

15.1-3

15.4

15.5

15.6

15.7

INI

INA,S

INQ,S

INA

INQ

16.0 No operation

16.1-3

16.4

16.5

16.6

16.7

XOI

XOA,S

XOQ,S

XOA

XOQ

17.0 No operation

17.1-3

17.4

17.5

ANI

ANA,S

ANQ,S

y

y, b

y

y

y

y

m, i

m, i

m

y, b

y, b

y

y

y, b

y, b

y, b

y, b

y, b

y

y

y

y

y, b

y

y

y

y

y, b

y

y

y

y

y, b

y

y

[f 0 ~ , RNI P + 2, otherwise RNI p + 1

H (Bb) ~, RNI P + 2, otherwise RNI p + 1

H (A) ~ , RNI P + 2, otherwise RNI p + 1
sign extended

If (Q) ~, RNI P + 2, otherwise RNI p + 1
sign extended

If (A) ~ , RNI P + 2, otherwise RNI p + 1

If (Q) ~, RNI P + 2, otherwise RNI p + 1

(B') - i~(B'); if (B') negative RNI p + 1

if (B') positive, test (A) = (Q) A (M), if
true, RNI p + 2, if false, repeat sequence

(B2) _ i ~ (B2); if (B2) negative, RNI p + 1;

if (B2) positive, test (A) 2: (Q) A (M), if
true RNI p + 2; if false, repeat sequence

Test sign of (m), shift (m) left closed one,
if sign negative RNI p + 2; otherwise p + 1

'[f (B
b

)

(Bb)

y, O~(Bb) and RNI p + 2; if

f:. y, (Bb
+ 1 --.. (B

b
), RNI p + 1

U (B
b

) y, O~ (Bb
) RNI + 2; if (B

b
) f:. y,

(Bb) _ 1 ~ (Bb), RNI p + 1

y --..(A) bit 0-16

Y ~ (A) sign extended

Shift A) left, magnitude of shift in k,

right, complement of magnitude of
:,hift Q shift in k

Shift AQ left, magnitude of shift in k
right, complement of magnitude in k

Scale AQ

No operation (COMPASS assembled NOP)

Clear B
b

, enter y

Clear A, enter y, sign extended

Clear Q, enter y, sign extended

Clear A, enter y

Clear Q, enter y

Increase index Bb by y, sign extended on y
b

and B

Increase A by y, sign extended

Increase Q by y, sign extended

Increase A by y

Increase Q by Y

l~nter selective complement of y and (Bb) into

Bb

Bnter selective complement of y and A into, A,
sign of y extended

Bnter selective complement of y and Q into Q,
sign of y extended

y V (A) A, no sign extended

y V (Q)~ Q, no sign extended

Y A (Bb) ~Bb

Y A (A) --... A, sign of y extended

Y A (Q) --... Q, sign of y extended

3-4

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ib

Ia

Ia

II

II

Ia

Ia

Ia

Ia

Ia

Ia

Ib

Ib

Ib

Ib

Ia

Ib

Ib

Ib

Ib

Ia

Ib

Ib

Ib

Ib

Ia

Ib

Ib

17.6

17.7

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

ANA

ANQ

LDA, I

LDQ,I

LACH

LQCH

LCA,I

LDAQ, I

LCAQ, I

LDL,I

ADA, I

SBA, I

ADAQ, I

SBAQ, I

RAD,I

SSA, I

SCA, I

LPA,I

STA, I

STQ, I

SACH

SQCH

SWA, I

STAQ, I

SClIA, I

STI,I

MUA,I

DVA,I

CPR, I

53.1":3 TIA

53.40-70 TAl

53.01 TMQ

53.41 TQM

53.02 TMA

53.42 TAM

53.(O+b)3 TMI

53. (4+b)3 TIM

'>3.04 AQA

53.(0+b)4 AlA

53.(4+b)4 IAI

y

y

m, b

m, b

r, 1

r, 2

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

m, b

r, 2

r, 1

m, b

m, b

m, b

m, b

m, b

m, b

m, b

b

b

v

v

v

v

v, b

v, b

b

b

Y A (A) -+- A, no sign extended

y A (Q) --.. Q, no sign extended

(M) --...(A)

(M) --+- (Q)

(R)~(A)

(R) ---+- (A)

(M) ~(A)

(M) ---.,.(A), (M + 1) -+- (Q)

(M)--...(A), (M+!) -+- (Q)

(M) A (Q) --.. (A)

(M) + (A) ~(A)

(A) - (M) --.(A)

(M, M + 1) + (A, Q) --+-(A, Q)

(A, Q) - (M, M + 1) --+- (A, Q)

(M) + (A) --... (M)

Where M contains a on~ bit, set the corresponding
bit in A to one

Where M contains a one bit, complement 'the corre-
sponding bit of A

(M) A (A) --...(A)

(A) ~(M)

(Q) ~(M)

(A 5-a ---+- (R)

(Q5-a --..(R)

(A
l4

...,O) --+- (M
l4

_
0

)

(A, Q)~ (M, M + 1)

(A16- 0) -+- (M16- 0)

(Bb) ~(Ml4_0)

(M) * (A)~ (Q, A)

(A) / (M) --+- (A), Rem ~ (Q)

(M) > (A), RNI p + 1 I
(Q) > (M), RNI p + 2

(A) ~ (M) ~ (Q), RNI p + 3

, , b
o ~ (A~, (B) ~ (A

14
_

0
)

, . b
(AU_O) ~ (B)

(v) -+- (Q)

(Q) ~(v)

(v) ~(A)

(A) --+- (v)

b
(v

14
-

0
) ~ (B)

b
(B ? ~ (v14- 0)

(A) + (Q) -+- (A)

b
(A) + (B) -+- (A)

(A) + (Bb) -+- (B)

(A) & (Q) are
unchanged

All other combinations of 53.00-77 are undefined and will be rejected by the assembler.

54

55.0

LDI"I m, b

no operation

3-5

Ib

Ib

Ia

Ia

II

II

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

Ia

II

II

Ia

Ia

Ia

Ia

Ia

Ia

Ia

III

III

IV

IV

IV

IV

IV

IV

III

III

III

Ia

55.1 ELQ

55.2 EUA

55.3 EAQ

55.4

55.5 QEL

55.6 AEU

55.7 AQE

56 MUAQ, I

57 DVAQ

60 FAD, I

61 FSB,I

62 FMU,I

63 FDV,I

64t LDE

65t STE

66t ADE

67t SBE

70.0-3 SFE

70.4 EZJ,EQ

70.5 EZJ,LT

70.6 EOJ

70.7 SET

7l.ott SRCB,INT

71.1ttt SRCN,INT

72 MOVE,INT

73.0t INPC,J\.
INT,a,H

t 7-bit 9peration

tt 7-bit operation

ttt 7-bit operation

no operation

Itt, b

m, b

m, b

m, b

m, b

m, b

m, 1

m, 2

m, 3

m, 3

y, b

m

m

m

Y

c, r,

c, r,

c, r,

ch, r,

s

s

s

s

code, last digit

code and bit 17

Gode and bit 17

is

on

on

p

p

(E
l

) --. (Q)

(E) --. (A)

(Ell' E
l

) --. (A, Q)

(Q) --. (E
l

)

(A) --. (E
u

)

(A, Q) --. (E
u

' E
l

)

(Mn * (M) and (M + 1) --. (AQE)

(AI~E) I (M) and (M + 1) --+-- (AQ) and remainder
with sign extended in E. Divide fault,
halts operation and program advances to
next instruction.

}o'loating point addition of(M and M + l)to
(AQ) --+- (AQ)

Floating point subtraction of (M and M + 1)
from (AQ)--+- (AQ)

Floating point multiplication of (AQ) and
(M and M + 1) --+- (AQ)

Floating point division of (AQ) by (M and
M + 1) --+- (AQ) , remainder with sign extended
to E

Load E with up to 12 numeric BCD characters from
storage. Field length specified by contents
of D register. Characters are read consec­
utively from least significant character (at
address M + (D) - 1 until the most significant
charaqter (at address M) is in E. (E) is
shifted right as loading progresses. The
sign is acquired along with the least signifi­
cant character.

Store up to 13 numeric BCD characters from E.
Least significant character stored at
M + (D) - 1 continuing back to most significant
character stored in M.

Up to twelve 4-bit characters (most significant
character at address M) is added to (E). Sum
appears in E. D register speci~ies field
length.

Up to twelve 4-bit characters (most significant
character at address m) is subtracted from E.
Difference appears in E. D register specifies
field length.

Sh·ifts E iIi one character (4-bit) steps. Left
shift: bit 23 = 0, magnitude of shift = lower
4 bits of Y = Y + (Bb). Right shift:

(In

bit 23 = 1, magnitude of shift = lower 4 bits
of complement of Y = Y + (Bb).

0, jump to m; (E) p 0, RNI p. + I

(B) < 0, jump to m; (E) ~ 0, RNI P + 1

Ib

Ib

Ib

Ib

Ib

la

la

la

Ia

la

Ia

II

II

II

II

Ia

la

la

Jump to m if E overflow, otherwise RNI p + 1 Ib

Set (D) with lower 4 bits of Y Ib

Search for inequality of character c in a list
beginning at location r until unequal charac­
ter is found, or until character location s
is reached. :::;, c ~ 63. Vb

Same as 71.0. Vb

Move c characters from r to s l~. c ~ 128

6 or 12-bit character read from peripheral and
stored in memory at given location.

one in bit 17

+ 1 0

... 1 1

3-6

Vc

Va

73.lt INAC,A,INT ch

74.0t INPW,A,INT, ch, m, n
B,N

74.11 INAW,A,INT ch

75.0t OUTC,A,INT,
B,H ch, r, s

75.lt OTAC,A,INT ch

76.0t OUTW,A, INT,
B,H ch, m, n

76.lt OTAW ,A, INT ch

77.0 CON x, ch

77.1 SEL x, ch

77.2 COpy ch

77.3 INS x, ch

77.3 CINS ch

77.4 INTS x, ch

77.50 INTS x

77.51 IOCL x

77.52 SSIM x

77.53 SCIM x

77.54-56 no operation

77 .57 IAPR

77.6 PAUS x

77.70 SLS

77.71 SFPF

77.72 SBCD

77.73 DINT

77.74 EINT

77.75 CTI

77.76 CTO

77.77 UCS

A cleared 6-bit character from peripheral to
lower 6 bits of A.

Word address is placed in lower bits 0-14
15-16 zero, 12- or 24-bit words are read from
peripheral and stored in memory.

A cleared 12- or 24-bit word read from peripheral
(size depends on I/O channel) into lower
12 bits or all of A.

Storage words assembled into 6 or l2-bit charac­
ters and sent to a peripheral device.

Character from lower 6 bits of A is sent to
peripheral device, (A) retained.

Words read from storage to peripheral device.

Word from lower 12 bits or all of A (depending
on I/O channel) sent to a peripheral device.

If channel c busy, reject instruction,
RNI p + 1

If channel c not busy, l2-bit connect code sent
on channel c with connect cable
RNI p + 2

Channel c busy, reject read from p + 1. c not
busy, l2-bit function code sent on channel c
with fn enable, RNI p + 2

External status code from I/O channel
c ~lower l2-bits of A, contents of inter­
rupt mask register -.. upper l2-bits of A.
RNI P + 1

Sense internal status if 1 bits occur on status
lines in any of same positions as 1 bits in
mask, RNI p + 1. If no comparison, RNI
p + 2.

Interrupt mask and internal status to A.

Sense for interrupt condition; if 1 bits occur
simultaneously in interrupt lines and in
RNI p + 1; if not, RNI p + 2

Interrupt faults defined by x are cleared.

Clears I/O channel or search/move control as de­
fined by bits 00-07 and 11 of x. Bits 08-10
are not used.

Selectively sets Interrupt Mask Register, for
each I-bit in x, corresponding bit in
register set to 1.

Selectively clears Interrupt Mask Register; for
each I-bit in x, corresponding bit in
register is set to O.

Interrupt associated processor

Sense busy. lines - if 1 appears on a line cor­
responding to 1 bits in x, do not advance p.
If P inhibited for longer than 150 usec, read
reject from p + 1. If no comparison,
RNI p + 2.

Program stops if Selective Stop switch is on;
upon restarting, RNI p + 1

Va

Va

Va

Va

Va

Va

V
a

III

III

III

III

III

III

III

III

III

III

III

III

III

III

Set floating point fault indicator. III

BCD fault" flip-flop set 1. III

Interrupt control is disabled. III

Interrupt control is enabled, allows one more
instruction to be executed before interrupt. III

Set Type In 1 beginning character address must be
preset in location 23 of register
file and last character

Set Type Out address + 1 must be preset in
location 33 of the file. III

Unconditioned stop. Upon restarting RNI p + 1 III

3-7

INSTRUCTION FORMATS

23 1817 16 15 14 00

I I I I I a

23 1817 15 14 00

b I I I
23 1817 16 00

II I I I
23 1817 15 14 12 11 00

III I I I I I
23 1817 16 15 14 12 11 65 00

IV I I I I I I
23 1817 16 00

V I I 1
m

a.
23 21 20 19 1817 16 00

~II[
2

I m

NC lINT
-H or N

23 1817 16 00

~ IJ I or SCRE s

h.
INT

23 1817 16 00

~_COd'3 I I r I

23 1817 16 00

I MOVE I~ s

~NT
c.

23 1716 00

~28) I r I

3-8

COMPASS PSEUDO INSTRUCTIONS 4

__ ==_1.-

SUBPROGRAM
CONTROL

IDENT

END

COMPASS contains a set of pseudo instructions for controlling the assembly
process, converting constants, and reserving and assigning storage.

Three pseudo instructions define a subprogram and provide control information
for COMPASS. Information expressed in these pseudo instructions prepares
control information for subsequent processing of the object program, including
linking of sUbprograms.

<blank> IDENT m

IDENT serves to control COMPASS and provide a subprogram name of 8 char­
acters or less. The location field of IDENT should be blank. If a symbol is
present, it will be ignored by COMPASS.

The address field contains the subprogram name; it may include as many char­
acters as will fit into the field, but only the first eight are used as the subpro­
gram name. They appear in the IDC card of the relocatable object subprogram
deck and are printed as the title on the output listing unless, or until, a TITLE
listing control pseudo instruction intervenes.

IDENT information is used by SCOPE as a reference when octal corrections or
SNAP are included in a job. The subprogram name is not an entry point name
and cannot be referenced in the source subprogram.

Instructions following IDENT are assembled using the subprogram address
counter until the pseudo instructions DATA or COMMON intervene.

An 0 error flag is given if IDENT appears as other than the first instruction
in the subprogram, and IDENT is ignored. If IDENT is not the first instruc­
tion, the job is terminated.

<- blank> END m

END terminates the subprogram and produces a TRA card in the relocatable
object subprogram deck. The location field should be blank; if present, it will
be ignored by COMPASS.

4-1

FINIS

PROGRAM

A symbol in the address field is output to the TRA card as the symbolic trans­
fer address. If the symbol is defined within the subprogram, the relocatable
adJress is recorded on the < a> field of the TRA card. If a program is to
recei ve control at the address denoted by the transfer symbol, the transfer
address must be defined as an entry point during loading.

The final instruction in a COMPASS subprogram must be END.

<blank> FINIS <blank>
FINIS signals that all subprograms have been assembled; it is the final instruc-'
tion of a COMPASS input deck. The location and address fields are ignored by
COMPASS. Normally FINIS immediately follows an END pseudo instruction.

COMPASS will write an end-of-file on all output units and if the unit allows,
backspace over the end-of-file. However, COMPASS will recognize FINIS at
any point even though it is in error and proceed as if END had occurred. If
END is missing the job is terminated when control is returned to SCOPE.

STORAGE AREAS The programmer may establish two storage areas to be shared by several sub­
programs. The common area may be shared by subprograms for information
which is processed by the running program, or accumulated during the course of
execution. Information may not be assembled in the common area. At the
source language level the programmer may label, reserve or otherwise organ­
ize the common area but nothing more.

Information assembled for storage into the data area may consist of constants,
message formats, masks and other information to be used by more than one sub­
program. Both the common and data areas are shared by all subprograms dur­
ing execution. The significant difference is that data can be prestored or loaded
by the loader; common cannot. Three pseudo instructions indicate which of the
two storage areas is referenced, or whether the program area is being defined.

During assembly, COMPASS initially uses the subprogram address counter.
When the pseudo instructions DATA or COMMON are encountered, COMPASS
assembles subseqt;,ent information into the appropriate area until another
area assignment oecurs. The pseudo instruction, PRG, returns control to
the subprogram address counter.

If any instruction or pseudo instruction which results in binary output occurs
while COMMON is in effect, an error indication is given and assembly continues
as if PUG had occur red in the source subprogram. Anyone of the three loca­
tion counters may be ,set by the pseudo instruction ORGR. When COMPASS
initiates use of a different area address counter, or the counter currently in

4-2

PRG

DATA

COMMON

ORGR

effect is reset by an ORGR, or is incremented by a BSS pseudo instruction,
the current RIF card will be output.

<blank> PRG <blank>

The PRG pseudo instruction establishes the subprogram location counter
during assembly. PRG specifies that all instructions which follow are to be
assembled in a subprogram area; it restores the subprogram location counter
for use by COMPASS. When IDENT is encountered, the subprogram counter
is initialized and remains so until DATA or COMMON occurs. The location
and address fields are ignored by COMPASS.

<blank> DATA <blank >

The DA TA pseudo instruction specifies that all information following is to be
stored or identified as part of the data area; it indicates use of the data area
location counter. The location and address fields of DA TA should be blank,
and symbols contained in these fields are ignored by COMPASS.

Any instruction or pseudo instruction may follow DA TA, provided that no
reference is made to an external name and no location within the data area
is declared an entry point to the subprogram. Once the DATA pseudo instruc­
tion occurs in a subprogram, the data area location counter is used for assem­
bly until PRG or COMMON occur, or until the end of the subprogram.

<blank> COMMON <blank>

COMMON organizes, labels and reserves space in the common area. The
location and address fields of COMMON should be blank, if they are not,
COMPASS ignores the field.

Information may not be assembled for storage in the common area; therefore,
the only instructions which may follow COMMON are BSS, EQU, EXT, ENTRY,
BSS, C, ORGR, 1FT, IFN, IFF, IFZ, the output listing control instructions
and PRG, DA TA or END. If any other instruction is encountered, an error
is flagged and assembly continues as if PRG had been encountered.

< blank> ORGR ill

The ORGR pseudo instruction controls the relocatable address for storage of
instructions, constants, or the reservation of space in any of the three storage
areas. The location field of ORGR is ignored by COMPASS and printed on the
output listing. The address field may contain an expression which results

4-3

STORAGE
RESERVATION

ass

in a value for a relocatable address. Symbols must have been defined in the
location field of a plC'ec l3ding instruction; and if relocatable, be assigned to the
same area as the address counter currently in effect.

Example:

IDENT SAM

DATA
BSS 2

MAC 1 OCT 63

PRa
OnaR MAC 1 + 16

The above sequence would be incorrect because MAC 1 + 16 would be in
the DATA are,a and not under control of the subprogram address counter
placed in effect by PRa.

If COMPASS is assembling into one area and an ORaR occurs with a different
area relocatable symbol in the address field, an error results. All address
counters remain unchanged, and COMPASS ignores the ORaR. The error
flag is included on the output listing.

Full words or character positions may be reserved and labeled using the pseudo
instruction BSS or BSS, C. The reservation is made in the area governed by
the address counter COMPASS is currently using. The address field deter­
mines how many words or character positions are to be reserved.

< blank or symbol> BSS m
The BSS pseudo instruction reserves and labels a block of words in any area.

The location field may be blank or contain a symbol which is defined as the
15-bit relocatable word address of the first word in the block to be reserved
by BSS. The assignment is made in the area governed by the address counter
currently in effect for COMPASS assembly.

The address field, which specifies the number of words to be reserved, must
contain a constant, a symbol, or an address expression which results in a non­
relocatable value.

4-4

8SS,e

Example:

ABLE BSS 12 24 o

ABLE

ABLE + 1

ABLE + 11

The double asterisk (**) is illegal. The symbols in an address field must be
defined in the location field of a preceding instruction. The result of an
address expression must be a non-relocatable value.

If the address field is in error or is zero, no storage is reserved but a
symbol in the location field has been defined. If the address field contains
zero, and the instruction is immediately preceded by BCD, C or BSS, C, the
next instruction which consumes space will be forced to a new word.
To illustrate:

ALPHA BDC,C 3,ABC ALPHA I A I B lei I
BSS 0

BDC,C 3,GHI ALPHA + 1 I G I H I I I I
ALPHA BDC,C 3,ABC ALPHA IA I B I c I G I

BDC,C 3,GHI ALPHA + 1 I H I I I I I

< symbol or blank> BSS, C m

t
12

words

The pseudo instruction BSS, C reserves and labels a block of character positions
in the area governed by the location counter currently in effect for a COMPASS
assembly.

The location field may contain a symbol or be blank. A symbol is defined as
a 17-bit relocatable address of the first character in the block of characters
to be reserved. The location symbol is defined as the momentary value of the
current location counter. The address field specifies the number of characters

4-5

SUBPROGRAM
COMMUNICATION
AND LINKAGE

to be reserved. The address field must contain a constant, a symbol or an
address expression whieh will result in a non-relocatable value. A zero
address field does not reserve space, but the location symbol will be defined
as above. When BSS, C is encountered, COMPASS will output the binary card
it is building.

ABLE BSS ,C 25

23 18 17

ABLE
.-

ABLE+ 24

'----

1211

ABLE+1

6 bits

65 o

25
characters

Two pseudo instructions establish communication between subprograms.
Programmers may define locations in a subprogram and declare them to be
entry points. Symbols may be referenced within a subprogram even if they
are not defined in that subprogram, provided they are declared as external
symbols. Symbols declared external in one subprogram, will be declared as
entry points in another subprogram. The resulting object subprograms will
be loaded at the same time, but they need not be assembled at the same time.

A location to be referenced by another subprogram is declared an entry point
with the ENTRY pseudo instruction. If a reference is made to a location in
another subprogram, the symbol defining that location must be declared an
external symbol in an EXT pseudo instruction. Using ENTRY and EXT,
COMPASS produces EPT and XNL loader cards.

On the COMPASS assembly listing, instructions containing references to
external names will have the usual format except the address field will be
prefaced by X. These digits are the relocatable word address of a previous
instruction in the subprogram area which references the external symbol.
If it is the first or only reference to the external symbol, the address field
listing will show X77777.

4-6

ENTRY

EXT

SYMBOL
DEFINITION
BY EQUATING

COMPASS places the subprogram relocatable address of the last instruction
referencing the external symbol into the XNL loader card to begin the threaded
list. If no reference is made to the external symbol in the subprogram, the
XNL loader card will contain the address 77777

8
, indicating there is no thread.

Each external name can be associated with two threaded lists; one for 15-bit
addresses and one for 17-bit addresses. All references are chained in the
threaded list with only the symbol in the EXT declaration appearing in an
XNL card.

< blank> ENTRY m
1

, m
2
,· . ., mn

The location field of ENTRY should be blank. H a symbol appears, it is
ignored by COMPASS. The address field contains one or more location names
separated by commas; it may not contain blanks. The field terminates with
the first blank or column 73.

Each subfield contains a symbol defined as a subprogram relocatable word
address by appearance in a location field elsewhere in the subprogram.

<blank> EXT m 1,m2,·· .,m
n

Symbols referenced but not defined in the subprogram must be declared as
external names in EXT pseudo instructions.

The location field should be blank; a symbol is ignored by COMPASS. The
address field contains one or more subfields up to column 73; subfields are
separated by commas and may not contain blanks. This field terminates
with column 73 or the first blank column.

Each subfield contains a symbol which is output to an XNL loader card. The
symbol must not be defined within the subprogram in which it is declared
external; it may be referenced only from an instruction assembled into the
subprogram area.

A symbol may be defined by Ejlquating it to another symbol, a constant, or an
expression. The symbol may be defined as an absolute value, a relocatable
word or relocatable character address. The symbol in the location field of
the pseudo instruction is equated to the value of the address field. A symbol
which is declared an entry point in the subprogram must not be equated to a
symbol declared as external.

4-7

EQU

EQU,C

When the symbols are equated, they are identical and interchangeable; all
symbols in the address field must have been previously defined by appearance
in the location field of a preceding instruction or in an EXT declaration.

< symbol> EQU m
This symbol is equ.ated to another symbol, a 15-bit word address or a 15-bit
value. The symbol in the location field will be non-relocatable or relocatable
as determined by th.e address field. If the location field does not contain a
symbol, an error occurs.

The address field determines the definition of the symbol in the location field.
It may contain:

. 15
An Integer modulo 2 -1.

A symbol defined by appearance in the location field of a preceding
instruction. The symbol in the location field is equated to the entry
in the addre~:s field. If the symbol in the address field is relocatable
into a given area, the symbol in the location field is also relocatable
into that area.

An address expression containing symbols defined as above, and
conforming to the rules for m subfields.

Expressions may not result in a complement relocatable value.

An entry point should not be equated to an external symbol. COMPASS will
not log an error but when the object subprogram is loaded an error will result.

< sYlnbol> EQU, C r
The symbol is equated to a 17-bit address, 17-bit value or another symbol.
The symbol in the location field will be nonrelocatable or relocatable as
determined by the address field. If the location field does not contain a
symbol, an error occurs.

The address field determines the definition of the symbol in the location field.
It may contain:

17
An integer modulo 2 -1.

A symbol defined by appearance in the location field of a preceding
instruction. The symbol in the location field is equated to the entry
in the address field. If the symbol in the address field is relocatable
into a given area, the symbol in the location field is also relocatable
into that area.

4-8

COMPASS
ASSEMBLY
OF CONSTANTS

OCT

An address expression containing symbols defined as above and con­
forming to the rules for r subfields.

Expressions must not result in a complement relocatable value.

Constants may be stated as octal, decimal or character in the source language.
The constants may be single, double or variable precision of fixed or floating
point format. Character constants may be placed into full words or character
positions. Constants may be placed into bit positions of variable length fields.

The pseudo instructions are:

OCT

DEC

DE CD

BCD

BCD,C

VFD

prepare octal constants

prepare decimal constants, fixed point

prepare double precision and/or floating point
decimal constants

prepare binary coded decimal (internal BCD)
word fields

prepare binary coded decimal character position
fields

prepare variable fields

<symbol or blank> OCT m
l
, m

2
,· .. ,m

n
Expresses constants as signed or unsigned octal integers. The octal integer
may consist of eight or less digits. As many constants as can be contained on
a card may be expressed in the address field; they are separated by commas.
The octal constants are assembled, right adjusted, for storage into consecutive
locations. The address field of OC T is terminated by the first blank or
column 73.

An optional binary scale factor may be stated by suffixing the constant by B
and expressing the scale factor as a signed or unsigned decimal integer of not
more than two digits. The magnitude of the constant after scaling must be
less than 224

The location field may be blank or contain a symbol which yields the 15-bit
word address of the first constant in the address field.

4-9

DEC

The address field contains as many subfields as the card will contain,
separated by commas. The subfields are of identical form at, and each
may contain a signed or unsigned octal integer of not more than eight octal
digits.. The address field is terminated by the first blank column.

Example:

OCT 77777777,12345670,76543210
octal result

word 1

2

3 ~
77777777

12315670
------I

76543210

word 1

2

3

OCT + 1, -57, 2040, -2
oct.a1 result

00000001

,'7777720

00002040

71777775

OCT 7232

[000_0_03_5_0 ____ -'

< symbol or blank> DEC d
1
, d

2
, . . . ,d

n
Constants may be expressed in decimal and converted for storage as single
precision fixed point binary constants. A decimal and/or binary scale factor
may be expressed for the 24-bit constant. The decimal constant may consist
of a sign and not more than seven digits with a magnitude of less than 223.
The decimal integer may be followed by a decimal or a binary scaling factor
or both. If both are stated, they may appear in either order.

Examples:

1

+2

-38

ID5

73D-2

-6D+IB4

200B-7

36B+2Dl

decimal integer

d,~cimal integer

d'~cimal integer

d'~cimal integer, decimal scale factor

decimal integer, decimal scale factor

decimal integer, decimal and binary scale factors

d,~cimal integer, binary scale factor

decimal integer, binary and decimal scale factors

4-10

DECO

FLOATING POINT
CONSTANTS

The magnitude of the constant after scaling must be less than 223. The con­
version is performed in three steps:

1. The decimal integer is converted to binary; the binary
integer must be less than or equal to 223_1 in magnitude.

2. The binary integer is multiplied or divided by 10d; d is
the decimal scaling factor. The magnitude of the result
must be less than 247. If the decimal scaling factor is
negative, a 47-bit fraction or mixed fraction is formed.

3. The result in step 2 is shifted the number of bits specified
by the binary scaling factor. A negative factor produces
a right shift; a positive scale factor causes a left shift to
be performed. If non-zero bits are lost from the high
order 24 bits-of the result from step 2, an error is flagged.
Low order bits of the intermediate result may legally be lost.

The location field of the DEC instruction may be blank or contain a symbol
which is the relocatable word address of the first constant in the address field.

The address field may consist of as many subfields separated by commas, as
the card can contain. The first blank terminates the address field and sub­
sequent information is treated as remarks.

< symbol or blank> DECD

Decimal values may be stored as double precision fixed point constants or
floating point constants. Either format requires 48 bits for storage. The
format of the DECD pseudo instruction is the same as DEC except for the
range of values and the point in floating point constants. The location and
address fields are treated in the same fashion for DEC and DECD. A symbol
in the location field references the first of the two words assembled as the
result of DECD.

Fixed point constant format is identical to that of the DEC single precision
constants, except that magnitudes may be larger. Up to 14 decimal digits may
be specified, expressing a value whose magnitude is less than 247. Decimal
and binary scale factors may be used as in the DEC pseudo instruction. The
signed 48-bit binary result is stored into two consecutive computer words.

Floating point constants are stored as two 24-bit words. Floating point con­
stants contain a decimal point. Floating point constants are stored as a 12-bit
characteristic and 36-bit mantissa. Negative values are held in complement
form.

4-11

BCD

BCD,C

23 12 11 0

word 1 t characteristic man-

word 2 tissa

Floating point constants may contain not more than 14 decimal digits and a
decimal point which may appear anywhere within the constant. Binary scaling
is not permitted. Decimal scaling is specified by suffixing the constant with
a D followed by a signed or unsigned decimal scaling factor. In the absence
of a sign, a positive value is assumed. The result after scaling must not
exceed the capacity of the hardware (approximately 10±308).

< symbol or blank> BCD

Characters are assembled for storage into consecutive computer words.
They are stored as (i-bit binary coded decimal character codes into address­
able character positions. The code is the internal BCD code.

The location field may be blank or contain a symbol which is established as
the 15-bit relocatable word address of the first word in the field. The decimal
integer, n in the addre ss subfield contains the number of words to be used; n
is separated from the characters to be converted and stored, by a comma.
Four characters can be contained in a word, 4n characters may be punched in
the card. If 4n characters cannot be held in the card before column 73,
characters are converted through column 72. The character positions and/or
words reserved by n, which cannot be expressed on the card, are filled with
blanks. Any information on the card after 4n characters is treated as remarks.

<symbol or blank> BCD, C n, c
1
c

2
, .. c

n
Characters may be assembled for storage into consecutive character positions
using the pseudo instruetion BCD, C. The characters are converted and
encoded as for BCD; but the address, the manner of storage, and the statement
of field length differ, The location field may contain a symbol or be blank.
A symbol, if present, is established as a 17 -bit character address,

The modifier, C, in the operation code denotes that character addresses and
character string length are to be processed, not words. The card terminates
after n characters or column 72, whichever occurs first, If n characters do
not extend through column 72, information between the n characters and
column 72 is treated as remarks; 1 ~ n ~ 215_1. Character positions are fined
from card columns lmtil column 73. Character positions reserved but not
expressed on the card are filled with blanks.

4-12

Characters are prepared for storage into consecutive positions. If the line of
code immediately preceding BCD, C in the source program assigns character
storage rather than word storage; the character string begins in the first
available character position. If the line in the source program deals with
word storage, BCD, C is assigned to the first character pOSition in the first
available word. The pseudo instructions which cause this variation are BSS,
C and BCD, C.

If the number of characters declared by BCD, C does not fill an entire word,
the unused positions in the trailing partial word are filled with zeros. If the
next instruction which consumes space in the object program is BCD, C, the
positions in the partial word are assigned to the leading characters to produce
a packed field.

Example:

MOTCC BCD 9,ABCDEFGHIJKLMNOPQRSTUVWXYZ=-+O.)-O$BCD4, */,(1234567890

The characters in the above line comprise the complete BCD character set;
including the blank.

Location Content

MOTCC A B C D
21 22 23 24

E F G H
25 26 27 30

I J K L
31 41 42 43
M N 0 P
44 45 46 47

Q R S T
50 51 62 63

U V W X
64 65 66 67
y Z = -
70 71 13 14

+ +0)

20 32 33 34

- -0 $ *
40 52 53 54
b / , (
60 61 73 74

1 2 3 4
01 02 03 04

5 6 7 8
05 06 07 10

9 0 6 6
11 00 60 60

4-13

VARIABLE FIELD
DEFINITION

VFD MODES

< symbol or blank> VFD mn/v,..., mn/v
This pseudo instruction enters octal numbers, character codes, relocatable
addresses or constants into variable length field. The field is assigned as a
continuous string of bits of specified length. Information is placed into the
field regardless of word length or character position. Unused bits in the
least significant bit positions of the final word in the field are filled with zeros.

Each VFD instruction begins filling a new computer word. A symbol in the
location field is defined as a relocatable word address. As many address
subfields as can be contained on a single card are allowed; the address sub­
field terminates with a eomma except when a blank terminates the entire VFD
pseudo instruction. The card and the VFD pseudo instruction are terminated
by a blank.

The mode parameter may designate one of four modes. The remainder of the
subfield is restricted by the specified mode. Values are entered into variable
fields right adjusted and character strings left adjusted.

The location field ma.y eontain a legal symbol or blanks. A symbol, if present,
yields a relocatable word address. The address field contains subfields of the
same general format.

TIl mode indicator

n positive decimal integer denoting the number of bit positions
in the variable field specified by this subfield. The range of
values for n varies with mode.

I the virgule separates the description of the field mode and
length from the statement of the field content.

v represents the content of the variable field which varies
according: to mode and is restricted by declared length.

The address field may !Contain one or more subfields. The mode and length of
the subfields may differ.

The statement of variable field length and content varies according to the mode.
Four modes may be expressed in a VFD address subfield.

o Octal

II 6-bit Hollerith (internal BCD)

A Word address arithmetic

C Character address arithmetic

4-14

OCTAL

HOLLERITH

WORD ADDRESS

VFD On/v
If the mode is octal, 0, n may be 1 to 24 and v may be a maximum of 8 octal
digits; the integer may be signed. If negative, the filed content is stored in
one's complement form. The value is entered into the field right justified
with leading bits inserted according to the sign and length. If the value exceeds
the length of the field, an error is flagged and the field is set to zero. A
binary scale factor may be supplied in the same manner as for an OCT pseudo
in struction.

A octal subfield is terminated by a comma or a blank. If terminated by a
blank, the address field is terminated and remaining information on the card
is treated as a comment.

VFD Hn/v
The programmer may enter Hollerith information which is stored as a 6-bit
internal BCD character codes; n must be expressed as a multiple of six. The
subfield, v, terminates with the first comma or blank. If the subfield does not
terminate after n/6 character an error results.

VFD An/v
The word address field consists of a constant, a symbol, or an expression
formed by the rules for address field arithmetic. The VFD address field is
terminated by the first blank column.

The location field may be blank, or contain a symbol.

n is the field length, restricted by the contents.

A type variable field length is 1 to 24.

If an expression yields a relocatable word address, the
value must be entered into the computer word right
justified to bit zero by the programmer. The express­
ion is evaluated modulo 215_1.

If the expression of the subfield results in a fixed value
the field specified by n will be evaluated 2n-1.

4-15

CHARACTER ADDRESS VFD Cn/v
The character addr(~ss variable field is governed by the above rules, except
that a minimum of 17 bits is required.

Example:

VFD a12/ -737, A21/ A-X + B, H24/ + A3, A15/NAME + 2, H12/BQ

A, X, and B are not relocatable symbols. Four words are generated,
with the data placed as follows:

012/-737 A21/A-X+B ----_./'-.... ~------~
23 12 11 0

ALPHA
I

7 0 4 o I (A-X+B)]

cont'd H24/+A3

--------~
23 15 14 32 0

ALPHA +1 C ,0 "]

cont'd NAME +2

----.~ ~-----......--.......-------
23 15 14 0

ALPHA+2 ~ 60 (NAME + 2)]
H12/BQ filler

~--------------~
23 18 17 12 11 0

ALPHA+3 22 50 I 0 0 0 0 J

4-16

MACRO USE IN COMPASS 5

..-

ASSEMBLY OF
MACROS AND
MACRO CALLS

MACRO
INSTRUCTION

A macro instruction is prepared with COMPASS pseudo instructions and macros
are called by other pseudo instructions.

MACRO

ENDM

1FT

IFF

LIBM

define macro name and/or formal parameter

terminate a macro prototype

if a given condition is true, assemble instructions when
the macro is called

if a given condition is false, assemble instructions when
the macro is called

fetch the named macro prototypes from the library tape
for use by the subprogram

Macros are called by:

< macro name> assemble the defined macro with this name, using the
parameters given at this point in the subprogram.

When an operation is performed frequently in a program or in many programs,
the instructions required to perform that operation may be coded once and
defined as a macro instruction. The macro is defined by pseudo instructions
and called by an assigned name. The same code is obtained and included in the
subprogram each time the operation is desired.

Examples of operations which might be devised as macros include convert
binary to decimal, delete blank characters or similar operations. Once defined,
the macro name is used as any other operation code.

A library macro instruction may be placed in file two of LIB for general use; a
programmer macro is defined by a programmer for use in a particular
subprogram.

5-1

LIBRARY
MACROS

PROGRAMMER
MACROS

The library macros may be unique to an installation; a list of macros should be
available to the programmer. When a macro defined in LIB is to be used by a
programmer, he must declare the macro name in the address field of a LIBM
psudo instruction immediately following the IDENT pseudo instruction of the
subprogram.

Library macros are placed on LIB using the MACRO control statement of
PRELIB.

The programmer may define macros for any subprogram immediately following
the declaration of library macros, if any. Programmer macros are defined
only in the subpro~~ram in which they occur and may be referenced within that
subprogram.

<symbol> MACRO

This statement indicates macro prototypes are to be processed, defines the
macro name, and decllares the formal parameters for the macro. The MACRO
pseudo instruction does not consume space in the object program. Instructions
and pseudo instructions follow until the pseudo instruction ENDM terminates
the prototype.

Any Location defined in the subprogram may be referenced within the macro;
however, a location within a macro is local to the macro and may not be ref­
erenced from outside the macro. Reference may be made within the prototype
to symbols external to the subprogram if they are declared by EXT pseudo
instructions within either the macro or the subprogram. An EXT declaration
within the macro remains in force for the entire subprogram.

If the EQU pseudo instruction appears within the macro instruction prototype,
the symbol in the location field is considered local to the macro and treated as
any location symbol in the macro.

The MACRO pseudo instruction must immediately follow the pseudo instructions
IDE NT , LIBM, or MACRO, except that comment cards (asterisk in column one)
and the pseudo instructions REM or TITLE may intervene. If MACRO follows
IDENT or LIBM, it defines a macro instruction; and the location field must
contain a symbol which is the macro name. If MACRO follows a macro def­
inition, it is a formal parameter continuation card; and the location field must
be blank.

5-2

MACRO
INSTRUCTION
PROTOTYPE

LOCATION SYMBOL
IN MACRO
PROTOTYPE

FORMAL
PARAMETERS
FOR MACROS

The prototype code for a macro instruction begins with the pseudo instruction
MACRO and terminates with ENDM. Any mnemonic or octal operation code or
modifier in the hardware repertoire, any COMPASS pseudo instruction except
IDENT t LIBM, ENDM, MACRO t or <macro name> may be used for the opera­
tion code field in the prototype.

The pseudo instructions ENTRY and EXT may appear within the prototype.
Location symbols within a macro may not be declared as entry point names.

The location field of an instruction in the prototype may contain a location
symbol of four characters or less; the location symbol is defined as local to the
macro prototype in which it appears and will not conflict if used elsewhere in
the subprogram. Parameters are not passed to the location field.

<symbol> MACRO

The first MACRO pseudo instruction must contain a legal symbol of 1 to 8 char­
acters in the location field; the first character must be alphabetic. This symbol
is the name of the macro instruction, not a location symbol. It may appear
only in the operation field of instructions in subprograms for which the macro
instruction is defined. The symbol in the location field should not be the same
as any mnemonic code in the hardware repertoire, the pseudo instruction list,
or the name of any other macro instruction defined for the subprogram in which
this MACRO occurs. If this macro prototype is destined for LIB, the name
should not conflict with any other macro on LIB.

Except as noted, the location symbol in the prototype is the same as any other
COMPASS location symbol.

Formal parameters declared in the address fields of MACRO pseudo instruc­
tions are referenced in the macro prototype. Formal parameters represent
elements of code to be defined when the macro instruction is used or called.

A formal parameter may represent any portion of an instruction or the entire
instruction except for the location field. This flexibility is attained through the
use of parentheses as delimiters in processing macro calls.

5-3

Iv1ACRO CALLS

An address subfield or portion of a subfield may be expressed as a single formal
parameter if that portion of the subfield is set off by a plus or minus sign, a
comma, a blank or, in the case of VFD, a slash. A BCD or BCD, C pseudo
instruction, however, may have only the n subfield expressed as a formal
parameter.

When the macro instruction is assembled into a subprogram, the macro call
contains actual parameters to be used when the macro instruction is executed.
COMP ASS transfers the actual parameter to the place at which the correspond­
ing formal parameter was referenced in the prototype. Instructions in the
prototype are assembled the same as other instructions in a subprogram.

The list of formal parameters must be enclosed in parentheses and individual
parameters are separated by commas. Blanks may precede or follow the para­
meter but may not be imbedded.

The address field of a MACRO pseudo instruction must not extend beyond column 72.
This does not limit the formal parameter list which may be continued on subsequent
MACRO pseudo instruction cards provided that three rules are followed.

Formal parameter continuation cards must have a blank location field.

The operation field must contain the pseudo-instruction MACRO.

A formal parameter field and its terminal comma must be contained
wholly on a single card prior to column 73.

Formal parameters ma.y appear in an operation code or address field of the
prototype which follows the MACRO pseudo instruction defining the macro name
and/or formal parameter list. Symbols in the formal parameter list and the
prototype are local to the macro instruction and identical symbols may be used
elsewhere in the subprogram without conflict. The macro name should be unique
within the subprogram.

<symbol or blank> <macro name>

A subprogram may contain any macro instruction defined for the subprogram by
LIBM and/or MACHO pseudo instructions and prototypes by referring to the
macro name in the operation code. If the macro is defined for the subprogram,
COMPASS will assemble and insert the macro code at that point.

The location field may be blank or contain a symbol which is the relocatable
address of the first instruction that consumes space in the assembled macro.
The address field oJ the macro name instruction provides constants, symbols,
expressions or Hollerith literals. The actual parameters retain the sequence
of the formal parameter list in the macro definition. When COMPASS assembles
the macro, the actual parameters are transferred to the position at which the

5-4

MACRO
NAME ADDRESS
FIELDS

formal parameters are referenced in the prototype. The address field of a
single card terminates at column 72 or with a right parenthesis.

The actual parameter list need not be contained on a single card. It may be
continued on subsequent cards with blank location field and the macro name
operation code repeated. An actual parameter must be wholly contained on a
single card. If the list is not closed by a right parenthesis, an error results.

The space consumed in the object program by a macro name instruction is
determined by the prototype and by the conditional pseudo instruction IFZ, IFN,
1FT, IFF within the prototype.

The address field contains the list of actual parameters enclosed by parentheses.
Parameters in the list are separated by commas. Single actual parameters may
also be enclosed by parentheses within the list. This allows an entire instruc­
tion or several subfields of an instruction in the macro prototype to be expressed
as a single actual parameter.

Single actual parameters may not include blanks or commas unless the entire
actual parameter is enclosed in parentheses. If a single actual parameter is
enclosed by parentheses, it may contain any character legal for the portion of
the instruction it represents except a right parentheses. Refer to the examples.
An actual parameter may be expressed as zero by providing only the comma.
Actual parameters not expressed before the list terminates are assembled as
zeros.

Actual parameters may not contain entries for location fields in the prototype.
These fields will not be modified by COMPASS when assembling a macro
instruction.

Examples of Macro Definition:

DIVIDE MACRO
LDAQ
DVA
STQ
ENDM

(PI, P2, P3)
PI
P2
P3

The MACRO is tagged DIVIDE. The set of instructions following is a
prototype of the instructions to be assembled when DIVIDE is called.

5-5

COMPUTE MACRO (Pl, P2, P3, P4, P5, P6, P7, P8, P9)
LDA Pl
LDQ Pl
ADA P2

SBAQ P3
VFD P4/P5
P4 **
DVA P6

STQ P7
LDA P7
P8 *-P9

ENDM

The above example shows how parameters may be specified in the opera­
tion field or the address field, or both, within the macro set of instruc­
tions. It also shows that a parameter may appear more than once in a
set of instructions.

JAYSON

Assembled:

TOSS

TOM
DICK
MARV

BETTY

MACRO
LDA

(Pl,P2,P3)
Pl

ADA P2
STA P3
ENDM

JAYSON ((DOG,3), CHARLES, CAT)

LDA DOG, 3
ADA CHARLES
STA CAT

MACRO (Pl, P2, P3, P4)
LDA TOM, 3
ADA DICK
STA MARV
UJP,P2
Pl
DEC P4
P3
ENDM

TOSS ((BDC 6, A), (I JOE, 2»

5-6

LlBM

ENDM

Assembled:

BETTY LDA TOM, 3
ADA DICK
STA MARV
UJP,I JOE, 2

TOM BCD 6, A
DICK DEC 0
MARV 00

< blank> LIBM name
1

, name
2

, . . . ,name
n

Library macros are stored on LIB via the PRE LIB system. LIBM instructs
COMP ASS to call a particular library macro from LIB. LIBM must be contig­
uous to the IDENT pseudo instruction or another LIBM pseudo instruction,
otherwise an error results. However, comment cards with an asterisk in col­
umn one or the pseudo instructions REM and TITLE may intervene. LIBM does
not consume space in the object program.

The location field of LIBM should be blank. A location symbol will be ignored
by COMPASS but included on the output listing. Subfields in the address field
contain the names of library macros separated by commas. The address field
is terminated by the first blank or column 73.

The programmer may use as many LIBM pseudo instructions as required.
However, a macro name must be wholly contained within a single subfield on a
single card.

< blank> ENDM <blank>

The prototype of a macro instruction is terminated by ENDM. The location
field and address fields of ENDM should be blank. A location symbol is ignored
by COMPASS but included on the output listing. If an entry appears in the
address field, an error results.

5-7

CONDITIONAL
PSEUDO
INSTRUCTIONS

IFZ

IFN

Assembly of instruetions and constants from a source subprogram may be con­
ditional as stated by the pseudo instructions listed below. COMPASS tests for
the condition and includes subsequent lines of code depending on the outcome of
the test.

IFZ if zero
IFN if non zero
1FT if true
IFF if false

The IFZ and IFN pBeudo instructions may be used as desired in a subprogram.
1FT and IFF, which compare a parameter string against stated variables, may
occur only within a macro prototype. Macros are the only instance of such a
parameter string which COMPASS can detect. In IFZ and IFN, symbols in the
address field must be previously defined. Symbols in the third subfield of IFF
and 1FT must also be previously defined.

<blank> IFZ m,n

An arithmetic expression may be stated and tested for zero to determine wheth­
er subsequent instructions should be included in a subprogram. The expression
must conform to the rules for address expressions. A symbol in the location
field is ignored by COMPASS but is included in the output listing.

The address field eonsists of two subfields.

m is an expression, the value of which is computed as any address
expression and evaluated modulo 215_1.

n contains an integer or an expression which results in a non­
relocatable value.

If the expression in the m subfield results in zero, the following n lines of code
are assembled into the object subprogram. If the m subfield yields a non-zero
value, the n lines of eode are skipped and do not appear in the subprogram.
Symbols in the address field must be defined by appearance in the location field
of a preceding instruetion.

<blank> IFN TIl, n

This pseudo instruction is the same as IFZ except that n lines of code are
assembled if the value in the m field is non-zero.

5-8

1FT

<blank> IFT m, p, n

Within a macro prototype, lines of code may be excluded or included in an object
subprogram using the IFT pseudo instruction. The IFT pseudo instruction
compares the first two subfields in its address field for literal equality.
If the two character strings are equal, following lines of code are assembled.
If they do not compare, the lines of code are excluded from the object program.

The location field of the IFT pseudo instruction should be blank. If a symbol is
present it will be ignored by COMPASS but will be printed on the output listing.
The address field has three subfields.

m designates the first comparand
p designates the second comparand
n must result in a non-relocatable value denoting the number of

lines of code to be assembled or excluded

The m and p terms may be character strings or formal parameters; the char­
acter string may not include slashes. If a character string is identical to a
formal parameter, the string must be enclosed in slashes. Either m or p may
be expres sed as a character string.

The actual values used in the comparison are obtained by COMPASS as follows:

If the subfield is enclosed in slashes, the content of the subfield is used
in the comparison.

If the subfield contains a formal parameter, COMPASS substitutes the
corresponding actual parameter before the test is made.

If the subfield is not a formal parameter and is not enclosed in slashes,
the character string is used as if slashes had appeared.

The n term must be a symbol, a constant, or an expression which results in a
nonrelocatable value. Symbols in the address field must be previously defined.

If the m and p terms compare bit for bit, the n lines of code immediately follow­
ing the IFT pseudo instruction are assembled into the subprogram. If the m and
p terms are unlike, the n lines are skipped and not assembled by COMPASS.

Examples:

COMPUTE MACRO
LDA
DVA
STQ
IFT
ENA
ENI
ENDM

5-9

(Pl, P2, P3, P4, P5, P6)
Pl
P2
P3
Ip61, P5, 2
P4
P6

IFF

The following sequence of instructions occurs within a subprogram and the call
refers to the previ.ously defined macro set.

CAKE
STA
COMPUTE
'LDAQ

TABLE
(B, C, A, LOCI, P6, 56)
QUANTITY

The assembler would generate:

STA TABLE
CAKE LDA B

DVA C
STQ A
ENA LOCI
ENI 56
LDAQ QUANTITY

Since the actual parameter substituted for P5 is identical to the character
string "P6", the assembler includes the two instructions, ENA and ENI.
The 1FT instruction does not appear in the object subprogram.

STA
COMPUTE
LDAQ

TABLE
(B, C, A, LOC2, 54,56)
QUANTITY

The assembler would generate:

STA TABLE
LDA B
DVA C
STQ A
LDAQ QUANTITY

Since 54 is not equal to the characters enclosed in slashes in the 1FT
pseudo instruction, the assembler does not assemble the two instructions,
ENA and E:~I. Assembly continues with the next instruction from the
input deck.

<blank> IFF m,p,n

The conditional pseudo instruction IFF functions the same as 1FT except
comparands are unUke, the n lines of code are assembled. If the m and p terms
are identical, the n lines of code are excluded.

5-10

OUTPUT LISTING

FORMAT

COMPASS OUTPUT LISTING 6

The output listings from COMPASS contain the octal relocatable storage
addresses and relocatable and/or absolute contents of words in the object
subprogram. The source code is printed side-by-side with the object code.
Summaries of relevant information are printed before and after the subpr<r
gram code. The representation of the object code on a line of the listing
depends on the type or class of machine instruction or pseudo instruction
being printed.

The output listing format is shown in the accompanying table. The title of
the listing is printed at the top of each page. A title is the subprogram name
from the IDENT pseudo instruction or a title expressed via a TITLE pseudo
instruction. The page number is printed in the upper right hand corner of
each page of output.

Preceding the body of the subprogram are summaries of:

undefined symbols

doubly defined symbols

external names

entry point names

These are followed by storage summaries of

length of subprogram 5 octal digits

length of com mon 5 octal digits

length of data 5 octal digits

The subprogram is printed on subsequent pages; CaMP ASS provides several
options for incorporating comments and remarks into the source program.
Listing may be suppressed and resumed.

Following the source subprogram listing, single precision literals are printed
three per line; double precision literals are printed two per line. The 5-digit
octal relocatable address of the literal is followed by the 8 or 16 octal digits of
the converted number. The number of errors detected in the subprogram is
printed and the sym bol reference table follows as the final COMPASS output.

6-1

Listing formats are given below:

Printer Columns Content

COMPASS Subprogr:lm Listing

2-8

9

10-14

15

16

error code

blank

octal relocatable storage address

character position indicator or blank

blank

Machine Language Instructions

17-24

25

26-27

28

29

30

31

32-36

37

38

39-40

Constants

25-32

8 octal digits of the word destined for storage,
punched into RIF card. The representation is
shown without regard to relocation.

blank

2-digit octal operation code

blank

content of bit 17 of assembled word; may be
operation modifier. For 17 -bit address
instructions, the content of bit 17 is printed.

blank

alphabetic area relocation indicator

P - subprogram area
D - data area
C - common area
X - address is part of external string
blank - absolute value, no relocation

5-digit octal value, either a relocatable word
address or absolute value

blank

a. content of bits 16-15 of instruction which
may be index designator

b. content of bits 1-0, character position
indicator for 17-bit address instructions

blank

8-digit octal representation of constants
assembled into 24-bit words

6-2

LISTING
CONTROL

REM

NOLIST

Printer Columns Content

30-34

All Lines

40-119

5-digit octal relocatable address assigned
to location term of EQU pseudo instruction

80-column image of source subprogram
code line

The programmer may control COMPASS output listings with the following
pseudo instructions. The listing control pseudo instructions are written as
any COMPASS format instruction.

REM insert remarks

NOLIST suppress output listing

LIST resume output listing

SPACE space lines on output listing

EJECT eject printer paper to top of next page

TITLE begin succeeding pages with title given

asterisk print card columns 2-80 as a comment
(card column one)

<any> REM <any>
Remarks may be inserted into the source program to appear on the output
listing with this pseudo instruction. All fields except columns 9 to 13 of
the operation code field may be used for remarks.

THIS IS REM A REMARK PSEUDO-INSTRUCTION

<blank> NO LIST <blank>
This instruction suppresses listing of the subprogram until the pseudo instruc­
tion LIST appears in the source program. Regardless of NOLIST, lines in the
source program containing errors will be listed. The location and address
fields are ignored by COMPASS. The pseudo instruction will not appear on the
output listing.

6-3

LIST

SPACE

EJECT

TITLE

<blank> LIST <blank>
The pseudo instruction LIST resumes output listing after NOLIST has occurred.
If LIST occurs without a preceding NOLIST, it is ignored. The pseudo instruc-­
tion will not appear on the output listing.

<blank> SPACE: m
This pseudo instruction spaces the output listing; the designated number of
lines are skipped on the printer paper. If as a result of SPACE, the printer
begins a new page of output, printing resumes with the first line of the new
page. SPACE instructs the printer to skip m lines or to the top of the next
page, whichever is less. A symbol in the location field is ignored by COMPASS.

The parameter m, and unsigned decimal integer, designates the number of
lines to be spaced. Zero through 32767 lines may be specified. However, the
upper range would not exceed the number required to move the paper one page.

<blank> EJECT <blank>
The pseudo instruetion EJECT provides a more efficient way to move to the
top of the next page. COMPASS will feed the current page through the printer
and the line succeeding EJECT will be the first line of subprogram information
on the new page. A symbolJn the location field will be ignored by COMPASS.
The address field must be blank or an error will result. Remarks may begin
in column 41.

<blank> TIT LE <title>
The TIT LE pseudo instruction describes a title to be printed at the top of each
page of a listing.

If the first page of thE: listing is to be titled, TITLE must immediately follow
IDENT. A symbol in the location field will be ignored by COMPASS. The
contents of ~olumns 20-72 of the address field contain the title. In the body of
the subprogram, TIT LE information replaces the present heading obtained
from IDENT or preceding TITLE pseudo instructions. The first page follow­
ing the TITLE pseudo instruction will have the new title. If the title is to head
succeeding information, the pseudo instruction EJECT should be placed immedi­
ately following TITLE; the new page will have the inserted title.

6-4

COMMENT
CARDS

COMPASS
ERROR
MESSAGES

When COMPASS detects a card with an asterisk in column one, the content of
the card except for column one is printed on the output listing as a comment.
No other action is performed.

If an error occurs in a line of code in a COMPASS source subprogram, an
error flag is printed on the extreme left of the output listing. These flags
indicate the field in which the error occurred and, in some instances, the
exact error. The exact meaning of the flag depends on the particular instruc­
tion or pseudo instruction in which the error was detected. Generally, a field
containing an error will be assembled as zeros. COMPASS provides nine
error flags.

Error Flag

A Format error in address field.
Format errors are peculiar to each instruction.

C Attempt to assemble information into common.
The flag is given and the instructions are processed as if PRG was
encountered.

D Duplicate Symbol.
The identical symbol has been used in more than one location field
of the subprogram. The error flag is issued; the original definition
the symbol holds the second and subsequent instructions using the
symbol in the location field are assembled as if no symbol occurred.

F Full Symbol Table.
a. If the symbol in the location field would overflow the assembler
symbol table, assembly proceeds after the F error flag is given; the
F error will be issued for each additional location field symbol in the
subprogram. All F flagged symbols are undefined and any reference
to these symbols in address fields of the subprogram will yield a U
error.

b. A COMPASS table other than the symbol table may produce this
error flag but such instances will be rare.

L Location Field Error.
Illegal use of symbols in location fields yields an L error flag. The
error may result from a symbol in the location field of an instruction
which does not allow it, a missing symbol where one is required, or
a format error such as imbedded blanks in a location symbol.

M Modifier Error.
Error in modifier subfield of operation code field.

6-5

COMPASS
CONTROL
STATEMENT

PARAMETERS·

o Operation Code Error.
An unrecognizable operation code occurred; the operation
field is assembled as zeros.

U Undefined Symbol.
A symbol which appears in the address field of an instruction
has not been defined in a location field. It may be missing
from a legal location field or because of an F error.

T Truncation Error.
A symbol defined as a 17 -bit character address is used in a
subfield eonsisting of only 15 bits. The error is detected when
the character address refers to character position 2, 3, or 4.
The two least significant bits are truncated and the most signifi­
cant 15 bits are used.

To call COMPASS to assemble source subprograms the SCOPE ~<library name>
statement is used.

The COMPASS statement has the form:

~ COMPASS, parameters

The statement has five optional parameters which may be expressed on the
card; they are free field and are separated by commas. Parameters have the
general form: option = logical unit number (u in the discussions given below).

The option must begin with a character I, P, X, L or R. Additional characters
preceding the equal sign are ignored, thus L and LIST are the same parameter.
If only the option is stated, COMPASS will make a standard assignment for the
option.

INPUT = u
Source subprogram input unit; if the parameter or unit equation is absent,
input from the standard input unit, INP, is assumed.

PUNCH = u
Punch option, u represents a logical unit number assigned to an output device.
If the parameter is absent no punchable binary output will be produced. If only
P appears, binary output will be produced on the standard punch unit, PUN.

XECUTE = u
Binary output for load-and-go option, u represents a logical unit number
assigned to a mag;netic tape unit. If the parameter is absent, no load-and-go
tape will be written. If only X appears, binary output will be produced on the
standard load-and-go unit, LGO.

6-6

LIST = u
List option, u represents a logical unit number assigned to an output device.
If the parameter is absent, no listing will be produced. If only L appears,
the listing will be produced on the standard output unit, OUT.

REFERENCE
If one of the COMPASS parameters is R, a symbol reference list is printed
on the output listing. The symbol reference list in alphabetic order shows
the symbol with its assigned address or value. The addresses are prefaced
by an area relocation indicator.

6-7

SCOPE ORGANIZATION OF I/O 7

PROGRAMMER
UNITS

Under SCOPE , input/output devices are specified by logical unit numbers
The logical units are organized according to function and the programmer or
the operator assigns the logical unit to a particular type or unit of hardware
through SCOPE control statements. Input/output operations may be independent
of a particular configuration of hardware or type of input/output device. The
logical unit may be assigned to any hardware unit, provided that equipment has
the capability required by the logical unit.

Logical units are programmer units, scratch units, and system units. Pro­
grammer units are unrestricted as to use for any run in a job. Once defined,
the definition of the programmer unit is fixed for the entire job. When a new
job is encountered, all programmer units are released. Scratch units must be
defined for each run and are released at the end of the run. Scratch units are
assigned and used by library programs as required and may be used by the
programmer.

System units are assigned to specific physical equitment within SCOPE but
these assignments may be altered by the operator. System units are used for
certain common functions; they are referenced by SCOPE and may be refer­
enced by the programmer. When jobs are stacked, SCOPE protects system
units from input/output requests which might destroy their contents or position
the units to the detriment of the jobs. P:\otection is not provided when jobs are
not stacked.

All logical units are referenced by a number, 1 through 63. Certain mnemonics
are associated with the system units, they simplify discussion, but they are not
interpreted by SCOPE.

At the option of the programmer, system units may be protected by SCOPE.
However if protection is not desired, the programmer may so state in the JOB
statement. Non-stacked jobs always have unprotected I/O. In the discussion
of logical units, protection is assumed.

These units are for general purpose use of the programmer. They are released
at the end of the job unless saved by the programmer. Programmer units are
numbered 1-49.

7-1

-

SCRATCH
UNITS

SYSTEM
UNITS

Scratch units are for temporary use by the programmer. They are released
at the end of the run.. Scratch units are numbered 50-55.

Selection of density on the following units, except Loo, is ignored when protec­
tion is active. The request containing the density statement is processed
according to the usual procedures in all other respects.

Logical
Unit

Number

56

57

58

59

Mnemonic

LGO

ACC

CFO

CTC>

Description

Load and Go.

Object programs produced by assembly or compila­
tion or transferred from another unit, may be stored
on the LGO prior to loading and execution. LGO
must be defined in each job. The unit is released
after the object programs have been loaded; it may
then be used as a scratch unit.

Accounting record.

ACC is defined by installations keeping an accounting
record. SCOPE does not use the unit.

Comment from operator.

The operator communicates with SCOPE or other
programs via CFO. Only READ requests are
allowed for CFO. I/O protection assumes that CFO
is the console typewriter, a buffered typewriter, or
an on-line card reader. If CFO is equated to stand­
ard input, 60, protection is defined by that unit.

Comment to operator.

The operator receives comments from SCOPE or
other programs via CTO. Only WRITE requests are
allowed on CTO. If CTO is equated to OUT, 61,
protection is defined by that logical unit. CTO is
assumed to be a console typewriter, a buffered type-­
writer, or an on-line printer; protection is based on
this assumption.

7-2

Logical
Unit

Number

60

61

62

Mnemonic

INP

OUT

PUN

Description

Standard input.

Protection for this logical unit prevents I/O requests
which would destroy information or position the unit
so that information pertinent to the current job would
be lost. Specifically, if INP is assigned to magnetic
tape, WRITE, REWIND, UNLOAD, SEFF, SEFB,
WEOF and ERASE requests are prohibited. If the
end-of-file status line is on, requests may be issued
as shown:

Request Allowed
Last Request READ READB BKSP

READ no yes yes
READB yes no yes
BKSP no no no

Standard output.

OUT holds listable output from SCOPE and other
programs. Protection is the same as specified for
PUN below.

Standard punch.

PUN receives punchable output from library pro­
grams such as COMPASS or FORTRAN. It may be
used by programmers for other punch purposes.

When a WRITE or ERASE request is issued for OUT
or PUN, SCOPE checks for end of tape. When it is
detected the reel is closed and the unit is unloaded.
Closing a PUN reel consists of writing two end-of­
file marks and the one-word BCD record, ER /\/\ .
A message - "LOAD NEW XX" - is written on CTO.
SCOPE waits for the unit to be reloaded.

Protection for PUN and OUT assumes these units
are assigned to magnetic tape. Only the programmer
requests, WRITE, BKSP and ERASE are allowed;
BKSP is allowed only following WRITE or ERASE.

7-3

INPUT /OUTPUT
REQUESTS

CALLING
SEQUENCE

Input/output requeE.ts are written in COMPASS programs as calling sequences
for monitor routines controlled by a central input/output routine, CIa. CIa
performs the foLlowing functions:

Selects an available channel.

Rejects a request if neither the unit nor any channel through which it may be
accessed is available, or if an illegal function code is given.

Furnishes status for all requests.

Initiates input/output operations and returns control so that processing may con­
tinue while the operation is performed.

Responds to external interrupt and transfers control to a user specified
interrupt subroutine.

The machine instructions for input/output operations should not be used when
running a program under SCOPE.

Input/output operations are specified by entering an octal function code and
other parameters into a calling sequence. The function code defines the
operation.

Function Valid Unit References
Code Request if Protection Selected

01 READ 1-58, 60, 63
02 WRITE 1-57, 59, 61, 62
03 READB 1-57, 60, 63
04 REWIND 1-57, 63
05 UNLOAD 1-57
06 BKSP 1-57, 60-63
07 SEFF 1-57, 63
10 SEFB 1-57, 63
11 WEOF 1-57
12 ERASE 1-57, 61, 62
1:3 STATUS 1-63
14 FORMAT

BCD 1-63
Binary 1-63
Low 1-56
(200bpi)
Medium 1-56
(556bpi)
High 1-56
(800bpi)

7-4

The input/output operations are:

Function
Code Mnemonic t

01 READ

02 WRITE

03 READB

Operation

read n words starting at first word
address

write n words starting from first
word address

read n words backwards and store
backwards starting at first word
address + n - 1

The input/output operations are requested by the calling sequence:

L RTJ

L+l function code

L+2 jump

L+3 mode

L+4

L+5

L+6 normal return

The tape control operations are:

Function
Code Mnemonict

04 REWIND

05 UNLOAD

06 BKSP

07 SEFF

10 SEFB

11 WEOF

12 ERASE

CIO

logical unit, interrupt indicator

reject address

first word address

number of words

interrupt address

Operation

rewind

unload

backspace one record

space forward past one end-of-file
mark

space backward past one end-of-file
mark

write end-of-file mark

erase

t Mnemonics are used for discussion purposes only; they are not interpreted by SCOPE.

7-5

PARAMETERS

The tape control operations are requested by the calling sequence:

L R'I'J CIa

L+l function code logical unit, interrupt indicator

L+2 junlP reject address

L+3 interrupt address

L+4 normal return

The unit STATUS operation function code is 13. Unit STATUS is requested by
the calling sequence:

L RTJ CIa

L+l function logical unit, dynamic flag

L+2 normal return

When a STA TUS requ.est is made, SCOPE provides the status in the Q register
and the unit condition in the A register.

The FORMAT selection function code is 14. Unit FORMAT selections are
requested by the following calling sequence:

L RTJ CIa

L+l logical unit, format code

L+2 jillnp reject address

L+3 normal return

CIa must be declared as an external symbol in the source
subprogram

Function
code

Logical unit

octal number, 1-14, designating the function to be performed

number may be 1-63 depending on function code

7-6

Interrupt
indicator selects interrupt on normal or abnormal end of operation

o

1

no interrupt

interrupt on abnormal end of operation only, includes
end-of-tape, end-of-file mark, load point, parity error,
and lost data for magnetic tape and equivalent conditions
for other hardware

2 or 3 interrupt on end of operation, normal and abnormal

Mode

First word
address

Number of
words

Reject
address

Dynamic
flag

Jump

designates the recording mode in octal. If no mode is desig­
nated, binary mode is assumed and density is under control
of the operator.

00 do not select a new mode

40 no density, even parity

41 no density, odd parity

50 low density, even parity

51 low density, odd parity

60 medium density, even parity

61 medium density, odd parity

70 high density, even parity

71 high density, odd parity

symbolic word address of the first word in the input or output
buffer area

decimal number specifying the number of words to be
transmitted

symbolic word address; control returns to location L+2, if the
request is rejected

if non-zero, the hardware unit is interrogated for status uncon­
ditionally (see STATUS requests)

any legitimate jump to the reject address

7-7

NORMAL
RETURNS

REJECT

INTERRUPT

UNIT STATUS
REPLIES

Interrupt

Code

address of closed interrupt subroutine to which control is
given when the specified interrupt occurs. If no interrupt
is requested the normal return is written in location L+5
for funetion codes 1-3, and in location L+3 for function
codes 4-12.

tape format selection, any not listed below are illegal

1 BCD 4 Medium

2 Binary 5 High

3 Low

SCOPE initiates the operation specified by the calling sequence and returns
control to the normal return so that processing can continue while the operation
is performed. Whl3n eontrol is given to the normal return, the Q register con­
tains the status of the logical unit.

An input/output or tape control request can be rejected because the unit is
unavailable, no channel is .available, or the function code is illegal for the type
of equipment. Upon reject for unit or channel unavailability, the A register is
zero; for an illegal function code, the A register is non-zero. For any reject
return, the Q register contains status of the unit.

If an interrupt address is specified and the interrupt indicator is non-zero,
control transfers to the interrupt address at the end of the operation or upon
abnormal condition interrupt. Before giving control to the interrupt address,
SCOPE saves the A, Q and three index registers; and it enters the current
condition and status of the unit in the A and Q registers. Control transfers to
the interrupt address by a return jump. This address usually contains an
unconditional jump. The programmer transfers control to SCOPE from the
interrupt routine by returning through linkage established by the return jump.
Upon regaining control, SCOPE restores the A, Q and index registers and
returns control to the running program.

When a STATUS request is made or when control transfers to normal, reject,
or interrupt address, the Q register contains information on the status of the
unit.

7-8

i.s

i.c

r

00

1918 1716 o

status

indicates logical status

for STATUS request: unit is static; channel
available

for reject return: hardware reject

for normal return (non-STATUS): unit is
dynamic

01 channel is not available for I/O or STATUS
request processing

10

11

1

o

previous operation is incomplete

previous operation is complete but unit inter­
rupt 15 is required for executing user inter­
rupt request

is the last channel to which unit was connected.
It mayor may not still be connected to this
channel.

status of unit (as shown in the table) - If the
unit is dynamic; current unit status at the time
of the request is given. If the unit is static it
reflects the results of the last completed
operation.

is the retention code key obtained from first
record of a labeled tape.

tape contains a retention code in the label
indicating the contents of the tape should not
be destroyed.

tape may be ust:>rl for output.

7-9

STATUS MT CR CP PR PT TY
BITS (322X or 362Xlt (3248/405) (3245) (1612) (3691) (3692)

XXXI 00 Ready Heady Ready Ready Ready Ready
i

XXX2 01 Busy Busy Busy Busy Busy

XXX4 02 Write
Enable

XXIX 03 File EOF
Mark

XX2X 04 Load
Point

XX4X 05 EOT Hopper Tape Sup-
Empty ply Low

XIXX 06 Density (l=Med)
(O=Low)

X2XX 07 Density
(l=High)

X4XX 08 Lost Data Fail to Fail to
Head (06) Feed

1 XXX 09 End of
Operation

2 XXX 10 Parity Header Compare Parity
Error Error Error Error

4 XXX 11 Binary Binary Binary Binary
Mode Card (02) Mode Mode

lXXXX 12 Stacker Full
or Jammed (04)

2XXXX 13 Int. Due, Ready Int. Due, Ready Int.Due Ready,
or Busy (07) or Busy Not Busy

4XXXX 14 (08) Int. Due Int. Due Int. Due
to EOO to EOO to EOO

lXXXXX 15 (09) Int. Due InLDue to Int. Due toAb-
to EOO Abnormal EOO normal EOO

16

17

STATUS TABLE

7-10

UNIT CONDITION
REPLIES

INPUT /OUTPUT
CONTROL

TAPE CONTROL

When a STATUS request is made or when control transfers to the normal inter­
rupt address, the A register indicates the current condition of the unit.

2322

c

1

o

tca

1617 o

1f tca

is the condition

unit is static

unit is dynamic

is the last function code (other than STATUS,
13) given for this unit.

is the termination character address of data
transmission contained in the Buffer Control
Register.

CIa controls the input/output channels. A channel is released for further oper­
ations as soon as possible; and hardware which can be connected to more than
one channel is used to the best advantage.

Read, write, and read backward operations require the channel throughout
execution. When an input/output operation is initiated the channel becomes
busy. When an operation is completed, the channel is free and the unit status
is recorded. If the user requests an end of operation interrupt·; control passes
to the specified interrupt subroutine; or if only an abnormal end of operation
interrupt is requested, control transfers to the interrupt routine when an
abnormal condition occurs.

The direction of tape motion after a backspace request depends upon whether the
last read operation was read or read backward. If backspace is given after read
backward, the tape moves forward one record. Other motion requests indicate
true direction of tape motion and are not affected by read backward.

Tape control operations require the channel only during initiation of the function
and do not cause the channel to be busy. If the user requests an interrupt at the
end of a tape control operation, however, CIa considers the channel to be busy
until the interrupt occurs.

7-11

STATUS Status checking does not involve any action on the unit. It may require use of
a channel to interrogate the unit if the unit is dynamic or dynamic STATUS is
requested.

The unit is busy when it is performing an input/output or tape control operation.
It is also considered to be busy if a tape control operation without interrupt has
been initiated but its completion cannot be determined because all available
channels have become busy through other operations. Status of the unit is
given with respect to the user's ability to reference it.

For input/output operations, a unit is not busy after interrupt occurs. For tape
control operations, a unit may be determined to be not busy during execution of
a status request if a channel is available to sense the equipment status.

When status is requested, the current status is given if the unit is busy. When
the unit is not busy" the status reply contains information about the operation
last completed.

A user may demand. that the unit be interrogated by setting the dynam ic flag in
a STATUS request. The current status is returned to the user. If a channel is
available, the unit i.s connected (if not still connected as a result of a previous
operation), and the unit status is copied. If no channel is available only the
logical status is provided.

CAUTION: If the unit must be connected to obtain its status, the status lines
carrying lost data signals are cleared by the hardware when a connect is issued.

EXAMPLES of input/output:

EXT CIa

RTJ CIa

01 12, 3

LOCATION UJP REJECT1

READAREA

9

INTROUT

NEXT

CIa must be declared as an external symbol. A read operation (function code
01) is to be performed on logical unit 12. Nine words are to be read starting at
READAREA. After the operation is initiated, control transfers to the normal
return at NEXT and the A and Q registers contain information about logical
unit 12.

7-12

If the unit or channel is unavailable or the function code is not valid, control
transfers to LOCATION which contains an unconditional jump to REJECT!.
When unit or channel is unavailable, the A register is zero. When the function
code is illegal, the A register contains the function code, or 77777 if an attempt
was made to use a 00 function code. The Q register contains the current cond!.­
tion of logical unit 12. If the request is honored, control transfers to the inter­
rupt subroutine at INTROUT when the data transfer is completed. The A, Q
and index registers are saved. At that time, updated current status for logical
unit 12 is available in register Q and the condition in register.A. A new mode
is not selected.

EXT CIO

RTJ CIO

4 20

LOC UJP REJECT 4

GOON

CIO is declared as an external symbol. Rewind (function code 04) is initiated on
logical unit 20. Since no interrupt is chosen (interrupt indicator is zero), no
interrupt address is specified and the channel is available for another operation
once rewind is initiated. Mter rewind is initiated, control transfers to the
normal return at GOON and the Q register contains the status of logical unit 20.
For reject, control returns to LOC; the A register contains zero for unavailable
unit or channel and non-zero for illegal function code, the Q register contains
the updated status of logical unit 20.

STA TUS Example:

EXT CIO

RTJ CIO

13 25

CONTINUE

STATUS (function code 13) is requested for logical unit 25. The updated status
for logical unit 25 is in the Q register; the current condition of unit 25 is in the
A register. Control returns to CONTINUE.

7-13

REJECTED I/O
REQUESTS Any input/output request except STATUS can be rejected. Conditions which

return control to the reject address are the following:

illegal function eode

illegal format request

channel busy

unit busy or not ready

hardware reject

interrupt not processed

The updated status words are in the A and Q register when the return is to the
reject address. On a normal return, the registers contain the status of the
unit prior to honoring the request.

When the reject occurs the programmer must have considered the particular
unit in planning remedial action. The hardware requires different action
depending on type and model. The remedial action must take this into account.
The response to a reject may consist of several actions:

ignore the request and allow the program to proceed

take alternate action such as simulation of the request

instruct the 'Operator to action that would enable the request
to be executed, i. e. , make the unit ready

terminate the program

7-14

TYPES OF REJECTS On the return to the reject address the A register is a flag. If A contains a
non-zero value, the reject was caused by an illegal function code and the illegal
code is in A. If the illegal function code was zero, A contains 77777 S.

If A is zero the program must examine the £s bits of the UST word in Q.

£s Meaning

Hardware reject. Any of the conditions noted for external
rejects in the appropriate hardware reference manual
occurred. Generally, the unit is (busy)*, which state is
defined by the unit. It is a matter of timing and the type of
indication supplied by the unit. This return usually indi­
cates a hardware malfunction or disturbance of the control
information used by EIO.

Channel busy.

The channel is busy but the unit is free. The channel may
be in use by another unit or SCOPE/CIa has been given
inaccurate or inadequate information. The tables may have
been altered by a program or the operator.

102 Unit busy or not ready.

The channel is free but the unit is busy. The unit may be
busy because some previous request is still in process.
For example, the final data transmission is not complete
or a rewind or backspace is in process. The unit may be
not ready which may require operator intervention depending
on the unit involved.

112 Both unit and channel busy.

This reject occurs when the programmer has specified
an interrupt subroutine for a previous operation on the
same unit, and the interrupt subroutine has not been entered.
The interrupt is available but the interrupt system has been
disabled by entry to CIa or by the user. The only recovery
is to enable the interrupt system or to terminate the job.

7-15

SCOPE CO'NTROL STATEMENTS 8

SCOPE CONTROL
CARDS

SCOPE is directed toward efficient control of hardware and programs by pro­
grammer and operator. SCOPE control statements specify the services for
program execution; they allow the user to establish the peripheral equipment
required and to call and operate library programs, or to load relocatable binary
programs and operate them. SCOPE provides diagnostic routines and error
checking.

SCOPE control statements consist of a statement name or mnemonic and param­
eters necessary to define the operation. Control statements may be read in
sequence from the Standard Input unit, or may be serially presented by the
operator. The operator enters them via the Comment From Operator unit
which is usually the console typewriter. If a control statement has specific
parameters and all are expressed, the final parameter may be terminated by
a comma and comments placed following the parameter list. The restricted
field control statements are:

SEQUENCE

JOB

XFER

LOAD

ENDSCOPE

SNAP

Examples:

~SEQUENCE, 426, COMMENT

~JOB, c, i, t, COMMENT

7
9XFER, 20, TIDS IS A COMMENT

SCOPE control cards contain a 7, 9 punch in column one; there must be no
other punches in column one. Columns 2 through 80 contain Hollerith informa­
tion or blanks. The first information in the card must be the statement name;
parameters are separated by commas. Except for these restrictions the card
is free field.

8-1

•

INPUT DECK
STRUCTURES

Operator control statements are allowed once per job. Programmer control
statements are inserted at appropriate points in the job deck. A flow diagram
at the back of this manual shows the mandatory sequence of control statements
in a programmer deck. In certain instances, functions obtained by various con­
trol statements are shown. The major purpose of the diagram is to show the
proper position of control statements in programmer decks.

Job input to SCOPE is on the standard input unit, INP. Assuming that INP is
magnetic tape and that jobs are stacked, the input would consist of job decks
each preceded by a SEQUENCE statement and terminated by an end-of-file.
The SEQUENCE statement must be followed immediately by a JOB statement.
A stack of jobs on INP appears as follows:

~SEQUENCE, j

7 . NS
9JOB c, 1, t, NP' ND

control statements

programmer decks

control statements

7
9RUN. t, NM

data

EOF

7
9SEQUENCE, .

7
9JOB, .

EOF

~SEQUENCE,

7
9JOB ,

EOF

;SEQUENCE, .

8-2

SEQUENCE

7
9JOB, .

EOF

~ENDREEL

EOF

or

~ENDSCOPE

EOF

(SCOPE will request next reel)

(no additional reels for INP exist)

The first statement on INP must be SEQUENCE. If JOB is not the next state­
ment, the job is terminated and SCOPE moves INP until an end-of-file is
detected. The following statement must be SEQUENCE, ENDSCOPE, or
ENDREEL. If JOB follows SEQUENCE, SCOPE proceeds normally.

When a SEQUENCE statement is detected, SCOPE activates CFO to receive
operator control statements.

Any of the statements listed below may follow the JOB statement:

EQUIP

CTO

XFER

REWIND

UNLOAD

<library name>

<loader card>

LOAD

Following LOAD and loader card, these statements only are allowed:

CTO

REWIND

UNLOAD

~SEQUENCE, j

OCC

SNAP

RUN

The sequence statement assigns a number, j, from 1 to 999, to the job which it
precedes. The SEQUENCE card is normally supplied by the computer operating
facility; it is mandatory before each JOB card. An end-of-file must precede
each SEQUENCE statement except the first on INP.

8-3

JOB

When the SEQUENCE statement is detected, the card is logged on CTO. End­
of -file is written on OUT and PUN, if it is assigned, and all programmer units
from the last job are released. Entry to the installation aCcotlllting routine
completes the last job. The parameter j, is placed into ACCOUNTS. SCOPE
requests operator control statements via CFO and processes them. The param­
eter, j, is the number referenced by the operator control statement, SEQUENCE.

Example:

EOF

~SEQUENCE, 4

7
9JOB,.

EOF

~SEQUENCE, 88

7
9JOB, .

EOF

~SEQUENCE, 3

7
9JOB,.

NS
7
9JOB, c, i, t, or, ND

NP

c char~~e number, 0-8 characters

i programmer identification, 0 -4 characters

t job ti.me limit in minutes for entire job

This includes idle time for setup as well as running time.
The Jnaximum time for job depends on the installation
accounting routine.

8-4

ENDSCOPE

ENDREEL

NS indicates a single non-stacked job. If chosen, NP is
implied. All system tape units are rewound and unloaded,
making all I/O units available to the programmer.

NP suppresses system I/O protection

ND suppresses post-execution dump

Jobs submitted for processing under SCOPE require a JOB statement which
supplies information to the installation accounting routine, identifies the pro­
grammer, and sets a job processing time limit. The JOB card must be
immediately preceded by a SEQUENCE statement.

The c, i and t fields are mandatory. If one of the fields is blank, the comma
delineating the field must appear, otherwise the job is terminated. The JOB
card is written on OUT; and if the job is part of a stack, on CTO also.

If a job is terminated abnormally, a post execution dump of all non-system
memory is written in octal on the standard output unit, unless ND appears on
JOB card.

~ENDSCOPE

The ENDSCOPE statement indicates that a SCOPE run is to be terminated.
When ENDSCOPE appears on INP, the statement should follow the end-of-file
terminating the last job of the stack. The card is logged on CTO, INP is
unloaded. LIB is rewound and entry to the installation accounting routine is
enabled to close the file. Finally, a double end-of-file and one BCD word of
ER"" are written on OUT and OUT is unloaded. If PUN is assigned, it is
treated in the same manner. If ACe differs from OUT or PUN,' it is handled
by the installation accounting routine.

When all action is completed, the computer halts. ENDSCOPE may be entered
from CFO to terminate a SCOPE run arbitrarily.

~ENDREEL

The ENDREE L statement terminates a reel of magnetic tape containing a job
stack. Normally this statement is placed in the job stack by the operator during
card to tape operations when preparing a tape to be used as INP. SCOPE
requires an end-of-file immediately before and immediately after ENDREEL.

8-5

CTO

REWIND

SCOPE accepts ENDREEL under the same condition in which it would accept
SEQUENCE or ENDSCOPE. When ENDREE L is encountered on INP, SCOPE
prints a message on CTO requesting the operator to mount the next reel of
INP and halts the computer until the operator take action.

Example of stacked input on magnetic tape:

7
gSEQUENCE, .

7
gJOB, .

job deck

EOF

7
gSEQUENCE, .

7
gJOB, .

EOF

7ENDREEL
9

EOF

7
gCTO, data

The programmer may provide instructions and messages to the operator with
the CTO statement. The programmer may add Hollerith data following CTO.
CTO cards may appear anywhere in a deck except next to the statements
SEQUENCE, ENDSCOPE and ENDREEL, or between a SEQUENCE and a ,JOB
statement. The CTO statement is logged on CTO and OUT.

The HEWIND statement rewinds a magnetic tape to load point on logical unit u,
1 to 56.

8-6

UNLOAD

EQUIP

HARDWARE DEFINITION

EQUATE LOGICAL
UNITS

This statement is copied on OUT and CTO. If u is not 1 to 56, or not magnetic
tape, the request is ignored for that unit and the remainder of the statement is
processed. Unit assignments are not altered.

Logical units, u, 1 to 56, may be unloaded by the programmer. The UNLOAD
statement is handled in the same way as REWIND except that the unit is
unloaded after it is rewound.

7
gEQUIP, Xl =d

1
, x

2
=d

2
, ... , Xi =di

The EQUIP statement may be given prior to loading a program for a run. Refer
to the SCOPE flow chart. It includes declarations, d, regarding logical units
Xi (1 to 56).

7
gEQUIP, x =hh

This statement defines hardware type, hh, for a logical unit, x;

Mnemonic Hardware TYEe

MT magnetic tape

CR card reader

PR printer

CP card punch

TY console typewriter

PT paper tape station

The designated logical unit is assigned to an available equipment of the speci­
fied hardware type. If hardware of the designated type is not available, a diag­
nostic will result. The job is terminated.

Logical units, x., are equated by this statement. A system unit (57 -63) may not
be specified in the left side of the statement; if it is, the job will be terminated.

8-7

PHYSICAL UNIT
ASSIGNMENT

XFER

~EQUIP, x=hhCcEeUuu

e channel number 0-7, prefixed by C

e equipment number (controller), prefixed by E

uu unit nUJnber (device), prefixed by U

This form of the EQUIP statement offers the options shown. Blank spaces
indicate parameters which may be omitted.

hh Cc

x
X X

X

X

X

X

X

Ee

x
X

X

X X

X

X

Use of a non-existent channel, equipment, or unit number will cause a diagnos­
tic to be printed and the job to be terminated.

If more than one logical unit is to be assigned to the same I/O device, the first
logical unit must be assigned to the device and the logical units equated. To
assign PUN and LGO to the same physical tape the following statements could
be used.

7
9EQUIP, 62=MT COEV03

7
9EQUIP, 56=62

7
9EQUIP, 62=MTCOEV03, 56=62 is also legal.

7 XFER u
9 '

The logical unit number u, (1-56) may be undefined or defined as magnetic
tape. If u is defined as equipment other than magnetic tape, a message is
written on CTO and OUT, the job is terminated, and SCOPE proceeds to the
next SEQUENCE statement on INP. If u is undefined, it is assigned to the
first available magnetic tape, the assignment is logged on CTO and the system
waits for the operator to continue.

8-8

LOAD

SCOPE transfers information following the XFER statement and preceding the
next control statement, from INP to a magnetic tape. The records are written
in odd parity. SCOPE writes an end-of-file mark and backspaces over it when
the succeeding SCOPE control statement is encountered.

Programmer data cards may be transferred from INP to another tape unit using
XFER. A card or card image with a 7, 9 punch and no other punches in column
one terminates the XFER operation; control is maintained by testing for a
SCOPE control card.

Binary object subprograms may be transferred from INP to another tape unit
using XFER. If this unit is a programmer or scratch unit, it must be rewound
before it can be loaded.

Example:

7
9XFER,25

data

7
9SCOPE control statement

The binary information on INP is written in odd parity on logical unit 25 fol­
lowed by an end-of-file mark.

The logical units, ui' are logical unit numbers 1-56, previously defined by an
EQUIP statement for this run. If omitted, the loader attempts to load from
INP, 60. No more than three units may be specified.

This statement calls the loader to load binary subprograms into memory from
programmer units, scratch units, LGO or INP. Only one LOAD statement may
appear per run.

An end-of-file terminates loading from each unit. SCOPE loads from the units
in the order in which they appear and then loads binary information from INP,
if any exists. Since the loader operates only once per run, the LOAD state­
ment must precede any binary object subprograms to be loaded from INP for
the same run. Multiple files may be loaded from the same unit by repeating
the unit designation in the LOAD statement.

8-9

If 56 (LGO), is specified as one of the three unit declarations, it will be rewound
by SCOPE before the loader is entered. If programs are loaded from LGO, it
will be released at the end of the run or the programmer may unload and save it.
CTO statements may be used to inform the operator of proper handling. If LGO
is not to be saved, it may be rewound and used as a scratch unit by the loaded
program.

With or without a LOAD statement, a binary object subprogram on the standard
input unit is loaded into memory when encountered by the monitor system,
unless it is preceded by a control statement such as XFER, which specifies
some other processing. All binary program cards before the next SCOPE con­
trol st.'ltement are loaded. If there is a LOAD statement for the same run, it
must precede the binary object subprograms on INP.

Examples:

7
~) LOAD, 56, 3, 25

LOO, 56, is rewound by SCOPE and subprograms are loaded until an end­
of -file mark is encountered. Subprograms are loaded from units 3 and
25 to an end of file.

LGO may be rewound and used as a scratch unit if it is not to be saved. Any
binary subprograms on INP preceding a SCOPE control card are loaded fol­
lowing the tape loading operation.

'7
9LOAD, 2

LOgical unit 2 is loaded until an end-of-file mark. Logical unit 2 is not
moved except by loading. INP is loaded until a SCOPE control card is
encountered.

~LOAD

Binary subprog-rams on INP are loaded until a SCOPE control card is
encountered. This use of LOAD is optional; the subprogram would be
loaded if this statement did not appear.

Typical job deck wib XFER:

'7
9JOB, c, i, t

8-10

LIBRARY NAME
STATEMENT

LOADER CARD
AS CONTROL
STATEMENT

7
9XFER, u

binary object subprograms

data cards

~COMPASS, assembly options

source subprograms
FINIS

binary object subprogram

7
9RUN, t, NM

~ <library name >,

<library name>

parameters

parameters

the program is in file two of UB

Parameters to the called library program
which are passed to the system by SCOPE.

Library programs may be called, loaded and executed by the programmer
using this statement. The <library name> is the entry point to a system on
the library tape such as COMPASS, FORTRAN, or COBOL. User programs
may be placed on LIB and called in the same manner.

Example:

7
9COMPASS, I, P, X, L, R

The programmer may place binary subprogram cards in the appropriate place
in his deck. These cards are placed on INP. No LOAD stater~lent if> required.
When SCOPE detects a binary subprogram card, recognized by punches in at
least one of the rows 3, 2, 1, 0, 11, 12 of column 1, the loader is called and
reads INP until a SCOPE control card is encountered. Refer to Appendix A

8-11

RUN

occ

7
9RUN t, NM

t is the execution time limit in minutes, 0 -::; t ~ 999. It is entered
into the ACCOUNTS table for use by an installation accounting
routine. It is not used by SCOPE. If omitted maximum time is
assumed.

NM suppress the memory map that would otherwise be written on OUT.
The map which lists memory allocations of a loaded program is
written on OUT prior to execution of the program.

The RUN statement initiates program execution by transferring control to the
object program in memory. The RUN statement is required for all programmer
runs.

Example:

7
gRUN, 2

the execution time limit is estimated 2 minutes. The memory map will
be written on OUT.

The HUN statement follows the relocatable binary decks if the program is on
INP or the LOAD statement if the program is on an input tape other than INP.
The RUN control ca:C'd is copied on OUT and C TO.

If the program runs successfully and the job is stacked, the next run (if any) in
the job is processed. If the run is unsuccessful, the entire job is terminated.
Non-stacked jobs may contain only one RUN statement. Non-stacked jobs end
with an appropriate me,ssagc and the computer halts.

~OCC, location, octal correction, . . . , octal correction.

Octal corrections may be made to binary subprograms after loading. The OCC
statements may be used to define and enter corrections or additions to subpro­
grams by establishing a program extension area.

The program extension area is created after the subprogram area. Corrections
to subprograms referring to the extension area, or instructions to be stored in
the extension area may not be submitted until all subprograms have been loaded.

The parameters are free field. If the optional period is used to terminate the
card, comments may follow it.

8-12

Location

program name k

Dk

Xk

+k

Meaning

Corrections on this OCC card are loaded begin­
ning with location k in the named subprogram.

Corrections are loaded beginning with location
k in the Data area.

first occurrence:

Define a program extension area of length k.
Corrections on the first card with X in the
location field are ignored.

subsequent occurrences:

Corrections are loaded beginning with loca­
tion k of the program extension area.

Continuation oee cards. +k is an increment
from the last location plus one corrected by
the previous oee statement.

Octal corrections, up to 8 octal digits, follow the location term and are set
off by commas. Blanks may be included. Leading zeros may be omitted.
They contain an octal value of up to 8 digits or an octal value and a relocation
factor.

Each value is stored right justified in successive computer words. If a value
of less than 8 digits is supplied, the computer word is zero filled.

Octal Correction

octal correction

blank or
contigous commas

8-13

Meaning

The correction replaces the contents of the
memory location determined by the location
field on the card and the position of this octal
correction field on the card.

Do not alter the location

octal correction
relocation faetor

octal correction
minus sign
relocation faetor

octal correction
relocation faetor
C

octal correction
minus sign relo-­
cation factor C

Relocation Factor

Replaces the contents of memory determined by
the location stated on the card and the position
of this field on the card. The address portion
of the octal correction is to be positvely relo­
ca ted as dictated by the relocation factor.

The same as above except relocation is
decremental

The same as above except 17 -bit arithmetic is
applied to the address. C must follow all octal
corrections containing character addresses to
be relocated.

Decremental character relocation.

Meaning

no relocation faetor Octal correction is to be stored as an absolute
correction.

(Subprogram name) Relocate the word address portion of the octal
correction relative to the address of the first
location in the subprogram named within the
parenthesis.

D

C

x

*

relocation factor
C

Relocate the word address portion of the octal
correction relative to the DA TA area assigned
for this run.

Helocate the word address portion of the octal
correction relative to the COMMON area
assigned for this run.

A program extension area has been assigned for
this run and the word address portion of the octal
correction must be relocated relative to the
extension area.

Helocate the word address portion of the octal
correction relative to the last subprogram named
in any field of any preceding OCC or SNAP
statements.

If C follows any relocation factor, perform char­
acter address arithmetic (17 bits).

8-14

SNAP SCOPE provides selective memory dumps during execution.

After a program has been loaded and before the RUN statement is encountered,
the programmer may provide SNAP dump parameters on SNAP cards. The
SNAPSHOT routine must have been loaded. This is accomplished by naming
SNAPSHOT on an EXS loader control card. (See the loader section.) The
SNAP statement provides parameters defining the instruction where the dump
is to be taken, the area of memory to be dumped, and the dump format.

Addresses for the SNAP statement have the same general format as the OCC
statement. OCC statements and SNAP statements are processed after loading
and prior to the RUN statement. Conflicts between OCC statements and SNAP
statements cannot occur if all SNAP statements are placed behind all OCC
statements. This matter is discussed in greater detail in the section on debug­
ging.

SNAP calling sequences are prepared from the SNAP statement. Each SNAP
calling sequence consumes 7 locations in available memory.

An error in a SNAP statement causes the statement to be ignored. Execution
is never inhibited as the result of an error in a SNAP statement. The format
is described below.

7
9SNAP, location, beginning address, ending address, mode,

identification, comments

or

7
9SNAP, kc' b, e, m, id

Each parameter in a SNAP statement is separated by commas. Program names
are always enclosed by parentheses in a SNAP statement.

The SNAP statement defines a location containing an instruction which will be
replaced by a jump to a SNAPSHOT calling sequence. Additional parameters
define the beginning and ending addresses of the area to be dumped, the mode
of the dumps, and a dump identification. After the dump has been taken, the
instruction originally replaced is executed and control returns to the program
at the succeeding location.

8-15

Entries in location fields of SNAP statements are listed below:

Location Meaning

<subprogram name>k Replace location k of the subprogram with a
return jump to a calling sequence to be
generated.

Xk

Dk

The jump to a SNAP calling sequence is to
replace the instruction in location k of the
program extension area defined for this run.

The jump to a SNAP calling sequence is to
replace instruction k in the DATA area.

The beginning address and ending address parameter are expressed in the
same general manner. The ending address must always be greater than the
starting address or the SNAP statement is ignored.

Address

Dk

Ck

Xk

Meaning

Dump begins or ends with location k in the
DATA area.

Dump begins or ends with location k in the
COMMON area.

Dump begins or ends with location k in the
program extension area.

<subprogram name>k Dump begins or ends with location k in the
subprogram which had subprogram name in
its IDC card.

k* Dump begins or ends with location k of the
subprogram last named in any field of any
OCC or SNAP statement.

The dump may be in one of three formats and may include the register
file or not.

Mode

o
C

F

R

Identification

Meaning

Print dump in octal

Print dump as 6 -bi t characters

Print dump in floating point format

Print register file in octal. R may be combined with
any of the other options as OR, RC, etc. Refer to
the section on debugging.

Meaning

Zero through four BCD characters will be printed on the
SNAP output to identify the dump.

8-16

OPERATOR CONTROL OF SCOPE 9

OPERATOR
CONTROL
STATEMENTS

SEQUENCE

SCOPE yields control to the operator once per job as shown in the flow diagram.
Immediately after a SE QUENCE card has been read and processed, SCOPE
interrogates the CFO for operator control statements. These statements may
consist of equipment changes or other manipulation of the I/O environment, the
calling and execution of library programs, priority selection of a particular job
for immediate processing, or termination of the SCOPE run.

An operator may manually interrupt SCOPE during job processing. If the user
has not selected a manual interrupt and the operator presses the manual inter­
rupt button, the current job is terminated and control is given to the operator
after SCOPE has positioned INP past the next SEQUENCE statement.

The operator may issue control statements to SCOPE through C FO which is
usually a console typewriter. These statements consist of the statement name
followed by commas and parameters if required. The statement is terminated
by pressing the C LEAR or FINISH buttons. When the operator types a period
and presses CLEAR, SCOPE begins processing the next job.

SEQUENCE
or
SEQUENCE, j

no parameters

j is the sequence number of any job on INP.

With the SEQUENCE statement, the operator selects a job to be processed.
SCOPE interrogates C FO for statements after a SEQUENCE card has been read
from INP and logged on CTO. The operator may control job sequencing as
follows.

To process the job with the sequence number printed on CTO, the operator types
a period after issuing any other necessary statements, and return to SCOPE
without using the SEQUENCE statement.

To repeat the last job processed, the operator types SEQUENCE, last job
sequence number. SCOPE will backspace INP, for magnetic tape, and repeat
the last job.

9-1

rt

ENDSCOPE

REWIND AND
UNLOAD

AET

The operator may select any job on INP for immediate processing using the
statement:

SEQUENCE, job sequence number.

The operator may issue SEQUENCE with no parameter on CFO; the job whose
sequence number was logged on CTO will be skipped; and INP will be positioned
to the next SEQUENCE statement on INP.

If the desired job is known to exist on INP in front of the job whose sequence
number was last logged on CTO, and INP is magnetic tape, the operator may
use the REWIND statement to rewind INP, 60, before issuing the SEQUENCE
statement.

ENDSCOPE

The operator terminates the SCOPE run with this statement. The action taken
.by SCOPE is identical to that for the programmer control statement ENDSCOPE.

REWIND
UNLOAD' u1 ' u2 '

u.
n

As many logical units, u., may be expressed as required. These statements
for control of magnetic t~pe cause SCOPE to take the same action as described
for the programmer control statements, REWIND and UNLOAD. The operator
may refer to any logieal unit, 1-63, without restriction.

The operator interrogates or alters the available equipment table using the
AET operator control statement (Appendix). This statement has three forms:

AET

AET, a

When the operator uses AET without commas or param­
eters, the content of the entire table is printed on CTO
in octal.

1 :::; a :::; 5010' When the a parameter is used, only entry
a in the table is printed. t

AET, a, P 1:::; a :::; 5010' P may have two forms. This version of
the AET statement alters entry a in the table as indicated by P.

tThe length of the AET table, which may not be greater than 50 ,is established
10

by each instal18tioll.

9-2

CALL

EQUIP

P, UP

P, DOWN

P, RES

P, FREE

P

set the s field, bit 17, in the AET word to operable.

set the s field to inoperable.

set the unit reserved for another computer.

clear the unit for use by this computer.

is an octal integer of 11 or 16 digits. Replace entry a in
AET with the octal value. The octal digits are stored left
justified into the AET entry. The driver address, the D
field, may be specified by the octal integer or supplied
by SCOPE or the LOADER.

CALL, library name, P1' P2' ... Pn

The first parameter, library name, must be the name of an entry point in file
two of LIB. The following parameters are not used by SCOPE but are passed
to the called program. P1, P2' P3, ... , Pn vary according to the called pro­
gram and the order and content are dictated by the library program.

The operator may call programs from LIB for execution using the CALL state­
ment. When the CALL statement is encountered, protection of system I/O is
voided, the message" OPERATOR" is written on OUT and a blank card (or
card image) is written on PUN if it is assigned. Recovery dumps are sup­
pressed. The called program is then operated as any library run. SCOPE
requests additional statements via CFO when the library program has been
executed.

The name used as a parameter in the CALL statement must be an entry point
name defined in a program in file two of LIB.

The operator alters equipment assignments when SCOPE interrogates CFO for
operator control statements. The operator uses the EQUIP, x = d statement in
the same manner as does the programmer. The operator may reference any
logical unit (1-63). The operators I designation of the EQUIP statement over­
rides loader or system assignment of I/O on LIB.

SCOPE informs the operator of the sequence of job processing, requests infor­
mation and produces error messages on CTO. The operator is also advised of
actions required for SCOPE to perform particular tasks.

9-3

AUTOLOAD

SEQUENCE PRINT

PROGRESS
REPORTS

After SCOPE has hgen autoloaded, the operator must supply information to
initialize the system. After SCOPE types a message, the operator replies with
the requested information or acknowledges the message by pressing the FINISH
button. If the CFO is not the console typewriter, a blank record signals com­
pleted action.

Scope Message Operator Message

DA TE dd mm yy, press FINISH

TIME hh cc, press FINISH

OUT AET ordinal of OUT or INp, press FINISH. If the
assignment for OUT or INP is not to be changed,
it is only necessary to press FINISH.

dd day

mm month

yy year

hh hour, 00-2410

cc minutes, 00-60 10

If date and time are not given, zero will be assigned by SCOPE.

SEQUENCE, decimal number. When a SEQUENCE card is encountered on INP
it is logged on CTO. The TYPELOAD indicator will light. SCOPE waits for
an operator control statement.

Messages appear on eTO to advise the operator about the job in process which
do not require any action from the operator. These messages may enable the
operator to perform such tasks as reloading tapes, removing output from the
printer or a job deck from the card reader. The following programmer control
statements are logged.

REWIND

UNLOAD

RUN

CTO

JOB, account number, name, time

When the ENDSCOPE statement is detected on INP or CFO, SCOPE reports
this function on CTO.

9-4

REPEAT' MESSAGE

READY MESSAGE

END CALL
MESSAGE:

NON·STACKED JOB
TERMINATION

REPORT ON
EQUIPMENT
ASSIGNMENT

When SCOPE encounters aCTO, comment to operator, statement on INP the
statement is logged on CTO.

SCOPE will request the operator to repeat any message which it cannot decipher;
the message is assumed to be in error. SCOPE will log REPEAT on CTO.

After the unit assignments are logged, SCOPE outputs: READY? on CTO and
waits for the operator to complete any required action. The operator responds
when ready to process the job by pressing FINISH.

When a library program is called via the operator CALL statement, the success­
ful operation of the called program is reported on CTO as: END CALL.

Abnormal termination of the called program produces the message: ABNORMAL
END CALL. The operator may issue additional control statements on
CFO.

When SCOPE has completed processing a non-stacked job, the operator is
notified by one of two messages on CTO.

NORMAL END run was successful

ABNORMAL END run was unsuccessful

The operator must reload the system units and follow the autoload procedure
to continue.

SCOPE will log equipment assignments on CTO

!.i. = HW Cc Ee Uuu

P.P. = logical unit number

HW = hardware type

c = channel

e = equipment

uu = unit

9-5

I/O UNIT
NOT READY

FAULTY I/O

ASSIGNMENT

DATA
TRANSMISSION

FAULT

PROTECTED TAPE

END OF TAPE

If an assigned input/output unit is not ready when SCOPE requires it, this
message is printed on CTO:

READY LUN logical unit number

SCOPE awaits operator action on the unit. When ready to proceed, the operator
presses FINISH.

If SCOPE camlOt execute an input/output requirement, this message will be
logged on CTO and the computer halts.

CANNOT DRIVE logical unit number

The operator checks the physical unit to which the logical unit is assigned for
operability and appropriate assignment, (i. e., INP is not the line printer if 60
were involved). To restart the computer the operator must press GO.

When control cards are read from INP, parity errors produce this message
on CTO.

INP ERR

SCOPE logs this for operator information, and accepts the information.

If a file-protectea .nagnetic tape is designated for output, the computer awaits
operator action after SCOPE has output a Rsage on CTO.

ENABLE WHITE logical unit number

The operator must load a new tape or put the write ring in place, and then
press FINISH.

If end of tape is reached on a logical unit, SCOPE reports:

LOAD NEW logical unit number

The computer waits for operator action. When the operator has loaded the new
tape, he may continue by pressing FINISH.

9-6

INPUT /OUTPUT
ERROR

AET ERROR

If an input/output unit fails during operation, SCOPE prints a message on CTO:

I/O ERR error code LUN logical unit number

Error Codes, 2 characters

character 1

C connect

S select

character 2

P parity error during I/O instruction transfer

internal reject

E external reject

Q undefined condition caused reject

UU undefined logical unit reference attempted

2 digits - protected unit violation

01

02

03

04

05

06

07

08

09

10

undefined unit

hardware reject of connect code not used

not used

protected function on LIB unit

protected function on PUN or OUT

protected function on INP

protected function on C TO

protected function on CFO

EOF detected and protected function on INP

hardware reject of WEOF or Unload on PUN
or OUT after an EaT was detected

If illegal entries are discovered in the AET table, the messag'e AET ERR is
logged on eTa and the computer halts. The error may be due to conflicting
entries in AET or a program or hardware malfunction. The operator may
initiate a simulated autoload of SCOPE by pressing GO. If the error indication
persists, the operator should refer the problem to the system programmer who
maintains LIB or the customer engineer.

9-7

AVAILABLE
MEMORY
ORGANIZATION

ORGANIZATION OF MEMORY 10

The computer memory is organized by SCOPE into system memory and avail­
able memory. System memory contains those portions of SCOPE and input/out­
put routines required for SCOPE during a job. This includes resident, which
is always in memory, and routines selected by options such as· system unit pro­
tection, recovery dump, and CIO routines for non-standard system I/O units.
Resident occupies low memory and the other SCOPE I/O drivers reside in high
memory.

Available memory is organized by the loader from parameters received from
resident. The contents of memory during SCOPE and loader operation are sig­
nificant to the programmer only because the area used by SCOPE and loader is
the area used for common storage; consequently, information may not be pre­
stored in common during loading.

Available memory may be used by a program to be loaded and executed under
SCOPE supervision. It may be a library program such as COMPASS,
FORTRAN, COBOL, ALGOL, SORT or PRELIB; or it may be a group of sub­
programs for a programmer run.

Available memory is divided into three areas which must be considered when
coding programs in the source language and preparing binary subprograms for
input by loader. A fourth area, the program extension area, is defined if octal
corrections add instructions to a subprogram. The four areas which must be
considered are:

Subprogram area

Data area

Common area

Program Extension area

The assignments for these areas are identified on a memory MAP which may be
printed following loading. During loading, assignment and allocation of space to
these areas is dynamic. The system performs the assignment using parameters,
contained in the program decks, which were derived during assembly or com­
pilation. SNAP statements consume available memory but do not appear on
MAP. Program overlays are assigned to memory according to requirements
discussed in the section on overlays.

10-1

-"'.

SUBPROGRAM AREA

DATA AREA

The subprogram area for a run is defined by parameters obtained from the IDC
cards from all of the subprograms loaded for the run. The total subprogram
area is equal to the sum of all the subprogram lengths specified on all of the IDC
cards encountered during loading for the run.

The data area is defined once per run by parameters obtained from the first IDC
card encountered with a non zero length for a data area. The data area, when
defined, is shared by all subprograms. The data area is outside the first sub­
program which declares it; but if more than one subprogram is loaded, it is
bounded by the subprogram area.

A vailable Memory

System I/O

Subprogram 1

>- Subprogram Area
DATA Area

Subprogram 2
--

Subprogram 3

COMMON

RESIDENT

Since the data area is defined only once per run, the first subprogram loaded
must reserve sufficient space to accommodate any data area used by any sub­
programs loaded for the run.

Generally, information will be stored into the data area by the loader. The
absolute starting address of the data area is the same for all subprograms
during the run. Therefore, in assembling instructions or constants for storage
into the data area during loading, the programmer must consider all subpro-­
grams to be loaded. The programmer must guarantee the proper placement of
information in the data area in the source subprogram. This may be accom­
plished in COMPASS through the pseudo instructions OnGn and BSS. Library
routines may reference the same data area as all other programs. The pro-­
grammer must consider this when defining and using the data area in the source
subprogram.

10-2

For example, two subprograms, BAKER and GEORGE are to be loaded and
executed at the same time. Program BAKER is loaded first. If program
BAKER uses 100S locations in the data area and GEORGE uses 50S locations,
the structure of the source programs might be:

IDENT BAKER

DATA or DATA

BSS 150B

ORGR 0
100S locations of data

BSS 50B

PRG PRG

END

IDENT GEORGE

DATA DATA

BSS 150B or ORGR 100B

ORGR 100B
50 locations of data

PRG PRG

END

The DA T A area length declared in the IDC card of subprogram BAKER includes
the area required by GEORGE.

The DATA area may also be organized as follows:

BUFA

IDENT

DATA

BCD

BSS

BSS

PRG

END

10-3

ABLE

20,

20

20

this is the ABLE buffer

space reserved for BAKER

space reserved for CHAS

COMMON AREA

or ORG 20

BUFB

or ORG 20

BUFC

1DENT

DATA

13SS

JBCD

JBSS

END

l~ENT

lDATA

BSE:

BSE:

BCD

PRG

END

BAKER

20

20,

20

CHAS

20

20

20,

space reserved for ABLE

this is the BAKE R buffel"

space reserved for CRAS

space reserved for ABLE

space reserved for BAKER

this is the CHAS buffer

The common area is shared by all subprograms. Each time an IDe card is
encountered, the le;tlgth of the common area is examined. If the presently
defined area has fewer locations than declared on the current IDC card, the
length of common is extended to include the subprogram. The final length
defined for common. will be the greatest length declared on the IDC card of any
subprogram loaded for the run.

Common has the same absolute starting address throughout the run. The pro­
grammer must guarantee the integrity of information in common during program
execution to j qure that information needed by one subprogram is not destroyed
by another.

The area of available memory destined to be the common area during a run is
occupied by the loader and loader symbol table prior to execution; information
cannot be stored in the common area during loading. Compilers and assemblers
for Control Data computers will not allow the production of object subprograms
which would prestore eommon.

PROGRAM EXTENSION The program extension area is defined by SCOPE from programmer OC C state­
ments processed after loading. It follows the subprogram area. Rules pertain­
ing to program extE~nsion areas are described in the section on debugging.

10-4

ASSIGNMENT
OF AVAILABLE
MEMORY

During loading, memory is allocated to the subprogram area, the data area,
and the common area. Initially, all of non-system memory is available.

System I/O

AVAILABLE

Variable Resident

RESIDENT

When the first IDe card is encountered, the subprogram and common areas are
assigned for that subprogram and the data area if of non-zero length is assigned
for an entire run.

When the second subprogram is loaded into memory, the definition of a larger
common will extend the length of common, but the data area will remain
unchanged regardless of the length declared after the data area is defined. An
error message will result if the data area declared in the card cannot be con­
tained in the area defined for the run.

RELOCATABILITY Addresses assigned by the compilers and assemblers are called relocatable;
they do not identify actual addresses in the computer memory. They may be
considered as sequence numbers or reference points. Relocatable addresses
are relative to the beginning of the subprogram.

During coding in symbolic language the programmer has little interest in the
ultimate assignment of absolute memory locations for use by his program. He
organizes the program and dictates certain relationships between instructions
and data. The compilers and assemblers record the relationships and produce
relocatable object subprograms.

In a relocatable subprogram, the first location is given a sequence number or
starting location of zero. Each successive instruction or data word in the sub­
program is assigned an address one greater than its predecessor. By applying
the same increment or decrement to these relocatable addresses or sequence

10-5

77777
37777
17777

00000

System I/O

Subprogram 1

DATA
Area for run

AVAILABLE

COMMON

~.----.-------------~

Variable Hes ident

HESIDENT

77777
System I/o

Subprogram 1

DATA
Area for run

Subprogram 2

AVAILABLE

COMMON

Variable Resident

---- -----
RESIDENT

00000

numbers, they may be assigned to any memory location desired during loading.
It is important to retain the relationships established (or detected) during
assembly or compilation.

By treating subprograms as unified blocks, and maintaining a constant interval
between the internal parts, it is possible to leave the ultimate assignment of
memory to the loader. Entry points and external symbols allow the loader to
establish the correct hnkage between subprograms.

10-6

RELOCATION OF
SUBPROGRAM S

RELOCATION
BYTES

Data and common storage are treated in a manner similar to the subprogram
storage. The first location assumed by the assemblers and compilers is zero
and the areas are addressed relatively thereafter. The loader relocates the
addresses; the assemblers and compilers provide a separate relocation factor
for each object program area.

Assembler and compiler will determine which relocation factor is to be applied
during loading. The loader determines which relocation factors to use by word
count, or for RIF cards, by a relocation byte.

subprogram increment

common area increment

data area increment

subprogram decrement

common area decrement

data area decrement

X, extension area increment (specified by programmer)

The relocation byte determines whether the address in the word on the card is
to be incremented or decremented, which area is involved, and whether to per­
form 15-bit or 17 -bit arithmetic on the address.

10-7

RELOCATION
BYTE OPTION The relocation byte consists of 4 bits.

E.--L---I
L word/ character ~

indicator

o 15-bit arithmetic
1 17 -bit arithmetic

Relocation Byte

xOOO

xOOl

xOl0

xOll

xlOO

xlOl

x110

xlII

relocation byte

y

relocation factor designators

Relocation Factor

not used; this code constitutes an error

no relocation (absolute)

subprogram increment

common block increment

data block increment

subprogram decrement

common block decrement

data block decrement

10-8

LOADER

SCOPE BINARY SUBPROGRAM 11

SCOPE provides a modular loader for relocatable binary object subprograms
assembled or compiled by COMPASS, FORTRAN, COBOL, ALGOL and certain
elements of the BASIC software package. The loader also prepares overlays
from relocatable binary subprogram decks. The loader is called by SCOPE
when a library name statement, a LOAD statement or a loader card is encoun­
tered on INP.

For user programmers the loader provides the following services:

Loads relocatable binary subprograms.

Establishes communication and linkage between independently assembled
and/or compiled subprograms.

Loads and links library routines called by loaded subprograms.

Loads I/O drivers required for program execution from information
supplied by the programmer or operator and stored in system tables.

Loads and links BCD and floating point simulator routines as required,
without user action.

Prepares error messages and diagnostics for errors detected in the
loader input.

Accumulates checksums for the binary information and compares this
checksum against one in the binary cards to guarantee accurate loading
of subprograms.

When loader is placed in control, it accepts both loader control cards and binary
subprogram decks as input.

Both loader cards and loader control cards have 7,9 punches and punches in
rows 3-12 of column one. Rows 3-12 are called the word count field. The
loader recognizes a card by the contents of this field.

CONTROL CARDS Loader control cards provide specific information for the loader or direct the
loader in processing the binary subprogram decks. Of the five loader control
cards, three control preparation of overlay programs and two control linkage
or input-output. Except for colmnn one, which is binary, loader control cards
contain symbolic information in 12-bit Hollerith.

11-1

LOADER CARDS

OBJECT
SUBPROGRAM
STRUCTURE

Name Function Octal Word Count

MAIN main overlay program 50

OVERLAY overlay program element 51

SEGMENT overlay program segment 52

EXS external symbol declaration 55

LED loader equipment declaration 54

These cards may appear at any position in the loader input. Sequence is impor­
tant only when the ~;uccess of an operation depends on the prior appearance of
the control card. For example, if overlays are to be processed, MAIN must be
the first card in the loader input.

Name Function Octal Word Count

IDC subprogram identification card 41

EPT entry point name card 42

IUF relocatable information card 1-40

XNL external name card 43

LRL local reference list card 45

THA transfer address card 44

To load subprograms, the loader must find an IDC card to obtain the length of
subprograms, data ancl common areas for the subprogram.

The first card in a ,subprogram deck must be an IDC card, the last, a TRA
card. If several subprograms are loaded, the THA card for one subprogram
should be followed immediately by the IDC card of the succeeding subprogram;
LED and EXS cards, however may intervene except in file two of LIB. Overlay
control cards ahvays precede an IDC card.

Between the IDC and TRA card, any other loader cards may appear. The
londe r will accept 1:1eso cards in any sequence but correct subprogram linkage
and executability of the loaded program depends on a particular sequence wi thin
a subprogram. The descriptions of the loader cards, E PT, XNL, LRL, provide
specific details.

11-2

TYPICAL LOADER
INPUT STRUCTURE

LOADING LIBRARY
ROUTINES

CHECKSUM IN
BINARY DECKS

A relocatable binary subprogram deck prepared by a compiler or assembler
is in correct sequence for loading. If this sequence is disturbed, the following
structure is reasonable for accurate loading:

IDC card

all E PT cards

all RIF cards

all LRL cards

all XNL cards

TRA card

Should two subprogram decks become intermixed, the decks are useless and
the subprograms should be reassembled or recompiled.

After all programmer decks are loaded, the loader searches file two of LIB
to match external symbols with entry point names. The search begins from
the current position of LIB. The loader scans LIB until an IDC card is found;
the E PT cards which follow are examined. If a desired entry point name is
found, the routine is loaded. If a non EPT card is found before a desired entry
point name is detected, the loader skips to the next IDC card on LIB before
searching for another entry point name.

Loading of library routines terminates when there are no undefined entry point
names in the loader symbol table or when LIB has been rewound and searched
to the end of file two without a routine being loaded.

The loader cards contain a checksum. With the single exception of the TRA
card, the checksum pertains to all the information in the card except that in
columns 3 and 4, the checksum field. The TRA card contains the checksum
for all other loader cards encountered since the last IDC card except the TRA
card.

Checksum errors result when the loader derived checksum does not compare
bit for bit with the checksum in the card. This discrepancy may be due either
to failures in hardware or the checksum may be in error. If the data in the
card is correct and the checksum is in error, ignore the checksum.

If the ignore checksum field, row 8 of column 1, contains a punch, the checksum
on the card is ignored, and no comparison is attempted. If the card is a TRA,
the subprogram checksum is ignored. When any card originally produced in a

subprogram deck has a punch in the ignore checksum field, the TRA card must
have an ignore checksum punch as well. When a TRA card is inserted in a

11-3

LOADER CARD
FORMAT

subprogram deck to facilitate loading several subprograms for execution, the
ignore checksum field should always be punched.

The SCOPE loader accepts cards with punches in rows 7 and 9 of column 1 and
certain specific punches in rows 12, 11, 0, 1, 2, 3 of column 1.

The first four colurrms are the same for all loader cards. The first column
identifies the card; the second provides an address or other information about
storage; the third and fourth hold a checksum.

Mnemonic

w

B

I

A

C

Card
Colurrm

1

1

1

1
.2

Rows

12,11,0,
1,2,3

7,9

8

4,5,6
12, 11, 0,
1-9,

12,11, °
1-9

12,11,0,
1-9

Computer Word
Bit Position

23-18

14 and 12

13

17 -15 }
11-0

23-12)

11-0

Purpose

word count (not zero)

binary card indication

1=1, checksum ignored
I = 0, checksum mus t

compare

relocatable address,
sequence number or
program length

24-bit checksum

r----
12

II

0
W

I

2

(f) 3 ;:: - A C C a
It: 4

5 A

6
-

7 B
-

8
f-o-

9 B

I~ 2 3 4
8~1 ------COLUMNS------------------------------~_.

11-4

Two card columns of 12 bits each are contained in one 24-bit computer word.
The content of row 12 of card column 1 is in bit 23 of the first computer word,
row 9 of card column 1 is in bit 12, row 12 of card column 2 is in bit 11 of the
first computer word and row 9 is in bit zero. If there is a punch in the card
the corresponding bit position contains a one.

column 1

column 2

column 3

column 4

Punch in
Row:

9

12
11

0
1

9

12
11
o
1

9

12
11

0
1

9

11-5

Corresponding
Bit Position

23
22
21
20

12

11
10

9
8

o

23
22
21
20

12

11
10

9

8

o

computer word 1

computer word 2

IDC CARD

12

11

0

1

2

Rows 3

4

5

6

7

8

9

The subprogram identification card is a binary card which identifies and pro­
vides information about the subprogram to the loader. The IDC card must be
the first loader card in a subprogram deck.

The IDC card has an arbitrary word count of 418 and states the name of the
subprogram, its length, and the sizes of the common area and the data area
in words. The first subprogram loaded which specifies a non-zero data area
defines the data area for the entire run. It is important to structure the
loader input so that the data area is properly defined to accommodate all sub­
programs and info:rmation to be stored in the data area during loading and
execution.

An IDC card is produeed by an assembler or compiler. The name in the card
is taken from the program name in a source language statement such as the
IDENT card in the COMPASS language.

\

Card Computer
Columns Words Meaning

1-2 1 W = 418' Subprogram length in words

3-4 2 C = checksum

5-8 3-4 subprogram name in 6 -bit BCD t
9-10 5 common block length in words

11-12 6 data block length in words

13-80 7-40 unused

fl
til

W= "0
~
0

p 0 N M
41

8
:s
.S
..a
b.o ~
,:::: u
Q) ~ ::c:
S u
~
~
bJ,)
0

til til
"0 "0
~ Z ~
0 0 0
:s ~ :s <

~
'+-I '+-I
0 ~ 0 E-t

~ ~ 0 ~ <
r:JJ. Q) U Q) Q

"S .S "S .S
R G A E

:::l :::l ,:::: ,::::
B ~

0..
-§

I til

B -
1 2 3 4 5 6 7 8 9 10 11 12 80

Columns

t The n am e is e i ght:ha racters or I ess I left adj usted wi th tra iii ng blanks added.

11-6

EPT CARD

12
11

0
1
2
3 A
4
5 A
6
7
S
9

1 2

Entry points in subprograms are declared by source language statements such
as ENTRY in COMPASS: EPT cards result in relocatable binary decks. EPT
card has an arbitrary word count of 42 ; it contains one or more entry point
names and the equivalent relocatable a~dresses. Names are in 6-bit internal

BCD and may be S characters or less. If names are less than S characters,
a record mark, character code 72S' follows the last character in the name.
The name is followed by an IS-bit value; the rightmost 15 bits define the relo­
eatable word address assigned to the entry point within the subprogram which
will be relocated using the subprogram increment.

The A field contains a sequence number for programmer convenience; it is not
used by the loader. An entry point name and its equivalent address must be
wholly contained on a single card.

Card Computer
Columns Word Meaning

1-2 1 W =42S. A = sequence number 1, 2, 3, ...
3-4 2 C = checksum

5-S0 7-40 entry point names and locations

The EPT card shown contains three entry point addresses, A1234567, BAKER
and JACKSON.

A 2 4 6 J C S N

C C

3 5 7 A K 0 "*

3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 IS 19 20 SO

"* =: record mark

b =: blank

shaded portion - relocatable address

11-7

RIF CARD Instructions and constants for storage in the subprogram and data areas are
contained in relocatable binary information cards. The actual word count of an
RIF card may vary from 1 to 408 depending on the number of instructions and
constants in the card. The card is checksummed and has a relocatable load
address which is always a 15 -bit address.

The first instruct:lon or constant in the RTF card is stored at the location ref­
erenced by the relocated word address. All other instructions and constants
are stored in suceessive locations in memory. The load address may be in
either the subprogram or data area and may have a related relocation byte of
00102 or 01002' The RTF card contains relocation-bytes for the load address
and each instruction and constant in the card.

Card Computer
Column Word

1-2 1

3-4 2

5-16 3-8

17-80 9-40

11-8

Meaning

w = 1 to 408; A = load address of first
word.

C = checksum.

up to 33 relocation bytes; the first applies
to load address and may have values
00102 or 01002' The other 32 relocation
bytes apply to the address field of each
machine word. Three bytes (12 bits)
are unused. The first bit of each byte
may be a ° for a 15 -bit address or 1 for
a 17 -bit address. The remaining three
bits determine relocation
factor.

may contain up to 32 words of data or machine
language instructions to be loaded after the
relocation factor is applied to the address
portion of each word.

XNL CARD

WORD AND

CHARACTER EXTERNALS

Checksum
Indicator

12
11

4

Checksum

1 ~w =:;40

A

RIF CARD

Relocation Byte for
Storage Address

-+---+-+-+-+-+-+-

I I I I I I I I I
I I I I I I I I I
I I I I I I I I I

-~---+-+-+-~-+-+-

Relocation Byte for
word in Column 17 -18

Relocation Byte
for 75 -76

221 10
21 9

201 8

191 7

First 24 bit word for storage

Final 24 bit
word for Storage

Subprogram communication is established by the loader using information
from the external name and linkage card. The XNL card has an arbitrary
word count of 438 and is checksummed. The card holds symbolic names of
8 characters or less and a binary address related to the symbol. The symbol
and address must be wholly contained on a single card. The symbolic name
is that of an entry point in some other subprogram. The loader substitutes
the address of the entry point whenever a reference is made in the subprogram
to the external name. The XNL card results from source language statements
such as the COMPASS pseudo instruction, EXT. The required entry point
names may be in the permanent portion of the loader symbol table. They may
be in EPT cards following the IDC card of a subprogram in file two of LIB, or
they may be named in an EPT card of a subprogram loaded at the same time
as the subprogram containing the XNL references.

The XNL symbol need not be referenced by the subprogram in which it is
declared. For example, the declaration of SNAPSHOT would not be referenced
until after the subprogram has been loaded and SNAP statements encountered.
If no reference occurs, the related address in the card is always 777778, Any
number of referepces with external symbols may occur in the subprogram.
The compiler or assembler prepares a threaded list for the loader to use in
establishing linkages. A symbol may be declared as external more than once
in a single subprogram. The loader will link multiple declarations.

An external symbol may be referenced from a 15 -bit word or 17 -bit character
address. A character address is denoted when the three leading bits of the
relocatable binary address are non-zero. Only the most significant 15 bits of
a character address are filled by the 15 -bit entry point address. The two low
order bits remain unchanged.

11-9

LOCAL REFERENCE
LIST CARD

An XNL card has the same general format as an EPT card.

Card
Column

1-2

3-4

5-80

Computer
'Word

2

3-40

Meaning

W == 43 8, A == sequence number 1,
2, 3, ...

C == checksum

External names and linkages

The name is 8 characters or less, if it is less than 8 characters, a record
mark follows. Immediately following name or record mark are 18 bits of
which the rightmost 15 specify the location of the instruction referencing the
external symbol. If any of the three leading bits are non-zero the reference is
from a 17-bit address, or string of 17-bit addresses. If several instructions
reference the external symbol, a string is formulated and the address on the
card provides the location of the first entry in the string. The address in the
XNL card is the reloeatable word address of the first instruction in the sub­
program which references the XNL name. The address field of that instruc­
tion contains the relocatable address of the second instruction referencing
the symbol, and s.o on, until the final reference. The address field of the last
reference contains 777778 to terminate the string.

If no reference is made by an instruction in the subprogram, the address on
XNL card will contain 77777 8, The number of XNL cards in a subprogram
deck is not restrietecl,

The sequence of XNL cards in a subprogram deck is important if multiple
references occur. An XNL card should not be the first card in a deck. If
the external name is declared only once in the subprogram, the XNL card
may appear anywhere between the IDC and TRA cards. If the external name
appears more than once, (on two or more XNL cards) the string related to
the first reference must be loaded before the XNL card containing the next
declaration is encountered by the loader. Strings must not be interrupted by
multiple declarations. A simple solution is to place all XNL cards imme - -
diately in front of the TRA card if the sequence established by the compiler
or assembler has been disturbed.

The local referenee list card is produced by an assembler or compiler, when
a reference is made in the source program to a symbolic address not yet
defined. The compiler or assembler builds a string of addresses at which a
reference is made to the undefined address. This string is identical in con­
struction to that used for external names. The LRL card is produced when
the symbolic address is defined.

11-10

LOCAL STRINGS

The LRL card has an arbitrary word count of 458 and is checksummed. The
LRL card must follow RIF cards containing the string.

The LRL card contains the standard binary card information, a word/character
flag, the relocatable subprogram address assigned to the local symbol which
was initially undefined in the source program, the address of the first entry
in the string and the length of the string list.

All addresses in LR L cards are relocated using the subprogram relocation
increment.

The LRLcard and its related string are similar to the external name cards
and the strings associated with the XNL cards. Since LRL cards, the string,
and the definition of the address are contained wholly within a single subpro­
gram, no symbol need be used. The first address in the LRL card is local
to the subprogram for which a definition is to be made.

The first address is used similarly to the address in XNL cards following the
the external names. This address is the relocatable address of the first loca­
tion in the subprogram where a reference was made to the undefined local
address. The second address is the relocatable subprogram address assigned
when the symbol was defined during assembly or compilation.

The references to the second address constitute a threaded list or local refer­
ence string. The string is terminated when the string length count in the card
reaches zero or when the string contains an address of 77777 8. If the zero
length and the address of 777778 do not occur simultaneously, an error results
and string processing is terminated.

Card
Column

1

2

3-4

5-6

7-8

9-10

11-80

Computer
Word

1

1

2

3

4

5

6-40

11-11

Meaning

standard binary card information,
w = 45 8

word/character flag for address
""0, word reference string

-:). 0, character reference string

24 bit checksum of LRL card

address of the string of references

relocatable subprogram address of
first word of string in least signifi­
cant 15 bits

number of references to address in
the subprogram (length of string) in
least significant 15 bits

not used

TRACARD

TRA FORMAT

The final card in a subprogram deck is a transfer card. It contains the sub­
program checksum, but the information in the TRA card is not checksummed.
The TRA card has an arbitrary word count of 448 and may contain a transfer
symbol. The TRA card is mandatory for successful operation.

The transfer SYlnbOl designates the location of the first instruction to be exe­
cuted under SCOPE. This starting address must be defined as an entry point.
If the transfer symbol is defined as an entry point within the subprogram con­
taining the TRA card, the assembler or compiler will punch the relocatable
address in the A field of the TRA card.

When loading more than one subprogram during a run, several TRA cards will
be encountered and it is possible to have two or more TRA cards terminating
a subprogram deck. However, if more than two transfer symbols occur, or
if no TRA card contains a transfer symbol, a loader error results; the exe­
cution of all subprograms loaded on the run is inhibited and the job is termi­
nated. If execution of the program proceeds, SCOPE will pass control to the
last transfer sYJllbol ,encountered.

When subprograms are loaded from file two of LIB, the first TRA card encoun­
tered terminates loading of the subprogram. The loader will search LIB until
an IDC card is found before loading can continue.

The above pertains to program execution initiated by the RUN statement. Pro'­
grams called by the library program statement are initiated according to other
rules.

The TRA card, which must be the last in a subprogram deck, contains the
standard binary information in column 1 and has a special checksum. The
checksum in columns 3 and 4 is a checksum of all of the other binary card
checksums in the subprogram.

If the subprogram deck is changed by the addition, deletion or correction 01
checksummed cards or if the TRA card is altered to supply or delete transfer
symbols, the "ignore checksum field", I, bit 8 of column 1, must be punched
for correct loading and execution.

11-12

12

Rows

LOADER
CONTROL
CARDS

11
0
1
2
3
4
5
6

7

8

9

(
448

Not
Used

B

I

B

1

Card Computer
Columns Words Meaning

1-2 1 W = 448, If TRA was produced by an
assembler or compiler and the trans-
fer symbol is defined within the sub-
program, columns 1 and 2 contain the
relocatable address assigned to the
symbol. Otherwise, the A field is
not used. Ignore checksum is fre-
quently used.

3-4 2 subprogram checksum, refer to
text

5-12 3-6 transfer symbol, 8 or less Hollerith
characters terminated by a blank

TRA Card

I
I B A C K T
I
I
I Blank

Subprpgram
Checksum

I

I
I
I
I
I

J I
2 3 4 6 7 8 9 80

The transfer symbol is BACKT.

The transfer symbol must appear in an EPT card loaded on the same run or
appear in the permanent portion of the loader symbol tables. The transfer
symbol is punched in Hollerith and may be punched on a keypunch.

Loader control cards provide information for the loader or direct the loader
to perform special processing on the binary subprogram decks. Three of
these cards control preparation of overlay programs and two control linkage
and input/output.

11-13

Loader control cards are not checksummed and have an arbitrary word count
of 508 or greater. Except for column 1, which is binary, loader control cards
contain symbolic information in 12-bit Hollerith. Loader control cards may
usually appear at any position in the loader input. The sequence is of impor­
tance only when the success of some operation depends on the prior appearance
of the control card. An example is the use of LED in preparing overlays.
The equipment declarations are time dependent during such processing.

EXS CONTROL CARD External symbols may be declared in binary subprogram decks after assembly
or compilation using external symbol cards. It is used to declare external
symbols not declared in the source language, or to alter the linking of external
symbols to entry points. The EXS card could be used to include SNAPSHOT

EXS PARAMETER

or another debugging routine in memory for a run, eliminating the necessity
of a source language declaration and simplifying the transition between debug­
ging and production runs. An EXS card might also be used to equate several
external symbols to a single entry point to facilitate testing of sections of
programs.

EXS cards may appear in any position in the loader decks. On the LIB tape
they may be placed only between the IDC and TRA cards for a subprogram.
The EXS loader control card has an arbitrary word count of 558. Except for
column one, the ca.rd is free field.

Card
Column

1

2-8

Meaning

standard identification, 7/9 punches, W~.= 55 8

two options:

a. external symbol, external symbol, ... ,
external symbol

b. external symbol,
external symbol,
external symbol
equal sign entry point name

When no equal sign appears, the external symbols are assumed to be' entry
point names in subprograms loaded for the run or entry point names of pro­
grams contained in file two of LIB. The external symbols are processed as
if they came from XNL cards which had no related linkage strings. A program
executed under SCOPE does not normally have access to the linkage informa­
tion obtained by this use of EXS cards.

11-14

LED CONTROL CARD

When one or more external symbols are equated to a single entry point,
loading the program in which the single entry point name is defined will
satisfy all of the external symbol declarations.

If an entry point name identical to an external symbol contained in such an
EXS declaration appears after the EXS card, a duplicate symbol error will
result. If the EXS declaration occurs during the loading process after the
entry point name is defined, the normal relationship is overridden and the
EXS declaration of equivalence prevails. However, the entry point name
need not be defined prior to the EXS dec lara tion.

The loader equipment declaration card assigns logical units to specific hard­
ware units or to hardware of a particular type. If a logical unit named in a
LED card has been previously assigned, the LED declaration is ignored.
Units assigned by LED cards need not be declared on EQUIP cards.

The LED card has an arbitrary word count of 548, Except for column 1,
the card is in 12 -bit Hollerith and it is free field. Fields are separated by
commas. Any number of LED cards may appear in any position of the loader
input except on LIB, LED cards must occur between an IDC and the first
TRA following.

The LED card contains one or more hardware declarations. The last decla­
ration must be wholly contained on the card.

Card
Columns

1

Meaning

standard loader information, 7/9 punches
W = 548

Each declaration may have the form:

LL hh or LL hh c e uu

LL logical unit number lSLL~56

hh hardware type, as encoded in AET

01 magnetic tape

02 card reader

03 printer

04 card punch

05 typewriter

06 paper tape station

11-15

c

e

uu

channel number, 0 to 7

equipment number, 0 to 7

unit designator, two octal digits

Imbedded blanks are ignored. The declaration LL hh means assigns the logical
unit to an availablle unit of the designated type. Other assignments are specific
as to type, controller and device. The last declaration must be wholly con­
tained on the card.

LOADER ERRORS The loader audits and evaluates input. Any error will inhibit execution of the
loaded program. When errors are detected a message is written on OUT. If
possible the card in error is identified. The general types of errors reported
are:

LOADER INPUT

checksum errors

format errors

symbolic address and linkage errors

deck and subprogram sequence errors

I/o errors due to faulty information, hardware failures
or improper input formats

The loader detect.s most errors but it is necessary for the programmer to
protect previously loaded information from destruction by information from
subsequent RIF cards. If two RIF cards in a single subprogram overlap in
storage, the loader will give no indication. Normally this will not occur
unless the original deck sequence established by the compiler or assembler
is altered.

It is also possible that information destined for storage in the data area from
two subprograms could conflict so that information in one subprogram could
be destroyed by information from subsequent subprograms. No error indi­
cation is given.

The first card in a loader input deck is an IDC card, unless the input is for
overlay preparation. In this case, the first card encountered must be a
MAIN card. The general structure of the subprogram deck is:

IDC 41 8

EPT 428

RIF 1-4°8

LRL 458

11-16

LOADER ERROR
MESSAGES

XNL 438

TRA 448

If a MAIN card is encountered during overlay preparation, a card sequence
error, CS, will result. If loader encounters a SEGMENT card before an
OVERLAY card a card sequence error, CS, results, the card is processed
as if it were OVERLAY and execution is inhibited. If MAIN was not the first
card and MAIN, OVER LA Y or SEGMENT appear in the loader input, a card
sequence error occurs and the card is unrecognizable.

The LRL card must appear after all RIF cards containing references to the
string have been loaded. XNL cards need not occur in any particular sequence
in the loader input unless the same symbol appears on more than one XNL
card in the subprogram deck.

If the sequence of a single subprogram deck has changes from that established
by the system that produced it, the following sequence may be used:

IDC

EPT

RIF

XNL

LRL

TRA

With the possible exception of RIF cards which are assigned to overlapping
locations, this sequence will allow the subprogram to load correctly.

The loader diagnoses certain errors during loading and prints error messages
on OUT. The format of the message may vary depending on the type of error
and the card format.

If the message includes the character 1=, a character code which occupied
the corresponding position in the card could not be converted. If a message
includes the term I=UNCVRT 1=, card columns 2 through 9 could not be con­
verted to valid Hollerith information even though the word count indicates the
card to be a loader control card.

The loader maintains a count of errors detected. SCOPE prints the error
count on OUT. Any error inhibits execution of the loaded program.

If less than 63 10 errors are detected, a true count is given.

11-17

LOADER ERROR
CODES

If 6410 errors are detected, loading is terminated, SCOPE prints a 6310
count and the job is terminated.

Error
Code/Name

CF
Card Format

CS
Card Sequence

Word
Card Name Count

TRA 448
EXS 548

MAIN 5°8
OVERLAY 51 8
SEGMENT 52 8

0

lUI" 1-4°8
EPT 42 8
XNL 43 8
LHL 45 8

TEA 448

varies

IDe

MAIN 50

OVEHLAY 51
SEGMENT 52

11-18

Meaning

Illegal character on card

Incorrect or illegal punches in
subfield

Non-loader card has been read
from a unit other than INP

IDC card missing; no IDC card
in front of loader cards follow­
ing a TRA card

A zero length subprogram on
LIB

Unrecognizable binary card
detected; card has non-zero
word count; it may be an
overlay control card if
MAIN was not the fi rs t
card in the deck

IDC card detected which does
not follow a TRA card. It is
not the first IDC card in deck

Two MAIN cards in deck

a. Overlay control cards
internal to subprogram

b. Overlay control cards
are contiguous. No sub­
program decks intervened.
A zero length element has
been specified.

c. A SEGMENT card was not
preceded by an OVERLAY
card. This SEGMENT
card is treated as if it
were OVERLAY. An error
is counted to inhibit execution.

Error Word
Code/Name Card Name Count Meaning

CK any loader Checksum error detected in a
Checksum card binary card
Error

DS EPT 42 8 Entry pOint name appeared twice
Duplicate during .loading
Symbol

UD XNL 43 8 Declared name is not a defined
Undefined TRA 448 entry point in a loaded subprogram,

EXS 548 in file two of LIB, or in the perma-
nent portion of loader symbol
table

TR TRA 448 a. No TRA card contained a
Transfer transfer symbol
Symbol

b. More than two TRA cards
contained transfer symbols

RL RIF 1-4°8 a. Load address relocation
Relocation byte is not 00102 or 01002
Factor

b. Load address relocation
byte is 01002 and data area
is undefined

c. Data area is part of overlay
element already on tape

d. Relocation byte is zero

SE Count in LRL card and actual
String references detected by loader
Error do not agree

SL XNL 43 8 String of addresses has resulted
String Loop in a loop

LX EXS 548 External symbol equated to
Equated another defines a loop
Linkage
Loop

MS Entry point name does not exist
Missing in file two of LIB to correspond
Subprogram to library name statement

OV This error always terminates
Memory loading
Overflow

11-19

Error
Code/Name

EOF
End of File

EOT
End of
Tape

I/O
Input/output
Error

Word
Card Name Count

IDC

OCC 00

Various

11-20

Meaning

Storage required for subprogram
(common area or the data area, if
this is first IDC) exceeds available
memory

During overlay processing, pro­
gram extension area exceeds
a vailable memory

Symbol printed in error message
could not be entered in loader
symbol table without infringing
allocated memory

Space in memory does not allow
library search. Loading is
terminated

Loader encounters end-of-file
on INP. Loading is terminated.

During overlay preparation a
physical end-of-tape is detected
on output tape for writing. Over­
lay processing is terminated

a. After five attempts to read
a magnetic tape, loader
unable to read the logical
unit, number of which is
stated in the error message

b. Error on input unit which
was not magnetic tape

c. Unit specified in an over­
lay control card is not
magnetic tape. Termi­
nates loading and job

d. An error occurred in
wri ting a magnetic tape
in overlay processing
terminates loading and the
job

ERROR MESSAGE
FORMATS Binary Card Error

PPPPPPPP CC WW AAAAA

P - Subprogram Name

C - Error Code

W - Word CO!lnt

A - Card Address Field

Example:

PROGRAM 1 RL 05 06421

Hollerith Card Error

PPPPPPPP

Examples:

PROGRAM 1

PROGRAM 1

Symbol Error

PPPPPPPP

Examples:

PROGRAM 1

PROGRAM 1

CC WW HHHHHHHH

P - Subprogram Name

C - Error Code

W - Card Type

H - Hollerith Columns 2-9

CS 66 SPEC, 4,2

CF 00 FUNCVRTF

This message indicates columns
2 -9 of the card cannot be con-
verted to valid Hollerith informa-
tion

CC

DS

CF

SSSSSSSS

P - Subprogram Name

C - Error Code

S - Symbol

TAG4A

TAG5MF

If an unconvertible character is encountered
in a Hollerith symbol, the CF diagnostic is
printed with F in position of the bad character

11-21

Miscellaneous Errors -
pppppppp cee XX

p - Subprogram Name

C - Error Code

X - Other Number (if necessary)

Examples:

PROGRAM 1 TR 03

PROGRAM 1 I/O 60

11-22

OVERLAY
PROCESSING

OVERLAY PREPARATION 12

The SCOPE loader prepares overlay programs from relocatable binary sub­
program decks. Overlays are composed of an executive or master control
program called the main program and any number of parts called overlays
and segments.

Overlay processing allows programs that exceed available storage to be divided
into independent parts which may be called and executed as needed. A program
is divided into a main section and any number of overlays, each of which con­
tains any number of segments. Main, overlay, and segment each contain sub­
programs. Only main, one overlay, and one scgment may occupy storage at
a given time.

The loader control cards, MAIN, OVERLAY, and SEGMENT, precede the
relocatable binary subprograms which comprise the respective sections.
After a source program is assembled or compiled, the decks are prepared
and loaded. Each overlay or seg1nent is written on an overlay tape as a sepa­
ate record in absolute binary. The overlay tape is called in sections for exe­
cution. The absolute records do not require the relocatable binary loader to
perform the usual relocating and linking functions.

If a segment is encolU1tered before any overlay is encountered, that segment
is treated as an overlay. However, the Card Sequence Error message will
display the segment identification number relevant to this segment. Hefer
to the section on loader errors.

Initially, control is transferred to MAIN which resides in storage continu­
~usly; it in turn calls the overlays when they are needed. Segments are called
only by an overlay. FORTHAN and COMPASS subroutines, available to call
the overlays and segments during execution, must be included in the MAIN
clement. Once an overlay tape is created, it may be executed as many times
as desired if the same equipment configuration and SCOPE resident programs
arc used with subsequent executions. Overlays occupy memory common to
other overlays; segments associated with a given overlay occupy memory
common to other segments of that overlay.

12-1

USE OF
OVERLAYS

OVERLAY TAPE
FORMATS

Segments may make reference to only those addresses which are:

1) defined within the segment

2) defined in the overlay with which the segment is associated
and from which it is called, and/or

3) defined in the main program.

Overlays may reference only those addresses defined within the overlay or
the main program.

The main program may refer only to addresses defined within itself. All
entry point symhDls referenced within the main program, an overlay, or a
segment are defined for that program element and any elements subordinate
to it.

Overlays and segments are stored on tapes from which they are called to be
executed. The tapes are prepared by the loader as specified by loader control
cards.

Two transfer addresses arc recorded for each element loaded. If a transfer
address does not ap'Jear, or if more than two are encountered, an error is
indicated. The transfer addresses for the main program are returned to the
calling program.

When the end of the program deck is reached, SCOPE reads the main program
back into memory if it was stored on tape, prior to entering the user's program.

If an clement written on tapc contains the DATA block, the DATA block will
rctain its definiLon and may be referenced. The DA TA block may not be
loaded by subsequent elements subordinate to the element in which the DATA
block was first defined.

Overlay tapes contain program overlays and/or segments as prepared by the
loader. Each overlay or segment is preceded by a four word record which
identifies the iniormation record following. Information is recorded and read
in binary mode with density unspecified.

The identifying record format is:

Word 1 o FWA

Word 2 s L

Word 3

Word 4

17 14

12-2

OVERLAY AND
SEGMENT
EXECUTION

T 1 primary (last encountered) transfer address

T 2 secondary transfer address

o number from 001-143 8, identifying an overlay

S number from 001-143 8, identifying a segment of the
overlay identified by i-

FWA first word address into which the information record
is to be read

L length of information record in words

Oand S are both 000 if the following record is the main program.

The information record consists of absolute binary words which are read into
FWA through FWA + L - 1. The last information record on each overlay tape
is followed by an end-of-file.

Overlays and segments are called from tape by entering a library routine from
the main program. The routine is called by:

place parameter in A

RTJ EXECOVH

EXECOVR is declared to be external to the main program. The parameters
in A are given in the format:

23 18 14 76 o

L logical unit number used to address the tape on

which the overlay or segment is stored.

I identifying number of the overlay or segment to be
entered. I is in the range of 001-143 8; bits 7-14
are always zero.

EXECOVR locates the segment or overlay on the indicated tape, reads it into
memory, and passes control to it by executing an RTJ to its primary transfer
address, with the secondary transfer address contained in A14-0. The segment
or overlay returns control through the linI<:age established. When return is

+ If the record is an overlay record, S contains 000.

12-3

MAPPING OF
OVERLAY AND
SEGMENTS

made from a segment, EXECOVR returns control to the overlay which last
called EXECOVR; if an overlay returns control, EXECOVR returns to the
main program. The linkage to the main program, and the number of the over­
lay to be entered is saved by EXECOVR each time an overlay is requested.
EXECOvn may not be called within a segment; a call made to EXECOVR with­
in an overlay causes loading of a segment; a call made from the main program
causes loading of an overlay.

If the requested overlRY or segment cannot be located on the specified tape,
or be read free of errors, the job is terminated.

EXECOVH must be declared as an external symbol in the main program and
in each overlay which calls it. EXECOVR is loaded from the library tape as
part of the main program.

When an overlay 01' a segment has been prepared, a map of the memory is
produced on the Standard Output unit, unless suppression is indicated by an
S in the third field on the OVEn LAY or SEGMENT card. The map shows:

The first word address of all subprograms comprising the overlay
or segment.

All entry points defined within the overlay or segment.

The overlay or segment extension area, if one is assigned to
contain corrections added to the overlay or segment.

The load map for each overlay and segment is printed on a new page.
The first line of each page is headed \vith the following line:

OVLA Y nn SEG ss TAPE tt

nn Overlay idcntification number (decimal) of this overlay,
or of last preceding overlay if this is the map of a segment.

ss Segment identification number (decimal) of this segment,
or 00 if this is the map of an ovcrlay.

tt Logical tape unit numbcr (decimal) of the tape unit on which
this elmuent was written. Illegal unit designations will produce
a Card Format Error message. The parameter tt will then
appear as 00.

Similarly, illegal values of nn or ss will produce an error
messag'e, and the heading line of the corresponding map
will Sf.OW the illegal value as 00 for ss or nn.

12-4

OVERLAY
CONTROL CARDS The programmer prepares the loader control cards, MAIN, OVER LA Y, and

SEGMENT and places them in front of the subprogram decks. Corrections
may be entered by OCC statements within the overlay input.

MAIN

OVERLAY

MAIN must be the first card encountered by the loader when overlays are pre­
pared. The subprograms following MAIN and preceding any other overlay
control card constitute the main program. The MAIN card has an arbitrary
word count of 50 S and except for column one, the card is in 12-bit Hollerith.
The MAIN card consists of the standard column 1 information and two fields
of Hollerith information.

Card Column

1

2

6-S0

Meaning

standard identification, 7/9 punches,
W = 50S

beginning of two fields described below

not used

The first field begins in column 2 and is terminated by a blank or a comma.
This field contains the logical unit number 1-5510 of the magnetic tape on
which an overlay program is to be written. If the MAIN program is not to be
written on tape, field one may contain zero, two zeros, blank or a comma in
column two.

The second field contains a P if OCC cards are contained in the overlay deck.
If OCC occurs and P is not declared, OCC cards will be treated as card
sequence errors, code CS.

The OVER LA Y card precedes each intermediate element of overlay programs.
All subprograms which follow, and precede another overlay control card (or to
the end of the deck) constitute the OVERLAY. The OVERLAY card has an arbi­
trary word count of 51S and is not checksummed.

The OVERLAY card defines the overlay, the logical unit on which the overlay
is written and determines whether a map of the overlay will be prepared.

Card Column

1

2

Meaning

standard identification, 7/9 punches,
W = 51S

start of three fields

12-5

SEGMENT

Three Hollerith fields separated by commas appear on the card beginning in
column two. The first field specifies a logical unit number 1 to 55, on wh:ich
the overlay will be written. This unit designation is mandatory. The second
field contains a numher, 1 to 99, which identifies the OVERLAY. The third
field contains an S if the map for this overlay is to be suppressed.

Overlay elements subordinate to OVERLAY are defined by SEGMENT cards.
An OVERLAY may contain several segments. The subprograms following, to
the next SEGMENT or OVERLAY card or the end of the program deck constitute
a segment. Segments are subordinate to the overlay they follow.

The SEGMENT card has an arbitrary word count of 528 and is not checksummed.
The SEGMENT card determines the logical unit on which the segment will be
written, the segment identification and whether a map of the segment will be
prepared.

Card Column

1

2

Meaning

standard identification, 7/9 punches,
W = 528

start of three fields

The SEGMENT card contains three Hollerith fields separated by commas.
The first field contains the logical unit number, 1 to 55, on which the SEGMENT
is written. This field is mandatory. The second field contains a SEGMENT
identification number 1 to 99. The third field contains an S if the map of the
segment is to be suppressed.

12-6

DUMP ROUTINES

MEMORY
ALLOCATION
PRINT

PROGRAM DEBUGGING 13

Debugging aids may be used at the source language or object levels. SCOPE
will produce a map at the programmer's option to show the assignment of sub­
programs, data, common, and the program extension area to memory. All
entry point names and the assigned addresses are shown on the map as well.

An octal correction routine allows changing, modifying or correcting the pro­
gram after it has been loaded. Selective dumps may be obtained by means of
the SNAP control statement.

The programmer may choose several options for printing the contents of con­
sole registers, the register file and part or all of the non-system memory.
After programs have been loaded, the programmer may use the SCOPE control
statement, SNAP, which will allow the printing of selected portions of memory
during program execution. Calling sequences are available to specify a similar
dump in the source language. Recovery dumps are also available should a pro­
gram be terminated due to errors.

The programmer may secure a map of memory allocated to a loaded program
at the time the RUN statement is encountered. This map may be suppressed by
a parameter of the RUN statement.

The map contains:

Heading

SUBP

ENTR

COMM

Category

the name of each subprogram as stated in the IDC card and
the absolute address of the first location of the subprogram
in execution time memory.

the entry point symbol as taken from E PT cards and the abso­
lute address of each entry point declared in any subprogram
loaded for the run.

the absolute addresses of the first and last locations in the
common area.

13-1

SYSTEM DUMP
ROUTINE

Heading

DATA

PEXT

~~ategory

the .absolute address of the first location in the data area.

the absolute address of the first location in the program
(;!xtension area.

Memory allocated to SNAP calling sequences is not included in the above areas
and does not appear in the memory map.

Items in the map for subprograms are ordered from the lowest numbered
address to the highest numbered address. Each item in these categories
appears in the below format, where XXXXX represents a 5-digit octal word
address: XXXXX 8 character name

The format for the data block and the extension area is:

Identifier
XXXXX

The format for the common block is:

COMM
XXXXX XXXXX

Each MAP begins a new page of print. Categories are separated by one blank
line. No lines are skipped within categories.

The information for the map is obtained from the loader symbol table.

The programmer :may use a dump routine to print the console registers, the
register file and selected portions of non-system memory during a programmer
run. The dump may be obtained in octal, character or decimal floating point
formats. With the SNAP statement, the programmer may request the dump
after the program ha:3 been loaded or may specify the dump in the FORTRAN
or COMPASS source Languages.

Each time it is called, the dump routine prints, on OUT, one line containing
the dump identification of 4 BCD characters, the address of the calling
sequence, the contents of the A and Q registers, the three index registers and
the interrupt mask register. Except for the dump identification all of the above
is printed in octal.

If the register file option is elected, the contents of all 64 registers are printed
in octal following the console scoop.

13-2

SOURCE LANGUAGE
CALLS FOR
SYSTEM DUMP

CALLING SYSTEM
DUMP ROUTINE

The memory dump consists of printed lines in the mode indicated in the calling
sequence. This is preceded by the octal absolute addres s of the location. If
all words in a line are identical to the last word printed on the preceding line,
lines are suppressed until one is found in which a difference occurs.

If the SNAP option is used, the dump routine prints the relocatable address of
the location in the subprogram to the left of the absolute address of each print
line. These columns are blank if the dump was not call-ed by SNAP statements.

The calling sequence for the system dump routine in either FORTRAN or
COMPASS is incorporated into the object subprogram. Each time the sub­
program is operated, the dump routine will be in memory and dumps will be
taken.

Except for relative address control, the format of the dump is the same for
source time calls as for SNAP. The source language calls are shown below.

The system dump routine has three entry points: FORTDUMP, called in
FORTRAN programs; PROGDUMP, called in COMPASS programs; and SNAP­
SHOT, called by the SCOPE control statement, SNAP.

Source Calling
Statement

SCOPE Control Statement

7
9 SNAP, LC, B, E, M, ID

13-3

Machine Language
Calling Sequence

SNAPSHOT Calling Sequence

FWA

m LWA

Identification

SRF

*Snapped Instruction

UJP RLA

RTJ SNAPSHOT

COMPASS Statement

RTJ PROGDUMP

M ID B E

FOR TRAN Statement

CALL FORTDUMP
(B, E, M, ID)

Terms in SCOPE Calling Statements:

PROGDUMP Calling Sequence

RTJ

m

BCD

*

PROGDUMP

FWA

LWA

1, < 4 char. iden -
ification>

FOR TDUMP Calling Sequence

RTJ FORTDUMP

77 **L(FWA)

77 **L(LWA)

77 **L(MODE)

77 **L(ID)

*

LC ;specifies the location of the instruction at which the SNAP
occurs

B beginning address of the dumped region

E ending address of the dumped region

M mode indicator

ID identifier

13-4

ERROR
MNEMONICS

Terms in Machine Language Calling Sequences:

FWA first word address to be dumped

LWA last word address to be dumped

RLA return linkage addres s to the program

SRF subprogram relocation factor

Mode or M mode indicator

ID identification

* indicates where control is returned

**L(x) indicates the location of the word containing x

Mnemonic Meaning

For SNAP and acc statements

*PN

*BS

*AD

*8F

*XA

*WR

For acc statements only

*AN

*RL

13-5

Program Name

Common or data storage is
undefined and referenced

Address or location field begins with
illegal character

Octal field contains non -octal character

Extension area undefined or to small

Wraparound of location field address:
exceeds core size

Antecedent reference to a program (*)
or loading address (+)

Relocation portion of correction field
contains illegal characte r

SNAP

Mnemonic

For SNAP statements only

*ov

*IM

*HG

Meaning

Overflow of memory will occur if this
SNAP is loaded

lliegal Mode field on SNAP card

Range of area to be snapped has begin­
ning address larger than ending address

The format of the SNAP control statement is shown in the section on SCOPE
control statements. SCOPE processes the SNAP statement and builds a calling
sequence. The instruction at the designated location in the subprogram is
exchanged for a jump to the calling sequence and saved for execution after the
dump is taken. SNAP prints the dump on OUT as indicated by the parameters.
The system dump r::mtine must be loaded by the use of the loader control card
EXS unless called by some source language option.

The location at which the SNAP occurs must not be altered during execution or
by OCC statements, VThen SNAP and oce statements are intermixed, an OCC
statement must not destroy the jump to the SNAP calling sequence.

In choosing instructions at which to request SNAP dumps, the programmer must
follow certain rules.

1. Do not SN A P at instructions involving more than one word, such as search,
move, skips and certain I/o instructions.

2. Do not SNAP conditional tests or jumps.

3. Do not SNAP indirectly addressed instructions.

4. Do not SNAP instructions which will be modified by program execution.

5. Do not exchange any of the following instructions with a jump to the SNAP
calling sequence.

13-6

SYSTEM DUMP
PRINT MODES

Octal

10
10
04
04
04
05
05
05
06

Mnemonic

lSI
ISD
ASE
QSE
ISE
ASG
QSG
ISG
MEQ

Octal Mnemonic

07 MTH
10 SSH
52 CPR
77.0 CON
77.1 SEL
77.2 EXS
77.3 INS
77.4 INTS
77.6 PAUS

6. Do not exchange any instruction within the range of the following instruc­
tions with a jump to a SNAP calling sequence.

Octal Mnemonic Octal Mnemonic

71 SRCE 74 INA ",7

72 MOVE 74 OUTC
73 INPC 75 OTAC
73 INAC 76 OUTW
74 INPW 76 OTAW

7. Avoid SNAP calls within a loop.

The mode parameter establishes the format of the dump. The symbolic form is
used in SNAP statements; the octal form is used with PROGDUMP and FORTDUMP.

Symbol Octal Mode

0 1 octal

C 2 character

F 3 floating point

R 4 register file

OR or RO 5 octal and register file

RC or CR 6 character and register file

RF or FR 7 floating point and register file

13-7

Examples:

7
9 SNAP, Lc, B, E, M, ID

The SNAPSHOT card is put behind a binary deck. SNAPSHOT entry is called
to obtain relative addressing from COMPASS code as follows:

FIRST

SNPDMP

IDENT PROG

BSS o

UJP SNPDMP

EXT SNAPSHOT

BUFY

1 BUFY+24

BCD 1, PRG1
FIRST

NOP 0

UJ"P *+2

HTJ SNAPSHOT

To take a dump after the instruction is executed at fifth location of subprogram
SUB1, use the following SNAP card; assume BUFY at location 04418 in SUB1.

~ SNAP, (SUB1) 6 1, 441*,465*,0, SNP1

The area between BUFY and BUFY+24 is dumped in the octal mode. SNP1
identifies this card.

PROGDUMP calling sequence:

RT J PHOGDUMP

BUFY

1 BUFY+24

BCD 1, PRG1

13-8

RECOVERY
DUMP

OCTAL
CORRECTION
OF LOADED
PROGRAMS

DEFINITION OF

PROGRAM
EXTENSION
AREAS

lf a job is terminated abnormally, a post execution dump of non-system mem­
ory is written in octal on OUT unless the programmer has specified in the JOB
card that it is to be suppressed. The dump consists of console conditions, the
register file, and non-system memory. The dump is preceded by interrupt
and trapped instruction information. The format of the dump is that described
in the systems dump routine if octal and register file options are selected. The
recovery dump is a separate routine.

When subprograms have been loaded and control returned to SCOPE, the pro­
grammer may enter octal corrections for the loaded program. The seo PE
control statement oee provides for replacing single or several contiguous
instrucL lns in the program. The format of the oee statement is discussed in
the section on SCOPE control statements.

The corrections loaded by the oee statements may replace one or more instruc­
tions or constants in a subprogram, or the programmer may use oee to define
a program extension area.

If an oee is directed to the same location as a SNAP statement and follows the
SNAP statement in the SCOPE input, the SNAP is lost. No error is indicated
and the SNAP calling sequence still consumes available memory.

If a program extension area is used, it must be defined by an oee statement in
the following form:

~ oee, Xk

X indicates the definition of the extension area and k is an octal integer indicat­
ing the length of the extension area. If the length, k, exceeds available memory,
the area is adjusted to the size of available memory. A message is printed on
OUT and execution is allowed if this is the only error in the run. If loading of
corrections exceeds the SCOPE defined area, it is handled as memory overflow.
If the first oee statement to name X in the location field is of incorrect format,
it is ignored; an error indication is given; an arbitrary extension area of 7778
locations (which may be adjusted to fit available memory) is defined. The deck
is processed to the RUN statement and execution is inhibited.

13-9

octal corrections el;Ln be made into three areas of memory; subprogram, data
area and program extension areas. Since compilers and assemblers output in
the relocatable mode, it is further necessary to use address modifiers to find
memory locations. For example; if several subprograms are loaded, the
absolute address of a variable in a particular subprogram is not known. The
programmer must place the name of the subprogram and the relative address
on the octal correction card.

~ acc, (PROG1)70, 20000100*

A correction is to be entered at address 00070 relative to subprogram PROG1.
The * tells SCOPE: to relocate address 00100 relative to subprogram PROG1.

~ acc, (SUB1)77, 20000100*, 40000101(SUB2).

Put 200XXXXX in location SUB1+77 of subprogram SUB1; relocate 00100 rel­
ative to subprogram SUBl. Put 400XXXXX in location SUB1+100 of subprogram
SUB1; relocate 00101 relative to subprogram SUB2.

~ acc (SUB1)20, 00000036, 0000036, 000036, 00036, 0036, 036, 36.

Put the octal value 00000036 into locations 20,21,23,23,24,25,26 of subprogram
SUB1; since values are right justified, 00000036 and 36 both go into memory as
00000036.

7
9 OCC,X20.

7 acc, X, 20000100(SUB1), 40000101*,20000102*,40000103*.
9

~ acc, +, 20000400(SUB2), 40000401 *,20000402 (SUB3), 40000403*.

~ acc, X10, 20006~~0(SUB4), 40000621 *, 20000622(SUB5), 40000623*.

The first X assigns 20 locations to the program extension area. The next X puts
200ZZZZZ into loeahon 1 of the extension area; ZZZZZ is the relocated
address relative to subprogram SUB1. 400ZZZZZ goes to location 2 of the
extension area, 200ZZZZZ to 3, ~nd 400ZZZZZ to 4; all ZZZZZ addresses are
relocated relative to subprogram SUB1. The + card continues stacking informa­
tion in the program extension area; the addresses of the first two corrections are
relocated relative to subprogram SUB2-, the last two are relative to subprogram
SUB3.

13-10

ERRORS IN
SCOPE DEBUG
STATEMENTS

The last card starts loading the information pertaining to subprogram SUB4
and subprogram SUB5 into program extension area location 10.

7
9 OCC~ D, 5, 10, 15, 20, 25, 30, 35, 40.

7
9 OCC, +, 45, 50, 55, 60, 65,70.

7
9 OCC, D20, 75, 100, 105, 110, 115, , 125, , 135.

The first two cards will put the 14 octal values 5-70 in successive data area
locations starting with zero.

The last card will put the 5 octal values 75-115 in successive locations starting
with data area 20. Data area 25 will be unchanged, 26 will hold 00000125, 27
will be unchanged and 30 will hold 00000135.

70CC , (SUB1)70, 01000010X, 20000005C, 40000007D
9

7 OCC, +, 20000007(SUB1)C
9

Put instruction 010XXXXX into location 70 SUB 1 ; XXXXX is modified relative
to address 10 of the program extension area. Put into SUB1 +71 200XXXXX;
XXXXX is modified relative to the fifth common address; SUB1+72, etc. Put
20XXXXXX into SUB 1 +73; XXXXXX is a character address modified relative
to subprogram SUB1.

When SCOPE is processing SNAP and OCC statements, errors may result from
incorrect format or memory overflow. SNAP card errors do not prevent execu­
tion; errors in OCC cards do, except when too large an extension area is
declared. If SNAP calling sequences overflow memory, execution is inhibited.
If the system dump routine is not in memory and SNAP statements occur, the
job is terminated.

13-11

ERROR
MESSAGES If a SNAP statement is used and the system dump routine is not in memory,

the run is terminated and this diagnostic is printed:

***NOSD

RUN ABORTED

If an extension area is defined incorrectly, the following is printed:

***Xnnn

nnn is the 3-digit octal length of the SCOPE defined extension area.

The format for all other error diagnostics is the same.

*mn, COL nn

mn is the mnE,monic

nn is the actual column number on the card

at which the error was detected. In certain cases the column number
will be the last in a field.

13-12

APPENDIX SECTION

APPENDIX A
BINARY CONTROL CARDS

A

Control cards which control SCOPE and related systems may be considered in three categories:

Executive/monitor

Loader

PRELIB

Control cards for executive/monitor are binary cards with a word count of zero. Loader cards are
binary cards with a non-zero word count. PRE LIB control cards are of the identical format of
executive/monitor control cards. PRELIB also uses loader cards but in a unique manner.

A control card for any unit is a binary card defined by the hardware when a 7, 9 punch is detected in
column one. This card is read into memory and examined for punches in rows 3,2, 1,0, 11,12, of
column 1; they contain the word count.

Word count is derived from the relocatable binary information card, RIF, which may contain a variable
amount of information for storage in one or more computer words. In the RTF card this is an actual
word count. In other control cards this number is an arbitrary value used to tell the system how the
information on the card is to be used.

All legal control cards and the word count are shown in the following table.

Intra SCOPE Communication

PRE LIB is called by the PRE LIB card and is in control until abnormal termination or until two FILE
cards have been encountered.

Loader receives control from executive/monitor once per run to load I/o drivers needed immediately
by SCOPE. During any loading operation, I/O drivers are loaded automatically. For programmer runs
the loader receives control from executive/monitor when a binary card with non-zero word count is
read from INP or when a LOAD statement is encountered. Loader retains control until abnormal ter­
mination or until a binary card with a word count of zero is read from INP, or when loading from the
library when the called program and all externally linked subprograms have been loaded. Loader
returns control to the POST LOAD portion of executive/monitor.

BINARY CONTROL CARDS

Octal
Word Check- Sub-

Name Count Description sum system Page
-------CTO 0 comment to operator no EXEC

DELETE 0 delete subprograms no PRELIB

ENDREEL 0 end of one reel of E,tandard input no EXEC

ENDSCOPE 0 terminate SCOPE run no EXEC

<library name> 0 call library program no EXEC

EPT 42 entry point name yes LOADER

EQUIP 0 equipment declaration no EXEC

EXS 55 external symbol declaration no LOADER

FILE 0 terminate file no PRELIB

IDC 41 subprogram identification yes LOADER

INSERT 0 insert subprograms no PRELIB

,JOB 0 declare programmer IS job no EXEC

LED 54 equipment declaration no LOADER

LOAD 0 load subprograms no EXEC

LRL 45 local reference list yes LOADER

MACRO 0 load macro symbolic deck no PRELIB

MAIN 50 main program declaration no OVERLAY

OCC 0 load octal corrections no EXEC

ORIGIN 0 establish starting location no PRELIB

OVERLAY 51 declare program overlay no OVERLAY

RECORD 0 declare record no PRELIB

REPLACE 0 replace subprograms no PRELIB

REWIND 0 rewind magnetic tapes no EXEC

RIF 1-40 relocatable binary information yes LOADER

RUN 0 execute object program no EXEC

SEGMENT 52 declare overlay segment no OVERLAY

SEPOINT 0 declare system entry point no PRELIB

SEQUENCE 0 declare job sequence no EXEC

A-2

Octal
Word Check- Sub-

Name Count Description sum system Page

SNAP 0 establish snapshot parameters no EXEC

TRA 44 subprogram transfer not LOADER

UNIT 0 declare PRE LIB input unit no PRELIB

UNLOAD 0 rewind and unload magnetic tape no EXEC

XFER 0 copy data from standard input no EXEC

XNL 43 declare external name and linkage yes LOADER

tThe TRA card contains a subprogram checksum but it is not checksummed.

A-3

APPEN[)[X B
INSTALLATION ACCOUNTING

B

.. --.. .

SCOPE contains an ACCOUNTS table which holds information pertinent to installation accounting. This
table receives information from the operator and from the programmer control statements SEQUENCE,
JOB and RUN. SCOPE maintains the ACCOUNTS table but does not perform any accounting function.
Rather, at appropriate times, SCOPE provides linkage with an installation accounting routine which
may perform whatever accounting a particular installation deems desirable. The installation may
elect to have a complex routine which restricts job times and prepares detailed reports; a simple
routine which merely retrieves accounting information for use at a later time; or no accounting routine.

Calls to Accounting Routine

SCOPE provides linkage with the installation accounting routine through the SEQUENCE, JOB, END­
SCOPE and RUN control statements. SCOPE will update the accounts table before or after the installa­
tion accounting routine is executed .

. Sequence Statement

processes the accounting record for the preceding job.

Job Statement

for a non-stacked job closes the accounting file prepared by the accounting routine prior to the unload­
ing of the ACC output unit. When control is returned to SCOPE, the current ACC is unloaded and ACC
is equated to CTO. For a stacked job, a new record i's opened.

Endscope Statement

The installation accounting routine is entered to close out the records for the preceding job and to close
the file prior to unloading ACC.

Run statement

The accounting routine is entered to set up timing restrictions.

Accounting Routine Calling Sequence

The SCOPE call to the accounting routine has the general form:

RTJ JOBACC

parameters

The parameters indicate what control card SCOPE is processing.

B-1

Structure of Accounts Ta1;>le

The ACCOUNTS table consists of 12 words which contain the date, local and machine times, sequence
number of the job in process, the accounting and identification information from the JOB statement,
and the times declared on the JOB and RUN statements.

Accounts

+0 }
+1

ddmmyybb

+2} local time in BCD }
+3 machine time in binary

when SCOPE was
initiated

+4 sequence number of current job in BCD

+5 } c field of JOB statement in BCD
+6

+7 i field of JOB statement

+8} run time flags
+9

+10 machine time at beginning of job, in binary

+11 run time limit in BCD

B-2

APIPENDIX C
SCOPE TABLES

C

~------------------------------------""_'--I"""""""""""""""--""""""------"

The SCOPE input/output control routine, CIO, uses the tables described on the following pages.

Available Equipment Table (AET)

Unit Status Table (UST)

Channel Status Table (CST)

Running Hardware Table (RHT)

CIO also addresses CIT.

AVAILABLE EQUIPMENT TABLE

The Available Equipment Table (AET) contains up to 50 two-word entries, depending on the equipment
configuration used. Each entry contains the information necessary for CIO to use the particular hard­
ware unit described in that entry.

The operator may use the P_ET control statement to alter AET.

The word length of the table is recorded in bits 14-0 of the location immediately preceding the table.
The table has the following format:

23 22 18 17 16 15 1211

IAI H EQ;;J
Heserve

23 22 1514

IH I C I

A - 0 unit has not been assigned
1 unit has been assigned

CC

DADDR

H - Numeric code, 00-37
8

, to describe each hardware type

C-l

00

00

I

R - Reserve
o unit is reserved by another computer
1 unit is available to this computer

S - 0 unit is operable
1 unit is not operable

E - 0 no action
1 unit of this hardware type to be assigned

CC - a 12-bit connect code for each unit, the actual machine code to be inserted in the connect
instruction

C - an 8-bit code in locations 22-15 corresponding to the channels 0-7, which are available for
use by this unit. A bit set ON indicates channel availability. If this field contains all zeros,
there are no channels to which the unit may be connected. CIa will pass control directly to
the driver for processing of the I/O request.

D ADDR - driver address for the hardware type of the particular unit.

UNIT STATUS TABLE

Each two-word entry in the UST contains the current status of a hardware unit.

UST entry:

23 22 1716 00

In! LF BCR

23222119181716 00

STATUS

D - significant only to the I/O system. 1 unit is static, the last preceding operation on the
unit is completed.
o unit is dynamic.

LF - last function code (other than status, 13) given for this unit

BCR - input/output buffer termination address (contained in the buffer control register). If the
unit is busy, this may not be current.

C-2

U - the unit busy indica tor
o unit is free
1 unit is busy

C - channel busy indicator
o channel is free
1 channel is busy

LC - channel las t used by this unit

STATUS - status replies received from the I/O equipments. If the unit is busy, current unit status
at the time of the request is g;iven. If the unit is free, status reflects the results of the
last completed operation.

CHANNEL STATUS TABLE

The Channel Status Table, CST, defines ehannel status, 1/0 status and interrupt selections.

This table consists of up to 8 one-word elltries. Each table entry reflects the busy or not busy status
and user requested interrupt status of a particular channel. The format of the table is:

23 1817161514 00

I AO I ADDR

AO - AET ordinal of last hardware unit to use this channel

B - 0 channel not busy
1 channel busy

IC - 00 no interrupt selected by the user
01 abnormal termination (EOT, EOF, LP, PARITY) interrupt selected by user

10 or 11 end of operation (includes abnormal termination interrupt selected by user)

I ADDR - user's interrupt subroutine address

UNNING HARDWARE TABLE

lis table is a reference for operating hardware units and SCOPE logical units. The Running Hard­
ire Table, RHT, consists of 63 entries of two octal digits each. The table is arranged by logical
tit number; entry one refers to logical unit one, entry 60 refers to INP, and so forth. Each entry
Intains the position number in AET and UST of the physical unit to which the logical unit is assigned.
the entry is zero the logical unit is unassigned. The entry for logical unit number zero is not refer­
~ced by CIO.

C-3

APPENDIX D D
INTERNAL INTERRUPT CONTROL

SCOPE controls the processing of internal interrupts. The Central Interrupt Control routine, CIC,
detects the interrupt condition and transfers control to the appropriate user routine. The conditions
include those defined by the interrupt mask register plus manual interrupt.

The address of all interrupt routines must be stored in the Central Interrupt Table (CIT) which is
maintained within CIC. This table contains the following:

Symbolic
Location

CIT +0

+1
+2
+3
+4
+5

+6
+7
+8
+9
+10
+11
+12
+13

+14
+15

+21

Content

Interrupt flag

(A)

I (Q)
(B1)
(B2)
(B3)

Real Time Clock
Arithmetic Overflow

, Divide Fault
Exponent Overflow
BCD Fault
Search/Move
Manual
Associated Processor

Channel 0

} Channell

Channel 7

Explanation

+0 = no interrupt occurred

Contents of these registers when last interrupt
occurred. Registers are restored from here on
exit from CIC.

Initially contains ABNORMAL. Set by the user
selecting the corresponding interrupt.

Initially contains ABNORMAL. Address is set by
CIO when interrupt is selected. Table is extended
for each pair of channels added to the hardware
configuration, up to a total of 21 entries.

In addition to storing the subroutine address in CIT, the user also sets the appropriate bit in the
interrupt mask register.

When an interrupt occurs, CIC determines if the instruction about to be executed is a Disable Interrupt
command. If so, control returns to the interrupted program. If the instruction is not DINT, CIC
determines the interrupt subroutine to be entered. The address in CIT is replaced by the address of
the system entry point, ABNORMAL; and a return jump to the specified interrupt subroutine is exe­
cuted. Only the. address portion of the CIT entries 6-21 applies; the operation portion (for 6-11)
contains the interrupt mask bits.

Within his interrupt subroutine, the user determines the particular condition which caused the inter­
rupt, clears the condition when processed, and finally, clears the appropriate bits (internal) in the
interrupt mask register.

D-l

When interrupt occurs, ere sets the interrupt flag and stores the contents of the registers in crT.
After the user subroutine is executed and befo re return to the point of interrupt, ere resets the flag
and restores the registers. The UBer may access or alter the content of the registers by referencing
the appropriate CrT entries.

ORDERING OF LOW NUMBERED MEMORY

--'-----------T-------------------------------.----------
Octal Opera-

Location tion Bit Adc

00000 NOP BOOT or Al

00001 UJP ABNORMAr

00002 xx 0 *****

00003 00 0 ABNORMAr

00004 xx 0 *****

00005 NOP 0 xx***

00006 01 0 yyyyy

00007 xx X xxxxx

00010 xx 0 *****

00011 77 7 3xx**

00012 01 0 zzzzz

The symbols have the following meaning:

lress

3NORMAL

Meaning

set by EXEC

protect memory overlap

power loss cell

Halt on power loss

program interrupt address

NOP, receives code

Jump to ere

Unused

program address of trapped instruction

Disable interrupt instruction holds trap
code

UJP to process trapped instruction

x = not used; may contain any bit combinations convenient to the system. These areas are
reserved for use by SCOPE.

yyyyy

zzzzz

address of entry to ere.

address of OPTBOXS, or ABNORMAL if no trapped instructions are indicated. This
address is set by the loader.

* = octal digit (3 binary positions) E:et by the hardware.

INTERRUPT PROe ESSrNG

The following sequence of events occurs to process interrupts:

1. When the hardware recognizes an interrupt, it stores the interrupt code in location 5,
the return address to the point of interrupt in location 4, and disables further interrupts.

2. The hardware begins the interrupt processing sequence at location 5 and jumps to ere
from location 6.

3. ere performs the following operations:

a. Saves registers A, Q, Bl, B2., B3, in CrT + 1 through CrT + 5.

b. Sets interrupt flag, CrT + 0, to -0.

D-2

c. Determines from code in location 5 which of 16 jumps in CIT + 6 through CIT + 21
to execute.

d. Based upon decision in c, executes appropriate interrupt subroutine.

e. Upon return from interrupt subroutine, resets interrupt flag, CIT + 0, to zero.

f. Restores registers A, Q, Bl, B2, B3, from locations CIT + 1 through CIT + 5.

g. Enables interrupts, and performs an indirect jump through location 00004
(UJP, I 4).

PROTECTION OF ROUTINES

Certain routines in the main program and the interrupt subroutines must be protected from an -inter­
rupt occurring during their execution. To do so, the first executable instruction in the routine'must
be a Disable Interrupt Control, DINT, instruction.

Furthermore, before exiting, the interrupt flag, CIT + 0, must be tested to determine whether inter­
rupt control had already been disabled by an interrupt. If interrupt control was not disabled, the
last executed instruction before the jump must be an Enable Interrupt Control Instruction. SCOPE
routines are coded in this manner.

TRAPPED INSTRUCTIONS

Systems programs simulating the trapped instructions gain control through location 12. These
routines disable and enable interrupt control as described above for protection of routines. They
will not cause an interrupt; however, they recognize any interrupt condition. The SCOPE loader is
responsible for recognizing requirements for trapped instruction simulation and establishing linkage
to the required routines.

D-3

APPEI~I)IX E E
PRELIB CONTI~C:>L STATEMENTS

.................................. ------------..... ------------------------------.. --------................ ..

PRELIB is a library program; PRELIB control statements are contained on cards in the same format
as SCOPE control cards.

PREUB prepares or updates a system library tape, LIB, which consists of two files. The first file
contains SCOPE, including loader, overlay processor, and so forth. File two contains the library
programs such as COMPASS, FORTRAN, SOHT, PRELIB and the system macros, library subroutines~
user p~ograms and non-system I/O drivers.

The use of PRE LIB and the structure of the control deck is dictated by which file is being maintained.
The input deck consists of PREUB control cards, loader cards and, for file two, Hollerith cards
generally of COMPASS format.

HECORD STATEMENT

7
9RECORD, m

HECORD is used only for file one maintenance. The RECORD statement defines the beginning of a new
record in file one of LIB. RECORD must follow the REPLACE statement prior to the appearance of
any loader cards in the deck. RECORD must be followed immediately by an ORIGIN statement except
that any number of SEPOINT statements may intervene.

The parameter, m, may be the name of aIlL entry point previously defined by PRELIB. It may be an
entry point name followed by a plus or minus and not more than 5 octal digits. m may be also expressed
by octal integer of 5 digits or may be omitted.

The length of programs following the RECORD, m statement and the related ORIGIN cards must not
exceed the capacity of the available portion of the PRE LIB work area.

UNIT STATEMENT

7
9UNIT, u

UNIT may be used to maintain file one ancl two. The Ul\TIT statement allows PRELIB input from a unit
other than INP. PRELIB reads program decks on the designated unit, u, to an end-of-file. The logical
unit number should not be 60,INP, and m~w be further restricted by equipment assignments for the cur­
rent job. The unit may contain only loader cards and must not contain PRELIBcontrol cards. ·When
the end of file is read, input is resumed hom INP. The card images on the unit must conform to the
rules for PRE UB input deck structures.

E-l

SEPOINT STATEMENT

7
9SEPOINT, P

SEPOINT cards are used only for file one maintenance. The system entry point statement names
entry points to SCOPE. The entry point name becomes a part of the permanent/system portion of
the loader symbol table. A programmer may refer to such entry points by declaring the entry point
names external symbols in his source program.

P is the name of an entry point defined in an EPT or EXS card in the file one input for PRELIB. If p is
not defined in an EPT qr EXS card, the address defined for ABNORMAL will be assigned. If ABNORMAL
is undefined 777778 will be assigned. A diagnostic will result if p is not assigned.

Only one system entry point name may be declared per card. Any number of SEPOINT statements may
occur between the REPLACE statement and the FILE statement terminating file one of the LIB modifi­
cation deck. There are no restrictions as to sequence of SEPOINT statements.

ORIGIN STATEMENT

7
90RIGIN,m

ORIGIN is used only for file one maintenance. The program following ORIGIN in the PRE LIB deck will
be located at the absolute address expressed by the ORIGIN parameter, m; the parameter has the same
meaning and is expressed in the same manner as for the ~RECORD statement.

Any number of ORIGIN cards can be used in the PRE LIB deck. One ORIGIN must immediately follow
each RECORD or SEPOINT. Optional ORIGIN cards must follow a TRA card and must precede an
IDC card except that SEPOINT cards may precede or follow any ORIGIN card.

FILE STATEMENT

~FILE

There are no parameters for the FILE statement. Every PRE LIB input deck must contain two FILE
statements. If FILE immediately follows the first statement, copy file one on the new LIB and
process file two input.

To terminate the modification deck for either of the two files of LIB, the FILE statement is used.
When the input for modification of file one has been read, the FILE statement instructs PRE LIB to
process the intermediate output.

When processing is complete, the new file one for the updated LIB is written on the tape unit desig­
nated by the parameter on the PRE LIB statement. The information for modification of file two is
then read and processed by PRE LIB. When the second FILE statement is encountered, PRE LIB
writes a second end-of-file terminating the library portion of LIB and returns control to SCOPE.

E-2

DELETE STATEMENT

7 p' gDELETE, .F, PT

A single subprogram or a group of contiguous subprograms may be removed from file two of liB
using DELETE. Any number of DELETE sta.tements may be in the file two deck. The following
rules govern the parameters for DELETE:

PF is the name in the IDC card of the first subprogram to be deleted from file two of liB.

PT is the name in the IDC card of the last subprogram to be removed from file two of LIB.

PF blank, PT not blank. The first and all subprograms to and including PT will be removed from
file two.

PT blank, PF not blank. PF and all subsequent subprograms are deleted to the end of file two.

PF and PT blank. File two is deleted.

PF equals PT. Only one subprogram is deleted.

PT occurs before PF on old liB. Parameter error. No subprograms are deleted and a diagnostic
is produced.

PF does not occur on old liB. Same as above.

PT does not occur on old liB. Same as above.

INSERT STATEMENT

7
gINSERT, P

Subprogram decks may be :inserted into file two of LIB. The subprograms may be on INP or another
unit. If they are not on INP, a UNIT statement must immediately follow INSERT.

P names the subprogram after which the new subprograms are to be added. If the INSERT parameter,
P, is blank and the statement in which the blank occurs is the first card in the PRELIB file two modi­
fication deck, the new subprograms will be added at the beginning of file two.

If any other INSERT statement has a parameter of blank or P does not occur on the old liB, the job
is terminated after a diagnostic.

REPLACE STATEMENT

REPLACE deletes and inserts subprograms. The statement has two meanings and two formats:

File One

~REPLACE

This statement deletes the entire first file and a new file one is read into a working area for processing
by PRE LIB. The input for the new file one which follows immediately consists of file one control cards
and relocatable subprogram decks. File one input is terminated by a ~FILE statement.

E-3

File Two

7
9REPLACE, PF, PT

PF name in IDC card of first subprogram is to be deleted from file two.

PT name in IDC card of last subprogram to be deleted from file two.

Subprograms to be added to LIB may be on INP or another unit. The UNIT statement must imme­
diately follow REPLACE in the PRELIB input.

When PF is encountered in the old LIB the subprograms on INP or· u are written on the new LIB.
Old LIB is then searched for PT and all intervening subprograms, including PT, are deleted.

PF and PT operate the same as in the DELETE statement.

MACRO STATEMENT

7
9MACRO, P,u

Hollerith card images may be written in file two of LIB. COMPASS uses such images to assemble
macros. Other uses may be defined by other programs. Hollerith decks are preceded in the file two
PRE LIB input by the MACRO statement.

P is the name of the Hollerith input deck and the name placed in the pseudo-IDC card on LIB; P must
be present. u is the logical unit number of the tape containing P. If P is on INP, u is blank.

When the MACRO statement is encountered, PRELIB write a special card on the new LIB identical in
format to an IDC card, but with a word count of 708. Cards are copied from INP or u until an END
card identical in format to a COMPASS END card is encountered. Each Hollerith card copied on LIB
has a word count of 718, The card images are converted to BCD, and are packed two per 40-word
record. Card columns 77 through 80 of the Hollerith cards are lost.

If an end-of-file is reached before an END card, a diagnostic is produced and the job is terminated.

In editing the resulting tape, the named pseudo-programs may be deleted or replaced, or otherwise
used as a reference point. Individual card images within a macro program may not be edited without
replacing the entire program. Any number of cards may be included in a macro program on LIB.

OTHER PRELIB INPUTS

In addition to PRELIB Control Statements, PRELIB will accept all loader cards. oce cards may not
be input for either file on~ or file two maintenance.

If a subprogram is called, the loader searches file two of LIB until an IDe card is found. The loader
examines the EPT cards following the IDe card until the first non EPT card. When the first non EPT
card is reached the loader skips to the next IDe card and begins the search again.

E-4

LIB is searched until the end-of-file. If no subprograms were loaded, the loader produces error
flags and diagnostics for any undefined EXT entries in the loader symbol table and transfers control
to SCOPE. If subprograms were loaded, LIB is rewound and file two is searched again. The process
is repeated until all called subprograms on LIB have been loaded.

PRELIB Control Cards
LIB File

DELETE Delete Subprogram F2

FILE Terminate LIB File F1,F2

INSERT Insert Subprogram F2

MACRO Load Hollerith Cards on LIB F2

ORIGIN Originate Subprogram Absolutely F1

RECORD Begin Record on F1

REPLACE
Replaee File One of LIB F1
Replaee Subprogram on LIB F2

SEPOINT Define: System Entry Point F1

UNIT Load from Unit F1,F2

Card formats are identical to SCOPE control cards

Word
Detail Cards for PRELIB

Count
(octal) Name

1-40 RIF Relocatable Binary Information

41 IDC Program Identification

42 EPT Entry Point Name

43 XNL External Name

44 TRA Transfer

45 LRL Local Reference List

50t MAIN Main Overlay Program

51t OVERLAY Overlay Program

52t SEGMENT Overlay Seg:ment

54t LED Loader Equipment Declaration

55t EXS External Symbol

70 Dummy [DC for MACRO

71 <BCD> Identifier for BCD card image for MACRO

tCard in Hollerith except for column 1

E-5

LIB File

F1,F2

F1, F2

F1,F2

Fl,F2

F1, F2

F1, F2

F2

F2

F2

F2

F1, F2

F2

F2

APPENDIX F
TYPICAL DECK STRUCTURES

ASSEMBLY AND EXECUTION

SCOPE monitor system performs the following functions:

Maintain continuity of processing

Loads and links subprograms and library subroutines

Manipulates I/O equipments as directed

Initiates program execution

Communicates with the operator

Transfers records to a logical unit

Assigns I/O devices as directed

F

The arrangement and content of the control statements indicate to SCOPE the manner in which a job
is to be processed. Jobs are submitted on the standard input unit; control statements may be entered
via the standard input unit or the comment from operator unit.

A job is a closed unit of processing for a single account. A run is a single program or library pro­
gram execution.

The examples illustrate the deck arrangement for assembly and execution of COMPASS programs.
Non -stacked jobs are not considered.

A subprogram must begin with an IDENT card and terminate with an END card. Any number of sub­
programs may follow the ~COMPASS card. The FINIS card must terminate the deck of subprograms
to be assembled.

F-l

'7RUN 5
9 '

Execute

/7LOAD 56
9 ' I Load binary object program from unit 56

"-- FINIS 1
I.- (

(IDENT

(~COMPASS ,X,L

1. (~EQUIP, 56=MT

7
9JOB ,1407,DS,lO

END

I--

I--

~

r--

End of ass embly deck

COMPASS source program. Each must begin
with an INDENT card and terminate with an
END card

Define logical unit 56, the standard load-and-·go
unit, as magnetic tape

1. Assemble and write the binary object program on load-and-go unit (56), and list the source and
object program on the standard output unit.

ASSEMBLY ONLY Assemble a COMPASS program or subprogram.

General Structure:

C FINIS

source subprogram

,...-J~ ___ s_()ur(:e subprogram

7
9 COMPASS , < assembly options> -

9EQUIP,ul=dl,u?=dZ""'u =d ._. n n

~JOB,c,i,t

F-2

Example:

(

(
(END

/

(IDENT

~COMPASS,P ,L

/7 9JOB ,1234,NAME,8

~COMPASS, P, L

(
END

IDENT

FINIS

-

-

FINIS card signals end of assemtily. Punch
starting in column 10.

2 COMPASS source language subprograms,
each terminated by END.

- Charge number: 1234. Programmer: NAME
Job time limit: 8 minutes.

Source input on logical unit 60. Binary deck punched on logical unit 62. Source and object programs
listed on logical unit 61.

The EQUIP statement is not required because system units 60, 61, and 62 are defined on the system
library.

EXECUTION ONLY Execute directly from standard input unit.

General Structure:

(data

(~RUN, t ,NM

t--

(binary object program

~JOB,c,i,t
-

F-3

If data is included on the standard input unit, it must follow the RUN card. Several executions
may be perfornled in the same job. Programmer units must be defin·ed prior to their use; scratch
units must be defined prior to each run in which they are used.

Example:

Execution time limit: 7 minutes.
Map on standard output unit

_L binary object program 41=2 t-

~EQUIP,55=MT,56=MT

(data for program 4/:1

(gRUN,10

~ binary object program #1

1. ('~EQUIP,15=CR,16=CP,20=MT,55=MT
7
9JOB ,ACC123,DS,20

1--

--

I-

Scratch units 55 and 56 defined as
magnetic tape for second run.

Execute the first obj ect program.
Time limit: 10 minutes. Memory
map is written on standard output
unit.

Charge number: ACC 123. Programmer: DS.
Job time limit: 20 minutes.

1. Logical unit 15 defined as card reader, 16 as card punch, 20 as magnetic tape. These programmer
units remain defined for the job. Scratch unit 55 is defined as magnetic tape for the first run only;
it is rewound at end of first run.

F-4

EXECUTE FROM A PROGRAMMER UNIT

General Structure:

(data

(~ RUN,t,NM

f7 9JOB ,C,i,t -
I--

-

Subprograms may be loaded from different programmer units, but only one LOAD card may appear.
Equipment used in LOAD must be defined. If data is to be included on the standard input unit, it
follows RUN card.

Example:

0LOAD ,36,37

(~ EQUIP, 36=MT,37=MT

7
9 JOB ,ACC7 7 , NAME, 12

~EQUIP

-

-

Execute

Define programmer units 36 and 37 as magnetic
tape.

Job time limit: 12 minutes

Load binary subprograms from logical unit 36 until end-of-file. Load binary subprograms from logical
unit 37, until end-of-file.

F-5

ASSEMBLY AND EXECUTION

Assemble a COMPASS program and execute it immediately.

General Structure:

data

~RUN,t,NM I -------L...-.-..,I
FINIS

~:ource program

7 9 COMPASS, <a8sembly options>

~EQUIP, u1=d1 , u2=:d2 , ••• ,un=dn

-

If the data is to be included on the standard input unit, it must follow the RUN card. For assembly
only, any num.ber of subprograms may follow the COMPASS card terminated by FINIS.

Although the load-and-go unit is a system unit, it must be definzd by an EQUIP card.

F-6

Example:

/7 RUN 14 9 ,

3. /7 LOAD 56 9 ,

- I;EQUIP,10=MT

--- FINIS
2.

- (END

(IDENT

(END

F

{ IDENT

1. (§COMPASS,X,P,L

(;EQUIP,56=MT

/7 gJOB,ACC123,DS,20
I---'

-

1

r-

1
I

-
~

I

I--

Execution time: 14 minutes, map
on standard output unit.

COMPASS source language subprograms,
each terminated by an END card.

Load-and -go unit, 56, is defined as magnetic tape.

Charge num ber: ACC 123. Programmer: DS.
it: 20 minutes. Job time lim

1. Source input on logical unit 60. Binary object program written on load-and-go unit 56. Binary
deck punched on unit 62. Source and object programs listed on unit 61.

2. FINIS card signals end of assembly. Punch starting in column 10. End-of-file mark is written
after last subprogram on unit 56.

3. Rewind load-and-go unit, 56 and load binary subprograms from it until end-of-file. It is avail­
able as a scratch unit in the following run.

F-7

Example:

/7 RUN 8
9 ' I
I

'/ binary object subprogram
'--

7
9LOAD, 15

/7REWIND 15
"-- 9 '

(FINIS
2. '--

LL

,
(source subprograms

1. r1COMPASS,X=15

(gEQUIP,15==MT

~ JOB,ACC123,DS,12

1.
7
9COMPASS, X = 15

I--

Execut ion time limit: 8 minutes.
ritten on standard output unit. Mapw

1 L oad binary subprograms from unit 15.

:=-:=-

r-

f--

I--

Rewind programmer unit 15.

Programmer unit 15 is defined as magnetic tape.

Charge number: ACC 123. Programmer: DS.
Job time limit: 12 minutes.

Source input is on logical unit 60. Binary object subprograms are written on programmer unit 15.

2. FINIS card signals end of assembly. Punch starting in column 10. An end-of-file mark is written
after the last subprogram on unit 15.

F-8

ASSEMBLE AND EXECUTE

Include previously assembled binary decks in the program.

General Structure:
/7 9RUN ,t,NM ,

l'i
binary object subprogram I

/7 9 LOAD, ul ' u2 ' u3

(FINIS
'--

,
(source subprogram

(~COMPASS, <assembly options>
-

~EQUIP,Ul=dl,U2=d2,···,Un=dn
~JOB,c,i,t-

r-

r-

After assembly is completed, the subprograms may be loaded in any order. Binary obj ect subprograms
on the standard input must follow the LOAD card. Linkage does not occur until all subprograms are
loaded. If a programmer unit is chosen for the load-and-go option, it must be rewound by the REWIND
statement before it is loaded.

F-9

Example:

7 1 Execute 9RUN ,8 Map is w

SUbPrOgr~
time limit: 8 minutes.
ritten on standard output unit.

'/ binary object '--

3. 7
gLOAD, 16, 15

- 7REWIND,15,16
9

2.
L.....- (FINIS

(source subprograms Source input is on logical unit 60.
Binary object subprograms are written
on programmer unit 15.

(~COMPASS ,X=15

(binary object subprogram
1. (~ XFER, 16

(~ EQUIP, 15=MT, 16=MT

7
gJOB,ACCI23,DS,12

r--

====-::==-

==
.-

-
-

t--

f--

-

Progra mmer units 15 and 16 are defined as
c tape. magneti

Charge
Job tim

number: ACC 123. Programmer: DS.
e limit: 12 minutes.

1. Transferred to logical unit 16. Binary :information up to COMPASS control card is transferred
to unit 16; end-of-file mark is written and back-spaced over.

2. FINIS signals end of assembly. Puneh starting in column 10. An end-of-file mark is written
after the last subprogram on unit 15. COMPASS source language subprograms, each terminated
by an END card.

3. Load binary subprograms from unit 16, until end-of-file; then from unit 15 until end-of-file.
Rewind programmer units 15 and 16.

F-10

Binary obj ect subprograms may be transferred from the standard input unit to another logical tape
unit. If this unit is a programmer or scratch unit, it must be rewound before it can be loaded.

General Structure:

/7 RUN t NM
9 " I
II,

/ I binary object subprogram
"'---

/7
9LOAD ,ul,u2,u3

7
- 9REWIND,ul,u2

(FINIS
'--

(source subprogram a COMPASS, <assembly options> r-

(-binary object subprograms

(~XFER,Ul f--

(~EQUIP,ul=dl,u2=d2,···,Un=dn
~JOB,c,i,t, -

r--

r--

F-ll

Compilation of a Single COBOL Prog:rarn

The COBOL source program and binary object
program are listed on OUT. The binary object
program is also punched on PUN.

(data

~RUN,lO

(END PROGRAM

(PROGRAM IDENTIFICATION

{;COBOL,L,P

~JOB,ACC123,DOODLE,8

(
J Execute directly from the standard input unit.

binary object program

7 9 JOB,ACC141 ,NAME ,13

(binary object program

Load from two programm er units and INP.

{ ~LOAD, 36,37
~~~------------------------

;JOB,ACC77,NAME,12 

F-12 

-

I--



Sequential execution using EQUIP statements 

data for program #2 

binary object program #2 

data for program #1 

binary object program #1 

~ EQUIP, 16=CP 

7EQUIP,15=CR 

Assemble COMPASS and FORTRAN 
programs. Execute the program. 

sub-

{ 

( 

Unit assignments by EQUIP statements 
remain in effect for the duration of the 
job or until changed by another EQUIP 
statement. 

n RUN 20 
9 ' 1 

~ LOAD, 56 

- FINIS 

'-- ( END 

( PROGRAM KRIK 

(~COMPASS ,x 

( FINIS 
r--

END 
-

r-
IDENT BENYA 

(~ FORTRAN, <parameters> -

(~EQUIP, 56=MT 

~ JOB ,ACC123, DS, 22 -
r--

r--

F-13 

r-



binary object programs 

Compile and load a FOR TRAN 
program. Load a binary subpro­
gram from INP and execute. 

7 
9LOAD ,15 

7 
9REWIND ,15 

FINIS 

FORTRAN source programs 
7 . 
9 FORTRAN,X=15 

~EQUIP, IS=MT 

Use of debugging aids. OCC and SNAP 
precede RUN. 

data 

/7 RUN 10 
9 ' I 
/7 A I '-- SN P,Pl'--'P 9 n 

- (~ OCC, PI' --, P n 

cards 

( binary object programs 

(~LOAD, 15 
I--

(~REWIND, 15 -
( FINIS 

I--

( 
I"'-

FORTRAN program 

{~FORTRAN ,X=15 
-

EQUIP, 15=MT 

-,ACCI23,DS,12 

~ 

-

F-14 



APPENDIX G G 
STANDARD LABELS 3000 SERIES 

MAGNETIC TAPE 

Character Position 

1 

2-3 

4-5 

6-8 

9-22 

23-24 

25-30 

31-32 

33-80 

recording density (2, 5, or 8, indiqating 200, 
556, or 800 bpi) 

unique label identifier - () 

logical unit number - 2 BCD digits 

retention cycle - 3 BCD digits 

file name - 14 alphanumeric characters 

reel number - 2 BCD digits 

date written - Month, Day, Year in BCD 
(MMDDYY) File ID 

edi tion number - 2 BCD digits 

user supplied information 

G-l 





APPENDIX 

PROCESS AET 
STATEMENT 

STATEMENTS 

REWIND UNIT 

REWIND AND 
UNLOAD UNIT 

LOAD LIBRARY 

PROGRAM 

No 

Yes 

H 

LOAD 1/0 

H 

LOAD I/O 
DRIVERS FOR 57-63 

IF NEEDED. 

DRIVERS FOR 57-63t----------~ 
IF NEEDED. 

OPERATE 
LIBRARY 
PROGRAM 

OPERATOR CONTROL STATEMENTS 





MPS FE 

3200 SCOPE GENERALIZED FLOW 



CONTROL DATA .AL •• O ..... C •• 

ALAMOGORDO. ALBUQUERQUE. ATLANTA. BILLINGS. BOSTON. CAPE 

CANAVERAL. CHICAGO. CINCINNATI • CLEVELAND. COLORADO SPRINGS 

DALLAS. DAYTON. DENVER. DETROIT. DOWNEY, CALIFORNIA • HONOLULU 

HOUSTON • HUNTSVILLE. ITHACA. KANSAS CITY, KANSAS. LOS ANGELES 

MADISON, WISCONSIN • MINNEAPOLIS • NEWARK • NEW ORLEANS • NEW 

YORK CITY • OAKLAND • OMAHA • PALO ALTO • PHILADELPHIA. PHOENIX 

PITTSBURGH • SACRAMENTO. SALT LAKE CITY. SAN BERNARDINO. SAN 

DIEGO. SEATTLE. ST. LOUIS. WASHINGTON, D.C. 

Pub. No. 60057700 

ATHENS. BOMBAY • CANBERRA· DUSSELDORF • FRANKFURli..~ 

HAMBURG • JOHANNESBURG • LONDON • MELBOURNE • \ 

(REGAL ELECTRONICA DE MEXICO, S.A.) • MILAN. MONTRU 

OSLO • OTTAWA • PARIS • STOCKHOLM • STUTTGART • SYD~.l 

TOKYO (C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.) 

ZURICH 

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440 

.' I 
lOR ...... 


	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	A-00
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	G-01
	G-02
	H-01
	H-02a
	H-02b
	xBack

