

CONTROL DATA ${ }^{\circledR}$ CARTRIDGE DISK DRIVE CONTROLLER

FA716-A

GENERAL DESCRIPTION
OPERATION AND PROGRAMMING
INSTALLATION AND CHECKOUT
THEORY OF OPERATION
DIAGRAMS
maintenance
MAINTENANCE AIDS
PARTS DATA
WIRE LIST

REVISION RECORD	
REVISION	DESCRIPTION
01	Released Class B, 10th January 1974 ECO CK 385
02	Publication changes, ECO CK 937, August 28, 1974.
A	Manual Released, ECO CK 1273, CK 1314, 28 August 1975.
B	Manual Revisions, Pages $\mathrm{ii}, \mathrm{iji}, \mathrm{v}$, vii, $\mathrm{ix}, \mathrm{x}, \mathrm{xiii}, 3-2,3-4,3-5,4-7,4-12,4-18,4-20$,
	5-40 thru 5-46, 7-1 and 8-1. ECO CK 1413, 9 NoV. 1975.
c	Manual Revisions, Pages it, 4-44, 4-45, 5-55, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62/63, 5-78,
	5-79, 5-80, 5-81, 5-82/83, 8-3. ECO CK 1150, 9 FEB. 1976.
Publication No. 89638100	

Address comments concerning this
manual to:
Control Data Corporation,
Small Computer Development Division,
4455 Eastgate Ma11,
La Jolla, CA. 92037

- 1974, 1975, 1976
by Control Data Corporation
or use Comment Sheet in the back of Printed in the United States of America
this manual.
manual to equipment correlation

MANUAL REVISION	ECO/FCO	SERIES CODE	SERIAL NUMBER
01	-	02	51-69
	CK589	03	70-111
	CK620	04	112, 113
	$\begin{aligned} & \text { CK504 } \\ & \text { CK589 } \end{aligned}$	$\begin{aligned} & 05 \\ & 05 \end{aligned}$	$\begin{array}{rr} 114 & -148 \\ 51 & -148 \end{array}$
02	CK647	06	149
A	CK1 273 CK1314	A. 07	230
B	$\begin{aligned} & \text { CK1413 } \\ & \text { CK1034 } \end{aligned}$	$\begin{gathered} A 10 \\ A 03-A 05 \end{gathered}$	$\begin{gathered} 401 \\ 51-148 \end{gathered}$

PREFACE

This manual supplies customer engineerinq informationfor the CONTROL DATA ${ }^{\left({ }^{(}\right)}$FA716-A Cartridge Disk DriveController. The controller is used with the AB107/AB108Computer to control the 9425 or 9427 Cartridge DiskDrive. The user of this equipment should be familiar withthe computer and cartridge disk drive equipment andsoftware.
The following CONTROL DATA ${ }^{\circledR}$ publications may be useful as references:
Publication Pub. No.
1733 Cartridge Disk Drive Controller Reference Manual 89638000
1784 Computer Reference Manual 89633400
AB107/AB108 Computer Customer Engineering Manual 89633300
I/O Specification Manual 89673100
856-2 CDD, CE Manuals 7061810070618200
856-4 CDD, CE Manuals 7062100070621100
System 17 Installation Manual 88996000
Section Page
1 General Description 1-1
Introduction 1-1
Functions 1-1
Interface 1-2
Terminator 1-3
Interface Signals 1-5
Unit Number 1-9
2 Operation and Programming 2-1
3 Installation and Checkout 3-1
Installation 3-1
Checkout 3-3
Theory of Operation 4-1
Scope 4-1
Functional Description 4-2
General Overview 4-2
Equipment Selection 4-3
Operation Initiation 4-4
Record Addressing 4-7
Sector Format 4-9
Disk Organization 4-11
Specifications 4-12
Storage Characteristics 4-12
Data Format
Data Capacity
Access Time 4-12
CONT.
Section Page
Transfer Rate 4-13
Checkword 4-13
Output from A Operation 4-14
Load Buffer Length (000) 4-16
Director Function (001) 4-16
Load Address (010) 4-20
Write (011) 4-22
Read (100) 4-24
Compare (101) 4-30
Checkword Check (110) 4-31
Write Address (111) 4-34
Autoload 4-38
Input to A Operation 4-38
Description of Input to A Function 4-39
Clear Controller (000) 4-41
Director Status (001) 4-41
Cylinder Address Status (010) 4-50
Current Word Address Status (011) 4-51
Checkword Status (100) 4-51
Drive Cylinder Status (101) 4-52
Protect 4-53

CONTENTS (Cont'd)

Section Page
5 Logic Diagrams
Key to Logic Symbols 5-1
Signal Flow 5-1
On-Sheet Continuation Symbols 5-1
Off-Sheet Continuation Reference Symbols 5-2
Test Points 5-2
Connection and Non-Connecting Lines 5-3
Connectors 5-3
Shifter PW Board 5-4
Shifter 5-4
Word Buffers and DSA Data Interface 5-5
DSA Address 5-5
Buffer Length 5-6
Cylinder Address 5-6
Status Selection 5-7
A/Q PW Board 5-25
Reply/Reject Logic 5-25
Function Register, Decode and Encode 5-26
Interrupt and Error Logic 5-27
Checkword 5-29
True Cylinder Address 5-30
Status Interface 5-30
CDD Interface 5-31
DSA PW Board 5-47
Scanner 5-47
Request/Resume 5-48
Double Buffer Control 5-48
Clock Generation 5-50
Load Address and Track Address Strobe 5-50
Controller Budy/EOP 5-51
Autoload 5-51

Page
Figure
$\begin{array}{lll}\text { 1-1 } & \begin{array}{l}\text { Typical System Configuration } \\ \text { and Interface Signals }\end{array} & 1-4\end{array}$
1-2 Unit Number Select Connection 1-9
4-1 I/0 Block Diagram 4-4
4-2 Q Register Format 4.5
4-3 CDD Controller Block Diagram 4-6
4-4 File Address Word 4-7
4-5 Sector Format 4-10
4-6 Address Format on CDD 4-10
4-7 Disk Organization 4-11
4-8 Checkword Generation 4-14
4-9 Selectable Interrupt Conditions 4-17 and Unit Selection

4-10 Sector Fields 4-26
4-11 Sector Fields 4-35
4-12 Upper 12 Address Bits 4-36
4-13 Lower 12 Address Bits 4-37
4-14 Director Status Information 4-42
4-15 . Cylinder Address Status Format 4-50
4-16(a) Read and Checkword Timing 4-56
4-17(b) Read and Checkword Timing 4-57
4-16(c) Read and Checkword Timing 4-58
4-17(a) Write Timing 4-59
4-17(b) Write Timing 4-60
4-18(a) Write Address Timing 4-61
4-18(b) Write Address Timing 4-62
4-18(c) Write Address Timing 4-63/4-64

FIGURES

Figure			Page
4-19 (a)	Compare Timing		4-65
4-19 (b)	Compare Timing		4-66
4-20(a)	Load Address Timing		4-67
4-20(b)	Load Address Timing		4-68/4-69
4-21	A/Q Timing		4-70
4-22 (a)	Request Resume \& Double Buffer Control - Write and Compare		4-71
4-22 (b)	Request Resume \& Double Buffer Control - Write and Compare		4-72
4-23	Request Resume \& Double Buffer Control - Read		4-73
4-24	Autoload Timing		4-74
	Logic, Shifter	5-10 to	5-17
	Logic, A / Q	5-32 to	5-39
	Logic, DSA	5-55 to	5-62
	Logic, Sector Count	5-78 to	5-82
	Logic, Daisy Chain	5-94 to	5-97

CONTENTS (Cont'd)

TABLES

Table Page
1-1 Head Selection 1-6
1-2 Specifications 1-10
3-1 Interrupt Cable Installation 3-5
3-2 Card Locations 3-5
4-1 Function Codes 4-5
4-2 Output from A Operation 4-15
4-3 Load Address Function 4-20
4-4 Input to A Operation 4-39
4-5 Protect Scheme 4-55
8-1 Internal Cable 8-2
8-2 External Cable 8-5

SECTION 1

GENERAL DESCRIPTION

INTRODUCTION

This section contains the functional and operational description of the

Abstract

The FA716-A Cartridge Disk Drive Controller contains the logic that interprets AB107/AB108 Central Processing Unit (CPU) function codes, controls the Cartridge Disk Drive (CDD) operations, assembles and disassembles l6-bit words between the CPU and the CDD, and provides the CDD status information to the CPU. The communication between the controller and the CPU is via the A/Q channel and the Direct Storage Access (DSA) channe!. Each FA716-A may control as many as four CDD's in daisy chain configuration.

The controller logic is mounted on five 50-PAK Printed Wiring Boards. The boards may be mounted in the AB107/AB108 Computer Enclosure and power for them is supplied by the AB107/AB108 power supply.

FUNCTIOidS

Interrupts

The controller may generate an interrupt due to three different conditions which may occur in the controller.

Data Interrupt

Data Interrupt will be generated when both the Data Interrupt Request flag and tise Data Status are Active.

End of Operation (EOP) Interrupt

EOP Interrupt will be generated when both the EOP Interrupt Request flag and the EOP status are active.

Alarm Interrupt

Alarm Interrupt will be generated when both the Alarm Interrupt Request flag and the Alarm status are active.

Protect

When the Protect jumper plug is out, those I/O instructions not having the Protect bit set, will cause a Protect Violation and the command will be rejected. Director Status request is not rejected, if protect violation occurs.

INTERFACE

A single cable connects the controller with the first CDD, while each $C D D$ has two identical interconnection plugs to enable chain interconnection. Figure 1-1 shows a typical CDD controller configuration. The interconnecting cable between the FA716-A and the first CDD is a 24 AWG copper wire twisted pairs cable having a length of 20 feet. The cable is plugged into the AB107/AB108 chassis. The standard cable between each adjacent CDD's is 10 feet long with connector CDC P/N 94351001 at both ends. Total length of daisy chain may not exceed 50 feet. The cables required for operation of the controller and the CDD are listed in Section 7 (Parts Data).

TERMINATOR

Each CDD requires a terminator (CDC P/N 46338700) when connected in a single configuration. The terminator must be placed on the last CDD unit in the daisy chain.

Figure 1-1. Typical System Configuration and Interface Signals

INTERFACE SIGNALS

Output Signals

The output lines carry the following signals:

1. Track Address Strobe (TA Strobe)

This signal gates positioning information into the CDD. The positioning information is contained on the TA bit lines and is equal to the desired track address. The controller must receive an On Cylinder signal before sending a TA Strobe.
2. Track Address Bits (TA Bits 00 - 08)

These signals are carried by nine lines and transmit the desired track address.
3. Return to Zero Seek (RTZS)

This signal initiates positioning motion to cylinder 000 on the leading edge of the RTZS pulse (typically $1 \mu \mathrm{sec}$). The RTZS pulse may be repeated with the following limitations:
a. An RTZS pulse may be sent whenever On Cylinder is present from the CDD, or
b. An RTZS pulse may be sent without On Cylinder present if at least 300 msec has elapsed since the last RTZS pulse or TA Strobe pulse.
4. Head Select

Two lines carry the signal that selects one of the four recording heads. The signals are the binary address of the desired head and must be held constant during a read or write operation.

TABLE 1-1. HEAD SELECTION

SIGNAL		
(DISK)	(SURFACE)	SELECTION
0	0	Cartridge top head
0	1	Cartridge bottom head
1	0	Fixed disk top head
1	1	Fixed disk bottom head

5. Write Data/Clock

One line carries the double frequency clock and data information signals to the CDD.
6. Write Gate

This signal enables write current.
7. Erase Gate

This signal enables the erase driver to pass current through the head erase coil.
8. Read Gate

This signal enables read data and clock information.
9. Unit Select

Four lines (one per unit) are used to select the desired unit. The signals or the lines must remain "on" during all communications with the unit except for monitoring of the seek complete or seek error signal. The first unit in the daisy chain is always " 0 ", the second is "1", the third is "2" and the fourth is "3".

10. Terminator Power

+5 Vdc 630 mA (Typical) terminator power for the CDD transmission system is supplied by the AB107/AB108 via the controller.

Input Signals

1. On Cylinder

This signal indicates that the heads have reached the desired cylinder and are ready to read, write or seek. On Cylinder will also be sent when a Seek Error has occurred.
2. Read Data

Data read is separated into data pulses and clock pulses.
This line carries data pulses.
3. Read Clock

Read clock signals are carried on this line.
4. Index Pulse

This signal is the index pulse from the selected unit which appears once every revolution, at the beginning of Sector Zero.
5. Sector Count

This signal is the sector pulse from the selected unit which appears at the beginning of each of the 29 sectors.
6. Fault

This signal indicates that the CDD has one or more of these fault conditions:
a. Multiple head selection
b. Read and write gate enabled at same time
c. Read and erase gate enabled at same time
d. Erase current and no write gate
e. Write current and no erase gate
f. Read, write or erase gates and no On Cylinder
g. Low voltage present (below specified values)
7. Unit Ready

This signal indicates that the CDD is operational, i.e. cartridge in, disks up to speed, and heads loaded.
8. Seek Complete or Seek Error

Four lines carry signals to indicate that the corresponding unit has completed a seek (Seek Complete) or is unable to complete a seek (Seek Error). This is a signal transmitted with or without the unit being selected. The Seek Complete is a static "1" which is cleared by a selected read gate or another seek command.

The Seek Error signal indicates that the heads have moved to an illegal address or that a seek was not completed within 200 msec . When a seek error occurs the CDD will reposition the heads to cylinder zero. When the heads reach cylinder zero On Cylinder will be indicated along with seek error (typically 125 ± 55 nsec after the leading edge of seek error). An RTZS command sent to the unit indicating a seek error will clear the seek error condition, return the heads to cylinder zero, and enable an On Cylinder signal to be sent to the controller.

A Seek Error will cause the Seek Complete or Seek Error line to become a static "l", which can be cleared only by a Return to Zero Seek Command.
9. Terminator Monitor

This line (Slot 16, P2A05) is monitored by each unit to sense loss of controller power. This line is terminated by +5 Vdc through 100 ohms at each end. In the event of controller power loss, Unit Select is disabled. The unit will not respond to any commands until power is restored.

UNIT NUMBER

The Unit Number is defined as the position of the CDD in the daisy chain. This is accomplished by shifting the Unit Select lines between CDD's, each CDD in turn using the first line, as shown in Figure $1-2$.

Figure 1-2. Unit Number Select Connection

SECTION 2

OPERATION AND PROGRAMMING

OPERATION AND PROGRAMMING

For operation and programming information refer to 1784 Computer Reference Manual, Publication Number 89633400 , and the CDD Controller Reference Manual, Publication Number 89638000.

SECTION 3

INSTALLATION AND CHECKOUT

For complete installation and checkout information on this and other components of the System 17 consult:

Publication No. 88996000
Control Data System 17 - Installation Manual

INSTALLATION

Unpacking

1. Carefully remove wrapping from the 50-PAK controller cards. Check for physical damage to each card and record damage on the packing list. Check that part numbers agree with parts list.
2. Remove wrapping from cables and check for physical damage. Record damage on packing list. Check that part numbers agree with packing list.

Physical Limitations

Care must be taken to prevent damage to the controller cards. The cards must not be flexed, bent or dropped.

Power Requirements

The controller cards require +5 vdc derived from the power supply of the computer.

Cabling and Connectors

An external interconnecting cable is available for use with the controllers for connection between the computer and the disk drive. The external cable (part no. 89700400) is 25 feet long.

The internal cable (part no. 89700200) used between the back of the computer and the connector pins on the back plabe, is 15.5 inches long.

The interrupt cable (part no. 89724702) is 13.8 inches in length.

The last Cartridge Disk Drive must be equipped with a terminator (CDC part no. 46338700).

The total length of all interconnecting cables (including daisy chain cables) must not exceed 50 feet.

The wire lists for pin assignments will be found in Section 8.

Cooling Requirements

The controller cards are cooled by the forced air system of the computer. No further cooling is required.

Environmental Considerations

The environmental considerations necessary for operation (or storage) of the controller cards are listed in the Detailed Specifications of Table 1-1.

Preparation and Installation

To install the controller perform the following:

1. Inspect the enclosure, card slot, PW board slides and connector pins, for physical damage.
2. Place the Equipment Number, Protect and Scanner jumpers in the proper positions on each card. Refer to CDD controller reference manual 89638000.
3. Place the interrupt cable in the applicable position on the back plane. Refer to Table 3-1 and the 1784 Computer System Reference Manual 89633400.
4. Install controller internal cable between location 16, P2, on back plane and the output connector at the output location provided.
5. Install the external cable between the connector panel and CDD Unit 0.
6. Carefully install the controller cards in the assigned card slots.

The card must slide in smoothly. The slots must be selected as shown in Table 3-2.

CAUTION
Do not install controller cards
in computer with power on.

CHECKOUT

1. Refer to the CPU/computer reference manual, publication number 89633400 and the CDD reference manual, publication number 89638000, for operation of the controller.
2. Determine that proper voltages are supplied to the controller card by measuring +5 vdc between test points 1 and 63 on the card.
3. Perform diagnostics check as described in the System Maintenance Monitor (SMM17) Manual, Publication Number 60182000.

TABLE 3-1. INTERRUPT CABLE INSTALLATION

The Interrupt cable will be installed between slot 19, connector/pin P2B18 and any of the following positions selected as required:		
Line	Slot	Connector/Pin
1	25	P1B10
2		A07
3		B07
4		A05
6		A06
7	$\frac{1}{25}$	B06
8	26	B05
9		A10
10		B10
11		A07
12		B07
13		A05
14		A06
15	$\frac{1}{26}$	PTB05

TABLE 3-2. CARD LOCATIONS

PW Board	Location (slot)
Disk Daisy Chain	15
Disk DSA	16^{*}
Disk Selector Count	17
Disk Shifter	18
Disk A/Q	19
* Internal cable will be connected	
to back plane at location 16,P2.	

SECTION 4

THEORY OF OPERATION

SCOPE

Section 4 contains a functional description of the FA 716-A Cartridge Disc Controller operations. A general block diagram is provided in Fiqure 4-3 and detailed timing charts are available at the end of this section. Section 5 contains detailed logic diagrams for all the PWB's of this controller and a description of functional units. A general overview of the dynamic processes during certain functions in the controller are provided in Section 4. The diagrams and text in Section 5 focus on details which had to be omitted from the overview, but are essential to diagnostic and maintenance operations.

FUNCTI NNAL DESCRIPTION

General Overview

The Cartridge Disc Controller is interfaced to the A / Q Channel and the Direct Storage Access (DSA) of the 1784 Computer. Operations are initiated from the A / Q Channel and are monitored by Status and Interrupt requests. The DSA interface is used exclusively for the transfer of data and addresses to or from the memory of the computer on cycle stealing basis. Once an operation has been initiated through the A / Q Channel it may run to completion without further program action. The controller accepts data from the cartridae disc drive (CDD) in serial form and assembles it into 16 bit words which are transferred to the computer memory. Conversely, the 16 bit words accepted from the DSA are serialized by the controller before transmission to the CDD.

Basically the Cartridge Disc Drive is capable of two operations - Read or Write. Other functions can be considered as derivatives of these basic functions. The Compare function reads data from the disc and compares it with data input from the memory of the computer.
The Checkword Check Operation reads data and compares the checkword previously recorded on the disc with the checkword generated during the read operation. The Write Address function, as the name imples, writes addresses on the 29 Sectors of the track specified by the contents of the Cylinder Address Register in the controller.

Equipment Selection

Several equipments may share the input/output interface of the computer. For this reason jumper plugs are used on the PWB to select a discrete equipment number between 0 to 15 ($0-\mathrm{F}_{16}$) for the disc controller. During the output of a command sequence, the same equipment number is carried in bits 07 through 10 of the Q Reaister. Only the controller where the equipment number set into the jumper plugs matches the bits coming from the Q Register, will respond to the computer with a Reply. The controller in turn can have up to four Cartridge Disc Drives. These individual CDD units are selected through bits 9 and 10 coming from the A Register of the computer.

Figure 4-1. I/0 Block Diagram

nperation Initiation

All operations in the controller are initiated by an INP or an OTP command in the computer program. At the time that an INP or OTP instruction are executed, the A / Q Channel transmits the Equipment Number (Bits 7-10 of the Q Register), the $W=0$ condition and either the A / Q Read or A / Q Write signal (OTP $=A / Q$ Read; INP $=A / Q$ Write).

Figure 4-2. Q Register Format

TABLE 4-1. FUNCTION CODES

Value set in Q (Bits 02-00)	OTP Output from A	INP Input to A
000	Load Buffer	Clear Controller
001	Director Function	Director Status
010	Load Address	Cylinder Address Status
011	Write	Current Word Address Status
100	Read	Checkword Status
101	Compare	Drive Cyl inder Status
110	Checkword Check	Illegal
111	Write Address	Illegal

Bits 0 through 2 of the Q Register define the contents of the A Register. Bits 7 through 10 of the Q Register must match the equipment number setting on the PWB of the controller. The W Portion of the Q Register must be zero. The Function Codes are described in this section.

Record Addressing

Addressing of the records is under program control. Records within the file are accessed by a 16-bit File Address Word sent to the drive via the $A Q$ channel. The address word is divided into four parts, the sector, disk, surface and cylinder. Bits 0 through 4 designate one of the 29 sectors within a track. Bit 5 designates either a fixed (bit $5=1$) disk, or the removable (bit $5=0$) cartridge disk, and bit 6 specifies one of two surfaces in a cylinder (bit $6=0$ specifies "top" surface; bit $6=1$ specifies "bottom" surface). Bit 7 through 15 desianates one of 406 cylinders within a disk. The File Address Word format is shown in Figure 4-4.

Figure 4-4. File Address Word

> nize the data between a drive and the controller.

Sector format

The total sector length is 2155 bits of which 1536 bits are data. Bit assignments are as indicated in Figure 4-5.

The head gap is required to allow the current to stabilize after turning on the read/write heads. The sync patterns are written as all zeros except for the least significant bit which is a 1 denoting the end of the pattern. the sync pattern enables the controller to recoanize the start of serial data bits from the drive. The 24-bit Address Format is shown in Figure 4-6. The controller generates and writes a checkword at the end of each address written and also at the end of each data record. The checkword is used during a Read to verify the accuracy of the data pre viously written. If the checkword does not agree with that which was written, a Checkword Error status bit will be set.

HEAD GAP	SYNC PATTERN	ADDR.	CHECK WORD	HEAD GAP	$\begin{aligned} & \text { - SYNC } \\ & \text { PATTERN } \end{aligned}$	DATA	$\begin{aligned} & \text { CHECK } \\ & \text { WORD } \end{aligned}$	$\begin{aligned} & \text { TOLERANCE } \\ & \text { GAP } \end{aligned}$
120	112	24	12	120	112	1536	12	107
BITS								

Fiqure 4-5. Sector Format

Figure 4-6. Address Format on CDD

Disk Organization

```
Refer to Figure 4-7 for view of disk
oraanization.
```


Figure 4-7. Disk Organization

SPECIFICATIONS

Storage Characteristics

$$
\begin{aligned}
\text { Data Format: } & \\
& \\
& \\
& \\
& 26 \text { bits perds per word } \\
& 2 \text { tracks per cylinder }
\end{aligned}
$$

1 (or 2) disks per drive Up to 4 drives

Access Time

Head Positioning time	35 msec (ave); ;
	70 msec (max)

Cylinder-to-cylinder	7 msec
positioning time	
Latency time	25.0 msec (one
Access time (positioning	disk revolution)
plus latency time)	47.5 msec (ave);
	95.0 (max)

Transfer Rate
Bit rate

Word rate

```
0.4 usec per bit
    (2.5 Mega bits/
    sec)
    6.4 usec per 16-bit
    word (156K words/
    sec)
```


Checkword

The checkword is a cyclic code generated from the data or address by the controller. The checkword is the remainder which is obtained by dividing the data or the address (which is taken as a code polynomial) by the polynomial:

$$
\left(x^{1} 2+x^{1} 1+x^{3}+x^{2}+x+1\right)
$$

Example:

Record Polynomial

$$
\begin{aligned}
x^{12}+x^{11}+x^{3}+x^{2}+x+1= & \text { Quotient } \\
& \text { Polynomial } \\
& + \text { Remainder } \\
& \text { Polynomial }= \\
& \text { Coefficient } \\
& \text { of Checkword }
\end{aligned}
$$

These polynomials are treated according to the theorems of ordinary algebra with one exception, addition is done in modulus two.
$1 x^{a}+1 x^{a}=0 x^{a}+0 x^{a}=0 x^{a}$
$1 x^{a}+0 x^{a}=1 x^{a}, 0 x^{a}+1 x^{a}=1 x^{a}$

The generation of the checkword is represented by the diagram in Figure 4-8.

Figure 4-8. Checkword Generation
OUTPUT FROM A OPERATIONAn Output from A operation is indicated by anEquipment Number match and the A / Q Write sig-nat. The Function Code (bits Q00-Q02)specifies the operation to be performed asshown in Table 4-2.

TABLE 4-2. OUTPUT FROM A OPERATION

Function Code		Operation	
$\underline{Q 02}$	$\underline{Q 01}$	$\underline{Q 00}$	
0	0	0	Load Buffer Length
0	0	1	Director Function
0	1	0	Load Address
0	1	1	Write
1	0	0	Read
1	0	1	1
1	1	0	Compare
1	1	1	Write Address

Depending on the particular Function Code and on the state of the controller and selected drive, the operation is either executed or rejected.

In either case, 400 nanoseconds after the receipt of A / Q Write signal the A / Q Reply or Reject is transmitted.

The operation performed and the Reply and Reject conditions are as follows:

The Load Buffer Length transmits to the controller the binary value which represents the number of words to be transferred on the succeeding data transfer operation. During the execution of the OTP instruction this binary value is transmitted to the controller via the A register. If the selected drive is Ready, On Cylinder, Not Busy, and the Protect conditions are satisfied (i.e., either the selected drive is not protected or the selected drive is protected and the A/Q Protect signal is active), the controller loads the value from A into the Buffer Length Counter. On the subsequent Read, Write or Compare operation, the counter is decremented by one after each word is transmitted via the DSA. When the counter registers zero, the operation with the DSA is terminated.

Director Function (001)

The Director Function is used to select (or deselect) one of four possible disk drives and to select or clear interrupt enables. If the controller is not busy and the protect conditions are satisfied (i.e. either the
presently selected drive is Not Protected or the presently selected drive is Protected and the A / Q Protect signal is active) the controller will select the appropriate drive and establish the required interrupt conditions, as specified by the contents of the A register described in Figure 4-9.

Figure 4-9. Selectable Interrupt Conditions and Unit Selection

AO - Not Used
AI = 1- Clear Interrupt - This bit causes
all the interrupt selections to
be cleared. This bit is sub-
ordinate to the interrupt request

```
    bits AO2 through AO4.
A2 = 1- Next Ready and Not Busy Interrupt
    Request - The selection of this
    request causes the interrupt line
    to become active when the con-
    troller becomes Ready and Not Busy.
    Note that any of the drives may be
    busy while seeking.
A3 = 1- End of Operation Interrupt Request -
    The selection of this request causes
    the interrupt to become active when
    the End of Operation Status bit is
    set.
A4 = 1- Alarm Interrupt Request - The
    selection of this request causes
    the interrupt line to become active
    when the alarm status bit is set.
A5 and A6
    - Not Used
A7 = l- Unit De-select. This bit releases
    the selected drive unit. It is
    used by a protected program to
    allow system control to pass to an
    unprotected program. The protected
    status is cleared by this bit.
    The drive remains selected.
```

$$
\begin{aligned}
& \text { A8 = l- Unit Select. This bit allows the } \\
& \text { program to change the drive unit } \\
& \text { selection. The drive unit sel- } \\
& \text { ected is determined by bits A9, } \\
& \text { Alo. } \\
& \text { A9 = 1- Unit Select Code. Least signifi- } \\
& \text { cant bit of } 2 \text { bit code. } \\
& \text { Alo = l-Unit Select Code. Most signifi- } \\
& \text { cant bit of } 2 \text { bit code. }
\end{aligned}
$$

Unit Select
Upon detection of a valid Director Function if $A 08=1$ the controller causes the setting of the appropriate stage of the Unit Select register as specified by bits $A 09$ and $A 10$. If $A 07=1$ the controller clear the previous unit selection. If both $A 07$ and $A 08$ are equal to one, the Clear takes precedence.

Director Function will be accepted if no Write, Read, Compare, Checkword Check or Write Address is in process on any unit and Protect conditions satisfied for the selected unit. If any unit is positioning, the Director Function will be accepted.

Load Address (010)
The Load Address function initiates a Seek to the File Address specified by the contents of the A register described in Table 4-3.

TABLE 4-3. LOAD ADDRESS FUNCTION

Code	Operation
A00-04	Sector Number $(0-2810)$
A05	Disk Selection (Cartridge or Fixed)
A06	Surface Selection ("Top" or "Bottom")
A07-15	Cylinder Address (0-405 10 for 9427)
	$(0-20210$ for 9425)

The Load Address function will be executed if neither the controller nor the selected unit is busy, the selected unit is Ready, On Cylinder and the Protect conditions are satisfied.

The controller checks the cylinder address and sector count to insure that the addresses are within the bounds of the selected drive. If the addresses are in order, the controller loads the contents of the A register into the Cylinder Address and Sector Count Register and Disk \& Surface selection FF. In addition
the Track Address Strobe and the contents ofthe Cylinder Address Register are transmittedto the selected drive. Upon receipt of thestrobe, the drive initiates the Seek to therequired cylinder.
When the Seek is completed, the EOP status willbe set if the controller is Not Busy. If theselected drive is unable to complete the seek,the Drive Seek Error status will be set.
If the cylinder address or sector count are notwithin the required limits, the Address Errorstatus is set and the load of the CylinderAddress and Sector Count Register is inhibited.
Note that the A / Q Reply signal is transmittedto the channel in all cases (i.e., even if anAddress Error is detected), 400 nanosecondsafter the A / Q Write is detected. After trans-mitting the Reply, the controller is availablefor subsequent instructions.The Buffer Length determines the updating ofthe address in the controller during the exe-cution of a particular function such as Reador Write. The Sector is incremented after 96words. At the end of the $29 t h$ sector the

Surface selection changes since the Cylinder consists of the upper and lower surface of either the cartridge or fixed disc. When the second track of the cylinder is filled, the head is moved to the next cylinder. The disc selection only changes with the Load Address function. As a practical example this means that a large buffer which started in the cartridqe disc would not automatically be continued on the fixed disc, or vice versa.

Write (011)

The Write function transfers to the disk the number of words specified by the preceding Load Buffer Length. The starting location on the disk is that specified by the preceding Load Address function. If the transfer extends beyond a full track the heads will automatically be moved to the next cylinder. The transfer is continued until either the Buffer Length Register indicates zero, or the Cylinder Address Register is incremented beyond the last allowable address (at which point an Address Error will be indicated).

The Write function will be accepted if the controller and selected unit are not busy, the unit is Ready and On Cylinder and the protect conditions are satisfied. Upon receipt of the Write function the Write $F F$ is set, the A / Q Reply transmitted and the Controller Busy FF set. Thereafter, the operation proceeds as in the Read function (See Read section) until the required sector is found and the SFC advanced to the 010 state.

At the beginning of the 010 field the $F L C$ is reset to zero. At count 120 the Write Gate is set, thereby causing the Sync area composed of the Write Clock ("l" pulse every Tj) and a Data bit stream of zeros ("0" pulse every T3) to be written on the disk. In addition, at count 120 the Need FF is set and the first two words of data to be written on the disk are read from memory via the $D S A$. At count 232 , a "1" bit (the Sync Bit) is written on the disk and the SFC is advanced to 011, the data area.

Abstract

If during the Write operation the Bit Counter indicates that a new word is required by the Shifter, but the Buffer 2 is empty, the Lost Data status is set. The operation is terminated after the end of the sector in which the Lost Data condition was detected.

Upon termination of the Write operation the contents of the various status words will be as described for a Read operation.

Read (100)

The Read function transfers to the memory the number of words specified by the preceding Load Buffer Lenath function. The starting location on the disk is that specified by the preceding Load Address function. If the transfer extends beyond a full track, the heads will automatically be switched to the second surface of the same (Cartridge or Fixed) disk. If the heads already reside on the second surface, they will automatically be moved to the next cylinder. The transfer is continued until either the Buffer Length Register indicates zero, or the Cylinder Address Register is incremented beyond the last allowable address (at
which point an Address Error will be indicated).

The Read function will be accepted if the controller and selected unit are Not Busy, the unit is Ready and On Cylinder and Protect conditions are satisfied. Upon receipt of the Read function, the Read $F F$ is set, and A / Q Reply transmitted and the Controller Busy FF is set. Upon detection of the next Sector Mark, the Sector Field Counter (SFC) is set to field OOO_{2}. In the middle of the Sync pattern the Read Gate is activated and the "one" at bit 112 is searched for. When the "one" bit is detected the SFC is advanced to 0012 and the upper 12 bits of the File Address are loaded into the shifter. (See Figure 4-10).

The address bits shifted from bit 11 of the shifter are compared bit by bit with the address read from the disk.

If all pairs of bits match, the lower 12 bits of the file Address are loaded into the shifter and similarly compared with the address read from the disk. If a mismatch is detected in either the upper or 1 ower 12 bits, the Address

No Compare FF is set, the SFC is set to an unused state (Idle), and the operation halts until the next Sector Mark is detected. The File Address is again compared with the address read from the disk. This comparison is repeated until a sector is found in which all 24 bits of the File Address match. At this point the $S F C$ is advanced to 010_{2} and the processing of the sector continues.

In the middle of the Sync pattern (count 176 from beginning) in the 010 field the search is begun for the "one" bit. Upon detection of the one bit the $S F C$ is advanced to 0112 and the reading of the data is started.

SECTOR

SETOR
MARK

Fiqure 4-10. Sector Fields
At the beginning of the 011 (data) field, theField Length Counter (FLC) and the Bit Counterare reset to zero. Thereafter the Bit Counteris incremented by one for every serial databit transferred from the disk to the Shifter.The FLC is incremented once for every group ofsixteen bits (i.e., for every word).
When the Bit Counter indicates that a 16 bitword has been assembled in the Shifter, theword is transferred to Buffer 1. If Buffer 2is empty, the word is immediately transferredto Buffer 2 and the Need $F F$ is set. The set-ting of the Need FF enables the Scanner to becaptured, the Storage Request signal to beactivated and the storage address to be trans-ferred from the Current Word Address Registerto the DSA. Upon receipt of the Storage Resumesianal, the data is transferred from Buffer 2to the memory location as specified by the
Current Word Address.
If Buffer 2 already contains a word, the new word will remain in Buffer 1 until Buffer 2 is emptied. During the time that this word remains in either buffer, serial data is continually read from the disk to thesshifter.

The serial to parallel assembly and transfer to the DSA continues until the $F L C$ is incremented to 9610 , indicating the end of the Data Dield (011) of this sector. At the end of the data field, the SFC is advanced to 100 and the contents of the checkword circuit are loaded into the Checkword Status Register. Thus, the contents of the register indicate the actual checkword that was computed from the serial data read from this sector. After the Checkword Status Register is loaded the 12 bit data checkword is read serially from the disk, and inserted into the Checkword circuit. After the entire 12 bits are inserted, the Checkword circuit is inspected for a non-zero content which indicates a Checkword Error. If a Checkword Error occurs the entire Read operation is terminated regardless of the contents of the Buffer Length Register. If no Checkword
Error is indicated the SFC is set to the Idle state and the next sector is awaited. Upon detection of the next Sector Mark, the SFC is set to 0002 and the processing (Address Comparison, Data Read, Checkword Check) of this sector is started.

Thereafter, each sector is processed in turn until the Buffer Length Counter is finally decremented to zero. At this point data transfer to the memory is halted, but the data is continued to be read from the disk until the end of the current sector. At the end of the current sector, the Checkword is checked and the File Address (Cylinder Address Register, Surface Selection $F F$ and Sector Counter) is incremented to indicate the address of the sector following the last (partial or complete) sector read.

If during the Read operation the Bit Counter indicates that a new word has been assembled, but Buffer 1 is still full, the Lost Data status is set. The operation is terminated after the end of the sector in which the Lost Data condition was detected.

Upon termination (normal or abnormal) of the Pead operation the Director Status will indicate End of Operation (EOP), Ready, On Cylinder and possibly other status. The Current Word Address status will indicate one more than the last memory location written into. The True Cylinder Address status will indicate the Cylinder Address that was transferred serially from the disk during the last sector that was read.

Compare (101)

The Compare function causes the disk controller to compare data read via the DSA from the memory with data read from the disk. The number of words to be compared is specified by a preceding Load Buffer Length function. The starting location on the disk is specified by the preceding Load Address function. As in the Read and Write functions, the heads will automatically be advanced until the number of words specified by the Buffer Length have been compared.
With respect to the transfer of serial data from the disk, the Compare function operates identically with the Read function. With respect to the transfer of parallel data from the memory the Compare function operates identically with the Write function The actual data processing is done serially with a bit-by-bit comparison between the data read from the disk and the data read from the memory and converted to serial form by the Shifter. Upon detection of the first mismatch, the Compare Error status is set. However, the comparison operation continues to the end of the buffer specified.

Checkword Check (110)

The Checkword Check function reads the data and checks the checkword of the entire track
(29 sectors) as specified by the preceding Load Address function. No data is transferred between the $D S A$ and the $C D D$ controller.

At the beginning of the 011 field the contents of Buffer 2 are loaded into the Shifter, and the FLC and the Bit Counter are reset to zero. Thereafter the Bit Counter is incremented by one for every serial data bit transferred from the Shifter to the disk. The FLC is incremented by one for every group of sixteen bits (word) tranferred.

When the contents of Buffer 2 are transferred to the Shifter, the contents of Buffer 1 are transferred to Buffer 2 and the Need FF is set to initiate a DSA request for the third word. Thereafter, a Request is generated for every word transferred from Buffer 1 to Buffer 2 until the FLC indicates that 9410 words have been transferred. At this point the Inhibit Need $F F$ is set and no further DSA requests are made for this sector.

As the serial data is transferred to the disk, it is also inserted into the Checkword circuit. After the last two words of the sector are written, the FLC indicates 9610 and the contents of the Checkword circuit are loaded into the Checkword register. The contents of this
register is the actual Checkword that was computed from the serial data written in this sector. Also at count 9610 , the $S F C$ is advanced to the 1002 state and the 12 bit Checkword is transferred from the Checkword circuit to the disk. At count 15 the Write Gate is reset. At count 36 the $S F C$ is set to the Od;e Idle state to await the next Sector Mark.

Each sector is similarly processed until the Buffer Length Counter is finally decremented to zero. At this point the controller ceases requests for $D S A$ Data but continues writing zero data on the disk until the end of the current sector. At the end of this sector the File Address is incremented to indicate the address of the sector following the last (partial or complete) sector written.

With respect to the transfer of data from the disk, the Checkword Check function is identical with the Read function. However, no data is transferred from the Shifter to the Word Buffers. If a Checkword Error is detected the operation is terminated with the file Address indicating the sector following the one in
which the error was detected.

Write Address (111)

The Write Address function causes the addresses to be written on the 29 sectors of the track specified by the contents of the CyTinder Address Register.

The Write Address function will be executed if the controller and previously selected unit are Not Busy and the selected unit is Ready, On Cylinder, and Protect conditions are satisfied.

Upon detections of the Write Address (WA) function, the $W A F F$ is set and the A / Q Reply is transmitted to the channel, and the Controller Busy is set. When the Index Mark is next detected by the controller, the writing of the address field in the first sector is begun.

Figure 4-11. Sector Fields

Each sector is divided into fields as shown in Figure 4-11. The Sector Field Counter indicates which field is being operated on at the given time. The Write Address function Write fields 000 and 001 of each sector. The Tolerance Gap is created by counting 120 bits (with the Field Length Counter) after the Index Mark. The Sync Pattern is then written with the first 111 bits equal to zero and the 112 th bit equal to one. At the beginning of the 001 field, the contents of the Cylinder Address Register are loaded into the 16 -bit Shifter in the format shown in figure 4-12.

SHIFT DIRECTION

Figure 4-12. Upper 12 Address Bits

The contents of the Shifter bit 11 are written in serial form on the disk. After the upper 12 bits of the address are written, the contents of the Sector Count Register and Surface and Disk selection FF's are loaded into the shifter in the Format shown in Figure 4-13.

SHIFTER:

Figure 4-13. Lower 12 Address Bits

Thereupon, the lower 12 bits of the address are shifted to the disk from the Shifter bit 11.

As the Address bits are transferred to the disk the Address Checkword is computed in the Checkword Register. After the last bit of the address is written the 12 bits of the Checkword are transferred serially to the disk.
At the completion of field 001 the contents of the Sector Count Register are incremented by one. Thereupon, the operation awaits the beginning of the next sector (i.e., the next Sector Mark). The operation is repeated in the second and all succeeding sectors until the Sector Count is advanced to 2910. At that point the operation is halted, the Controller Busy status is cleared and the EOP is set.

Autoload

The depression of the remote AUTOLOAD switch on the proarammer's console causes the CDD controller to transfer one complete track of data from cylinder zero, surface zero, disk zero (i.e., Cartridge or Fixed depending on the state of the Head 0 Selection jumper) of unit zero, to the computer memory starting at location zero. Upon receipt of the Remote Autoload signal, the controller selects unit 0 , issues an RTZS, and clears to zero the Cylinder Address Register, Sector Count Register, Surface and Disk Selection FF's and CWA Reaister. When the RTZS is completed, the drive returns the On Cylinder signal.

Thereafter, upon detection of the Index Mark, the controller initiates a Read operation starting at sector zero. The Read continues until all 29 sectors have been transferred, at which point the Autoload is terminated.

INPUT TO A OPERATION

An Input to A operation is indicated by an Equipment Number match and the A / Q Read signal. The Function Code (bits QO-Q2) specifies the operation to be performed as shown in Table 4-4.

TABLE 4-4. INPUT TO A OPERATION

Function Code			Operation
Q02	Q01	Q00	
0	0	0	Clear Controller
0	0	1	Director Status
0	1	0	Cylinder Address Status
0	1	1	Current Word Address Status
1	0	0	Checkword Status
1	0	1	Drive Cylinder Status
1	1	0	Illegal
1	1	1	Illegal

If the operation specified is not illegal, itis executed immediately. That is, in the caseof the status reads, the appropriate status istransmitted to the A register. In the case ofthe Clear Controller, a Return to Zero Seek(RTZS) is transmitted to the selected unitand the controller is set to an idle state(except for the A / Q Interface control logic).400 nanoseconds after the receipt of the A / QRead signal, the A / Q Reply signal is trans-mitted to the channel. When the A / Q Readgoes inactive, the controller drops the A / QReply and ends the operation by either closingthe gates to the A register or terminatingthe Clear signal.
If an illegal Function Code had been speci-fied the controller takes no action otherthen transmitting the A / Q Reject signal in-stead of the A / Q Reply.

Description of Input to A Functions

A Read signal from the computer $A Q$ channel defines the contents of A as an Input. The significance of the contents of A varies with the value in bits 00-02 of the Q register.

Clear Controller (000)

This function will clear the controller unconditionally and will generate a Return to Zero Seek (RTZS) to the selected drive. This function must be used with discretion since a Clear Controller signal will stop any current operation. RTZS sianal is issued, Busy is not set. Unit Select is not cleared. If the controller is not busy at the end of the RTZS, End of nperation will be set.

Director Status (001)

This function is used to monitor the controller's operating status. The status information is loaded into the A register as shown in Fiqure 414.

Figure 4-14. Director Status Format

The controller will accept this function at any time. The acceptance of this function causes no changes in the status of the controller.

The controller status is indicated by the presence of a one or zero bit in each of the A reaister bit positions. The conditions associated with each bit position is given above.

Ready ($A O=1$) - This bit indicates that the selected drive is available and ready to operate. The drive becomes Not Ready for the following reasons:
a. Disk Pack not in drive unit.
b. Disk drive motor not up to operating speed.
c. Read/Write heads not in operating position.
d. A fault condition develops in the selected drive.

This status condition will be affected by the operating program only if it selects a device physically not in the system or a device which is Not Ready.

Normally, the absence of this status bit indicates that manual (operator) intervention is required at the selected drive unit.

Busy ($\mathrm{Al}=1$) - This bit indicates that the controller is presently involved in an operation.

This bit is set by the acceptance of a Write, Read, Compare, Checkword Check, or Write

Address function.

This bit will be cleared when the controller has completed its operation or an abnormal condition is detected which aborts the operation. Once initiated, the computer cannot clear the Busy condition except by a Clear Controller instruction.

Interrupt ($\mathrm{A} 2=1$) - This bit indicates that the selected interrupt condition has occurred. The bit will be cleared by the acceptance of any Output from A function.

On Cylinder (A3=1) - This bit will be set when the drive positioner of the selected unit is On Cylinder. It will be cleared if the drive unit is presently positioning or if a Seek Error is detected and the heads have not yet returned to cylinder zero.

End of Operation $(A 4=1)$ - This bit will be set whenever the controller portion of an operation is complete, or if any of the four units completes a seek and 30-50 Nsec after Busy status deactivates.

This bit will be cleared by an Output from A function.

Alarm (A5=1) - This bit indicates that one of the following abnormal conditions has occurred: a. Not Ready and Busy (Alarm set immediately).
b. Checkword Error (Alarm sets at EOP).
c. Lost Data (Alarm sets at EOP).
d. Controller Seek Error (Alarm sets immediately).
e. Address Error (Alarm sets immediately).
f. Drive Seek Error (Alarm sets immediately).
g. Storage Parity Error (Alarm sets at EOP).
h. Protect Fault (Alarm sets at EOP). Certain fault conditions in the Cartridge Disk Drive described in Section 1 of this manual will generate a DISK FAULT signal. The Alarm interrupt will be triggered. No status bits are available to sense these faults originating in the CDD. If the software tests of the available status bits do not indicate an abnormal condition, the $C D D$ must be investigated. An illuminated FAULT switch on the CDD will
give a general indication. Additional LED indicators on the PWB inside the cabinet can be consulted for specific faults.

This bit will be cleared by any Output from A function. The Not Ready condition can be changed by manual intervention.

No Compare ($A 6=1$) - This bit indicates that the data received from computer storage does not compare with data read from the file storage during a compare operation. This bit is cleared by any Output from A function.

Protected ($A 7=1$) - This bit is present when the selected unit's PROTECT switch is on. (Allows only programs from the protected area of computer storage to have access to the drive.)

Checkword Error ($A 8=1$) - This status bit indicates that the controller logic has detected an incorrect checkword in data read from file storage during a Read, Compare, or Checkword Check operation. This bit is cleared by any Dutput from A function.
Lost Data ($A 9=1$) - This bit indicates that the computer's DSA bus has not been able to keep up to the file data transfer rate during a Write, Read, or Compare operation. This bit is cleared by any Output from A function.
Address Error (Al0=1) - This bit indicates that the controller has detected a file address which is beyond the limits of the file storage capacity received from the computer or that the controller has advanced the file address beyond the limits of the file storage capacity. This bit is cleared by any output from A function, accepted by controller.

The contents of the Cylinder Address register are not altered if the error is detected during a Load Address instruction. If the error is detected during a Read, Write or Compare operation, the heads will be advanced one track beyond the limit (that is, track 405 of the 856-4 CDD or track 203 of the 856-2 CDD). Note, if the last sector in the last cylinder is addressed during a Read, Write or Compare operation, an Address Error will be indicated
after the last sector has been read, written or compared.

Controller Seek Error (All=1) - This bit indicates that the controller has been unable to obtain the file address selected during a Write, Read, Compare or Checkword Check operation. This error usually indicates a positioning error, dirty heads, or defective cartridge disk. The positioning error can be corrected by doing a status check of the drive cylinder, comparing this with the contents of the Cylinder Address register (to determine if, indeed, a positioning error has occurred). This bit will be cleared by any Output from A function accepted by the controller.

Single Density (A12=1) - When "one" this bit indicates that the selected drive is type 856-2. When zero the selected drive is type 856-4.
Storage Parity Error (A13=1) - This bit indicates that the controller has received a Parity Error signal from the DSA bus during a Con-troller-DSA transfer. The operation will end at the end of the sector being operated on. This bit will be cleared by any Output from A function.

Protect Fault (Al4=1) - This bit indicates that an unprotected Read instruction initiated an operation to write in a protected computer storage area. The operation will end at the end of the sector being operated on. The protected computer storage area is not changed. This bit will be cleared by any Output from A function.

Drive Seek Error (A15=1) - This bit indicates that the drive unit has detected that the cylinder positioner has moved beyond the legal limits of the file storage area (below zero cylinder position 0 or above cylinder position 202 or 405) during a Write, Read or Compare function. This bit will be cleared by any Output from A function accepted by the controller.

Cylinder Address Status (010)

This function is used to monitor the file address, which is the address of the sector, track, and cylinder of selected unit being operated in when the controller is Busy. When the controller is Not Busy, it represents the address of the sector last processed plus one. See Figure 4-15. The address information is loaded into the A register and is arranged in the same format used by the computer to transfer the file address to the controller. This function will be accepted at any time by the controller.

Fiqure 4-15. Cylinder Address Status Format

Current Word Address Status (011)

This function is used to monitor the Current Word Address (CWA) register. The contents of the CWA register are loaded into the A register.

This provides the computer with information as to the area in storage being transferred, or the location of the area already transferred in a previous DSA operation, such as Read, Write or Compare. This function will be accepted unconditionally at any time by the controller.

Checkword Status (100)

The Checkword Status is used to monitor the contents of the Checkword 2 register This reaister holds the Data Checkword on the last sector operated on.

The Checkword Status function will be accepted unconditionally at any time by the controller.

15		12	11	0
0	0	0	0	CHECKWORD

Drive Cylinder Status (101)

The Drive Cylinder Status is used to monitor the true cylinder address Read from the disk on the previous Read, Write, or Compare operation. This status word contains the cylinder address in bits 7 through 15. Bits 4-6 are unused. Bits 0-3, Seek Complete or Seek Error.

Four bits contain signals to indicate after EOP status is true, that the corresponding unit has completed a seek (Seek Complete) or is unable to complete a seek (Seek Error). These bits are available without the unit being selected. The Seek Complete is cleared by a new Load Address, Write, Read, Compare or Checkword Check Command issued to the particular unit. If a Seek Error occurred, bit

```
15 in the Director Status word is set if cor-
responding unit is selected, it must be cleared
by Clear Controller (i.e., RTZS to selected
unit).
```


Protect

The interaction between the computer and the peripheral controller can become somewhat complex when either or both are in a protected condition. For this reason Table $4-5$ should be consulted.

The first column deals with a 1784 computer in which the Protect Switch is in the "off" position. In the second and third column the 1784 computer is assumed to have the Protect Switch in the "on" position. The 1733-2 Controller can be either protected (jumper plug removed on the Daisy Chain PWB) or unprotected.

Of particular interest is the condition where the 1733-2 is trying to read data from the CDD and writing into a protected memory area of the 1784. This generates a protect fault in the

1784 which is transmitted to the 1733-2 to
set the Alarm interrupt. The 1784 will not generate an internal interrupt under this condition.

The Write Protect feature of the CDD can be considered another Protect feature in the system. When the switch on the $C D D$ is activated, it prevents the writing of data. There is no status indication in the controller to indicate that Write Protect has been activated. Should the controller execute a Write function it will run to completion in a normal manner. A Compare function must be used to detect that the data formerly recorded on the disk has not been altered.

TABLE 4-5
CONTROL DATA SYSTEM 17 CR PROTECT SCHEME
1784 Protect Switch Set 1733-2 Controller

		1784		
		Protected	Protected	Protected
	Protected output	Reply	Reply	Reply
	Protected Input	Reply	Reply	Reply
I/ 0	Protected Output	Reply	Reply	Reject
	Protected Input	Reply	Reply	Reply
$\begin{aligned} & \text { DSA } \\ & \text { I/O } \end{aligned}$	WRITE-PROT.BUFFER Protected Out	Write	Write	Write
	WRITE-PROT.BUFFER Protected Dut	Write	Write	Reject
	$\begin{aligned} & \text { READ-PROT. BUFFER } \\ & \text { Protected Out } \end{aligned}$	Read	Read	Read
	$\begin{aligned} & \text { READ-PROT } \cdot \text { BUFFER } \\ & \text { Protected Out } \end{aligned}$	Read	Protect Fault *	Reject
	WRITE-UNPROT.BUFFER Protect Out	Write	Write	Write
	WRITE-UNPROT.BUFFER Protect Out	Write	Write	Write
	READ-UNPROT, BUFFER Protect Out	Read	Read	Read
	$\begin{aligned} & \text { READ-UNPROT.BUFFER } \\ & \frac{\text { Protect Out }}{} \end{aligned}$	Read	Read	Reject

Figure 4-16 (a). Read and Checkword Timing

Figure 4-16 (b). Read and Checkword Timing

Figure 4-16 (c). Read and Checkword Timing

Figure 4-17 (a). Write Timing

Figure 4-17 (b). Write Timing

Figure 4-18 (a). Write Address Timing

Figure 4-18 (c). Write Address Timing

Figure 4-19 (a). Compare Timing

Figure 4-19 (b). Compare Timing

ndTE

1. ALL TIMES ARE IN NANOSECONDS EXCEPT WHERE N区TED
2. TITHRU T4 ARE 100 NS. EACH
3. ALL GATE NOTATIONS REFER TA THE DSA CARD

Figure 4-20 (a). Load Address Timing

Figure 4-20 (b). Load Address Timing

nबTE

1. ALL TIMES ARE IN NANOSECONDS EXCEPT WHERE NOTED.
2. TI THRU TA ARE 100 NS. EACH
3. ALL GATE MOTATIONS REFER TA
THE DSA CARO

Figure 4-20 (a). Load Address Timing

Figure 4-20 (b). Load Address Timing

Figure 4-22 (a). Request Resume and Double Buffer Control - Write and Compare

SECOND WORD IS TRANSFERRED FROM BUFFER I TO BUFFER 2
NEED IS GENERATED FORA NEED IS GENE

LOST DATA CONDITION DURNG $W+C$ IF BOTH BUFFERS ARE EMPTY WHEN DATA IS REQUIRED FOR SHIFTER.

Figure 4-22 (b). Request Resume and Double Buffer Control - Write and Compare

(US9-5)
 BUFFER I.

REQUEST/RESUME
TRANSFERS WORD
TRANSFERS WORD TO MEMORY. DOTTED LINE SHOWS CASE WHERE OSA RESUME HAO BEEN
ACTIVE ON THE PREVIOUS CYCLE WITH ANOTHER CONTROLER.

READ DATA WORD IS TRANSFERRED WHEN BUFFER 2 IS ALREADY FULL.

LLUSTRATES LOST UATA CONDITION DURING READ IF BOTY BUFFERS ARE ULL WHEN A NEW WORD IS AVAILABLEIN THE SHIFTER

Figure 4-23. Request Resume \& Double Buffer Control - Read

Figure 4-24. Autoload Timing

SECTION 5

LOGIC DIAGRAMS

KEY TO LOGIC SYMBOLS

Abstract

Publication 89723700 (Key to Logic Symbols) or equivalent, lists the symbols used in the logic diagrams in this manual and gives a short description of the functions they represent. The symbols conform generally to Control Data usage (Microcircuit Handbook, publication number 15006100), using the polarity logic convention.

The following paragraphs describe the signal flow conventions used.

SIGNAL FLOW

Input signals are drawn coming from the left or above; output signals are drawn going to the right or down.

The signal lines are sometimes interrupted to allow logical grouping of components. At each such interruption one of the following indicators is used:

On-Sheet Continuation Reference Symbols

These symbols when used with the logic symbols in the following diagrams indicate that a connection exists between two points on a sheet. The arrows attached to each circle point from signal origin to signal destination. The letters, $\mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{O}$ and P are not used inside the circles, since they bear special significance on logic diagrams.

These symbols when used with the logic symbols in the following diagrams indicate that a common signal point exists between two sheets in a series of related drawings. These symbols point from output to direction of input as shown in the illustration. The letters $C, H, 1, O$ and P are not used in the hexagons, since they bear special significance on logic diagrams. The number (s) next to each hexagon indicate the sheet (s) that the signal is continued

(ON SHEET 6)
from or on. For instance, the numbers 3.6 refer to sheets 3 and 6 , while 2.3 refers to sheets 2 and 3 . It should be noted that the referenced sheet number (s) is always placed opposite the line extending from the hexagon.

Test Points

OR

The test point symbol on the logic diagram shows the connection of a test point on the printed wiring board (PWB). The number adjacent to the symbol refers to the test point position on the PWB at the edge opposite the connectors. Only test point one is labeled on the edge of the PWB.

Connecting and Non-Connecting Lines

Lines connected to a common point or at a junction point are shown in the upper part of this illustration. No more than four lines are connected to a common point in the diagrams.

Lines crossing but not connected are shown in the lower part of this illustration.

Connectors

Connectors are represented on the logic diagram by the symbol for a female connector, for both input and output signals. The name of the signal is placed in the open end of the connector symbol (shown below), using the full name of the signal or the common abbreviation applicable to logic diagrams. The connector number, pin row and pin number are located above the line extending from the connector symbol.

SHIFTER PW BOARD (DWG NO. 89615800, SHEETS 1 THROUGH 8)

The Shifter card is divided into the following functional parts:

1. Shifter
2. Word Buffers and DSA Data Interface
3. DSA Address
4. Buffer Length
5. Cylinder Address
6. Status Selection

Shifter (DWG NO. 89615800, SHEET 5)
The sixteen bit synchronous shifter is used for all serial to parallel and parallel to serial conversion. The serial input is at the J-K pins of the 159 at U6. The parallel inputs are 1 CO pins of U6, U22, U5 and U21. The shifter is loaded (both serially and parallelly) on the rising edge of the SHIFTER CLOCK signal at the $2 \rightarrow$ inputs of the 159 's.

The parallel inputs to SHIFTER bits 0-11 come from the output of the 170 multiplexers at U51, 37, 36,50 and 38 and the 189 at U35. The multiplexer outputs depend on the state of the SMPXO and SMPXI signals as follows:
(See Sector D4 on drawing)

SMPXI	SMPXO	Multiplexer Outputs		
LOW	LOW	MPX Bit	0-11 = zero (not	used)
LOW	HIGH	MPX Bit	$\begin{aligned} 0-8= & \text { (CYLINDER } \\ & \text { CAU 12-20; } \end{aligned}$	ADDRESS UPPER) ; MPX Bits 9-11 = zero
HIGH	LOW	$\left\{\begin{array}{l}\text { MPX Bit } \\ \text { MPX Bit }\end{array}\right.$	$\begin{aligned} 0-4= & \text { (CYLINDER } \\ & \text { CAL 0-4; } \\ 6-7= & \text { CAL 6-7; } \end{aligned}$	ADDRESS LOWER) MPX Bit 5 = zero MPX Bit 9-11 = zero
HIGH	HIGH	MPX Bit	0-11 = Buff 2;	Bits . 0-11

The parallel inputs to SHIFTER bits 12-15 come from bits 12-15 of BUFFER 2 (SHEET 4). The parallel load takes place on the rising edge of the SHIFTER CLOCK when the SHITT LOAD signal is active.

The outputs of the SHIFTER go to the word buffers. In addition bits S 11 and S 15 go to the data and address compare logic on Sector Count card.

The shifter is set to all zeros by the CLEAR SHIFTER signal.

Word Buffers and DSA Data Interface (SHEET 4)

The two 16 bit word buffers, BUFFER 1 and BUFFER 2, are composed of the four-bit 168 latches at U1, U2, U18 and U17. BUFFER 1 is loaded from the output of the 189 multiplexer at U3, 4, 19 and 20 . The multiplexer outputs depend on the state of the $W+C$ signal as follows:

W:C Multiplexer Outputs
LOW MPX Bits 0-15 = Shifter Bits 0-15
HIGH MPX Bits 0-15 = DSA Data Bits 0-15
BUFF 1 will be loaded when either the $\overline{\text { DSA } \rightarrow \text { BUFFER } T \text { or the SHIFTER } \rightarrow B U F F E R T}$ signals are active.

BUFFER 2 is loaded from BUFFER 1 when the BUFF $1 \rightarrow$ BUFF 2 signal is active. The output of BUFFER 2 goes both to the shifter input multiplexers and to the sixteen 204 DSA DATA drivers at U34, 48, 33 and 47 . The drivers are enabled when the WRITE ENABLE signal is active. Since the 204's are inverting drivers, the data to the DSA is active low.

DSA Address (SHEET 2)

The Current Word Address (CWA) counter consists of the four, four-bit 500 counters at U29, 30,55 and 56 . During a Read, Write or Compare instruction the CWA is loaded with the contents of AO-A15 when the $\overline{\operatorname{RRCVR} \rightarrow C_{W A}}$ signal is active. The contents of the CWA are incremented by one on the trailing edge of the CWA COUNT
signal. The outputs of the CWA go to both the status selection multiplexers at U42, 43, 44 and 57 (SHEET 3) and to the inverters at U58, 31, 32 (SHEET 2) in the DSA Address interface. The DSA ADDRESS drivers (204 at U60, 59, 45 and 46) are enabled when the REQUEST signal is active. Because the 204's are inverting and there are inverters at the output of the CWA, the DSA ADDRESS will be active high.

The CWA is cleared to zeros by the master clear signal.

Buffer Length (SHEET 3)

The Buffer Length counter consists of the four, four-bit 500 counters at 413,14 , 28 and 41. During a Load Buffer instruction the contents of AO-A15 are loaded into the Buffer Length counter by the $\overline{B L L O A D}$ signal. The contents of the BL counter are decremented by one on the leading edge of both the SET NEED and $\overline{A R C V R} \rightarrow$ CWA signals. The counter is decremented by the $\overline{\operatorname{ARCVR} \rightarrow \text { CWA }}$ signal once during each Read, Write or Compare operation. This decrementing presets the counter to one less than the total word count such that the BL BORROW signal becomes active when the last word is transferred. (The BL BORROW signal sets the $B L=0$ on the card).

The BL counter is cleared by the master clear signal.

Cylinder Address (SHEET 6)

The nine-bit Current Cylinder Address (CAU2O - CAU12) is contained in the two 500 counters at U26 and 27 and in the 175 FF at U16-5. The five-bit Sector Count (CAL4 - CALO) is contained in the 500 4-bit counter at U-39 (on Sheet 7) and the 175 at U25-5. The Disk (CAL6) and Surface (CAL7) select bits are contained in the 175 FF's at U16-9 and U7-5, respectively.

During a LOAD Address (LA) instruction the $\overline{A R C V R ~} \rightarrow$ CA signal causes the load of A15-A7 into the cylinder address register, A6 to the surface select bit, A5 to the disk select bit and A4-AO to the sector counter.

At the initiation of a seek operation by the LA instruction, the contents of the cylinder address register (via the $\overline{C A 2 O}-\overline{C A 12}$ signals) are transferred to the disk file. During a $R+W+C+W A$ operation the contents of the cylinder address, the sector count, and the head and surface bits are transferred to the shifter for the parallel to serial conversion for the address compare or address write.

The sector count is incremented by one at the end of each sector on the trailing edge of the INCR SECTOR signal. When the sector count is incremented to ${ }^{29}{ }_{10}\left(\mathrm{ID}_{16}\right)$ the INCRTA (increment track address) FF at U25-9 is set on the leading edge of the next T3. The output of the INCRTA FF causes the surface SELECT BIT FF (CAL7) to be toggled on the next T2. If the CAL7 is set, the INCRTA causes the cylinder address register to be incremented by one at the leading edge of T4. The output of the cylinder address register is compared by the 524 magnitude comparator at U10, 11 and 12 (SHEET 6). The SET ADDRESS ERROR signal becomes active if CA2O CA12 is greater than the limit for the selected unit according to the state of the SELD UNIT TPI 100 signal.

The BL > CYL FF at U7-9 (SHEET 7) is set at the leading edge of T3 after setting of INCRTA FF if the CAL7 is already set. The output of the BL > CYL is used to initiate a TRACK ADDRESS Strobe to the disk file. The sector counter is cleared by the setting of INCRTA and on the following T3 INCRTA is reset.

The cylinder address register, sector counter and disk and surface select bits may be reset by the MASTER CLEAR signal.

Status Selection (SHEET 3)

The CACWAO - CACWA15 signals will be equal to the contents of either the Current Word Address or that of the Cylinder Address Register, Sector Counter and Disk and Surface selection bits, depending on the state of the CARST signal, as follows:

CARST	CACWA15 - CACWAO
LOW	CA20-CA12, CAL7, CAL6, CAL4-CALO
HIGH	CWA15-CWAO

"Pages 5-16 to 5-24 are unassigned."

A/Q PW BOARD (DWG NO. 89616100, Sheets 1-8).

The A / Q card is divided into the following functional parts:

1. Reply/Reject Logic
2. Function Register, Decode and Encode
3. Interrupt and Error Logic
4. Checkword
5. True Cylinder Address
6. Status Interface
7. CDD Interface

Reply/Reject Logic (SHEET 2)

The computer places the Equipment Number (in Q7-Q10) a minimum of 100 ns prior to activating the $\overline{A / Q ~ R E A D ~ o r ~} \overline{A / Q ~ W R I T E ~ s i g n a l . ~ I f ~ t h e ~ c o n t e n t s ~}$ of Q7 - Q10 match the setting of the Equipment Number Switches the EQUIPMENT NUMBER MATCH signal will be active. The reset to the INSTRUCTION FF (U40-9) will go high when A/Q (R+W), EQUIPMENT NO. MATCH and $\overline{A / Q W=0}$ are active and the FF will be set on the following $\overline{T I}$.

The REPLY ENABLE FF (U68) will be set 800 ns later and the $\overline{A / Q ~ R E P L Y}$ or $\overline{A / Q ~ R E J E C T ~ w i l l ~ b e ~ t r a n s m i t t e d, ~ d e p e n d i n g ~ o n ~ t h e ~ c o n d i t i o n ~ o f ~ t h e ~}$ controller and the particular function code. Reply conditions for output functian (A/Q WRITE) are DISK READY . BUSY RR . POKM . DISK ON CYLINDER (at U3-6 on SHEET 7) or CTRLR BUSY . POKM . DF (= DF Gated at U21-8 on SHEET 3). The presence of either of these conditions will cause the generation of the $\overline{A \emptyset A F+M C}$ (Any Output from A Function or Master Clear) at U42-8 (SHEET 6). The reply condition for input functions (A/Q READ) is simply ILLEGAL FUNCT inactive. On T3 the REPLY CONDITION (U54-8) will be captured in the REPLY CONDITION FF (U70). If none of these Reply Conditions are active the REPLY CONDITION FF is not set and when the REPLY ENABLE FF sets, the $\overline{A / Q ~ R E J E C T ~ s i g n a l ~ i s ~ t r a n s m i t t e d . ~}$

In response to the $\overline{A / Q ~ R E P L Y ~(o r ~ R E J E C T .) ~ s i g n a l ~ t h e ~ c o m p u t e r ~ d e-a c t i v a t e s ~}$ the $\overline{A / Q ~ W R I T E ~ o r ~} \overline{R E A D}$ which causes the REPLY ENABLE FF to reset and on the next Tl the EQST FF resets. The resetting of EQST generates INITQ (U9 - 11) which enables the setting of the CTRLR BUSY FF (DSA Card).

Function Register, Decode and Encode

The inputs to the Function Decoder (167 at U61 on SHEET 3) are Q00-Q02 (function code) and the output of the A/Q READ FF (U52 - 11, SHEET 2). When the EQST goes active at the enable input of the 167 , the decode is allowed.

Depending on whether the function is immediately executable or requires an extended duration, the outputs of the Function Decode are either used directly or captured in the Function Register.

The Function Register consists of the four stages of the 520 latch at U59 (SHEET 3) and the two FF's at U37. If the REPLY CONDITION signal is active, the Function Register is loaded with the appropriate outputs of the FUNCTION DECODE on the leading edge of the $T 2$ following the setting of the INSTRUCTION FF (U40, SHEET 2). At the same time, the BLOCK LOAD FF (U54-8 on SHEET 2) is set to prevent changing the contents of the Function Register on subsequent T2 pulses.

The outputs of the Function Register are used directly as well as being encoded into the following signals:

*READ does not include AUTOLOAD

On SHEET 3 the ADDRESS FF (U40-5) is set by the $\overline{\text { ADDRESS INDEX signal to }}$ indicate that either a WA or a CC instruction is in process and the Index Mark has been detected.

The Function Register and ADDRESS FF are cleared at the end of an operation (both normal and abnormal) by the RESET CTRLR BUSY • SET EØP signal (SHEET 2) or the MASTER CLEAR. The LA FF (U37 on SHEET 3) is cleared at the end of the controller portion of a Load Address Operation by the CLEAR LA signal (SHEET 3) from U9-6.

Interrupt and Error Logic (SHEET 4)
The Interrupt Enable Register consists of three stages of the 520 three-bit latch at U4. The latches are loaded at the leading edge of DF gated. The data loaded depends on the state of A01 - A04 and the previous state of the latches as follows:
(a) When any of A02, A03 or A04 are high, the latches corresponding to the highs are set unconditionally.
(b) When A1 is high and any of A02, A03 or A04 are low, the stage corresponding to the lows will be reset.
(c) When A1 is low and any of the A02, A03 or A04 are low, the stage corresponding to the lows will remain in the state that existed before the DF Gated signal.

These conditions are expressed logically by:

$$
D^{\prime}=A i+A 1 . D
$$

where
$D=$ State of latch after DF Gated
$D=$ State of latch before DF Gated
$A i=A 02, A 03$ or A04

The Interrupt Enable Register is cleared by the MASTER CLEAR signal.

On Sheet4, READY. BUSY 1 FF (U20) will be set at Tl when the disk is ready, on cylinder and the controller is not busy. The READY. $\overline{B U S Y} 2 \mathrm{FF}$ U20 will be set at the following T2. The Q output of READY. $\overline{B U S Y} 1$ is ANDed with the \bar{Q} output of READY. $\overline{B U S Y} 2$ by the 141 at $U 2$ along with the output of the NEXT READY NOT BUSY ENABLE. The resulting 100 ns pulse at the output U2 - 12 sets the INTERRUPT FF which, in turn, causes the generation of the $\overline{A / Q ~ I N T E R R U P T ~ s i g n a l . ~}$

Similarly, the INTERRUPT FF (U1-8 and 11) will be set to indicate the end of an operation if either of the EØPM - प्रTRLR BUSY or $\overline{\text { RESET CTRLR BUSY SET EØP }}$ signals at U58-8 is active and the EפP Enable (on Disk DSA) is set.

The INTERRUPT FF (UI) will also be set by the 100 ns pulse resulting from the ANDing of the Q output of ALARM 1 (U5-9), the $\overline{\mathrm{Q}}$ of ALARM 2 (U5-6) and ALARM ENABLE at U2-8. ALARM 1 FF is set by the output of the ERROR FF. The ERROR FF will be set by any one of the following:
(a) CONTROLLER BUSY • DISK NOT READY
(b) CONTROLLER SEEK ERROR
(c) ADDRESS ERROR
(d) DRIVE SEEK ERROR
(e) EDS • (STORAGE PARITY ERROR + PROTECT FAULT)
(f) EøS • (CHECKWORD ERROR + LOST DATA)

The ERROR FF is reset by the setting of the ALARM 2 FF or by the MASTER CLEAR signal.

The Q output of ALARM 1 is ANDed with the \bar{Q} output of ALARM 2 at U6-3 (SHEET 4) to result in the signal, SET ALARM. This 100 ns signal both sets the ALARM FF and generates the RESET CTRLR BUSY-SET EØP signal on Disk. The ALARM FF is reset by $\overline{A \emptyset A F+M C . ~}$

The DISK SEEK ERROR, and CONTROLLER SEEK ERROR FF's (U63, U6 on SHEET 6) are set when the corresponding "set" signal becomes active. The PROTECT FAULT and STORAGE PARITY ERROR FF's are set when the corresponding error signal and the DSA connected signal are active at the trailing edge of the $\overline{C W A} C O U N T \cdot(\overline{R E S U M E})$ signal. These four error FF's are cleared by $\overline{A \emptyset A F+M C .}$

Checkword (SHEET 5)

The twelve bit Check Word Shifter consists of the four stages of the 520 at U11, the two 159 Synchronous Shift Registers at U13 and U14 and the 175 at CHECKWORD 2 (U8-5). Serial data enters the Checkword via the INPUT CKWD signal. The CKWD SHIFT signal (from Sector Count card) causes the shift of Checkword. The inputs to bit zero, one, two, three and eleven are from the outputs of the 149 Exclusive OR's at U1O and U17. The Exclusive OR's perform a modulo two addition (half-add with carry discarded). The serial input to the Checkword is blocked by the WCKWD (Write Checkword) signal when the Checkword is being written onto the disk.

At the output of the Checkword Shifter is combinational logic to check that the contents of the Checkword are all zeros. During Read, Write or Checkword Check operations the DATA CKWD ERROR FF (at U8-9) will be set if the Checkword is not zero at the T2 when the SAMPLE CHECKWORD signal is present.

The DATA CKWD ERROR FF will be reset by $\overline{A G A F+M C}$. The signal $\overline{A D D R}$. CKWD $=0$ will be active if the Ckwd is zero after reading the. Address Checkword during a Read, Write, Compare or Checkword Check operation.

The 12 bit CHECKWORD 2 register consists of the 4 stages of the 500 at U28 and the 8 stages of the 168 at U30. When the $\overline{\text { LOAD CKWD } 2}$ signal is active, the contents of the Checkword are loaded into the Checkword 2 register. The Checkword 2 register is cleared by the MASTER CLEAR signal.

True Cylinder Address (SHEET 8)

The 9 bit True Cylinder Address (TCA) Shift register consists of the two 159 Shift registers at U15 and U16 and the FF at U68-5. The TRUE CYLINDER ENABLE FF (U54) is set during Read, Write, Compare and Checkword Check operation when the $\overline{C A U} \rightarrow$ SHIFT signal is active. The output of the TRUE CYLINDER ENABLE FF enables the shifting of the TCA register at T4. The serial input to the TCA shifter is from the READ DATA signal. The TCA register is cleared by the MASTER CLEAR signal.

Status Interface (SHEET 6,7)

The 170 multiplexers at $U 30,31,32,45,46,47,48$ and 49 allow the selection of one out of four groups of 16 bits for input to the A register. The selection depends on the state of the four status functions (from the Function Decode) as follows:

$\frac{S_{1}}{\text { LOW }}$	$\frac{S_{0}}{\text { LOW }}$	Multiplexer Outputs
LOW	HIGH $0-11=$ Ckwd 0-11; Bits 12-15	$=0$
		Director Status:
	Bit $0=$ READY	
	Bit $1=$ CTRLR.	
	Bit $2=$ INTERRUPT FF	
	Bit $3=$ DISK ON CYL.	

Multiplexer Outputs

$$
\begin{array}{ll}
\text { Bit } 4=\text { EQP } \\
\text { Bit } 5=\text { ALARM FF } \\
\text { Bit } 6=\text { DATA NO COMPARE } \\
\text { Bit } 7=\text { SELECTED UNIT PROTECTED } \\
\text { Bit } 8=\text { DATA CKWD ERROR } \\
\text { Bit } 9=\text { LOST DATA } \\
\text { Bit } 10=\text { ADDRESS ERROR } \\
\text { Bit } 11=\text { CONTROLLER SEEK ERROR } \\
\text { Bit } 12=\text { SELECTED UNIT TPI } 100 \text { (Single Density) } \\
\text { Bit } 13=\text { STORAGE PARITY ERROR } \\
& \text { Bit } 14=\text { PROTECT FAULT } \\
& \text { Bit } 15=\text { DRIVE SEEK ERROR } \\
\text { HIGH LOW } \quad \text { Bits } 0-15=\text { Current Word Address 0-15 } \\
\text { HIGH HIGH } \quad \text { Bits } 0-3=\text { SCØSEO-3 (Seek Complete or Seek Error) } \\
& \text { Bits } 4-6=0 \\
& \text { Bits } 7-15=\text { TCA } 7-15 \text { (True Cylinder Address) }
\end{array}
$$

The output of the multiplexers are transmitted to the A/Q channels A register via the 204 drivers. The drivers are enabled when A/Q READ and EQST are active. Since the drivers are inverting the data to the A register is active low.

CDD Interface (SHEET 4)

Four signals from the Cartridge Disk Drive (CDD) are received by the four stages of the 902 at U56. Disk Ready, Disk Fault, Set Drive Seek. Error and Read Data are used on the A/Q card. In addition READ DATA is transmitted to the Sector Count card.

DSA PW BOARD (Logic Diagram 89617300, Sheets 1-8).
The DSA Card is divided into the following functional parts:

1. Scanner
2. Request/Resume
3. Double Buffer Control
4. Clock Generation
5. Load Address and Track Address Strobe
6. Controller Busy/EOP
7. Autoload
8. CDD Interface
9. Controller Seek Error Detection
10. Sector and Index Gated Generation
11. Master Clear

Scanner (SHEET 2)

The SCAN FF U63-11 and 8 represents one stage of the distributed scanner. The appropriate jumper is inserted to indicate the controller's position relative to the other controllers attached to the DSA.

The stages of the scanner are attached such that the setting and resetting of one causes the setting and resetting of the next, except for the first to middle stage connection. In this case, the setting of the first causes the resetting of the middle. The resetting of the first, causes the setting of the middle. This setup results in a Scan pulse being transmitted from one stage to the next. The jumpers determine from which direction a given stage will receive the pulse and to which direction it will transmit the pulse.

When the controller wishes to send or receive data, the NEED FF is set. Upon the next setting of the SCAN FF, the HALT FF is set to prevent the resetting of the SCAN FF. The REQUEST FF is set on the next transition of the scanner pulse. When the RESUME is received from the DSA Channel, the HALT FF is reset and the scanner oscillation is allowed to continue.

Request/Resume (SHEET 2)

For each word of Read or Write Data to be transmitted, the controller sets the NEED FF via the SET NEED signal. After the scanner is Halted and captured, the REQUEST FF is set. The setting of the REQUEST FF generates the DSA REQUEST signal to the computer, and in the case of a Read instruction, if the RESUME from the previous memory cycle is inactive, also sets the WRITE ENABLE FF.

The WRITE ENABLE FF causes the generation of the DSA WRITE ENABLE signal to the computer. Upon receipt of the DSA RESUME signal, the DSA CONNECTED FF is set and the NEED FF is reset. The DSA CONNECTED FF is reset by the trailing edge of the RESUME signal. The WRITE ENABLE FF is Reset by the resetting of DSA CONNECTED.

The DSA PROG. PROT. signal is active during a write to the computer when the ULT. SOURCE PROT'd (Ultimate Source Protected) FF on the disk daisy chain has been previously set.

Double Buffer Control (SHEET 3)
During Write or Compare instruction, the BUFF 1 FULL FF is set by the trailing edge of the $\overline{D S A+B U F F}$ T signal. If the BUFF 2 FULL FF is not set, the BUFF $1 \rightarrow$ BUFF 2 will be set at the next Tl. The output of this FF allows the transfer of data from BUFFER 1 to BUFFER 2 on Disk, Shifter. The setting of BUFF $1 \rightarrow$ BUFF 2 allows the resetting of BUFF 1 FULL and the setting of BUFF 2 FULL at T2. At the T3 the BUFF $1 \rightarrow$ BUFF 2 FF is reset.

The BUFF 2 FULL. FF (SHEET 3) is reset when the data is transferred from the BUFFER 2 to the shifter when the signal 16 BITS . 011 (from Disk Sector Count) becomes active.

During a Read instruction the BUFF 1 FULL FF is set when data is transferred from the shifter to the BUFFER 1 by the SHIFT \rightarrow BUFF 1 signal. The BUFF $1 \rightarrow$ BUFF 2 FF is set and cleared as in Write and Compare operations. The BUFF 2 FULL FF is set by the BUFF $1 \rightarrow$ BUFF 2 signal and cleared after data is transferred to the DSA at the trailing edge of the $\overline{D S A}$ CONNECTED signal.

During Write or Compare operations the LOST DATA FF will be set if BUFF 2 FULL is not set at the time that the 16 BITS . 011 signal becomes active and neither $\overline{B L=0}$ nor INHIBIT NEED is active. During a Read operation the LOST DATA FF will be set if the BUFF 1 FULL FF is set at the time that the SHIFTER \rightarrow BUFF T signal becomes active. In all cases the LOST DATA FF is reset by the $\overline{A \emptyset A F+M C}$ signal

The DSA PRIORITY signal is active in the 011 field if during a Read, both BUFF 1 FULL and BUFF 2 FULL are set or, during a Write or Compare, both BUFF 1 FULL and BUFF 2 FULL are reset.

The signals SMPXSI and SMPXSO are used on Disk, Shifter, to control the multiplexer at the parallel input to the shifter. These signals depend on the states of the $\overline{\text { CAL } \rightarrow \text { SHIFTER }}$ and $\overline{\text { CAU } \rightarrow \text { SHIFTER (from Disk, Sector }}$ Count) and the output of the 140H at U12-8 (on SHEET 4).

Clock Generation (SHEET 4)

The Clock Generation logic produces a four phase clock, 100 ns per phase. When writing to the disk (i.e. Read Gate is not active) the 20 MHz oscillator is the source of the clock. The 20 MHz signal is divided in half by the JØHNO FF. The output from the JøHNO FF is fed to the clock input of JOHNI and JQHN2. These two FF's are connected such that the output of JOHN1 is a square wave with a 400 ns period; the output of JOHN2 is the same square wave, 100 ns out of phase with the first. The combinational logic then selects the proper portions of the two square waves to produce the required clock pulses. The 242 H 's are in parallel for drive purposes.

During Read operations (i.e. $\overline{R E A D}$ GATE active) the source of the clock is the VCO output (nominally 10 MHz) synchronized with the READ CLOCK This signal is fed to the clock inputs of $J \emptyset H N 1$ and $J \varnothing H N 2$, which results in the required clock pulses.

Load Address and Track Address Strobe (SHEET 4)

The FF LAl is set at the leading edge of T_{3} after the LA signal (from A/Q card) becomes active. LA2 is set 400 ns later at the next T_{3}. The signal $\overline{A R C V R ~} \rightarrow C A$ will thus be active at the T_{4}, after the T_{3} on which LA1 was set if $\overline{A D D R}$. ERROR is not active. At T_{2}, the Track Address Strobe Counter (TAS Counter) will be loaded with the count 1111_{2} and the INHIBIT COUNTER FF will be reset. Thereafter the TAS counter will be decremented by one at the trailing edge of each T_{4}. When the count equals 1001_{2} the INHIBIT COUNTER FF is set and the decrementing of the TAS counter is blocked. Thus, the signal TAS INT is active from count 1110 to count $0111,(i . e .$, for $1.9 \mu \mathrm{sec})$. The signal TAS EXT.is active from count 1110 to count 1011, (i.e., for $1.1 \mu \mathrm{sec}$).

The signal LAEDP (sheet 5) is generated to indicate the end of the controller's portion of a seek operation initiated by an LA instruction. The FF LAEDPI (SHEET 7) is set in the normal case when the signal ON CYL. drops after the Disk File receives the new track address. In the case where the new track
address equals the old track address, the ON CYL does not drop and the LAEDPI FF will be set by the trailing edge of the TAS INT. signal. In both cases the FF LAEØP2 will be set at the leading edge of the following T_{3}. The setting of LAEØP2 causes the reset of LAEØP1. The
 ON CYL signal has remained active.

Controller Busy/EOP (SHEET 5)

The CTRLR BUSY FF is set at the first T_{1} after the initiation of Read (not including Autoload), Write, Compare, Check Word Check and Write Address instructions. The FF remains set until the operation ends (normally or abnormally). The normal end to Read, Write and Compare operation is at SECTOR GATED•BL $=0$. The end of WA and CC operations is indicated by the $\overline{\text { ADDRESS EØP signal becoming active. Abnormal terminations }}$ are indicated by the $\overline{\text { SET ALARM signal. The same conditions that reset the }}$ CTRLR BUSY FF set the CTRLR EØP FF. The output of the CTRLR EØP FF is ORed with the EØPM•NOT CTRLR BUSY signal to yield the EØP STATUS signal. The end of the controller portion of an LA instruction is indicated by the LAEDP signal. CLEAR LA causes the resetting of LA FF on the A/Q card. An abnormal end to a seek operation causes the resetting of the appropriate UNIT BUSY FF on the Daisy Chain card, via the RESET CTRLR BUSY signal.

Autoload (SHEET 5)

The depression of the Remote Autoload signal causes the generation of the REMOTE AUTOLOAD pulse. The trailing edge of this pulse causes the Trailing Edge Detector (TED) FF (SHEET 5) to set. At the next T_{1} the AUTOLOAE 1 FF will set. At the detection of the INDEX GATED and ON CYL signals AUTOLOAD 2 will set. Between the setting of AUTOLOAD 1 and AUTOLOAD 2 and START AUTOLOAD signal (U54-8 on SHEET 5) will cause the generation of MASTER CLEAR to the

Abstract

controller and a RTZS (U19-5 on Sheet 8) to the drive. The setting of AUTOLOAD 2 (SHEET 5) clears the TRAILING EDGE DETECTOR FF. AUTOLOAD 1 is cleared at the next T_{1}. The AUTOLOAD 2 FF remains until the end of the track being read is indicated by the INCRTA signal.

CDD Interface (SHEET 6,7)

Sixteen signals are transmitted from the controller to the disk driver via the 180 transmitter. Four signals are received from the disk drives by the 902 receivers. In addition, the remaining signals in the CDD/Controller interface are passed via 12 pins on connector P2, with no connection to the DSA board itself. Finally, the presence of controller power is indicated by the Terminator Monitor signal which is simply connected to +5 V via a 100Ω resistor on the board.

Controller Seek Error Detection (SHEET 7)

The Controller indicates a seek error if, during Read, Write, Compare or Checkword Check operations, three revolutions of the disk occur without an EQS (End of Sector) signal being detected. The first INDEX GATED sets the REV 1 FF. The second INDEX GATED clears the REV 1 FF which sets the REV 2 FF. The third INDEX GATED sets the REV 1 FF again. The presence of REV 1 and REV 1 and REV 2 set and the INDEX GATED signal cause the generation of the SET CONT SEEK ERROR signal. The presence of the EØS signal inhibits the counting by resetting the REV 1 and REV 2 FF's.

Sector and Index Gated Generation (SHEET 7)

A three hundred nanosecond pulse is generated upon the detection of both the Index Mark and each of the Sector Marks. The SECTOR MARK 1 FF sets at the first T_{2} after the sector and ON CYL signals become active. The SECTOR MARK FF sets at the next T. Between the setting of SECTOR MARK 1 and 2 the SECTOR GATED signal is active. The INDEX GATED signal is generated in an identical manner.

Master Clear

The Master Clear signal is generated by the presence of any of the $\overline{C L E A R ~ C T R L R, ~} \overline{A Q M C}$, or START AUTOLOAD signals. The CLEAR CTRLR and START AUTOLOAD also cause the generation of the $\overline{R T Z S}$ signal.

"Pages 5-64 to 5-70 are unassigned."

SECTOR COUNT PW BOARD (Logic Diagram 89618200, Sheets 1-5).
Each of the 29 sectors on a track is divided into five distinct fields as shown in the Figure 5-7 below.

SECTOR MARK

Figure 5-7. Track Fields (WA $R+W+C+C C$)

The fields are numbered OOO_{2} through 100_{2} and are counted by the Sector Field Counter (SFC) at U7 (SHEET 3). Within each field the number of bits are counted by the Field Length Counter (FLC) at U18 and U2. Within the data field the Bit Counter at $U 9$ counts bits and gives an indication for every group of 16 bits (words). The FLC then counts words by being incremented once for each group of 16 bits indicated by the Bit Counter.

Sector Field Counter (SFC) (SHEET 3)
Before an operation is initiated the SFC is held in the Idle state (QOO thru QO4 = zero) by the inactive DQF signal at Ul4. When an operation is initiated the DQF becomes active at U22-12. At the leading edge of the next Sector Gates (SG) signal the Start SFC FF at U22-9 is set. At the T4 of the same SG signal the Shifter (at U7), receives a Clock pulse and a "one" is entered into the first stage of the Shifter. This "one" represents the "000" state.

At the following T3, the START SFC FF is cleared. Thereafter, the initial "one" is shifted right at the leading edge of T_{2} at the end of each field. Each stage of the Shifter thus represents one of the counts OOO_{2} thru 100_{2}.

When the processing of a particular sector is completed, the Shifter is set to all zeros (the "Idle" state) by the appropriate input at U14.

Field Length Counter (FLC) (SHEET 3)
At the beginning of each sector, the FLC is cleared to 0016 by the $\overline{\text { SECTOR GATED signal at U54-11. The FLC is also cleared at the beginning }}$ of each field within the sector by the INCR SFC signal at U54-9. The INCR SFC signal is active during the T_{2} on which the SFC is incremented. Thereafter, the FLC is incremented by one at the trailing edge of each T3 except in the 011 field. In the 011 field the FLC is incremented at the trailing edge of T_{3} when the signal $\overline{16 \text { BITS COMPARE }+15 \text { BITS COMPARE }}$ (U43-8) is active.

The outputs of the FLC are decoded into various signals by the 167 one-of-sixteen decoder and the 203H at U3, U19 and U33.

Read, Compare and Checkword Check (SHEET 4)

$\mathrm{SFC}=000$: FLC counts from zero to $23210 . ~ A t ~ c o u n t ~_{153}{ }_{10}$ (midway through the Sync area) the SEARCH SYNC (U21-5) and READ GATE (U20-9 SHEET 2) FF's are set. At count 232 the READ SYNC bit is detected and indicated by the setting of the READ SYNC BIT 1 FF (U6-9) at a T4. The setting of the READ SYNC BIT 1 FF causes the SFC to advance to 001_{2}, the FLC and Bit Counter to be cleared to zero, the CLEAR CKWD to be active and the SEARCH SYNC FF to be reset. In addition the load of the upper order 12 bits of the address to the Shifter is enabled by the $\overline{C A U} \rightarrow$ SHIFT signal (U11-11).

SFC=001: The FLC counts from zero to $3610^{\text {. }}$. The Bit Counter counts from zero. When the Bit Counter advances to a count of 1100 , the signal 12 BITS (U39-8 on SHEET 3) enables the load of the low order 12 bits of the address to the Shifter via the CAL \rightarrow SHIFT signal (U58-12 on SHEET 2). Each of the 24 Address bits loaded into the Shifter is compared with the corresponding bit read from the disk. The DATA STRETCHED FF (U30-5 SHE[T 2) is set at T 3 when a "one" bit is read from the disk. At the following T_{1} the state of the DATA STRETCHED FF is compared with the state of the Shifter bit $11\left(S_{11}\right)$ by the "Exclusive $O R "$ at U_{31-8}. If S_{11} does not equal DATA STRETCHED, the FF ADDRESS NO COMPARE U32-9 is set. The setting of the ADDRESS NO COMPARE FF clears the FLC and forces the SFC to the Idle state. Nothing further occurs until the next SECTOR GATED. If each pair of Address bits is equal, the controller continues to process this sector.

At FLC Count 24, the Bit Counter is cleared and at T_{2}, the CHECKWORD FF (U32-5) is set.

From Counts 25 through 36 the Checkword from the disk is passed through the Checkword logic (on A/Q card). If there is a Checkword Error, the signal $\overline{A D D R ~ C K N D=0 ~ w i l l ~ b e ~ i n a c t i v e ~ a t ~ U 26-13 ~(S H E E T ~ 3) . ~ T h i s ~ c a L s e s ~ t h e ~ F L C ~ t o ~ b e ~}$ cleared and the SFC to be set to the Idle state until the next Sector Gated. If there is no Checkword Error, the FLC count 36 will cause the Read Gate to reset and the SFC to advance to 010.

SFC=010: The FLC counts from zero to 23210 . At count 17610 the SEARCH SYNC and READ GATE FF's are set. At count 232 the Read Sync Bit is detected and the READ SYNC BIT 1 FF (SHEET 4) is set. The setting of the READ SYNC BIT 1 FF causes the SFC to be advanced to 011, the FLC to be cleared, SEARCH SYNC FF to be reset, the CLEAR CKWD to be active and the Bit Counter to be loaded with the count 00012 , or in the case of a Compare operation to be cleared to 00002 .

SFC=011: Serial data is received on the READ DATA signal and transmitted to the Shifter via the DATA signal (U29-8 on SHEET 4). The Bit Counter is incremented once for every bit. In Read or Write operations when sixteen bits have been transferred, the signal $\overline{16 \text { BITS }}$ allows the FLC to be incremented. In compare operations the signal " 15 BITS" allows the increment. Thereafter the FLC is incremented once for every group of 16 bits. The signal SHIFT \rightarrow BUFF 1 causes the transfer of the word from the Shifter to the Buffer 1.

In the case of a Compare operation, data read from the disk is compared with data received from the DSA. The comparison is executed bit by bit by the "exclusive or" at U31 on SHEET 2). If a mismatch is detected between S_{15} and DATA STRETCHED the DATA NO COMPARE STATUS FF (U30-9) is set. The processina of the sector continues. If no mismatch is found, the comparison operation continues until either the data field is completed or the INHIBIT COMPARISON FF is set. The INHIBIT COMPARISON FF (U25-5 on SHEET 5) is set by the leading edge of 16 BITS .011 when the Buffer Length is zero and the BUFFER 2 FULL signal is inactive; that is, immediately after the last word to be compared is completed. The INHIBIT COMPARISON FF is reset after the comparison operation is completed when che $R+W+C$ signal drops and 16 bits is present.

At FLC Count 96 the SFC is incremented to 100 and the FLC and Bit Counter are cleared to zero. In addition the $\overline{\text { LOAD CKWD } 2}$ signal is generated to cause the transfer of the checkword from the checkword logic to the Checkword 2 register (A/Q card).

SFC=100: When the FLC count 15 becomes active, the Read Gate is reset. At count 12 the Sample Checkword signal is generated. At Count 24 the $\overline{\text { INCR SECTOR signal is activated. The trailing edge of this signal causes }}$ the increment of the File Address (Sector Counter and Cylinder Address Register). At Count 32 the EøS pulse is generated. At Count 36 the ADDR. NO COMPARE FF is set, thus forcing the SFC to the Idle state until the next sector is encountered.

Write

The Write operation is exactly the same as the Read until count 120 in 010. At the point the WRITE GATE FF (U20-6, Sheet 2) is set. The setting of the WRITE GATE enables the writing of the Write Clock pulses (at T_{1}) via the signal WRITE DATA U55-8 on SHEET 4.

At the T_{4} after the FLC count 230 becomes active, the FF COUNT 231 is set, thereby generating the WRITE SYNC BIT sianal at U28-6 on SHEET 2. The WRITE SYNC BIT causes the SFC to be advanced to 011, the FLC and Bit Counter to be cleared, the CLEAR CKWD to be active and a "one" to be written as bit 232.

SFC=011: Within the 011 field the Write operates similarly to the Read except that the signal 16 BITS . 011 (U40-6 on SHEET 3) is used to enable the transfer of each word from Buffer 2 to the Shifter. In addition serial write data is received from the Shifter via signal S15 and transferred to the disk via WRITE DATA.

At Count 96, the CKWD FF (SHEET 2) is set to allow the serial transfer of the Checkword (via CKWD ll) to the disk.

SFC 100: The Write operation is completed similarly to the Read. The Write Gate is reset at the completion of the operation by the COUNT 15 - 100 signal at U26-6 on SHEET 2.

Write Address

SFC $=000$: The Write Gate is set at count 120. The setting of the Write Gate causes the writing of the Write Clock pulses (at T_{ρ}) via the WRITE DATA signal.

At Count 230-T4, the WRITE SYNC BIT signal is generated and at Count 232 the Sync bit is written.

SFC=001: The Shifter is loaded with the address as in the Read and Write operation. The address is transferred from the Shifter bit 11 by the Sll signal and transmitted to the disk via the WRITE DATA signal.

At Count 24 the CKWD FF is set and the Checkword is transferred serially from the Checkword logic via the Signal CKWD 11 and written on the disk via WRITE DATA. The signal WD CKWD is active during the write of the Checkword.

At Count 36 the SFC is advanced to 010, the FLC is cleared, the WRITE GATE is reset and the signal INCR•SECTOR is generated.

The SFC is forced to the Idle state at Count 12.010 by the signal at U60-6 (SHEET 3). The SFC remains idle until the next SECTOR GATED signal, at which point the address of the next sector is written.

Need Generation (SHEET 5)

The 100 ns SET NEED signal is active once for each word transferred. During Write and Compare operation the SET NEED is generated for the first time at count 120 in 010. Thereafter, SET NEED is generated whenever BUFF $1 \rightarrow$ BUFF 2is active and neither the BL=0 NOT INHIBIT NEED $F F$ is active.

During Read operations, the SET NEED is generated whenever BUFF $1 \rightarrow$ BUFF 2 is active and the BL $=0 \mathrm{FF}$ is not set.

CWA Count (SHEET 5)

The Current Word Address register (on Shifter card) is decremented by the trailing edge of the CWA COUNT signal (U59-6). The CWA COUNT is generated by the RESUME signal.

"Pages 5-84 to 5-90 are unassigned."

DAISY CHAIN PW BOARD (Logic Diagram 89617900, Sheet 1-4).

The Daisy Chain card is divided into the followina functional parts:

1. Unit Selection
2. Unit Busy FF's
3. Address Error Detection
4. Equipment Number Selection
5. Unit Protect
6. Unit Track Density Selection
7. Unit Seek Complete Logic
8. Head 0 Selection

Unit Selection (SHEET 2)

The rising edge of the DF GATED signal at U16-1 and the presence of the Select bit (A8) Ul6-2 allows the setting of the UNIT SELECTION FF's (U12). The particular FF is set according to a binary decode of bits A9 and A10 (A9 least significant). During Autoload, the leading edge of the signal TED AUTOLOAD ANDed through U16, causes the selection of Unit 0 , because A09 and A10 are zero. The UNIT SELECTION FF's may be cleared by the rising edge of the DF Gated signal and the presence of the Deselect bit (A07), ANDed. In addition the UNIT SELECTION FF's are cleared by the A/Q Clear signal.

The Unit Selection signals are transmitted to the CDD via the 180 drivers U6 and U7.

Unit Busy FF's
There is one UNIT BUSY FF for each of four possible disk files. The BUSY FF of the selected unit is set during an LA instruction by the presence of the TAS EXT. (Track Address Strobe External) signal. In the normal case an individual UNIT BUSY FF will be reset by the rising edge of the SEDSC (Seek Error or Seek Complete on SHEET 3) signal. In the case where the selected file is already on the addressed cylinder, the selected UNIT BUSY FF will be reset by the leading edge of the $\overline{\text { LADIFF }=0}$ signal (from Disk). In the case of a Drive Seek Error or an Address Error the selected unit will be reset by the RESET BUSYM signal (from DSA card). The UNIT BUSY FF's may also be reset by the MASTER CLEAR signal.

The $\overline{B U S Y}$ RR signal is active when either the selected UNIT BUSY FF or CTRLR BUSY signal is low at U28-2, or when no unit is selected.

Equipment Number Selection (SHEET 3)

The Equipment Number Match signal becomes active when bits Q07 thru Q10 match the setting of jumpers marked Q7 through Q10, respectively, A "zero" in the equipment number is represented by the presence of a jumper. A "one" is represented by the absence of a jumper. The signal is presented to the selected disk as a high EQUIP NO MATCH.

Unit Seek Complete Logic (SHEET 3)

The 520 at 48 contains one FF for each of the four possible disk drives. At the leading edge of the T_{1} after the signal SEØSC becomes active, the appropriate FF is set. At the leading edge of T_{2}, the corresponding FF in $U 9$ will set. The 100 ns pulse between T_{1} and T_{2} causes the setting of the EØPM FF. The EØPM FF will be reset by the $\overline{A \emptyset A F+M C ~ s i g n a l . ~}$

Head 0 Selection (SHEET 3)

When the Head 0 Selection jumper is present the $\overline{\text { CA6SM }}$ signal will be active when the CA6 (bit 6 of Cylinder Address register) is active. When the Head 0 Selection jumper is absent, the CAढSM signal will be active when the CA6 signal is inactive.

Address Error Detection (SHEET 4)

The ADDRESS ERROR FF will be set during a LA operation by the detection of a Sector Address greater than 28 or by a Cylinder Address greater than either 202 or 407 , depending on the setting of the Track Density Selection jumpers. The ADDRESS ERROR FF (U10-9 and 8) will be set by the SET ADDR ERROR signal during a $R+W+C$ operation when the Cylinder Address Register (Shifter card) is advanced beyond 202 or 405 , depending on the
setting of the Track Density Selection. The ADDRESS ERROR FF is cleared by the $\overline{A \emptyset A F+M C}$ (any Output from A function or Master Clear) signal.

Unit Protect (SHEET 4)

The SELD UNIT PRØTD (selected unit protected) signal will be active if the Protect Selection jumper of the selected unit is absent. If the Protect Selection jumper of the selected unit is present, the SELD UNIT PRØTD signal will be inactive.

The PøKM (Protect OK Multiple) signal will be active if the selected unit is not protected (i.e. jumper present) or if the selected unit is protected and the A/Q PROTECT signal is active.

The ULTIMATE SOURCE PROTECTED FF will be set at the leading edge of the Read signal if the A/Q PROTECT signal is active, or during autoload by the TED AUTOLOAD signal (SHEET 2). The ULTIMATE SOURCE PROTECTED FF will be reset at the end of the operation by the $\overline{R E S E T}$ CTRLR $\overline{B U S Y}$ - SET EØP signal.

Unit Track Density Selection (SHEET 4)

Each disk file attached may either be a 100 TPI or 200 TPI track density. 100 TPI is represented by the absence of a jumper and 200 TPI by the presence of a jumper. The SELD UNIT TPI 100 signal will be active if the jumper corresponding to the selected unit is absent.

SECTION

MAINTENANCE AND MAINTENANCE AIDS
SCOPE

This section gives maintenance references and procedures for the equipment listed in Section 1 of this manual.

TOOLS AND SPECIAL EQUIPMENT

The following is a list of maintenance tools required for this equipment.

Part Number	Part Description	Quantity
89688700	Board Extender	1
89670300	Board Extractor	1
	Tektronix 453 or Equivalent	1
	Voltmeter	1

The publications listed below are applicable to the equipment.

Publication

1784 Computer Customer Engineering Manual
1784 Reference Manual
1700 Computer System Codes Manual
System Maintenance Monitor (SMM 17)

Pub. No. 89633300
89633400
60163500
60182000

MAINTENANCE

Preventive maintenance of the controller is not requir:d. After it is determined that the controller has failed, the controller PW board should be removed and replaced with an idential PW board. Failure should be located by removing and replacing each PW board with an identical problem-free board until the failed card is located. For removal and replacement of the card, refer to Section 3 of this manual. After replacement, a diagnostic check should be run.

SECTION

PARTS DATA

PARTS DATA

The following list is applicable to the FA716-A Cartridge Disk Drive Controller:

Designation/Assembly	Part Number
Disk Shifter PWA	89912100
Disk A/Q PWA	89778600
Disk DSA PWA	89964000
Disk Daisy Chain PWA	89897500
Disk Sector Count PWA	89897300
Internal Cable Assembly	89700200
External Cable Assembly	89700400
Interrupt Cable Assembly	89724702

SECTION 8
 WIRE LIST

WIRE LIST

The included pin list is applicable to the FA716-A CDD Controller. Wire color, origin, destination and name of the signal normally found on that wire included in Table 8-1 for the internal cable and in Table 8-2 for the external cable.

TABLE 8-1. INTERNAL CABLE

$\begin{aligned} & \text { CONDUCTOR } \\ & \text { IDENTITY } \end{aligned}$	COLOR	ORIGIN	DESTINATION	REMARKS/ SIGNAL NAME
1	WHT-BLK	P2A01	1	SEØSC4
2	BLK	GND	2	GND
3	WHT-BRN	P2A02	3	SEØSC3
4	BLK	GND	4	GND
5	WHT-RED	P2A04	5	SEDSC2
6	BLK	GND	6	GND
7	WHT-ORN	P2A05	7	TERM MGNITOR
8	BLK	P2A31	8	TERMINATØR PQWER
9	WHT-YEL	P2A06	9	SE®SCT
10	BLK	GND	10	GND
11	WHT-GRN	P2A07	11	US4
12	BLK	GND	12	GND
13	WHT-BLU	P2A08	13	US3
14	BLK	GND	14	GND
15	WHT-VIO	P2A09	15	US2
16	BLK	GND	16	GND
17	WHT-GRA	P2A10	17	READ CLøCK
18	BLK	GND	18	GND
19	WHT-BLK	P2A11	19	6T CYL
20	BRN	GND	20	GND
21	WHT-BRN	P2A12	21	INDEX
22	BRN	GND	22	GND
23	WHT-RED	P2A13	23	SECTGR
24	BRN	GND	24	GND
25	WHT-ORN	P2A14	25	UST
26	BRN	GND	26	GND
27	WHT-YEL	P2A15	27	TA7
28	BRN	GND	28	GND
29	WHT-GRN	P2A16	29	TA8
30	BRN	GND	30	GND

CONT.

CONDUCTOR IDENTITY	COLOR	ORIGIN	destination	REMARKS/ SIGNAL NAME
31	WHT-BLU	P2A17	31	WD
32	BRN	GND	32	GND
33	WHT-VIO	P2A18	33	$\overline{\mathrm{RG}}$
34	BRN	GND	34	GND
35	WHT-GRA	P2A19	35	HD.SEL. 2°
36	BRN	GND	36	GND
37	WHT-BLK	P2A20	37	WG+EG
38	RED	GND	38	GND
39	WHT-BRN	P2A21	39	TAT
40	RED	GND	40	GND
41	WHT-RED	P2A22	41	TS
42	RED	GND	42	GND
43	WHT-ORN	P2A23	43	HD.SEL. $2^{\text {C }}$
44	RED	GND	44	GND
45	WHT-YEL	P2A24	45	TA2
46	RED	GND	46	GND
47	WHT-GRN	P2A25	47	RTZS
48	RED	GND	48	GND
49	WHT-BLU	P2A26	49	TAO
50	RED	GND	50	GND
51	WHT-VIO	P2A27	51	TA3
52	RED	GND	52	GND
53	WHT-GRA	P2A28	53	TA5
54	RED	GND	54	GND
55	WHT-BLK	P2A29	55	TA6
56	ORN	GND	56	GND
57	WHT-BRN	P2A30	57	TA4
58	ORN	GND	58	GND
59	WHT-RED	P2B11	59	$\overline{\mathrm{RD}}$
60	ORN	GND	60	GND

CONT.

TABLE 8-1. INTERNAL CABLE (Cont'd.)

TABLE 8-2. EXTERNAL CABLE

CONDUCTOR IDENTITY	COLOR	ORIGIN	DESTINATION	REMARKS/
SIGNAL NAME				

TABLE 8-2. EXTERNAL CABLE (Cont'd.)

CONDUCTOR IDENTITY	COLOR	ORIGIN	DESTINATION	REMARKS/
SIGNAL NAME				

CONT.

TABLE 8-2. EXTERNAL CABLE (Cont'd.)

CONDUCTOR IDENTITY	COLOR	ORIGIN	DESTINATION	REMARKS/
SIGNAL NAME				

CUSTOMER_ENGINEFRING MANUAL		
PUBLICATION NO. 89638100		REVISION_C
FROM:	NAME:	
	business ADDRESS:	

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR.

BUSINESS
ADDRESS:

