60362000

@ CONTROL DATA
CORPORATION

MASS STORAGE FORTRAN
VERSION 3A/B

REFERENCE MANUAL

CONTROL DATA® .
MASS STORAGE OPERATING SYSTEM

INTERACTIVE TERMINAL-ORIENTED SYSTEM

REVISION RECORD

REVISION . DESCRIPTION
A ' -Original printing of Mass Storage FORTRAN Version 3, 0 for MSOS Version 4, 0.
(5/72)
B This printing includes double precision floating point package.
(1/73)
C Revision for MSOS 4
(7/74)
D This revision includes a glossary and PSR changes 2044, 2192, 2375, 2725, and 2837,
(2/75) .
E This revision is for FORTRAN Version 3.3 and PSR changes 3552, 3328, 3469, 3335, 3510, 3868, and 3934.
(5/76) See List of Effective Pages for pages affected in this revision.)
F Manual revised for MSOS Version 5. See List of Effective Pages for pages affected in this revision.
(9/76) . -
. G Manual revised to reflect ITOS 2.0 release. The front cover, title page, pages iii/v through xii, and Index-1, .
(10/78) Index-3, Index-4, and Index-5 have been revised. Page P-1 has been added.
H Manual revised to incorporate PSR FT3A035. Refer to the List of Effective Pages for pages affected by
- (1/80) this revision.
J Manual revised to clarify runtime values,
(7/81)

60362000

Publication No.

REVISION LETTERS 1, O, Q, S, X, AND Z ARE NOT USED

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphics Division
4455 Eastgate Mall

©1972, . 5 , 198 :
1972, 1973, 1974, 1975, 1976, 1978, 1980, 1981 Ta Jolls, Galtfornia 52037

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America " this manual, = - :

ii

. : LIST OF EFFECTIVE PAGES

~

a y . .

N New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
*) near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.
, ~ | PAGE REV PAGE REV PAGE REV PAGE REV PAGE mi/:l

N Cover - 5-36 E 9-22 E Index~6 E

(R Title Page - 5-37 C 9-23 F Comment

- ii J 6-1 C 9-24 H Sheet J
iii/iv J 6-2 H 9-25 E Cover -
& \ v/vi G 6-3 c 9-26 . E
e vii G 6-4 F 9-27 H
viii H 6-5 C 9-28 thru 9-33| E
\) " ix thru xi/xii G 6-6 thru 6-8 E 10-1 E
C,f 1-1 F 6-9 H 10-2 H
’ 1-2 E 6~10 H Glossary~1 F
. 2~1 F 6-11 E Glossary=-2 F
C/‘ 22 c 6-12 E Glossary-3 D
2-3 F 6-13 H Glossary-4 H
2-4 E 6-14 “E A-1 E
~, 2-5 E 6-15 H A-2 C
&/ 2-6 F 6-16 thru 6-20] E B-1 D
2-7 J 6-21 thru 6-27| C Cc-1 J
2-8 E 7-1 F c-2 E
‘ 2-9 E 7-2 c c-3 c
3-1 c 7-3 E C-4 thru C-16| E
3-2 c 74 C D-1 J
L 3-3 E 7-5 F D-2 thruD-15| E
~—7 3-4 F 7-6 c E-1 E
3-5 c 7=7 D E-2 E
~ 4-1 E 7-8 c F-1 F
(J 4-2 E 7-9 D G-1 c
5-1 thru 5-6 c 7-10 E G-2 E
— 5-7 E 7-11 c G-3 c
L, i 5-8 D 7-12 E G-4 C
g 5-9 c 7-13 thru 7-15| C H-1 F
. 5-10 E 7-16 E I-1 E
" 5-11 c 7-17 H J-1 F
N 5-12 E 7-18 c K-1 c
5-13 E 8-1 F K-2 c
P 5-14 c 8-2 F L-1 _E
_ 5-15 E || 8-3thrus-11 | E L-2 D
5-16 E 8-12 F L-3 F
o 5~17 c 8-13 F L-4 E

C \ 5-18 F 9-1 F L-5 E

e 5-19 E 9-2 thru 9-7 c M-1 F

w 5=20 o 9-8 thru 9-10 D M-2 c
(‘“, 5-21 H 9-11 E M-3 c
NG 5-22° c 9-12 E N-1/N-2 H

. 5-23 F 9-13 F o-1 E
— 5-24 E 9-14 c P-1 G
(\/ 5-25 F 9-15 thru 9-17| H Index-1 G
5-26 c 9-18 D Index-2 H

3 5-27 thru 5-29| F 9-19 c Index-3 H
Fo 5-30 thru 5-32| D 9-20 D || Index— G
b 5-33 thru 5-35| H 9-21 D Index-5 H

\ 60362000 J : iii/iv

T

N

{)
\)
N S

)

o
\.

GO O O

@

S

o L

PREFACE

This publication describes the external features of the Mass Storage FORTRAN Version 3 language and

the information necessary to produce Mass Storage FORTRAN programs for the CONTROL DATA®
1704/1714/1774/1784 computers and CYBER 18 computers.

It is assumed that the reader has some knowledge of an existing FORTRAN language and the Mass
Storage Operating System (MSOS).

Mass Storage FORTRAN, with the use of a compile time option, is a subset of ANSI X3.9-1966
American National Standard FORTRAN, All FORTRAN source decks written according to the guide-
lines provided by this document are compiled according to ANSI standards.

Mass Storage FORTRAN operates under Mass Storage Operating Systems 4.3 and 5 and
Interactive Terminal-Oriented System (ITOS) 2.0.

Related manuals in which the FORTRAN user may find additional information are:

Description Publication No.

MSOS 5 Reference Manual 96769400
Macro Assembler Reference Manual 60361900
1700 Computer System Codes 60163500
Small Computer Maintenance Monitor 39520200
Reference Manual

MSOS 5 Instant 96769530
File Manager Version 1 Reference 39520600
Manual

MSOS 5 Installation Handbook 96769410
Small Computer Maintenance Monitor 39521700
Instant

Interactive Terminal-Oriented System
(ITOS) Version 2 Reference Manual 96769240

Interactive Terminal-Oriented System
(ITOS) Version 2 Installation Handbook 60475200

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features and parameters.

s
\-
TN

TN

N

CONTENTS

INTRODUCTION

1.1 Product Elements
1,2 Product Configurations
1,3 Product Hardware Requirements

DATA FORMAT

2,1 Data Elements
2,2 Data Types

2,2,1 Integer Type Data

2,2,2 Single Type Data

2,2,3 Byte Type Data

2,2,4 Signed Byte Type Data
2.2,5 Real Type Data

2.2,6 Double Precision Type Data

2.3 Symbolic Names

2.4 Data Names
EXPRESSIONS

3.1 Arithmetic Expressions

3.1.1 Rules for Forming Arithmetic Expressions
3.1.2 Order of Evaluation '
3.1.3 Mixed Mode

3.2 Relational Expression
3.3 Logical Expression

3.3.1 Formation of Logical Expression
3.3.2 Order of Evaluation
STATEMENTS
4.1 Classification

4.1.1 Executable Statements
4.1.2 Nonexecutable Statements

4.2 Statement Format

60362000 G

1-1

1-1
1-1

1-2

2-1

2-1
2-1

2-3
2-5
2-5
2-5
2-6
2-7

2-8
2-8

vii

5 EXECUTABLE STATEMENTS

5.1 Assignment Statements

5.1.1
5.1.2

Arithmetic Assignment Statement
Label Assignment Statement

5.2 Control Statements

5.2.1
5.2.
5.2,
5.2.
5.2.
5.2.
5.2,

- N B L

GO TO Statements

Arithmetic IF Statement
Logical IF Statement

CALL and RETURN Statement
CONTINUE Statement
Program Control Statements
DO Statement

5.3 1/0 Statements

5.3.1
5.3.2

.

.3.3
.3.4
.3.5
.3.6
.3.7
.3.8

[02 I S I))

1/0 Devices

Mass Storage Files

OPEN Statement

READ and WRITE Statements |
Auxiliary 1I/0 Statements

Tape Records and Blocks

Mass Storage Records and Sectors
Printing of Carriage Control

5.4 ASSEM Statement

6 NONEXECUTABLE STATEMENTS

6.1 Specification Statements

6.1.1
6.1.2
6.1.
6.1.
6.1.

(< I)

DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
Type Statements

Byte Statements

6.2 DATA Statement
6.3 FORMAT Statement

(=]
[
.

(=

B
.

. .

PoorPP @
W W wWwWwWw W W
W0 =0;mWL kb W

viii

Field Descriptors

Field Separators

Numeric Conversion
Alphanumeric Conversion
Editing Specifications

New Record Specifications
Blank Field Specification
Repeated Format Specifications
Format Specification in Arrays

5-1
5-1

5-1
5-2

5-4
5-7
5-7
5-8
5-8
5-8
5-9
5-18
5-18
5-18
5-18
5-20
5-28
5-30
5-32
5-33

5-34

6-1
6-1

6-1
6-2
- 6-4
6-6
6-7

6-9
6-11

6-12
6-12
6-13
6-20
6-21
6-23
6-24
6-25
6-27

60362000 H

D

"""""

PROCEDURES AND SUBPROGRAMS
7.1 Arguments

7.1.1 Actual
7.1.2 Dummy

Statement Function
Supplied Functions

<
w B

7.3.1 Intrinsic Functi_on
7.3.2 Basic External Function

7.4 Subprograms

.4.1 Function Subprogram

.4.2 SUBROUTINE Subprogram
.4.3 EXTERNAL Statement
4.4 RELATIVE Statement
.4.5 CALL Statement

4.6 RETURN Statement

4.7 Block Data Subprogram

3 =] =3 =3 =3 -3 =3

COMPILATION AND EXECUTION

8.1 Compilation
8.2 Execution
8.3 Program Operating Procedures

FORTRAN MULTIPROGRAMMING
9.1 Re-entrant FORTRAN

9.1.1 Priorities

9.1.2 Re-entrancy

9.1.3 FORTRAN Library .

9.1.4 FORTRAN READ/WRITE Statement Processor
9.1.5 FORTRAN/Monitor Run-Time Interface (FORTRA)
9.1.6 Encode/Decode
9.1.7 Run-Anywhere Programs

9.2 Format Specifications

9.2.1 FORMAT Statement

9.2.2 Format Conversion

9.2.3 Conversion Specifications

9.2.4 Editing Specifications }

9.2.5 Special Character Specifications
9.2.6 Repeated Format Specifications

9.3 FORTRAN READ/WRITE Statement Processor

WRITE Statement
READ Statement
Statement Processor
CALL SETBFR

© O O
W W W w
oW N

60362000 G

- =3
1 1
W =

-3 =3
1 1
W W

}
(-]

-3 “"f -3 =
PO S |

[}
©

7-10
7-12
7-13
7-16
7-16
=17
7-17

8-1

8-1
8-12
8-12

9-1
9-1

9-1
9-2
9-2
9-3
9-3
9-3
9-4

9-4

9-4
9-5
9-5

9-10

9-11

9-12

9-12

9-12
9-12
9-13
9-13

9.4

9.3.5 Restrictions
9.3.6 Format Errors
9.3.7 1/0 Errors

ENCODE/DECODE Calls

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

ENCODE

ENCODE Macro

DECODE

DECODE Macro ,
ENCODE/DECODE Error Detection
Additional Formatting Routines

FORTRAN/Monitor Run-Time Package

9.5.1 READ/WRITE Calling Sequence
Scheduler and Timer
Miscellaneous Calling Sequences

Buffered Input/Output

© © 0
@ oo
oo N

10 MACRO FACILITY

10.1
10,2
10.3
10.4
Glossary
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
Appendix L
Appendix M
Appendix N

Appendix O
Appendix P

Index

Macro Definition
Macro Call
Restrictions
Limits

Communication Between FORTRAN and Assembly Language Programs
Table Capacities

Single-Precision Floating-Point Package
Double-Precision Floating-Point Package
Coding Hints

HardWare Requirements

Arrays

ASCII Codes

Load Map Comment Feature

Optimizations

FORTRAN Character Set

FORTRAN Compilation Errors

FORTRAN Execution Errors

FORTRAN Miscellaneous Errors

MS FORTRAN Reserved Word List
FORTRAN Operation in ITOS User Area

9-13
9-15
9-15

9-15

9-16
9-17
9-17
9-19
9-19
9-20

9-23

9-24
9-28
9-29
9-31
10-1

10-1

10-1

T 10-2
10-2
Glossary-1
A-1

B-1

Cc-1

D-1

E-1

L-1
M-1
N-1
0-1
P-1

Index~1

60362000 G

TN

OO0

C OO

(D

Oy O O O

O

A

O

» Figure

2-1
6-1

Table
5-1
7-1
7-2
7-3
7-4
7-5
7-6
G-1

60362000 G

FIGURES

Data Types and Subdivisions
Common Block

Array Successor Functiona +A * (b-1) +A * B * (c-1)

TABLES

DO Statement Parameters

Subdivision of Procedures and Subprograms

Permissible Arguments for Functions and Subprograms
Intrinsic Functions

Basic External Functions

Basic External Functions, Predetermined Results
Differences Between Function and Subroutine Subprograms

Value of a Subscript

22
6-3
G-3

5-11
7-2
7-4
7-6

7-9

7-10
G-2

xi/xii

INTRODUCTION | 1

1.1 PRODUCT ELEMENTS

The Mass Storage FORTRAN Version 3 product is composed of five basic elements:

A Variant FORTRAN Compiler — This compiler version has a larger number of overlays;
the largest overlay is approximately 8K. It requires more mass memory than the B
variant and is slower in compilation speed.

B Variant FORTRAN Compiler — This compiler has fewer overlays than the A variant;
the largest overlay is approximately 16K. This variant is faster than the A variant, Both
compilers process source statements identically and generate similar object codes.

Re-entrant ENCODE/DECODE Run-time — This run-time library runs in the foreground and
has the characteristics for multiprogramming described in Chapter 9.

Non-Re-entrant ENCODE/DECODE Run-time — This run-time library runs in the
background and has identical user interface as the re-entrant ENCODE/DECODE run-time
library as described in Chapter 9. This run-time library is designed for use in debugging
programs to run in the foreground.

FORTRAN 1I/0 Run-time — This run-time library runs in the background and has the

_capability described in this manual (except Chapter 9). In general, it has more extensive

capability than the other two run-times.

1.2 PRODUCT CONFIGURATIONS

Several product configurations are possible using the five elements of the product.

Only one variant of the compiler may be present in a given MSOS system. With the selected compiler,
the re-entrant ENCODE/DECODE run-time may be used (must be core-resident). Either the
non-re-entrant ENCODE/DECODE or FORTRAN I/O run-times may be in the background. In addition,
if the FORTRAN I/0 run-time is in the background, the non-duplicative functions present in the
non-re-entrant ENCODE/DECODE can also be in the background.

60362000 F

1-1

1.3 PRODUCT HARDWARE REQUIREMENTS

The MSOS reference manual should be consulted for the specific hardware options which are available,

The minimum system memory requirements for MSOS do not include any of the elements of Mass
Storage FORTRAN. If the A variant of the compiler is used, the minimum memory requirement is
24K. The B variant minimum is 32K. The foreground ENCODE/DECODE run-time requires an
additional 4K of memory for single-precision floating-point or 8K for double-precision floating-point.

1=2

60362000 E

TN

O

N

ONE®

-

~
(‘)
v
'
\ s

~
(‘

O

[

DATA FORMAT | | 2

2.1 DATA ELEMENTS

A data element is a single-valued unit of data which may be uniquely referenced. It may be any of the
six types outlined in the following section. A data element may occupy part of a word (byte), a full word
(integer or single), two full words (real), or three full words (double precision). The value of a data
element may be altered during program execution. '

The following expression contains six data elements.

3.6 * ALPHA * SlNi(X) - BE'II'A(7) + D * % 2

Data elementé

2.2 DATA TYPES

MS FORTRAN recognizes six types of data:
Integer
Singie
Real
Double precision
Byte
Signed byte

Operations with data elements must take into account their type, since each has its own mathematical
significance and word structure.

The type of a data element is indicated either by the first letter of its symbolic name or by a
specification statement. Data types are shown in Figure 2-1.

Based on the six data elements in the preceding example, the data types are:

3.6 * ALPHA * SIN(X) -~ BETA(7) + D ** 2
I | I I I I
Real Real Function Real Double Integer
constant variable array precision constant.
variable - variable

60362000 F 2-1

Single

Integer
Constant

Integer

Integer
Variable

Byte

Integer
Subscripted
Variable

Signed Byte

Real
Constant

Real

Real
Variable

Real
Subscripted
Variable

Double
Precision
Constant

Double
Precision

Double
Precision
‘Variable

Double
Precision
Subscripted
Variable

Figure 2-1, Data Types and Subdivisions

60362000 C

ST

o

/__\
(N

D O O

~

O O O O C

2.2.1 INTEGER TYPE DATA

An integer is a whole number expressed without a decimal point. It may be used as a subscript, an
exponent, or in calculations that do not involve fractional parts. An integer occupies 16 bits of storage,
or one computer word. The most significant bit is the sign bit.

15 14

!

Sign

The range of integer in magnitude is oslnls25-

There are three integer types:

60362000 F

Constant

The value of an integer constant is stated explicitly in an expresslon. In
MS FORTRAN, integer constants may be

Decimal

Hexadecimal

Octal

Decimal integer constants consist of one to five
decimal digits. If the range of OSInlszls-l is exceeded,
a diagnostic is provided. Leading zeros are ignored.

Hexadecimal integer constants are distinguished from
decimal integer constants by a $ sign immediately
preceding the string of digits, Hexadecimal integer
constants consist of one to four hexadecimal digits.

If this maximum is exceeded, the constant is treated
as zero and a compiler diagnostic is provided.
Leading zeros are ignored.

An octal integer constant consists of one to five octal
digits, Its use is restricted to PAUSEn and STOPn
statements in which n is an octal constant,

Equivalent decimal, hexadecimal, and octal integers are:

Decimal

Integer

123
239
8405

Hexadecimal Octal
Equivalent Equivalent
7B 173
EF 357
20D5 20325

.0

2-4

Variable

Subscripted
Variable

Hollerith A Hollerith integer constant has the form nHf or nRf

Where: n is the unsigned decimal integer representing number
of characters in string. Must be greater than zero
and not more than 2 when used in an expression.

f is the string of characters.
H is left justified with blank fill,
R is right justified with zero fill.

Examples:
Hollerith Constant * Hexadecimal Equivalent
2HAB 4142
2HA 4120
1RA 0041
2RAB 4142

An integer identified by a symbolic name (Section 2.4) and capable of
assuming a range of values during program execution is an integer variable.
It may be designated a simple integer variable to distinguish it from an
integer subscripted variable. ’

SINGLE, BYTE, and SIGNED BYTE data types are subsets of the integer
variable.

This type of integer is a symbolic name with one, two, or three associated
subscripts enclosed in parentheses. It is used to reference elements in-an
array (Appendix G) of successive memory locations. The name is typed
integer by alphanumeric format (Section 2.4) or by declaration (Section
6.1.4). The subscripts must be integer constants, integer variables, or
integer expressions. Permissible forms of subscripts are

Form Example

(1) (I

(c) @

(izxd) (I+5)

(c*i) (3*1)

(c*id) (3*1+5)

i Integer variable

:] Integer constants

* Arithmetic operator; multiplication

+ Arithmetic operator; addition or
positive value

.- Arithmetic operator; subtraction or
: negative value

60362000 E

N
\

OIS

)

.

(

()

DO

¥

C O 00 0 0

(2

Before an array can be used in a program, its name and dimensions must
be declared in a DIMENSION, COMMON, or TYPE statement (Section
6.1.4). When so declared, the subscripts are the actual dimensions of

the array.

2.2.2 _SINGI.E TYPE DATA

This data type is the same as an integer variable,

Dimension information may be given. When the

ANSI option has been declared, appearance of a name in a SINGLE statement declares that each data
element specified occupies a single storage unit,

2.2.3 BYTE TYPE DATA

A byte is an integer part (16 bits or less) of an integer variable. It is unsigned and may assume
positive and zero values. To assume negative values the byte must be a full integer word (16 bits).

- NOTE

When byte or signed byte integer parts of integer
variables are used in subprogram para;neter strings,
the address of the integer variable is passed to the
subprogram (not a redefined integer part address as
defined by the BYTE or SIGNED BYTE declaration).
The subprogram will then obtain the complete integer

variable value when the byte parameter is referenced.

2.2.4 SIGNED BYTE TYPE DATA

A signed byte of an integer word may assume positive, negative, and zero values.

where a signed byte is one bit, it has the value +0 or -0,

60362000 E

NOTE

When byte or signed byte integer parts of integer
variables are used in subprogram parameter strings,
the address of the integer variable is passed to the
subprogram (not a redefined integer part address as
defined by the BYTE or SIGNED BYTE declaration),
The subprogram will then obtain the complete integer

variable value when the byte parameter is referenced.

In the special case

2=5

2.2.5 REAL TYPE DATA

A real data element can have a fractional part as well as an integer part and is always expressed with a

decimal point.

It is used in calculations that require decimal approximations.

A real number occupies 32 bits or two words.

Woi-dl S J‘

Where:

S

15 14

[}

EXPONENT ~ MSp

LEAST SIGNIFICANT PART OF COEFFICIENT

is the sign bit
-MSP is the most significant part of the coefficient

The approximate range of a real number is 10‘39< [n]<103%, Precision is approximately seven
decimal digits. (Refer to Appendix C.)

There are three real types:

2-6

Constant

Variable

Subscripted
Variable

- The value of a real constant data element is expressed by an integer part,
a decimal point, and a fractional part, in that order. It may be followed
by the letter E and an optionally signed exponent representing a power of .
ten. In the following examples, n is the integer part, d the decimal
(fractional) part, and s the exponent representing a power of 10. (Refer
to the Constant description for double precision type, page 2-7.)

Form Example
n.d 345, 67

.d 34567

n. 34567.
.dEz8 .34567E+5
n.Eis 34567.E-05
n.dEzs 345.67E-03

A real variable data element is identified by a symbolic name (Section 2.3).

It is capable of assuming a range of values during program execution. A
real variable is designated a simple real variable to distinguish it from a
real subscripted variable,

A real subscripted variable is a symbolic name with one, two, or three
subscripts enclosed in parentheses. It is used to reference the elements
in an array of memory locations. The name is typed real by alphanumeric
format (Section 2.4) or by declaration (Section 6.1.4). The subscripts
must be integer (constants, variables, or expressions). Permissible
forms of subscripts are

60362000 F

~

RN

ya

N
/ .

(hY
AN

s

~

(\.

&

~

’\»
Y

e

N

(N

a5
_

O O

O

C

®

O O

/

)]
\‘\/‘

-

oNe

O

@

)

——~

Form Example

(i) @

(c) 3)

(ixd) (I+5)

(c*i) (3*1)

{c*id) (3*I+5)

i v Integer variable

c

d Integer constants

* Arithmetic operator: multiplication
+ Arithmetic operator: addition or

positive value

- Arithmetic operator: subtraction or
negative value

2.2.6 DOUBLE PRECISION TYPE DATA
A double precision data element can have a fractional part as well as an integer part and is always
expressed with a decimal point. It is used in calculations that require decimal approximations of more

accuracy than that obtainable with the use of a single precision data element.

A double precision number occupies 48 bits or three words.

15 14 7 6 0
Word1 |S. EXPONENT MSP |
2 | INTERMEDIATE PART OF COEFFICIENT
3 LEAST SIGNIFICANT PART OF COEFFICIENT

Where: S is the sign bit

MSP is the most significant part of the coefficient

The approximate range of a double-precision number is 10"?9<|n|< 103? . Precision is approximately
11.5 decimal digits in the software version, and approximately 9.5 digits in the firmware version
runtime. '

The double precision types are:
. Constant The value of a double-precision constant data element is expressed by an

integer part, a decimal point, and a fractional part followed by the letter D
and an optionally signed exponent representing a power of ten. A constant

60362000 J 2-7

Variable

Subscripted -
Variable

with a decimal point, but without an exponent, is classed as a real constant.
In the following examples, n is the integer part, d the decimal (fractional)
part, and s the exponent representing a power of 10.

Form Example

n.dD+s 345, 67D-03

.dDits , . 34567D+5

n.Dis 34567.D-05

n.d 838.8607 (real)
n.d 838.8608 (real)
.d _ - .08388607 (real)
.d .08388608 (real)
n. -8388607. (real)
n. -8388607.0 (real)

A double-precision variable data element is identified by a symbolic name
(Section 2.3). 1t is capable of assuming a range of values during program
execution. A double-precision variable is designated a simple
double-precision variable to distinguish it from a double-precision
subscripted variable.

A double-precision subscripted variable is a symbolic. name with one, two,
or three subscripts enclosed in parentheses. It is used to reference the
elements in an array of memory locations, The name is typed by
declaration (Section 6.1.4). The subscripts must be integer constants,

~variables, or expressions. See Section 2,2,5 for permissible forms of

subscripts.

2.3 SYMBOLIC NAMES

Both type of symbolic names consist of.one to six alphanumeric characters, the first of which must be

alphabetic:

2.4 DATA NAMES

Data names — Referenc'e"simplé variables, arrays, the elements of an array, bytes, and

data blocks

Procedure names — Reference statement functions, intrinsic functions, external functions,
subroutines, and certain external procedures

A data name identifies any of the variable data elements described in this section, It also references
a data block. In the absence of an explicit declaration. type is implied by the first letter of the name:
"1, J, K. L, M, and N imply type integer?: any other letter implies type real.

T Byte and signed byte are always considered integer variable.

2-8

60362000 E

—,

)

{

N

)

C 2O

SO0 0000 000

Example:
Integer Variable Real Variable
IOTA - A65302
MATRIX BETA
J (o]
K2804 ALPHA (7)
/
60362000 E

2-9

ale

&

EXPRESSIONS j 3

An expression is a set of data elements combined by operators and parentheses to produce, upon
execution, a single-valued result. An expression can be a single data element, a constant, or a
variable, or it can be a complex string of data elements and operators nested with parentheses.

There are three kinds of expressions: arithmetic, relational, and logical, and each has its own
operators.

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of arithmetic operators and data elements which, when
evaluated by execution, produce a single numerical value. Both the expression and its data elements

identify integer, real, or double-precision values. Byte and signed byte are synonymous with type
integer.

Arithmetic operators + Addition or positive value '
- Subtraction or negative value
* Multiplication .
/ Division

*+ Exponentiation

Arithmetic data elements Constants
Simple or subscripted variables

Function references (refer to Chapter 7)

3.1.1 RULES FOR FORMING ARITHMETIC EXPRESSIONS
Consecutive arithmetic operators are not allowed in an expression. If a minus sign is used to indicate
a negative data element, the sign and the element must be enclosed in parentheses if preceded by an

operator.

B*A/(-C)
A*(-C)

60362000 C 3-1

As in ordinary mathematical notation, parentheses may be used to indicate grouping, but they may not
be used to indicate multiplication.

Any arithmetic data element or expression may be raised to a positive or negative integer element or
expression.

M**N
(X+Y)**1
(A+B)**(-J)
IVAL**(K+2)

Only a positive real or double-precision data element or expression can be raised to a real or -
double-precision power.

ALPHA**3.2
(X+Y)**A
(A+B)**(C+3)

Because of truncation, integer expressions cannot be commuted. I*J/K rhay not yield the same result
as J/K*1, as the following example shows.

4*3/2=6 but 3/2*4=4

A data element with a zero value may not be raised to a power valued as zero: thus, any expression
that becomes 0**0 when evaluated is illegal. ‘

All data elements in an arithmetic expression must have mathematically defined values before the
expression can be evaluated,

3.1.2 ORDER OF EVALUATION

Evaluation begins with the innermost expression and proceeds outward in parenthetical expressions
within parenthetical expressions.

Evaluation proceeds according to the following hierarchy of operators in an expression without
parentheses or within a pair of parentheses.

> Exponenﬁation Level 1

/ Division }
Level 2

* Multiplication ev

. . \
+ Addition }
- Subtraction Level 3
3-2 . , 60362000 C

////

-

™)

)

DO

3.1.3 MIXED MODE

Integer, real, and double-precision quantities may be used in the same arithmetic expression. In such
a mixed mode expression, those parts involving purely integer (or real) operations are computed in the
integer (or real) mode and the results are converted to real or double-precision. In those parts of the
expression involving integer and real quantities, the integer is converted to real; in those parts of the
expression involving integer, real, and double-precision quantities, the integer and real are converted
to double~precision. Then the entire expression is computed in the real or double-precision mode.

Example:

D is double precision, R is real, I and J are integers.
D=I/J + R/[I%2 1/J and [**2 involve only integer quantities. They are
calculated in the integer mode to produce the intermediate

I integer results I1 and I2.

1™

I2 is converted to real value Rl1.

R and Rl involve only real quantities. They are calculated
in the real mode to produce the intermediate real result R2.

Il and R2 are converted to double precision values D1 and D2.

o P—

Qe Rk fElep e tok|

The entire expression is computed in double-precision mode.

oe
3
=]
P
+

Example:

For the following statements

I = 4%3/2
J = 3/2%4
K = 4.0D0*3/2
the results are: 1 JK
6 4 4

3.2 RELATIONAL EXPRESSION

Two arithmetic expressions may be combined with a relational operator to form a relational expression,
The value of the expression is true or false depending on the relation. A minus zero is always evaluated
to be equal to a plus zero,

Relational Operators Meaning

.EQ. ‘ Equal to

.NE, Not equal to

.GT. ‘ Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to

60362000 E 3-3

Examples:

(A+B).LE. (C+D)

. EQ. J(K)

(3. *BETA+VALUE). NE. (ALPHA-44. 8)
A.GT.16.

In MS FORTRAN, a relational expression is used only within the context of a logical IF statement
(Section 5. 2. 3). ’

3.3 LOGICAL EXPRESSION

A logical expression {s a combination of relational expressions and logical operators such that
evaluation of the expression produces a result of true or false.

Logical Operators Meaning

.NOT. Logical negation
.AND. Logical conjunction
.OR, : Logical disjunction

In MS FORTRAN, a logical expression is used only within the context of a logical IF statement
(Section 5. 2.3). Logical variables are not allowed in MS FORTRAN.

3.3.1 FORMATION OF LOGICAL EXPRESSION

If RE1 and RE2 are relational expressions, the logical operators can be defined as follows:

.NOT.RE1l False only if RE1 is true
RE1,AND.RE2 True only if RE1 and RE2 are both true
RE1,0R.RE2) False only if RE1 and RE2 are both false

.NOT. may appear only in the following combinations with . AND. or with .OR.:

RE1.AND..NOT.RE2
RE1.OR..NOT.RE2

34 RS - 60362000 F

Examples:

A.LE.B.AND.C.EQ.D

F.GT.16..0R.G.GE.3. 14

ALPHA.LE.BETA. AND..NOT.GAMMA.EQ.BETA
.NOT. (A.NE, B) which is the same as A.EQ.B

3.3.2 ORDER OF EVALUATION

Within a logical expression, operators are evaluated in the following order:

.NOT.

60362000 C

3-5/3-6

N

C

O O

STATEMENTS | 4

41 CLASSIFICATION

Statemeats are the basic steps in a FORTRAN program. In general, ‘statements are executable or
nonexecntable.

4.1. EXECUTABI.E STATEMENTS

Executable statements perform calculations, direct control of the program, and transfer data. Types
of executable statements are

Assignment
Coatrol

1/0

4.1.2 NONEXECUTABLE STATEMENTS

Nonexecutable statements provide the compiler with information regarding data structure and storage.
Nonexecutable statements are

Specification
Data initialization
Format

Function defining
Subprogram

4.2 STATEMENT FORMAT

Statements are written in 72-column lines. A statement begins on the initial line and may be continued
to additional lines. Up to five continuation lines are permitted per statement.

60362000 E 4-1

The use of the 72 columns is the same for punched card and paper tape input; however, for paper tape,

column 72 indicates a carri

line.

age return which serves as a field separator marking the end of an input

Blanks may be used freely to improve the appearance of the program, subject to the restrictions on
continuation lines.

In writing statements, the columns are used as follows:

Column

1

1 through 5

7 through 71

72

73 through 80

Description

C
*

M
Statement label

Continuation
indicator

Statement field

Carriage return

User application

Use

Comment line. Does not affect program

Comment card. Is printed on the same line as previous state-

ment card (allows statement and comment on same line)
Page eject

Where 1<N<9 skips N blank lines if there are no other
characters on the card. If there are other characters,
the card is considered a normal statement.

Macro call (see Macro Facility in section 10)

If a étatement is to be referenced in a program (such as in
control transfer), it is given a number from 1 to 32,767 as
a statement label, Otherwise, these columns are blank,

Where a statement extends beyond one line, additional lines
are flagged as continuation lines by placing a character
other than zero or blank in column 6. When column 6 is
used, the line must contain some useful information or the
compiler assumes the programmer made an error.

The FORTRAN statement is written in columns 7 through
72 for punched card input and in columns 7 through 71 for
paper tape input.

A carriage return symbol is placed in column 72 for every

-line of paper tape input to indicate the end of line.

The programmer uses these columns to sequence source
cards; the compiler ignores these columns.

60362000 E

(

S
(\
‘\/'

_ﬁ
-

EXECUTABLE STATEMENTS 5

An executable statement causes the program to perform an action such as the assignment of a value, the
transfer of control, or the transfer of data. Executable statements are

Assignment
Control
1/0

5.1 ASSIGNMENT STATEMENTS

An assignment statement gives a variable numerical value. The value may be the result of calculation,
or it may be assigned by the programmer. Assignment statements may be

Arithmetic assignment
Label assignment

5.1.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statemeat assigns a value of a constant, expression, or variable to another
variable,

The format is
v=e
Where: v is the simple or subscripted variable

= is the assignment symbol which directs the program to compute the value of the
expression on the right and place that value in the storage location designated by the
variable on the left

e is the arithmetic ekpression
Examples:

I=I+1
ALPHA = BETA*DELTA + SIN (X)
JOTA (K) = IVAL* *2 + IFOX (Y)

60362000 C 5-1

If the arithmetic assigunent statement involves mixed mode. the data type of e may be converted
according to the rules:

Defin

vagmis:

Integer
Integer
Integer

Real
Real
Real

Double precision
Double precision
Double precision

ition of Rules

Assign
Fix/Dfix

Float
DPflt

Single
Double.

Andetypeis:

Integer
Real
Double precision

Integer
Real
Double precision

Integer
Real
Double precision

The asslgnment rule is:.

Assign
Fix and assign
Dfix and assign

Float and assign
Assign
Single and assign

Dflt and assign
Double and assign
Assign

Transmit the value, without change, to v.

Truncate any fractional part of the value and transform that result to the form of an
integer,

Transform the value to the form of a real number,

Transform the value to the form of a double-precision number.

5.1.2 LABEL ASSIGNMENT STATEMENT

Truncate the value to form a real number.

Express the value in the form of a double-precision number.

A label assignment statement gives a variable the numerical label of another statement in the same
program. Any subsequent statement with that variable automatically references the statement whose
label is assigned. With READ and WRITE statements, “this feature permits selection of several
possible formats based on program execution.

The format is:

Where: k

ASSIGNk TO 1

assign statement

is the statement label referencing a statement in the same program unit as the

‘{ is an integer variable called the assign variable

60362000 C

O

Oy O

O O

)

o

Example:

25 ASSIGN 20 TO IOTA

*

50 ASSIGN 30 TO IOTA

WRITE (3,I0TA) LIST
20 FORMAT (...)
30 FORMAT (...)

In the preceding example, if the program sequence includes statement 25 but skips 50, the WRITE is
executed according to the FORMAT labeled 20; if the program sequence skips the statement labeled 25
but includes 50, the WRITE is executed according to the FORMAT labeled 30.

An assign variable is also used in conjunction with an assigned GO TO statement. After execution of an
assignment statement, subsequent execution of an assigned GO TO statement transfers control to the
statement identified by the assigned label, provided there was no intervening redefinition of that label.
Used in this manner, the label must identify an executable statement.

An assign variable may be in common (Section 6. 1.2) or it may be an actual argument ina procedure
reference (Chapter 7). In these cases, it continues to function as an assign variable in the related
program units, Thus, FORMAT statements and labels may be passed between program units.

Once it is defined in an ASSIGN statement, an integer variable may not be referenced in any statement
other than an assigned GO TO statement or a formatted READ or WRITE statement until it is redefined.

5.2 CONTROL STATEMENTS

Program execution normally proceeds from statement to statement as they appear in a program.
Control statements can be used to alter this sequence or cause a number of iterations of a program
section. Control may only be transferred to an executable statement. A transfer to a nonexecutable
statement results in a program error, which is usually recognized during compilation. With the DO
statement, a predetermined sequence of instructions can be repeated any number of times by
incrementing a simple integer variable after each-iteration,

Statements to which control is transferred must have statement labels and they must reference
executable statements within the same program as the control statement, This restriction does not
apply to the assigned GO TO. The types of control statements are

GO TO RETURN N
Arithmetic IF CONTINUE
Logical IF Program Control
CALL DO
60362000 C 5-3

5.2.1 GO TO STATEMENTS

GO TO statements transfer control unconditionally to a statement with a label whose reference is fixed
or to a statement whose label is selected during execution of the program. GO TO statements may be

Unconditional GO TO
Assigned GO TO
Computed GO TO

UNCONDITIONAL GO TO STATEMENT

. Execution of this statement causes the statement identified by the label to be executed next,

The format is:
GO TO k

Where: k is the statement label
Example:

GO TO 10
5 DIF = DIF - SUM
10SUM=SUM+1

In this program sequence, the GO TO statement causes control to skip statement 5 and execute -
statement 10 and those following in sequence until control is altered again. Statement 5 is not executed
unless it is referenced by some other control statement in the program.

ASSIGNED GO TO STATEMENT

This statement acts as a many-branch GO TO.
The formats are:

GO TO 1
GO TOH, (k;peee k)

Where: 1 is an integer variable reference called an assign variable

kl are optional statement labels which may be included for the programmer's convenience;
they are not used by the compiler.

5-4 ' o ‘ S 160362000 C

Before an assigned GO TO statement i8 executed, the current value of i must have been assigned by an
ASSIGN statement, Control transfers to the statement identified by that statement label to be executed

next. The i must be assigned in either the program unit of the GO TO or in another program unit where
i was passed as an actual parameter or was in common,

The same integer variable reference used in the ASSIGN statement may be used in a subsequent
arithmetic expression if it is re-equated to a value prior to its use in that expression.

Examples:
Format 1

ASSIGN 15 TO K

GO TO 60
15 K=9
L = (I**2) +K
100 ASSIGN 20 TO K
GO TO 60

.

60 CONTINUE

GOTOK
20 CONTINUE

When the program executes the ASSIGN statement, K has the statement label value 15.
Control moves to the next statement which causes a jump to statement 60, CONTINUE.

The program executes the statements following 60 in sequence unt‘ilAit reaches GO TO K. Since K
previously has been assigned the value 15, control jumps to statement 15,

Statement 15 equates K to the value 9.

The following statement uses this value (9) of K in an arithmetic expression. (The variable reference
is re-equated to a value and then used in an arithmetic expression.)

In the next statement, the program ass igxxs 20 to K.
The next step causes a jump to 60, CONTINUE.

The program goes through the steps following 60 until it reaches GO TO K. As K has been assigned the
statement label value 20, control jumps to statement 20, CONTINUE, and proceeds in sequence.

60362000 C v 5-5

Format 2

ASSIGN 10 TO JUMP

GO TO JUMP, (5, 10,20)

10 RESULT = RATE * AMOUNT
The program first assigns the value 10 to JUMP.

It proceeds in sequence until it encounters the GO TO JUMP statement. Since JUMP was assigned the
value 10, control transfers to statement 10. '

The list of labels (5, 10, 20) serves only as a check on JUMP, the variable reference. The second form
operates in the same manner as the first; the list is optional.

COMPUTED GO TO STATEMENT

This form of the GO TO statement is an n-branch control transfer in which a sequence of statement
labels is followed by an integer variable whose value at execution serves as an ordinal designation of
the label which defines the transfer.

The format is:

GO TO (kl’kz’ka' cee ,kn),i
Where: k is the statement label -

i is an integer variable reference; for proper operation, i must not be specified by an
ASSIGN statement)

The statement identified by statement label k; is executed next. Assume j is the value of 1 at the time
of execution. If j < 1, statement label ki is executed next. If j= n, statement label ky is executed next.

Example:

N=3 >

GO TO (100, 101, 102, 103), N

N is 3 and the statement number 102 is the selected control transfer.

5-6 o 60362000 C

S -

If N were less than 1, control would be transferred to 100. If N were greater than 4, control would be

transferred to 103.

5.2.2 ARITHMETIC IF STATEMENT
An arithmetic IF statement is a three-branch transfer on an arithmetic expression.
The format is

IF (e)kl.kz,ka

Where: e is an arithmetic expression
k is an executable statement label. If the evaluation of e is

-~ Control is transferred to k
+0 Control is transferred to ky
+ Control is transferred to ka

Example:
IF (IOTA-6) 3,6,9

If the evaluation of the expression IOTA-6 produces a negatlve result, control transfers to the
statement labeled 3; if zero, to 6; if positive, to 9.

5.23 LOGICAL IF STATEMENT
A logical IF statement {s a two-branch transfef on a logical or relational expression.
The format is:

IF (e) s

Where: e is the logical or relational expression; upon execution of this statement, if

true Statement s is executed
false The sequence of statements following the logic IF is continued.

8 is any executable statement except a DO statement or another logical IF statement

If the evaluation of e results in an overflow (integer value larger than 7FFF16), unpredictable results

oceur, A minus zero is evaluated as equal to a plus zero,

60362000 E

Examples:

IF (A.EQ. 10..AND. B .EQ. 5.) GO TO 8
IF (X.GT.Z) Y = SIN (X)/2
IF (1. EQ.J) IF (L + 2) 100, 200, 300

5.2.4 CALL AND RETURN STATEMENTS

The CALL and RETURN statements establish communication between a main program and subroutines.
These statements are explained in Section 7.4.

5.2.5 CONTINUE STATEMENT

The CONTINUE statement is most frequently used as the last statement in a DO loop (Section 5.2.7) to
avoid terminating on GO TO or IF statements, which are illegal termination statements in DO loops.

The format is;
CONTINUE

When CONTINUE is the terminating statement of a DO loop; it causes repetition of the loop. In any
other position, it serves as a do-nothing statement passing control to the next statement.

526 PROGRAM CONTROL STATEMENTS

Program control statements are STOP, PAUSE, and END.

STOP STATEMENT

This statement terminates execution of the program. Normally it is used at the end of a program. It
may be used to terminate execution when an abnormal condition occurs.

When this statement is executed, the word STOP and any octal digits following it appear on the output
comment device and standard output device in five-digit form,

The formats are:

STOP
STOP n

Where: n is one to five octal digits

5-8 : : ‘ 60362000 D

()

)
s

O C

O

@

PAUSE STATEMENT

This statement temporarily halts the execution of a program to permit checking of intermediate results,

The operator enters a carriage return to resume execution with the statement immediately following
PAUSE.

When this statement is executed, the word PAUSE and any octal digits following it appear on the output
comment device, in five-digit form.

Thg formats are:

PAUSE
PAUSE n

Where: n is one to five octal digits

END STATEMENT

This statement marks the physical end of a program or subprogram. It is executable in the sense that
it affects return from a subprogram in the absence of a RETURN statement, but it may not have a label,

The format is:

END

5.27 DO STATEMENT

A DO statement makes it possible to repeat a group of statements a designated number of times using
an integer variable whose value is progressively altered with each repetition. The range of repetition
is called the DO loop. Minimally, the DO loop consists of the DO statement with its parameters and a
final statement whose label is referenced by the DO statement.

The formats are;

DOni=my,m,
DOn i =mj,my, 155

Where: n is the label of the terminal statement of the loop.

i is a positive integer variable called the control variable. With each repetition, . its
value is altered progressively by the increment parameter mg. Upon exiting from
the range of a DO, the control variable remains defined as the last value acquired
in execution of the DO. It does not matter if the exit results from satisfying the
DO or by execution of a GO TO or IF.

60362000 C 5-9

m, s the initial parameter, the value of i at the beginning of the first loop.

m, I8 the terminal parameter; when the value of 1 surpasses the value of mg, DO
execution is terminated and control goes to the statement immediately following
the terminal statement.

mg is the increment parameter; the amount i is increased with each repetition.

The parameters m; and mp niust be unsigned integer constants, or unsigned non-subscripted integer
variables. If mg has the value 1, it may be omitted (first form above). '

§271 DO LOOP STRUCTURE
The general form of a DO loop is:

DOni=m;,my, mg
Statement 1
Statement 2
Statement 3

n Terminal statement
The range of the loop extends fmm the DO statement through the terminal statement, inclusively,
&atehent 1, the first statement in the range of the DO, must be an executable statement.
Statements 1, 2, 3... may contain inner DO loops. This is called nesting and is explained below.

Table 5-1 shows how relationships among the DO statement parameters affect execution of a DO. The

label n references the terminal statement of the DO loop, which must be an executable statement in the
same program unit as the DO statement and must follow it.

The terminal statement may not be any of the following:

GO TO

Arithmetic IF

RETURN

STOP

PAUSE

DO) ,
Logical IF (if it contains any of the preceding forms)
ASSEM (if terminal statement label is imbedded within)

5-10 . o 60362000 E

‘Table 5-1. DO Statement Parameters

M1 M2 M3 EXAMPLE ACTION
Integer Integer { Integer 1=1,9,2 Control variable is initialized.
constant constant | constant 1=9,1,2 DO loop is executed at least once.
1=9,1,-1
1=5,6,~1 Control variable is incremented.
1=5,5
Integer Integer | Integer I-1,9,N Completion test is made to see if loop is to
constant } constant| variable 1-9,1,N be executed again.
I-1,9,-N
1-9,1,-N
Integer Integer | Integer 1=2,J,2 Control variable is initialized.
constant | variable | constant | I=5,J,-2
1=5,d
Integer Integer | Integer 1+4,J,K Completion test is made to see if loop is to
constant | variable | variable | I=10,J,-K be executed,
Integer Integer | Integer 1+J,K,2
variable variable | constant I-K,J,-2
I=K,dJ Loop is executed,
Integer Integer | Integer ‘I=M1, M2,N Control variable is incremented.
variable | variable | variable I-M1, M2,-N
Integer Integer | Integer 1+J,10,K
variable constant | variable 1=J,6,-K
Integer Integer | Integer 1J,5,2
. variable | constant| constant 1=J,3,-2
14,10
Example:

The following program calculates the sum of all odd numbers and the sum of all even numbers in the
range of 1 to 100, o :

IODD =0
IEVEN =0

DO25I=1, 99, 2

IODD =IODD +1 -
J=1+1

- IEVEN =IEVEN +J
25 CONTINUE

60362000 C

5-11

The first two steps zero out the counters for the odd and the even numbers. The DO statement initiates
a loop that begins at the index value of 1 and increments in steps of 2. This series provides the odd
numbers. The J =11 + 1 statement provides the series of even numbers by adding a 1 to each of these
values. The operation of this DO loop is tabulated in the following chart.

Loop | I {IODD=IODD+I |'(store) | J=I+1 |(store) |IEVEN=IEVEN+J | (store)|
11| 1=041 () 2=141 | (2). 2=0+2 @
2 13| 4=143 @ 4=3+1 | @ 6=2+4 (6)
3 |5]| 9=4+5) 6=5+1 | (6) 12=6+6 (12)
4 | 7| 16=9+7 (16) 8=7+1 | (8) 20=12+8 (20

a8 4 “

‘Successive values® /Progressive' ‘Sequencé ’Progressive*
of control variable addition of of even addition of
I which is the odd numbers numbers even
sequence of odd numbers
numbers :

5272 DECREMENTED DO LOOP
When decrementation is desired ln a DO loop, the following form applies:
DOni = mj, Mg, ~mMg ‘

Where the value of the incremental parameter myg is established in a preceding statement and m, > m,,.

Example:
To find the value of N factorial (N!):

READ(1,5) N
5 FORMAT (I2)
FACT = 1.0
K=1 .
DO10I=N, 2, -K
10 FACT = FACT*I

WRITE (3,15) FACT

15 FORMAT (F10.0)

-0-12 ' o : 60362000 E

()

O

) O

()

N -

)

527.3 NESTED DO LOOPS

DO loops may be included within DO loops as long as no inner range overlaps with any outer range.

However, two or more DO loops may share the same terminal statement.

to 10 deep.

DO loops may be nested up

If D1, D2, and D3 are DO statements and T1, T2, and T3 are the associated terminal statements, then

the following nested structures of DO loops are permitted:

Example:

D1 D1

D2 D2

DS —DS3

TS

T2

Tm L 44—,
Te,
TS

D1

.

This example may be used to test Fermat's Last Theorem with comblnaﬂons of integer values up to

1000. The theorem states that the equation

XY =2

is not valid for positive integer values of X, Y, and Z when n is an integer greater than 2.

60362000 E

5-13

Letting I, J, K equal X, Y, Z to imply integer values, the test may be programmed as follows:

PROGRAM FERMAT
DO 18 N = 3, 1000
DO 18T =1, 1000
DO 18J =1, 1000
DO 13K =1, 1000
IF (I**N+J**N-K**N) 13, 7,13
.7 WRITE (3,100) L J, K, N
100 FORMAT (6HEUREKA/4I5) \
13 CONTINUE —e J

Example:

If a loan is repaid in N monthly payments with each payment equal to P and with an interest rate of R, ‘
the total repaid, 8, is given by:

P 1
8=={1-~
R ((1+R)N)

The following program calculates the sums repaid for monthly payments of 24, 30, and 36 months in
amounts of $20, $30, $40, and $50 at interest rates 6%, 7%, 8%, 9%, and 10%.

DIMENSION SUM (5)
DO 30 N =24, 36, 6
DO 20 J-= 20, 50, 10
DO101I =6, 10
R =1I40,01
10 SUM (I-5) = J/R*(1. -1. /((1. +R)**N))
20 WRITE (3,40) (SUM(), K=1,5)
40 FORMAT (5F10.2)
30 CONTINUE

This would print out the sums, five to a line, according to the five interest rates.

5-14 : 60362000 C

The following tabulation shows how the cycling proceeds through the DO loops, with the innermost loop
varying the most rapidly and the outermost loop varying the least rapidly.

Months

Amount Rate

24

5274 DO LOOP TRANSFER

(Control can be transferred within a DO loop by means of an IF or a GO TO statement, provided neither

is used as a terminal statement.

The label of a terminal statement in a series of more than one DO statement may not be used in any GO
TO or IF statement that occurs anywhere but in the range of the most deeply contained DO that

has that terminal statement.

60362000 E

20

jeou
L

e
e

18-

.06

.07°

.08
.09
.10
.08
.07
.08
.09
.10
.08
.07
.08
.09
.10
.“
.07
.08
.09
.10
.08
.07
.08
.09
.10
.08

.007

.08
. 09
.10

Months

Amount

Rate

20

40

MIL
| =]

1~

Bl

1)

.06
.07
.08
.09
.10
.08
.07
.08
.09
.10
.08
.07
.08
.09
.10
.08
.07
.08
.09
.10
.08
.07
.08
.09
.10
.08
.07
.08
.09
.10

Example:

This example may be used to test 100 values for sign and accumulate three sums:

positive values.

10

20

30

40
50

'DIMENSION IOTA' aoo;\

PROGRAM TEST

)
READ (1,10) (IO'I'A(I). 1=1,100)
FORMAT(1015)

INEG = 0

IZERO = 0

JPO8 = 0
‘DO S0I=1, 100

IF IOTA(D)20, 3o 4o

INEG = INEG + IOTAQT)
GO TO 50

IZERO = IZERO + IOTA()
GO TO 50

IPOS = IPOS + IOTA(T)
CONTINUE -

5275 EXTENDEC RANGE OF A DO

negative, zero, and

If control can be transferred out of a DO loop and returned, the DO is said to have an extended range.
More specifically, a DO has an extended range if it contains a GO TO or IF that can pass control out-

side the range of the DO and there is a GO TO or IF outside the range of the DO that can return control
into the range of the DO.

Control can be transferred from an inner DO loop to the outer DO loop that contains it. Control cannot

' initially pass from an outer DO loop into an inner DO loop.

5-16

60362000 E

/N

,,,,,

Example:

This example may be used to compare two arrays of numbers and pﬂnt out all sets of equivalent

values.

30

40

10
50

—

DO 50 I =1,20
DO 30 J =1,20

IF(A(1). EQ. B(J))GO TO 40
CONTINUE

GO TO 50

WRITE(3, 10)A(I), B(J)

GO TO 30
FORMAT(FS. 5,3H = , F8.5)
CONTINUE

outer DO
inner DO

transfer —

Coni;rol can be transferred out of a DO loop or nest of DO loops and returned, provided the indexing

A parameters are not altered and control is transferred back to the range of the same DO loop from which
the exit was made.

J
Example:
DO 66 I=1,21,3
ALPHA=SQRT(X)\ — library routine for
square root of X
DO 33 J=1,10
BETA=DENOM(Y) ~FUNCTION DENOM(A)
. RETURN
I—33 CONTINUE

CALL GAMMA (Z) - SUBROUTINE GAMMA (W)
next statement RETURN
GO TO 17

66 CONTINUE -

17 WRITE (3,18)ALPHA, BETA,Z —l

18 FORMAT (3F10. 5)
GO TO 66

60362000 C 5-17

5.3 1/0 STATEMENTS

1/0 statements are classified as data transfer statements and auxiliary I/O statements. The first type
is the READ and WRITE statements which read records from an external unit into core and write
records out of core onto an external unit. Under the second type, BACKSPACE, REWIND, and
ENDFILE affect the position and check the status of external magnetic tape files; basic functions
(Section 7.3.2) check the status of I/O devices. The following section applies only to the FORTRAN
1/0 run-time package. Consuit Chapter 9 for the I/0O statements that are used with other run-time
packages.

The logical units defined for the various I/O operations are those defined for the MSOS system in which
Mass Storage FORTRAN operates. Logical units for specific devices are likely to vary from system to
system. Standard FORTRAN units should be used as much as possible:

Logical Unit Number Description
1 \ R/ 2/‘ pe”] Standard Input Device
.2.C r/ . Standard Binary Output-Device
3 Lo’ ' Standard Print Output Device
R o 47‘7(' Standard Output Commient Device

5.3.1 1/O DEVICES

The Mass Storage FORTRAN product supports all 1I/0 devices present in MSOS., The MSOS reference
manual should be consulted for specific devices.

53.2 MASS STORAGE FILES
There are two digtinet methods of using files in MSOS. The use of file manager files is discussed in

the MSOS reference manual., The material presented here applies only to FORTRAN files and must
not be confused with files created via the File Manager.

Mass storage files are assigned to the scratch area of the mass storage device and are not retained
after execution of a job. (Permanent files in the program library may not be defined or manipulated
by FORTRAN I/0O statements.) Files to be read in to or written out of mass storage must be preceded
by an OPEN statement that defines the file.

5.3.3 OPEN STATEMENT

This statement provides for parameters to describe each mass storage file to be used by the program.

The formats are:

OPEN Kk,i,j,u,x
OPEN k,i,j,u

5-18 60362000 ¥

O O O O

)

\

9

Where: k is the integer name of the mass storage file to be defined; integer constant or
variable.

i is the number of sectors per record; minimum record length is one sector; integer
constant or variable.

j is the maximum number of records in the file; integer constant or variable.
u is the logical unit number to which file k is assigned; integer constant or variable.

X is the starting sector address? for file k on logical unit u; positive integer constant
or variable. The sector address is assigned relative to the start of mass
memory scratch.

If any of the above variables are omitted, the starting sector address is td be assigned at execution
time. Subsequent mass storage files are assigned sequentially.

NOTE

If x is omitted for one mass storage file in a program,
it must be omitted for all mass storage files in that
program.

If x is specified for one mass storage file in a
program, it must be specified for all mass storage
files in that program.

Attempting to read or write a file on mass storage without defining the file by an OPEN statement
results in an execution-time diagnostic and program termination. The syntax legality of the values
specified by OPEN is checked at compile time. '

Examples:

OPEN 35, 2, 50, 5, 1
This statement defines a file referenced as 35. This file uses two sectors per record and consists of
50 records maximum (100 sectors). The file is assigned to logical unit 5 and starts at the location of
the fixjst sector relative to the start of the mass memory scratch area. '

OPEN 36, 1, 250, 5, 101

This statement defines a file referenced as 36. This file uses one sector per record and consists of
250 records maximum (250 sectors). The file is assigned to logical unit 5 and starts at the location of
sector 101 (relative to the start of the mass memory scratch area), which means that file 36
immediately follows file 35.

The maximum number of data words in a sector is 95, since one word of each sector is for
addressing that sector.

60362000 E 5-19

The following diagram shows the arrangement and significance of the parameter values for examples. ’ '
: \

F LOGICAL UNIT 5 (u) —)
FILE 35 (o START OF SYSTEM SCRATCH e
SECTOR 1 (x) , ;
First Record
(i=2) SECTOR 2 O
TN
Second Record) | SECTOR 3 / L
(i=2) SECTOR 4)
. Maximum number ~
. of records in 35 N
: d = 50)
/\
S0th Record { SECTOR 99 | C
(i=2) SECTOR 100 /
FILE 36 (k) e
First Record { | SECTOR 101 (x) \ N
i=1
Second Record { | SECTOR 102 -
=1 . Maximum number
. of records in 36
. : d = 250)
249th Record { | SECTOR 349 ~
d=1 -
250th Record {|SECTOR 350
d=1) / ‘
) .
I.
5.3.4 READ AND WRITE STATEMENTS

The READ and WRITE statements transfer data lists between core and external devices. These lists
may include the names of variables, arrays, and array elements. The named elements are assigned
values on input, and their values are transferred on output. Arrays in a list may be transferred with
an implied DO of the forms:

i=m1,m2,m3 :
i= ml,mz

The parameters i,m;,my,mg are defined exactly as they are for the DO statement (Section 5.2).
An implied DO does not reference a terminal statement; the range is the array to which it is applied.

5-20 » 60362000 C N

O

()

Example:

READ (7, 10) (A (I}, I = 1,4)
10 FORMAT (F 10.6)

has the same effect as:

DO 20 I-1, 4
20 READ (7,30) A ()
30 FORMAT (F 10.6)

Both of these examples read the first value of four records into array elements A(l), A(2), A(3), and
A (4). If integer variables in an input list appear as subscripts elsewhere in the list, they must appear
as input variables before they appear as subscripts unless they have been previously defined.

Example:
READ (7) I,d, ALPHA (1,J)

Data records are written in binary or ASCII. Because binary records are coded within the computer,
format cannot be selected. Such records are referred to as unformatted, and they are used with
magnetic tape and mass storage devices. ASCII records are used for man/machine communication

and format must be specified. Such records are called formatted and can be transferred by READ

and WRITE statements only when controlled by FORMAT statements (Section 6.3). In the explanations
that follow, two forms of each READ/WRITE statement are given; the first applies to non-mass storage
files; the second applies to mass storage files, For the ANSI option, unformatted I/O will transmit two
words per integer list element, If the integer list element was typed SINGLE, then only one word is
transmitted per integer list element, :

Formatted READ
The format of this statement has‘two variati§ns.
The first causes the input of the next record from the unit identified by lu (logical unit).
The format is
READ (lu,f) list
Where: lu is the integer constant or non-subscripted variable reference ubsed to identify the
logical unit, MS FORTRAN assigns logical unit numbers to reference standard

MSOS logical units as follows:

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

60362000 H : 5-21

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

f is the format specificétion (Section 6. 3).
label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/0 statement.

array is the array name which must conform to the specifications in
Section 6.3,

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

list is a series of variables separated by commas.
The information is scanned and converted according to the format specification identified by f.

The resulting values are assigned to the elements specified by the list. If the list is not present,
READ (lu,f), spaces over one record.

Example:

READ (5,20) A,B,C
20 FORMAT (3F10.6)

These statements read in three floating-point values from logical unit 5 according to the FORMAT
labeled 20. This specifies field widths of 10 posmons with 6 decimal places.

The second format causes input of the nth record from mass storage file k.
The format is
READ (k(n),f) list

Where: k is the mass storage file
n is the nth record from-mass storage file k
f is the format specification (see Section 6. 3).

label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/0 statement.

array is an array name which must conform to the specifications in Section 6. 3.

5-22 ‘ : ' 60362000 C

o

)

@

)

O

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

list is a series of variables separated by commas.

The information is scanned and converted as specified by the format specification identified by f. The
file must have been opened by a previous OPEN statement.

If the file is not on a mass storage device, the request is ignored. If f specifies H (Hollerith)
conversion, the record is read into the storage locations of the FORMAT statement replacing the
H part of f.

Example:

OPEN 40,1,200,5

READ (40(12),10) X
10 FORMAT (50Al)

 These statements read the twelfth record of mass storage file 40 from logical unit 5 into array X which

has been previously dimensioned. The record contains 50 ASCII characters according to the FORMAT
labeled 10. .

Formatted WRITE

The format of this statement has two variations.
The first writes the next record on the unit identified by lu (logical unit).
The format is
WRITE (lu,f) list
Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

60362000 F . ' - 5-23

NOTE

MSOS logical units 1 through 4 cannct be referenced

by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

f is the format specification (See Section 6. 3).

label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/0 statement.

array is an array name which must conform to the specifications in
Section 6. 3.

assign is an assigned variable; the statement label assigned must be a format
specification, The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unmit.

list is a series of variables separated by commas. The list specifies a sequence of
values which are converted and positioned according to the format specified by f.
If the list is omitted, any /, nX, nH, or asterisk or quote-enclosed character
strings are output until the first F, E, D, I, $, Z, A, or R conversion is reached.
I f does not contain /, X, or H editing characters and the list is omitted, a line
of blanks is assumed, i

Example:
WRITE (9,20) A,B,C
20 FORMAT (3F10.6)
- These statements write the floating-point numbers from locatlions A, B, and C on logical unit 9.
- The second format writes record n on mass storage file k. -
The format is

WRITE (k(n),f) list

Where: k is the mass storage file
n is the nth record from mass storage file k
f is the format specification (see Section 6.3).

label is the statement label of 4 FORMAT statement. The identified statement
must appear in the same program unit as the I/O statement.

array is an array name which must conform to the specifications in
Section 6. 3. : '

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

5-24 v . 60362000 E

list is a series of variables separated by commas. The list specifies a sequence of values
— which are converted and positioned according to the format specified by f. If the
& ! listis omitted, any /, nX, nH, or asterisk or quote-enclosed character strings
are output until the first F, E, D, I, $, Z, A, or R conversion is reached.
~. ‘ " If f does not contain /, X, or H editing characters and the list is omitted, a

(\/‘ . line of blanks is assumed.
If k(n) is not large enough to accommodate the converted data, truncation occurs.
(\//1 ‘Example:
WRITE (55(2),10)A
Q/ 10 FORMAT (F10,2)

These statements write the floating-point number from location A into the second record of mass
storage file 55. The file must have been opened by a previous OPEN statement.

Unformatted READ

The format of this statement has two variations.
The first form of the statement causes the input of the next record from the unit identified by lu.
The format is

READ (lu) list

Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:

SN
s
&./ ‘

1 = Standard input (contained in $F9)
2 = Standard binary output (contained in $FA)

~
/

()

3 = Standard list output (contained in $FB)
("‘ : 4 = Standard comment (contained in $FC)
-
Logical units 5 through 99 reference actual assigned MSOS logical units of like
C‘\J number.
C‘; NOTE
. MSOS logical units 1 through 4 cannot be referenced

by FORTRAN programs unless they are also a MSOS
standard logical unit. Actual logical unit assignmerits
. - vary from system to system.

O O

@

A~
W 60362000 F 5-25

D

list is a.series of variables separated by commas. If list is specified, these values are
' assigned to the sequence of elements specified by the list. The sequence of values
required by the list may not exceed the sequence of values from the unformatted
record. If the file is on a mass storage device, the request is ignored.
Examples:
READ (1) (A(I), I=1,100)
This statement reads a record from unit 1 into the storage areas specified in the DO implied list.
READ (6)
This statement skips the next record on logical unit 6. Unit 6 cannot be a mass storage device.
The second form of the statement inputs the nth record from mass storage file k.
The format is

READ (k(n)) list

-Where: k is the mass storage file
n is the nth record from mass storage
list is a series of variables separated by commas. If list is specified, these values are
assigned to the sequence of elements specified by the list. The sequence of values
required by the list may not exceed the sequence of values from the unformatted
record.
- Example:
READ (31 (9)) X
This statement reads the ninth record of the mass storage file 31 into storage location X.

Unformatted WRITE

The format of this statement has two variations.

The first form of the statement creates the next record on the unit identified by lu from the sequence of

values specified by the list.

5-26 ‘ - : 60362000 C

TN
A ;

)

The format is
WRITE (lu) list

Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:
1 = Standard input (contained in $F9)
2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $¥B)
4 = Standard comment (contained in $FC)

Logical units 5 through.99 reference actual assigned MSOS logical units of like
number,

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

list is a series of variables separated by commas. The list may not be empty.

Example:

DIMENSION A (80), B (4)
WRITE (2) A,B

These statementg write one record of two blocks on logical unit 2.
The second form writes record n on mass storage file k.
The foimat is

WRITE (k(n)) list

Where: k is the mass storage file
n is the nth record from mass storage file k

list is a series of variables separated by commas. The list may not be empty. If the
number of words in the list exceeds the record size specified for k, an execution
time diagnostic is given and the program terminates.

60362000 F 5-27

Example:

DIMENSION A(10)
OPEN 22, 1, 500, 8

WRITE (22(100)) A

These statements write ten words from array A into the 100th record of mass storage file 22 on logical
unit 8. '

5.3.5 AUXILIARY I/O STATEMENTS

Auxiliary 1/0 statements are applicable only to files residing on magnetic tape. The following section
applies only to the FORTRAN 1/0 run-time package. , v

REWIND Statement

This statement positions the unit identified by lu at its loadpoint.

The format is

REWIND lu
Where: . Ilu is the integer constant or non-subscripted variable reference used to identify the
' logical unit. MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:
1 = Standard input (contained in $F9)
2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)
4 = Standard comment (contained in $FC)
Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.
NOTE
MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also a MSOS
standard logical unit. Actual logical unit assignments
‘vary from system to system.
 5-28 ' 60362000 F

C

BACKSPACE Statement

This statement causes the unit identified by lu to go back to the beginning of the preceding block, If
the unit identified by lu is positioned at its load point, an error diagnostic is printed and the program
is terminated. If a record contains n blocks of data, then n BACKSPACESs must be specified to skip
backwards over that record.

The format is

BACKSPACE lu

ENDFILE Statement

This statement causes an endfile record to be recorded on the unit identified by lu. The endfile record
is a unique record signifying a demarcation of a sequential file. The EOF function (Table 7-4) is used
to determine if an endfile record has been encountered during execution of a READ statement. After
reading an ENDFILE and before reading again from that unit, a test must be made for the END FILE
using the EOF function.

The format is
ENDFILE lu

Where: Iu is the integer constant or non-subscripted variable reference used to identify the
logical unit. MS FORTRAN asgigns logical unit numbers to reference standard
MSOS logical units as follows:
1 = Standard input (contained in $F9)
2 = Standard binary output (conta]ied in $FA)
3 = Standard list output (contained in $FB)
4 = Standard comment (contained in $FC).

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number,

NOTE

MSOS logical units 1 through 4 cannot be referenced

by FORTRAN programs unless they are also a MSOS

standard logical unit. Actual logical unit assignments
~ vary from sysicm to system.

60362000 F 5-29

Example:
WRITE(7) (X(@), 1=1,100) (record 1)
WRITE (7) (YD, 1=1,50) . (record 2)
WRITE () A, B, C (record 3)
WRITE()1,J,K, L, M, N (record 4)
ENDFILE 7
BACKSPACE 7
REWIND 7

This sequence of auxiliary I/0 statements would write and move the tape of logical unit 7 as illustrated.

ENDFILE 7
. Load}
L | (Record Point 1
1 kRecord 4) be— 3) (Record 2) e (Record 1)
L EorlN,M,L,K,J,1].]C,B,Al.lY50),... Y2, YW].]X(100),......X(3),X(2),X(1D)].]
REWIND 7 |
|<—’ BACKSPACE 7

5.3.6 TAPE RECORDS AND BLOCKS

Tape records and blocks may be binary or ASCII. Binary tape records (paper or magnetic tape) are
composed of 86-word blocks. The first word of a binary block, the control word, is followed by 85 data
words. Records may be one per block or extend over several blocks. A block may not contain more
than one record. '

The control word is zero for all blocks except the last, where it equals the number of blocks in the
record.

ASCII tape records (paper or magnetic tape) are composed of blocks with a maximum of 68 words.

- Each block is one record. Output statements which write more than 68 words (136 characters) in a
record are truncated to 68-word records. Input statements which read more than 68 words (136
characters) result in diagnostics and program termination.

Paper Tape

A binary block is preceded by a header word which contains the block size in one's complement form.
It is followed by a checksum word. The checksum added to the sum of the data words and the header
word equals zero. Overflow is ignored when computing the checksum,

Example:

WRITE (2) (A(D), I = 1,250)

5-30 o ’ ‘ 60362000 D

(

@

Y ()

7

-

e

O O

()

@

(

N

—~
—

p
\

This request produces a record on paper tape with the following format.

Header word

Control word = 0

85 words of data Block 1

Checksum

Header word

Control word =0

85 words of data Block 2

Checksum

Header word
Control word =3

80 words of data
plus 5 empty words Block 3

Checksum

An unformatted (binary) read transmits one record with the format produced by an unformatted (bmary)

write. The header word and checksum are not transmitted to the buffer.

- Magnetic Tape

All binary blocks and ASCII blocks on magnetic tape are followed by a record gap.

ASCII is converted to extended BCD before output on magnetic tape and converted from extended BCD

to ASCII when input from magnetic tape.
Example:

DIMENSION A(100)
WRITE (6) (A(T), I=1,100)

60362000 D

.5-31

This request produces the following binary record on magnetic tape.

Control word =0

First 85 words of Block 1
data from A (86 words) -

-Record gap
Control word = 2

Remaining 15 words Block 2
of data from A plus (86 words)
70 empty words

Record gap

-If no list is specified, the binary read request skips one block. Regardless of the length of the
record, only the number of words specified in each list is transmitted; the remainder of the record
is skipped.

5.3.7 MASS STORAGE RECORDS AND SECTORS

Mass storage records may be binary or ASCII. Binary records on disk or drum are composed of

96-word sectors. The control word (first word of a sector) is followed by 95 data words. Records

may be one per sector or may extend over several sectors. A sector may not contain more than one
record. '

Mass storage ASCII records are subject to the same restrictions as ASCII records on tape. Each
record may contain a maximum of 68 words (136 characters). Statements which output more than
68 word records cause the record to be truncated to 68 words. Statements that input records

- exceeding 68 words result in a diagnostic and program termination. '

Example:

DIMENSION A (150), B(180)
OPEN 2,2,25,5,1

WRITE (2(5))A

WRITE (2(6))B

5-32 ' , ' 60382000 D

r
\

/
/

These requests produce the following binary records on disk or drum.

Control word =0

Record 5 Sector 8

=Y
(95 words of binary
data from array A)]

Control word = 2

(55 words of binary

Sector 9
data from array A)
Control word = 0
Record 6 Sector 10

(95 words of binary
data from array B)

Control word =2

(85 words of binary Sector 11
data from array B)

A binary read transmits the number of words specified in the list; the list must not specify more words
than the record contains. If no list is specified, the binary read request is ignored.

5.3.8 PRINTING OF CARRIAGE CONTROL

The first character of a formatted record is not printed if the print unit is the FORTRAN line printer.
The first character which can appear as a single Hollerith character (for example, 1H0), determines
vertical spacing on I/0 printer units as follows:

Character Vertical Spacing Before Printing
0 Two lines

1 ' To first line of next page

+ No advance

Other One line

Consult the MSOS Reference Manual for specific characteristics of each character output device driver.

60362000 H 5-33

5.4 ASSEM STATEMENT

The ASSEM statement provides communication with the operating system or the core-resident

programs, or in-line coding (not possible with FORTRAN statements), With ASSEM, in-line code can

be compiled in the form of absolute constants, relative address constants, and absolute address

constants. Statements cannot be subscripted. Each parameter generates one word (16 bits) of code, except
for statement labels and control indicators.

The format is
ASSEM PysPgs--+:Py
Where any p; may be

1. Hexadecimal constant of the form
$HH...H
where each H is a hexadecimal digit (up to 4 digits).

2. Absolute address constant of the form

+AA...A(C)

3. Self-relative address constant of the form
AA...A(c)

4. 0. .nj

where n; through nj is the statement label, j <5 of the next ;-

5. Control indicator for relative address constants which are to be other than self-relative
of the form

*

6. - Relative address constant which is other than self-relative of the form
*AA...A(c)
7. Relative indirect address constant which is other than self-relative of the form

*(AA...A(c))

In2, 3, 6, and 7, AA...A may be a variable, an array name, or a statement label. The c is an integer
constant greater than zero designating an element within the array if AA.,.A is an array name.
External names are permitted only in forms 2 and 3 and, if used, must be declared in an EXTERNAL
statement (Section 7.4.3). Subscripts are ignored.

The ASSEM statement produces a string of successive constants in the program in the order specified.
Hexadecimal constants can be used to specify data or instructions. When used to generate instructions,
the operation code, indirect flags, relative flags, indices, and delta value are coded in hexadecimal.
The self-relative address constant produces a value equal to the distance between the location of the
variables in the program and the location to the address constant (the positive direction is from smaller
to larger address).)

5-34 : . 60362000 H

3
J

Relative address constants, other than self-relative (forms 6 and 7), are special forms to create calling:

- sequences to the operating system (refer to the MSOS reference manual). They are created as

distance relative to the last occurrence of the control indicator (form 5). These address constants,
along with associated control indicators, must appear on the same or consecutive ASSEM statements
(no intervening FORTRAN statements are allowed). Forms 6 and 7 are illegal if no control indicator
(form 5) has been encountered.

Example 1.

DIMENSION K(3)
ASSEM $C0C5,$6400, +K(1)

These statements produce the equivalent of the following code at the point of the ASSEM statement:

Operation Code - _Address
LDA- $C5
STA+ - K
Example 2,
ASSEM .12,$C800,K(2)

This statement produces the equivalent of the following code:

Statement Label Operation Code Address
12 ‘ LDA K+1

The address (K+1) in this example is relative to the current location counter. The statement label may
be referenced from anywhere within the bounds of the program unit, except as a DO loop statement
terminator. :

The following statements are syntactically incorrect:

ASSEM 102 (2)
ASSEM (x)

60362000 H 5-35

Example 3.

This example shows how an operating system request can be generated with the ASSEM statement.

For the macro instruction

FREAD

1,ca,sa,wc,m,cp,a,x,d

the macro assembler generates the following command sequence output:

7 4 3 0

15 14 13 12 11 10 9 8
. Word 0 RTI — ($F4)
i 0 l d I Tc [X I rp I cp
2 , - ca
3 thread
4 ec Lm l a I 1
5 wc or wea
6 sa
If the following values are assigned
Parameter Meaning Value
d Part 1 request indicator 0
rc Request code 4
rp Request priority 0
cp Completion priority 1
ca Completioh address Statement label 1000
thread Value 0
ec Error code upon 0
completion of request
m Mode 0)
a, 1 Pointer to unit_ 1, $F9 (unit is system input)
we Word count ICOUNT
sa Starting address ISTART

5-36

-60362000 E

And if x is 1, then

ca Completion address ca + address of WORDI

wea Word count address (wea) + address of WORD1
sa Starting address sa + address of WORD1

If sa is enclosed in parentheses, it produces an indirect address for the starting address.
(sa) location of starting address = (sa)+(address of WORD1).

The parameter list begins at the statement label 1001. An ASSEM statement simulates the macro
instruction FREAD with the parameters previously described in either of two ways:

1. Using a relative address to reference the starting address:
ASSEM $54F4,*,.1001,$0901,*1000,$0,$08F9, *(ICOUNT), *ISTART
2, Using a relative indirect address to reference the starting address:
ASSEM $54F4,*,.1001,$0901,*1000,$0,$08F9, *(ICOUNT), *(ISTART)

60362000 C v : 5-37/5-38

NONEXECUTABLE STATEMENTS ' 6

Nonexecutable statements provide the compiler with information regarding data structure and storage;
they perform no action in the execution of a program. Nonexecutable statements are as follows:

Specification

Data initialization

FORMAT

Function defining (refer to Chapter 7)
Subprogram (refer té Chapter 7)

6.1 SPECIFICATION STATEMENTS

Specification statements specify type, word structure, and storage for variables. These statements
are as follows:

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL (refer to Chapter 7)
RELATIVE (refer to Chapter 7)
Type

Byte

6.1.1 DIMENSION STATEMENT

Before an array can be used in a program, sequential storage locations must be reserved for all its
elements, usually through the DIMENSION statement.

The format is:

DIMENSION vl(ll). vz(lz). veuy Vn(in)

60362000 C i 6-1

Where: v is an array name

i is one, two, or three subscripts giving the maximum dimensions of the array (refer
to Appendix G for a detailed treatment of arrays).

Exaniple:
For an array IOTA with three rows, four columns, and five planes, the statement would be

DIMENSION TOTA (3, 4, 5)

6.1.2 COMMON STATEMENT

Through the COMMON statement, variables in a subprogram (Section 7. 4) reference the same storage
locations as variables in the main program. 1In this way, the subprogram can make use of data blocks
that are a part of the main program without the use of dummy arguments.(Section 7.1). ’

The format is:

COMMON /x/a_,a_,....,a
1" 2 n

Where: x is a symbolic name identifying a block of storage. This block is called a labeled
common block; only one such block may appear in a program. If x is missing, the
block is referred to as a blank common block and the pair of slashes may be omitted.
Only one blank block and one labeled common block may appear in a program.

a is a list of simple variables and arrays (subscripted and unsubscripted), These are
. stored sequentially in each block in the order of their appearance.

Although a program may only have one labeled common block and one blank common block, variables
and arrays can be assigned to these blocks by any number of COMMON statements, both labeled and
blank. In addition, a single COMMON statement may contain labeled and blank assignments in any
order. In all cases, the lists are stored in appropriate blocks in the order of their appearance. A
list a; may not contain formal arguments. 1f a nonsubscripted array name appears, the dimensions
must be defined by a DIMENSION statement in that program unit. Arrays may be dimensioned in the
COMMON statement by a subscript string following the array identifier. If an array is dimensioned
in both a COMMON statement and a DIMENSION statement, a compiler diagnostic results.

Items in labeled common may be preset with initial values in the BLOCK DATA subprogram
(Section 7.4.7).

Consult the MSOS Reference Manual for system organization when blank and/or labeled common is used
in a system.

The length of a common block is determined-by the number and type of the list identifiers. The length
of common block AB in Figure 6-1 is the sum of the length of the items in the labeled blocks. LIST is

6-2) : 60362000 H

S

N

-~

O O C

D

+0

+250

+262

+362

Block AB

X(5, 5, 5)
125 elements

250 words

ABQ,3)

6 elements
12 words

LIST (100)

100 elements
100 words

+382

A (10)

10 elements,
20 words

B(, 5)

25 elements
50 words

+432

+442

CE)

- 5 elements

10 words

Figure 6~1. Common Block

the only integer array; and, assuming it is type SINGLE, each element requires only one word.. The
other arrays are real and require.two computer words for each element. The total number of words

in block AB is 442,

Another block of common is formed from the elements in blank or unlabeled common: A1, B1, C1,
D, E, and F. The length of blank common depends on the dimensions of A1, B1, C1; and E which are
are not specified in the COMMON statements. If no DIMENSION statement appears

identifiers, they are assumed to be simple variables.

60362000 C

for any of these

Example:

COMMON/AB/X(5, 5, 5),AB(2, 3), LIST (100)
COMMON/AB/A(10)/AB/B(5, 5), C(S)
COMMON//A1,B1,C1,D(10, 10) ‘ 5
COMMON E, F(10, 10, 10) S

The various program units executed together need not declare the same size common storage block,
-but the first program unit to be loaded must declare the largest block.

To meet ANSI standards, a real data element and an integer ‘data element must occupy the same
number of storage units to accommodate mixed-mode extensions of common through the
.EQUIVALENCE statement. To maintain ANSI compatibility, MS FORTRAN includes the ANSI

- option of allocating two words of storage for each integer data element. Only the first word is used in
computation. If an integer is type SINGLE (Section 6.1.4), it always occupies one word of storage.

6.1.3 EQUIVALENCE STATEMENT

This statement makes it possible for different variables in a single program to reference the same
storage location. The difference between COMMON and EQUIVALENCE is that COMMON assigns
variables in different programs to the same storage locations, whereas EQUIVALENCE assigns
variables in the same program to the same locations.

The format is:

A ver)s @uboyeil) e, (@,
EQUIVALENCE fa;,b ,...), (,,b,,...) @b)

...) is an equivalence group of two or more simple variables or subscripted array

Where: (ai,b
elements sharing a single location

i’

A multisubscripted array element can be represented as a singly subscripted variable with the
formula

a + A*(b-1) + A*B*(c-1)

which gives the ordinal location on an element with subseript (a, b, c) in an array whose maximum
dimensions are (A, B, C). The formula is explained in Appendix G.

Example:

If an array element of a three-dimensional array were to be referenced with a single-dimensional array

element:

DIMENSION I(3, 4, 5), K(60)
EQUIVALENCE (I(1, 1, 1), K(1))

6-4 60362000 F

N

O O

DO

(> (

o~

()

e

then element I (2, 1,4) may be referenced as K(38) by using the array successor function,
2 + 3*(1-1) + 3*4*(4-1) =38

The manner in which storage is allocated to equivalenced arrays depends on whether the storage area
is a common block or not. The EQUIVALENCE statement does not rearrange common, but arrays
may be defined as equivalent so that the length of the common block is extended.

However, the origin of a common block may not be changed by an EQUIVALENCE statement. When
two variables ar array elements share storage because of the effects of EQUIVALENCE statements,
both their symbolic names may not appear in COMMON statements in the same program, because
COMMON stores elements in serial order as they appear, making it impossible for any two elements
to share the same storage.

Examples:
If two arrays, not in common, are equivalenced according to the following definitions:
INTEGERA, B, C
DIMENSION A(3), B(2), C(4)
EQUIVALENCE (A(3), C(2))
Then storage locations are assigned as follows:
L AQD)

L+1 AQ) C(1)
L+2 AQ) c@)

L+3 C@3
L+4 C{9)
M. B(1)
M+1 B(2)

However, when one of the arrays in common is used in an EQUIVALENCE statement

COMMON A(3), B(2)
EQUIVALENCE (B(2), C(2))

storage locations are assigned as follows:

L A1)
L+1 AQ)
L2 A@)

L+3 B(1) <€)
L+4 B@) C@)
L+5 C(@3)
L+6 C(4)

60362000 C 6-5

EQUIVALENCE statements may be written

EQUIVALENCE (a1, bi1)
EQUIVALENCE (a2, b2)

where the variable naines or the array element names are paired. Up to 51 EQUIVALENCE statements
of this form are permissible. This limits the number of equivalenced names to 102, More variable or

array element names can be used if multiple names are included in one EQUIVALENCE statement. The

maximum number is 100 names in a statement of the form EQUIVALENCE (a a a3, coey a98, 399,
a300). The number of statements must be reduced if this form is used.

An optimum declaration is six statements of the paired form with one statement of the multiple name
form, resulting in the equivalencing of 112 names.

Formal parameters specified in SUBROUTINE or FUNCTION statements may be referenced in
EQUIVALENCE statements (Section 7.4).

614 TYPE STATEMENT

To override or confirm implicit typing of a symbolic name, a type statement is used. It may supply
dimension information for arrays.

The format is
t vl,vz, eee ,vn
Where: t is INTEGER, REAL, DOUBLE PRECISION, or SINGLE
v is a variable name, function name, array name, or an array declarator

If a symbolic name appears in a SINGLE statement the associated data is typed as integer. Dimension
information may be given. When the ANST option has been declared, appearance of a name in a
SINGLE statement declares that each data element specified occupies a single storage unit.

Examples:
INTEGER ALPHA (Over-ride)
REAL BETA (Confirming)
DOUBLE PRECISION DELTA ~ (Over-ride)
SINCLE 1I0TA (3, 6) (Confirms the integer type and gives dimensions of the
array named)

6-6 , ‘ 60362000 E

9‘)‘

o~

(‘\W _4‘

S

Y ()

@

-~
p—

)

-

()

-

o O

. (_ }

6.1.5 BYTE STATEMENTS

Byte statements make it possible to reference a segment of an integer variable.

" The format is

t (al.bl (c1=d 1)).. . ,(a.n.bn(cn=dn))

Where: t is BYTE or SIGNED BYTE
is the name of the byte (either an integer variable or an integer array)

is the integer from which a is derived (integer variable, integer array, or an integer
array element)

c/d are upper and lower bits of b that define a as illustrated:

bits
b, a full integer word » [15] 1elz d 0]
' 5
a, the byte defined by > 7277

bits c and d

c and d are positive integer constants with the range
156xc=2d=20
All arrays must be previously dimensioned (Appendlx G).

The simplest forms of the byte statements are the cases where a is an integer variable and b is an
integer variable or an integer array element.

Example:

BYTE (I, J@3) 15=7))

Array J

@)
@)
3)
@

Element J(3)—- EEH-E

Byte I——[15]77777/77277741

- Byte I is defined as the segment from bit 15 to bit 7 of the third
element of array J

60362000 E ' 6-17

When a is an Integer array, b must be an integer array or an integer array element.

Examples:

1.

With b an array:

DIMENSION K(7), IOTA (5)
BYTE (IOTA, K(1) (10=5))

Ka) B o510
W

IOTA (1) cr_vmzl |

K@) [5] _ Nok/Z7ZA51 1ol
W

IOTA (2) E

x6) BB o745 Io
W

)

With b an array element:

DIMENSION J(3), L(5)
BYTE (J, L(3) (8=5))

L) (151 [sbzzasl lo]
S S

IOTA (5 [EE!
Jqa) (8 /7715 |

If a; is an array name, then each element of the array is such a byte of the corresponding element
of bj. The statement acts as an EQUIVALENCE, extending the size of bj as much as is necessary to

accommodate aj; the number of byte statements permissible follows the same rules as the

EQUIVALENCE statements.

If t is BYTE, a4 is treated as a positive integer. The exception is if ¢j = 15 and dj = 0. In this case,
ai is treated as signed. ”

If t is SIGNED BYTE, a; is treated as a signed integer. A signed byte of a single bit is treated as
zero. The byte is stored in one's complement form. The high order bit is thus a sign bit. In both
cases, ai is type integer.

6-8

o

)

)

N

O O O

B

A byte variable or array is treated as an integer variable or array in the list of an'1/0 statement, as an
argument for an intrinsic function, or as a parameter in the subroutine or function statement calls.
i

Formal parameters specified in SUBROUTINE or FUNCTION statements may be referenced in BYTE
statements (Section 7. 4).

6.2 DATA STATEMENT

The DATA statement is used to assign constant values to variables or arrays at the time of
compilation; therefore, it is not executable.

The format is

DATA kl/dl/,kz/dz/,. .. .kn/dn/

Where: k is a list containing names of variables, arrays, array elements, and implied DO loops.

d is a list of optionally signed numeric constants or literal constants, any of which may
be preceded by J*. When the form J* appears before a constant, it indicates that the
constant is to be repeated J times. J must be an integer constant. There must be a
one-to-one correspondence between the list-specified items and the constants.

If an array or elements of an array are to be assigned values by a DATA statement, the array must
have been previously dimensioned and each element may be listed separately in the DATA statement.

The DATA statement may be used with labeled common but not with blank common. The list k may not
include byte or dummy arguments (Section 7.1). Values assigned may be redefined during execution,
but not by a DATA statement, since its action terminates at compile time,

Arrays may be assigned values with an implied DO of the form:

(a@, 1=, i,) or (AQ), I=i,, i,, i,)

(A, 0, =1, 8,), 3=, §,) or ((AQ, J), T=i, iy, 1), 323, Iy Jg)

(((A@, J,K), =i, 1), 3=),, §,), K=k, ko) or (((AQ, 4, K), I=iy, By, i), I=),, Jgrig) K=k Koo Ko)

12 123
Where: A is the name of a previously defined array.

I,J,K are the names of integer variables. The order of t’ne subscrlpts must be maintained.
Constants are not allowed as subscripts.

60362000 H) 6-9

i 1 i2, i3 is a non-zero positive integer constant for initial value; may not be greater than limit
value.
j 7 j2, j3 is a non-zero positive integer constant for limit value; may not be greater than the

array's previously defined dimension.
k 1 kz, k3 is an optional non~zero positive integer constant for increment value; equals 1 if not
expressed.
Implied DO loop examples:

DATA (A(),1=1,5) /1.0,2.0,3.0,4.0,5.0/
DATA ((A(Q, 3),1=1, 3, 2), =1, 5,2) /2*1.0,2*2.0,3.0,4.0/
DATA (A(),1=1, 10, 2), (B(J), J=1, 4) /9¥ABCD'/,K/8/

If the implicit type of a variable does not agree with its declared type, for example, (REALT), then a
DATA statement assigning a value to that variable must appear after the type is declared.

Examples:
" Tllegal DATA 1/3.5/
REAL1

Legal REAL1
: DATA 1/3.5/

LITERALS IN DATA STATEMENT

Numeric constants are right-justified with leading zeros and literal constants are left-justified with
trailing blanks.

The simple general form is:
DATA R,1/'AAAA','BB'/
This stores $4141 $4141 into R and $4242 into 1.
The alternate equivalent form is:
DATA R/'AAAA'/,1/'BB'/ .)
There must be a matching total set of data for the toial elements specified.

Tilegal DATA R,1/'AAAA'/
Legal DATA R,1/'AA','B'/

This stores $4141 $2020 into R and $4220 into I.

6-10) 60362000 H

(‘-\4\‘ T

)

C

D

The number of literal characters per element is as follows:

Integer 2 characters
Real 4 charactems

Double Precision 6 characters

DATA K(1),1(2),K(3)/ 3*'AB'/
or

DATA 1/ 3%'AB'/
or

DATA (I(K), K=1,3)/3*'AB'/

This stores $4142 $4142 $4142 into array I.

Blank within quotes, as well as other legal characters allowed by the compller except another quote,

will be stored in their corresponding ASCII hexadecimal value.

6.3 FORMAT STATEMENT

The following section applies to the FORTRAN I/ O run-time package only.

Formatted READ and WRITE statements must be accompanied by a FORMAT statement which defines

the field width and data type of each element in the I/0 list., The whole set enclosed in parentheses

is the format specification.

The format is:

FORMAT (qlt ztz ... tnznqn)

1122

Where: q i8 a set of one or more slashes or is empty

't 1is a field descriptor or a group of field descriptors

z is a field separator which is either a comma or a slash

Some representative combinations of the FORMAT statement form are the following:

(9 L T T ty 9,)

(315 -, E0.2 , 2F10.4 ‘)

v/ 5F10.5, 30 /1010 E12.6)

(33 , A1 , 3R3 . R1 /1)

(1HO , 5E12.6 , 3HEND)
60362000 E

6-11

The FORMAT statement is nonexecutable. It must appear in the same program unit as the I/0
statement and it must have a statement label. The label may be assigned in an ASSIGN statement.
The assign variable and label can be from a different program unit. The type of field descriptor
determines the type of specification. A conversion specification contains field descriptors for
converting information; an editing specification contains field descriptors for editing information.

6.3.1 FIELD DESCRIPTORS

The format field descriptors are of the following forms:

rFw.d " Single-precision floating-polint without exponentiation
rEw.d Single-precision floating-point with exponentiation
rDw.d Double-precision floating-point with exponentiation
riw Decimal integer conversion |
r$w or rZw Hexadecimal conversion /
TAw Alphanumeric conversion
rRw Alphanumeric conversion
thlhz, vee ,hn Heading and labeling Editing
nX Spacing factor specifications
Asterisk *String of ASCII characters*

or :

Quote 'String of ASCHI characters'

1. Thesymbols F, E, D, 1,$,Z,A, R, H, and X are the converslbn codes; they indicate the manner

of conversion and editing between the internal and external representation.

2. wand n are non-zero integer constants representing the width of the field in the external

character string. :

3. dis an integer constant representing the number of digits in the fractional part of the external

character string.

4. r, the repeat count, is an optional non-zero integer constant indicating the number of times to

repeat the succeeding basic fleld.

5. Each hl is one of the characters in the FORTRAN character set.

For all descriptors other than Hollerith literals, the field width must be specified. For descriptors
of the form w.d, the d must be specified, even if it is zero., Furthermore, w must be greater than
or equal to d. The number of characters produced by an output conversion should not exceed the

field width, If so, data is not transferred and the output field is filled with asterisks.

i

The phrase basic field descriptor will be used to signify the field descriptor unmodified by r.

6-12

60362000 E‘

6.3.2 FIELD SEPARATORS

The format field separators are the slash and the comma. A series of slashes is also a field separator.
Field descriptors or groups of field descriptors, except the H and X descriptors, are separated by a

field separator.

6.3.3 NUMERIC CONVERSION

The numeric field descriptors Iw, Fw.d, Ew.d, Dw.d, Zw and $w are used to specify the 1/0O of integer,

real, and double-precision data. The following rules apply to all numeric conversions.

1. Leading blanks are not significant and other blanks are zeros. Plus signs may be omitted. A

field of blanks is zero.

2. In input conversion of floating-point numbers, a decimal point in the input field overrides the

decimal point specification in the FORMAT statement.

Examples:
_Values punched]
;)?aglz:rgr(t;prz:lce) bbb3db-b.2345b 513 b b
FORMAT f%, Fsi.—z'. ‘1%
Read as +30 133 g

3. In numeric output conversions, the output field is right-justified and blanks are inserted if the
number of characters produced by the conversion is less than the specified field width.

Examples:

Value stored

£{.654321E02}1-

FORMAT F10,5 F5 4 excess T

Printed as bb65,43210 Ak [65] 4321

4. If the conversion produces a negative value, the output field will be signed.. A positive value will

be unsigned, except for the exponent'in an E or D conversion which will always be signed.

5. If the number of characters produced is greater than the field width, the data is not transferred

and the output field is filled with asterisks.

TOnly asterisks are printed because the number is too large for the field.

60362000 H

6-13

6.3.3.1 INTEGER CONVERSION
The specifications for integer conversion are Iw for decimal and $w or iw for hexadecimal.

Iw INPUT

Iw specification is used to input decimal integer values. The input field consists of an integer subfield
and may contain only the characters +, -, 0 through 9, or blank. When a sign appears, it must
precede the first digit justified in the specified variable.

Blanks are interpreted as zeros. The value is stored right-justified in the specified variable.

Example:
Values punched on card .8 7 6“5 4 3. &1 0 1“2 345 6.
FORMAT 213, {J 15
= 5
Read as 876 543 2101 23456
Iw OUTPUT

Iw specification is used to output decimal integer values; the corresponding list element must be a

decimal integer quantity. The output quantity occupies w output record positions right-justified in .
the field w as :

Asd,. . .,d

Where: A is a possible blank fill
s is the sign; minus if negative, blank or suppressed if positive.

d,...,d are the most significant decimal digits of the integer (maximum absolute
value is 32, 767).

If the field w is larger than the number required, the output quantity is right-justified with blank/ fill
on the left. If the field is too short, it is filled with asterisks.

Example:

Values stored

. 87_6 543 2;01 23456
FORMAT 216, 17, 18
Printed as - 5bb876bbb543 bbb2101 bbb23456"

6-14 60362000 E

$w OR Zw INPUT

$w or Zw specification is used to input hexadecimal integer values. The input field w consists of a
string of hexadecimal integer characters; blanks are interpreted as zero.

Example:
Values punched - b 456,9A Ab F
on card R
FORMAT $4, Z_f. $2
Read as 456 9AA F

$w OR Zw OUTPUT

$w or Zw specification is used to output hexadecimal integer values. The output quantity occupies w
output record positions right-justified in the field w. It is an unsigned hexadecimal integer value

- with a maximum absolute value of FFFF, containing leading zeros not exceeding the fourth significant

hexadecimal position. If the field is too short to output the leftmost non-zero digit, the field is filled
with asterisks. If real or double precision variables are referenced, only the first word is used for
hex output.

Example:
Values stored 09AB 38CD 99FF
o EREN
Printed as ’BbOQAB'bbbg;(ﬁ’ :b-b_b‘ 99FF'

6.3.3.2 REAL CONVERSION

The specifications for real conversion are Fw.d and Ew.d.

Fw.d INPUT

The field descriptor Fw.d indicates that the external field occupies w positions, the fractional part of
which consists of d digits. The field is scanned from left to right and embedded blanks are interpreted
as zeros. :

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimal point. If the decimal point is present, it overrides the d specification of the field descriptor.

-

60362000 H 6-13

Example:
Values punched 87654876543876543287654328765432
on card s 1 ¥ ¥ |
FORMAT ¥5.3 F6.4 F755 F7.7 F7.0
Read as 87,654 87,6543 87,'65432 8765432 8765432,
Fw.d OUTPUT

The basic output field occupies w positions. - The corresbondlng list element must be a floating-point
quantity which appears as a decimal number, right-justified in field w with possible leading
blanks, as .

As xl,...,xn

Where: A is a possible blank fill

s is the sign; minus if the number is negative, blank or omitted if the
number is positive

X yeos ,xn is a string of digits containing a decimal point. The number of digits
to the right of the decimal point is specified by d in the Fw.d. If d
is zero, the digits to the right of the decimal point do not appear.
d may contain a maximum of 19 digits.

If the field is too short to accommodate the number, asterisks fill the output field. If the field w is
longer than required, the number is right-justified with blank fill to the left.

Example:
Values stored = 87654E+02, ,876543E+02, .,8765432E+02, ,8765432E+07,
FORMAT F7.3 F8.4 ¥9.5 F9.0
: 4 PR : 4 N\ : r \: 7/ A\
Printed as b 87.654 b 87,6543 b 87./65432 b 8765432,
Ew.d INPUT

The number in the input field w is converted to a floating-point number and stored. The total number
of characters in the input field is specified by w. The field is scanned from left to right and
embedded blanks are interpreted as zeros.

6-16 - - , : 60362000 E

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimal point. The basic field may be followed by an exponent of one of the following forms:

@ Signed integer constant
e E followed by an integer constant
) E followed by a signed integer constant

The value of the exponent must not exceed +39 after normalization of the input field. The normalized
number is the mantissa and the characteristic.

Permissible combinations:

+1.327E-04 Integer, fraction, and exponent

-32,721 ' Integer and fraction

+328E+5 Integer and exponent

.629E-1 Fraction and exponent

+136 Integer only

.0762 ' Fraction only

‘Normalized as Mantissa Characteristic
. 1327 E -03
-.32721 E +02

.328 E +08
.629 E-O01
.136 ' E +03
. 762 : E-01

A decimal point in the input number always overrides d. The field length specified by w in Ew.d
should always be the same as the length of the input field containing the input number. When it is not,
incorrect numbers may be read, converted, and stored. The fleld w Includes the significant digits,
signs, decimal point, E, and exponent. :

60362000 E - 6~17

Example:
values punched 87654E 028765432E 038765432E 03 87654. E 02,

on card 1) ¥

FORMAT E9.2 Ell.4 E11.7 EL0,2

Read as 876.;§E 02 .876.;;:;‘3 02 .576543;21 02 . 87654. E 02
Ew.d OUTPUT

For output, floating-point numbers in storage are converted to the FORTRAN character form. The
field occuples w positions in the output record; the corresponding floating-point number appears
right-justified in the field as

As0.x_,...,x Etee 0= ee <39
1 n
Where: A is a possible blank fill ‘
8 is the optional sign; minus if negative, blank or suppressed if positive
Xp»...0X are the n most significant rounded digits of the value of the output data
ee - are the digits of the exponent

Fleld w must be long enough to contain the specified number of digits, signs, decimal point, and
exponent. For E conversion, w must be greater than or equal to d+7. The maximum number of
digits in d is 19. If field w is too small to contain the output velue, asterisks fill the field. If the
field is longer than the output value, the number is right-justified with blank fill to the left.

Example:
Values stored B8T654E 02, 8765432E 02, _,8765E 07
FORMAT E12,5 : E10,2 E17,10
Printed as 20,87654E+02 | A A0.87E+02 (A0 .,8765000000f+o7‘

6-18 , R ' | o 60362000 E

,,,,,

—

)
_/

(

s

N

O

O

O

@

R

/

e
\

) (O

D

e}

()

N

@

2

6.3.3.3 DOUBLE-PRECISION CONVERSION
The specification for double-precision conversion is Dw.d.

Dw.d INPUT

The number in the input field w is converted to a double-precision floating-point number and stored.
The total number of characters in the input field is specified by w. The field is scanned from left
to right and embedded blanks are interpreted as zeros.

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimal point, The basic field may be followed by an exponent of one of the following forms:

° Signed integer constant
® D (or E) followed by an integer constant
® D (or E) followed by a signed integer constant

The value of the exponent must not exceed +39 after normalization of the mput field. The normalized
number is the mantissa and the characteristic, '

Permissible combinations:

+1.327D-04 Integer, fraction, and exponent

-32.721 Infeger and fraction

+328D+5 Integer and exponent

.629D-1 Fraction and exponent

+136 Integer only

. 0762 Fraction only

Normalized as Mantissa v Characteristic
. 1327 : D-03
-.32721 D + 02

.328 ' D +08
.629 D-o01
.136 D +03
. 762 ‘ D - 01

A decimal point in the input number always overrides d. The field length specified by w in Dw.d
should always be the same as the length of the fnput field containing the input number, When it is not,

60362000 E , 6-19

incorrect numbers may be read, converted, and stored. The field w includes the significant digits,
signs, decimal point, D, and exponent.

Example:
Values punched 87654D 02, 8765432D 02, 8765432D 02, 87654.D 02,
on card ’
¥ v v
FORMAT D9. 2 Di1.4 D11.7 D10.2
= LI =N 2
Read as 876.54D 02 876.5432D 02 .8765432D 02 87654.D 02

Dw.d OUTPUT

For output, double-precision floating-point numbers in storage are converted to the FORTRAN
character form. The field occupies w positions in the output record; the corresponding double
precision floating point number appears right-justified in the field as:

Aso.xl,...,antdd 0=<dd< 39
Where: A is a possible blank fill)
8 is the sign; minus if negative, blank or suppressed If positive

Xppeoe ,xu are the n most significant rounded digits of the value on the output
data

dd are the digits of the exponent

Field w must be long enough to contain the specified number of digits, signs, decimal point, and
exponent. For D conversion, w must be greater than or equal to d+7. The maximum number of
digits in d is 19. If the field w is too small to contain the output value, asterisks fill the field.

If the field is longer than the output value, the number is right-justified with blank fill to the left.

Example:
Values stored \»87654D 02 | \+ 8765432D 02; \+ 8765D 07,
FORMAT _D__ﬁ? D19. 2 D15.8
Printed as /K0 876545702 ’_A—AZOIS.TH%W_ 6% 7650000007 |

634 ALPHANUMERIC CONVERSION

Aw and Rw specify I/ O of alphanumerlc data. The internal representation is ASCII. Refer to
Appendix H for ASCH code.

6-20 ‘ : : ; 60362000 E

o

(D

O O

)

()

(

Awl/O
Awl/O

On input, the Aw specification accepts as list elements any two Hollerith characters. If the field
width w 18 two or more, the rightmost two characters from the external input field are stored as
the list element. If w equals one, the character from the external input field is left—]ustlfied in
storage with a trailing blank. (’ =] Y

The A conversion outputs w'Hollerith characters from a two-character list element. If w is two or
more, the two characters from memory appear right-justified in the external output field preceded
by blanks. If w equals one, the leftmost character from memory is stored in the output field.

Rw /0

This specification is the same as the Aw specification with the following exceptlons:

°® On input, if w equals one, the character taken from the external input field is
rlght-]ustlfled in storage with a leading hexadecimal 00

° On output, if w equals one, the rightmost character from memory is stored in

the output field.
[(B}
Examples:

Aw Input Rw_Input
Values punched PUT PUT
on card _ %? %:PJ
FORMAT 2A2, 2R2, R1

1

Stored as I NIP UJT b] IN cosd

~Aw Output = . Rw Output

£Jzes

Values stored (CUlTPIU TISb] [o[u[T P[UT[sb]
FORMAT 3A3, _ 3R3, BRI

e ===
Printed as ‘bOUDb TPb U T'%‘. OUbTPbUTD

6.3.5 EDITING SPECIFICATIONS

Editing specifications are used to provide alphanumeric headings and comments, define spacing
between characters and lines, skip records, and begin new records.

nH INPUT

On input, the H specification is used to place Hollerith characters in a pre-existing format. Then is
an unsigned integer specifying the number of characters to the right of H that are to be placed in the
format.

60362000 C ‘ 6-21

Unlike the A and R specifications, the characters input by an H specification are not stored in
memory to be referenced by a symbolic name; instead, they are placed in a FORMAT statement already
established in the source program. A READ instruction referencing this FORMAT statement will
obtain a set of characters from an input device, such as a punched card, and place them in the
FORMAT specification, replacing characters previously established. '
Example:
The source program contains the instruction

- READ (1, 15)

15 FORMAT (22HREPLACE THIS STATEMENT)

When this instruction is executed with the following input card

[DETERMINATION OF SIGMA

- the heading DETERMINA TION OF SIGMA is placed into FORMAT 15, replacing the character set
REPLACE THIS STATEMENT. . :

Subsequently, the output statement

WRITE (3, 15)
would produce the printed line

DETERMINATION OF SIGMA.
The number of characters in the H input must exactly equal the number of characters pre-~established
in the FORMAT. If necessary, blanks can be used to balance out the input. It is immaterial what
characters appear in the original source program FORMAT, In the preceding example, the instruction
could be written

READ (1, 15)

15 FORMAT (22HA A AA AAAAAAAAAAAAAAAAAA)

The value of the H input specification lies in the flexibility it gives in varying a FORMAT
specification at time of execution.

nH OUTPUT
This specification provides for the output of any set of Hollerith characters, including blanks, in
the form of comments, titles, and headings. n is an unsigned integer specifying the number of

characters to the right of H that will be transmitted to the output record. H denotes a Hollerith
field. ‘

6-22 60362000 C

O O

O

\

Examples:
Source program

WRITE(3, 20)
20 FORMAT(28H BLANKS COUNT IN AN H FIELD.)

produces output record

BLANKS COUNT IN AN H FIELD.
Source program

A=1,5

WRITE(3,30)A

30 FORMAT(6H LMAX=, F5.2)
produces output record

LMAX=1.50

LITERAL FREE-FIELD 1/0

The literal free-field descriptor causes Hollerith information to be read into or written from the
characters specified between two delimiters. The delimiters may be asterisks or single quotes. If
the delimiters are asterisks, then embedded asterisks are not allowed. If the delimiters are single
quotes, then embedded single quotes are not allowed.

Example:

WRITE (3, 20)

20 FORMAT (* THIS IS A FREE FIELD FORMAT*)
or 20 FORMAT (' THIS IS A FREE FIELD FORMAT')

produces the output record

THIS IS A FREE FIELD FORMAT

6.3.6 NEW RECORD SPECIFICATIONS

A slash, signalling the end of an ASCII record, may appear anywhere in a FORMAT statement. It need
not be separated by commas. A slash at the end of a FORMAT causes a record to be skipped, since

the end of the list itself signals the end of a record. Likewise, a slash at the beginning of a FORMAT
skips a record since the initiation of the list is itself a new record., Multiple slashes can be used to

skip a number of records; however, the repeat specification does not apply to the slash. N slashes in

the middle of a FORMAT skips N-1 records since the first slash merely signals a new record. N slashes
at the beginning or end of a FORMAT list skips N records.

60362000 C 6-23

Examples:

These examples refer to the reading of records. They apply equally to output statements.

FORMAT(12/F10.5) Reads two records in succession
FORMAT(12//¥10.5) Reads first record, skips second record, and reads the
third record

FORMAT(12////F10.5) Reads one record, skips three, and reads the fifth
FORMAT(12, F10.5/) Reads one record and skips one record
FORMAT(12/F10.5//) Reads one record with 12, reads a second record with

: F10.5, and then skips two records
FORMAT(///F10.5) Skips three records and reads a fourth with F10.5

6.37 BLANK FIELD SPECIFICATION

The general form of this specification is nX, where n is the number of blank spaces to be sldpped on
input or the number of blanks to be inserted in output.

Examples:
nX INPUT

The following values are to be read from a card:

X 0.54321
Y = 3.25
I 4321

The input statements

READ(1, 20)X, Y,I
20 FORMAT(F10,5, 5X, F5.2, 10X, I110)

will interpret the input card as follows:

1 10 11 15 16 20 21 30 31 t 40

(I 54321| 5X I 325’| 10X l 4321|

6-24 | : 60362000 C

)

—_

—_

~—

N

nX QOUTPUT

The following values are to be printed out.

IOTA =7
ALPHA = 13.6
BETA = 1462.37

The output statements

WRITE(S, 44)IOTA, ALPHA, BETA
44 FORMAT(I2, 6X, F6.2,7X, E12,5)

prints out

12 F6.2 17X El12.5
Ki 13.6 0.14623E+04

6.3.8 REPEATED FORMAT SPECIFICATIONS

Any format specification may be repeated by using a positive integer repetition constant r as follows:
r (spec) |

Where: spec is any conversion specification except nX or nH.

Example:

WRITE (3,10) I,K,A,B,C
10 FORMAT (12,12, F8.4, F8.4, F8.4)

could be written

WRITE (3,10) I,K, A,B,C
10 FORMAT (212, 3F8.4)

Only one level of group repeat is allowed; group repeats may not be nested.
When the format control reaches the last outer right parenthesis of the specification, a test is made to
determine if the 1/0 list is exhausted. If it is, control terminates. If another list element is specified,

control returns to the group repeat specification terminated by the last preceding outer right parenthesis.,
If no repeat specification exists, control returns to the first left parenthesis of the specification.

60362000 C 6-25

Examples:

6-26

READ(1,10)N1, N2, A1, A2, M1, M2, Bl

10 FORMAT (2I2, 2F6.,2)

Firstcard (N1 [Nz | A1 | A2

Secondcard (ML [M2 | B |

READ(1,11)N1, N2, A1, A2, B1, B2

11 FORMAT @I2, (2F6.2))

Firstcard [N |N2 | Al | a2

Second card (Bl

READ(1,12)N1, N2, Al, A2, B1, B2

12 FORMAT@2I2, 2(F6.2))

‘B2

Firstcard (N1 |N2 | a1 | A2

Second card [B |

Thirdcard [‘m[l

READ(1,13)N1, N2, A1, A2, M1, M2, 11,12

13 FORMAT((212),2F6.2)

Firstcard (N1 | N2

A | A

Second card (Ml | M2

Third card (1.1]1;

I
l
l

60362000 C

6.3.9 FORMAT SPECIFICATION IN ARRAYS

The formatted READ and WRITE statements may contain an array name in place of the reference to a
FORMAT statement label. When an array is referenced in such a manner, the first part of the
information contained in the array, taken in the natural order, must constitute a valid format
specification. There are restrictions on the information contained in the array following the right
parenthesis that ends the format specification. The format specification which is to be inserted in the
array has the same form as that defined for a FORMAT statement; that is, it begins with a left
parenthesis and ends with a right parenthesis, The format specification may be inserted in-the array
by use of a READ statement together with the A format or by use of a DATA statement. If the ANSI
option is used, the integer array containing the format must be typed SINGLE, '

Example:

DIMENSION IFMT (40)

READ (1, 20) (IFMT (1), I=1,40)
20 FORMAT (40A2)

READ (1,IFMT) A

Source data

(1H1,5X, 'OBJECT A TIME o, FORMATTING'/6X, F6.2)

60362000 C 6-27/6-28

.....

D,

-

~—”

@

@

)

D)

PROCEDURES AND SUBPROGRAMS 7

A FORTRAN program consists of a main program with or without auxiliary procedures and subprograms.
Auxiliary sets of statements are used to evaluate frequently used mathematical functions, to perform
repetitious calculations, and to supply data specifications and initial values to the main program.

MS FORTRAN provides six procedures and subprograms: ‘

° Statement function

) Intrinsic function

. Basic external function
° External function

® External subroutine

° Block data subprogram

The intrinsic function and the basic external function are furnished with the system. They are used to
evaluate standard mathematical functions. The others are user-defined. The statement function and
intrinsic function are compiled within the main program, the basic external function is furnished with
the system, and the others are compiled separately. The first five are referred to as procedures,
since each is an executable unit that performs its set of calculations when referenced. The first four
are called functions; they return a single result to the point of reference. The last three are
subprograms; they are user-defined and are compiled independently. The block data subprogram
supplies specifications and initial values to labeled common. Table 7-1 outlines these categorical
divisions.

Use of procedures and subprograms is determined by their individual capabilities. If the program
requires the evaluation of a standard mathematical function, then an intrinsic function or a basic
external function is used (Tables 7~3 and 7—4). If a single nonstandard computation is needed
repeatedly, a statement function is inserted in the program. If a number of calculations are required
to obtain a single result, a function subprogram is written; if a number of calculations are required to
obtain an array of values, a subroutine is written. When the program requires initial values in labeled
common, a BLOCK DATA subprogram is used.

60362000 F | , 7-1

D 00029€09

Table 7-1, Subdivision of Procedures and Subprograms

STATEMENT INTRINSIC BASIC EXTERNAL EXTERNAL EXTERNAL BLOCK DATA
FUNCTION FUNCTION FUNCTION FUNCTION SUBROUTINE SUBPROGRAM
User-defined Compiler-defined User-defined
Compiled within the referencing Not compiled Compiled externally to the referencing program
program — LIBRARY — ‘

of arguments.

PROCEDURE: Any defined calculation that can be referenced and which will exchange values between
reference and definition through a list ~

EXTERNAL PROCEDURE: A procedure defined externally

to the program unit that references it.

of reference.

FUNCTION: A procedure that supplies a single result to be used at the point

EXTERNAL FUNCTION: A function
defined externally to the program
unit that references it.

SUBPROGRAM: A user-defined set of statements compiled
independently of the program unit which references it or to
which it supplies specifications and initial values.

PROCEDURE SUBPROGRAM: An
external procedure that is defined by
FORTRAN statements.

SPECIFICATION
SUBPROGRAM:
A subprogram
without reference
that supplies
specifications and
initial values to
labeled common.

~.

N

C

)

N

(:\

Y
AN

N

]
?

7.1 ARGUMENTS

711 ACTUAL

Procedures exchange values with referencing programs through argument lists. Arguments in the list -
of a referencing program are called actual arguments since they represent actual values relative to the
referencing program,

7.1.2 DUMMY

Arguments listed in the procedure definition are called dummy arguments since they serve to exchange
values between the reference list and the procedure calculations. Because of one-to-one correspondence,
actual arguments and dummy arguments must agree in order, number, and type. The argument name
cannot be the same as the subprogram name, A list of arguments that can be used with functions and
subroutines is given in Table 7-2,

7.2 STATEMENT FUNCTION

A statement function is defined by a single statement in the program unit in which it is referenced. It
must precede the first executable statement of the program unit and follow the specification statements,
if any. During compilation, the statement function definition is compiled once at the beginning of the
program; a transfer to this definition is generated whenever the statement function reference appears
as an operand in an expression.

The format is:
f(aloaz, ----8,,)=e

Where: f is the symbolic name of the function
a is a dummy argument (at least one must be included)
e is a defining arithmetic expression
The statement function is referenced by the appearance of its symbolic name followed by a list of actual

arguments in an arithmetical or logical expression. Execution of the statement function calculation
returns a single value to the reference.

Example:

The following program calculates various parameters of a set of circles (one to ten). Input is an array
of diameters (DIAM). The calculations include the determination of area, arc length, and circumference.
These are given by statement functions at the beginning of the program which are referenced as needed.

60362000 E 7-3

L

0 00029€09

Table 7-2. Permissible Arguments for Functions and Subprograms

ACTUAL ARGUMENTS FORMAL ARGUMENTS
Constant Varisble
STATEMENT Variable
FUNCTION Array element
Arithmetic expression
INTRINSIC (Refer to Table 7-3)
FUNCTION
BASIC EXTERNAL (Refer to Table 7-4)
FUNCTION
Constant Variable
Variable Array name
Array element External procedure name
EXTERNAL FUNCTION Array name .
Any expression (May not appear in
The name of an external procedure COMMON or DATA
A BYTE or SIGNED BYTE variable if statement)
1, It is passed as an integer (16 bit) variable or array,
and
2, It is specified as BYTE or SIGNED BYTE in the
EXTERNAL SUBROUTINE FUNCTION or SUBROUTINE definition,
For subroutine only:
The name of the current procedure.
Note: Actual arguments and their corresponding formal argumenés must agree in order, type, and number,

”

-

()

O

i

(’\

o >0 00

O O O O

3

@

el

O

o O

PROGRAM CIRCLE
: DIMENSION DIAM (10)
[-——"AREAV (RADIUS). = 3.14159 * RADIUS * RADIUS <—
ARC (D, THETA) = 0.5 * D * THETA <
- CIRCUM (D) = 3.14159 * D

X = CIRCUM (DIAM(I))
¥ - ARC(DIAM(), ANGLE)
S =AE;EA(A-1:I) i
END :

Explanation: The first reference is contained in the statement:
X=CIRCUM (DIAM (I))

in which the subscript I has been determined by calculations in the program. This reference places
the actual argument DIAM(I) in the statement function: :

CIRCUM(D)=3.14159*D

via the dummy argument D. The calculation is made and a single value for CIRCUM is returned to
the referencing statement. The next reference supplies two actual arguments, DIAM(I) and ANGLE,
to the statement function for ARC through the dummy arguments D and THETA. A single value for
ARC is returned to the referencing statement.

The third reference uses an arithmetic expression, A+I, for an actual argument. This enters the
statement function calculation for AREA through the dummy argument RADIUS. A single value for

AREA is returned to the referencing statement.

7.3 SUPPLIED FUNCTIONS

To evaluate frequently used mathematical functions, MS FORTRAN supplies predefined calculations
as well as references to library routines contained in the system. The predefined calculations are

called intrinsic functions, and the references to the library routines are called basic external functions,

The intrinsic function inserts simple sets of calculations into the object program at compile time.
The basic external function deals with more complex evaluations by inserting a reference to a library
routine in the object program, The names of the supplied functions, their data types, and permissible

" arguments are predefined (Tables 7-3 and 7-4). References using these functions must adhere to the

format defined in the tables. The type of a supplied function cannot be changed by a type statement.

60362000 F

Table 7-3. Intrinsic Functions

INTRINSIC NUMBER OF SYMBOLIC TYPE OF TYPE OF
FUNCTIONS DEFINITION ARGUMENTS NAME ARGUMENT | FUNCTION
Absolute la| 1 ABS Real Real
value) IABS Integer Integer
DABS Double Double
Float Conversion from integer 1 FLOAT Integer Real
to floating point DFLT Integer Double
Fix Conversion from 1 IFIX Real Integer
floating point to integer DFIX Double Integer
Transfer Sign of ag times |a.1 | 2 SIGN Real Real
of sign ISIGN Integer Integer
The sign of 0 is +, DSIGN Double Double
Obtain most significant part of 1 SNGL Double - Real
double-precision argument :
Express single-precision argument 1 DBLE Real Double
in double-precision form
Logical sum | Form the bit by bit 2 OR Integer Integér
logical sum of ay and '
a,.
Exclusive Complement those bits 2 EOR Integer Integer
OR of a; which are one in s
£ a5.
Logical Form the bit by bit 2 AND Integer Integer
product logical product of ay .
and ag.
Complement | Complement a, 1 NOT Integer Integer
7-6 60362000 C

—

t

<

<

£

> OO0 O

o

O O O

C O

OO 000000

O

-

,_.

7.3.1 INTRINSIC FUNCTION

An intrinsic function is a compiler-defined set of calculations that is inserted in the referencing
program at compile time. If the set involves only a few machine instructions, it is inserted in the
program every time the reference appears. This method is called in-line code. The intrinsic functions -
IABS, OR, EOR, AND, and NOT produce in-line code. If the set of instructions needed to evaluate the
intrinsic function is lengthy, the compiler identifies it and generates the calling sequence to this set of
calculations whenever the function is referenced.

The intrinsic function is referenced by the appearance of the function name with appropriate arguments
in an arithmetic or logical statement. A list of intrinsic functions is given in Table 7-3. The name of
an intrinsic function listed in this table must satisfy all of the following requirements:

1, The name must not appear in an EXTERNAL or a RELATIVE statement (Sections 7.4.3

and 7.4.4), an array name or an array element, or be the name of a statement function
(Section 7.2).

2. The name must not appear in a type statement (Section 6.1.4) declaring it to be other
than the type specified in the table, '

3. Every appearance of the name must be followed by a list of arguments enclosed in
parentheses, unless the name is in a type statement.

The use of an intrinsic function in one program unit precludes the use of its name as the name of a
different entity in another program unit in that same program. If a user-defined subprogram has

the same name as an intrinsic function, the name of the subprogram must be further defined by a type
declaration (Section 6.1.4) or by an EXTERNAL statement (Section 7.4.3).

7.3.2 BASIC EXTERNAL FUNCTION

A basic external function is a call on one of the predefined library routines included with the system.
These library routines are used to evaluate standard mathematical functions such as sine, cosine,
square root, etc. When a reference to a basic external function appears in an expression, the com-
piler identifies it and generates the calling sequence in the object program. A basic external function
is referenced by the appearance of the function name with appropriate arguments in an arithmetic or
logical statement. A list of basic external functions is given in Table 74,

NOTE

The compiler does not generate the calculations for
a basic external function; it generates the call to the

" library routine for that particular function in the
object program. At execution time, illegal values
input to the basic external functions in Table 7-4
will give predetermined results (Table 7-5).

60362000 D 7-7

Table 7-4., Basic External Functions
BASIC
EXTERNAL NUMBER OF SYMBOLIC TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS NAME ARGUMENT FUNCTION
Exponential | e 1 EXP Real Real
DEXP Double Double
Natural log (a) 1 ALOG Real Real
logarithm DLOG Double Double
Trigonometric| sin (a) 1 SIN Real Real
sine DSIN Double Double
Trigonometric| cos (a) 1 CcOos Real Real
cosine DCOS Double Double
Hyperbadlic tanh (a) 1 TANH Real ~ Real
tangent
' 1/2
Square root (a) 1 SQRT Real Real
DSQRT Double Double
Arctangent arctan (a) 1 ATAN Real Real
DATAN Double Double
End of file EOF (a) 1 EOF Integer Integer
check on Check previous read
unit a on unit a for end-of-file.
’ 2 is returned if none.
1 is returned if EOF.
Floating- IFALT (a) 1 IFALT Integer Integer
point fault If a is 0, overflow is
tested. If a is 1, divide
fault is tested. If a is 2
underflow is tested. A
2 is returned if the
condition has not
occurred, a 1 otherwise,
Parity error | IOCK (a) A 1 I0CK . Integer Integer
check on Check previous read or
unit write on unit a for parity
error, 2 is returned if
none. 1 is returned if
parity error occurred. J’
7-8 60362000 C

/44 .

2N

C

®

7

(

O

O

7

O O O

Table 7-5. Basic External Functions, Predetermined Results

BASIC EXTERNAL

FUNCTION ARGUMENT VALUE RESULT
SIN or COS - /z/ > 220 (]
EXP /Z/>817.0 o
ALOG Z<0 .
SQRT : Z<0 -J7z7
DSIN or DCOS /Z/ > 220 0
DEXP /Z/> 81.0 w
DLOG Z<0 ©
DSQRT Z<0 -Vz/

7.4 SUBPROGRAMS

Subprograms are used to implement programming capability beyond the limitations of supplied functions
and the statement function. Although written as a subset of another program, the subprogram is
compiled separately; it has its own independent variables, and its use is not limited to communication
with the program for which it was written. Procedure subprograms handle routine calculations unique
to the user; specification subprograms are used to enter values into labeled COMMON and to supply such
program information as is given by DIMENSION, DATA, EQUIVALENCE, and COMMON statements.

Procedure subprograms may be function or subroutine. In both cases, a series of FORTRAN statements
is used to perform a calculation in conjunction with another program that calls it into operation,
Subprograms are called either by the appearance of the name in an arithmetic or logical statement
(function subprogram) or by a CALL statement (subroutine subprogram). Distinctive features of
procedure subprograms include the ability to pass array names and external procedure names as
arguments (Section 7.4.3). A BYTE or SIGNED BYTE may become an argument in a reference to a
subprogram. The user is reminded that only the address of the BYTE or SIGNED BYTE is passed to

the subprogram. ‘

A subprogram returns control to a calling program through one or more RETURN statements or by an
assigned GO TO statement, whose assign variable has been defined by an ASSIGN statement in the
subprogram or in the calling program. If the ASSIGN statement is in the calling program, the assign
variable must be passed as an actual argument or be in common,

Because they are independent programs, procedure subprograms must terminate with an END statement
to signal to the compiler that the physical end of the source program has been reached. An END

statement causes a return to the calling program and may replace a final RETURN statement.

Formal arguments specified in SUBROUTINE or FUNCTION statements may be referenced in
EQUIVALENCE statements and BYTE statements,

60362000 D 7-9

Example:

INTEGER FUNCTION TEST6 (A,B)
INTEGER A(10), B(10)

BYTE (1A2, A(2) (15=13))
EQUIVALENCE (M, B(3))
N=M+IA2

TEST6 = N - IA2

END

The fundamental differences between a function and subroutine subprogram are given in Table 7-6.

There is one type of specification subprogram, the block data subprogram.

74

Table 7-6. Differences Between Function and Subroutine Subprograms

FUNCTION

SUBROUTINE

Passes a value back to the
calling statement

Referenced by the name appearing
in an arithmetic or logical
statement

Must have one or more arguments

Name is typed by first letter or by

the type designation appearing
before the word FUNCTION

Does not pass a value back to the
calling statement

Referenced by a CALL statement

Need not have any arguments
No type associated with name

FUNCTION SUBPROGRAM

A function subprogram is a collection of FORTRAN statements headed by a FUNCTION statement and
written as a separate program to perform a set of calculations when its name appears in an arithmetic
or logical expression in the referencing program.

The format is
t FUNCTION f(al,az,. .o ,an)

Where: t is the type designation: INTEGER, REAL, DOUBLE PRECISION, or empty

f is the symbolic name of the function to be defined

procedure names. They cannot be the same as the function name,

a are dummy arguments which may be variable names, array names, or external

60362000 E

N
- ’

~

~.

C

()

()

The function subprogram accepts arguments from the referencing program through the argument list
and through common. It returns a single value through the function name. The function name must be
assigned a value by appearing at least once in the subprogram as a variable on the left side of an
arithmetic statement or by appearing in the list of an input statement.

When a function reference is encountered in an expression, control transfers to the function
subprogram indicated. When RETURN or END is encountered in the function subprogram, control
returns to the statement containing the function reference, or an assigned GO TO statement transfers
control to an indicated statement. '

Example:
Referencing Program Function Subprogram
PROGRAM IMPED FUNCTION VECTOR (X,Y)
. Z=SQRTX*X+Y*Y)
. IF (2)2,2,3
. 2 VECTOR=0.
RESULT=VECTOR (A, B) GO TOS
. ‘ \ 3 VECTOR=Z
. 5 RETURN
. : END
END

The function subprogram is referenced by the appearance of the name and list in the statement
RESULT=VECTOR (A,B)

The values represented by the actual arguments A and B are communicated to the subprogram through
the dummy arguments X and Y. ‘

The function subprogram can also return results through its arguments and/or through common.

The first calculation in the subprogram involves the appearance of a secondary reference: SQRT. This
reference passes the calculated value in the parentheses to the basic external function for obtaining a
square rcot, The result is returned to the subprogram and placed in storage location Z. Z is then
tested to see if it is positive. If not, function name VECTOR is equated to zero and that value is
returned to the reference; if it is positive, function name VECTOR is equated to that positive value and
returned to the reference.

The following example shows how a function subprogram can establish a value for the function name by
using an input statement rather than an arithmetic statement.

60362000 C : 7-11

Example:
Referencing Program Function Subprogram
PROGRAM INPUT r—»-INTEGER FUNCTION FUNCT (T)
INTEGER FUNCT READ (1,1) FUNCT
J = FUNCT (1) \"'_"' 1 FORMAT (12)
WRITE (3,1) J RETURN
1 FORMAT (15) ENDV
STOP
END

Since the subprogram is intended to deal with integer values and its name is implicitly real, the name
is typed integer in the referencing program and in the FUNCTION statement of the subprogram. The
subprogram is referenced by the statement

J = FUNCT (1)

which arbitrarily passes the constant 1 as an actual argument. It enters the subprogram through
dummy argument I in the FUNCTION statement but is never used. This step is performed solely to
satisfy the requirements of a function subprogram. The subprogram reads in the value from a card
and stores it in the location designated by the name of the function subprogram, where it is available
to the referencing program which stores it'in J and then prints it out.

7.4.2 SUBROUTINE SUBPROGRAM

A subroutine subprogram is a collection of FORTRAN statements headed by a SUBROUTINE statement
and written as a separate program to perform a set of calculations when called by a referencing
program, :

The formats are:

SUBROUTINE s
SUBROUTINE s(al,az. ves ,an)
Where: s is the symbolic name of the subroutine to be defined
aj - ay are dummy argumenfs which may be variable names, array names, or external

procedure names, They cannot be the same as the subroutine name.

A CALL statement transfers control from the calling program to the subroutine. A RETURN or END
- statement returns control to the next executable statement following the CALL statement in the
referencing program, or an assigned GO TO statement transfers control to an indicated statement.

7-12 60362000 E

The subroutine subprogram accepts arguments from the calling program and/or through common.
can return one or more results through its arguments and/or through common.

Example:

Referencing Program

PROGRAM TENSOR
COMMON/BLK1/X (20, 20),
* Y(20,20), Z (20, 20)

CALL MATRIX

Subroutine Subprogram

r—» SUBROUTINE MATRIX

COMMON/BLK1/A(20, 20),
* B(20, 20), C(20, 20)

Next statement <«

STOP
END

DO101=1,20
DO10J=1,20
X=0.0

DO 20 K = 1,20
20 X = X + A(I,K)*B(K, J)

—10 C(I,J) = X
RETURN
END

The referencing program reserves storage for three successive arrays in labeled common. It is

assumed that two of these arrays, X and Y, have values stored in them before the CALL statement

It

is reached. The CALL statement transfers control to the subroutine without passing any arguments.
The subroutine performs the matrix multiplication of the first two arrays and stores the results in the

third. Control is returned to the next statement after the CALL in the referencing program. The

subroutine obtains the values for its calculations from the labeled common block and returns the
results it derives to the same labeled common block.

7 .43 EXTERNAL STATEMENT

The name of an external procedure (basic external function, function subprogram, or subroutine
subprogram) can be passed as an argument to a procedure subprogram (function or subroutine)
provided that name has been first declared in an EXTERNAL statement.

The format is:

EXTERNALvV_,v_,...,V
1’ 2 n

Where: vi is an external procedure

Use of this statement enables the compiler to distinguish the address of an external procedure from

that of an ordinary variable.

Once the name of the external procedure is passed through a dummy variable of the subprogram, it
operates as a procedure in the subprogram just as it would in the calling program.

60362000 C

7-13

Examples:

Referencing Program Subprograms
PROGRAM ROTATE FUNCTION CDC (A, B)
[CDC= - e o
EXTERNAL SIN, COS, CDC RETURN

. END

* Do
o/

. I 1
CALL ANGLE (X, SIN,Y) — . l
. SUBROUTINE ANGLE (PHI, TRIG, C)
' .
crhic oy

CALL ANGLE (R, COS, S)

. RETURN
| END

OMEGA=T+RADIAN (BETA, GDC)
4

. 'FUNCTION RADIAN (ALPHA,;:ETA)
END ' [

RADIAN=ZETA (D,G)

RETURN
| END

The referencing program declares three external procedures in the EXTERNAL statement, SIN and
COS are basic external functions in the system library and CDC is a user-written function subprogram.
This declaration makes it possible to pass these names as arguments to subprograms where they can
operate as procedures and evaluate variables in the subprograms.
The first subprogram reference in PROGRAM ROTATE is
CALL ANGLE (X,SIN,Y)
The name SIN is passed to the dummy argument TRIG in SUBROUTINE ANGLE.

The appearance of the name TRIG in the statement

C = TRIG (W)

7-14 , | 60362000 C

N

makes that statement the equivalent of
C =SIN (W)
and the basic external function SIN is called into operation using the argument W.
The next reference is a call to the same subroutiné
CALL ANGLE (R,COS, S)

This time the name COS is passed through the dummy argument TRIG and the statement

C = TRIG (W)
becomes the equivalent of
C =C0s (W)

"which calls into operation the basic external function for COS using the argument W.
The final reference is the appearance of the external function name RADIAN in the statement
OMEGA =T + RADIAN (BETA,CDC)

The name CDC is passed through the dummy argument ZETA in the subprogram FUNCTION -
RADJAN.,

The appearance of ZETA in the statement
RADIAN = ZETA (D,G)
makes it the equivalent of
RADIAN = CDC (D,G)
which references the user-written subprogram FUNCTION CDC.
The actual arguments D and G are passed through the dummy arguments A and B. This

subprogram calculates a value for CDC and returns it to the radian subprogram. From here
it is returned to the referencing program.

The following example illustrates a use of a function reference as an argument which does not require

declaration in an EXTERNAL statement.

60362000 C

Example:

Referencing Program Subprogram)
PROGRAM SIGMA —] evaluated : , :
. SUBROUTINE GAMMA (A, L. C) .
° J— G °

CALL GAMMA (X, SQRT (BETA),Y) RETURN .
. END {

In the CALL statement, SQRT is not itself an argument; tke function SQRT (BETA) is evaluated

first and the result is passed as an argument to the dummy variable B in the subroutine. Thus,

SQRT need not be declared in an EXTERNAL statement. N
7.4.4 RELATIVE STATEMENT ' 4
The RELATIVE statement declares a name to be an external procedure name.

The format is:

RELATIVE vl,vz,va, ceeaVy
Where: vy is an external procedure name ' ‘ \
Appearance of a name in a RELATIVE statement declares that name to be an external procedure name. i
When the run-anywhere option has been selected, appearance of a name in a RELATIVE statement -
causes all references to this procedure to be made in a way that preserves the run-anywhere :
characteristic. An external procedure name that is to be passed as an actual argument to a
procedure subprogram cannot appear in a RELATIVE statement. (It would appear in an EXTERNAL /
statement,) B
7.4.5 CALL STATEMENT N
Subroutines are referenced by the appearance of a CALL statement in the referencing program.

The formats are: » ‘ l\ '
CALL s -
CALL 8 (al,az,...,an) : %

e
K\
.

. 7-16 60362000 E

OGS

(.

@)

)

Where: s is the name of the subroutine being called

a is an actual argument

The name may not appear in any specification statement in the calling program except in an EXTERNAL
or a RELATIVE statement,

The CALL statement transfers control to the subroutine named. When a RETURN or END statement
is encountered in the subroutine, control returns to the next executable statement following the CALL
in the referencing program. If the CALL statement is the last statement in a DO loop. looping
continues until the DO is satisfied. ’

7.4.6 RETURN STATEMENT

This statement marks the logical end of a procedure subprogram; it returns control to the calling
program.)

7.47 BLOCK DATA SUBPROGRAM

Initial values can be entered into the elements of the labeled common block at load time with the block
data subprogram. This is a nonexecutable subprogram composed of specification statements, a DATA
statement, and an END statement.

The first statement of this subprogram must be

BLOCK DATA
It is followed by the specification statements:

COMMON

S N

EQUIVALENCE

o R

DIMENSION

Type statements
These specification statements are followed by the DATA statements, which enter initial values into
one or more elements of labeled common. If an element in 2 common block is being given an initial -

value, specification statements for the entire block must be included. Elements in unlabeled common
may not be given initial values by the block data subprogram.

60362000 H 7-17

Example:

BLOCK DATA

COMMON/ENTER/A, C,D,1,K
DIMENSION A(4), B(4), C(5). D(2), I(3), J(3}, K(2)
EQUIVALENCE (A, B, {1,J)
DATA A1), A(2), A(3), A(4)/1.1,2.2,3.8,4.4/,C(1), C(2), C(3), C(4),C(5)/
*1.1,2.2,3.3,4.4,5.5/,D(1),D(2)/10.1,10. 2/,1(1), 1(2), 1(3), K(1), K (2)/

*1,2,3,4,5/

*{j{:;\‘,}@

Explanation:

The DIMENSION statement reserves storage for the following arrays. -

Ay B()
A(2) B@2)
A@®) B@)
A B(4)

c()
c(@)
CcE)
ci)
C(5)

D(1)
D(2)

1)

1(2)
13

J - K@)
J(2) K(2)
I3)

The COMMON statement enters arrays A,C,D,I,K, in that order in the common block labeled

ENTER.

The EQUIVALENCE statement enters arrays B and J into the labeled common block to share
storage with arrays A and I.

The DATA statement enters the following values into the designated locations of the labeled

common block:

ENTER
A1) --

[
.

A(2) -

B(1)

B(2)

A@3) =
A(4) =

B@)

AAA A

B(4)

C(1) =

C(2) =

CE3) <

C(4) =

C(5) =
D(1) =

.
[R N O O R N N -

[

D(2) =
I(1)

0

1(2)

1)

J(2)

A A A

13)

I@)

K@)
K(2)

AhA A

WD OOWU RN RN

60362000 C

C

(M
—

O

COMPILATION AND EXECUTION 8

8.1 COMPILATION

The user provides the source programs, ‘MassStqrage FORTRAN continues compiling source
programs until it encounters a statement of the following form:

AMON

MON must be in character positions 2, 3, and 4 immediately preceded by a blank (A) in character
position 1, This statement must immediately follow the END statement which marks-the physical
end of a source program unit. The MON statement returns control to the operating system.

The OPT statement allows the user to select options from the standard input device. The selected
options may exist in three ways:

1, L, X, P, C options assumed with omission of OPT card.

2, OPT card with desired options after column 5.

3. No options specified by OPT card. This permits options to be entered through the standard

input comment device.

OPT must be in character positions 2, 3, and 4 immediately preceded by a blank in column 1. Options
must be preceded by a blank in column 5. The options may begin any column after column 5.

The options are:

P Relocatable binary object program output on standard binary output device.

L Source program listing (contains the generated statement numbers) on the standard list
device. '

A Object code listing on the list device.

M Condensed object code listing on the list device. Listing contains generated statement
numbers and first word of object code generated by each statement,

R Run-anywhere object code. This option allows a program to be executed anywhere in
allocatable core.

60362000 F 8-1

CAUTION

Programs compiled with the R option do not execute
properly in partitioned core or at addresses above 8000;¢.
In addition, programs compiled with the R option which
call user-written subroutines must not declare formal
parameters located in Part 1. For example:

PROGRAM
EXTERNAL IPART1

CALL SUB (PART1)

END

does not execute pi‘operly if the R option is used and
IPARTI is in Part 1 memory.

K ANSI FORTRAN compatibility; integers occupy two computer words

X Relocatable binary object program placed on the load-and-go file. Disk or drum is used
for load-and-go.

(o] Optional compilation, If this option is used, statements containing an O in column 1 are
compiled as if column 1 were blank, If the option is not used, statements with an O in
column 1 are treated as comment cards. This option allows optional prints, dumps,
pauses, etc., while debugging.

A% Variable number of parameters in subroutine/function calls. If this option is used:

1. Error 13 is not given if the number of arguments in a subroutine/function call differs
from the number of arguments in the first reference to the subroutine/function.

2. The return jump to the subroutine/function is preceded by an ENA N where N is the
number of arguments being passed.

3. Both the subroutine and its calling program must be compiled using the V option.

4, The subroutine may determine the number of arguments in its call by referencing
the special variable N9PARS, '

C Cross reference. An alphabetized listing of constants, variables, externals, and labels,
J— including the address of the symbol, its type, and a list of statement references.

8-2 : ‘ 60362000 F

Y
_

A

@,

~

O

SN

U

O O

——

Unrecognized parameters and blanks are ignored. Compiler diagnostics are provided on the list
device regardless of the options selected. Compilation error diagnostics are in Appendix L. A fatal
diagnostic prevents generation of any object code.

The following examples illustrate the output from the various options for a small test program.

OPTION L

Note that full compilation is not done. Only a statement syntax check is made.

1 PROGRAM FTNOPT
Cc
s EXAMPLE FOR FORTRAN OPTIONS
Cc
2 DIMENSION A(S)+I(5)
3 D0 1 II=1,5
4 I(IN) =11e3/A(11])
S 2 CONTINUE
6 CALL SUBEXM(A,I)
0 CALL SUBEXM(AeIeIIey
7 J=Ke68C)
8 IF (FUNEXM(4+9)) 10420510
9 10 GOTO0 20
10 20 CONTINUE
11 END
OPTIONS LA
1 PROGRAM FTNOPT
C .
S EXAMPLE FOR FORTRAN OPTIONS
c
2 DIMENSION A(S)I(S)
3 00 1 II=]1,5
4 I(IDYy=11%3/A(11)
S 1 CONTINUE
6 CALL SUBEXM(A.I)
1] CALL SUBEXM(AsIeIleJ
7 J=Ke64C
.8 IF(FUNEXM(449)) 10+20+10
9 10 GOTO 20
10 20 CONTINUE
11 END
0000 0000 . NAM FINOPTY
0000 1819 FTNOPT JMP® ,00001
0001 000A A BSS 10
0008 000S I BSS S
0010 0001 11 RSS 1
0011 0003 0003s NUM 3
0012 0001 J ASS 1
0013 0001 K B8SS 1
0014 0006 0006% NUM 6
60362000 E 8-3

11
11

0015
0017
0018
o019
001A
0018
001C
0010
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
0028
002C
0020
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
0038
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046
6047
0049
004A
0000

0002
0004
0009
0AO01
68FS
CcaFa
28F&
6829
5400
TFFF
0046
5400
TFFF
FAl4
0010
7FFE
000A
D8E8
0A0S
98E6
0131
18EF
5400
TFFF
0001l
0008
SCEE
0014
SCEF
9040
0015
0047
SCES
0013
SCE9
E140
0041
0012
5400
TFFF
0017
0o0l8
SCE1l
0400
0047
c804
0104
1804
0001
0002
5400
TFFF
0000

VOO

v 9o

c RSS
00048 NUM

. 00098 NUM
.00001 ENA

, STA®
.00004 LDA®
MUT®

STA®

RTJe

ADC
RTJe

NUM
ADC
ADC
ADC
1 RAQ#®
ENA
SuB
SAM
JMP#
RTJe

ADC
ADC
RTJ#
ADC
RTJ®
NUM
ADC
ADC
PTJ*
ADC
RTJ
NUM
ADC
ADC
RTJe

ADC
ADC
RTJ®
NUM
ADC
LDA#
SAZ
10 Jups
.00005 BSS
.00006 BSS
20 - RTJe

END

PROGRAM LENGTH $004B ()

EXTERNALS

HFLOT Q8STP FLOAT

8-4

SUBEXM FUNEXM

-0 &N

I1
I1

'0003s

«00005
FLOAT

«00005
HFLOT

-1515
11
A
1
11
S
11
1
«00004
SUREXM

A
I
(FLOAT
0006
{HFLOT
-25279
c
«00006
(FLOAT
LS
(HFLOT
-7871

- «00006

J.
FUNEXM

0004S
0009%
(HFLOT
-11263
«00006
«00006
4
20
S |
2
Q8sTpP

-2
-1

60362000 E

L

OPTIONS LM

Note condensed object code listing. This form is useful when the list device is a teletype.

1 PROGRAM FTNOPT
C
3 FXAMPLE FOR FORTRAN OPTIONS
C
2 DIMENSION A(S)+I(5)
k) D0 1 1I=1,S
4 ICIE)=IT®3/A(TD)
S 1 CONTINUE
6 CALL SUBEXM(A.I)
0 CALL SUBEXM(A+IolleJ
7 Jx=Ke+68C
8 IF (FUNEXM(4¢9)) 10520010
9 10 GOTOo 20
10 20 CONTINUE
11 END
3 0019 o0AOl «00001 ENA 1
4 001B C8F& «000064 LDA® 1
S 0027 0OB8tH 1 RAO® II
6 002C S400 RTJe SUBEXM
7 0030 SCEE RTJ® (FLOAT)
8 0039 El40 NUM -7871
9 0045 1804 10 JMP® 20
11 0049 5400 20 RTJe 0QBSTP
11 0000 0000 END 0

PROGRAM LENGTH $004B (75)

EXTERNALS
HFLOT 0QB8STP FLOAT SUBEXM FUNEXM

60362000 E

OPTIONS LAR

Note that no program relocatable addresses are generated; hence, the program can run in allocatab_le
core. ‘

1 PROGRAM FTNOPT
o
FXAMPLE FOR FORTRAN OPTIONS
c
2 DIMENSION A(S)1(S)
3 D0 1 II=1,5
4 ICITY=IT%3/A(11)
S t CONTINUE
6 CALL SUBEXM(AI)
0 CALL SUBEXM(AsI911,v
7 J=Ke+68C
8 IF(FUNEXM(4+9)) 10,20010
9 10 6070 20
10 20 CONTINUE
11 END
0000 0000 NAM FTNOPT
00001
0000 1819 FTNOPT JUMP® ,00002
0001 000A A RSS 10
0008 0009 1 BSS S
0010 0001 11 fAsSS 1
0011 0002 0003s NUM 3
0012 0001 J /8SS 1
0013 o001 (4 BSS 1
0014 0006 0006S NUM 6
0015 0002 c ASS 2
0017 0004 0004% NUM 4
0018 0009 0009s NUM .9
0019 5802 «00002 RTJ* ,00005
001A FFES ADC «00001
0018 0001 +00005 BSS 1
001C C8FE LDA® ,00005
001D 88FC ANDD®* ,00005 -1
001E e68FC STA® ,00005
3 001F OAO1 ENA ')}
0020 68EF STAs 11
4 0021 CB8EE «00006 LDA® 11
0022 28EE MUul* 0003s
0023 682A STA® ,00007
0024 5400 RTJe FLOAT
0025 7FFF)
0026 8027 ADC «00007
0027 S400 RYJe HFLOT
0028 T7FFF
0029 SFA1 NUM 2446481

8-6 60362000 E

002A
0028
002C
002D
S 002E
002F
0030
0031
0032
6 0033
0034
0035
0036
7 0037
0038
0039
003A
0038
003C
003D
003E
003F
8 0040
0041
0042
0043
0044
0045
0046
0047
- 0048
0049
004A
0048
9 004C
0040
004E
11 0050
0051
11 0000

PROGRAM LENGTH 30052 ¢

EXTERNALS

FFES
FFO3
FFOD
4000
DBE}L
0A0S
980F
0131
18EE
5400
TFFF
FFCB
FFD4
SCED
FFOY
SCEE
59D4%
FFD9
0012
SCE?
FFD4
SCE®8
SEl4
0000
FFCF
5400
TFFF
FFO1
FFD1
SCEO0

- SD40

0005
c80é
0104
1804
0001
0002
5400
TFFF
0000

10

«00007
«00008

20

82)

ADC
ADC
ADC
NUM
RAO#*
ENA
suss
SAM
JMp#
RTJe

ADC
ADC
RTJ#
ADC
RYJ®
NUM
ADC
ADC
RTJ®
ADC
RTJ#
NUM
ADC
ADC
RTJe

ADC
ADC
RTJ#
NUM
ADC
LDA#
SAZ
JMpe
8SS
8ss
RTJe

END

HFLOT QB8STP FLOAT SUBEXM FUNEXM

60362000 E

11

A

1
16384

II

11

S

1

«00006
SUBEXM

A
I

- (FLOAT

0006S
(HFLOT
22996
c

« 00008
(FLOAT
K
(KFLOT
264084
00008

J
FUNEXM

0004S

0009s
(HFLOT
23872
«00008
«00008
4

20
1
2
08STP

-2
-1

OPTIONS LAK

This form allocates two words of memory for each integer. The actual executable cdde only uses
one of the two words. :

8-8

st pumo

O 0Vd~N NS WN

OdO

0000
0000
0001
0008
0015
0017
0018
001A
001C
001D
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
0028
002C
0020
002E
002F
0030
0031
0032
0033

PROGRAM FTNOPY

EXAMPLE FOR FORTRAN OPTIONS

DIMENSION A(S)1(S)

D0 1 1I=1.5

I(IT)=11#3/A(11)

1 CONTINUE

CALL SUBEXM(A.I)

CALL SUBEXM(AesIoIley

J=Ke62C

IF(FUNEXM(449)) 10420910
10 GOTO0 20
20 CONTINUE

END
0000 NAM FINOPT
1821 FTINOPT JUMP* 00001
000A A 8SS 10
000A 1 BSS 10
0002 11 BSS 2
0003 0003s NUM 3
0002 J BSS 2
0002 K 8ssS 2
0006 00068 NUM 6
0002 C BSS 2
0004 00048 NUM 4
0009 0009s NUM 9
0AOL «00001 ENA 1
68F2 STA® 11
0A02 «00004 ENA 2
28F0 MUI® 1T
682E STA® ,00005
C8EE LDA® 1
28EF MUI®* 0003S
682C STA® ,00006
5400 RTJe+ FLOAT
TFFF
0054 P ADC «00006
5400 RTJ¢ HFLOT
TFFF
FAF} NUM -1294
0015 P ADC 11
TFFE P ADC A -2
0053 P ADC «0000S
0009 P ADC 1 -2
4000 NUM 16384

60362000 E

(,» =

.

S 0034 DBEO 1 RAO® Il

0035 0AO0S ENA S
0036 98DE suys* 11
0037 o131 SAM 1
0033 1BEA JMP# ,00004

6 0039 S400 RTJ+ SUREXM
003A TFFF
0038 0001 P ADC A
003C 0008 P ADC T

7 003D SCEC RTJ* (FLOAT
003E oo0lC P ADC 00063
803F SCED RTJ® (HFLOT
0040 9D40 NUM -25279
0041 o00LlD P ADC C »
0042 0055 P ADC «00007
0043 SCE6 RTJ® (FLOATY
0046 001A P ADC K .
9045 SCE7 RTJ® (HFLOT

8 0046 Elad NUM -7871
0047 0055 P ADC «00007
0048 0018 P ADC J
0049 5400 RTJ* FUNEXM
004A T7FFF
0048 001LF P ADC 0004$S
004C 0020 P ADC 0009%
004D SCOF RTJ® (HFLOT
004E D400 NUM =-11263
004F 0055 P ADC +00007
0050 C80S LDA® ,00007
9051 0105 SAZ 3

9 0052 1805 10 JMP® 20
0053 0001 .00005 8SS 1
0054 0001 .00006 RSS : 1
8055 0002 .00007 BSS 2

11 0057 5400 20 RTJes . OASTP
0058 TFFF

11 0000 0000 END 0

PROGPAM LENGTH $0059 (89)

EXTERNALS .
- HFLOT 0B8STP FLOAT SUBEXM FUNEXM

60362000 E

OPTIONS LX

Note that the full compilation has taken place.

- s

= DO DNIPINEINY

PROGRAM FTNOPT

EXAMPLE FOF FORTRAN COMPILER OPTIONS

(2 Xa¥a)

NIMENSTION A(S)¢]t(5)
00 1 11215
(I =st1e3/a(1ID)
1 CONTINUE
CALL SUBExXM{A+I)
JeEKsber
IF (FUNFXV(449)) 10920010
10 Go 10 20
20 CONTINUE
END

PROGPAM LENGTH Sp0saF %)

OPTS = LxX

EXTERNALS

Q8QF 1Y FLOT

OPTIONS PX

QASTP FLOAT SUREXM FUNEYM

Note that no listing output is generated, but full compilation has occurred with object and load and go

output.

OPTS = PX

OPTIONS LOVC

This form allows compilation of optional statements that have an O in column 1 The V optlon allows

subroutine calls to have varied numbers of parameters defined in the call statement.

o g
N=DO0ODNITNSWN

8-10

(2 XaN32]

PROGRAM FTNOPT

EXAMPLE FOR FORTRAN COMPILFR OPTIONS

20

DIMFNSION A(S),I(S)
D0 1 II=1.5
I(IV)=IT*3/A(ID)
CONTINUE

PAUSE 0001

CALL SUBEXM(A.I)
J=K+6%#C
IF(FUNEXM(4.9)) 10420010
GO ¥n 20

CONTINUE

END

60362000 E

Q

O

()
.

DO O 0 O

C

{

)
N

7N

DO

(

D,

>

m
~—

\
SNe

O

OPTIONS LC

This option instructs the compiler to produce a cross reference of constants, variables, externals,

and labeled statements,

1

oW ~N NP WN

Lol d

ONO

PROGRAM FTNOPT
FXAMPLE FOR FORTRAN OPTIONS

DIMENSION A{(S)eI(5)
DO 1 II=]1.5
ICIT)=11%3/A(1])
CONTINUE

CALL SUBEXM(A,1)
CALL SUBEXM(A.1+1I,y

S J=Ke6®C

10
20

IF (FUNEXM(4¢9)) 10920410
GOTo 20

CONTINUE

END

PROGRAM LENGTH $004B ()

EXTERNALS
HFLOT 08STP FLOATY SUREXM FUNEXM

vess® L I ST OF SYMBOLS sssas

CONSTANTS :

VALUE
0003 ()
0004 (&)
0006 (6)
0009 (9)

VARIABLES 3

NAME

At O

60362000 E

TYPE

REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER

ADDRESS REFERENCED BY STATEMENT NB

o011l
0017
0014
0018

~N e~~~y

ADDRESS REFERENCED BY STATEMENT NR @

0001 . 1l.496
0015 7
0008 14446
0010 | P
0012 6e7
0013 7

8-11

EXTERNALS 3

NAME TYPE ADNDRESS REFERENCED BY STATEMENT NB

FLOAT REAL.FNe. 001F

FUNEXM REAL.FN. 003D 7
HFLOT REAL.FN. 0022

Q8STP INTEGER.FN, 004A S
SUBEXM SUBROUTINE 002D S

LABELED STATEMENTS ¢

- > e w w o m o=

LABEL ADDRESS REFERENCED BY STATEMENT NB 3
1 0027 1.5
10 ' 0045 T+84+9
20 0049 7+9910
FTNOPTY 0000 1

8.2 EXECUTION

When option P is selected, a punched output is generated containing the binary object program. This
output may be loaded by MSOS. This form may also be loaded by the system initializer. When option
X is selected, the binary object program is output as a load-and-go file on disk or drum. It can be
loaded and executed in the same run as the compilation. ’ .
Upon completion of the load, any unsatisfied external references in the object program are satisfied
from the program library. :

Execution time error messages are listed in Appendix M. -

8.3 PROGRAM OPERATING PROCEDURES

This section outlines the method of compiling and executing a FORTRAN program under MSOS.
To illustrate the step-by-step interaction between the operator and the system, typical values are
selected for the parameters. It is assumed the system is without a timer.

The following logical unit designations are made.

Device Uit No.
Card punch 11
Card reader 10
Mass storage device 8
Printer 12
8-12 (_ 60362000 F


~~~~~

The FORTRAN deck is placed in the card reader with the system control cards around it as shown in -
the following illustration:

(v
/ data deck (if any)
(*160,8
(/ MON
( END
4 STOP

/ source deck follows
/ PROGRAM TESTA

(/OPT LAPX
(*FIN

( *X,110,L12, P11
*JOB, FTNRUN, 000101

The JOB card is utilized in the job processor to begin a new background job. The next card assigns the
1/0 units. In this example, it specifies standard input from the card reader, list output to the printer,
and binary output to the card punch. The *FTN card calls in the compiler to compile the source deck.
The OPT card is read by the compiler, in this case list, list assembly code, punch relocatable binary,
and put binary on the load and go file are the options selected. The compiler then reads in the source
deck and compiles the program. The MON card after the source deck releases the compiler and returns
control to the job processor. The *LGO card instructs the job processor to load the object code for the
program, along with any object library routines necessary to execute the program, It is assumed in
this example that the program reads in the data deck during execution. After execution, control is re-
turned to the job processor which reads in the *U card and returns control to the teletype.

60362000 F ’ 8-13






FORTRAN MULTIPROGRAMMING 9

This chapter discusses the use of the re-entrant ENCODE/DECODE and non-re-entrant ENCODE/
DECODE run-time packages. These packages have, in general, reduced capability from the FORTRAN
I/O run-time discussed in other chapters with an extension in the interface capability to MSOS monitor
requests. The features throughout this section are to be used with one word integer-type variables
wherever integer-type variables are used.

The re-entrant and non-re-entrant packages have an identical user interface. This duplication of
capability allows inital program debugging in the background using the non-re-entrant version with a
transfer to the re-entrant version for execution in the foreground.

The intrinsic functions defined in Table 7-3 and the basic external functions defined in Table 7-4 are also
operable with the ENCODE/DECODE run-times, Twe exceptions are the EOF and IOCK functions which
can not be called from foreground.

9.1 RE-ENTRANT FORTRAN

Two characteristics of FORTRAN programs which execute in a multiprogramming environment are:

° Priority levels can be assigned to the different programs executing in the computer.

'3 The monitor and standard FORTRAN library are re-entrant.

9.1.1 PRIORITIES

Assigning different priorities to the programs in memory permits the monitor (the basic portion of
MSOS which allocates the use of the computer on a priority basis) to determine the order in which
programs execute. When a program asks the monitor to initiate an I/0O request, control may be given
to another program to execute, rather than waiting for completion of the I/O request. Upon completion
of the request, if the completion priority is higher than the current executing program, control returns
to the program which made the I/O request. The program currently executing is interrupted, and the
monitor retains all pertinent information at the point of interruption. When control is eventually
returned to this program of lower priority, all pertinen: information saved upon interruption is restored.
If the completion priority of the I/O request is not higher than the currently executing program, the
completion of the I/O request is processed at a later time according to its priority. The process can be
cascaded to the depth allowed by the monitor. In the standard release system levels 4, 5, and 6 are
defined as re-entrant FORTRAN levels. -

60362000 F - ' ' 9-1



9.1.2 RE-ENTRANCY

A program which can be interrupted and re-entered by another program of high priority level is called
re-entrant, Re-entrant programs require all pertinent information be saved upon interruption and
restored when execution is resumed.

All programs or subprograms that may run at more than one level concurrently must be re-entrant.
The FORTRAN library falls into the re-entrant category since it can be called from more than one
priority level.

9.1.3 FORTRAN LIBRARY

All routines in the FORTRAN library use a scratch area in the communications region of the monitor
(locations $C5 to $ES5) for intermediate results. Interruption of a FORTRAN program by another
FORTRAN program requires storing and restoring this scratch area into and from volatile storage in
the monitor. Thus, n levels of interrupts by FORTRAN programs result in n-1 copies of the scratch
area in volatile storage.

FORTRAN
Scratch 1

FORTRAN
Scratch 2

: Volatile
: Storage
FORTRAN '

Scratch n-1

(Next available location in Volatile Storage)

End-of-Volatile storage

1t is not desirable for n to assume large values since larger core requirements for the monitor
restrict the amount of core available for user programs. Limiting the priority levels of FORTRAN
programs to three or four levels restricts the number of interrupts FORTRAN programs can have.
This holds the requirements on volatile storage to a reasonable size.

9-2 60362000.C



9.1.4 FORTRAN READ/WRITE STATEMENT PROCESSOR

In order to implement the FORTRAN READ/WRITE statement as part of a re-entrant statement
processor, a deviation from the ANSI standard FORTRAN specifications was made for the following
reasons:

° The size of the input/output buffer to be reserved in the statement processor is dependent
upon the largest message for input/output by any FORTRAN program.

o Since the statement processor is re-entrant, either the buffer is stored in volatile storage
on interruption (again requiring a large amount of volatile) or interrupts are inhibited until
the complete buffer is input/output. Since several milliseconds are required to inhibit
interrupts, this method would defeat the purpose of a multiprogramming system.

To resolve the preceding objections, the FORTRAN READ/WRITE statement processor places the
responsibility of providing an input/output buffer upon the FORTRAN programmer. Also, since control
is not returned to the FORTRAN program until a READ/WRITE statement has been completely
processed, there is no chance of the user destroying the message by attempting to do more READ/
WRITE processing into his buffer. This negates the necessity of storing and restoring his buffer.

Re-entrancy places a further restriction on the READ/WRITE statement. The FORMAT statement may
designate only one input record (80 card columns) per READ statement.

9.1.5 FORTRAN/MONITOR RUN-TIME INTERFACE (FORTRA)

The monitor has provisions to request a mass storage READ/WRITE or an unformatted READ/WRITE,
schedule the execution of a new program, schedule the execution of a new program after a time
increment has elapsed, release core after execution of the current program is completed, etc. For the
FORTRAN programmer, however, communication with the monitor is only possible through the
FORTRAN/monitor run-time package. This package has entry points which generate specific requests
to the monitor when called by a FORTRAN program. Thus, when a CALL READ-is made with the logical
unit equal to mass storage and the mass storage addresses are provided, the run-time package
generates the necessary calling sequence to the monitor, then makes the input request and returns to

the user's program. ‘ '

CALL READ, CALL WRITE, CALL FREAD, and CALL FWRITE, which are entry points to the

FORTRAN/monitor run-time package, are direct requests to the monitor. The READ/WRITE
FORTRAN statements are used specifically for reads or writes with a FORTRAN FORMAT statement.

9.1.6 ENCODE/DECODE

If the FORTRAN/monitor run-time interface is used to transfer the record, ENCODE/DECODE provides

the programmer with the capability to convert ASCII characters to hexadecimal data (DECODE) or to
convert hexadecimal data to ASCII characters (ENCODE).

60362000 C 9-3

(¥



With the FORTRAN /monitor run-time interface, ENCODE/DECODE, and the READ/WRITE statement
processor, the FORTRAN programmer has the full capabilities of data input/output and has sufficient
control over the problem to achieve correct results in a multiprogramming real-time environment.

9.1.7 RUN-ANYWHERE PROGRAMS

So that FORTRAN programs can execute properly in allocatable core, a run-anywhere option was added
to the FORTRAN compiler, removing all absolute address references from the compiled program.

CAUTION

Users are warned that programs compiled with the
run-anywhere (R) option will not execute properly in
partitioned core or at addresses above $8000.

9.2 FORMAT SPECIFICATIONS

Data transmission between storage and an external unit requires a call to an I/0 routine (READ,
WRITE, etc.) and may require a FORMAT statement. The I/0 call specifies the input/output device,
the process, and a list of data to be transmitted. No FORMAT statement is required to transmit binary
information, and a direct call to an I/O routine may be made. With ASCII information, a FORMAT
statement specifies the type of conversion to be made on the data before or after transmission.

9.2.1 FORMAT STATEMENT

\

The FORMAT statement contains the specifications relating to the internal/external structure of the
corresponding data elements. :

FORMAT(specl, cee ,k(specm, ces)s specn, ees)

Where: spec is a format specification

k - is an optional repetition factor which must be an unsigned integer constant

FORMAT statements are nonexecutable and may appear anywhere in the program.

9-4 ' : ] 60362000 C



=

@

@

"'(f_)

()

)

()

(2

()

®

’

O

Ky
\
A

9.2.2 FORMAT CONVERSION

The data elements in I/O lists are converted from external to internal or from internal to external
representations according to conversion and editing specifications in the FORMAT statement. The
FORMAT statement may contain both conversion and editing specifications. The format conversion
specifications are: "

Ew.d Floating-point conversion with exponent Limited to output
Dw.d Double-precision floating-point with exponent specifications only
Fw.d Floating-point conversion without exponent

Iw or Iw.d Decimal integer conversion
. $wor Zw Hexadecimal ihteger conversion
Aw Alphanumeric conversion

Rw Alphanumeric conversion

The format editing specifications are:

wX Intra-line spacing
xH Heading and labeling
Asterisk *String of ASCII Characters*
or
Quote 'String of ASCII Characters'
/ Line-feed/new record

Both w and d are unsigned integers. w specifies the field width (the number of character positions in

the record) and d specifies the number of digits to the right of the decimal within the field.

9.2.3 CONVERSION SPECIFICATIONS

Dw.d OUTPUT

This specification converts double-precision floating-point numbers in storage to ASCII characters,
including an exponent for output. The field occupies w positions in the output record with d digits as

60362000 C



the most significant part of the fraction. The corresponding floating-point number will appear
right-justified in the field as:

+, xooxxDiee
Where: 0O<sees<39

Let: A contain -1276. 45 or . 001276450D0

And: FORMAT(D15. 4)

Result: AAAAA-,.1276D+04 or

AAAAAA, 1276D-02

Ew.d OUTPUT
This specification converts floating-point numbers in storage to ASCII characters, including an-exponent
for output. The field occupies w positions (minimum 6) in the output record with d digits (#0) as the most
significant part of the fraction. The corresponding floating-point number appears right-justified in the
field as:

+, XXX X+ee
Where: 0<ee<39

The fractional portion of the number contains a maximum of six digits. If the field width is too short to
accommodate the number, an asterisk appears in the most significant position to indicate an error.

Let: A contain -67.32 or . 06732
And: FORMAT(E10. 3)
Result: A-.673E 02 or
AA, 673E-01
Let: A contain -67.32 or . 06732
And: FORMAT (E7. 3)
Result: *.6E 02 or
* 6E-01
d OUTPUT

This specification converts floating-point numbers in storage to ASCII characters, excluding an exponent
for output. The field occupies w positions in the output record with d digits to the right of the decimal.
The correcponding floating-point number appears right-justified in the field as:

+#X...X.X...X.
, - +
The range ~f the internal number represented must be from 10 5 to 10 5-1. If this range is exceeded,
the field is filled with asterisks and no error flag is returned as in Section 9.4.3. If the field width

9-6 » 60362000 C

SN



Oy (O

()

O

)

@)

S

is too short to accommodate the number, an asterisk appears in the most significant character position
to indicate the error.

Let: A contain +32. 694

And: FORMAT(F7. 3)

Result: A32.694

Let: A contain -32767.0
And: FORMAT(F7. 3)
Result:  *2767.0

Fw.d INPUT

This specification converts ASCIH characters in storage to a floating-point number and scales the string
of integer digits by 10-d. The field occupies w positions in the input record; a decimal point in the
input record causes the d portion of the conversion specifications to be ignored. With d = 0, both fields
musst be sg_esciﬁed to indicate no scaling. The range of the internal number represented must be from
107V to 107 9-1. :

Let: INPUT = A(1) =A9.

A(2) =35

Where: A contains ASCII characters
And: FORMAT(F4.2)
Result: 9.35
Let: INPUT = A(l) =A-

A@) =52

A@B3)=.3
And: FORMAT(F6.3)
Result: -52.3 -
Let: INPUT = A(1) =A9

A@2) =.5

A@3) =20

A(4) =A-

A(5) =50

A(6) =60
And: FORMAT(2F6.2) _
Result: 9. 520 and

-50.36

Iw, Iw.d OUTPUT

This specification converts integer values to ASCII characters with 10-d scaling if d is specified. The
magnitude of the integer number must be from 1079 o 10*5-1, If the field is wider than required, the

60362000 C 9-7



output quantity is right-justified and blank-filled. If the field width is too short an asterisk appea.rs in

the most significant character position to indicate the error.

Let:
And:
Result:

Let:
And:
Result:

Iw INPUT

N contain 301
FORMAT(IS5)
AA301

N contain -336
FORMAT(I5. 3)
-.336

This Speclfication converts ASCII characters to an integer value. The magnitude of the number must be
from -(2*15-1) to 2151,

Let:
And:
Result:

Let:
And:
Result:

INPUT = 1905
FORMAT (14)
N = 1905

INPUT = 0,9,3,8,0,2
FORMAT (611)

N(1) == 00 N(4) = 08
N(2) = 09 N(5) = 00
N(3) = 08 N(6) = 02

$w or Zw OUTPUT

This specification converts a hexadecimal integer value in storage to ASCII characters for output. The
field occupies w positions in the output record. If the field width is too short, an asterisk is inserted

in the most sign:[ficaxlxt5 character position. The magnitude of the internal number represented must be
-1) to 2*H01,

from -(2

Let:
And:
Result:

Let:
And:
Result:

9-8

N contain 03A2 16
FORMAT(($6) or FORMAT (Z6)
AM3A2

N contain 83A21 6

FORMAT ($3) or FORMAT (Z3)
*A2

Vs

60362000 D



I
/s
—

¢

)

$w or Zw INPUT

This specification converts ASCII characters in storage to a hexadecimal integer value. The magnitude
of the internal number represented must be from -(2+15-1) to 2+15-1,

C

S

()

~—e

Let: N contains AB in ASCII characters
And: FORMAT ($2) or FORMAT (Z2)
Result: INPUT = 00AB

Aw OUTPUT

This specification is used to output ASCH characters. w characters/word are picked up, starting with

the leftmost character, and stored in the output buffer. If the field width is greater.than two, an error

return occurs.

Let: N(1) = Ca
‘ N(2) = NX
N(3) = =A
N(4) = YA
N(5) = 1A
And: FORMAT(A1,A2,3A1)
Result: CNX=Y1
Let: N(1) = CN
N(@2) = 1=
N(3) = Y1
And: FORMAT(3A1)
Result: C1lY
Aw INPUT

blank filled.
Let: INPUT = CNXYYZ
And: FORMAT (6A1)
Result: N(1) = Ca N4)=YA
N(2) = NA N(5) = YA
N@B)=XA  N(6) = Za
Let: INPUT = CNXYYZ
And: FORMAT(2A2, 2A1)
Result: N(1)=CN  N(3) = YA
N@2)=XY  N(@4)=2a
60362000 D

. This specification accepts as list elements any set of eight-bit characters including blanks. The
internal representation is ASCII; the field width is w characters. If w exceeds two, an error return
occurs. w characters are picked up as a left-justified ASCII word; the remaining spaces are

9-9



Rw OUTPUT

This specification is the same as Aw specification except that the output quantity represents the
rightmost quantity. If the field width is greater than one, an error return results.

Let: N(1) = 0A and N(2) = 0B
0 = 8 bits of zeros
And: FORMAT(2R1)

Result: AB
Rw INPUT

With this specification the input quantity goes to the designated storage location as a right-justified
zero-filled word. If w is greater than one, an error return results.

Let: INPUT = AB
And; FORMAT(2R1)
Result: N(1) = 0A

N(2) = 0B

0 = 8 bits of zeros

9.2.4 EDITING SPECIFICATIONS

wX OUTPUT/INPUT

This specification may be used to include w blanks in an output record or to skip w characters on input
to permit spacing of input/output quantities. '

Let: A = -32.576
And: FORMAT (3X, F17.3)
Result: AAA-32.576

wH OUTPUT/INPUT

This specification provides for the output of any set of eight-bit characters, including blanks in the form
of comments, titles, and headings. w is an unsigned integer specifying the number of characters to the
right of the H that are transmitted to the output record as ASCII characters. The H field may be used to
read a new heading into an existing H field.
FORMAT (3X, SHLABEL, 1X, 4HFORA, 6HOUTPUT)
Result: AMALABELAFORAOUTPUT
FORMAT (1H1, 12HANEWAHEADING)

Result: ANEWAHEADING

9-10 : ' ' 60362000 D



f“

(>

O

DO

(.

O O

O

O O O O

1o

»

O O O

.

®

QUOTE OR ASTERISK 1/0

The asterisk field descriptor causes Hollerith information (excluding asterisks) to be read into or
written from the characters specified between two asterisk delimiters. The single quote field
descriptor causes Hollerith information (excluding single quotes) to be read into or written from the
characters specified between two single quote delimiters. ,

Examples:
WRITE (3, 20)

20 FORMAT(*ATHIS IS A HOLLERITH STRING*)
Result: THIS IS A HOLLERITH STRING
WRITE (3, 30) _
30 FORMAT('ATHIS IS A HOLLERITH STRING')
Result: THIS IS A HOLLERITH STRING
WRITE (3, 40)
40 FORMAT ("*',*'*,' THIS IS A HOLLERITH STRING', *'*, '*')

" NEW LINE

The slash, which signals the end of a line, may occur anywhere in the specification list. This generates
a new line into the output record.
FORMAT(1X, 6HLINEAL, //THALINEA3)

RESULT ALINEAlL
ALINEA3

9.25 SPECIAL CHARACTER SPECIFICATIONS

If a special character appears as the first character in the output record, the following interpretation is
made:

1 Top-of-form

0 Line feed

FORMAT(1H1, 15X, 12HTOP-OF-FORMA)
The run-time converts the first character of the output buffer; if it is an ASCII code for 0 ($ 30) to an

ASCII code for a line feed ($0D), and if it is an ASCH code for 1 ($31) to an ASCII code for a top of

form ($0C). This technique does not require the use of the FORTRAN line printer logical unit to
interpret form control.

60362000 E 9-11



9.2.6 REPEATED FORMAT SPECIFICATIONS

Any FORMAT specifications may be repeated by using an unsigned integer constant repetition factor (k)
as follows:

k (spec)
Where: spec is any conversion specification. The level of repetitions is limited to one.
Thus, (k1(""k2(""») is an error.

But (ky----) '""kz("“)'““ks("“)) does not result in an error.

9.3 FORTRAN READ/WRITE STATEMENT PROCESSOR

Input/output FORTRAN control statements (READ/WRITE) transfer information between core storage
and external peripheral devices connected to the computer.

9.3.1 WRITE STATEMENT
WRITE(i,n) L

transfers information from storage locations given by identifiers in the list (L) to a specified perxpheral
device (i) according to the FORMAT statement (n).

WRITE(10,20) A, B,C
20 FORMAT(3F10.6)
WRITE(10, 30)
30 FORMAT(33H THIS STATEMENT HAS NO DATA LIST.)

9.3.2 READ STATEMENT

READ(i,n) L

transfers one record of information from a specified peripheral device (i) to storage locations named by
the list (L) identifiers according to the FORMAT statement (n).

READ(10,20)X,Y, 2
20 FORMAT(3F10.6)
* READ(10, 30)
30 FORMAT (33H(message)) where 33 blank spaces must appear between the H and the
terminating parenthesis.
READ(10, 40)(Z(K), K=1, 8)
40 FORMAT(F10.4)

9-12 : ‘ . ' 60362000 E

2N



()

- \
/
S

(

s
N
!

0000

O

.

C

)

ﬁ
N,

9.3.3 STATEMENT PROCESSOR

The statement processor (Q8QIO) serves as an interface between the FORTRAN READ/WRITE statement,
the format processor (ENCODE/DECODE), and the input/output processor (Monitor READ/WRITE
request processor). It allows the FORTRAN programmer to use the READ/WRITE statements as

defined by FORTRAN with the following exceptions:

The user must supply a buffer in which the format processing takes place.

Eighteen temporary locations immediately preceding the buffer contain the calling sequence
to the monitor for read/write processing and information for re-entrancy.

Only one RECORD/READ statement on input may be executed; the FORMAT statement may
specify only 80 columns of data for card input.

The RECORD/WRITE statement on output may be as long as the space in the buffer allows
with the following limitations: if the programmer has not specified a new line after 150

" characters have been packed into the buffer, a carriage return is automatically inserted

into the message and continues to be inserted every 150 characters until the FORMAT .
processing is complete.

Noncompatible with ANSI FORTRAN option; no two-word integer values (K option).

9.3.4 CALL SETBFR

In order to communicate the starting location and the length of the user's buffer to Q8QIO, an entry
point called SETBFR is provided. The call to transmit the information need only be made once and
must precede any READ/WRITE statement. However, if the user's program makes a call to the
dispatcher or a call to either ENCODE/DECODE then a call to SETBFR must again be made prior to
any READ/ WRITE statement.

CA‘LL SETBFR (buffer, length)

The first 18 words of the buffer contain the calling sequence for the I/O request and mformatlon for
re-entrancy. The remainder contains the input/output message.

9.3.5 RESTRICTIONS

Length is the total length of the buffer which includes the 18 words needed by Q8QIO. This scratch
area of 18 words has the following format:

Word

60362000 F

Last word address (LWA) of buffer
Request code for READ/WRITE

1
2
3 Completion address
4 Thread

5

Logical unit



Word 6 Message length
7 First word address (FWA) of message
8 Sector address MSB (unformatted READ/WRITE)
9 Sector address LSB (unformatted READ/WRITE)
10 Q register of user
11 Return address of user's program
12 1 register of user
13 READ/WRITE flag (ICODE)
14 LIST address '
15 Total number of variables in LIST
16 ENCODE/DECODE—READ/WRITE flag (DEFLAG)
17 FORTRAN FORMAT flag
18 1 register for restoring vqlatile
19 User's I/O message begins here
The greatest restriction on implementing the READ/WRITE statement processor was placed on the input

side. This restriction limits each READ statement to request one input record or 80 columns of data
for card input. '

READ(10, 20)(X(I, J), I=1, 10), J=1, 20)
20 FORMAT(10F8.4)

This example results in an error since the request specifies 20 cards of input. However, the following
executes correctly:

DO 30 J 1,20

READ(10, 20)(X(, J),1=1, 10)
20 FORMAT(10F8.4)
30  CONTINUE

Unformatted READ/WRITE may be performed by use of the re-entrant READ/WRITE statement
processor.

READ(i)L transfers one record of information directly from the device (i) into the storage locations
named by the list (L) identifiers.

WRITE (i)L transfers information from the storage locations named by the list (L) identifiers to the
device (I).

If the device is mass storage, words 8 and 9 of the buffer specified by CALL SETBFR must contain the
sector address.

Unformatted READ/WRITE is not implemented in the non-re-entrant READ/WRITE statement
processor.

9-14 | | 60362000 C



9.3.6 FORMAT ERRORS

To determine if a format error occurred during processing of a READ/WRITE statement, the
programmer may follow the READ/WRITE statement with a call to the function subroutine IOERR. An
error is indicated if the function value is -1.

IF(IOERR(0). EQ. ~1)GO TO 1000.

or IERROR=IOERR(0).
(and IERROR may be tested later)

9.37 1/O ERRORS

To determine if a hardware failure occurred during an I/O operation, the programmer may follow the
READ/WRITE statement with a call to the function subroutine IRWERR:

IF(IRWERR(0). LT.0) GO TO 1000

or JERROR = IRWERR(0)
(and JERROR may be tested later)

The negative value of the function indicates that an I/O error occurred on the last READ/WRITE -
operation, This function is implemented only for the re-entrant ENCODE/DECODE run-time. Refer

to the MSOS reference manual for a further description of I/0 errors.

9.4 ENCODE/DECODE CALLS

The ENCODE/DECODE package gives the FORTRAN programmer the ability to transfer information
under FORMAT specifications from one area of storage to another. For example, to transfer a
floating-point number from a variable data list into an output buffer area with an F format specification,
the programmer would use an ENCODE call to accomplish the conversion from floating-point
representation to ASCII characters and pack the output buffer. ENCODE /DECODE functions use the
ENCODE/DECODE run-time routines. Therefore, the formatting capabilities are as described in this
chapter.

The parameters to an ENCODE/DECODE call are:
CALL ENCODE/DECODE (buffer, inform, n, list)

Where:
buffer is an area to ENCODE into or DECODE from; always contains information in ASCII form.

iform is an assigned variable when the statement label assigned is the statement number which
represents the associated FORMAT statement.

n equals the number of variables to ENCODE/DECODE.

list equals the first word of the data list to input/output; always contains data in hexadecimal
form.

60362000 H 9-15



9.4

ENCODE

ENCODE transmits n machine-language elements of the variable list according to iform into locations
starting with the first word in buffer. Up to 150 ASCII charactgrs (one line) are stored in consecutive
locations for output.

99

Where:

Then:

ASSIGN 99 TO IFORM
CALL ENCODE (IBUF, IFORM, 3, LIST)
FORMAT (13)

LIST(1) = $0023, LIST(2) = $FFFE, LIST(3) = $001A

IBUF(1) = $2033, IBUF(2) = $3520, IBUF(3)—$2D31
IBUF(4) = $2032, IBUF(5) = $3600

If IBUF is output on the teletypewriter, the following results:

99

20

30

A35/-1526

NOTE

In the preceding example the ASSIGN statement is used
as the only way to set a variable (IFORM) equal to a
statement number. The request also specifies that
three variables are to be converted as three ASCI
characters for a total of nine ASCH characters. Since
each computer word contains two characters, IBUF
must be dimensioned as a five-word data block. When
the number of ASCII characters is odd, the last
character on the teletypewriter results in no output.

DIMENSION LIST(7), FLIST(3), DATA(3,3), IBUF(50)
EQUIVALENCE (FLIST, LIST(2))

FLOATING POINT VARIABLES WERE COMPUTED AND SAVED IN DATA

ASSIGN 99 TO IFORM

FORMAT (5H LINE, 12, 3H X =,F5.2, 3H Y =,F5.2, 3H Z =, F5.2/)
K=1

DO 301-1,3

LIST(1)=I

DO 20 J=1, 3

FLIST(J) = DATA(L J)

CALL ENCODE (IBUF(K), IFORM, 4, LIST)

K=K+16

The preceding example illustrates the mixing of floating~point with integer variables for ENCODE/
DECODE calls. By equivalencing the floating-point variable name to the second entry of the integer

9-16

60362000 H

TN



)

O O 0O O

N

O O O C

(.

array, mixed values can be entered into the table. IBUF has been packed one line at a time (less than
150 characters per call) with a line feed indicated as the last character; however, the total number of
characters packed in IBUF is 96. The following results when output:

LINEALAX=A 1.00AY=A1,00AZ=A1.00
LINEA2AX=A 0.52AY=A3.42AZ=~1,50
LINEASAX= 24.50AY=-0.25A7Z=50.,20

9.4.2 ENCODE MACRO
The ENCODE subfoutine may be called in assembly language by calling the ENCODE macro as follows:

ENCODE A,B,C.D,E, (absolute)
- or
ENCODE* A,B,C,D,E (relative)

Parameters A, B, C,D correspond directly with the respective parameters in a FORTRAN call, as shown
above. Parameter E is the address of an error routine to which control is given. If E is blank no test
for error conditions is made. (See Section 9.4.5.) :

943 DECODE

DECODE transmits n consecutive ASCII characters according to the iform from locations smrtmg
with the first word in buffer to the variable list as n machine-language elements.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 10, LIST)
99 FORMAT(10I3)

In the preceding example, the ASSIGN statement is used as the only way to set a variable (IFORM ) equal
to a statement number. Also, the request specifies that ten integer values be stored in LIST as
hexadecimal numbers. IBUF must contain 15 words of ASCI characters since a total of 30(10*I3)
characters with two characters per word were requested.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 5, LIST)
99  FORMAT (3(2X, 215))

Where: Five integer values are stored in LIST as hexadecimal integers even though the FORMAT

specifies six integer values; that is, skip two characters, pick up the next five characters
twice, and repeat this format twice.

60362000 H 9-17



99

99

Where:

99

Where:

9-18

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 20, LIST)
FORMAT(3(312, 1X, 213))

NOTE

Even though 15 integers were specified in the FORMAT
statement, a repeat of the FORMAT starting with the
first specification within the parenthesized expression
is executed to complete the conversion of the LIST
parameters.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 0, 0)
FORMAT (28H (message))

28 ASCII characters are transmitted from IBUF to IFORM.

NOTE

This is a way of editing FORMAT statements without
recompiling,.

DIMENSION FLIST(8), LIST(18)
EQUIVALENCE (FLIST, LIST(3)) .

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 10, LIST)
FORMAT (212, 8F10. 3)

The first two variables are integer values and the remaining eight are floating-point.

NOTE

Ten variables were specified even though the floating-
point variables occupy two words per variable.

60362000 D



.

)

(O

—

-~

f \)
\. 7

()

Vi

(

—

]

@

()

®

)

o

P

)

s

N

(

9.4.4 DECODE MACRO

The DECODE subroutine may be called from an assembly language program by calling the DECODE
macro as follows:

DECODE A,B,C,D,E (absolute)
or
DECODE* A,B,C,D,E (relative)

Parameters A, B, C, and D correspond to the respective parameters in a FORTRAN call, as shown above.
Parameter E is optional and may be left blank. If defined, E defines the address of an error routine to
which control is given when errors are detected.

9.4.5 ENCODE/DECODE ERROR DETECTION

When calling the ENCODE/DECODE package as subroutines, the error flag returned in the A register is
lost. However, when calling the ENCODE/DECODE package as function subroutines, the error flag

(= -1) returned may be tested for FORMAT errors except Fw.d output The A register equals +0 on
correct formatting of results,

CALL ENCODE (IBUF, IFORM, N, LIST)

In this example the ENCODE call is a subroutine call and the error flag (= -1) returned could not be
tested.

NFLAG = ENCODE (IBUF, IFORM, N, LIST)
IF (NFLAG. EQ. -1) GO TO 1000
or IF (ENCODE(IBUF,IFORM, N, LIST). EQ. -1) GO TO 1000

- In this example, the ENCODE call is a function subroutine call and NFLAG is set to the value returned

by ENCODE to be tested later in an IF statement, or the error flag returned in the A register can be
directly tested in an IF statement. In the function subroutine call, ENCODE/DECODE should be
declared in a type statement as INTEGER; otherwise, the compller treats the results returning from
ENCODE/DECODE as floating point.

CAUTION

When ENCODE or DECODE ig used in an implied DO
loop, termination will occur immediately upon format
conversion errors. Subsequent conversions within
the loop will not occur.

60362000 C 9-19



9.4.6 ADDITIONAL FORMATTING ROUTINES

Additional formatting routines have been added to enable the FORTRAN programmer to format one
variable at a time to save execution time needed for interpretation of FORMAT. The features in this
section are to be used with one word integer type variables whenever integer type variables are used.

HEXASC and HEXDEC

CALL name(variable, buffer)

Where: name is HEXASC — Converts a hexadecimal integer to ASCII characters.

HEXDEC — Converts a hexadecimal integer to a decimal integer in
ASCH characters.

variable is the location of the hexadecimal integer.

buffer is the location of a two-word buffer to contain the converted integer in hexa-
decimal form (HEXASC); or the location of a three-word buffer to contain
the converted integer in decimal form (HEXDEC),

Exathple 1:

DIMENSION LIST (10), IBUF(30)

J=1

DO 101=1, .10

CALL HEXDEC(LIST (), IBUF(J))
10  J=J+3

.
.

This call is comparable to an Iw FORMAT specification for output as 1-1,2,3,...,10; J=1,4,17,...,28,
and the subroutine HEXDEC fills IBUF with integer values from LIST,

J=1

DO 10 I=1, 10

CALL HEXASC(LIST(I), IBUF(J))
10 J=J+2

This call is comparable to the $w FORMAT specification for output, The subroutine HEXASC fills
IBUF with ASCII values from LIST,

9-20 _ v 60362000 D



)

(

7N
N

)

~e 7

N,

O O O

B

Example 2:
If IVAL = 258,
then CALL HEXASC(IVAL,IBUF(1))

results in IBUF(1) = $3031
IBUF_‘(Z) = $3032

and CALL HEXDEC(IVAL, IBUF(1))

results in IBUF(1) = $2020
IBUF(2) = $2032
IBUF(3) = $3538

HEXASC and HEXDEC Macros
The above subroutines may be called from assembly language programs by making these macro calls:

HEXASC A,B (absolute)
or
HEXASC* A,B (relative)

HEXDEC A,B (absolute)
or
HEXDEC* A,B (relative) , -

Where: A is the address of the variable.
B is the address of the buffer (two words HEXASC, three words HEXDEC).

ASCHI and DECHEX

CALL name(buffer, variable)

. Where: name is ASCII — Converts two words of ASCII characters in BUFFER to a

hexadecimal integer.

DECHEX — Converts three words of a decimal integer in ASCII characters
in BUFFER to a hexadecimal integer.

buffer is the starting location containing the ASCII representation of the integer.

varis.,ble is the location of the converted integer.

Example 1:

DIMENSION IBUF(25), LIST (10)

60362000 D : 9-21



K=1
DO 101=1,5
CALL ASCI(IBUF(J), LIST(K))
J=J+2
K=K+1
CALL DECHEX(@IBUF(J), LIST (X))
J=J+3
10 K=K+l

This example assumes that words 1, 6, 11, 16, and 21 in IBUF are hexadecimal and words 3, 8, 13, 18,
and 23 in IBUF are decimal. The calls are comparable to $w and Iw FORMAT specification (input),
respectively. :

Example 2:

If IBUF(1) = $3030
IBUF(2) = $3033
IBUF(3) = $3035

then CALL ASCI(IBUF (2), IVALUE)
results in IVALUE = $305 = 773

and CALL DECHEX(IBUF(1), IVALUE)
results in IVALUE = $0131

ASCII and DECHEX Macros

The above subroutines may be called in assembly language by calllng the appropriate macro as follows:
ASCOI A,B (absolute)
ASCO* A,B (relative)
DECHEX A,B (absolute)
DECHEX* A,B (relative)
Where: A is the buffer address (two words for ASCII and three words for DECHEX)
B is the variable address

AFORM and RFORM
CALL name(buffer, variable)

Where: name is AFORM — Converts a word containing two ASCII characters to two words
each containing a character left-justified blank-filled

RFORM — Converts a word containing two ASCII characters to two words
each containing a character right-justified zero-filled.

buffer is the location containing two ASCII characters

variable is two words containing the resultant of AFORM/RFORM

9-22 ‘ ' 60362000 E



-

oS

(* \

’

O

~.
(N
(3
.

~ -

\
J

O O«

@

)y O

.

O

()

—

()

()

A/

i

)

rd
{

O«

-

(@)

~

®

O

\

Example:

DIMENSION LIST(2),IBUF(10)

.

DO 101=1,10
CALL RFORM(IBUF(I), LIST)
IF(LIST(1). EQ$2E) GO TO 20
IF(LIST(2). EQ. $2E) GO TO 20
10 CONTINUE
20 .

In this example, LIST is being scanned for an ASCH period. AFORM/RFORM are comparable to Aw
and Rw respectively, as used on an input record.

FLOATG
CALL FLOATG (variable, buffer)

‘Where: variable is a two-word floating-point variable
buffer . is a six-word output buffer containing the floating-point representation with its
exponent in ASCI characters: *. XXXXXXEzee (this is equivalent to Ew.d
FORMAT specification with d=6 and 0< ees+39)
FLOATG Macro

The subroutine may also be called in assembly language by using a macro call as follows:

FLOATG A,B (absolute)
FLOATG* A,B (relative)

Where: A is the address of a floating-point variable
B is the address of a buffer (six words)

9.5 FORTRAN/MONITOR RUN-TIME PACKAGE

The FORTRAN/monitor run-time package was written to give the FORTRAN programmer a means of
communicating with the monitor, It is necessary for the programmer to make certain monitor
requests, obtain monitor parameters, or execute I/O commands.

60362000 F 9-23



The monitor requests are:

READ

WRITE
FORMAT-READ
FORMAT-WRITE
SCHEDULER
TIMER

RELEASE Memory

The READ, WRITE, FORMAT-READ, and FORMAT-WRITE requests were provided as a supplement
to the FORTRAN READ/WRITE statement processor (Q8QIO).

The monitor request for FORMAT-READ or FORMAT-WRITE has a different interpretation than
the FORTRAN formatted records.

Consult the MSOS reference manual for device driver characteristics with READ, FREAD, WRITE,
and FWRITE calls,

9.5.1 READ/WRITE CALLING SEQUENCE
CALL name (mlu, buffer, leﬁgth, completion, flag, temp)

Where: name is READ, WRITE, FREAD, or FWRITE,
miu - is the mode and logical unit,

mlu format:

15 13121110 9 0

ij»a 0 tu

m mode (used only on devices capable of both modes)

0 Binary méde

1 ASCH mode
a logical unit designator

0 actual logical unit number

1 core location containing the logical unit number
Iu logical unit (as defined for the MSOS configuration)

9-24 60362000 H



N

O

(Y (O

buffer is the area of memory that data is read into or written from

length is the number of words to be read or written. If this is a mass storage logical
unit, then length is the name of a three-word table containing:

a LENGTH(1) Number of words

N LENGTH(2) Mass storage address (bits 15 through 30)
—~ LENGTH(3) Mass storage address (bits 0 through 14)
O :

N

VR
i H
A

completion is the statement label or index to the system directory or external core-resident
main program that is scheduled on completion of the request.

flag - is the packed word with the completion priority in bits 0 through 3, the request
. priority in bits 4 through 7, and a flag in bits 8 through 11. The flag interpre-
C) tation is:
C‘/ 16 14 1211 8 7 43 0
Q if | 0e—s0 £ cp
- if Indirect flag

f Flag. If set, the buffer address is contained in the location specified in the
calling sequence.

J
~ 0 completion = Statement label
— 1 completion = Index to the directory
" 2 completion = External core-resident main program
— cp Completion priority (levels 0 through 15)
{ .
'

rp Request priority (levels 0 through 15)

temp is the eight-word area used for building the calling sequence to the monitor.

N NOTE
Calls from the background for READ or WRITE mass
— storage requests must ensure that LENGTH(3) does
! not access scratch sector 0. LENGTH(3) must be 2

A
N

)
s

C

96 words.

MODE AND LOGICAL UNIT

The logical unit of the device or a core location containing the logical unit number is in bits 9 through 0
of lu. If bit 11 equals 0, then bits 9 through 0 are the actual logical unit. If bit 11 equals 1, then bits
9 through 0 are a core location containing the logical unit. The mode indication is bit 12 (= 1 ASCII;

o

N = 0 unformatted or binary). The core locations containing the standard input/output logical units as
C/ defined in the monitor are detailed as follows:
s

_/ 60362000 E 9-25

,,,,,



Core ~ lu .
Locationsg Formatig Meaning . Mode
F9 18F9 Input medium ASC
08F9 Input medium Binary
FA 18FA Output punch medium Asch
08FA 4 Output punch medium Binary
FB 18FB Output list medium ASCIl
FC ‘ 18FC Output comment ' ASCH
FD 18FD Input comment AsSCI
c2 08C2 - Mass storage Binary?t

COMPLETION LOCATION AND FLAG PRIORITY
When I/0 has finished, control is returned to the completion location assigned at the time of the request.

The completion location may be a statement label in the same program (flag = 0). In FORTRAN, the
only way to set a statement label as a completion location is with the ASSIGN statement.

Example: Completion = statement label

ASSIGN 100 TO ICOMPL
IFLAG = 0 |
CALL FWRITE (LU, IBUF, LENGTH, ICOMPL, IFLAG, ITEMP)

100 CONTINUE

The complei:ion location may be a program residing in the system library (flag = 1). An EXTERNAL
statement is used to correctly define the name of the program in the system library, and the loader inserts
the index to the system directory as the completion location.

Example: Completion = system program

EXTERNAL NAME1
IFLAG=$100

CALL FWRITE (LU, IBUF, LENGTH, NAME1, IFLAG, ITEMP)

tWhen writing ASCII information on mass storage the mode is ignored.

9-26 60362000 E



)

/“'\\
/
g

{

(.

o O O

e

The completion location may be the name of another program in core (flag = 2). An EXTERNAL state~
ment is used to define the name of the program correctly. The completion location may never be a

subroutine,
Example: Completion = external core-resident program

EXTERNAL NAME1
IFLAG=$200

CALL FWRITE(LU,IBUF, LENGTH, NAME1, IFLAG, ITEMP)

Example: Indirect buffer address

ASSIGN 10 TO IBUF
IBUF=IBUF+2
IFLAG=$8012
CALL FWRITE(LU,IBUF, LENGTH,ICOMPL,IFLAG, ITEMP)
10 FORMAT(50H THIS IS AN EXAMPLE OF AN INDIRECT BUFFER ADDRESS )

NOTE
In the preceding example the address IBUF was
updated two words to remove "(50H" from the
message. Also an even number of characters does
not include the terminating).

Alternatively, the FORMAT statement may be written as

- 10 FORMAT (ATHISIS AN EXAMPLE OF AN INDIRECT BUFFER ADDRESSA' )

NOTE

The alternative form also requires that the address
IBUF be updated by two words to skip over the compiler
generated ""(50H" in the buffer.

Example: (direct buffer address)
DIMENSION IBUF(4), ITEMP(8)
DATA IBUF /AMESSAGE'/, LENGTH /4/, LU /$18FB/

IFLAG = $12
CALL FWRITE (LU, IBUF, LENGTH, ICOMPL, IFLAG, ITEMP)

60362000 H

9-27



9.5.2 SCHEDULER AND TIMER

REQUESTS

In a given system, numerous requests for the execution of programs at specific priority levels may be
generated., Specifically these requests are generated when:

) An 1/0 request has been completed

. A specified time interval has elapsed
® Core has been allocated/released
° A mass storage request has been executed

Requests may also be made directly by making a scheduler call. It is the function of the scheduler
request processor to:

. Cause the immediate execution of a program if it is of a higher priority level than the
current program
° Thread the request by priority and on a first-in/first-out (FIFO) basis if its priority is

equal to or lower than the current priority.

If the requested program is mass storage resident, the scheduler request processor causes allocation
of core for this program and transfer of the program from mass storage. After the program has been
"~ transferred, a scheduler request is made, which results in one of the above.

Whenever a program terminates, the dispatcher' selects the next program to be run, either from the
top of the scheduler thread or the interrupt stack.

CALLING SEQUENCE

CALL SCHEDL(l, flag, .parameter,temp)

Where: 1 is the requested program to be scheduled at the completion priority.

flag is a packed word with the completion priority in bits 3 through 0 and a flag
in bits 11 through 8. The flag interpretation is:

15 12 11 8 7 : 4 3 0

o-————-»ol f |04————-——--»0 cp j

f is the flag

0 L is a statement label
1 L is an index to the directory
2 L is an external core-resident main program

cp  is the completion priority (levels 0 through 15)

9-28 ) 60362000 E



parameter is a positive integer may be passed to the scheduled program. The
) scheduled program obtains the parameter by calling the integer function
Q} LINK, |
temp is a four-word area in which the scheduler call is generated. After the
(, scheduler call is complete, this area is available for other use.
/
CALL TIMER(], flag, time, temp)
2 v
L/ Where: 1 is the program given control at priority CP after the time interval has
expired.
(/3 flag is a packed word containing the completion priority in bits 3 through 0, a
' unit of time code in bits 7 through 4, and a flag in bits 11 through 8.
C’ 15 12 11 8 7 4 3 0
0e » 0 f . ‘ d , cp
O
f is the flag
- 0 L is a statement label
7 1 L is an index to the directory
_ 2 L is an external core-resident main program
d is the unit of time
0 Counts of system time base
1 0.1 second
2 1.0 second
) 3 1.0 minute
C/ cp is the completion priority
time is the time interval to delay before scheduling the program, 1, at level CP.
C/ At the end of the time interval, the core clock (contents of cell $E8) is
passed to the requested program as a parameter. To obtain this parameter
™, the integer function LINK must be called.
~ temp is a four-word area in which the timer call is generated. After the call has
—~ been executed, this area is free for other use.
k/)
\‘) 9.53 MISCELLANEOUS CALLING SEQUENCES
O LINK
N = LINK (0)
Q 60362000 E 9-29

D



N is set to:

° The passed parameter from a scheduler call if LINK is called at the start of the scheduled
program. ,

. The value of the core clock if LINK is called at the start of the program called by a TIMER
request.

® The error flag at the completion of I/0 if LINK is called at the completion location.
DISPATCHER

CALL DISPAT or CALL DISP
Control is given to the dispatcher in the monitor to start the next highest priority program.
CORE CLOCK
The integer function ICLOCK obtains the value of the clock: I=ICLOCK(0)
I contains the current value of the clock (memory location $ES).

RELEASE OF ALLOCATED CORE

~ All programs that have been allocated core (either allocatable or partition) must return memory to the
core allocator when they are finished. This includes all mass-storage-resident programs.

CALL RELESE (main)

Main is the name of the main program. The call must be compiled as the last executed statement
in the program. No further program statements are executed following CALL RELESE.

OUTPUT COMMANDS VIA THE A/Q CHANNEL

CALL OUTINS (IOUTAQ)

Where: IOUTAQ is a three-word table

IOUTAQ(1) is loaded into the Q register. Should contain converter,
equipment, and station codes or the channel addresses
for a connect command.

IOUTAQ(2) is loaded into the A register. Contents vary depending upon
the device selected.

IOUTAQ(3) is a flag word which contains the following information after
the call

0 No reject
1 Internal reject
2 External reject

9-30 : , 60362000 E



INPUT COMMANDS VIA THE A/Q CHANNEL

CALL INPINS(IINAQ)

Where:

IINAQ

is a three-word table

IONAQ(1) is loaded into the Q register. Should contain converter,
equipment, and station codes or the channel addresses

for a connect command.

IINAQ(2) is after the call, contains the data or status obtained on

input.

- IINAQ(3)  is a flag word which contains the following information

after the call

0 No reject
1 Internal reject
2 External reject

CONNECT THE 1750 DATA AND CONTROL TERMINAL AND INPUT

CALL ICONCT(IINAQ)

Refer to input commands via the A/Q channel for the calling sequence interpretation.

CONNECT THE 1750 DATA AND CONTROL TERMINAL AND OUTPUT

CALL OCONCT (IOUTAQ)

Refer to output commands via the A/Q channel for the calling sequence interpretation, -

954

There are many ways of accomplishing asynchronous 1/0 operation (for example, reading/writing

BUFFERED INPUT/OUTPUT

from one buffer while executing from another) with programming technlques. The following example
demonstrates how this may be accomplished.

60362000 E

DIMENSION DATA (100, 2), TEMP(4)

ASSIGN 100 TO ISTART

IPRIOR=4
CALL SCHEDL(ISTART,IPRIOR, 0, TEMP)
CALL DISPAT

100 KX=1

2.

ASSIGN 200 to ICOMPL
CALL READ(LU, DATA(1, KX), 100, ICOMPL, IPRIOR, TEMP)

9-31



3. CALL DISPAT
4. 200 IF(LINK(0), LT, 0) GO TO 300

JX=KX
KX=3-KX
5. CALL READ(LU, DATA(1,KX), 100, ICOMPL, IPRIOR, TEMP)
6. . COMPUTE WITH DATA(1, JX)
7. CALL DISPAT

C ERROR HANDLING SECTION
8. 300 CONTINUE

END

Following is an explanation of the preceding coding.

.1, Make a scheduler call to set the priority level of the program.
2, Initialize a READ of n words (<100 words) into DATA(1, KX) where KX=1,

NOTE

The first word address is DATA(1) and the priority
level for this READ is the same as the program.

3. Make a dispatcher call. Another program is given control until the I/O is complete. -

4, The completion location (200) tests for errors in reading the input data, then switches JX
and KX,

5. Initialize a second READ of n words (<100 words) into DATA (1, KX) where KX=2,

NOTE

FWA is DATA(101) and the completion priority
must be at the same level as the program
priority level,

9-32 : 60362000 E



)

0

(

@

()

A
\‘;/I

)

7.
8.

60362000 E

Execute the code using the data in the filled buffer where JX indicates which buffer is filled.
When execution of DATA(1, JX) is complete, call the dispatcher.

If the filling buffer (KX) is complete, control goes to the completion address where the
buffers are switched and the sequence of operations is restarted. However, if the filling
buffer (KX) is incomplete, control remains with another lower priority program, while
1/0 is in progress, before returning to the completion address.

9-33






-,

)

O

TN

-
\

MACRO FACILITY 10

<A B R TR IR D TN FUS R o Ko R R, 1 NS T AR ST R MR P LR

This section describes the macro facility, which is a macro card-deck feature. This facility allows the
user to read in a deck of cards, save them on mass memory, and then insert them later in any pro-
gram, After a macro has been defined, it remains in the macro library for the length of the stacked
compilation.

This feature is very useful when working on large program systems, If the system includes many
routines using the same common block with the same format, etc., those cards may be defined as a
macro and then inserted in each program by using only one card. Any changes that need to be made

. may then be made only to the macro definition deck.

10.1 MACRO DEFINITION
A macro deck is an entity similar to a program, subroutine, function, or block data. It begins with the
statement:

MACRO name
and ends with the statement:

END
Example: MACRO MASTER

C THIS IS THE MASTER LABELED COMMON BLOCK

COMMON /A/ IFLAGS, LINECT, LINCT1
COMMON /A/ . . . ETC.

10.2 MACRO CALL

To use a2 macro, an M is placed in column 1 of the card, followed by the name of the macro anywhere
on the card.

60362000 E 10-1



Example: SUBROUTINE PHASE A

THIS IS THE PHASE A PROCESSOR
MASTER

UNLABL

gEN

10.3 RESTRICTIONS
The END statement is used to end the macro definition but is not part of the macro itself.
A macro may not include a cau to another macro.

The macro must be defined before being referenced by a program, subroutine, or function.
macro does not have to be the first program in a compile.

10.4 LIMITS

Maximum number of macros: 32
Maximum number of cards in one macro: 255
Maximum number of cards for all macros: 319

10-2

60362000 H



GLOSSARY

Actual argument
Arithmetic expression

Assignment statement
Basic external function

Block data subprogram

. Byte

Common

Compiler

Constant

Control statement

Data element
DATA statement

Data type

60362000 F

An argument in the list of a calling program that represents actual values
relative to the calling program,

A combination of arithmetic operators and data elements that produces a
single numerical value when evaluated by execution,

An executable statement that gives:a numerical value to a variable, The
value may be the result of calculation or it may be the result of calculation

or it may be assigned by the programmer,

An auxiliary procedure that supplies references to library routines con-

- tained in the system, The basic external function is used to evaluate more
. complex mathematical evaluations,

A subprogram without reference that supplies specifications and initial
values to labeled common,

A sequence of adjacent binary digits operated up on as a unit and usually
shorter than a computer word,

An area of memory that may be shared between program units.
A program that translates a programming language (such as FORTRAN)
into an assembly language and, often, into machine language. A compiler

may generate many machine instructions for a single symbolic statement.

A value assumed to be fixed or invariable in a given operation or calcula- -
tion,

An executable statement used to alter the normal sequence of program ex-
ecution (i.e., form one statement to the following statement) or to cause

a number of iterations of a program section

A single-valued unit of data which may be uniquely referenced. It may
occupy part of a word, a full word, two full words or three full words,

A nonexecutable statement used to assign constant values to variables
or arrays at the time of compilation,

The six types of data that ére recognized by MS FORTRAN; i.e., in-
teger, single, real, double precision, byte, and signed byte data types,

Glossary-1-



Double precision

Dummy argument
Executable' statement
Execution

External function
subprogram

External subroutine
subprogram

Fieiq

Field des;erietor |
Field separator -
File mapagef ‘
FORMAT si;etement\

FORTRAN/monitor
run-time package

FORTRAN READ/WRITE

statement processor

Function

In-line code method

Glossary~2

The use of three computer words to represent a number,

An argument listed in the procedure definition that serves to exchange
values between the reference list and the procedure calculations,

A stafement that performs calculations, directs control of the program,
and transfers data,

- The process in which the instructions contained in a program direct the

activities of the control processing unit,

A separate FORTRAN program which performs a set of calculations when
its name appears in an arithmetic or logical expression in the referencing

program, The external function subprogram is used when a number of

calculations are required to obtain a single result,

A separate FORTRAN program that performs a calculation in conjunction
with another program it calls into operation, The external subroutine
subprogram is used when a number of calculations are required to obtain -
an array of values,

In a record, a specified area used for a particular category of data,

A descriptor used in FORMAT statements to define the field of each ele-
ment in the 1/0 list in formatted READ and WRITE statements.

A slash or comma;used to separate field descriptors or groups of field
descriptor's

A general-purpose file management package that consists of a request
supervisor and a number of request processors,

A nonexecutable statement that deﬁnes the field and data tyi)e of each
element in the 1/0 list, '

The package that gives the programmer a means of communicating with
the monitor.

The. processor that transfers information between core storage and ex-
ternal peripheral devices connected to the computer,

A procedure that supplies a single result to be used at the point of
reference,

A method used if an intrinsic function involves only a few machine in-

structions, The intripsic function is inserted in the referencing program
every time the reference appears,

60362000 F



O O

OO OO O

Intrinsic function

I/0 statement

Logical expression

Logical unit

Mass storage file

Mixed mode expression

. Multiprogramming

Nonexecutable statement
Nonre-entrant ENCODE/
DECODE run-time package

Re-entrant ENCODE/
DECODE run-time package
Re-entrant program
Relational expressions
Run-anywhere program

Specification statement

Statement function

60362000 D

An auxiliary procedure that supplies predefined calculations by inserting
simple sets of calculations into the object program at compile time, The
intrinsic function is used to evaluate frequently used mathematical
functions,

An executable statement that does one of the following: reads records
from an external unit into core and writes records out of core onto an ex-
ternal unit, or affects the position and checks the status of external
magnetic tape files,

A combination of relational expressions and logical operators such that
evaluation of the expression produces a result of true or false,

A number that can be equated to any one of a variety of peripheral units,

A file that is assigned to the scratch area of the mass storage device and
is not retained after execution of a job,

An arithmetic expression. which can include integer, real, and double
precision quantities,

In MSOS, a technique for processing two programs simultaneously by
overlapping or interleaving their execution. Multiprogramming is-
achieved by allowing the priority program to gain control of the processor
periodically through interrupts,

A statement that provides the compiler with information regarding data
structure and storage,

A run-time library that runs in the background and has multiprogramming
characteristics, It is designed for use in debugging programs,

A run-time library that runs in the foreground and has multiprogramming
characteristics,

A program that can be interrupted and re-entered by another program of
higher priority level,

Two arithmetic expressions combined 'with a relation operator such as
. EQ (equal to), .NE (not equal to), etc,

A program that can be moved and successfully operated elsewhere in core
after being loaded by a relocating loader,

A nonexecutable statement that specifies type, word structure, and
storage for variables,

An auxiliary procedure that is defined by a single statement in the program

unit in which it is referenced, The statement function is used when a
single nonstandard computation is needed repeatedly. ‘

Glossary-3



Standard logical limits
Subprogram

- Supplied function -
Symbolic name

. Variable

Glossary~4-

Standard logical units for input, output and listing are stored in system memory.
Fortran calls these by referencing units 1, 2, and 3 respectively. Logical unit 4
is the comment device.

A user-defined set of statements compiled independently of the program unit that

_references it or to which it supplies specifications and initial values.

A predéfihed éa}culaﬁon o‘r‘refefence to library routines in the system that are
supplied by MS FORTRAN to evaluate standard mathematical functions.

A data name or procedure name that consists of one to six alpha~-numeric
characters, the first of which must be alphabetic.

A quantity that can assume any.of a given set of values,

60362000 H



3

[

(
\

)
4

——

)

/

{

(

O

)

)

—~

O O (

D

.

.

—

"COMMUNICATION BETWEEN FORTRAN A
AND ASSEMBLY LANGUAGE PROGRAMS

THE FORM OF THE CALLING SEQUENCE

Calling sequences written in assembly language which are intended to communicate with FORTRAN-
generated subprograms must have the following form, where SUB has been previously declared as an
external. '

LOC RTJ SUB

LOC+1 (RTJ SUB is a two-word instruction)
LOC+2 Address of argument 1

LOC+3 Address of argument 2

LOC+4 Address of argument 3

-

LOC+N+ 1 Address of argument N
LOC+N+ 2 Program resumes

When a function subprogram returns a floaﬁng-point value, the result is placed in the pseudo accumu~
lator and may be accessed by means of a call to the floating-point package.

The result of an integer function is left in the A register.

Addresses of arguments occur in consecutive locations following the RTJ command, one cell per
address, in the order that the arguments appear in the actual parameter list which should be the same
subprogram definition. Subroutines need not necessarily have arguments. '

FORTRAN calls to assembly language subroutines must recognize the argument passing sequence as
previously described. The arguments must have the same order as their use and are assembled in the -
form as previously shown. When a call to a routine outside of a FORTRAN program is made and 1/0O

is performed, a priority problem may be encountered. In such a case the priority of FORTRAN I/0

and other devices used should be examined to determine if a higher priority device has interfered.

ABSOLUTE ADDRESSES

All arguments in common are in the calling sequence as absolute addresses. In a non-run-anywhere
program, all arguments are absolute.

RELATIVE ADDRESSES

Relative addressing is only used in programs compiled under the R option.

60362000 E - | ©A-1



All arguments which do not fall into the category for absolute addresses are represented in the calling
sequence as relative addresses. The self-relative address (which is what is meant by a relative
address in a calling sequence) is computed by subtracting the location of the self-relative address in
the calling sequence, say LOC+3, from the address of the corresponding argument, say argument 3,
and setting bit 15 to 1. ’ ’

Only the 15 low order bits of an argument (14 through 0) are necessary to designate the address
absolute or relative. Thus, in calling sequences, bit 15 is used as a flag to distinguish between the
two addressing modes.

Bit 15 is 0 if argument address is absolute,
Bit 15 is 1 if argument address is relative,

The address returned from a floating-point calling sequence is absolute.

FORTRAN assumes that all assembly language routines save and restore the Q and I registers.

- A-2 . 60362000 C



4

)

L

O

O

.

@)

O

)

O

—

)

TABLE CAPACITIES B

"FORTRAN TABLE LIMITS

Up to 2,340 compller-genérated and user symbols are allowed.,

Uh to 10 nested DO loops are allowed.

The maximum rumber of declared subacripts is 147,

The maximum numbsr of continuation cards allowed per statemeat is five.

No more than 30 parenthesis levels are allowed.

The number of unique dummy argument index constant pairs must not exceed 50,
The number of subroutine arguments may not exceed 50,

Literals in DATA statements are limited to 387 characters.

Up to 51 EQUIVALENCE relations are allowed.

The number of compiler-generated words may not exceed 300 per source statement, or else a compiler
table overflow error F, 100 will be generated.

60362000 D : , S B-1/B-2 -



IR



SINGLE-PRECISION FLOATING-POINT PACKAGE

C

The software single-precision floating-point package used by FORTRAN is described in this appendix.
The package also can be used by an assembly-produced program,

Two similar floating-point packages are called by the same name (HFLOT); one is re-entrant and the
other is not, Both packages are usable by run-anywhere programs. The re~entrant package must
operate in protected core; the other package may operate anywhere.

If the firmware version of the package is used, the call to HFLOT is vectored to the firmware where
equivalent functions are performed.

Each floating-point number requires two consecutive words of storage. The first word (most

. significant bits) is the one that is addressed. Normalized floating-point format is as follows:

. Word 1 Word 2
15| 14 7| 6 0 15 ' 0
T |¢—— Exponent >l Normalized Coefficient ———»|
Sign

A floating-point number x is in the range given in the following example and is stgmtxcant to one part
in eight million.

1 1

1 : 12 23
-2 27 (1—223)sxs2 7 (1-27)

If the most significant word is zero (16 bits of zero or one), a floating-point zero is assumed.

COEFFICIENT

The coefficient consists of a 23-bit number n, 1—2—23, >|n| > 0. The high-order bit position of the
first word is the coefficient sign bit. A zero denotes a positive coefficient and a one denotes a
negative coefficient, When the coefficient is negative, the entire floatmg—pomt number, exclusive
of the sign hit, is stored in complement form,

EXPONENT

The floating-point exponent is an eight-hit quantity ranging from 00 to FF6- Through biasing by 80;..

this. range expresses both positive and negative exponents. The biasing is accomplished according to
the following rules:

1. If the floating-point number is negative, complement the entire floating-point word and
remember that the number is negative, The exponent is now in a true biased form.

60362000 J C-



2. If the biased exponent is equal to or greater than 8074, subtract 80;¢ to obtain the true
exponent, If less than 80,4, subtract 7F ;4 to obtain the true exponent. (Observe the
algebraic rules for subtraction.)

3. Separate the coefficient and exponent. If the true exponent is negative, move the binary
point left the number of bit positions indicated by the true exponent. If the exponent is
" positive move the binary point right the required number of places.

4. The coefficient has now been converted to fixed binary. The sign of the coefficient is
negative if the original floating-point number was complemented in step 1. The sign bit
must be extended if the quantity is to be placed in a register.

5. Convert the quantity to decimal representation by using the Powers method.

Example 1:

Floating point number BFBF FFFF
IN BINARY 1011 1111 1011 1111 (FFFF)
NEG '+ COMPLEMENT: 0100 0000 0100 0000 (0000)
EXTRACT EXPONENT: 100 0000 0
CONVERT TO HEX: 8016

UNBIAS: 80
-80

016
NORMALIZED COEFFICIENT EQUALS
.100 00005 (0000)
NO BINARY POINT MOVEMENT NEEDED USING POWERS RULES
1x27140x2-240x273+, . . . . +Ax2”D
DOING ARITHMETIC
. 1/2+o+o§r. eeeeet0

ANSWER = -.51,0

Cc-2 60362000 E



Example 2:

Floating point number 3BCO 0000
BINARY = 0011 1101 1100 0000 (0000)

o11 1101 1
EXPONENT = 7B

| 788
-7F

-4

MOVE BINARY POINT LEFT 4 PLACES’

.100 0000 (0000)

.0000100 0000
. oxz-lmn-2+oxz‘3+oxz'4+1x2'5+. ceeen
-5

1
ANSWER = o = 0312559

Example 3:

. Floating point number 44CO 0000
BINARY 0100 0100 1100 0000 (0000)
Exponent 100 0100 1

8 9%

89
=80
+9

MOVE BINARY POINT RIGHT 9 PLACES

.100 0000 (0000)
100 0000 O00.

1x28+0x27+........+0x20 .ox2l+........+Ax2™0

ANSWER = 28 = 25619

60362000 C



CALLING SEQUENCE

FLOT uses an interpretive calling sequence,

Neither calling sequence saves Q or I, nor uses the

communication cells. In the re-entrant cases, the communication cells must be saved upon entrance
to a program unit and restored upon exit (it is the user's responsibility to save these communication
cells). The interpretation is on a string of four-bit bytes, where the leftmost four-bit byte represents
the first operation. The respective operands, if they exist, are in the same order as the:bytes, with
one operand per byte. As many operations as desired may exist, but the last one must be the

terminator of a four, The floating-point accumulator is retained between calls to FLOT.

Example:

RTJ

address of FLOT

0,10

1{ 2

03

»?Ié'-?w?

The calling sequence was designed to minimize core requirements, including cbre used to set up the

calling sequence.

OPERATIONS

The following operations are used by the floating-point package.

C-4

Operation
SPEC
FLOF

FIXF

4-Bit
Code

0
1

Meaning
Special. This is first byte of a two-byte operation code.

Float to fix, The pseudo accumulator is converted to a 16-bit integer

and stored at the effective operand address.

Fix to float. The contents of the effective operand address are con-
verted from a 16~bit integer number and placed in the pseudo accomu-

lator,

60362000 E



O O

O

o Co Y O

)

O C

O O

v

O O

O O

)

o

4-Bit
Operation Cods
STRI 3
FEND 4
CHMD 5
NIDX 6
FCOM 7
FSUB 8
FMPY 9
FDIV Ajg
FLDD Big
ADDI Cie
FLST Dyg
FADD Es6
INDX Fi16
60362000 E

Meaning

Store index, The index register is stored at the effective operand
address.

End of calling sequence. This operation terminates the calling
sequence, No operand needed.

Change mode of operation. All operand addresses following this opera-
tion code in the calling sequence are made relative if the preceding
addresses were absolute, or absolute if the preceding addresses were
relative. Addresses are initially absolute. No operand is needed.

No index. The succeeding operands do not have indexing increments,

NIDX supersedes any preceding INDX and is superseded by any follow-
ing INDX. NIDX is assumed initially, No operand is needed.

Floating complement. The pseudo accumulator is complemented. No
operand is needed.

Floating subtract. The contents of the effective operand address are
subtracted from the pseudo accumulator and the result is left in the
pseudo accumulator,

Floating multiply. The pseudo accumulator is multiplied by the con-
tents of the effective operand address and the result is left in the pseudo
accumulator,

Floating divide. The pseudo accumulator is divided by the contents of
the effective operand address and the result is left in the pseudo
accumulator.

Floating load. The ﬂoéting—point number in the corresponding effecu‘ve.
operand address is transferred to the pseudo accumulator.

Add to index., The contents of the effective operand address are added
to the index register.

Floating store. The floating-point numher is transferred from the
pseudo accumulator to the corresponding effective operand address.

Floating add. The contents of the effective operand address are added to
the pseudo accumulator, and the sum is left in the pseudo accumulator,

Index. The operand corresponding to INDX is used to increment the
operand of the following operations: FLDD, F1ST, FADD, FSUB,
FMPY, and FDIV, Each succeeding INDX supersedes the last. No
index is initially assumed,

C-5



The following operation codes are executed only if the preceding byte is a SPEC(0).

4-Bit
Operation Code ; Meaning
CACS 1 Continue another calling sequence. The next operation to be executed
is the most significant four-bit command code located at the effective
operand address (unconditional branch),
BRAM 2 Branch accumulator minus, If the pseudo accumulator is minus, con-
trol is transferred to the effective operand address.
BRAZ 3 Branch accumulator zero
BRAN 4 Branch accumulator nonzero
BRAP 5 Branch accumulator positive
BRIM 6 Branch index register minus
BRIZ 7 Branch index register zero
BRIN 8 Branch index register nonzero
BRIP 9 Branch index register positive
NOTE
Codes 0 and Ajg minus F3¢, when preceded by a SPEC code,
are executed as FEND,

RELATIVE ADDRESSING

The operand address, bits 15 through 0, is relative to self, The relative address is computed by
subtracting the calling sequence operand address from the actual operand address.

Exambple:

X = -((A(I) + B(I) * C()) + (DWJ) * E (J))

Assume TEMP, X, J, D, and E are absolutely addressed and the other operands relatively addressed.
The call to FLOT would look like the following. '

60362000 E



L/',
s
. RTJ FLOT
- Fie] Big| 9 6
absolute address J
C ) absolute address D
absgolute address E
)
~ | Dig| 5] Fig] Bys
absoluts address TEMP
W relative address I
relative address A
)
Eig| 9 7 6
P relative address B
t\/ ) relative address C
\ 5 |E16 | Dig 4
C ; absolute address TEMP
sbeolute address X
(
N FAULT CONDITIONS
— At any time during execution, the following fault conditions are flagged: exponent overflow, exponent
& ) underflow, and divide fault (attempted division by zero). These fault conditions may be tested and
reset by use of the IFALT function call.
o
y} FLOATING-POINT ARITHMETIC WITH 23-BIT NUMBERS
(/\‘w‘ A classic and straightforward technique is presented that is not limited to the size or type of the
~ number representation used.
(™ Consider the double-precision floating point number:
\/)

F=f{Xx§p ' (1)

)

where |f| lies in the range

12z |f] s1-27"2 : @

O
7

SN

60362000 E , " c-7



Assume that we have a machine with a word length of 16 bits and that the 32 bits in the double-length
word are divided in the following standard way:

7 most significant
9 bits bits of £

binary point

16 least significant bits of f

The leftmost block of nine bits is divided into three parts:

) The first (leftmost) bit represents the sign of {.
° The second bit represents the sign of 8.
° The next seven bits represent the magnitude of 8.
This allows 23 bits for the representation of f. Assume that the binary point lies at the left of the 23

bits representing f so that the seven most significant bits of f are stored in the first word of the pair
and the 16 least significant bits of f are stored in the second word of the pair.

Ifl=c+dxa" @)

where c lies in the range

1/2<e<1-27 “)

and where d lies in the range

1/2<d<1-2718 (6)

then c represents the seven most significant bits of f and d represents the 16 least significant bits
of 1.

Cc-8

60362000 E

-%\



DO O

r

)

)

e

(

FOUR ARITHMETIC OPERATIONS
We wish to consider the four basic arithmetic operations using double-precision floating-point numbers
of the form discussed. Consequently, in ordsr to have notation for two operands, consider a second
double-precision floating-point number

G=gx20 (6)
wkere [gl lies in the range

23

1/2<lgls1-2" ()
i 4
lgl=2 +bx3~" ' (8)

where a lies in the range

1/2<asgl-2"" o )

where b lies in the range

1/2<b<1-2"16 i (10)

then a represents the seven most significant bits of |g| and b repreaents the 16 least significant bits
of lgl.

Assume that the machine represents negative numbers using a one's complement system. Assume
that the procedure for changing the sign of a double-precision floating-point number is to perform a
bit-by-bit complement of the entire 32 bits (including the nine bits representing the sign and exponent).

Multiplication

F X G = (f X 28) (g x 20) .
+ .
= (stgn F X G) I£] x Ig| x 2°*° ' (11)
The computational procedure is primarily concerned with the formatfon of |f| x lgl| x 2P+ gince
(sign F X G) can be recorded in advance and used later to apply the correct sign to the product. In -

addition to recording (sign F X G), we record the exponents 8 and § after the product £l x Igl is formed.
The following algorithm is proposed for multiplying F by G:

1. Determine and record (sign F X G).
2, Form |F| and |Gl.
3. Record the leftmost nine bits of |F| and |G]. This, in effect, records 8 and §. .

60362000 E Cc~-9



4.  Shift the 23 bits of |f| and |g| left until each has the bit pattern

+ 15 most significant bits C

0 8 least significant bits 7 zeros D

If this procedure is followed, Ifl is no longer represented by (3) during the computation
in step 5 below, but has the form

ifl =c+Dx22® ' - (12)

where C lies in the range
1/2scg1 -2"° (13)

and D lies in the range

0spg1-27 (14)

Likewise g has the form

|g|==A+Bx2.l5 (15)

where A lies in the range

1/2<A<1-271° (16)

and where B lies in the range

0o<B<1-2° an

5. Use fixed-point operations in forming the product.
If1xIgl =(C+Dx2"15) (A +Bx 2715
=CA+(CB +DA)x2"15 + DB x 2730 = pp x 2~30
=CA+(CB+DA)x2"18 o . (18)
Notice that the term DB x 2-30 may be ignored, because once the product is placed back in
standard form, only 23 bits are retained. Notice also that (18) is written in such a way that it
exhibits the efflcie_ncy of the following choice of computational steps:

a. Forin CA giving a doubie-length product.
b. Form CB and retain the most significant half of the double-length product.

c. Form DA.

C-10 60362000 E



S
-

()

™
()

)

)

\
)
’

-

d. Add the most significant half of DA to the most significant half of CB, -

e. Add the least significant half of CA to the sum obtained in (d). This result is the
second half of the double-length product. The first half of the double-length product
is the most significant half of CA which was formed in a.

6. Next, round and normalize the product obtained using (18) in step 5, Any adjusfment in the
exponent B+ 6 which is necessary because of the normalization of |f| X |g] must be
performed.

7. Finally, pack the 23 bits of the normalized product and the nine bits representing the sign
and the adjusted exponent into two 16-bit words (in the standard way). If (sign FX G) is
negative, the two words must then be complemented to give the correct sign to the product.

%=E_"26 (19)

= (sign G X F) |§| x 20%F

And since the following is wanted:

|§| <1 (20)

scale the numerator and write:

g
= (slgn G X F) Tfo 3-8+ \ (21)

Thus, propose the following algorithm for dividing G by F:

" IQ

1, Determine #nd record (sign F X G).

2. Form |F| and |G].

3.  Record the leftmost nine bits of |F| and |G]. This, in effect, records g and §.
4.  Arrange the 23 bits of [f| to give the bit pattern

+ 15 most significant bits of |f | : c

0 8 least significant bits 7 zeros D

and the 23 bits of |g| to give the bit pattern

+ 0 14 most significant bits of |g| A

0 9 least significant bits 6 zeros | B

60362000 E C-11



5.

Thus, f is represented by (12), (13), and (14) as in the case of multiplication. However, in
this case

|§| - A+Bx2 ® (22)
where A lies in the range

1/4s As1/2-2715 | @3)
and where B lies in the range

0sBs<1-2"2 @4)

Use fixed-point operations in forming the quotient:

;4
2] A+Bx215

ItV o220

- (A+Bx2-16 n [ 1
- C D _,-15
e 1+c x2

]
o> q>
+
o|w
]
LB
| W
]
N
o
+
B,
[7-)
' ]
8,
|
Nl
8
+

(25)

Ap® Bp| -30
-3 -~ 2|*?2
C C

may be ignored because only 23 bits of the quotient are retained. Notice also that (25) is
written in such a way that it exhibits the efficiency of the following choice of computational
steps.

a. Form -AD giving a double length product.
b. Divide -AD (as a double length dividend) by C.

60362000 E

\.



Addition

c. Form B - %D(rounded to a single length),

d. Form the double-length dividend:

AD -15
A+ [ - c]xz

(The sign of the second term requires apecial attention.)
e. Divide this double length dividend by C.

f. To obtain the second half of the double-length quotient, the remainder resulting from
the division in the previous step must now ba divided by C. This procedure is
efficient only on those machines which feature fixed-point multiplication that a
double-length product which can be used as a double-length dividend for fixed-point
division, :

Next, round and normalize the quotient obtained using (25) and the procedure of step 5.
Any adjustment in the exponent which is necessary because of the normalization of

g
2
F

must be performed,

Finally, pack the 23 bits of the normalized quotient and the nine bits representing the sign
and the adjusted exponent into two 16-bit words (in the standard way). If (sign F X G) is

negative, the two words must then be complemented to give the correct sign to the quotient.

F+G=fx2P+gx20 (26)

The basic problem in floating-point addition is to adjust the exponent of F (or G) so that the
binary points are aligned before the addition takes place.

Let L represent a pair of cells which contain the larger of the two numbers F and G, and S
represent a pair of cells which contain the smaller of the two numbers., Assume that F is
larger than G if ’

B=x28

@

and F is smaller than G if

B<é

60362000 E

(28)

C-13



Relative magnitudes of f and g, in case the exponents are equal, are of nb cohcem. 'Ustng this
convention, process the following algorithm for forming F + G.

1, Record the leftmost nine bits of F and G. This, in effect, records g and §.

2. Determine the sign of (8-§) and thus determine whether F is smallerfor larger than G
according to (27) and (28).

3. Place f and g in L and S. H F is larger than G, then f goes into L; otherwise { goes into S
and g goes into L. The following bit patterns should be formed (here s means sign bit).

I: lu l 8 | 13 most significant bits ]

binary point L
+ | 10 least significant bits | 5 sign bits
.8 | 8] 8] 13 most significant bits

]

binary point

10 least significant bits 6 sign bits

4,  Shift S right |g-8| places and put a + bit at the beginning of each of the two words, If
|8-6] = 23, then there is no need to continue since all significant bits in S will be lost.

+ |s |8 ||8-3]| filler bits

Mﬁw point 8

Notice that the | 8-8] filler bits between the binary point in S and the most significant

bit of the fraction are sign bits, This is mathematically correct in a one's complement
representation of negative numbers,

5. Add the second halves of L. and S,

C-14 60362000 E



AN 8.
(,/—x‘

N’

. 9.
{

S’

("

. 10.
(L

("

— 11,
(/""" |

e

T

~ 60362000 E

The first bit of this sum is c. If it is a one, there is actually a carry. However, it usually
is easier to add ¢ (refer to step 6) than to test to see whether or not it needs to be added as
a carry bit in forming the sum of the first halves of L and S. ’

Add the first halves of L and S and add the carry bit obtained from step 5.

e 8 v

If e = 1 then an end-around carry must be performed. This means that a one is added at the
right end of the word produced in step 5. Since this might also produce a carry bit, the c

in the diagram (refer to step 5) must be cleared to zero before the end-around carry. If

a carry bit is again produced, then a one must be added at the right end of the word
produced in step 5. It can be shown that this last operation can never produce another
e=1,

If v =8 then v is a sign bit, If v # s then there has been overflow during the addition and
v is the most significant bit of the sum, In the latter case, an adjustment of the exponent
will be necessary to give the correct answer,

~ Shift the second half of the sum left one place to clear out carry bit ¢c. Then shift the

double length sum left (a) one place if v = 8; (b) two places if v = s.
This leaves the sum in the following form:

8 | 15 most signlﬁcant bits of the sum

at least 8 bits of the sum | sign bits

If the double-length sum was shifted one place left in step 7 (v = s) then the exponent must
be adjusted to take care of the overflow. This means adding one to the exponent gor 6,
whichever is larger. (This will be the exponent of the sum.) If the double-length sum was
shifted two places left in step 7, no adjustment of exponent is necessary.

The form of the sum given by step 7 must be checked for normalization since it is possible
that several of the leading bits of the sum may be zero. (Cancellation occurs when two
numbers of opposite sign but nearly equal magnitude are added.) If the sum is not
normalized at this point appropriate adjustments in the exponents should be made.

If 23 left shifts are not sufficient for normalization then the sum should be made zero.

At this point the normalized sum may be rounded, although the extra coding involved may
not be worth the gain. If rounding is desired, then there are two cases to be considered
depending on the sign of the sum. These cases require that care be taken in handling any
carry bit produced by the rounding operations.

Now pack the 23 most significant bits of the sum, along with nine bits representing the sign
and exponent, into~two 16-bit words (in the standard way). I the sign of the sum is
negative, then the first nine bits must be complemented before the packing takes place.

C-15



Subtraction
No special éubroutlne is necessary since
F -G=F +(-G)
and one merely complements G before entering the addition subroutine,

FAULT CONDITIONS

If exponent underflow is encountered, a floating-point zero results. If exponent overflow is
encountered, the largest word of the appropriate sign results. A divide check is treated as overflow,

REFERENCES

_Robert T. Gregory and James L. Raney, "Floating Point Arithmetic with 84-Bit Nﬁmbers",
Communications of the ACM, Volume 1, Number 1, January 1964.

C-16 60362000 E



3

(

TN

x4

)

®

)

~ e N\,
{
!
/
~— .

DOUBLE-PRECISION FLOATING-POINT PACKAGE D

The software double-precision floating-point package used by FORTRAN is described in this appendix.
The package can also be used by an assembly-produced program. For efficiency the package is not
run-anywhere.

There are two similar floating-point packages. They are called by the same name (HDFLOT), but one

is re-entrant and the other non-re-entrant. Both packages are usable by run-anywhere programs. The

re-entrant package must operate in protected core. The non-re-entrant package may operate anywhere,

The non-re=entrant version, DFLOTN, utilizes temporary storage to perform its computations., The
re-entrant version, DFLOTR, utilizes volatile storage for temporary storage.

If the firmware version of the package is used, the call to HDFLOT is vectored to the firmware where
equivalent functions are performed, :

NOTE

In some cases, the firmware has approximately two digits less
percision than the software package.

Each double-precision floating-point number requires three consecutive words of storage. The first
word, containing the most significant bits, is the one that is addressed. Normalized floating-point
format is as follows:

Word 1 15 14 ' 7 6 0 »
f | Exponent (8 bits) l Normalized
S Sign of number

Word 2 15 0
Coefficient

Word 3 15 0
[ Of 39 bits B

Thus the numbers, X, expressible are of the range -2127(1-2-39) <X= 2127(1—2_39) and are significant

to one part in 549 billion, If the most significant word is zero (16 bits of zero or 1) a floating-point
zero is assumed. ’

COEFFICIENT

The coefficient consists of a 39-bit number n, 1-2-39 >n=21/2, The high-order bit position of the first

word is the coefficient sign bit. A 0 denotes a positive coefficient and 1 denotes a negative coefficient,
When the coefficient is negative, the entire floating-point number, exclusive of the sign bit, is stored
in complement form,

60362000 J D-1



EXPONENT -

The floating-point exponent is an eight-bit quantity with value ranging from 00 to FF 5. Through
biasing by 8014, this range expresses both positive and negative exponents.

CALLING SEQUENCE

DFLOT uses an interpretive calling sequence. -Both the re-entrant and non-re-entrant ca]ling'
sequences save the Q, A. and I registers in temporary storage. The interpretation is on a string
of four-bit bytes, where the 1eft_most four-bit byte represents the first operation, Their respective
operands. if they exist, follow in the bytes' respective order. one word per byte,

As many bytes may exist as desired, but the last one must be 4,

Example:

15 . 11 g 07 y 03 00
RTJ
address of DFLOT

01 02 03 04
Ay
A2
A4

05 O 4
5
6

User's program resumes

The calling sequence was designed to minimize the amount of core needed, including core used to set up
the calling sequence. '

OPERATIONS

A description of the followjng operations and their four-bit byte codes follows.

D-2 : E : 60362000 E



(>

)

()

Operation
SPEC
FLOF

FIXF

STRI
FEND

CHMD

NIDX

FCOM
FSUB
FMPY

FDIV

FLDD
ADDI

FLST
FADD

INDX

60362000 E

4~-Bit
Cods

Ale
Bis

C1s

_ Meaning
Special., This is first byte of a two-byte operation code.

Float to fix., The pseudo accumulator is converted to a 16-bit integer
and stored at the effective operand address.

Fix to float. The contents of the effective operand address are con-
verted from a 16~-bit integer number and placed in the pseudo accomu~-
lator.

Store index. The index register is stored at the effective operand
address.

End of calling sequence. This operation terminates the calling
sequence, No operand needed.,

Change mode of operation. All operand addrcsses following this opera-
tion code in the calling sequence are made relative if the preceding
addresses were absolute, or absolute if the preceding addresses were
relative. Addresses are initially absolute. No operand is needed.

No index. The succeeding operands do not have indexing increments,
NIDX supersedes any preceding INDX and is superseded by any follow—
ing INDX, NIDX is assumed initially. No operand is needed.

Floating complement. The pseudo accumulator is complemented. No
operand is needed.

Floating subtract. The contents of the effective operand address are
subtracted from the pseudo accumulator and the result is left in the
pseudo accumulator.

Floating multiply, The pseudo accumulator is multiplied by the con-
tents of the cffective operand address and the result is left in the pseudo
accumulator.

Floating divide. The pseudo accumulator is divided by the contents of
the effective operand address and the result is left in the pseudo
accumulator,

Floating load. The floating-point number in the corresponding effective
operand address is transferred to the pseudo accumulator,

Add to index. The contents of the effective operand address are added
to the index register.

Floating store. The floating-point number is transferred from the
pseudo accumulator to the corresponding effe¢tive operand address.

Floating add. The contents of the effective operand address are added to
the pseudo accumulator, and the sum is left in the pseudo accumulator.

Index. The operand corresponding to INDX is used to increment the
operand of the following operations: FLDD, FLST, FADD, FSUB,
FMPY, and FDIV, Each succeeding INDX supersedes the last. No
index is initially assumed,



The following operation codes are executed only if the preceding byte is a SPEC(0).

4-Bit :
Operation Code Meaning
CACS o1 . Continue another calling sequence, The next operation to be executed

is the most significant four-bit command code located at the effective
operand address (unconditional branch).

BRAM 2 Branch accumulator minus, If the pseudo accumulator 18 minus, con-
trol 18 transferred to the effective operand address.

BRAZ

3 Branch accumulator zero
BRAN 4 Branch accumulator nonzero
BRAP 5 Branch accumulator positive
BRIM 6 Branch index register minus
BRIZ 7 Branch index register zero
BRIN 8 Branch index register nonzero
BRIP 9 Branch index register positive
NOTE

Codes 0 and Ajg minus F, ., when preceded by a SPEC code,
are executed as FEND,

RELATIVE ADDRESSING

The operand address, bits 15 through 0, is relative to self. The relative address i8 computed by sub-
tracting the calling sequence operand address from the actual operand address.

Example:
X = - (A@*B(I))*C(I)+D(J)*E(J)

Assume TEMP, X, J, D, and E are absolutely addressed, and the other operands are relatively
addressed. The call to DFLOT would lock like the following.

20
5



RTJ DFLOT|
Fm B16 9 6

Absolute address of J
Absolute address of D
Absolute address of E
D 5 |F B

18 16

Absolute address of
temporary cell TEMP

Relative address of I
Relative address of A
E 9 17 6

16

16
Relative address of B
Relative address of C
5 E D 4

16 16

Absolute address of
temporary cell TEMP

Absolute address of X

FAULT CONDITIONS

At any time during execution, the following fault conditions are flagged: exponent overflow, exponent
underflow, and divide fault (attempted division by zero). These fault conditions may be tested and
reset by use of the IFALT function call,

FLOATING-POINT ARITHMETIC WITH 39-BIT NUMBERS

A classic and straightforward technique is presented which is not limited to the size or type of the
number representation used.

Consider the double-precision floating-point number:
F=fx2P ' (1)
where |f] lies 1n the range

1/25 Jf|<1-273° @)

60362000 E D-5



Assume that we have a machine with a word length of 16 bits and that the 48 bits in the triple-length
word are divided in the following atandard way:

9 bits 7 most significant
bits of {

binary point |

16 intermediate significant bits of f

16 least significant bits of f

The leftmost block of nine bits is divided into three part§:~

° The first (leftmost) bit represents the sign of f.

e  The second bit represents the sign of 8.

e  The next seven bits represent the magnitude of 8.
This allows 39 bits for the representation of f. We shall assume that the binary point lies at the left
of the 39 bits representing f so that the seven most significant bits of f are stored in the first word of
the three, and the 16 least significant bits of f are stored in the third word.
K we write

|f|=c+clx2'7+dx2'2a- , (3)
where c lies in the range

1/25c<1-2"" ’ 4)
cf lies in the range

0scis1-2718 (5)
and where d lies in the range

0<d<1-2718 ' ' (6)

then ¢ repréaents the seven most significant bits of f, ci represents the 16 intermediate bits of £, and
d represents the 16 least significant bits of {.

D-6 ‘ - : 60362000 E



N

)

YOO

~
J

O C

FOUR ARITHMETIC OPERATIONS
We wish to consider the four basic arithmetic operations using double-precision floating-point numbers
of the form discussed. Consequently, in order to have notation for two operands, let us consider a
second double-precision floating-point number.

G=lglx2* (1
where |g| lies in the range

1/2<lgls1-27° | ®

(€] =2 +aix RS Y (%)
where a lies in the range

1/2<as1-2"7 ' : ‘ (10)
ai lies in the range

osatg1-2716 an
and b lies in the range

o_<_1:51--2'16 o (12)

then a represents the seven most significant bits of |g|, al represents the 16 intermediate significant
bits of |g|, and b represents the 16 least significant bits of |g|.

Assume that the machine represents negative numbers using a one's complement system. Assume that
the procedure for changing the sign of a double-precision floating-point number is to perform a bit-by-
bit complement of the entire 48 bits (including the nine bits representing the sign and exponent).
Addition

F+G=fx2P+gx20 (13)

The basic problem in floating-point addition is to adjust the exponent of F (or G) so that the binary
points are aligned before the addition takes place.

Let L represent three cells which contain the larger of the two numbers F and G, and S represent three
cells which contain the smaller of the two numbers. Assume that F is larger than G if

B=6 (14)
and F is smaller than G if

B<6 (15)

60362000 E D-7



The relative magnitudes of f and g, in case the exponents are equal, are of no concern. Using this
convention, process the following algorithm for fomhg F +G:

1. Record the leftmost nine bits of F and G. This, in effect, records g and §.
2. Determine the sign of (8-8) and thus determine whether F is smaller or larger than G

according to (14) and (15).

3. PlacefandginL and S. If F is larger than G, then f goes into L; otherwise, f goes into

S and g goes into L. The following bit patterns should be formed (here s means sign bit): -

{+ | s | s 13 most significant bits

binary point

[ + [ 15 intermediate significant bits

+ 11 least significant bits 4 sign bits

Is |s |s *13 most significant bits j

binary point

| 16 intermediate significant bits

| 10 least significant bits | 6 sign bits

3

MSB

ISB

MSBY

ISB

LSB

]

4.  Shift 8 right | 8-&| places and put a + bit at the beginning of each of the three words. I
|8-8| = 89, then there is no need to continue since all significant bits in 8 will be lost,

+ | s8] 8 | B3

"filler" bits

binary point

L]

[+ 1

MSB ]

ISB

> S

Notice that the [g-3| filler bits between the binary point in S and the most significant bit
of the function are sign bits. This is mathematically correct in a one's complement
representation of negative numbers.

60362000 E

N



O

)

K )

6.

7.

60362000 E

Add the LSB portions of L and S,

The first bit of this sum is ¢. If it is a one, there is actually a carry. However, it usually
is easier to add ¢ (see step 6) than to test to see whether or not it needs to be added as a
carry bit in forming the sum of the ISB portions of L and 8.

Add the ISB portions of L and S and the carry bit from step 5.

cl

If C1 is set to one, we have a carry and we will add c1 to step 7 in forming the sum of the
most significant bits of L and S.

Add the MSB portions of L. and S and add the carry bit obtained from step 6.

e 8 v

If e = 1 then an end-around carry must be performed. This means that a cne is added at
the right end of the word produced in step 5. Since this might also produce a carry bit,
the c in the diagram (see step 5) must be cleared to zero before the end-around carry. If
a carry bit is again produced, then a one must be added at the right end of the word
produced in step 6. Since this might also produce a carry bit, the c1-in the diagram (see
step 6) must be cleared to zero before the end-around carry. If a carry bit is again
produced, then a one must be added at the right end of the word above. It can be shown
that this last operation can never produce another e = 1, ‘

If v =8 then v is a sign bit. If v # 8 then there has been overflow during the addition and
v is the most significant bit of the sum. In the latter case, an adjustment of the exponent
will be necessary to give the correct answer.

Shift the LSB portion of the sum left one place to clear out carry bit c. Then ghift the ISB
portion of the sum left one place to clear out the carry bit c1. Then shift the LSB portion
of the sum one place and put the bit shifted off into the rightmost bit of the ISB portion of
the sum. Then shift the triple length sum left (a) one place if v = 8; (b) two places if
v=s,

This leaves the sum in the following form:

8 15 most significant bits of the sum

16 intermediate significant bits of the sum

at least 8 bits of the sum sign bits




10.

11,

12,

Subtraction

If the triple-length sum was shifted one place left in step 8 (v = 8) then the exponent must be
adjusted to take care of the overflow, This means adding one to the exponent gor &,
whichever is larger. (This will be the exponent of the sum.) If the double length sum was

shifted two places left in step 8, no adjustment of exponent is necessary.

The form of the sum given by step eight must be checked for normalization since it is
possible that several of the leading bits of the sum may be zero. (Cancellation occurs when
two numbers of opposite sign but nearly equal magnitude are added.) If the sum is not
normalized at this point, appropriate adjustments in the exponents should be made.

If 39 left shifts are not sufficient for normalization, then the sum should be made zero.

At this point the normalized bum may be rounded, although the extra coding involved may
not be worth the gain. If rounding is desired, then there are two cases to be considered
depending on the sign of the sum. These cases require that care be taken in handling any

carry bit produced by the rounding operations.

Now pack the 39 most significant bits of the sum, along with nine bits representing the sign
and exponent, into three 16-bit words (in the standard way). If the sign of the sum is
negative, then the first nine bits must be complemented before the packing takes place.

No special subroutine is necessary since

F-G=F+(-G)

and one merely complements G before entering the addition subroutine.

Multiplication
F X G = (f x 2P) (g x 2%)

= (stgn F X G) [1] x |g] x 2°*°

(16)

The computational procedure is primarily concerned with the formation of Jf| x |g| X 2ﬂ+6 since (sign
F X G) can be recorded in advance and used later to apply the correct sign to the product. In addition
to recording (sign F X G), we record the exponents 8 and § after the product |f| X |g| is formed. The
following algorithm is proposed for multiplying F by G:

D-10

1,
2,
3.

Determine and record (sign F X G)
Form |F| and |GI.

Record the leftmost nine bits of [F| and |G|. This, in effect, records g and 5.

60362000 E

«

7N



4.

5.

60362000 E

Shift the 39 bits of |f| and |g| left until each has the bit pattem:

+ 15 most significant bits Cand A

0 15 intermediate significant bits Ci and Af

0 9 least significant bits | 6 zeros Dand B

If this procedure is followed, |f| is no longer represented by (3) during the computation

in step 5 below, but has the form:

f=C+Cix 2715 +pyx 230

‘where C, Ci, and D He in the following ranges:

2l<c<1-271°

osctsl-z'15

0<D<1 -20

Likewise |g| has the form
lgl=A+Aix2 ¥ +px230

where A, Af, and B lie in the following ranges:

2ls ac1-2718

o<Ai<1-271°

0sB<1-2"?

Use fixed-point operations in forming the product.

Iflx|g| = (C + Ci x 2B ipx23) araix2 P +px2d

= CA +CAI + CiA) X 2715, (DA + CiAf + CB) X 2730

+ (DAL +ciB)x 2 ~*° + DB x 2750

= CA+(CAL + CiA)x 2~ 1> + (DA + CiAl + CB) x 2 3°

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

D-11



M

Notice that the terms (DAl + CiB) X 2745 and DB x 2760 may be ignored, because once the
product is placed back in standard form, only 39 bits are retained. The following o
computational steps are performed: _ » _ o

a. Form CA giving a double-length produoct. e
b. Form DA and retain the most significant half of the double-length product.
c. Form CiAi and retain the most significant half of the double-léngth product. I
d. Form CiA giving a double-length product. i
e. Add the most significant half of DA to the most significant half of CiAi.

f. Form CB and retain the most significant half of the double-length product.
g. Add the most significant half of DB to the sum obtained in (e).

h, Add the least significant half of CiA to the sum obtained in (g).

i. Form CAIl giving a double-length productl | ‘

j.  Add the least significant half of CAI to the sum obtained in (h). This result is the
least significant portion of the triple-length product.

k. Add the most significant half of CiA to CAl.

1. Add the least significant half of CA to the sum obtained in (k). This result is the
intermediate significant portion of the triple-length product. The first half of the
double-length product is the most significant half of CA which was formed above in
(a).

6. Next, round and normalize the product obtained using (25) in step 5. Any adjustment in the
exponent 8+5 which is necessary because of the normalization of |f| x |g| must be performed.

7. Finally, pack the 39 bits of the normalized product and the nine bits representing the sign
and the adjusted exponent into three 16-bit words (in the standard way). If the (sign F X G)
is negative, the two words must then be complemented to give the correct sign to the

- product. '

Division

G 1 8 1
—=GX= (g X2 )x(‘ )
F F x 2B
= (sign GXF) X g x%x 257P | _ (26)
As a matter of fact, since we want: ' ‘
|“i|‘ 1, | (27)

scale the numerator and write:

1
% (sign GXF) x |g| xl‘%lx 20 P (28) O

D-12 ‘ : . 60362000 E



Thus, propose the following algorithm for dividing G by F:

1,
2.
3.
4.

Determine and record (sign F X G).
Form |F| and |G].

Arrange the 39 bits of |f| to give the bit pattern:

+ 15 most significant bits of |f]
0 | 15 intermediate significant bits of |f|
0 9 least significant bits | 6 zeros

and the 39 bits which represent the number 1.0 to give the bit pattern:

+ ] 0 | 14 most significant bits of 1/2
0 | 15 intermediate significant bits of 1/2
0 | 10 least significant bits of 1/2 | 5 zeros

$2000

$0000

$0000

‘Record the leftmost eight bits of [F| and |[G|. This, in effect, records g and 8.

5. Use ﬁ:;ed-polnt opetationb in forming the quotient.

1

-30

a+? xz'ls +€ X2

A+Ax2 B ipxad0

where: a = $2000

¥ = $0000
¢ & = $0000

60362000 E

15 -30

A+AIx2 " +Bx2

(29)

D-13



D-14

Any terms beginning with 2-45 are ignored because only 39 bits of the quotient are
retained. The following computational steps are performed:

e,

0.

Form -Aiz giving a double-length product.

Divide -At? (as a double-length dividend) by A.

2
Form B-A—A (rounded to a single length).

Form the double length-dividend:

2
mxz P [B-A)x20)

(The sign of the second term requires special attention. )

Divide the double-length dividend by A and multiply the result bya. The multiply
is accomplished by shifting the result of the divide.

To obtain the second half of the double-length quotient the remalnder resulting
from the division in the previoua step must now be divided by A.

Form a (the moet signlﬁcant bits of 1/2) and the result obtained from step e as a
double-length dividend.

Divide the double-length dlvidend by A The result is t.he most significant bits
of the quotient.

Form the remainder of step h and the result of step f as a double-length dividend.

Divide the double-length dividend by A. The result is the intermediate significant
bits of the quotient. ‘ T :

Divide the remainder obtatned n step j by A. The result is the least significant
bits of the quotient,

Next, round and normalize the three-word quotient using (29) and the procedure
of step 5. Any adjustment in the exponent which is necessary because of
normalization of -

N

must be performed,
The three-word quotient is then multiplied by |g|.

Next, round and normalize the product. Any adjustment in the exponent +8 which
is necessary due to the normalization must be performed.

Finally, pack the 39 bits of the normalized quotient and the nine bits representing
the sign and the exponent into three 16-bit words (in the standard way). If
(sign F X G) is negative, the three words must then be complemented to give the
correct sign to the quotient.

60362000 E

Y



FAULT CONDITIONS

If exponent underflow is encountered, a floating point zero results. If exponent overflow is
encountered, the largest word of the appropriate sign results. A divide check is treated like an
overflow,

REFERENCES

Robert T. Gregory and James L. Raney, "Floating Point Arithmetic with 84-Bit Numbers",
Communications of.the ACM, Volume 1, Number 1, January 1864,

60362000 E

D~15






N ,
t y
~ CODING HINTS : E
(;A~)
N
O
("“"_ The constants {n an arithmetic expression should be collscted. For example,
X=Y+3,1%4,2
C
shkould be written
//\
{ ) =
— Subexpressions, including a byte variable as constant in a DO loop, should be pulled out of the loop.
- For example, the program
SUBROUTINE SUM

C‘ COMMON A(10), IC(10)

DATA B/3.4/
— DO 11=1,10
| A(I)=0.0
1 DO 1J=1,10
1 1 A(I) = (SIN(B) + FLOAT(I)) * FLOAT (IC(J)) + AD)

- RETURN

END
_J should be written
) SUBROUTINE SUM
S COMMON A(10), 1C(10)

DATA B/3.4/
/—\.’ TEMP1 = SIN(B)
o DO 2 I=1, 10

Cc=0.0
N TEMP2 = FLOAT(I) + TEMP1
(_ DO1J=1, 10

1 C = TEMP2*FLOAT(IC(J)) + C
Cu 2 A()=C
/ RETURN

END
{ )
-
S
\\—/’

L 60362000 E E-1



Only one dimensional array should be used. H two or three dimensfons are desired, the programmer
should use the subscript functions given in Appendix G. For example, the program

SUBROUTINE TRANSF
COMMON A(10, 10), B(10, 10) .
po1J=1,10

PO11=1,10
1 A(1,9) = B(1,J) + 1.0
RETURN
END
should be written

SUBROUTINE TRANSF
COMMON A(100), B(100)
DO11I=1,100

1  A®M=B@+1.0
RETURN
END

Common subexpressions beiween two or more arithmetic expressions should be collected. For
example,

Y(I) = A+B + FUNCI{IBYTE)
Z(I) = A*FUNC1(IBYTE) + FUNC2(IBYTE)

where IBYTE is a byte variable, should be written

ITEMP1 = IBYTE

TEMP1 = A + FUNCI(ITEMP1)
Y(I)= B + TEMP1

Z({1) = TEMP1 + FUNC2(ITEMP1)

When a program references a multi-dimensional array, the FORTRAN compiler on occasion generates
a relocatable base address for an indexed variable which is intended to fall in front of data, common,
or the program. Since this relocatable address is expressed in 15 bits, the loader on a 16-bit load
has no way of knowing that this is not a forward relocation. To accommodate this, the loader assumes
that any relocatable address in the range 7F80 to 7FFF is intended as backward relocation. This
range can be changed by reassembly of the MSOS loader module RBDBZ 1.

The user who has the double precision capability may write programs which require only single
precision. To avoid linkage to the double precision library, the external references to DOUT, Q8DXP1,
and Q8DXPY must be satisfied. The user may write his own dummy routine with these references as
entry points or use the routine DBLDMY (deck ID K19) contained in the MS FORTRAN product set, and

load it with his programs. Refer to Section 2,2,6, Double Precision Type Data, and note the evaluation -

for double precision constants to avoid an external reference to DFLOT.

E-2 | ' o | 60362000 E



2.

HARDWARE REQUIREMENTS

The minimum hardware configuration is:

FORTRAN 3.2A

Mass Memory Device
(.5 million words or more)
Card Reader
Teletypewriter
CDC CYBER 18-Class CPU

Core Storage Increments*

Compiler core requirement is less
than 9, 300 words.

Minimum MSOS Operating System
core requirement is 9, 2K

The typical configuration is:

FORTRAN 3. 2A

Mass Memory Device

(1. 0 million words or more)
Teletypewriter
Card Reader/Punch
Magnetic Tape Devices
CDC CYBER 18-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 9, 300 words.

Typical MSOS Operating System
core requirement 19K*¥,

FORTRAN 3.2B

Mass Memory Device

(.5 million words or more)
Card Reader
Teletypewriter
CDC CYBER 18-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 16, 900 words.

Minimum MSOS Operating System
core requirement is 9, 2K.

FORTRAN 3. 2B

Mass Memory Device -

(1. 0 million words or more)
Teletypewriter
Card Reader/Punch
Magnetic Tape Devices
CDC CYBER 18-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 16, 900 words.

Typical MSOS Operating System
core requirement 12, 5K**, -~

*Core requirements are based on the size of the Compiler used and the size of the MSOS operating
system configured. ' '

**Typical operating system core requirements for the A variant versus the B variant are different because
certain nice~-to-have MSOS features are usually not included in the 3.2B system to allow 32K configuration.

60362000 F F-1/F-2



PN



ARRAYS G

A T s S e T I I S S R M PSR

B R T L

An array is a block of sequential memory locations referenced by a single name. The name types the
elements of the array as integer or real (Section 2.4)., Arrays are dimensioned in the mathematical
sense of having rows, columns, and planes. The magnitude of these dimensions is defined by the array
declarator, which is the array name followed by a set of numerical subscnpts giving the maximum
dimensions.

Examples:
IOTA (50) One-dimensional array with 50 integer elements
BETA (4,6) Two-dimensional array with 24 real elements

ALPHA 4,3,5) Three~dimensional array with 60 real elements

Elements of arrays are stored by columns in ascending order of location. The ordering of elements
in an array follows the rule that the first subscript varies most rapidly and the last subscript varies
least rapidly. In the array declared as A(3,3,3)

A 2421 A
Az11 Bz A3
Ag1r Asa1 Pss1 [,
112 2122 A3z
212 A2z Aa3z
312 fe22 fasa [, A
Az1z A3 Az3z
A313 Aszaz Az33

The planes are stored in order, étarting with the first, as follows.

A

AIITL 127 L+3.‘..A13-§'L+24
A2 1—1- L+1 AZZT L+4... A23§. L+25
A311 L+2 A L+5. . A33-:-3' L+26

60362000 C




Fdr a given dimensionality, subscript declarator, and sub'script, the value of a subscript pointing to
an array element and the maximum value a subscript may attain is indicated in Table G~1. A subscript

. expression must be greater than zero.

The value of the array element successor function is obtained by adding one to the the entry in the
subscript value column. Any array element whose subscript has this value is the successor to the
original element. The last element of the array is the one whose subscript value is the maximum

subscript value and which has ne successor element.

The sequential location of a particular element of a stored array is determined according to the

following:

Given the array defined by the declarator
AZ(A,B,C)

The ordinal location of element AZ(a,b,c) 18 given by the formula
a+A=(-1)+AxBsx(c-l)

Derivation of the formula is illustrated in Figure G-1.

Example:

To find the ordinal location of element B(2,3,4) in the array B(5,6,7)
2+5#%(3-1) +5 =6 x (4-1) =102

A subscript never may be less than 1 or greater than the maximum dimension declared for it. The
elements of one~dimension array BETA (I) may not be referred to as BETA (I,J) or BETA (I,J,K).

A diagnostic 1s issued if this is attempted,

The array name without subscripts references the entire array when it is used in an I/0 list, as an
argument of a function or subroutine (Sections 7.4.1 and 7.4.2), or in a specification statement other
than DIMENSION (Section 6.1.1) or DATA (Section 6,2)., The array name without subscripts references

the first element when it is used in an expression,

"~ Table G-1. Value of a Subscript

MAXIMUM
~ | SUBSCRIPT SUBSCRIPT | SUBSCRIPT SUBSCRIPT
DIMENSIONALITY | DECLARATOR REFERENCE VALUE . VALUE
A) (a) a A
2 (A,B) (@a,b) a+A*(b-1) A*B
-3 (A,B,C) (a,b,c) a+A*(b-1) A*B*C
+A*B*(c-1)
Notes: (1) a, b, and c are subscript expressions.
(2) A, B, and C are dimensions.
G-2 60362000 E



(1-9) « € x V + (1-Q) « V + ® UOpoUNg I08800ng AB11y °[-H omBLI

(T-0)4HaV
P T -

ANEANAN

AN
—]
\
\
\
\
\
\

WANAN
\

- 1-q [~

o O 000000V UOUC DU OOo

G-3

60362000 C



Before an array can be used in a program, its name and dimensionality must be declared in a

DIMENSION, COMMON, or type statement (Sections 6.1.1, 6.1.2, and 6.1.4), '
P
Example: -
Given the array ALPHA(3,4, 4) - ‘ . -
It will be declared for program use by any of the following: ‘
/“\
' DIMENSION ALPHA (3,4,4) e
COMMON // ALPHA (3,4,4) o
INTEGER ALPHA (3,4,4) -
4
.
("
o

G-4 , A
60362000 C



ASCIl CODES

s

The 1968 American Standard Code for Information Interchange (ASCII) is used by Msos for com~
munication between the CYBER 18/1700 and external I/0 devices. In addition to the code for the
FORTRAN character set, it includes code for control of the paper tape punch and the teletypewriter,

ASCII code uses eight bits, the first of whfch is always 0; it is omitted in the following table. Bits
1 through 4 contain the low-order four bits of code for the character in that row. Bits 5, 6, and 7
contain the high-order three bits of the code for the character in that column,

BITS b1, - 0°o' 011 _1°o 1o1 1, 111
':4 ':3 ':2 ':1 Row QLUMN | 1 |2 3 4 5 6 7
olo]o |o 0 NUL | DLE| sp | o© @ P i p
ololo |1 1 soi [pci| 1] 1 | a | ql| a a
o o1 1]o 2 STX (pc2| " | 2 B R b r
o lo}]1 |1 3 ETX | Dc3 | # 3 C s c 8
o|l1]o0o Jo 4 EOT { DC4| $ 4 D T d t
0 r]|o 1 5 ENQ | NAK| % 5 E hij e u
o {1]1 ]o 6 ACK | syYN | & 6 F v f v
o |1 {1 |1 7 BEL | ETB| - 7 G w g w
1 (i} 0 0 8 BS CAN | ¢ 8 H X h x
1] o0 0 1 9" HT EM ) 9 | 1 Y i y
1 /0] 1 }o 10 LF suB | = : J Z j z
1 0 1 1 11 VT ESC + ; K [ k {
1 1 {0 }]o 12 FF FS , < L \ M
1 |10 |1 13 CR GS - = M | ] m }
1 1)1 }o 14 SO RS . > N -~ n ~
1 1 1 1 15 SI Us / ? o — 1 o DEL

. -
FORTRAN Crharacter Set
60362000 F H-1/H-2



N




LOAD MAP COMMENT FEATURE | |

The user may insert comments in the binary name block by using the name card comment feature.
This comment will appear on the load map to the right of the program name and load address.

The name card feature reserves up to 46 columns for comments by inserting a slash in any column after
ths name followed by the comments through column 72, An alternate method of using this feature is to
make a continuation card for the program name card with the slash in column 7 or after and the comment

immediately following the glash,

The comment fleld may follow any of the following statements: PROGRAM, SUBROUTINE, FUNCTION,
DOUBLE PRECISION FUNCTION, REAL FUNCTION, INTEGER FUNCTION, or BLOCK DATA,

If the slash is used, the 46 characters following the slash appear on the NAM block of the binary output,
If neither the slash nor the comment appears on the source card, the binary NAM card is blank,

If there 1s no slash, but comments appear on the card, a diagnostic is issued and the binary NAM card
containg blanks, '

Examples:

X

PROGRAM NAME /SAMPLE NAME WITH ID (With comments)

z : |

SUBROUTINE NAMEA,B,C,D,E,F) (Without comments)
[: N

1 /A CONTINUATION CARD MAY ALSO BE USED

60362000 E . . o | I-1/1-2






,-
~—-

OPTIMIZATIONS S

]

MS FORTRAN optimizations are listed as follows:

60362000 F

Index registers are optimally assigned.
Relative addressing is used where possible.

Storage is allocated to maximize relative addressing. For example, some arrays are put
into the middle of code and constants may be duplicated. :

All simple FORTRAN-provided functions are inserted in-line (for example, IABS or AND).

A comprehensive analysis of IF statements is made. Code generated takes cognizance of
a transfer from the IF to the label of the next statement; and also if the statement is a GO
TO. In a logical IF, the computations are structured to produce the least amount of
computation for a determination of the expression's truth value. :

Arithmetic expressions are analyzed and computed in an order which minimizes both the
amount of code generated and its execution time.

" The compiler may reference the values in A, Q, and I (FFyg) and make use of them. It

may even reference each of these values by two different names. For example, ifI=0,
the compiler can reference both I and 0 as representing a value in the accumulator.

’

J-1/3-2






FORTRAN CHARACTER SET

FORTRAN uses alphanumeric and special characters.

Alphanumeric characters are the letters A through Z and digits 0 through 9.

The decimal system is used unless indicated otherwise; however, octal and hexadecimal numbers may
be used in certain instances.

Following is a list of characters.

ASCIK ASCnt Hollerith

Character Code Punch (026)
(] 30 (] Digit
1 31 1 Digit
2 32 2 Digit
3 33 3 Digit
4 34 4 Digit
5 35 5 Digit
6 36 6 Digit

o T_ _ _.3L _ 1 _ _ _ _ Digt _
8 38 8 Digit

9 _ _ 8% __ 9 _ ___._ Dt
A 41 12-1 Letter
B 42 12-2 Letter
C 43 12-3 Letter
D 44 12-4 Letter
E 45 12-5 Letter

_ F _ _ _46_ _ _12-6 Letter
G 47 12-7 Letter
H 48 12-8 Letter
I 49 12-9 Letter
J 4A 11-1 Letter
K 4B 11-2 Letter
L 4C 11-3 Letter
M 4D 114 Letter
N 4E 11-5 Letter
o 4F 11-6 Letter
P 50 11-7 Letter
Q 51 11-8 Letter
‘R 52 11-9 Letter
S 53 0-2 Letter

60362000 C

Description

FOctal
P Decimal

 Hexadecimal




K-2

Hollerith

ASCII ASCH
Character Code Punch (026)

T 54 0-3

U 55 0-4

Vv 56 0-5

w 57 0-6

X 58 0-7

Y 59 0-8

A 5A 0-9

{space) 20 No punch

! 21 11-8-2

" 22 8-7

# 23 12-8-7

$ 24 11-8-3

% 25 0-8-5

& 26 8-2

! 27 8-4

( 28 0-8-4

) 29 12-8-4

* 2A 11-8-4

+ 2B 12

.. 2C 0-8-3

- 2D 11

. 2E 12-8-3

/ 2F 0-1

: 3A 8-5

y 3B 11-8-6

< 3C 12-8-6

= 3D 8-3

> 3E 8-6

? 3F 12-8-2

@ 40 0-8-7

[ 5B 12-8-5

\ 5C 0-8-2

1 5D 11-8-5

A SE 11-8-7
SF 0-8-6

Description

Letter
L.etter
Letter
Letter
Letter
Letter
Letter
Blank

Exclamation point

Quotes

Number

Dollar

Percent
Ampersand
Apostrophe

Left parenthesis
Right parenthesis
Asterisk

Plus

Comma

Minus

Period

Slash

Colon
Semicolon

Less than

Equal

Greater than

. Question

At

Left bracket
Reverse slash
Right bracket
Circumflex
Underline

60362000 C

P



O C

C.

) ()

)

()

.,

L

®)

FORTRAN COMPILATION ERRORS - . L

Compilation errors are listed at the end of the source listing and indicated within the source listing in

the following format:

Message

*{g}, code, no., part

variable

*{g }, code

60362000 E

Significance

A compilation free of diagnostics is syntactically correct. The
compilation 18 aiso free of common semantic errors, such as
undefined variables in context requiring definition. If the detected
error prevents code from being generated in a reasonably accurate
manner, the error is considered fatal and compilation terminates.
When an assumption is made as to the intended meaning of a statement,
the diagnostic indicates the assumption. When possible, errors which
may not be fatal (e.g., an A in column 3) are flagged. A reference

to such a label (or the intended nonexistent label) would cause the

fatal error.

N Trivial error; only flagged. Example: not separating array
declarators in a dimension statement

F Fatal error

code Diagnostic number; see the following message for listing
of codes

no, Number of statements in error; appears only when
applicable

part Part of statement in error; appears only when applicable

Compilation error. When errors cannot be detected until all the
specification statements have been read and initially processed, the
error appears in this format. As the specification statements are
processed further, a few diagnostics can be printed. In these cases,
the variable causing the difficulty is printed. The diagnostic is
printed on the next line without a statement number reference since
it is no longer available.

N Trivial error; only flagged. Example: not separating array
declarators in a dimension statement

F Fatal error

code Number of statements in error; appears only when applicable

L-1



L-2

Message

~ & & B S

15
16
17
18
19
20
21
22
23
24
25
26

27

Significance

Field is not recognizable (illegal characters in field, such as 8 in
octal fleld).

Minimum range limit of a constant is exceeded.

More than six characters in a name

Maximum range limit of a constaht is exceeded,

Exponent is missing in a cohstaxit.

Subscripted variable was not previously dimensioned,

Expression in an IF statement does not have initial parentheaia
Incorrect FORMAT statement

Ilegal use of the . NOT. operator

lllegal operator or operand

Subprogram referqnce is illegal,

Labeled END card is illegal.

Number of arguments differs in references to the same subprogram,

Implied DO in DATA statement either contains wrong number of
subscripts or subscript is out of range.

Expression has an illegal iermlnation.
Unmatched parentheses in an expression
Relational operator is missing.
Relational operator used illegally.
Asterisk is assumed.

‘Only one ** is allowed per parentheses level.

A variable and a subprogram name are interchanged,
Subprogram name does not appear in an EXTERNAL statement,
One or more DO loops terminate on an undefined statement label,
Dlegal subscript

Statement is syntactically tncorrect;

This’array was previously dimensioned in DIMENSION, COMMON,
or TYPE statement or previously defined in an EXTERNAL statement.
The previous dimensioning or defining is retained and the new ignored.

The field must be a variable or array name if processing a COMMON,
DATA, EQUIVALENCE,; BYTE, or SIGNED BYTE statement; an
array name if processing a DIMENSION statement; or an array,
variable, or FUNCTION name if processing a type statement.

60362000 D



Yy

N

—~

60362000 F

Message

28

29 .
30
32

35

‘36

317

38
39

40

41
42

43
44
45
46
47

48
50
51
52

55

Stgnificance

Logical IF statement contains another logical IF, DO, DATA, or
FORMAT statement, -

Name must be the name of an array.

" Must be first statement of program unit.

A missing comma in this statement is assumed.
Illegal character in this statement is changed to a blank.

This line, which begins a statement, has other than zero or blank
in column 6; blank is assumed,

Too many labeled common blocks declared, continuation of the last
declared block is assumed.

The name in this COMMON statement is either a formal argument
or defined in a previous COMMON statement. The name is ignored.

Name specified as two different types. This specification is ignored.

This byte typed as other than an integer, or it is a formal argument.
The byte specification is ignored,

This byte previously specified as a different byte. The previous
specification is retained and this specification is ignored. :

The bit specified is not within bounds of the word size.

Least significant bit in this specification is greater than the most
significant bit.

Name must be an external function or subroutine name,

Field must be a nonzero positive infeger constant,

Array has more than three dimensions, |

DATA statement contains too many constants for the space provided,

Statement has more than five continuation cards; excess cards are
ignored,

An insufficient number of constants is provided in this data statement,
Constant is not same type as corresponding data cell,
Statement redefines DO loop parameter,

Statement type is unrecognizable; or it follows an executable
statement,

Not defined
Statement label is meaningless; label is ignored.
Statement label previously defined; current label is ignored.

L-3



L-4

Message
56
57
58
59
60
61

' 62

63
64
65

66
67

68
69
70
71

73

74
7%
77

78
79

80

81

82
83

Program name expected in this field.
Too many dimensions caused table overflow.

Symbol table overflowed; compilation terminates.

‘Statement label may not be zero.

No apparent exit from this program

Unclosed DO-implied list

Unformatted WRITE must have a list.

Name must be an integer variable or integer constant.
Name not implicitly an integer variable

A RETURN statement may appear only in a subroutine or function
definition. A STOP statement is assumed.

Superflous information in this statement is ignored.

This field on STOP card must have an octal number not greater than

77777. STOP is assumed.

Field must be a positive integer.
Field must be an integer variable,
Field must be a statement label,

This form of ASSEM argument cannot reference elements in
COMMON, EXTERNAL names, or subprogram arguments,

This type of statement may not terminate a DO loop,

This statement terminates a DO loop which is not the last DO
encountered, '

This GO TO jumps to itself,
A program consisting of only an END card is illegal,

Too many unique dummy parameter references caused a
compiler table overflow,

Label in a DO statement must reference a statement following it,

Maximum allowable number of nestéd DOs exceeded, The DO loop
may be implied in a DO list,

Subroutine argument table overflow; caused by large number of
declared parameters and unique references to these parameters,

This formal argument was previously specified as anot;her formal
argument or the subprogram name,

Too many formal arguments caused a compiler table overflow,

The above name is not a variable or an array element,

60362000 E

TN



60362000 E

85

87

88

89
90

91

92

. 100

101

103

110

111

113

114
115
116
152

Significance

Two elements of the same array or common block are assigned
to the same storage unit.

Blank common and formal arguments may not be initialized with
DATA statements.

An array element in a BYTE, SIGNED BYTE, DATA, or
EQUIVALENCE statement either has wrong number of subscripts
or subscript is out of range.

Too many EQUIVALENCE names caused a compiler table overflow,
At least two elements must appear in an EQUIVALENCE statement.

Ths preceding equivalenced symbols have overflowed the origin
of common,

DATA statement field is not an integer, real, double precision, or
literal constant.

Missing terminating asterisk or quote in a literal string as
appropriate

Catastrophic table overflow; compilation is abandoned. If the
offending statement is arithmetic or a logical IF, the statement
should be broken into two or more statements and the program
recompiled.

Two PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statements in one program unit; the second is ignored.

Relative address argument in ASSEM statement requires an asterisk
at the end of the preceding instruction,

Overflow of the table used for symbol references; subssquent
references are not listed by option 8 processor,

The index used in this subscripted variable is in conflict with the
dimension declaration.

Maximum number of macros overflowed; this macro definition is
ignored,

This macro was previously defined; the new definition is ignored.
Call to an undefined macro,

‘Embedded macros are {llegal,

Arithmetic table overflow

1~5/1~6






P

N

Message

1

1/0 RQST
statement no.
ffff

2
I/0 RQST
statement no.
f£ff

£888

3
I/0 RQST
statement no.
fEfE

[24:4:4:4

4

I/0 RQST
statement no.
XX

5

I/0 RQST
statement no.
XX

60362000 F

FORTRAN EXECUTION ERRORS

The following error messages apply to the FORTRAN I/0 run-time only.

Significance

Error in a format statement; illegal character
in format statement

ffff The current decimal value of the for-
mat statement pointer

Illegal character in the input field.

ffff Current decimal value of format
statement pointer

gggg Current decimal value of input field
pointer

Input data exceeds limits of 16-bit word:

Exponent >|-‘391 0|

ffff Current decimal value of format
" statement pointer

geggg Current decimal value of the input
field pointer

Attempt to read on a write unit or write on
a read unit

XX Decimal unit number of a device
used improperly

Read or write request after an end-of-file
has been read without first doing an EOF
check

XX Decimal unit number of a device
used improperly

Action/Result

Program terminates

Program terminates

Program terminates

Program terminates

Program terminates




Message

7

1/0 RQST
statement no.
xx

8

1/0 RQST
statement no.
xx

9

I/0 RQST
statement no.
XX

10

1/0 RQST
statement no.
Xx

12

1/0 RQST
statement no.
biiid

13

1/0 RQST
statement no.
£Eff

14

1/0 RQST
statement no.
xx

15

1/0 RQST
statement no.
xx

M-2

Significance

Write attempted on magnetic tape with no
write enable

xx The decimal unit number of a device
used improperly

Attempt to use logical unit number greater

than 99

XX The decimal unit number of a device
used improperly

Backspace at loadpoint

xx The decimal unit number of a device
used improperly

End of magnetic tape sensed

Xx The decimal unit number of a device
used improperly

Illegal formatted input; more elements
are given than are contained in an input
record

biii Current decimal value of format
statement pointer

Illegal list; a list is given but there aré no
conversion codes in the format statement

i Current decimal value of format
statement pointer

File defined twice; more than one OPEN
request given for the same file

xx Decimal file number for a mass
storage device

Parameter negative or zero; one of the
parameters in an OPEN statement is
negative or zero

XX Decimal file number for a mass
storage device

Action/Result

To continue press
RETURN

Program terminates

Program terminates

To continue, press
RETURN

Program terminates

Program terminates

Program terminates

Program terminates

60362000 C



.
S

Message

16 -

I/0 RQST
statement no.
Xx

17

1/0 RQST
statement no.
XX

18

I/0 RQST
statement no.
XX

19

1/0 RQST
statement no,
XX

60362000 C

Significance
Sector address too large; the starting

. sector address or ending address exceeds

215,
XX Decimal file number for a mass
storage device

File not defined; a READ or WRITE request
was given for a file which was not defined
by an OPEN statement

XX Decimal file number for a mass
storage device

Logical unit not a mass storage device

XX Decimal file number for a mass
storage device

Record number in READ or WRITE request
incorrect. Resulting sector address is out
of the range of the file or it is zero

XX Decimal file number for a mass
storage device

Action/Result

Program terminates

Program terminates

Program terminates

Program terminates

M-3/M-4-



N



Message

CORE OVFL
*UD

UNDEFINED SYMS
name name name

*SO
INPUT ERROR

50362000 H

FORTRAN MiSCEl.I.ANEOUS ERRORS

Significance

More than 32, 767 cells of object code have been produced
Undefined symbol in address field

Undefined statement labels and variable names

Scratch mass memory overflow

Request from comment device for input has returned on error.

“will exit the job processor.

FORTRAN

N-1/N-2



“



)

)

/\
\_.

y
1

—~

The following symbols may not be redefined in user programs.

60362000 E

MS FORTRAN RESERVED WORD LIST

R 2 e S R s R R N O R B 1 IR R PR R

DABS
DATAN
DBLE
DCOs
DEXP
DFIX
DFLOT
DFLT
DLOG
DSIGN
DSIN
DSQRT
DSTOR1
DSTOR2

FLOAT
FLOT
HFLOT
HDFLOT

QS8DFLT
QSDFNF
Q8PKUP
QSPREP
QSPSE
QBPSEN
Q8QBCK
Q8QD2D
Q8QD2F
Q8QD2I
QSQEND
Q8QF2I
Q8QF2I
QOQFLE
Q8QFIX
QSQFLT
QQ2F
QBQINI
Q8QWND

R B 2]

0-1/0-2






)

(

FORTRAN OPERATION IN ITOS USER AREA P

At this time, FORTRAN does not fully support operation in the ITOS user area. Users who wish to
use FORTRAN in this manner should be aware of the following restrictions: ‘

L Blank common may not be used.

® Labeled common may be used only if the first program loaded does not declare labeled
common. One method of accomplishing this is to make the main program a subroutine
and to precede it with a program such as the following:

PROGRAM XYZ
CALL MAIN
CALL PGMOUT
END

L The OPEN statement and the following forms of the READ/WRITE statement described
in section 5 are not supported:

READ (k(n), f) list
WRITE (k(n), f) list
READ (k(n)) list
WRITE (k(n)) list

60362000 G | P-1






Absolute addresses A-1
Addresses
Absolute A-1
Relative A-1
AFORM 9-22
Allocated core, release of 9-30
Alphanumeric conversion 6-20
Aw input/output 6-21
Rw input/output 6-21
Arguments
Actual 7-3
Dummy 7-3 .
Arithmetic assignment statements
Arithmetic expressions 3-1
Mixed mode 3-3
Order of evaluation 3-2
Rules for forming 3-1
Arithmetic IF - 5-7
Arrays G-1
Format specification in 6-27
ASCII 9-21
Codes H-1
ASSEM 5-34
Assigned GO TO 5-4
Assignment statements  5-1
Arithmetic 5-1
Label 5-2 .
Asterisk or quote I/0 9-11
Auxiliary I/0 statements 5-28
BACKSPACE 5-29
ENDFILE 5-29
REWIND 5-28
Aw input/output 6-20; 9-9

BACKSPACE 5-29
Basic external function 7-7
Blank field specification 6-24
nX input 6-24
nX output 6-25
BLOCK DATA 7-17
Block data subprogram 7-17
Blocks, tape 5-30

60362000 G

5-1

Buffered input/output 9-31
Byte statements 6-7
Byte type data 2-5

CALL 5-8; 7-16
Calling sequences 9-13, 28, 29; A-1
Character set K-1
Character specifications, special 9-11
Coding hints -E-1
Commands via the A/Q channel 9-30
Comment line 4-1
COMMON 6-2; P-1
Common block 6-3
Compilation 8-1
Errors L~1
Examples 8-3
Options 8-1
8-1
8=2
8-2
8=1
8=-1
8-2
8=-1
8-1
8-2
8=2 _
Computed GO TO 5-6
Constant
Double precision 2-7
Integer 2-3
Real 2-6
CONTINUE 5-8
Control statements 5-3
Conversion
Alphanumeric 6-20
Double-precision 6-19
Format 9-5
Integer  6-13
Numeric 6-13
Real 6-15

X<mwoORPRQ»

Index-1



Specifications 9-5
Dw.d input 6-19
Dw.d output 9-5
Ew.d input 9-7
Ew.d output 9-6
Iw input 9-8
Iw, Iw.d output 9-7
Rw input/output 9-10
Zw input 9-9
Zw output 9-8
$w input 9-9
$w output 9-8.
* Communication between FORTRAN
and assembly language programs A-1
Completion location” 9-26
Core clock 9-30

DATA 6-9
Literals in 6-10
Data elements 2-1
Data format types
Byte 2-5
Double precision 2-7
Integer 2-3
Real 2-6
Signed byte 2-5
Single 2~5
Data types 2-4
DECHEX 9-21
Decimal character set K-1
DECODE 9-3, 17
Decremented DO loop 5-12
Descriptors, field 6-12
DFLOT D-1
DIMENSION 6-1
Dispatcher 9-30
DO 5-9
Extended range 5-16
Parameters 5-11°
DO loop 5-9
Decremented 5-12
Nested 5-13
Structure 5-10
Transfer 5-15
Double precision
Constant 2-7
Conversion 6-19

Index-2

Dw.d input 6-19
Dw.d output 6-20; 9-5
Floating point package D-1
Subscripted variable 2-8
Type data 2-7
Variable 2-8
Dw.d input 6-19 i
Dw.d output 6-20; 9-5

Editing specifications 6-21; 9~10
Literal free-field input/output 6-23
New line 9-11
nH input 6-21
nH output 6-22
Quote or asterisk /0 9-11
wH, wX input/output 9-10

ENCODE/DECODE 9-3, 15
Error detection 9-19
Macros 9-17, 19

END 5-9

ENDFILE 5-29

. EOF 7-8

EQUIVALENCE 6-4
Errors 9-15
Compilation . L-1
Execution M-1
Format 9-15
Input/output = 9-15
Miscellaneous N-1
Ew.d input 6-16
Ew.d output 6-18; 9-6
Executable statements 4-1; 5-1
ASSEM 5-34
Assignment 5-1
Arithmetic 5-1
Label 5-2
Control 5-3
Input/output 5-18
Execution 8-12
Errors M-1
Expressions 3-1
Arithmetic 3-1
Logical 3-4
Relational 3-3
Extended range of a DO 5-16
EXTERNAL 7-13

60362000 H



