
I';:J c:\ CONTI\.OL DATA
\::I r::J CO~O~TION

88951000

CDC® HARDWARE FLOATING-POINT UNIT
BT221-A

HARDWARE MAINTENANCE MANUAL

REVISION RECORD
REVISION DESCRIPTION

01 Preliminary released.

(11/77)

02 Manual revised to conform to corporate format standards. Released by ECO DS18852.

(3/78)

,

Publication No.
88951000

REVISION LETTERS I. O. Q AND X ARE NOT USED

© 1977, 1978
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in
the list below. Immediately to the right of the series number is an FCO number. If that number and all
of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual
accurately reflects the equipment.

EQUIPMENT TYPE SERIES WITH FCOs COMMENTS

BT221-A 01

88951000 02 iii/iv

(

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page Is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover --
Title Page --
ii 02
iii/iv 02
v/vi 02
vii/viii 02
1-1 thru

1-3 02
2-1 thru

2-33 02
3-1 thru

3-5 02
4-1 thru

4~54 02
5-1 thru

5-55 02
6-1 thru

6-32 02
A-1 02
B-1 thru

B-ll 02
C-1 thru

C-5 02
D-1 thru

D-16 02
E-1 thru

E-30 02
Comment

Sheet 02
Cover --

88951000 02 v/vi

PREFACE

This manual describes the functional mechanical and operational characteristics
of the CDC® BT221-A Hardware Floating-Point Unit (HFPU) used with the CYBER
18-17 (SYSTEM 17) Computer System.

It is assumed that the reader is familiar with CYBER 18-17 hardware and software.

For additional information, the following manuals may be obtained from Literature
Distribution Services:

Title

1781-1 Hardware Floating-Point Unit
Reference Manual

1784 Computer Reference Manual

1784 Computer Input/Output Specifications

CYBER 18-17 Installation Manual

88951000 02

Publication No.

88951100

89633400

89673100

88996000

vii/viii

1

1.1
1.1.1
1.1.2
1.2

2

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1. 7
2.2.1.8

3

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.3
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.2
3.2.3

4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.2

ix i
I

CONTENTS

GENERAL DESCRIPTION 1-1

Physical Description 1-2
Components 1-2
Slot Assignments 1-2
Functional Description 1-3

OPERATION AND PROGRAMMING 2-1

Equipment Definition 2-1
Characteristics 2-13
Command Description 2-19
Operand Addressing 2-21
Operand/FPAC Format 2-25
Rounding 2-26
Fix Float Number Conversions 2-27
HFPU Initialition Sequences 2-27
HFPU Stop/Restart Sequence 2-28
Function/Status Register Definitions 2-29
Hardware Execution Times 2-30

INSTALLATION 3-1

Logic Card Installation 3-1
Inspection 3-1
Installation of Jumpers 3-1
DSA Board 33-2
A/Q Board 3-3
SPALU Board 3-4
Board Installation 3-4
Mother-Board Installation and Removal 3-5
Preparation 3-5
The Backplane 3-5
The Mother Boards 3-5
Installation 3-5
Removal 3-5

THEORY OF OPERATION 4-1

, Hardware Organization 4-1
Device Structure 4-1
The Micro-Processor Concept 4-1
The Programmable Elements 4-9
The Micro-Instruction Set 4-14
Description of Algorithms 4-34
Introduction to Flowcharts and Listings 4-34
The Algorithms 4-34

88951000 02

4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.2.7

A
B
C
D
E

2.1
2.2
2.3
2.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7

1.1
2.1
2.2
2.3
3.1
3.2

3.3
4.1
4.2

OP-Code Fetch/Cold Start
The SPEGGroup
Single Micro-Instruction Group
Floating Point Group
Index Register Group
The A/Q STOP Command
Restart

Glossary

APPENDIXES

Micro-Code Listings and Flow Charts
ROM Truth Tables and A/Q Decoding ROMS
Floating-Point A Code and Flow Charts
Master Control Micro-code and Flow Charts

FIGURES

HFPU Q-Register Function Format
FSR Bit Assignment
Addressing Examples
Execution Time Examples ..
HFPU Data Paths
Floating Point Micro-Processor Block Diagram
Master Micro-Processor Block Diagram
Arithmetic Shifting
Master Micro-Processor Instruction Format
Floating-Point Micro-Processor Instruction Format
Flow Chart Conventions

TABLES

HFPU Board Summary
Function/Status Register Bit Assignment
Command-Code Definition
Execution Times (worst case operands)(44(hs Tac) (600ns cycle)
DSA Scanner Position Select Jumpers
A/Q Equipment Address, Protect Mode, and Single-Precision

Device Jumpers
Hexadecimal Code for Equipment Select
Master Micro-Processor Instruction Format
Floating Point Micro-Processor Instruction Format

8895100002

4-34
4-34
4-37
4-38
4-50
4-51
4-53

A-I
B-1
C-1
D-1
E-1

2-3
2-4

2-22
2-33
4-2
4-6
4-7

4-12
4-15
4-16
4-35

1-2
2-5

2-14
2-31

3-2

3-3
3-4

4-17
4-25

x

GENERAL DESCRIPTION

This manual describes the functional, mechanical, and oper
ational characteristics of the System 17 Hardware Floating
Point Unit, herein after referred as the HFPU~ This device
is designed to provide improvement in the execution time of

. programs running under ~1S0S FORTRA.~ .IV. It provides a
fully compatible replacement for the software Floating
Point Interpreter packages, FLOT (single-precision) and
DFLOT (double-precision). The HFPU interprets and exe
cutes the same calling sequences aE? those used by the
software. Thus the software package can be replaced by a
small driver for the HFPU with no change in user written
programs.

All Floating Point arithmetic in l1S0S FORTRA..~ is done
through an interpretive package of sUbroutines, This
package, FLOT or DFLOT, was designed to minimize the
amount of memory required for user written· prog:-ams. In
order to do this, a calling sequence structure was esta
blished. The calling sequence consists of a command word
which may contain up to 4 function commands followed by
address words which point to the locatioijs in memory. of
the operands required for the function. This technique,
since it is basically an expansion of the instruction set
of the System 17, lends itself very nicely to the construc
tion of a special purpose processor which executes the
floating-point calling sequence •

. The HFPU is such a device. It consists of a fast,
floating-point arithmetic processor coupled to an efficient
command interpreter that is interfaced to the A/Q and DSA
channels of .the System 17 CPU. The HFPU responds to a group
of A/Q commands which are used for initialization and diag
nostic purposes. Once'initialized, the HFPU utlizes the
DBA channel to fetch the calling sequence from memory and
to retrieve and store· operands as required. Upon completion
of the execution of the calling sequence, the HFPUreturns
a pOinter to the System 17 CPU via the A/Q channel whiCh
indicates the next location in memory following the ~alling
sequence. This is done so that System 17 program can con
tinue execution at the next executable instruction following
the calling sequence.

The FLOT calling sequence command set has been expanded
for the HFPU to include program-control type commands (Jump
and conditional Branch). This operts up the possibility of
system software optimization by having the HFPU run in par
allel with the System 17 CPU.

As with the reentrant and non-reentrant versions of FLOT

1

and DFLOT, the HFPU has been provided with a reetrancy capability
in the form of STOP and RESTART commands. By using these
commands, the HFPU can be interrupted and then reintialized
without any loss of information.

88951000 02 1-1

1.1 -Physical Description

1.1.1 Components ~ The unit consists of seven logic cards
and three backplane interconnect assemblies. Each interconnect
assembly consists of two printed circuit cards (mother-boards)

. -which are coupled via a short cable. Table 1.1 summarizes these
cards by name and PWA part number. All power is described from the
+5 V supply of the expansion chassis.
1.1.2 Slot Assignments. The logic cards may be installed
in two different positiops in the expansion chassis. The
cards must be in slots in the order detailed in Table 1.1 .
The major constraint is that the DSA card must be installed
in one of the Prewired DSA slots (slot 22 or 14).

The Mother Boards are pushed onto the' backplane on the
side opposite from the slots occupied by the logic cards.

TABLE 1.1. HFPU BOARD SUMMARY
~

Name ~WA No. Standard Alternate Function
Slot No. Slot No. -

ADDR 88953800 33 15 :\ddress Preparation
DSA 88953700 22 14 DSA Interfac~ &

Master Control
A/Q 88953400 21 13 A/Q Interface &

Master Control
DPALU(SP) 88953100 18 10 Master Control
DPALU(DP) 88954100 ,18 10 Double Precision

Extension & Master
Control

SPALU 88952800 17 9 Single Precision'
Mantissa Arithmetic

FPHMP 88952500 16 8 Floating P('Ij.nt
Micro-Processor

EXP&TIlI 88952200 15 7 Exponent & Floating-
Point Timing

NAME Mother Board Location
PWA No;

PI 88954400 PI Mother Board
P2 TOP 88954500 P2 pins I to 15 Mother Board
P2 BTlI 88954600 P2 pins 16 to 31 Mother Board

88951000 02
1-2

1. 2 FUNCTIONAL DESCRIPTION

Functiona~ly, the HFPU is provided with a look-ahead
feature which allows it to fetch the operand required· for
a succeeding operation while a Preceding floating-point operation
is in progress,' Thus. although the worse case double-preci~ion
FDIV time is approximately 16 micro-seconds •. the effective t1me
may be 13 micro-seconds or even .lower depending on number of
overlapped operations. This feature implies. for instance. that
a typical FORTR~~ program utilizing single-subscripted variables
with execute floating-point operations in nearly the same time
as a program utilizing unsubscripted variables,

•

1-3

88951000 02

OPERATION AND PROGltAMlW:NG 2

2.1 Equipment Definition.

The System 17 HFPU is an addressable I/O. type of equip
ment connected t.O the A/Qand DSA I/O channels of the CPU. ,
It 1s ~ctivated and monitored via the A/Q I/O channel. arid per
forms floating-point calculations with. data parameters obtained
via the DSA I/O channel.

The HFPU uses an operating format that is identical
to the FLOT subroutine format and executes all of ·the "
FLDr call-operations plus the additional call-operations
which are defined in paragraph 2.2.

Two modes of floating-point arithmetic capability
are available to the HFPU user. These modes are:

a) Single-Precision Arithmetic (32-bit operand)
b) Double-Precision Arithmetic (48-bit operand)

In addition to the two floating-point operation modes, the
HFPU has four types of operand-addressing modes. Thrse modes
are:

a) AO&olute (16 -bi t)
b) Relative (16 bits with bit 15 -sign)
c) Indexed (16-bit) .
d) Indexed un-multiplied (IS-bit)

These operand addressing modes allow the user to access all
permissible memory locations within a 6SK-word memory. .

After the HFPU is activated by the appropriate A/Q channel
command, it obtains all Co~~and-Code instructions and data
operands directly from the System 17 memory via DSA access.
It executes these Command-Code instructions and re"turns the
results of the operations to memory a~ directed. ~~en the
HFPU is in Block or Hog Mode, it utilizes the "priority" sig
nal line to enhance the DSA speed for its acce~s to memory.

The HFPU also incorporates an ~/Qand DSAprotect feal'"'
ture. The A/Q, portion of the protect feature consists of a
jumper plug' on the A/Q Interface board. Presence of a jumper
plug is defined as "Protected Uode." Absence of a jumper
plug is defined as "Unprotected Mode."

. Wben the HFPU is set to "Prqtect Hode", it will set FSR
bit 4, accept only protected A/Q Write commands and will cause
an "External Reject" to the CPU for any unprotected A/Q Write
Commands it receives. When the'HFPU is set to "Unprotected
"lode", it w! 11 ac~ept all legal A/Q. I/O commands. Unpro
tected STOP Commands and unprotected RE-START Commands are
defined as illegal. , "

"The DS.\protect mode feature is ,activ~ted by setting
bit-4 in the HFPU Function Status Register (FS~). This bit is
set by four methods which are:

. 88951000 02

(1) . A protected A/Q Write Command to Q-Station 0
" (A to FSR) with A-negister Bi~-4 set.
(2) ·A protected A/Q Write Conrnand to Q-StQ.tion 3 or 4

(Cold Start SP Or DP).

2-1

(3) A protected A/Q\'.'rite Command to'Q-Station A (STOP).
(4) . Presence of the A/Q Protect Jumper.
NOTE : The above three A/Q "Iri te COmr:lands must be pro

tected to set FSR bit 4 regardless of the A/Q
Yr~tect jumper pos{tion.

When the DSA Protect'fodeis active, it will allow the HFPU
to Write data words or store Register contents into protected.
memory locations without incurring program protect errors.
FSRbit <1 ~tored in memory ,during the STOP Command will reflect
the DSA protect sta~e of the llFPU prior to execu~ion of the
STOP Command.

When the DSA Protect ~!ode is active (FSR bit 4 set) all
unprotected A/Q Vlrite Commands will be rejected.

The HFPU contains six functional registers that are acces
sili~through the A/Q I/O channel. These registers are ad
dressed by using theQ-register bits as def ined in figure 2.1.
The six registers and their use are defined as follows:

a) xSR = Function/Status Register
This is the main control register for the HFPU and will

accept A/Q I/O commands at any time. If active, the HFPU ac
cepts an A/Q Write Command to the FSRonly if A-bit 00 (PCLR)
is set. Any other A-bits will be ignored. The functions of
the FSR b its are summarized in figure 2.2.

'b) CCR = Command-Code Register

2-2

This register is nor:nal1y loaded via the DSA channel and
contains the command code instruc~ion word. It can be read
on the A/Q. channel (see 2.2.1.6 for format) at any time but
can only be loaded by an A/Q channel write when the unit is
not active.

c) IR = Index Register
This register contains a l6-bit digital number that is

used during operand address formation ,for floating-point cal
culations. It is normally loaded via the DSA channel by an
. INDX command. It can be read at any time on an A/Q Read Com
manq. but can only be loaded by an A/Q Write command when the
unit is riot active. The value loaded or written via the A/Q
Read and Write commands is always the raw, un-multiplied 16-
bit number.

d) PCR = Program Counter Register
This register contains a 15-bit digital number used as

the base address during operand addresS formation. It is nor
mally loaded via the A/Q channel by a Cold Start Command and
incremented during floating-point operations. It is also loaded
via the A/Q channel by an A-Reg to PCR Command or via the DSA
channel on a Restart Command.

88951000 01

··1111
000 0 ~

,0,0 0 1~

0010-1

o 0,1 1--7

010 O,~

0101--7

011 0 ~

0111-7

Transfer Function
On A/Q WRITE

(A':"REG) ~ FSR+

(A-REG) -? CCRI':

(A-REG) -7 IR $':

(A-REG) -7 PCR ~':
(Cold Stal1: Ad
dress) (Single
Precision)

(A-REG) -7 PCR (:
(Cold Start Ad- '
dress) (Double
Precision)

(A-REG)-7 SSAR '*
(Restart Address)

(A-REG) -7 FPAC (:
(FPAC BITS 00 - 15)

(A-REG) ~ FPM~ *
(FPAC BITS 16 - 31)

Transfer Function
On A/Q READ

(FSR) -7 A-~EG
.(CCR) -7 A-REG

(IR) -1 A-R=:G,

(PCR)-7 A-REG :':
(Address Status)
(If not Active)

(PCR)~A-REG '*
(Address Status)
(If not Active)

(PCR)--} A-REI'!
(Address Status)

(FPAC)~A-REG 1:

(FP~C BITS 00 • 15)1
{FPAC).-1A-REG -::
(FPAC BITS 16 - 31)

1 (j 0 0 --7 (A-REG)-7FPAC:': (FPAC)-?A-REG '*
(FPAC BITS 32 - 47) (FPAC BITS 32 - 47)

l' 0 0 1 --7 (A-REG)~ SSAR
(Stop Order, HFPU
will stop and use
contents of A
register as first
address for saving
registers)

(SSAR)~ A-REG
(SSAR Status)

HFPU Equipment Code (016---1 F 16) on
A/Q CHANNEL

W-Field must be set to zero before
HFPU will respond on A/Q CHAmlEL.

*The HFPU returns an "EXTERNAL REJECT" to the CPU if an attempt is made to
address these registers while the HFPU is in an active state (in process of
calculation or bit 15 FSR set). . ,

... The HFPU returns an "EXTERlIAL REJECT" while it is in an 'active state if A-register
Bit" is not set. If A-Reg Bit g is set the HFPU returns a "REPLY".

The HFPU will return an External Reject to the CPU on any other A/Q Read or Write
Com.lIand if the HFPUcannot respond within 4 micro::econds. This condition can occur
if the Read or Write Command is issued at the time the HFPU is raising its DSA Need
algnal for a series of address/operand retrievals in Priority mode and the DSA is
already active (HFPU must for scanner). .

Figure 2.1 HFPU Q-Register Function Format

88951000 02 2-3

-.

. .

2-4

,15 14'13 12 1110 9 87 6 5 4 3 2 1 0 A-REGISTER
A
C

T
V

0 D U 0 R'I D I V- V N P E N ~
F F F B L D P
L L L C ~f S ~I

.

Fi P P
1:"
~ 0 R T

~ 0 F,
D T T

S P
C C

A L
M R

~ L PROGRA~1 UASTER CLEAR'

SCAL~NER ACCESS ~IODE

·DSA PROTECT FAULT

·DSA PROTECT MODE

·NOT USED (ALWAYS ZERO)

·FLOATING POINT EXE~UTION
ENDED

'DOUBLE PRECISION ~IODE

INDEX MULTIPLY DISABLE

'RELATIVE ADDRESSIXG \IODE

'OPERA~~ BYTE CO~T

·EXPONENT UNDERFLOW

DIVIDE FAULT

'------------------EXPONENT OVERFLOlV

'------------------, ACTIVE

NOTE 1: Refer to table 2.1 for detailed explanation of bit
assignments.'

NOTE 2: Console llaster Clear referred to, in table 2.1 clears
all HFPU timing, resets the HFPU to an idle state, and clears
all registers with the exception of the PCR and the FPA~.
CQnsole ~Iaster Clear enters the HFl?U via a pin on the A/q'
channel bus.

Figure 2.2. FSR Bit A~signment

8895100002

TABLE 2.1. FUNCTION/STATUS REGISTER DIT ASSIGNMEN,T

SIT
POSITIO:-l

l~

14

8895100002

BIT
~,tNE~tONI C

ACTV

OVFL

BIT DEFI~ITION

Bit is set by A/Q Channel Write Command
toFSR with A-bit 15 set (HFPU must be
inactive) or by HFPU when it is in an
active state. When this bi t is set, it
will cause the HFPU to reject' all A/Q
channel Write Commands except A Reg to
FSR and Protected Stop (A Reg to'SSAR).
Bit is cleared or reset by:

a) Inactive HFPU status.

b) Program Master Clear.

c) Console Master Clear.'

Inactive status does not necessarily indi
cate that the HFPU has completed the FLOT
subroutine as the STOP Command.lill cle"ar
FSR bit 15 after storing all appropriate
Registers. FSR bit 15 stored at SSAR during
the STOP Command will reflect the co~dition
of the HFPU prior to the STOP Command.

WARNING: Setting this bit via an A/Q'Write
Command to FSR will place the HFPU in a state
such that it will return an External Reject
to all A/Q commands except a Program Master
Clear (A/Q Write to FSR with A-bit 00 set).

EXPONENT· OVERFLOW. Bit 1s -set by:

. a) HFPU arithmetic operation in which
the exponent of result was too large to
be represented by the e~ght binary bits.
When this bit is set as a result of an
arithmetic operation, the HFPU will force-
~et the FPAC to the largest f16ating-point
number expressible with the correct F.P.
sign.

b) A to FSR Command (HFPU inactive) from
CPU and A-bit 14 = 1. This action sets
only this bit and does not affect the con
tents of the FPAC.

Bit is reset by:

a) A to FSR Command (HFPU inactive) from
CPU and A-b i t 14 = 0 •

'b)

c)

Program Master Clear.

Console Master Clear.
2-5

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITIO~

13

/

12

88951000 02

BIT
~t~~IO~IC

DVFL

UNFL

BIT DEFINITION

DIVIDE FAULT. Bit is. set by:

a) HFPU when an attempt is made to
divide by a zero or by .n un-normaliz~d
operand. When bit is set as a result
of an arithmetic operation, the HFPU
will force-set the -FPAC to the largest
floating-point number expressible with
the sign of the Dividend.

b)A to FSR Command (HFPU inactive)
from CPU and A-bit 13 = 1. This action
sets only this bit and does not affect
the contents of the FPAC.

Bit is reset by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 13 = 0 •

b) Program Master Clear.

Console Master Clear.

EXPONE!'-I'"T U1"DERFLOW. Bit is set by:

a) HFPU arithmetic operation in which
. the exponent of the result was too small
to be represented by the.eight binary bits.
When this bit is set as a result of an
arithmetic operation, the HFPU will force
set the FPAC to zero.

\

b) A to FSR Command (HFPU inactive)
.from CPU and A-bit 12 = 1. This ac
tion sets only the bit and does not affect
the contents of the FPAC.

Bit is reset by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 12= 0 •

b) Program ~faster Clear.

c) Console Master Clear.

2-6

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT
POSITION ~~E~lONIC BIT DEFINITION

11 and 10 OPBC OPERAND BYTE COUNT. Indicates which of
of the four bytes in the CCR is about
to be executed. It has the following
bit format: -
Bit Bit

'11 10

0 0 Operand byte one.
0 1 Op~rand byte two.
·1 0 Operand byte three.
1 1 Operand byte four.

These bits can be set to any initial
state by an A to FSR (HFPU inactive)
Command from the CPU and A-bits ll'and

. 10.

Bits are reset by:

a) A to FSR (HFPU inactive) Command from
CPU and A-bits 11 and 10 set to zero.

b) Cold Start Command.

c> Program Master Clear.

d) Console Master Clear.

NOTE: A/Q Write Command to Q-Station 1
(A Reg to CCR) does not affect the state
of FSR bits 11 and 10.

9 RELM RELATIVE ADDRESSING MODE.

•

2-7

Bit is set or reset by:

a) The HFPU execution of a CRMD instruc
tion. Refer. to paragraph 2.2.1 for
detailed explanation.

b) A to FSR (HFPU inactive) Command from
CPU and the state of A-bit 09

Bi t Cleared By:'

a) Cold Start Command.

b) Program Master Clear.

c) . Console Master Clear.

." :.
88951000 02

TABLE 2.1. FUNCTlON/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

8

7

6

88951000 02

BIT
M~E~tONIC BIT DEFINITIO~

INDS INDEX MULTIPLY DISABLE.

DBPM

FEND

This bit is used to inhibit the logic
that multiplies the Index Register Con
tents by 2 or 3 during effective address
fonnation.

B1 t is set by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit OS set to I.

Bit is reset by:

a) A to FS~ (HFPU inactive) Command from
CPU and A-bit 08 set to 0 •

b) Program Uaster Clear.

c) Console Master Clea-.

NOTE: A/Q Write Command to Q Station 2
(A-Reg to IR) does not affect the state of .
FSR bit OS.

DOUDLE PRECIS ION !lIODE

Bit is set by an A to FSR Command (HFPU in
active) and A-bit 07 set .or by a Cold Start
Command in Do~ble'Precision (Q station 4).
When bit is set, all floating-point calcu
lations are performed in double-precision
mode (48 bits).

When bit is reset, all floating-point cal
culations are performed in single-precision
mode (32 bits). .

.
Bit is reset by:

a) Program Master Clear.

b) Console Mas ter Clear.

c) Cold Start Command in Single Precision
(Q ·station 3).

FLOATING POINT·EXECUTIO~ ENDED. Bit is set
by:

a) The HFPU execution of a FEND instruction.

b) An A to. FSR (HFPU inactive) Command
from the CPU and A-bit 06 set to a 1.

2-8

"

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

BIT
~I~E~IO~IC BIT DEFINITIO~

--------~----------_t--.--.

5

4

3

2-9

UNUSED

PROT

PTFT

B~ t is reset by:

a) , An A to FSR (HFPU inactive) Command
from the CPU and A-bit 06 set to a 0 •

b) Cold Start Command.

c) Program Master Clear.

d) Console Master Clear.

Bit is always reset.

PROTECT MODE

When bit is set it places the HFPU in a
protected device mode. This mode allows
the HFPU to write into protected memory
locations via the DSA channel.

Bit is set by a protected A-Reg to FSR
Command from the CPU and A-bit 04 set
to l, by a protected A/Q Cold Start
command, by a protected A/Q Stop Command,
or by the presence of the A/Q protect
jumper.

Bit is reset by:

a) An unprotected A Reg to FSR Command.

b) An unprotec~ed A/Q Cold Start, Command.

c) Program Master Clear.

d) Console Master Clear.

FSR Bit 4 stored at SSAR during the STOP
Command will reflect the DSA protect mode
of the HFPU prior to the STOP Command.

PROTECT FAULT

When bit is set, it indicates that the
BFPU was not in protect mode and made a
write data access to a protected memory
location. Bit is also set or reset by an
A to FSR (HFPU inactive) Cortunand from the
CPU and the state of A-bit 03. Bit is
also reset by:

a) Cold Start Command.
b)" Program Master Clear.
c) Console Master Clear.

88951000 02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

2 and I

18951000 02

BIT
~,t~m.tONIC

SCAM

BIT DEFINITION

SCANNER ACCESS MODE

State of these bits selects or indicates
aile of three modes of HFPU·DSA Channel
accesses. These modes are:

Bit

o

o

Bit
Access'Mode

o BLOCK. The HFPU will stop the
scanner for up to five successive
memory cycles during a Command
code word fetch. The HFPU will
not release the scanner before
determining if the first command
yte of that word requires mem
ory. If the first command re
quires memory the HFPU will hold
thesc~nner and access m~~nry
to fetch the address-pOinter word
and one, two, or three operands.
If the first command byte does
not require memory or is a Branch
Accumula tor c·OI1'.lnand and the FP AC
is active the TIPPU will release
the scanner. In either case,
the second, third, and fourth
command bytes that require memory
must wait for the scanner to re
turn to the HFPU. These bytes
can hold the scanner for up to
four memory cycles.

Block mode will activate (first
access) or maintain (second
through fifth access) the PSA
PRIORITY signal for all memory
accesses subject to restrictions
found elsewhere in this specifi
cation.

I HOG. Once the HFPU is started
the scanner will be held until
the HFPU executes a FEND instruc
tion~ DSA PRIORITY signal will
be active from start to finish.

I 0 WORD. Scanner will be released
after every DSA data word access.
DSA PRIORITY signal will not be
active.

2-10

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT
POSITIO~ ~.L1EjlO~IC BIT DEFINITION
--~----~----------+---.--

o PCLR

2-11

These bits are set by:

a) An A to FSR (HFPU inactive) Command
from the CPU with A-bit 02 set to a 1
and/or A-bit 01 set to a 1.

These bits are reset by:

a) An A to FSR (HFPU inactive) Command
. from the CPU with A-bit 02 set to a "0
and/or A-bit 01 set to a O.

b) Progrc~.m Master Clear.

c>. Console ~Iaster Clear.

PROGRA'.r MASTER CLEAR

When HFPU receives A-bit 00 set and an
A to FSR Command, it will clear all timing,
reset the unit to an idle state and clear
all registers with the exception of the
PCR and the FPAC. The HFPU will ignore
any other A Qits that are set. Bit is
not used on an A/Q Read Command. Tne
PCLR function is identical in all respects
to a Console !.Iaster Clear.

88951000 02

..

TheHFPUwil1 Externally Reject any attempt to Read/
Write the PCR whi.le the HFPU is active and ~-Station 3
or 4is used. The HFPU will permit the PCR to be read at
any;ime with anA/Q Read Command to ~-Station 5.

e) FPAC = Floating Point Accumulator
This register is the main arithmetic register in the

HFPU. It is 32-bits wide for single precision.and 48-bits
wide for double precision. (See paragraph 2.2.1.1, FPAC'
format) . The FPAC can be accessed via A/q channe 1 ~'lri tes
or Reads to Q-Station 6, 7, 8 or via the DSA by any of sev
eral command codes. The HFPU will externally reject any
attempt to Write/Read the FPAC via the A/Q c~annel if the
HFPU is active.

f) SSAR = S'top Save Address Register
This register contains a l6-bit digital number used as

an absolute address for the starting location in memory of
where to save the HFPTJ registers when a Stop order is issued.
It 1s addressable only by· the A/Q channel. The HFPU will
accept an SSAR write Command at any time if the SSAR Command
1s protected. The HFPU will return an external reject to
the CPU if the SSAR write Command is not protected regardless
of the A/Q protect jumper setting.

In addition to the acces~ible registers, the HFPU con
tains several internal registers, the most important of which
1s the Look-Ahead Buffer (LABF) which, combined with some
parallelism in the logic, is used to speed sequential oper
ations. The LABF consists of three l6-bi t registers which
are· used to hold the. operand for the ne~t floating-point
calculation. This extra register allows operands to be
fetched from memory while a preceeding floating-point opera
tion on the FPAC is still in process. Additionally, the logic
parallelism alluded to above al~ows certain HFPU operations
to execute to completion while an FPAC operation is in process.

The effects of this look-ahead feature are discussed fur
ther in section 2.2.1.8.

88951000 02 2-12

2.2 Characteristics

The HFPU recognizes 16 unique command-codes in its CCR.
Command-code a is recongnized as a special two-byte command-·
codej that is, the next byte is the command to be executed.
This increases the number of available command-codes to 31,
of which 25 are used in the HFPU. These command codes are
listed in table 2.2. After the HFPU is act iva ted, it responds
·to a FLOT calling sequence.

A basic FLOT calling sequence consists of an instruction
word consisting of four commands, fol100ed by the operand
addresses (Address Pointers). The left most 4-bit byte is
the first operation; the operand addresses, if they are re
quired, follow in the sarne order as the operation bytes, one
word per byte. As many bytes may exist as desired, but the
terminating byte must be a 4, the operation FEND.

Example:

CPU P
WORD P+l
LOCATIONS P+2

P+3
P+4
P:r5
P+6

15 L2

OPI

OP5

11

OP2
Al
A2
A4
OP6
AS
A6

8 7 43 0 (CPU Bits

OP3 Op4

4(Fend) - - -

The OP's are the operation codes; the A's are their
operand addresses. Not all operations require memory access;
in the example, OP3 does not have a corresponding A3 .

•

88951000 02 2-13

GODE
MNE~tONIC

FLOF

FIXF

STRI

FEND

CHMD

2-14

TABLE 2.2. CmlMAND-CODE DEFINITION

4-BIT
CODE

1

2

3

4

5

DESCRIPTION

FLOAT TO FIXED

The contents of the FPAC are converted
to fixed point and the results stored at
the effective operand address. FPAC Bits
16-31' will contain the fixed-point number.
If positive overflow occurs, FPAC 16-31
will contain 7FFF. If negative overflow
occurs, FPAC 16-31 will contain 8000.
The raw, unmultiplied Index value will
be used in effective address formation
for FLOF.

FIXED TO FLOAT

The contents of the e/ffective operand
address are converted to floating point
and the result placed in the FPAC. The
raw, unmultiplied, index value will be
used in effective address formation for
FIXF.

STORE INDEX

Stores the contents of the Index Register
at the effective operand address. Does not
alter the contents of the Index Register.
Indexed address information is inhibited
during the execution of this instruction.

END of calling sequence.
This operation terminates the calling se
quence and causes the HFPU to return to an
idle state. Execution of this code sets
bit 6 and clears bit 15 in the FSR. No o
perand address i~ needed for this code.

CHANGE MODE

All operand addresses following this oper
ation code in the calling sequence are made
relative if the preceding addresses were
absolute and absolute if preceding ad
dresses were relative. Does not affect
the Index Register value. Sets bit 9 of
the FSR when relative mode address is in
effect. No operand address in needed for
this code. .

88951000 02

CODE
r.INE~tONI C

NIDX

FCO~!

FSUB

FMPY

FDIV

FLDD

ADD I

FLST

FADD

88951000 02

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

4-BIT
Code

6

7

8

9

DEFINITIO~

NO INDEX
Clears the Index Register which disables
the indexing of operand addresses. No
operand address is needed for this code.

FLOATI~G CO~[)LE~,IENT

Complements the contents of the FPAC.
NO operand address is needed for this
code.

FLOATING SUBTRACT
The contents found at the effective oper
and address is subtracted from the con
tents of the FPAC and the results are
then placed in the FPAC.

FLOATING ~IULTIPLY
The contents found at ~l..e effec'tive
operand address is multiplied by the
contents of the FPAC and the results are
placed in the FPAC.

, FLOATING DIVIDE
The contents of the FPAC is divided by
the contents found at the effective oper
and address and the results are placed
in the FPAC.

FLOATING LOAD
The contents found at the effective
operand address are loaded into the ~PAC.
This must be a normalized floating-poin~
number.

ADD TO INDEX
Adds the contents of the effective
operand address to the contents of the
Index Register and places the result in
the Index Register. Indexed address
formation is inhibited during the exe
cution of the instruction.

FLOATING STORE
The contents of the FPAC are stored
at the effective operand address. The
contents of the FPAC are not altered
by this operation.

FLOATING ADD
The contents found at the effective
operand addresses are added to the
contents .o~ the FPAC and the results
are placed in the FPAC.

2-15

CODE
MNE~tONIC

.INDX'

SPEC

*CACS

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

4-BIT
CODE

/

'0

I

DEFINITIO~

The contents found at the effective oper
and address ~re loaded into the Index Re
gister. The operand addresses of all sub~
s~quent FLOF, FLDD, FLST, FADD, FSUB, F~PY,
FDIV and FIXF operations will be affected
in the following manner:

a) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 2 when the unit is in single precision
~ode and the effective operand address is
being formed. The contents of the Index
register will not be changed.

b) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 3 when the unit is in double preciSion
mode anc the effective operand address is
being formed. The contents of the Index
Register will not be changed.

c) If FSR bit 8 is set, the raw Index Re
g1ster contents will be added to the base
address when the effective address is
being formed.

d) For the functions FLOF and FIXF, the
raw Index value will always be used.

SPECIAL CmnIA."W CODE
This code causes the HFPU to recognize the
next byte as a code within the following
Branch (j~~p) command-code subset. If the
next byte is a "0", a FR.~D will be executed.

CONTINUE ~~OTHER CALLING SEQUENCE
Starts a new floating-point instruction se
quence by loading the effective operand
address into the PCR and then loading the
contents of the effective operand address
into the Command-Code Register (CCR). The
new code execution will start at OP byte
one. Indexed address formation is inhibited
during the execution of this instruction.

*These command-codes are executed only if the preceding byte is
a SPEC code,

2-16 88951000 02

'.

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

roDE
MNE~IO~IC

. *BRMI

*BRAZ

BRAN

*BRAP

4~BIT
CODE

3

4

5

DEFI~ITION

BRANCH AccmlULATOR ~nNUS
If the condition is satisf ied (FPAC
Negative), the HFPU continues execu
tidn by loading the effective. operand
address into the PCR and then loading
the contents of the effective operand
address .into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc
tion •. If the condition is not satis
fied, the Program Count Register will
be incremented by (+1) before the next
command code is executed.

BRANCH ACCIDIULATOR ZERO
If the condition is statisfied (FPAC
Zero), the HFPU continues execution
by loading the effective operand ad
dress into the PCR and then loading
the contents of the effective operand
address into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc
tion. If the condition is not satis
fied, the PCR will be incremented by
(+1) before the next command is exe
cuted.

BRANCH ACCtnlULATOR. NO~-ZERO
If the condition is satisfied (FPAC non
zero), the HFPU continues execution by
loading the effective operand address
into the PCR and then loading the con
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed
·address formation is inhibited during
the execution of this instruction. If
the condition is not satisfied, the
PCR will be incremented by (+1) before
the next command is executed.

BRANCH ACCtr.,IULATOR POS ITIVE
If the condition is satisfied (FPAC POSI
TIVE including POSITIVE ZERO), the HFPU
continues execution by loading the effec
tive operand address into the PCR and

. then londing the contents of the effec
tive operand address into the CCR. The
new code execution will start at OP byte
one. Indexed address formation is in
hibited during the execution of this in
struction. If the condition is not satis
fied, the pcn will be incremented by (+1)
before the next. command is executed.

*These command-codes are executed only if the preceding byte is a SPEC. NOTE: Codes
A-P, when preceded by a SPEC eode, will be e~cccuted a's FEND.

88951000 02 2-17

, .

CODE
MNEMO~IC

*BRIM

*BRIZ

*BRIN

BRIP

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

4-BIT
CODE

6.

7

8

9

DESCRIPTIO~

BRANCH INDEX nEGISTER ~nNUS
If the condition is satisfied (IR NEGA
TIVE), the HFPU continues execution by
loading the effective operand address
into the PCR and then loading the con
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad
dress formation is inhibited during the
execution of this instruction. If the
condition'is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

BRANCH INDEX REGISTER ZERO
If the condition is satisfied (rR ZERO),
the HFPU continues execution by loading
the effective operand address into the
PCR and then loading the contents of the
effective operand a.1dress ix:to the CCR.
The new code execution will start at OP
byte one. Indexed address formation is
,inhibited during the execution of this
instruction. If the condition is not
satisfied, the PCR will be incremented
by (~l) before the next co~mand is exe
cuted.

.' BRANCH INDEX REGISTER NON-ZERO
If the condition is satisfied(IR NON
ZERO) the HFPU continues execution by
loading the effective operand address
into the PCR and.then loading the con
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad
dress formation is inhibited during the
execution of this instriction. If the
condition is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

BRANCH I1~EX REGISTER POSITIVE
If the condition is satisfied (IR POSI~
TIVE). the HFPU continues execution by
loading the effective operand address
into the PCR and then loading the contents
of the effective operand address into
the CCR. The new code execution will
start at OP byte one. Indexed address
formation is inhibited during the execu
tion of this instruction. If the condi
tion is not satisfied, the peR will be
incremented by {+l) before the next com
mand is exccutcd~

*These command-codes are executed only if the preceding byte is a SPEC. NOTE: Codes
A-F, when preceded by a SPEC code, will be executed as FEND.

2-18 88951000 02

2.2.1 Command Description

Code
Mnemonic

SPEC

FLOF

FIXF

STRI

FEND

CH~ID

NIDX

FCml

FSUB

FMPY

FDIV

FLDD

ADD!

FLST

FADD

INDX

*FEND

*CACS

*BRAM

*BRAZ

*BRAN

*BRAP

*BRIM

"*BRIZ

-*BRIN

*BRIP

* FEND

4-bit Brief Description
Code

o "Special" (2-byte) cornnand Code

-1 FLOAT to FIXED conversion

2 FIXED to Floating Conversion

3 STORE Index value

4 END of calling sequence

5 Change Relative Address ~lode

6 No Index

7 Floating Complement

8 Floating Subtract

9 Floating Multiply

A Floating Divide

B Floating Load

C Add to Index

D Floating Store

E Floating Add

F Load Index value

~ End of Calling Sequence

1 Continue Another Calling Sequence

2 Branch if Accumulator Minus

3 Branch if Accumulator Zero

4 Branch if Accumulator Non-zero

5 Branch if Accumulator Positive.

6 Branch if Index Minus

7 Branch if Index Zero

8 Branch if Index Non-zero

9 Branch if Index Positive

A-F End of Calling Sequences

Indexed
Addressing

N/A

Xl

Xl

NO

N/A

NtA
N/A

NtA
X~,2,3

Xl,2,3

Xl,2,3

Xl,2,3

NO

Xl,2,3

Xl,2,3

NO

N/A

NO

NO

NO

NO

NO

NO

NO

NO

NO

NtA

*These command codes are executed only if the preceding byte is
a SPEC code.

The Operation codes listed above which do not require an
address have N/A in the indexed addressing column. All
other operation codes require the presence of an address word.

88951000 02
2-19

For t"he special command code operations, the effective address
itself is the argument for the function (the effective addres$
is loaded into the peR). For all other functions, including
INDX, ADD! and STnI, the effective address points to a
memor~ location (or locations) which contains or will
contain the argument.

Th~ address for all functions can be either absolute
or relat ive as determined by the state of. the Relative '.Iode
bit (bit 9) in the FSR. If bit 9 is clear, addresses are
absolute. If bit 9 is set, addresses are Relative·to the
location in which the address-pointer word resides (to the
pen). If relative, the peR will be added to the Address
Pointer word in the process of fonning the effective address.

For the fUnctions which specify "Xl" or "XI,2,3" in the
indexed addressing column, the index value will also be added
to the address-pointer word in forming the effective address.
The index value may be multiplied by 1,2 or 3 before the
addition depending on the state of the double-precision bit in
the FSR (bit 7) for the functions with "Xl,2,3". For the func
tions with "Xl" in the :indexed addressing column, the index times
one is always used.

2-20
88951000 01

2.2.1.1 Operand Addressing. All operand addresses used
within the HFPU' will conform to one of the following methods:

a} Absolute (16-bits)
b) Relative (16-bits with Bit 15 = Sign)
c) Indexed (16~bits)

Va~ue in Index register will be multiplied by 2 for
single-precision operations and by 3 for double pre
cision operation if FSR bit 8 is clear.

d) Relative Indexed. (2 x Index or 3 x Index;
I x Index if FSR bit 8 is set)

Figure 2.3 depicts the address methods.
All address arithmetic is l6-bit, ones-complement arithmetic.
It is identical with the l6-bit arithmetic of the System 17
CPU.

OPERATION NarES:

If FSR bit 9 is set, relative-addressing mode is in effect.
If FSR bit 9 is clear, absolute addressing is in effect. Absolute
addressing means that the pointer word is in an absolute address;
conversely, relative-addressing means that the pointer word is a
16-bit signed displacement from the current peR.

If FSR bit 8 is clear, the contents of the index register will
be multiplied by 2 or by 3 and added to the argument address
(pointer word) to obtain the final address. If FSR bit 8 is
set, the contents of the index register will be added to the
argument address to obtain the final address •

. .

88951000 02 2-21

Abbreviations EA
(PCR)
(IR)
PA

1. ABSOLUTE (IR)

I.DCATIO~

020°16

C20116

020216

=

=

=
=

=

= Effective address
= Program Counter Register contents
= Index Register Contents
= Pointer Address
= 0

CONTE.~S

B44416

XXXX16

XXXX16

XXXX16

=

=

=

=

=

. Command-Code (FLDD,
FEND. • • .)

Pointer Address (ABS)
Effective Address = PA
II: 20016

Operand

Operand

'Operand (D.P. Only)

2. RELATIW
I

(IR) = 0

010116.

030116

030216

030216

"3. INDEXED

040°16

040116

2-22

= =

= =

=
= =

= =

Command-Code (PLOD,
FEND. •)

Pointer Address (ReI)
EA = PA + (peR) =
200 + .101 = 30116

Operand

Operand

Operand (D.P. Only)

where (IR) = 100" S.P. mode andFSR Bit 8 clear

= 844416 =

=

a =
• =

Command-Code (FLDD,
FEND •)

Pointer Address
EA ~ PA +2*(IR) =
200 + 200 = 40016

Operand

Operand

Figure 2.3, Addressing Examples (Sheet 1 of 3)

88951000 01

1. Indexed where (IR) = 100 and Command Code is FLOF or FIXF
FSR bit 8 set or clear.

1°°16 = 144416 = . Command Code (FLOf,
FEND . • .. •)

10116 • 2°°16 Pointer address
EA = PA + (IR). =
200 + 100 = 300

3°°16 = XXXX16 = FLOF Result will be
stored here.

8. Indexed where (IR) = 100, and FSR bit 8 is set (compare with
#3 and #4 above)

= =
= =

.. 30016 = =
=

(FLDD, FEND • • •)

Pointer address
EA = PA + (IR) =
200 + 100 = 30016

Operand

Operand

9. Relative Indexed where (IR) = 100 and FSR bit 8 is set
(compare· with #5 and #6 above)

40~16

40216

40316

=
•

=

-

=
=

=
=
=

10. Special Command Code, Relative mode

= =
=

•

(FLDD , FEND • •)

Pointer Address
EA = PA + (PCR) + (IR)
- 200+101+100'= 40116

Operand

Operand

Operand

(SPEC, CACS • ••)

Pointer Address
EA = PA + (PCR) = 200 +
101 = 301

Next command Code word.
Beginning of next
calling sequence.

Figure 2.3, Addressing Examples (Sheet 2 of 3)

88951000 02 2-23

12. _Index command (ABS)

10016 =
10116 ::I

20016 =

13. Index command (REL)

10°16

10116

00FF16

=

=

=

F40016

020016

XXXX16

F40016

FFFD

= (INDX; FEND •.•)

::I Pointer Address
EA = PA

= Operand to be loaded
into the IR

=

=

=

(INDX, FEND •.•)

Pointer Address
EA = PA + (peR)
= FFFD + 101 = 00FF16

Operand to be loaded
into the IR.

NOTE: This last example demonstrates the effect of the memory
wrap-around in a "backwards" relative pointer address.
It is simply a case of an end-around carry resulting
from the use of one's complement-arithmetic.

Figure 2.3. Addressing Examples (Sheet 3 of 3)

2-24 88951000 02

2.2.1.2 Uperand/FPAC Fonnat. Floating-point numbers' used' in
the arithmetic operations have the following format.

15 14

~Normalization Point

7 6 Ot-CPU Bits

High Segment I S I EB\ EXP I Mantissa Hi~h I
(Final Ope

ADR) 0 1 8 9 15~FPAC Bits

15 O~CPU Bits

Low Segment
(Final OP

Mantissa Low

ADR+l) 16 31~ FPAC Bits

Extended Low I
Segment

15 ____ ~--~~~--------__ ~O~~~CPu Bits
Mant is sa Ex tended Low ______ --...:G:..-U._A.:.,:R.;.:D:......JI

(Final Op
ADR+2)

32 47 48 5H-FPAC
Bits

.'

Where:
S = Sign bit of the entire floating-point number. When the

Sign bit = 0 , the floating-point n~~ber is positive.
When. the Sign bit = 1, the floating-point number is
negative.

= Exponent Sign Bit which is biased by an exclusive
with 8016~ .

EXP = Seven binary bits which represent the· magnitude of
the exponent. (-127 <EXP ~127).

OR

Mantissa = Nonnalized magnitude of the floating-point number
which is a fractional coefficient. A normalized positive
coefficient has the form (.l~~X ••• ~·) where S = 0 •
A normalized negative coefficient hir~Wthe form
(.OXXXX",XL) where S = "1". ow

NOTES: 1) A single-precision number has the expressable number

range:_2127(1_2-23) .~ X ~2127 (1_2-23)

2) .A double-precision number has the expressab1e number
range: 127 39 127 39

-2 (1-2-) ~X ~2 (1-2-)

88951000 02 2-25

2-26

I

3) When the floating-point number is negative, the
ent.ire FPAC including the Exponent is in ONE'S
complement form.

4)

5)

A floating-point zero is represe-nted as all bits
se~ to o. It is the only legal unnormalized .
number. .

The floating-point number should always be nor
malized for any floating-point arithmetic opera-
tion including FLST and FLDD. .
The use of unnormalized numbers as inputs to any
floating-point operation except (FIXF) will gen
erally result in incorrec~ answers. Teh result of
FADD J FSUB, F11PY, FDIV and FIXF will always bea
normalized number or zero.

6) . The extended low segment of the operand is used for
double-precision mode.

7) If the exponent of the result of a FADD, FSUB, F~1PY
or FDIV is larger than 127, exponent overflow has
occurred and the answer is set to the largest value
having the same sign as the actual result (7FFF,FFFF,
FFFF or 8000,0000, 0000 in D.P.; 7FFF, FFFF or

. 8000, 0000 in S.P.). If the exponent of the result
is less than -127, exponent underflow has occurred -
and the result is set to floating-point zero.

8) If the divisor for an FDIV is unnormalized or equal
to zero, a divide fault has occurred and the result
is set to the largest value having the same sign as
the dividend.

2.2.1.3 Rounding. Internally, the FPAC has four extra bits
as shown in the diagram of the preceding section. These extra
bits on the least significant end (FPAC bits 48 to 51) are
referred to as a guard digit and are used to ~ncrease the accuracy
of the calculations by providing an arithmetic residue which is
used to round the final result.

The rounding algorithm used is of the non-convergent,
away-from-zero type. That is, if the number is positive and the
residue is greater than or equal to one-half the value of the
least significant bit (lsb), then one Isb is added to the result.
If the number is negative and the residue is less than one-half
the Isb, then one Isb is subtracted from the result (one's comple
ment arithmetic assumed).

After rounding, the bits of the guard digit are set equal
to the sign bit i.e., equal to zero ·in one's complement arithmetic.

Note that in single precision, bits 32 to 51 of the FPAC
act as the·guard digit.

88951000 02

2.2.1.4 Fix Float Number Conversions. The integer ('fixed),
number format is:

1514 o A-Reg Bits

, f3 'I ' Magnitude

Where: 8=0 = positive number

S=1 = negative number with the magnitude in ONE's
complement form.

The Float-to-Fixed operation is performed by executing
command code I which converts the floating-point number in the
FPAC register to an integer and transfers the integer to the
effective operand address. FPAC 31-16 will also contain the
result. .

The Fixed-to-Float operation is performed by executing
command-code 2 which loads an integer number into the HFPU, begins
a ccnversion process, and upon completion, places the floating
point number into the FPAC. This number may be retrieved in
one of two ways.
1) A status of the HFPU FPAC register by successive A/Q Read
Commands to Q-stations 7,8 and 9. ' .

2) Executing a FLST instruction to a specified memory location.

2.2.1.5 HFPU lnitialition Sequences. There are three methods
used to initialize the HFPU. These methods are:
1) Cold Start Single precision (S.P.)

2) Cold Start - Double precision (D.P.)

3) Protected Re-Start - Single or Double precision.

A Cold Start (S.P.) Command is used when first entering
the FLOT subroutine, and a Cold Start (D.P.) Command is used
when first entering the DFLOTsubroutine! Each type of Cold
Start' uses a unique Q-Station Address. A Re-Start Command is
·used when re-entering either the FLOT or DFLOT subroutine after
the HFPU has been interrupted by a stop order command for service
of a higher priority rO,uti-ne. Refer to figure 2-1 as an aid for
the following description of events:

A Cold Start Sequence is initiated by the following
sequence of events:
a) The FSR is loaded from the CPU A-register by an A/Q Write
Command to Q-station 0 if a special set-up such as a change

.in scanner access mode is desired. The format used for the
. FSR is depicted in figure 2.2 and the FSR bit definition is
listed in table 2.1. . I f no spec ial set-up is required,
the starting point for a Cold Start.

88951000 02 2-27

b) Tho pcn is loaded from the CPU A-registe,r by ,nn A/Q
Write Command to~-Stntion3 or 1. If the A/Q Write Corrmn.nd
is ~o Q-Station 3, t~e ~nit wil~start in single-precision
mode and will clear bit 7 in the FSR. If the AIQ \\'rite
Conl.lland is to Q-Station 4, the uni t will start in double
precision mode and will set bit 7 in the 'SR. Either Cold
Start Command will clear the Index Register and clear FSR
bits· 3, 6, 9, 10, and 11. The address transferred to the
PCR is the address of the first command-code instruction
word. When the HFPU accepts the starting address word, it goes
into an active state (Bit 15 of the FSR is set) and loads the
CCR vj a theDSA channel. The unit will rema.in in an active
state until it either executes a FE~D instruction, receives
the Stop order command described in 5.2.1.6, or receives an
A/Q Write COll'mand to Q-Station 0 with A-Bit OU = 1 (PCLR) •

. 2.2.1.6 HFPU Stop/Restart Sequence. A Protected Stop order
may be issued at any time while the HFPU is in an active or
inactive state. The HFPU will reject an unprotected Stop
Command regardless of the s'etting of the HFPU A/'t.. Protect Sit
'jumper plug. A Stop Order is accomplished by the following
sequence of events.

a) An A/Q Write Command to Q-Station 9 where the CPU A-regi
ster is transferred to the SSAR as the Stop and Save address.

b) As soon as the H?PU completes its present arithmetic
operation, it will use the contents of the SSAR as the ABSOLUTE:
address in CPU me~ory of where to start storing the contents
of the following registers.

SS~R = (F~R)
SSAR+1 = (CCR)*

SSAR+2 = (IR) •

SSAR+3 = (PCR)

SSAR+4 = (FPAC, BITSOO - 15)

SSAR+5 = 'O'PAC, B1T816 - 31)

SSAR+6 = (!PAC, BIT832 - 47)

*The CCR format will reflect the current status of the Command
Code Word. that is, bits 15 - 12 will contain the next command
code to be executed. Example:

1) CCR read from CPU fopl I OP2 10!'3', OP4-,

2) 'CCR stored on STOP command f OP2 I OP3 i OP4 i opiJ
e) W'hen the HFPU ha.s comple ted the storing- ,of the last reg-ister.
it will go inactive and clear bit 15 of the FSn.

~

NOTB: A Stop Order issued while ,the ilFPU is inactive will cause
the IIFPU to go active (Oit 15 of F~n set) for the time required
to store the six registers. "rile HFPU will rqturn to the inactive

2-28 88951000 02

state (Dit 15 of FSR clear) upon.completion. The stored FSR
will reflect the state of the HFPU when the stop order was
issued (Bit 15 c1ear)~
. After a Stop Order is issued, the HFPU may be restart-

·ed from the point of interruption by a protected RE-start
command. The I1FPU will reject an unprotected Re-start
command regardless of .the setting of the HFPU A/Q Protect
Bit jumper plug. A Re-start command is an A/Q Write com
mand to Q-station 5 where the contents of the CPU A-register
is . transferred to the SSAR and the following events take place:

a) The HFPU goes to an active state and bit 15 of the FSR
is set.

b) The HFPU uses the SSAR contents as an absolute starting
address of where to start the retrieval of the registers
saved on the receipt of the Stop order in the following manner.

SSAR Restore FSR
SSAR+I Restore CCR
SSAR+2 Restore IR
SSAR+3 Restore peR
SSAR+4 Restore FPAC (Bits 00-15)
SSAR+5 Restore FPAC (bits 16-31)
SSAR+6 Restore FPAC (Bits 32-47)

c) .. When the HFPU registers are restored, the unit will pick
up where it left oft and continue to execute co~~and-codes
if the active bit in the restored FSR(Bit 15) is set. If.
this bit is not set, the HFPU will go to a not active or idle
state.

2.2.1. 7 Function/Status Register Definitions

The function/status register definitions are shown in figure 2.2 and detailed in table 2.1.

88951000 02 2-29

2-30

2.2.1. 8 Hard-ware Execution Times. Table. 2.3 lists the 'vorst
case execution times for the functions performed by the
HFPU. This. table also displays the improvement in execution
times that can be expected in "typical" usage due to the pr'e
sence of the hardware look-ahead feature. This feature allows
parallelism to take place within the HFPU •. This parallelism
can occur because of the ability of the HFPU to perform, non
FPAC olterations (Fetch 9f Command-Code words, Index Register
operations, Fetch of operands to Look-Ahead-Buffer etc.) while
an operation involving the FPAC is in process (FADD, FSUB,
FMPY, FDIV, FLDD, FIXF, or FCOM).

Three columns in table 2.3 illustrate the effects of
this overlap. The column labeled "Overlappable Coulponent"
shows the portion of the FPAC functions that can operate in
parallel with other non-FPAC functions. The next column, labeled
"Irreducible Component", shows the port ion of the execut ion
time that cannot execute in parallel with any other functions.
For the FPAC functions, this is the time required to transfer
the Look-Ahead-Buffer contents into the Floating Point Arith-
metic unit and to start the FPAC portion of the function. For
the functions which require the contents of the FPAC (FIXF, FLST,

,BRAM BRAZ, BaA:-i, BRAI:-', FEND), this is typically the total execu
tion time for that function, since it must wait for the FPAC
portion of the preceding function to complete before it can
begin. The Irreducible portion of the FLST function consists
only of the time required to store the FPAC since it can
overlap the, fetch of the address with the preceding FPAC
function. The next column, labeled "Overlapping Component",
shows the portion of any function that can operate in
parallel with the FPAC protion of the preceding function. For
the non-FPAC functions (Command-Code Fetch, SPEC, STRI, CWID,
NIDX, ADD I , INDX, CACS, Bani, BRIZ, BRIN, and BRIP) this is
the total execution time for that function. For the FPAC func
tions this is the ttme required to fetch the argument address
and to transfer the argument from memory to the Look-Ahead-Buffer.

The next three columns of the table show the amount
of DSA channel activity that will occur during any given func
tion. The latency columns show the amount of added time that
will be incurred due to delays in obtainingDSA channel access.

-In most cases these latencies are incurred during the
overlapping component of the function and thus will not add
appreciably to the overall execution time of a given calling
sequence.

, The final two columns show the ~ypical effective execu-
tion time that' can be achieved if full advantage is taken of
the overlap. These times are generally the sum of the overlappablc
component plus the irreducible component. The two exceptions
are FLDD and FIXF where the apparent time is shown equal to the
total time. These two functions ignore the previous contents of
the FPAC and thus it is unlikely that they would be overlapped
with a preceding FPAC function.

Figure 2.4 shows several example execution time compu
tations. The execution time for a given function equals the irrQ
ducible component plus the overlappable component plus that por
tion of the overlapping component that is not overlapped.

88951000 02

00
00
CO
tTl
o
o
o
o
t>:)

t>:)

I
CJ.:)

JUNCTION

CO::1mand-
Code !etcb .
SPEC
FLOF
FIXF
STRI
FE:m
CI[ID
NIDX
FCO~.t

FSUJJ(SP)
FSUB(IJP}
FtfPy(SP)

. f:.:py (DP)
fDIV(SP)
FDIV(DP)
FWU(SP) .
FLDD(DP)
ADIH
fl~C:;T(SP)
fL.'>T(DP)
FADD(SP)
FJ\[)D(DP) .
I::OX
CACS
nllJ\"
DUAZ
BH":i
nH,'p
BRnf

.B1.tIZ
nHIN
DRIP
DRAx(talse)
DRIx(ta1se)
STOP
RESTART

.

TABLE 2.3. EXECUTION TIMES (worst case operands) (440ns Tac) (600ns cycle)

Total 900n9 Overlappable Irreducible Overlapping DSA Latencies . Apparent Time with
Timc. Add ComponeDt Co.mponent Component CYCLES Word Block "typical" overlap
(lIor, node) Mode Mode (nOOns) (90I)ns)
1. 25usec .30usec Ousee Ousee 1. 25usec 1 1 1 Ousec 0

.20 0 0 0 .20 0 0 ·0 0 .0
4.81 .30 0 4.84 0" 2 1 1 4.84 5.101
6.77 .60 4.47 .20 2.11 2 2 1· 6.77 7.37
2.11 .60 0 . 0 2.11 2 2 1· I) 0

.20 0 0 .20 0 0 0 I) .2t) .2')

.20 0 0 "0 .20 I) 0 0 0 0

.20 0 0 0 .20 . 0 0 0 0 t)

.71 0 .51 .20 0 0 0 0 .71 .71
8.76 .90 5.46 .59 2.71 3 3 1· 6.05" Ii. t)5

11.12 1.20 7.22- .59 3.31 4 4 1· 7.81 7.81
11.62 .00 8.32 .59 2.71 3 3 1· 8.'11 8.Ql
15.74 1.20 11.81 .59 3.31 4 4 1· 12.43 1~.43
12.0G .90 8.76 .59 2.71 3 3 1· Q.35 9.35
16.18 1.20 12.28 .59 3.:n 4 . 4 1· 12.87 1?'.IJ7
4.03 .90 "73 .59 2.71 3 3 1· 4.03 4.')3
4.63 1.20 .73 .59 3.31 4 4 1· 4.63 5.83
2.11 .60 0 0 2.11 2 2 1· 0 f)
2.71 , .90 0 1.65 1.06 3 3 1· 1.65 2.~5
3.31 1.20 0 2.25 1.06 4 4 2· 2.25 3.15
8.76 .90 6.46 : .59 2.71 3 3 2· 6.05 n.05

11.12 1.20 7.22 .59 3.31 4 4 1· 7.81 7.81
2.11 .60 0 0 2.11 2 2 1· 0 0
1.06 .30 0 . 0 1.06 1 1 1· 0 I)
1.45 .30 0 1.45 0 1 1 1 1.45 1.45
1.45 .30 0 1.45 0 1 1 1 1.45 1.45
1.45 .30 0 1.45 0 1 1 1 1.45 1.45
1.45 .30 0 1.45 0 1 1 1 1.45 1.45
1.45 .30 0 0 - 1.45 1 1 1· 0 o "
1.45 .30 0 0 1.45 1 1 1· 0 I)
1.45 .30 0 0 1.45 1 . 1 1· 0 I)
1.45 .30 . 0 0 1.45 1 1 1· 0 .0
.. 39 0 0 .39 0 .0 0 0 .39 .39

.39 0 0 0 .39 0
I

0 0 0 I)
5.24 2.10 0 5.24 0 7 7 1 5.24 7.34
6.35 2.10 0 6.35 I) 7 7 1 8.35 8.45

·one fewer latency required it first command in a newly fetched COIlllULDd-Code word •

Latency - .74 to 1.32uscc (600ns) (no Refresh) .
• .85 to I.G8uscc (900ns) (no Refresh)

Latency figures include typjc f.l scanDer del&y (300ns) plU8 observed 'lac degrad&tioD
due to DBA TTL expaDder (220D8) • -

•

Single Precision assumed (600ns) BLOCK mode

a) FORTRAJ.'i expression A=B+C*D

Calling Sequence

Function

B9ED
D

<C>

<A>
4000

Fetch Command Code
FLDD
FMPY

FADD

FLST
Fetch C.C.
FEND

(FLDD, F~IPY,. F ADD, FLST)
Address of D
Address of C
Address of B
Address of A
(FEND, - - -)

Time Latencies Comments

1.25 1 Total time no overlap
4.63 0 . Total time no overlap

10.89 1 T01:,:l less the over-
lappable of FLDD

6.05 0* Total less the over-
. lapping of FADD

2.25 1 Irreducible Component
1.25 1 No overlap

.20 0 No overlap
26.52usec 1 latencies

*Latency overlaps preceding function

b) . FORTRAN Expression ACI) == B(J)+C(K)*D(L)

Calling Sequence

FBF9 (INDX, FLDD, INDX, FMPY)
<L> address of L

'<D> address of array D
<K> address of K
<C> address of array C
FEFD (INDX, FADD, I:NDX, FLST)
<J> address of J
' address of array B
<A>. address of array A
4000 (FEND • . .. •)

Figure 2.4. Execution Time Examples (Sheet 1 of 2)

2-32 88951000 02

Function Time

Fetch CC 1.25
INDX 2.11
FLDD -4.63
INDX 1,38

FMPY 11.62
Fetch CC 0

INDX 0

FADD 6.44

INDX 0

FLST 2.60
.

Fetch CC 1.25
FEND .20

~1.48 usec
-

*Latency overlapped

Latencies

1
0
I
I

I
0*

0 -

0*

0+·

,..+
v

1
0
5 latencies

Comments

No overlap
No overlap·
No overlap
Total-overlappable of
FLDD
FLDD overlappable used up
overlapped, 2.57 used+
5.75 left
overlapped, 2.11 used
3.64 left
partially overlapped 4.03
used+ -0.39 left
FMPY overlappable used up
.39 added to FADD
overlapped 3.43 used+
2.03 left .
partially overlapped 2.38
used+ -.35 left
FADD overlappable used up
.35 added to FLST

+ used time includes the overlapping component of the function
plus the latency (1.32usec). It is the amount of the preced
ing functions overlappable component used up by the current

function. . .

F " 2 4 Executl"on Time Examples (Sheet 2 of 2) 19ure • •

88951000 02 2-33.

INST ALLATION 3

3.1 LOGIC CARD INSTALLATION

3.1.1 Inspection. Examine the cards closely for evidence
of damage in shipping, broken or missing components, gouges
in board coating, etc. Recordalldiscrepancies.

3.1.2 Installation of Jumpers. A rectangular coordinate
system is used for locating components on the logic cards.
Facing the card from the component side with the backplane
connector at the bottom, the integrated circuits appear to be
laid out in four horizontal rows with 18 chips in each row.
These rows are labeled At B t C and D going from top to bottom.
The columns of integrated circuits are labeled from 1 to 16
going from left to right. Labels on the rows and columns
appear at the left and top edges of the board, respectively.
Thus the chiP at the uppe~ left-hand corner is labeled Al
and the chip at the lower right-hand corner is labeled DIG.

88951000 02 3-1

Passive components are given unique locating labels with
respect to this grid. Components which lie to the left
and/or above an integrated circuit grid position are given
a designator that consists of that grid position, a letter
(R = r.esistor, C = capacitor, S = strap. or jumper) 'and. a
consecutive number (if there is more than one component of
the same type within a given grid position). The consecu
tive numbers are assigned in the order: top, left to right;
~ide, left to right. For the purposes of labeling passive
components near the bottom edge of the board, the E row
of chips is assumed to exist.

Example;

EJ EJ~
0 0
C\1 Ct:I EJ I I
Cf.) Cf.)

LC It) It)
C) C) C) ()

8 0 0 0
D5C-I· 0

en
~

B~~ Eb B I I
c:: ~ ~
'I;fI ~ Lb It)
~ ~ Q Q

E4R E5C

All components are identified relative to this grid in the
schematics and parts lists so that direct references to the
physical boards can be made without the need to refer to a
topology or illustrated parts list.

3.1.2.1 DSA.Board. There are five jumper (strap) locations
on the DSA board. A single jumper in one of these locations
1s used to determine the position of HFPU in the DSA scanner
chain. The jumper locations and their functions are given in
table 3.1

TABLE 3.1. DSA Scanner Position Select Jumpers

J'wnper Location
Scantier Position on DSA Board -

Diddle . CIIS-2····
First C12S-2
Last CIIS-l
Only . C12S-1
Out ClIS-3

For correct operation of the DSA scanner, one jumper should be
installed in one of the locations specified above in order to
select the desired DSA Scanner position for the HFPU.

3-2' 88951000 02

3.1.2.2 A/Q Board. Jumpers are provided on the A/Q
board to select the HFPU equipment address and to place
the HFPU in the Protected ~tode. An Additional jumper
has, been provided for use withHFPU units which do not
have the double-precision option. This .;umper forces the
HFPU to re_spond to all commands as if they were single
precision commands.. Table 3.2 summarizes the jumpers on the A/Q Board.

88951000 02

TABLE 3.2. A/Q EQUIPMENT ADDRESS, PROTECT MODE, AND
SINGLE-PRECISION DEVICE JUMPERS

Mnemonic

QIO

Q9

Q8

Q7

PTeI'

SPDEV

Function
Location Function Description

E14S-1 MSB of equipment address
select. Install jumper
for a "1" in the Address.

E14S-2 Next MSB of equipment
address.

E14S-3 Next MSB of equipment
address.

E13S LSB of equipment address.

B12S Protected Hode jumper.
Install for Protected ~ode
Remove for Unprotected
Mode

B13S Single-Precision Device.
Install if single precision;
i.e., if double-precision
option is not present.

3-3

TABLE 3.3. HEXADECIMAL CODE FOR EQUIPMENT SELECT
I

Jumper Location E14S-l E14S-2 E14S-3 E13S

Hexadecimal 0 0 0 0 0
Code- (QlO-Q 1 0 0 0 1 Note:

2 0 0 1 0, a 1 in the
3 0 0 1 1 binary code
4 0 1 0 0 indicates the
5 0 1 0 1 presence of a
6 0 1 1 0 jumper.
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

3.1.2.3 SPALU Board. One jumper is provided 0I!_ this board
to accommodate the double-precision option. Its function is
to insure the correct propogation of carry througli the man
tissa arithmetic logic when the double-precision option is not
selected. A second jumper is provided fer end-around shifting
when the double-precision option is not installed.

Jumper Location

DeS, E14S .,

Function

These jumpers must be
installed if the double
precision option is not
present. If the double
prec1s10n option is
installed, remove these
jumpers.

3.1.3 Board Installation. The boards should be inserted in
the standard or alternate slots as indicated in table 1.1.
The power in the CPU and the expansion chassis should be off.

Examine the expansion chassis backplane for possible
bent pins and straighten them. -Insert and remove each card
in sequence checking the backplane for bent pins afterwards.

Carefully straighten any resulting bent pins and
insert all the cards. .

88951000 02 3-4

3.2 Mother-Board Installation arid Removal.

3.2.1 Preparation.'

3.2.1.1 The Backplane. Visually inspect the area of the
.backplane opposite to the slots used for the HFPU logic
cards for bent pins .. A pin misalignment of approximately
the width of the backplane pin itself (25 mils) c~n be
t~lerated Py the vertical receptacles on the mother board.,

3.2.1.2 The Mother Boards. Viewing each mother board from
the side and top edge, sight down the rows of receptacles
looking for ones that may have been bent out of alignment.
A receptacle misalignment of approximately one-half the
width of the opening at the top of the receptacle (25 mils)
can be tolerated. The receptacles can be straightened using
a needle-nosed pliers.

The examin~tion and straightening (as required)
should be carried out for all rows as viewed from both
the side and the top edge of each mother-board card.'

3.2.2 Installation. Begin with the boards that cover the
high numbered pins on the P2 (bottom) row of connectors.
Orient each board with the l~ttering up and the receptacles
pointing towards the backplane (away from you). Carefullya
lign two corner receptacles with the backplane pins on
the slot chosen for one of the outside logic cards (ADDR, slot
23, or EXP & TnI, slot 15 in the standard configuration).
Start the receptacles onto the backplane pins along the
chosen column to a 'depth of about 1/32 inch. Gently push
against and oscillate the board until it drops down onto
all of the pins.

Once the board has mated with all the pins (it will _
be parallel to the backplane and the pins will have entered
approximately 1/16 inch into the re·ceptacles), it need~ to be
pushed down.onto the pins to make electrical contact. The
fibre-glass epoxy board will flex slightly so that it is not
necessary to overcome the insertion force of all the recep
tacles at once. Holding the board in place with one hand,
force one corner down about 1/32". Work around the board
forCing each corner down a little. further until the pins can
just be seen through the holes- in the bottom of the recep
tacles. Proper mating can be checked at this. point by exam
ining'each receptacle to see the backplane pin within it.

After installing the bottom boards proceed to the
next pair of boards (P2 low numbered pins) and then to the
PI Boards.

3.2.3 Removal. Attach the removal tool to the vertical edges
of the mother board to be removed. Alternately lift the right
side and then the left side of the board and slowly "walk" the
mother-board off of the backplane pins. The PI boards may re
quire some manual assiStance in order to get the top and bottom
rows of pins started moving. CAUTION: Use one hand on the tool
and the other hand to' restrict movement, so that the last step'
does not result in an abrupt, large movement, since this will
sometimes cause bent plus if one end (or side) releases before
the other.

8-8951000 02 3-5

THEORY OF OPERATION 4

4.1 HARDWA;RE ORGANIZATION.

4.1.1 Device Structure. The Hardware Floating-Point Unit
is st~uctured into two semi-independent sections. The first,
the interface and Master Control, handles the communication
with the System 17 CPU and the interpretation of the variou~
op-codes and interface commands. Additionally, it issues
commands to the second section within the HFPU, the Hardware
Floating-Point section. This Floating-Point section performs
all of the arithmetic operations on the FPAC. The ~Iaster
Control section is contained primarily on three boards, the
ADDR, CSA, and A/Q boards. A small portion of the master
control section is contained on the DPALU board. The second
section of the unit, the hardware floating-point device is
contained on four boards, the DPALU, SPALU, FPH~lP, and EXP
and TBIING. Each of these two independent sections, the
Master Control and Floating Point, is controlled by its own
independent Micro-Processor. The structure of the micro
processcrs is describt"!d more fully in section 4.1. 2.

Fi~e4.1 shows in more detail the internal structure
of the elements that make up the HFPU and the data paths that
interconnect them. The "backbone" of the device is a single,
IS-bit, bidirectional bus (DATA 0 to 15). This bus is inter
faced via a transceiver on the DSA and A/Q boards to the re
spective I/O busses of the System 17 CPU. All data transfers
within the HFPU take place in 16-bit words on this bus. The
structure of each of the boards that makes up the HFPU is
described more fully in section 4.1.3.

4.1. 2 The Micro-Processor concept. As was mentioned above
the HFPU contains two micro-processors. The first of these
the Master Micro-Pro6essor, is shown as three blocks labeled
Master Control A, Master Control B, and Micro-Processor
Address, on the DSA, A/Q, and DPALU boards in figure 6.1.
The second micro-processor, the Floating-Point Micro-Processor,
is shown as the block labeled FPH-CONTROL on the FPH11P board
in figure 6.1; The function of these micro-processors is to
control the sequence in which data transfers take place within
the HFPU." The heart of a micro-processor is its control store,
in this case READ ONLY ~lEMORY (Rml) ~ The outputs of the
ROM are applied via instruction register to the data path
controllers within the device and also to the clocks that are
used to enter data into the device registers. For each step
of an algorithm the bits in the Rml are programmed to gener
ate the desired data transfer that is required by the algor
ithm. Sequence control is achieved by utilizing a group
of bits in the ROM to specify the next ROM addres~ that is to
be accessed. This allows the micro-processor to execute es
sentially random sequences of micro instructions, which allows
it to perform the sequences required by the algorithms. It
also gives the micro-processor a great deal of flexibility
in that the changing of an algorithm will require only the
change in a few locations in the READ ONLY ME~10RY. Additional

,power is given to the micro-proc~ssor sequencing by providing

, 88951000 02
4-1

~
I

t-.:l

I':Ij

~'
CD
~ .
f-l

::r::
I':Ij

"d c::
~
S"

~
S-
CIl

(1)
(1)
<:.0
OJ
f-l
o
o
o
o
t>:I

--.,.,

~

ADDRESS
Preparation

DATA ~ to 15

TAR
Counter

(A+B,A)

~ ~t::I
OCfJ
o;t»
?J
t>1
CfJ
CI:l

IR*1,2,3
IRALU

"

DSA

IID~' TRANSCEIVER nITS 1,
2,3,6'
B,9 I

I
"

I

I
I

o
CfJ

j
1

MASTER
CONTROL A

A/Q

I, /,,'

:r " l
I

A BITS 0,
,TRANSCEIVER 4,7,10,

11,15 "
I'~---'

I ~ ~lASTER
, ~CONTROL'

I
II~
I
I
l.

!l>

tIl
r:::
(I)

00
00
to
C.TI
~
o
o
o

o
~

~

~
(1)

H:>-.
~ .
8 a
~
(1)

0.. -
~
~

~
~
S"

~
e:-
m

H:>
I

Col:)

DPALU

--- .. - -- --

" J DATA ~ to 12 . ba!3
I ·1 ---or--
I~REG·· BREG ---

FPAC I i Register SIIFT REG SHFT REG

I I

1 1
2:1 Rounding
MBMUX Constants

I 1--1
1 I
B A EJ
MALU

I
Micro-Processor
Address
~------------~ Bits 35 to 51 of the Mantissa

SPALU

,

B. I
\ V-

I °

, T -
MDREG BREG FPAC

I Register SnFT REG °SHFT REG

I

~ I I

\ I
I

12 : 1 J' MAX I

I
MBMUX Constants

1
~) I I B A

I MALU

'---
Bits ~ and 9 to 34 of the Mantissa

~
I

f!::>.

nj

~.
CD

~ .
I-'

-o o g.
§
0.. --
::J:l
~
'"C c::
~
p;-

~ g:-
oo

00
00
w
CJ1
I-'
o
o
o

o
~

::-'PHMP

DATA 0 to 15

FS~
__ ----I

,
I
fFPiIl
I~

BITS 5,12,13,141

I

I
I
I
I
I

8
I

t

EXP and TIMING

MDREG
Registeri

SIGN CQJl1

constants

B A
EALU ~.

k.oL..

FPAC
Register

Bits 1 to 8 ot the
Exponent .

MAGNITUDE I SHIFT
Comparator COUNTER

I
it with the ability to modify next instruction address
based on external conditions. This. allows the micro
proc'essor to execute algorithms containing conditional
steps. . .

_ Figures 4.2 and 4.3 are block diagrams of the two micro
processors in the HFPU •. Refer to section 4.1.4 for detaileC
descrip'tion of the micro-instruction formats for. each of the
micro-processors. .

The Floating-Point Micro-Processor, shown on figure
4~2, utilizes a Read Only Memory consisting of 32.words of
forty bits. The outputs of the Read Only 1Iemory are applied
to the inputs of the instruction register. Data is erttered
into the instruction register on the trailing edge of a clock
signal INSCLK. For the Floating-Point Micro-Processor this
clock signal has a period of 220 nanoseconds, thus this micro
processor is capable of executing one micro-instruction every ,
220 nanoseconds. The instruction register heips to speed the
opera tion of the ~.1i cro-processor by holding the current micro
instruction'while the next instruction is being fetched from
the Read Only Memory. The Floating-Point Micro-Processor is
started in a two step pr6cess by the master processor. W~dn
the Floating-Point ~!icro-Processor is stopped, the Next In
struction Address out of its instruction .register is disabled.
The Master Micro-Processor then can force the addiess of the
first micro-instruction onto the Next Instruction Address Bus.
This allows the first micro-instruction to come out of the
Read Only Memory. The Master then forces an INSCLK which loads
this instruction into the instruction register and starts the
timing of the Floating-Point Micro-Processor running to gen
erate its own clock signals to advance it from'instruction to
instruction. As was mentioned above the outputs of the micro
processor (outputs of the instructure register) fall into two
classes. The first class consists of essentially unbuffered
outputs which are used to control the gating in the data paths.
In the Floating-Point ~icro-Processor the main function of
these signals is to control the data multiplexers and the
function performed by the ALU. The second important class
of instruction register outputs consists of clock signals .
to the varioUs registers within the floating-point arithmetic
section. As the diagram shows, .these clocks are conditioned
by INSCLK so that they occur in coincidence with the entry
of new micro-instructions into the instruction register. The
phasing of the~eclocks is arranged so that the entry of the
data occurs on the same edge as entry of the new instruction
into the instruction register. 'Thus ill effect, each INSCLK

I enters a new micro-instruction to the instruction register and
arid completes the execution (by entering data to destination
registers) of the preceding micro-instruction. .

The Floating-Point Micro-Processor has one additional
class of instruction register outputs which are used to control
he operation of its hard-wired algorithms. Certain of the
operations performed by the Floating-Point Micro-Processor are
too fast to be c6ntrolled directly by the micro-processor with
its cycle time of 220 nanoseconds. These operations, mantiSsa

" mul tiply, divide, shi ft . and norm.alize, are controlled by the
floating-point hardware tfming which resides on the EXP and

88951000 02" 4-5

LK

4-6
\

39
0
31

I
i
I

0 CK
I

~
,
" it Clocks to

Expand
Mantissa
Registers

O·
READ ONLY ~.lE1~ORY

32X40 /

A ADDR-

I I 1
• JmlP f-- ADDER

DECODE

INSTRUCTION
REGISTER

\; ~

"Data Path
Controls to
ALU Logic

1

I ~"EXT
INSTRCCTION
ADDRESS

\ V
Commands to
Fast Eard"lired
Algorithms·

'1/

,
,

S
f
)

TARTING ADDRESS
rom ~Iaster
Uero-Processor

II

i\

Figure 4.2 .. Floating Point Micro-processor Block Diagram

88951000 02

39 0
(l

,/

Initialization Address
from A/Q Interface

SPEC·
Flip/Flop

Read Only Memory ~ V E}'''B ~ ,
63

11;;;;::.;1 R:;;;.C:;;;K;.e"'-J CK

.
ra1
0 -:;
1:1:" Et
M'&::

~8
,::::a V·

88951000 02

64 X 40

Jump
Decode

Addr
I~

LSB

Instruction Register

t
.::i 1'-, Next en
0
J..

Q.r-i ~
. ~ Instruc-QJO I &::

J.. ... 0 tion
Il." 0

ml
en ~ Address
~ c:x:.

~t,) CJ C'Il CJ
0 ~ .21 Execute J.. r-i -'1:j t,)

==
t.i Next

'1:j en \/ Il.
< ~ 'liil c:x: - en C'Il
~ QJ ~

3 ... -'1:j =:
'C ~ <

§

SAR CCR
32 ~ ~ 'v

,

FPMp· I
Start Address

To Floating-
Point Micro-Processor

Figure 4.3. Master Micro-processor Block Diagram

~

4-7

TIMING board .. ,When the micro-processor detects a command
to one of the hard-wired algorthms, it stops· its INSCLK
and allows 'the hardware timing to 'execute the algorithm tb
completion. When the hardware timing is finished it restafts
the micro~processor INSCLK so that micro-program execution
may p·recced~.

Finally the instruction .register contains a HALT
bit which is used to stop micro-processor action whenth~ end
of the algorithm is reached. When the Floating Point ~licro
processor stops its timing, it infonns the}laster ~Iicro
Processor that it is available to perform a new floating-point
function and disables its Next Instruction Address so that the
Master ~Iicro-Processor can' start it executing another algori thm.

. Figure 4.3 is a block diagram of the Master Micro-
Processor. This micro-processor is similar in structure to
the Floating-Point ~icro-Processor. Its RO~ consists of
64 words of 40 bits each. Its instruction register clock is
called ~IIRCLK and has a period of approximately 200 nanoseconds.
The outputs of the Master Micro-Processor instruction register
can also be broken into basically two classes of ~ignals~ those
which control data paths, and those which clock data into
destination registers. The Master Micro-Processor instruction
regis~er provides control and clock signals to the DSA inter
face, the Look Ahead Buffer and Address Preparation ALU, the
FSR and CCR and to the Floating~Point input register and output
gating. The Next Instruction Address logic of this micro
processor is some what more complicated than that of the
Floating-Point Jlicro-Processor. The next instruction address
can come from one of three sources. There is an external
starting ~ddrcss source which comes from the A/Q interface and
allows the System 17 CPU to start the ~Iaster :'-1icro-Processor
executing on one of four functions (COLD START, STOP, RESTART
and A/Q LOAD FPAC). Secondly there is the normal internal
source of next instruction addresses which comes from the ROY.
Thirdly, there is a source of next in~truction addresses
which allows the Master Micro-Processor to interpret the Op
Codes contained in the CURRE:-IT CmI~.Ifu\j1) REGISTER (CCR). The
output of the CCR is applied to the address input of a small
RO.M. This Rml is referred to as the STARTING ADDRESS RO:I! (SAR) .

. When the micro-program is ready to begin execution of a Command
Code in the CCR, it turns on the Execute.Next bit in its in-·

.struction register. This bit disables the next instruction
address output of the instruction register and enables the out
put of the SAR onto the Next Instru'ction Address Bus. This
causes the Master Micro-Processor to begin execution of the
micro-instruction sequence corresponding to the new Command-Code.
When the SAR is enabled, five bits of the Next Instruction
Address Bus are recorded in the FPMP Starting Address Buffer
so that they may be used by the Master Micro-Processor to start
the Floating Point Micro-Processor running. Thus the starting
addresses for both micro-processors for'each Command-Code are
interlocked, and the micro-programmer must write the micro-
code carefully to insure that the two micro-processors will
be correctly started. The Master Micro-Processor uses the

4-8 88951000 02

Floating Point Uicro-Processor st~rting address to start the
Floating Point Micro-Processbr running at the'appropriate
point in ~faster ~.licro-Proccessors sequence. As with the
Floating Point ~.licro-Processor, there are several circumstances
in wh ich the' ~laster ~.1icro-Processor wi 11 stop its nrRCLK in order
to wait for completion of some external event. When a DSA
memory cycle is requested by the DSA interface control outputs
of the ~faster ~licro-Processor instruction register, the, ~faster
Micro-Processor timing will stop and wait for the receipt of
the DSA RESU'.JE signal. RESIDfE forces ~lIrrCLK which restarts
themicro~processor timing. The ~Iaster ~ficro-Processor wi 11
also stop its timing when it is ready to start a new FloatinG
Point Processor operation and the Floating-Point ~.licro-Pro
cessor is still in the process of executing a preceding command.
As with the Floating-Point ~icro-Processor the Master ~icro
Processor also has a HALT bit. This bit is used to stop
Master ~Iicro-Processor execution upon decode of FE~rn Command
Code and also upon completion of a STOP A/Q command execution.

4.1. 3 The programmable elements. Fundamental to the under
standing of the operation of a micro-processor is a detailed
knowledge of the elements that it controls. 7his section gives
an overview of these elements within the HFPU on a board-by
board basis in order to give the background necessary for the under-
standing of the detailed description of the micro-instruction
set which is follows in section 4.1.4.

a. Address Preparation. This board contains the basic
arithmetic for all of the address operations performed by the
HFPU. It contains the externally accessab1e registers, the
PCR and the IR. In addition, it also contains a TE~IPORAR~
ADDRESS REGISTER (TAR) which is used for holding the address
of memory arguments. The ~raster Micro-Processor has the ability
to ioad and increment TAR and PCR and to load and clear·the IR.
'!be ARITlDIETIC LOG Ie. tr.{IT (ALU) labeled IR*l, 2,3 in figure 4.1
is used to perform multiplication of the index times 1, 2 or 3.
'!be output of the IR is applied directly to the A input of the
IRALU and is rotated left one position (multiplied by 2) before
being applied to the B input to the IRALU. To multiply the IR
by I, the ~.Iaster ~Hcro-Processor sets this ALU to gate the A
input through to its output. To multiply the IR by 2 the
Master Micro-Processor sets this ALU to select the B input to
its output. To multiply the IR by 3, the Master Micro-Processor
sets this ALU to add the A and B inputs together and apply the
result to its outputs. The outputs of the PCR and IRALU are
applied to a 2:,1 multiplexer called the PHIUX. This. multiplexer
performs two functions. It is used to select the register to be
read, whether PCR or IR, in an A/Q READ operation. Secondly,
it selects the register that is to be added to argument address
through the main ALU of the address arithmetic section. A
second 2: 1 multiplexer, the TD~mX, is, used to select the source
of .the input to the A side of the main ALU. To load an absolute
address into one of the three regiRters of the address logic,
the TmmX is set to select the DATA I) to 15 input and the main
ALU is set to gate its A input to its output. To load a relative
address into TAR, the TD~UX is set to select the DATA 0 to 15
input~ the PIMUX is set to select its PCR input and to apply

, that to the B input of the main ALU, and the main ALU is set
to add its A and B inputs together apply that to its output.
88951000 02 4-9

To utilize an absolute or relative address that has been
loaded into TAR, the TmmX is set to select its TAR input,
the PDIUX is set to selec t its IHALU input, the main ALU
is set to add its A and B inputs and apply that to its
outputs, and the output of the main ALU is driven to the

·DSA address bus via the ADDU GATE. If the address .re-
quired is not to be indexed, the main ALU will be set to
select its ~ input. To advance the address through se
quential locations, the TAR counter is incremented by the
Master ;\licro-'Processor.

The Address Preparation Board also contains the STOP
and SAVE ADDRESS REGISTER (SSAR) and the LOOK AHEAD BUFFER
(LABF). These registers are contained in a single 4-word
by l6-bit memory. The SSAR occupies location 0 in this mer:lory
and the portions of the LABF corresponding to FPAC bits 0 to
15, 16 to 31, and 32·to 47 reside in words 1,2 and 3 respectively.
The Master ~1icro-Processor has the ability to read, and write
the locations within this memory.

b. DSA BOARD. The elements under the control of the
Master Micro-Processor on the DSA board are bits 1,2, 3, 6; 8,
and 9 of the FSR and the DSA interface. The micro-processor
can load the FSR from DATA 0 to 15 and read the FSR onto the
DATA 0 to 15. AdJt::'ona11y, It has the ability to set FSR bit
6, the FEND bit. The micro-processor controls the DSA interface
by requesting memory cycles as required and controlling the
direction of transfer, whether read or write. Additionally,
,it has the ability ~o request consecutive memory cycles and to
control the release of the DSA scanner in BLOCK ~,10DE. The DSA
interface itself controls the operation of the DSA transceiver
which passes data between the DSA data bus and the HFPU internal
DATA 0 to 15 lines.

c. A/Q BOARD. On this board the only element under the
direct control of the ;\iaster 11icro-Processor is the FSR (bits 0
4, 7, 10, 11 and 15). The micro-prbbessor has the ability to
set bits 4,7 and 15 (DBP~,I, PROTECT, ACTIVE) and to clear bit
15, the ACTIVE BIT. Additionally, the micro-processor controls
the incrementing and clearing of bits 10 and II, the Operand
Byte Count (OPBC).

The A transceiver is under the control of the A/Q inter
'face which also resides on this board. The A/Q interface
essentially controls the Master Micro-Processor by supplying it
with starting micro-program addresses when A/Q commands which
require ~Iaster ~1icro-Processor action are received.

d. DPALU BOARD. The major function of this board is
to provide the double precision extension to the mantissa arith
metic for floating-point operations. It does contain the CUR
RENT Cml~·lAND REGISTER which is under the control of Master Micro
Processor. The ~taster ~1icro-Processor has theabili ty to load
this register from DATA 0 to 15, to ~hift it left by 4 places
as each command code is executed, and to read the -contents
back onto DATA 0 to 15 for transmission back to the System 17
memory in a STOP command.

Note that the structure of the mantissa arithmetic sec
tic>D contained on the DPALU board and the SPALU board are es
sentially identical.

4-10 88951000 02

· The input to the mantissa' arithmetic section is called
the ~lULTIPLIC.\~D/DIVISOR REGISTER OIDREG). This register
ca~ be loaded in three sections, corresponding to FPAC
bits 0 to 15, 16 to 31, and 32 to 47, by the master micro-,
processor. The Floating Point Micro-Processor controls the
2: 1 multiplexer (~IDjIUX) to select either the ~mREG or the
BREG to the B input to the ~IA.~TISSA ARITW,1ETIC LOGIC tmIT
(MALU). The FPAC is applied directly to the A input of the
MALY. The Floating-Point Micro-Processor has the ability to
direct the ~.L\LU to perform 8 different functions, A (ARITlmE
TIC), A-I, A(logical), A complement, A+B, A-B, B, and B com
plement. The bulk of these functions are self-explanatory
with two exceptions. The A (logical) function simply passes
the A input of the ~IALU to its outputs. The A(ARITmIETIC)
function checks the A input to the ~.IALU for negative ~
before passing it to the outputs. If the input is negative
~ it will be converted into positive~. The FPAC and the
BREG are universal shift registers. The Floating-Point Micro
Processor has the ability to load these registers, shift them
left, or shift them right. To perform an FLDD function for
example, the ~Iaster Micro-Processor would load the argument
fetched from memory into the MDREG. The Floating Point Micro
Processor would then set the tIDMUX to select the ~DREG to the
B input of the ~lALU, it would set the ~lALU to the "B" mode and
would load the output of the ~lALU into thE:: FPAC. To eliminate
negative ~, the Floating-Point ~icro-Processor then sets the
MALU to the A (arithmetic) mode and again loads the outputs of
the MALU into the FPAC. When the Floating-Point ~licro-Processor'
is stopped, the MALU is left in the A (arithmetic) mode: Thus
the output of the FPAC is being applied to the GATE which is
used by the ~aster Micro-Processor to read the FPAC, onto the
DATA 0 to 15 lines.

e. SPALU BOARD. This board consists almost entirely
of mantissa arithmetic logic that is essentially identical in
structure t'o that described above with respect to the DPALU
board. The SPALU board contains bits 0 and bits 9 to 34 of the
mantissa. Thus it contains tbe entire single-precision mantissa
plus 4 bits of the double-precision extension. When used in
single precision. these 4 bits behave as a guard digit. The
DPALU board contains the low 12 bits of the qouble-precision

,extension of the mantissa plus 4 extra bits of guard digit.
Figure 4.4 shows schematically the arrangement of these bits
within the mantissa logic. Note that in single precision bits
32 to 51 are loaded with sign bits thus effectively filling
them'with true O's (l's complement arithmetic). In double
precision only bits 48 to 51 of the mantissa are set equal to
the sign. Figure 4.4 also illustrates shift conventions that
apply within the mantissa arithmetic section. Note that with
one exceptions all right shifting of both of the FPAC and the
BREG is arithmetic i.e., the sign bit is shifted from bit 0 to
9' and also into bit 0 on a right shift. The one exception is
tha t during the mantissa multiply portion of F~IPY~ the output
of the special sign holding latch (SFAN) is shifted into Bit ~
of the FPAC. The FPAC is also shifted left ari thmet ically. It
is rotated left with the Sign bit going into the least significant
bit. In' an UFPU that is not equipped with the double-precision
option, the sign bit of the FPAC is routed by a jumper into
bit position 35 instead of bit position 51. The FPAC is shifted
right during the exponent alignment portion of FADD and FSUB

88951000 02 4-11

FPAC Mantissa

o 9 31 32 35

Mul- r S
-< ssss -~-

I

t" l\l201 1 >'
~ 1}2 ~ mix ~I

t' v On SPALU Board Q,

T
Po. , (1)1

r

t_

FPAC Exponent

i
On EXP & Timing Board

BREG MANTISSA

o 9 31 32 35

......., S
~-ssss ~

On SPALU Board

36 47 4:- 51

SSSS
ssss ssss sss~

On DPALU Board

,
/

. /

+

~
~

np
SP

36 47 48 51

ssss r--<.-
k-ssss ssss ssss SSSS
J

On DPALU Board l
SFAN

./

" / ~

l Serial Quotient Bit

Dl
c::
'-' I

Figure 4.4. Arithmetic Shifting

4-12 8895100002

and during the mantissa multiply~~rtion of F~~Y. It is shifted
left during normalizntionand durin~ the mantissa divide portion
of FDIV. TIle FPACholds the product in multiply and the divi
dend in divide. The BREG is shifted right during the exponent
alignment portions·of FADD and FSUB and during the ma'ntissa
multiply portion of F;.iPY where it holds the multiplier. :r:t is
shift~d left only during the mantissa division portion of FDTV
where it is used to assemble the quotient of the result. In
double precision, the quotient bits are shifted into the BREG
at bit position 51. In single precision they are input at
bit position 35 and the output of a·special sign holdin~
latch c~lled SFA~ is input at bit 51 to insure that a true single
precision result is generated.

One additional controllable feature of the S~ALU is
the block in figure 4.1 labeled ~IAX constants. The Floating
Point Micro-Processor has the ability to drive several numer
ical constants to the B input of the ~IALU. These constants
are used in the rounding algorithm and also to force the
mantissa of the result in the case of exponent overflow and
FLOP overflow. .

f. FPIUrP BOARD. This contains the· Floating Point
Micro-Processor which is labeled FrH CO~TROL 1.1 figure 4.1.
The only programmable element on this board is the FSR (bits
5, 12, 13 and 14). The Floating Point Micro-Processor has
the ability set bits 12, 13 and 14 (U~7L, DVFL, OVFL) if one
of these conditions occurred in the course of a floating-point
alcula tion. The !IIaster Micro-Processor has the abi Ii ty to
read and load the FSR from the DATA a to 15 lines.

g. EXP and TDIING. This board contains the basic
timing for the Floating Point Hicro-Processor and its hard
wired functions. The programmable elements on this board
constitute the exponent arithmetic of the H~U. As in the
mantissa ALU sections the MDREG is the input register to the
expon.ent ALU. This register is loaded by the Master ~licro
Processor. The Exclusive OR (EOR) gates on the input to the
MDREG are used to remove the effects of the mantissa sign on
the exponent of the floating-point number. If DATA bit 15
is true, high, then DATA bits 7 to 14· will be inverted before
being load into :.IDREG. If DATA 15 is false, low, then DATA
bits 7 to 14 will be applied uninverted to the inputs of '1DREG.
'!he output of the ~.1DREG is under the control of the Floating
Point Micro-Processor so that either the contents of the
J.lDREG may be applied to the B input of the EALU or if the regis
ter is disabled, a 0 can be applied to the B input of the EALU.
The FPAC exponent register is applied directly to the A input
of the EALU. The EALU can perform a total of 4 functions, A
(arithmetic), A-B,A+B,B. The output of the EALU is applied to
a secondEOR gate which is used to perform two functions. When
the Floating Point Yicro-Processor is stopped and· the master
Uicro-Processor wishes to read the contents of the FPAC exponent,
the· sign of the mantissa is applied to this EOR function so
that the exponent can be complemented accordingly. For internal
exponent operations which require the magnitude of the dif
ference between two exponents, the Floating Point ~icro-Pro
cessor can use the sign bit out of the EALU to control this EOR
function, thus npplyin~ the ma~nitude of the EALU output to the
input of the Shift Counter. The Shift Counter is used during

8895100002 4-13

the exponent alignment portions ofFADD and FSUB. The 'fag-:
nitude Comparator is used in the same function and also in
F~OF to inhibit shiftin~ when the number of positions to be
shifted as represented by the contents of the Shift Counter
is larger than the length of the mantissa registers. The box
labeled const-ants in figure 4.1 is used to supply a source
of the ma..-ximum positive and maximum negative exponent for
overflow and u6derflow and also to supply several exponent
values required during FLOF and FIXF.

4.1.4 The Micro-Instruct ion Set. This section describes
in detail the functions performed by the two micro-procrissors
in the HFPU. The instruction format for the Haster ~ticro:"
Processor appears in Figure 4.5 and the format for the
Floating Point ~icro-Proccssor appears in Figure 4.6. These
figures display in a schematic form the functions performed
by each bit of the READ ONLY ~tE~IonIES of the two micro-pro
cessors. Tables 4.1 and 4.2 define in greater detail the mnemonics used in
figures 4.5 and 4.6, respectively.

4-14 88951000 02

00
00
<:0
c.n
o o
o
o
~

;P>
I

c.n

39' 38 37 31 30 29 28 27 26 25 24

DSA LOAD tl'ARCLK IpCRCLK-·lsAIXNDXT DUFFER-

I,. .v---------../

000 ... nul
000 = READ

~=PCR
l=IR

010 = READjREL (Disable ADDR BENB
. REL at Resume)

'011 = WRITE
100= RD,SHLT,CC
101 .. RD,SHLT,
lIO =- RD, SIILT. REL
111 ... WR, SHLT , CC

'23 22 21 20 19 18

~=DATA
I-TAR

it not

17

PCR,TAR,I
'--v----' ~
00 = nul, 000 = nul
01 ... PCRL 001 .. W FPACI
10 = TARL 010 = W FPAC2

~
011 = W FPAC3

. (force ADDR AENB=l and 100 ... R SSAR
T/D-~ at Resume) 101 ... R FPAC1

110 ... R FPAC2
111 - R FPAC3

15 14 13 12 9 8

l ' !, t ,. I I l
OOtF-nul~ --" ~OO~~./ '~nlil'oo~~~~r' ,inh~bit ~;;u·l'

13UFFERIGROUP 1 FSR GROUP EXEC FPIl GROUP CTRL

001 = AVATA 001 ... SET A (FSR 15) 001 ... CLKl, 01 = FSTART ,SCNHLT 01 ... EXECNXT
010 = FSRRD 010 ... SET P (FSR 4) 2,3 10'" SPEC CC IF SP
011 - CCRRD 011 = SET A&P 010 = CLK2 11'" TRUE CLl3 10 - HALT
100 ... CHMD (comp FSR9) 100 ... SET DBPM (FSR7) 011 - CLK3 inhibit ot 11 ... EXECNXT
101 - IRCLR 101 ... CLR A 100 = DOUT1 PCRCLK"SCNRCLR
110 =- FSRCLK 110 a SET F (FSR6), SET 101'" OOUT2. and EXEC

DBPM 110" DOUT3
III - CCRCLK(CLR III a SET F,CLR A III a nul

OPCNT)

6 5 2 1 0
Condition of Next Instruction

_ •• a ... _ - _ _,J •• __ ___ ...

00 - nul
0 0 0 DRAM

I 0 1 0 DRAZ
01 • INACTV 1 0 0 DRAP
10 ... SP
11 CONDENB --- -----'7 1 1 0 BRAN .

0 0 1 BRIM
0 1 1 BRIZ
1 0 1 BRIP
1 1 1 . BRIN

Figure 4.5. Master Micro Processor Instruction Format

39 38 37 31 30 29 28 27 26 ~
J

I-'
~

'- '/~~--

t~LKll ACLK2 I • M .,~ • t • M .. , ~ I

'v- ~~
-000'= A,Arithmet1c 00 = nul
-001 = A-I, 01 = MAC~H
-010 = A,Logical . 10 = MD~H
:011 = A 11 = MB~H

100 = A+B
-101 = A-B
-110 = B
-Ill == B

23 22 21 20 ,19 18
~.!antissa B' Side Expohent EDENB

B Side
I

00 = A,Ar1thmetic
01 = A-B

00 == nul
01 = RIGHT

10 = A+B 10 ... LEFT
11 = 'B 11 ... LOAD

17 16
Load Pick

1 ~-,-H _l~ l.?_ 11 . 1 Q. f 9
-linhibitsl Jump i condit1on Hardware

Shift Enable
Count

8
I

~
~ ,/ -v-- ,~ ,/~ ~...... . -~=-~-------.:......-~

00
00

000 = ZERO
001 = M/DErm
010 = l3E~l3
011 = FX\lJ\X
100 = FL!.!AX
101 = ROUND
110 = FIX
111= FLZERO

00 = ZERO Switch
01 = 1 Clocks
10 = F from
11 = 17 A to B

NRM'D NRM'D 1 if pick
) . / SP r§:njU~J3~~ FIF set

~ 7 6 5 4 3 2 1 ~
6 UAW Displacement Address of Next Instruction
o ,"DELTA" ' "ADDR"
o
o
t-.:l

00 = nul 000 = nul 000 = nul
01 = DP In- 001 = ETl3 001 = hlPY

hihit 010 = UNFjOUF 010 = DIV
ACLK3 Oll = ~IJ\=B 011 "" SHIFT,

10 ... PICK SET. 100 = ZOUND 100 :: NORM
Inhibit 101 = EGT 101 a nul
EACLK 110 :: nul 110 ... nul

11.~ NRMD I~- Ill'" nul 111 - nul
hibit
ACLKl-3 "
EACLK

Figure 4.6. Floating-Point Micro Processor Instruction Format

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT

BIT VALUE UNE~16NIC
POSITIONS

39,38,37 DSA

001 READ

010 READ,REL

011 I WRITE
i
i

88951000 02

DESCRIPTIO~

These bits, if not equal to 0, are
used to command the DSA.interface
to perform DSA memory access cycles.
Seven different types of cycles can
be performed.

Commands DSA Interface to perform
a single read-from-memory cycle.

Commands the DSA Interface to· perform
a read-from-memory cycle and controls
the address preparation board to per
form the addition of PCR to the in
coming address before it is loaded
into TAR. To function correctly bits
35,34 (describ.ed below) must be a
o and a 1 respectively, thus se

lecting the PI~ruX to the PCR and en
abling its output to the B side of
the main ALU on the address prepara
tion board. This micro-instruction
code actually functions by disabling
bit 35 (ADDR BEND) while the DSA RE
su~m signal.is true if the RELATIVE
MODE bit mode in the FSR is not set.
Thus, if Relative Mode is not set,
the DSA data will pass through the
address ALU into TAR. If the RELA
TIVE Mode bit is set, the DSA data
will be added to the contents of
the PCR before being loaded into TAR.

This code directs tbe DSA Interface
to perform a single memory write
cycle to System 17 memory.

4-17

4-18

TABLE 4.1. MASTER lVIICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT. VALUE M:-lE~.rONIC ;DESCRIPTION
~PO~S~I~T~I~O~~~l~~ ____ +-__________ +-__________________ ~ ___________________ _

39.38,37 100
(Contd)

'101

110

111

36

35

34

33

32

RD,SHLT,CC

READ,SHLT

RD ,SI!Lf,
REL

WR,SHLT
CC

This code directs the DSA Interface to
perform consecutive memory read cycles.
In this mode th~ DSA Interface will
generate a second DSA REQUEST sie: .. al
upon the receipt of the DSA RESC~\!E
signal, thus causing the interfabe
to steal consecutivetnemory cycles.·
The CC mne~onic indicates the request
for consecutive cycles~ The HOST
mnemonic indicates that the scanner
will remain halted for the duration of
of the consecutive cycles.

This code requests aDSA read from mem
ory cycle and directs the DSA.inter
face to keep the scanner halted
following the cycle •..

This code requests a DSA read from
memory cycle and allows the relative
addressing calculations to take place
as was described above for code 010
(READ,REL). The scanner remains
halted following the memory cycle.

This code requests consecutive DSA
Write memory cycles. The scanner
remains halted during the memory
cycles.

SCNRCLR A I in this bit position directs
DSA Interface to release the scanner.

ADDR BENB A I in this bit position enables
the PIMUX output to the B input of
the main ALU. Note that this bit
can be disabled during DSA Resu~e
if the code in bits 37, 38, and 39
is 010 (READ, REL) or 110 (RD, SHLT,
REL) .

liP This bit drives the select control on
the PI~UX. A 0 in this bit causes the
PCR to be selected. A 1 in this bit
causes the IR to be selected.

ADDR AENB A 1 in this bit position caus~s the
output of the TD~.IUX to be applied to
the A input of the main ALU on the
address preparation board.

TID This drives the select control on the
TD~lUX. A 0 in this bi t selects the
DATA 0 to 15 input and a 1 in this bit
selects the TAR input. 88951000 02

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE DESCRIPTIO~
~P~O~.S=I~T~I~O~~~S_·~ ____ -r ________ ~ __ ~ ____________________________ ' ___ ___

31,30' LOAD

01 PCRL

01 TARL

11 I RCLK

29 . TARCLK

28 PCRCLK

27 SA

88951000 02

The two bits in this field are used
to. select 1 of the three address re
gisters on the addres~ board for
loading. If one of the registers is
selected,. then bit 33 (ADDR AENB)
will' be forced to a 1 and bit 32
(TID) will be forced to a 0 during
the DSA Resume signal. This. combi
nation has the effect of enabling
DATA 0 -to 15 into the A side of the
main ALU thus allowing the informa
tion on the DATA bus to pass through
the ALU to the selected destination
register.

This code enables the PCR load con
trol.

Tar Load enable.

Load the IR. Causes a clock signal
to the IR.

A 1 in this bit causes a clock sig
nal to be sent to TAR during ~nRCLK.
If bits 31 and 30 are not equal to
10 then this clock will cause TAR
to be incremented. If bits 31 and
30 are equal to 10 then this clock
will cause TAR to be loaded from
the output of the main ALU on the
address board.

A 1 in this bit position causes a
clock to be sent to the peR. If
bits 31 and 30 are not equal to 01
then PCR will be incremented. If
bits 31 and 30 are equal to 01 then
the peR will be loaded from the out-
put of the main ALU.

Select A. A 1 in this bit causes
the main ALU on the address board
to s'elect its A input for presenta
tion to its output. A 0 in this bit
directs the main ALU to add its A
and B inputs together for presenta
tion to its output. This bit allows
data on the A side of the ALU to pass
through to the inputs to the regis
ters or to the DSA Address bus with
out regard to the data that may be
present on the a input to the ALU.

'4-19

4-20

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

DIT I VALUE MNE~IONIC
POSITIO:-l

26 INDX

25,24,23 BUFFER

001 WFPACl

PIO WFPAC2

P11 WFPAC3

100 RSSAR

101 RFPACl

110 RFPAC2

111 . RFPAC3

22,21,20 GROUP 1

001 ADATA

010 FSRRD

DESCRIPTIO:-l

A 1 in this bit enables the multipli
cation of the IR by 2 in single pre
cision or by 3 in double pre.cision.
This is performed by setting the IHALU ;
to gate itsB input to its output in
single precision and by setting it to
add its A and B inputs together in
double precision. If the INDX bi t is
equal to 0 then the IRALU is set to
select the A input, thus passing the
IR through without multiplication.

Codes on these three bits are used to
read and write the locations within the
4-word by 16-bit memory (t~e Look Ahead
Buffer and the SSAR) on t~e address
board.

Write ~hE contents of DATA 0 to 15
into word number 1 of the memory, the
portion of the LABF that corresponds
to FPAC bits 0 to 15.

Write into word 2 of the memory, the
portion of the LABF that correspond
to FPAC bits 16 to 31.

Write into memory word 3, the portion
of the LABF that correspond to FPAC
bits 32 to 47.

Read word 0 of the ~emory, t~e SSAR,
onto DATA 0 to 15.

Read word I of memory, LABF bits f)

to 15.

Read word 2 of the memory, LABF bits
15 to 31.

Read word 3 of the memory, LABF bits
32 to 47.

Enables the output of the PDruX on the
address board onto DATA 0 to 15. This
code is used for storingIR and PCR
during a STOP operation.

FSR READ. Read the contents of
FSR onto DATA 0 to 15.

8895100002

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE ~!NE~!ONIC DEsenIPTIO~

POSI TIO~,S
----------~----~-----------I-----~----------------------------------_4 22, 21, 20
(Contd)

19,18,17

.:. . ~

.
16,15,14

4-21

011

100

101

110

III

001

010

011

100

101

110

111

011

CCRRD

ClnlD

IRCLR

FSRCLK

CCRCLK

Read the contents of the CeR onto
DATA 0 to 15.

This code is used in the execution
of the emlD command code. It com
plements FSR bit 9, the Relative
Mode bit.

This code is used in the execution
of the NIDX command code. It clears
the IR.

Load the FSR from DATA 0 to 15.,

Load the CCR from DATA 0 to 15 and
clear the operand byte count, OPBC,
bits 10 and 11 of the FSR.

FSR GROUP These codes are used to set and
clear selected bits in the FSR.

SET A Set the Active bit, FSR bit 15.

SET P Set FSR bit 4, the Protect Mode
bit.

SET A&P Set the Active and the rrotect bits
in the FSR.

SET DBP~ Set the double-precision mode bit
in the FSR, bit 7 .

CLR A Clear the active bit in the FSR.

SET F,SET Set the F~D bit and the DBP~l bit
DBP;I in the FSR.

SETF,CLR Set the FEN~ bit and clear Active
A bit in the FSR .

FPH GROUP The codes in this group are used
to load the input register to the
Floating Point Hardware portion of
the HFPU and to read. the output of
the }'PAC.

eLK 1,2,3 Load the contents of DATA 0 to 15
into nIl three sections of the
flonting-point input register, the
MDnEG, simultaneously. This code is
used to load thn hi~h word out of the
Look Ahe~d Buffer into the high and
middle word of the MUnEO and to load
the sign of this word, the Sign of
the floatini~-point number, into the
low word of the MDREG (sign-cxtension)
if in singlc-precision mode.

88951000 02

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT 'VALUE ~rnE~.!ONrC
POSrTIO~. .

16,15,14 011 CLK 3
(Contd)

100 DOUT1

101 DOUT2

110 DOUT3

111 NUL

13,12 CTRL

01 FSTART

10 SPEC

11 TRUE

4-22

DESCRIPTIO~

Load the low word of. the ~mREG.

Read the contents'of the high word of
the FPAC (bits 0 to 15) onto DATA
o to 15.

Read the middle word of the FPAC.

Read the low word of the FPAC.

Undefined.

The codes in this field are used for
. special micro-processor control func
tions.

This code is used to start the Floating
Point ~icro-Processor running. The
starting address for the Floating Point
Micro-Processor was saved in the FPjlP
Start Address Register on the DPALU
board at the time when the Master ~.1icro
Processor began execution of the
current Command-Code.

This bit is used in the execution of the
SPEC Command-Code. It sets the SPEC
Flip/Flop that appears in figure 4.3.
The output of this flip/flop drives
the most significant bit of the input
address to the SAR. This causes the
starting address for the next Command
Code to come from locations 16 to 31
within the SAR. The SPEC Flip/Flop is
cleared automatically by the execution
of the next Command-Code.

If the jump condition was specified by
bits 6 and 7 is true, the action of
the following micro-proccesor output bits
will be inhibited; bit 36, SC~RCLR; bit
28, PCRCLK; bits 9 and 8, EXEC. This
bit is used in the execution of the

. branch Command-Codes to allow the incre
ment of PCR, the release of the scanner
and the execution of the next Command
Code {f the branch condition is false.
It is false used to allow the micro
processor to jump to the code that
executes a CACS if the jump condition
is true.

88951000 02

BIT VALUE 'M::lmIONI<:;
POSITIO~S

11 FPH \'{ AIT

10 SPINH

9,8

01

4-23

EXEC

IEXEC NXT
f IF SP

DEscnIPTIO~

If this bit is set the Master ~icro
Processor will stop the execution
of micro-instructions to wait for
the Floating Point Micro-Processor
to complete its execution. This
bit is used whenever the Master
Uicro-Processor needs to start the
Floating Point Micro-Processor run
ning or when it needs.the result
of a Floating Point ~icro-Processor
operation.

I f this bit is set and >.;he FHPU
is in single-precision mode then
code all in bits 16,15 and 14 (CLK3),
and the scanner halt and consecu
tive cycle portions of bits 39,38
and 37, will be inhibited. This
bit allows the same micro instruc
tion, the one that fetches the se
cond word of the argume~t or the
one that loaJs the third word of
the argument into the ~mREG, to
be used in either single or double
precision.

The codes in this field are used
for execut ing the next Cc;mnand-Code

I and for stopping micro-processor
action.

"

Execute Next Co~mand-Codeif the
HFPU is in Single Precision mode.
The Execute Next function of the
Master Micro-Processor needs some
discussion. When the Execute Next
function comes true, the Master
Micro-Processor inhibits the next
instruction address output of its
instruction register and enables
the output of the Starting Address
Rmt (SAR). The SAR is a Rm.l that
contains 32 words of 8-bits each.
The least significant four bits
of the input address to this ROM
are the actual Corr.mand-Code that
is to be executed. The most sig
nificant bit of the input address
comes from the SPEC Flip/Flop.
The SAR translates the Current Com
mand-Code into a starting ROM ad
dress for the ~laster \Ii cro-Processor.
The three least-significant bits
cut of the SAR are concatenated
with the two most-significant bits
out of the SAR and loaded into the
Floating Point Micro-Processor Start
inc Address Register to form a start- I

88951000 02

DIT VALUE 1,INE~IONIC

POSITIO~

9,8
(eonid)

7,6

01

10

11

01

10

11

88951000 02

'I

EXEC NXT
IF SP

HALT

EXEC rEXT

JU1!P CON
DITION

INACTV

SP

COND ENJ3

DESCR I PT ION

log nddress for the Floating
Point Uiero-Processor wh fell can
be used at a later time by the
Haster jlicro-Processor,
This technique allows the startin~
address for the next micro-instruction
sequence be applied to the RO~ while
the last instruction of the currL~t
sequence is completing execution. Thus
no micro-processor overhead is incurred
in the process of changing from one
micro-instruction sequence to the next.

Yaster micro-processor ~alt. Upon
completion of the execution of the
current micro-instruction, the master
micro-processor clock is stopped.
'I'his code is used to stop the mlC!'O

processor after the detection of a
FEND Command-Code and at the comple
tion of the STOP sequence.

Unconditional Execute Next function.
See EXEC NXT IF SP above.
The codes in this group specify the
type of condition that is to be tested
for a micro-processor skip. If the
condition is found to be true, the
least-significan~ bi~ of the next ~n
struction address will be forced to 1,
thus causing a skip if the next in
s~ruction address is even. If the jU'1lP
condition is false the next instruction
address will not be modified.

In the execution of a TIESTART Alo. CO!T'.'nand
this jump condition is used to test the
state of the FSR that was fetched fro~
memory. It is used to cause the micro
processor to execute the next sequential
micro'instruction '.'.'hich is a HALT in
struction instead of proceedin~ to
execute the next Command-Code sequence.

This command code causes a skip if the
HFPU is in single-precision mode.

This jump condition is used in the
execution of the BRANCH Command-Codes.
The ~ctual condition to be tested is
determined by bits 7,6 and 0 of the
micrc-processor starting addrr:~;s of
the current Comnanu-Codc sequence .1S

savcd in the FP~lP Startinr: Add!"!";s
RCr,'istcr. 111C table on figl1l'C 4.5
illustrates the relationship \)<>tll'ecn
these bits and the condition bcin~
tested.

4-24

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT :VALUE
POSITIO~S

5,4,3,2,
1,0

M.NEMONIC

APDR

DESCRIPTION

These last six bits of the Master
Micro-Processor instruction contain
the address -f the next instruct ton
to be executed. As was described
above this address can be modified
in two ways. If the jump condition
is true, then the least-signi-
ficant bit of. this address, bit 0,
will be forced true. If the execute
next Co~~and Code field is true, this
address will be ignored and will be
replaced by the output of the Starting
Anrh'esg Rml .

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT

BIT !VALUE MNE~10NIC DESCRIPTION
POSITIOXS
~--~~~~----~-----------~--------.---.-------~----------------------~
39,38,37

poo

001

010

pl1·

100

101

110

111

8895100002

Mantissa The codes in the field are used
ALU to control the mode of operation

of the Arithmetic Logic Units on
the DPALU and the SPALU.boards.

A,Arith- The ALU passes its A input to
metic its outputs in the arithmetic

mode. Negative 0 will be con
verted to. positive O.

A-I The A input minus the least-sig
nificant bit of the guard digit is
transferred to the output in
arithmetic mode.

A,Logical The A input is transferred to the
output in logical mode. Negative
o is left as negative O.

A

A+B

A-B

3

The complement of the A input is
transferred to the output in
logical mode.

The arithmetic sum of the A input
and B input is transferred to the
output.

The arithmetic difference of A and
B is transferred to the output.

The B input is transferred to the
·output in logical mode.

The complement of the B input is
transferred to the output.

4-25

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT :v ALUE ~INE~.IONIC
POSITIO~S

36,35

01

10

11

34

4-26

Mant.
ALU In-'
vert

MACOH

MDOH

MBOH

FSUB In
vert

DESCRIPTION

The codes in this field are used
to perform various types of condi
tional negation of the operand
passing through the mantissa ALU.
Note that in figure 4.6 the codes
in the Mantissa ALU field are
grouped into pairs with small
brackets on the left hand margin.
The codes in this the \lantissa ALU
Invert field are used to modify
the Uantissa ALU field depending
upon some external condition. They
have the ability to switch the Hari
tissa ALU field between the pairs
of codes within the brackets in
figure 4.6. Thus, for exampte, if
the Mantissa ALU field specifies
code 100, A+B, and the condition
~pecified by the Mantissa ALU In
vert field is true then the actual
micro-processor output will corre
spond to code 101, A-B. If the
60de specified in the Mantissa ALU
field were a 101, then the Mantissa
ALU Invert field could switch it
to a 100 code, A+B. An examination
of the codes the ~!antissa ALU field
will show that this interchange of
codes is caused simply by invert
ing micro-processor bit 37.

Invert micro-processor bit 37 if
mantissa accumulator bit 0 is true
i.e., if the contents of FPAC is a
negative number.

If the Hardware field (Bits 10,9,8)
is an MPY, then micro-processor bit
37 will be inverted if the sign of
the FPAC and that of the ~IDREG are
different. If the Hardware field
is DIV. then micro-processor bit
37 will be inverted if the sign
bit of the ~IDREG is set.

Invert micro-processor bi t 37 if
the sign bit of the BREG is set.

Invert micro~processor bit 37. if
the current micro-code sequence
is that for Command-Code FSUB.

88951000 02

:

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT. I VALUE·.
POSITIO:-lS

33 J 32 .

31

30

29

28

27,26

25

88951000 02

00

01

10

11

01,

10

11

\!~E~tO~IC

Exponent
ALU

A,Arith
met.ic

A-B

A+B

B

BCLK

ACLKI

ACLK2

ACLK3,4

Mantissa
Mode Con
trol

RIGHT

LEFT

LOAD

·EACLK

DESCRIPT]O~

The codes in this field determine
the function perf6rmed by the
Arithmetic LOsic Units in the
exponent arithmetic section.

The EALU passes its A input to its
output in arithmetic mode. ~egative
o is converted to positive O.

The B input is subtracted from the
A input and passed to the output
of the EALU.

The sum of the A and B inputs is
passed to the output of the EALU.

The B input ·is passed to output of
the EALU.

If this bit is a 1 a clock signal
will be sent to the BREG on the
INSCLK that enters the next micro
instruction.

Send a clock to FPAC bits 0 and 9
to 15.

Send a clock to FPAC bits 16 to 31.

Send a clock to FPAC bits 32 to 47
and bits 48 to 51.

The codes in this field control
the type of operation performed
by the shift registers which con
stitute the DREG and FPAC.

Select the shift registers to the
shift-right mode.

Select the shift registers to the
shift-left mode.

Select the shift registers to the
Load mode. In this mode, if a
clock specified in bits 28 to 31,
the register will be loaded from
the output of the ALU.

Send a clock to Bits -2,-1 and bits
1 to 8 of the FPAC, the exponent.

4-27

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALl1:E ~~mtONlc" DESCRIPTION
POSITIO~S
-----------~----~---------1-----------------------·----------------4
24

23,22,21

000

001

010

011

100

4-28

HALT

Uantissa
B Side

ZERO

M/DENB

BENB

FX~iAX

FUfAX

This is the stop.control for the
Flo~ting Point Micro-Processor •

. .If this ·bit is set the micro
processor will stop action on
completion of the curre·nt micro
instruction and drop its busy
signal to the.Master Micro-Pro
cessor.

The codes in this field determine
the source of data to be applied
to the B input to the Mantissa
ALU and in some cases also to the
B input of the Exponent ALU.

All zero's are applied to the B
input of the Mantissa ALU' (b its 0
and 9 to 51).

The ~Immx is enabled and the MDREG
input is selected.

The MmmX is enabled and the BREG
input is selected.

The maximum nega ti ve integer (8000 16
is applied to bits 16 to 31. This .
constant is used for forcing the
maximum integer result in· the FLOF
function if the floating-point num
ber was to large to represent as a
l6-bit integer.

A constant of 12710 , FF 16 is applied
to the B side of the Exponent ALU
and the maximum negative mantissa
value, bit 0 ~ I and bits 9 to 51
- 0, is applied to th~ B side of
Mantissa ALU.

88951000 02 '

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT ~ALUE· ;\fNE~IO~IC DESCRIPTION
POSITIO~S
~~-~":".----4----~-----. ____________ ._ .. __ . __
23,22,21 101
(Contd)

110

111

20,19

00

01

88951000 02

ROUND

FIX

FLZERO

Exponent
B Side

ZERO

1

This code is used to effect the
rounding of floatin~-point results.
The truth table in figure 6.5 sho~s
the input bit to the ~antissa ALU
that will be driven in single
precision and double precison de
pending on whether the mantissa
is normalized (NR~I'D) or one po
sition short of being normalized
(Nml ' D- 1) . Th is bit i s e f f e c t i vel y
the most-significant bit of the
true guard digit. If the number
to be rounded is positive, the
selected bit will be added to
it. If the number to be rounded
is negative, the selected bit
will be subtracted from it.

This code is used to control the
comparison value input to the Magni
tude COID?aritor shown in figure 4.1
on the EXP and TI'lI~G board.
This special comparison value of
2210 is used to avoid excessive
shifting of nUI!1bers which are
smaller in ~agni~ude than 1.0 and
to resul t in the ir being correct ly
converted to integer O.

This code is used to force a true
floating-point zero result. It
applies an exponent value of -127 10
to the B side of the EALU and a
value of 0 to the 3 side of the
EALU.

The codes in this field are used
to apply selected constants to
the B side of the EALU.

Zero's are applied to the B input
to the EALU.

A value of 1 corresponding to a
1 in bit position 8 of the FPAC
is applied to the B side of the
EALU. This constant is used to
increment the contents of the
FPAC exponent.

4-29

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT ' VALUE ~n,m~toNIC

POSITIOXS

20,19
(Contd) ,

18

17

16

15,14

4-30

01

10

11

1

F

17

EBENB

Load
Shift
Count

PICK
Enable

Inhibits

DESCRIPTION

A value of 1 corresponding to a
1 in bit pOSition 8 of the FPAC
is applied to the B sid~ of the
EALU. This constant is used ,to
increment the contents of the
FPAC exponent.

A value of 15 10 is applied to the
B side of the EALU. This constant
is used as a comparison value to
check to see if a floating-point
number is too large to be converted
to a integer in the FLOF function.

A value of 23 10 is applied to the
B side of the EALU.This value is
used to generate the shift count
in the FLOF function.

This bit, if a 1, enables the out
put of the ~mREG to the B side of
the EALU.

This bit is used to load the mag
nitude of the output of the EALU
into the shift counter. This bit
causes the Sign Control for the
EOR function on the outputs of
the EALU to be driven from the
sign (bit -2) output of the EALU
so that the EALU outputs will be
inverted if negative. Additionally,
this micro-processor function loads
the sign of the EALU output into
the PICK flip/flop. The PICK F/F
will be set if the EALU sign is
positive and it will clear if the
EALU sign is negative.

If the PICK F/F is set, bits
30 to 28 (ACLK1,ACLK2, ACLK3,4)
will be inhibited and bit 31
(BCLK) will be forced.

The codes in this field are used
to inhibit other micro-processor
instruction fields in the presence
of certain conditions.

8895100002

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE ~tNEfIONIC DESCRIPTION
POSITIONS

15,14
(Contd)

13,12,11

88951000 02

01.

10

DPInhibit
ACLK3

PICK SET
Inhibit
EACLK

The ACLK3 portion of micro-pro
cessor bit 28 will be inhibited
if the HFPU is in Double Precision
mode. This feature is used,during
the truncation of the guard digi,
portion of the results.

Micro-processor bit 25, EACLK will
be inhibited if the PICK F/F is
set. This bit is used in the selec
tion of the larger exponent during
floating add.

11 NIDIDInhi- Inhibits micro-processor bits 30,
bit ACLKl- 29, 28 and 25 if the argument in
3 & EACUC the FPAC is normalized.

000

001

010

011

Jump Con- The codes in this field are used
dition to test for certain conditions

which ',viII dynamica.lly modify the
micro-processor sequence.

nul No jump. Do not modify the address
of the next instruction that appears
in bits 0 to 4.

ETB

UNF/OVF

MA=B

Exponent Too Big. This condition
tests the output of the ~agnitude
Comparator on the EX!> TI:'IING board.
If the value being loaded into the
Shift Counter is larger than the
comparison value, then the jump
will take plac~ i.e., the jump
displacement in bits 5 to 7 of the
micro instruction will be added to
the ADDR field, bits 0 to 4.

If the Exponent overflow condition
is true, the next instruction
address is ADDR plus DFLTA. If

.Exponent Underflow is true, the next
instruction address is ADDR plus
DELTA + 1. If neither cohdition
is true, the next instruction
address is ADDR.

Jump, address o'f next instruct ion
is ADDR + Delta, if the output of
the MALU is equal to O.

4-31

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE ~1NmIONIC DESCRIPTION
POSITIO~S
1~~~~---+----~-----------+---4
13,12,11
(Contd)

10,9,8

4-32

100

101

110
III

001

010

011

100

ZOUND

EGT

nul
nul

Hardware

MPY

DIV

SHIFT

NORM

Jump if the divisor is 0 or un
normalized.

Exponent Greater Than O. Jump
if the FPAC Exponent is greater
than O.

unused.
unused.

The codes in this field are used
to call up the high-speed, hard
wired algorithms on the EXP and
TIMING board. The next instruc
tion in sequence will not ex
ecute until the hard wired algori
thm has completed its function.

Mul tip1y. Mul tipl icand in ~mREG.
Multiplier in DREG. MALU set to
ADD/SUB MDREG to/from FPAC.

Divide. Dividend in FPAC. Divisor
in MDREG. ~IALU set to SUB; ADD" ~,mREG
from/to FPAC. Quotient goes to BREG.

If the PICK F/F is set, the BREG
will be shifted right a number of
places equal to the count in the
Shift Counter. If the PICK F/F
is clear, the FPAC mantissa register
will be shifted right.

Normalize. If the FPAC is normalized,
or is 1 bit-position short of being
normalized, this instruction does
nothing. If the FPAC is more than
one position un-normalized, then
it will be shifted left and the
FPAC exponent decremented until
it is one bit-position short of being
normalized. The Exponent ALU field
and the Exponent B Side must be
set correctly to result in the
exponent decrement, since the nor
malize hardware merely generates
an appropriate number of FPAC
exponent clocks (EACLK).

88951000 02

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE ~~E~.IONIC
POSITIO)lS

7, 6, 5 DELTA

4,3,2,1,0 ADDR

88951000 02

DEscnIPTIO~

Jump Displacement. DELTA will
be added to ADDR'if the Jump
Condi t ion is true .. The addition
is done modulo 16, thus the most
significant bit of ADDR will not
ch ange in a jump.

Address of next instruction.

4-33

4.2 DESCRIPTION OF ALGORITHMS

4.2.1 Introduction to Flowchartsan(i Listings~ The algorithms
used in the IIFPU to perform its various functions are described
in 4.2.2. The descriptio~s of that section arc all keyed io the
micro-code listings ~nd flow charts that reside in appendix B.
Figure 4.7 summarizes the terminology and diagramatic conventions
used in the flow charts of appendix A. The only unusual charac
teristic of tl1ese flow charts are the brackets that appear to
the left. These brackets encompass groups of flow chartsoper
ations that correspond to the manipulations performed by indivi
dual micro-instructions in the micro-code listing. A step number
(e~g., STEP#l) and the micro-code sequence number (e.g.jLOC 10)
is indicated to the left of the bracket in the flowchart~ Al
gebraic operations are indicated in an ALGOL-like manner. Figure
4.7 also provides a short glossary which defines the mnemonics
used in the flow charts to reference the various elements of the
HFPU.

4.2.2 The Algori thm~.

4.2.2.1 OP-CODE FETCH/COLD START. Master Control flow charts
page M17.

Step 1. Micro-code location 3. The same micro-code
is used for both the fetch of a new Command-Code word and for
the start-up on an A/Q Cold Start command. This micro-instruc
tion sets the Active bit in the FSR and initiates a DSA request
for a memory-read cycle with the PCR as the memory address.
The DSA Data-out is loaded into the CCR and the PCR is incre
mented on the trailing edge of RESU;,IE. The Operand Byte Count
(OPBC) is set to ~ to point to the first Co~and-Code in the
CCR. The micro-instruction sequence will return to this
point when the OPBC reaches 4. . . .

Step 2. Micro-Code location E. This ~nstruct~Qn
contains an ~unconditional Execute Next which causes the micro
processor to branch to the first instruction of the seq~ence
corresponding to the first OP-Code in the CCR. Page M26
of.the flow charts illustrates the decisions that will be made
in the course of the Execute Next operation. If the OPBC is
equal to 4, then the micro-cod~ will branch back to location 3
to fetch the next OP WORD. If the SPEC F/F is set, the micro
processor will branch to the first instruction of the next
OP-CODE. If neither of these conditions is true, the logic
then checks to see if an A/Q STOP command has been issued. If
so, it branches to the first micro-instruction of the STOP
sequence. If not, it branches to the first instruction cor
responding to the nest OP-CODE.

4.2.2.2 The SPEC GROUP. ~i. C. Flow chart pages M15 and :116.
Execution of the SPEC Command-Code is accomplished entirely
by single micro-instruction at location 32 which sets the SPEC
F/F. Once this flip/flop has been set, the next Command-Code
sequence will come from the upper 16 locations in the SAR.

4-34 88951000 02

LOC 10
STEP#1

LOC IE
STEP#2

88951000 02

Symbol

A+B

A+B

A+B

IBI
t

EACC
MACC

- FPAC
MACnn
MARG
EARG

BREG
PICK

MBnn

pF19

SAN/SFAN

EOR
DEC

e~

Usage

Begirining or end point for
a process

Decision Block

Operation

connection

off page Reference

Replace A with B

Replace A with B complemented

Absolute value
Low to High transition of a
logic signal

Exponent portion of FPAC
Mantissa portion of FPAC
Floating Point Accumulator
Bit nn of MACC
Memory Argument mantissa
Exponent of Memory Argument

Mantissa B Register
Single Bit register used to save
sign of exponent difference

Bit nn of B register

Sign of Answer

Exclusive or
Decrement

Figure 4.7. Flow Chart Conventions--(Sheet 1 of 2)

4-35

4-36

ADDR
TAR
PCR
IR
DBP~\l-

BUFIil to· 15
BUF 16 to 31
BUF 32 to 47
MD~ to 51

CCR
DPBC
FEND
ACTIVE
PROT
SSAR
AND
IADD

Address driven to DSA address Bus
Temporary Address Register
Programs Counter Register .
Index Register

..
Double Precision Mode Bit inFSR
First ,vord of. Look~Ahead-Buffer·
Second word of Look-Ahead-Buffer
Third Word of Look-Ahead-Buffer
Multiplicand/Divisor Register.
Input register to Floating Point ALU.
Used to hold ~Iemory Argument OlI\RG).
Current Com~and Register
Operand Byte Count.
FEND Bit in FSR
Active Bit in FSR
Protect Bit in FSR
Stop and save address register
Logial and Function
Micro-Processor Instruction Address
applied to RO~1

Figure 4.7. Flow Chart Conventions (Sheet 2 of 2)

88951000 02

4.2.2.2.1 CACS.: The execution of a CACS consists. entire'ly
of the micro-instruction at location 35. This instruction
initiates a DSA READ cycle with the PCR as the memory
address. I.f the 'IIFPU is not in Relative Mode, then the DSA
data is loaded into the PCR. If the HFPU is in Relative
Mode, then the DSA data is added to the old contents of the
PCR-and the result placed into the PCR.

4.2.2.2.2 BRAZ,BRA.'i ,BRAP ,DRA.\I. These Conmand-Codes require
two or three micro-instructions depending on the state of
the condition being tested. Bits 7,6 and 0 of the Starting
Address as given in the Flow chart Index of appendix A de
termine the condition to be tested. Refer to Fig. 4.5 for
a description of the relationship between these bits and
the tested condition.

Step 1. Location 36. This instruction performs
an FP WAIT to allow the Floating Point Micro-Processor (FP'~)
to complete its operation so that the data in the FPAC will
be valid.

Step 2. Location 37. This instruction tests
the specified condition. If it is true, the:. the next in
struction to be executed is the CrtC~ instruction at location
35. If the condition is false, the program counter is incre
mented once to advance it past the Address ~ord and execution
proceeds with the next sequencial Command-Code.

4.2.2.2.3 BRIZ,BRIN,BRIP,BRDI.
Step 1. Location 33. This instruction is simply

a no-op to allow the data in the Index Register to settle
so that the next instruction can properly test it.

Step 2. Location 34. If the condition is true,
the:next instruction to be executed is the CACS instruction
at location 35. If the condition is false, the PCR will be
incremented" and the next sequencial Command-Code will be
executed.

4.2.2.3 Single Micro-Instruction GrQup. The Command-Codes
in this group require only a single micro-instruction
cycle for their execution.

4.2.2.3.1 FEND. M.C. Flow charts page MIS. The FEND oper
ation actually involves two mi6ro instructions. The second
micro-instruction is used to place the gFPU in a state so
that it will be receptive to A/Q commands. .

. Step' 1. Location 10. This instruction waits for
the F~W to complete its current operation and then proceeds
to set the FE~n bit and clear the ACTIVE bit in the FSR.

Step 2. Location E. This instruction contains
simply .the Execute Next field which iS,used to disable the
Next Instruction Address output of the ~aster Micro-Processor
(lL\lP.) instruction register. If an AI"). STOP command has not
been received, the ~l~.IP Clocl{ will be stopped and the UFPU will

. await further A/~ commands. If a Stop Request is pending,
the micro-processor will proceed t·o execute the first instruc
tion of the STOP sequence at location 2. .

88951000 02 4-37

4. 2. 2. 3 . 2 Cmto .
tion complements
FSR and proceeds

Location MIl. This single micro-instruc
the·state of the Relative Mode bi~ in the
to first instruction of the next Commanct-.

Code. .

4.2.2.3.3 NIDX. M.C. Flowchart page MIL· This micro-
instruction ~lears the Index Register and proceeds to the
next Command.-Code sequence.

I

4.2.2.4 Floating Point Group. These commands all require
acti'on on t he part of the FP~IP. Four bits of the ~mp Start ing
Address are used to provide a starting address for the FP~W.
The bits are, in order from most significant to least signi
ficant bit, bits 1,9,7,6. A fifth bit of the W·IP starting
address, bit 2, is used to indicate that the FPj1P is to per
form an FSUB funct ion' instead an FADD. ~ote that the mlP
activity involved in the five functions, FLDD, FADD, FSUB,
FMPY, and FDIV is the same. Thus, the ~mp action for these
five functions is described only once in the following section
on FLDD. .

4.2.2.4.1
page F9.

FLDD, ~f. C. Flowch3.rts page ~I3. FPH Flow charts
.'

Step 1. Location 20 if FADD, F1IPY, FDIV or FLDD.
Location 24 if FSUB. Initiate a DSA memory read request with
the peR as the memory address. If the Relative Mode bit is
false, the DSA data will be loaded into TAR. If the Relative
Mod~ bit is true, the PCR will be added to the DSA data and
the result loaded into TAR. On the trailing edge of RESmm,
the PCR will be incremented.

Step 2. Location 21. Initiate consecutive DSA
memory read requests. If FSR bit 8 is set, select the IRALU
to multiply the IR by 1. If FSR bit 8 is clear, and the HFPU
Is in single-precision select the IRALU multiply IR by 2; if
In double-pr~cision, multiply the IR by 3. Add the outputs·
of the IR~LU to the data in TAR and apply the result to the
DSA address bus. Load the DSA data into the LABF word I
which corresponds to FPAC bits 0 to 15. The DSA Interface
automa tically increments TAR on the leading edge of RESU~\m,
so that the address is advanced in time for the next cycle,

. which will be stolen consecutively.
Step 3. Location 25. Request a DSA memory-read

cycle with the address generation as in Step 2. If the unit
Is in single-precision, disable the consecutive cycle request
and allow the release of the scanner. Load the DSA data into
the LABF word 2. If the unit is in single-precision mode
skip to Step 5.

Step 4. Location 26. Request a DSA memory-read
cycle with the address generation as in Step 2. Load the
DSA data into LABF word 3.

Step 5. Location 27. Wait for the FPMP to complete
lt~ current operation before proceeding. Transfe~ word 1
of the LABF into the high word of the ~DREG (bits 0 to 15).

4-38 ,88951000 02 ·

If in single-precision, load the sign bit into Qits 32 to 51
of the MOREG. ,If in double-precisiori. load the ~ign bit into
b~t~'48 to 51 only. The guard digits are thus set to true

'9 in o'nes complement arithmetic. '
Step 6. Location 28. ,Transfer word 2 of the

LABF to the middle word of the ~1DREG.

Step 7. Location 29. If the unit is in double
precision mode, transfer word 3'of the LABF to the low
word of the ~1DREG. If in single precision, CLK3 is ,in- ,
hibited thus leaving the guard digits unaffected. The MIRCLK
that terminates this micro-inst~uction sends a start signal
to the FP~P so that it can begin its portion of the FLOD
function. The MlW now proceeds to the first micro-instruction
of the next Command-Code.

This completes the ~DIP action during a floating
load. The following steps refer to the action taken by the
FP~IP. Refer to page F2 of the FPH Flow charts. Note that
the FPH Flow charts in many places are actually drav .. n as two
parallel flow charts, one for the exponent and the other for
the mantissa arithmetic.

Step 1. Location 3. Remove the exponent bias
and the effects of the mantissa sign by complementing bit 1
and then complementing bits 1 to 8 if the sign bit is set.
The complementing referred to here occurs on the input to
the ~mREG, so that the exponent value in the 11DREG is a valid
ones-compler.:ent nUlnber. The FP!.1P selects its ALU' S to trans
fer the YDREG into the FPAC in this micro-instruction.

Step 2. Location 18. Sign-extend the mantissa.
This micro-instruction is the first example of the conditional
ALU control in the FP:,IP. The ~,IALU is set to pass a zero
on its B input through to its output. If bit 0 of the FPAC
is set, however, the llALU function will be inverted to a
B Complement thus producing alII's on its output. Thus the
output of the ~iALU is equal to the sign of the FPAC. This
result is clocked into section 4, bits 48 to 51, of the FPAC
if the unit is in double-precision. If the unit is in single
preCiSion, this result will be clocked in bits 32 to 51 of the
FPAC.

- Step 3. Location 15. This step is used to clear,
negative O's in both the exponent and the mantissa. Both
the EALU and JiALU are set to the A Arithmetic mode and the re
sult loaded into the FPAC. 'The FP~W halts upon the completion
of this'instruction.

4.2.2.4.2 FADO/FSUB. FPH Flowcharts page F6. All of the
action described here tskes place in the FPJIP. The M~IP action
required for these functions was described above in the
section on FLDD. ,

Step 1. Location ~ of the floating-point micro-code.
The first micro-instruction of FADD transfers the mantissa of
the memory argument from th~ MDREG to the BREG. In the ex
ponent arithmetic, the exponent of the memory argument is sub
tracted from the exponent of the FPAC. If this difference
is positive, the PICK F/F will be set and the Shift Counter
will be loaded with the difference. If this difference is

88951000 02 4-39·

nega'tive, the PICK F/P will be cleared and,the Shift Counter
will be loaded wi th the complement of this difference.' The
Shift Counter is thus load6d with the magnitude of the
difference of the exponents and the PICK PIP has the sign
of the dif ference sto'red in it.

Step 2. Location IC. The mantissa portions of
the FPAC and BREG are shifted right one place arithmetically
to open up an overflow bit ,in bit position 9. This allows
the sum of the mantissa magnitudes to overflow wi thou,t inter
ferring with the sign bit. The exponent of the result will be
incremented at step 4 below in order to mantain the correct
value for the floating-point number. Note that shifting
the mantissa right one place divides the floating-point number
by 2 and that adding 1 to the exponent multiplies the floating
point number by 2 thus leaving its value unchanged. In the
exponent arithmetic, if the PICK P/F is clear, the exponent
of the memory argument is transferred to the exponent of the
FPAC. If the PICK F/F is set, the clock to the EACCis in
hibited thus leaving, the exponent unchanged. This has the
effect of selecting the larger of the two exponents for the
exponent of the result. This micro instruction at location
le also performs a conditional test on the magnitude 8f the
exponent difference. If the magnitude of the exponent differ
ence is too big for the size of the register (greater than or
equal to 26 in single precision, 42 in double precision),
then the next micro-instruction will be the one at location
IF. If the shift count is smaller than the register size,
then the next micro-instruction will beat location 10.

Step 3. Location IF or 10. If the shift count
was to big, then the instruction at location IF will be ex
ecuted. This micro-instruction clears the mantissa of the ~
floating-point number having the smaller exponent. If the
shift count is smaller than the register size, then the in
struction at location 10 is executed. This micro-instruction
calls on the hard-wired shift logic to shift the mantissa
of the argument having the smaller exponent right a number of
places equal to the exponent difference. The micro-instruc
tion sets the mantissa shift register mode controls into the
right shift mode and the hard-wired shift logic shifts the
mantissa of the smaller number right until the shift counter
reaches zero. The shift counter was loaded with the magnitude
~f the exponent difference at step 1 above. This micro-instruc
tion accomplishes the "exponent-alignment" portion of the
floating addition. In effect, the smaller floating-point
number has its mantissa shifted right arithmetically and
its exponent incremented (thus maintaining its value unchanged)
until its exponent is equal to the exponent of the larger num
ber. Once exponent equality has been achieved, then the two
mantissa's can be added together.

Step 4. Location IE. This micro-instruction
performs the mantissa addition. If the operation being per
formed is FADD, then the two mantissas are added together
using one's-complement arithmetic. If the operation is FSUB,
then the complement of the BREG is added to the mantissa of
FPAC using one's complement arithmetic. The exponent value
in the EACC is incremented by 1 to compensate for the right

4-40 88951000 02

shift of the mantissas that occurred in step 2 above. At this
point the floating-point addition is completed and all that
remains is the n'ormalization of the resul t. What follows
is the description of the common normalize logic that is us~d
by all of the functions that require post-nor~alization.

NOR\IALIZE ,FPH Flowchart page F12 and F13.
Step 1. Location 11. The first micro-instruction

of normalize simply sets up the test for'a zero mantissa
by setting the ~IA.LU to the A, Arithmetic mode. Since this
ALU mode converts negative 9 to positive '), this instruc
tion allbws a test for true zero mantissa.

Step 2. Location 12. If the mantissa portion of
the FPAC is equal to zero, then this instruction becomes a
jump to the micro-instruction at location 17 where the micro-
processor forces a true 9 result (mantissa = 9 and exponent

equals -127 10) and halts. If the mantissa is not equal to
9, then the hard-wired Normalize function will proceed to
normalize the floating-point number. The hard-wired Normal
ized function proceed~ in a rather pecuiiar fashion due to
the presence of the ruunding which occurs in step 3 below.
The problem is that if the mantissa is effectively alII's
and a round is performed, then a carry can ripple through
into the most significant bit causing a mantissa overflow. A
thorough consideration of the floating-point functions ('Add,
Subtract, ~,h.l.ltiply, Divide and FIXF) shows that if the raw,
pre-normalization, mantissa is already normalized, then the
rounding of this result will not cause a mantissa overflow.
This is due to the fact that a normalized raw result will
always contain at least one zero in the middle bit positions
irr the mantissa thus preventing a carry from rippling through
to the most significant bit., If, on the other hand, the
raw result is unnormalized and the normalize hardware is
allowed to normalize it completely, then the rounding may re
sult in mantissa overflow. To prevent this from happening,
the normalize hardware shifts the mantissa left and decrements
the exponent until the mantissa is one bit-position short
of being normalized if normalization was requi,red. If the
raw mantissa is normalized, the normalize hardware does not
Dot shift it.

Step 3. Location 13 •. This step performs the
rounding by adding/subtracting the most significant of the
true guard digit to/from the mantissa if the mantissa is
positive/negative. If the mantissa resulting from the
normalization is normalized, then the ~ost significant bit
of the guard digit is one bit off the end of the mantissa
(bit 32 in single prec~sion and bit 48 in double precision).
If the mantissa is one bit-position short of being normalized,
then the most-signi ficant bit of the· true guard di gi t 1 ies
two bit positions off the end of the mantissa (bit 33 in single
precision n~d bit 49 i~ double-precision).

Step 4. Location 14. This step completes the
normalization of the result. If the mantissa resultinG from
steps 2 and 3 is normalized, no action is ta~en. If the

. mantissa is unnormalized (at most it will be unnormalized by
one bit position), then the mantissa is shifted left once and

88951000 02 4-41

the exponent is decremented to produce a normalized result~
Step 5. Lo~ation IS. This step truncates the

guard digit to remove spurious information that maybe re-
, sidin~ in those bits following the rounding. Using one'~

complement arithmetic, all the bits of the guard digit
(bits 32 to 51 in single precision and bit 4S to 51 in
double precision), ar'e set equal to the sign of the number
tr'ue 0 condi tion. '

Step 6. Location 15. This step checks for
the possibility of exponent, overflow or underflow resulting
from the calculation. Within the HFPU, two extra overflow
bits, labeled EACC(-2) and (EACC (-1), are carried to allow
for the correct detection of exponent overflow or underflow.
When a floating-point number is loaded, the overflow bits
are set equal to the sign bit of the exponent (EACel).
This sign-extension of the EACC converts it into a ten-bit
one's complement number. At the end of the a calculation
if EACCI, (-1), and (-2) are all equal, then the exponent 'is
within range i.e., it can expressed in S bits, and the
result is valid. In this case, the FP~,!P halts at location
15 al~(L drops its busy signal to the ?IMP. If EAC,CI and EACC
(-1) are not the same, then the exponent of the result
cannot be represented in 8 bits and an error has occurred.,
In this case EACC (-2) indicates the true sign of the
exponent of the result. If it, is alone, then the exponent
of the result is negative and exponent underflow has occurred.
Micro-program control will then be transferred to location
17. If EACC (-2) is false, then the exponent of the res~lt
is positive and exponent overflow has occurred. Micro
program control will then be transferred t.O location 16.

Step 7. Location 17 if underflow, location 16
if overflow. In the, case of underflow the mantissa is set
to ~ and the exponent of resuit is set to the maximum nega
tive value of -12710' In the case of overflow, the exponent
is set to the maximum positive value of +12710 and the
mantissa is set to the maximum signed value. Note that in
the case of overflow, micro-program control returns to
step 5 (location IS) where the bits of the guard digit will
be truncated so that the result is a valid single or double
~recision'floating-point number. In the case of underflow,
the micro-processor simply halts at ,location 17. '

4.2.2.4.3 F~.1PY .. FPH FLOWCHART Page FS. Only the FP~iP
portion of FjlPY is described here. The ~mp portion was
described above in section 4.2.2.4.1, FLDD.

Step 1. Location 1. The FPAC mantissa is tr~ns
fer red to the BREG so that it may be used as the multiplier
1n the mantissa multiplication. The exponent of the memory
argument is aqded to the EACC and the result is placed in
the EACC.

...

4-42 88951000 02

Step 2~ Location D. In this step the mantissa
of the FPAC is set to positive 0 if the sign of the result
as indicated by the'Exclusive OR of the FPAC sign (MACO)
and the memory argument sign (~IDO) is positive. The
l~CC' is set to negative ~ if the sign of the result is ne
gati~e O. This step is necessary 'so that the arithmetic
right shifting of the MACC which occurrs during step 3
belo~ will proceed correctly.

Step 3. Location C. In this step the hard
wired multiply logic performs the mantissa multiplication
portion of F~,IPY. The mulplication is performed using a
one's-complement version of the usual binary multiplication
algorithm in which the ~ultiplicand is added to the partial
product for each true bit in the mul tiplie'r and the
partial product is shifted right for every bit in the mul
tiplier. In the one's-complement version of this algorithm,
a true bit in the multiplier is a bit which has the opposite
sense from the sign of the multiplier i.e., if the mUlti-
plier is positive, a true bit is a 1, if the multiplier
is negative, a true bit is a ~~ Additionallv , if the mul
tiplier is negative, the multiplic~r.d is sub~~'acted from
the partial product instead of being added to it as in the
binary algorithm. If the multiplier is positive, the one's
complement algorithm proceeds exactly as in the binary
algorithm.

The hard-wired fu~ction begins by loading
a counter register with the number of steps to be performed
(27 in single precision and 43 in double precision). This
step count is such as to provide for a correct fractional
multiplication with the binary point of, the result lying
to 'the left of FPAC bit 9. This corresponds to the mantissa
result being either normalized or one bit position short
of being normalized. The step count is then immediately
decremented preparatory to the test for algorithm completion
occurs at the end of the loop in the flowchart. If the
"true" least-significant bit condi-:iqn exists, then the
mantissa of the Memory Argument in the ~IDREG is added to
or subtracted from the mantissa of the FPAC depending on the
sign of the multiplier in the BREG. If the "true" bit con
dition is not satisfied, then the mantissa of the FPAC is
left unmodified. The next step in the algorithm is to
shift both the mantissa of the FPAC and the mantissa of the
multiplier (in. the BREG) one position to the right. The
BREG is shifted right arithmetically thus preserving its
sign in bit position ~ so that the tests for a "true"
bit and the add/subtract decision will proceed correctly
in succeeding steps. As was illustrated in figure 4.4 of
section 4.1.3, the content of the FSAN F/F is shifted in
to the sign position of the MACC. The SFfu~ F/F was loaded
with the expected sign of the multiply result at the
time that the M~lP started the FP~IP. This sign is given
by the Exclusive on of the sign of the memory argument
and the sign of the FPAC. The SFAN F/F is provided as

88951000 02 4-43

the ·right serial input to the MACe so that the MACC
will shift right in a true arithmetic fashion even if
some of the intermediate steps in the multiply algorithm
result in a tempor~ry overflow of the mantissa into the
mantissa sign bit. The final step in the algorithm is a
check of the status of the step count. If it has reached
.~, the proper number of steps have been completed and micro
processor control is transferred to the normalize·~outine
at. location-II in the micro code, otherwise the hard~
wired algorithm proceeds to check the next bit in the
mul ti pI ier fo,r the "true" condi ti on. The Action of the
normalized routine was described in the preceding section
of ·FADD/FSUB.

4.2.2.4.4 FDIV. FPH Flowcharts page F9. HMP action for
the FDIV function was described above in the section on
FLDD. What follows then is a description of the FP~\IP
action involved in FDIV.

Step 1. Location 2. When the ~mp starts the
. FPMP, the potential sign of the result (equal to the
Exclusive OR of the sign of the memory argument and the
sign of the FPAC) is loaded into the SFA~ F/F. SFAN is
set if the sign of the resul~ will be negative. The
first step of FDIV ~hifts th~ mantissa of the FPAC right
arithmetically one position and increments its exponent
thus maintaining its value unchanged. This right shift
of the dividend is performed in order to open up an
overflow bit so that the resulting quotient in the BREG
will not overflow that register. Mathematically, the
division of two normalizea mantissas can result in a
quotient that lies between .5 and 1.999. Shifting the
MACC right one position effectively divides the quotient
by two so that it lies in the range .25 to .999. Thus
the result of the divide will either be normalized or
one bit-position short of being normalized and thus will
be compatible with the hard-wired normalize algorithm.
Step 1 also checks the di visior in the :.1DREG to veri fy
that it is a proper normalized floating-point number. If
it is not normalized, then a divide error would occur and
program control is transferred to location 16 where
the maximum signed result will be forced. The micro
processor action involved in forcing the maximum result
has been described above in the normalize section of

. FADD/FSUB. If the divisor is a proper normalized floating-
pOint number then the micro-program proceeds to step 2. .

Step 2. Location 10. In this step, the ex
ponent of the divisor is subtracted from the exponent
of the dividend to generate the exponent of the result.
The mantissa of the dividend, in the FPAC, is converted
to absolute value. This is performed by setting the MALU
to the A,logical mode and allowing inversion of the MALU
to the A, complement mode if the sign of the FPAC OIAC~-H)
is set. The bits in the mantissa of the FPAC ire thus
complemented if it is negative. The MACC is converted
to an absolute value in order to simplify the decisions
that are made during the mantissa division which is de
scribed in the following step.

4-44 88951000 02

Step 3. Location lA. This step utilizes
th~ hard-wired divide logic to perform the division of
the ~wo mantissas. The algorithm used is a one's-com
plement version of the standard binary divi~ion algorithm.
As iR the hard-wired multiply logic the sequence'begins
by initializing the step counter so that the result will
end up either normalized or one bit~position short of
.being normalized. Note that the value loaded in the count
(28 in single pr~cision or 44 in double precision) is
exactly equal to the number of bits in the mantissa in
cluding the guard digit and the sign bit.

Figure 4.4 of section 4.1. 3 illustrates the hit
position at which the quotient bits are shifted into the
BREG as the divide result is generated. The hard-wired
logic assumes that the magnitude of the dividend is in the
FPAC and that the one Is-complement divisor is in the ~1DREG.
The micro-code sets the !llALU to the A-B mode with an ALU
inversion (A-B goes to A+B) if the sign of the divisor
(MD~H) is negative. Thus the MALU is continuously sub
tracting the magnitude of the divisor from the magnitude
of the dividend. The algorithm proceeds by first decre
menting the count preparatory to the final test of the
count at the end of the algorithm loop. The logic now
tests the sign of the output of the MALU (the magnitude
of the dividend minus the magnitude of the divisor). If
this sign is positive then it is time to enter a true bit
into the quotient and to replace the dividend with the
difference between the dividend and the magnitude of the
divisor. A "True" bit entered into the quotient consists
of a 1 bit if the sign of the answer is positive and a
~. if the sign answer is negative. If the sign of the
difference between the magnitude of the dividend and the
magnitude of the divisor was negative, then no change is
made in the dividend and a false bit must be entered to
the quotient. A false bit consists of a ~ if the sign
of the answer is postive and 1 if the Sign of the answer
is negative. Thus the quotient developed is a one's-com
plement number. The next step in the algorithm consists
in multipling the dividend by 2 by shifting it left one
position. The final step in the hard-wired algorithm is
to test the count to see if has reached~. If it has not,
the algorithm loops around and performs another step.
If it has reac'hed ~,' then the micro-program proceeds to
location 11 where the normalization takes place. The
,normalization was described above in section 4.2.2.4.2,
F(illD/FSUB.

4.2.2.4.5 FLST. Master control :t'lowcharts page.M9.
FPH flowcharts page F3. There is no FP~lP micro-processor
action involved in FLST. The flowchart on pg. F3 merely
shows the ~ffect of the passive logic in the floating
point portion of , the H'FPU during FLST. If the sign of
the floating-point number in the FPAC is set then all

88951000 02 4-45

4-46

8 bits of the exponent are complemcnted,so that they will
correspond to the external floating-point format. If the
sign of the FPAC is posit~ve. then the bits of the ex
ponent are read un-complemented. Following the above
step, the most-significant bit of the exponent is uncon
ditionally complemented so as to put the exponent into
the proper biased form. The following steps describe
the action t~king place in the ~~P during FLST.

Step 1. Location 2E. The first step ofFLST
is to fetch the address of the argument and perform the
Relative Address Mode calculation as was described above
in step I of FLDD, section 4.2.2.4.1 This step is
performed in parallel with any preceding FP~W action that
may be in progress.

Step 2. Location 2F. The um> now interrupts
its micro-instruction flow to wait for the FP~lP to com
plete its action. When the FPMP drops its busy signal
to the ~\mp, the ~D.IP proceeds to generate a memory-write
cycle request to the DSA interface. The multiplied
Index value is added to the address in TAR as was des
cribed above in step 2 of FLDD. The ~.np enables. bi ts
o to 15 of the FPAC onto the DATA 0 to 15 lines and the
DSA interface drives them at the appropriate time onto
the DSA data bus. The address in TAR is incremented by
the DSA interface on the leading edge of the RESU~m
signal. Note that this cycle is performed in conse
cutive-cycle mode with the scanner halted if the qFPU
s in BLOCK mods. Because of the wait at the beginning
of this step for the FPJIP, the first step did not hold
the scanner at the completion of its cycle.

Step 3. Location 3Q. This micro-instruction
generates the second write-cycle request to the DSA
interface with the address information as in step 2 above.
The MJIP enables bits 16 to 3lof the FPAC onto the DATA 0 to
15 lines so that the DSA interface can drive them to the
DSA data bus. If the HFPU is in single-precisioti mode
then this micro-instruction constitutes the final step
of FLST. The SPI~~ bit disables the SHLT and CC functions
in the DSA field and the "EXEC-NXT if SP" code causes the
IDIP to perform its Execute Next function which takes the
Micro-program sequence to the next Co~mand-Code. If the
HFPU is in double-precision mode, then the cycle of step
3 proceeds exactly as the cycle of step 2 with the 'scanner
remaining halted and the Consecutive-Cycle mode in effect.
In this mode, TAR is incremented on the leading edge of
RESUME so that the address is ready for the next cycle.

Step 4. Location 31. This step is performed
only if the HFPU is in double-precision mode. This
step consists of a third DSA memory-write cycle with the
address formation as in steps 2 and 3 above and with bits·
32. to 47 of the FPAC being enabled to the DSA data bus.
Upon completion of this step, the micro-instuction se
quence proceeds to the beginning of the next Command-Code.

88951000 02

4.2.2.4.6 FIXF. M~IP flowcharts pg. 7, FPH flowcharts
pg. F4. For the FIXF function, the master control fetches
the integer at the effective operand address, and the
FP~IP performs the inter;cr to floating-point conversion by
supp~ying the'appropriate exponent and normalizing the
result. The discussion below begins with the action on the
part of the Master ~icro-Processor. .

Step 1. Location lA of the ~mp micro-code.
The first step of FIXF involves the fetch of the address
with the relative address computation being performed
as in step 1 of FLDD, section 4.2.2.4.1 .

Step 2. Location lB. In this micro-instruc
tion, the M~IP requests a single DSA memory-read cycle with
unmultiplied indexed addressing allowed. This step is
exactly the same as step 3 of FLDD with the exception that
the IR will not be multiplied by 2 or 3. This characteristic
allows the HFPU to access sequencial elements in dimensioned
integer variables exactly as it does for dmensioned real
and double-precision variables. The integer fetched from
memory is placed intu the middle word of the Look-Ahead
Buffer.

Step 3. Location IC. The 1n~ first interrupts
its micro-instruction sequence to wait for the FP~IP to
complete any preceding function. The ~.mp then transfers
the integer to the middle word of the input register
of the floating-point arith:netic, the ~,IDREG, and it also
places the sign in ~he sign bit of that register by
loading the integer into the entire high word of the ~IDREG.
The FP~IP will ignore the surrious bits loaded into the
other bit positions and will concern itself only with the
bit posi tion$ 0 and 16 to 31. The ~mp starts the FPMP at
the beginning of its FIXF function. This completes the
MMP action during the FIXF function. It now proceeds to
the beginning of the sequence for the next Command-
Code. What follows then is a description of the FP1~
action involved in FIXF.

Step 1. Location 8 of the Floating-Point
micro-code, pg. F4 of the FPH flowcharts. In.this step
the FPMP utilizes the exponent constant 17 16 to present
the exponent of the FPAC to 23 1 This value is chosen
so that when the integer is Shl.~ted from its present
position in bits 16 to 31 to its final position somewhere
in bi ts 9 to 2'3, the resulting floating-point number
will have the correct exponent value. In the mantissa,
the FPMP transfers the input argument from the ~IDREG to
the mantissa of the FPAC. This results in the integer
lying in bits 16 to 31 and the sign bit in bit position
o.

Step 2. Location A. This step sets all of
the bits of .the mantissa of the FPAC equal to the sign
bit except for bits 16 to 31 which are left unmodified.
This is done by selecting the MALU to the B mode with
a , supplied to the B input. An ALU inversion is allowed

. 88951000 02 4-47

4-48

if the sign. of the' FPAC (MAC~) is true. In that case,. the
MALU function will be. chan::;ed to a B, complement, ·thus·
producing a.ll l's on the ~lALU output if the FPAC is ne
gative. The.output of the ~tALU,. D's if positive, lis
if ne~ative,is entered into sections 1,3, and 4 of the
MAce. Micro-program control is now transferred 'to the.
normalize section of the micro-code at location 11. This
is exactly the same n'ormalize code that was described'
above in section 4. 2.2.4.2 on FADD /FSUB ~

4.2.2.4.7 FLOF. Master Cont!rol flowcharts pg. ~16, FPH
flowcharts pg. F5. The FLOFfunction is unique in that
the action of the M~W and that of the FPMP are more inter
locked than they are in the other functions. The hl~P starts
the FP~.lP running on the conversion of the contents of the
FPAC, from floating-point to integer. It then proceeds to
the address generation and then waits 'for the FP~lP to com
plete its operation before storing the result.

MMP Step 1. Location 22 of the Uaster Control'
micro-code. The hl~W f irst waits for the FPjW to comp lete
any rroceeding function that may be progress and then starts
it executing on the FLOF function.

FPMP Step 1. Location 9 of the FP~,IP 'micro-code.
In the first step of FLOF, the EALU is set to compare the
EACC against an exponent value of 15 10 (F 16). If the ex
ponent value in the FPAC is greater than 15 10 , then the
floating-point number in the FPAC is ~oo large to be converted
to a 16 bit, onels-complement integer value. If the exponent
is greater than 15, then program control transfers to location
F. If the exponent is less than or equal to 15, then program
control transfers to location D.

'Step 2. Location D or F. The micro~insruction
at lbcation F ,is used to force the maximum signed-integer
result if the floating-point 'number is too large to be con
verted to an integer. This is done by driving the maximum
negative integer value, 800016, to the B input of the ~tALU,
setting the ~lALU to the B, complement mode, and allowing
an ALU inversion if the FPAC sign is set. Thus, if the FPAC
is positive, the maximum positive integer, 7FFF 16 , (the one's
complement of 8000 16) will be loaded inte the middle portion
Df the FPAC. I f the FPAC is nega ti ve, the ~IALU function will
be changed to B and the middle word. of the FPAC will be
loaded with the maximum negat i ve integer. 'rhe micro-instruc
tion at location F is the final step of FLOF if the floating
point number in the FPAC was to large to be converted to an
integer. If the floating-point number was within range, then
the micro instruction at location D is executed. This micro
instruction loads the Shift Count register with the value
2310-EACC. This value is the number of ·positions that the
mantissa of the FPAC must the shifted to the right in order
to place the most-significant 15 bits into FPAC bits 16 to

88951000 02

31. This micro-instruction also tests the magnitude of the
value" loaded into the Shift Count register to see if any bits
of significance will remain in FPAC 16 to 31. If the value"
is less than' 23 1 0, then the integer result will be greater
than ~ and micro-progra~~ed control transfers to location E.
If the value is greater than or equal to 2310 than all the
bits significance of the mantissa of the FPAC would be shifted
past bit position 31 and the result will be O. In order to
avoid unnecessarily long shifts and to prevent the possibility
of a negative ~ result, micro-program control transfers in
this case to the force-zero micro-instruction at location 17
which was previously described in the description of normalize
in sect ion 4.2.2.4.2, FADD /FSUB.

FPMP Step 3. Location E. In this step, the hard
wired shift logic shifts the mantissa of the FPAC right a
umber of places equal to the value in the Shift Count register.

FPMP Step 4. Loca tion 15. The FP~IP comes to a
halt at this location thus completing FPhlP action in FLOF.

MMP step 2. Location 38 of the Master 1Iicro-Code.
In this step, the W,IP fetches the address and performs the
relative address calculation that was describ8': above in
step 1 of FLDD. This 1I~lP step occurs in parallel with the
FP1W operations described above.

MMP step 3. Location 23. The MMP first interrupts
its micro-program sequence to wait for the FP~P to complete
its FLOF operation. The ~,e,!p then proceeds to generate a
DSA memory-~~ite request with the index addressing as,in
step 2 of FIXF. The raw, unmultiplied index value is used
so that the integer result of the FLOF function can be stored
into a dimensioned integer array. Bits 16 to 31 of the FPAC
are ~nabled onto the DATA 0 to 15 lines so that the DSA
interface can drive them to the DSA data bus. This completes
the M~W a~tion in FLOFand micro-program control now transfers
to the next Command-Code.

4.2.2.4.8 FCm.1. ~gW flowcharts pg. ~.t8, FPH flowcharts pg.
F4. At location 19 in the ~taster Micro-Code, the WIP waits
for the FP~IP to complete its previous function and then
starts the FPjtP executing on the Fcmt function. The M~iP
then proceeds to execute the next Command-Code. The following
is a description of the FP~;IP action in FCO~1.

Step 1. Location 7 of the FP~P micro-code.
In this step, the FP~P complements the mantissa of the
FPAC with the ~.Il'tLU in the logical A Complement mode.

Step 2. Location 15. This micro-instruction
passes the FPAC through the EALU and the ~ALU with the
ALU's in the A, arithmetic code. This has the effect
of converting negative in the mantissa and exponent to
positive f/J. The FPMP then halts.

88951000 02 4-49

4.2.2.4.9 A/Q Load FPAC Commands. MMP flowcharts pg.
}.IS, FP~tP flowcharts pg. F2. Both micro-processors must·
be activated in order to complete the execution of the
three A/Q commands which ·are used to load the three
sections of the FPAC. The decoding logic in the A/Q
inte'rface loads the 16 bits of the A bus data into the
appropria te section of the ~IDREG and starts the ~mp executing.
the micro-instruction at location 1 in the MMP micro-·
code~ Bits 7 and 6 of the M~P starting addre~s ~re used
to inform the FPjIP as to which of the three A/Q load
commands it is to execute. The ?Imp simply starts the
FP~IP running and proceeds to location E where it halts.
The FPjIP then proceeds in a manner essentially identical
of that of the FLDD function. Its first micro-instruction
lies at location 4,5 or 6 respectively for the functions
load FPAC bits a ·to 15, 16 to 31, or 32 to 47. The
FP~lP transfers the data in the MDREG into the appro-·
priate bits of the FPAC. If it is performing the load FPAC
bits a to 15 function, then it also loads the sign bits
into the guard digits. The micro-program proceeds to
location 18 where it performs a second sign-extension of
the sign into the guard digits. This step is performed in
order to prevent a possible exponent-error detection
in the succeeding step. The program then proceeds to
location 15, where it clears negative ~IS in the exponent
and. mantissa and halts.

4.2.2.5 Index Register Group. The three commands in this
group are used to load, modify and store the contents
of the IR. These three Command-Codes all execute with
out requir~ng any action on the part of the FP~rp. Ad
ditionally, they all begin with the fetch of the address
and the relative address calculation that was described
above in step 1 of FLDD. In what follows then, the se":'
cond step of each of these three functions will be des
ribed.

4.2.2.5.1 INDX. Page M12 of the MC Flowcharts. Locations
2C and 2D in the ~ntP ~,1icro-Code. The second step of
INDX involves a DSA memory-read request with the unmodified
contents of TAR bring used as the memory address. ·The
effective address for the INDX function is not indexed.
The specification of the IRCLK field in the micro
instruction causes the DSA data to be passed through the
main ALU on the AD DR board by forcing t he TD~,mX to selec t
its DATA a to 15 input during the RESm,IE signal. The
micro-instruction sets the ALU to select its A input and
directed the Tm.1UX to select its TAR input during the
the REQUEST portion of the memory cycle, so that the con
tents of TAR were passed through the ALU wher.e they were
driven to the DSA address bus by the-DSA interface. During

4-50: 88951000 02

RESU~tE the DSA data will pass through the ALU i.rres.pective
6f what data ~ay present on the B iriput to the ALU.The
output of the'ALUis loaded into In on the trailing edge
of RESU~IE. The mIP then proceeds to execute tlie .f irst
instruction of the next Command-Code.

4.2.2.5.2 ADDI. ~tC Flowcharts pg. ~.n3. Micro-code
locations 2A ~nd 2B. Th~ second step of ADDI is essentially
identical to the second step of INDX with the exception
being that the PI~UX is set to select its IR input ~nd the
main ALU on the ADDR board is set to add its A and.B
inputs together. During RESU~1E the PDIUX' is enabled and
the TD~IUX is set to select its DATA 0 to 15 input so that
the DSA data is added to the contents of the IR and the
result loaded into the IR. As in I~~X, the main ALU pre
sents the contents of TAR to its outputs during the REQU~ST
portion of the DSA cycle so that it can be used as the
memory address. The M~IP then proceeds to execute the next
Command-Code.

4.2.2.5.3 STRI. ~IC Flowcharts pg. ~n4. Micro-code
locations 17 and 18. The second step of .ST~I consists
of a DSA memory-write request with TAR being used as
the address. The main ALU on the ADDR board is set to
select its A input with the TD~.mX being set to sele'ct
the TAR input. Thus the output of the ALU which is used
as the DSA address corresponds to the contents of TAR.
The PI~UX is enabled and set to select its IR input and
the GROUPI field is set to ADATA. This drives the output
of the PDlUX, which corresponds to the IR, onto the DATA
o to 15 lines so that the DBA interface can drive it to
the DSA data bus during the memory cycle. The M~1P then
proceeds to execute th~ next Command-Code.

4.2.2.6 The .A/Q STOP Command. MC flowchart pg. M19
FPH flowcharts pg. F3 (same as in FLST). If the HFPU
is inactive and the A/Q STOP COmr:1and is received, the
A/Q interface forces the :\I:.IP to begin running at loca
tion 2. If the HFPU is active when the command is
received, the A/Q interface sets the STOP REQUEST F/F.
Whe·n the M~IP tries to execute the next Command-Code
with the Operand Byte Count not 'equal to 4 and the SPEC
FIF clear, then the presence of a Stop Request will cause
it to jump to locat·ion 2 and execute the STOP sequence
which is describ'ed below.

Step 1. Loca t ion 2 of the M~tP Micro-Code. Since
the STOP command requires that the Protect ~tode bi t in ·the
FSR be set, the actual FSR value must be saved before the
sequence of memory-write cycles begins. Thus the ~mp first
waits for the FP~.IP to complete i tsaction so that any FSR
changes (DVFL,OVFL or UNFL) will have been recorded. The
The MMP then reads the FSR onto the DATA lines and stores
it in the first word of the LABF.

88951000 02 ·4-51

Step 2. Location F. Having sn:ved the FSR, '
the ~~P sets the Active and Protect bits and transfer~
word zero of the LABF, the SSAR, into TAR. TIle SSAR
was loaded directly ~y the decoding logic in the de
coding A/Q interface at the time that the STOP command
was received. .

Step 3. Location 10. This DSA memory-write
cycle stores the value of the FSR that was saved in
LABF at the address contained in TAR (SSAR). The cy61e
is performed in Consecutive Cycle mode so that TAR 'is
incremented. on the leading edge on RESU~.IE. '

Step 4. Location 11. This cycle stores the
CCR at the address contained in TAR (SSAR + 1). TAR
is incremented on the edge RESUlffi.

Step 5. Location 12. This cycle stores the
IR at the address contained in TAR (SSAR + 2). The

. TD~IUX is set to select its TAR input and the main ALU is
set to select its A i~put so that the output of the ALU
corresponds to TAR. The PDIUX is set to select its IR
input so that the value in the IR can be driven to the
DATA 0 to 15 lines and from there to the DSA data lines
by the DSA interface. TAR is incremented on the leafl.~ ng
edge of RESU:.1E.

Step 6. Location 13. This cycle stores the
PCR at the address contained TAR (SSAR + 3) in a manner
essentially identical to the store of the IR in step
5. The only difference that the PI~mX is set to select
its PCR input. TAR is again incremented on the leading
edge of RESl::.m.

Step 7.
high word of the
(SSAR + 4)., TAR
of RESU~IE.

Location 14. This cycle stores the
FPAC at the address contained TAR
is incremented to the leading edge

Step 8. Location l5~ This cycle stores the
middle word of the FPAC at the address contained in
TAR (SSAR + 5). TAR is incremented from the leading
edge of RESU~.1E. .

Step 9. Location 16. This cycle stores the
low word of the FPAC at the address contained in TAR (SSAR +
6). This is the final memory cycle of the STOP sequence
thus the SHLT and CC fields are cleared so that the scanner
will be released at the end of this cycl~.

Step 10. Location D. This instruction clears
the Active bit in the FSR and starts the micro-processor
HALT sequence.

Step 11. Location E. This micro-instruction
1s entered as start of the HALT sequence. The only field
that is set in it is the EXEC NXT field. This places
the micro-processor in the proper state to accept new
A/Q Commands. If a Stop Request is not pending the micro
processor clock will stop at this point. If a Stop Re
quest is pending, than the clock will not stop and the

4-52 88951000 02

•

.J..

micro-processor will now proceed to execute the first
micro-instruction of the STOP sequence at location ~.
Note that the Stop Request that initiated the current
STOP sequence was cleared automatically by the entry into
this sequence. The ability of the MMP to execute se
quential Stop Commands allows it to be opeiated in a mul
ti-level interrupt environment.

,
4.2.2.7 RESTART. MC flowcharts pg. M22, FPH flow chart
pg F2. The restart sequence is performed primarily by
the M.\IP. The FP~IP is ut il ized towards the end of the
sequence to performe an FLDD sequence to transfer the
FPAC contents fetched from memory out of the rlIDREG into
the FPAC.

Step 1. Location~. This instruction sets the
Active bit in the FSR and transfers word ~ of the LABF
(the SSAR) into TAR. Note that in both the STOP and
the RESTART sequences, the value in the SSAR is left un
changed by the sequence. This is the value that would be
read by an A/Q read SSAR command.

Step 2. Loca~ion 4. This Micro-instruction
sets the double-precision mode bit in the FSR so that the
FPAC value that will be fetched from memory can be loaded
correctly into the FPAC reguardless of the precision that
it was originally expr~ssed in. This instruction requests
a DSA memor~ recycle with TAR as the address. The DSA
data is loaded into word I of the LABF. The first word
fetched is the value that will ultimately be loaded into
the FSR. This value is saved in the LABF until the end
of the sequence to prevent any conflicts that might arise
from. its being' loaded into FSR at this point. This cycle
is performed in Consecutive~Cycle mode so that TAR is in-
cremented on the leading edge of RESU~JE. .

Step 3. Location 5. This instruction fetches
the data at the location pointed to by TAR (SSAR + 1) into
the'CCR and causes TAR to be incremented on the leading
edge of RESm.lE.

Step 4. Location 6. This instruction reads the
data at the location pointed to by TAR (SSAR + 2) and causes
that data to be loaded into the IR. The load of the IR
pro~eeds in a manner identical to that described in
section 4.2w2.5.l, INDX. The setting of the IRCLK bit
in the micro-instruction causes the main ALU and the
TBMUX to switch "from TAR to DATA 0 to 15 during the
RESU~.IE signal, thus allowing the data to be presented
to the input of the IR. This, unfortunately, inhibits
TAR from being presented to the DSA address bus during
the later part of RESU~E. Thus consecutive cycles
can not be used for this and the following cycle.
TAR is incremented explicitly by the TARCLK bit in
the micro-instruction.

88951000 02 4-53

Step 5. Location 7. This cycle fetches the data at
the address contained in TAR (SSAR + 3) and loads it into PCR.
It functions~ in a manne~ identical to that of step 4 above with
the exception that the PCR is loaded instead of the IR. TAR
is incremented explicitly by the micro-instruction.

Step 6.. Location 8. This cycle fetches the data at
the address contained in TAR (SSAR +4)· and loads it into· the
high wor:d of the ~1DREG. Additionally, the most significant bi t
is loaded into the guard digit bi tsof the~.mREG to allow for
sign-extension. This cycle is performed in Consecutive-Cycle
mode so that TAR is incremented automatically by the DSA inter
face on the leading edge of RESmIE.

Step 7. Location 9. This instruction fetches the data
at TAR (SSAR + 5) into the middl~ word of the ~1DREG. TAR is in
cremented on the leading edge of RESU~3.

Step 8. Location A.· This cycle fetches the data at
the location pointed'to by TAR (SSAR + 6) and loads it into the
low word of the 11DREG. This is the final memory cycle of RE
START, thus the "SHLT,CC" field is cleared so that the scanner
will re released at the end of this cycle. In the same micro
instruction, the MMP intiates the FP~.!P FLDD function. The FPMP
then proceeds to transfer the ~1DREG into the FPAC in an FLDD
function as was described above in section 4.2.2.4.1.

Step 9. Loca t ion B. The ?r,!p now fetches the old· FSR
value from word I of the LABF and loads it all except for the
Active bit into the FSR.

Step 10. Location C. This micro-instruction tests
the state of DATA line 0, the old Active bit, to see if it is
true. If it is true, i.e., if Active, then the ~~P proceeds to
execute the next sequential Com~and-Code. If the old FSR was
not active, then the r,f.IIP proceeds to location D where it clears
the Active bit in the FSR and halts. Tne old FSR Active bit was
not loaded into the FSR at step 9 so as to prevent a possible
discontinui ty in the Active state of the FHPU, since the
HFPU does not really go inactive until it completes the execution
of the HALT instruction at location D .

•

4-54 88951000 02

DIAGRAMS 5

This section of the manual contains the logic diagrams for the hardware floating-point unit.

88951000 02 5-1

~
I~, ,

w f--

~ ~

~ u
;;

1-

" I il ~)(' loe XX
III

t N

~X X)(X XX XX XX X)(X li
~ V
~ X)()(lOt)()(XX)! XX :t

d 1/1

III

~
X X X

i <t
f-)(X XX X)()/)(X

~ I
'lI

III \1'
~x
:t

XX Xl(XX XX XX X)(XX om
~

N
~

~
j$,lI. :U i~ U ~~ ~3 ~, g 111111 ~~ ~~ ~~ ... , It.l :f~ ,lI. N'"(... ~ ~~~
,,~ •

-. ~

-

")(~ l xx X)()()(XX Xl(XX X X

I'"

i XX)(XX Xl(Xl(xx Xl(XX X xX)OC

" t X loe xX Xx)()(XX XX Xl(lC Xx XX xx)(

tI

i)()()()(X xx Xl(Xl(XX l()(X XX)(x)(XX

..
i X

•
1 x Xx

III .. lC)(lO(

i
)(l(xx xx Xl(X)(xl()(.X l(x xl(xx)(xl()(

-JI
is ~iIII ~\I 0 "'''

1111 M 1/.1 Sz C)l .. " I/\~ ;,> J)(>-111 0(' ~8 ~~ n~

i
5-2 8895100002

~ t 1 e I l ~ ';) m 1\ ~ .J
Jj f ~l 0

Sift ~
1

\a
1 I I ~.

~~ • '\ roI I I

~ ! ~ ~ ' 1 U.

J
(.J

0 ! ~ • ..
L

.J j -
1 .f, • I Z

~
J • mU-.m U \l

~ j

l
j (Z j j j

~ ; l- Ii Z 11\
j

~ II
~ ~ 0 III

~ ~ '"
If\III"M--~~

.(J ~ \I'~\H""~""

88951000 02 5-3

O~ ~~ ~(~~

...-- 0---

11\ ;: ~ 11'1 til :: " 11'1. ,

1 i~ I I I I ~tII ~Ci
- N ~1~ I'H~l -1 N !!~ Itot t 511

ill ~ !1!1 !:! 1 111 t H ~
I

.+ + \ v
l/ .01- L- ~ '1 r:."~ L- v

- 1I\f-J or
~~

- ~ .-t @ 61 ,. k~ f'J '7 I Gil

~ ~ + ! ~ 1.1 ",ill\! S~~ o n~ ~ ~ ~ H \l ~~Ci ~~ Cl~£)£) tI • M' -~ ~~ ~ N- M~r- ~ ~~ 11'1 N- Ill"

(~t=JJ~ N 1C1't I~ "I't(~t ::JJ~ N
11\; "'I~ 1'1

N~

~
~
.(

I I
N N

G. A.

It 111- r- 11\ ~ ~ ~ II
~ ;n ~ ~

.(

~ U ~ ~ ~ ~ ~ ~
~ (X~~~ O(~ ~~ ~~

...-- 0---., :: ~ (I " :: ~ (I

I i ~I I I Ib 1 J
-1 N !1~ "". t ~l -1 ... ~I~ ill ~I

i-
" II: liM t til !t

r
+ t! 11\ ~ .+ H ~ II

L- tl ! L- \l
I ¥~

\)

I ll~
~~ (~ -II '7 1~ ~~

I : ~! !~ v ;Ja ~~~ °u H ~ ~ .U\l ~ 1) 0°0 £) Oil

~ II - V\A"r-

$
~ 11- Mtlr- ~~ ~ ~ ~~

~~t:~~ ~""l >- ~~-=JJ~ N "' . I1hl ~
-1.1 ,

N
Do

Il ~ ~ v

r' ~t '" or ~
11\ .(

+ Cl

5-4' 88951000 02

00
00
CO
<:.n

""'" o
o
o
o
t-:)

<:.n
I

<:.n

--

~CI..k_L..)--"K
Iilv.NICT-' -.. - -

., I ~
-

't<-"

L~

~

~004
CCII-!
Cc%H
I!LISI-!

":.~~It?

It(

~

lie

Oo4~~H .. ~-.2:D SI~
Oo4AC>eIH ~ ~-A"ZI> .,_ nr

..u..OOPZH ~-.az. .,_.... nr

Oo4ACOIr.H ~-"'"" __ " -~.0;-

H .. ~... ~-.,. .,_'~
H I>e"lPH ::: P'Z- Z2. .'.::>IrIS

_~M- \..O'N

SA.II!
1~
~
14

_&c.-I-! r
S Ir£N.-L.. eZ~~

8'3 ~ Alsez N'" +!!71 ~ r ~~

~~-A'"

C7111:.,.
... si-'W-

I'"

IW.

s

~TIII:
"lP~'"
"'~

FISUF

.1 P'I-az'!

17 P'%-A"

!..; ,::z-.~.
~z.

H
1.0 I p%-"¥.

~
J

:~UWtl ,.I., _
%PO---<

tr~~

~
13
~

11 '------€>--fi DP-L~
3 1'50

P

Jl

~

I ..

~ 1 PZ-&14

z~~e

N"'~c..

F1
Pi
L. -

.AI5~Z- I ,., ... J
-AN- - IA-

IW.

N"'~

~

~

I.:;

1.40 ,....I--:=:.. 'tiL_

;5. +5-
A13r,

47Q

JYES-H

I" 1%

I,

•• 111 BdiG3q CD(: DP"LU I"',;,
DI!~~~;",i~TM~~:j!S~(J1I SHEET ?/1'='/7?

11,III1.eA'11)1

c 1;';;21°;"",,~ r
4PFS --. t

~

--

5-6 8895100002

88951000 02

00
.J j
I I

• II z ~
III v'I
0(•

l

u
;;
3

5-7

5-8

e
r
6. o

~ = I

~ = .~ •

114~'*' .. ' \w' I
§f-~!~-"'t\lll

. 88951000 02

H
.(.(
\ \

H
,\,

JJ

Ii

J

i ,
L

'\

I

l

88951000 02 5-9

CJ1
I

o

00
00
CO
CJ1
I-'
o
o
o
o
t-:)

,K.....-.. <:i:;o;a..

•

SX&NAI-
L&TTER' SHT Z. ...)<

8 X
e- x
I:>)(

EO)(.,.)(

~)(

H)(

I)<

oJ X
Ie)(

l- X
114 X
N
17 ,.
(Jl

R)(

S
T
u
V ,.,
)(

y
e

... A
&&
CC

MOTES· UNLESS OTHERWISE SPECIFIED

SHT 5

)(

yo

>C

X

X
)(

X
X
X
X
X
X
)Co

X
)(

... I ..
~ 2

0 3

'" 4 %
u
~ :5 ...

6 a: 0
0 7

'I'

,.

SHT4 T'!P S>-IT';' S>-IT"T
)(

x

X
x X X x
x
)(

)\ X
)()(

)(

X X X
)(

X
)(

X X
X

X
X

)(

X X
)()(

X X
)(X
X)(

X)(

X)()(

X X

-

A 8 C 0 E F loc.lC flTU

lOCK: OW(, NO

"'''HI:) I PWO NO ..

Su;,N L
L.ETTER' SHT % SHT5 SHTA- $HT5 5>-\T Go -sHT -r

t> X X
E.£.)<)C.

FF X X

'""")()<.

HH)(X
rr)(x
.,J.,J X X
leO'" X X
L-I-)< X
114110\ X X
NN X X
00 X)(..... X X X
(Jl(g X X - X X
oSS X X
TT X)(

Uu X X
_'1'/ X X
WW f4 X'C X, X
vY X)(
Zi!: '" X X X
A<:; X x.
AD X X
At:.,. X X

.... Cia IC.)I.

-..: ••• " co."'" TITLE CARD_
OUflOPlUIT OIWI$IO_

COG "/Q ,,"'III UnU1

Bdl40 tlS(OON
LOGIC TVfI(

DR

,'0" CHIC ~.~ $/21/ D. .NCR
C I ;~7;;'1 ~e;~;~oo ":VI"/ '''0

""0

1 j IT I ",1'

88951000 02 5-11

c.n
1

N

00
00
CO
c.n
o
o
o
o
N

az

1IP&~-1..

Mc&.. .. -L

•
1-I L.T-1..

IOPHWAXT-L..

CC-H

A.£T~VIE-

PZ-5~
h4lOs f"'"' • • ~UCz.\.,.

~----+-------c@- 5CI..K,-1..

I~P-P • » MXrGUC-\...

6TART-1..
I"~ , ~ IW\XrCLI<-1...

N'f~

~~/OMoDE;Q-1..
T "-ro' .. 50

.-1 p,~ .zIP _~

reT ~r.t0M00E-1..

A/tfl

88951000 02

'1 ."J ~ ..
1- i~ - 1- -

• , : III

.. ..
:.ii i
t t

I I
.~

-

• ;(,
&:'1

I
III ,

1\
i
t

I

~

J ~
~ ..

~,~ O£
" t
~jJl-~ I

iii .& '

~

.J

, J

~
~
6-

(:ij ~
,nr~ ~ z
.11f ~ bj

II

~ J ,
It
.J

~

5-13

5-14 88951000 02

J ,
• '2
III
~

~

fIt
~

88951000 02

1

!:! ..
l-t1'
~ "1.

u

J
I

l

~ "r , I

- -
= -

5-15

''''~

c.n
I
~

00
00
(.0

c.n
o
o
o
o
~

Mt>C L-ICI I-

rll2 I) Mt>C.UC~1-

&ode!, I'-'-~) M~\..KZI-

.. I r"Z-.,&> ¥' .. -~ I
1\ • e».TA..:;>UTZ-1-4

a II I ~~T4&>UT3H 13 ______ I~ .• I~_
II

FS~H)PI-eZQ 11 :;~_

X/ONIOOE.-L<V 5

'0 . I I 1~ r @>O~~-L ~ i ,~~ "=
I ~ c.z.. -- - . - I

EXNXT-H V> 1,-1

:5<LK-L

PPt:.LI1e_::'Z -&3 '!!>

MLLIr_I-<E>~"~~Jo'! IK ~ •. ----------~

t I ; I 1 P'--'?!>O > E-'O(W"-T-.....

Z
• -""'.-)t c.c::. .. c.~-'-

'5

.J

I

88951000 02

" ..
I

.
, I i
:x: I'"~

~ i

~~~~~~~~~~~~~~~~~~~~ 
N .. 
:I 
f\ 

• \0-

~ 

" \0-
I 
0(1 

..) 

II 
j 
I 

; 

IX!X 
l j 

.J I ! ! ! I : 
~ rl " :! !: ~ 

i 
1-, j ;! : I!:, I , " 

i I I 

i 1 ! i 
! I I ! ' i I I 

! 1 

: i : I i I 

I I I 
: 

I 

Ii 
I j 

I i 
I i I .,ltllCI'I'I)( , I I . 

I 
, 

! ! 
I I : I ; 

i : ! ' 

)(IICI 1 jI(Xr)(fX')(I)(;X .. 
i ! i 

: )II 
' :Xp!IJ(, j)( I I I ' i i ! i j Ii i': .,. I ' i . 

~ 
, I I i : 1 : ! 11 : I I I :1 xi Xl)( Ixlxi Xixjx; X, x, X:X Iii i 1 1 ! 'I : , I i ' I : 

, 
I I , '" I ., I 

~ 
, 

! . ,1 ~ I 1 :; 1 
t I 

I I . 1 I ! i ! ' ; : : ! 
.1 i I .. _,>( ~)( XI Ixlx IJCi~JC x~ 1x xi I : . I ! ' ; 

I • 1 I: ,I I i ' I iii i : (I I i I J I 

I ; ! ! ! ! : , I , 
II I)(x 

I .. x1. J()( X Il( I XJC II' I I I i 
, I I J ! I I i i • i i I i III : 1 

I 

i i i I I : I : 
II I ! ; .. Ix )(X I i I 

I I I i I : I t 
i ; ! 1/1 I I 

5 I I' I 

liz 
I i 'I J 

.. .c ~i\l 0101 ~It ..,It ~L i'k IfI .. 3> Jxt -F!'IIl(O'IW I< ; ',Il/OJIII ~ 
iii i 

5-17 



¥ 
"" 

S .. ". t , .. ". 
'%2&'. 

13&IS 

5-18 

) 

t 
I 
It 
% 

~ 

:Z.II:. 

r' CI .. ." 
.A.rt# 
1.11 .. 

.AI 

2_" 
'" r..I , ., ,..,-

88951000,02 



00 
00 
t.O 
c:J1 ..... 
o 
o 
o 
o 
~ 

c:J1 
I ..... 

t.O 

-+ 

%.s 

+~~~-----'~~~~I 

+ 

F6r.a..r.-L ~ 

MC-LIr-L C-~';;3 

DATAl 

...p.=::",~w>-;",-;;, 

PJ-.I, , DATA% 
F-~----------------~~~~~~ C~~~Z 

,.. .. DTIi.<:T "'''''''1-'-- I- ~~.!:....---'-----------.4---"2~G:"::''::''~r. 
WRT-H P 

-i"""'--1~tN"-1 +'So 
C6+M,c-L <~> _____ ~:;U:~Ir: 

DATAS 

pr~H_$, 1 ,1 + t 

+~rLlSR4 
470' 

+~ +'7I-"IIl!":---; 
CI!Nl'4 

"'70 

P'-B4 COSAp" P'-A.4 

D .... T .... 4 P .... TAI%. "'7--~ P!Wto.DI~ 
+r:;;.~3 +..,. t:!.,.r5 

470' 470' 

p,-~ OSI>.D1f 

P .... TA'So P .... T""~ I"7--A7 ~ADI"3 

P .... T .... 7 

"'So ~ ....... W'~-. 
c,1'&fZ'Z 

4 70' 

F""""-..,..:....::::: .... t>s .... ~ 1"'-- ~., 
DAT .... 'II" PZ: - ....... 0"'-"" ,4 >,PZ.,-!::.:-~A".",-.... t----------------4-+....o::i.J2'!~ 

+ 'So +~I-'W'~--, 
.c'''tr'1 ~1:s.~1 
-470 "'7<7 

P"= ..... :..:;= ... D$AD7 P'-A5 P.s,o..plI 

>=--====+--------+----",.J2iIo;d ~-" P .... T""5 P"Z-"~ ~D'5 

IWIII· I I" ' •• ll CO.PUTU ______ OIWlUI,.UT DIV1510" 

I .-"~ ~ , 

~ 2 u«o'"' 6d 141 
3 ~ ~ 

:;: .""oc _ NO ' I'" e", ci?Y. :;/:1.,/7 J_ 
% 4 01 .NGIl I I COO( IOINT .., I 0.""'"'''' ...-. 
~ 5 "'/I~/~ "'0' C 09132 81!!Y153f100 

" 8 c o E F loc.lC TlTL£ 

CDC DS" 
CAJltO 1'0$ 

loc.lC Nfl( 

NOTES, UNLU$ OTHfRWISIE SPECIFIED I ~ 6 I'WA NO 1",1 NO AI'P'O 

l!i 7 1 '1'""'3 <»6 

t 

I+-



c.n 
I 

t-:l 
o 

00 
00 
(.0 

CJ1 
I-" 
o 
o 
o 
o 
M 

~ue::b> ,"7/1 ...... 
c.e-~ ... 

W~ 

PlE.l.AY 

loc.lC TITlE 

toc.lC DWG NO 

MOTU: UNLEU OTHERWISE SPECIFIED 1:1 I"'ANO 

PE:r;: 

PI-"'7,=:-:-=~ 
,~IUI4-"'" F ) t>SA,~,.;Q 

+0;. 

s_all cO.PIIlEI 
OEW(LO"'£I1l DI"SIU 

h*'ld.llftJ! 
CDC 

pr0.4-L 

~ r::t::>UT-H 

DSA 
CAIIO ..,. 

Loc.K;T"tfl( 



~ 

~~j:i~~~t! ~ 
~ J lHI~~n: 

~ ~aaa~ ~~ L. l~ 
.) II. 

-
~ :1 ... 

Q..~M" 

N.$ ~~ - -
~ - , 19 
'f 

_ 141" 
t-'--

N !' II - ~ ! '11\11 ~ 111\ -l"t -14 II\'¢ jill " !'\t- V 

1 ~ l j ~ w 7 ~ t --.J. 

d j ~ .( ~ ... 
~~ ~I' 

~{ a I 
N~ 

~ 10 

r- ---, .( 

IfI ~=I~ !! I~ ~I=I~ ~!~ ii~~~~~~~ 
\I) 

+ 0 

~~~~~~~~ \I 

~~~~ :~ ~ 0 
\) 

\1\1 ciV z _ 

- ~~ ~ !'\"" 
Ill\' 

I Ih. 
it\. of" _r 
lI'\ 

- 1:\ -I~~ ~ ~ j ! ~ i i '¢ jlt hit -N ;111 ~ 1fI>\ 1'1" ~ ~ 
~ y ~ 7 ! t T .( ~ .( <I 0( 

~~ ~<t ~{ ~ ~ ~.( 

--to r- II ~ ---, +-,. 
~=I~ ~! I!L.. ~I:I~ ~!~ ~~~~~~~2 + 

~~iii~~~ 
~.~ 
.. :J >J!'J..TJ.."'~ 

I' II'" 

Ill'" 

- ~ 
rl " 4 

! -~I\II t-It 

f i : ~ J ! H ~\' ... - II tII.q IH 

! L..- I ~ .~ ~ ... ~ 1 ... 
~{ ttl i-

~~ j ! N~ co 
r- r--. 

i f ~ :I~ ~! 'L J:I~ ~~I~ 

¢I 

tl'= !III tp rt.;-
ls ~ I ! i I ! H ~I~ :I~ 

"'" . .( 

rr H ' I }¥ - r~ 
'II - - - 1-

I' I 1..0.-- IIIPI 
iji~j! 
r1:r:o:r 

i . 

88951000 02 5-21 



J J 

~ J 
I J .J • ~ Z I ; J 

III ~ 1II oJ 

~ \l r ~ '" ~ 2 .( H \l I 

III ~ 
<t 
~ 

! I 

I i ~ 

~ 

J 
I 

~ 

.( 

11 
, 
N 
l 

~ I 1 JJ ~ ~ Ib ~ I I to 
:Ii 1 :I dct 

J 

i l ~ 

& 
I (;) ~ ~ ~ ~ III ~ b! 

w 
I 

~ 
I 

5-22 88951000 02 

,~ 



J 
I • i 
~ 

88951000 02 

.J 
~ o 

5-23 



CI1 
I 

t.:I 

"'" 

00 
00 
CO 
CI1 ... 
Q 
Q 
Q 

Q 
t.:I 

~I~~~----~~~----

M~-L '-4~~UC-~ ~~'-__ -4~~~ 

.%. Pz.-... ~,,,",,,,, 

P"Z-.. z.. 
too::..::: ____ ~ -""&TV-L 

!!'oM'.:D P2-.... %.1 

So "7' soeP'M-~ !roM • ., t=D 

~ ~ P~-~ ~I'" II • 6PTCT-L 

CUC'%-L. 

"'S-L.. 

• 
~-_2~ 

.% S~TV-I.... 

A70 ~! 1 ~~; III P'-&2~. ~SIZG~-'-

.~~~~:::j~I~~~~~JP~~~P"'·I~~--~~~~T~eJ 

~ I>SA. 

J:~GL"-L. 

I ;~.. .-. 
~ 



88951000 02 

\I 
~I)I )( IOC )()( XX )()( )(1( xx xx I(~ I< 

1ft 
il~ j( )1)( X)C lC)C xl) 10CX xxx loe )(J(XJ( 

t 
i)()()tx)cX)(XXX~XXlCI))(X)()()()Cj()()(lCX)()( 

1ft 
iXXX)(X)(lCX)(XXlC)(X)(' 

N 

i 
~~44~~~~44~~~~~44~~~~~~~ 

1~1~~t~=I~~~~JI:I~=t~~~~~~~~~~'i~I~~:~~~~ 

• 
i~+++4~~x~x~x~x+++4~)(~~X~x~)t+)t+)(+4~x~x~~~X~X~~4)(~~1( 

)tXXX 

i .1()tXI(X)txxxXXXI(. 

~ 141 .. II Ihl ... l• sjM'" .. 2 a IH elr e .. :I > ))( )0 • .( • \I 0 IH IU HI!': ~ J 
I~ I- I· r' .( ell Q 10111. ,,:E HI"l & J 

~ 
~ 

1"-

I'" 

Ie 

Iv 

.1-

ii 

I 
. ~ 

i 
I 
1-

i 
i 

5-25 



CJ1 
I 

N 
Q') 

00 
00 
(C 

CJ1 ..... 
Q 
Q 
Q 

Q 
N 

-..-1. 'Pt-.... ... ~ ""'-I. 

"-I. ~" ..... _I. 
~ 

,'" , 
AII-..a • I. 

~ 
AI .... --•• ... ~-~ ~ ,Ir ~r ' 

1 ...... w...c ,. .. ':1'-- ... 
~~UD8 _~ 

...--!J. I-r ~jf 8& ~ 
,Jl. ~ tl ID, 5' ,!.L 

'----_ .... - 57_ 
~ IMoT_ ItS 
~ D4w.t_ -~_Z." 59 

-~ ---- _-AA 
_TA,_ ....... '" 
_a ... 'pz~ 
~1IJ04 ... ·AS - .... ~--. 
IM.TA9H -.",., D4T_ PC-_ -... 
_T ...... :_47 --.... -.... ~--D.o. ...... N ..... 

--~ _T ............ 1 
_T"",," 

A • C 

... I 

'" ~ 2 

0 3 ... 
% 4 

~ 5 ... 
II: 0 6 

MOTlS, UNLESS GTHENs! SPECIFIED 
0 7 

~F 

'A# 
~ ... ,-=: _ D .. 

' .... 
~~I SJ:~~r5 

.:. P4 

~ --r-~ C>S .. r7-
~ 7 ~l! .z ~ 
.-2 7 U 101 51 r!L 

a......-

; o.m..l104 ---"WH -~ IMoT",_ .5 
_DAr ..... -

D E F LQ(.ICT!lU. 

I U(.IC owe. NO 

I'WA NO ,r'''' 
.& 

DI.'~~' 
ItBIIl* ~ 
1t_2 ,'.5'\/ 
a_I I .... 7_ 
01 ..... ~7QQ. 
'DIRe -'-.. SF" .... -1Ci2 

~r~~ ~~RAN&W I AI ..." 
~_ DIQ 

/liZ. D' .... .. - " '-~ 

~~r ~~mr 
51 .... U 111 '.. !::t: ~ DI4' ..... 4;'Q --

~ rT u ps _..z.- ~~ , 

~1 COB '"~ 
r-2! 7 ~ 1:'& -~ ,..-l!~~DZ. seL 
~ ~ fl-A DI ., ~ ~7~DI $1 tlL 

L...- '---

~= ZZ,:=:: -- --.. Z,:=:: 
IIQ f- ~IM.TAlEH ID ~ Ie ~TAIIiH ~ ~~ .... " • ...,J;..~ z. ~Pl.T....".. 

., 
J 

, , 

I S.AU "."nl TITLE 
~-DUHIM[IY II"SIDII CDC ~u 2. b .... l"tu' 

Bdl+2 USlOON 
LOOOC ..... 

01 ,~ SlIS/74 ~.AUi 
I. Itrv. 

CHI< (.J/,.J, 51i//7S 
p, ..... l ;~;-;; ---""I"/"ffJ we C •• 95<4' DO -- I . I Hrr Z ... 



00 
00 
CO 
CJ1 .... 
o 
o 
o 
o 
t-:) 

CJ1 
I 

t-:) 

-::J 

1'1 i J if jg 

T""NiH 

PC ... IH 

s 

~~z:o'-""""T ... ·N 50 L>5 W 

5Z A.l>ATt'_L.~ 
~_Y .. I d., .. 
5 EC:P , 
... UP , 

~~:S=~~IPLo-L.J 
I". ____ :'I~LIC·L ., 

+.~~~~--<MY> 

L.-L )!::~~ ...... -:::,,,,, 

'E 

L-~--~ ____________ ~"~O ~.~--------------~~ 

'", ' 7 
~-+------------~O ~--------------~~ ., 

L-______ -;:E;.jO .... I 

r-------------~e 

.o.COIJT-L. 

.... Ul 

~;5 ~ 1 I a .... a=~ l!!o lS5i 
ICN+~ ., ~:u...a>,~ I ~ 

.so po 

I:~~I~· 

F" 
+s 

pz~: 1111:& 

~ 

IRS" 
rRZ" 

T . 
+!!oI-W'4 ..... _ ...... 

~ec... 

PI-~.I 

f-.--..... ~I~ 
"r-p'-r 

~'4H 

.. PI-\Zs 
~ISH 

II !Ce> , • 

'------~'f=%P II ,13> .... !-!! 

z:~ 

I~ 

104 .r.o:-r--'I.!..!>,--

"~~ I"" t:1 , 

~ -:0.-z' 

E._I 
+S~~~~r-~~ 

o .... S., --
"'Z'-IS~~'S.~!i!£!1~:::"'=2j~======U=l!L:'-J z ".%-.0.,'- II't5- H CN +;e <:ii~;""---'A,lIl:~~~!..Jr-----ooC IR'CLK- L- P'-1S7 Z 

IR'CL.R-L. 

l(X.,IC TInt 

NOTES UNLESS OTWEIIWISI! S.PECIFIED 

SMall CO.'UII. 
DIUlO,.,.1 GIVISIOIt 

I.J,II.tlmll 

CAltD JIOI 

CPC ADPALU zs 
l(l(.lC TY" 



c:J1 
I 

t-' 
00 

00 
00 
c:c 
c:J1 ,..... 
(;) 
(;) 
(;) 

(;) 

t-' 

-+ 

-~ 

.--... "" .... \....U I 1 1 I " ~ TC~'YI __ ~ 

~ 'U.P .... - TIC> ""'\.1)(. .s .... : L. A::1'oo ~ I. .. . ... 
'!lo - ~ L ..... l::': ~ % ""i" 

~ 
31S 
34 
33 

.... ~ T'SILL--1.. .- I CJtd J - l ~ ..,. ~ee 
.. :.eo ~ .... -~.L. ......,.... IISr I .. I I ,...., .. ., .. ' I ~ liJLI>< .:: I "L-.U r 1 r--:-- ""OOUT. - I r---;;:- PI _D> ..-..- I..,.. ~ I _ '3 

....... A... At;. 14 # I I~ I., II ,,"(.,,~) S IS ...51~'" z. Pe 
T ...... L--L. ~ I !It. .... • I"""i""" 4 t'""T: ....,.. ~r:;"L~ II ~ ., %1 -'I- A II :5' -4 ~-~ 
T'''~ ~ I""U-- IP P A I""'~ • PI-A~ 
TLEr ~ ~ F::.~ !!O ~ 7 %5 % % I"", I r-;- Z ~ _ A 

~R4:UC-L~ %,~., (; p 1,1-:- J PI. 

-.:::!'o h!::~ z.~... Z I I ." 13r-;- IZ ~ ~ I 
_ur-L~t=t$.I"'" !t ~ ~ II '""=-'",- ~ 

- zq ... ~....... -'" ~A.L.LI DATAeI1 ~ B % I!J ~ ~.. ...,.,.. '!>I<?~ 
PAn" .... ~ I I .... ,a~I·7 . ~"""".-....... CJ't I&" 

" ... 
~ 

C>ATl'.I"''' ~ ..2..b r-;- ......... "'7 15.. !1&4.:> -... 

D ... ~II>1 ~ II • .:;. , ~ ~ Z"" ~_II., 7 -=- ;~ 

~~I~:lz:~J I 42;1a::'al ~ ~ ~ %~~.:: I ~ ~ 
,.f\tJb~ -:t '" • ,... - "' :- '~I - "':..1 r 

I~TA-\....<E> 

::!1za> ze'" 

"'L:.EFI' 
peET 
lPt::rcUC-L!""~>-_£.~~ 

~ .. .::ur_L.:~~>-.+J!..b.t::;-"I 

'% 

t II I rLl'Z 
II 

liiG::: 
,ll2. 

S' 

sz 

¥ 

~ 

• 

PIX. ~U)( 

rSEL-L QI.!!I>-+-""'I 

AD8£Ne-L~~>-~~ 

1% 

~ 

S.:::N 
IIZ.::. .... 

~ -~IZ:> 
"'1 

-.", f.ALLI 

.... __ -=::...2~~ -'" ""PS. 

II IsE=&: i. T~:IA ., 

... 

., ~ EI"'I 
r-i"",,=--.!ZbI,....,, ~F"',",I=""''-___ .J''L 

~.:J;;j~~=-,,"1 Z-. ... .". 
~nolI~~Li ZAO 
!P..m~~'4!~ I.,. 

""~N_-" I~ xx~ 
5 -cp • "..,~ _ II:] ---. 
4 1"""" II., 

.E!. 

~ '5020 .... 
:r:lZ.::uc- L. $ I 01:" C. 

:r2~-L :r~ ....... 

- -
r'"'71-f liS 

Mans. UMLEU OTHERWIS! Sflt!CIFIED 

E F LOC.IC--yOU ..... I" SMALL CO.'UTli TITLE 

A • C 0 DfWltll0:;'f~.I;::l·SIU CDC ACOALU 

I ~ I Bdl4Z II) USfOON 

::; 2 Oft ~ ~L ADDRESS AJ..U 
o 3 WGOC """ NO ,R" CHK ai'¥. 5/2..h$ 
~ " . D I • ..,. I I COOlE .DINT ""J _W'Ne ...-. 

~ 5 '>/1"/7'5 "'G C 09132 88'9!S0-4 I 00 
..... PWA NO IPWI NO AI'fOO 

I~IO ~ _ -'---_ _ I SHHT .... "'~ 

CAItO II'OS 

LOGIC TYN: 

t 

Z3 

I+-



00 
00 
CO 
C11 
~ 
Q 
Q 
Q 

Q 
t-:) 

C11 
I 

t-:) 

CO 

,. .-, M.t.L.U I I I I 

-%.4-
%'7 
'Z." 
7!7 

,,_V~ __ T"'E.T ~ ~ "'.V I 

II %&D ~ T/r>~X SA-L N [. B _1_ '~ .-
... <> TS~L-L -- '., J ~ ~ ~-f .... OOUT-H~ I 
§ I> , ~ ~ ~~I ~ %- "j 
,. "'I> ," "'I>A&o.I __ L. ~ , i-.1i:: , I 

I.&NTR ~ MU" -=- A.LU ,-,- ~ ~ 
'5MlD T~ , - 'loO'P 1 !5 PI-e51 

_ iI~ A'p C I .... ] 1i:.1,z- ,.. I Gil ,., ~ I .... ~ ~~ ~_ i>J>7 

TAII'L--L '=-" T L!'} 115 t!I 1'1"",,,,) 15 ~ ~ '7 ...; PI-I!J~ 
.- '--:; ~ .r,z. " "-- iI :l.., .... .... 'I 3 I ~I-Z - Ar>~ 

TCOEP AJ~ ,4 117 A 1--:-,_ ~~ JJPI-E5%B 
.. 0;. '''' .-Z ~ '7 ~ 7 -z.~ ~ IU I I ~~ - .... 1> ... 

T~-L......... L.t.. ,",W'" " :z. f--- ~"""T II ~-~7 
..--.... r.;:: f:;, 7! f-- A- -z. , I I '" 13 I. IS%. IZ .A.P4 

T"''''''L.R-L ~-C ~ I'"' ;5 ~ ~! '-- ""--
DATA.7H ~ I n z & 

p .... rA."H S:!< I ~ I I..!.. ~A.l!b'~:; ,g:>z;TI 
DAT .... .,.H ~ I X~ ~'IC~A.5. ~ ~ 
~TA4H ~ " t!I i'i " 

.... D .... -r .... -L G:: 

r4t_l ~ ... ~ z.w: J 
t. 1...<>"-1 

,~IJ.I11~ ~ :z.l 
I 

" .. v,.1 '~'I'''' <m>P£ET 

~~ ,~ __ , 15 
s7<D'> 
"za:> 

Pt:£PA" ..... JO,..:'C~-:~ 
+So !-'-'('i, fF-=:......-:~ 

Ft:"IPGLIC- L<iq;::C;>-,,==-C> 

~~~-L~~>-~~J 

:r~-L.
~~-L ~ $ 'r

:rtr%4oJ

'7

~
~£ €= 4

I
~

•

tzwri

47 I a., s:- I ~' !pz.-... ,O +'!7~I~I'..1S U;L-L !.'5) rz.Ee..::>-1i Au:. IS
~~... "'lle --.. -, ----~-, --. ..

52.- r6101:ut.'.QiIt>-....... ~...-:;;:;;---,

s¢ <!:!aI1>--=t!,......,......J

:rr7H
13

"
2.. 10

I'~

·~=-----C~~~IOEs
~~>-~~[[~~~~~---< PlrRS

;5

S.AlI C"PlHII
OfVllDPMUT DIVISIU

IIJIII,UUIJI

1,1 I I I I I I I·"~I CO' , __ ~ I"': /::!L 'I J Dd 142 ~ Al>DALU
ell? 5/2.1(7 ADORE.SS

MOTE$. UNLESS OTHERWISE SPECIFIED

-

U1
1

c.:>
o

00
00
f.O
Ui
o
o
o
o
I>.:)

~

,0;,.- fa x-.-v'" " ~ TCE... ,A<:oo _
~ '4 I % , -.so I=" I
..... 1=0 ,3 c..I4 Z. ""~ ~A ..

___ UC> , '% "" J""'l.l*r ~ TAII!MIH 1 c"pq A
~" 1 8'" I _ "".t..' = , ----..,....e. 1~')f."'VI
]''''~ t - T/C>MUX 5A-L~ 5 8 ,I '!MP ~ , - - 4 fiMl(Z

!!o
4
;

II IT':;'

ADOU,..- <R:
1 - .~ ,4 T'$~L-L~ T l~ J l tj i 6r~1

,..ArL-L ~ T "'r:1.,': ~ ~I ~ I
A'':'II! '-- -L liru I I

+'!!P .., Z. :z. ~ '"'UX: I -: T "LU I - ~~ P'1-!50~
'IC T'e> "--" I~. 50."!... .-,- '5
~ ~teo· &1.... '::"1... .,.. z.:>4 At:>~
,,,. r::-".+-, '4 &> I '% I., f!> ~' e,<:.\ 13 ... I~ ~~ ,Dl~ T~-L

- f-a:'o .:: 13 , I G'':;' ~ -r u. P"-52'!!>
rA..,.,L-Jr-L ~ I~. II ~I#I %1.... " 3 I ~ '5 - D%.

<,,;)..,. .,E .t:' t7 117 -",- PI-824
+'7~141O '!!P i!.- .., %3 Z A 117 I -,~ 7 ~ e A.J:>I

C> rA'5H <!:.. ... P Z 13 ~ I P1-~Z3
DATA%H ~ Z f.!:::-- 4 Z I .., 13 f--J N Z 'tE :£. - I 0.:;1
D T lto1 c;E;; 3 P Ie W. '--- L--
DATA#H ~ L.!...-- 'ZQ!

\I ,. (# 3 ZZz"
l4tt ",t 1"':1 "'~ J 'i-!.. £"',5,.,50 17 ~ ~

li~f·~~r~1 I ~ ~.., ,~~.=, ''''' ~~
I I

AC> TA-L ~

x .. v;;;or ...

PGIEL.-L

~p<:E.,.
, 15

'%
iT

~
•• ~ ~

+? t-rw -a....::..J 51

5z

S?
P<:RLL..IC-L

PlCr"'~-L

III!<:UC-I...
IIIt"''-R:-t...

~
~ ,z.=
~ .:~
50 <::p

.... .::.0 ~

~4 ""j..!..!

~ZIA

I I % I. ~r=
~e$_H ~l:~ ~ ___ ,..:;:z:~ :r IeCN f'".;o>r2.$

p/r. MUX

'%

S.UI CO.PUHIt
D£WHO",£WT DI"$I"

h.!tll, Cllntl

Ii
I

Tl TU

CDC N:;OALU

Bdl4Z U I"ADON I I ADOR£SS N...

"""" !'OS

Z3
LOGIC TW£

MOTES, UNLESS OTHERwl$If 5PECIl'IED

........ ~;o;,..

•
I!~

..
~ r a ~

~
,
~ -

~ ~* i
J I r-
:t
0- t--

" i N,
\I ! -
I) Ij g
\l ~ r-

~
U

t--

"'0
CO

~~~ ~ ~~~ 
,,~~ , ' 

~ 

I~ J:~ 15 ~13 I~ 
~x xX xx Xxx X xix )( )(~ 

~f ~ 
~ 

~x X xx xx xx xxx xx xx xx xx xx 
0 

Ij\ < 

'f 
l 
-

.... ~x )( 1)0)0: lOt x Xl( xx xix 
+-

., ~ 
lOt P xx xx xx xx xxx 

~ " ; '" ~ -., 
~'II 

~ 
X l( lC lCX lCl( X ... 

.I~ 

h «Ia ~c. ... lu I.., II .J~ 2'Cl l.1e) It:", ~J ~1 )( >- III 
i .... 

1
0 

lu 

I-

I'" 
l- IN 1"'1· I""'" I'" 

.I.S11 OlH:>'f.l.30 

110 

~ 
~ 
~ 
~ 

! 
'" :; 
w 
~ 
z 

" 
~ 
w .. 
" z 

t 
88951000 02 5-31 



CJl 
I 

c".) 

~ 

00 
00 
(,0 

CJl 
~ 
o 
o 
o 
o 
t-:) 

.004 

FAPIIPS'" 

~U"'-'-

<9 

IIC 

-, ... ~rl ----... Z~ 
Ito{? 

+0;;, ,-,z"a - A.'%R'4 
?e 

0;7 

?? 
0; 

0;.3 

PZ-"'"Z, XM-L-

=1 pz-&\.., 
I~ 

"3 
:z DZ 

153L 

4- =1 PZ-AZI ,;,. 
I~ZL 

PZ-&I, 
15dL 

P2.-l!!>17 
II 

151L 

P2--A. • ., 
~STA~"'-L 

PI-9%Z ESM-L 

E'S'3L 

ES4>L 

PI- ES2:.\ 
E.'SIL 

~4 PI-"Z\ j;> 

F'PHMP 



J 
;; .1 t>' I ,.. 

.J ~ .( .J 
I 

~ } ~ r .( 

CI 
11\ 

~ 
t 
It 

~ 

J J J 
toI .. 

i x X 
.J .J .J 

" .. 'J 
.( .( .( 

'( 

~ 
I 

~ ~ 
Z 
iii 

~ 

, 
e 
I 

a: 

88951000 02 5-33 



J 
~ ~ il 

'" 16 , 

l N 
III l 
~ J 

t K 
C1 \L 

J J J 
~ 

, 
9 ~ 

2 .J 

J J III r 'J 
J ~ 41 z I 

j/lt III III ~ 'II 
N " 

I' t '¢ 
J m .( ~ ~ ~ , , , , 
i Ii: [. Ii: 
I <t 

5-34 88951000 02 



88951000 02 

:r 
I 

II 
.J 

~ 
Z ... 

5-35 



5-36 

~ ~L" '" = 

o ~!). 
1.& .& " 1 

~ ~I ~ 

" '4: to! 

I-~~- ~ 
III 11\ -

0 
J , 
~ 

9t ",oS i 
~ II 

'l\ 

H Jj 
• "'1 
.... 1I\...i 

~ 

006 H 
• .. \\ 
1 1 i • 
~ a \\ ~ 

II 

i 

-

J 
I 
II 

! 
1. 

it 
u 

8895100002 



00 
00 
CO 
C11 .... 
C 
C 
C 

C 
~ 

C11 
I 

c,.:I 
-::I 

~ 

'I6oNAL 
'LItTTIOR SHT.. .HT ~ 6HT ... 

A " II )( 

c:: " t> " IE )C. 

~ X ---.. )( .. " ~ " 1 X )( 

.I X It 
Ie )C. X 
L )( " ... x X 
N ~ )( 

~ )( ,. 
p )( " 41 )( '" 1\1 )( X 
5 '" " T " X 
u " )( 

v X )( 

'II " " Il X 
y '" " • ,. )( .... '" Il 

.. B l( )( 

Cc:: ,,- .- --~----DD )( '" SIE " F'F )( - " 104M X 
:1::1: )( 

~ X 
ICIC X 
LL It -

~ 
IIJ 

3 
0 
w :z: 

~ ... 
III: 0 MOTIS UNLISS OTHIRWISI SPECifiED 
0 

SHT. ~'" I!OHT7 SHT .. 6HT., 6HTID' 
)( 

" It 

" Il ,. --
" . 

)( 

" " 

)l 
)( 

" )( 

" l( 

X 
)( 

X " 

A • C D E F lO(.ICTlTl1 

I 

2 
3 

4 
lor.tC owe.. NO 

5 

6 ,. .. NO 

7 ... 

S%'4NAL 
UTTIER SHT Z. SHT3 SHT .... ~T~_ -,.-'" SHT7 sHTe SHT., :5oHTIGI 
~Q ,. )C. )C. 
pp ,. )C. 

QQ X )C. 

RR X )( 

50S )( ,. 
TT lI. )( 

Uu X )( 

'I" " )( K 
VIVI It )( 
1(1( " )( 

YV )C. " a " )( 

A. " " AC " )( K 
AD " " ~ )( )( 

"'F " " ~ )( Jl )( 

AH )( ~ )( 

Ao.: " Jl )( 

"'.J )C. J( 

Ale " " A.L " 
,. 

A.hI " " .t.N )( )( 

A.O " )( 1\11 

AP " " AO " " A.R " " AS )( K 
AT " )C. " Au It J( 

''''' J( )( 

"'VI " " All. X It 
AY )( " .... )( " ac. " J( 

. 

~S.""_"" TITLE CMD_ •• 'It .... ., •• 11'''. CE>C DP/nM II,... A.' 
IIUDON Bdl~ ,oc.c: "" 
OIl I 
CHk I <:1:"~. S/~I!1S I ." 01 'NOIl / ;~-:;; /8.9.2;;0 I/~I/S we ! C 

I"'~ NO 
..... 0 I 

I I .... I "Ie:) 



c.n 
I 

c.:> 
00 

00 
00 
c.c 
tl1 
i-' 
o 
o 
o 
o 
t-.:l 

PA.TAI ....... ~r:i"1 .... ~ 141:. ".!i: 
14., iA. - 1::>1 .. ... t' ~ ~ 

Z A.TAd3H 
~ I =1 

t> 

I 

15 ~ "'TAl"'" 10 -I r- ~ 

0, 

t> __ TAli'" c. 
q 
~-

PI--"7 
E.&ILNES-L. ~z-.. " 
MOCL.""L. , 

~ PZ-"~ 
II 14 ... 

~ 

01 
OATA.'SoI-f 

-37 3 __ 

~I=II 
I"'" .. 

TAI'::>H -@.. ~,--
r-l-' =1 L2. 

DA' 

Z 
TA"'H~ 

~ I =r " 
0, 

TA6H ..(E>- .j..~ 
~ ~ =1 

1A. 
~ TA7H ~ -

D, 

1>, 

II <# 

IZ 0;. 

,~ 4-

14 ~ 

I'"-L. _ 

J 7~;at, 71'"-L. _ 

~ g 17L. _ 

I~ MC> fltlE60J 
1'- , -

... 0 ....... 
%1 
7 

~}7407~ - ~ II __ 

.,!" ; 

~ ... 
14 • 

A_Z 

-I 

"'.loR I 
+~ 

_RZ .,.. 
!jo~ 

1'2I:>.,1(iiTI 

<e> 

Pl- ..... ~ 

PI_~O ~ZOIJ w ~e <4 G7 
~ a-i-340 -

~14" 
-<B> ~ -r +6 ZI* e ; Co- -IZ..J::>./ enJ Lr"...bo~ 
<M> 

p,-e~ 

3Z0 

f"a"1 ~~ II 
--'% ... ~ 

1.b1G!" 

-<k> 
Z...b,....z~ 

Co. 5 -
PI-A." ~...J::>ot 1>7 z 3S0 - r--_ 
~.. !...t.rc;o-~ 

<S> ZO'J &I~ "'.b G7 z; 84 

- r-,-=:" ---;" 
-<1> l~ Go--u:.W"::. -<X> 47 ... ~ 

1"'1-15'7 :l ~~4i." <it> '8?.... ~_ - =- A~ 

Eo:. 

EGo 

E7 

E6 

£4 

E'S 

£'Z. 

EI 

-l 

A"JR' 

A7JO'S 
+'50 

..JWo 

A7feZ 

'-.,.J 
IK 



II! = tI It " 
.-~ 

N I'-~~I" ~ I" 1 
~ ~ 9 ~ 011 .. .. 
N ~. if N III 
... M 

~ ~ 
0( • ~ 
t 

. 
[ ii: .. i 

j I 

~ J .J .J .J 
1 1ft III 

~ ). : o.JI 1/1 
101 III .111 

III • 
N 

" 
1 

88951000 02 

.J 
I 

t 
~ 

i 

:~ 1 ~ ~, ,~( 
W 1t.:..;;.....J 

'I~ r~ 

.. n ~ ~~ 
~ 

i II 

O~ ... @ 
.J .J 
I I 

1/. r 
.J .J 

~ ~ 101 

0 
ki 

] 

.J .J 

JJ 
i Ii 
t 6: 
~ .. 

.. &1" 1 
- .. ~ .. 

"I- " 
iil~ -~-
~ 
~o-

III 

~l 

~~ i 

.J 

3 

5-39 



'" I 
~ 
o 

00 
00 
t.C 

'" I-' 
o 
o 
o 
o 
t-.:) 

E."~L..-L
£..I>.4;L.l(-L. 

r----------------------------------------------------------~~~ 
r-----------------------------------------------~------~+45? 
r-----------------------------------------------------------------~~~~ .. 
r--------------------------------------------------------------1~~t_O~~ 

~ -a;- 10 ," IS .-(",.a.e)1!! 13 --
~E.JIo.IL 4 " ~ I 10;. ~ ZI 4 Z.-':.:=O'-_____ I-------c~~:&> 

41=-1z. Z!5 ,., I ." <mr> 
L---~~D ~ 

'lot<>- -, I z 1 

11 EI m '''T J~nr[ _~7"~50 EZ X ~ .. • _)\.1"'0:; ~ ~I 
!:>zos ES.J 1 Z tA •• = ~ PI 

~ I.. "2] E4 K I 
~ .,t!! G eNI <e§') 7 ... ..,. C 

~ ~ I~L 
M-H ~ ~IW! 
53H i · 400 52H U 4 4 <ill E"I-V 
SIH V ! Z 
~H 1 It_V 

I ~ !WX-V! 
~" Gooo 

I:"'::G '------~4 --- £.AI-V 
I '!>z ~T51 

---:;1." J .. I 

~~ ,.,41_4W I ~ r 
r-____ ---"-=Z~~ 10 -f Tie ~~5,C) 

r----',c::~=-fc::::c;__, I"!> 1 21.. ~A.i ~o 17 A"'f'o. c;,; 
4 ,.,tA •• -o I"!> ~ F>~ 

,---'-~ z Z!! z --

~CC;--7 Z I 
E'!>'-"'" .. -. 

- £;:. ~ ~ .. I I., c1Y> 
E7 <;;i< Z:i Z • Z 10 ~ 
ES ~ • 1 4 " ~ co..... ~ -, ... ..,. G S 1.5 d::tS ... - ~ 

'----------------------------------------------------------~~~+44O;'. 
'--------------------------------------------------------------~~ro43 

~------------------------------------------------------------------_4~-o4Z 
'------------------------------------------------------------------------~040 

E511-
ESZL. 
ES3L. 
ES4L. 

ESSL 
E5071-
ESWL. 
E55>L. 



J 
I 

It 
.J 

~ 

(~ 
~ 

i*F~ ri --h] 
ij~~ 

1 
I 

II) 

~~ 
~ 

~ d Il 

!ll ~ 1. ~ 
11: .. r r r r --I II 

" - " ... 

';7 ";"1. \I 

t - 0 0 Q Q ~ O~ ~ ~ 
" ~ ~ ~ ~ =-,\11 ir;,~ It ~ 

__ ~~.a I" I~ 1 
- Ill" 4\} '1~ !! 

" 11\ • , 
~ ~ 4 ... SlI_ ~ 

88951000 02 5-41 



....... 

CJ1 
I 

tI:>o 
t..:I 

00 
00 
CO 
CJ1 
100-0 
Q 
Q 
Q 

Q 
t..:I 

E,550L.. 

E,~~L. 

E.S7L.. 

Ese ..... 

......;;:" 

---
~ .......... 

~ --
.-......... 

Fl:l<-L. 

.. ""Ci'"' 
,~ 1\ 

~ ~ e 
~ , 

1-=1 :5 
~ 

1=1 4 
I .. 

6 -

PI-A. •• 

~ 

'=" 

x_!.) ,S ~ 
60S - TCE.T 

.. ICD , 
5> t<:D , 
4 ICD , 
SICD , 

~ 
.::oMPAeE 5oZ4S ]I&oGNT~L 

'S c.e- 540 
'. 'I ............ z. p~ Jl!L ~ ~~ -...-: "'>15 __ .. I'!:' Z.S+I 

IZ Z ~ EC.U"-~~. C 
.., 1 ~ , CNTLD-L.. ........ ~ 

ri-----"" 60 1 ::::::z ~ 16tz. 
~ ;a::::z; ~ 60' , _ ......- ~ Ii;; 

..... __ "'=IS ~~ t ... i!I!. ~ 4itZ- SHX~ CT. 

, f-- " ~ t-t-
, 14", -I-:- ..... 1 LeiJZ I. 

, .... ~ Ie 0 7 ~ "'<'IS 
~ "% 

FXlC-H -- I t:::i, IA-. t&S C>';~ <!!5' ..~' .... 7 
IK 

'~ a PZ-A4... D .... TAIO 

ZQ%-~ ,........!: D6 D 
~ f ~ P2'-AZ-,,> P .... T .... ., 
~ -

",. - It P7--.... 1 -'"' D .... T .... e 
~~ ~ -

~ ----,:-- F" P%-,~ P .... TA 7 

£~ .-. 1% -
DATAOUTIH....".. '"---



u 

I 

0 r I 
I 1 I • X I Z .. I-

" 2 I 1: Il iii 
I j 

I 

( n 
I 2 z .. 

Z 2 

r 
I 
:r 

" ., Z ...I 

• I 

~ ~ 
;) 

ItI 1 .. 
.J 
I 

J J It 
.J I I 

\J l- I 
I 10 AI .. 

~ I 
Ij\ 

88951000 02 5-43 



.-. 

t1I 

~ 
"'" 

00 
00 
CO 
t1I 
I-' 
Q 
Q 
Q 

Q 
~ 

+"5> ........ - ,4';:iS1S, I I 
F"S,. ... fRT-L. >~P'_'_-=.=-'e.::....1.r-______ _ I. .2[>G 

~~ESET-L~ 

""""'1 fiE; ~~DWST_~ 
tC.t.~ • __ _ 

lie: 

~-L. 

,t'--" • ~ HC>WCL-K-L-

.J>"". 711-'1~"" ~~\"K-H 

~~\"I<-H 

150:Sl""e @>~EST"''''T-~ 

.,. 

SR£SET-L-



J 
.;. 
k 
~ 
I-

~ 
lit 

~~ 

.. 
M~ 

.. ~= 

r 

~ 
% 
I 

11. .. 
l 

I 

I 

~ 

88951000 02 

~~ ~~ t 
" ... N 

~ -
- Ij! ! !!!! 

11\ 
III-:,!,! L..... '! m ~~~ ~~~ -J!! ~ t • + Ir\lli) 

~~O 
_II 

Q. -~I Clill ~~ :I 1'1- air-- ~~ .. 
@..: ~= lJ;~ 

HIft" III .... 
III 

'-- .s '----
-It: 
11-

oJ II' , .' .J 

~ -. 

1 :0 
~ r r r r ~ - I- 1: 

~~ J, ~ I 

~ 
Z 

~ 
1:1 1\ ~ ~ ~-II_ ti ~ t -
~ ~ -f-t'W"<J :I ~ " I 

+)1 l ~ l_ 

, ...J . 

" .. H ,( 
I .. II~ L 
.J 
I 
~ 

Q\ 

-
t r r 

r ~ ~ 
~ 

" • 
II 
~ ~ 
~ 

II' 
• 

.s II IIII'" 
.J j ii' I .. ,. ,. .. , 
z + 4 

r r ~ 1-.-. - ~ 
2 111 _ M .t z 

A ~-II or K ~ 1\ 
~ 'I p--,:-n;:,1ft - ... ( " 

" III ... ~ I. _ , 
I 

Q 

' 9 11\' ~ =-

I -f~ rrn·~1 i :-
....... 

~ (~ 

J ~, 

0 .. 

I 
I 

It 
.I 
~ 
til 

0 

lf1 :! II _. 

A -!! • ~ 
.. 
(1 -to 
~-L 

u 81 -ot& - -- -" - {l . .. 
t 

'-- • I 
N .. , 
% , 
til 
Z 

~ 

~~ 
.J 
I 

~ 
oj 

II 
1 

5-45 



... ~ 

CJ1 
J 
~ 
en 

00 
00 
CO 
CJ1 .... 
C 
C 
C 

C 
~ 

DI:V-I..~ ...... 

"'$"1.. 

E£LIC - L-

£SC-Z)-L 
SIoICLICIL. 

;r NS,,-lC - L-

NOTES, UMLIIS OTHERWISE SPEC' FlED 

L'< 

p; 
6101FT 

SGLIC-H 

aNT" 

SPeLIC-H 
Ntr"'-101 

NNMD-H 

e 

P'I-at 

IoIDWIr-L,. PI-"', 

IS 

t. 

" 1.....& 
& 

a: ""cf.tS 

&. 

,. 
11 
I ,. 
I &. %'"7H 

ZE 
OIZ 

~.-,,!!O 
PXCIC-L 

LO(iIC Tlllt 

coc 
Bd13~ 

LC)(.IC OW(. NO 

~LIC-'" 

Pz.-8':zA-
A.CLI<\L-

P;I! -"\&0 A£-I. .. \c 'Z-'-

P%-IS''Z 
"£-I..K1!IoL-

P2.-"'.A- "CLICAL-

SMALL co.run. 
OUHO ... fl,BIVlSIO. 

hhlllClIDn 

CARD I"OS 

lOClC TYI'( 



t 

~ xl>< xl' X)( )(~)( J{I) )C)( 
~ 

• i~ )(~ )f l)j IC )(I~ Xl( 1)1 )( XlC)( 

t 

i~~ )( )(1< lClC. P« )()( 

" ~ lCl> )(/'IC X )Cl(l( 

III 
I- '/..xlC ')(l()( )(lCX 

~ 
... 
I-
:I 

)eX Xl(. 

~ 

1ft 

~ xx 

• 
... 

i X l(ll. ~x xX )O( )( lC IlC XXI< x)( )(1)( x 

5 :1$ ~~ 1~ ~l~ ~Ia I~i 5~ 1-:1 ~~ )t)o :t ~~ ~~ ~~ Jz I:)L 2~ ~~ ~I~ ~~ >'~ 1-:1 x)o 0(0( ~o( 

t 
I-X 
:r xx xx )(l( )()()()( )(X x 

'" 
G 

i xx )()()()( )()( 

i 
X)( 

... 
r ~IX xx xx )(X 1<'lC,O( )oe IOCX xx )(Ix 

Iii I 

~ 
~x IlC )( xix Xl( )( If lOC )(x I xx )()( )CI~ 

I .,.. 

• 
i'" g(lC )(X lI'l)j )()( lCl~ x)( xx )( i x)( X)()()( 

i~ xx X X110 1_ X XlClC)( )( )(Il( )( )(I~ II. )()(l( Pc )()( xl) 

.. 
I" Ix pc xix )( )t)C )t )( X }(I)I x xl~ )( xiII XX)( xl}! )( X)( )(l( 

II 
X)( l(lx )( IlC illltx )(X l()( )()( XX)( 

i X 

.J 

I ~~ I- \I I+~fl I'" ., .11 J I~ :z~ ai' It ~ I-:J >_x >11: II a I~ ~ ~I~ IJ::I~ ~jlJ zl.)t 
z~ 

88951000 02 5-47 



en 
I 

"" 00 

00 
00 
c.o 
en 
I-' 
o 
o 
o 
o 
t-.:) 

IS~I-
>Pz-... ~ .. .~ ,F'""-' ~&s¢H 

&SIL p'~. ~551H 

e.Ll...k - ..... ~. <9SC,-"'-L 

A.'$.IL ,..-. ~A5IH 
Pf"'- L 

AS",L M;¢L 

M/oa~a-L 

fSENe-L 
M/S""T_;..n._L 

"'"f MS;'---~2ENII2a-1-

~ 
=1 

IOII~le 
IZr=r1" • '''I 

1M-I- )~7-"'Z- '%'I~~ Zr <e;>rM'H .... S">IL 

DS 

13 

+os 
DI~1Ii!'13 'K 

5 

1"'3L "Z-&I ~> IS~H Ma~o::;;..L--
PI-&'Z..'5-

.. os 

I"SZL P2-A.'21 I.Z. \''507H 
bl5-Rlz.. 

II< 

,c-~ ISoIL "%.-&1 ~.IO 8 lSIH 

15o~L "Z-&15 I'Z.I~ II IS¢H 

"'41< ...... 1< Ft:"'-':'-o---------
~~ 6N4k-tFt:~7~--------~~~~-~~~ 

z~ ... ~IIc:.I------ I Gol 
p, 

Go%. 
PZ 

"' ... p; 

>-----'-'1~="I36Ao I", I .. CNZ. 
.0 ....... ---...,'':-'''''1 :t.'5ocP eo. L po Z -A..t"'7 ,j 

<liitC4:>------:Z=-""i Z4<? f. -- "PC' >,"'_z=-=s~S=""Hr'--'=:!:!:"" 

<'v.;>-___ -.:;4~:"I: ':;~'::s. <-... 1 DQN'T STW!"""""S 
11o(;IOZ4 

C>P-H 

I'"z" -) MPSNS-H 

I"'" ~~--")Io Q-L-
Iz' 

I.... ~ ....... ~~L1-L 

Go3A 
?SA 

c.z." 
PZA 
C.IA 
P'A 
Gt¢A 
P¢"" 

CN7 

1<:.1'''' II ~ 
:IE 

A1.u 
;1050 ILAZ 

DIZ 

no: = IQ'%.A 

>---.....::..7.~~"I~ ... Z ..... ~ CNI +'5 

Dc:.. I=""O~DP PZ-AZq ~ eNIl 
p~ --.,---- I I 

z. 
y 
X 



00 
00 
c:o 
CJ1 
...... 
o 
o 
o 
o 
t-.:J 

CJ1 
I 
~ 
c:o 

116'104 
~ 

I!ICUC-L 

umg 

...... 

Dl!WO: , 

+<; ~~~, i 1 -

~L""L..;~·I\ ;J; 
~ I~ 

<8> (;la-I.. 

7-"%% >M~ 

~ 

@t!£:! .,. . 
I,,"~ 
Zi 
u,;l IS 

liS. IACW!fel 

~ : ~~:;=O~ ________________ -J 

~~-_-+r~1-~-_-_~-_-_~~-_~-_-_-_-_-_-_~~~z~ I~:~~ __________________ ~ 
____________ ~1~4~p~~~~~~----_+~----------------~I~.~~ 

I "LU ~ 
I~ I ~ liitAO-..:1i 

_____________ .:,':;ft!.-' __ I 5Q 

_____ -715~';' -T: IT II _,-,., ~+~ __ 

---------'i~0'-I' ~ Z~[ I I Til -.-1 % IFCA.8.<:).,J'4 % -~- ~ MA~.->-\ 

....-~_:::¥++-h~z:o-~--+t--------~w4j';'L-_--=:J III T II eNI ~iJ.:i>;'117 <H>;"i 

DA.TA,OUTI ...... 

DA.TA.l5 
DA.TA/# 
OAT"'!!> 
"'",TA. 

471 
..... P'Z-.A.I\ I 
P%-~ 

P'%-se 

~"'-1!!I7 
P~-I!!I<:: 

1 

- r.-...... I I I I ~ I.... 's.t.~ 1% P'2:A.~ M"'C~I-{ 
D% 

SPALU 



VI 
I 

c.n 
o 

00 
00 
c:c 
VI ...... 
o 
o 
o 
o 
to.:) 

I!I6'H 
I!I6¢H IIICUC-L ~!:I.~ ___ U 

MSII <D 
I="~c. 

UJE!>Z 
!:>5 
'>4 
SS 

A.~IH 

A.~~ 
A.CLKIL... 

MAC-II <S> 

E~ I~!! 5llj r 111 j 1111 ::: 9:~;" ~,. , 
,AI-

... £ 
.~ :l" ..... 

6004 *-"'.5 
60' OS I>l/oa 

CO"'TA5 
COArA.., 
I:>.o.TA. 
DATA? 

~'":-.. ~~ .... 

...L="'-'~14 

" 
"'" 

'---' 
<E 

e».T~'l-Ill I I ~ 
P'~-t!M. ~ 

~--,..z--f' ~ t ~ ~pz.:aLIt.L.l ........... 

.4-

~ 
~ 

* 
7 

..u.<:1t:.. ... 
...... CIZ 

M ... e-I,,'" 

StENS-L 

M/!SSTS-L 

1/ 
10' 
; 
~ 

~ 
~ 
uc;-
3cC> 

.... 5I1AU)( 

&> 
I 

&> %:!" , 
0 2!! 

~ 

t!L-

IMII-\ 
'~!5H 
I$%H 
I$IH 
IS,",H 

I.... :I; 
",ZI 

"'2.:;. 5 
!!II A( 
IIA""LU 

~ ~iJ ,_ 

~ 44 !:I~~ 
T .,. Z. GjSI 
U Ii I I 

,,%-

- .. :1.* '[5 
II !liF~~)~I~ II 

... 

7 

%0,,-

ZZ Z & 

d:=_-C",.. .... "'''=I!I_>-\ 
"::;-<1!~ P'2: 

CNZ. ,",Z 

lie 

C>3r"-
OSItII 

~::::~-r!!o 



"I 

~ 
" 

~ :: ~It lli 
IL~ • ~III .! ~~ii-~ •• 11- h~ 

~ ~ 
"... . ~ 

'II 'If ~ :I >- If :l~~ (I': 
l\ll~ I&! ~~ 

~t .J ~"p 
>\- II. ~ ill ,,'"' -101 1" ~ 

\!~ ICI.N_"-- •• N-" • N --

Ie <t "" ,,-I~ ... ! ~ ~ -I~ -1'1 l' 

~ij~l~ 1fI J 

i~ " ,....,!. ~ 

~i~!i 
~{ oft 

2""1/1011 t~ H 
t-

\01----
bll .... 1' 1ft 

00 ~ I 
N 
6. 

~ :i ~ ~ N -t II' t-

1.- x 11--.. .' .' .' -,,- tI N N N 

" .r.ii 
'! \I ;~ 

::J 

t )' 1 ~~~ -
~ 1 I\II~ udl • :I 

II - ~ r\Mr- ~~ \I~~ '~~ ~- ~- ~- ~-

~I' Ij ~ . I~ <tId In I~ ! ~tI I~ ::~ 1/1" 

= 

~~ 
~ AI ~ 

I~n (~ ~ 
I~ ~~ ~ i 

I 

aJ
" 

j j 

~) 
J I I 

j 110 L • • ... ~ ~~~ ~ .. 
~< 

~ • 1: 1:1 at ! ~ • '1 

~iJ J ~ 
\!. ! , = • ~ 

L-. ~ .... =~ e I HI~~~ !~~ ,~~ !Mtia I' H" ~1fI /ILl Q/lQ~ S S .. _ vv .. r-.lI~ U~ 1 Ji _ 1/1 t .. 
I' l~ .. <t ,II''' t-

1:1 

~ II 

1111 
~ "J =J I) ~ I' _ 

~~~ 
0.

~ I~~b 9 .. s'~I" 1,/ I·.' ~, ~1 ,.
+ I I H !Ij

.J
~.J"

~ II' ~!It t~ ",fl- U IfI

lfP i i ·~t ~ " I It :r
"''IX'I
S:!~~

.«.(

88951000 02 5-51

~,:;;;::".

CJ"\
I

I:J1
N

00
00
(0
CJ"\
Q
Q
Q

Q
t..:l

_
~~~>-____ ~U 

''50 
Ma • ., <g;;:: 

-.::.0 •• .4-

=~~ I ~~ 511! 
illE31 

3Z 
33 
34 

DA..TA.I' .... 
PA.rA'OH 
D"'T ..... H 

D"'""eH 

--.. 

OA.TADU. _.-, 
P"Z.-AS 
1>2.-... 4 
P%.-... -z.. 
P%.-A\ 

... 51>-1 
I'6<IL 

A.CLK71....-

MA.C'" 

~ 
... .,"'.::. 

~I~ 
a.~ 

'I~ §Il ~~~~ ?~ ; 
IMIH 
.S3H 
ISZ-H 
ISIH 

srENa-L IS¢H 

"'/SSTIS-L ....... ~>--...!;;~ ... 

IK 
D7R.IO ~ 
D7~11 

~ 1+50 
v,R:\~ 

F 

~~J>..a 
,;;.pq A. S 
6015- A 

IGo A 
7\ 

60~ IS 
31 ... ( 

II M",L..U 

I-""'<-~~:'l<.. ~~B-H 
""SA 



'1 
I 

~ 
~r~ < !II 

t~ 
11\--- ~I' !hNt 

",II 

~! 
~~ .~ ~~i-L-

~N- .ll 
~ J.-.II 

I~~ • H n~ • IC'" 
~~ ~ < 

...... 
~- e Il\ _1'1 

~ ... 101-1-- ,.11-. ~ tl - -
'~~. ! til~ NI ~ ~ -I' ... 

l,~nw II~ 
~ 
+ 
r-

~ . ~~ ~ 
>- •••• 

;iH! t a 
a~~~- &fiH 

~ ;, ~ !! !! .. .. ... 
'-- y.11- .. ... . ' .. , -,,- 101 101 101 '" 

~ ~'" lJJ j ~~ 
t !J oJ ~ - U~ U .. :I 
1l ll~flr M. Itr- 111- I\-~ -~-

I' I~ II~" 4to -~ !It fll' ::: ~IIII 4 
=~ 

(A)~ I@ IQ ~~ ~. 
.1 11\ '~I'-

1 .J 

'1 i" .. II N • I 

~ ~~~ ~ e ~<~ :I :E I ! 
:I 

I!.J Uj 
t :t l~ 

:! " : .. ~H l..-

i 
;: l~ e I (f t U\I u~~s QIU !II S e e 
"- Vllllr- - 1_, ~ 11\ !! .. 

It-

=~I~ 
I I~ Ilf 41" 

iili 
, 

~ = til 1: 

" ,~ ~ ~ I~ ~O &-~( .. ~~~ I \4' w' J I~ • 
... 

t ~ IH! I~N- ~r xx. II U~ '''~iI iii I , .. ;;,N ~ 
b 

1 12 
1: 

~ 
~ 

88951000 02 5-53 



--
-!~ 

@ 
d\ 
+ 

~{ x 
~ ~I~ w 
ii 00 

= 

.I J 

~ . 
i i 

I 

I 
, 
i ; 

-t " = ft 

5-54 88951000 02 



~~/Jf 
l' 

~: h ~ ,,{{ 
Ii.~ ~i "'.., ~~ ~_ L-I'" 101- '.~ h~ 

:I~~~- :l~ ~ 11111 

~M < ~ ~K"( w 
~ .( 

§I~ ~~ 
:i. • .J - f"'" 11l§ ~- 1 ~ .( • \l _M 

fA" N-~ t -1-'4"~ :htll-r-- N 

II\l\l~ t- ~N I' ~ " ·I~ 
-N 

~~ '--- .J J 

~~ 
"1 t-

" Z 
~I !~~:l 

\J 

~ I (11(1 ~~ 
[ 

101---- . .( 

'N h. 

~I t! ~ :! ~ ... t I- ~i IH 
~~ L-

)l.r---L- ~ .' ., ., fio tlO M N 101 

i 1ft\! 'tt!. :I ~{ 1 ~~ ~ I t il':( 
Ii. 1 t~\l ~ii o Q tl H~ " ~r 

ill 
to· r-r- ~~~ ~ ~- ~- ~- 't 

J ~ It I~ t ICI lolot -1t- a: I~ ! ~ NIt( =~ "''' , 
€e !~~ 

- Q ~ ., 
~ ,. 

:I 
~ t I(~ .~ l~ 0 ~~ 

¥ 
r-:? 

XI ~ t 
ii ' ~ J J N 'I 

i ~ . ~ ~ 1 .,. [ ~ :z I-
III '" 

1 I ! 
I 

- :!l!'l ~ 
:tOI! L-

! " : I 

i 
,~ 

~ ~~~ ~~~ i H\l ~M ~§I~ U~ 
A ttJ II'~ e e 1\ 

_ V Dtr- "1 Jt ~ " t! t 

~ .. 
= J1 Not t.,n , 

~ 

N.~ 

~ IU I- 1~ f~~ 
• &: 
+ 

~ 
IIIlIott! 

'l:r1 
J 

(~~~ .I jli ili I ~ : ..---. ~!! .. t- ... 
HH 
011110 , ~ 

)I. ill; .1" ~~I i ~l~L 
.!.~ ,. , .• - ,-
I. t ~l~= ~ iii" 111111 

I· 

~~ ., .. = 
~ lIIo-r-

, 
! 

i 
:r '~ I 

I .. I !! t __ -ICI 
II 

"""" 0 \ :[ 

tn '1 ~III\ ·l!!l~lN - ~ 1ft 
I-

J ~ 
~ 

88951000 02 5-55 





WIRE LIST 

This section of the manual contains the wire list and signal glossary for the hardware floating
point unit. 

NOTE 

Signals with names ending in an H are high true, that is, a high equals a 1 
and a low equals a 9. 

Signals with names ending in an L are low true, that is, a low equals a 1 and 
a high equals a fl. 

88951000 02 

6 

6-1 



Si gna1 
Nane 

17L 

lL 

lM1L 

lS0L 

lS1L 

lS2L 

lS3L 

7FL 

8~L 

Al 

6-2 

" System 17 HFPU 
Backpl ane Wire 1 ist and Si gnal Glossary 

Al phabetica1 by" Si gnal Nane 

Board 
Name 

EXP 
FPHHP 

EXP 
FPHHP 

FPHf-tP 
SPALU 
DPALU 

FPHMP 
SPALU 
DPALU 

FPHMP 
SPALU 
DPALU 

F.PHf~P 
SPALU 
DPALU 

FPHMP 
SPALU 
DPALU 

EXP 
FPHMP 

EXP 
FPHr4P 

AQ 

AQ 

Pi n 

P1B23 
P1B23 

P1All 
P1A11 

P2A12 
P2A12 
P2A12 

P2B1S 
P2B15 
P2B15 

P2B17 
P2B17 ~ 

'P2B17 

P2A21 
P2A2l 
P2A21 

P2B19 
P2B19 
P2B19 

P1A14 
P1A14 

P1B17 
P1B17 

P1A03 

P1B01 

Description 

Drives Exponent Constant of 2310(171~) 
to A si de of Exponent ALU. l used in 
FLOF) 

Exponent "Constant. of 1. (used to 
increment the exponent) 

ftbde Control to Mant"issa ALU 74181's 

Function Selects for ~1antissa 74181'5 . 

Function Selects for Mantissa 74181'5 

Function Selects for Mantissa 74181's 

Function Selects for Mantissa 74181's 

Exponent Constant of 12710(7Fi6) 
(used for forcing maximum in case of 
overflow) 

Exponent Constant of -12710 (8016) 
(used to force zero result in case of 
zero mantissa or underflow) 

A/Q Data; Bus 

A/Q Data Bus 
88951000 02 



Al(J .. A/Q Da ta Bus 
AQ P1B~6 

All A/Q Data Bus 
AQ P1A05 

A12 . A/Q Data Bus 
AQ P1A~4 

A13 A/Q Data Bus 
AQ P1B09 

A14 A/Q Data Bus 
AQ P1Bl~ 

A15 A/Q Data Bus 
AQ PlAn 

A/Q Data Bus 
AQ P1B~2 

A3 A/Q Data Bus 
AQ P1B~6 

A4 A/Q Data Bus / 
AQ P1Af)7 

A/Q Data Bus 
AQ P1A01 

NJ A/Q Da ta Bu's 
AQ P1.AgJ2 

A7 A/Q Data Bus. 
AQ P1B~3 

AS A/Q Data Bus 
AQ P1B04 

A9 A/Q Data Bus 
AQ P1B05 

ACLKl L Mantissa FPAC Clock Bits 0 and 9 to 23 
EXP P2B24 
FPHMP P2B24 
SPALU P2B24 

ACLK2L FPAC Clock Bits 24 to 31 
EXP P2A16 
FPHMP P2A16 
SPALU P2A16 

88951000 02 6-3 



ACLK3L FPAC Clock Bi ts 32 to 47 
EXP P2B12 

"FPHMP P2B12 
SPALU P2B12 
DPALU P2B12 

ACLK4L FPACClo.ck Bi ts 48 to 51 
EXP P2A14 
FPHMP P2A14 
DPALU P2A14 

AD0 DSA Addr~ss Bus 
DSA P1B23 
ADDALU P1B23 

ADl DSA Address Bus 
DSA P1B24 
ADDALU P1B24 

AD10 DSA Address Bus 
DSA P1A25 
ADDALU P1A25 

ADll DSA Address Bus 
DSA P1A26 
ADDALU P1A26 

AD12 DSA Address Bus 
DSA P1A27 
ADDALU P1A27 

AD13 . DSA Address Bus 
DSA P1A28 
ADDALU P1A28 

AD14 DSA Address Bus 
DSA P1A30 
ADDALU P1A30 

ADl5. DSA Address Bus 
DSA P1A~1 
ADDALU P1A3l 

AD2 DSAAddress Bus 
DSA P1B25 
ADDALU P1B25 

AD3 DSA Address Bus 
DSA P1B26 
ADDALU P1B26 

AD4 DSA Address Bus 
DSA P1B27 
ADDALU P1B27 

6-4 88951000 02 

\~ 



A~ DSA Address Bus 
DSA P1B28 
ADDALU P1B28 

All) DSA Address Bus 
DSA P1B30 

- ADDALU P1B3~ 

AD7 DSA Address Bus 
DSA P1B3l 
ADDAlU P1B3l 

AD8 DSA Address Bus 
DSA P1A23 
ADDALU P1A23 

AD9 DSA Address Bus 
DSA P1A24 
ADDAlU P1A24 

ADAENBL Enables ADDR Bd MUX to A side of 
DSA P1B13 ADDR AlIJ 
ADDAlU P1B13 

. ADATAH Enables output of PCR/IR r~ux on 
DSA, P2.A26 ADDR Bd to H FPU DATA Bus 
ADDAlU . P2A26 

ADBENBl Enables ADDR Bd MUX to B side of 
DSA P1A12 ADDR ALU 
ADDALU P1A12 

ADOUTL Enables output of ADDR AlU to DSA 
DSA P2A13 Address Bus 
ADDAlU P2A13 

AS~l FPAC mantissa shift register mode control 
EXP P2A23 
FPHMP P2A23 
SPAlU P2A23 
DPALU P2A23 

• 

AS1L FPAC mantissa shift register mode control 
EXP P2B23 
FPHMP P2B23 
SPAlU P2B23 
DPALU P2B23 

BCENBH B Register Clock Enable from FPH MP 
EXP P1B18 
FPHMP P1B18 

889511:)'00 02 6-5 



BClKH 

BENBl 

BS~l 

BSll 

CCH 

CCRCLKL 

CCRRDH 

CKSANL 

CLK2L 

CNll 

CNTLDL 

6-6 

EXP 
.SPALU 
DPAlU. 

FPHMP 
SPAlU. 
DPALU 

AQ 
DSA 

FPHr.p 
SPALU 
DPALU 

FPHMP 
SPALU 
Di'ALU 

AQ 
DSA 

DPALU 
AQ 
DSA 

DPALU 
DSA 

FPH~1P 
SPALU 

AQ 
DSA 

SPALU 
DPALU 

EXP 
FPHNP 

P2B25 
P2B25 
P2B25 

P2B26 
P2B26 
P2B26 

P2A15 
P2A15 

P2A24 
P2A24 
P2A24 

P2A25 
P2A25 
PZA25 

P2B19 
P2B19 

P2A18 
P2A18 
P2A18 

P2B]~ 
P2Bl~ 

P2A19 
P2A19 

P2B29 
P2B29 

P2A29 
P2A29 

P1A19 
P1A19 

..• 
Clock to B Register on SP and DP ALU/ 

Enables B Register to B side of 74181 IS 
on SP ALU and DP ALU . 

Buffered ROM bit 16 (Master control 
mi era-processor) 

Mode Control for B Register 

Mode Control for B Register 

Master Control Consecutive Cycle Request 
to DSA 

Current Command Register clock 
\ 

Current Command Register Read 

Clock Sign of Answer 

2nd Clock of Master Control micro-processor 
Instruct ion Cycle 

End-around carry bit for mantissa ALU 

Load Shift-Counter 

88951000 02 



CSL COLD START corrunand from" "A/Q "to Master 
AQ" P2B28 Control. 
DSA P2B28. 

DO DSA Data Bus 
DSA P1AD3 

01 DSA Data Bus 
DSA P1BtJl 

Dl~ DSA"Data Bus 
DSA P1B~6 

011 DSA Data Bus 
DSA P1A~5 

012 DSA Data Bus 
DSA Pl~4 

013 DSA Data Bus 
DSA P1B~9 

014 DSA Data Bus 
DSA P1B10 

015 DSA Data Bus 
DSA P1All 

D2 DSA Data Bus 
DSA P1B~2 

D3 DSA Data Bus 
DSA P1A06 

J'. 

D4 DSA Data Bus 
DSA P1A07 

D5 DSA Data Bus 
DSA P1A01 

• [Xi QSA Data Bus 
DSA P1A(J2 

D7 DSA Data Bus 
DSA Pl B~3 

D8 DSA Data Bus 
DSA P1BIl4 

DSA Data Bus 
DSA P1B~5 

.. 
88951000 02 6-7 



DATA9}H HFPU Internal Data Bus 
SPAlU P28~1 
DPAlU P2801 
·AQ P2B0l 
DSA P2B01 
ADDAlU P2B.f)1 

DATA1H_ HFPU Internal Data Bus 
SPAlU P2B02 
DPAlU P2B02 
AQ P2B9}2 
DSA P2B~2 
ADDAlU P2B9}2 

DATA1~H HFPU Internal Data Bus 
EXP P2A~4 
SPALU P2A9}4 
DPAlU P2Af)4 
AQ P2A9}4 
DSA P2A.f)4 
ADDALU P2Af)4 

DATAllH HFPU Internal Data Buc;·· 
EXP P2A9}5 
SPAlU P2A9}5 
DPAlU P2A9}5 
AQ P2At)5 
DSA P2A9}5 
ADDAlU P2A9}5 

DATA12H HFPU Internal Data Bus 
EXP P2A9}6 
FPHMP P2AJ)6 
SPAlU P2A9}6 
DPAlU P2AJJ6 
AQ P2A06 
DSA P2A9}6 
ADDAlU P2A9}6 

DATA13H EXP P2Af;7 HFPU Internal Data Bus 
FPHMP P2Af)7 
SPAlU P2A07 
DPAlU P2A07 
AQ P2Af)7 
ADDAlU P2Afl;7 

DATA14H HFPU Internal Data Bus 
EXP P2AD8 
FPHMP P2A9}8 
SPAlU P2AJ)8 
DPAlU P2A08 
AQ P2A08 
DSA P2A9}8 
AODAlU P2A9}8 

6-8 88951000 02 



DATA1SH HFPU Internal Data Bus 
EXP P2A1J9 
SPALU P2A~9 

"DPALU . P2A09 
AQ P2AJ)9 

- DSA P2A09 
ADDALU P2A09 

DATA2H HFPU Internal Data Bus 
SPALU P2B,04 
DPALU P2B04 
AQ P2B04 
DSA P2B04 
ADDALU P2B~4 

DATA3H HFPU Internal 'Data Bus 
SPALU P2BI)5 
DPALU P2B05 
AQ P2B0S 
DSA P2B05 
ADDALU P,~~5 

DATA4H HFPU Internal Data BUS" 
SPALU P2BI)6 
DPALU P2B06 
AQ P2B06 
DSA P2B06 
ADDALU P2B~6 

DATASH HFPU Internal Data Bus 
FPHMP P2Bf)7 
SPALU P2B07 
DPALU P2BI)7 
AQ P2B07 
DSA P2B07 
ADDALU P2B~7 

DATA6H HFPU Internal Data Bus 
SPALU P2B~8 
DPALU P2BI)8 

. AQ P2B08 
.DSA P2BI)8 
ADDALU P2B08 

HFPU Internal Data Bus 
DATA7H EXP P2B09 

SPALU P2B~9 
DPALU P2B09 
AQ P2B09 

. DSA P2B09 
ADDALU P2B09 

88951000 02 6-9 



DATASH HFPU Internal Data Bus 
EXP P2A01 

·SPAlU P2A01 
DPAlU P2A0l 
AQ P2Af)1 
DSA P2A01 
ADDALU P2A01 

DATA9H HFPU Internal Data Bus 
EXP P2AD2 
SPALU P2A02 
DPAlU . P2A02 
AQ P2AD2 
OSA P2A02 
ADDALU P2A02 

DATAOUTIH Read FPAC ~-15 to HFPU DATA 
EXP P2All 
SPAlU P2All 
AQ P2All 

DATAOUT2H Read FPAC 16-31 
SPALU P2B10 
AQ P2Bl~ 

DATAOUT3H Read FPAC 32-47 
SPALU P2B13 
DPALU P2B13 
AQ P2B13 

OIVL FPH MP Hard\'/are Divide Command Line 
EXP P1A06 
FPH~1P P1A05 
SPALU P1A~8 

·DfWf Master Control DSA instruction execution 
AQ P2B3~ 
OSA P2B3~ 

DPL Double Precision bit from FSR 
EXP P2B16 
FPH~1P P2B16 
SPAlU P2B15 
OPALU P2B16 
AQ P2B16 
DSA P2B16 

DSA PRIORITY DSA Bus Si gnals 
DSA P1B12 

DSA PROG PROT D5A Bus 5i gnal s 
05A P1B14 

6-10 88951000 02 



DSA REQ DSA Bus Signals 
DSA P1A15 

DSA RESur'.E DSA Bus Signals 
'DSA, P1A13 

DSA WRITE DSA Bus Si gna 1 s 
DSA P1B21 

EACLKL Exponent Accumulator Clock 
EXP P1B19 
FPHMP Pl B19 

EBENBL Enables output of Exponent B Reg to 
EXP P1A17 B side of 74181 
FPHMP P1A17 

EGTL Exponent ALU output greater than zero 
EXP P1A.09 
FPHMP P1Ar)9 

EOVFL Exponent Overflow 
EXP P1B12 
FPHMP P1B12 

ES0L . Exponent ALU function Select lines 
-EXP P1A22 
. FPHMP P1A22 

ES1L Exponent ALU function Select lines 
EXP Pl B21 
FPHMP P1B2l 

ES2L Exponent ALU funation Select lines 
EXP P1A2l 
FPHMP P1A21 

ES3L Exponent ALU function Select lines 
EXP P1A2~ 
FPHMP P1A20 

• ESML Exponent ALU function Select 1 ines' 
EXP P1B22 
FPHMP P1B22 

ETBH Exponent difference Too Big 
EXP . P1A12 
FPHMP P1A12 

, EUNFL Exponent UNder Flew 
EXP P1B13 
FPHMP P1B13 

88951000 02 6-11 



EXNXTH Execute Next op Code. Enable from Master 
DPALU P1A3~ micro':'processor 
AQ P1A3~ 

FADfWH Starting Address lines for FPH MP 
FPHMP. P2B29 
DPAlU P2B29 

FADR1H Starting Address li nes·1 for FPH· MP 
FPHMP P2A28 
DPAlU P2A28 

FADR2H Starting Address Lines for FPHMP 
FPHMP P2B28 
DPALU P2B28 

FADR3H Starting Address lines for FPH MP 
FPHMP P2All 
DPALU P2All 

FADR4H Starting Address lines for FPH MP 
FPHMP P1B28 
DPALU PI ~28 

FIXl Control to ETB Comparator used during FIX 
EXP P1A18 
FPHMP P1A18 

FL Exponent Constant of l510 {F1S ) 
EXP P1A23 
FPHMP P1A23 

FSRClKL· Function Status Register Clock 
FPHMP Pl B29 
AQ P1B29 
DSA P1B29 

FSRRDH FSR Read 
FPHMP P1B20 
AQ P1B2J) 
DSA P1B2.t') 

FSTARTL Start Command to FPHM~ 
EXP P1B08 
FPHMP P1B08 
AQ P1B08 

Gl Carry Generate out of DPALU 
SPALU P2A17 ~7 
DPALU P2A17 

6-12 
8895100002 . 



~D Ground 
EXP P1A29 
EXP Pl Bf)l 
EXP· P1B11 
EXP P2A03 
EXP P2B21" 
EXP P2B31 
FPHMP P1A29 
FPHt1P P1801 
FPHMP P1811 
FPHMP P2Af)3 
FPHNP P2B21 
FPHMP P2B31 
SPALU P1A29 
SPALU P1B11 
SPAlU P2A£)3 
SPALU P2B21 
SPALU P2B31 
DPALU P1A29 
DPALU Pl B11 
DPALU P2A£)3 
DPALU P2B21 
DPALU P2B31 
AQ P1A29 
AQ P1B11 
AQ P2Af)3 
AQ P2B2l 
AQ P2B31 
OSA P1A29 
DSA P1Bll 
OSA P2A03 
DSA P2B21 
OSA P2B31 
AODALU P1A29 
ADDAlU Pl B01 
ADDALU Pl Bl1 
ADDAlU P2A03 
ADDAlU P2B21 
AODALU P2B31 

• HADR0H Master Control micro-processor Instruction 
DPAlU P2B20 Address 1 ines 
AQ P2B20 
DSA P2B20 

HADR1H Master Control micro-processor Instruction 
DPALU P2A20 Address 1 ines 
AQ P2A2~ 
DSA P2A20 

HADR2H Master Control 
DPAlU P2B22 Micro-Processor 
AQ P2B22 instruction Address 
DSA P2B22 lines. 

88951000 02 6-13 



HADR3H 

HADR4H 

HADRSH 

HADR6H 

HADR7H 

HAlTl 

HDWRl 

I/O ~10DEl 

IADATAl 

ICCRRDl 
• 

IFSRRDl 

INSClKl. 

IR2H 

IR3H 

6-14 

DPAlU 
AQ 

. DSA 

OPAlU 
AQ 
DSA 

DPAlU 
AQ 
DSA 

DPAlU 
AQ 

DPAlU 
AQ 

EXP 
FPHMP 

EXP . 
FPHMP 

AQ 
DSA 

AQ 
DSA 

AQ 
DSA 

AQ 
DSA 

EXP 
FPHMP 

DSA 
ADDALU 

P2A19 
P2A19 
P2A19 

P2B18 
P2B18 
P2B1S 

P2A22 
P2A22 
P2A22 

P1A3l 
P1A31 

Pl B31 
P1B3l 

Pl.AD4 
P1A04 

Master Control micro-processor Instruction 
Address 1 ines· . 

Master Control mi cro-processor Instruction 
Address 1 ines 

Master Control micro-processor Instruction 
Address 1 ines 

Extra ~'aster Control Starting address 
RDr1 outputs used to generate the Two leas t 
Significant Bits of the FPH MP Starting 
address 

, 
Extra Master Control Starting address 

RDr1 outputs used to generate the Two Least 
Significant Bits of the FPH ~'P Starting 
address 

FPH MP HALT instruction execution 

FPH HP Hard'.'/are micro-instruction (SHIFT, 
P1A1S NORM, HULT. DIV) 
P1A15 

Input/Output interrupt of Master Cont~ol 
P2A27 
P2A27 

A/Q interface drive of ADATAH (Enable 
P2A17 PCR/IR to HFPU DATA Bus). 
P2A17 

P2A14 . 
P2A14 

P2B17 
P2B17 

P1B~S 
Pl Bt'S 

P2B13 
P2B13 

A/Q interface Drive of CCRRDH 

A/Q i·nterface Dri ve of FSRRDH 

FPH MP Instruction. Clock 

Index Register Times 2 

Index Register Times 3 
DSA P2B11 

8895100002 ADDALU P2B 11 

. ( 



IRCLKL Index Register Clock 
.AQ P2B15 
DSA. P2B15 
ADDALU P2B15 

IRCLRL Index Register Clear 
DSA P2B~7 
ADDALU P2~7 

IRSH Index Register Si gn 
DPALU P2A16 
ADDALU P2A16 

ISELL Select Control to PCR/IR MUX 
AQ P2A28 
DSA P2A28 
ADDALU P2A28 

IZEROH Index Register = Zero 
DPALU P2A1Q 
ADDALU P2Al" 

J-YESH Jump Yes • Master Control jump condition 
DPALU P2B14 true. 

-AQ P2B14 

LEFTL Shift Left mode Control to CCR 
DPALU P1B27 
AQ Pl B27 

MA=BH Mantissa A=B. Indicates that outputs of 
EXP P2A15 r~antissa ALU are all high 
FPHfo1P P2A15 
SPAlU P2A15 
DPAlU P2A15 

MAC~H Mantissa Accumulator Bit 0. 
EXP P2A26 
FPHMP P2A26 

. SPAlU P2A26 
DPAlU P2A26 

MAC35L Mantissa Accumulator Bit 35. 
SPALU P1A26 
DPALU P1A26 

MAC36L Mantissa Accumulator Bit 36. 
SPAlU P1A25 

, DPALU P1A25 

88951000 02 6-15 



MBtJH . Mantissa B Register Bit 0 
FPHt1P P2B22. 
SPALU P2B22 

MB35L Mantissa B Register Bit 35 
SPALU P1B29 
OPAlU P1B29 

MB36L Mantissa B Register Bft 36 
SPALU P1B25 
OPALU Pl B25 

MB51L Mantissa B Register Bit 51 
SPAlU Pl B24 
OPALU P1B24 

MC A/Q Bus Master Clear 
AQ Pl B23 

MCLRL HFPU Master Clear. Incl usi ve OR of MC 
EXP P1A10 and PCLR 
FPHr~p P1A10 
DPALU Pl A1~ 
AQ P1A10 
OSA Pl Al(l 

MD~H Multiplicand/Divisor Register Bit 0 
FPH~1P P2A30 
SPALU P2A30 

MDCLKlL MID Register Clock, Bits 0 to 15 
- EXP P2Bll 

SPALU P2Bl1 
DPALU P2Bll 
AQ P2Bl1 

MDCLK2L MID Register Clock, Bits 16 to 31 
SPALU P1B30 
AQ Pl B30 

MDCLK3L M/D Register Clock, Bits 32 to 47 
SPAlU P1A24 
DPALU P1A24 
AQ P1A24 

MDENBL Enables ~1/D Reg to Mantissa ALU B side 
FPH~1P P2B3~ 
SPALU P2B30 
DPALU P2B3~ 

MEL Look-Ahead Buffer Register Memory Enable 
AQ P2A25 
DSA P2A25 
ADOALU P2A25 

6-16 
8895100 02 



MIRCLKL 

flPSNSH ~ 

MS0L 

MULTL 

NORHL 

NRMDH 

NRf'Ml H 

OPCLRL 

PCRCLKL 

PCRLL 

PICKL 

PL 

PROG PROT 

88951000 02 

DPALU 
(tQ 
OSA . 

EXP 
SPALU 

EXP 
SPALU 

EXP 
FPHMP 

SPALU 

EXP 
FPHMP 

EXP 
FPHMP 
SPALU 

EXP 
SPALU 

AQ 
DSA 

AQ 
DSA 
ADDALU 

DSA 
ADDALU 

EXP 
FPHMP 

SPALU 
DPALU 

AQ 

P2A3~ 
P2A30 
P2A3~ 

P2B14 
P2B14 

P2A22 
P2A22 

P1A~5 
Pl AfJ 5 
P1B~8 

P1B15 
Pl B15 

Master Control Instruction Register Clock 

Multiply Sense line 

Mantissa Summer Bit ~ 

FPH MP Hard~'/are Multiply Command line 

FPH MP Normalize Command 

Normalized indicates that FPAC Bits ~ and 
P2A27 9 differ 
P2A27 
P2A27 

Normalized minus one. FPAC Bits ~ and 
P2B29 10 differ. 
P2B29 

P2B~3 
P2B~3 

P2B26 
P2B26 
P2B26 

P1B22 
P1B22 

P1A03 
P1A~3 

P2Bf'3 
P2B03 

P1A23 

Operand Byte Counter Clear 

Program Counter Register Clock 

Program Counter Register Load enable 

latch for storing sign of the exponent 
difference for use in ADD/SUB to Pick the 
larger exponent 

Propagated Carry from DPALU to SP AlU 

A/Q Bus Protected Command line 

6-17 



PROTECT FAULT L DSA Bus Protect Fault 
DSA P1B17 

PROTH FSR Protect Mode Status Bi t 
AQ P2B12 
DSA P2B12 

Q0H A/Q Bus Address 1 ines . 
AQ . P1A12 

QHJH A/Q Bus Address lines 
AQ P1A17 

Q1H A/Q Bus Addres s 11 nes 
AQ Pl B12 . 

Q2H A/Q Bus Address lines 
AQ P1A13 

Q3H A/Q Bus Address lines 
AQ P1B13 

Q4H A/Q Bus Address lines 
AQ PiAI4 

Q5H A/Q Bus Address lines 
AQ P1B14 

Q6H A/Q Bus Address lines 
AQ P1A15 

Q7H A/QBus Address lines 
AQ Pl B15 

Q8H NQ Bus Address 1 ines 
AQ P1A16 

Q9H A/Q Bus Address 1 ines 
AQ P1B16 

Ql Serial Quotient Bit 
SPAlU P2B27 
DPALU P2B27 

RAi?L look-Ahead Buffer Address Li nes (RAM Address) 
DSA P1Af)8 
ADDALU P1A~8 

RAll look-Ahead Buffer Address Lines (RAM Address) 
DSA P1B08 
ADDAlU P1B08 

RAeTVl Reset the Active Bit of FSR 
AQ P2A23 
DSA P2A23 

6-18 88951000 02 



READ 

REJECT 

REPLY 

RESU1·IEL 

RUNL 

SACTVL 

SAH 

SARENBL 

SB~L 

SB16L 

SB32L 

SB33L 

SB48L 

SB49L 

88951000 02 

AQ 

AQ 

AQ 

AQ 
DSA 

EXP 
FPHMP 
AQ 

AQ 
DSA 

DSA 
AODALU 

P1A21 

P1B22 

P1A22 

P2A12 
P2A12 

P1A~8 
P1A08 
P1A~8 

P2B25 
P2B25 

P2All 
P2Al1 

AlQ READ 

AlQ Reject 

A/Q "Reply" 

DSA Resume 

FPH MP Active line 

Set the Active Bit in FSR 

Select A mode for Address ALU 

Starting Address Register Enable. (Reads 
DPALU 
AQ 

P2A13 Location 0 of Look-ahead Buffer) 

FPHMP 
SPALU 

FPHMP 
SPALU 

P2A13 

P2B2~ 
P2B20 

P2A13 
P2A13 

Summer B input Bit 0 (forces max mantissa) 

Summer B input Bit 16 (FLOF overflow Result) 

Summer 8 input Bit 32 (single precision 
FPHMP P2Al~ Normalized Round) 
SPAlU P2Al" 

Summer B input Bit 33 (single precision 
FPHMP Pl B27 Un-normal ized Round) 
SPALU P1827 

Sumner"B input Bit 48 (Double precision Nrm1d 
FPHr~pPl A27 Round) 
DPALU P1A27 

SUlTlIrer ~ input Bit 49 (Double precision 
FPHMP "P1A2a un-normalized Round) 
DPALU P1A2a 

6-19 



SCFVIDIN 

SCFVlDOUT 

SCREV IN 

SCREV OUT 

SDBPML 

SHCLK1L 

SHIFTL 

SPECH 

SPINL 

DSA 

DSA 

DSA 

dSA 

AQ 
DSA 

EXP 
FPHMP 

EXP 
FPHMP 

DPALU 
AQ 

AQ 
DSA 

P1A19 

P1B19 

Pl B15 

P1B16 

P2A21 
P2A21 

P1B~4 
P1B~4 

P1A13 
P1A13 

P1B26 
P1B26 

P2A29 
P2A29 

DSA Scanner lines 

DSA Scanner lines 

DSA Scanner lines 

DSA Scanner lines 

Set the Daub le Preci sian Bi t in FSR 

Shift Counter Clock from FPH MP 

FPH MP Hardware Shift Command 

Master Control execution of SPEC OpCode. 
Forces msb of OpCode Decode ~ROM input. 

Single Precision Inhibit to Master Control 
Instruction 

SPTCTL Set the Protect Bit in FSR 
AQ P2B23 
DSA P2B23 

SRESETL FPH MP System Reset 
EXP Pl B~3 
FPHMP P1B~3 

TARCLKL Temporary Address Register Clock 
DSA P1A16 
ADDALU P1A16 

TARLL TAR Load enable 
DSA P1A2.2 
ADDALU Pl A2.2 

TRUINL Jump condition true Inhibit tel Master Control 

6-20 

AQ 
DSA 

P2B27 Instruction . 
P2B27 . 

88951000 02 



TSELL· . Select Control to OATNTAR ~1UX on 
DSA P1A14 AOOR Bd. 
ADDALU P1A14 

vee +5V 
EXP P2A31 
FPH~1P . P2A31 
SPALU P2A31 
DPALU P2A31 
AQ P2A31 
DSA P2A31 
ADDALU P2A31 

W=I) A/Q W=O 
AQ' P1A2" 

WEL Write enable to Look-Ahead Buffer 
AQ P2B24 
DSA P2B24 
ADDALU P2B24 

WRITE A/Q Wri te 
AQ Pl B21 

ZOUNOL Zero or unnormal ized Oi visor' 
FPHMP P2A2~ 
SPALU P2A2~ 

• 

88951000 02 6-21 



Name 

Ar~ 
ArlH 
Ar2H 

. Ar3H 

6-22 

AE4H 
Ar5H 
Ar6H 
Ar7H 
AE8H 
Ar9H 
ArlOH 
AEllH 
Ar12H 
AE13H 
Ar14H 
Ar15H 
ADADAENB-L 
,'\DATA-L 
ADBENB-L 
ADOUT-H 
DATA0H 
DATA1H 
DATA2H 
OATA3H 
DATA4H 
DATA5H 
DATA6H 
DATA7H 
DATA8H 
DATA9H 
DATA10H 
DATAllH 
DATA12H 
DATA13H 
DATA14H 
DATA15H 
IR2-H 
IR3-H 
IRS-H 
ISEL-L 
IZERO-H 
ME-L 
PCRCLK-L 
PCRL-L 
RA~-L 
RA1-L 
TARCLK-L 
TARL-L 
TSEL-L 
WE-L 

T.P~ 

3 
4 
5 
6 

24 
25 
26 
27 
36 
35 
34 
33 
54 
53 
52 
51 
62 
32 
61 
31 
7 
9 

10 
2 

28 
29 
30 
22 
44 
45 
46 
42 
59 
60 
55 
57 
48 
49 
50 
18 
47 
12 
39 
38 
17 
15 
43 
37 
23 
16 

Address ALU Test Point Signal Glossary 

Description 

Addres~ ALU Summer outputs (1 sb) . 

II 

II .. 
II 

.. (msb) 
MUX enable to Su~mer A side 
Enable PCRIIR r·i'ux to HFPU DATA Bus 
MUX enable to Sum~er B side· 
Enable Summer to DSA Address 
HFPU internal Data Bus high true (lsb) 

n 
n 

•• 
II 

n 

I. 

INDEX Register times 2 
.. ." .. 3 
.. II' Sign 

Select IR input to PCR/IR MUX· 
IR = zero 

(msb) 

~1emory enable to look-Ahead Buffer 
Program Counter Register Clock 
Program Counter Register load Enable 
Look-ahead and SSAR Buffer address lines 

II 

Temporary Address Register Clock 
TAR load Enable 
Select TAR input to DATA/TAR MUX 
Write Enable to look-Ahead Buffer 

88951000 02. 



DSA rest Points and Signal Glossary 

Name T.P. Description 

CC-H 53 Consecutive Cycle Request 
CONN-H 15 Connected to DSA (memory cycl e in p.rogress) 
DIN-L 7 Enable DATA to DSA D Bus 
DOUT-H 11 Enabl e DSA D Bus to HFPU DATA Bu.s 
FEND-H 28 FEND Bit in FSR 
HALT-H 24 Scanner Halt Flip/Flop' 
HOG-H 23 HOG Bit in FSR 
INDX-H 25 FSR INDX mode Bit 
LER-H 2 Leading edge of Resume 
NEED-H 21 Need flip/flop in DSA Request logic 
PTFLT-H 19 Protect Fault Bit in FSR 
REL-H 27 Relative Addressing mode Bit in FSR 
RES-H 6 Buffered DSA RESUME 
REQ-H 14 DSA Request flip/flop 
RO~n6-H 36 Master Control micro-processor ROM outputs 
ROM17-H 39 II 

ROM18-H 38 II 

RO~n 9-H 37 u 

ROf~20-H 43 u 

RDr'121-H 42 II 

ROM22-H 41 II 

ROr~23-H 40 II 

ROf·124-H 45 n 

RON2S-H 52 II 

ROr·~26-H 51 II 

ROf~27-H 46 II 

ROf·128': H 47 n 

ROM29-H 48 . II 

ROM30-H· 49 II 

ROf·13l-H 50 u 

RON32-H 54 II 

ROH33-H 55 II 

ROM34-H 57 II 

ROt-135-H 58 • 
ROH36-H 59 II 

ROrn7-H 60 n 

ROM38-H 61 n 

ROH39-H 62 • 
SCNCLR-L 5 Scanner Clear from Master Control 
SCNHLT-H 44 Scanner Halt for Consecutive Cycles 
SCNR-H 10 Scanner flip/flop 
SET NEED-L 20 DSA Cycle initiate 
TER-H 3 Trailing edge of Resume 
WORD-H 22 WORD mode in FSR 
WRITE-H 17 Write cycle Control 
WRT-H' 12 DSA write flip/flop 

.... 
. .... .... . ... :~-... '. :.~ . 

88951000 02 6-23 



6-24 

Name 

PIN 1 = GRND 
ACTIVE-H 
CLK2-L -
CCRCLK-L 
DADATA-H I 

DECODE-L 
DEFINED-L 
DP-H 
FPHAIT -L 
HALT-L 
I/O ACK-L 
I/O ~lODE-L 
MIRCLK-L 
OPCNT-L 
OPDN-L 
PCD-H 
PFSR-L 
PROT-H 
R+W-L 
RADATA-H 
R0t-18H 
RDr·19H 
RON10H 
Rom 1 H 
RON12H 
RDr·tl3H 
ROM14H 
R0t-115H. 
RUN-L 
SPIN-L 
START-L 
STKRQ-L 
STOPREQ-L 
TACT-L 
TRUIN-L 
US-L 
WCLK-L 

A/Q A/Q Test Points and Signal Glossary 

T.P. 

11 
42 
49 
2 

21 
16 
12 
50 
38 
37 
30 
44 
48 
45 
18 
20 .., 
I 

17 
3 
54 
55 
57 
58 
59 
60 
61 
62 
51 
47 
15 
28 
22 
19 
46 
27 
14 

Description 

Active "Bit in FSR 
Second Clock of r1aster Control Instr Cycle 
Current Cowmand Register ClocK 
Drive HFPU DATA to A/Q A Bus 
Decode of a Valid Q address 
Indicates that the Q station Code is defined 
Double Precision mode Bit in fSR 
Wait for Floating Point execution Completion 
Master control microprocessor Halt 
I/O Acknowledge, Master Clock Stopped 
I/O command being executed 
Master Control instruction Register clock 
Clock to OP Byte Counter 
Op \'Iord Done, DP Byte Counter = 4 
Protected Command Required 
Protected \,/ri te FSR command 
ProtEc~ Bit in FSR 
A/Q Read or VJrite 
Read A/Q A Bus to HFPU DATA Bus 
Master control micro-processor ROM outputs 

FPH MP Active 

II 

n .. .. 
n 
II 

.1 

Single Precision Inhibit 
Start command to ~laster Control 
I/O Request for stop of Master ClocK 
A/Q STOP command Pending 
Test Active before Reply to A/Q Write 
Jump Condition true inhibit 
Q Register address defined 
Write Clock, generated to strobe data to 
destination on A/Q write 

,88951000 02 



Signal 

lM1H 
1 S£)H 
lSlH 
lS2H 
1S3H 
ACLK3-L 
AENB-L 
AS0-L 
AS1-L 
BCLK-L 
BS0-H 
BS1-H 
CC0H 
CC1H 
CC2H 
CC3H 
CCRCLK-L 
CCRRD-H 
DATAOUT3H 
DP-H 
EXNXT-H 
HADR0H 
HADR1H 
HADR2H 
HADR3H 
HADR4H 
HADR5H 
IRS-H 
IZERO-H 
JYES-H 
LEFT-L 
MA=B-H 
MAC0H 
MBSTR-L 
~1OCLK3L 
MIRClK-L 
MS36L 
MS37L 
MS38L 
MS39L 
MS40L 
MS41L 
MS42L 
MS43L 
MS44L 
MS4SL 
MS46L 

88951000 02 

DPALU Test Points and Signal Glossary 

Test Point Description 

33 
45 
44 
43 
53 
59 
36 
62 
61 
48 
46 
47 

6 
7 

17 
16 
24 
15 
38 
60 
23 
11 
12 
13 
14 
19 
20 
4 
5 

22 
21 
3 
2 

35 
34 
18 
54 
55 
57 
58 
49 
50 
51 
52 
39 
40 
41 

Mantissa'ALU 74181 function Select Lines .. 
.. .. .. 

FPAC Clock 3 (Bits 32 to 47) 
Select B Register input to MD/B MUX 
ACCumulator shift Register mode Controls .. 
B Register Clock 
B Register mode Controls .. 
Current Command Bits (actually next opByte) .. 

.. .. 
Current Command Register Clock 

" II II Read 
Enable FPAC Bits 32 to 47 onto HFPU DATA 
Double Precision 
Execute Next 
Master Control micro-processor ROM Address 

II 

" .. .. .. 
Index. Register Sign 
Index = Zero 
Jump Condition satisfied 
Enable left shift nf CCR 
Mantissa A = B 
Mantissa Accumulator Bit 0 
Enable output of MD/B Mux into B side of 74181's 
Multiplicand/Divisor Register Clock 
Master Control Instruction Register Clock 
Manti ssa Surru'ner Bi ts 

II 

.. .. 

.. 
II 

II 

II 

II 

II .. 

6-25 



Signal 

MS47L 
MS48L 
MS49L 
MSSOL 
MS51L 
SARENB-L 
SPEC-H 

6-26 

DP ALU Test Points and"Signal Glossary 

Test Point Description 

42" 
29 
30 
31 
32 
9 

10 

Mantis~a Summ~r Bits 
It 

II 

" 
It 

Starting Address ROM enable 
Master Control execution of SPEC op Byte 

; 88951000 02 



Signal 

1M1H 
lS~H 
lSlH 
lS2H 
lS3H 
ACLK1L 
ACLK2L 
ACLK3L 
AS0L 
ASll 
BBEflB-L 
BCLK-L 
BS0H 
BS1H 
DATAOUT1H 
DATAOUT2H 
DATAOUT3H 
DP-H 
DPSNS-H 
M/BSTB 
MA = B-H 
MAC36U-L 
MB0L 
MB36LI-L 
MDCLKl L 
MDCLK2L 
MPSNS-H 
MS0L 
MS9l 
MS10L 
MS11l 
MS12L 
MS13L 
MS14l 
MS15L 
MS16l 
MS17l 
MS18L 
MS19L 
MS20L 
MS21L 
MS22l 
MS23L 
MS24L 
MS25L 
MS26L 
MS27l 
MS28L 
MS29L 
MS30l 

88951000 02. 

T.P~ 

26 
29 
28 
27 
35 
62 
37 
4 

45 
46. 
40 
51 
49 
50 
47 
36 
3 
2 

19 
39 
30 
13-
57 
12 
48 
38 
10 
58 
59 
60 
61 
52 
53 
54 
55 
41 
42 
43 
44 
31 
32 
33 
34 
22 
23 
24 
25 
14 
15 
16 

SP ALU Test Points and Signal Glossary 

Descri ption 

Mantissa ALU 74181 Function Select Lines .. .. 
n 
II 

FPAC Clock 1 (Bits ~ and 9 to 15) 
FPAC Clock 2 (Bits 16 to 31) 
FPAC Clock 3 (Bits 32 to 47) 
Accumulator Shift Register mode Controls 

II 

Select B Register to B side of 74181 
B Register Clock 
B Register Node Controls 

II 

Enable FPAC 0 to 15 to HFPU DATA Bus 
II II 16 to 31 II II 

II II 32 to 47 II " 

Double Precision 
Double Precision Multiply Sense Bit 
Enable ND/B NUX output to B side of 74181's 
Mantissa A = B . 
Mantissa Accumulator Left Serial Input to Bit 36 
~1antissa B Register Bit 0 

II II II Left Serial Input to Bit 36 
Multiplicand/Divisor Reg Clock 1 (Bits 0to 15) 

II II II II 2 (Bits 16 to 31) 
Multiplier Sense Bit 
Mantissa Summer output Bits 

II 

n 
II 

n .. .. .. .. .. 
n .. 
n .. .. .. .. 
n .. .. .. .. 
• 

. 6-27 



SPALU Test Points and Signal .Glossary continued"· 

Signal T.P.: Description 

MS31L 17 Mantissa Surrmer Output Bits 
MS32L 5 II 

MS33L 6 • 
MS34L 7 • 
MS35L 9 u 

SPSNS-H 18 Single Precision Multiply Sense Bit 

6-28 88951000 02· 



FPH MP Test Points and Signal Glossary 

Signal T.P. " DescriEtion 

ADR~H _ 25 Floating Point Hardware Micro-Processor ROM Address Bits 
ADR1H 26 .. 
ADR2H 27 .. 
ADR3H 28 .. 
ADR4H 29 II 

BRor1l3 23 Buffered ROM Bit 13 
OF 2 Divide Fault 
FSRCLK-L 5 Function Status Register Clock 
FSRRO-H 24 FSR Read 
INSCLK-L 42 FPH MPInstruction Register Clock 
JYES-L 38 Jump Condition satisfied 
OVF 3 Exponent Overflow 
ROM0H 6 FPH MP ROM outputs 
ROM1H 7 
ROM2H 9 
ROM3H 10 
ROM4H 11 
ROM5H 12 
ROH6H 13 
ROM7H 14 
ROf.18H 15 
ROt19H 16 
ROmOH 17 
Rom 1 H 18 
Ror.n 2H 19 
ROH13H 20 
ROr.114H 21 
ROr.1l5H 22 
ROM16H 30 
ROM17H 31 
RON18H 32 
ROM19H 33 
ROM20H 34 .. 
ROM21H 35 II 

ROM22H 36 .. 
RO~'23H 37 H 

RO~'24H 43 u 

ROM25H 44 II 

ROf.126H 45 n 

R0i127H 46 .. 
Ror128H 47 n 

ROf.129H 48 .. 
ROM30H 49 II 

ROM31H 50 II 

Ror·132H 53 II 

ROM33H" 54 .. 
ROM34H 55 II 

ROH35H 57 II 

88951000 02 6-29 



FPH r-lP Test Points a·nd Signal Glossary continued 

Signal T.P. Description 

RDr·136H 58 FPH MP ROM outputs 
RON37H 59 .. 
RDrH8H 60 II 

RON39H 61 II 

RUN-L 62 FPH NP Active 
UNF 4 Exponent Underflow 

6-30 88951000 02 



, Signal 

1-L 
17-L 
80-l 
ACLK-L 
C4l 
CNTLD-L 
DATAOUTl-H 
EA(-2);..L 
EA(-l)-L 
EA1L 
EA2L 
EA3L 
EA4L 
EA5L 
EA6L 
EA7l 
EA8L 
EACLK-L 
EBENB-L 
ECLK-L 
ENTR 
ES(-2)-L 
ES(-l)-L 
ES1-L 
ES2-L 
ES3-L 
ES4-L 
ES5-L 
ES6-L 
ES7-L 
ES8-L 
F-L 
F.J-L 
FSTRT-H 
HALT-L 
HDHCLK-L 
HDHST-L 
ICLK-l 
M-H 
MDCLK-l 
MDClK1-l 
NRM-L 
RESTART-l 

S0H 
SlH 
S2H 
S3H 
SCLK-L 

88951000 02 

EXP ~nd Timing Test Points and'Signal Glossary 

T.P. 

35 
32 
47 
15 
4 

60 
38 
61 
51 ' 
50 
53 
57 
59 
39 
41 
44 
46 
62 
37 
24 
J7 
48 
49 
52 
54 
55 
58 
40 
42 
43 
45 
33 
34 

5 
6 

20 
13 
12 
31 
23 
36 
21 
18 

30 
29 
28 
27 
16 

.' 

Description 

Exponent Constant of 1 
Exponent Constant of 23 10 (17 16 ) 

Exponent Constant of -127 10 (80 16 } 
Accumulator Clock 
Fourth time state of FPH MP instruction Cycle 
Load Shift Counter Register 
Read FPAC 0 to 15 to HFPU DATA 
Exponent Accumulator Bits 

Exponent Accumulator Clock 
Exponent B Register Output enable 
Clock derived from SHCLK-L during Shift 
Enter state of Multiply/Divide timing 
Exponent Summer output Bits 

" .. 
II 

II 

.1 ,. 
n 
n 
II 

Exponent Constant of 1510 (17 16 ) 
. " 127 10 (F7 16 ) 

FPH MP Start Command from Master Control 
Halt Bit from FPH MP 
Hard\'/are Clock (during multiply/divide) 
Hardware Start (used to Start Shift, Norm, Mult or Div) 
FPH r·1P Instruction Register Clock 
Exponent ALU 74181 Mode Control 
Multiply/Divide hardware Clock 
Multiplicand/Divisor Clock 1 (Bits 0 to 15) 
Normalize flip/flop output 
Hardware Co~mand line used to Restart FPH MP after 
SHFT, NORM, ~ULT or DIV . 
Exponent ALU 74181 Function Selects .. 

p 

II 

FPH MP System Clock 

6-31 



EXP and Timing Test Poi~ts and Signal Glossary ~ontinued· 

Signal 

SFT-L 
SHClK-L· 
SHENB-H· 
SHFT 
SPCLK-H' 
SRESET-l 
STClK-L 
STCfH-L 
TST 
ZED-H 

6-32 

/ 

T.P. Description 

22 Shift Clock of Multiply/Divide timing 
25 Shift Clock 
11 Shift Enable 
3 Shift flip/flop 

19 Special clock (SCLK~2) 
7 FPH HP System Reset 

25 Stop Shift Clock (Count = 0) 
9 Step Count (used in Mult/Div) 

2 Test State of Mult/Divide timing 
10 Multiply/Divi~e step count = 0 

88951000 02 



GLOSSARY A 

Calling Sequence String of com mand words and operand addresses residing 
in SYSTEM 17 memory that is used to direct HFPU 
activity. 

Command-Code / OP-Byte / OP-Code Terms used to reference individual 4-bit commands 
within the command words of a calling sequence. 

FPAC Floating-point accumulator register within the FHPU. 

FPMP Floating-point micro-processor. Portion of the HFPU 
that performs arithmetic operations on the FPAC. 

MMP Master Micro-Processor. Portion of the HFPU that 
interprets command codes and communicates with 
the A/Q, DSA interface. 

8895100 02 A-1 





MICRO-CODE LISTINGS AND FLOW CHARTS 

. The following pages contain the micro-code listings for 
ttie Floating-Point and ~aster micro-processors. The index 
below-identifies the page on which the flow charts for each 
function will be found. The flow charts are divided into se
parate sections covering the operation of th~ two micro
processors. Figure 4.7 illustrates the conventions and 
mnemonics used in these fla~-charts. The mnemonics used in 
the listings were defined in section 4.1.4. 

The flo~ charts are keyed to the micro-code listings and 
to the algorithm steps as defined in section 4.2. The nomen
clature "LOCnn" to the left of the flow chart indicates that 
that step occurs at location nn in the micro-code listing. 

In addition to the flow charts of the micro-code, this 
appendix also contains flow charts of the major logic timing 
loops within the HFPU. 

88951000 02 B-1 

B 



HFPU FLOW CHART INDEX 

FUNCTION OP·CODE MASTER CO~TROL FLOATI~G POINT 
or LOGIC MICRO-PROCESSOR 
ELE~lENT PAGE STARTING I?AGE STARTING 

- ADDRESS ADDRESS 

LDWDI I N/A M8 ~1 F2 4 
-LDWD2 N/A M8 41 F2 5 
LDWD3 N/A M8 81 F2 6 
STOP N/A M19 C2 F3 (FLST) 
RESTART N/A M22 C~ F2 3 (FLDD) 
COLD START N/A . M17 C3 N/A 

FPMP Timing N/A Fl4 
'. A/Q Timing N/A AQ-l 

DSA Timing N/A DSA-I 
Master Timing NtA M27 

OP Code Fetch N/A M17 
Execute Next N/A M26 

SPEC 0 M15 32 N/A 
FLOF I M6. 62 F5 9-
FIXF 2 M7 lA F4' 8 
STRI 3 M14 17 N/A 
FEND -4 M18 ID N/A 
CH~ID 5 MIl lE N/A 
NIDX 6 MIl IF N/A 
FCO~I 7 M8 D9 F4 7 
FSUB 8 113 24 F6 20 
FMPY 9 }.I 3 60 F8 1 
FDIV Ii M3 AO F9 2 
FLDD B 113 EO F2 3 
ADDI 'C M13 2A N1A 
FLST D M9 2E F.3 (FLST) 
FADD , E .M3 20 F6 0 
INDX F M12 2C N/A 
FEND - 10 M18 1D N/A 
CACS 11 lU5 35 N/A 
BRA~l 12 M16 ·36 N/A 
BRAZ 13 Ml6 76 N/A 
BRAN 14 1116 F6 NlA .. 
BRAP 15- MI6 B6 N/A 
BRIM 16 Ml6 33 N/A 
BRIZ 17 M16. 73 N/A 
BRIN 18 M16 F3 NI.A 
BRIP 19 M16 B3 N/A 
FtND lA M18 ID N/A , , , . N/A , , , , 
• • , 

FEND 'IF M18 ID N/A 
FPMP Micro-Code FI 
Master Micro-Code Ml 

. 

B-2 88951000 02 



88951000 02 

. A/Q Flo\,1 Omrt - 0.Jtput to IIFPU 

No 

No 

No 

Yes 

Yes 

ISSUE AQ 
REPLY 

No 

. DElAY Fat 
200ns 'IOTAL 

ISSUE AQ 
REJEcr 

.. 

Yes 

B-3 





ROM TRUTH TABLES AND A/Q DECODING ROMS C 

. t 

88951000 02 C-l 



() 
I 

IS) 

(X) 
(X) 

co 
C1I 
I-l 
Q 
Q 
Q 

Q 
IS) 

ROM 
LOC 

ChiD 
LOl.dtion + 

Mnemonic + 

A/Q - 011 A/Q - 08 A/Q - 010 II A/Q - 09 

. OIO~D~A~ CC-l-f-~~I - -- ! ~:HH Ii H S~S~R ; 

TIP 0 WI M 010,0 0 S C S S!M CC C e I C i W:A A A A r:o 0 I 
ATE F,UNUSED , E U,U U.AER R T~IIE st L L R C ,E:D 0 00 P!B:B I 
C:CFSI, ',: .rIT,T;TLRR R I ;KKK j;R! :R:R;R:R.RjP',P, 

.T T N.R Il'23'A, '00 T ; '12 3 7 6·1 'IJ:Q;~' M: 
--';"'---'~1-;'2 3 4 5 6 7 81! 1 2 3 4 5- 6 7, 81 ! 1?~_3~_~Q.]_8.l 1 2 3 4 5 6 7 8 . 

A/Q Connand I I I A/Q Conmand 
o 0 0 1 1 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 . 
IOU 1 1 0 0 0 Oi 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 
2 10 0 1 1 0 0 0 01 0 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 ° 
3 ,0 0 1 1 0 0 0 0 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 ° 0 0 0 0 0 0 0 0 0 
4 0 0 1 1 0 0 0 0: ,0 0 0 0 0 0 00 I 0 0 0 0 0 0 0 0 II 0 0 0 0 0 0 0 0 : 
5 00110000,000000001 00000000.00000000· 
6 RD SSAR 1 0 0 1 0 00 0: 0 1 1 1 1 1 1 1 I STOP 10 0 I 1 1 I 1 1 I 0 1 1 1 I) 0 1 1: I 

7 RO W03 0 0 0 1 0 0 0 0: 1 1 1 0 1 1 1 ',' Wit 1403 ,0 1 1 1 .1 0 1 1 II 1 1 0 0 1 1 1 1 'I 
8 RD WOZ 0 0 0 1 0 0 0 01 1 1 0 1 1 1 1 1 WR ~1D2 10 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 
9' RO W01 0 0 0 1 0 0 0 0; 1.0 1 11 1 1 1 I WR 1401 01 1 0 1 0 1 1 I 1 !) 0 0 1 1 1 1 
A RD PCR 1 0 0 1 0 0 0 0: 1 1 1 1 0 1 1 1. RESTART 10 0 1 1 1 1 1 1 ! I) 1 1 () 0 1 1 1 I 
B RopeR 0 0 0 1 0 0 0 01 1 I 1 1 0 1 1 11 COLD START(DP) 10 I 0 1 1 1 1'1 : 1 1 1 1 1 1 0 1 
C RD PCR tOO 0 1 0 0 0 0, 1 1 1 1 01 1 1! COLD START(SP) 0 1 0 1 1 1 1 1 '1 1 1 1 1 ,.I 1 I) I 
o RD I R 1 0 0 1 0 0 0 Oi 1 11 1 0 0 1 1: WR I R 1 1 1 1 1 1 I) 1 . 1 1 1 1 1 11 1 I 
E AD CCR I 1 0 0 1 0 0 0 011 1 1 1 1 1 0 1: WR CCR 1 1 1 1 1 1 1 0 ! 1 1 11 1 1 1 1 I 
F RD FSR 11 0 0 1 0 0 0 011 1 1 1 1 1 1 1 0; WR FSR 1 1 I 1 1 1 1 1 : 1 1 1 1 1 1 1 1 I 

10 . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 I 
11 i 0 0 1 1 0 0 0 01 ,0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 I 
12 ,00 1 1 0 0 0 ~ 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 : 
13 I 0 0 1 1 0 0 0 OJ 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 01 ! 0 0 0 0 0 0 0 0 
14 100110000 00000000 00000000 iOOOOOOOO 
15 jO 0 1 1 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I! 0 0 0 0 0 0 0 0 
16, . STOP ill 0 1 0 0 0 0 0 0 0 0 0 0 0 O· 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 
17 WR W03 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0 0 0 I roO 0 O· 0 0 0 0 
18 WR WOl. 0 0 0 1 0 0 0 0: I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0 0 0 0 0 0 
19 \~R HOl : 0 0 0 1 0 0 0 0' I 0 0 0 0 0 0 0 0' 0 0 0 0 0 0 00 i: 0 0 0 0 0 0 0 0 
1A RESTART 0 1 0 1 0 0 0 o! 0 0 0 0 0 0 0 0 rOO 0 0 0 0 0 0 . : 0 0 0 0 0 0 0 0 i 
18 COLD START(DP) 0 0 0 1 0 0 0 0'1 0 0 0 0 0 0 0 0,: 10 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 ' 
1e COLD START(SP) 0 0 0 1 0 0 0 0,' 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 
1 D WR I ROO 0 1 0 0,0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 E WR CeR 0 0 0 1 0 ° 0 0 I 0 0 0 0 0 0 0 0; /' 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 
IF WR. f\SR 00 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0: 0 0 0 0 0 00 0; 0 0 0 0 0 0 0 0 



-

RDr-1 I Cor."..,AND 
Locati on Code 

0 SPEC 
1 FlOF 
2 FIXF 
3 STRI 
4 FEND 
5 CH~1D 
6 NIDX 
7 FCDr4 
8 FSUB 
9 FMPY 
A FDIV 
8 FLDG 
C ADDI 
D FlST 
E FADD 
F INDX 

10 FEND 
11 CACS 
12 BRAM 
13 BRAZ 
14 BRAN 
15 . BRAP 
16 BRIM 
17 BRIZ 
18 BRIN 
19 BRIP 
1A FEND 
18 FEND 
lC FEND 
10 FEND 
1E FEND 
1F FEND 

88951000 02 

STARTING ADDRESS ROM (SAR) 

OPALU BOARD LOCATION B13 

H H H H H H H H 
A A A A A A A A 
o 0 0 0 0 0 0 0 
R R R R R R R R 
7 6 5 4 3 2 1 0 ~ Mnemoni c 
1 2 3 4 5 6 7 8 + ROM OUTPUT BIT 
0 o 1 1 0 0 1 0 
0 1 1 0 0 0 1 0 
0 o 0 1 1 0 1 0 
0 o 0 1 0 1 1 1 
0 o 0 1 1 1 o 1 
0 o 0 1 1 1 1 0 
0 o 0 1 1 1 1 1 
1 1 0 1 1 0 0 1 
0 o 1 0 0 1 0 0 
0 1 1 0 0 0 a 0 
1 0 i f) 0 0 0 0 
1 1 1 0 0 0 0 0 
0 o 1 0 1 0 1 0 
0 o 1 0 1 1 1 0 
0 o 1 0 a a 0 0 
0 o 1 0 1 1 0 0 
0 o 0 1 1 1 0 1 
0 o 1 1 0 1 0 1 
o 0 1 1 0 1 1 0 
o 1 1 1 0 1 1 0 
1 1 1 1 0 1 , 0 
, 0 1 1 0 1 1 0 
o 0 1 l' 0 o 1 1 
o 1 , 1 0 0 1 1 
1 1 1 1 0 o , 1 
1 0 1 , 0 0 1 1 
o 0 0 1 1 1 0 1 
o 0 0 1 1 1 0 1 
o 0 0 1 1 1 0 1 
o 0 0 1 1 1 0 1 
o 0 0 1 1 :1 0 1 
o 0 0 1 1 '1 0 1 

., 

C-3 



("} 
I 

"'" 
Micro-Code ROM Truth Tables 

MASTER CONTROL PAGE 1 

DSA - Al DSA - A4 DSA - A7 A/Q - A2 DPALU - B12 CHIP lOCAlION 

location label 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 n 76 5 4 3 2 10 .. B1tPosit1on 

o RSTRT 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
1 LOWO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 O· 0 0 0 0 1 1 1 0 
2 STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1· 
3 FTCHNXT 1 0 1 0 1 0'0 0 0 0 0 1 0.0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0.0 0 000 1 1 10 
4 R2 1 0 ~ 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 ~ 0 1 '01 
5 R3 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 01 1 0 
6 R4 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 O' 1 1 1 
7 R5 1 0 1 O' 0 0 1 1 0 1 1 1 1· 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
8 R6 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 1 ~ 0 1 
9 R7 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 o· 0 0 0 0 0 O. 0 1 0 0 O~ 0 0 00 0 0 0 0 1 01 0 
A R8 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1. 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 
B R9 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
C R10 0 0 0'0 O' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 001 1 0 0 
o Rl1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 
E F2 0 0 0 O' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
F S2 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

10 S3 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 o· 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
11 S4 1 1 1 a 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
12 S5 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ~ 1 1 . 
13 S6 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

. 14 S7 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 o. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 
15 S8 1 1 1 0 0 '0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 
16 S9 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 O· 0 0 1 1 0 1 
17 STRI 1 1 0 a 1 0 a 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
18 ST12 . 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
19 FCOM a a 0 1 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 
lA FtXF 1 1 0 a 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 1 0 1 1 
1B FXF2 0 ~ 1 0 1 1 1 1 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
lC FXF3 0 . 0 0 0 0 a 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 
10 FEND o· 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ·1 1 0 0 0 0 0 1 0 1 0 0 00 0 1 1 1 0 

~ 1 E CH~D. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 a 0 0 1 1 0 0 0 0 0 0 0 0 
~ lF NIDX 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
f-' 
o 
o 
o 
o 
NI 

A~_ ~-:;,. 



00 
00 
CO 
c.n ..... 
<:) 
<:) 
<:) 

<:) 
t.:I 

() 
I 

c.n 

Loc ation label 

: 20 Af~OF 
· 21 A2 
· 22 FlOF 

23 FLF3 
24 FSUB 

· 25 A3 
26 A4 
27 AS 
28 A5 
23 A7 
2A ADDI 
26 ADI2 

· 2C W~x 
20 U:DXZ 
2E FLST 
2F FST2 

. 3J FSTJ 
31 FST4 
32 SPEC 
33 . SRI 
~ BRIZ 
35 CACS 
36 SRO\ 
37 SRt\2 
38 FLF2 

Micro-Code ROM Truth Tables 

MASTER CONTROL PAGE 2 

DSA .. A2 I DSA .. AS 1 DSA -·AS , A/Q - A3 DPAlU - 811 CHIP It)CA 

39 38 37 36 35 34 33 32 '31 30 29 2827 26 25 24'23 22 21 20 19 is 17 16 !15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Posit 

1 1 0 0 1 0 0 0 11 0 1 1 0 0 0 01 0 0 0 0 0 0 0 0 I 0 0 ~ 0 0 0 0 0 0 0 1 0 0 0 0 1 
1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 I 1 l" 0 0 O· 0 0 0 I 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 
o 0 0 0 0 0 0 O. 0 0 0 0 0 0 0 0: 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 i 1 0 0 0 
o 1 1 0 1 1 1 1; 0 0 0 0 0 0 0 0: 0 0 0 0 0 0 0 1 10 1 0 0 1 0 1 lOU 0 0 0 0 0 0 
11 0 0 1 0 0 0: 1 0 1 1 0 0 0 0 '0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 10 0 1 Q 0 0 t) 1 
1 0 0 0 1 1 1 1 \ 0 0 0 0 0 1 0 1 i 0 0 0 0 0 0 0 o· 0 0 0 0 0 1 0 0;1 0 1 0 ') 1 1 r) 

.. 
o 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 o· 0 0 0 0 0 0 0 0 0 0 i 0 0 1 0 0 1 1 1 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Ol.l 0 0 0 0 0 0 0 0 1 0 0 1 00 0 0010 1 ') 0 ') 
o 0 0 0 0 0 0 O! 0 0 0 0 0 0 1 1; 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0: 0 0 1 0 1 0 I) 1 

. 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 1 1. ~ 1 0 0 0 . 0 0 0 0 l' 1 0 1 0 1 1 '1! 0 0 0 0 0 0 0 0 
1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 o! 0 0 0 0 0 0 0 0.0 0 0 0 0 000'00 1 0 10 11 
o 0 1 0 0 1 1 1 11 1 0 0 0 0 0 0: 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 1 1,0 0 0 000 0 0 
1 1 0 0 1 0 '0 0: 1 0 1 1 0 0 0 O· 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 O· 0 0 1 0 1 1 0 1 

. 0 0 1 0 0 0 1 1 l' 1 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1:0 0 0 0 0 0 0 0 
o 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:0 0 1 0 1 1 1 1 

. 1 1 1 0 1 1 1 1.0 0 0 0 0 1 '0. 0 0 0 0 0 0·0 0 1 0 0 0 0 1 0 0 O· 0 0 1 1 0 0 0 0 
. 1 1 1 0 1 1 1 1 iO 0 0 0 0 1 0 O· 0 0 0 0 0 0 0 1 i 0 1 0 0 0 0 0 1;0 0 1 1 0 ') 0 1 
. 0 1 1 0 1 1 1 1·0 O· 0 0 0 1 0 0 0 0 0 0 0 0 0 1: 1 0 0 0 0 0 1 1!0 0 0 0 0 000 

' 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 1 'io 0 0 0 0 000 
. 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 0 0 0 0 0 0 OiO 0 1 1 0 1 I) 0 

o 0 0 1 0 0 0 0'0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 0 0 1 1· 0 0 1 '1' 1 1 1 0 1 0 0 
1 1 C 0 1 0 0 O!O 1 0 1 0 0 0 0.0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
o 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 1 0 0 010 0 1 1 0 1 1 1 
o 0 0 0 0 0 0 0 iO 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 '1' 1 1 1010 0 

.0 1 0 0 1 0 0 0 \1 0 1 1 0 0 0 O' 0 0 0 0 0 0 0 0 ,0 0 0 0 0 000
1
00 1000 1 1 



() 
I 

0') 

00 
00 
to 
c.n ..... 
o 
o 
o 
o 
t-.:) 

-
LOCATION 

0 
1 
2 
3 
4 
5 
6 
7 .' 8 

! 9 
A 
8 
C, 
0 
E 
F 

10 
11 
12 

, 13 
14 
15 
16 
17 . 
18 
19 
lA 
18 
1C 
10 
1£ 
H 

LABEL 

ADO/SUB 
r·~py 

OIV 
FlDD 
lO:~l 
lD:J2 
lO~{3 

FCO:~ 
FlXF 
nOF 
FIXF2 
r:FY2 
!':PYJ 
ftOF2 
FLOF3 
FOVA ( 
DIV2 
:wru·t 
ti2 
In 
1,4 
WILT 
,:AX 
ZERO 
ISEXT 

DIV3 
IDrV4 
~DD2 
~DD3 
i\OD4 

T6 

Micro-Code ROM Truth Tables 

FPH MP 

·FPMr - A~ ! FPMP - A6 FPMP - A9 . FPMP - At? .. FPMP. ft14 1 , CHip LOCAl 

39 38 37 36 35 34 33 32 3i 30 29 28 27 26 25 24· 23 22 21 20 19 lA 17 16 15 14 13 12 11 1~.9 A 7,6 5 432 1 I) BIT POSITI 
1 1 o 0 0 0 0 1 1 000 1 1 o 0 o I) 1 o 0 1 1 0 000 0 0 000 0001111)1) 
000 000 1 0 1 000 1 1 1 0 o 0 0 0 0 1 o 0 000 0 0 0 ~ 0 00001 t) 1 1 
o 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 o 0 0 0 1 000 o 0 1 o 0 0 0 0 11010t)1)t) 
1 1 000 0 1 1 0 1 1 1 1 1 1 0 o 0 1 o 0 1 o 0 o 000 0 000 o 0 0 1 i1 ') ') ? 
1 1 000 0 1 1 0 1 0 1 1 1 1 0 o 0 1 o 0 1 o 0 o 1 0 0 0 000 000 1 1 I) I) 0 
1 1 o 0 000 0 001 0 1 1 o 0 o 0 1 o 0 0 0 0 000 0 0 000 o 0 0 1 fry t) t) 
1 1 000 0 0 0 000 1 1 1 o 0 00 1 o 0 0 0 0 000 0 0 000 000111)1)1) 
o 1 1 o 0 000 0 1 1 1 1 100 o 000 0 0 0 0 0000000 0 000 1 t) 1 t) 1 
1 1 000 0 11 0 1 1 1 1 1 1 0 o 0 1 J 1 000 o 0 0 0 0 000 o 0 0 0 1 t) 1 I) 
o 0 0 0 0 0 0 1 o 0 0 0 0 0 0 0 000 1 o f) 0 0 o 0 0 0 0 000 00001101 
1 1 o 0 1 000 0 1 0 1 1'1 o 0 000 0 000 0 000 0 0 000 000 1 I) t) I) 1 

, 1 . 0 1 000 0 0 1 1 1 1 1 o 0 o 0 0 0 0 0 0 0 o 0 0 0 0 000 o 0 001 1 f) t) • 
1 o 0 1 1 000 o 0 0 0 0 1 o 0 o 0 1 o 0 000 o 0 0 0 0 001 000 1 I) I) I) 1 
o 0 0 0 0 0 0 1 o 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 o 0 1 0 1 000 0010111(' 
o 0 0 0 000 1 o 0 0 '0 0 1 o 0 1 1 0 1 1 000 o 000 1 f) 1 1 I) 1 I) 1 I) 1 I) 1. 
1 1 1 0 10 0 0 0 1 1 1 1 1 0 1 0 1 1 o 000 0 ~ 0 0 0 0 000 000011111 
0 1 o 0 1 o 0 1 o '1 1 1 1 1 1 0 o 0 000 1 000000000 0 o 0 0 1 1 I) 1 f)' 
00000 000 o 0 0' 0 0 0 0 0 000 0 000 0 00000 000 000 1 I) I) 1 f) 
000 0 0 0 0 1 o 0 0 0 1 000 o 000 1 000 000 t 1 1 I) 0 It)f)101)11 
1 000 1 000 0 1 1 1 1 1 o 0 101 00 0 0 0 o 0 0 0 0 000 00010 1 I) 0 
o 0 0 0 000 1 o 1 1 1 1 0 1, 0 o 000 1 000 1 1 000000 000 1 101) 0 
000 0 000 0 0 1 1 1 1 1 1 1 o 0 0 0 0 0 0 0 00') 1 o 0 0 0 () I) 1 1 0 1 f) 1 
1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 10000000 o 0 0 0 0 000 000 1 1 0 I) ') 

1 1 o 000 1 1 o 1 1 1 1 1 1 1 1 1 1 o 0 0 0 0 o 000 0 000 00011)111 
1 1 o 0 1 000 000 1 1 1 o 0 o 0 0 0 0 0 0 0 0 1 000000 000 1 I) 1 I) 1 
o 000 000 0 o 0 0 0 0 0 00 000 0 0 000 000 0 0 000 0000000 0 
1 ,0 1 1 o 000 o 0 0 0 1 000 o 0 1 00 0 0 0 o 000 001 0 000 1 1 f) 1 1 
1 1 o 0 0 0 0 0 0 1 1 1 1 1 o 0 0 1 o 0 0 0 0 0 00 0 0 0 0 0 0 000 1 I) I) I) 1 
o 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 o 0 000 1 o 0 1000100 0 1)1011101 
o 0 0 0 0 0 0 0 o 0 0 0 0 1 o 0 o 0 0 0 0 0 0 0 o 0 0 0 0 011 000 1 1 1 1 0 
1 o 0 0 0 1 1 o 0 1 1 1 1 1 1 0 0 1 001 000 00000 000 000 1 000 1 
1 1 o 0 0 0 0 0 o 1 1 1 1 1 o 0 o 0 000 0 0 1 000 0 0 000 000 1 1 1 1 0 

.. 



00 
00 
CO 
tTl 
...... 
o 
o 
o 
o 
t-:I 

t(, 
...... 

Vl/idd ,~uo 
1 MI'Y 
2 DIV 
3 FLDD 
4 WI 
5 \\,2 
6'\\'3 
7 COM 
8 FIXF 
9,FLOF 
A FIXF2 
B MPYCNT 
C 
Dne;';T 
EFLETS 
F !-'OVA 
10DIVCNT 
11 Noml 
12 N2 ' 
13 N3 
14 N 
15 N~LT 
16 MAX 
17 Zero 
18 SEXT 
19 
1A DIV 
IB 
lCADCNT 
10 SHFT 
IE 
IF zero 

I 

" 

MALU ALUIV 
H -
Aaritb -- -
B -
B -
B -
B -
A ' -
B -
- -
B MAC~lI 
B ~ID~II 
A+B MB~-H 

- -
- -
B MAC~-H 
ALog MAC~-H 
Aarith -
Aarith -
A+B MAC9)H 
- -
AAr1tb -
fi ' MAC~H 
B -
B MAC9lH 
- -
A-B MD9l1l 
B' -- -- -
A+8 FSUB. 
B -

I 

EALU 
A-13 
A+B 
A+B 
B 
a 
---
B 
A-B --
-
A-B 
A-B 
-
A-B -
A-B 
-
A-B 
Aarith 
B 
B ---
-
B 

-
A+8 -

CDC SYSTEM 17 

CLKS ~1 I ~)0 M-l3 
U LO,\ ,) M/IJENB 
13,E LOAIl ..., 
I::,Al,2,3,4 HI (illT -
E,Al,2,3,4 LOI\D M/DEN13 
E,Al,3,4 1.01\0 M/DEND 
A2 LOAD M/DEND 
A3,4 LOAD M;'DENB 
A1,2,3,4 ' LOAD -
E,A1,2,3,4 LOAD M/DENB 
- - -
A1,3,4 LOAD -
A1,2,3,4 LOAD -
- RIGHT M/DENB 
- - FIX 
- , HIGHT FIX 
1.1,2,3,4 
E.Al.2.3.4 
-
-
A1.2.3.4 
E,Al,2,3,4 
E,A1,2,3,4 
E.A1,2.3.4 
E,A1.2.3,4 
A3,4 
-
-
AI,2,3,4 
E,n,AI234 . -
E,AI,2,3,4 
Al,2,3,4 

. , 

-

LOAD FXMAX 
LOAD -
- -
LEFT -
LOAD ROUND 
LEFT -
LOAD -
LOAD FLMAX 
LOAD FLZERO 
LOAD -
- -
Ln'T M/DENB 
LOAD BENB 
RIGHT -
RIGHT -
LOAD BENB 
LOAD 

FLOATING POINT A CODE 

F.-B LoadLPick Inhibits Cond HDWR Disp I ~:'\ tInst 
EIJENU LDCNT - - - - Ie 
EBEND - - - - - B 
1 - - ZOUND - 6(OVF-20) 10 
EDENB - - - - - 18 
EBENB - DPinbA3 - - - 18 
- - - - - - 18 - - - - - - 18 
- - - - - - 15 
17 

' - - - - - A 
F - - - - - 0 

- - - - - - 11 (NOR.\l) i 

- - - - - - C 
- - - - MULT - 11 CNORll) 

17 LDCNT - EGT - 1CF-E) E 
17 - - ETB SHIFT 2(ZERO-15) 15 (NHLT) 
- - - - HALT - F 
EBENB - - - - - lA 

- - - - - - 12 
1 - - MA=B NORM 4(ZERO-13) 13 

- - - - - - 14 
1 - NRMD -' - - 18 

- - - OUF/UNF HALT 1 15 - - - - - - 18(SEXT) - , - - HALT - I 17 -- - DPinA3 - - - 11~(NHLT) - - - - - -- - - - DIV - IB 
- - - - - - 11 (NOWl) 

EBENB - Pick SET ETB - 2 10 - - - - SHIFT - IE 
I - - - - - 11 (NORK) - Pick ENB - - - - IE , 

I . 
.. . 

, 

I 

0' 



• 

FPH FLDD and A/Q load FPAC flow chart 

LOC 3 
STEP #1 

LOC 4,5,.6 
if LDWD 1,2,3 

Complement 
Bits 1 to 8 

--
LOC 18 
STEP #2 

LOC 15 
S'rEP #3 

Set Exponent 
To +~ 

D-2 

. ) 

EXPONENT 

Complement 
Bit 1 

Place Resul~ 
into FPAC 
Bits 1 to S 

-----

UANTISSA 

Load Bits ~ 
and 9 to 51 
of FPAC 

SIGN EXTEND 
The ~tantissa 

Yes 

Set Hantissa 
to +~ 

88951000 02 



-. 

88951000 02 

FPH FLST Logic flow chart for Read of FPAC Bit~ 1 to 8 

READ 
Complement 
of Bit 1 

y~ 

READ 
Complement 
of Bits 1-8 

D-3 



FPH FIXF Flow Chart 

LCC 8 
STEP I 

. EXPONENT 

SET 
EACC=23 

---.-

L::cA 
STEP 2 

LCC 11 

MANTI~SA 

Move ~fARG to 
FPAC Bits 0 
and 16 to 31 

,SET FPAC ~ 
~, 9 to 15 and 
32 to 51=SIGN . 

-'--'-'~'--'~-.---.,===================================== --..... .;---~-

D-4 

ux:: 7 
"STLP 1 

LCC 15 
STEP 2 

~eOM 

--
Yes 

-I 
.-_._" . 

l'IACC,'a c4--.......,-,----J 
MAce·-MAce 

88951000 02 



• 

FPII Flow cha.rt 

to:: 9 
Sli: .. P 1 

'FLor 

roc D or F 
STLP 2 

-----

IOCI: 
STEP 3 

ICC 15 
STEP 4 

88951000 02 

Shift Count 
+2310-EACC 

Shift 
UACC 
Right 

Decrement 
SHIFT Count 

Loc 17 

FPAC 16 to 31 .1 
t' +80°°16 . 

FPAC 16 to31 
+7FFF16 

-- -

Hard-Wired 
Shift Algorithm 

---

D-5 



D-6 

FPIl FADD/FSUI3 
EXPONENT 

Correct ~!em. Exp. 
for Bias and 1!ant 
Sign 

Flow chart 

Yes 

, />10 

r--C-l-e-a-tr Pick~ 
Shift Ceunt I 

= EARG-EACC I 

LOC lC 
STEP 2· 

STEP 3 

Set Pick 
I Shift Count 

=EACC-EARG 

Clear 
BREG 

Clear 
HACC 

plof 2 

)'fANTISSA 

I BREG<-I'ARG 

Shift FPAC 
and DREG 
Right Once 

Shift I 
BRLG Right; 

CNT 

Ye& t>-":"" - I .j." / .... 1 

Shift rpt\C 
DEC Shit. 
CNT 

DEC Shft I· 

'---.;..._-.-____ ...J 

, 

88951000 02 



FPH 

10C IE 
STIJ? 4 

8895100002 

FADD/FSUO"Flow Char 

EACC+ 
EACC+l 

UACC+ 
}.IACC+ BREG 

~ of 2 

Yes 

. MACC+
MACC-BREG 

D-7 



D-8 

FPH Fl.1PY.flowcharts 

LCX:: 1 
STEP 1 

8 
t 

Correct ~IE~!. 
EXP for Bias 
and ~Ian t. Sign 

EACC 
:;.:EACC+EARG 

---- -_. 

lOOB 
S'IEP 2 

, 
MACC=>f.\3 I 

lfANTISSA 

Hove HACC 
to BREG 

Yes 
\ 
/ I 

r' -- -- - - - - -.-t-----'I~-_--.... -' -- ---
.. . ." .) 

IJXC 
STEP 3 

Hardware 
F\mction 

Set Count 
27sp43dp 

Shift 
BREG Right 

v 
Shift 
~IACC Riv.ht 

~ DCC·· 
::,\CC -' !,\P.G 

"--4---E) 

88951000 02 



FPll FDIV Flow" Chart 

EXPO~ENT 

Correct ~tE~.I. 

EXP for Bias 
and ~.!antissa 
Sign 

Loe 2 \.1, 
STEP 1 r 

IIncrement 
EAce 

pI of 3" 

MANTISSA 

e '¥" 
~s-a-v-e-"~srg~" 

of Result 
in SFAN 

Shift 
MACC Right 

(Set SFAN if Negati\ 

-------

EACC~ I 
EACC-EARG ~ 

LOC 10 
STEP 2 

88951000 02 

I ~.rACC~ ;,IACC 

Set Divide 
ault in 

FSR 

- --

D-9 



)-10 

FPlI Divide Flow Chart 
EXPO:YE~T MANTISSA 

Set Count 
2Bsp44dp 

-------)-.----1 
J, 

ux:; lA 
S'IW 3 

l1I1:ffi 
FUNcrIO:··l 

Enter at Bit· . 
3S'if SP, Dit 
Sl it' DP 

Fill 1 

ShHt DREG 
Left 
Enter a ~ 

" 
, 
I 

No 

. 
Decrement 
Count 

Shift DREG 
Left 
Enter a 1 

v 

Shift 
~IACC 
Left 

< 

p2 'of3 

UACC + 
lIACC+~IAr.G 

Shift BP.EG 
Left 
Enter a ~ 

( 

Yes 

I 
!-!ACC .... 

Shift BP.1:G 
Left 
Enter a. 1 

, I 
f 

88951000 02 



FPlI 

I..OC ill 
.STEP 4 

88951000 02 

Divide Flow Chart 

EXPONEHT MANTISSA 

Move BREG 
to MACC 

Nc:!'m 

p 3 of :3 

D-ll 



D-12 

FPII Norm a 1:J. ze Flow Chart 

LCCll 
Sl'ZP 1 

l.JX 12 
STEP 2 
IIDom 
FUNcrIO~ 

EACC+ 
EACC-l 

l.OC 13 
STEP 3 

Loe 11 
STEP <1 

oor.JND 

HACC+ 
MfiCC+Dit 4 

EACC<· 
EACC-l 

UACC+ 
1.!ACC+Bi t 3 

SIII FT 
!.:ACC LJ'TT 

)!ALU= . 
A. Arithrneti 

No 

I HACC+ 
, !.!ACC+ Bit 4 S 

/ 

!!ACC+.9i t 

88951000 O~ 



88951000 02 

FPII . Normalize Flow Chart 

lOC 15 
S'IEP 6 

MACC~~ 

(Under
flow) 

STEP 7 I.JX; 17 I:ACC-<--127 l0 

FPAC 48to51 
+FPAC~ 

(Error) 

HACC+ ~ 
8000·. 0000 • 00 
EACC-<-+12710 

t 

\ 

Yes 

UACC-+-
7FFF,FFFF.FF 
EACC~~122~~. I 
) t t-----J 

D-13 



D-14 

FI'll Timin~ 

.~~--4----~'----------~ 

Force Timing 
to Cl State 

Apply Start 
Address to 
Rm,1 

Force 
INSCLK-L 

Enter First 
Instruction 

L--.-....-_--.J 
Clock' 

Advance Tim-
1nv. to C2 
Stat£' 

Funct::'tm 
FADD 
FSUB 
FMPY 
FDIV 
FLDD 
LDWDI 
LDWD2 
LDWD3 
Fcon 
FIXF 
FLOF 

Current Instruction contains 
address of next instruction 

Start Addr 

° 20},6 
1 
2 
3 
4 
5 
6 
7 
8 
9 

88951000 02 



88951000 02 

FPJI Timing 

Advance to 
lIDWST State 

Advance to 
IRCLK State 

Inhibit Clock 
to Timing 

Perform High 
Speed HD""R 
"Function 

Refer to Flow 
Charts for FADD, 
F~IPY, FDIV and 

"---; FLOF 

D-15 



D-16 

l\dc:1Tess of 
Ne",,;; +1 
Instruction 

fSEi..ECT~ ,~~~. odif ied 
.Address from 
lRO;.l __ _ 

Complete 
This 
Instruction 

Enter 
Next 
Instruction 

Advance 
To 
CI State 

Add Displace 
ment to add
ress out of 

Q~,....! --r--_...l 

Transfer Data to Selected 
Destination Register 

I Issue I 
. SP.ESET-L-.-J 

I Clca!" Run, 
Stop Clock 

~ll 

88951000 02 



MASTER CONTROL MICRO-CODE AND FLOW CHARTS E' 

6 R·I 
7 R~ 
8 R6 

t it? 
A IRS 
B iR9 

C RIO 

D Rll 

E F2 

I' 52 

10 S3 
11 S4 

12 S5 
13 S6 
14 57 
15 58 
16 59 
17 STRI 
18 STI2 

19 FCOl! 

1 

WR,SIILT,ec -
YiR,SHLT,CC -

I 

'iR,SIILT,eC'
lI"R,SIILT,Ce -
WR,SHLT,CC -
WR,SHLT,CC -
\\"RITE !
RD, SHLT. REI; -
\\"RITE 

1 

1A FIXF RD.SIILT,REIl
. 18 FXF2 READ 

1C FXF3 

1 

'1 

1 

;-
i 

:1 
:1 

1 
,1 

1 
J. 

. 

1D FESD 

1E CHlID 

11' NIDX 

20 A~IDF 
21 A2 
22 FLOF 
23 FLF3 

RD,SHLT.REL - '1 
RD,SHLT.CC - III 
;RITE ~; 

24 FSUB 
25 A3 
26 A4 
27 A5 

RD,SHLT.REL - 1 
RD,SIILT.CC - 1 
READ - 1 

; ~. 28 A6 
28 A7 

2A ADDI 
28 ADI2 

RD, SIILT, REt.: - 1 
READ ;.. 

2C INDX 
2D INX2 

i 
RE, SIILT. REL;-
READ r 

2E FLST RD.REL 
21' FST2 \\'R,SIILT,CC-
30 FST3 Wa,SIILT,CC-

31 FST4 WRITE 

32 SPEC -

.33 8RI 
34 IIIU2 -

l 
,I 

35 CAeS RD, SilL T. REt.: -
36 ORA 1 
37 DIIA2 -

38 FLF2 RD, Rt: L 

88951000 02 

1 

1 
o 

o 
1 

o 
1 

1 

1 
1 

1 
1 
1 
1 
1 

1 

1 

r 
,-, 

o TAJU. 1 

1 '-
1 

,i 
1 
1 
1 
1 
1 

!
i~ 

1 i~ABL ~ i: 
1 

jTARL :1 
,. -
1-
! 

1 

J 

,- -

1 

1 
1 

1 
1 -
1 -
1 -
1 -

1 

- 1- f 
i-

_ t __ 

; - ,-

- i-
o 

; 1 1 

r 

:1 
PCRL 1- 11 - ,: ,: : Ii 

- 1- .1:_, .. ~~L 1 

, 

; - -
I 

- i-
- I -

! 

RFPACI FSR 
, !CLK 
j-

,
'I 

t 
, 
i_ 

" 

,-
'TRUE 
: INH 

asSAil ! 
! I 

SET ,
.u.p 

'RFPACl'-
'- ICCR 

i: 
'-
'-

,RD 
.ADATA • 
:ADATA -

\= ,-,- -
'I~"i: - ,-

WRPAC2'
, RFPAC2i-

,-

DOUTl -
: DOUT2 -

.~ DOUT3 -

FSTART 1 

CLK FSTART 1 
11,2,3 j I 

1- SETF -' . 1 
CLRA 

CIDID -

IRCLR -[' 

I:AC'I= 
'- '-
: WFPAC2 -
, ''FPAC2 

RFPACI 

: RFPAO'. 
! RFPAC3,-

1-

i-

i: 
!-
,-

t i-
r I ,-.. ,. 

1-- I FSTART.
1

1 
DOUT2 - 1 

1 

CLK 
1,2,3 
CLK2 

'-
I , -

1 

CLK3 FSTART-

I: 

DOUTl 
DOUT2:· 

DOUT3i. 
I 'I:PEC 

I TRUE 
INH 

;-

1 

,-

! -,'. 
I I 
I - ,EXEC IS 

'NXT ACT\" 
HALT -

, -, 
:-

, 
i 

EXEC 1-
NXT 

, 
1-

: EXEC 
, NxT 

EXEC 
NXT 

t 
'. 

EXEC -
, NXT 
,- ! HALT -

I: I!~:: 
i - '. . 

7 
8 

,9 

A 
B 
C 

C 

E 

10 

11 
12 

13 
14 
15 
16 
D 
18 

IB 
lC 

E 

21 
,38 

38 I: 
I . 

; , 
I EXEC.- .: -
, , 

i_ 
I 1 

, ! 

SP , 
t ,. 

1 EXEC -
, NXT 

1- 'EXEC: 
: NIT 

- i EXEC: 
i NXT 

_ L_ 

1 'EXEC· 
: NXT 
itt SP 

EXEC· 
NXT 
EXEC -

I 
21 
26 
27 
28 

29 

28 

2D 

2F 
30 
31 

. NXT 
1- • 34 

• i EXEC CO~;D :H 
I NXT E.~O 
1_ . 3 

1 _. 37 
TRUE - -' EXEC (,0:;[1 3,\ 

!~: __ ._ j ~XT .!~Sll 23 

E-l 



'. 

B-2 

~aster Control Flow Charts , 

FLDD,' fADD, FSUD, F!IPY, FDIV 

, IDIV 'DSA Rr:AD I.!X:: 20 if FADD, F..l'Y , 
FlDD nLQU~ST 
Ire 24 if FSCB ADDR=PCR 
STEP 1 

No 

·TAR 0+

DSA DATA 

INCRE:.IDiT 
PCR I 

Yes 

TAR ~

DSA DATA 
+ peR 

- '-- - - -----

Ire 21 
STEP 2 Address 

Generate 

DSA READ 
REQUEST 

DSA [WI',\ 
.. nUF~H() 1 ;. 

ADDn=TAn 
+In*2t 

INCREMENT~ 
TAR 

" 

Yes 

tln*l if Fsn 
Dit-8 Clear 

88951g00 02 



lOC 25 
S'IEP 3 

lOC 26 
STEP 4 

lOC 27 
8I'EP 5 

~DDRESS . 
GENI:RATION 
AS IN STEP2 

Yes 

INCREiiE?\T 
TAR 

DSA READ 
CYCLE AS 

DSA DATA 
... Bm' 32to47 

Sign Yes 
Extension >--'-----, 

DUF~ DUF~ 
-+r.1D 32 to 51 ... IID 48 to 51 

- "--- --

88951000 02 E-3 



we 28 
Sf.EP 6 

we 29 
STEP 7 

E-4 

aUF 16to31 
... un l6to3l 

Start 
FPH 

• 

Yes 

BUF 32to47 
... ~ID 32to47 

-

Start FLDD, FADD, FSUB, 
FMPY or FDIV 
Floating Point hlicro~ 
processor 
function 

88951000 02 . 



88951000 02 

Master ContrOl Flow Chatts 

FLOF 

J.OC 22 
STEP 1 

J.OC 38 
S'lEP 2 

J.OC 23 
S'I1!!> 3 

START 
F~!I FLOF 

Step 1 
of FLDD 

No 

DSA WRITE 
REQUEST 

ADDijESS AS 
IN STEP 2 
QU-t..D.=D,----, 

DRIVE 
FPAC 16to31 
to DSA DATA 

Fetch of Address 

---------

". 
Except for IR*l instead 
of IR* 2 or 3 

-' 

E-5 



E-6 

... _--_.. -_ .. -- --

FIXF 

1.0: 1A 
5TZP I 

1..0: IE 
SI'EP 2 

r.oc IC 
STEP .3 

Step 1 
of FLDD 

Step 3 
of FLDD 

Fetch of Address 

~--

Fetch of Data to Buffer 
Except for IR*l instead 
of IR*2 or 3 

- ----- '--- - ------. - -

Yes 

No 

BUF 16to31 
to MD 16to3 

BUF 16 
to MD~ 

START FPH 
FIXF 

Integer to middle of FPAC 

Sign to FPAC Bit f/J 

88951000 02 



88951000 02 

Master Control Flowcharts 

FCOH 

I.D: 19 

LDWDl, LDWD2, LDWD3 

LOC 1 
STEP 1 

LOC E 
STEP 2 

No 

Start FPH 
FCml Func
tion 

Start FPH 
LD\'iD 
Function 

Enable 
Exec. Next 

Stop the 
Clock 

Yes 

--------

E-7 



Master Control "Flowcharts 

FLST 

u::c 2E 
STEP· 1 

... ------

'. 

E-8 

l.OC 2F 
STEP 2 

Step 1 
of FLDD 

No 

DSA Write 
Request 

Address as 
in step 2 . 

Increment 
TAR 

Fetch of. Address 

--~-----

8895100002 



88951000 02 

FLST Continued 

lOC 30 
STEP 3 

lOC 31 
STEP 4 

DSA imITE 
REQUEST 

ADDRESS AS 
IN STEP 2 
OF FLDD 

DRIVE 
FPAC 16to3l 
To DSA DATA 

Yes 

INCRE?.IENT 
No TAR 

DSA \':RTT 
CYCLE 

ADDRESS AS 
IN STEP 2 
OF FLDD 

DRIVE " FPAC 32tol\7 
TO DSA D,\TA 

E-9 



-. 

E-10 

Master Control Flow Charts 

CUMD 

roc IE 

NIDX 

REL~iODE+

REL~IODE 

CLEAR IR 

". 

88951000 02 





M. C. Flow Charts 

ADDI 

u:x: 2A 
STEP I 

"_ .. --. 

Step I 
of FLDD 

Fetch of Address 

- --------------------- --~~--

E-12' 

I.OC 2B 
STEP 2 

DSA READ 
REQUEST 

ADDRESS 
= TAR 

IR+-
IR+DSA DATA 

88951000 02 



U. C. Flow Charts 

STRI' 

10C 17 
STEP 1 

10C 18 
STEP 2 

88951000 02 

Step 1 
of FLDD 

DSA WRITE 
REQUEST 

ADDRESS 
== TAR 

DRIVE IR 
TO DSA 
DATA 

Fetch of Address 

--

E-13 



'. 

-. 

E-14 

M. C. Flow Charts 

SPEC 

I.£X:: 32 

CACS 

E)----
.------'----..., 

IOC 35 

DSA READ 
REQUEST 

ADDRESS 
= PCR 

peR ~. 

DSA.DATA 

• 

PCR ... PCH 
+DSA DATA 

8895100002 



88951000 02 

U. C. Flow Charts . 

DRIP, 13RIZ, DROI, DRII': 

LOC 33 
STEP 1 

LOC 34 
STEP 2 

BRA~BRAZ , BRA:.! , 

LOC 36 
STEP 1 

LOC 37 
STEP 2 

INCRDIE:-:T 
PCR 

INCHD:GiT 
PCR 

Yes 

'>------[5 

---

E-15 



M. C. Flow Charts 
Fetch Op Word/Cold Start 

LaC 3 
STEP 1 

I 

-----"---' 

E-16 

LOCE 
STEP 2 

SET ACTIVE 

. DSA READ 
REOUEST 

DSADATA 
To CCR 

INCRE~!ENT 
PCR 

CLEAR 
OPBC 

'--- - - ---- ---- - -

88951000 02 



M. C. I:'low Cla.rtS 

~ID 
SI'EP 1 

No 

Set FE:\1) 
CLEAR AcrlVE 

Yes 

---- --------- -~ - -- - ---~---

LOCE 
SI'EP 2 

88951000 02 

ENABlE 
EXEC. ND..'T. 

No 

SI'OP '!HE 
a.DCK 

go to STOP Sequence 

'. 

E-17 



.. 

E-18 

M. C. Flow Charts 

LOC 2' 
S'l'EP 1 }'bve FSR to 

BL'F ~ to 15 

Yes 

Save FSR 

-~--
,--_-.1... ____ _. ---- --

LOCF 
SI'EP 2 

IOC 10 
SI'EP 3 

-
IOC 11 
SI'EP 4 

Set Active 
Set PEar 

Move SSAR 
to TAR 

----

BUF ~ to 15 
To USA DATA 

DSA REQ 
ADDR=TAR 

OCR 
To DSA DATA 

I~'T 
TAR 

. Get Address 

----
Store FSR @ SSA.'q 

Store OCR ~ SSAR+ 1 

88951000 02 



M. C. Flow Charts 

!DC 12 
8I'EP 5 

I 

roc 13 
STEP 6 

ISA REQ 
ADDR::!fAR -_ .... 

IR to 
IlSA DATA 

lN~.lENT 
TAR 

OOA r.m 
ADDR=TAR 

PCR To 
reA mTA 

lNCRE'1ENT 
TAR 

----~--....,..-

88951000 02 

ux: 14 
S'l'EP 7 

reA~ 

ADDR=TAR 

WAC ~ to 151 
To ~!\ mTA 

I NCIU:'.ll:::-''T 
TAR 

~ 

Store IR @ SSAR+2 

Store PCR @ SSl\R+3 

Store }~AC (~ to 15) 
@ SSAR+4 

E-19 



E-20 

Itt 15 
STEP 8 

roc 16 
sn::P 9 

rocD 
SI'EP 10 

:U:X:::E 
STEP.ll 

INCRF:\IENT 
TAR 

DSA REQ 
ADDR=TAR 

--

FPAC32 to 47 
1'0 OSA DATA 

Store WAC 16 to 31 @ SSAR+5 

-- -

Store FPAC 16 to 31 @ SSAR+6 

-I -- ---- -
ClEAR 

ACrlVE 

_ ....... _ ........... -----

ENABiE EXEC" 
NEXT 

.-
SfOP '!lIE 

a..cxx 

". 

Yes 

88951000 02 



--

RESTART 

LOC ~ 
STEP 1 

lOC 4 
STEP 2 

--

LOC 5 
STEP 3 

88951000.02 

SET 
AcrIVE 

lOVE SSAR 
TO TAR 

SET 
DBPM 

reA REQ 
ADDR=TAR 

OOA DATA 
'1b BUF to15 

OOA REQ 
ADDR+TAR 

reA DATA 
To rot 

- '----

@ SSAR-+re.IP (FSR) 

&.-.. - - - - ---- ~---

@SSAR+ 1 ~ CCR 



E-22 

lI. C. Flow Charts 

I 

I.OC 6 
STEP 4 

roc 7 
STI:P 5 

we 8 
Sl'EP 6 

OOA~ 
ADDn=TAR 

OOA DATA 
TO IR 

lNCRD.!Em' 
TAR 

OOA Rm 
ADDR=!I'AR 

DSA DATA 
To PeR 

INCRn.IENT 
TAR 

- - "'--

·OOA Rm 
AIDR=TAR 

OOA DATA 
to P.ID 91to15 

OOA DATA 15 
To P.ID 48to51 

Not Consecutive Cycle Due To 
.Address ALU Interference . 

@SSAR+2 ~ IR 

Not Consecutive.Cycle Due Tb 
Address ALU Interference 

@ SSAR+3 ~ PCR 

- "'""--

@ SSAR+4 .... MARG ~ to 15 

SICNEXTEND MARG 

8895100002 



roc 9 
STEP 7 

----~-

lOCA 
STEP 8 

lOC B 
STEP 9 

----

~) 

OOA pm 
ADDR=TAR 

OOA DATA To 
tID 16 to 31 

INCPE·iEN1' 
TAR 

- -
DSA REQ 
ADDR=TAR 

DSA DATA To 
lID 32 to 47 

START WI! 
FUJI) F1;xcrlm; 

- -
~DVE BUF 1 to 
15 To FSR 
14 to ~ 

I ---

LOCC 
STEP 10 

88951000 02 

No· 

@ SSAR+5 ~ II:&'lG 16 to 31 

~ SSAR+6 ~ !.!ARG 32 to 47 

FPH ~,bves HARG to WAC 

---

Restore FSR 

'-- -
Yes 

E-23 



.. 

• 

M. C. Flow Olarts 

LOCD 
STEP 11· 

LOCE 
STEP 12 

E-24 

CLEAR 

ENABLE 
EXEC. NEIT 

No 

Yes 

88951000 02 



t. C. Flow Q1arts 

;tart of Next ~ Code == EXEC NXT Bi t in Micro-Code 

Yes 

Yes 

No 

88951000 02 

go to ITI'QI 
New Op \,,'ord 

go to STOP 
Sequence 

E-25 

• 

... 



E-26 

M. C. Flow Clarts 

TIMING 

INACTIVE 
STATE 

uan CLE...\. TiS 
ACf1Vf. SETS 
'IO mDE 

Yes 

Apply Start 
Addr to 00:,1 

Set 'I :.ming 
To ~ State 

Force SCLK-L 
causes UIP'(l.K 

Cc::xrplete the 
PrccccdinJ:: 

F..ntcr 
CUrrent Instr 

No 
Start Address Fu.l'lction 

~ 
~ 

RESTARl' 
01 ill·.Dl 
41 lD~'.D2 
81 11>'.',1)3 
C2 STOP 
C3 row ST.-'..rn' 

" 

" 

DATA is entered into Destination nc~ister 
specified by Preceding Instruction 

88951000 02 



M. C. Flow Omrts 

Cl STATE 

88951000 02 

En tel' Address 
of nc",,"t 
Instruction 

Advance 
Timing· to Cl 

No 

No 

Yes 

Yes 

YES 

Instruction Register Holds Address 
of Next Instruction "if "Execute 
Next" False / 

Stop SCL.'I( 
Set 10 ~iode 

No 

I 

Stop sru~ C'O Ta 
Set 10 ~iode Inact i \"P 

'----,----.... State 

E-2' 



E-28 

M. C. FlolV Ch~u·ts 

. C1 STATE 

Cl STATE 

Address of 
Next !Iicro 
Instruction 

Address of 
Next +1 
Instruction 

Advance Timing 
To C2 Stat~ 

No 

IADD=INST 
REG. OlJfPCT 

No 

No 

Yes 

ENABLE 
SAR 'TO lADD 

Yes 

Force Ha.l~ 
True 

.. 

Force L\DD=C 
Fetch XC\'." C; 

GEN. IOAC( 
IADD=C2 (S'lDP) 

88951000 02 



11. C. Flow Charts 

C2STA'IE 

~srATE 

88951000 02 

SET/RESET 
FSR BITS 

No 

Advance 
T.imin~ 'Ib C~ 
~-~tate 

No 

No 

FSR Bits under ~licro-Prq;r2.'TI 
Control: ACTn"E (FSR 15, S=:T/P":::S;.:..'l) 

DBP~I (FSR 7, s:.:T) 

Yes 

No 

Yes 

JE\"D (FSR 6, SET) 
Poor U)DE (FSr- 4, SET) 

RElXODE (FSR 9, Ca1:pIs::ent) 
(~curs in Cp state) 

SET Nl::.:rn 

E-29 



M. C. Flo.v O)a.rts 

.-

~ STA'rn 

E-30 

GENERATE 
UIP..CI.K 

RELEASE 
MIRCLK 

Yes 

No 

No 

FORa:: SCLI'-L 
For Duration 

~. 

MIRClK causes Clock to 
"Destination ?~gister or 
FSTA~ Pulse toFPH 

RISING EDGE ~~ DATA 
TO DESTINATIQ~ 

88951000 02 

! :' 
i' 



MANUAL TITLE 

PUBLICA TION NO, 

FROM NAME: 

BUSINESS 
ADDRESS: 

COMMENT SHEET 

CDC® Hardware Floating-Point Unit Hardware Reference Manual 

88951000 REVISION 02 

COMMENTS: This form is not intended to be used as an order blank, Your evaluation of this manual will be 
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or 
general comments may be made below. Please include page number to which your comment 
applies. 



STAPLE STAPLE 

FOLD I 

--------------------------------------------~ 

BUSINESS REPLY MAl L 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
PUBLICATIONS AND GRAPHICS DIVISION 
4455 EASTGATE MALL 
LA JOLLA, CALIFORNIA 92037 

FIRST CLASS 
PERMIT NO. 333 

LA JOLLA, CA. 

I 
I 
I 
I 

------------~-------------------------------~ 

FOLD 

STAPLE STAPLE 


